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Abstract

During the last years we have witnessed a severe change in computing. Processors hit the
so-called power wall, disallowing them to increase in clock speed. Thus, the arguable only
way to feed the ever growing demand for more processing power is parallelism. The highest
degree of parallelism currently available in an integrated chip is offered by the graphics
processing unit (GPU). A GPU offers tremendous processing power, but does not deliver
peak performance, if programs do not offer the ability to be parallelized into thousands of
coherently executing threads of execution.

This thesis focuses on solving this issue, unlocking the gates of GPU execution for a
new class of algorithms. We present a new processing model enabling fast GPU execution.
With our model, dynamic algorithms with various degrees of parallelism at any point
during execution are scheduled to be executed efficiently. The core of our processing model
is formed by a versatile task scheduler, based on highly efficient queuing strategies. It
combines work to be executed by single threads or groups of thread for efficient execution,
schedules groups of threads to execute cooperatively and efficiently, and detects harmful
execution patterns. It allows different processes to use a single GPU concurrently, dividing
the available processing time fairly between them. To assist highly parallel programs, we
provide a memory allocator which can serve concurrent requests of tens of thousands of
threads. To provide algorithms with the ultimate control over the execution, our execution
model supports custom priorities, offering any possible scheduling policy.

With this research, we do not only provide the currently fastest queuing mechanisms for
the GPU, the fastest dynamic memory allocator for massively parallel architectures, and
the only autonomous GPU scheduling framework that can handle different granularities of
parallelism efficiently, we also show the advantages of our model in comparison to state-of-
the-art algorithms in the field of rendering, visualization, and geometric modeling. In the
field of rendering, we provide algorithms that can significantly speed-up the generation of
global illumination computations, assigning more processing power to those image regions
that show the lowest image quality. We demonstrate that, with a notion of time, algorithms
can be synchronized to high throughput sources like cameras and dynamically adjust their
output quality to stay synchronized with the input. In the field of visualization, we analyze
three volume rendering techniques and show that detecting and avoiding harmful execution
configurations can greatly speed up their execution. In the field of geometric modeling we
provide the first GPU-based grammar evaluation system that can generate and render cities
in real-time which otherwise take hours to generate and could not fit into the memory.
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Kurzfassung

Innerhalb der letzten Jahre begann ein Paradigmenwechsel im Bereich der Computertech-
nologie. Physikalische Grenzen gestalten eine weitere Erhöhung der Prozessortaktraten
zunehmend schwierig. Der einzige Ausweg, um die weiterhin steigende Nachfrage nach
immer mehr Rechenleistung bedienen zu können, scheint Parallelisierung zu sein. Ein mo-
derner Grafikprozessor (GPU) stellt derzeit den höchsten Grad an Parallelismus innerhalb
eines integrierten Chips zur Verfügung. Die potenziell enorme Rechenleistung einer GPU
vermag jedoch nur von Algorithmen genutzt zu werden, die sich in tausende, kohärent
arbeitende Ausführungsstränge aufteilen lassen.

Ziel dieser Arbeit ist, die Rechenleistung der GPU einer breiteren Klasse von Algorith-
men zur Verfügung zu stellen. Dazu präsentieren wir ein neues Ausführungsmodell, welches
die effiziente Abarbeitung von Algorithmen mit inhomogenem, zeitlich veränderlichem
Parallelismus ermöglicht. Den Grundstein dieses Modells bildet ein anpassungsfähiger
Scheduler, basierend auf hocheffizienten Warteschlangen. Dieser Scheduler kombiniert Ar-
beitspakete verschiedener Größen zum Zwecke schnellerer, kooperativer Ausführung. Sollte
die Ausführung in einen nicht idealen Zustand verfallen, wird dieser detektiert und aufgeho-
ben. Außerdem erlaubt er die gleichzeitige Nutzung der GPU durch mehrere Algorithmen
bei fairer Ressourcenaufteilung. Eine detailliertere Kontrolle der Ausführungsreihenfolge
innerhalb eines Algorithmus wird durch frei definierbare, dynamische Prioritäten gewähr-
leistet. Um die Unterstützung dynamischer Programme zu komplettieren, stellen wir einen
dynamischen Speicherverwalter vor, welcher zehntausende Anfragen gleichzeitig bedient.

Ergebnis unserer Forschung ist nicht nur der zurzeit schnellste Warteschlangenalgo-
rithmus für Grafikprozessoren, der effizienteste Speicherverwalter für massiv parallele
Architekturen und der momentan einzige autonome GPU-Scheduler mit Unterstützung
verschiedener Granularitäten von Parallelismus, sondern auch eine Weiterentwicklung des
momentanen Standes der Technik in den Bereichen Bildsynthese, Visualisierung und geo-
metrischer Algorithmen. So beschleunigt unser Modell die Simulation globaler Beleuchtung
durch die Fokussierung der verfügbaren Rechenleistung auf jene Bildbereiche, die den
stärksten Beitrag zur Verbesserung der Bildqualität erwarten lassen. Mit unserem Modell
ist eine dynamische Anpassung der Ausgabequalität zugunsten der Einhaltung gewisser
Echtzeitanforderungen möglich, um sich z.B. mit der hohen Generierungsrate einer Ka-
mera zu synchronisieren. Im Bereich der Visualisierung analysieren wir drei Techniken
zur Volumendarstellung und zeigen, wie diese durch intelligentes Scheduling suboptimale
Ausführungskonfigurationen vermeiden und signifikant beschleunigt werden. Schlussendlich
beschreiben wir die erste Grammatik, die komplette Städte in Echtzeit auf der GPU ableitet
und darstellt. Eine Generierung mit traditionellen Methoden würde Stunden benötigen
und den verfügbaren Arbeitsspeicher sprengen.
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1.1 Motivation
Over the last decade, parallel computing has become increasingly available to a wide
audience, largely due to the graphics processing unit (GPU), which has evolved into a
high-performance, massively-parallel, general-purpose co-processor. GPU hardware is
evolving rapidly, steadily increasing the number of parallel processing cores on a single chip,
enlarging the available on-device memory, and extending the feature set of previous designs.
On the software side, new programming languages such as CUDA have advanced, but
the processing model itself has mostly remained untouched since the beginning of general-
purpose GPU (GPGPU) programming. This model inherently has several limitations,
prohibiting entire classes of algorithms from being executed on the GPU.

This thesis discusses these limitations and shows how resource scheduling strategies
designed for massively parallel architectures are able to turn an inflexible GPU into a
parallel device capable of executing highly dynamic algorithms. With these advancements,
not only can the GPU become capable of executing new classes of algorithms, but also
traditional GPU algorithms can execute faster and offer new features.

1.1.1 GPU Programming

To understand the problem of scheduling on the GPU, the differences between CPU and
GPU architectures are essential. The key factor for the high performance of the GPU is a
massively parallel, throughput oriented design, which is very different from the latency
oriented design of the CPU. Nowadays, a single GPU has up to twenty multi-processors,
each equipped with a small number of 32-wide single instruction, multiple data (SIMD)
units. Altogether, a modern GPU has up to three thousand execution cores. These
light-weight cores do not feature expensive logics like branch prediction or out-of-order
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execution. In combination with the SIMD design, most die space of the GPU can thus
be spent on arithmetic units and only little space is needed for control. As data access
would quickly become a bottleneck for this architecture, the GPU concurrently executes
up to ten times as many threads as there are cores on the device. While one set of threads
is waiting for a memory request, another set of threads is chosen for execution. Because
there are only limited recourses available on each multi-processor, such as register and fast
on-chip shared memory, the number of concurrently executed threads is also limited.

CPU and GPU not only differ in terms of architecture, but also the programming
models differ. While programmers are used to write individual sub routines being executed
for each thread on a CPU, a function written for a GPU (a so-called kernel) is executed by
thousands to millions of threads. Although all threads start executing the same function,
they are free to choose different execution paths. However, the programmer has to consider
the additional constraints of the hardware. As threads are executed in groups (so-called
warps) on SIMD units, they are only efficient, if all threads within a warp choose the same
execution path. A certain number of warps can be grouped to form a so-called block or
cooperative thread array (CTA). All warps within a block are executed concurrently on the
same multi-processor. They can be synchronized and access fast on-chip shared memory
to communicate and work cooperatively. The sum of all blocks forms the kernel.

1.1.2 The First Limitation: Explicit Parallelism

The first limitation of the traditional GPU-programming model is that sufficient data
parallelism is required in every stage of an algorithm. These stages are captured by
individual kernel function calls. A fixed number of threads is launched for a single kernel
and starts executing the same code. There is no way to dynamically adjust the parallelism
during a single kernel launch. While from a hardware perspective, it would be sufficient if
a high number of coherently executing thread groups are available, good performance using
kernel functions can only be achieved, if kernels are started for thousands of threads [56, 103].
This rigid requirement often impairs the straight forward mapping of common algorithms
for GPU execution. Such a problem arises, for example, when traversing a tree and
executing an operation for every node. One way of parallelizing these classes of algorithms
is to subsequently launch a kernel for each tree level. For non-trivial applications, the local
tree depth may strongly vary, resulting in underutilization if there are not enough tree
nodes available. Additionally, determining the number of nodes per level and mapping
them to threads requires synchronization after each level and inefficient parallel reduction
methods. The easier and more efficient solution would be to launch new threads for every
child node dynamically. Many other algorithms show a similar dependency between control
flow and parallelism.

1.1.3 The Second Limitation: Control Switches and Book Keeping

The second limitation is due to the fact that kernel launches in the traditional GPU stream
processing model are entirely controlled by the CPU. The idea behind this model is that
individual steps can be covered by individual kernels. The output of one kernel serves
as input for the next, as outlined in Figure 1.1. As mentioned before, the kernel-based
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Figure 1.1: In the traditional kernel-based programming model, every algorithm is split up into
multiple kernels. Kernel launches are controlled by the CPU, resulting in costly back-and-forth
between CPU and GPU.

programming model thus only supports tasks which show a high degree of parallelism, each
mapping to an individual kernel launch.

But even for such large tasks, this CPU-controlled programming model can be ineffective.
Each kernel launch is associated with multiple sources of overhead: first, GPU occupancy
might drop between two successive kernel launches. As a second kernel can only be launched
after all blocks of the previous kernel have been finished (to ensure all data is ready), a
small number of long-running threads can significantly delay the execution of the following
kernel. Second, data which is output by one kernel and consumed by another always
has to go through slow global memory. Third, if the number of blocks to be launched
depends on the output of the previous kernel, a memory transaction from GPU memory to
CPU memory needs to be executed. Such a memory transaction always reduces the GPU
utilization to 0%.

While there was no functionality to start the execution of work on the GPU during
the initial stage of this thesis, recently this functionality was added to CUDA and named
dynamic parallelism. With dynamic parallelism, the GPU vendors reacted to the problem
that kernels were solely controlled by the CPU. Using dynamic parallelism, it is now
possible to start new kernels directly from kernels running on the GPU, as shown in
Fig. 1.2. Although, the delay for launching a new kernel from the GPU is about the same
as from the CPU, execution can be set up more efficiently using dynamic parallelism. In
cases where one would have to read back information for launching the next kernel, the
GPU utilization can now be kept up.

One of the downsides of dynamic parallelism is the overhead introduced by track keeping.
To ensure the right behavior of an algorithm, newly launched kernels are associated with
the launching kernel. Only if all child kernels have been executed, the parent kernel is
marked as finished. In this way, it is possible to synchronize on the parent kernel to register
the completion of the entire algorithm. The second downside of dynamic parallelism is
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Figure 1.2: With dynamic parallelism kernels can be started on the GPU, keeping track,
however, introduces a serious overhead.

that it still only operates on kernels. It is not possible to efficiently initiate the execution
of individual threads or warps. A third downside is the fact that communication between
different tasks still has to use slow global memory. In the end, algorithms based on dynamic
parallelism most often show no benefit over host-controlled kernels. Thus, at this point,
this issue cannot be deemed as solved.

1.1.4 The Third Limitation: Influence on Submitted Work

The third limitation is that there is no functionality to influence the execution after starting
a kernel. Scheduling on the GPU is currently based on a simple first-in first-out (FIFO)
handling of kernels. Thus, work-intensive background tasks can block the entire GPU
and delay the execution of high-priority foreground tasks. There is no notion of priorities
available. The absence of a priority-based scheduler makes it impossible to use the GPU for
tasks with diverse execution characteristics or react on input changes. Additionally, there is
currently no way to interrupt or terminate the execution of a running kernel. Interrupting
events can only be considered after a kernel has finished. However, if a user changes input
parameters – for example in an interactive visualization – the current kernel launch may
become obsolete and any further computations rendered useless.

1.1.5 The Fourth Limitation: Dynamic Memory Management

The fourth limitation is the absence of efficient dynamic memory management. Dynamic
memory management is an indispensable feature of modern operating systems and virtually
every computer program depends on this feature to allow for a dynamic response to varying
inputs. The only dynamic memory allocator available on graphics processors comes with
the CUDA toolkit. Its internals are unknown, it is unreliable under heavy load and scales
badly for high numbers of threads.
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1.1.6 The Fifth Limitation: Time Awareness

The fifth limitation is the lack of time-awareness during GPU execution. Currently, neither
a common time source between all execution cores on the GPU nor a common time source
between GPU and CPU is available. Thus, it is not possible to adjust the algorithm
behavior based on the already spent time, the available time until a deadline, or to simply
know how much time has passed since a certain event on the CPU occurred. The notion of
time is very important for many problems, especially for real-time applications that must
fulfill at least soft real-time constraints.

1.2 Objectives
To successfully tackle dynamic resource scheduling on graphics processors, this thesis
postulates the following objectives:

O1 Dynamic algorithms are enabled to autonomously execute with high performance on
current graphics hardware.

O2 Efficient scheduling of tasks with varying granularities of parallelism becomes possible
in a massively parallel environment like graphics processors.

O3 Efficient dynamic memory management becomes possible on graphics processors,
even if tens of thousands of threads allocate memory concurrently.

O4 Scheduling on graphics processors becomes controllable and should react on dynamic
changes.

O5 An autonomous scheduler on graphics processors can detect execution characteristics
which are suboptimal for graphics hardware and regenerate the execution configuration
to generate an overall speedup.

O6 A scheduling system fulfilling O1-O5 will allow a wider range of algorithms to be
executed on massively parallel hardware and thus harness the true processing power
of the GPU.

One key factor of this thesis is the autonomy of the GPU for executing algorithms,
meaning that there is no need for the CPU to guide the execution on the graphics card.
However, input data from external devices, user input, and to a certain degree also output
has to be coordinated by the CPU. To fulfill O1, it must be possible to generate work
for an arbitrary number of threads at any point in time. This work must be executed at
some point by the requested number of threads. To fulfill O2, the overhead introduced
by keeping track of the work to be executed, by generating execution patterns that fit
the GPU, and by starting the execution, must be kept small. Essentially, the overall
execution must be finished faster than a statically-defined, CPU-controlled execution
theme. To fulfill O3, a dynamic memory allocator on the GPU must meet the requirements
of a CPU-based memory allocator and additionally be able to serve memory request in
approximately constant time, independently of the number of threads requesting memory
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concurrently. To fulfill O4, the scheduler must be controllable by user level code, i.e., it
must support individual dynamically changing priorities, pausing and stopping of individual
tasks, and dynamically adjusting an algorithms to the available remaining time. To fulfill
O5, a scheduler must detect underutilization of individual execution cores, caused by the
chosen execution configuration, stop threads causing this deficiency, find a better execution
configuration and restart the execution in a better configuration. The gain of the better
execution configuration must outweigh the overhead of the management tasks. To fulfill O6,
there should be at least one algorithm that could previously not be mapped for successful
GPU execution, but with the proposed system must be able to execute faster on the GPU
than on the CPU.

1.3 Organization of the Thesis

Chapter 1 provides an introduction to the thesis, covering the challenges and goals discussed
throughout the work, and points towards the publications which originated from working on
this thesis. Chapter 2 discusses the related work in GPU-based task management, queuing
strategies usable in multi processor environments, and dynamic memory management.

In the second part of the thesis, the developed algorithms and technologies is presented.
Chapter 3 introduces the Softshell processing model, a simple model which supports the
definition of tasks with diverse granularities of parallelism and resource requirements. It
also provides the design of a three tier dynamic scheduling model, which can be built on
top of current GPU designs. While the design specification provides information about a
possible system setup, the core components of our implementation are described in the
following chapters. Chapter 4 discusses the design of work queues for task management
on graphics processors. We compare different blocking and non-blocking queues as well
as global and local queues. We evaluate these queues in terms of enqueue and dequeue
performance and show which optimizations can strongly enhance all presented queues.
Chapter 5 focuses on queue management and priority task management. It investigates how
the previously presented queues can be combined to generate different scheduling strategies.
Furthermore, we present two strategies to provide priority scheduling mechanism, one for
static priorities and the other for dynamically changing priorities. We discuss how different
scheduling strategies can be built on top of priority queues and evaluate both priority
queues in terms of scheduling accuracy and overhead. Finally, we evaluate these queues
in terms of enqueue and dequeue performance as well as execution time for contracting
and expanding algorithms with different task characteristics. Chapter 6 discusses different
methods of building task schedulers on graphics processors using the previously introduced
queues. We show how task schedulers can be built using the traditional host-controlled
kernels, a hybrid dynamic parallelism version, and a persistent thread scheduler. Finally,
we present a versatile persistent threads scheduler which can execute tasks with different
degrees of parallelism. Chapter 7 presents details on memory allocation on the GPU. We
discuss the special requirements for memory allocators on the GPU in comparison to CPU
allocators and derive a new dynamic memory allocator for the GPU. We compare it to the
default CUDA allocator and a doubly linked allocator – the common strategy on the CPU.
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The third part of the thesis focuses on applications that can be developed and advanced
with the provided scheduling system. Chapter 8 focuses on applications in rendering. The
thesis investigates algorithms such as view-dependent mesh simplification, path tracing,
image-based visual hull rendering, a GPU X3D parser and a real-time Reyes pipeline.
Chapter 9 focuses on applications in volume rendering. It investigates algorithms such as
simple front-to-back direct volume rendering, image plane sweep volume illumination, a
method for building deep shadow maps on the fly, and particle-based volume rendering, a
stochastic volume renderer based on creating and rendering millions of individual particles.
Chapter 10 presents the design of a real-time, parallel procedural modeling interpreter. This
interpreter is the first to derive context sensitive grammars on a GPU showing speed-ups
in comparison to CPU-based derivation.

The final part reflects on the initial objectives and discusses the limitations of the
current system and gives directions for future research in the field.

Contribution at a Glance This thesis describes several successful strategies towards
different aspects of dynamic resource scheduling on graphics processors. The following list
gives an overview over the approaches and achievements of this thesis.

• The Softshell programming model is a programming model enabling the ex-
ecution of tasks with different granularities of parallelism. While standard GPU
programming model focuses on massive data parallelism, the Softshell programming
model separates the task description, data, and scheduling, and provides an interface
for arbitrary degrees of parallelism. We show that this programming model allows to
write programs with distributed parallelism in an easier manner than the kernel-based
model.

• The Softshell processing model presents a three tier model for autonomous
task scheduling on the GPU, combining the communication within CPU, GPU,
work generation from CPU and GPU, multi-GPU execution, priority scheduling,
synchronized timing, and thread re-convergence into a single model.

• Our distributed-locked queue is, to the best of our knowledge, the most efficient
work queue for massively parallel environments like the GPU. It is up to two magni-
tudes faster than the fastest queues used by other researchers. We evaluate our queue
extensively and show that an efficient queue makes previously used strategies obsolete
as the number of thread accessing the queue hardly influences its performance.

• An extensive analysis and comparison of ten different work queues shows
that blocking queues actually perform better than non-blocking queues if the chance
for actually hitting a lock can be reduced and parallel access to the data can be
granted to all threads concurrently.

• Our priority-sorted queue is the first queuing strategy which provides priority-
based scheduling on the GPU. It cannot only handle static priorities but dynamically
adjusts the execution order based on a user-defined priority function. Its design
reduces addition delays in comparison to simple FIFO queues.
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• Scatter-Alloc is, to the best of our knowledge, the fastest fully functional memory
allocator for the GPU. It serves memory requests in constant time on average,
independent of the number of threads concurrently requesting or freeing memory.

• Our versatile megakernel is the only megakernel approach which is able to execute
different granularities of work, including work for single threads, work for small thread
groups, and work for arbitrarily sized blocks. Its design offers high performance for
all combinations of granularities while providing the full feature-set known from GPU
programming, including the use of shared memory and synchronization.

• The Softshell framework is open source and publicly available for everyone to
use. It combines all techniques and approaches previously discussed in a simple to
use C++ programming interface.

• Real-time scheduling capabilities are only possible combining a priority scheduler
and a system wide notion of time. We are the first to provide both features. Thus,
we are also the first to implement real-time scheduling on the GPU.

• Our real-time Reyes implementation using work queues in shared memory is, to
the best of our knowledge, the fastest real-time Reyes implementation. It is able to
generate and render 100 million micropolygons in every frame with 40 frames per
second in Full-HD with four samples per pixel.

• Our scheduled volume rendering approaches show that with advanced scheduling,
the performance of state-of-the-art volume rendering approaches can be increased
significantly, as the utilization of the GPU can be kept high and sub-optimal execution
configurations can be avoided.

• PGA is the first geometrically context-sensitive grammar that can be executed on
the GPU. With our scheduling system, we execute this grammar efficiently. In this
way, we are not only the first to bring this kind of grammar evaluation to the GPU,
our evaluation system also executes grammars up to 30 to 100 times faster than
the state of the art in GPU-based grammar evaluation. We generate geometry even
faster than it would take to stream the same amount of geometry to the GPU.

1.4 Individual Publications about this Thesis and Collabo-
ration Statement

Parts of this thesis have been previously published in conferences and journals. The
following references describe the preliminary outcome of the work and the contribution of
collaborating colleagues.

• Markus Steinberger, Michael Kenzel, Bernhard Kerbl, Dieter Schmalstieg:
Versatile Megakernel
In review: Transactions on Parallel Computing

The author of this thesis did most of the implementation and writing
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of the paper. Michael Kenzel helped with the evaluation and writing of the paper.
Bernhard Kerbl implemented the Reyes example. Dieter Schmalstieg revised the
paper. This paper was used in Chapter 6.4.

• Markus Steinberger, Michael Kenzel, Dieter Schmalstieg:
Massively Parallel Queuing
In review: Transactions on Parallel Computing

The author of this thesis did most of the implementation and writing
of the paper. Michael Kenzel helped with the implementation, the evaluation and
writing of the paper. Dieter Schmalstieg revised the paper. This paper was used in
Chapter 4.

• Rostislav Khlebnikov, Philip Voglreiter, Jaime Garcia, Markus Steinberger,
Dieter Schmalstieg:
Parallel Irradiance Caching for Monte-Carlo Volume Rendering
In review: Eurographics 2014

Rostislav Khlebnikov, Philip Voglreiter, and Jaime Garcia imple-
mented the Monte-Carlo volume rendering methods, the adaptable octree data
structure and the screen space locking mechanism. The author of this thesis worked
on the underlying time-based scheduling principals, provided the work queue and
the megakernel implementation. The writing of the paper was led by Rostislav
Khlebnikov, while the other authors contributed to description of their part of the
implementation. Dieter Schmalstieg helped with his expert knowledge and revised
the paper.

• Markus Steinberger, Michael Kenzel, Bernhard Kainz, Jörg Müller, Peter Wonka,
Dieter Schmalstieg:
Real-time Generation and Rendering of Architecture on the GPU
In review: Eurographics 2014

The author of this thesis did the entire implementation of the gram-
mar system, wrote parts of the grammar and wrote most parts of the paper. Michael
Kenzel implement the visual effects, helped with the evaluation and writing of the
paper. Bernhard Kainz wrote parts of the grammar, helped with the evaluation and
revised the paper. Jörg Müller implemented parts of the grammar. Peter Wonka
helped with his knowledge and revised the paper. Dieter Schmalstieg provided his
experience, wrote parts of the paper and revised the paper. These two papers were
used in Chapter 10.

• Philip Voglreiter, Markus Steinberger, Rostislav Khlebnikov, Bernhard Kainz,
Dieter Schmalstieg:
Volume Rendering with advanced GPU scheduling strategies,
IEEE Visualization ’13, 2013, poster
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Vis ’13 Honorable Mention Poster Award

Philip Voglreiter implemented most application cases using Softshell
under the supervision of Bernhard Kainz and the author of this thesis. Concurrently
with the work of Philip Voglreiter, the author of this thesis improved the Softshell
framework to offer the required functionality. The experimentation and writing of
the paper were done in cooperative fashion by Philip Voglreiter and the author of
the thesis. Dieter Schmalstieg refined the final version of the publication. This work
has been used in Chapter 9.

• Markus Steinberger, Bernhard Kainz, Bernhard Kerbl, Stefan Hauswiesner,
Michael Kenzel and Dieter Schmalstieg:
Softshell: Dynamic Scheduling on GPUs
ACM Transactions on Graphics, Proceedings of SIGGRAPH Asia, 2012

The author of the thesis did most of the implementation work, experi-
menting and writing of the paper. Bernhard Kainz helped with his experience
and was involved in writing of the paper. Bernhard Kerbl implemented the first
version of the priority queue and helped with the path tracing example. Stefan
Hauswiesner adjusted his visual hull implementation to work with Softshell. Michael
Kenzel helped with the mesh simplification example and writing of the paper. Dieter
Schmalstieg helped with his experience and revised the paper. Contents of this work
has been used in Chapter 1, 3, 8.

• Philip Voglreiter, Markus Steinberger, Dieter Schmalstieg, Bernhard Kainz:
Volumetric Real-Time Particle-Based Representation of Large
Unstructured Tetrahedral Polygon Meshes
in Proceedings of MICCAI MeshMed’12, 2012

Philip Voglreiter did most of the implementation and writing of the
paper. The author of this thesis helped writing the paper. Dieter Schmalstieg
helped with his experience and revised the paper. Bernhard Kainz supervised
Philip Voglreiter and revised the writing of the paper. This work has been used in
Chapter 9.

• Markus Steinberger, Michael Kenzel, Bernhard Kainz, Dieter Schmalstieg:
ScatterAlloc: Massively Parallel Dynamic Memory Allocation for the
GPU
Proceedings of InPar’12, 2012

The author of this thesis did most of the implementation, writing of
the paper and evaluation. Michael Kenzel helped with the base-line allocator,
evaluation and writing of the paper. Bernhard Kainz and Dieter Schmalstieg helped
by revising the paper. This work has been used in Chapter 7.

• Markus Steinberger, Bernhard Kainz, Stefan Hauswiesner, Rostislav Khlebnikov,
Denis Kalkofen, Dieter Schmalstieg:
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Ray Prioritization Using Stylization and Visual Saliency
Computers & Graphics, 2012

• Bernhard Kainz, Markus Steinberger, Stefan Hauswiesner, Rostislav Khlebnikov,
and Dieter Schmalstieg:
Stylization-based ray prioritization for guaranteed frame rates
NPAR ’11 Best Paper Award in Rendering
in Proceedings of Non-photorealistic Animation and Rendering (NPAR ’11), pp.
44-53, 2011

• Bernhard Kainz, Markus Steinberger, Stefan Hauswiesner, Rostislav Khlebnikov,
Denis Kalkofen, Dieter Schmalstieg:
Using Perceptual Features to Prioritize Ray-based Image Generation
in Proceedings of Symposium on Interactive 3D Graphics and Games 2011 (I3D),
poster, 2011

The three above-mentioned publications form a series of publications
about the same work. Bernhard Kainz provided the initial idea, large parts of the
implementation and most content of the first two publications. The author of this
thesis implemented the priority queue, the sampling paper and the saliency-based
approach used in the last publication. He also contributed this parts to the
paper. Stefan Hauswiesner investigated different image-based GPU reconstruction
algorithms and did a large part of the evaluation. Rostislav Khlebnikov revised the
paper and helped with the video. Denis Kalkofen and Dieter Schmalstieg added
their experience to the content of the paper and the overall system. Parts of this
work is used in Chapter 9.

1.5 Additional Publications Beyond the Scope of this Thesis

Besides the work listed in the previous section, the author of this thesis contributed to
additional work. This work originates mainly from different projects the author has worked
on during the last three years and reflects his interest in work in the fields of visualization,
information visualization, user interfaces, and all work using the GPU.

• Rostislav Khlebnikov, Bernhard Kainz, Markus Steinberger, Dieter Schmalstieg:
Noise-based volume rendering for the visualization of multivariate volu-
metric data
IEEE TVCG and IEEE Visualization ’13, 2013

• Denis Kalkofen, Eduardo Veas, Stefanie Zollmann, Markus Steinberger, Dieter
Schmalstieg:
Adaptive Ghosted Views for Augmented Reality
IEEE ISMAR’13, 2013

• Bernhard Kainz, Stefan Hauswiesner, Gerhard Reitmayr, Markus Steinberger,
Raphael Grasset, Lukas Gruber, Eduardo Veas, Denis Kalkofen, Hartmut Seichter,
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Dieter Schmalstieg:
OmniKinect: Real-Time Dense Volumetric Data Acquisition and Appli-
cations
in Symposium On Virtual Reality Software And Technology (VRST), 2012

• Rostislav Khlebnikov, Bernhard Kainz, Markus Steinberger, Marc Streit, Dieter
Schmalstieg:
Procedural texture synthesis for zoom-independent visualization of mul-
tivariate data
in Proceedings of EuroVIS’12, 2012 Dieter Schmalstieg provided guidance and revised
the work.

• Markus Steinberger, Manuela Waldner, Dieter Schmalstieg:
Interactive Self-Organizing Windows
in Computer Graphics Forum (EG’12), 2012

• Stefan Hauswiesner, Rostislav Khlebnikov, Markus Steinberger, Matthias Straka,
Gerhard Reitmayr:
Multi-GPU Image-based Visual Hull Rendering
Proceedings of the Eurographics Symposium on Parallel Graphics and Visualization,
2012 Matthias Straka and Gerhard Reitmayr helped with their experience and writing
of the paper.

• Manuela Waldner, Raphael Grasset, Markus Steinberger, Dieter Schmalstieg:
Display-Adaptive Window Management for Irregular Surfaces
in Proceedings of Interactive Tabletops and Surfaces (ITS’11), 2011

• Markus Steinberger, Manuela Waldner, Marc Streit, Alexander Lex, Dieter
Schmalstieg:
Context-Preserving Visual Links
InfoVis ’11 Best Paper Award
IEEE Transactions on Visualization and Computer Graphics (InfoVis ’11), 17(12),
2011

• Manuela Waldner, Markus Steinberger, Raphael Grasset, Dieter Schmalstieg:
Importance-Driven Compositing Window Management, CHI ’11 Honorable
Mention Award
in Proceedings of Human Factors in Computing Systems (CHI ’11), pp. 959-968,
2011

• Markus Steinberger, Markus Grabner:
Wavelet-based Multiresolution Isosurface Rendering
in Proceedings of Eurographics/IEEE VGTC Symposium on Volume Graphics, 2010
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2.1 Scheduling on the GPU

Scheduling for massively parallel, SIMD architectures is a young discipline. Graphics
processors have only been available as streaming co-processors for a few years. In 2002,
McCool et al. introduced Shader Metaprogramming [88], which was the first to offer a C++
like programming language in the API to control GPU execution. Buck et al. introduced
Brook for GPUs [13], which offered the ability to use a GPU as streaming co-processor.
Based on this early developments, current GPU programming languages like CUDA [103]
or OpenCL [56] were developed. As most early approaches for GPU programming only
focused on making the hardware available to programmers, few approaches target scheduling
strategies for the GPU, and those that exist are rather limited. However, scheduling is
an important and mature problem in operating system design [138]. Unfortunately, GPU
architectures differ from CPU architectures in several fundamental properties, making a
simple adaption of traditional strategies infeasible.

2.1.1 Built-in GPU scheduling

Built-in GPU scheduling is performed on different levels for GPU architectures as shipped
today [100, 102]. The individual blocks of a kernel are distributed to different multiproces-
sors. On each multiprocessor, a warp scheduler switches between the most suitable warp to
be executed [103]. This lowest level of hardware scheduling could possibly be improved to
reduce the problem of thread divergence. Dynamic warp formation scheduling as proposed
by Fung et al. [27, 28] could be used to group threads of different warps to be executed
coherently. Dynamic warp subdivision [89] could schedule threads for execution while other
threads within a warp are still waiting to complete their memory requests. Large warps
and a two-level warp scheduler [97] would also allow to execute subsets of warps as soon as
they are ready.

13
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2.1.2 Divergence Avoidance

Thread divergence can not only be addressed in hardware, but also during algorithm design.
In raytracing, thread divergence occurs when threads choose different paths during the
traversal of the hierarchical acceleration data structure. One possible way of addressing
this issue is to use speculative traversal [3], in which all threads within the same warp walk
coherently through the data structure. Kalojanov et al. [54] propose a two-level nested
grids as acceleration structure, as this structure can be optimized for low SIMD divergence.
Garanzah and Loop [29] employ a sorting step between successive ray casting steps, sorting
rays according to their position and orientation. In this way, coherently executing groups
of secondary rays are generated. Hobercook et al. [43] use sorting to group CUDA shader
calls per shader type to reduce divergence. Novak et al. [99] investigate divergence in the
context of path tracing. They propose to re-generate new paths for threads that become
inactive through Russian Roulette termination. Antwerpen et al. [143] and Wald [144]
tackle divergence with active thread compaction, i.e., merging partially filled warps to
create fewer warps of higher utilization and fill up empty spots with new warps. However,
especially for reactive methods like active thread compaction, an increase in performance
is often difficult to achieve, as the overhead for this methods is high and the generated
execution configuration might show other inefficiencies, like suboptimal memory access
patterns. However, we show in multiple examples that an automatic thread compaction
method can increase performance.

2.1.3 Task Scheduling

Task scheduling is one of the most essential problems in distributed and parallel computing.
Its optimal solution is NP-hard, and heuristics for scheduling thus received a lot of attention
since the early times of computing [25, 129, 151]. Task scheduling becomes even harder
when moving from a multiprocessor system to a multiprogrammed multiprocessors [4], and
further to dynamically changing grids [11, 149].

As the traditional stream processing model provided for the GPU lacks basic task
scheduling capabilities, researchers started to use so called persistent thread approaches [3]
to implement their own scheduling strategies in software. In this approach, threads operate
in an infinite loop setup and draw work from a queue in every iteration of the loop. As soon
as there is no more work in the queue, threads finish their execution. One of the features
that can be established in a persistent thread approach is load balancing via global queuing.
Cederman et al. [15] were the first to implement a task scheduler on the GPU. In their
work they compared four different queuing strategies and found that lock-free approaches
that work well on the CPU also work on the GPU. However, they hypothesize that there is
a potential to improve these results with load balancing strategies tuned especially for the
GPU. Chen et al. [17] extend this scheme to support inserting work into GPU queues from
the CPU, while worker blocks on the GPU concurrently draw elements from the queues. If
multiple queues are used, a task donation scheme as proposed by Tzeng et al. [141] can be
used. An alternative has been presented by Chatterjee et al. [16], who use a work stealing
runtime to distribute work between execution blocks.

Another ability of persistent threads approaches is the ability to exploit producer-
consumer locality using fast on-chip shared memory. This ability has been exploited for
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sparse matrix-vector multiplication [6], sorting algorithms [119], and scan algorithms [12,
150]. As the number of active threads is exactly known in persistent thread approaches,
GPU-wide synchronization functions can be implemented. This feature can be built using
message passing [134], locks [148], or lock-free approaches [148]. A final feature that can
be implemented in persistent thread strategies is divergence avoidance to increase GPU
utilization [50]. An overview of persistent thread approaches can be found in [33].

While persistent thread approaches have the ability to implement previously unsup-
ported scheduling strategies, a megakernel approach is needed to dynamically switch
between tasks without CPU interaction. The probably most well known megakernel
framework is Optix [105], a raytracing system supporting arbitrary shade routines to be
combined in a megakernel approach.

The most striking problem of all previously proposed persistent threads and megakernel
approach is their inability to adapt to different work granularities and efficiently execute
diverse tasks. Persistent threads work either on individual threads or warps, but do not
allow custom group sizes, tasks of different thread counts, or the use of shared memory and
synchronization. One way of dynamically adjusting GPU execution to different workloads
is the recently released dynamic parallelism feature [101]. This feature allows to directly
start new kernels from the GPU and could possibly be used to start the execution of
new tasks. However, the overhead associated with dynamic parallelism often results in
slowdowns in comparison the CPU-controlled execution models. In our work, we propose a
versatile megakernel which dynamically adjusts itself to the required number of threads
while providing higher performance than traditional megakernels, host-controlled kernels,
and dynamic parallelism, making our megakernel the fastest, most versatile execution
model for dynamic workloads on the GPU.

2.1.4 Multi-GPU and Heterogeneous Systems

Multi-GPU systems achieve scheduling on a higher level, as shown in RenderAnts [154].
RenderAnts uses BSGP [46], which uses the CPU as a synchronization point between
dependent execution steps. Although BSGP improves the process of mapping algorithms
to the GPU, it does not improve the scheduling on the GPU itself. When writing programs
using BSGP, even more kernel calls are created to adjust the number of threads for different
execution steps. In a similar manner, Sponge [45] analyzes and optimizes the static graph
of StreamIt programs to generate efficient GPU code for various hardware architectures.
Besides RenderAnts, many approaches exist that distribute work over multiple GPU
nodes [17, 116]. Furthermore, it is also possible to target heterogeneous setups which
combine CPU and GPU execution [139]. As the GPU is programmed differently than the
CPU, people are striving towards a common language [45] and scheduling systems [1, 26, 126]
for mixed CPU/GPU clusters.

GRAMPS [135] describes an architecture combining GPU-like multiprocessors with a
low number of CPU-like latency oriented cores. In this abstract rendering architecture,
an algorithm is modeled as a directed graph of worker nodes connected by queues. The
GRAMPS architecture is very general, but to date, it has only been tested on a CPU
architecture [118]. While the basis of our processing model is similar to GRAMPS, our
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scheduler enables arbitrary dynamic priorities on a fine grained level. In this way, the
scheduling strategy can be adapted to the target application.

2.1.5 Real-time Scheduling

Real-time scheduling is necessary for applications that demand certain tasks to be completed
by a given deadline. Although time plays an important role in interactive graphics
applications, today’s GPU programming is focused on throughput rather than time-
awareness. If real-time constraints are considered, they are only tracked from the CPU,
by choosing which command to send to the GPU next [55]. These approaches can work
well for light-weight tasks, but long running tasks can block the GPU and thus impair the
application’s real-time behavior. For an extensive overview of real-time scheduling, see the
work by Sha et al. [124]. Our scheduler is the first to enable real-time scheduling in its
original sense on the GPU, making scheduling decisions interdependently from the CPU.

2.2 Queuing

One of the most important features for scheduling on parallel systems is queuing. Basically,
queuing algorithms can be divided into blocking and non-blocking algorithms. Blocking
algorithms are based on mutual exclusion [24]. Whenever a thread of execution needs
access to a shared resource, it acquires a lock on the resource, keeping all other threads
from accessing the resource until the lock is released. Thus, access to the resource is strictly
serialized. Blocking algorithms hold the potential for deadlock. Deadlock occurs when
multiple threads of execution each wait for access to a resource one of the other threads
currently holds a lock to, resulting in all threads indefinitely waiting for one another and
the whole system coming to a halt [18, 137]. Special care has to be taken for these problems
to be avoided, or detected and resolved at runtime.

A non-blocking algorithm is constructed in a way that no thread can ever cause system-
wide execution to permanently halt, i.e., it guarantees liveness of the system. In such an
algorithm, deadlock can never occur, yet the non-blocking property in general still allows
for livelock and starvation. Livelock is a situation in which threads are still executing but
perpetually interrupting each other’s access to a shared resource, resulting in no overall
progress being made [137]. Livelock is a special case of starvation, where an individual
thread’s access to a resource is perpetually interrupted by the activity of other threads,
yet, in general, other threads are still making progress [137].

Non-blocking algorithms can be further categorized according to different liveness
criteria into algorithms that are obstruction-free, lock-free, or wait-free, each of these
guarantees being stronger than the one before. An algorithm is obstruction-free [42] if
each thread is guaranteed to make progress given no interference by other threads. This
property is the weakest form of a non-blocking algorithm, it still allows for livelock and
starvation. An algorithm is lock-free [85] if at any point in time it is guaranteed that there
is at least one thread in the system making progress. Lock-freedom does not allow for
livelock, but still allows for starvation. A wait-free algorithm [41] is the strongest form of a
non-blocking algorithm. It guarantees that at any point in time, all threads are making
progress; neither livelock nor starvation can occur.
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2.2.1 Single Producer, Single Consumer

While queues are among the simplest, most fundamental and thus well researched data
structures, the need to support concurrent access can greatly complicate the implementation
of even the simplest queues. The available literature on concurrent data structures has
a strong focus on lock-free algorithms, which are often held as key to performance in
concurrent systems. Yet the lock-free property is often achieved through methods in the
spirit of optimistic concurrency control [65], i.e., methods built upon the assumption of
generally low resource contention. As has already been noted by others before [40, 42],
the additional cost of substantially increased algorithmic complexity and redundancy of
operations can potentially outweigh the benefits of true lock-freedom.

Many of the well known concurrent queuing strategies such as Lamport’s original
algorithm [68], FastForward [30], or MCRingBuffer [72] only support a single producer,
single consumer scenario. While very useful in architectures that achieve parallelization
through pipelining, dynamic load balancing in multiprocessor systems is, by its very nature,
a problem involving multiple producers and multiple consumers. Therefore, our main
interest lies in queuing strategies that can support multiple producers and consumers. A
recent survey of concurrent queuing strategies and evaluation of their performance on the
GPU can be found in [14].

The two basic ways to construct a queue are either as a link-based or an array-
based queue. Link-based queues are set up as singly linked lists, i.e., data structures of
independently allocated nodes with each node holding a pointer to the next node in the
queue. Array-based queues are built on a block of continuously allocated elements, usually
operated as a ring buffer. There are also hybrid constructions, most often in the form of a
linked list of arrays, and other variations of these basic queue designs.

2.2.2 Link-based Queues

Valois [142] gives one of the first practical lock-free algorithms for a link-based queue using
atomic compare-and-swap (CAS). They use a reference counter on each node to ensure
that nodes are never reused as long as any thread still refers to it. Problems with the
original algorithm were later discovered and corrected by Michael and Scott [92], though
the necessary corrections greatly diminish its practical value.

The link-based Michael-Scott queue [93] is among the most popular lock-free concurrent
queue implementations. The baskets queue by Hoffman et al. [44] presents a variation on
the Michael-Scott queue, recognizing the fact that no particular ordering can be defined
for elements that are concurrently inserted into the queue and thus, any order is equally
valid. As a back-off algorithm, they collect elements that are being inserted concurrently
in what they call a basket, another data structure that can handle concurrent insertion
more efficiently but does not adhere to a strict FIFO ordering such as, e.g., a stack. The
queue itself is then realized as a linked list of baskets.

2.2.3 Array-based Queues

Valois [142] also gives a lock-free algorithm for an array-based queue. It is, however, not
very practical, because it relies on a CAS operation on non-aligned memory addresses,
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which is generally not supported on any hardware. The ring buffer by Shann et al. [125]
appears to be the first practical lock-free implementation of an array-based queue, also
based on CAS. Tsigas et al. [140], building upon the work of Shann et al., try to reduce
contention by updating parts of the data structure not with every access but only with every
m-th access. The parameter m allows for a trade-off between the amount of additional
work that has to be performed to recover the current state of the data structure and the
cost of contention. Performance can be increased, if m is chosen such that the overhead
expected from contention outweighs the expected cost of the necessary additional work.

While link-based queues are often advertised for their performance, as has been pointed
out by, e.g., Shann et al. [125], one has to be careful not to overlook the fact that part of
their reported theoretical performance might be achieved by ignoring part of the problem.
As allocation and deallocation of the memory for the queue elements is an integral part
of the algorithm, the design of any array-based queue necessarily has to deal with this
problem. However, the discussion of link-based queues often simply assumes the existence
of a suitable memory allocator. In cases where the memory for queue nodes can be, e.g.,
statically allocated, link-based queues can, of course, live up to their full potential. But
such applications should be considered the exception rather than the rule and, in general,
dynamic memory allocation will be required for the nodes of a linked-queue. Yet concurrent
dynamic memory allocation is to be regarded a lofty problem in its own right. Especially
if one considers the additional restrictions concerning, e.g., reuse of deallocated memory
that some link-based queues impose upon the memory allocation scheme, the overhead
of memory allocation and deallocation for the queue nodes can grow to become very
significant in practice, particularly on the GPU. Many of the known lock-free algorithms for
array-based queues also greatly simplify the problem by only allowing for elements that fit
into a machine word and therefore can be written to the queue by an atomic CAS, notable
examples being the queues by Shann et al. and Tsigas et al. mentioned above. In practice
this often means that an array-based queue will also require dynamic memory allocation
as only pointers to the actual data can be stored in the queue directly. Nevertheless,
array-based queues have the desirable property that elements are allocated continuously in
memory. Enabling coalesced memory access and having the ability to dequeue multiple
elements at once can possibly give array-based queues a profound performance advantage
on the GPU.

In this thesis we present a blocking linked queues and blocking array-based queues and
show that on massively parallel architectures these queues actually work more efficient than
lock-free algorithms. We show that by taking the architectural peculiarities of the GPU
into account, previously proposed queuing algorithms can be sped up and our blocking
queues can be tuned to serve queuing requests in constant time, independently of the
number of threads concurrently accessing the queue.

2.3 Memory Management

Dynamic memory allocation is one of the very basic operations in operating systems. While
a lot of work has been done on the CPU side to gain more performance and to adapt the
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memory management mechanisms to newly available hardware features, only little research
has been dedicated to the GPU side.

2.3.1 Dynamic Memory Allocation on the CPU

Dynamic memory allocation has been an important topic in CPU literature since the
upcoming of the first programming languages. While earlier programming languages, like
for example early versions of Fortran, supported only static memory allocation, modern
programming languages support multiple allocation schemes ranging from stack allocation
to fine-tuned heap allocators provided by the programming environment itself. Besides
optimized standard methods, which can be found in modern high-level programming
languages, several researchers proposed improvements to these methods. Doug Lea’s
Malloc [71] and a fast multi-threaded version, ptmalloc [31], are well-known examples of
such algorithms. They are currently used in the GNU C++ library. A good overview and
comparison of such methods is given by Wilson et al. [146]. As they discuss, the primary
goal of early allocation schemes is to minimize memory overhead.

With the introduction of multi-core CPUs, traditional memory allocation turned out
to be a serious bottleneck when multiple cores try to allocate memory in parallel. Nicol
showed the drawbacks of state-of-the-art memory allocation when it comes to highly
parallel and frequent dynamic memory allocation during simulations [98]. To overcome
these problems, parallel heap implementations have been introduced by Häggander and
Lundberg [36]. With the Hoard system by Berger and colleagues [8], a reliable and fast
solution for multi-threaded dynamic memory allocation has been found. These systems
basically combine one global heap with per-processor (i.e., per-thread) heaps for minimal
memory consumption and low synchronization costs. However, heap manipulation in such
systems often requires locks and atomic operations because threads cannot be sure on
which processor they are executed. Altering the Hoard approach leads to mostly lock-free
malloc [23], which requires only one heap per CPU. Multi-Processor Restartable Critical
Sections as introduced with mostly lock-free malloc, allowed a speed-up by a factor of ten
for selected applications. Later, scalable lock-free dynamic memory allocation [91] allowed
the complete removal of locks. This allocator uses only atomic operations for dynamic
memory allocation and is therefore ‘immune to deadlocks regardless of scheduling policies
and provides async-signal-safety, tolerance to priority inversion, kill-tolerance, and pre-
emption-tolerance, without requiring any special kernel support or incurring performance
over-head’ [91]. A recent improvement of lock-free dynamic memory allocation can be
found in the McRT-malloc approach [49], which is designed for the use with software
transactional memory (STM). Compared to the above-mentioned approaches, this allocator
also avoids atomic operations in most cases and detects balanced transactional allocations
to avoid space blowup. Most recent state-of-the-art memory allocators for multi-core CPUs
still use one local heap per thread [121, 123].

All of these methods have been designed for systems with low or medium degrees
of parallelism and do not scale well to massively parallel computation as realized on a
modern GPU. Many approaches require one heap per processor or thread which can work
well for a limited number of cores. However, a GPU provides more processing units by
an order of magnitude than any modern CPU, therefore one heap per processor would
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simply introduce too much overhead. Furthermore, fundamental differences between the
hardware architectures prevent the direct application of the above-mentioned methods.
These differences are briefly outlined in the next section.

2.3.2 Dynamic Memory allocators on the GPU

GPU-based dynamic memory allocators are very rare. Since a GPU relies on parallelism,
operations that require serialization can significantly reduce performance. This problem
becomes particularly significant if more than one processor tries to write to the same
memory address. In case of such memory collisions, the extensive use of mutually exclusive
locks and atomic operations is required. A good overview over the main features of stream
architectures and their memory allocation and control schemes is given by Ahn [2].

The degree of parallelism of a modern GPU is rarely seen, even in other comparable
stream-processor based architectures. Because the single instruction, multiple data (SIMD)
model of the GPU in fact forces many stream processors to run the same code in parallel,
locking is a problem, as it is heavily used for CPU based dynamic memory allocation
methods. Furthermore, the overhead of inter-core communication through main memory
becomes a severe bottleneck as shown by Zhou et al. [155] and Lauterbach et al. [70].

Furthermore, under certain circumstances, locks might not even work correctly on
SIMD architectures such as a modern GPU. Diverging threads in a warp are only marked
inactive while the other branch executes. Thus, threads acquiring a lock might get caught
up in the inherent busy–wait spin–lock, which can prevent the one thread holding the lock
from proceeding [78].

To the best of our knowledge, the only published allocator for the GPU is XMalloc [48].
To support a faster reuse of memory blocks, XMalloc stores freed blocks in queues and
serves allocation requests from these queues before new memory is used. Furthermore,
XMalloc introduces an optimization for SIMD architectures, which groups memory requests
that are issued concurrently together within a warp. This reduces the workload on globally
shared queues. While XMalloc focuses on fast re-use of memory, our allocator scatters
allocation requests with the goal of serving memory requests with little to no conflicts.
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3.1 Softshell Entities
The Softshell processing model targets architectures comprised of multiple SIMD units,
such as those found on current NVIDIA and ATI graphics cards [22, 100] or on Intel’s
proposed Larrabee architecture [122]. The conventional stream processing model for GPU
programming is based on the assumption that input data is laid out entirely in memory
prior to the call of a kernel. In this way, the entire stream may be executed in parallel.
In contrast, the Softshell processing model builds on a more complete adaptation of the
original stream processing model. We assume that applications are dynamic and show
unpredictable data-dependent execution paths. In this way, any portion of input data
can become available at any point in time. Thus, the parallelism is not required to only
be spatial; it may also be temporal: Multiple tasks can run in parallel, and data can be
added to arbitrary input streams at any time. In contrast to GRAMPS [135], Softshell
also considers cases in which multiple algorithms with different time characteristics run
concurrently. Therefore, we allow for arbitrarily changing priorities to enable well tuned
scheduling strategies.

To describe the Softshell processing model as outlined in Figure 3.1, we introduce the
notion of items, item sets, workpackages, procedures and events:

• work items describe data to be processed by a single thread,
• item sets describe data to be processed by a small group of threads,
• workpackages define work for a large groups of threads that require synchronization

primitive to cooperatively work on the package,
• Procedures describe the functions executed for an item, item set, or package.
• Events are triggered by the user and initiate the execution by generating items, item
sets and packages.

21
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Figure 3.1: The Softshell processing model: Due to an event, new work becomes available for
execution on a GPU. Workpackages are stored in a priority and wait for their parallel execution
in a priority queue. Work items and item sets are combined to form groups of sufficient size
and join workpackages in the priority queue. When a SIMD processing unit becomes available,
it draws the highest priority entry from the queue queue and runs the procedure associated with
it. During execution, new work can dynamically be created on the GPU, either in form of entire
workpackages or as single work items or item sets to be automatically aggregated. In this way,
algorithms with various degrees of parallelism can efficiently be mapped to SIMD architectures.

3.1.1 Procedures

Similar to kernels in the GPU stream processing model, procedures define the execution
steps in Softshell. In earlier stream processing literature, a function was called a ‘filter’,
‘agent’, or ‘sink’, depending on its behavior [131]. In contrast to massive kernels, which are
intended to occupy the entire GPU with thousands of threads, procedures are designed
to be executed by small groups of coherent threads. Thus, a procedure is well suited
for the execution on one SIMD unit. To fully occupy devices with several SIMD units,
Softshell schedules multiple (different) procedures in parallel. As with all function-like
constructs, the actual computation steps and delivered results depend on the supplied
input parameters. For procedures, these input parameter are formed by items, item sets
and workpackages, which are described below. Depending on the input, the active number
of threads for a procedure’s execution may have to be adjusted by Softshell. To allow for
more algorithmic control, the application programmer can demand a fixed number threads
to be started for each procedure execution. Softshell expects procedures to run for a short
period of time, compared to the execution time of an entire algorithm. Thus, the execution
of a procedure will normally not be interrupted until it has been processed and scheduling
decisions can be made before starting the next procedure.

3.1.2 Items, Item Sets and Workpackages

Items, item sets and workpackages describe the input data for procedures. While procedures
form the description of the execution steps, the combination with items, item sets and
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workpackages allow Softshell to track what is to be executed. Items, item sets and
workpackages capture work of different granularities.

A work item is work that should be executed by a single thread. Obviously, no
synchronization or communication with other threads is needed or supported. For efficiency,
multiple work items of the same kind must be executed together in the same warp to
reduce divergence. If different items were mixed, severe slowdowns can be experienced [67].

An item set is work that should be executed by x threads, with 2 ≤ x ≤ SIMD-width,
e.g., 32 on NVIDIA graphics cards. All threads of an item set must be executed within the
same warp to guarantee SIMD lock step execution and allow for working cooperatively. The
use of fast on-chip shared memory is allowed and adjusted versions of warp communication
functions can also be supported. For efficiency, multiple item sets of the same kind can be
grouped and executed on the same SIMD unit if possible. To achieve optimal grouping,
the suggested x values are powers of two: 2, 4, 8, 16, and 32. There is no need to offer
access to thread synchronization functions, as the SIMD architecture already keeps all
threads synchronized.

A workpackage is a task that should be executed by an entire block of threads which
work on it cooperatively. Similar to a traditional block in a kernel, shared memory and
synchronization is supported. We talk about workpackages as soon as their thread count
is about the SIMD-width. For efficiency, the number of executing threads should be a
multiple of the warp size.

From a programming model point of view, an algorithm can be constructed like a
graph with Softshell. Procedures form the nodes of the graph. Work items, item sets
and workpackages are added to queues that feed the procedure nodes. Queues belonging
to procedures, which require a static number of executing threads, contain fixed sized
workpackages. The queues of all other procedures hold workpackages of arbitrary size.
These workpackages might be merged while they are waiting for their execution.

Capturing work of different granularities allows Softshell to automatically adjust a
trade-off between efficiency and flexibility. During the execution of a procedure, entire
workpackages or single items can be generated and queued for arbitrary procedures. If a
whole workpackage is generated, Softshell only needs to track a single object to provide
work for a whole group of threads. If a procedure only produces a few work items, Softshell
may combine them to one workpackage providing a sufficient number of work items for an
entire group of threads.

3.1.3 Events

Events initiate the execution of an algorithm in Softshell. This initialization can be
explicitly triggered by a user supplying specific input, new data becoming available, or a
timer. For these cases the application programmer can create an event. When the event is
triggered, it queues initial workpackages for a predefined set of procedures. Work created
during the execution of these workpackages is again associated with the original event. The
event is considered to be processed when all associated workpackages have been processed.
In this way, the application can track the progress or cancel the algorithm that is associated
with an event.
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Former GPU execution models focused on the execution of a single algorithm or tried
to achieve the highest throughput for a single pipeline. But real world systems consist of
multiple algorithms with severely different execution characteristics. In Softshell, events
capture these individual algorithms, which may all fight for the available resources. In
comparison to workpackages and procedures, which describe the bits and pieces of an
algorithm, an event strings these pieces together and makes the execution of an algorithm
traceable.

3.2 Example and Application Programmer Interface

To demonstrate the usage of the basic entities of Softshell, we will describe how an octree-
based mesh simplification algorithm can be efficiently mapped to the Softshell processing
model. Furthermore, we show some code pieces to ease the understanding of the processing
model and to demonstrate that code for Softshell can be written in an intuitive manner
(Listing 3.1). One classical mesh simplification approach, which is difficult to optimally
map to the GPU, is hierarchical dynamic simplification (HDS) [80].

Traverse 
Procedure 

Generate 
Vertices 

Procedure 

Traverse 
Event 

Figure 3.2: Octree-based mesh simplification [80] on the GPU: An event (orange) generates
an initial work item. The traverse procedure is executed for every octree node, issuing new
work items for the traverse and generate vertices procedure, which are automatically combined
by Softshell.

In a preprocessing step, an octree is built and then traversed during rendering. Each
node of this octree can either be expanded or collapsed. Expanded nodes increase the local
detail by adding triangles to the mesh, while collapsed nodes define vertex positions. The
workload for each node may vary strongly, depending on the local complexity of the mesh.
This heterogeneous workload can efficiently be handled by the Softshell work aggregation
approach, as shown in Figure 3.2. In our implementation, a traverse event creates a single
work item for the root node to executed by the traverse procedure. This procedure creates
work items for every child node, which are aggregated and again assigned to the traverse
procedure. Each time the traversal reaches a boundary node, a work item is issued for the
generate vertex procedure. Triangles are generated directly in the traverse procedure.

The application programming interface (API) essentially exposes the following four
classes to the application programmer: a procedure interface, a work interface, an event
class, and the scheduler object, which is available on the CPU and GPU. To implement
a new procedure or to provide a new type of work, one may implement the respective
interfaces and register their implementation with the scheduler object. Listing 3.1 shows
the simple structures of Softshell for GPU code, while Listing 3.2 shows how the scheduler
is controlled from the CPU. More detailed code examples can be found in Appendix A.
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The Softshell API provides an efficient control mechanism for multi level parallel
execution. With a single command, work for a single thread, an entire group of threads, or
multiple groups can be created. Thus, complex algorithms can easily be mapped for GPU
execution. Softshell supports a fully customized priority evaluation, whereby arbitrary
scheduling strategies can be generated by implementing a single function.

Using the traditional kernel-based model, a large number of intermediate computations
are necessary to assign octree nodes to threads. One would normally traverse the octree in
a breadth-first fashion, applying a parallel prefix sum to determine the number of active
nodes. After that, CPU and GPU must synchronize, so that the correct number of threads
is launched for the next level. This strategy is used in current state-of-the art parallel octree
traversal solutions [153]. Because this approach only parallelizes the execution of nodes on
the same level, the GPU utilization may drop significantly for imbalanced octrees. Using
Softshell, nodes from all levels can execute concurrently, dynamically balancing between
breadth-first and depth-first traversal. Section 8.1 provides a quantitative comparison of
the example outlined here to a traditional kernel-based implementation and shows that
the Softshell approach is easier to write and executes more efficiently.
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Listing 3.1: The C++ Softshell implementation on top of CUDA is easy to use. For mesh
simplification [80], only two procedures are required, as shown in Figure 3.2. Each Procedure
is created by implementing the execute method. Work items for this example correspond to
a node identifier only (line 1). Workpackages consisting of multiple work items are defined
using templates (line 2). New work items are handed to Softshell using the issueWorkItem
command (line 19 and 22) and telling the system for which procedure the work item should
be queued (template parameter). The TraverseEvent issues a single workpackage for the
TraverseProcedure.

1 typede f u int NodeWorkItem ;
2 typede f CombWorkpackage<NodeWorkItem> NodeWp;
3
4 c l a s s TraverseProcedure : pub l i c Procedure
5 {
6 pub l i c :
7 // implement the execute method
8 __device__ s t a t i c void execute (Workpackage∗ workpackage )
9 {

10 // ex t r a c t the work item from the package
11 NodeWp∗ myWp = (NodeWp∗ ) ( workpackage ) ;
12 NodeWorkItem myItem = myWp−>getMyWorkItem ( ) ;
13
14 Node∗ node = getOctreeNode (myItem ) ;
15 f o r ( u int i =0; i < node−>numChildren ( ) ; ++i )
16 {
17 // check i f t h i s node should be expanded
18 i f ( carryOnTraversal ( node−>ch i l d ( i ) ) )
19 issueWorkItem<TraverseProcedure >(
20 NodeWorkItem( node−>ch i l d ( i ) ) ) ;
21 e l s e
22 issueWorkItem<GenVerticesProcedure >(
23 NodeWorkItem( node−>ch i l d ( i ) ) ) ;
24 }
25 writeTriangleOutput ( node ) ;
26 }
27 } ;
28
29 c l a s s TEvent
30 {
31 __device__ s t a t i c void occured ( )
32 {
33 NodeWorkItem root = 0 ;
34 issueWorkpackage<TraverseProcedure>
35 ( NodeWp(&root , 1 ) ) ;
36 }
37 } ;
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Listing 3.2: Host side API example: A few function calls are sufficient to control the Softshell
processing model. Upon initialization, a custom priority evaluation can be specified via template
arguments. In this case, the scheduler is configured to execute the TraverseProcedure before
all others. Subsequently, a custom event is created and triggered once, before the CPU waits
for its completion. The associated GPU code is depicted in Listing 3.1.

1 //a custom p r i o r i t y eva luato r
2 s t r u c t Trave r s ePr i o r i t y
3 {
4 __device__ s t a t i c f l o a t
5 p r i o r i t y ( Procedure∗ proc , Workpackage∗ wp)
6 {
7 //Traverse Procedures should be p r i o r i t i z e d
8 i f ( procedureEqual<TraverseProcedure >(∗proc ) )
9 re turn 1 .0 f ;

10 e l s e
11 re turn 0 .0 f ;
12 }
13 } ;
14
15 void me sh s imp l i f i c a t i on ( Dev i ceL i s t d ev i c e s )
16 {
17 // c r e a t e a s chedu l e r ob j e c t
18 Scheduler s chedu l e r ;
19 // t e l l the s chedu l e r to i n i t i a l i z e on the chosen s e t
20 // o f d ev i c e s and use the custom p r i o r i t y eva lua to r
21 s chedu l e r . i n i t <Traver s ePr io r i ty >(dev i c e s ) ;
22 // c r e a t e a new event o f type TEvent
23 auto myEvent = schedu l e r . createEvent<TEvent>() ;
24
25 // s t a r t the event
26 myEvent . t r i g g e r ( ) ;
27 //wait f o r the execut ion on the GPU to f i n i s h
28 myEvent . j o i n ( ) ;
29 }
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3.3 Three-tier Scheduling
Softshell employs a three-tier scheduling model, which is responsible for distributing work
submitted to the system to execution units. The first tier is responsible for work distribution
between multiple devices. The second tier is concerned with workpackage priorities and with
assigning workpackages to free execution units. The third tier is active during the execution
of a single workpackage, addressing diverging threads, pausing, canceling and restarting the
active workpackage. The Softshell model only defines the duties of the different scheduling
tiers, not their implementation. Nevertheless, we propose an implementation in Section 3.4.

3.3.1 First-tier scheduling

Whenever a new event occurs, the first-tier scheduler is activated. To influence the execution
of concurrently active events, events can be assigned priorities. Depending on the state
of each GPU, the first-tier scheduler sends an event to the most suitable GPU. For this
purpose, it considers the event’s priority, the event’s execution history, and the current
load on each GPU. The first-tier scheduler tries to initiate the event execution in such a
way that

(1) high-priority events are completed first,

(2) every GPU is well utilized, and

(3) the execution of all events is completed as soon as possible.

Due to the versatility of the Softshell processing model, the execution time of a single
event can only roughly be estimated from previous event occurrences. Thus, the initial
choices made by the first-tier scheduler may turn out to be suboptimal, resulting in
imbalances in the work loads of different execution devices. As a countermeasure, the
first tier scheduler can redistribute workpackages to other execution devices, similar to
work stealing, as described in [9]. If necessary, events can be flagged to ensure that all
workpackages associated with it are executed on the same device.

3.3.2 Second-tier scheduling

The second tier scheduler is the core of Softshell. In contrast to previous approaches
that filled up free processing units with the next best entity, Softshell introduces a more
sophisticated logic on this layer: Events and queue elements are considered to have
individual priorities. Softshell should schedule the most important elements first, while
allowing priorities to change at any point in time. Additionally, every application can
define its own per queue element priority function. This priority function is queried by the
second-tier scheduler regularly to schedule the highest priority elements first. Obviously,
the execution order is independent from the order in which elements are issued.

3.3.3 Third-tier scheduling

The third-tier scheduler is responsible for longer running procedures. It is active during
the execution of a single procedure and regularly queries the current execution state. The
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Figure 3.3: Our referecne design of the Softshell processing model is split between CPU and
GPU. The CPU part implements the first-tier scheduler and keeps each GPs active. The second-
and third-tier schedulers are realized directly on the GPU partially relying on recurring execution
within the controller block.

second tier can demand the current execution to stop, if higher priority workpackages
became available or the associated event got canceled. If the execution should continue
at a later time, the third tier saves all thread contexts and issues the element together
with the saved state for later execution. For complex procedures it can be beneficial to
regroup diverging threads according to their execution paths. The third-tier scheduler can
achieve this by either locally regrouping threads, or by combining threads on a global level.
To achieve global regrouping, the third tier stops the executing workpackage and inserts
the threads into a global thread aggregation structure, which works similar to work item
combination. If threads within this structure cannot be regrouped for a certain time, they
are re-issued regardless of their coherency.

3.4 Reference Design

To demonstrate the utility of Softshell, we describe a reference implementation which can
be built on top of NVIDIA CUDA. The most important parts of the implementation, which
require a more detailed analysis, are described in the Chapters 4, 5, 6, and 7. We replace
CUDA’s kernel-based interface by a C++ interface. Note that the described design can be
made more efficient in the future if implemented as a driver or partially in hardware.

Our design consists of multiple components interacting with each other, as depicted in
Figure 3.3. The CPU part of the Softshell design forwards input from the application to
the GPU and keeps the internal states synchronized between multiple GPU devices. On
the CPU we suggest to assign one thread to each GPU which is responsible for initiating
the execution and communicating with the device.
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The GPU segment of the implementation is concerned with the execution of work items,
item sets and workpackages. On the GPU, we distinguish between worker blocks and one
controller block. The worker blocks are thread blocks, which execute the procedures for
all queue elements. The controller block is a thread block, whose only responsibility is to
carry out recurring maintenance procedures, including the communication with the CPU
and different kinds of scheduling procedures. This setup allows us to react on new events
and changing priorities, while the GPU is under full load.

3.4.1 First-tier scheduler

The first-tier scheduler receives events directly from the application. Whenever an event
occurs, the scheduler’s responsibility is to determine which GPU should execute the
event and send an execution request to this GPU with any provided parameters. When
determining the most appropriate GPU, the first-tier scheduler regularly uses feedback
from each GPU, including the estimated time test until all events will be processed. The
request is forwarded to the GPU with the highest score S:

S =
min

(
ng,

N
G

)
max

(
ng,

N
G

) · ∑G
i=1 ti,est

G · tg,est
· p

pg,max
,

where ng is the number of events active on GPU g; N and G are the overall number of
events and graphics cards, respectively; tg,est is the estimated time until all events will be
processed on g; p is the priority of the new event; and pg,max is the highest priority among
all events currently executing on g. Based on this score, the scheduler assigns a new event
to the GPU expected to run out of work first and having the lowest number of events or
the GPU that works on low-priority events only. If a GPU is not currently executing any
event, the scheduler assigns the new event to that GPU. If multiple graphics cards are out
of work, the scheduler favors the GPU with the highest processing power.

We use an event list to keep track of all active and previous event executions. Because
events can be triggered several times before their first occurrence has entirely been processed,
we use a unique identifier per event occurrence. The event list also supports synchronization
with the completion of an event and the adjustment of execution parameters. Each event
launch can be supplied with a set of parameters, which are made available to the GPU
executing the event. As events can occur during the execution, the parameter transfer must
happen in parallel with execution. To achieve this goal, we use page-locked host memory,
which can be mapped into the address space of the GPU. A memory controller takes
care of this memory. Whenever a new set of parameters needs to be passed to the GPU, it
searches for a free region of sufficient size within the mapped memory. The first fit is then
used for the parameter transfer and marked as used until the event execution has finished.
This memory can not only be used for a one directional parameter transfer, but also to
report results to the CPU. When the event has been fully processed, a callback is executed
allowing the application to access data returned from the GPU. After that, the memory is
marked as free and can be reused for the next event.

One of the most important features of our design is the messaging component that
enables a bi-directional communication between the CPU and GPU, while the GPU is
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active. It is needed to start the execution of events, alter event priorities, report information
about event execution, and synchronize the time between the GPU and CPU. Again, we
suggest mapped page-locked host memory to establish this communication. Two message
queues implemented as ring buffers, one for each direction, serves for this communication.
On the CPU side, a mutex can be used to lock the queue when multiple threads want to
send messages to the GPU. On the GPU, any running thread can send messages to the
CPU, which requires atomic operations to avoid corruption.

As there is no mechanism to automatically react to changes in mapped memory, polling
the queue fill levels is the only way to determine changes. For each GPU, one CPU thread
should be responsible for polling the message queue, while on the GPU, the controller block
checks the queue state. Atomic operations are not supported between GPU and CPU.
Therefore, the receiver must not alter the queue state directly when reading messages from
a queue. Instead, it can return a message requesting the sender to update the queue state.

3.4.2 Second-tier scheduler

The second-tier scheduler assigns queue elements to worker blocks. Before the second tier
becomes active, the initial work descriptors for an event must be created. This action is
performed by the controller block, when it receives a message about a new event occurrence.
Depending on the algorithm, work elements can either be put directly into queues or
allocated with a dynamic memory allocator. Both approaches need in-depth analysis,
which we provide in Chapter 4 and 7. To handle the assignment of workpackages to worker
blocks, different queuing strategies could be established. The Softshell design specifies
an abstract monolithic priority queue that can react on dynamically changing priorities.
However, the implementation of an efficient queuing strategy fulfilling these demands
requires more in-depth analyses, which we provide in Chapter 4 and 5.

Every entry in this abstract queue holds a reference to the corresponding queue element
and procedure. Worker blocks pull elements from the front of the queue, while new
elements are inserted at the back. The design of the worker blocks themselves is discussed
in Chapter 6. The second tier only becomes active after the execution of a procedure has
finished, thus we have to rely on procedures not to occupy worker blocks for too long, to
be able to react on newly available high priority elements.

To store meta information of all procedures and call their execute method, we keep a
procedure list. This meta data includes minimal, maximal, and average execution time and
the average number of elements issued by the procedure. This setup enables the estimation
of procedure and event execution times. Similarly, we store information about the currently
active and previously executed events. Additionally to the average execution time and
average number of executed workpackage per event, we also keep track of the number of
currently queued elements for this event. If this active element counter drops to zero, the
event has been fully processed and the CPU can be informed.

3.4.3 Third-tier scheduler

Due to the lack of GPU hardware support for preemptive multitasking, our current design
of the third-tier scheduler uses a cooperative approach. The application programmer
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Figure 3.4: Three-tier scheduler: the first tier is activated when an event occurs and forwards
it for execution to the most appropriate device. The second tier creates the initial workpackages
(wp) for the event and inserts them into the priority queue. The highest-priority elements
are forwarded to the third tier for execution by a worker block. The third tier periodically
checks the current execution state of all active threads. If the workpackage’s priority is too low
compared to the front of the queue, it stops execution and re-issues the workpackage. If the
threads’ execution paths strongly diverge, the third tier regroups threads.

specifies scheduling points, at which the third-tier scheduler is invoked and determines
whether execution should continue and whether the thread execution paths are still coherent.
Using code analysis for inserting scheduling points is also be possible. However, for our
experiments, we decided to let the developer define scheduling points manually and to
leave the full control on the user-side. To determine the variables that need to be stored,
we use a similar approach to Optix [105] and let the application programmer define the
threads payload. In addition to all thread payloads, we also store an identifier for the
current execution location. If a block receives a queue element that has previously been
executed, it can restore the execution state and continue the execution at the point where
it has been suspended. This is similar to kernel relaunching as described by Hou et al. [47].

To monitor the thread execution paths, every thread publishes the execution path it will
take. If a vote reveals that the thread divergence is above a threshold, the scheduler either
stops the execution and submits all threads to the global thread aggregation, or exchanges
a few threads with threads already in the thread aggregation. The thread aggregation
itself keeps a list of stored threads for all execution points of all procedures. The controller
block periodically scans through this list. If there are enough threads stored to form an
entirely coherent package or if the threads have been in the list for too long, the controller
block merges the threads to form a workpackage and issues it for execution. In the same
way, the thread aggregation also concatenates work items to workpackages, as defined in
Section 3.1.

3.4.4 Time synchronization

In a system with real-time properties, synchronized time is an important feature for, e.g.,
estimating the time to completion or enabling scheduling strategies involving a sense of time.
We assume that there is at least a counter which keeps pace with the device clock rate on
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each multiprocessor. This is the current status on NVIDIA graphics cards. To synchronize
these counters during system initialization, we use a kernel to write each counter’s state
to an array in global shared memory. With the messaging component, it is possible to
periodically synchronize this array and the time on the CPU using Poincaré-Einstein
synchronization [108]. Unfortunately, the device clock rate may not be constant, but might
vary with the GPU load. This fact can be compensated by estimating the clock rate
between pairs of synchronization messages.

3.4.5 Discussion

The Softshell processing model enables a more sophisticated control of parallel execution
than the kernel-based model and provides an intuitive API. Thus, it becomes possible to
efficiently map algorithms with a relatively low degree of local parallelism for the execution
on massively parallel architectures. Softshell’s key features include the ability to generate
arbitrary amounts of work directly on the executing device, dynamically adjust priorities
for small portions of work, and the ability to control work that has already been submitted
to the GPU.

In the following chapters, we present the design and implementation of the core com-
ponents specified by the Softshell model and discuss our objectives in detail. Chapter 4
discusses the first key feature of Softshell: efficient queuing in massively parallel envi-
ronments. In this chapter we derive five queues specifically designed for GPU execution.
We compare our queues to the best lock-free queues, indicating that on the GPU, our
blocking queues are up to 100 times faster than the state-of-the-art in lock-free queuing.
In Chapter 5, we discuss how our queues can be used to achieve load balancing between
worker blocks, how queues in fast on-chip shared memory can be combined with global
queues, and how efficient priority queuing can be accomplished in a massively parallel
environment like the GPU. The queuing strategies proposed in this chapter form the basis
for Softshell’s work aggregation and second tier scheduler, supporting custom priorities.
Chapter 6 discussing our versatile megakernel approach, managing the execution within
individual worker blocks. Our versatile megakernel is a combination of a persistent threads
model, a megakernel, and strategies to dynamically assign warps to the execution of
individual procedures. Our versatile megakernel is the first approach that supports varies
degrees of parallelism in a single megakernel while still being highly efficient. To complete
the description of Softshell’s core components, Chapter 7 discusses our highly efficient
memory allocator. The memory allocator is not only important to provide algorithms with
the ability to react on dynamic input, our previously proposed queues and variants of
Softshell’s work aggregation heavily rely on memory allocation. In the final chapters of
the thesis, we present a variety of use cases demonstrating the usefulness of the Softshell
model.
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4.1 Basic Queues
At the heart of all scheduling strategies are queues which collect and distribute work. Thus,
highly-efficient queues are of fundamental importance for minimizing system overhead and
maximizing application performance. Current GPU task managers, either use queues based
on mutual exclusion, which are already known to perform poorly even on the CPU, or
build upon queues which were originally designed for CPU multiprocessor systems. Hence,
as mentioned by Cederman et al. [15], there is an immediate need to investigate queuing
strategies for massively parallel architectures in more detail.

4.2 Queues in Global Memory
A queue serving at the core of a scheduling algorithm on the GPU has to be able to handle
thousands of concurrent enqueue and dequeue operations with minimal overhead, while
staying withing the bounds of the limited memory allocated to the queue. To aid the
following derivation of our queues, we propose five correctness requirements, a queue must
meet to qualify for the use in such a global scheduling algorithm:

1. Concurrent insertion and removal: Any number of threads may concurrently
enqueue and dequeue elements. Consistency of the data structure must be ensured
at all times.

2. Read after write safety: Before an element is dequeued, it must be guaranteed
that its entire content has been written by the enqueuing thread.

3. Write after read safety: Before the memory of a queue element is reused, it must
be guaranteed that all its data has been read.

35
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4. Overflow protection: If there is no more space available in the queue, an enqueue
operation must fail.

5. Underflow protection: If there are no elements in the queue, a dequeue operation
must fail.

4.2.1 Collector Queue

Arguably the most simple queue one could possibly build is outlined in Algorithm 1. It
consists of a preallocated array, one atomically operated pointer marking the front, and
one atomically operated pointer marking the back of the queue. During enqueue, the back
pointer is increased using atomic addition, during dequeue, the front pointer is increased
using atomic addition. We call this queue the Collector Queue, because it can be used
to efficiently collect and store intermediate data between kernel launches. By assigning
successive queue spots during enqueue and handing out these spots in the same order
during dequeue, the Collector Queue partially fulfills requirement (1). However, the other
requirements are not met. In its basic form, dequeue operations do not respect the current
position of the back pointer and enqueue operations do not respect the current position
of the front pointer. Still, with global synchronization between enqueue and dequeue
operations as it happens, e.g., between successive kernel launches, the queue can be used.
Before a new kernel is launched, the fill-rate of the queue can be determined to make sure
an appropriate number of dequeuing threads is started. Although the queue is not safe to
be used as work queue in a dynamic load balancing approach, the Collector Queue will
serve as a baseline for comparison.

Algorithm 1: Collector Queue
1 Buffer[QueueSize]
2 Front ← Back ← 0
3 enqueue (Element)
4 Pos ← atomicAdd(Back,1) mod QueueSize
5 Buffer[Pos] ← Element
6 return true
7 dequeue ( )
8 Pos ← atomicAdd(Front,1) mod QueueSize
9 Element ← Buffer[Pos]

10 return Element

4.2.2 Mutex Queue

Possibly the simplest queue to fulfill all five requirements is the Mutex Queue. Every
interaction with the queue is guarded by a global lock, thus, only one thread can modify
the queue at a time. We again rely on a fixed size ring buffer with a front and back pointer.
To enqueue one or more elements, a thread acquires the lock and computes the number
of elements currently in the queue using the front and back pointer. If there is enough
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space, the element is written to the queue, the back pointer is updated, and the lock is
released. To dequeue one or more elements, a thread acquires the lock and, if there are
enough elements in the queue, reads the data into shared memory or registers, advances
the front pointer, and releases the lock. Similar queues have been used for load balancing
by Cederman et al. [15] and Tzeng et al. [141]. A more efficient version of this queue can
be built using separate locks for the front and the back pointer to increase parallelism.
Our Dual Mutex Queue is outlined in Algorithm 2.

Algorithm 2: Dual Mutex Queue
1 Buffer[QueueSize]
2 FrontMutex← BackMutex← Front← Back ← 0
3 enqueue (Element)
4 acquire (BackMutex)
5 if size (Front, Back) > QueueSize then
6 Buffer[Back mod QueueSize]← Element
7 Back ← Back + 1
8 release (BackMutex)
9 return true

10 release (BackMutex)
11 return false
12 dequeue ( )
13 acquire (FrontMutex)
14 if size (Front, Back) > 0 then
15 Element← Buffer[Front mod QueueSize]
16 Front← Front+ 1
17 release (FrontMutex)
18 return Element

19 release (FrontMutex)
20 return false

Assuming correct operation of the lock, all modifications to the queue are strictly
linearized, ensuring requirements (1), (2), and (3) hold. Overflow (4) and underflow (5) are
avoided by checking the number of elements in the queue before enqueueing or dequeueing
elements. While granting at most two of possibly tens of thousands of threads at a time
access to the queue ensures correctness, it is, of course, not very efficient.

In addition to not being very efficient, the use of locks is also potentially unsafe on the
GPU. The only way to implement a lock on a current GPU, is in the form of a spin-lock,
i.e., a busy wait periodically trying to acquire the lock. There is no explicit way to put
a warp to sleep or even just yield. We identify at least two scenarios in which a busy
wait can lead to a livelock situation on the GPU. Assume some threads in a warp try to
acquire a lock that is held by another thread of the same warp. If the code is not written
very carefully, the threads trying to acquire the lock will end up branching off the thread
holding the lock. As execution of different branches has to be serialized, the GPU can end
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up indefinitely executing only the branch trying to acquire the lock, keeping the thread
that holds the lock from releasing it. Similarly, if the thread holding a lock and threads
trying to acquire the lock happen to be in-flight on the same multiprocessor, correctness of
the algorithm depends on the behavior of the hardware warp scheduler. The only certainty
about the hardware warp scheduler is that it always chooses a warp ready for execution.
As a warp holding a lock and a warp trying to acquire the same lock, both appear ready
to the hardware scheduler, there is no guarantee that the scheduler will ever choose the
warp holding the lock for execution. However, exploiting the fact that a global memory
access will cause the warp scheduler to switch to another warp, seems to be sufficient to
work around the problem of lifelock on all current devices.

4.2.3 CAS Ordered Queue

In order to build a faster queue, multiple threads need to be able to modify the queue
simultaneously. Our CAS Ordered Queue uses a ring-buffer as underlying queue storage.
Similarly to the Collector Queue, we use an atomically operated front and back pointer to
determine the position for the next enqueue and dequeue, leading to concurrent read and
write operations. As atomic additions are used to modify the front and back pointer, there
is no limit to the number of threads that can concurrently access the CAS Ordered Queue.
To circumvent read-before-write and write-before-read hazards, we add a second pair of
pointers, called ready-front and ready-back. The front and ready-back pointer mark the
range of elements ready for being dequeued, while the back and ready-front pointer mark
the range of elements free for being written to, as illustrated in Figure 4.1

Using a second pair of pointers, makes sure that only completely written elements
are read (2) and elements are only written to after been read completely (3). It is vital
for this strategy that the ready-front and ready-back pointers are updated in a way that
ensures connectedness of the ranges of ready and free elements. Because threads do not
necessarily complete their operations in the same order they requested queue elements,
a simple atomic addition could, e.g., move non-ready elements into the ready range, see
Figure 4.1. To avoid this erroneous situation, we delay the increment of the ready pointers
until all previous elements in the queue are ready. Instead of a single atomic addition, a
thread will continually try to update the respective pointer using an atomic CAS until it
succeeds as outlined in Algorithm 3.

To avoid overflow and underflow (4,5), we compute the number of available queue
elements from the combination of front and ready-back as well as ready-front and back.
This computation can only be carried out after querying a new position by increasing the
front pointer for dequeue and increasing the back pointer for enqueue. Thus, special care
needs to be taken to leave the pointers in a consistent state when there is no spot available.
Using CAS, we only revert the pointers, if they did not change in the meanwhile (or have
been reverted by another thread to again match their previous state). Also, a new element
could be added while one thread tries to revert the front pointer, or an element could be
removed while one thread tries to revert the back pointer. By rechecking the queue state
in every revert attempt, we can react to the situation that the fill-rate has changed and
make use of a spot that suddenly has become available.
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Figure 4.1: The CAS Ordered Queue manages four different sections: current removals, save
for removal, current insertions, and save for insert. These sections are manged using four
pointers. To update these pointers, the queue relies on atomic CAS operations. If one thread’s
enqueue or dequeue operation is completed faster than a respective operation on an adjacent
element, the CAS operation makes sure that the pointer update is delayed until the slower
operations are completed (red).

Algorithm 3: CAS Ordered Queue- red arrow indicates that a thread waiting
1 Buffer[QueueSize]
2 Front ← Back ← ReadyFront ← ReadyBack ← 0
3 enqueue (Element)
4 Pos ← atomicAdd (Back,1)
5 while Pos-ReadyFront ≥ QueueSize do
6 if atomicCAS (Back, Pos+ 1, Pos) = Pos+ 1 then
7 return false

8 Buffer[Pos mod QueueSize] ← Element
9 while atomicCAS (ReadyBack, Pos, Pos+ 1) 6= Pos do

10 return true
11 dequeue ( )
12 CurrentFront ← Front
13 CurrentReadyBack ← ReadyBack
14 while CurrentReadyBack > CurrentFront do
15 if Pos ← atomicCAS (Front, CurrentFront, CurrentFront+ 1) =

CurrentFront then
16 Element ← Buffer[Pos mod QueueSize]
17 while atomicCAS (ReadyFront, Pos, Pos+ 1) 6= Pos do
18 return Element

19 else
20 CurrentFront ← Front
21 CurrentReadyBack ← ReadyBack

22 return false
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While the CAS Ordered Queue allows multiple threads to simultaneously write and
read elements, it still enforces a strict order on how individual operations can complete.
A thread is only allowed to finish its operation if all other threads that started the same
operation earlier have already finished. In this way, the queue not only introduces a FIFO
ordering among queue elements, but also a FIFO ordering among the threads performing
an enqueue or dequeue operation. Keeping this order still introduces some unnecessary
delay. The impact of this delay depends on the way warps are scheduled and the exact
operation mode of the memory controller. As the queue uses a CAS operation within a
loop, it carries a similar risk of lifelock as the Mutex Queue.

4.2.4 Distributed Locks Queue

In order to remove the unnecessary delay introduced by the CAS Ordered Queue, we
devise the Distributed Locks Queue, Figure 4.2. This queue again uses a ring buffer and an
atomically operated front and back pointer. Individual spots are again assigned to threads
using atomic additions on these pointers. To fulfill requirement (2) and (3) we add a flag
to each queue element. A zero flag indicates that the spot is unoccupied. When a thread
adds an element to the queue, it checks if the flag associated with its element is zero. In
case it is not, it spins continuously, waiting for the flag to become zero and the spot to
become available. As soon as the spot is marked free, it writes its element to the queue
and sets the flag to one (after making sure that the data written is visible to all other
threads). If a thread wants to draw an element from the queue, it atomically increases
the front pointer and checks if the spot’s flag is set to one. If this is not the case, it spins
until the flag has been set, and thus the element has become ready for reading. As the
queue internally uses a ring buffer, multiple elements can efficiently be dequeued as the
front pointer can be increased by an arbitrary number of elements.

Using the atomically operated front and back pointer to determine the fill-level of the
queue does not guarantee safe handling of overflow and underflow conditions. As multiple
threads may concurrently add elements to the queue, it could happen that the back pointer
is increased too far, pointing to positions that are occupied. A thread (A) could determine
this problem comparing its position to the front pointer, but it could not safely react on
this situation. Waiting until other threads take out elements from the queue could stall
the entire device, if all threads happen to run into the same problem. Reducing the back
pointer is also unsafe, as a different thread B could increase the back pointer right before
A reduces it. At the same time, other threads could dequeue elements from the queue, so
that B does not encounter an overflow. In this case, one spot would be left empty (the one
before B’s spot) and one spot would be used twice (B’s spot). Both cases would stall the
next thread trying to interact with the spot. To solve these problems, we use an additional
atomic counter to hold the queue fill-level, which is increased/decreased before changing
the pointers. If the counter is increased too far, the thread can safely decrease the counter,
as the pointers have not been changed yet. The principles of the Distributed Locks Queue
are outlined in Algorithm 4.

Next to the queue’s ability to provide simultaneous access to an arbitrary number of
threads, the biggest advantage of the Distributed Locks Queue is that threads are only
stalled if the queue is close to being empty or close to being full. In all other cases, there
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Algorithm 4: Distributed Locks Queue
1 Buffer[QueueSize]
2 Flags[QueueSize] ← {0, 0, 0, · · · , 0}
3 Front ← Back ← Count ← 0
4 enqueue (Element)
5 Num ← atomicAdd (Count,1)
6 if Num+ 1 ≥ QueueSize then
7 atomicSub (Count,1)
8 return false
9 Pos ← atomicAdd (Back,1) mod QueueSize

10 while Flags[Pos] 6= 0 do
11 Buffer[Pos] ← Element
12 Flags[Pos] ← 1
13 return true
14 dequeue ( )
15 Num ← atomicSub (Count,1)
16 if Num < 1 then
17 atomicAdd (Count,1)
18 return false
19 Pos ← atomicAdd (Front,1) mod QueueSize
20 while Flags[Pos] 6= 1 do
21 Element ← Buffer[Pos]
22 Flags[Pos] ← 0
23 return Element

Figure 4.2: The Distributed Locks Queue keeps an individual lock per element. In this way
it can make sure that elements are only read after they have been completely written and
elements are only written after the spot has been freed.
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is sufficient time between adding an element and it being read so that no thread has to
wait. An additional advantage is that no more than one thread will ever attempt to change
the flag of a specific element. Thus, no atomic operations are required on the locks and
memory transactions can be coalesced if multiple threads within a warp enqueue or dequeue
elements concurrently. A third advantage of the Distributed Locks Queue is that it can
grant threads access to queue elements for a longer time without stalling other threads.
This means that instead of copying the data to shared memory or registers, we can simply
access the data directly, saving shared memory and registers. When all elements have been
processed, the flags of the used elements are erased and the spots can safely be reused by
other threads. As long as the queue is not operating at limits of its size, execution of other
threads will never be delayed.

One disadvantage of the queue is that it still uses lock-like constructs, with all their
associated dangers. However, the number of threads spinning on locks, is limited. The
number of threads waiting during a dequeue operation is always smaller or equal to the
number currently inserting an element. Analogously, the number of threads waiting during
an enqueue operation is always smaller or equal to the number currently removing an
element. A second disadvantage is the additional memory required for the locks. As every
queue element needs its own lock, additional memory proportional to the size of the queue
is needed.

4.2.5 Pointed Queue

Sometimes it might be more reasonable not to store entire elements in the queue, but
rather allocate them with a dynamic memory allocator and only store pointers to the actual
data in the queue. Such a setup might be advantageous for big elements moving through
multiple stages of a pipeline where each stage only changes parts of the element. In this
case, we suggest to use a pointed version of the Distributed Locks Queue, as outlined in
Algorithm 5. Instead of storing an additional lock for each pointer, one can use the pointer
itself as a lock. A zero entry indicates a free spot. As soon as the zero is overwritten, the
element is ready for being read. In this way, the memory overhead of the individual locks
is avoided and the memory bandwidth for changing the flag can be saved. However, one
has to carefully weigh these potential gains against the large overhead of dynamic memory
allocation on the GPU.

4.2.6 Linked Queue

Apart from the array-based approach, it is also possible to implement queues in the form
of a linked list. While many list-based queues use dummy elements to mark the ends of
the list, we simply use a pointer to the first element and a pointer to the last element in
the queue, as shown in Figure 4.3. To insert a new element in the queue, the inserting
thread allocates a new list node, copies the data to the node, and sets the next pointer of
the node to zero. After making sure its writes are visible to all other threads it replaces
the current back pointer with a pointer to the new node. If the new element is not the
only one in the queue, it sets the next pointer of the node previously at the back of the
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Algorithm 5: Pointed Queue
1 Pointers[QueueSize] ← {null,null,null, · · · ,null}
2 Front ← Back ← Count ← 0
3 enqueue (Element)
4 Num ← atomicAdd (Count,1)
5 if Num+ 1 ≥ QueueSize then
6 atomicSub (Count,1)
7 return false
8 ElementPointer ← alloc (Element)
9 Pos ← atomicAdd (Back,1) mod QueueSize

10 while Pointers[Pos] 6= null do
11 Pointers[Pos] ← ElementPointer
12 return true
13 dequeue ( )
14 Num ← atomicSub (Count,1)
15 if Num < 1 then
16 atomicAdd (Count,1)
17 return false
18 Pos ← atomicAdd (Front,1) mod QueueSize
19 while Pointers[Pos] = null do
20 ElementPointer ← Pointers[Pos]
21 Pointers[Pos] ← 0
22 Element ⇐ ElementPointer
23 free (ElementPointer)
24 return Element

Figure 4.3: The Linked Queue is built as a singly linked list of queue elements.

queue to point to the newly created element. If the back pointer was null, it also sets the
front pointer to point to the new node, ensuring consistency of the queue.

If an element should be removed from the queue, the thread repeatedly tries to set the
front pointer to the second element in the queue using atomic CAS. If it succeeds, it can
safely consume the first element and free the memory allocated for the node. If there is no
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second element in the queue, the thread tries to remove the last element from the list by
resetting the back pointer. In case of success, it also resets the front pointer.

During both, enqueue and dequeue, the back and front pointers may be changed
concurrently as the queue is running low on elements. To avoid inconsistencies, we use
atomic CAS operations for altering the pointers, always checking for consistency. If an
action would interfere with another thread, the thread that detected the problem waits for
the other thread to finish its operation. This setup, again, results in a blocking algorithm,
but threads will only have to wait if the queue is running low on elements. Note that
correctness of this algorithm imposes certain requirements on the memory allocator. The
memory of freed nodes must not immediately be reused to ensure that information is
not overwritten while other threads are traversing the list. Using a reference counter as
proposed by Valois [142] would be one way to implement this behavior.

As insertion involves only the back pointer and removal only the front pointer (as long
as there are at least two elements in the queue), requirement (1) can easily be fulfilled.
Requirement (2) is fulfilled since elements are only accessed before they are linked in the
queue. Reading the data before the node is freed takes care of requirement (3). Requirement
(4) is deferred to the memory allocator. As long as it can serve memory requests, new
elements can be added to the queue. To limit the queue size, one could additionally use
an atomic counter capturing the current fill-rate. Requirement (5) is implicitly met by
handling the special case of only one element being left in the queue. If both the front and
the back pointer are zero, no element is present.

The major advantage of the Linked Queue is that a new element can be added to the
queue with only two global memory operations if the queue is not almost empty. There
is no need to retry failed operations or wait for another operation to complete. However,
dequeue can be inefficient. In a strategy similar to most non-blocking linked queues, every
thread tries to exchange the front pointer with the second element in the queue. Only
one thread can be successful and all other threads have to retry. Furthermore, there is no
efficient way to read multiple elements at once, removing one element at a time is the only
possible way.

4.3 Queues in On-Chip Shared Memory

While the previously discussed queues were all designed to work in global memory, queues
for on-chip shared memory have different requirements. First, there is a much tighter
memory budget for shared memory than for global memory. Second, the number of threads
potentially accessing shared memory concurrently is much lower than in global memory.
Third, memory access to shared memory generally will not lead the warp scheduler to switch
to another warp. Therefore, spin-locks in shared memory are even more unpredictable than
spin-locks in global memory. Fourth, all threads within a block can easily be synchronized,
which is exploited by most algorithms on the GPU building around cooperative execution
within each block. Efficient block-level synchronization can also be used to introduce and
ordering between enqueue and dequeue operations. Still, concurrent enqueue operations of
multiple threads need to be supported.
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Algorithm 6: Linked Queue
1 Front ← Back ← null
2 enqueue (Element)
3 Node ← alloc (Element)
4 Node.Next ← null
5 Prev ← atomicExch (Back, Node)
6 if Prev 6= null then
7 Prev.Next ← Node
8 else
9 while atomicCAS (Front, null, Node) 6= null do

10 return true
11 dequeue ( )
12 F ← Front
13 if F = null then
14 return false
15 N ← F.next
16 repeat
17 if N 6= null then
18 CurrentF ← atomicCAS (Front, F , N)
19 if CurrentF = F then
20 Element ⇐ F.Data
21 free (F )
22 return Element

23 if CurrentF = null then
24 return false
25 else
26 F ← CurrentF
27 N ← CurrentF.next

28 else
29 if atomicCAS (Back, F , null) = F then
30 while atomicCAS (Front,F , null) 6= F do
31 Element ⇐ F.Data
32 free (F )
33 return Element

34 else
35 F ← Front
36 if F = null then
37 return false
38 N ← F.next

39 until
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4.3.1 Local Queue

As outlined in Algorithm 7, our standard Local Queue design consists of a fixed size buffer
with a single, atomically operated counter. To enqueue an element, we increment the
counter to retrieve a free spot. If the queue is out of elements, we reduce the counter again
and inform the caller. This simple strategy is sufficient, if synchronization barriers are
used to separate enqueue and dequeue. To dequeue elements, we reduce the counter to
retrieve a spot and remove elements from the back of the queue. While effectively creating
a last in, first out structure, the algorithm is easier to implement, faster, and we find it to
be sufficient in most practical applications for small queues in on-chip shared memory.

Algorithm 7: Local Queue
1 Buffer[QueueSize]
2 Count ← 0
3 enqueue (Element)
4 Pos ← atomicAdd (Count,1)
5 if Pos+ 1 ≥ QueueSize then
6 atomicSub (Count,1)
7 return false
8 Buffer[Pos] ← Element
9 return true

10 dequeue ( )
11 Pos ← atomicSub (Count,1)
12 if Pos leq 0 then
13 atomicAdd (Count,1)
14 return false
15 Element ← Buffer[Pos]
16 return Element

4.3.2 Dynamic Local Queue

Sometimes it is required to supply individual queues for different procedures. If many
different queues need to reside in shared memory, one quickly hits the limits of available
shared memory. In these situations it would be beneficial if shared memory could be
dynamically assigned to queues as needed. Our Dynamic Local Queue illustrated in
Figure 4.4 and Algorithm 8 can provide this feature.

During enqueue, if there is no sub-queue available or all suitable queues are full, we try
to allocate a new sub-queue. At first, we decide on how much space the new sub-queue
should occupy. Queue size is either limited by the remaining available shared memory or
a custom threshold. According to our experiments, a reasonable choice for sub-queues
holding work items is to supply space for at least the number work items that can be
executed concurrently by a worker block. For workpackages, a good trade-off depends on
the size of a workpackage and the chance of a new element being added to the queue.
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Algorithm 8: Dynamic Local Queue
1 Buffer[MemSize] ← {0, 0, 0, · · · , 0}
2 enqueue (ProcedureId,Element)
3 HeaderPos ← 0
4 while HeaderPos < MemSize do
5 CurrentSize ← 0
6 CurrentHeader ← Buffer[HeaderPos]
7 if lower bits of CurrentHeader = ProcedureId then
8 CurrentSize ← upper bits of CurrentHeader
9 else if CurrentHeader = 0 then

10 CurrentSize ← computeSubQueueSize (ProcedureId)
11 NewHeader ← (CurrentSize) mixed with ProcedureId
12 if CurrentHeader ← atomicCAS (Buffer[HeaderPos],0,NewHeader)

6= 0 then
13 if lower bits of CurrentSizeIdMix = ProcedureId then
14 CurrentSize ← upper bits of CurrentSizeIdMix

15 else
16 CurrentHeader ← NewHeader

17 if CurrentSize > 0 then
18 Pos ← atomicAdd (Buffer[HeaderPos+1],1)
19 if Pos < CurrentSize then
20 Buffer[HeaderPos +2+ Pos] ← Element
21 return true
22 else
23 atomicSub (Buffer[HeaderPos+1],1)

24 HeaderPos ← lower bits of CurrentHeader +2
25 return false
26 dequeue ( )
27 HeaderPos ← 0
28 while HeaderPos < MemSize do
29 if Buffer[HeaderPos+1] > 0 then
30 Pos ← atomicSub (Buffer[HeaderPos+1],1)
31 if Pos leq 0 then
32 atomicAdd (Buffer[HeaderPos+1],1)
33 else
34 Element ← Buffer[HeaderPos +2+ Pos]
35 return Element

36 HeaderPos ← HeaderPos + lower bits of Buffer[HeaderPos] +2
37 return false
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Figure 4.4: The Dynamic Local Queue is able to manage multiple sub-queues in on-chip
shared memory dynamically. Every sub-queue keeps a pointer to the next queue and a pointer
to the back of the queue.

Right before each sub-queue in shared memory, we store additional header information.
The header includes the type of elements the queue holds, the size of the memory block
allocated to the queue, a fill-rate counter and possibly some additional information relevant
for a particular application. The main challenge of the dynamic queue is that multiple
threads can concurrently try to allocate a new sub-queue. As the warp scheduler does not
necessarily switch to another warp when accessing shared memory, waiting for another
thread to write header information would not be a good strategy. Instead, we initialize the
entire dynamically managed shared memory to zero and establish the following, lock-free
allocation strategy: Whenever a thread needs a new sub-queue, it generates a 32-bit
descriptor holding the sub-queue’s required size and an identifier for the type of data the
queue will be used for. It then tries to start a new queue by writing this part of the header
to the next free location in shared memory using atomic CAS. If it succeeds, the queue is
created. If another thread successfully wrote a descriptor in the meanwhile, we check if the
thusly allocated queue can serve our request and, in this case, use it. If we cannot use this
queue, we extract the queue’s size from the header, skip over the new queue, and try again.

If sub-queues are already present in shared memory on an enqueue operation, we check
their respective headers for a suitable queue that can still hold elements. If we can find
a queue, we simply increment its fill-rate counter and try to insert the element into the
queue. If there is not enough space, we decrement the fill-rate counter again and skip to
the next queue. If elements are to be drawn from the queues, we check one queue after the
other and, when we find a sufficient number of elements in a sub-queue, we draw them
from the back of the sub-queue similarly to our non-dynamic Local Queue.

In order to be able to move from one sub-queue to next and avoid fragmentation, we
require all sub-queues to be tightly packed. When all elements have been drawn from a
sub-queue, we perform a compaction step to remove empty sub-queues. During compaction,
we copy all non-empty sub-queues following an empty sub-queue to the front, overwriting
the empty queue. The memory freed at the back is cleared with zeros to allow new
sub-queues to be allocated there.

While the Dynamic Local Queue provides great versatility, the search for a fitting sub-
queue, dynamic allocation of sub-queues, and the necessary compaction step all introduce
additional overhead. Therefore, it only makes sense to use this type of queue in scenarios
with a large number of different procedures.
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4.4 Optimizations

The feature set of modern GPU architectures allows for many small, but very effective
optimizations. In the following, we describe a number of optimizations targeted towards
devices based on NVIDIA CUDA, which offer access to a large set of low level operations.

4.4.1 Warp Optimization

If multiple threads within a warp intend to perform the same operation on a global data
structure, it might be possible to locally combine the effects of the individual operations
and then have only one thread modify the global data structure. Such a local combination
of the operations of multiple individual threads within the same warp is widely known as
warp optimization and can greatly help to relieve contention. The thread carrying out the
combined operation is usually referred to as the warp’s lead thread. As threads within the
same warp execute in lock-step, warp voting functions can be used to identify all threads
that concurrently want to perform an operation. Thus, warp optimization can often be
implemented transparently to the user, beneath the interface to a data structure.

For all array-based queues our proposed warp optimizations are very similar. In order
to implement warp optimization for the enqueue operations, we need to determine the
number of threads that concurrently want to enqueue elements, assign a unique offset to
each thread, and choose a lead thread to perform the operation. Using CUDA, the warp
vote __ballot(1) will determine an active thread mask. The population count (__popc)
of this mask yields the number of active threads. A combination of __popc with the value
of the special low-level parallel thread execution (PTX) register __lanemask_lt yields a
unique id for every thread. The thread with id zero then takes on the role of the lead
thread. To communicate results, such as buffer offsets, one can use the shuffle (__shfl)
instruction or resort to shared memory on older hardware.

Using warp optimizations for array queues not only has the advantage of greatly
reducing the number of atomic operations that need to be executed, threads within a warp
can also be guaranteed successive spots in the queue, which leads to much more efficient
memory access patterns.

For the Collector Queue, a single thread can execute the atomic operation on the
pointer, incrementing the pointer by the number of active threads and communicating
the position of the first queue element to all threads. For the Mutex Queue and Dual
Mutex Queue, a single thread can acquire the lock, advance the back pointer, and release
the lock after completion. For the CAS Ordered Queue, the lead thread advances the
back pointer, communicates the enqueue positions, waits for all threads to complete their
memory transactions and then updates the ready pointer. For the Distributed Locks Queue
and Pointed Queue, a single thread can manage the fill-rate counter and determine the
spot of all elements. For the Local Queue, the atomic counter can be managed by the lead
thread.

Link-based queues do not lend themselves to warp optimization as naturally as array-
based queues. Nevertheless, some optimization is possible. When multiple threads con-
currently enqueue elements in our Linked Queue, we at first let all participating threads
allocate their nodes and write the data to their nodes. Then every thread communicates a
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pointer to its node to its neighbor. Knowing each neighbor’s node, all nodes can locally be
linked together forming a sub-queue. Afterwards, the lead thread simply has to exchange
the global back pointer to point to the last element of the sub-queue and change the next
pointer of the previous node at the back of the queue to point to the first element of the
sub-queue. In this way, the elements of up to 32 threads can be inserted at once.

4.4.2 Combined Dequeue

Depending on the algorithm and execution framework, work items, item sets, and workpack-
ages might be supported. If threads need to be dynamically assigned to the input element,
barrier synchronization is needed. As the dequeue operation must be performed right
before this barrier, the dequeue itself can also rely on synchronization without interfering
with the execution framework. Thus, the dequeue requests of all threads within a block
can be combined and a single thread can again perform the global operations. In case of
an array based queue, this thread can alter the pointers to dequeue multiple elements at
once. Each thread can then read its element, before the lead thread completes the dequeue
operation.

4.4.3 Write Optimization

To make sure data becomes visible to other threads, one has to rely on volatile loads and
stores to and from global memory. A naïveimplementation will likely compile to code
accessing queue elements using scalar 4 or 8 byte loads and stores. Vector loads and stores
would offer potentially much more efficient memory access for larger queue elements. To
use vector loads and stores on volatile memory types, these commands must be manually
supplied on current CUDA cards. Using inline PTX code suitable loads and writes can be
achieved, leading to performance increases of up to 8 times. In case multiple threads are
working together on a single element, e.g., in shared memory, we can additionally distribute
the required loads and stores amongst multiple threads, potentially decreasing the number
of registers used by the kernel.

4.4.4 Distributed Storage Optimization

In certain situations, it is desirable to use multiple queues. For instance, if procedures
work on item input, one would want to group items for each procedure in a separate queue.
When using multiple array queues, the fill-levels of individual queues may vary greatly
during runtime. Preallocating a buffer large enough to accommodate the maximum possible
number of elements for each queue could be too wasteful. Instead, we suggest dynamically
allocating the buffer memory for each queue from a shared pool of fixed size pages. This
pool of pages can itself be managed by another queue, the page queue. In the beginning,
all pages are unallocated and references to all pages are inserted in the page queue.

We replace the ring-buffers used in the standard queues with a small buffer of page
references, which are then used to hold the queue element data, as shown in Figure 4.5.
If a thread accesses the queue, it computes the page reference to be used based on the
queue element it wants to access. It then checks if a page reference is present in this spot.
If that is the case, it computes the offset on the page and accesses the according element
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Figure 4.5: The distributed storage optimization uses external pages shared among different
queues. Using a per page counter the current number of elements on each page can be tracked.

on the page itself. If no page reference is present, the thread draws a new page from the
page queue and sets the page reference. To support freeing pages, we add an atomically
operated counter to each page, which is increased during each dequeue. When a thread
advances the counter to the number of elements that fit on one page, it was the last to
remove an element from it and thus can safely free the page by unsetting the reference to
it and inserting it into the page queue. The thread removing the last element from the
page frees the page be unsetting the reference and inserting it into the page queue. For
the page queue itself, we use one of the previously described queues.

If multiple threads concurrently try adding a page for the same reference, only the first
one succeeds and the others put their pages back into the page queue. As many thousand
threads could possibly concurrently try to add a page for the same reference, many pages
would unnecessarily be removed from the page queue and put back. To avoid this situation,
we only allow threads that insert an element into one of the first slots on the page to draw
a new page, all others spin until one of the first ones sets the page reference.

4.5 Evaluation

The most relevant measures for queue performance are the average enqueue and dequeue
times. To evaluate the performance of all queues, we tested them in two scenarios with
varying number of threads. For each scenario, we start with a single block of 256 threads
and increase the number of blocks until the device is fully occupied. In the first scenario,
simulating an algorithm using workpackages, a single thread in each block enqueues one
element, before all threads in the block cooperatively dequeue one element. In our tests,
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we use simple integers for the queue elements. For both, enqueue and dequeue, we measure
the clock cycles needed. To get a reasonable estimate, we repeat this process 500 times
within the same kernel. In the second scenario, simulating an algorithm that uses work
items, every thread enqueues an element, before all threads in the block cooperatively
dequeue the same number of elements. Again, we repeat the process 500 times.

For the queues that require a memory allocator, we do not use the rather slow memory
allocator that ships as part of CUDA. Instead, we use a ring-buffer holding a fixed number
of equally sized elements. Using one atomically operated counter, we request new elements
from the ring buffer. As all the queues operate in a FIFO manner, elements that have
been allocated first should also be freed first. Due to the high degree of parallelism, queues
will not follow a strict FIFO ordering. As many queues rely on the memory allocator to
avoid overflow situations, we additionally use an atomically operated bit mask to flag used
elements. If the ring buffer wraps around and tries to allocate an element that has not
been freed yet, we pretend to be out of memory instead of searching for an empty spot.
An allocation requires only two global memory accesses, deallocation consists of a single
atomic operation. While this memory allocator hardly deserves its name, we find it to be
a reasonable model for the purpose of accounting for the overhead of dynamic memory
allocation in our simulations.

To compare our queuing approaches to the state-of-the-art, we implemented the following
non-blocking queues:

• Our implementation of the Michael-Scott queue [93] exactly follows their design. We
use our memory allocator to offer a fair comparison. We also enhanced their queue
with warp optimization similar to the warp optimization provided by our Linked
Queue.

• Our implementation of the Baskets Queue [44], generates baskets as proposed in
their original paper, inserting elements before the back of the queue if exchanging
the back pointer failed. Again, we use our allocator and provide warp optimization.

• Our implementation of the Shann-Huang-Chen queue [125], follows their algorithm.
As elements are written to the underlying ring-buffer using atomic operations, we use
our memory allocator to allocate the queue elements and only store pointers in the
queue. We again provide warp optimizations for this queue, similarly to the warp
optimization described for our array-based queues.

• Our implementation of the Tsigas-Zhang queue [140], suffers the same problems
as the Shann-Huang-Chen Queue. A memory allocator is required, as individual
elements need to inserted into the queue using atomic CAS operations. Their queue
can be tuned to the ratio between the costs of atomic operations and read operations
by altering a single parameter. We determined the best value for all tested GPU
architectures.

Figure 4.6, 4.7, and 4.8 show the average enqueue and dequeue cycles for our Linked
Queue in comparison to the lock-free link-based Michael-Scott Queue and Baskets Queue.
On the GTX 580, the Baskets Queue outperforms the Michael-Scott Queue for enqueue, in
both the package scenario and the item scenario. For dequeue, the situation is reversed.



4.5. Evaluation 53

Linked MichaelScott BasketQueue

100 101 102

number of blocks

103

104

105

e
n
q
u
e
u
e
 c

y
cl

e
s

(a) package scenario, enqueue cycles

103 104

number of threads

104

105

106

e
n
q
u
e
u
e
 c

y
cl

e
s

(b) item scenario, enqueue cycles

100 101 102

number of blocks

103

104

105

106

d
e
q
u
e
u
e
 c

y
cl

e
s

(c) package scenario, dequeue cycles

103 104

number of threads

105

106

107

108

d
e
q
u
e
u
e
 c

y
cl

e
s

(d) item scenario, dequeue cycles

Li
n
ke

d

M
ic

h
a
e
lS

co
tt

B
a
sk

e
tQ

u
e
u
e103

104

105

g
lo

b
a
l 
m

e
m

o
ry

 a
cc

e
ss

e
s 

p
e
r 

th
re

a
d

(e) package scenario, global operations

Li
n
ke

d
 O

p
t

M
ic

h
a
e
lS

co
tt

 O
p
t

B
a
sk

e
tQ

u
e
u
e
 O

p
t103

104

105

g
lo

b
a
l 
m

e
m

o
ry

 a
cc

e
ss

e
s 

p
e
r 

th
re

a
d

(f) item scenario, global operations

Figure 4.6: Performance comparison for the linked queues on a NVIDIA GTX 580. The
number of global memory operations has been sampled at low, medium, and high thread counts.
All queues use warp optimizations for the item scenario.
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(e) package scenario, global operations

Li
n
ke

d
 O

p
t

M
ic

h
a
e
lS

co
tt

 O
p
t

B
a
sk

e
tQ

u
e
u
e
 O

p
t102

103

104

105

g
lo

b
a
l 
m

e
m

o
ry

 a
cc

e
ss

e
s 

p
e
r 

th
re

a
d

(f) item scenario, global operations

Figure 4.7: Performance comparison for the linked queues on a NVIDIA GTX 680. The
number of global memory operations has been sampled at low, medium, and high thread counts.
All queues use warp optimizations for the item scenario.
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Figure 4.8: Performance comparison for the linked queues on a NVIDIA GTX TITAN. The
number of global memory operations has been sampled at low, medium, and high thread counts.
All queues use warp optimizations for the item scenario.
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On the GTX 680,the Michael-Scott Queue outperforms the Baskets Queue in all respects.
On the GTX TITAN, the situation is similar. Only for enqueue in the item scenario, the
two queues switch position at approximately 1000 threads. The non-blocking link-based
queues were significantly outperformed by our Linked Queue in all respects across all
devices tested. For the item scenario, the difference is on the order of one magnitude on all
devices. The advantage of our queue can not only be seen in the difference of enqueue and
dequeue cycles, the number of global memory accesses also indicates that the non-blocking
algorithms require a higher number of retries to complete their operations. Note that our
queue also requires retries, but only during dequeue, while the Michael-Scott Queue and
the Baskets Queue perform retries during enqueue and dequeue.

Figure 4.9, 4.10, and 4.11 show the average enqueue and dequeue cycles for the array-
based queues. On all devices, our Distributed Locks Queue delivers the best performance in
all test cases. The Pointed Queue is only slightly slower than the Distributed Locks Queue
when compared to the other queues. The non-blocking queues are up to three orders of
magnitude slower than our Distributed Locks Queue. Comparing the Tsigas-Zhang Queue
with the Shann-Huang-Chen Queue shows that the Shann-Huang-Chen Queue is always
faster than the Tsigas-Zhang Queue for the package scenario and for dequeue operations
in the item scenario. The Tsigas-Zhang Queue achieved considerably better results for
the enqueue in the item scenario. The enqueue operation for the item scenario is the
most demanding operation throughout the entire test. It seems that the optimizations
implemented by the Tsigas-Zhang Queue are only fruitful on the GPU if the number of
threads concurrently accessing the queue becomes very high. The Dual Mutex Queue’s
performance is mostly comparable to the performance of the non-blocking queues. However,
the dequeue operation in the item scenario is about as fast as the Distributed Locks
Queue, which can be explained by the combined dequeue optimization. As the number
of threads locking the queue during dequeue is rather low in comparison to the enqueue
case, the second lock of Dual Mutex Queue is subject to little congestion. If the lock is
acquired, dequeue is very efficient, as every thread can directly read its element. The
Tsigas-Zhang Queue and the Shann-Huang-Chen Queue require more complex strategies
to ensure consistency in their state variables. Even though the Dual Mutex Queue secures
its data structures with only two locks, its performance is in the range of the non-blocking
algorithms or even better.

On the GTX 580, the CAS Ordered Queue performs similar to the Dual Mutex Queue.
On the GTX 680 and GTX TITAN, the CAS Ordered Queue is approximately a factor
of two faster than the Dual Mutex Queue. On the GTX TITAN, the Distributed Locks
Queue hardly shows any dependence on the thread count, it can serve enqueue and dequeue
requests in approximately constant time. This behavior is only possible if the number of
global memory operation per thread does not increase. The same behavior can be seen in
the global memory operations. Again, the non-blocking algorithms require significantly
more global memory operations than our blocking queues.
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Figure 4.9: Performance comparison for the array-based queues on a NVIDIA GTX 580. The
number of global memory operations has been sampled at low, medium, and high thread counts.
All queues use warp optimizations for the item scenario. Note that the queues fill up the device
at different thread counts.



58 Chapter 4. Massively Parallel Queuing

CAS
Dist

Pointed
ShannHuangChen

TsigasZhang(4)

100 101 102

number of blocks

103

104

105

106

107

e
n
q
u
e
u
e
 c

y
cl

e
s

(a) package scenario, enqueue cycles

103 104

number of threads

103

104

105

106

107

108

109

e
n
q
u
e
u
e
 c

y
cl

e
s

(b) item scenario, enqueue cycles

100 101 102

number of blocks

103

104

105

106

107

d
e
q
u
e
u
e
 c

y
cl

e
s

(c) package scenario, dequeue cycles

103 104

number of threads

103

104

105

106

107

108

109

d
e
q
u
e
u
e
 c

y
cl

e
s

(d) item scenario, dequeue cycles

C
A

S

D
is

t

P
o
in

te
d

S
h
a
n
n
H

u
a
n
g
C

h
e
n

T
si

g
a
sZ

h
a
n
g
(4

)102

103

104

105

g
lo

b
a
l 
m

e
m

o
ry

 a
cc

e
ss

e
s 

p
e
r 

th
re

a
d

(e) package scenario, global operations

C
A

S
 O

p
t

D
is

t 
O

p
t

P
o
in

te
d
 O

p
t

S
h
a
n
n
H

u
a
n
g
C

h
e
n
 O

p
t

T
si

g
a
sZ

h
a
n
g
(4

) 
O

p
t101

102

103

104

105

106

g
lo

b
a
l 
m

e
m

o
ry

 a
cc

e
ss

e
s 

p
e
r 

th
re

a
d
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Figure 4.10: Performance comparison for the array-based queues on a NVIDIA GTX 680.
The number of global memory operations has been sampled at low, medium, and high thread
counts. All queues use warp optimizations for the item scenario. Note that the queues fill up
the device at different thread counts.
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Figure 4.11: Performance comparison for the array-based queues on a NVIDIA GTX TITAN.
The number of global memory operations has been sampled at low, medium, and high thread
counts. All queues use warp optimizations for the item scenario.
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To better judge the performance achievable by the global queues which are safe for
autonomous scheduling on the GPU, we compare them with the Collector Queue and our
Local Queue. These results can be seen in Figure 4.12, 4.12 and 4.14. On the GTX 580
and on the GTX TITAN, the Distributed Locks Queue is only twice as slow as the unsafe
Collector Queue. The Pointed Queue is approximately five times slower. On the GTX
680, the dequeue operations show a bigger spread, the enqueue operations, however, show
very similar performance for all global queues. The Linked Queue achieves competitive
performance for the enqueue operations on all devices in both scenarios. Its dequeue
performance, however, falls short from the performance of the other queues. This fact is
also documented by the number of global memory operations needed by the queue, which
are approximately 100 times more than the accesses required by the other queues.

On all devices, the Local Queue clearly outperformed all global queues. Due to the fast
access to shared memory, the Local Queue is also significantly faster than the Collector
Queue. The Local Queue was equally fast on all devices. For the global queues, there is a
huge difference between the GPU architectures. In terms of cycles, the newer GTX TITAN
with its improved atomic operations is between 2 to 20 times faster than the GTX 680.
Also, the performance of the queues offering concurrent access to different items hardly
decreases with increased thread counts on the GTX TITAN.

Table 4.2 shows the average enqueue and dequeue cycles for a fully utilized device
for both scenarios on the GTX 580, 680, and TITAN. The tables clearly show that all
three architectures have different implementations of atomic operations and thus warp
optimization also has a different impact. In the case where only a single thread in each
block performs an enqueue operation (package scenario), we see the small overhead of
warp optimization. For the item scenario, the advantage of warp optimizations becomes
apparent, leading to speed-ups of up to ten times for the faster queues and multiple
orders of magnitude for the Mutex Queue and CAS Ordered Queue. Interestingly, warp
optimizations have a very good impact on performance on the GTX 580, while their impact
on the GTX 680 is rather small, which leads to the GTX 580 outperforming the GTX 680
with warp optimizations activated. The GTX TITAN shows a similarly good response to
warp optimization as the 580. Using the distributed storage optimization (DestE) does
not have a severe impact on performance. The local queues show a similar performance
an all devices. The Dynamic Local Queue stays within a factor of two compared to the
Local Queue. While this performance is sufficient on the GTX 580 and GTX 680 to be
significantly faster than the Collector Queue, the efficient atomic operations on the GTX
TITAN let the Collector Queue achieve results comparable to the Dynamic Local Queue.

In addition to the enqueue and dequeue times, we have summarized the most interesting
properties of the queues in Table 4.2. The Collector Queue and both local queues only
work correctly if all threads accessing the queue are synchronized between enqueue and
dequeue operations. As the Collector Queue is a global queue, multiple kernel launches
are needed to achieve this synchronization. Thus, it cannot be used as a work queue in
dynamic load balancing approaches. While most queues only require a constant amount of
additional memory, the Distributed Locks Queue, Pointed Queue and Linked Queue require
additional memory for each queue element. The number of additional global memory
transactions for enqueuing elements (for reasonable fill-levels) is constant for all queues
except the Mutex Queue and the CAS Ordered Queue. While the number of locking
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(e) package scenario, global operations
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(f) item scenario, global operations

Figure 4.12: Performance comparison for the best queues on a NVIDIA GTX 580. The number
of global memory operations has been sampled at low, medium, and high thread counts. All
queues use warp optimizations for the item scenario. Note that the queues fill up the device at
different thread counts.
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(f) item scenario, global operations

Figure 4.13: Performance comparison for the best queues on a NVIDIA GTX 680. The number
of global memory operations has been sampled at low, medium, and high thread counts. All
queues use warp optimizations for the item scenario. Note that the queues fill up the device at
different thread counts.
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Figure 4.14: Performance comparison for the best queues on a NVIDIA GTX TITAN. The
number of global memory operations has ve been sampled at low, medium, and high thread
counts. All queues use warp optimizations for the item scenario.
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Table 4.1: Average enqueue and dequeue cycles for the presented basic queues for both
scenarios on a GTX 680, and GTX TITAN. All measurements were performed on fully utilized
GPUs.

(a) package scenario, enqueue cycles

Collector DualMutex CAS Dist DistE Point Link Local DLocal

580 std 3.07k 202k 10.1k 5.13k 4.37k 5.08k 3.77k 505.0 944.1
opt 3.07k 251k 10.0k 4.97k 4.74k 5.48k 8.28k 1.09k 2.19k

680 std 30.4k 1.55M 234k 42.6k 42.8k 26.2k 19.7k 451.3 768.7
opt 31.8k 2.99M 155k 45.0k 44.6k 30.3k 21.1k 612.7 1.04k

TITAN std 1.11k 9.09k 2.02k 1.71k 2.31k 2.38k 2.20k 316.3 555.4
opt 1.19k 17.8k 2.53k 1.87k 2.43k 2.56k 2.36k 516.8 754.4

(b) package scenario, dequeue cycles

Collector DualMutex CAS Dist DistE Point Link Local DLocal

580 std 5.54k 83.1k 236k 5.65k 6.17k 6.38k 33.9k 815.6 2.07k
opt 4.95k 28.2k 158k 5.22k 6.23k 6.55k 29.1k 753.4 1.97k

680 std 8.07k 3.53M 687k 51.2k 59.0k 51.3k 26.4k 511.1 1.34k
opt 6.07k 1.86M 519k 50.9k 58.4k 55.7k 25.8k 514.3 1.30k

TITAN std 864.0 125k 31.9k 2.39k 3.58k 3.52k 21.0k 477.6 1.21k
opt 836.6 117k 29.8k 2.38k 3.60k 3.49k 20.7k 481.0 1.21k

(c) item scenario, enqueue cycles

Collector DualMutex CAS Dist DistE Point Link Local DLocal

580 std 246k 1.31G 1.02G 586k 590k 588k 132k 21.6k 22.0k
opt 11.3k 2.73M 3.69M 28.1k 32.7k 292k 101k 2.41k 4.01k

680 std 53.8k 1.56G 345M 78.0k 99.9k 103k 17.9k 16.2k 17.0k
opt 27.5k 14.2M 8.81M 58.5k 81.8k 88.8k 15.2k 1.05k 1.40k

TITAN std 13.3k 98.3M 197M 30.1k 21.4k 20.7k 6.04k 15.2k 16.4k
opt 1.96k 504k 442k 2.98k 4.53k 9.32k 5.35k 924.2 1.15k

(d) item scenario, dequeue cycles

Collector DualMutex CAS Dist DistE Point Link Local DLocal

580 std 8.35k 23.6k 141k 189k 199k 55.6k 10.0M 810.8 2.50k
opt 6.07k 15.3k 23.8k 11.9k 16.5k 17.7k 10.0M 947.5 2.54k

680 std 6.48k 119k 111k 77.6k 98.9k 131k 6.07M 482.4 1.30k
opt 12.2k 96.6k 90.4k 71.3k 91.6k 122k 5.60M 474.9 1.25k

TITAN std 1.33k 6.37k 29.6k 6.89k 12.2k 13.4k 5.63M 377.0 1.24k
opt 978.6 3.78k 4.00k 3.19k 4.94k 9.82k 5.66M 400.5 1.22k
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Table 4.2: Basic queue overview: Only a subset of queues offer concurrent enqueue and
dequeue and are thus usable for persistent threads approaches; two queues require a dynamic
memory allocator ; all but one queue support reading and writing of multiple elements in a
single transaction; a few queues provide safe access to elements without removing them from
the queue.
The memory requirements for three queues depend on the queue size n; in case of the Mutex
Queue, the number of operations for dequeue and enqueue linearly depends on the threads
c concurrently accessing the queue; for the CAS Ordered Queue and the Linked Queue, the
number of operations depends on the order the memory transactions are executed (c∗); the
number of registers needed by an enqueue or dequeue operation also varies.

Collect Mutex CAS Dist Pointed Linked Local DLocal

concurrent • • • • •
allocated • •
multi r/w • • • • • • •
accessible • • • •

memory 2 3 4 3 + n 3 + n 2 + n 1 2
enqu. ops 1 3 + c 3 + c∗ 4 3 3 1 2
dequ. ops 1 3 + c 3 + c∗ 4 3 3 + c∗ 2 3
enqu. regs 11 12 17 12 14 9 6 8
dequ. regs 8 10 10 8 14 27 6 6

attempts increases linearly with the number of threads accessing the queue for the Mutex
Queue, the number of required CAS operations for the CAS Ordered Queue depends
on the scheduler and memory controller. If the memory transactions were processed in
the same order as spots are assigned to threads accessing the CAS Ordered Queue, an
enqueue operation would complete with no addition transactions. For dequeue, we see
the same behavior for the Mutex Queue and the CAS Ordered Queue. The Linked Queue
also requires more transactions if multiple threads want to dequeue elements concurrently,
because all threads try to dequeue the same element. As only one thread can succeed,
all other threads have to retry. In terms of register usage for enqueue and dequeue, all
global queues behave pretty similarly (8− 14 used registers). The CAS Ordered Queue
forms an exception for enqueue (17 registers) and the Linked Queue needs 27 registers for
dequeue. Shared queues outperform their global counterparts in all respects. They are not
only faster in terms of access speed, they also only need a constant amount of additional
memory and very few registers during enqueue and dequeue (6− 8).

4.6 Discussion

Overall, we suggest to use local queues wherever possible, as they clearly outperform
global queues in all respects. If a global queuing strategy is needed, we suggest using the
Distributed Locks Queue, as it shows the best performance among all global queues that
can be used for persistent threads approaches. Especially on the most current architecture,
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distributed locks outperform the other global queues in all tests. Interestingly, on this
hardware, the Distributed Locks Queue can keep its performance almost constant across
all thread counts, even if all threads on the entire GPU concurrently dequeue and enqueue
items. It seems that, as long as warp optimizations are used, the problem of contention on
single atomic counters is nearly solved on most recent hardware. The moderate amount of
additional memory required by the Distributed Locks Queue is normally not a problem on
current devices. If a large number of queues needs to be used, we recommend to employ
the distributed storage optimization, as its impact on performance is not very severe. One
of our most interesting findings is the fact that non-blocking queues perform significantly
worse than our blocking algorithms throughout all tests. In some cases, our blocking queues
were up to 100 times faster than the best non-blocking queue. Note that the source code
for all our queues can be found in Appendix B and a performance plots for all testes queues
are listed in Appendix C.
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5.1 Load Balancing
While highly efficient queues are very important, the way queues are used to supply blocks
with work is equally vital for an algorithm to be completed efficiently. The way queues
store and give access to their elements defines the order of execution. In this way, the
queuing strategy not only defines the priority of certain elements, it also influences the
number of elements currently in the queue. If procedures generating many new elements
are executed first, queues might grow large. If procedures that never generate new elements
are scheduled, queue sizes will reduce. The internals of the queuing strategy, define where
elements are stored, and how much pressure individual locks or counters will receive. Due
to their influence on efficiency and load balancing, a well designed queuing strategy, thus,
can boost the execution of the entire algorithm.

5.1.1 Monolithic Queuing

The probably most straight forward queuing strategy is to use a monolithic queue in global
memory, as outlined in Figure 5.1. All worker blocks enqueue and dequeue elements with
the same queue. Thus, scheduling is very consistent and perfect load balancing between
different blocks is easily achievable. As only a single queue is used, the risk of running out
of memory is very low. Only if the entire queue is filled, the queuing strategy can not serve
further enqueue requests.

If different procedures are required for by an algorithm, different work elements get
mixed in the queue. This fact entails a series of disadvantages. First, a monolithic queue
can only be used for work packages. If items or item sets were mixed with package elements,
utilization would ultimately drop as single items or item sets would be scheduled for
execution. Second, additional storage is required for each element, to provide information
about which procedure should be called for the element, increasing the overall memory
requirement. Third, because elements for different procedures might be of different size,
queues based on ring buffers might end up having a high internal fragmentation. In this

67
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Figure 5.1: Monolithic queuing provides a single queue shared by all worker blocks.

case, every element in the queue must be able to hold the biggest element. Thus, for
smaller elements, the remaining space is wasted.

In addition to these disadvantages, a single monolithic queue is a possible source for very
high congestion, because all threads use the same lock or atomic counter when accessing
the queue. A simple monolithic queue does not support priorities of any kind and thus
cannot take any controllable influence on scheduling. As a result, queue lengths might
grow very large or stay very low, as procedures with preferable input-output characteristics
cannot be prioritized.

5.1.2 Per Procedure Queuing

The probably most intuitive queuing strategy for multi-procedure algorithms is to provide
an individual queue for each procedure in global memory, as outlined in Figure 5.2. In
this way, all blocks still access the same queues, providing consistent scheduling and load
balancing among all blocks. Using a different queue for each procedure has a series of
advantages: First, items, item sets, and packages are collected together, supporting efficient
execution of all granularities. There is no need to store an addition identifier for each
element, as the queue itself provides information about the procedure to be executed. It is
easy to prioritize one procedure over another, which allows to react to non-optimal queue
fill-rates. With knowledge about which elements can be generated during the execution of a
single procedure, it is even possible to aim for homogeneous fill-rates among all procedures.
The queuing strategy can select highly filled queues to reduce their fill-rate and avoid
procedures generating elements for those queues.

There are only few disadvantages when using a queue per procedure in global memory.
First, as all threads access the same queues, high congestion might appear on single locks
or atomic counters. Second, multiple queues need to be searched to find elements suitable
for execution, increasing the required memory bandwidth and steps until an element is
found. If items and item sets are used, one might even search all queues twice. In a first
run, elements are only dequeued, if there are sufficiently many elements to fill an entire
worker block with elements. If this goal cannot be met, a second run is required. During
the second run, any available element is taken out to advance the algorithm.
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TODO: make less symmetric 

Figure 5.2: Per procedure queuing provides one queue for each procedure, avoiding the storage
requirement for an additional identifier for each queue element.

5.1.3 Per Block Queuing

One strategy to reduce congestion on locks and atomic counters is to use more than a single
queue, such as one for each worker block, as outlined in Figure 5.3. Per block queuing can
also be combined with per procedure queuing, offering one queue for each procedure to
each block. The big advantage of this setup is the reduced number of accesses to the same
locks and atomic counters. The biggest disadvantage of the strategy is that there is no
shared scheduling strategy between different blocks. Thus, load balancing between blocks
is not supported per default. As the number of queues is increased, the overall memory
dedicated to queuing must also be increased to be able to handle execution patterns, in
which many elements are created by one block.

In order to introduce load balancing between blocks, two strategies have been proposed:
stealing [10] and donating [141]. Both strategies involve accessing queues of other blocks.

Stealing works as follows: If a block’s queue runs out of elements, it tries to steal
elements from other blocks’ queues. The order in which the other queues are chosen
can be arbitrary, most often a simple round robin fashion is applied. Stealing has the
advantage that all blocks are supplied with work until the entire algorithm has finished.
One disadvantage is an increased number of queue accesses when running low on elements
as all blocks possibly try to access all queues, which increases the memory bandwidth usage
and delays the shut down phase. When using stealing, still the same amount of memory
needs to be reserved for all queues, as individual queues might still fill-up quickly, while all
other queues only hold few elements.

Donating works as follows: If a block’s queue is running full, the block tries to enqueue
new elements with another block’s queue. If the chosen queue is also full, it tries to enqueue
with another queue in a round robin fashion. In this way, other blocks can also be supplied
with work. The advantage of this strategy is that the queue size can be chosen smaller,
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Figure 5.3: Per block queuing provides an individual queue for each worker block. To be able
to distribute work between different queues, stealing and donating can be used. If a queue runs
out of elements, it can steal elements from another block’s queue. Before a queue overflows,
elements can be donated to other queues which are still able to hold elements.

as elements are simply moved to another queue if one is running out of memory. One
disadvantage is an increased number of queue accesses when the queues are about the run
full. Another, even more severe problem is that thesuccess of the strategy depends on the
queue size. If queues are chosen too big, all but one block might stare for a serious amount
of time. If queues are chosen too small, the execution might fail as there is not enough
space to store all elements. Also, donating cannot be applied to every type of algorithm.
If an algorithm is contracting only, i.e., every procedure emits up to one new element,
donating will never happen and, thus, no load balancing will apply.

5.1.4 Locally Buffered Queuing

While global queues are essential to share work between blocks, they require a round trip
to relatively slow global memory. An alternative is to place queues in fast local shared
memory. As shared memory is very limited in size, only small queues can be made available
in shared memory and a backup by a global queue is most often required, as outlined in
Figure 5.4. The advantage of locally buffered queuing is clearly the provided access speed.
The disadvantage is that it hinders global scheduling strategies, as each block only has
access to its own queue.

The variables that influence local queuing are the chosen queue size and the threshold
determining when elements can be taken out of the queue. Similar to donating for per
block queuing, a too large queue might cause starvation of other blocks. If queues are
chosen too small, they might become inefficient, because too many elements need to go
through global memory. If there are not enough elements available to fill up an entire
block, it is most often a good idea to draw work from the global queue and wait until there
is enough data locally available to provide work for all threads of the block. However,
this bares the risk that the queue suddenly overflows and elements need to be moved to
global memory. Thus, one might choose the threshold determining when elements should
be taken out of the queue a bit below the work needed for all threads. The best choice for
these variables again depends on the executed algorithms.



5.1. Load Balancing 71

Figure 5.4: Locally buffered queuing provides small queues in fast on-chip shared memory.
These small queues are backed by larger queues in global memory.

Another factor for local queuing is whether a queue for a certain procedure should
be provided in shared memory. If an algorithm by itself already needs a large amount of
shared memory, it might be beneficial to offer local queues only for selected procedures.
According to our experiments, procedures which form the end of pipelines, take small items
or item sets as input, or show rather short execution times are a good fit for local queuing.

5.1.5 Evaluation

To evaluate the different queuing strategies, we used a simple persistent threads approach.
As test algorithm we use a single recursive procedure, either based on packages or based
on work items. In both cases, we started a fixed number of initial packages or items
and with a certain probability re-emitted them. For the first 30 iterations, we use a
re-emit probability of 100%. For every following iteration, we reduce the probability by
3% leading to a maximum iteration count of 64. To simulate the time required for the
execution of individual elements, we either perform 512 fused multiply-adds (FMA) to
simulate arithmetic load or perform 64 memory transactions to simulate a memory bounded
algorithm. In addition, we also vary the size of work items (16 and 64 bytes) and packages
(16 and 256 bytes) to evaluate how the queuing strategies can cope with increasing memory
requirements and data access times. To simulate different algorithm characteristics, we
run the same test again, but instead of only re-emitting the same element, we emit a
second element with a certain probability. We setup this probability to counterbalance
the reduction of the re-emit probability, overall keeping approximately an equal number of
elements in the system for the first 30 iterations. Then, we again reduced the number of
emitted elements linearly. This second test forms a more challenging scenario for the load
balancing strategies, as the number of created elements differs between different processors.

The results of the first set of tests are shown in Table 5.1, 5.2, and 5.3. Items are
only supported for per procedure queuing. Comparing the basic global queue approaches,
Distributed Locks Queues achieved the best performance. If only a single global queue is
used, the Linked Queue, the Mutex Queue and the CAS Ordered Queue are clearly slower
than the Distributed Locks Queue. When per-block queuing (especially with stealing) is
applied, the slower basic queues can to a certain degree close this gap. The performance of
simple per-block queuing seems to be limited by the missing load balancing strategies. The
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performance of stealing and donating is very similar in about 90% of all tests. In about ten
percent of the cases, however, stealing outperformed donating by up to 50%. The problem
with donating in this scenario is the fact that donating is only able to balance the load
between the processors during the first stages, when all queues are fully filled. As soon as
the number of executed elements is reduced, load inconsistencies can arise. Stealing is still
able to handle these situations.

For item data the difference between the basic queues becomes even more severe. In
the simple setup, the Distributed Locks Queue is between 30 and 300 times faster. When
using per-block stealing, the difference is reduced to 2 to 50 times.

The most interesting point of this evaluation is that per-block queuing with the best
load balancing strategies hardly outperforms queues that are shared between all processors
if the Distributed Locks Queue is used as underlying queue. Especially on the GTX TITAN
the difference between per-block stealing and using one shared queue is below 5%. In half
of the cases, the one queue strategy even outperformed per-block stealing.

When comparing monolithic queuing with per procedure queuing, there is hardly any
difference. The slightly decreased number of memory loads of per procedure queuing does
not show up in the performance results.

A strong impact on performance can be achieved when using locally buffered queuing.
On the GTX 580 the performance can be increased by up to 80 percent and locally buffered
queues were the fastest in all tests. On the GTX 680 locally buffered queues were also
leading the score board in all cases. Interestingly, the impact of locally buffered queuing
was more than ten times stronger on the 680 than on the 580. On the 680 it boosted
performance by a factor of up to 15, indicating that the queuing operations (including
their memory accesses) otherwise form the bottleneck on the 680. On the GTX TITAN,
the performance of locally buffered queuing and distributed locked global queues was very
similar. In only two cases locally buffered queuing was faster than the global strategy.
The amount of memory reserved for locally buffered queuing also has an influence on
performance. In this scenario, the memory was used for queues, the faster the approach got.
As soon as a sufficient threshold was reached, performance did not increase any further.
The threshold was reached, when there was sufficient space for storing all elements in
shared memory. For item data, up to 16kB were needed.

The results of the modified test with up to two elements being created in each procedure
are shown in table 5.4, 5.5 and 5.6. In general, we see a similar picture. Distributed Locks
Queues perform best among all global queues. Per-block stealing significantly can increase
the performance of the slower queues. On the GTX TITAN per block stealing outperformed
the a single Distributed Locks Queue only in 2 of 8 cases. On the GTX 680 and 580 this
ratio was 3:8 and 5:8, respectively. These results indicate that the newer devices among
other things offer more efficient atomic operations, which are the only source for congestion
for the Distributed Locks Queue. Per-block donating lost ground in comparison to the
previous test case compared to per-block stealing. Although the number of element in the
queues only slightly varies for the first iterations, the remaining iterations seem to generate
severe imbalances in the element distribution between the blocks.

Locally buffered queuing performed best in 4 of 8, 8 of 8, and 3 of 8 cases on the
GTX 580, 680, and TITAN respectively. The difference between global and local queues
was again big on the GTX 680. However, the success of locally buffered queuing overall
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Table 5.1: Recursive tests - performance (GFLOPS and GB/s) on a GTX 580

Packages Items
FMA Memory FMA Mem

Small Big Small Big Small Big Small Big

Linked

Mono

314.1 308.5 75.2 76.5
PerBlock 250.2 247.5 68.0 67.0
Stealing 504.9 388.8 119.1 93.9

Donating 521.6 359.6 112.5 84.8

PerProc

319.8 310.7 78.4 74.8 1.3 1.2 0.3 0.3
PerBlock 254.5 246.0 66.9 65.4 6.4 5.4 1.6 1.3
Stealing 513.6 401.0 119.0 97.9 6.7 5.2 1.7 1.3

Donating 559.3 366.0 112.0 86.7 6.3 4.9 1.6 1.2

Mutex

Mono

67.6 69.3 17.3 17.2
PerBlock 399.4 347.8 95.1 84.2
Stealing 748.6 666.7 122.1 116.5

Donating 678.4 642.1 117.7 117.8

PerProc

83.2 73.8 20.3 18.6 5.7 7.9 1.4 2.0
PerBlock 384.1 317.5 90.6 84.5 171.0 115.1 44.7 30.3
Stealing 718.4 563.5 121.6 107.5 172.6 114.6 44.1 31.4

Donating 654.7 554.6 117.0 115.2 158.0 114.8 42.2 29.9

CAS

Mono

148.7 148.5 35.9 35.8
PerBlock 387.5 343.8 92.9 78.2
Stealing 752.0 583.5 122.9 109.8

Donating 731.6 616.7 118.1 113.9

PerProc

131.2 132.3 30.8 31.7 10.6 17.8 2.8 4.3
PerBlock 394.0 316.7 83.3 71.6 352.4 202.8 88.6 54.9
Stealing 701.6 512.2 121.0 98.8 370.3 199.8 94.6 53.3

Donating 693.6 596.6 118.4 112.1 358.1 201.7 93.3 55.1

Dist

Mono

749.3 685.6 124.2 117.8
PerBlock 374.3 351.4 89.1 70.5
Stealing 765.1 674.5 124.0 116.0

Donating 750.4 611.6 118.9 112.9

PerProc

685.0 608.3 122.3 117.7 408.8 223.2 96.0 59.4
PerBlock 371.5 304.7 85.4 72.5 456.6 211.5 101.1 57.6
Stealing 823.2 599.0 122.9 117.5 487.7 227.2 108.6 61.6

Donating 661.3 616.9 118.3 116.1 447.6 209.8 101.9 56.9

Local

Small 816.4 580.5 120.5 113.8 312.6 197.9 78.5 55.3
Medium 854.4 700.0 125.2 120.2 455.5 217.2 99.9 60.0

Large 853.0 699.5 125.1 120.3 542.3 242.3 108.8 66.0
Huge 851.4 702.6 125.1 119.6 569.9 280.8 117.9 74.1
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Table 5.2: Recursive tests - performance (GFLOPS and GB/s) on a GTX 680

Packages Items
FMA Memory FMA Mem

Small Big Small Big Small Big Small Big

Linked

Mono

247.8 259.8 54.1 58.0
PerBlock 158.8 155.7 29.8 31.3
Stealing 303.2 253.6 64.3 57.7

Donating 260.2 224.6 55.1 49.8

PerProc

247.9 248.0 54.2 56.3 1.7 1.6 0.4 0.4
PerBlock 153.2 147.4 34.4 33.5 7.1 5.5 1.7 1.3
Stealing 294.9 261.5 65.3 58.0 7.4 5.6 1.8 1.4

Donating 219.7 223.3 48.4 51.5 7.1 5.5 1.7 1.4

Mutex

Mono

2.3 6.0 0.5 1.4
PerBlock 16.5 40.2 3.7 9.8
Stealing 51.5 84.8 13.1 20.4

Donating 31.3 83.4 7.5 20.1

PerProc

3.7 5.5 0.9 1.3 0.4 0.7 0.1 0.2
PerBlock 37.3 54.1 8.9 13.5 4.2 6.7 1.1 1.6
Stealing 87.1 85.3 22.7 20.0 6.4 6.6 1.7 1.6

Donating 33.5 84.0 8.2 20.8 2.8 6.7 0.7 1.6

CAS

Mono

16.8 31.4 4.1 7.7
PerBlock 80.0 95.1 19.4 20.8
Stealing 136.8 169.2 32.1 39.2

Donating 98.6 160.9 23.3 38.2

PerProc

17.1 31.4 4.1 7.6 1.3 2.7 0.3 0.6
PerBlock 75.5 101.4 20.2 21.4 17.2 24.8 4.2 6.1
Stealing 176.8 155.9 42.0 37.2 29.5 24.6 6.9 6.0

Donating 98.2 159.0 23.3 38.7 12.9 18.9 3.1 4.7

Dist

Mono

112.1 181.9 26.4 43.4
PerBlock 65.2 106.9 15.5 22.9
Stealing 141.7 170.2 35.4 39.4

Donating 104.8 163.7 25.3 40.7

PerProc

110.8 182.7 26.6 46.5 81.3 48.6 20.1 11.5
PerBlock 67.2 101.4 16.5 27.8 77.1 47.9 17.6 11.4
Stealing 139.7 169.8 25.8 44.1 74.7 49.8 17.9 12.0

Donating 106.2 169.1 24.9 45.5 49.8 34.6 11.0 7.6

Local

Small 467.7 368.3 99.0 80.9 131.0 70.3 30.2 17.1
Medium 1105 836.0 133.6 134.2 133.6 77.3 30.8 18.1

Large 1103 841.9 133.7 134.4 242.0 86.7 61.7 19.5
Huge 1104 841.9 133.6 134.3 728.2 108.2 164.0 23.4
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Table 5.3: Recursive tests - performance (GFLOPS and GB/s) on a GTX TITAN

Packages Items
FMA Memory FMA Mem

Small Big Small Big Small Big Small Big

Linked

Mono

409.6 399.0 99.8 98.1
PerBlock 638.0 488.3 151.8 94.2
Stealing 1065 742.1 170.9 162.5

Donating 810.1 613.4 157.1 115.9

PerProc

415.7 399.8 102.9 97.6 1.7 1.6 0.4 0.4
PerBlock 736.6 466.5 118.6 115.9 7.8 5.9 1.9 1.5
Stealing 1168 890.9 147.1 163.4 12.8 9.9 3.1 2.5

Donating 917.0 716.5 129.9 137.4 7.7 5.7 1.7 1.4

Mutex

Mono

88.9 72.4 20.5 17.1
PerBlock 470.6 417.1 109.7 89.5
Stealing 809.5 857.9 159.3 159.5

Donating 841.9 672.5 164.1 128.8

PerProc

92.9 81.0 20.9 19.4 10.8 9.8 2.7 2.5
PerBlock 478.7 352.7 98.3 90.1 116.4 89.8 28.2 22.1
Stealing 873.3 753.2 136.0 149.2 111.4 94.0 28.3 23.5

Donating 918.6 782.8 137.9 149.6 116.3 92.3 27.5 22.8

CAS

Mono

344.2 337.3 83.6 82.3
PerBlock 558.1 427.0 124.8 103.7
Stealing 972.7 1000 172.8 167.9

Donating 1045 755.7 178.9 134.8

PerProc

335.1 339.2 81.4 82.1 36.0 52.2 8.9 13.1
PerBlock 572.8 446.6 116.6 104.7 351.4 193.8 79.9 48.0
Stealing 1100 998.0 144.2 169.1 487.9 285.5 109.5 67.1

Donating 1033 882.7 148.2 157.9 359.7 209.2 81.4 51.2

Dist

Mono

1195 1059 185.3 168.3
PerBlock 550.0 490.7 116.5 106.1
Stealing 1036 1075 179.6 169.3

Donating 1031 751.4 180.4 134.6

PerProc

1194 1084 178.8 166.9 992.8 389.9 170.4 91.9
PerBlock 509.3 470.9 110.8 100.5 601.2 232.6 113.8 56.2
Stealing 1254 1117 155.3 174.7 943.8 403.1 168.8 94.7

Donating 993.1 852.5 151.7 152.6 587.5 249.7 117.4 59.3

Local

Small 1114 993.5 153.7 149.2 593.2 297.4 121.0 68.8
Medium 1220 1114 157.9 154.1 789.6 324.2 145.6 74.3

Large 1219 1115 157.7 154.0 1035 362.0 155.3 82.8
Huge 1221 1115 157.7 153.9 925.0 418.8 160.2 93.8
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reduces for this example. The reason for this decline is the reduced ability to perform load
balancing between blocks. In terms of optimal memory assignment for locally buffered
queuing, the picture has also changed from the previous test. Assigning too much memory
to local queues, can strongly reduce performance in this example. Too big local queues
completely disable global load balancing, leading to starvation of entire blocks. As item
data fills up the local queues quickly, the maximum amount of shared memory works well
for these cases still.

The maximum performance achieved for the different tests and devices is shown in
Figure 5.7. The highest absolute performance is achieved by the GTX TITAN in all tests,
with up to 1250 GFLOPS and 185 GB/s. The GTX 680 achieved 1100 GFLOPS and 164
GB/s at its best. The GTX 580 achieved 859 GFLOPS and 125 GB/s. However, the best
performance in comparison to the device’s peak performance for FMA was achieved by
the GTX 580 with 50% peak performance, followed by the GTX 680 with 34% and the
GTX TITAN with 25%. We recorded the lowest FMA performance ratio fir tge GTX 680
in the items test with big items. In general, the big item test is clearly memory bounded.
It seems that on older devices with compute capability 2.0 it is easier to get closer to the
peak performance. The memory transfer rates were more uniform. For package data, all
devices offered 50 to 70% of the memory bus bandwidth to the algorithm. For item data,
the GTX 480 and GTX TITAN offered between 28 and 61%; the GTX 680 offered between
7 and 85%. Overall, it seems that the GTX 680 is the most unpredictable device and runs
into memory bandwidth problems quickly. The high performance of the GTX 680 can only
be achieved when using queues in shared memory and thus avoid accessing global memory
as much as possible.
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Table 5.4: Recursive expanding tests - performance (GFLOPS and GB/s) on a GTX 580

Packages Items
FMA Memory FMA Mem

Small Big Small Big Small Big Small Big

Linked

Mono

318.0 315.1 79.1 77.0
PerBlock 120.3 102.3 32.2 43.5
Stealing 546.5 397.8 119.8 96.5

Donating 266.0 182.5 67.8 46.3

PerProc

318.7 317.1 78.2 78.5 1.3 1.3 0.3 0.3
PerBlock 159.5 170.1 47.0 49.1 6.6 5.5 1.7 1.4
Stealing 541.6 427.2 119.5 100.7 6.9 5.4 1.7 1.3

Donating 251.5 194.4 66.4 49.9 6.4 5.0 1.6 1.3

Block

Mono

37.5 60.7 11.9 15.9
PerBlock 165.8 144.6 48.0 55.6
Stealing 715.3 640.7 121.5 116.1

Donating 310.2 274.3 81.0 68.7

PerProc

81.2 74.8 20.1 18.7 2.4 3.7 0.6 0.9
PerBlock 220.0 210.3 58.5 53.0 82.6 78.5 21.0 20.9
Stealing 681.8 531.4 120.1 105.3 87.8 78.3 22.3 21.3

Donating 287.1 271.2 74.3 67.2 92.6 76.5 24.0 19.8

CAS

Mono

148.9 150.2 36.7 36.2
PerBlock 166.4 144.0 46.6 54.1
Stealing 732.5 588.2 123.5 110.5

Donating 305.1 240.5 67.2 60.8

PerProc

130.8 133.8 31.2 32.0 4.3 8.2 1.1 2.0
PerBlock 213.8 198.7 62.5 58.1 202.0 173.4 53.9 46.2
Stealing 677.1 507.9 121.3 100.9 210.2 168.1 56.8 45.0

Donating 280.3 265.9 74.9 69.0 191.0 174.3 50.4 46.6

Dist

Mono

785.1 685.8 125.7 120.8
PerBlock 155.1 131.0 42.6 52.8
Stealing 722.9 667.5 124.8 119.1

Donating 319.7 238.5 73.6 67.0

PerProc

716.1 635.6 124.9 120.1 223.7 180.5 52.9 46.1
PerBlock 212.4 197.4 63.2 56.8 377.1 188.7 91.9 51.5
Stealing 841.4 627.9 123.9 118.8 394.8 198.7 97.0 53.5

Donating 274.3 272.6 76.1 69.1 377.3 184.3 95.2 50.5

Local

Small 828.8 629.6 124.9 115.4 192.6 145.3 49.6 36.5
Medium 438.7 684.4 88.0 118.8 246.8 158.5 64.2 41.7

Large 184.1 361.6 54.3 81.9 341.8 181.6 79.6 47.0
Huge 184.0 167.9 54.4 47.0 467.0 208.7 103.8 54.6
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Table 5.5: Recursive expanding tests - performance (GFLOPS and GB/s) on a GTX 680

Packages Items
FMA Memory FMA Mem

Small Big Small Big Small Big Small Big

Linked

Mono

252.0 270.5 56.8 61.0
PerBlock 80.1 69.4 18.1 17.3
Stealing 291.3 253.8 66.2 59.3

Donating 140.4 114.6 30.0 26.6

PerProc

254.6 259.7 56.7 59.0 1.7 1.6 0.4 0.4
PerBlock 77.6 99.4 17.7 23.1 6.6 5.1 1.6 1.3
Stealing 263.9 245.9 65.2 54.8 6.8 5.2 1.7 1.3

Donating 133.5 111.7 32.3 26.4 6.6 5.1 1.6 1.3

Block

Mono

2.3 6.0 0.6 1.5
PerBlock 10.1 26.4 2.5 6.6
Stealing 43.1 69.1 10.2 16.9

Donating 13.2 35.7 3.3 8.7

PerProc

3.8 5.5 0.9 1.4 0.2 0.3 0.0 0.1
PerBlock 26.6 38.4 6.5 9.1 2.0 3.8 0.5 0.9
Stealing 74.5 70.8 17.9 17.0 2.9 3.2 0.8 0.8

Donating 17.9 47.3 4.6 11.2 1.4 3.9 0.4 1.0

CAS

Mono

17.0 32.1 4.1 7.9
PerBlock 41.4 66.9 11.0 13.7
Stealing 132.8 164.1 32.0 38.6

Donating 54.4 75.5 12.0 18.7

PerProc

17.2 32.9 4.2 7.9 0.6 1.2 0.2 0.3
PerBlock 56.1 72.5 10.8 16.3 7.6 13.0 1.9 3.2
Stealing 158.5 155.0 39.6 36.9 12.8 14.3 3.2 3.5

Donating 49.3 82.5 13.3 19.4 5.9 9.4 1.5 2.3

Dist

Mono

114.5 176.8 27.4 41.1
PerBlock 34.2 50.5 9.4 11.3
Stealing 107.0 164.2 26.1 38.6

Donating 53.3 79.2 13.5 19.5

PerProc

113.4 175.1 27.2 41.3 47.1 33.5 10.8 8.1
PerBlock 44.1 71.5 8.4 16.5 48.4 32.7 10.1 7.9
Stealing 129.9 166.1 25.8 39.1 44.0 33.7 10.1 8.3

Donating 53.7 76.6 15.6 18.0 31.5 22.9 7.3 5.4

Local

Small 456.8 373.6 97.5 83.8 59.6 43.2 14.6 10.6
Medium 524.8 670.7 101.1 126.5 69.1 46.2 16.5 11.2

Large 232.6 446.8 54.6 91.0 108.3 47.8 25.4 11.8
Huge 228.7 192.6 54.1 47.0 148.7 59.0 38.8 13.7
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Table 5.6: Recursive expanding tests - performance (GFLOPS and GB/s) on a GTX TITAN

Packages Items
FMA Memory FMA Mem

Small Big Small Big Small Big Small Big

Linked

Mono

410.9 407.0 88.3 92.0
PerBlock 296.1 388.6 66.1 76.0
Stealing 1044 843.7 153.5 167.2

Donating 469.9 334.7 100.6 81.3

PerProc

417.5 409.3 102.3 101.0 1.7 1.7 0.4 0.4
PerBlock 501.5 367.9 91.1 84.4 7.3 5.9 3.7 1.5
Stealing 1157 884.5 149.1 166.6 12.6 9.7 3.2 2.5

Donating 495.2 367.5 95.1 94.9 7.6 5.7 1.7 1.5

Block

Mono

78.3 74.0 18.0 16.1
PerBlock 224.4 274.0 43.8 59.7
Stealing 694.4 619.7 149.3 144.3

Donating 344.6 334.0 88.6 71.2

PerProc

93.6 83.6 20.9 19.8 5.1 5.4 1.3 1.3
PerBlock 309.4 250.0 76.5 59.8 61.2 58.7 15.3 14.5
Stealing 793.5 692.5 128.5 141.8 52.9 51.5 13.9 13.2

Donating 361.2 368.3 81.7 83.2 62.0 57.1 15.1 14.6

CAS

Mono

329.3 340.3 71.7 74.5
PerBlock 252.2 303.9 58.2 63.2
Stealing 965.6 846.4 174.2 170.7

Donating 476.1 417.7 123.0 76.2

PerProc

337.2 342.2 82.4 82.2 17.2 24.7 4.3 6.1
PerBlock 404.2 324.0 88.4 77.4 208.5 148.9 49.6 36.3
Stealing 1074 961.6 144.6 168.8 230.4 187.8 55.7 45.5

Donating 516.9 452.0 98.7 104.6 216.0 162.8 50.1 39.8

Dist

Mono

1235 1078 161.6 161.4
PerBlock 267.6 309.6 57.4 70.5
Stealing 1022 870.7 171.1 176.2

Donating 510.5 391.8 129.9 74.6

PerProc

1217 1093 182.5 170.4 748.5 334.8 142.3 79.7
PerBlock 380.1 299.0 79.9 68.0 475.8 201.6 99.1 48.6
Stealing 1223 1084 153.5 177.1 673.9 312.2 151.5 73.7

Donating 538.9 428.7 106.0 99.0 463.8 210.8 97.5 49.9

Local

Small 1112 991.2 149.7 150.2 452.3 262.1 100.5 61.9
Medium 494.5 1070 95.8 153.0 593.2 275.7 123.5 64.5

Large 221.0 387.9 50.1 79.0 773.6 306.7 139.5 72.1
Huge 221.3 169.4 51.0 40.0 814.8 350.5 147.6 80.8
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Table 5.7: Performance comparison between the best results of the different devices for the
standard recursive test and the expanding variant.

(a) Absolute performance in GFLOPS and GB/s

Packages Items
FMA Memory FMA Mem

Small Big Small Big Small Big Small Big

580 standard 854.4 702.6 125.2 120.3 569.9 280.8 117.9 74.1
expanding 841.4 685.8 125.7 120.8 467.0 208.7 103.8 54.6

680 standard 1105.0 841.9 133.7 134.4 728.2 108.2 164.0 23.4
expanding 524.8 670.7 101.1 126.5 148.7 59.0 38.8 13.7

TITAN standard 1253.7 1117.0 185.3 174.7 1035.0 418.8 170.4 94.7
expanding 1234.8 1092.6 182.5 177.1 814.8 350.5 151.5 80.8

(b) Performance compared to device peak performance

Packages Items
FMA Memory FMA Mem

Small Big Small Big Small Big Small Big

580 standard 0.50 0.41 0.65 0.63 0.33 0.16 0.61 0.39
expanding 0.49 0.40 0.65 0.63 0.27 0.12 0.54 0.28

680 standard 0.34 0.26 0.70 0.70 0.22 0.03 0.85 0.12
expanding 0.16 0.21 0.53 0.66 0.05 0.02 0.20 0.07

TITAN standard 0.27 0.24 0.64 0.61 0.22 0.09 0.59 0.33
expanding 0.26 0.23 0.63 0.61 0.17 0.07 0.53 0.28

5.2 Priority-based scheduling

The previously presented queuing strategies are concerned with efficiency and load balancing
only. They hardly offer any influence on execution order. If multiple algorithms should be
executed concurrently, or stay within a tight time frame, it can be beneficial to influence the
execution order of individual elements. The results of a certain algorithm might be needed
as soon as possible, or one wants to make sure the most important computations for a single
algorithms are computed first. To achieve these goals and fulfill the Softshell processing
model requirements, individual priorities for queue elements need to be supported.

5.2.1 Sorted Monolithic Queuing

On the GPU, the high overhead of synchronization primitives prohibits the use of complex
data structures like sorted linked lists or heaps. Thus, we try to continue using a ring
buffer-based queue and separate the insertion and removal from priority management. To
follow the requested priorities, we us a separate controller block to periodically sort the
queue according to the element priorities.
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TODO: make less symmetric 

Figure 5.5: The priority-sorted monolithic queue supports insertion and removal of elements
while the queue is iteratively sorted. In each iteration, a window is locked and sorted. For the
next iteration, the window is moved half the window width to the front, taking high-priority
elements along. If there is not enough time for sorting the front-most segment, the algorithm
is restarted at the back.

Because the queue-sorting algorithm runs periodically, the main objective of the sorting
is to move high-priority elements to the front of the queue. The order of elements at the
back is not relevant as long as these elements are not removed from the queue before
the sorting algorithm is restarted. To avoid occupying the execution of the controller
block for too long, the sorting algorithm operates on a small window at a time. Sorting
starts at the back of the queue, moving the most important elements to the front of this
window. In the next step the sorting window moves half a window to front, taking the
most important elements along. The window is moved to the front until the space between
the window and the front of the queue has shrunk so far that sorting might not complete
before the front of the queue hits the sorting window. If this situation arose, sorting would
stall the execution of the entire system, as all elements used during sorting need to be
locked. Locking elements during sorting can be achieved with a single pointer indicating
the position of the current sorting window, or individually locking the individual elements
if the Distributed Locks Queue is used. If the space between the window and the front of
the queue becomes too small, sorting restarts at the back, moving newly inserted elements
to the front. The algorithm is outlined in Figure 5.5.

To sort elements in parallel, we use bitonic sort [5], which is well-suited for a small
number of elements. To perform the sort efficiently, each priority is loaded (or computed)
by a single thread and stored along with the position of the element in the queue in shared
memory. After locally sorting the data according to the priorities, the queue elements are
rearranged within the queue according to the sorting result. Most often, the algorithm will
deal with segments already sorted in previous iterations. In this cases, we can accelerate
the computation, leaving out about one third of the bitonic sort network.
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Figure 5.6: Priority bucket queuing provides a fixed number of buckets for individual priority
ranges. Among engueue the priority of an element is evaluated and the element is inserted into
the respective queue. Elements are taken out of high-priority queues first.

To perform parallel sorting on the queue, concurrent access to successive elements must
be granted to the sorting algorithm. Additionally, enqueuing and dequeuing must not be
disabled during sorting. Thus, only CAS ordered, distributed locked, and pointed queues
can be used as underlying queues. While in case of CAS-ordered and Distributed Locks
Queues entire queue elements must be moved during sorting, only pointers must be moved
if a pointed queue is used.

The biggest advantage of constantly sorting the queue is the support for dynamically
changing priorities. Of course, sorting requires additional bandwidth and processing power
and thus might reduce the performance of the overall algorithm. If the queue grows large,
sorting might not be able to move high priority elements to the front of the queue fast
enough and fail in following the requested priorities. The major risk of this sorting strategy
is that the window is moved too close to the front of the queue and might stall the entire
system.

5.2.2 Priority-bucket Queuing

The biggest disadvantages of the sorted priority queue are its additional bandwidth and
processing power requirement and the delay of moving new elements from the back to the
front of the queue. An alternative which does not suffer from these problems is the priority
bucket queue. For this queue, we discretize the range of supported priorities and provide a
separate queue for each priority, as shown in Figure 5.6.

During enqueue, the most fitting queue is chosen to hold the new element. During
dequeue, the queues are searched according to their priority and elements are drawn from
the queue with higher priorities first. One advantage of this strategy is that newly added
high-priority elements are immediately available. The major disadvantages are that only a
discrete subset of priorities are supported and that priorities need to be static, disallowing
highly dynamic scheduling strategies. While there is no additional bandwidth or compute
power needed for sorting the queue, the number of queues is multiplied, thus, increasing
the memory requirement and the time needed for searching through the queues during
dequeue. Especially, small discretization steps are used, the time required for searching
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the queues can become rather large. If multiple threads are available during dequeue, each
thread can check the fill-level of one queue, reducing the number of successive dequeue
attempts. To efficiently implement this strategy, we use a modified version of the prefix
sum algorithm to communicate the results of the initial probing of queue fill-rates.

5.2.3 Scheduling Policies

Building on priority sorted queuing and bucket priority queuing, different scheduling
strategies can be developed. While priority sorted queuing in principle supports every
possible scheduling strategy, sorting the queue introduces a delay which does not allow
to react to priority changes immediately. In contrast, the bucket priority queue can
immediately react on incoming high-priority elements. However, priorities must not change
dynamically. Still, a wide range of scheduling strategies can be employed using bucket
priority queuing.

Fair Scheduling In a system that supports the execution of different processes, events,
or procedures, one common goal is to provide a fair scheduler, assigning an equal amount of
time to each entity. Such a strategy is only possible, if the time used by individual procedures
can be measured and recorded. In Softshell, capturing the execution statistics is an integral
part of the system. When a procedure is started, we check the per-multiprocessor timer
and record its value. After executing a procedure, we query the counter again and compute
the spent cycles. The cycle count can then be used to update multiple measurements,
including the aggregate execution time consumed by the associated event.

If priority sorted monolithic queuing is used, this aggregate can be put to use to
dynamically update the priorities of all elements in the queue, to the inverse of the time
frame used by event k:

pk =
∑

i ti
tk

, (5.1)

where pk is the priority, tk is the time used by event k, and the sum runs over all events. In
this way, events which only used little time in comparison to all other events receive a high
priority and vice versa. If the priority-sorted queue was instantaneously sorted, all elements
associated with the event that consumed the least time would always be in the front of the
queue. As soon as the processing time of this event increased above another event, the
other event was chosen for execution. However, as sorting lags behind, the scheduling also
lags behind and those events whose elements are already in the front of the queue will
temporarily receive more processor time. One interesting fact about this strategy is that
even though the queue lags behind, the sorting strategy will group elements associated
with the same event. Thus, elements of the same event will also be executed at the same
time. While this will result in a burst-like change in the execution time distribution, it
can have an overall positive effect, as elements of the same event might access similar
memory locations and thus lead to a better cache usage. If this behavior is not desirable
and elements of different events should be executed concurrently, a random jitter can be
added to equation 5.1. In this setup, the scheduler will overall follow the previously defined
priorities, but mix elements of various events.
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Sometimes a fair scheduling strategy might not be desired and one rather wants to
assign non-equal quotas to events. Such a policy can be achieved by slightly altering
equation 5.1 to incorporate a target quota qk for each event k:

pk =
∑

i ti
tk
· qk. (5.2)

in this setup, pk essentially corresponds to the ratio between target quota and the currently
used quota. If an event overuses its quota, it will get a small priority and vice versa.

While this approach of assigning dynamically changing priorities to individual queue
elements works with the priority sorted queue, bucket priority queuing would dra-
matically lag behind, as it evaluates the priorities only during enqueue. Still, a fair or
quota-guided scheduling strategy can also be implemented using bucket priority queuing,
as long as the number of different events is low. Then, it is possible to assign individual
queues to individual events. According to equation 5.1 and 5.2, equal priorities are assigned
to all elements associated with the same event. When assigning elements of each event
to individual queues, the logical consequence is to dynamically change the priority of the
queue and, in this way, of all elements in the queue. Hence, instead of relying on a fixed
order of probing queues during dequeue, we can evaluate the priority of each queue before
dequeue and draw elements from the most fitting queue.

As the evaluation of the queue priority involves accessing the accumulated time of all
events, it is reasonable to store the priority for all queues in shared memory and only
reevaluate the priorities in certain intervals. For this strategy, a jitter can also be used,
adding the jitter to the priority of the individual queues. Even with the queue priorities
stored in shared memory, a jitter can be added for each individual dequeue. If the procedure
execution time is known to be equal for all events, or if a fair scheduling among the number
of executed elements is desirable, the strategy can be even simplified. Instead of tracking
the execution time of all events, we can rely on a uniformly distributed random number to
choose the queue.

Shortest Job First Another common scheduling strategy on the CPU is shortest job
first or its preemptive counterpart shortest remaining time. The goal of this strategy
is to execute the job, or in case of Softshell, the event with the shorted execution time
first. Again building on the meta data collected by Softshell, this scheduling policy can
be implemented in a straight forward manner. The required meta data is the expected
execution time texp,k for every event k and the time tk already spent executing it. Using
the following equation, the priority for each event can be computed:

pk = 1
max(ε, texp,k − tk) , (5.3)

where ε is a small positive number, making sure that the scheduling policy can also handle
execution times estimated too short.

The main risk of shortest job first scheduling is starvation. In case short running events
are continuously created, long running events might never get any processing time. Such a
strategy could be useful if long running algorithms, like, a segmentation algorithm, are
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paired with user interaction. In this setup, the current state of the segmentation would be
visualized, and in case could be influenced.

Using priority sorted queuing pk can again be evaluated continuously for all indi-
vidual queue elements. Assuming an instantaneously sorted queue and ignoring executing
elements, the order of events and their relative priority is only changed when a new event
arises. Thus, it is sufficient to compute the priority for each event only upon the creating
of a new event and rely on precomputed information during sorting. As sorting is not
instantaneous and there are always elements being executed, the ordering of events may
change at any point in time.

Using bucket priority queuing, a similar strategy as used for fair scheduling can be
implemented. Again, every event is assigned its own queue. Whenever a new event occurs,
the priorities for all queues are reevaluated and stored in global or shared memory. Until a
new event is created, each worker draws elements from the highest priority queue only. If
the execution of the highest priority event is completed, the queue is marked for reuse by
the next incoming event, and elements from the queue with the next highest priority are
executed.

Earliest Deadline First In hard real-time scenarios, one common scheduling strategy
is earliest deadline first scheduling. Every task, or event, is associated with a deadline.
If this deadline is not met, the result of the execution is useless and system failure is to
be expected. The idea behind earliest deadline first scheduling is to focus all processing
power on the event with the earliest deadline. Ignoring the overhead of scheduling, earliest
deadline first is viable until the load reaches 100%.

To implement this strategy with priority sorted queuing, we associate a priority pk

with each event k in the following way:

pk = 1
dk − t

, (5.4)

where dk represents the deadline for event k as a fixed point in time and t is the current
time. The closer an event comes to its deadline, the higher its priority gets, reaching
infinity when the deadline is met. After the deadline the priority will be negative. Thus,
sorting will move those elements with the closest deadline to the front. If a deadline is
not met, elements will be moved to the back of the queue. Note that again, the relative
order among events will not change unless a new event arises (or a deadline is missed). An
alternative way to set up the priorities for earliest deadline first scheduling is:

pk = −dk, (5.5)

which has the same result on the scheduling, with the difference that the priority does not
change when a deadline is missed.

Using bucket priority queuing, we can again build on the idea of assigning an
individual queue to each event and draw elements for the highest priority queue. However,
if the number of different events grows large, keeping an individual queue for each event
becomes infeasible. Accepting small deviation from the perfect execution order, we can
again build on discretization and use equation 5.5. As priorities are directly associated with
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time, we discretize the time into fixed intervals and provide one queue for each interval.
Events are associated with intervals according to their deadline as given by equation 5.5. If
the deadline of different events falls in the same interval and thus into the same queue, the
individual elements of these tasks get mixed. Still, those elements with a close deadline will
be executed first, when drawing elements from those queues with the closest intervals. As
seen in equation 5.5 the priorities are not bounded and thus an infinite number of queues
would be needed. However, as the time progresses, the time interval eventually get hit.
If there are still elements in such a queue associated with a hit interval, deadlines might
be missed. If time moves past an interval, the queue is not needed any longer and can be
reused for later intervals. In this way, we can build a ring buffer of queues, always drawing
work from the queue with the closest intervals first. The number of required queues for
this strategy depends on the smallest time difference between an event’s deadline and its
occurrence. If an event with a very distant deadline arises, it must still be provided with a
queue. If this queue is still in use for an earlier deadline the entire system breaks. The
chance of this failure to happen can be decreased by either increasing the number of queues
or by enlarging the intervals. The two options form a trade-off between increased memory
consumption and the ability to discriminate between events with close deadlines.

5.2.4 Evaluation: Arbitrary Priorities

For the priority sorted and priority bucket queue, it is interesting how well these queues
can follow the priorities. To evaluate the queues ability to handle arbitrary priorities for
individual elements, we assign uniformly distributed priorities to each element. We create
an initial number I of packages and insert them into the queue. During execution, we
capture the order in which elements have been executed, writing their id to an atomically
operated array C. Each executed package enqueues another element of random priority
and then executes a fixed number of FMA operations, simulating the workload of the
procedure. In this way, there are always approximately I elements in the queue, which shall
be denoted Q. We continue this dequeue-enqueue-execute process, until a fixed number N
of elements have been executed. After all elements have been processed, we evaluate the
execution order and compute the achieved scheduling accuracy. The scheduling accuracy
S is defined as

S = 1
N
·

N∑
n=0

1
I − 1 ·

I∑
j=0

sn,j ,

sn,j =
{

1 if P (C(n)) ≥ P (Qn(j)) ∧ C(n) 6= Qn(j)
0 otherwise

,

where sn,j captures if one pair of elements (i and n), which were concurrently in the queue,
have been chosen according to their priority. For uniformly distributed priorities, the lower
bound for the scheduling accuracy is about 50%. If all elements are executed in the correct
order, the scheduling accuracy is 100%. As multiple blocks concurrently draw elements
from the queue, 100% accuracy is never reached in practice, if more than a single block is
running.
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(d) 1024 threads, 28 blocks

Figure 5.7: Scheduling accuracy on a GTX TITAN with varying procedure execution time (in
number of FMA operations for the sorted queues) and number of threads per block. Bucket
sorted queuing either uses ten or 100 buckets.

For the GTX TITAN, the scheduling accuracy achieved by the different queuing
strategies is shown in Figure 5.7. Note that there was no interesting difference to be found
between the GTX 580, GTX 680 and GTX TITAN, thus, we do not include plots for the
GTX 580 and GTX 680. The scheduling accuracy plots clearly show the characteristics
of the different priority scheduling strategies. If only a small number of threads are used
for sorting, priority sorted queuing is not able to move high priority packages to front.
Especially if there are many elements in the queue, the scheduling accuracy is equal to the
unsorted queue. With increasing number of sorting threads, the sorted queue can adapt
to the requested priorities. If the individual procedures have longer execution durations,
there is more time for sorting and thus the accuracy also increases. If there are too many
elements in the queue, high priority elements cannot be moved to the front of the queue fast
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Figure 5.8: Influence of priority scheduling on execution time.

enough and accuracy drops again. The accuracy of priority bucket queuing is independent
of the execution time of the individual procedures and mostly independent of the number of
elements in the queue. The scheduling accuracy slightly drops for an increasing number of
elements in the queue due to the discretization of priorities. After executing many elements,
the high priority buckets are nearly empty and elements are piling up in the low priority
buckets. As the priorities are discretized, the queuing strategy cannot distinguish between
the remaining elements well, and the accuracy drops. Overall, the error in scheduling
accuracy of priority bucked queuing equals approximately the discretization error. If ten
buckets are used, the scheduling accuracy is about 90%; if 100 buckets are used the accuracy
increases to 99%. Priority sorted queuing only achieves such high accuracies if 1024 threads
are used for sorting and about 10 000 elements are in the queue.

The impact of the different priority-based queuing strategies on execution time is shown
in Figure 5.8. Priority sorted queuing adds a small overhead to the execution time compared
to unsorted queuing. As the bucket queues do not execute a sorting algorithm, they can
save bandwidth and execution power, which can be used for executing the algorithm itself.
However, with an increasing number of buckets, the time spent on searching through the
buckets has a significant influence on the execution time. Especially if 100 buckets are
used, the execution time nearly doubles, if only few computation are executed by each
procedure. The optimization for a concurrent queue lookup can reduce the overhead to
some extent. With this optimization, the 10-bucket queue is the fastest priority queuing
strategy, achieving a very good scheduling accuracy of 90%.

5.2.5 Evaluation: Quota-based Scheduling

To evaluate the ability of the priority queuing strategies to distribute execution time
according to predefined time quotas, we implemented the scheduling policies as discussed
in Section 5.2.3. We create four events with one procedure each and create 1000 initial
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(b) Round-Robin 8000 FMA
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(c) Bucket-Priority 500 FMA
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(d) Bucket-Priority 8000 FMA
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(e) Priority-Sorted 500 FMA
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(f) Priority-Sorted 8000 FMA

Figure 5.9: Quota driven scheduling with target time quotas of 10%, 20%, 30%, and 40%
for event 1, 2, 3, and 4 respectively. The scheduling overhead does not increase when using
smarter scheduling policies. While the buck-priority queue can quickly adjust the scheduling to
the quota, the sorted queue takes significantly longer and oscillates around the targets. If the
execution time of the individual procedures is too low (500 FMA), the sorted queue takes very
long to get close to the requested quotas.
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work packages for each procedure. Each procedure has different execution characteristics
and after executing a randomly chosen number of FMA operations enqueues the same
work package again. We capture the time spend on each executed procedure. Using these
measurements, we estimate how well the scheduling policy is followed and how much
overhead is used by the scheduler overall. The results of these tests are shown in Figure 5.9.

As a base-line for the scheduling overhead, we use a round-robin scheduler, which
does not rely on any time measurements and simply selects procedures for one event
after the other. The scheduling overhead corresponds to the entire time not spent on
procedure execution, including searching through queues, dequeue operations and copying
work packages for execution to shared memory. The scenario with an average of 500 FMA
operations per procedure forms a challenging task. The scheduling overhead of the entire
system is about 20%. With 8000 average FMA per procedure the scheduling overhead is
about 2%.

If the quota driven scheduling either using bucket-priority queuing or priority sorted
queuing, the overhead does not measurably increase. This fact indicates that the overhead
is mostly due to dequeue operations and memory transfers.

The round robin scheduler does not know about the quotas and does not follow the
demands (dotted lines). The bucket-priority queue is able to quickly adjust to the requested
quotas, assigning exactly 10%, 20%, 30% and 40% of execution time to the individual
events. After less than one millisecond the quotas are already matched well, if the procedure
execution times are low (500 FMA). For 8000 FMA execution time, it takes approximately
7 milliseconds to converge. The priority-sorted queue takes significantly longer to converge
to the requested quotas. With 500 FMA average load, the quotas are not fully met after
30 milliseconds, but close to the requests. The sorting algorithm can in this case not fully
keep up, as there is not enough time to sort the queue. If procedures execute 8000 FMA
on average, the scheduling converges in approximately 50 milliseconds. The burst-like
execution behavior is clearly visible in this example, leading to an oscillation around the
target quotas.

5.3 Discussion

Building on the combination of different queuing strategies and priority-based queuing, a
variety of different scheduling strategies can be implemented. Distributed Locks Queues
again proved to be the most efficient global queues. While per-block queuing (with stealing
to achieve load balancing) can significantly increase performance for the slower queues,
the Distributed Locks Queue only marginally profits from the reduced contention and
thus hardly shows any performance gain on the most recent GPU architectures. Locally
buffered queues can strongly boost performance, however, they can also hurt load balancing
strategies and require well chosen queue lengths.

Per procedure queuing offers the ability to combine items and item sets for efficient
execution and allows to react on suboptimal queue lengths. Using full individual priorities,
even more advanced scheduling strategies can be implemented. With the proposed priority
sorted and bucket-priority queue, it is possible to prioritize certain procedures or events,
distribute processor time fairly, or establish real-time scheduling. Our synthetic tests
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indicate that even priority sorted queuing, which is able to handle dynamically changing
priorities, operates with little overhead compared to a priority-free execution (O4). For a
final validation of O4, we will show that dynamic priority scheduling also has a positive
impact on real-world applications (Section 8).
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6.1 Persistent Megakernels
One of the biggest challenges for a system following the Softshell specification is the ability
to efficiently and autonomously execute different granularities of parallelism. Previous
approaches of autonomous execution are all based on the persistent threads model [3].
Instead of using the available data parallelism and launching one thread per data element,

Figure 6.1: In the persistent megakernel model persistent worker blocks draw elements from a
global work queue and execute this elements. New elements can be created and added to the
queue. Different elements get mixed in the global queue and all procedures need to use the
same number of threads for execution.

93
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the persistent-threads model launches a single kernel, which exactly fills up the GPU. Each
thread operates in an infinite loop as long as there is work available through a custom
work queue. In every iteration of the loop, each thread draws an element from the work
queue and executes it.

Concurrently, researches have proposed so called megakernel approaches. In a megaker-
nel all program code is combined in one big kernel [105]. By combining persistent threads
with a megakernel approach, it is possible to build an autonomous GPU system that is able
to execute different procedures. For a straight forward combination, we simply insert a
big switch statement into the body of the endless loop. Based on an identifier supplied by
the queue element, the switch statements jumps to the procedure that should be executed.
We call this approach persistent megakernel. It is outlined in Figure 6.1). In this way,
all otherwise needed kernels can be combined into one persistent megakernel, which runs
autonomously until the entire algorithm is finished. However, all previously proposed
megakernel approaches are inflexible in terms of execution configurations and support one
of the following granularities of parallelism.

The most straight forward megakernel approaches do not allow any cooperative strate-
gies. Each element is expected to be executed by a single thread; the use of shared memory
and synchronization barriers is strictly forbidden. In this setup, the megakernel block
size can be chosen arbitrarily, and does not have any influence on the correctness of the
execution. In a naïve approach, every thread starts by drawing an element from the queue,
executes it and then draws the next element – until the queue is empty. As threads within
the same warp could possibly draw different elements, this strategy leads to severe thread
divergence [67].

Another common approach is to build on the fact that warps execute in SIMD lock
step and in this way can cooperatively work on tasks without explicit synchronization.
Megakernels based on this assumption normally force every queue element to be executed
by exactly the number of threads that make up a warp. Shared memory can be used, if
each warped is assigned its own region of shared memory. On current NVIDIA devices,
warp voting and shuffle operations can be used to communicate. In a straight forward
implementation, every warp operates independently, drawing a new element from the queue
in every loop iteration.

The third way of setting up a megakernel is to have one entire block working on a single
queue element cooperatively. In this way, shared memory and synchronization barriers can
be used. Additionally, memory access patterns and cache usage can be optimized. In a
simple implementation, one or possibly multiple threads are used to draw an element from
the queue in the beginning of each iteration. The element is then stored in shared memory,
followed by an explicit synchronization, so that all threads within the block have access to
the element. In this approach all procedures must use the same number of threads.

In terms of performance, the major problem of persistent megakernel approaches is
different procedure characteristics. If a lightweight procedure is combined with a resource-
hungry procedure the resource-hungry procedure determines the characteristics of the
megakernel. For example, if one procedure requires four times as many registers as the
other, the overall number of concurrently running blocks is four times as low, as if only the
lightweight procedure was started. This reduces the ability of the GPU to hide memory
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Figure 6.2: Kernels with queues are a simple extension to the kernel-based programming
model, offering the ability to collect items and item sets for equal procedures and issue them
for efficient execution.

latency. Thus, persistent threads approaches are preferable used for recursive algorithms,
with only one type of procedure.

In the following, we propose three different strategies to build GPU systems supporting
the execution of different granularities of parallelism, i.e., work items, x-times, and work
packages.

6.2 Kernels with Queues

The probably most straight forward approach for building a scheduling framework support-
ing all previously mentioned granularities using the traditional kernel-based programming
model is the approached outlined in Figure 6.2. Every procedure has its own queue. To
start the execution of procedures, the CPU reads back the queue fill-levels and issues
individual kernels for all procedures. For work packages, a new block is launched for each
queue element. For items, on thread is launches for each element in the queue. The block
size is chosen to maximize occupancy. The same way, multiple item sets are grouped to be
executed on the same block.

During the execution of procedures, new elements can be enqueued. After all kernels
have finished their execution, the current queue fill-rates are read back from the GPU and
new kernels are launched for each procedure. If all queue-fill rates are zero, the algorithm
is finished. Note that this approach is similar, although more general, than the approach
taken by Laine et al. [67] for path tracing.

By using multiple queues and individual kernels for each procedure not only different
granularities of parallelism can be supported, the individual kernels are also optimized for
the individual procedures and divergence is minimized. To achieve a good GPU utilization,
even if the queue fill-rates are low, all kernels can be issued into different streams and thus
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be executed concurrently. As producers and consumer are within different kernel launches,
the highly efficient collector queue can be used in this approach.

6.3 Hybrid Dynamic Parallelism with Controller

Dynamic parallelism is a big step for GPU-based algorithms as it makes GPU execution
independent of the CPU. However, as mentioned previously, dynamic parallelism by itself
does not work well with work generated for individual threads or warps. The granularity of
generated work must at least be a block. Thus, we take a similar approach as with kernels
with queues, combining dynamic parallelism with individual queues for each procedure and
issue them for parallel execution. For issuing the collected elements, we use a separate
controller kernel, which continuously polls the queue state and as soon as there are enough
elements for filling up at least one block, launches a new kernel via dynamic parallelism.
This approach is outlined in Figure 6.3.

For the controller we use a single warp. It launches new kernels into different streams
to allow for parallel execution. Using a controller is essential: The alternative would be
checking the queue fill-rate during insertion and as soon as sufficient items or item sets
are in the queue launching a new block. However, if the number of queue elements never
reaches this threshold, the algorithm would terminate without executing all elements.
Consequently, we also need a method to stop the controller, when all elements have been
processed. To achieve this goal, we use a counter of launches being in-flight, but not
executed yet. The counter is increased by the controller and reduced by each worker block
after completion. If there are no more elements in the queue and the in-flight counter is
zero, the controller can also terminate. The in-flight counter can also be used to decide
whether non-full blocks of items or item sets should be launched. If there are many launches
in flight, there is no reason to start partially empty workers. If there are hardly any workers
executing, it is reasonable to start inefficient workers to produce more work and fill up the
device.

As there is no synchronization between adding elements to queues and launching
kernels, the queues need to be safe for concurrent insertion and removal. To achieve high
performance we use a distributed locked queue for each procedure, which especially on
most modern devices is very efficient when accessed by thousands of threads concurrently.
Note, that there are multiple delays involved with launching a new kernel with dynamic
parallelism, thus a simple collector queue as used for kernels with queues often appears to
be safe for execution. This is not the case, as kernels can get launched for elements which
have not been written to the queue yet.

The advantage of this approach in comparison to kernels with queues is the independence
of the CPU and the ability to start procedures while others are still executing. The
advantage over megakernels is that the kernels are adjusted for each procedure, leading to
perfect register count and shared memory usage, which might lead to a better utilization.
The downside is that fast on-chip shared queues cannot be used, as data cannot be
transmitted via shared memory to new kernel launches.



6.4. Versatile Megakernel 97

Figure 6.3: Hybrid dynamic parallelism with controller is an adaption of kernels with queues
for dynamic parallelism. Instead of controlling the kernels launches from the CPU, a controller
block on the GPU continuously scans through the queues and launches kernels to execute the
newly added elements.

6.4 Versatile Megakernel

To support items, item sets and workpackages, we propose a versatile megakernel approach
which dynamically assigns the available threads to the incoming elements. Again, we use
a queue for each procedure to avoid thread divergence, as shown in Figure 6.4. To have
a sufficient number of threads available for execution, we synchronize all threads in the
beginning of each persistent threads loop iteration. Cooperatively, they then try to draw
equal procedures from the queues. For items, we draw as many procedures as there are
threads in the megakernel block. For item sets, we first compute how many elements can
be execute in each warp and then try to fill up all available warps. For packages, the
easiest approach would be to draw a single procedure and use the maximum number of
threads required among all packages. This strategy is inefficient, if the number of threads
needed for different procedures varies strongly. As the package with the largest number of
threads tmax determines the block size of the megakernel, the utilization of the megakernel
would reduce to

Umin = tmax − tmin

tmax
,

during the execution of the package procedure with the lowest number of threads tmin.
To increase the minimum utilization, we execute multiple package procedures concur-

rently in the same megakernel block. Similar to the execution of multiple item sets, we
draw as many package procedures from the queue as can be executed concurrently with
the available number of threads. As individual subsets of threads execute the procedure,
the default synchronization function which synchronizes an entire block cannot be used.
However, in CUDA PTX language, a variant of the synchronization primitive is available.
The PTX synchronization can use one of 16 barriers to synchronize an arbitrary number of
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Figure 6.4: Our versatile megakernel dynamically adjusts its thread setup to the incoming
elements. To fill up the worker blocks it also executes multiple packages concurrently while
providing access to individual shared memory regions and supporting individual synchronization.

warps. Within package procedures, we use the barriers 1-15 and assign them to individual
packages, as outlined in Figure 6.5. Based on the known number of threads used for
package execution, the right barrier can be computed efficiently. In the megakernel itself,
we used barrier 0 to synchronize all threads within the block.

To further increase the utilization achievable by the versatile megakernel, we choose
the block size as the smallest common multiple of all package thread counts. Due to the
block size limit, the smallest common multiple might be too high, and it might not be
possible to achieve full utilization for all procedures. We then evaluate all possible block
sizes and choose the one yielding the highest minimum utilization. In this way, we are able
to build a versatile megakernel which is able to execute input data for individual threads,
small groups of threads, and blocks of arbitrary size, while supporting synchronization
within these blocks and maximizing utilization.

In addition to the required threads, procedures might also require the use of shared
memory. To avoid excessive shared memory requirements, we dynamically assign shared
memory to the executed procedures. Besides the number of required threads, we expect
each procedure to provide its required amount of shared memory during compile time.
When deciding on the block size of the megakernel, we also consider the required shared
memory for the optimal block size and launch the megakernel with sufficient memory. In
each megakernel loop iteration, before calling the procedure, we assign individual regions
of shared memory to each package. During the next iteration, the same shared memory
region can be used for the execution of a different procedure.
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thread 0-127 barrier 1 thread 128-255 barrier 2 

thread 0-63 bar 1 thread 64-127 bar 2 thread 128-192 bar 3 thread 193-255 bar 4 

Figure 6.5: Different granularities of parallelism can are executed by our versatile megakernel.
Individual threads are used for items, item sets are grouped to fall within warp boundaries and
individual packages are supplied with individual synchronization barriers.

Another important application for shared memory is as storage for input elements.
Especially, when multiple threads work on the same input element, i.e., for work packages
and item sets, keeping a single copy of the element in shared memory might be preferable to
reduce the number of needed registers. If shared memory is also used by the procedure itself,
the decision of whether to store input elements in shared memory or in registers becomes a
tradeoff. According to our experience, especially for larger elements, using shared memory
is preferable to registers. Another application for shared memory in persistent thread
approaches is queues. As shared memory is magnitudes faster than global memory, local
queuing strategies in shared memory are attractive for persistent megakernel approaches,
which even further increases the pressure on shared memory. To reduce the shared memory
requirements, queues that offer access to the elements in the queue for longer periods can
be used and thus both, shared memory and registers can be saved.

6.5 Evaluation

To compare the performance of the different megakernel approaches, the dynamic parallelism
variants and kernels with queues, we tested all presented methods with various optimization
strategies in three different use case scenarios. The first is a simple recursive algorithm
which re-issues the same procedure with declining probability. The second algorithm is
a tree traversal algorithm, with different types of procedures, simulating an expanding
algorithm. The third is a pipeline simulation with strongly varying characteristics among
all stages, including execution time, register counts, thread count, and the use of items,
packages and item sets.

The baseline for all tests is given by the kernel with queues approach (KwQ). The
KwQ baseline implementation at first copies the input elements from the queue to shared
memory in a cooperative fashion and then executes them. KwQA does not take the
additional effort of copying data to shared memory, it leaves the elements in the queue and
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lets the procedures directly access them. As a final optimization, we launch the kernels in
different streams (KwQA+S).

For dynamic parallelism we provide similar optimizations. The most straight forward
dynamic parallelism implementation launches a new kernel whenever a new procedure
becomes available (DP ). As this strategy can only handle packages efficiently, we omit
results for itemized tests, which most often did not deliver any results, probably due to
the shear number of kernel launches. HDP stands for our hybrid dynamic parallelism
implementation as outlined in Section 6.3. It uses a distributed locked queue to collect
elements and copies the elements to shared memory before execution. Similar to KwQA,
HDPA provides the executing procedures with direct access to the elements still in the
queue. Both hybrid dynamic parallelism approaches use streams to allow for current
execution.

For the megakernel approaches, we distinguish between three major variants: the
basic persistent megakernel (PMK) supports only one granularity of parallelism at a time
and does not merge equal procedures. Our basic versatile megakernel VMKB executes
multiple items and item sets concurrently, but only one package at a time; the full versatile
megakernel (VMK), as presented in Section 6.4 additionally executes multiple packages
concurrently to increase utilization. One big advantage of persistent megakernel approaches
is the use of queues in on-chip shared memory, which we also evaluate and indicate with a
shared suffix. Again, we also switched between copying queue elements to shared memory
and accessing them directly (VMKA).

6.5.1 Overview

To provide a general overview of all investigated and mentioned scheduling approaches,
we list their most essential characteristics in Table 6.1. While the kernel-based execution
model (K), and dynamic parallelism (DP ) are well optimized for the execution of complete
kernels, they lack the ability to collect work for individual threads. With our adjustments,
we provide this missing feature and support the efficient execution of items and item sets in
the kernels with queues (KwQ) and hybrid dynamic parallelism (HDP ) implementation.
However, these approaches do not allow inter-block synchronization or fast on-chip queuing.
DP and HDP run autonomously on the GPU, but introduce the overhead of book keeping.
K and KwQ require the synchronization with the CPU for kernel launches, but do not
require any book keeping. The basic megakernel approachMK as, e.g., used in Optix [105],
only offer a small feature set and suffer many performance problems (divergence due
to the disability of combining equal procedures, no fast-on chip queuing, no individual
optimization). Persistent megakernels (PMK) are a combination of a simple megakernel
with persistent threads, which show a richer feature set, but only efficiently execute one
granularity of parallelism during one launch. Our versatile megakernel (VMK) has a full
feature set. It’s only shortcoming is the fact that the kernel launch is not optimized for
individual procedures.

One previously unmentioned ability is the influence on scheduling. While most ap-
proaches greedily execute the available work, PMK and VMK have the ability to adjust
their scheduling policy to the current need. As these two approaches only remove elements
from the queue directly before execution, they are free to reorder the queue elements or
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choose the most fitting for execution. Especially static scheduling policies are easily set up
for PMK and VMK: Prioritization of a certain procedure over another can be achieved
by drawing elements from queues of high priority procedures before searching other queues
for elements.

Table 6.1: Characteristics of the execution models used for procedure scheduling on the
GPU: Simple host-controlled kernels (K), host-controlled kernels in combination with a queu-
ing approach (KwQ), dynamic parallelism (DP ), our hybrid dynamic parallelism (HDP ),
megakernels (MK), persistent megakernels (PMK), and our versatile megakernel (VMK).

K DP MK PMK KwQ HDP VMK

autonomous execution • • • •
schedule item • • • • •

schedule x-items • • •
combine equal elements • • •

schedule packages • • • • • •
inhomogeneous package size • • • • •

thread synchronization • • • • •
inter-block synchronization • •

individual optimization • • • •
avoid book keeping • • • • •

avoid read-back to CPU • • • •
adjustable scheduling •
fast on-chip queuing • •

6.5.2 Recursive Algorithm

We use a simple single procedure recursive algorithm to start the evaluation. As recursive
algorithms are a good fit for persistent thread models, we would expect the persistent
approaches to perform well in this scenario. We provide two variants for this test: one
operating on items, the other on packages. In both cases, we start a fixed number of
initial packages / items and with a certain probability re-emitted them. For the first 20
iterations we use a re-emit probability of 100%; for every following iteration, we reduce
the probability by 5% leading to a maximum iteration count of 40. To simulate the time
required for the execution of individual items / packages, we either perform 512 fused
multiply-adds (FMADs) to simulate arithmetic load or 64 memory transactions to simulate
a memory bounded algorithm. Note that FMADs provide a high degree of instruction level
parallelism. In addition, we also vary the size of work items (16 / 64 bytes) and packages
(16 / 256 bytes).

The results of these tests are shown in Table 6.2. While simple kernel launches (K)
perform reasonable well for packages, items require queues to execute multiple elements
per block (KwQ) and achieve good performance. With this strategy we could boost
performance by a factor of 10 to 20.
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Table 6.2: Recursive test results for arithmetic (FMA) and memory accesses synthetic loads.
Performance provided in GFLOPS and GB/s; Best performance marked bold.

(a) GTX 580

Packages Items
FMA Memory FMA Mem

Small Big Small Big Small Big Small Big

K 879.9 498.3 117.5 111.1 34.6 34.3 8.5 8.5
KwQ 874.3 496.2 117.3 111.4 345.0 329.1 78.5 78.7
KwQA 878.1 690.8 117.9 114.7 342.9 343.3 79.6 81.3

KwQA+S 877.6 691.1 116.1 114.2 343.7 339.6 79.4 81.2
PMK 896.6 672.3 124.9 125.2 463.8 228.8 88.0 62.1
VMK 898.2 676.1 124.8 124.7 404.0 226.0 88.5 61.0
VMKA 884.5 670.1 126.4 122.3 419.7 300.4 99.8 82.5

VMKshared 987.3 763.0 126.4 122.8 559.6 286.3 114.6 82.4
(b) GTX 680

Packages Items
FMA Memory FMA Mem

Small Big Small Big Small Big Small Big

K 256.1 207.8 58.0 49.2 5.1 5.1 6.3 5.4
KwQ 249.2 206.3 57.6 49.9 80.4 88.8 73.8 110.8
KwQA 268.6 282.4 60.0 62.1 82.3 68.7 82.3 87.5

KwQA+S 268.8 282.0 60.0 62.2 82.2 68.5 82.0 87.6
PMK 112.8 182.4 27.1 45.9 48.0 46.7 10.7 10.6
VMK 112.0 185.3 27.3 45.9 43.0 39.7 48.8 57.7
VMKA 270.5 284.3 71.6 69.4 103.4 80.4 120.6 103.5

VMKshared 1172 940.2 154.0 141.6 147.9 79.3 131.6 99.8
(c) GTX TITAN

Packages Items
FMA Memory FMA Mem

Small Big Small Big Small Big Small Big

K 955.7 483.3 142.1 110.1 31.7 27.7 6.6 6.1
KwQ 944.2 482.4 141.3 110.6 859.6 309.6 118.8 75.8
KwQA 919.8 836.2 139.9 133.5 874.1 382.2 120.9 83.0

KwQA+S 915.8 827.0 139.0 131.8 863.3 379.3 120.2 83.0
DP 28.5 28.5 7.5 7.6

HDP 881.0 32.7 123.6 9.2 636.8 176.7 106.7 47.2
HDPA 841.6 309.9 125.0 70.6 593.3 59.9 103.5 16.7
PMK 1098 951.7 164.2 155.1 869.0 369.0 149.2 90.9
VMK 1102 951.3 158.9 150.4 1005 389.9 147.9 92.8
VMKA 1071 862.2 145.4 141.7 881.8 437.8 143.7 98.4

VMKshared 1145 1139 161.1 157.7 934.0 339.5 150.5 79.4
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As only equal items or equal packages are used in these tests, there was no difference
between VMKB and VMK and we thus only present the results for VMK. Due to
the same reasons, PMK also achieved a very similar performance, with the exception
of the item scenario with memory load on the GTX 680, where PMK clearly lagged
behind. The difference between PMK and VMK for this simple scenario is that PMK
stores a procedure identifier for each element in the queue, to distinguish between different
procedures. VMK has one queue for each procedure and thus does not need an additional
identifier. On the GTX 680 this small difference made a big difference if the memory bus
was under a lot of pressure by the synthetic memory load.

On the GTX 580 the QwKA approach achieved the best performance for the big item
scenario with FMADs load. In all other tests, the megakernel approaches achieved higher
performances than the kernel based approaches, leading to speedups of up to 44%. VMK
achieved the best performance in all but one remaining scenarios. In this scenario, VMK
was only 0.4% behind PMK. Among the VMK approaches, keeping queues in on-chip
shared memory either achieved the best performance or was only slightly behind the best
other megakernel approach. There was overall a small performance boost if big data was
not copied to shared memory, but rather executed with direct pointers to global memory.
If the data had been used more than once during procedure execution, the situation might
have been reversed.

On the GTX 680 we see a different picture. KwQ again achieved very good performance
for big items. In all other cases the shared memory queues within a VMK clearly
outperformed all other approaches. For the package FMAD cases VMKshared was about
five times faster than all other approaches. For the remaining cases VMKshared was two
to three times faster than the best kernel based approaches and reasonably faster than the
other megakernel approaches.

On the GTX TITAN, again, the situation is different. All approaches are closer in
terms of performance. Neither kernel-based approaches nor dynamic parallelism based
approaches achieved the best performance in any tested scenario. DP is much slower than
its host controlled counterpart K (up to 40 times) and did not finish for items at all. With
the HDP we could reduce the performance gap to a factor of 1.1 − 5 times. However,
KwQ always outperformed HDP In all cases, the megakernel approaches achieved the best
performance. For package data, storing it in shared memory queues performed best. Small
item data is handled efficiently, if it is either copied to shared memory before execution or
directly queued in shared memory. For bigger data, directly accessing the data from global
memory during procedure execution performed best, as it reduces the pressure on shared
memory and in case increases occupancy. The overall gain of the megakernel approaches
over kernel based approaches was between 14% and 36% and about 20% on average.

In terms of maximum performance, the GTX 580 achieved 0.9TFLOPS / 126GB/s, the
GTX 680 achieved 1.2TFLOPS / 154GB/s, an the GTX TITAN achieved 1.1TFLOPS /
161GB/s, which is 62% / 65%, 72% / 65%, and 47%, 56% of peak performance respectively.
On the GTX 580 and 680 this high value is only possible due to queues in shared memory.
On the GTX TITAN the queues in shared memory do not have such a severe impact on
performance. However, all megakernel based approaches significantly improved performance
over the other techniques.
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6.5.3 Tree

The tree example is similar to the recursive use case, with the differences, that the number
of generated elements are between 0 and 2, and that four different node types (which need
to be executed with different procedures) are present in the tree. In the simplest version of
the tree example (a fully filled binary tree) the algorithm starts with a single item, the root
node. During the execution of every node, work items for two new nodes are generated
until the maximum depth of the tree is reached. We model the probability of encountering
a certain node based on the type of its parent. In the Even setup, every node type has
the same probability, independent of the parent. In the Stay setup, the probability of
encountering children which are of a different type is low (4%) and thus tree branches will
enqueue items with the same queues all the time. In the Change setup, the probability
of encountering a child of the same type is low (4%), which leads to alternating elements
and non homogeneous enqueue behavior. We set the synthetic load for each node to 120
FMADs, which are computed using 24 registers. In the fully filled tree scenario, we expand
the tree from depth 0 to depth 24 with 16.7 million tree nodes. Besides the fully filled
tree, we also test a sparse forest. We start the algorithm with 65536 evenly distributed
root nodes, each generating an individual tree. We choose the probability of encountering
children in such a way that the number of nodes overall remains approximately constant.

Figure 6.6 shows the average number of executed tree nodes per second for a traversal
from a single root node to a certain tree depth for a full filled tree. The stay scenario
should be the easier scenario for the GPU, as threads are likely to enqueue the same node
types, while in the even scenario the probability for each node is equal. As expected, on
the GTX 580 and TITAN the stay achieved a higher performance than even. However, on
the GTX 680 the situation is reversed and the overall performance for this test case is far
below the GTX 580 and TITAN. On all devices and in all scenarios, the VMK variants
were either achieving the highest performances or were only marginally behind the best
technique.

There are a few general trends to be found in all tests: First, K with no method of
collecting items cannot achieve good performance. Second, KwQ in all variants performed
equally well. KwQ is having a harder time for lower tree depths, but when the tree gets
large there is lots of parallelism available and KwQ can at some point outperform VMK
with global queuing. When the tree is large, the read-back and kernel launch overhead is
getting very small in comparison to the kernel execution time and thus the kernel based
model is a better fit. Third, HDP slightly outperforms KwQ for lower levels; for larger
trees KwQ slowly outperforms HDP . Forth, PMK performs modestly. As the four
different node types introduce divergence, it most often is four times slower than its VMK
counterpart, which avoids divergence completely. In the stay scenario PMK works a bit
better as there is less divergence, as all created child nodes are equal. Fifth, VMK with
global queues show a very good performance for low tree depth, as load balancing between
worker blocks happens even when there are only few procedures in the system. For higher
tree depths, queues in shared memory can significantly boost performance (especially on
the GTX 580 and 680) and outperform techniques that go through global memory by a
factor of up to two.
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(d) GTX 680 Even
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(f) GTX TITAN Even

Figure 6.6: Fully filled tree on a GTX 580, 680, and TITAN. Performance given in MNodes
per second.
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(a) GTX 580 Sparse Stay
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(b) GTX 580 Sparse Change
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(c) GTX 680 Sparse Stay
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(d) GTX 680 Sparse Change
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(e) GTX TITAN Sparse Stay
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(f) GTX TITAN Sparse Change

Figure 6.7: Sparse forest on a GTX 580, 680 and TITAN - MNodes/s.
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Figure 6.7 shows the maximum number of executed tree nodes per second for the sparse
forest scenarios. We see a similar picture. K does not work well. KwQ performs reason-
able well, but is clearly outperformed by VMK. HDP in this case clearly outperforms
KwQ. PMK again falls short of VMK due to divergence. VMK outperforms the other
approaches using queues in shared memory by up to 300%. Although 60 thousand nodes
form a reasonable load for a GPU, the overhead of reading data back to the CPU seems to
be too high for 500 traversal steps, i.e. 2000 kernel launches, thus HDP in this case can
also outperform KwQ clearly. For VMK, queuing in shared memory works better than
global queuing on all devices. Interestingly, on the GTX 580 the dynamic shared queues,
perform better than the fixed size shared queues. Although the dynamic queues introduce
a serious management overhead, they offer the ability to dynamically assign the available
shared memory to different procedures. While this approach also works well on the GTX
680 (only small overhead in comparison to VMKloc, it does not generate in performance
gain over the global queues on the GTX TITAN. Overall the performance on the GTX
TITAN is more than five times higher than on the GTX 580 and 680. The 680 performs
significantly worse than the 580. We did not find a significant difference between the stay
and change scenario for this setup.

6.5.4 Pipeline

The most complex synthetic test is the pipeline test. This test evaluates the systems ability
to cope with varying attributes of the individual procedures. Overall, we generate 32
different pipeline scenarios, which are based on the combination of varying the following
attributes:

• number of stages: 4 vs 7

• data size: 16 vs 78 bytes

• type of input data: packages only vs item sets and packages

• thread count: equal vs varying (256 for packages and 1 for items vs 64-512 and 1-16)

• register count: equal vs varying (32 register vs 8-63 register)

In addition, we varied the synthetic load of each stage between 20 and 1800 FMADs.
We also vary the probability of generating an element for the next stage adjusted to
the number of threads used in each procedure. Overall we tried to build pipelines with
expanding behavior, overall generating work for more threads than were used in the current
stage. We started each pipeline with 3000 initial packages. To keep queue lengths as short
as possible we preferably draw elements from the back of the pipeline. As QwK and HDP
do not offer the ability to prioritize different procedures, there is no control over queue
lengths, which leads to maximum fill rates of 2 million items. The megakernel approaches
(especially with local queuing) require considerable less queues space, with a maximum fill
rate of 100 thousand elements. PMK are not included in the test as they are not able to
mix different procedure granularities and could thus only execute two pipelines.

A subset of all execution times is shown in Table 6.3 and the entire results can be
found in Appendix D. The tables include an unscheduled version, which only executes
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Table 6.3: Relative execution time for the 7 stage pipeline test with FMADs as artificial
workload and small data on a GTX 580, 680 and TITAN.
et = equal threads; vt = varying threads, er = equal registers, vr = varying registers

(a) GTX 580

Packages Mixed
et vt et vt

er vr er vr er vr er vr

Unscheduled 0.83 0.83 0.84 0.84 0.02 0.03 0.05 0.04

K 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

KwQ 1.00 1.01 0.99 0.99 0.40 0.48 0.50 0.66
KwQA 0.96 0.99 1.02 1.07 0.33 0.44 0.65 0.79
KwQA+S 1.01 1.00 1.00 1.03 0.36 0.44 0.66 0.80

VMK B 1.03 1.06 1.95 2.18 0.31 0.40 0.87 0.95
VMK B,shared 0.89 0.84 1.14 1.48 0.22 0.25 0.56 0.51
VMK 1.04 1.10 1.29 1.34 0.31 0.38 0.76 0.78
VMK shared 0.90 0.85 1.07 0.93 0.20 0.26 0.50 0.59
VMK shared,out 0.89 0.85 1.08 0.91 0.19 0.24 0.64 0.66
VMK shared,dyn 1.14 1.18 1.54 1.57 0.35 0.45 0.94 1.24

(b) GTX 680

Packages Mixed
et vt et vt

er vr er vr er vr er vr

Unscheduled 0.34 0.27 0.26 0.24 0.01 0.01 0.01 0.01

K 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

KwQ 1.07 1.04 0.71 0.73 1.16 0.94 0.90 0.79
KwQA 1.03 1.03 0.72 0.71 1.33 0.83 0.86 0.70
KwQA+S 1.03 1.02 0.72 0.71 1.19 0.84 0.90 0.70

VMK B 2.48 2.10 2.07 2.17 1.07 0.69 1.01 0.84
VMK B,shared 0.34 0.29 0.47 0.47 0.46 0.39 0.65 0.50
VMK 2.18 2.22 1.12 1.15 1.05 0.71 0.86 0.82
VMK shared 0.35 0.29 0.28 0.26 0.51 0.37 0.62 0.54
VMK shared,out 0.36 0.32 0.29 0.26 0.44 0.39 0.74 0.54
VMK shared,dyn 0.47 0.49 0.81 0.83 0.62 0.45 1.00 0.52
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Table 6.3: Relative execution time for the 7 stage pipeline test with FMADs as artificial
workload and small data on a GTX 580, 680 and TITAN.
et = equal threads; vt = varying threads, er = equal registers, vr = varying registers

(c) GTX TITAN

Packages Mixed
et vt et vt

er vr er vr er vr er vr

Unscheduled 0.86 0.76 0.78 0.81 0.04 0.04 0.05 0.05

K 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

KwQ 0.97 1.00 0.99 0.99 0.37 0.39 0.63 0.75
KwQA 0.96 0.99 0.93 0.99 0.26 0.38 0.56 0.77
KwQA+S 0.94 0.98 0.92 0.99 0.28 0.39 0.55 0.78

DP 19.09 20.57 18.26 22.79 n.a. n.a. n.a. n.a.

HDP 0.91 0.88 0.95 1.00 0.48 0.37 n.a. n.a.
HDP A 0.90 0.88 0.97 1.01 0.54 0.43 n.a. n.a.

VMK B 1.00 0.99 1.86 2.13 0.41 0.44 1.00 0.97
VMK B,shared 0.91 0.78 1.38 1.49 0.28 0.34 0.74 0.79
VMK 1.00 0.98 1.06 1.16 0.37 0.44 0.98 0.99
VMK shared 0.91 0.78 0.81 0.84 0.29 0.35 0.71 0.71
VMK shared,out 0.91 0.79 0.82 0.83 0.27 0.31 0.70 0.84
VMK shared,dyn 1.01 0.96 1.17 1.31 0.43 0.51 1.16 1.36

the synthetic load, as if there was no scheduling and memory movement required. The
performance of K and KwQ is in general good in this example. Because the pipeline
is strictly feed-forward, there are only six control switches required between CPU and
GPU and there is only one kernel launched in each iteration. Thus, there is only a small
overhead associated with kernel launches. Additionally, it explains why KwQA+S does
not show any benefit over KwQA. As expected, K perform well for package only data
on all devices. For mixed granularity pipelines, KwQ outperformed K due to its ability
to schedule multiple items and item sets together. KwQ (and its variants) achieved the
best overall performance in 3 out of 24 cases. On the GTX TITAN HDPA achieved the
best performance for packages with equal threads and equal registers. HDP in general
was on par or even slightly faster than KwQ. The access variants A in general increased
performance slightly over copying the data to shared memory. DP performed very badly
in comparison to K, resulting in slowdowns of about 20 times.

The best overall performance was again achieved by VMK with its variants, taking the
lead in 20 of 24 cases. The variants scoring the highest score were always based on queues
in share memory. The global variants could hardly increase performance compared to KwQ
and HDP on any device. For varying thread counts, especially in the package scenario,
the VMKB which does not offer the ability to execute multiple packages concurrently
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dropped by a factor of 1.6 on average (580: 1.7, 680: 1.2, TITAN: 1.9) The full VMK
approaches did not suffer from this loss and, on average, reduced the execution time or
kept it on the same level compared to the base line (580: 1.2, 680: 0.7, TITAN: 0.9) In the
mixed scenario the item procedures introduce the biggest overhead and there are only three
package procedures with thread count 128, 256, and 384. Thus, there is less opportunity for
performance gain. Still, the when comparing the global queuing approaches VMKB and
VMK an average gain of 10 to 15% is visible. In two cases, the approaches using shared
memory queuing, show the opposite behavior. If no packages are executed concurrently,
fewer new procedures are generated. Thus, the shared queues are less likely to run out of
space and the procedures stored in shared memory can be executed before new procedures
are being generated.

In this test, we also compared different strategies for assigning queue space to procedures.
In 15 of 24 cases, assigning the same amount of shared memory to all procedures worked
best. In 9 cases, assigning more space to the latter stages of the pipeline increased the
performance. On average, using equal amount of shared memory worked 1 to 2% better
than having more space for the final stages available. Dynamically assigning the queue
space to the procedures as needed did not achieve the best performance in any case and on
average was between 20 and 30% slower.

Besides the reported difference of VMKB and VMK, varying the thread count only
slightly reduced the performance of the megakernel approaches (relative to KwQA). On all
devices the varied register count did not have a serve influence on the performance of the
megakernel approaches. Surprisingly, the relative performance was even higher for varying
registers than for equal registers in some cases.

Overall, we recorded a small scheduling overhead for package data. The unscheduled
baseline version is only a few percent faster than the fastest scheduled version. For the
mixed scenario, which generates millions of intermediate items, the overhead of memory
movement is more severe. On the GTX 580 and TITAN the overhead reduces performance
by about 8 to 10 times. This indicates that memory access and scheduling makes up for the
majority of execution time if one needs to schedule individual work for millions of threads
with little workload. On the GTX 680 the performance is even reduced by 30 to 50 times,
again indicating that the GTX 680 is mostly tuned for pure floating point performance.

6.6 Discussion

Our experiments have shown that software-based scheduling of diverse tasks is feasible
on the GPU. The traditional host-controlled kernels and the recently proposed dynamic
parallelism do not provide the capabilities to efficiently schedule tasks with arbitrary
granularities of parallelism. Our proposed variants which use efficient queuing strategies
not only provide these functionalities, but also outperform the traditional interfaces in
scenarios that fit the kernel-based model well.

Our extension for the kernel-based execution model consists of individual queues for
each procedure (KwQ) and uses individual kernel launches for all queues. This approach
provides good performance if the number of required kernel launches is low in comparison
to the number of elements in the queue. While dynamic parallelism used in a straight
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forward manner performed poorly in all scenarios, our hybrid dynamic parallelism (HDP )
implementation showed a competitive performance. In the tree and pipeline test, HDP
was able to outperform the KwQ approach. For the recursive test case, especially when
there was a severe load on the memory bus, HDP fell clearly behind. When optimizations
are applied to all our approaches the difference between KwQ, and HDP , VMK is most
often below 25% on the newest GPU architectures.

Especially our versatile megakernel (VMK) showed a very promising performance.
While previous megakernel approaches did not support the execution of different granulari-
ties of parallelism and had problems with divergence, we could solve these shortcomings
with our VMK. Using different queues for individual procedures solves the problem of
divergence. Building on inline PTX code to provide multiple synchronization barriers, we
are able to dynamically assign threads to procedures and, in this way, support the execution
of arbitrary thread groups that can work cooperatively. By choosing the megakernel block
size based on the threads required by the individual procedures, we could significantly
boost performance. In the simple recursive scenario, VMK achieved the best performance
in 19 of 24 test cases. When traversing a fully filled binary tree, VMK variants dominated
the performance in 90% of all cases. In the sparse forest scenario, VMK always achieved
the best performance. When executing our seven stage pipeline with strongly diverse
procedure characteristics, VMK was the fastest approach in 20 of 24 cases.

The biggest advantage of VMK is its ability to use queues in on-chip shared memory,
while all other approaches need to go through global memory. Using shared memory can
boost performance of up to 100% on the GTX 580 and GTX TITAN and up to 500%
on the GTX 680. The downside of megakernel approaches is the potential performance
loss introduced by compiling all procedures into a single kernel, reducing the achievable
occupancy for diverse procedures. Interestingly, varying thread counts did not have a
strong impact on performance. In some cases VMK even performed better for varying
register counts.

When comparing different devices, we saw that there is only a small difference between
the best performances of the three generations of graphics cards for the recursive test.
While the GTX 580 and 680 achieve between 60 and 70% of peek performance, the GTX
TITAN only achieves about 50%. Note that the GTX 680 strongly benefits from queuing in
shared memory. In the tree and forest examples the GTX TITAN shows its strengths with
up to 5-10 times more performance than the other devices. The GTX 680 falls short of the
GTX 580, being up to 5 times slower than the 580. In the pipeline scenario the devices
were again closer in terms of performance for the package only scenario, whereas the GT
580 was the slowest device, followed by the GTX 680 and the GTX TITAN. In the mixed
scenario, the GTX 680 performed worse than the 580, being three times slower. Overall the
scheduling and memory transaction overhead for the pipeline scenario was low for package
data, but high for the mixed scenario. The comparison between the different graphics cards
shows that the GTX 680 was mainly designed for good floating point performance but has
problems, when there are many memory accesses, logics, or atomic operations involved.
The GTX TITAN achieves the highest performance overall, but it seems to be harder to
get closer to peak performance, even if there is sufficient instruction level parallelism.

Overall, we clearly recommend VMK for task scheduling on the GPU. It not only
provides the best performance, but VMK is the most flexible approach in terms of
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scheduling policies. Based on the way the queues are organized and from which queue data
is drawn first, the overall scheduling can be influenced. Different tasks can be prioritized
in different situation, to take influence on queue fill-rates or execute more important tasks
first. Based on the already presented results, we see a strong indication that our VMK
approach is able to execute dynamic algorithms with high performance on current graphics
hardware (O1). Still, we show various real-world examples in the final part of the thesis
confirming this claim.

The performance of our proposed methods KwQ, HDP , and VMK indicates that an
efficient scheduling of tasks with varying granularities of parallelism is possible on graphics
processors (O2). Our approaches not only outperform the basic dynamic parallelism
implementation by at least one magnitude, they operate efficiently in cases where dynamic
parallelism fails. To fully validate O2, we will show that a real-time Reyes pipeline with
different degrees of parallelism and high shared memory requirements can be build with
our approach (Section 8).
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Dynamic memory allocation is an indispensable feature of modern operating systems and
virtually every computer program depends on this feature to allow for a dynamic response
to varying inputs. Consequently, almost every general purpose programming language
provides some mechanism to create new objects at runtime. Efficient dynamic memory
allocation became more demanding with the advent of multi-core CPUs. Since system
memory is a shared resource, conflicts during memory allocation are an issue. To avoid
conflicts, synchronization among multiple cores is required. However, this synchronization
requirement defines a serious bottleneck for many applications [98]. For GPU architectures,
dynamic memory allocation is an even greater challenge. While a current consumer CPU
features between four to eight cores, current graphics cards are shipped with thousands
of cores. In addition to the much larger number of cores competing for memory, the
architecture’s high latency for accessing global memory complicates the development of an
efficient dynamic memory allocator.

Since two generations of GPU architectures, the problem of high latency for global
memory access has been partially alleviated due to the introduction of a cache [100]. For
this architecture, NVIDIA’s CUDA model supports dynamic memory allocation in device
code [103]. Dynamic memory allocation for the stream programming model opens up
completely new possibilities for GPU programming.

Examples for an efficient use of this new feature range from image detectors, which store
local descriptors of varying size, over parallel IP-packet stream analysis, which dynamically
generates alerts, to weather simulations, for which pressure area descriptors are dynamically
created. Previously, organizing vast numbers of differently sized objects at runtime was
only possible using parallel reduction summations (scan) [37]. The scan-method requires
multiple kernel launches: One initial kernel launch to analyze the input data and write
the number of required bytes for each data element into global memory, followed by the
scan kernels. Subsequently, a final kernel launch is required to write the resulting data.

113
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Compared to this procedure, a single call of a dynamic memory allocator function is very
likely to be more efficient in terms of programming effort and execution time.

Although NVIDIA makes their dynamic memory allocator available for use within
the CUDA toolkit, its internals remain undisclosed. Furthermore, our tests have revealed
that their current implementation is unreliable under heavy load. Literature on dynamic
memory allocation on massively parallel architectures is rare. The only published and
especially for the use on the GPU optimized dynamic memory allocator is XMalloc [48].
Therefore, we see an urgent need for further research in this area. With this work, we want
to form a solid base for the design of dynamic memory allocation on massively parallel
architectures such as the GPU. To achieve this goal, we design and implement ScatterAlloc
and give detailed information about its inner structure, performance and implementation.

7.1 Design Goals

The general design goals for dynamic memory allocators are architecture-independent:
correctness, speed and little memory consumption. To design an allocator for the
GPU, we want to build on the know-how from the field of multi-core CPU memory
allocation. In the following, we detail on the special requirements and distinct features
that have to be considered for the GPU.

7.1.1 Correctness

A fundamental requirement for every deterministic algorithm is of course its correctness.
A primary issue concerning the design of a GPU allocator is that it is virtually impossible
to make any assumptions about scheduling on the GPU. This means that mostly lock-free
algorithms have to be used to avoid deadlocks. Consequently, many well known CPU
memory allocation methods drop out at this stage.

7.1.2 Speed

Keeping the number of clock cycles spent with allocation and deallocation of memory low,
must be a major goal of allocators for the GPU. However, not only the time spent on the
allocation and deallocation is important, but also how efficiently the allocated memory can
be accessed.

Memory-access performance One important property of current the GPU architec-
tures is the fact that memory access can be extremely costly in relation to computations
[20, 78]. On an Intel Core i7, data access takes about 4, 10, and 38 cycles, for data in L1,
L2, and L3 cache respectively and about 100 cycles for accessing data in main memory [94].
On the Fermi architecture, access times are, according to our own measurements, about 18,
250, and 1000 cycles for data in L1 cache, L2 cache, and global shared memory respectively.
Additionally the cache sizes on the GPU are about one tenth of the cache sizes on a CPU,
which becomes even more severe considering that the L2 cache on a GPU has to serve
hundreds of cores and thousands of threads. Therefore, ScatterAlloc keeps the number of
data accesses low, while it can spend more time on complex computations.
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Scalability A lock-free allocator usually relies on atomic operations to handle concurrent
allocations of multiple threads. The time it takes for such an operation to complete is
proportional to the number of threads accessing the same data word in parallel. Although
it is believed that a linear performance decrease is a good scalability for CPU-based
allocators [8], it cannot be acceptable for GPU execution, where thousands of threads
execute concurrently. Our measurements show that, for multiple threads atomically
accessing the same data word, the average access time increases with at least 100 cycles
per thread. Consequently, atomic operations on the same data word are avoided whenever
possible by ScatterAlloc. Ultimately, a perfect allocator should be unaffected by the number
of threads concurrently allocating data and thus provide allocation and deallocation in
constant time.

Diverging execution paths As the GPU is based on the SIMD model, warps can
only execute in a coherent manner. This means, that if multiple threads within a warp
concurrently allocate memory, the best performance will be reached, if they all execute the
same code. Diverging branches are synchronized by the warp scheduler, forcing all threads
to wait for the whole warp to finish, which can strongly reduce performance.

False sharing Another important issue with CPU-based allocators is false sharing. False
sharing means that data accessed by different processors should not be placed in the same
cache line if the data are not intended to be shared. Consequently, data accessed by one
processor should be strung together to speed up the data access. Since the introduction
of the Fermi architecture, the GPU also caches global memory accesses, making false
sharing an issue for efficient GPU programming. Because all threads executing on the same
multiprocessor share the same cache, false sharing occurs between different multiprocessors
only, while cache line sharing between different threads on the same multiprocessor can be
intended.

Coalesced access Traditionally, data access on the GPU could only be performed
efficiently if all threads of a block accessed the data words linearly according to their
thread index, with no gaps in between, hence, in a coalesced manner. Although this is not
necessary for current graphics cards anymore, data words accessed by adjacent threads can
be read with a single load instruction, if they are placed close to each other in memory. If
threads of the same block allocate data at the same point in time, it is likely that these data
words will also be read or written concurrently. Thus, ScatterAlloc considers it important
that data words allocated by threads of the same block at the same time are close to each
other in memory.

7.1.3 Memory consumption

The lower the overall memory consumption of an allocator, the less data has to be accessed,
the more data fits into the cache, and the more memory is free to be used by the system.
Thus, a major design goal of dynamic memory allocators is to reduce the overall memory
consumption. This includes memory fragmentation, which is a measure of the unusable
regions between occupied memory, and furthermore the overhead of the data structures
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that are used to keep track of free and used regions. To be able to formalize our measures
of fragmentation, we build on the assumption that memory is split up into regions. We
define the set of all regions R as well as the functions alloc : R → N and size : R → N.
alloc(r) maps a region to the size of the memory request it has been allocated for, or 0 if
it is free. size(r) gives the actual size of a region. Based on these functions, we can define
the set of all allocated regions A = {r ∈ R|alloc(r) 6= 0} and the set of all free regions
F = R \A.

Internal fragmentation Internal fragmentation occurs, if the size of the allocated
memory region size(r) is larger than the requested size alloc(r). This may be necessary to
meet alignment requirements of the processor, e.g., for the Fermi architecture objects must
be 16 byte aligned, or due to the internal structures of the allocator. Internal fragmentation
may also vary with the allocation pattern of the application. We compute the internal
fragmentation Finternal as the average of relative wasted space among all allocated memory
regions:

Finternal = 1
|A|
·
∑
r∈A

size(r)− alloc(r)
size(r) . (7.1)

External fragmentation External fragmentation occurs, if the available free memory
is divided into small chunks, which might be too small for direct use by the application.
The amount of external fragmentation is strongly dominated by the allocator’s strategy for
finding free memory regions. Its value Fexternal is commonly defined as the ratio of the
largest free memory region to overall free memory:

Fexternal = 1− maxf∈F size(f)∑
r∈F size(r)

(7.2)

Consequently, an external fragmentation of 0 means that all available memory can be
allocated in one big chunk.

Blowup Blowup occurs if the allocator’s memory requirements disproportionally increase
over time compared to the amount of allocated memory. The reason for this behavior can
only be found by analyzing the internal structure of an allocator. In most cases, blowup is
caused by the disability to reallocate previously freed memory. Blowup can dramatically
increase memory usage for certain scenarios and is therefore considered in the design of
ScatterAlloc.

7.2 A Parallel List-Based Allocator

To obtain a baseline for the comparison with ScatterAlloc, we have implemented a tradi-
tional allocation scheme based on a first-fit algorithm on the GPU. Memory is organized
in consecutive segments that each keep pointers to the previous and next segment. We
refer to this structure as the segment-list. A memory segment can either be allocated or
free. When a request is made for a new block of memory, the list of segments is traversed
until a free segment of suitable size is found. If the size of the first fitting segment is larger
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than requested, the segment is split such that one segment then is of the appropriate size
for the memory request and the other one contains the remaining memory. The first of the
two parts is subsequently marked as allocated and returned to the caller.

To speed up the search process, we maintain a second list of free segments so that only
those are considered during the search for a free block of memory. When a segment is
allocated, it is removed from this free-list and if a split yields a free segment, this segment
is inserted back into the list. To counter external fragmentation, the allocator attempts to
merge segments back together with their immediate successor within the segment-list on
deallocation.

For CPU allocators it is common to organize multiple heaps of smaller size to reduce
allocation time. This is well demonstrated in numerous previous attempts [8, 23, 71, 91,
121, 123]. In an approach similar to skiplists [112], we introduce a partial ordering on the
elements of the free-list, organizing it into sub-lists that contain blocks of certain sizes.
A number of what we call bins each store entry points to these sublists. The way these
bins are created and managed allows the implementation of various allocation strategies,
including strategies similar to the use of multiple smaller heaps.

To build these data structures, management information has to be associated with
every memory block. This information consists of a bit-field defining the current state of
the block, as well as pointers to the previous and next blocks in both, the segment-list and
the free-list. We store this information right before the actual memory block. Dealing with
a highly parallel architecture, we want to support concurrent insertion and deletion of list
elements. Thus, access to these pointers needs to be synchronized to avoid corruption.

Synchronization is also needed during the allocation process because multiple threads
might try to allocate the same block of memory. If a thread identifies a suitable block of
memory, it atomically tries to set the allocated flag. If this is successful, it is free to use
the entire block or split it into two blocks.

With this functionality at hand, we have first created an allocator similar to dlmalloc
[71] by inserting free memory blocks into the sublists according to their sizes. This enables
a thread to directly jump to a first element that potentially satisfies its demands, instead of
having to walk the entire free-list. As the individual sublists remain connected as a whole,
a thread that has not been able to secure a block from its initial sublist will automatically
run over to the next bin, splitting up a bigger block of memory.

For a second implementation we create a fixed number of bins and assign threads
according to their execution locality to these bins. This creates a behavior similar to the
Hoard system [8] and the ‘Scalable lock-free dynamic memory allocation’-scheme [91]. We
can assign all threads running on a single multi processor to the same bin, which has a
positive impact on the number of cache hits and reduces congestion.

However, all these methods are not optimal for use on highly parallel architectures like
the GPU, as mentioned previously and confirmed by our results in Section 7.5. In the next
section we therefore propose the novel design of ScatterAlloc that overcomes the inherent
problems of the methods presented here.
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Figure 7.1: Overview of the data structures used in the ScatterAlloc : Memory is organized in
super blocks which are collected in a list. Each super block holds a fixed number of equally
sized pages, information about the usage of each page and meta information collected for
regions of pages. The usage table captures the size according to which the page is split into
equally sized chunks, the counter of used chunks and a bit field to identify the used chunks.
To allow for splitting the page into more chunks than actually can be captured by the bit field
in the usage table, an additional hierarchy of bits is placed on the beginning of the page.

7.3 ScatterAlloc

Traditional allocation strategies are too slow to be used where a large number of threads
concurrently allocate memory. In an environment where hundreds of threads try to seize
the first block of memory that fits their needs concurrently, collisions quickly become the
major bottleneck of an allocator. To avoid these collisions, ScatterAlloc scatters allocation
requests across fixed sized memory regions, trading fragmentation for allocation speed.

ScatterAlloc organizes its memory by splitting it into fixed sized pages. To keep track of
the free memory within a page, we employ a page usage table. Pages are grouped together
in super blocks, which form the biggest unit of memory for ScatterAlloc. To speed-up the
search for allocable memory, we store meta data about the fill-level of different regions
within each super block. This meta data is designed to be frequently read but rarely
written in order to reduce congestion. For an overview of the data structures and their
relations, see Figure 7.1.



7.3. ScatterAlloc 119

7.3.1 Super blocks

On current NVIDIA CUDA devices, a fixed size memory pool is used to serve dynamic
memory requests. The pool’s size has to be set before a module is loaded into the context.
Thus, it would currently be sufficient to design an allocator which can manage a memory
region of a fixed size. As this behavior might change in future, we design our allocator in
such a way that it can either be used on one big region of memory, or manage a variable
number of memory blocks which can be found at arbitrary locations in memory. This
enables ScatterAlloc to be applicable on future architectures, which might be able to
increase the size of the heap during run-time. It is also possible to dynamically add memory
to the pool manged by ScatterAlloc on current architectures. In case the allocator is almost
out of memory, a host side alloc between two kernel launches can be used to allocate a new
region of memory which is then passed to the allocator before the next kernel launch is
executed. According to the common terms used for CPU allocators, we call these coherent
regions of memory assigned to the allocator super blocks. We require all super blocks to
be of equal size. If the allocator is configured to manage a single large region of memory,
we split it up into multiple super blocks. To allow super blocks to be scattered in memory,
we organize them in a singly linked list.

7.3.2 Pages

To facilitate parallel, collision-free memory allocation, we split every super block into fixed
sized pages. This way, there is no need to search through lists when allocating memory
because every thread can calculate the page offset from the size and address of the super
block. To serve memory requests, pages are split into equally sized chunks. The chunksize
on a page is set during the first access to the page. Once this split has occurred, it remains
fixed until all chunks allocated on the page have been freed again. This strategy clearly
favors the allocation of small and similarly sized chunks of memory. But this is actually
the behavior we expect from a program using dynamic memory allocation in a highly
parallel fashion: there will be multiple threads dealing with similar inputs, requesting
similar amounts of memory. At the same time, these memory requests have to be small in
relation to the entire available memory, because otherwise the system would run out of
memory immediately.

To keep track of the chunks within a page, we facilitate a page usage table. Every entry
in the page usage table consists of three values: the chunk size, the number of allocated
chunks, and a bit-field. In this bit-field, each bit represents a single chunk of memory. A
high bit means that the associated chunk of memory is in use, while a low bit indicates
a free chunk. We require atomic operations and fast bit operators on this bit-field for
ScatterAlloc to work efficiently. However, atomic operations are generally only supported
for 32 or 64 bit words, with bitwise atomic operations only available on 32 bit words.
Hence, the bit-field is 32 bit long in our current implementation. To support splitting a
page into more than 32 chunks of memory and to handle smaller memory requests without
a high amount of internal fragmentation, we introduce a second hierarchy level: On the
page itself, we place up to 32 additional bit-fields, one linked to each bit in the page usage
table. This way, we support splitting a page into up to 322 = 1024 chunks.
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7.3.3 Hashing

The key ability for a fast allocator on the GPU is to avoid collisions. If multiple threads try
to allocate the same chunk of memory, performance can drop quickly. To avoid collisions
and to quickly find suitable pages for allocation, we rely on hashing. While previous
approaches use only the thread identifier for their hash function to determine a local heap,
e.g. proposed by Larson et al. [69], our hash function fulfills additional requirements:
• When yielding a page, it seeks to split the page into chunks of the same size as the
memory request. In this way, a free chunk on the page can be used and internal
fragmentation will stay low.

• Threads running on the same multiprocessor aim for allocating memory side by side so
that the cache utilization is higher.

• For our implementation in CUDA, threads within the same warp aspire to allocate
their data adjoined as possible, as they will likely access data coherently.
To build the hash-function, we use the requested memory size and information about

the location of the threads’ execution (multiprocessor id). Using multiplicative hashing [59]
we control the influence of the two factors, when determining a suitable page p:

p = (Srequested · kS + mp · kmp) mod SP, (7.3)

where Srequested represents the requested memory size, mp stands for the multiprocessor id,
and SP denotes the number of pages within the super block. The factors kS and kmp can be
used to distribute the access across the entire super block or to determine a local offset for
the data. If we choose kS to be a large, possibly a prime number, it is more likely that pages
will be found which have been split with the same chunk size. Thus, internal fragmentation
is kept low. A small value for kS will cause little scattering of similarly sized memory
requests. In combination with a large kmp, data allocated by the same multiprocessor will
be allocated close to each other. Thus, cache hits are more likely. However, in this case
differently sized chunks will be placed on the same page, increasing internal fragmentation.
The optimal choice depends on the usage pattern of the application.

In case the determined page is already full, we search for a free chunk in subsequent
pages, which will introduce local clustering. This strategy results in better cache-utilization
when searching for free pages, while the aforementioned considerations of either well
matching chunk size or similar multiprocessor id also apply.

7.3.4 Meta Data

To speed up the search for free suitable chunks, we introduce a two level hierarchy of meta
data. Meta data is read during each memory request, while it is only written occasionally.
Our allocator always keeps a pointer to the currently active super block. Only if the super
block reaches a certain fill level, or a memory request cannot be handled by the super
block, the allocator proceeds to the next super block in the list. As a thread proceeds to
the next super block, it updates the active super block pointer.

To quickly reject memory regions which are unlikely to contain suitable free chunks, we
divide each super block into equally sized regions. For every region, we keep information
about how many pages are full. If an allocation request fills up one page, it increases the
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counter for the region the page lies in. If a region is about to run out of free pages, memory
requests are forwarded to the next region. As it takes some time for threads to report that
pages are full, we already proceed to the next region when 90% of the pages are full. If a
chunk of a full page is freed, the region counter is decreased, keeping the meta information
accurate.

The available space within a region plays an important role in reactivating super blocks.
Threads which free a chunk on a non-active super block randomly choose to set this super
block as the active super block. The likelihood that this update is performed increases
with decreasing fill-level. This helps to avoid memory blowup, as it allows for super blocks
to be reused.

7.4 Implementation

To discuss the implementation details of our allocation strategy, we provide pseudo code of
ScatterAlloc’s allocation and free methods. We require the target architecture to support
atomic operations on global memory and efficient bit operators, as, e.g., provided by the
current CUDA C programming language.

7.4.1 Alloc

The pseudo code for ScatterAlloc’s allocation algorithm is split up in two functions: alloc
and tryUsePage. Note that we omit the steps for placing more than 32 chunks on a single
page, as they are very similar to placing only 32 chunks per page. The only difference is
another hierarchical level, for which the bits in the page usage table are used to indicate
that all associated 32 chunks of the second hierarchy are in use.

To allow placing smaller requests in bigger chunks, we introduce a multiplicative factor
max_frag (see alloc line 3) to control how much space is allowed to be left empty between
two adjacent chunks on a page. This factor is directly related to the maximum internal
fragmentation.

While searching for a suitable page, three situations can occur:

• If the page’s chunk size is either too small or too big to be used for the current
request, we move on to the next page (alloc line 31).

• If the page’s chunk size fits the current request, we try to use the page (alloc line
11-14).

• If the page is not yet in use, the page’s chunk size is marked as zero. In this case,
we use an atomic compare-and-swap with the goal to set the chunk size of the page
according to our needs (alloc line 17-26). In case no other thread has set it before,
the page can be used for allocation. If another thread set the chunk size in the
meanwhile, it is still possible that the set chunk size fits the current request.

If ScatterAlloc identifies a page to be used for the current request, we first increase
the fill level of the page to see if there is space for another chunk (tryUsePage line 2). In
this way, we check if there is an available spot on the page concurrently with reserving a
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Function alloc(Superblock,Sreq)
1 p ← hash(Sreq,mp)
33 Smax ← Sreq · max_frag
4 while tried not all regions do
5 region ← p/ regionsize
6 if region filllevel ≤ regionsize ·9/10 then
7 while p is in region do
8 page ← Superblock →p
9 Schunk ← page →chunksize

1111 if Schunk ≥ Sreq and Schunk ≤ Smax then
12 loc ← tryUsePage(page, Schunk)
1414 if loc 6= 0 then return
15 loc
1717 else if Schunk = 0 then

// page is free so try setting Schunk
18 Schunk ← atomCAS(page →chunksize, 0, Sreq)
19 if Schunk = 0 then

// use the new page
20 loc ← tryUsePage(page, Sreq)
21 if loc 6= 0 then return
22 loc
23 else if Schunk ≥ Sreq and Schunk ≤ smax then

// someone else acquired the page,
// but we can also use it

24 loc ← tryUsePage(page, Schunk)
2626 if loc 6= 0 then return
27 loc
28 end
29 end
3131 p ← p + 1
32 end
33 else

// try next region instead
34 p ← (region +1)·regionsize;
35 end
36 end
37 return 0
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spot. After this step has been performed successfully, it is certain that the request will be
served on that page. Without this counter, multiple threads might fight for the same spot.
Note that this is the only point of serialization which depends on the number of threads
trying to allocate memory concurrently. Nevertheless, not many threads will be directed
to the same page as the hash-function will scatter their requests to multiple pages and full
sections will be avoided due to the meta data structure.

After increasing the fill-level for the page, ScatterAlloc needs to determine which
spot should be used. To do that efficiently, we use the bit-field of the page usage table
(tryUsePage line 9-21). We start by estimating a free spot using the thread’s lane id (thread
index within its warp). This strategy is a good choice, because multiple threads of the
same warp allocating equally sized data will be forwarded to the same page. In case all
chunks are free, accessing them will result in coalesced memory accesses. If a chunk is
already in use, we use the bit-field to quickly determine the next free spot as outlined in
tryUsePage line 16-21. Essentially, we use bit-shifting in combination with CUDA’s __ffs
function to determine the closest free chunk on the page. Thus, we are able to find a free
spot without the necessity to loop through the bit-field and mark the next free spot.

Function tryUsePage(page,Schunk)
22 filllevel ← atomAdd(page →count, 1)
3 spots ← calcChunksOnPage(Schunk)
4 if filllevel < spots then
5 if filllevel + 1 = spots then
6 atomAdd(page →region, 1)
7 end
99 spot ← laneId % spots

10 while true do
11 mask ← (1 « spot)
12 old ← atomOr(page →bitmask, mask)

// if the spot is free use it
13 if old & mask = 0 then break
14

// bit magic giving us the next free spot
1616 mask = old » (spot + 1)
17 mask |= old « (spots - (spot + 1) )
18 mask &= (1 « spots) - 1
19 step ← __ffs( mask)
2121 spot = (spot + step) % spots
22 end
23 return page →data + spot ·Schunk

24 end
// this page is full

25 atomSub(page →count, 1)
26 return 0
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As long as our heuristic works, there will be few or no collisions and a suitable page
will be found quickly. In this case, an allocation request can be handled within a minimum
of five global memory operations (determining the active super block, checking the region
status, comparing the page’s chunk size, increasing the fill-level, and marking the spot). If
multiple threads try to allocate data at the same time, most of the information will already
be in the cache and the request can be handled faster. We also benefit from the cache in
finding a free section and searching through the pages, as this data occupies a continuous
region of memory.

7.4.2 Free

Freeing a chunk of memory is simpler than allocating, as demonstrated by the pseudo
code for free. Given that we already know which super block the chunk belongs to, a few
address and offset computations (free line 2-7) are sufficient to determine the bit that has
to be cleared to mark the chunk as free and the counter that has to be decremented to
remove the reservation of the spot on the page.

In case a page has become completely free, ScatterAlloc resets the way the page has
been split by setting the chunk size in the page usage table to zero. To avoid race conditions
in this situation, we have to lock the page, so that no other thread will try to allocate
memory on this page with an incorrect chunk size. We implement this lock by atomically
setting the page’s fill level counter to a maximum if it is still free (free line 12). Now, if
a different thread tries to reserve a spot on the page, it will fail and we can safely reset
the chunk size of the page. This functionality also justifies using this counter instead of
using the bit-fields only, which would not be sufficient to resolve the concurrency issue if
secondary hierarchies of bit-fields on a page are used.

The provided pseudo code shows that two reads from global memory (data offset and
chunk size) and two atomic operations on global memory are needed to free a chunk. The
only source for congestion is formed by the two atomic operations. As the number of
chunks on a page is limited, the bit-field operation will not cause a lot of congestion. The
operation on the fill count may be subject to more congestion, as it is also atomically
altered during the allocation process. Again, we can argue that the number of threads
trying to request a chunk on a single page will still be low due to the use of a hash-function.
Thus, the free operation is generally very efficient, as also shown in Section 7.5.

The only remaining question is how to determine the super block in which the chunk
falls. In case of a single big allocator-managed block, a simple address calculation using
one division is sufficient, because all super blocks lie next to each other in memory. When
multiple separate super blocks should be used, a simple array with information about all
available super blocks is all that is additionally required. While searching through this
small array the L1 cache will be fully utilized and in an optimal case, the super block will
be found about as fast as if we would only read a single value from global memory.

7.4.3 Large Data Requests

Up to now, we have described only requests that fit on a single page. In case a request is
bigger than a page, we can serve this request by allocating multiple pages. As the used
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Function free(SuperBlock,pointer)
22 p ← (pointer- Superblock →data)/pagesize
3 page ← Superblock →p
4 Schunk ← page →chunksize
5 spot ← (pointer - page →data)/Schunk

77 mask ← (1 « spot)
// mark chunk free

8 atomAnd(page →bitmask, mask)

// reduce counter
9 count ← atomSub(page →count, 1)

10 if count = 1 then
// this page now got free, try ’locking’ it

1212 count = atomCAS(page →count, 0, pagesize)
13 if count = 0 then
14 page →chunksize ← 0
15 __threadfence()

// ’unlock’ it
16 atomSub(page →count, pagesize)
17 end
18 end

memory is strongly scattered within a super block, we forward requests that are bigger
than the page size to super blocks that are deliberately reserved for this purpose. In this
super block, we search for a sufficient number of consecutive free pages. Then we try
to reserve these pages by setting all chunk size fields of each page’s usage table to the
requested size. This will prohibit any other thread from using the page in further memory
requests. If in the meantime another thread tries to acquire one of the pages that we want
to use, we reset all already reserved pages and restart the search. Note that such big data
requests will not be made by a large number of threads, as the system would run out of
memory very quickly.

7.5 Evaluation

In this section we describe a set of tests to analyze the performance of dynamic memory
allocators designed for highly parallel architectures such as the GPU. We build our tests in
compliance with the design goals specified in Section 7.1. These benchmarks measure the
allocation and free performance of the allocators, data access performance, and compute
additional information such as fragmentation and overhead.

Operator performance The first interesting factor is the time it takes to fulfill an alloc
or free request. This factor strongly depends on the internal state of the allocator (the
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allocation history and assigned memory), the number of threads being executed, the number
of threads concurrently allocating/freeing data and the size of the requested memory.

To construct a realistic and at the same time challenging scenario, we test the
allocators performance across multiple kernel calls. A thread can either allocate memory
or free memory that it has allocated before. The probability that it does so is given by the
test parameters palloc and pfree. After a couple of kernel calls, the ratio between allocated
and free memory will approach a constant. Subsequently to this initial warm-up phase, we
measure the average number of cycles required for a single alloc or free. Furthermore, the
variance in cycles between different allocation requests is of interest. The coefficient of
variation can be seen as a characteristic value of the allocator’s homogeneity when it
comes to diverging execution paths. To simulate different load characteristics, we increase
the number of threads until the device’s capacity is reached or the allocator runs out of
memory. To capture the influence of the requested memory sizes, they are drawn from an
uniform distribution.

Data access performance Besides the time for allocating/freeing memory, the time
it takes to access the allocated memory influences the overall performance of a program
as well. It strongly depends on the access pattern and cache-utilization. We extend the
previously designed test to also measure how long it takes each thread to access the memory
it allocated.

Meta Information Not only the raw performance measures give information about
an allocator’s performance. Internal fragmentation, external fragmentation and memory
overhead of the required data structures are also important. Using the previously described
test, we can measure these factors to analyze the allocator’s performance in different
situations according to their definition as given in Section 7.1.

7.6 Results

To compare the performance of ScatterAlloc with state-of-the-art CPU allocators on
current GPU hardware, we have implemented two list based allocators as described in
Section 7.2 using CUDA. Thus, we can also compare their performance directly with
the allocator provided with the CUDA toolkit 4.0 and XMalloc [48]. Our test-system
is equipped with an NVIDIA Quadro 6000 with 6GB of graphics memory, of which we
assign 16MB to each of the allocators. The size list allocator uses ten bins for speeding
up the search for differently sized data blocks. The mp lists allocator sorts free memory
blocks in ten bins per multiprocessor, which makes for an overall bin-count of 140. For our
allocator, we use two randomly selected prime numbers kS = 38183 and kmp = 17497 as
the respective parameters of our hash-function, a pagesize of 4kB, and a super block size
of 8 MB. According to our tests, the performance of ScatterAlloc is not sensitive to the
choice of kS and kmp, as long as they are large prime numbers.

Figure 7.3 shows the performance of the alloc and free operators for an increasing
number of threads, with palloc = pfree = 0.75. As the purpose of this test is to assess the
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impact of concurrent allocation, we stopped the tests after exceeding the point where the
GPU was fully utilized (at about 15000 threads). One can clearly see, that the performance
of the list based allocators, XMalloc without SIMD optimization, and the CUDA toolkit
allocator strongly decreases with an increasing number of threads. XMalloc with SIMD
optimization can reduce the number of memory request served via the global queues
and can avoid a performance decrease until approximately 2000 threads are concurrently
allocating memory. The performance of ScatterAlloc remains almost constant as the thread
count increases. At full utilization of the GPU, memory allocation using ScatterAlloc is
about 100 times faster than the CUDA toolkit allocator and up to 10 times faster than
XMalloc with SIMD optimization. Our allocator’s performance varies with the requested
memory size, due to its page based strategy. If the queues in XMalloc become empty,
allocation takes a lot longer, which causes the variation in XMalloc’s performance. The
other allocators show little variance for their allocation time. Comparing the two list based
allocators, shows that distributing memory requests of different multiprocessors to different
memory-locations yields an increase in performance of about 1000%.

To assess ScatterAlloc’s memory consumption characteristics, we compare it to list-
based allocators. They work similar to allocators for CPUs, which have been tuned
for low memory consumption and fragmentation. Figure 7.4 shows the internal and
external fragmentation measured for the list based allocators and ScatterAlloc for different
distributions of allocation request sizes. We set palloc = pfree = 0.6, the mean of the
size-distribution to 512 bytes, and varied the extent of the distribution from zero to 896
bytes. The performance of the tested allocators was constant for all distributions and
equaled the measurements reported in Figure 7.3. Internal fragmentation was very low for
all allocators, indicating that ScatterAlloc finds good target candidates most of the time.
ScatterAlloc as well as the mp lists allocator trade external fragmentation for increased
allocation performance. Thus, it is not surprising that the external fragmentation of these
allocators is very high. ScatterAlloc produces more cache hits than the list based allocators,
resulting in faster access. As the latency for the L1 cache is about 18 cycles and about 250
cycles for the L2 cache, the results indicate that all three allocators deliver memory in a
cache friendly way.

Figure 7.2 shows the temporal development of ScatterAlloc for 16384 threads, two super
blocks of 8MB, uniformly distributed allocation requests between 128 and 160 bytes, and
with palloc = 0.05 and pfree = 0. While the first super block fills up, the time needed for
finding a free spot increases from 10000 to 25000 cycles. The coefficient of variation (CV)
for the allocation time also increases, which indicates that for some threads it becomes
more difficult to find a free spot. When there is hardly any space left for allocation, the
external fragmentation drops, and the time spent on a single allocation request reaches its
maximum. If the allocation request can not be served by the first super block, the next
super block is opened up and the allocation time drops below 10000 cycles again. The
relative overhead of the allocator for a reasonable fill level is below 1%. As the overhead is
constant per super block, the relative overhead decreases with increasing fill-level.

For memory requests larger than the used page size, ScatterAlloc also shows a linear
performance decrease with increasing number of threads. For a single thread allocating
two pages takes approximately 8000 cycles. For every additional thread allocating data,
the average performance decreases with approximately 3000 cycles.
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Figure 7.2: Temporal development of ScatterAlloc. 16384 threads keep requesting memory
chunks between 128 and 160 bytes. As the first super block fills up, the time needed for finding
a free chunk starts to vary (CV) and thus increases. After a fill level of about 80% is reached,
the next super block is opened up and performance recovers. Internal fragmentation is very
low, while the external fragmentation is linked to allocation speed. The relative overhead of
ScatterAlloc stays below 1% after a reasonable fill level has been reached.
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bytes as the number of threads concurrently allocating memory increases. The performance of
the list-based allocators, XMalloc without SIMD optimization, and the CUDA toolkit allocator
strongly decrease with increasing thread count. XMalloc’s SIMD optimization can postpone
the performance decrease until about 2000 threads are active. Contrary, the performance of
ScatterAlloc is almost independent of the thread count, outperforming the other allocators
over the entire test interval. The CUDA toolkit allocator failed in the test runs with 128 byte
allocation size. Thus, this data had to be omitted from above measurements.
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Figure 7.4: Internal and external fragmentation as well as data-access performance for the
list-based allocators and ScatterAlloc for increasing variation in allocation request size (in bytes),
for 1024 and 4096 threads. The mp lists allocator and ScatterAlloc both trade fragmentation
for speed. Although ScatterAlloc uses a page-based memory model, its internal fragmentation
is comparable to the list-based allocators. Comparing the achieved access times to the latencies
of the L1 cache (18 cycles) and the L2 cache (250 cycles) indicates that all allocators deliver
memory in a cache friendly way, whereas ScatterAlloc slightly outperforms the other allocators
for a lower number of threads.
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7.7 Discussion
In this chapter, we described how established CPU-based allocation methods can be tailored
to the GPU. However, we also showed that these methods are still too slow to meet the
demands of massively parallel programs. Hence, we have implemented our own allocator,
ScatterAlloc, which turns out to be more reliable and about 100 times faster than the
built-in CUDA memory allocation function and up to 10 times faster than the to our work
related XMalloc.

With ScatterAlloc, we have provided a memory allocator that serves memory requests
in approximately constant time on the GPU, independent of the number of threads
concurrently accessing the allocator. Thus, we can state that O3 is entirely fulfilled.
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In this section, we show that our methods accelerates selected computer graphics
techniques significantly and open new possibilities for algorithmic advancement. For
all comparisons between a CUDA and a Softshell implementation, we do not alter the
algorithms themselves. We only replace the code needed for issuing kernels by the Softshell
interface implementations.

8.1 View-dependent mesh simplification

For our first comparison, we have implemented HDS [80] with a kernel launch behavior
similar to state-of-the-art approaches [153]. In a preprocessing step, an octree is built
and then traversed during rendering. Each node of this octree can either be expanded or
collapsed. Expanded nodes increase the local detail by adding triangles to the mesh, while
collapsed nodes define vertex positions.

Our baseline CUDA implementation manages the following three data structures with
the help of the highly optimized CUDPP library: a set of active octree nodes, a set of
boundary nodes, and a list of active triangles. For each level, two custom kernels (for
analyzing and inserting nodes) and two parallel scans (for active nodes and boundary
nodes) are called. An additional scan is run to layout vertices in memory before two kernels
update the vertex positions and emit triangles.

The Softshell implementation manages all data dynamically during execution. Hence,
there is no need for CPU interaction until the mesh is completely constructed, as shown in
Figure 8.1. The traverse event creates a single work item which maps to the root node
of the octree. The entire octree traversal happens in the traverse procedure. During the
execution of one node, work items for every child node are generated. The work aggregation
collects these items and again assigns them to the traverse procedure. Each time the
traversal reaches a boundary node, a work item is issued for the generate vertex procedure.
Triangles are generated directly in the traverse procedure. The execution order is controlled
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by Softshell, reducing the necessary programming effort in comparison to the kernel-based
implementation. This fact is also captured in the lines of code required for programming
the two models: The CUDA implementations has 213 lines of code, while the Softshell
implementation consists of 184 lines.

Traverse 
Procedure 

Generate 
Vertices 

Procedure 

Traverse 
Event 

Figure 8.1: Octree-based mesh simplification in Softshell: A single initial work item is generated
by the event (orange). The traverse procedure is executed for every octree node, issuing new
work items for the traversal. At boundary nodes items for the generate vertices procedure are
emitted. Softshell automatically combines individual work items and issues them for coherent
execution.

For imbalanced octrees, the Softshell implementation is more than two times faster than
the kernel-based implementation, as shown in Table 8.1. This performance gain is mainly
due to the ability to leave the control at the GPU and the ability to draw parallelism from
the breadth and depth of the octree. Because the Traverse procedure creates new work
and the Generate Triangle procedure does not, the number of available workpackages (and
also the utilization) is increased by prioritizing workpackages for the Traverse procedure.

8.2 Path Tracing

When implementing a path tracer [53] on the GPU, the greatly varying number of bounces
of secondary rays prohibit coherent execution. Using the Softshell processing model, this
problem can automatically be addressed by the third-tier scheduler.

Our sample implementation consists of a single procedure that implements a backward
monte-carlo path tracer. For each of the 800× 800 pixels, a single workpackage is created.
Every thread is mapped to one of the 512 rays randomly shot through each pixel. Paths
are traced until their contribution falls below 0.1%. Bounces are modeled in a single loop,
with the third-tier scheduler being invoked every 10th iteration. As test scene, we used a
Cornell box with a varying number of spheres influencing the number of diverging threads.

The results provided in Table 8.2 show that in this special example the use of dynamic
thread regrouping can increase performance to a certain extent. Although the probability
of a thread to be stalled during an iteration is 50%− 76% and the execution time for this
example is about a minute, the performance gain achieved by thread regrouping is only
4− 15%. This confirms previous findings that it is hardly possible to gain performance
using dynamic thread regrouping for interactive applications [105]. Still, this example
shows that for long running algorithms with a high rate of thread divergence, dynamic
thread regrouping can boost performance.

While the previous example required considerably fewer lines of code for the Softshell
implementation, we encounter the reverse situation in this case. The Softshell implementa-
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Happy Buddha Dragon Bus

lev.3 lev.6 lev.9 dist mid close dist mid close
vert. 812 56k 796k 3.8k 143k 286k 130k 443k 1.6M
nodes 65 8.3k 362k 501 27k 66k 15k 98k 227k
CUDA 1.77 3.28 9.66 2.75 5.23 7.63 7.19 10.9 36.8
Softshell 0.87 1.66 9.15 0.85 2.48 3.47 3.11 5.42 24.9

Table 8.1: Octree-based mesh simplification: The Happy Buddha dataset is constructed to
a fixed octree level. The other two models are constructed based on the current view (from
distant to close), for which the decreasing detail in the back leads to inhomogeneous traversal
depths. The more nodes are used in the construction, the more vertices (vert) are created
and the higher is the data parallelism per level. The construction times for both techniques
are given in milliseconds. For balanced octrees with many nodes (Happy Buddha level 9), the
kernel-based CUDA implementation is as fast as the Softshell implementation. In all other
cases, Softshell is superior because it leads to a better hardware utilization.

tion consists of 95 lines, while the CUDA implementation needs 54 lines. The reason for
this change is the fact that this application consists of a single kernel only, which can be
expressed very efficiently in CUDA C, while Softshell requires some boilerplate code to be
written to individually model all scheduling entities.

This example can be slightly altered to demonstrate the utility of the second tier
scheduler. Instead of creating one workpackage for each individual pixel, we create one
workpackage for each patch of 4× 4 pixels and initially shoot only four rays per pixel into
the scene, leading to 64 threads per workpackage. After tracing all 64 paths, we compute
the color variance among the paths and resubmit the workpackage, setting its priority
proportional to the computed variance. In this way, we prioritize areas for which we are
uncertain about the estimated pixel colors. When sending more rays into the scene, we
assume that the color converges to its real value and thus reduce the workpackage priority
every time the workpackage is resubmitted. In this setup, the second tier scheduler deals
with fully dynamic workpackage priorities. Because uncertain image areas are executed first,
the rendered image converges to the ground truth faster than a system, which iteratively
shoots the same number of rays through all pixels, as shown in Figure 8.2.



136 Chapter 8. Rendering

div. 0.52 0.63 0.76
CUDA 50.4s 57.4s 66.8s
no T3 52.3s 59.4s 68.9s
ours 50.2s 54.8s 59.6s

Table 8.2: Path tracing with varying number of objects. The more spheres are in the scene, the
higher the probability that a thread has to wait for others to finish (div). Using Softshell with
no third-tier scheduler (no T3) demonstrates Softshell’s overhead for workpackage management
when compared to CUDA. As the third-tier scheduler is activated (ours), diverging threads are
regrouped, leading to performance increases of up to 15%.
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Figure 8.2: Priority-based path tracing in Softshell for test scene three: Adding rays to
uncertain image regions first (blue), creates high quality images with lower mean squared error
in comparison to the ground truth more quickly than adding rays to pixels uniformly (red). This
behavior is implemented in Softshell by dynamically adjusting the priorities of image patches
according to the color-variance within the traced paths. The image on the right visualizes the
number of traced rays (cp. result image in Table 8.2). For white areas, many rays have been
shot into the scene, while black areas have been sampled sparsely. Note that uniform regions,
like the light source and the black sphere have hardly been sampled.

8.3 Image-based visual hull rendering

The image-based visual hull (IBVH) algorithm computes depth images at novel viewpoints
directly from segmented camera images [86], as shown in Figure 8.3. Unlike 3D reconstruc-
tion and rendering, it does not require an intermediate data representation, such as a mesh
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or a voxel grid. It can therefore be classified as an image-based rendering algorithm, and is
especially useful for interactive systems that need to produce output images with as little
latency to changes in the camera images as possible.

Figure 8.3: A novel viewpoint rendered from 10 camera images by using the image-based
visual hull algorithm (left). The redraw buffer encodes the magnitude of change in scene
geometry as red intensities, which is directly used as workpackage priority in our Softshell
implementation. Images used with permission from Hauswiesner et al. [38].

In previous work Hauswiesner et al. [38] have shown that computing the IBVH can be
restricted to image areas where the underlying geometry has changed without sacrificing
image quality. This is achieved by detecting changes in scene geometry and recomputing
only image areas where the magnitude of change is above a certain threshold. The geometry
of other image parts is reused from the previous frame by means of frame-to-frame image-
warping. The threshold directly drives the output quality, but has only indirect effect on
the runtime. For interactive systems, however, it is often desirable to directly constrain
runtime and maximize the image quality within the available time frame.

Constraining the runtime of a rendering process usually is a very challenging objective.
Often, the runtime of rendering kernels can not be estimated before execution, because the
scene complexity can vary over time. During GPU execution, the CPU has only limited
control over the GPU and can not stop the processing in a well defined manner. After
execution, the desired time frame might have been already exceeded. When exploiting
scene coherence for IBVH rendering, the area with changed geometry is not the same for
every frame. Measuring the amount of changed geometry and inferring the execution time
is slow and unstable: the execution time also varies with the complexity of the geometry
given as the number of ray-silhouette intersections along each viewing ray. Defining an
execution configuration with a certain runtime before execution is therefore not possible.
Returning the control flow to the CPU periodically is also not a good option, because it
synchronizes the pipeline too often.
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This situation highlights the necessity of GPU-based scheduling, as provided in Softshell.
Given access to the execution time and control over the execution flow, it is easy to impose
constraints on the runtime of the computations. Workpackages are created for the entire
image. During the execution of each workpackage we can query the remaining time, and
decide whether this block is computed by the IBVH algorithm or reused from the previous
frame. Reusing is achieved by image-warping: an operation with fixed complexity whose
runtime can be predicted easily. Such a GPU-based scheduling decision is far more fine
grained than what can be achieved on the CPU, where usually the decision amounts to
whether a grid is launched or not. We also set the priority of workpackages to the average
change magnitude of their associated region, so that image areas with substantial changes
will be processed first. In this way, we maximize the utility of the given time frame. By
obeying the time constraint precisely, the rendering process does not stall or delay other
vital system tasks, such as user interaction. In this way, quality can dynamically be traded
for execution time to guarantee the frame rate, as shown in Figure 8.4.
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Figure 8.4: Image-based visual hull (IBVH) rendering with a target time-constraint of 67ms
to match the camera frame rate. We use a low-latency image warping approach for image
areas of little change and a full IBVH construction for areas of high change. The algorithms
differ in the heuristics used to choose between IBVH and image warping. A fixed threshold
determined prior to a kernel-launch does not follow the target frame time (red dots). The
Softshell implementation makes this decision dynamically, based on the remaining time. Work
of higher-priority is scheduled first, generating the highest possible quality in the specified time
(blue dots).
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8.4 GPU X3D parser

As the demand for high-quality graphics rises, art assets rapidly grow larger. Parsing a
file containing a large model can take a significant amount of time. Using the GPU for
parsing model files can speed up this process. However, the X3D file format is composed
of many independent constructs, thus, writing efficient parallel GPU code for parsing is
no trivial task. Using the BSGP programming model, such a system can be implemented
with less programming effort [46]. For the execution, still about 80 kernel-functions are
automatically created.

For comparison, we provide our own X3D parser in Softshell, which works similar
to the BSGP X3D parser. We divide the parsing into two events: At first, we use six
procedures (two of them implement sorting and the scan algorithm) to generate a skeleton
of the XML-tree. The scan and sort algorithms are called multiple times, for data sizes
that individually could not fully occupy the GPU. Softshell schedules these algorithms
concurrently whenever data or parts of the data become available. Due to its kernel-
based structure, the BSGP parser executes these steps sequentially, losing performance in
comparison to our implementation.

Figure 8.5: GPU-based X3D parsing: The 13MB test scene contains 2300 nodes of which
1400 are shape defining. Using the BSGP [46] implementation, parsing takes 71.25ms. Our
Softshell implementation parses the scene in 36.56ms.

In a second step, we parse the XML-tree using one procedure per supported X3D-tag.
In this way, the parser can easily be extended to support new X3D-tags. The execution
starts at the root node and a new workpackage is created for each encountered node.
Thus, groups of threads work on the individual nodes in parallel, while the thread count is
dynamically adjusted to the node type. Depending on the node type, new workpackages
for child nodes are generated and/or output data is written either to the vertex buffer or
a state buffer, which is then used during rendering to adjust the OpenGL state machine.
Softshell schedules workpackages for the different X3D-tag procedures concurrently and
therefore increases the GPU utilization. In this way, our X3D parser can launch a higher
number of coherently executing thread groups than the BSGP parser. Additionally, the
control flow remains entirely on the GPU until the model is ready to be rendered, and a
costly back and forth between GPU and CPU is avoided. For a complex scene (Figure 8.5),
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parsing takes BSGP 71.25ms, while the Softshell implementation is nearly twice as fast
with 36.56ms.

8.5 Real-time Reyes Pipeline

The Reyes rendering pipeline [19] is primarily used in cinematic productions, as it efficiently
synthesis images of high quality. However, an implementation on graphics processors is
a challenging task, as the pipeline is recursive, irregular and has unbounded memory
requirements. A typical Reyes pipeline consists of the following six stages:

1. Bound In the bound stage, the input primitives are assembled. In a first step, each
primitive’s bounding box is intersected with the view frustum to cull primitives which
are not visible. Additionally, primitives which completely face away from the camera
can be removed.

2. Split In the split stage, primitives are recursively split into smaller patches until
their bounding box indicates that they are small enough for dicing. Before issuing
primitives for another split, they can be tested against the viewing frustum to remove
invisible sub-patches.

3. Dice In the dice stage, every patch is subdivided into micropolygons according to a
regular grid. The grid size is normally chosen to generate at least four micropolygons
for each screen pixel.

4. Shade In the shade stage, every micropolygon vertex is shaded using a custom shader.
The micropolygon color is later determined by interpolating the vertex colors.

5. Sample In the sample stage, every pixel is subdivided into a fixed number of subpixels.
For every subpixel, a sample positions is chosen using a random displacement from
the subpixel center. For every sample location covered by a micropolygon, the
micropolygon’s color and depth is determined and stored.

6. Composite The final stage of the pipeline is the compositing step, which determines
the color of every pixel combining its subpixel colors.

Previous attempts to bring this pipeline to the GPU always split the pipeline into
multiple kernel launches: Patney et al. [106] use a four-stage model. The first stage
contains the recursion and is split into multiple kernel launches. Between these launches
the buffers holding the input data for the next launch are compacted. Zhou et al. [154] use
an eight-stages model, whereas three stages are only concerned with making scheduling
decisions. Overall many more kernel launches are needed. Their system is not real-time,
but very general and, thus, can produce production quality images. Tzeng et al. [141]
propose a five-stage model, whereas the first stage uses persistent threads to handle the
recursion in a single kernel call. The remaining stages are implemented as individual kernel
launches.

To form a challenging task for our scheduling framework, we model the entire pipeline
as a single algorithm leading to a kernel launch in our model. To make the task even more
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Figure 8.6: Our Softshell Reyes pipeline consists of five procedures. Bound operates on item
sets with 16 threads, both split procedures expect item sets for four threads, dice and sample
operate on workpackages with 256 threads, and shade operates on items. Shared memory
requirements reach from 0 to 48 bytes per thread and register usage varies between 30 and 63,
resulting in an algorithm with very diverse characteristics.

challenging, we exchange the order of the shade and sample stage, introducing an exact
per-sample lighting evaluation. Our pipeline is shown in Figure 8.6. As input data we
use Beźier patches with a 4× 4 control mesh. The bound stage assembles the input data
and computes the position of every control vertex relative to the view frustum to perform
frustum culling. To check if the entire patch faces away from the camera, each thread
transforms its vertex to screen space and writes the vertex position to shared memory.
Then, the orientation of each face is computed and if all faces face away from the camera,
the patch is culled. We require one thread for each control vertex, resulting in a 16 threads
item set procedure with 128 bytes of shared memory to communicate the vertex positions.
We divide the split stage into two procedures. Each procedure splits a patch along one
dimension. To perform the split, we use one thread to operate on one row or one column
of the input patch, using four threads per procedure. Using four threads requires an item
set procedure. Additionally, this procedure uses 192 bytes of shared memory to share the
patch data between all threads. The dice procedure dices each patch 15 times along each
dimension, generating 16×16 vertices. In the first part of the procedure, we use one thread
per vertex. In the second part, we use one thread per micropolygon to perform sampling.
This setup requires synchronization between the threads and thus results in a workpackage
procedure using 256 threads. To store the data for all mircopolygons in shared memory,
3072 bytes are required. The shade stage uses one thread per sample location to evaluate
the lighting model for each subpixel. No cooperation between threads is required, yielding
an item procedure with no shared memory requirements. The number of registered used by
the individual procedures also varies: The bound, split, dice, and shade procedures use 38,
63, 40, and 30 registers respectively. Overall the pipeline shows strongly varying procedure
characteristics and also requires a significant amount of shared memory. To composite the
subpixel colors and display the result we use OpenGL.

To evaluate our Reyes pipeline, we compare seven different implementations. The
first two use the kernel with queues implementation. KwQ copies the input data to
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Table 8.3: Reyes test scene statistics: number of input primitives, calls to the split procedures,
generated micropolygons, and final shaded subpixels.

Primitives Split U Split V Micropolygons Shade

Sphere
8 19k 13k 8.0M 0.26M
8 74k 51k 32.1M 1.06M
8 297k 205k 128.5M 4.23M

Teapot
32 20k 19k 10.2M 0.28M
32 82k 77k 40.8M 1.11M
32 328k 310k 163.3M 4.45M

Killeroo
11500 12k 14k 9.4M 0.24M
11530 61k 67k 99.0M 0.96M
11532 269k 271k 140.8M 3.84M

shared memory, whereas KwQA accesses the data in the queues directly. A basic dynamic
parallelism implementation (DP ) launches new kernels directly during the execution of
procedures, whenever new data is generated. HDP and HDPA correspond to our hybrid
dynamic parallelism with controller implementation with and without access modifiers.
The details of all approaches are discussed in Section 6. Softshell corresponds to the full
featured Softshell implementation with a versatile megakernel. Softshellloc uses locally
buffered queuing for the shade procedure to avoid costly global memory access for every
micropolygon. As test scenes we used a simple sphere, the Teapot, and the Killeroo
dataset, as shown in Figure 8.7. The screen resolution was set to 1920× 1080 pixels with
subpixel counts of 1, 4, and 16. These settings influence the number of execution steps and
intermediate data, as shown in Table 8.3.

The results of the Reyes tests are shown in Table 8.4 and Table 8.5. On the GTX
680 with a screen resolution of 1920× 1080 and a single sample per pixel, real-time frame
rates can be achieved, if Softshell is used with locally buffered queuing. Both kernel-
based implementations are slower than the Softshell implementation with global queuing.
Softshellloc is on average three times faster than Softshell, four times faster than KwQA

and five times faster than KwQ. Dynamic parallelism is not supported on the GTX
680. For 1920× 1080 pixels with 16 samples per pixel, we still achieve about four frames
per seconds for all datasets. Considering that more than 100 million micropolygons are
generated from only a small number of input primitives, these results can still be considered
as a success.

On the GTX TITAN, the impact of queues in shared memory is again smaller than
on the GTX 680. Also, KwQA, HDPA, and Softshellloc generate similar frame rates.
Again, the overall performance was similar for all data sets. While Softshellloc achieved
the best performance for one sample per pixel, KwQA achieved the best performance for
16 samples per pixel. The basic dynamic parallelism implementation was very slow in
comparison to all other methods, taking seconds to generate a single frame. With the best
methods, a 1920× 1080 image without super sampling can be generated with up to 200
frames per second on the GTX TITAN. If four samples are taken per pixel, the frame rate
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(a) Sphere, 8 input primitives
128M micropolygons

(b) Teapot, 32 input primitives
163M micropolygons

(c) Killeroo, 11532 input primitives
140M micropolygons

Figure 8.7: The Reyes test scenes used during evaluation.
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Table 8.4: Softshell Reyes Rendering on a GTX 680 with 1920× 1080 viewport and different
subpixel counts: rendering times in ms.

Subpixels KwQ KwQA Softshell Softshellloc

Sphere
1 88.5 75.3 52.6 16.4
4 342.7 293.9 206.1 61.3
16 1350.9 1160.1 820.8 240.8

Teapot
1 106.7 90.7 61.3 20.3
4 415.6 350.8 240.3 78.7
16 1640.7 1390.7 960.9 310.2

Killeroo
1 105.2 87.8 59.7 21.7
4 390.1 330.9 225.5 74.2
16 1520.8 1299.8 880.3 280.1

Table 8.5: Softshell Reyes Rendering on a GTX TITAN with 1920 × 1080 viewport and
different subpixel counts: rendering times in ms.

Subpixels KwQ KwQA DP HDP HDPA Softshell Softshellloc

Sphere
1 11.2 7.2 6482 11.4 6.7 8.3 5.3
4 35.7 21.0 26690 41.8 24.1 31.8 20.3
16 134.1 72.2 - 135.3 77.3 126.2 80.4

Teapot
1 13.8 8.0 7278 14.2 7.0 10.2 6.7
4 43.6 24.4 29840 44.7 27.3 40.2 26.0
16 163.2 99.6 - 165.3 102.8 160.1 103.5

Killeroo
1 11.8 7.1 6860 12.3 6.9 10.1 6.6
4 40.1 22.1 28312 43.1 23.7 37.9 24.6
16 153.4 86.6 - 157.9 89.6 159.8 99.5

is reduced to approximately 50 frames per second. A 16 times sub-sampled Reyes image
can be rendered with 10 frames per second.

To analyze the behavior of the different execution strategies in more detail, we record
the exact execution time and duration of each procedure. These records are shown in
Figure 8.8, 8.9, 8.10, and 8.11 for the teapot data set and an image resolution of 400× 400
pixels. Every individual procedure execution corresponds to one rectangle. The darker
part of each rectangle corresponds to the time needed for enqueue. The block width relates
to the number of threads active in the procedure. KwQ shows a relatively slow start and
the delay for reading back the queue fill-rates to the CPU is clearly visible. However, when
there is sufficient input data for the dice procedure available, the utilization is very good.
Up to five dice procedures are executed on one multiprocessor concurrently. On the GTX
TITAN, starting procedures into different streams also leads to concurrent execution on
the device, especially increasing utilization during the execution of the split procedures.
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For the split procedure, enqueue makes up about one quarter to one third of the execution
time. Many instances of the dice procedure do not generate samples. If they do, enqueue
consumes approximately one fourth of the execution time. HDP shows a less coherent
behavior. Especially in the beginning the utilization is very low, when many procedures
with only few threads are being executed. When there is overall sufficient data available,
the utilization is increased and up to six dice procedures are executed concurrently. Still,
it seams that dynamic parallelism sometimes runs into situation where it is unable to
launch different kernels, which results in reduced utilization. Softshell with our versatile
megakernel quickly increases the utilization in the beginning of the execution and hardly
shows any wholes during execution. Also, any combination of procedures can be executed
concurrently. The major drawback of the megakernel approach is also clearly visible: only
four procedures can be executed concurrently, because the split procedures increase the
register requirements for the megakernel to 63. The relative enqueue overhead still is the
same as in KwQ. If locally buffered queuing is used, the scheduling characteristics remain
similar, however, the execution time reduces by approximately 10% on the GTX TITAN.
Taking a closer look at the relative enqueue overhead shows that the time spent on enqueue
in the dice procedures is reduced to about one tenth. This fact again shows that queues in
shared memory are more efficient than global queues and can result in significant speed-ups
if used for the right procedures.

Overall, the performance of our megakernel approach is very competitive, even for
strongly varying procedure characteristics with challenging shared memory requirements and
millions of intermediate items being generated. Although each kernel call can be individually
optimized resulting in lower register counts and lower shared memory requirements than
our versatile megakernel, our approach is still on par with our most efficient kernel-based
implementations on the GTX TITAN and even four times faster on the GTX 680.
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Bound Split-V Split-U Dice Shade

Figure 8.8: Scheduling behavior of the kernels with queues approach on the GTX TITAN for
the teapot data set with 400× 400 image resolution.



8.5. Real-time Reyes Pipeline 147

Bound Split-V Split-U Dice Shade

Figure 8.9: Scheduling behavior of the hybrid dynamic parallelism with controller approach on
the GTX TITAN for the teapot data set with 400× 400 image resolution.
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Bound Split-V Split-U Dice Shade

Figure 8.10: Scheduling behavior of Softshell using a versatile megakernel on the GTX TITAN
for the teapot data set with 400× 400 image resolution.
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Bound Split-V Split-U Dice Shade

Figure 8.11: Scheduling behavior of Softshell using a versatile megakernel with locally buffered
queuing on the GTX TITAN for the teapot data set with 400× 400 image resolution.
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8.6 Discussion
In this chapter we have shown that it is possible to efficiently map dynamic algorithms with a
relatively low degree of local parallelism for the execution on massively parallel architectures.
Our tests demonstrate that the feature set of Softshell can improve the performance
of computer graphics applications in particular. Our Softshell-based implementations
of dynamic mesh simplification proved to be two times faster than the state-of-the-art
execution strategies based on the kernel-based execution model (O1). We were able to speed
up path tracing by up to 15% reducing the divergence between rays (O5). Additionally, we
could show that the convergence rate of Monte-Carlo-based global illumination methods
can be increased when dynamically assigning processing power to those regions that
contribute the most to image quality (O4). For image-based rendering, we could show that
time-aware scheduling can dynamically adapt an algorithm to stay within the tight time
budged imposed by camera update rates (O4). We also compared Softshell to the BSGP
programming model, showing that parsing of model files can be sped up by a factor of two
by executing different procedures concurrently and avoiding back-and-forth between CPU
and GPU (O1). Finally, we presented a real-time Reyes pipeline, providing update rates of
40 frames per second and above for screen resolutions of 1920× 1080 pixels with four times
super sampling. In this way, our pipeline handles up to 100 million micropolygons in every
frame. On a GTX 680 our versatile megakernel is four times faster than the most-efficient
kernel-based implementation (O2).
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Interactive rendering of volumetric data is important in many fields, such as medicine,
geology, and engineering. Virtually all interactive state-of-the-art volume rendering tech-
niques build on the computational power of graphics processing units. Multiple factors
can influence the performance of volume rendering algorithms executed on the GPU. For
volume rendering, data access times often form a bottleneck, as many samples need to be
drawn from the volume. Another performance influencing factor is thread divergence. If
not all cores of a SIMD unit can be supplied with the same instruction, a subset of the
cores will be disabled. This situation can happen, if threads choose different execution
paths or finish early. In a worst case scenario, all threads choose different execution paths
for which their execution is completely serialized. If a rendering algorithm needs many
passes/kernel calls, switching between GPU and CPU might form a serious bottleneck. The
overall GPU utilization is important. If there is not enough parallelism in the algorithm to
keep all GPU cores busy, performance will also be affected.

We hypothesize that a combination of these issues might often prevent volume rendering
algorithms from utilizing the power of the GPU to a full extent. In this chapter we study
the behavior of three different volume rendering implementations and analyze under which
circumstances the aforementioned problems arise. Our first case study is direct volume
rendering (DVR) [74], which is an image-order volume rendering technique. In DVR,
rays are traced through the volume and samples are accumulated along the ray. Our
observations can be generalized for other techniques which sequentially sample along rays.
As second case, we studied a more complex state-of-the-art illumination model: Image Plane
Sweep Volume Illumination [136]. Finally, we looked at particle-based volume rendering
(PBVR) [117], as an example for object-order volume rendering.

For each example, we analyze possible problem cases and show where dynamic scheduling
strategies can help to overcome these issues and increase performance. For simplicity, we
will stick to terms used in stream-processing languages like CUDA, for which a kernel
launch roughly corresponds to a rendering pass in a shader-based system. The execution
carried out by one thread equals the steps executed for a single fragment in a fragment
shader.

151



152 Chapter 9. Visualization

Direct volume rendering is probably the most widespread method for displaying
dense 3D data. Since the early work by Levoy [74] the raycasting algorithm has been
extended in different respects. Many researches focused on improving the performance
of DVR, including the skipping of empty space [64, 114] or terminating rays as early as
possible [64]. Rapid growth of the computational power of graphics processors and their
architectural changes led to a series of advancements in the field, including the use of
shaders [130] or CUDA [82] and the interactive rendering of multiple volumes and semi-
transparent polygonal meshes [52]. Similarly, other SIMD architectures were employed for
high-performance volume rendering, such as the Cell Broadband Engine [57].

Another focus of research in volume rendering is improving the perceptual effectiveness
of the resulting images. In particular, improving depth perception using global illumination
effects, such as shadows. Several recent studies have indeed shown that depth and relative
size perception improves if advanced illumination models are employed [77, 115, 128]. There-
fore, many methods which simulate advanced illumination effects have been introduced,
such as Monte-Carlo integration [63, 113], deep shadow maps [34], or volumetric scattering
and shadowing [115]. A more recent approach proposed by Sunden and colleagues, uses
an image-plane sweeping algorithm to perform scattering and shadowing in volumes [136].
This algorithm does not require any preprocessing or stored illumination volumes, which
makes it usable for rendering of very large datasets. However, the possibilities for parallel
execution of raycasting are limited to one image column, reducing performance. In this
chapter we analyze how the performance of this algorithm can be improved using our
scheduling approach.

Raycasting is usually performed for datasets represented on structured grids. For
unstructured grid data, object order volume rendering techniques are often used, such as
projected tetrahedra [87, 127] or splatting [95, 120, 145]. Unlike splatting-based approaches,
particle-based volume rendering [21, 117], employs opaque particles and, thus, does not
require visibility sorting before projecting onto the screen. This allows easier parallelization
in comparison to the aforementioned object order approaches. We explore how the
performance of such particle-based approaches may be further improved using dynamic
scheduling strategies on the GPU.

9.1 Test System and Datasets

Again, we build our scheduling implementations in Softshell. The baseline implementations
are written in CUDA. For all tests, the computations carried out for generating the output
image are the same in the baseline implementation and our scheduled version, only the
assignment to execution units differs. As a test system, we used an Intel Core i7-940
Quad Core CPU (2.93 GHz) with 8GB RAM and a NVIDIA Quadro 6000 graphics card.
For our evaluations, we used three regular-grid datasets with different properties. The
Stanford Dragon 643 (Figure 9.1) has smooth volumetric structures, the Bonsai dataset
512 × 512 × 182 (Figure 9.4a) has many small structures, and the MECANIX volume
256×256×372 (Figure 9.4b) combines tissues with different densities. The two unstructured
grid datasets we use are a tetrahedralized version of the Stanford Dragon with 1.25 million
equally sized cells and the simulation data of a radio frequency ablation (RFA) with 1.25
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million cells. Contrary to the Dragon dataset, the cell sizes of this dataset vary by a factor
of over 1000.

9.2 Direct Volume Rendering
DVR is one of the best studied volume rendering algorithms. In DVR a ray is sent into a
scene for each pixel on screen, and equidistant samples are taken while passing through the
volume. The dataset is most often represented as a regular, three dimensional voxel grid of
density values. Interpolation methods are used to determine the exact density value for
each sample. These density values are then used in a so called transfer function lookup
to determine a color and an opacity value which are then used to compose the final color.
Using a front-to-back sampling order, sampling can be stopped upon reaching a sufficiently
high composite opacity, i.e., if successive samples would not significantly change the pixel
color anymore. This strategy is called early ray termination.

Figure 9.1: The Stanford Dragon, used in the DVR and PBVR case study, is a data set which
is simple both in terms of resolution (643 voxels) as well as internal structure. We use this
dataset in conjunction with a simple transfer function for worst-case tests.

9.2.1 Thread divergence during sampling

One possible problem with early-ray termination and other volume rendering methods
which require an unknown number of samples along rays is thread divergence. As warps
are executed in lock-step, divergent execution paths within warps can form a problem. If
the number of samples for rays within a warp significantly differs, only a fraction of threads
are active during the final traversal steps, which reduces the performance.

Intuitive parallelization of DVR utilizes one thread per ray (i.e., per pixel). Most
approaches assume that if rays within one warp are close in screen space, the accumulation
process along these rays will be highly correlated, leading to little divergence. However, due
to data inhomogeneities and varying opacities, threads might not show a high correlation.

We have analyzed the thread divergence while rendering three sample datasets. The
dragon datasets represents a very homogeneous example, with only two opacity values
defining the transfer function. As second example, we tested the Mecanix dataset with a
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transfer function setup mainly showing opaque bones, which might lead to thread divergence
at the boundaries. The third dataset is Bonsai, which has many small leaves, possibly
leading to divergence.

As shown in Table 9.1, the thread divergence for standard DVR (STD) is not very high,
with an average warp utilization between 78% and 84% when rendering images of 10242

pixels. If we decrease the viewport size, the divergence rises to about 60%, as neighboring
rays hit more different structures. The reason for this relatively good utilization might
also be found in the fact that we did not use tightly fitting bounding boxes, and thus a
large amount of empty space is traversed in a coherent manner. However, DVR in this
setup runs at about 60% to 80% peak performance.

9.2.2 Ray re-convergence

Even though locally threads diverge, globally many threads are executing the same code –
sampling along the ray. Using Softshell, we apply a thread re-convergence strategy. In the
sampling loop, the number of active threads is checked every L iterations. If the number
of active threads drops below P%, Softshell interrupts the execution and saves the context
of each thread. It then automatically divides the threads into still sampling threads and
finished threads. For each type, a list of threads is kept in global memory. When a sufficient
number of threads (enough to fill up an execution unit) have been stored in either of the
lists, they are submitted for execution. When the execution is restarted, the thread states
are recovered and each threads continues its execution where it has been stopped before,
with the difference that thread divergence has been removed. However, during the next
iterations threads may diverge again. Thus, we use the same mechanisms again.

Using the parameters L and P , we can control how aggressive our re-convergence
strategy should be applied, see Figure 9.2. Choosing a low L and a high P leads to stronger
divergence reduction. Even though, we could reduce thread divergence with our strategies,
this does not necessarily increase performance, because of the overhead of re-convergence
(see Table 9.1). This includes the costs of storing thread states, combining the paused
threads and restarting them, as well as possible worse cache utilization, as non-neighboring
rays might be grouped. A good parameter setting for L and P depends on the used data
set and complexity of the operations carried out for each sample. Note that we were not
able to completely remove divergence, because we do not break thread groups apart when
merging paused threads. For example, if only three threads are missing to form a perfectly
fitting group and the next paused thread group has more than three threads, we issue the
group which misses three threads for execution. Nevertheless, especially if the utilization is
low (below 70%), our re-convergence helped to increase performance, leading to speed-ups
of up to 1.54 times. As DVR does not show a high amount of divergence, we would expect
higher speedups for more complex volume tracing strategies, such as Monte-Carlo ray
tracing with multiple scattering.

9.3 Image Plane Sweep Volume Illumination

Image Plane Sweep Volume Illumination [136] renders volumetric datasets in an image-
based scan-line fashion with interleaved scattering and shadowing operations. The authors
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Table 9.1: Rendering times (ms) for DVR with different re-convergence strategies. STD is
the baseline CUDA implementation, RCVG corresponds to our re-convergence strategy with
L = 20 and P = 0.7, and A-RCVG is aggressive re-convergence with L = 1 and P = 0.95. For
big viewports, groups of rays are more coherent, leading to less divergence and a higher warp
utilization (util). If the utilization is higher, fewer loop iterations (its) are overall executed. Due
to the overhead of re-convergence a higher utilization does not necessarily lead to a speedup
(↑). How well the re-convergence strategy works, strongly depends on the dataset and the
already present thread divergence.

Dragon Mecanix Bonsai
method image time speed↑ its util time ↑ its util time ↑ its util

STD 10242 46.4 1.00 365k 84% 646.2 1.00 7.02M 78% 694.7 1.00 2.67M 82%
RCVG 10242 57.3 0.81 352k 87% 847.8 0.76 6.17M 88% 606.4 1.15 2.53M 87%

A-RCVG 10242 69.7 0.67 328k 94% 1199.4 0.54 6.09M 89% 732.8 0.95 2.44M 90%

STD 5122 28.2 1.00 119k 78% 348.5 1.00 2.35M 72% 451.6 1.00 918k 74%
RCVG 5122 27.5 1.03 116k 85% 366.3 0.95 2.00M 85% 329.1 1.37 848k 81%

A-RCVG 5122 31.7 0.89 109k 90% 449.7 0.77 1.92M 89% 357.9 1.26 798k 86%

STD 2562 16.2 1.00 36.3k 65% 155 1.00 649k 65% 213.9 1.00 277k 61%
RCVG 2562 12.9 1.26 36.1k 73% 140.6 1.10 532k 80% 147.1 1.45 233k 74%

A-RCVG 2562 12.6 1.29 31.2k 84% 156.8 0.99 488k 88% 139.3 1.54 216k 80%
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Figure 9.2: Warp utilization for DVR (excluding iterations of fully utilized warps). Using our
re-convergence strategy, the number of warps with low utilization is decreased, while warps
of higher utilization are generated. While a more aggressive setup clearly generates more
utilization, the overhead associated with re-convergence might actually decrease performance.

focus on a memory-efficient method for constructing a deep shadow map concurrently with
ray casting. Essentially, the shadow map is created slice-by-slice, while tracing the rays
which intersect with the current slice. Because only the current slice is kept in memory,
only one slice of rays can be traced at a time. To resolve slice to slice dependency ,
synchronization via the CPU is necessary after each slice, leading to a multi-pass algorithm,
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as outlined in Figure 9.3(a). This control switching between CPU and GPU not only is
time consuming due to the delay associated with starting a new pass. Additionally, the
parallelism in every stage might be too low to fully utilize the GPU. This fact is also
reflected in the performance measurements performed by Sunden et al., which shows that
squaring the number of pixels only halves the performance. This means that with a smaller
number of pixels per slice, the GPU was not utilized fully.

9.3.1 Increasing Parallelism

In a first step, to increase the parallelism per slice, we decided to alter the assignment of
threads to available tasks. Instead of using one thread per ray, we use multiple threads per
ray, establishing a cooperative execution scheme. We use all n threads assigned to a ray to
concurrently take consecutive samples along the ray, similarly to a windowing approach, as
shown in Figure 9.3(b). Then we locally perform hierarchical reduction to compute the
attenuation along the viewing ray, before we move the window by n samples. At the same
time, we use the samples to update the corresponding n values in the shadow slice. In this
way, we increase the available parallelism by the factor of n, but adding a small overhead of
a local hierarchical reduction. While this alternative sample scheduling strategy alleviates
the problem of underutilization, the overhead of synchronization still remains.

window

(a) (b)

Figure 9.3: The original image plane sweep volume illumination algorithm (a) works on one
pixel slice after the other. The dependency between slices (blue arrow) comes with the need to
synchronize via the CPU after each slice. Assigning one thread per ray creates the additional
problem of GPU underutilization, as only few thread blocks can be started per slice (red and
orange). In our approach (b) we assign one thread block of n threads per ray, advancing
the sampling window with a step size of n. Additionally, we schedule individual rays rather
than slices, reducing the dependencies to individual rays. With these two measures, we can
significantly increase utilization and performance.

9.3.2 Avoiding synchronization

To avoid the synchronization via the CPU and to allow concurrent execution of rays from
different slices, we build on Softshell’s ability to dynamically spawn threads on the GPU.
Instead of keeping one slice to read from and one slice to write to, we use a slice cache of
depth two. We start the rendering process by launching thread groups for the first slice.
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(a) The Bonsai dataset (b) The MECANIX dataset

Figure 9.4: The Bonsai dataset has many small leaves, which can increase thread divergence.
The MECANIX dataset is a challenge for efficient GPU execution, as it contains differently
sized structures of varying opacity.

Upon completion of each ray, we determine if enough data is available in the cache, so that
the immediate successors of that ray can be spawned. Depending on the light orientation,
each ray may have one, in case of the light direction being orthogonal to the slice direction,
or two predecessors, for arbitrary light directions. If a ray has two predecessors, we use
an atomic counter to model the dependency and only start successor rays if their counter
has been increased to two. In this way, we allow an arbitrary shaped execution front to
move over the image, as shown in Figure 9.3(b). In order not to overwrite information that
might still be needed, we alternate writing to the two cache slices. Using this scheduling
strategy, rays from different slices can be chosen to fill up free execution units, leading to a
higher utilization and a better performance.

Results To achieve a meaningful performance comparison, we use our own reference
implementation of Image Plane Sweep Volume Illumination in CUDA and compare it to our
scheduled version. Both approaches carry out the same number of operations and only their
scheduling differs. In Table 9.2 the render timings for the two tested data sets with different
resolutions are shown. Again, we see that the GPU is strongly underutilized for the original
approach, as increasing the resolution in direction parallel to the slice does not influence
performance. Especially for lower resolutions our scheduled version achieves significant
speedups (up to 25 times), which is due to the fact that the underutilization of the GPU
is most noticeable in these cases. But even for higher resolutions, our approach is three
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Table 9.2: Relative rendering times for different resolutions for the MECANIX and Bonsai
dataset rendered with Image Plane Sweep Volume Illumination. Light direction is −y. Rows
correspond to image resolution in y while columns denote the resolution in x. Note how the
base line implementation in CUDA hardly changes with the x resolution due to underutilization.
Our scheduled version however, introduces parallelism within rays and softens the dependencies
between individual slices, leading to speedups of up to 29 times.

MECANIX

CUDA Scheduled
res 64 256 1024 64 256 1024

64 1.00 1.02 1.01 0.04 0.07 0.17
128 1.97 2.03 2.18 0.07 0.16 0.38
256 4.01 5.21 5.20 0.13 0.31 0.96
512 7.95 10.59 10.97 0.26 0.60 2.44

1024 15.75 20.05 22.23 0.53 1.27 5.09

Bonsai

CUDA Scheduled
res 64 256 1024 64 256 1024

64 1.00 0.99 0.91 0.04 0.06 0.13
128 2.01 2.21 1.95 0.07 0.13 0.29
256 3.74 4.85 4.22 0.13 0.31 0.75
512 7.35 9.94 9.69 0.26 0.65 2.06

1024 14.44 19.68 19.86 0.51 1.28 4.91

times faster than the original. We mainly attribute that to avoiding the synchronization of
the individual slices.

9.4 Particle Based Volume Rendering

PBVR [21, 117] is an object-order method used to efficiently render unstructured grid data,
such as tetrahedral grids. A dense field of light-emitting, opaque particles is generated
inside volumetric datasets, which resembles a probabilistic discrete sampling of the volume.
The particle density on the cell-level is chosen proportionally to the opacity of the applied
transfer function, while the total amount of particles relates to the cell sizes. Volume
rendering is performed by simulating light emission of single particles with respect to
mutual occlusion relative to the image plane.

9.4.1 Algorithm overview

To avoid excessive memory consumption, the particle field is generated on the fly. As
all cells are independent, an intuitive choice is to parallelize the particle generation and
projection on the granularity of cells by launching one thread per tetrahedron. At first, we
compute the desired cell opacity by averaging the vertex scalar values and looking up the
transfer function. Using the opacity we determine the number of particles to be generated.
In the next step, each particle is individually generated by randomly choosing its position
within the cell and applying an ‘attraction’ term to accommodate for opacity gradients
within the cell. For each particle, we again evaluate the transfer function according to
scalar value interpolated from the cell vertices. Finally the particle is projected on the
screen. The steps taken for a single cell are outlined in Algorithm 9.

Only a few particles actually contribute to the final color value of a pixel. We use
an approach combining the benefits of super sampling and depth buffering. Particles are
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projected onto sub-pixels while their depth value is used to only maintain the particles
closest to the camera along the imaginary ray through a single sub-pixel. Volumetric
rendering effects are achieved by compositing the data stored in the sub-pixels into a final
color value with respect to their corresponding depth ordering.

Figure 9.5: Tumor Ablation Simulation with 1.22 million cells in differently aligned view. Due
to strongly varying cell sizes (factor 1000), this data set can lead to severe imbalances during
rendering.

Algorithm 9: PBVR: particle generation
1 opacity = averge(getOpacities(cellV ertices[. . . ]) ;
2 n = drawNumParticles(opacity, cellSize) ;
3 for x = 0 to n do
4 b[1 · · · 3] = random(3) ;
5 b[:] = b · opacities[1 · · · 3]/max(opacities[:]) ;
6 px = generateBarycentricPos(cell, b) ;
7 sx = interpolateScalar(cell, px) ;
8 opacityi = lookupOpacity(sx, transferFunction) ;
9 projectParticle(px, sx, transferFunction) ;

10 end

9.4.2 Thread divergence during particle generation

The number of particles generated for a particular cell is directly related to the size of the
cell and the transfer function. If we consider grids from arbitrary sources, such as physical
simulations, inter-volume cell sizes and hence particle counts may vary dramatically. Thus,
the loop over all particles (see Algorithm 9) may lead to severe thread divergence.

We again evaluate the divergence arising during rendering. To test uniform cell sizes,
with divergence depending on the transfer function only, we use the tetrahedral version of
the dragon dataset with 1.25 million cells. The intended scenario, a real unstructured grid,
is tested using the simulation data of heat-based radio frequency ablation. The dataset
consists of 1.22 million cells, with cell sizes varying between 0.1 and 111.8 volumetric units.
Thread divergence during rendering is shown in Table 9.3.
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9.4.3 Thread compaction for particle generation

For this use case, we face a situation similar to DVR. Globally, there is a sufficient number
of threads executing the same code to ensure high utilization. However, in a local scope,
threads are strongly diverging. Thus, we again apply our thread re-convergence strategy
and check the number of active threads every L iterations. If the number of active threads
drops below P%, we interrupt the execution and try to form non-divergent thread groups
via global memory. The only difference in this example is that the recombination needs to
only consider threads which still need to project particles, because there are no additional
computations to be carried out after exiting the loop.

Table 9.3: Thread divergence observed during PBVR for the Dragon and Ablation dataset,
both rendered with 500 million particles. Note that the divergence characteristics are mostly
independent of the number of particles and screen resolution and thus the same for all run
tests.

Ablation Dragon
method its util its util

STD 9.50M 17.1% 4.14M 32.1%
RCVG 6.41M 21.6% 3.94M 32.8%

A-RCVG 4.93M 28.8% 3.55M 36.2%

Table 9.4: Render times (ms) for PBVR with and without re-convergence strategies. STD is
the baseline CUDA implementation, RCVG corresponds to our re-convergence strategy with
L = 20 and P = 0.7, and A-RCVG is aggressive re-convergence with L = 1 and P = 0.95.
While the Dragon dataset with its uniformly sized cells does not profit from our re-convergence
strategies, unstructured grids with differently sized cells like the Ablation dataset can be sped
up significantly.

Dragon Ablation
particles STD RCVG speed↑ A-RCVG speed↑ STD RCVG speed↑ A-RCVG speed↑

5 · 107 31 35 0.89 45 0.69 95 140 0.68 66 1.44
1 · 108 56 58 0.97 89 0.64 148 142 1.05 122 1.21
5 · 108 209 211 0.99 428 0.47 530 148 3.58 577 0.92
1 · 109 375 371 1.01 848 0.44 927 161 5.75 1186 0.78
4 · 109 1320 1230 1.07 3562 0.37 3180 243 13.08 5180 0.61

9.4.4 Results

The thread divergence statistics presented in Table 9.3, show that although our re-
convergence strategy is able to nearly double the utilization within warps for the ablation
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dataset, we are still far from 100% utilization. The majority of divergence is caused by
a few warps which only have one active thread. The problem with these warps is that
they show up at different times during the execution and stay in the divergence list for a
long time. If elements remain in the list for too long, we execute them, even if there are
no other groups to merge them with, because we cannot know, if any other threads will
eventually become available.

In Table 9.4 we present the timings for the two datasets with and without thread
re-convergence strategies. For the dragon dataset, with its uniformly sized cells, our
re-convergence strategy (L = 20, P = 0.7) cannot significantly increase utilization or
performance. Using an aggressive setup (L = 1, P = 0.9) we can increase the utilization
by 4% and reduce the number of iterations executed by 600k, but the overhead of re-
convergence significantly reduces performance. For the ablation dataset, the aggressive
setups performs well for low particle counts, for a high number of particles, the overhead
again decreases performance. However, non aggressive re-convergence leads to speedups of
up to 13 times, especially for high particle counts. That is especially interesting, as the
utilization was increased by 26% only. We can only attribute that to additional synergies
created by regrouping, e.g., the bus bandwidth can be strongly decreased if threads access
neighboring memory locations.

9.5 Discussion
We have shown that GPU-specific issues such as thread divergence or GPU underutilization
are inherent to state-of-the art volume rendering techniques. Using advanced scheduling
strategies, we were able to increase the performance for particle based volume rendering by
a factor of up to 13 times and for image plane sweep volume illumination by up to 26 times
(O1, O5). Although, in general we could increase the warp utilization for direct volume
rendering, we could only improve performance for certain data sets, due to the overhead
associated with our re-convergence strategies. Using advanced GPU scheduling strategies
has the potential to speed up a variety of state-of-the-art volume rendering techniques. We
believe that especially complex illumination techniques which involve multiple stages will
profit the most from custom GPU scheduling.
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Open world games such as Grand Theft Auto, Skyrim, and Batman: Arkham City are
very successful because they grant players the freedom to explore huge, detailed virtual
environments such as cities at their own pace. Procedural modeling has the potential
to drastically reduce manual efforts in creating such huge environments, allowing game
designers to concentrate their efforts on the elements relevant for narrative and gameplay.
However, the grammar derivation of an environment of the size of Manhattan with 100 000
buildings can take up hours, generating billions of polygons and consuming terabytes of
storage.

The sheer size of these datasets limits the usefulness of the procedural approach.
Rebuilding the environment after parameter tweaking becomes a costly operation, making
rapid design iterations impossible. Game levels do not fit in GPU memory and geometry
data must be streamed from external storage. Real-time rendering of large models requires
visibility culling and levels of detail, making the geometry streaming a complex exercise in
real-time data management between CPU and GPU.

To overcome these problems, a combined real-time evaluation and rendering of rule
based grammars is needed [107]. We address this need by evaluating the grammar directly
on the GPU, generating the geometry that is needed for the current view just in time.
A pure GPU approach makes geometry streaming unnecessary, but it requires that all
procedural modeling operations are completed within a stringent time budget of a few
milliseconds. Unfortunately, there are several reasons why executing rule-based grammars
efficiently on the GPU is not straight forward:

R1 State of the art shape grammars require access to local geometric context for features
such as occlusion queries and snap-lines. This introduces non-trivial dependencies
between rules, and makes parallelization a difficult problem.

R2 The SIMD architecture typical for today’s graphics processors only works well
on homogeneous workloads. Grammar derivations involving many different rules
introduce control flow divergence on SIMD units, easily leading to a performance
decrease of more than an order of magnitude.

163
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R3 Individual rules typically only involve a few computations. Even if one can assign
homogeneous sets of rules to fully occupy all SIMD units, the overhead of launching
computations on the GPU (kernel launches) and writing results back to global memory
on the GPU can easily consume 90% of the available time.

R4 Visibility culling or level of detail can usually only be computed after the entire
grammar has been evaluated. This is wasteful as geometric primitives are first
generated, only to be removed again later using additional computational cycles.

R5 Exploiting temporal coherence is essential to avoid redundant computation. However,
level of detail and visibility culling make it necessary to dynamically add or remove
geometry. This requires fine grained memory management, which can lead to severe
slowdowns on current GPU architectures.

The combination of these difficulties has limited the success of previous attempts at
procedural modeling on the GPU. Typical restricted solutions rely on simplified grammars
of limited appeal and exhibit poor speed-up over evaluation on the CPU. This chapter
presents PGA (Parallel Generation of Architecture), a system that overcomes the above
difficulties and is able to procedurally generate and render huge cities entirely on the GPU
with competitive performance. Its main contributions are:

• The PGA grammar provides fully featured modeling capabilities and is able to create
visually appealing, realistic cities. This is not surprising as it is based on a redesign
of cga-shape [96] and thus supports mass modeling, evaluation of local geometric
context, level of detail and stochastic behavior.

• Despite its expressive power, PGA lends itself to efficient parallelization on a SIMD
architecture. To this aim, we present a novel GPU based rule scheduler, which
exploits parallelism within rules and also groups across rules both locally and globally,
yielding significantly faster derivation than previous approaches.

• The design of PGA makes it easy to integrate visibility culling, level of detail and
frame-to-frame coherence into the parallel derivation process. As a result, the
rendering system supports real-time walkthroughs of cities with virtually unlimited
size and detail, managing models amounting to billions of polygons.

10.1 Previous Work in Procedural Modeling
Grammar-based procedural modeling. The current state of the art in procedural
architecture modeling is still cga-shape [96]. The evolution that lead to cga-shape includes
Stiny’s original shape grammars [132], set grammars [133], and split operations for façade
modeling [147] combined with transformation operations from L-systems [110]. Occlusion
queries and snap-lines in cga-shape provide the ability to control grammar derivation
based on local geometric context. Environmental influence is also exploited using synthetic
topiary [109], user designed curves [111], guided derivations [7], interconnected struc-
tures [61], vector field guidance [75], and self-sensitive L-systems [104]. Other noteworthy
extensions to grammar-based modeling are more general terminal symbols [62] and mesh
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refinement [39]. There are a number of alternatives to grammar-based modeling that are
also able to generate procedural models of high quality [73, 76, 90].

Degree of parallelism in grammars. L-systems allow to compute the transformation
for each symbol in a string in parallel, implying an average degree of parallelism proportional
to the length of the string S. Context sensitivity in L-systems is usually defined on the
neighbors in the symbol string and does not affect parallelism. For architecture, split
grammars are preferred over L-systems [147]. Split grammars use tree-shaped derivations.
Because of parent-child relationships, the degree of parallelism is again proportional to
the average number of shapes on one level S. Context-sensitivity in cga-shape operates
on a geometric, rather than a symbolic representation. This makes the approach more
expressive, but also requires strict rule priorities. Therefore, the standard formulation of
cga-shape does not allow for parallel evaluation.

GPU-based grammar evaluation. Their implicit parallelism makes L-systems and
split grammars attractive for parallel evaluation. This can be done on CPU clusters [152],
but clearly, a GPU is more attractive for this purpose as it provides inexpensive parallelism
and the ability to render results directly. However, even the task of mapping a simple
L-system to a SIMD architecture produces difficulties. For example, a recent L-system
generator [79] for the GPU requires multiple expensive kernel launches per iteration (R3)
to count the symbols, compute the symbols’ output positions and execute the actual rewrite.
Moreover, neighboring elements in the string usually map to different rules, so assigning
each symbol to one thread leads to thread divergence (R2). As a result, GPU evaluation of
context-sensitive grammars on the GPU was reported to be even slower than on the CPU.
Lacz and Hart [66] evaluate split grammars using vertex and pixel shaders combined with
a render-to-texture loop (R3). The main load in their system comes from global sorting of
intermediate symbols. A similar grammar is evaluated using multi-pass rendering and GPU
stream output by Magdics et al. [81]. They reduce divergence by employing a different
shader for each output symbol, but still require many rendering passes (R3).

Multi-pass rendering can be circumvented by using a fixed-size stack [83]. However,
this again leads to divergence (R2) and limits parallelism to the number of buildings.
More severely, the stack size limits derivation complexity and makes it necessary to rely
on instancing of detailed polygonal stock models for terminal shapes. Neither geometric
context nor stochasticity is supported. Table 10.1 compares the above approaches to PGA.

Finally, non-parallel grammars can still be evaluated in parallel per pixel, for example,
façade textures [35, 84]. However, this approach is highly redundant for neighboring pixels.
Similarly, rasterization can be exploited to prune invisible terminals [60].

10.2 Parallel generation of architecture

The key factor for fast rule derivations on the GPU is parallelism. For maximum parallelism,
our parallel shape grammar for architecture (PGA) extends the rule set of cga-shape in two
distinct ways. First, we introduce a stage-based evaluation model, laying the foundation
for the parallel execution of different rules while preserving context sensitivity. Second,
PGA enables parallelism on the level of individual rules, tailoring it to an execution on
SIMD architectures.
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Table 10.1: While cga-shape has a high expressiveness and supports arbitrary context queries
between rules, no parallel implementations of cga-shape exists. Previous parallel grammar
implementations hardly support context sensitivity, limit the maximum depth of the execution
tree/number of rewrites, and do not allow to express complex buildings (R1). Although
PGA supports cga-shape-style context-sensitivity, our approach shows the highest degree of
parallelism (R1), optimizes for the SIMD model (R2), only requires one kernel launch per
stage (R3), and reduces the writes to slow global memory (R3). For a large city one can
observe: T > S > B > D > R.

method context sensit. rewrites parallel. launches SIMD control mem. writes

cga-shape [96] geometry ∞ 1 - - -
Magdics et al. [81] n.a. ∞ S/R D ·R sort to bins S ·D

Lipp et al. [79] symbols ∞ S 4 ·D n.a. 4 · S ·D
Marvie et al. [83] n.a. < 8 B 1 n.a. T

PGA geometry ∞ ≈ 4 · S 3 grouping ≈ S ·D/32
S average symbols on level; D depth of tree/rewrites; R rules; B buildings; T terminals

10.2.1 Stage-based parallel rule evaluation

In cga-shape, dependencies among rules owed to geometric context are expressed as
priorities. For instance, walls must be created before windows, so that windows facing
occluding walls can be suppressed. Rule priorities make it very simple to determine serial
execution by sorting, but for parallel scheduling, we are interested in efficient identification
of independent rather than dependent rules (R1).

Therefore, PGA replaces the notion of priorities with stages. Rules within one stage
can be evaluated in parallel; synchronization is only necessary for the beginning of the next
stage. Every rule is assigned one stage and is only allowed to generate symbols for the
same or a following stage. This approach differs from cga-shape by explicitly representing
independence among the rules contained in each stage. Every stage supports geometric
queries concerning neighboring entities to allow for context-sensitive evaluations. We have
found a three-stage model consisting of city layout, mass modeling and facade details to
be sufficiently expressive.

Sibling queries PGA allows rules to trace information created by predecessor rules,
even from upstream stages and including queries to siblings. E.g., a wall tile can query if
it is located at a corner by checking how many neighbors it has. The rule creating the tile
also creates all its neighbors and can supply this information to the query.

Consistent-evaluation queries Geometric context queries usually target shapes in
close proximity, but these shapes are not necessarily limited to predecessors and siblings
in the symbolic derivation. However, we can still create an efficient query mechanism by
exploiting the fact that close-by shapes will likely correspond to close-by symbols in the
derivation. To this aim, we analyze the possible generation paths for the shape being
queried and store information about the last common predecessor with the querying symbol
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during compilation. When the query is being executed, we reconstruct the generation
process from the common predecessor, yielding the correct result irrespective of whether
the queried shape has already been generated.

10.2.2 Parallelism within rules

For the sake of parallelism, we can go further than just executing multiple rules in
parallel. By restructuring operations and masking results by arithmetics, we avoid branches
and enable SIMD execution within a rule. Multiple threads for one rule reduce thread
divergence (R2) and significantly increase the number of available threads, yielding better
utilization.

To enable compile-time optimizations, PGA requires the thread count for a rule to
be known before execution. The thread count can mostly be determined automatically.
For example, a split rule creating four elements will work well with four threads. When
the thread count depends on the input data, such as the number of floors depending on
the building height, runtime profiling can be used to determine a suitable thread count.
Finally, the thread count for a given rule can be specified manually.

Notation We extend the cga-shape rule notation with the following parallel construct:

predecessor : cond tc−→ successor : prob,

where predecessor corresponds to a symbol that will be replaced with successor. Successor
can contain a combination of different operators, which are evaluated by tc threads in
parallel. The rule is chosen with probability prob if condition cond holds. If no thread
count is specified, PGA will choose an appropriate number.

Parallel operators Most work-intensive operators in shape grammars can be parallelized
similar to the following examples (for a more detailed description, see supplemental
material).

Repeat fits as many parts into a shape as possible, using one thread per output
shape. In the following example, eight threads are used to split a skyscraper into floors of
floor_height.

skyscraper 8−→ RepeatY{floor_height : floor}

1 template<c l a s s OutShape , c l a s s InShape>
2 void RepeatX ( InShape shape , f l o a t width )
3 {
4 i n t N = shape . s i z e . x / width ;
5 f o r ( i n t i = t i d ; i < shapes ; i += tc )
6 {
7 f l o a t 3 s i z e = shape . s i z e ∗ ( shape . s i z e . x / N) ;
8 f l o a t 3 pos = shape . pos + i ∗ s i z e . x ;
9 generate<OutShape>(shape , pos , s i z e ) ;

10 }
11 }
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The implementation of Repeat follows a SIMD model. In every iteration, tc new shapes are
generated in parallel. Only the last iteration can lead to divergence if N/tc is not integer.

Component split accesses faces or vertices of a volumetric shape with one thread per
element.

floor 4−→ SplitSidefaces{façade}
To avoid thread divergence, the operator uses rotations and multiplications rather than
if-statements to select faces and vertices:

1 template <c l a s s OutShape>
2 void S p l i t S i d e f a c e s ( InShape& shape )
3 {
4 f l o a t 3 w = rotateY ( t i d ∗ 0 .5 f ∗ pi ) ∗ f l o a t 3 ( 1 , 0 , 0 ) ;
5 f l o a t 3 pos = shape . pos + shape . s i z e ∗ w;
6 f l o a t 3 s i z e = shape . s i z e ∗ ( f l o a t 3 (1 ) − w) ;
7 generate<OutShape>(shape , pos , s i z e ) ;
8 }

Non-parallel operators Operators such as geometric transformations (like translation
and rotation), shape modifiers, color transformations, random numbers, conditionals and
shape definitions cannot be implemented using multiple threads. However, they can still
be executed in parallel when sequenced with parallel operators, e.g., rotating the outcome
of a component split for generating a windmill:

sails
4−→ SplitSidefaces{RotateZ{20◦ : sail}}

To minimize per-rule overhead, it is most efficient to combine parallel and non-parallel
operators into a single rule. Note that the same amount of parallelism is available in a
combined rule as in separate rules. In the windmill example, a single rule is evaluated by
four threads. Splitting the example into one sideface selection and one rotate rule, four
threads could be used to execute the sideface rule and one thread to execute each of the
four rotate rules, yielding the same amount of parallelism at five times the overhead.

Example We demonstrate the advantage of assigning multiple threads to a rule on
a simple building. We split each façade into floors. Each floor is split into tiles, each
containing a window and surrounding walls. At street level, we add a door in place of a
window (Figure 10.1).

façade 2−→ RepeatY{2.5 : floor}
floor : at(street) 3−→ SubdivX{2.2 : door, 2.2 : tile, 2.2 : tile}
floor : !at(street) 2−→ RepeatX{2.2 : tile}

door 4−→ Border{0.5 : wall, ε}
tile 4−→ Border{0.5 : wall,window}
wall 2−→ Geometry{brick}

window 2−→ Geometry{glass}
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Figure 10.1: (left) A very simple building is specified with seven rules. If a single thread is
used to execute each rule (center), most SIMD cores are unoccupied, and divergence further
delays execution (darker color, see arrow). (right) With parallel rule evaluation and grouping in
PGA, SIMD units can be utilized better, and divergence is avoided, leading to more efficient
execution. Note that the same amount of work (colored area) is done in both cases, but PGA
achieves better scheduling.

10.3 Rule scheduling

The design of the PGA grammar allows for a high degree of parallelism (R1), but additional
measures are needed to address thread divergence (R2) and minimize the number of kernel
launches (R3). To ensure consistent nomenclature, we again assume a stream processing
model in the following discussion. Note that a shader-based implementation would face
the same problems.

10.3.1 Reduction of launches

A naïvestrategy for deriving grammars on the GPU is to keep a set of S active symbols in
GPU main memory. A kernel with S threads is started to execute the corresponding rules,
writing Snew newly produced symbols to memory. When the kernel finishes, Snew is read
back from the GPU, and a new kernel is launched. This approach requires synchronization
between kernel launches for every step of the derivation, which stalls the GPU for 50µs
and leads to low performance.

With Softshell we overcome this issue. Each of the three PGA stages corresponds to
one megakernel launch. In each state, all threads retrieve symbols from the work queue
and execute rules continuously, until all symbols for this stage have been processed. Using
the thread aggregation methods homogeneous workloads can be assigned to all threads of
a group. Newly generated symbols are inserted into the queue if they should be executed
within the same stage. If symbols for a following stage are created, we insert them into
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separate queues and in this way delay their execution for the next megakernel launch. In
this setup the number of kernel launches is always equal to the number of stages.

10.3.2 Rule grouping

A key factor for fast rule derivation is avoiding divergence (R2), which requires assigning
symbols of the same kind to all threads of a warp. Sorting symbols in global memory
can become a major bottleneck due to memory latency, taking up to 0.5ms for about 500
symbols [66].

Fortunately, we do not need to sort all symbols to generate groups of a sufficient size.
Due to parallelism within rules, combining just a few symbols is usually sufficient. In
Softshell we can use a hash map in global memory to automatically store a set of active
symbols for each rule. A new symbol is only inserted directly into the queue if it can be
executed divergence-free, i.e. the symbol uses a number of threads that are a multiple
of the warp size. Otherwise, it is inserted into the hash map. The hash map is scanned
periodically. If any rule has a sufficient number of symbols ready to be scheduled, we
transfer them to the queue (Figure 10.2). Softshell also schedules symbols for execution if
the work queue runs low on entries or if symbols have been stored in the hash map for too
long.

local rule grouping  

SIMD 
 rule execution 

global rule  queuing 

SIMD 
 rule execution 

global rule 
 grouping  

local rule grouping  

Figure 10.2: To efficiently manage symbols awaiting evaluation, we use a two level approach.
Global queuing and grouping (blue) employs a hash map to merge rules of the same type before
they are inserted into the execution queue. To avoid the costly transfer to global memory, we
introduce a local grouping mechanism (green). Each block keeps a list of a few rules in local
shared memory. These rules are executed before new ones are drawn from the global queue.
If local grouping runs out of memory or if there are not enough rules available, we resort to
global grouping.

10.3.3 Local grouping

Although the rule grouping is orders of magnitude faster than global sorting, the overhead
of writing symbols to global memory can still be significant (R3). Therefore, we first



10.4. Real-time rendering of procedural cities 171

group symbols in local shared memory. As shared memory is limited and there might be
hundreds of different rules to be scheduled, we cannot keep a queue for each rule. Instead,
we use our dynamic shared queue and allocate new sets as needed. Each set has a header
with rule type, number of entries and time stamp. When a new symbol is created, we scan
through shared memory and search for a set of the given type to add the symbol to it.

In every iteration, we check shared memory first. Any complete set matching the
current stage is immediately removed from shared memory and executed. Otherwise,
elements are drawn from the global queue. If many complete sets are found or if shared
memory is full, we move them to the global queue. Incomplete sets are also moved to the
global queue after a certain time, so they can be merged with symbols from other SIMD
units.

This rule scheduling has several advantages: First, the number of reads and writes to
global memory is minimized. Second, if local structures are full and we need to spill to
global memory, the resulting writes are highly coalesced, leading to very efficient memory
bus usage. Third, shared memory is nearly equivalent to registers in terms of speed, while
still allowing to feed coherent workloads to thread blocks. And fourth, multiple threads
per rule allow sets to be small while still providing work for a whole thread block.

10.4 Real-time rendering of procedural cities

While the proposed rule-scheduling system helps to overcome R2 and R3, generating
an entire city in full detail still exceeds GPU memory capacity. However, rendering the
current view only requires the geometry of the buildings within the viewing frustum, ideally
represented at a level of detail consistent with their apparent size to avoid aliasing.

Thus, we describe a strategy for generating the necessary geometry just in time. We
prune the execution tree where needed (R4), taking advantage of view-frustum and visibility
culling and dynamically insert terminal symbols to generate level of detail (LOD). When
the view is changed, new buildings come into sight and LOD should be adjusted. In such a
case, parts of the geometry need to be re-generated. However, most of the geometry can
be re-used by exploiting frame-to-frame coherence (R5).

We discuss the combined generation and rendering process along the three stages of
our model (Figure 10.4).

1. City layout and building hulls For the city layout, we use GIS data to specify
building lots or generate street layouts and parcels procedurally. For each parcel, we
also create a boundary volume (hull).

2. Building specification Given the hull of a building, additional constraints and
parameters concerning the building are specified. This information must be sufficient
to enable context-sensitivity in the following stages.

3. Building construction In the final building construction stage, rules can be exe-
cuted as they become available, allowing a maximum degree of parallelism. Therefore,
the rules should only rely on the information that has been defined in previous stages.
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Figure 10.3: (top) Street-side view of a city. Using a combination of frustum culling, visibility
culling, and level of detail, the amount of generated and rendered geometry can be reduced
without affecting the final image. (bottom left) The full scene consists of 5869 buildings, 10M
rules, and 23M triangles. (bottom right) The reduced geometry has 17 buildings, 46k rules and
55k triangles.

10.4.1 City layout, hulls and frustum culling

The purpose of this stage is to define where buildings should be generated and which
volume they are allowed to occupy. Initially, the user specifies a single rule. The input
data for this rule can be provided by loading GIS data or by procedurally generating cells.
The initial rule is called for every building footprint in the GIS data set. If no footprints
have been loaded, the world is split into a grid, and the initial rule is executed for each
grid cell within a user specified radius around the camera.

Building hulls For the output of the first stage, we use so called building hulls: an
intermediate structure describing the space a single building is allowed to fill. Building
hulls can be used as efficient query objects in the building specification stage, so-called
building representatives.
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Figure 10.4: Splitting the rule derivation into three stages facilitates context-sensitive evalua-
tion while aiding parallelism. In the first stage (top), the street layout is set up and (center)
the maximal bounds of buildings are specified as hull models. The hull colors correspond to
different building classes. (bottom left) The output of the second stage are detailed mass
models, where brown encodes opaque structures and yellow corresponds to enclosing structures,
e.g., structures covering the fence around the house. (bottom right) During the final stage, the
entire building geometry is constructed.

View-frustum culling If a shape has been marked as a building representative, it is
automatically subject to view frustum culling when its rule is being executed. To implement
view frustum culling, we apply the trivial reject test of the Cohen-Sutherland line clipping
algorithm in 3D to all vertices of the shape: If all vertices are outside of the same side of
the frustum, the shape is ignored. We parallelize this step using eight threads per shape
and combine the voting masks for all threads using a hierarchical reduction in shared
memory. If a building hull is not visible, the entire building need not be derived, skipping
all following stages.
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10.4.2 Building specification and visibility culling

The purpose of the building specification stage is to define the outer geometry of a building
as accurately as possible, so that sufficient information for the following rules is available.
This process is generally known as mass modeling. To specify the mass model, we again
rely on the building representative, which can be accessed in all rules for the building.

When a shape is added to the mass model, additional information can be attached to it.
One additional information item is the shape’s visibility state, which can either be opaque,
enclosing or hidden. Opaque shapes are expected to be fully filled by the building and do
not allow a viewer to see through. Enclosing shapes will contain visible shapes, but can be
looked through from some viewpoints. Hidden masses will not contain any visible shapes.
These properties are important for queries (Figure 10.5): To get the right results from
queries, the entire mass model must be specified. We expect the building specification to
be completed when a building is moved to the next stage.

Snap-lines Like cga-shape, we also allow the creation of snap-lines. Operators like
Repeat or Subdivide automatically snap their splits to the snap-lines specified for the
building. Using snap-lines, elements among different mass model parts can be aligned
(Figure 10.5). To efficiently implement the concept of snap lines, we use the building
specification stage. During this stage, snap-lines can be added to buildings, but not queried.
When the building is moved to the next stage, we build an accelerated search structure for
fast queries.

Figure 10.5: Model of the Cross-Towers being built in Seoul. (left) Using snap-lines, the
floors and window of the individual tower parts are aligned, creating a coherent façade. (right)
Different visibility states used in mass modeling: In addition to the opaque tower shapes (not
depicted), enclosing boxes (yellow) are added around the towers to include the fly sheets and
on top of the bridge to capture the assembly of outdoor furniture. A hidden corridor is set up
between the doors (red). During rule derivation the outdoor furniture is tested against this
corridor, avoiding an obstruction of the walkway. Accordingly, the façade tiles are transformed
into doors if they intersect with the corridor.

Visibility culling Especially in city walkthroughs, large portions of the urban envi-
ronment can be removed by visibility culling. Using the information provided during
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mass modeling, we can implement visibility culling after the building specification stage is
finished. Since the use of hardware occlusion queries would require to render every building
individually and to switch back and forth between rule derivation and queries issued from
the CPU, we use a custom hierarchical depth buffer [32]. When a building is ready to move
to the next stage, the mass model shapes are queried against this depth buffer. If a shape
flagged as opaque or enclosing is determined to be visible, the building is constructed, and
we update the depth buffer with the maximal depth of the opaque shapes. If no part of
the building’s mass model is visible, the entire building can be skipped.

To efficiently query and update the depth buffer, we divide the initial level of the
buffer into 8× 8 cells and assign one thread to each cell. For testing a shape against the
buffer, we traverse the sub-tree associated with each cell and compare the cell’s depth
to the minimum depth of the shape. For checking if a shape surrounds a cell or a cell is
contained within a shape, we exploit the fact that all our basic shapes are convex. We
project each shape’s vertices to screen space and compute their outline using the parallel
Jarvis’s march algorithm [51]. Testing the convex polygon against the rectangle cells of
the depth buffer is trivial. If the shape contains round elements (cylinders or spheres), we
use the circumscribed circle for the depth query and the inscribed circle for the update,
implementing a conservative test and update strategy.

For making visibility culling most effective, we process buildings close to the camera
first. Our grammar derivation is highly parallel, so we cannot enforce any ordering on the
buildings’ processing order. However, it is still possible to initiate the execution in a way
that favors closer buildings. In the city layout and building hulls stage, we run through
the cells or building outlines (in case of GIS data) in a spiral sequence, starting with the
location nearest to the camera. Because the queues are loosely operating in FIFO manner,
buildings are approximately constructed in the desired order.

10.4.3 Building construction and level of detail

The building construction stage starts with the rules for the mass model shapes. From
this point onwards, all available rules can be executed immediately, because no later
synchronization points exist. Occlusion queries and snap-lines automatically provide the
data required for the building under construction.

Procedural level of detail PGA allows to stop the evaluation of rules early and insert
a terminal symbol, if a point is reached for which further derivations would not visibly
enhance the rendering. Because the input shape for each rule approximates the results of the
following operations, we use this shape as a terminal for LOD. To produce a result visually
similar to the detailed model, we apply textures. These LOD textures are automatically
generated in a preprocessing step. There are three issues with this approach: First, the
input shape does not always match the shapes produced in later derivation; e.g., if the two
dimensional tiles of a façade are augmented with balconies, the shapes do not even share
the same dimensionality. Second, the shape’s appearance may depend on the input shape
size and on random numbers drawn during rule evaluation, and thus a single, precomputed
texture can never cover all possible instances. For example, the number of windows on a
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floor depends on the length of the wall. And third, there might be probabilistic selection
among alternative rules.

To overcome the problem of non-matching shape boundaries, we rely on user input
during rule design. The user can flag each rule as a possible LOD terminal. In this way,
LOD shapes that do not match the boundaries of the following rules can be avoided.
Furthermore, it is possible to control the number of generated LOD terminals. To deal
with the influence of input size and random numbers on the shape’s appearance, we
analyze the operators used within the rule, create one unified texture and adjust texture
coordinates to match the desired appearance as closely as possible. Consider Figure 10.6:
First, we automatically create a sufficient number of samples for the rule, varying the input
parameters and random seeds. Next, we align the samples. For the tile rule, which creates
randomly sized walls with a window in the middle, all windows are aligned. For the floor
rule, which creates as many tiles as fit into the scope of the floor, the tiles are aligned. The
aligned combination of images is then used as LOD texture. When an LOD terminal is
created, the texture coordinates are adjusted accordingly, selecting a fitting border around
a window or selecting the right number of tiles.

tile −→ Border{rand4(0.1, 0.8) : wall, window}

(a) LOD texture generation for tile rule

floor −→ RepeatX{2.2 : tile}

(b) LOD texture generation for floor rule

Figure 10.6: LOD textures are generated by sampling the input space of the rules. Analyzing
the operators used in the rules, the textures for different input parameters can be aligned
to generate a single LOD texture per rule. During rendering, the right texture segments
are selected. In this way, one LOD texture can be used for different buildings as shown in
Figure 10.7.

However, not all rules can be covered by this strategy, e.g., if the position of a door is
randomly chosen. In cases where we cannot provide a special strategy for the operator,
we simply merge all randomly sampled instances, creating an average among all possible
shapes and use it as texture. When creating the LOD textures, we process the rule tree
bottom up. Using the terminal rules, we sample the lowest level of LOD terminals. These
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LOD terminals are then used in the creation of the next level of LOD shapes. While the
textures are created, we also evaluate at which distance LOD should be switched. For
this decision, we compute the average pixel difference between the LOD version and the
previously generated samples for varying viewing distance and store the information for
rendering (Figure 10.7).

10.4.4 Frame-to-frame coherence

Real-time performance is only possible by using frame-to-frame coherence. If the camera
parameters do not change much, most of the buildings with their respective LOD selections
can be re-used. The only difficulty is keeping track of the vertex and index buffer.

Sparse LOD rule tree To keep track of entities in the scene, we keep a list of buildings
and an associated sparse tree of rules that are potential LOD terminals. In each frame, we
run through all buildings, testing their visibility and updating the custom depth buffer. If a
building is not visible, because it is too far away from the camera, we remove it completely
and rebuild it only when it comes into range again. If a building is occluded by others or
out of the frustum, we remove all geometry associated with it, but keep its specification
to enable a quick rebuild. If a building is visible, we evaluate its LOD nodes. Should a
sufficient number of LOD nodes be ready for change, we recreate the building according to
the current view.

Buffer management To keep the overhead of vertex and index buffer management low
and to avoid memory waste, we build a memory management structure directly in the index
buffer. We start by allocating a vertex and index buffer with sufficient size, initialized with
zeros. Unused parts of the index buffer will thus be ignored by rendering. We partition the
index buffer into blocks similar to the buddy memory allocator [58]. With each block in
the index buffer, we associate a block in the vertex buffer based on an estimated vertex to
index ratio. We choose the smallest block size to be able to hold the lowest LOD version
of every building type.

We use the first index in each block as an atomically operated counter to keep track of
the number of available indices in each block and the second index as a pointer, creating
a list. The third index is a copy of the second, forming a degenerated triangle that is
skipped during rendering. For each block size, we keep a list of free blocks. If a new block
is requested, we check if a free block of suitable size is available. If this is the case, we
remove it from the list. If not, we take a block of bigger size and split it. If blocks are
freed, they are inserted again into the respective lists. To counteract fragmentation, we
periodically scan the lists, merge neighboring blocks and move blocks with lower indices to
the front.

To manage the allocation of vertices and indices during rule derivation, each building
keeps an additional list of its index blocks. If a rule requests memory, we try to allocate
indices from the front of the list by increasing the counter in the block. If there is insufficient
space in the block, or if there is no block in the list yet, we request a block of the next
bigger size from the memory manager. If the geometry of a building is removed, we free all



178 Chapter 10. Procedural Modeling

(a) Full detail 176.2k vertices, 88.0k triangles

(b) 14.8k vertices, 7.4k triangles (c) 2.7k/1.3k (d) 418/268

Figure 10.7: Different views on two towers with LOD rendering enabled. Both buildings use
the same LOD textures for tiles, floors and façades, although the window size and number of
windows per façade differ. Different LOD settings blend seamlessly on the right building in (b)
and (c). Also note that context-sensitive rules do not create windows where the parts of the
left building meet.

used blocks, inserting them back into the free lists. A separate list of blocks is kept for
rules without an associated building.

10.5 Results

To illustrate the influence of the various components of PGA, we compare the performance
of multiple versions of our implementation. The base line is a single-threaded CPU
implementation of PGA written in C++ (CPU), which uses simple sets for the PGA stage
queues and is compiled with SSE support. To implement an optimized multi-threaded
version of PGA on the CPU (C-PGA), we use a custom memory allocator and lock-free rule
queues. For the GPU baseline, we provide a CUDA-based implementation of PGA (GPU),
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Table 10.2: Generation times in ms for different methods and test scenes. CPU is our base line
C++ implementation; C-PGA 4 is a CPU version of PGA using a custom memory allocator and
lock free-rule queues, executed with four threads; transf captures the transfer time from CPU
to GPU memory; GPU is a baseline CUDA implementation of PGA; GPU G uses persistent
threads and rule grouping; G-PGA additionally uses multiple threads per rule and local rule
grouping. C-PGA ↑ corresponds to the speedup of C-PGA 4 over CPU. G-PGA↑ corresponds to
the speedup of G-PGA over CPU (with CPU-GPU transfer times added). Because the suburban
scene does not fit into GPU memory, we omit the transfer time. For measuring GPU generation
time of this scene, we replaced previously generated geometry when the 2GB geometry buffer
ran out of memory.

CPU C-PGA 4 transf GPU GPU G G-PGA C-PGA↑ G-PGA↑

Tree4,3 11.7 4.49 0.18 1.57 1.55 0.84 2.6 14.1
Tree8,4 53 546.1 135.40 154.02 56.72 48.87 19.29 395.5 2783.8

Residential 77.8 8.36 1.77 7.38 4.90 2.31 9.3 34.4
Cross-Towers 2092.8 24.12 7.44 19.17 11.86 6.97 86.7 301.3
Skyscrapers 6262.6 545.15 187.68 394.65 263.37 164.09 11.5 39.3

CityOverview 16 573.0 996.33 331.98 708.02 346.73 249.89 16.6 67.6
Suburban 53 605.3 13 115.90 - 11 041.17 6689.11 4551.21 4.1 11.8

using a global, unordered set of ready-to-be-processed rules. For each iteration, a kernel is
launched and one thread is used to execute a single rule. Intermediate symbols are allocated
using the same dynamic memory allocator as used in the other GPU implementations.
Our second GPU implementation is based on Softshell, using persistent threads and rule
grouping in global memory (GPU G). Finally, we evaluated the full PGA implementation
adding rule grouping in local shared memory and multiple threads per rule (G-PGA). All
measurements were run on the same machine with an Intel Core i7-940 Quad Core CPU
(2.93 GHz) and an NVIDIA Quadro 6000 GPU.

10.5.1 Generating a single view

We selected a variety of test scenes, including small and large setups, geometry-heavy and
rule-heavy derivations, context-free and context-sensitive rules, scenes with and without
level of detail and snap-lines. The characteristics of the scenes are outlined in Table 10.3
and shown in Figure 10.8.

Generation times are summarized in Table 10.2. Our optimized C-PGA implementation
(four threads) achieves speed-ups of 2.6-395.5 over CPU. Increasing the thread count above
four reduced the performance, which indicates that the four cores are well utilized. With
the full-featured GPU implementation, we achieved speedups between 11.8 and 2783.8
in comparison to CPU (with CPU-GPU transfer added). For the bigger test scenes, the
geometry generation is faster than the memory transfer from the CPU.

The tree data sets are the simplest test cases, because they only use a few context free
rules. We set up a rule system similar to the tree found in GPU Shape Grammars [83],
allowing for a direct comparison to their implementation. They report a generation time
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of 40ms for their tree with 240 terminals on a GPU with processing power equivalent to
ours. Our tree with 283 terminals is generated in 4.5ms on the CPU and 0.84ms on the
GPU, which corresponds to a speedup of approximately 47. Within a time frame of 20ms,
we can generate a tree with 23 000 terminals and 10M triangles. The tree demonstrates
that a small number of context-free rules executed a few thousand times do not pose a
challenge to our system. In the large tree example, we can generate geometry ten times
faster than transferring it from CPU to GPU memory. Local rule grouping of GPU GM
shows its strength in this example, avoiding global memory access.

Context-sensitive buildings like a residential house or the Cross-Towers are generated
in two and seven milliseconds on the GPU, respectively. As a residential house consists of
a larger number of different rules than the Cross-Towers, using multiple threads per rule
leads to a higher utilization and thus has a greater effect on performance. In combination
with LOD (Skyscrapers and CityOverview), G-PGA shows speedups of 39 to 67 times,
indicating that our implementation can deal well with big cities and different levels of
detail. The Suburban scenario is an extreme case, with huge amounts of geometry and a
large number of intermediate symbols being created. These intermediate symbols put a lot
of pressure on the dynamic memory allocator on the GPU, forcing us to increase the size
of the memory pool from 100MB to 300MB. Nevertheless, a reasonable speedup of 11.8
could still be achieved.

Table 10.3: Our test scenes feature up to 37k buildings (obj), 800k non-terminal symbols
(nodes), 6M terminals (term), 300M vertices (vert), and 170M polygons (poly). We cover
different aspects, like context-sensitivity, the use of snap-lines and level of detail. For the
tree dataset, the numbers correspond to the iterations and number of tree branches. For the
Skyscrapers and CityOverview testcase, we include LOD and non-LOD rendering times. The
full resolution derivations contain 600 million and 1 billion polygons respectively. The tree,
Skyscrapers, CityOverview and suburban test cases are shown in Figure 10.8. The cross towers
are shown in Figure 10.5 and the residential house corresponds to the house in Figure 10.4.

obj nodes term vert poly

Tree4,3 - 121 283 3896 5232
Tree8,4 - 9k 23k 6M 10M

Residential house∗ 1 297 2423 99k 62k
Cross-Towers∗‡ 1 3327 17k 363k 182k
Skyscrapers∗ 11k 73M 59M 1.51G 724M
Skyscrapers∗† 11k 292k 825k 7.63M 3.82M
CityOverview∗ 37k 67M 91M 4.45G 2.23G
CityOverview∗† 37k 228k 842k 9.93M 5.66M

Suburban∗ 4244 796k 6.0M 278.8M 167.8M
∗ context sensitive; † level of detail; ‡ snap lines
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(a) Tree8,4 (b) Skyscrapers

(c) CityOverview (d) Suburban

Figure 10.8: Four test scenes: The tree is the only model that exclusively uses context-free
rules. The skyscraper scene contains 11k buildings with LOD and the camera in the center. The
city overview scene contains 37k buildings distributed over an area of 80km2. The suburban
scene contains 4k full-detail buildings.

10.5.2 Rendering a continuous movement

To evaluate the effect of culling and frame-to-frame coherence, we used an infinite city test
case with adjustable clipping distance. Street layouts and terrain were derived procedurally
and the city blocks were populated with a combination of suburban, residential and office
buildings. As clipping distance we chose 1000 and 3500 meters. For 1000m about 3500
buildings are within the visible range; a full detail generation would need 150M polygons
and 18M rules. At a clipping distance of 3500m, 47k buildings are in the visible range;
their full detail representation has 2 billion polygons generated by 240M rules. The LOD
versions for these two scenarios require 1.6M and 7M polygons, respectively. Our test
scenario contains a walkthrough (movement speed 1.5m/s) of the suburban area, a fast
drive to a dense skyscraper area (20m/s), rising over the city (50m/s) and flying above
the city at rocket speed (300m/s− 100km/s). Selected frames from the scenario are shown
in Figure 10.9. We tested four methods: C-PGA deriving the required geometry on the
CPU and transferring it to GPU memory, G-PGA in a basic version, G-PGA with view
frustum and visibility culling, and G-PGA with culling and frame-to-frame coherence. All
methods used LOD.
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Figure 10.9: Unlimited cities with highly detailed, context-sensitive buildings can be generated
in real-time on the GPU using our parallel shape grammar. The visible 28km2 of the city
contain 47 000 buildings. In full detail, these buildings are generated by 240 million rules,
evaluating to 2 billion polygons. Generating one view with levels of detail (7M polygons) from
scratch takes 500ms. Exploiting frame-to-frame coherence, we update the geometry in 50ms
on a standard PC, even if the viewer moves at supersonic speed.

The frame generation times for the methods and two clipping distances are shown in
Figure 10.10. For 1000m clipping distance, our CPU implementation needs between 250ms
and 400ms per frame. Our basic GPU implementation is about five times faster with an
average of 65ms per frame. With culling, performance approximately doubles at 30ms per
frame. If, additionaly, we exploit frame-to-frame coherence, only about 5ms per frame
are needed after the initial frame, yielding a speedup of about 60 compared to C-PGA.
For 3500m clipping distance, we achieved the following results: C-PGA 3500ms, G-PGA
525ms, G-PGA with culling 280ms, and G-PGA with frame-to-frame coherence 50ms per
frame. Again, our full GPU implementation was still able to create the city in real-time
and was about 60 times faster than C-PGA.
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Figure 10.10: Comparison of frame generation times in an unlimited city (Figure 10.9). CPU
streaming is too slow for interactive rendering, while our GPU method with frame-to-frame
coherence achieves 5ms (1000m) and 50ms (3500m) respectively. Frame-to-frame coherence
breaks if the camera is rotated fast (spikes in enlarged areas) or if the movement speed is very
fast (about 10km/s).

We hardly noticed any influence of the movement speed on the performance of the
frame-to-frame coherence method until we increased the movement speed to 10km/s in the
3500m clipping scenario, where subsequent frames do no longer have significant coherence,
and incremental evaluation is even detrimental on performance. For 1000m clipping the
frame-to-frame coherence method worked well even for very high speeds. However, if other
operations use the GPU simultaneously, frame rate may decrease significantly. A much
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easier way to break frame-to-frame coherence is camera rotation, which was not considered
in the frame-to-frame coherence scheme. We performed two fast camera rotations during
the walking phase, leading to spikes in the frame rate. However, the system regenerates
quickly.

10.6 Discussion
We have presented a system that is able to parallelize the derivation of shape grammars for
GPU execution without sacrificing expressive power of the grammar. Executing individual
rules with more than a single thread increases utilization and is a better fit to the SIMD
processing model on the GPU. By explicitly modeling rule dependence in a three stage
process, we were able to provide both geometric context-sensitivity and parallelism across
different rules. This approach yields the first context-sensitive parallel shape grammar
for architecture, which is not only significantly faster than its CPU counterparts, but
even faster than copying the data from the CPU. Using information provided during the
derivation process, we built a real-time rendering pipeline for procedural cities, which is
able to render cities with more than 50 000 context-sensitive buildings in real-time.

Using our parallel shape grammar, the authoring and editing of procedural cities can
be enriched with instant feedback mechanisms, and both offline and real-time rendering
can be significantly improved. This suggests benefits for the procedural generation of
architecture in the game industry and related domains. Based on the results presented in
this chapter, we can state that our scheduling system allows a wider range of algorithms to
be executed on massively parallel hardware (O6).
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11.1 Summary
In this work we have presented a GPU programming and execution model tailored to
distributed, time-varying parallelism. Based on three basic concepts (events, procedures,
and work descriptors), we could implement a variety of different algorithms and execute
them efficiently. The core of the presented processing model is formed by highly efficient
work queues. While designing our work queues, we discovered that the best lock-free queues
perform significantly worse than well-designed blocking queues, when tens of thousands
of threads concurrently access the queue. The ideas of optimistic concurrency control
many previously proposed lock-free algorithms are based upon do not hold when faced
with the sheer number of threads that concurrently request resources on a GPU. Our
queuing strategy, however, assigns individual queue positions to different threads and
uses distributed locks to coordinate the access to these spots. With this strategy, we
implemented the currently fastest queue for task management on the GPU. It serves
enqueue and dequeue requests in approximately constant time, irrespective of the number
of threads concurrently accessing the queue. Hence, strategies to reduce the pressure on a
single queue by providing individual queues for every worker block, only offer marginal
potential for speedups. Our measurements also confirmed that per-block queuing is
approximately as fast as using a single queue, with the drawbacks of additional memory
requirements and the need for dedicated load balancing strategies. However, keeping a
small queue in fast on-chip shared memory for each worker block turned out to be a very
good strategy. As shared memory is orders of magnitude faster than global memory and
queue management can be performed more efficiently, locally buffered queuing was able to
significantly boost performance, especially when many small items needed to be queued.

We combined our queuing strategies with a versatile megakernel approach, which
overcomes most of the drawbacks of previous persistent threads and megakernel approaches.
By using individual queues for each procedure, we can efficiently group items and item sets
to supply work for all threads of a worker block. Exploiting low-level features of the PTX
instruction set, we are able to execute multiple workpackages concurrently in the same
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block and supply each procedure with individual synchronization primitives. Additionally,
we reuse shared memory for the execution of different procedures. In this way, our versatile
megakernel can adapt to the execution of items, item sets and workpackages with arbitrary
thread counts, driving GPU utilization to a maximum. Our measurements proved that our
versatile megakernel greatly increases performance over previous megakernel approaches.
Also, with our versatile megakernel, executing workpackages of different granularity does
not decrease performance compared to the execution of equal workpackage sizes. Based on
the combination of our massively parallel queues and our versatile megakernel approach,
our synthetic tests showed that dynamic algorithms can be autonomously executed on the
GPU with high performance, even if the individual tasks involve varying granularities of
parallelism. Thus, we can state that O1 and O2 have been met, when presented with
synthetic workloads.

While we were striving towards being more versatile and making all strategies as dynamic
as possible, we also found that being too dynamic and too general can hurt performance.
Our approach to provide a queue in shared memory that adapts to the presented workloads
by dynamically assigning queue space to the available elements only performed well in a
single test. Most often, our dynamic local queue was clearly outperformed by our static
local queue, which does not suffer from additional management overhead.

While the strategy of dynamically allocating shared memory was not successful, our
dynamic memory allocator for global memory proved to be very successful. Our allocator,
ScatterAlloc, scatters memory allocation requests to different memory locations using a
hash function that takes the requested memory size, the multiprocessor id and the thread
id into account. In this way, we reduce the number of threads trying to access the same
memory location, avoid retries and reduce congestion. However, when the allocator runs
low on memory, the time to serve enqueue requests increases rapidly, as most of the time
is spent on finding a free spot. To avoid this situation from happening, our allocator
can dynamically increase the memory pool. ScatterAlloc turned out to be 100 times
faster than the memory allocator provided as part of CUDA and 10 times faster than the
current state of the art. ScatterAlloc is able to serve memory requests in approximately
constant time, independent of the number of threads concurrently requesting memory.
Thus, ScatterAlloc provides highly efficient dynamic memory management on the GPU,
even if tens of thousands of threads try to allocate memory concurrently. Thus, we can
state that O3 has been met.

One noteworthy strategy we used in both, queuing and memory management, is the
strategy to locally combine requests within warps. Whenever multiple threads within the
same warp enqueue elements or request memory, we determine their number using warp
voting mechanism and nominate a leading thread. This leader then performs the operations
to global memory and communicates the results back across the warp. In this way, it is
possible to speed up requests by up to one order of magnitude. At the same time, this
strategy is transparent to the programmer using the memory allocator or queue.

Next to the ability to provide efficient resource allocation and keep GPU utilization high,
one of the key features of our processing model is the ability to exert external influence on
the execution on the GPU. We proposed two queues that offer priority scheduling on the
GPU. Our priority-bucket queue can efficiently and effectively handle static priorities and
react on new high priority workpackages immediately. Our priority-sorted monolithic queue
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devotes some processing power to keeping the work queues sorted according to individual
priorities. As the queues are constantly sorted, priorities are allowed to change continuously.
While the priority-bucket queue achieves scheduling accuracies proportional to the number
of buckets being used, the priority-sorted queue’s ability to follow priorities depends on
the number of elements in the queues and the average execution time of elements. Still,
both queues can provide scheduling accuracies of up to 99%. Using both queues, different
scheduling policies can be implemented, including fair scheduling, time-quota-oriented
scheduling, earliest job first, or earliest deadline first. As an example, we have shown that
a time-quota-based scheduler can follow the target quotas very closely. With our priority
queues, scheduling on the GPU becomes highly controllable and can react on changed
objectives without interrupting execution. Thus, we can state that O4 has been met.

Combining the previously mentioned components, it is possible to efficiently initiate
the execution of dynamic algorithm and react on priority changes. However, execution
configuration might run into suboptimal setups during execution, if a subset of threads finish
early or take different execution paths. To counteract this so-called thread divergence, we
propose a monitoring mechanism, which regularly checks the current state of the execution
and, in case too many threads diverge, stops their execution and recombines them with other
threads taking the same execution paths. Similarly to other authors who experimented
with active thread compaction, we also recorded a severe overhead of thread compaction.
Thus, aggressive thread compaction strategies decreased overall performance, although
they strongly reduced divergence. However, with less aggressive setups, allowing divergence
to a certain extent and only applying re-convergence in severe cases, we were able to boost
performance in most cases. Thus, we can state that it is possible to automatically detect
and counteract divergence to increase the overall performance. Thus, we can state that
O5 has also been met.

In the last three chapters of this thesis we showed various real-world applications that
can profit from our scheduling model.

Our version of dynamic mesh simplification was two times faster than a state-of-the-art
kernel based implementation. Detecting divergence during path tracing and correcting
unhealthy setups, could increase performance by 15% . Prioritizing those image areas that
yield the biggest increase in image quality, we were able to increase the convergence rate of
Monte-Carlo-based global illumination methods. Building on time-aware scheduling, we
present a dynamically adapting image-based rendering algorithm, which synchronizes itself
to the given camera frame rates. Furthermore, we used prioritizing to focus procressing
power on those image regions, which require high quality reconstruction, generating a high
quality rendering while staying within the time budged. Furtheremore, we implemented
a GPU-based model file parser, executing twice as fast as the GPU parser proposed by
Hou et al. [46]. Finally, we presented a real-time Reyes pipeline, rendering 100 million
micropolygons at 40 frames per second.

In the field of visualization, we have analyzed three volume rendering techniques. For
all three techniques, we have found that GPU-specific issues such as thread divergence or
GPU underutilization are inherent to these algorithms. Using thread re-convergence, we
were able to increase the performance of particle based volume rendering by a factor of
up to 13. For image plane sweep volume illumination, we drew parallelism from sampling
itself and avoided synchronization with the CPU, which increased the performance of up
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to 26 times. For volume raycasting, we could increase the number of non-diverging warps
by a factor of eight. However, we could only improve performance for certain data sets,
due to the overhead associated with re-convergence. Based on the provided examples, we
can state that O1 - O5 are also met for real-world scenarios.

In the final chapter of the thesis, we proposed PGA, the first GPU shape grammar
implementation that supports geometric context-sensitivity. It is not only feature complete
compared to state-of-the-art CPU shape grammar implementations, but also much faster.
To achieve fast rule derivation, we model rules as item sets, drawing parallelism from
every rule. To avoid round trips to global memory, we use locally-buffered queuing. As
many different rules need to be supported, we used the dynamic version of our local
buffers. For simple datasets, as supported by other GPU implementations, our GPU-based
implementation is up to 2500 times faster than a CPU-based implementation, and 100 times
faster than the state-of-the-art in GPU-based grammar derivation. For the most complex
data sets, we are still 10 times faster than the CPU. Additionally, we integrated the rule
derivation into a real-time rendering system. Building on level-of-detail terminal nodes,
frustum culling, visibility culling, and frame-to-frame coherence, we enable walkthroughs
and flyovers of unlimited cities. With a visibility distance of 3500m, we can keep the
geometry of 47 000 buildings up to date, while the viewer moves through the city at
supersonic speed. Considering that PGA, based on our scheduling framework, is the first
to support a geometric context sensitive grammar on the GPU, we can state that O6 is
also met.

11.2 Lessons Learned

GPU programming is a young discipline and a series of unexpected situations might arise
when trying to go beyond what has been done before on the GPU. Especially the sheer
amount of parallelism, is a concept one needs to adapt to. As tens of thousands of threads
access the same resources, one can be certain that any kind of race condition will be hit
during the first stress test. While, at the beginnings of GPU programming, it was a very
difficult task to find such errors in an algorithm, the toolsets available to GPU programmers
nowadays are much more advanced, making GPU programming more of a pleasure than
pain. Still, there are many issues, one might come across. The following list, gives a small
insight into the most important lessons learned.

• Being sequential in a parallel world can be good. Even on the GPU, there
is a point when sequential execution can be better than parallel execution. This
point is reached, when the entire GPU is filled with threads and generating a final
result involves a reduction operation. In this case, it makes sense, to let every thread
do some sequential work instead of starting more threads. This avoids parts of the
reduction, while still providing enough parallelism to keep the entire device occupied.

• Guaranteed progress is of no use when it is slow. While, in general, only
non-blocking algorithms are guaranteed to work correctly on the GPU, they might
not always be the best choice when it comes to performance. As we have shown with
our massively parallel queues, locks can be a lot faster. While the use of locks makes
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some assumptions on the specific behavior of the underlying hardware scheduler,
the achieved performance gain seems to be worth the risk. Most non-blocking
algorithms act like only one thread would be accessing a shared resource and, in case
this assumption turns out to be wrong, simply try again. In a massively parallel
environment, this strategy is not a good idea. According to our experience, it is
better to distribute the load and use fine-grained locking to protect resources where
necessary.

• A leader helps. When accessing shared resources, individual counters or locks
might become a major point of contention. Often, it is reasonable to build on a
two-level approach. Combining requests locally and appointing a single thread to
carry out the combined request globally. This setup can be build with warp vote
functions, completely transparent to the user of an algorithm.

• Being too dynamic can hurt. The more general and more dynamic an algorithm
tries to be, the more overhead it involves. Especially when aiming for maximum
performance, this overhead can become too high. Thus, dynamic strategies should
only be used if an algorithm demands it. For example, if hundreds of different rules
or procedures need to be able to run in the same context, a dynamic queue in shared
memory can help.

• Templates are your friend. One of the most important concepts in GPU pro-
gramming is inlining. To help the optimizer do its job and get the mot efficient
code possible, avoid costly function calls (which have been supported in CUDA since
the Fermi generation). When trying to implement a general framework supporting
scheduling and memory management for arbitrary algorithms, keeping things inlined
can become difficult. Furthermore, one might tend towards making decisions during
runtime instead of compile time to provide a simpler, more adaptable framework.
However, when aiming at maximum performance, it is desirable to have all function
calls inlined and move as many decisions to compile time as possible. Templates are
one way to make decisions during compile time, providing a general framework that
can adapt to different algorithms, and enable the compiler to inline all function calls.
The downside of this strategy is an increase in compile time. The compile time of
big megakernels providing inline code for tens to hundreds of procedures can grow to
many minutes, strongly hindering rapid prototyping as every small change requires a
complete recompile.

• The linker is your enemy. One strategy we followed in the first iteration of
Softshell was to use the CUDA linker to reduce compile time. We were willing to
accept one function call for every procedure to be more flexible in terms of compilation.
While the CUDA linker is able to link functions from different CUDA files, it is
not very smart when it comes to register allocation. It always assumes worst case
scenarios, which means that every megakernel will use the maximum register count,
even if there is not a single procedure requiring the maximum register count. This
fact, especially on the newest generation of CUDA devices, which support up to 255
registers per thread, has extremely negative effects on the ability to hide memory
latency.
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• Heisenberg was right. When developing a scheduling framework for the GPU, it
would be good to record what is actually happening on the device. While NVIDIA
introduced a very good profiler which offers statistics about individual kernel launches,
a scheduling framework would actually want to provide more information. This
information should at least capture, which procedure has been executed when and
where. However, measuring the execution time and especially storing information
about which procedure has been executed, can introduce a severe overhead. Thus,
such measurements should always be treated with care and one should be aware that
it is not possible to capture all information without influencing the data itself.

• Playing stare with your code is not the solution. In the beginning of GPU
programming there was no proper way of debugging programs. There were only two
ways to understand what was happening within an algorithm. Either, run a CPU
version of the exactly same algorithm and debug the program step by step on the
CPU, where certain race condition would be far less likely to occur, or stare at the
code and try to run the program in your own head. Luckily, times have changed.
Nowadays, there are at least two additional tools to be used for debugging. First,
device debuggers have been made available, which halt the entire execution and allow
a step by step debugging directly on the GPU. The alternative is to print debug
messages from GPU code to the console. The latter strategy can especially help to
track concurrency bugs. Both features significantly increased our productivity.

11.3 Directions for Future Work

Although the advancements described in this thesis significantly increase the scheduling
capabilities on the GPU and extend the range of algorithms to run on graphics processors,
the feature set and comfort provided by a CPU operating system (OS) is by far not matched.
In the future we want to strive towards a GPU OS. Based on our current framework, some
features of a GPU OS could be reached in the foreseeable future. Amongst others, these
features include the scheduling of multiple application and a GPU task manager. Our
goal is to handle multiple applications in the same scheduling context. With this setup
it would be possible to apply scheduling across application boundaries. One could define
foreground and background applications or use a quota-based scheduling strategy. In this
case, algorithms with even lower degrees of parallelism could share the GPU with other
algorithms to increase GPU utilization. Based on the messaging interface already provided
in Softshell, applications could be monitored and influenced from an outside source, a GPU
task manager. One could inspect the execution times and memory usage of applications,
change their priorities, pause their execution, or even cancel individual jobs.

Another interesting project would be implementing parts of the presented scheduling
algorithms in hardware, increasing the achievable performance. If parts of the scheduling
framework were build in hardware, it would also be possible to combine our strategies with
the hardware scheduler. In this way, the efficiency of locks could be increased. Instead of
spinning, a more reasonable back-off strategy could be implemented using something like a
warp yield or even sleep operation. Exposing register file allocation to the programmer
could rid the versatile megakernel of its last drawback (the increased register usage). If the
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register file pointer could be adjusted dynamically, the number of concurrently executing
procedures could also be adjusted and thus, maximum utilization could be achieved. In
a final step, completely dynamic warp grouping could be set up, eliminating the barrier
synchronization from the beginning of the loop in our versatile megakernel. As soon as one
warp was ready for execution, it could pull in new work items to fill the warp and start
executing. If it pulls in a workpackage, it could wait for a sufficient number of other warps
to get ready too and then these warps would execute the workpackage cooperatively.

In the first chapter of this work, we have proposed our processing model based on
events, procedures, work items and packages. While this setup helped us in effectively
writing code for our example applications, we would like to advance this basic model to
a more complete state. This model would provide a more detailed specification of the
CUDA functions available to the programmer and a more sophisticated memory allocation
and data distribution model. We would then like to evaluate this programming model in
comparison to the CUDA programming model. A suitable setup would be our basic CUDA
programming course, teaching one half of the group in CUDA, while the other half would
learn our new programming model. Logging the invested development time could point
towards the more efficient model.

We think that an alternative scheduling strategy could evolve around memory. As
memory access is most often the limiting factor for algorithms executing on the GPU, it
could be beneficial to model algorithms in terms of memory dependencies. A more efficient
scheduling strategy would take these dependencies into account and try to find a schedule
that involve as much local data as possible, avoiding round trips to global memory or shared
memory completely. This setup could lead to a pull approach to scheduling. Starting with
the output, the required input data could be requested, checking the data needed for this
intermediate result and so on. In the end, this scheduling strategy would only execute
those parts of the algorithm that are really needed and could arrange execution to group
procedures requiring the same data.

Up to now, our focus was on graphics cards only. When the work on this thesis was
started, the Intel Larrabee [122], a many-core x86 architecture for visual computing, was
heavily discussed. Although the Larrabee project was discontinued for graphics, a variant
of the architecture without special support for graphics was recently launched in form
of the Intel Xeon Phi processor. This processor features up to 61 cores and can run a
maximum of 244 threads in parallel. Each core is equipped with a 16-wide SIMD unit.
When compared to a GPU, the number of cores and number of concurrently running
threads seem rather low. However, if all SIMD units are fully utilized, about one thousand
floating point instructions can be executed concurrently. Thus, the Xeon Phi might be an
interesting alternative for algorithms of a lower degree of local parallelism. In the future,
we will investigate to which extent our scheduling algorithms can be useful on the Xeon
Phi architecture and how a GPU-based execution compares to the Xeon Phi.

During the work on parallel shape grammars, we identified a couple of directions for
future research. A very fast grammar evaluation scheme opens up new possibilities. If
an entire city can be built in a couple of milliseconds, a self-learning city generator could
become possible. In combination with a genetic algorithm, city layouts, building designs, or
even house plans could be generated autonomously by a computer. The only requirement
would be a measure to evaluate a generated design. If this function would incorporate the
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characteristic features of the species inhabitating the generated world, plausible cities and
buildings for Sci-Fi worlds could be generated.

Another direction for future research is the combination of generation and rendering in
a more general fashion. In this work we showed that data can be generated faster than
streaming it from the CPU. If we had an integrated renderer, which would not require the
entire data to be stored in global memory, it would even be possible to generate data for
rendering locally only, avoiding the round trip to global memory completely.

Given the promising results of this thesis and the advancements made by other researches
and graphics cards manufactures, we are confident that the execution on graphics processors
will become more flexible, more dynamic and more accessible for a wider range of algorithms,
applications, and programmers.
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Appendix A

Softshell Source Code Examples

A.1 Mesh Simplification
This sections shows the source code of the comparison implementation between Softshell
and CUDA for the mesh simplification testcase.

Listing A.1: Common Header
1
2
3 #pragma once
4
5 #inc lude <memory>
6 #inc lude <cutil_math . h>
7 #inc lude " GLBuffer . h "
8
9

10 #de f i n e NO_ACTIVE_ENTRY 0xFFFFFFFF
11
12 s t r u c t OctreeEntry
13 {
14 unsigned i n t v e r t exO f f s e t ;
15 unsigned i n t numVertices ;
16 unsigned i n t t r i a n g l eO f f s e t ;
17 unsigned i n t numTriangles ;
18
19 #de f i n e NO_CHILD_FLAG 0xFFFFFFFF
20 #de f i n e MAX_DEPTH 32
21 __host__ __device__ s t a t i c i n l i n e bool hasChi ldren ( unsigned

entry )
22 {
23 re turn entry != 0xFFFFFFFF;
24 }
25 unsigned i n t ch i l d r en ; // ( c c c i i i i i i i i i i i i i i i i i i i i i i i i i i i i i )
26 // c i s count o f ch i l d r en − 1
27 // i index o f f i r s t c h i l d
28 #de f i n e CHILD_ID_SHIFT 0
29 #de f i n e CHILD_COUNT_SHIFT 29
30 #de f i n e CHILD_ID_BITS 0x1FFFFFFF
31 #de f i n e CHILD_ID_MASK CHILD_ID_BITS
32 #de f i n e CHILD_COUNT_MASK 0xE0000000
33 #de f i n e CHILD_COUNT_BITS 0x7
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34 __host__ __device__ s t a t i c i n l i n e unsigned getNumChildren (
unsigned entry )

35 {
36 re turn ( ( entry >> CHILD_COUNT_SHIFT) & CHILD_COUNT_BITS)+1;
37 }
38 __host__ __device__ s t a t i c i n l i n e unsigned setNumChildren (

unsigned num, unsigned entry )
39 {
40 re turn ( ( (num−1) & CHILD_COUNT_BITS) << CHILD_COUNT_SHIFT) | (

entry & CHILD_ID_BITS) ;
41 }
42 __host__ __device__ s t a t i c i n l i n e unsigned ge tF i r s tCh i l d (

unsigned entry )
43 {
44 re turn ( entry >> CHILD_ID_SHIFT) & CHILD_ID_BITS ;
45 }
46 __host__ __device__ s t a t i c i n l i n e unsigned s e tF i r s tCh i l d (

unsigned ch i ld , unsigned entry )
47 {
48 re turn ( entry & CHILD_COUNT_MASK) | ( ( c h i l d & CHILD_ID_BITS)

<< CHILD_ID_SHIFT) ;
49 }
50 OctreeEntry ( )
51 {
52 ve r t exO f f s e t = numVertices = t r i a n g l eO f f s e t = numTriangles =

0 ;
53 ch i l d r en = NO_CHILD_FLAG;
54 }
55
56 } ;
57
58
59 s t r u c t CUDAStorages
60 {
61 GL: : Buf f e r ver tex_buf f e r ;
62 GL: : Buf f e r normal_buffer ;
63 GL: : Buf f e r index_buf fer ;
64
65
66 cuda_ptr<OctreeEntry> d_octree_data ;
67 cuda_ptr<unsigned int> d_octree_vertex_coherence ;
68 cuda_ptr<unsigned int> d_octree_tr iangle_coherence ;
69 cuda_ptr<unsigned int> d_vertex_lookup ;
70
71 s i z e_t ac t ive_se t ;
72 unsigned i n t active_nodes_count ;
73 cuda_ptr<unsigned int> d_active_set [ 2 ] ;
74
75
76 s i z e_t vertexcount ;
77 s i z e_t t r i ang l e c oun t ;
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78 s i z e_t voxe lcount ;
79 s i z e_t l e a f s ;
80 s i z e_t maxdepth ;
81
82 std : : unique_ptr<unsigned i n t [] > h_leve lO f f s e t ;
83 cuda_ptr<uint3> d_voxel_ids ;
84
85 s i z e_t r educ t i onC lu s t e rS i z e ;
86
87 s i z e_t t r i ang l e_cohe rence_s i z e ;
88 s i z e_t vertex_coherence_s ize ;
89
90 f l o a t boundar ies [ 6 ] ;
91
92 CUDAStorages ( ) ;
93 ~CUDAStorages ( ) ;
94 } ;

Listing A.2: Kernel-Based Implementation
1
2
3 __constant__ OctreeEntry∗ oc t r e e ;
4 __constant__ unsigned i n t ∗vertexIdOut , ∗ tr iOutput ;
5 __constant__ const unsigned i n t ∗vertexCoherence , ∗

t r i ang l eCoherence ;
6 __constant__ unsigned i n t v e r t i c e s , maxdepth ;
7 __constant__ const u int3 ∗ voxe l Id s ;
8
9

10 __device__ uint mark ( u int node )
11 {
12 re turn 0x80000000 | node ;
13 }
14 __device__ uint unmark ( u int node )
15 {
16 re turn (~0 x80000000 ) & node ;
17 }
18 __device__ bool isMarked ( u int node )
19 {
20 re turn ( ( node & 0x80000000 ) == 0x80000000 ) ? t rue : f a l s e ;
21 }
22
23 template<bool DEPTHERROR>
24 __global__ void checkLeve l ( u int ∗ ac t iveSe t , u int ∗

numberofchi ldren , u int ∗ numberOfLeafs , u int depth , u int num,
f l o a t th r e sho ld )

25 {
26 uint id = blockDim . x ∗ blockIdx . x + threadIdx . x ;
27 i f ( id >= num) return ;
28 uint mynodeid = ac t i v eS e t [ id ] ;
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29 uint ch i ldnodes = 0 , l e a f node s = 0 ;
30
31 const OctreeEntry∗ node = oc t r e e + mynodeid ;
32 uint numChildren = OctreeEntry : : hasChi ldren ( node−>ch i l d r en ) ?

OctreeEntry : : getNumChildren ( node−>ch i l d r en ) : 0 ;
33 uint f i r s tCh i l d I d = OctreeEntry : : g e tF i r s tCh i l d ( node−>ch i l d r en )

;
34 f o r ( u int i = 0 ; i < numChildren ; ++i )
35 {
36 uint th i sCh i l d Id = f i r s tCh i l d I d + i ;
37 const OctreeEntry ∗ ch i ldEntry = oc t r e e + th i sCh i l d Id ;
38 // get voxe l boundar ies
39 f l o a t 3 vMin , vMax ;
40 getVoxelBounds ( voxe l Id s [ t h i sCh i l d Id ] , depth+1, vMin , vMax) ;
41 // check i f c r i t e r i o n i s f u l l f i l l e d
42 bool expand = carryOnTraversal<DEPTHERROR>(depth+1, vMin ,

vMax , th r e sho ld ) ;
43 i f ( expand && ( depth+1) < maxdepth )
44 ++ch i ldnodes ;
45 e l s e // l e a f
46 ++lea fnode s ;
47 }
48 i f ( numChildren == 0)
49 ++lea fnode s ;
50
51 numberofch i ldren [ id ] = ch i ldnodes ;
52 numberOfLeafs [ id ] = l e a f node s ;
53 }
54
55 template<bool DEPTHERROR>
56 __global__ void wr i t eLeve l ( const u int ∗ ac t iveSe t , const u int ∗

numberofchi ldren , const u int ∗ numberOfLeafs , u int ∗ ch i ld r en ,
u int ∗ ch i l dTr i ang l e s , u int ∗ l e a f s , u int depth , u int num,

f l o a t th r e sho ld )
57 {
58 uint id = blockDim . x ∗ blockIdx . x + threadIdx . x ;
59 i f ( id >= num) return ;
60 uint mynodeid = ac t i v eS e t [ id ] ;
61 uint ch i l dnode s_o f f s e t = numberofch i ldren [ id ] ;
62 uint l e a f n od e s_o f f s e t = numberOfLeafs [ id ] ;
63
64 const OctreeEntry∗ node = oc t r e e + mynodeid ;
65 uint numChildren = OctreeEntry : : hasChi ldren ( node−>ch i l d r en ) ?

OctreeEntry : : getNumChildren ( node−>ch i l d r en ) : 0 ;
66 uint f i r s tCh i l d I d = OctreeEntry : : g e tF i r s tCh i l d ( node−>ch i l d r en )

;
67 f o r ( u int i = 0 ; i < numChildren ; ++i )
68 {
69 uint th i sCh i l d Id = f i r s tCh i l d I d + i ;
70 const OctreeEntry ∗ ch i ldEntry = oc t r e e + th i sCh i l d Id ;
71 // get voxe l boundar ies
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72 f l o a t 3 vMin , vMax ;
73 getVoxelBounds ( voxe l Id s [ t h i sCh i l d Id ] , depth+1, vMin , vMax) ;
74 // check i f c r i t e r i o n i s f u l l f i l l e d
75 bool expand = carryOnTraversal<DEPTHERROR>(depth+1, vMin ,

vMax , th r e sho ld ) ;
76 i f ( expand && ( depth+1) < maxdepth )
77 {
78 ch i l d r en [ ch i l dnode s_o f f s e t ] = th i sCh i l d Id ;
79 ch i l dT r i ang l e s [ ch i l dnode s_o f f s e t++] = chi ldEntry−>

numTriangles ;
80 }
81 e l s e // l e a f
82 l e a f s [ l e a f n od e s_o f f s e t++] = th i sCh i l d Id ;
83 }
84 i f ( numChildren == 0)
85 l e a f s [ l e a f n od e s_o f f s e t++] = ( depth + 1 >= maxdepth ) ?mark (

mynodeid ) : mynodeid ;
86 }
87
88 __global__ void handleLea f s ( const u int ∗ l e a f s , u int num)
89 {
90 uint id = blockDim . x ∗ blockIdx . x + threadIdx . x ;
91 i f ( id >= num) return ;
92 uint nodeId = l e a f s [ id ] ;
93 bool marked = isMarked ( nodeId ) ;
94 nodeId = unmark ( nodeId ) ;
95 const OctreeEntry ∗node = oc t r e e + nodeId ;
96
97 uint ver t exTargetStar t = node−>ve r t exO f f s e t ;
98 uint vertexTargetEnd = ver texTargetStar t + node−>numVertices ;
99 f o r ( u int targetVertex = ver texTargetStar t ; ta rge tVer tex <

vertexTargetEnd ; ++targetVertex )
100 {
101 uint coherenceId = vertexCoherence [ ta rgetVertex ] ;
102 vertexIdOut [ coherenceId ] = marked? coherenceId : ( v e r t i c e s +

nodeId ) ;
103 }
104 }
105
106 __global__ void handleNodes ( const u int ∗ nodes , const u int ∗

t r i a n g l eO f f s e t , u int num)
107 {
108 uint id = blockDim . x ∗ blockIdx . x + threadIdx . x ;
109 i f ( id >= num) return ;
110 uint nodeId = nodes [ id ] ;
111 uint t r i O f f s e t = t r i a n g l eO f f s e t [ id ] ;
112 const OctreeEntry ∗node = oc t r e e + nodeId ;
113
114 uint numTris = node−>numTriangles ;
115 i f ( numTris == 0)
116 re turn ;
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117
118 uint s ta r tWr i te = t r i O f f s e t ;
119 uint ∗ indexoutput = tr iOutput + 3∗ s ta r tWr i t e ;
120
121
122 // run through a l l t r i a n g l e s
123 f o r ( u int i = t r i O f f s e t ; i < t r i O f f s e t + numTris ; ++i )
124 {
125 // a l l 3 v e r t i c e s
126 f o r ( unsigned i n t v = 0 ; v < 3 ; ++v)
127 ∗ indexoutput++ = vertexIdOut [ t r i ang l eCoherence [ 3∗ i + v ] ] ;
128 }
129 }

Listing A.3: Kernel-Based Control
1
2 #inc lude " t o o l s / u t i l s . h "
3
4 #inc lude " c l u s t e r i n g . h "
5 #inc lude " t iming . h "
6
7 #inc lude <vector>
8 #inc lude " cudpp . h "
9

10 namespace CUDA
11 {
12 Timing t iming ;
13
14 #inc lude " h e l p e r s . cuh "
15 #inc lude " cuda_kernel . cuh "
16
17 const s i z e_t BLOCKSIZE = 256 ;
18
19 template<c l a s s T>
20 T divup (T a , T b) { re turn ( a + b − 1) /b ; }
21
22 uint ∗d_act iveset , ∗ d_act ive se t_o f f s e t , ∗d_leaves , ∗

d_leaves_of f set , ∗ d_t r i ang l e_o f f s e t ;
23 CUDPPHandle theCudpp ;
24 CUDPPHandle scanplan ;
25
26 void prepareData (CUDAStorages∗ memory)
27 {
28 setOctreeBoundar ies (memory−>boundar ies ) ;
29 s e tL e v e lO f f s e t s (memory−>h_leve lO f f s e t . get ( ) ) ;
30
31 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( oct ree , &memory−>

d_octree_data , s i z e o f ( OctreeEntry ∗) ) ) ;
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32 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( vertexCoherence , &memory
−>d_octree_vertex_coherence , s i z e o f ( const unsigned i n t ∗) ) )
;

33 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( vertexIdOut , &memory−>
d_vertex_lookup , s i z e o f ( unsigned i n t ∗) ) ) ;

34 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( v e r t i c e s , &memory−>
vertexcount , s i z e o f ( unsigned i n t ) ) ) ;

35 CUDA_CHECKED_CALL(cudaMemcpyToSymbol (maxdepth , &memory−>
maxdepth , s i z e o f ( unsigned i n t ) ) ) ;

36 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( voxe l Ids , &memory−>
d_voxel_ids , s i z e o f ( const u int3 ∗) ) ) ;

37 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( t r iang l eCoherence , &
memory−>d_octree_tr iangle_coherence , s i z e o f ( const unsigned
i n t ∗) ) ) ;

38
39 //data ar rays
40 CUDA_CHECKED_CALL( cudaMalloc(&d_act iveset , s i z e o f ( u int ) ∗

memory−>voxelcount ) ) ;
41 CUDA_CHECKED_CALL( cudaMalloc(&d_act ive s e t_o f f s e t , s i z e o f ( u int

) ∗(memory−>voxelcount+1) ) ) ;
42 CUDA_CHECKED_CALL( cudaMalloc(&d_leaves , s i z e o f ( u int ) ∗(memory

−>voxelcount ) ) ) ;
43 CUDA_CHECKED_CALL( cudaMalloc(&d_leaves_of f set , s i z e o f ( u int ) ∗(

memory−>voxelcount+1) ) ) ;
44 CUDA_CHECKED_CALL( cudaMalloc(&d_tr iang l e_o f f s e t , s i z e o f ( u int )

∗(memory−>tr i ang l e c oun t ) ) ) ;
45
46 cudppCreate(&theCudpp ) ;
47 CUDPPConfiguration con f i g ;
48 c on f i g . op = CUDPP_ADD;
49 c on f i g . datatype = CUDPP_UINT;
50 c on f i g . a lgor i thm = CUDPP_SCAN;
51 c on f i g . opt i ons = CUDPP_OPTION_FORWARD |

CUDPP_OPTION_EXCLUSIVE;
52 s i z e_t scanS i z e = std : : max<size_t >(memory−>voxelcount+1,

memory−>tr i ang l e c oun t ) ;
53 CUDPPResult r e s = cudppPlan ( theCudpp , &scanplan , con f i g ,

scanSize , 1 , 0) ;
54 i f (CUDPP_SUCCESS != r e s )
55 std : : cout << " Error c r e a t i n g CUDPPPlan\n" ;
56
57 }
58
59
60 void cleanUp ( )
61 {
62 CUDA_CHECKED_CALL( cudaFree ( d_act ivese t ) ) ;
63 CUDA_CHECKED_CALL( cudaFree ( d_ac t i v e s e t_o f f s e t ) ) ;
64 CUDA_CHECKED_CALL( cudaFree ( d_leaves ) ) ;
65 CUDA_CHECKED_CALL( cudaFree ( d_leaves_of f s e t ) ) ;
66 CUDA_CHECKED_CALL( cudaFree ( d_t r i ang l e_o f f s e t ) ) ;
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67 cudppDestroyPlan ( scanplan ) ;
68 cudppDestroy ( theCudpp ) ;
69 }
70
71 s i z e_t runPrefixSum ( u int ∗ d_input , u int num)
72 {
73 uint numEnd0 , numEnd1 ;
74 CUDA_CHECKED_CALL(cudaMemcpy(&numEnd0 , d_input+(num−1) , s i z e o f

( u int ) , cudaMemcpyDeviceToHost ) ) ;
75 CUDPPResult r e s = cudppScan ( scanplan , d_input , d_input , num) ;
76 i f (CUDPP_SUCCESS != r e s )
77 std : : cout << " Error running scan\n" ;
78 CUDA_CHECKED_CALL(cudaMemcpy(&numEnd1 , d_input+(num−1) , s i z e o f

( u int ) , cudaMemcpyDeviceToHost ) ) ;
79 re turn numEnd0 + numEnd1 ;
80 }
81
82 template<bool DEPTHERROR>
83 s i z e_t buildMesh (CUDAStorages∗ memory , f l o a t th r e sho ld ) ;
84
85 s i z e_t buildMesh (CUDAStorages∗ memory , f l o a t thresho ld , bool

error_depth )
86 {
87 i f ( error_depth )
88 re turn buildMesh<true >(memory , th r e sho ld ) ;
89 e l s e
90 re turn buildMesh<f a l s e >(memory , th r e sho ld ) ;
91 }
92
93 template<bool DEPTHERROR>
94 s i z e_t buildMesh (CUDAStorages∗ memory , f l o a t th r e sho ld )
95 {
96 CUDA: :GL : : mapped_buffer<unsigned int> d_indices (memory−>

cuda_index_buffer ) ;
97 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( tr iOutput , &d_indices . get

( ) , s i z e o f ( u int ∗) ) ) ;
98
99 s i z e_t numnodes = 0 ;

100 s i z e_t numleafs = 0 ;
101 s i z e_t ac t ivenodes = 1 ;
102 s i z e_t cdepth = 0 ;
103
104 t iming . begin ( ) ;
105
106 uint nu l l = 0 ;
107 CUDA_CHECKED_CALL(cudaMemcpy( d_act iveset , &nul l , s i z e o f ( u int ) ,

cudaMemcpyHostToDevice ) ) ;
108 CUDA_CHECKED_CALL(cudaMemcpy( d_tr i ang l e_o f f s e t , &nul l , s i z e o f (

u int ) , cudaMemcpyHostToDevice ) ) ;
109
110 whi le ( ac t ivenodes > 0)
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111 {
112 checkLevel<DEPTHERROR><<<divup ( act ivenodes ,BLOCKSIZE) ,

BLOCKSIZE>>>(d_act ivese t + numnodes , d_act ive se t_o f f s e t ,
d_leaves_of f set , cdepth , act ivenodes , th r e sho ld ) ;

113 s i z e_t newNodes = runPrefixSum ( d_act ive s e t_o f f s e t ,
a c t ivenodes ) ;

114 s i z e_t newLeafs = runPrefixSum ( d_leaves_of f set , a c t i venodes )
;

115 wri teLeve l<DEPTHERROR><<<divup ( act ivenodes ,BLOCKSIZE) ,
BLOCKSIZE>>>(d_act ivese t + numnodes , d_act ive se t_o f f s e t ,
d_leaves_of f set , d_act iveset + numnodes + act ivenodes ,
d_t r i ang l e_o f f s e t + numnodes + act ivenodes , d_leaves +
numleafs , cdepth , act ivenodes , th r e sho ld ) ;

116 // wr i t e v e r t i c e s
117 i f ( newLeafs != 0)
118 handleLeafs<<<divup ( newLeafs ,BLOCKSIZE) , BLOCKSIZE>>>(

d_leaves + numleafs , newLeafs ) ;
119
120 numnodes += act ivenodes ;
121 numleafs += newLeafs ;
122 ac t ivenodes = newNodes ;
123 ++cdepth ;
124 }
125
126
127 // wr i t e t r i a n g l e s
128 s i z e_t t r i s = runPrefixSum ( d_tr i ang l e_o f f s e t , numnodes ) ;
129 handleNodes<<<divup (numnodes ,BLOCKSIZE) , BLOCKSIZE>>>(

d_act iveset , d_tr i ang l e_o f f s e t , numnodes ) ;
130 cudaDeviceSynchronize ( ) ;
131 double dt = timing . end ( ) ;
132 std : : cout << "CUDA: " << dt ∗1000 << " ( " << numnodes << "

nodes ) " << std : : endl ;
133 re turn 3∗ t r i s ;
134 }
135
136 } ;

Listing A.4: Softshell Implementation
1
2 namespace S o f t s h e l l
3 {
4 __constant__ OctreeEntry∗ oc t r e e ;
5 __constant__ unsigned i n t ∗vertexIdOut , ∗ tr iOutput ;
6 __constant__ const unsigned i n t ∗vertexCoherence , ∗

t r i ang l eCoherence ;
7 __constant__ unsigned i n t v e r t i c e s , maxdepth ;
8 __constant__ const u int3 ∗ voxe l Id s ;
9

10 __device__ uint tr iangleOutCount ;
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11
12
13 typede f f l o a t Params ;
14 typede f u int2 NodeWorkItem ;
15 typede f CombWorkpackage<NodeWorkItem , Params> NodeWp;
16
17
18 c l a s s GenVert icesProcedure : pub l i c Procedure
19 {
20 pub l i c :
21 __device__ s t a t i c void execute ( v o l a t i l e Workpackage∗

workpackage )
22 {
23 v o l a t i l e NodeWp∗ mywp = sta t i c_cas t<v o l a t i l e NodeWp∗>(

workpackage ) ;
24
25 uint mynodeid = mywp−>getMyWorkItem ( ) . x ;
26 uint mynodedepth = mywp−>getMyWorkItem ( ) . y ;
27
28 const OctreeEntry∗ node = oc t r e e + mynodeid ;
29
30 uint ver t exTargetStar t = node−>ve r t exO f f s e t ;
31 uint vertexTargetEnd = ver texTargetStar t + node−>numVertices

;
32 bool l e a fnode = mynodedepth >= maxdepth ;
33 f o r ( u int targetVertex = ver texTargetStar t ; ta rge tVertex <

vertexTargetEnd ; ++targetVertex )
34 {
35 uint coherenceId = vertexCoherence [ ta rgetVer tex ] ;
36 vertexIdOut [ coherenceId ] = l ea fnode ? coherenceId : ( v e r t i c e s

+ mynodeid ) ;
37 }
38
39 i f ( __threadId ( ) == 0)
40 de l e t e mywp;
41 }
42 } ;
43
44 template<uint DepthError>
45 c l a s s TraverseProcedure : pub l i c Procedure
46 {
47 __device__ s t a t i c void writeTr iangleOutput ( const OctreeEntry∗

node )
48 {
49 __shared__ uint myshared [ BlockS ize +1] ;
50 uint t r i O f f s e t = 0 , numTris = 0 ;
51 i f ( node != 0)
52 {
53 t r i O f f s e t = node−>t r i a n g l eO f f s e t ;
54 numTris = node−>numTriangles ;
55 }
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56 myshared [ __threadId ( ) ] = numTris ;
57 // run p r e f i x sum to get l o c a l o f f s e t
58 s can_worke f f i c i en t (myshared , BlockS ize ) ;
59 i f ( __threadId ( ) == BlockSize −1)
60 myshared [ BlockS ize ] = atomicAdd(&triangleOutCount ,

myshared [ __threadId ( ) ]+numTris ) ;
61 __sync ( ) ;
62
63 i f ( numTris == 0)
64 re turn ;
65
66 uint s ta r tWr i te = myshared [ BlockS ize ] + myshared [ __threadId

( ) ] ;
67
68 numTris += t r iO f f s e t ;
69 uint ∗ indexoutput = tr iOutput + 3∗ s ta r tWr i t e ;
70
71
72 // run through a l l t r i a n g l e s
73 f o r ( u int i = t r i O f f s e t ; i < numTris ; ++i )
74 {
75 // a l l 3 v e r t i c e s
76 f o r ( unsigned i n t v = 0 ; v < 3 ; ++v)
77 ∗ indexoutput++ = vertexIdOut [ t r i ang l eCoherence [ 3∗ i + v

] ] ;
78 }
79 }
80
81 pub l i c :
82
83 __device__ s t a t i c void execute ( v o l a t i l e Workpackage∗

workpackage )
84 {
85 v o l a t i l e NodeWp∗ mywp = sta t i c_cas t<v o l a t i l e NodeWp∗>(

workpackage ) ;
86
87 const f l o a t th r e sho ld = ∗mywp−>params ;
88 const OctreeEntry∗ node = 0 ;
89
90 i f (mywp−>hasWork ( ) )
91 {
92 uint mynodeid = mywp−>getMyWorkItem ( ) . x ;
93 uint mynodedepth = mywp−>getMyWorkItem ( ) . y ;
94
95 uint chi ldDepth = mynodedepth + 1 ;
96 const OctreeEntry∗ node = oc t r e e + mynodeid ;
97
98 // check ch i l d r en to be expanded
99 uint numChildren = OctreeEntry : : hasChi ldren ( node−>ch i l d r en

) ?OctreeEntry : : getNumChildren ( node−>ch i l d r en ) : 0 ;
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100 uint f i r s tCh i l d I d = OctreeEntry : : g e tF i r s tCh i l d ( node−>
ch i l d r en ) ;

101 f o r ( u int i = 0 ; i < numChildren ; ++i )
102 {
103 uint th i sCh i l d Id = f i r s tCh i l d I d + i ;
104 const OctreeEntry ∗ ch i ldEntry = oc t r e e + th i sCh i l d Id ;
105 f l o a t 3 vMin , vMax ;
106 getVoxelBounds ( voxe l Id s [ t h i sCh i l d Id ] , chi ldDepth , vMin ,

vMax) ;
107 // check i f c r i t e r i o n i s f u l l f i l l e d
108 bool expand = carryOnTraversal<DepthError>(childDepth ,

vMin , vMax , th r e sho ld ) ;
109 i f ( expand && chi ldDepth < maxdepth )
110 issueWorkItem<TraverseProcedure >(make_uint2 (

th i sCh i ld Id , chi ldDepth ) , mywp−>params ) ;
111 e l s e // l e a f
112 issueWorkItem<GenVerticesProcedure >(make_uint2 (

th i sCh i ld Id , chi ldDepth ) , mywp−>params ) ;
113 }
114 i f ( numChildren == 0) //add v e r t i c e s f o r t h i s node
115 issueWorkItem<GenVerticesProcedure >(make_uint2 (

th i sCh i ld Id , chi ldDepth ) , mywp−>params ) ;
116 }
117
118 writeTriangleOutput ( node ) ;
119
120 __sync ( ) ;
121
122 i f ( __threadId ( ) == 0)
123 de l e t e mywp;
124 }
125 s t a t i c const u int BlockS ize = 256 ;
126 } ;
127
128 // P r i o r i t y c l a s s t e l l i n g the system to execute

TraverseProcedures f i r s t
129 c l a s s Trave r s ePr i o r i t y
130 {
131 pub l i c :
132 s t a t i c __device__ f l o a t eva l (Workpackage∗ workpackage ,

ProcedureIn fo ∗ proc )
133 {
134 // note : the workpackage wp w i l l be c a l l e d f o r the procedue

proc
135 i f ( procEqual<TraverseProcedure >(∗proc ) )
136 re turn 1 .0 f ;
137 e l s e
138 re turn 0 .0 f ;
139 }
140 } ;
141
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142 template<uint DepthError>
143 c l a s s TraverseEvent : pub l i c EventCreator
144 {
145 pub l i c :
146 __device__ s t a t i c void c r e a t e (Params∗ params , void ∗ &sto rage )
147 {
148 NodeWorkItem root = make_uint2 (0 , 0 ) ;
149 emitWorkpackage<TraverseProcedure<DepthError> >(new NodeWp(&

root , 1 , params ) ) ;
150 }
151 } ;
152
153 } ;

Listing A.5: Softshell Control
1
2
3 #inc lude " s o f t s h e l l . cu "
4 #inc lude " t o o l s / u t i l s . h "
5 #inc lude " t iming . h "
6 #inc lude " c l u s t e r i n g . h "
7 #inc lude " h e l p e r s . cuh "
8 #inc lude " scheduled_updateNode . cuh "
9

10 namespace S o f t s h e l l
11 {
12 Timing t iming ;
13
14 Scheduler s chedu l ing ;
15
16 template<uint ERROR_DEPTH>
17 s i z e_t buildMesh (CUDAStorages∗ memory , f l o a t thresho ld , Event<

TraverseEvent<ERROR_DEPTH> >∗ useevent ) ;
18
19 Event<TraverseEvent<0> > ∗bui ldEvent0 ;
20 Event<TraverseEvent<1> > ∗bui ldEvent1 ;
21
22 unsigned i n t usedDevice ;
23
24 void i n i t S ch edu l i n g ( i n t dev i ce )
25 {
26 usedDevice = dev i ce ;
27 s chedu l e r . i n i t <Traver s ePr io r i ty >(usedDevice ) ;
28
29 bui ldEvent0 = schedu l e r . createEvent<TraverseEvent<0> >() ;
30 bui ldEvent1 = schedu l e r . createEvent<TraverseEvent<1> >() ;
31 }
32 void shutdownScheduling ( )
33 {
34 s chedu l e r . shutdown ( ) ;
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35 }
36
37 s i z e_t buildMesh (CUDAStorages∗ memory , f l o a t thresho ld , bool

error_depth )
38 {
39 i f ( error_depth )
40 re turn buildMesh<1>(memory , thresho ld , bui ldEvent0 ) ;
41 e l s e
42 re turn buildMesh<0>(memory , thresho ld , bui ldEvent1 ) ;
43 }
44
45 void prepareData (CUDAStorages∗ memory)
46 {
47 setOctreeBoundar ies (memory−>boundar ies ) ;
48 s e tL e v e lO f f s e t s (memory−>h_leve lO f f s e t . get ( ) ) ;
49
50 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( oct ree , &memory−>

d_octree_data , s i z e o f ( OctreeEntry ∗) ) ) ;
51 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( vertexCoherence , &memory

−>d_octree_vertex_coherence , s i z e o f ( const unsigned i n t ∗) ) )
;

52 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( vertexIdOut , &memory−>
d_vertex_lookup , s i z e o f ( unsigned i n t ∗) ) ) ;

53 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( v e r t i c e s , &memory−>
vertexcount , s i z e o f ( unsigned i n t ) ) ) ;

54 CUDA_CHECKED_CALL(cudaMemcpyToSymbol (maxdepth , &memory−>
maxdepth , s i z e o f ( unsigned i n t ) ) ) ;

55 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( voxe l Ids , &memory−>
d_voxel_ids , s i z e o f ( const u int3 ∗) ) ) ;

56 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( t r iang l eCoherence , &
memory−>d_octree_tr iangle_coherence , s i z e o f ( const unsigned
i n t ∗) ) ) ;

57 }
58
59 template<uint ERROR_DEPTH>
60 s i z e_t buildMesh (CUDAStorages∗ memory , f l o a t thresho ld , Event<

TraverseEvent<ERROR_DEPTH> >∗ useevent )
61 {
62 t iming . begin ( ) ;
63
64 uint nu l l = 0 ;
65 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( tr iangleOutCount , &nul l ,

s i z e o f ( u int ) ) ) ;
66 CUDA: :GL : : mapped_buffer<unsigned int> d_indices (memory−>

cuda_index_buffer ) ;
67 CUDA_CHECKED_CALL(cudaMemcpyToSymbol ( tr iOutput , &d_indices . get

( ) , s i z e o f ( u int ∗) ) ) ;
68
69 useevent−>f i r e ( th r e sho ld ) ;
70 useevent−>jo i n ( ) ;
71
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72 uint t r i a n g l e s ;
73 CUDA_CHECKED_CALL(cudaMemcpyFromSymbol(& t r i a n g l e s ,

tr iangleOutCount , s i z e o f ( u int ) ) ) ;
74
75 double dt = timing . end ( ) ;
76 std : : cout << " S o f t s h e l l : " << dt ∗1000 << " ( " << t r i a n g l e s <<

" t r i a n g l e s ) " << std : : endl ;
77
78 re turn 3∗ t r i a n g l e s ;
79 }
80 } ;

A.2 Path Tracing
This sections shows the source code of the comparison implementation between Softshell
and CUDA for the path tracing test case.

Listing A.6: Core Functions
1 #i f n d e f COREFUNCTIONS_CUH
2 #de f i n e COREFUNCTIONS_CUH
3
4 #inc lude " s t r u c t u r e s . h "
5
6 __device__ f l o a t device_random ( u int& seed )
7 {
8 const u int MULTIPLIER = 1664525;
9 const u int OFFSET = 1013904223;

10 const double MODULUS = 4294967295 .0 ;
11 const f l o a t MODULUS_INV = ( f l o a t ) ( 1 . 0 / MODULUS) ;
12
13 seed = seed ∗ MULTIPLIER + OFFSET;
14 f l o a t r e s = seed ∗ MODULUS_INV;
15 re turn r e s ;
16 }
17
18 __device__ bool i n t e r s e c tSphe r e ( const ob j e c t& sphere , f l o a t 3 &d ,

f l o a t 3 &n , f l o a t& mindist , const f l o a t 3& or ig , const f l o a t 3&
d i r )

19 {
20 d = sphere . pos − o r i g ;
21 f l o a t v = vec_dot ( dir , d ) ;
22
23 i f ( v − sphere . rad > mindist )
24 re turn f a l s e ;
25
26 f l o a t t = sphere . rad∗ sphere . rad + v∗v − d . x∗d . x − d . y∗d . y − d . z∗

d . z ;
27 i f ( t < 0 )
28 re turn f a l s e ;
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29
30 t = v − s q r t ( t ) ;
31 i f ( ( t > mindist ) | | ( t < 0 ) )
32 re turn f a l s e ;
33
34 n = or i g + t ∗ d i r − sphere . pos ;
35 n = vec_normalize ( n ) ;
36
37 mindist = t ;
38 re turn true ;
39 }
40
41 __device__ bool i n t e r s e c tP l an e ( const ob j e c t& plane , vector3 &d ,

vector3 &n , f l o a t& mindist , const vector3& or ig , const vector3&
d i r )

42 {
43 f l o a t v = vec_dot ( plane . n , d i r ) ;
44
45 i f ( v >= 0 )
46 re turn f a l s e ;
47
48 d = plane . pos − o r i g ;
49
50 f l o a t t = vec_dot ( plane . n , d ) / v ;
51 i f ( ( t > mindist ) | | ( t < 0 ) )
52 re turn f a l s e ;
53
54 n = plane . n ;
55 mindist = t ;
56 re turn true ;
57 }
58
59 __device__ void h i tObjec t ( const ob j e c t& hitObject , f l o a t t , const

vector3 &n , vector3& or ig , vec tor3& dir , vec tor3& contr ib ,
r gbco l o r& co lo r , u int& seed )

60 {
61 const f l o a t EPSILON = 0.001 f ;
62 vector3 h i t = o r i g + t ∗ d i r ;
63
64 t = 2 .0 f ∗ vec_dot ( −dir , n ) ;
65 d i r = t ∗n+d i r ;
66 d i r = vec_normalize ( d i r ) ;
67
68 vector3 o ;
69 do
70 {
71 o = 2 .0 f ∗make_float3 ( device_random ( seed ) , device_random ( seed ) ,

device_random ( seed ) )−1.0 f ;
72 }
73 whi le ( ( vec_dot ( o , o ) > 1 ) | | ( vec_dot ( o , n ) <= 0 ) ) ;
74
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75 f l o a t v = ( h i tObjec t . d∗device_random ( seed ) ) ∗ h i tObjec t . g +
hi tObjec t . d ∗ ( 1 . 0 f−h i tObjec t . g ) ;

76 d i r = o∗v + d i r ∗ ( 1 . 0 f−v ) ;
77 d i r = vec_normalize ( d i r ) ;
78
79 o r i g = h i t + EPSILON∗ d i r ;
80
81 cont r ib ∗= hitObjec t . c ;
82
83 c o l o r += hi tObjec t . e ∗ con t r ib ;
84 }
85
86 __device__ const ob j e c t ∗ i n t e r s e c tOb j e c t s ( const ob j e c t ∗ ob j ec t s ,

u int numobjects , f l o a t 3 &d , f l o a t 3 &n , f l o a t& t , const f l o a t 3&
or ig , const f l o a t 3& d i r )

87 {
88 t = 1000000.0 f ;
89 const ob j e c t ∗ r e s = 0 ;
90 f o r ( u int i = 0 ; i < numobjects ; ++i )
91 {
92 i f ( ob j e c t s [ i ] . type == TYPE_SPHERE)
93 {
94 i f ( i n t e r s e c tSphe r e ( ob j e c t s [ i ] , d , n , t , o r ig , d i r ) )
95 r e s = ob j e c t s + i ;
96 }
97 e l s e i f ( ob j e c t s [ i ] . type == TYPE_PLANE)
98 {
99 i f ( i n t e r s e c tP l an e ( ob j e c t s [ i ] , d , n , t , o r ig , d i r ) )

100 r e s = ob j e c t s + i ;
101 }
102 }
103 re turn r e s ;
104 }
105
106 #end i f

Listing A.7: Cuda Tracer
1 #inc lude <cuda . h>
2 #inc lude <c u t i l . h>
3 #inc lude <cutil_math . h>
4
5 #inc lude " scene . h "
6 #inc lude " s t r u c t u r e s . h "
7
8 #inc lude <cuda . h>
9 #inc lude " render ingdata . cuh "

10 #inc lude " c o r e f un c t i on s . cuh "
11
12 #inc lude " t iming . h "
13
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14
15
16 __global__ void s ta r tTrace ( r gbco l o r ∗ imagedata , u int ∗ randseeds ) ;
17
18
19 double traceCuda ( i n t device , const Scene& scene )
20 {
21 cudaSetDevice ( dev i ce ) ;
22 setupData ( scene ) ;
23 i n i t Image ( ) ;
24 in itRand ( ) ;
25
26 double t0 = Timing : : gett ime ( ) ;
27 s tartTrace<<<scene . imgDims ( ) , tsamples>>>(d_imagedata ,

d_randseeds ) ;
28 cudaDeviceSynchronize ( ) ;
29 double t1 = Timing : : gett ime ( ) ;
30 re turn t1 − t0 ;
31 }
32
33
34
35
36 __global__ void s ta r tTrace ( r gbco l o r ∗ imagedata , u int ∗ randseeds )
37 {
38 uint2 p i x e l = make_uint2 ( b lockIdx . x , b lockIdx . y ) ;
39 unsigned i n t randseed = getSeed ( randseeds , p ixe l , threadIdx . x ) ;
40
41 vector3 cont r i b = make_float3 ( 1 . 0 f ) ;
42 vector3 o r i g = make_float3 ( 0 . 0 f ) ;
43 r gbco l o r c o l o r = make_float3 ( 0 . 0 f ) ;
44
45 vector3 d i r ;
46 d i r . x = ( ( f l o a t ) p i x e l . x / ( f l o a t ) c_width ) − 0 .5 f +

device_random ( randseed ) /( f l o a t ) c_width ;
47 d i r . y = ( ( ( f l o a t ) p i x e l . y / ( f l o a t ) c_height ) − 0 .5 f ) ∗ ( (

f l o a t ) c_height /( f l o a t ) c_width ) + device_random ( randseed ) /(
f l o a t ) c_height ;

48 d i r . z = 1 ;
49 d i r = vec_normalize ( d i r ) ;
50
51
52 uint r e cu r s i on = 0 ;
53 whi le ( ( r e cu r s i on < c_maxrecursions ) && ( ( cont r i b . x >

MIN_CONTRIB ) | | ( con t r i b . y > MIN_CONTRIB ) | | ( c on t r i b . z
> MIN_CONTRIB ) ) )

54 {
55 f l o a t 3 d , n ;
56 f l o a t t ;
57 const ob j e c t ∗ obj = i n t e r s e c tOb j e c t s ( c_objects , c_numObjects ,

d , n , t , o r ig , d i r ) ;
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58
59 i f ( obj )
60 h i tObjec t (∗ obj , t , n , or ig , d i r , contr ib , co lo r , randseed ) ;
61 e l s e
62 {
63 c o l o r += c_background ∗ cont r ib ;
64 con t r ib . x = cont r ib . y = cont r ib . z = 0 ;
65 }
66 r e cu r s i on++;
67 }
68
69 r gbco l o r ∗ ou t co l o r = imagedata + ( p i x e l . y∗c_width + p i x e l ) ;
70 atomicAdd(&outco lor−>x , c o l o r . x ) ;
71 atomicAdd(&outco lor−>y , c o l o r . y ) ;
72 atomicAdd(&outco lor−>z , c o l o r . z ) ;
73 }

Listing A.8: Softshell Tracer
1
2 #inc lude " gpuschedul ing . cu "
3
4 #inc lude " image . h "
5 #inc lude " render ingdata . cuh "
6 #inc lude " c o r e f un c t i on s . cuh "
7
8 #inc lude " t iming . h "
9

10 s t r u c t Params
11 {
12 unsigned i n t ∗ p_randseeds ;
13 r gbco l o r ∗ p_imagedata ;
14 }
15
16 s t r u c t TraceWp : pub l i c PayloadedWorkpackage<Params>
17 {
18 uint2 pix ;
19 TraceWp( uint3 _pix , u int threads , Params∗ _params ) :
20 pix (_pix . x , _pix . y ) ,
21 PayloadedWorkpackage<Params>(threads , _params )
22 { }
23 } ;
24
25
26 c l a s s TracingProcedure : pub l i c Procedure
27 {
28 pub l i c :
29 //macro w i l l a c t i v a t e the th i rd t i e r f o r t h i s procedure
30 ACTIVATE_THIRD_TIER
31
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32 __device__ s t a t i c void execute ( v o l a t i l e Workpackage∗ workpackage
)

33 {
34
35 // de f i n e add i t i ona l payload d i r e c t l y in execute
36 PAYLOAD_BEGIN
37 vector3 cont r i b ;
38 vector3 o r i g ;
39 r gbco l o r c o l o r ;
40 vector3 d i r ;
41 unsigned i n t randseed ;
42 uint r e cu r s i on ;
43 PAYLOAD_END
44
45 v o l a t i l e TraceWp∗ mywp = sta t i c_cas t<v o l a t i l e TraceWp∗>(

workpackage ) ;
46 uint2 p i x e l = mywp−>pix ;
47
48 // i n i t data s t r u c t u r e s
49 randseed = getSeed (mywp−>params−>p_randseeds , p ixe l ,

__threadId ( ) ) ;
50
51 con t r ib = make_float3 ( 1 . 0 f ) ;
52 o r i g = make_float3 ( 0 . 0 f ) ;
53 c o l o r = make_float3 ( 0 . 0 f ) ;
54
55 d i r . x = ( ( f l o a t ) p i x e l . x / ( f l o a t ) c_width ) − 0 .5 f +

device_random ( randseed ) /( f l o a t ) c_width ;
56 d i r . y = ( ( ( f l o a t ) p i x e l . y / ( f l o a t ) c_height ) − 0 .5 f ) ∗ ( (

f l o a t ) c_height /( f l o a t ) c_width ) + device_random ( randseed ) /(
f l o a t ) c_height ;

57 d i r . z = 1 ;
58 d i r = vec_normalize ( d i r ) ;
59
60 r e cu r s i on = 0 ;
61
62 // s chedu l e r i s a c t i va t ed every 10 th i t e r a t i o n o f t h i s loop
63 SCHEDULEDWHILE( true , 10)
64 {
65 i f ( ! ( ( r e cu r s i on < c_maxrecursions ) && ( ( con t r i b . x >

MIN_CONTRIB ) | | ( con t r i b . y > MIN_CONTRIB ) | | (
c on t r ib . z > MIN_CONTRIB ) ) ) )

66 {
67 r gbco l o r ∗ ou t co l o r = mywp−>params−>p_imagedata + ( p i x e l . y∗

c_width + p i x e l . x ) ;
68 atomicAdd(&outco lor−>x , c o l o r . x ) ;
69 atomicAdd(&outco lor−>y , c o l o r . y ) ;
70 atomicAdd(&outco lor−>z , c o l o r . z ) ;
71 SCHEDULEENDTHREAD;
72 }
73
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74
75 f l o a t 3 d , n ;
76 f l o a t t ;
77 const ob j e c t ∗ obj = i n t e r s e c tOb j e c t s ( c_objects , c_numObjects

, d , n , t , o r ig , d i r ) ;
78
79 i f ( obj )
80 h i tObjec t (∗ obj , t , n , or ig , d i r , contr ib , co lo r , randseed )

;
81 e l s e
82 {
83 c o l o r += c_background ∗ cont r i b ;
84 con t r ib . x = cont r ib . y = cont r ib . z = 0 ;
85 }
86 r e cu r s i on++;
87 }
88 SCHEDULEDWHILEEND
89 }
90 } ;
91
92 double renderScheduled ( i n t device , const Scene& scene )
93 {
94 Scheduler s chedu l e r ( dev i c e ) ;
95
96 setupData ( scene ) ;
97 i n i t Image ( ) ;
98 in itRand ( ) ;
99

100 Params params ;
101 params . p_imagedata = d_imagedata ;
102 params . p_randseeds = d_randseeds ;
103
104 auto trac ingEvent = schedu l e r . createEvent<TraceWp ,

TracingProcedure , Params>() ;
105
106 double t0 = Timing : : gett ime ( ) ;
107
108 dim imageDims ( scene . imgWidth ( ) , scene . imgHeight ( ) ) ;
109 trac ingEvent−>f i r e ( DefaultCreatorParams ( imageDims , tsamples ,

params ) ) ;
110 TracingEvent−>jo i n ( ) ;
111
112 double t1 = Timing : : gett ime ( ) ;
113 re turn t1−t0 ;
114 }
115
116
117 #end i f
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Listing B.1: Mutex Queue
1 c l a s s BlockingQueue
2 {
3 Mutex mutex ;
4 v o l a t i l e u int f r on t ;
5 v o l a t i l e u int back ;
6
7 v o l a t i l e Data bu f f e r [ QueueSize ] ;
8 pub l i c :
9 __device__ bool enqueue (Data data ) {

10 whi le ( t rue ) {
11 i n t mypos = __popc( lanemask_lt ( ) & __ballot (1 ) ) ;
12 i f (mypos == 0) {
13 mutex . acqu i r e ( ) ;
14
15 uint pos = back ;
16 i f ( pos + 1 − f r on t > QueueSize ) {
17 mutex . r e l e a s e ( ) ;
18 re turn f a l s e ;
19 }
20
21 bu f f e r [ pos%QueueSize ] = data ;
22 __threadfence ( ) ;
23
24 mutex . r e l e a s e ( ) ;
25 re turn true ;
26 }
27 }
28 }
29
30 __device__ in t dequeue (Data∗ data , i n t num)
31 {
32 __shared__ in t o f f s e t , take ;
33
34 i f ( threadIdx . x == 0) {
35 mutex . acqu i r e ( ) ;
36 o f f s e t = f r on t ;

229
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37 take = min (num, back − o f f s e t ) ;
38 i f ( take > 0)
39 f r on t = pos + canTake ;
40 }
41 __syncthreads ( ) ;
42 i f ( threadIdx . x < take ) {
43 data [ threadIdx . x ] = bu f f e r [ ( o f f s e t + threadIdx . x )%QueueSize

] ;
44 __threadfence ( ) ;
45 }
46 __syncthreads ( ) ;
47 i f ( threadIdx . x == 0)
48 mutex . r e l e a s e ( ) ;
49 re turn take ;
50 }
51 } ;

Listing B.2: Dual Mutex Queue
1 c l a s s BlockingQueue
2 {
3 Mutex front_mutex ;
4 Mutex back_mutex ;
5 v o l a t i l e u int f r on t ;
6 v o l a t i l e u int back ;
7
8 v o l a t i l e Data bu f f e r [ QueueSize ] ;
9 pub l i c :

10 __device__ bool enqueue (Data data ) {
11 whi le ( t rue ) {
12 i n t mypos = __popc( lanemask_lt ( ) & __ballot (1 ) ) ;
13 i f (mypos == 0) {
14 back_mutex . acqu i r e ( ) ;
15
16 uint pos = back ;
17 i f ( pos + 1 − f r on t > QueueSize ) {
18 mutex . r e l e a s e ( ) ;
19 re turn f a l s e ;
20 }
21
22 bu f f e r [ pos%QueueSize ] = data ;
23 __threadfence ( ) ;
24 ++back ;
25 __threadfence ( ) ;
26
27 back_mutex . r e l e a s e ( ) ;
28 re turn true ;
29 }
30 }
31 }
32
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33 __device__ in t dequeue (Data∗ data , i n t num)
34 {
35 __shared__ in t o f f s e t , take ;
36
37 i f ( threadIdx . x == 0) {
38 front_mutex . acqu i r e ( ) ;
39 o f f s e t = f r on t ;
40 take = min (num, back − o f f s e t ) ;
41 }
42 __syncthreads ( ) ;
43 i f ( threadIdx . x < take ) {
44 data [ threadIdx . x ] = bu f f e r [ ( o f f s e t + threadIdx . x )%QueueSize

] ;
45 __threadfence ( ) ;
46 }
47 __syncthreads ( ) ;
48 i f ( threadIdx . x == 0) {
49 f r on t = pos + canTake ;
50 __threadfence ( ) ;
51 mutex . r e l e a s e ( ) ;
52 }
53 re turn take ;
54 }
55 } ;

Listing B.3: CAS Ordered Queue
1 c l a s s CASOrderingQueue
2 {
3 v o l a t i l e u int backWrite ;
4 v o l a t i l e u int back ;
5 v o l a t i l e u int frontRead ;
6 v o l a t i l e u int f r on t ;
7
8
9 v o l a t i l e Data bu f f e r [ QueueSize ] ;

10 pub l i c :
11
12 __device__ bool enqueue (Data data ) {
13 uint pos = atomicAdd(&backWrite , 1) ;
14 whi le ( pos − f r on t > QueueSize )
15 i f ( atomicCAS(&backWrite , pos + 1 , pos ) == pos + 1)
16 re turn f a l s e ;
17
18 bu f f e r [ pos%QueueSize ] = data ;
19 __threadfence ( ) ;
20
21 whi le ( atomicCAS(&back , pos , pos + 1) != pos )
22 __threadfence ( ) ;
23
24 re turn true ;
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25 }
26
27 __device__ in t dequeue (Data∗ data , i n t num)
28 {
29 __shared__ in t o f f s e t , take ;
30
31 i f ( threadIdx . x == 0) {
32 uint f = frontRead ;
33 uint b = back ;
34 take = 0 ;
35 whi le (b > f ) {
36 uint canTake = min (num, b − f ) ;
37 uint pos = atomicCAS ( ( u int ∗)&frontRead , f , f + canTake ) ;
38 i f ( pos == f ) {
39 take = canTake ;
40 o f f s e t = pos ;
41 break ;
42 } e l s e {
43 f = pos ;
44 b = back ;
45 __threadfence ( ) ;
46 }
47 }
48 }
49 __syncthreads ( ) ;
50 i f ( threadIdx . x < take ) {
51 data [ threadIdx . x ] = bu f f e r [ ( o f f s e t + threadIdx . x )%QueueSize ] ;
52 __threadfence ( ) ;
53 }
54 __syncthreads ( ) ;
55 i f ( threadIdx . x == 0 && take != 0)
56 whi le ( atomicCAS(&front , o f f s e t , o f f s e t + take ) != o f f s e t )
57 __threadfence ( ) ;
58 re turn take ;
59 }
60 } ;

Listing B.4: Distributed Locks Queue
1 c l a s s DistLockedQueue
2 {
3 uint f ront , back ;
4 v o l a t i l e i n t count ;
5 v o l a t i l e u int l o ck s [ QueueSize ] ;
6 v o l a t i l e Data bu f f e r [ QueueSize ] ;
7 pub l i c :
8 __device__ bool enqueue (Data data ) {
9 i n t c = atomicAdd(&count , 1) ;

10 i f ( c + 1 < QueueSize ) {
11 uint pos = atomicAdd(&back , 1) % QueueSize ;
12 whi le ( l o ck s [ pos ] != 0)
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13 __threadfence ( ) ;
14 bu f f e r [ pos ] = data ;
15 __threadfence ( ) ;
16 l o c k s [ pos ] = 1 ;
17 re turn true ;
18 }
19 atomicSub(&count , 1) ;
20 re turn f a l s e ;
21 }
22
23 __device__ in t dequeue (Data∗ data , i n t num)
24 {
25 __shared__ in t o f f s e t , take ;
26
27 i f ( threadIdx . x == 0) {
28 i n t c = atomicSub(&count , num) ;
29 i f ( c < num) {
30 atomicAdd(&count , min (num,num − c ) ) ;
31 num = max( c , 0) ;
32 }
33 take = num;
34 i f (num > 0)
35 o f f s e t = atomicAdd(&front , num) ;
36 }
37 __syncthreads ( ) ;
38 i f ( threadIdx . x < take )
39 {
40 uint p = ( o f f s e t + threadIdx . x )%QueueSize ;
41 whi le ( l o ck s [ p ] != 1)
42 __threadfence ( ) ;
43 data [ threadIdx . x ] = bu f f e r [ p ] ;
44 __threadfence ( ) ;
45 l o c k s [ p ] = 0 ;
46 }
47 re turn take ;
48 }
49 } ;

Listing B.5: Pointed Queue
1 c l a s s PointedQueue
2 {
3 uint f ront , back ;
4 v o l a t i l e i n t count ;
5 Data∗ v o l a t i l e da tapo in t e r s [ QueueSize ] ;
6 pub l i c :
7 __device__ bool enqueue (Data data ) {
8 i n t c = atomicAdd(&count , 1) ;
9 i f ( c + 1 < QueueSize ) {

10 Data∗ globalData = a l l o c a t e ( data ) ;
11 __threadfence ( ) ;
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12 uint pos = atomicAdd(&back , 1) % QueueSize ;
13 whi le ( da tapo in t e r s [ pos ] != nu l l p t r )
14 __threadfence ( ) ;
15 datapo in t e r s [ pos ] = data ;
16 re turn true ;
17 }
18 atomicSub(&count , 1) ;
19 re turn f a l s e ;
20 }
21
22 __device__ in t dequeue (Data∗ data , i n t num)
23 {
24 __shared__ in t o f f s e t , take ;
25
26 i f ( threadIdx . x == 0) {
27 i n t c = atomicSub(&count , num) ;
28 i f ( c < num) {
29 atomicAdd(&count , min (num,num − c ) ) ;
30 num = max( c , 0) ;
31 }
32 take = num;
33 i f (num > 0)
34 o f f s e t = atomicAdd(&front , num) ;
35 }
36 __syncthreads ( ) ;
37 i f ( threadIdx . x < take )
38 {
39 uint p = ( o f f s e t + threadIdx . x ) % QueueSize ;
40 whi le ( l o ck s [ p ] == nu l l p t r )
41 __threadfence ( ) ;
42 data [ threadIdx . x ] = ∗ datapo in t e r s [ p ] ;
43 __threadfence ( ) ;
44 datapo in t e r s [ p ] = nu l l p t r ;
45 }
46 re turn take ;
47 }
48 } ;

Listing B.6: Local Queue
1 c l a s s LocalQueue
2 {
3 v o l a t i l e i n t counter ;
4 v o l a t i l e Data bu f f e r [ QueueSize ] ;
5 pub l i c :
6 __device__ bool enqueue (Data data ) {
7 i f ( counter >= NumElements )
8 re turn f a l s e ;
9 i n t pos = atomicAdd(&counter , 1) ;

10 i f ( pos >= NumElements )
11 atomicSub(&counter , 1) ;
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12
13 bu f f e r [ pos ] = data ;
14 re turn true ;
15 }
16
17 __device__ in t dequeue (Data∗ data , i n t num) {
18 i n t n = counter ;
19 __syncthreads ( ) ;
20 i f ( threadIdx . x == 0)
21 counter = max(0 , n − maxnum) ;
22 i n t take = min (maxnum, n) ;
23 i n t o f f s e t = n − take ;
24
25 i f ( threadIdx . x < take )
26 data [ threadIdx . x ] = bu f f e r [ o f f s e t + threadIdx . x ] ;
27
28 re turn take ;
29 }
30 } ;

Listing B.7: Dynamic Local Queue
1 c l a s s DynamicLocalQueue
2 {
3 v o l a t i l e char bu f f e r [ MemSize/ s i z e o f ( u int ) ] ;
4
5 s t r u c t Header
6 {
7 v o l a t i l e u int num_id ;
8 v o l a t i l e i n t counter ;
9 }

10 pub l i c :
11 __device__ bool enqueue (Data data , i n t ProcedureId ) {
12 i n t header_pos = 0 ;
13 whi le ( header_pos < MemSize ) {
14 Header∗ h = re in t e rp r e t_ca s t <Header∗>( bu f f e r + hpos ) ;
15 i n t maxhold = 0 ;
16
17 uint current_procedure = h−>num_id ;
18 i f ( ( current_procedure & 0xFFFF) == ProcedureId )
19 maxhold = ( current_procedure >> 16) ∗16/ s i z e o f (Data ) ;
20 e l s e i f ( current_procedure == 0) {
21 uint f i t s i z e = (MemSize − hpos − s i z e o f ( Header ) ) / s i z e o f (Data ) ;
22 uint newsize = min (MaxSharedElements , f i t t i n g s i z e ) ;
23 uint num_id = ( ( newsize ∗ s i z e o f (Data ) /16)<<16) | ProcedureId ;
24
25 current_procedure = atomicCAS(&h−>num_id , 0 , num_id) ;
26 i f ( current_procedure == 0) {
27 maxhold = newsize ;
28 current_procedure = num_id ;
29 }
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30 e l s e i f ( current_procedure == procId_maxnum)
31 maxhold = newsize ;
32 }
33 i f (h−>counter < maxhold ) {
34 i n t pos = atomicAdd(&h−>counter , 1) ;
35 i f ( pos >= maxhold )
36 atomicSub(&h−>counter , 1) ;
37 e l s e {
38 r e i n t e rp r e t_ca s t <Data∗>(h + 1) [ pos ] = data ;
39 re turn true ;
40 }
41 }
42 i n t pa r tS i z e = ( current_procedure >> 16) ∗16 + s i z e o f ( Header ) ;
43 hpos += par tS i z e ;
44 }
45 }
46
47 __device__ in t dequeue (Data∗ data , i n t num) {
48 __shared__ in t take , o f f s e t ;
49 i f ( threadIdx . x == 0)
50 {
51 take = 0 ;
52 i n t hpos = 0 ;
53 whi le ( hpos < MemSize )
54 {
55 Header∗ h = re in t e rp r e t_ca s t <Header∗>( bu f f e r + hpos ) ;
56 i f (h−>num_id == 0)
57 break ;
58 i n t c = h−>counter ;
59 i f ( c > 0)
60 {
61 take = min ( c ,num) ;
62 i n t o f f s e t = hpos + s i z e o f ( Header ) + ( c − take ) ∗ s i z e o f (Data ) ;
63 h−>counter = c − take ;
64 break ;
65 }
66 i n t pa r tS i z e = ( current_procedure >> 16) ∗16 + s i z e o f ( Header ) ;
67 hpos += par tS i z e ;
68 }
69 }
70 __syncthreads ( ) ;
71 i f ( threadIdx . x < take )
72 {
73 Data∗ outelement = bu f f e r + o f f s e t + threadIdx . x ∗ s i z e o f (Data )

;
74 data [ threadIdx . x ] = ∗ outelement ;
75 }
76 re turn take ;
77 }
78
79 __device__ in t maintain ( ) {
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80 i n t hpos = 0 ;
81 i n t c l e a rpo s = 0 ;
82 whi le ( hpos < MemSize )
83 {
84 Header∗ h = re in t e rp r e t_ca s t <Header∗>( bu f f e r + hpos ) ;
85 i f (h−>maxnum__procId == 0)
86 break ;
87
88 i n t t h i s s i z e = (h−>maxnum__procId >> 16) ∗16 + s i z e o f ( Header ) ;
89 i f (h−>counter != 0)
90 {
91 //queue s e c t i o n needs to be copied
92 i f ( c l e a rpo s != hpos )
93 {
94 f o r ( i n t i = 0 ; i < t h i s s i z e / s i z e o f ( i n t ) ; i+=blockDim . x )
95 {
96 i n t c ;
97 i f ( i + threadIdx . x < t h i s s i z e / s i z e o f ( i n t ) )
98 c = ∗( r e in t e rp r e t_ca s t <in t ∗>( bu f f e r ) +
99 hpos/ s i z e o f ( i n t ) + i + threadIdx . x ) ;

100 __syncthreads ( ) ;
101 i f ( i + threadIdx . x < t h i s s i z e / s i z e o f ( i n t ) )
102 ∗( r e in t e rp r e t_ca s t <in t ∗>( bu f f e r ) +
103 c l po s / s i z e o f ( i n t ) + i + threadIdx . x ) = c ;
104 }
105 }
106 c l e a rpo s += t h i s s i z e ;
107 }
108 hpos += t h i s s i z e ;
109 }
110 __syncthreads ( ) ;
111
112 // zero the r e s t
113 f o r ( i n t i = c lpo s / s i z e o f ( i n t ) + threadIdx . x ;
114 i < hpos/ s i z e o f ( i n t ) ; i+=blockDim . x )
115 ∗( r e in t e rp r e t_ca s t <in t ∗>( bu f f e r ) + i ) = 0 ;
116 __syncthreads ( ) ;
117 }
118 } ;
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Figure C.2: Array Queues Package Scenario



242
C
hapter

C
.M

assively
ParallelQ

ueuing
R
esults

Collector
Dist

Pointed
Linked

Local

100 101 102

number of blocks

10-4

10-3

10-2

10-1

100

e
x
e
cu

ti
o
n
 t

im
e
 i
n
 m

s

(a) 580

100 101 102

number of blocks

10-3

10-2

10-1

100

e
x
e
cu

ti
o
n
 t

im
e
 i
n
 m

s

(b) 680

100 101 102

number of blocks

10-3

10-2

10-1

e
x
e
cu

ti
o
n
 t

im
e
 i
n
 m

s

(c) TITAN

100 101 102

number of blocks

102

103

104

105

106

107

e
n
q
u
e
u
e
 c

y
cl

e
s

(d) 580

100 101 102

number of blocks

102

103

104

105

106

107

e
n
q
u
e
u
e
 c

y
cl

e
s

(e) 680

100 101 102

number of blocks

102

103

104

105

106

107

e
n
q
u
e
u
e
 c

y
cl

e
s

(f) TITAN

100 101 102

number of blocks

102

103

104

105

106

107

d
e
q
u
e
u
e
 c

y
cl

e
s

(g) 580

100 101 102

number of blocks

102

103

104

105

106

107

d
e
q
u
e
u
e
 c

y
cl

e
s

(h) 680

100 101 102

number of blocks

102

103

104

105

106

107

d
e
q
u
e
u
e
 c

y
cl

e
s

(i) TITAN

Figure C.3: Overview Package Scenario
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Figure C.4: Collector Queue Package Scenario
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Figure C.5: Mutex Queue Package Scenario
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Figure C.6: CAS Ordered Queue Package Scenario
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Figure C.7: Distributed Locks Queue Package Scenario
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Figure C.8: Pointed Queue Package Scenario
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Figure C.9: Shan Huang Chen Package Scenario
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Figure C.10: Linked Queue Package Scenario
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Figure C.11: Michael Scott Package Scenario
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Figure C.12: Local Queues Package Scenario
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Figure C.13: Atomic Operations Package Scenario
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Figure C.14: Global Loads Package Scenario
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Figure C.15: Global Stores Package Scenario
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Figure C.16: Shared Loads Package Scenario
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Figure C.17: Shared Stores Package Scenario
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Figure C.18: Linked Queues Item Scenario
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Figure C.19: Array Queues Item Scenario
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Figure C.20: Overview Item Scenario
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Figure C.21: Collector Queue Item Scenario
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Figure C.22: Mutex Queue Item Scenario
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Figure C.23: CAS Ordered Queue Item Scenario
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Figure C.24: Distributed Locks Queue Item Scenario
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Figure C.25: Pointed Queue Item Scenario
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Figure C.26: Shan Huang Chen Item Scenario
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Figure C.27: Linked Queue Item Scenario
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Figure C.28: Michael Scott Item Scenario
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Figure C.29: Local Queues Item Scenario
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Figure C.30: Atomic Operations Item Scenario
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Figure C.31: Global Loads Item Scenario
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Figure C.32: Global Stores Item Scenario
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Figure C.33: Shared Loads Item Scenario
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Figure C.34: Shared Stores Item Scenario
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C
hapter

D
.Pipeline

Evaluation
in

D
etail

4 Stages
Big Small

Mixed Packages Mixed Packages
et vt et vt et vt et vt

er vr er vr er vr er vr er vr er vr er vr er vr

K 89.1 66.8 192 148 7.4 5.6 12.9 10.9 97.4 74.9 201 146 7.2 6.3 12.8 10.4
KwQ 54.0 56.0 101 118 10.7 5.6 12.9 10.3 59.5 58.5 113 117 7.2 5.6 12.8 11.8
KwQA 58.3 63.0 142 168 9.0 5.7 15.9 13.0 64.6 58.6 152 161 7.0 5.6 16.1 12.9
KwQA+S 60.1 59.8 157 162 6.9 5.6 15.9 12.9 68.8 59.3 162 159 7.1 5.6 16.1 14.0

VMKB 51.1 49.9 200 179 7.6 6.0 39.9 30.1 46.4 46.1 186 174 7.6 5.8 38.9 29.9
VMKB,shared 38.5 37.5 170 164 6.5 4.4 27.4 17.3 29.6 27.2 98.5 119 6.7 4.4 26.6 15.8
VMK 51.1 50.4 194 173 7.5 6.1 21.1 17.0 44.2 45.8 182 179 7.6 5.9 20.9 16.8
VMKshared 39.1 37.5 164 162 6.6 4.4 13.4 10.4 28.7 27.7 101 118 6.6 4.5 13.9 10.6
VMKshared,out 38.5 37.6 168 162 6.6 4.4 13.4 10.4 26.6 26.0 74.3 69.5 6.6 4.5 13.9 10.7
VMKshared,dyn 67.4 65.7 269 282 8.3 6.0 22.2 17.4 66.0 64.4 179 177 8.5 6.1 21.8 17.0

Table D.1: Pipeline test with synthetic FMA load on a GTX 580
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7 Stages
Big Small

Mixed Packages Mixed Packages
et vt et vt et vt et vt

er vr er vr er vr er vr er vr er vr er vr er vr

K 246 189 286 229 19.7 16.7 127 108 262 202 284 254 18.2 15.9 122 107
KwQ 98.0 98.2 132 169 18.5 16.3 122 108 105 97.6 143 167 18.2 16.1 121 106
KwQA 96.4 105 196 207 17.8 16.0 124 123 87.0 88.0 184 200 17.5 15.8 124 115
KwQA+S 89.8 104 205 212 17.8 15.9 124 112 93.7 89.9 187 204 18.4 15.9 123 110

VMKB 80.6 82.3 250 242 19.5 17.6 241 241 80.7 80.9 248 240 18.7 16.9 238 233
VMKB,shared 72.9 71.6 238 220 16.4 13.5 166 161 56.6 49.8 158 130 16.2 13.3 140 159
VMK 83.6 76.5 231 207 19.2 17.9 158 144 81.0 76.1 217 199 18.9 17.5 157 143
VMKshared 67.9 75.6 216 200 16.2 13.6 132 110 53.0 53.0 141 151 16.3 13.5 131 99.8
VMKshared,out 76.8 76.0 225 211 16.3 13.6 132 112 49.0 47.7 183 168 16.2 13.6 132 97.4
VMKshared,dyn 130 131 418 408 21.1 18.8 196 179 90.7 90.0 266 316 20.6 18.7 188 168

Table D.2: Pipeline test with synthetic FMA load on a GTX 580
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C
hapter

D
.Pipeline

Evaluation
in

D
etail

4 Stages
Big Small

Mixed Packages Mixed Packages
et vt et vt et vt et vt

er vr er vr er vr er vr er vr er vr er vr er vr

K 414 352 1068 1066 14.8 13.6 52.1 47.0 314 296 901 1089 15.9 13.0 53.9 47.7

KwQ 281 330 941 1074 16.3 14.6 53.7 50.7 341 337 816 934 14.6 13.8 51.2 49.1
KwQA 372 316 996 981 15.5 13.8 52.7 48.8 338 313 805 791 14.2 13.5 52.3 48.6
KwQA+S 389 319 1028 974 15.5 13.9 52.8 48.8 330 309 790 791 14.3 13.6 51.1 48.6

VMKB 362 308 870 879 32.0 26.9 117 106 363 284 903 795 32.2 27.3 115 104
VMKB,shared 197 207 837 794 5.2 3.4 19.3 17.4 99.2 110 430 302 5.3 3.3 18.6 17.0
VMK 346 331 895 779 31.7 27.0 67.3 59.0 370 293 873 781 34.4 26.6 67.4 58.5
VMKshared 198 200 835 835 5.4 3.4 14.3 10.6 95.6 98.7 471 570 4.8 3.5 13.9 10.8
VMKshared,out 178 175 811 824 5.3 3.4 14.1 10.9 60.1 63.0 227 292 4.9 3.4 14.5 11.2
VMKshared,dyn 183 201 922 845 7.2 5.3 28.6 25.1 272 280 678 707 6.7 5.2 28.5 24.4

Table D.3: Pipeline test with synthetic FMA load on a GTX 680
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7 Stages
Big Small

Mixed Packages Mixed Packages
et vt et vt et vt et vt

er vr er vr er vr er vr er vr er vr er vr er vr

K 1175 1013 1417 1394 34.4 33.2 331 312 589 776 1136 1368 34.6 33.0 325 303

KwQ 410 783 1181 1292 38.1 36.4 239 227 684 730 1017 1078 37.1 34.3 232 222
KwQA 687 553 1232 1183 35.8 34.9 235 218 785 642 977 957 35.6 33.9 232 215
KwQA+S 658 562 1235 1150 35.8 34.9 237 218 699 649 1026 955 35.6 33.6 232 215

VMKB 602 567 1197 1093 85.3 73.1 676 671 633 534 1143 1143 86.0 69.4 673 657
VMKB,shared 413 427 1124 1014 12.4 9.7 154 145 269 304 736 686 11.9 9.7 154 143
VMK 620 539 1083 1064 81.0 70.9 369 353 621 550 977 1127 75.5 73.2 365 350
VMKshared 433 403 1116 996 12.4 9.5 91.7 82.6 300 289 705 734 12.0 9.6 91.4 78.2
VMKshared,out 416 438 1079 1074 12.1 9.4 97.9 83.4 258 299 837 737 12.4 10.6 92.9 79.1
VMKshared,dyn 406 424 1153 991 21.4 16.5 270 250 363 347 1141 708 16.1 16.2 264 253

Table D.4: Pipeline test with synthetic FMA load on a GTX 680
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C
hapter

D
.Pipeline

Evaluation
in

D
etail

4 Stages
Big Small

Mixed Packages Mixed Packages
et vt et vt et vt et vt

er vr er vr er vr er vr er vr er vr er vr er vr

K 48.2 39.2 138 120 6.3 5.3 12.4 10.7 47.9 39.4 134 117 6.2 4.9 10.5 8.5

KwQ 27.4 27.3 99.4 96.4 6.4 5.3 12.4 10.7 25.4 26.1 96.1 93.8 6.2 5.0 10.6 8.5
KwQA 22.6 28.8 85.7 103 6.1 5.0 11.6 10.2 22.2 27.6 83.8 102 6.1 4.8 10.4 8.7
KwQA+S 23.1 27.6 86.9 106 6.1 5.0 11.6 10.2 22.3 26.4 83.8 97.6 6.2 4.8 10.4 8.7

DP n.a. n.a. n.a. n.a. 114 101 336 308 n.a. n.a. n.a. n.a. 110 99.7 332 305

HDP 37.7 32.8 196 139 5.6 4.0 11.0 8.9 39.5 29.0 198 134 11.3 3.7 10.5 8.0
HDPA 44.3 39.6 230 180 5.2 3.6 11.0 8.6 45.4 37.2 224 177 5.8 3.7 10.9 8.4

VMKB 39.7 39.0 125 120 4.8 3.9 26.5 19.4 31.4 29.5 130 113 5.0 3.9 25.0 19.9
VMKB,shared 28.1 27.8 123 118 4.8 3.4 19.3 11.4 22.9 20.0 70.2 76.3 5.3 3.4 18.0 11.5
VMK 40.9 36.8 132 125 5.8 4.5 15.7 13.2 30.2 28.6 129 109 5.5 4.6 12.9 10.7
VMKshared 27.6 27.8 121 122 4.8 3.5 8.9 6.5 21.8 21.0 76.1 76.2 5.3 3.4 8.7 6.4
VMKshared,out 27.6 26.8 115 118 5.0 3.4 8.9 6.4 17.2 16.7 66.9 61.5 5.3 3.4 8.6 6.3
VMKshared,dyn 44.3 43.3 160 160 5.0 3.6 12.7 12.3 43.5 47.8 124 118 5.7 4.1 12.6 10.1

Table D.5: Pipeline test with synthetic FMA load on a GTX TITAN
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7 Stages
Big Small

Mixed Packages Mixed Packages
et vt et vt et vt et vt

er vr er vr er vr er vr er vr er vr er vr er vr

K 126 110 174 148 14.7 12.4 85.4 69.9 120 108 164 141 12.1 11.1 81.2 66.1

KwQ 47.3 46.9 109 108 14.6 12.4 85.8 70.3 44.2 42.2 103 106 11.7 11.1 80.7 65.6
KwQA 31.7 38.7 94.5 114 13.9 11.9 79.9 66.3 31.5 40.6 91.1 108 11.7 11.0 75.4 65.3
KwQA+S 32.9 38.8 94.4 119 14.0 12.0 80.2 66.2 33.4 42.2 90.2 110 11.4 10.9 75.1 65.7

DP n.a. n.a. n.a. n.a. 239 230 1498 1531 n.a. n.a. n.a. n.a. 231 227 1483 1507

HDP 61.1 43.8 n.a. n.a. 13.7 10.7 84.6 n.a. 57.4 39.4 n.a. n.a. 11.0 9.7 76.9 66.1
HDPA 65.3 47.1 n.a. n.a. 12.3 9.7 81.8 67.3 64.3 46.1 n.a. n.a. 10.9 9.7 79.1 66.5

VMKB 62.1 62.6 183 160 12.4 11.2 155 146 48.9 47.7 164 137 12.1 10.9 151 141
VMKB,shared 48.2 39.3 170 154 11.1 8.7 110 101 33.9 37.2 121 111 11.0 8.7 112 98.6
VMK 64.9 61.7 159 140 14.9 13.0 87.8 78.5 44.5 47.7 160 139 12.1 10.9 86.0 76.9
VMKshared 44.3 42.6 150 140 12.0 8.7 66.8 56.3 35.1 37.8 117 99.8 11.0 8.7 66.2 55.5
VMKshared,out 53.8 45.3 153 147 12.5 8.7 66.9 56.1 32.1 33.6 115 118 11.0 8.7 66.5 54.9
VMKshared,dyn 60.5 54.4 234 223 14.6 10.8 96.4 88.9 51.8 54.6 190 191 12.2 10.6 95.1 86.7

Table D.6: Pipeline test with synthetic FMA load on a GTX TITAN



282
C
hapter

D
.Pipeline

Evaluation
in

D
etail

4 Stages
Big Small

Mixed Packages Mixed Packages
et vt et vt et vt et vt

er vr er vr er vr er vr er vr er vr er vr er vr

K 69.0 55.5 83.2 70.7 56.6 32.0 92.4 53.4 71.1 55.7 85.6 69.7 53.7 32.4 91.8 53.3

KwQ 76.6 65.3 199 161 56.6 32.0 92.6 53.4 77.9 70.5 205 160 53.6 32.3 92.3 53.1
KwQA 74.4 66.2 200 161 53.8 31.6 92.1 53.3 77.2 65.5 204 159 53.6 31.7 91.9 53.2
KwQA+S 72.2 63.7 201 158 53.7 31.7 92.2 53.2 76.7 66.2 200 159 53.2 31.8 91.9 53.0

VMKB 60.7 55.8 239 201 56.6 31.0 99.4 54.0 56.1 51.0 233 199 56.2 30.7 98.4 54.2
VMKB,shared 50.3 43.9 212 198 55.4 29.3 86.7 49.5 40.6 34.0 156 112 56.3 29.6 89.0 49.3
VMK 59.7 55.2 240 207 56.5 30.9 86.7 43.0 57.0 51.9 233 202 56.7 31.0 86.7 42.8
VMKshared 49.3 41.9 208 177 56.5 30.8 87.4 42.3 40.8 33.2 151 126 55.9 30.6 88.0 42.2
VMKshared,out 52.0 42.3 211 180 55.2 30.8 86.9 42.1 38.9 31.1 131 106 55.3 30.4 87.8 42.4
VMKshared,dyn 75.8 69.8 319 295 57.3 33.3 88.1 42.4 72.7 56.5 236 216 59.9 32.1 89.4 44.8

Table D.7: Pipeline test with synthetic memory load on a GTX 580
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7 Stages
Big Small

Mixed Packages Mixed Packages
et vt et vt et vt et vt

er vr er vr er vr er vr er vr er vr er vr er vr

K 101 72.0 95.0 72.8 135 88.3 423 332 100 72.7 95.4 72.9 118 91.5 425 331

KwQ 111 95.5 254 201 133 87.8 426 332 125 113 258 193 119 90.3 421 332
KwQA 110 107 247 196 119 87.0 421 329 126 109 254 192 120 86.9 422 331
KwQA+S 108 101 253 193 120 86.4 420 330 120 108 258 191 119 86.9 423 330

VMKB 94.4 96.0 309 272 133 101 900 716 93.1 102 291 274 135 99.5 896 719
VMKB,shared 97.1 90.8 291 253 127 95.2 911 702 93.3 73.1 130 201 126 95.9 878 688
VMK 90.7 94.9 275 244 136 99.6 776 723 95.4 87.7 267 251 134 98.8 776 721
VMKshared 94.6 84.3 269 234 125 94.5 751 736 91.1 69.4 218 165 131 95.7 801 707
VMKshared,out 101 93.1 275 240 125 93.1 773 716 80.7 70.4 224 184 131 95.0 803 700
VMKshared,dyn 124 130 463 432 151 115 836 739 98.3 114 385 349 141 105 819 756

Table D.8: Pipeline test with synthetic memory load on a GTX 580
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.Pipeline
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D
etail

4 Stages
Big Small

Mixed Packages Mixed Packages
et vt et vt et vt et vt

er vr er vr er vr er vr er vr er vr er vr er vr

K 508 403 1218 1058 49.7 29.1 114 72.7 487 345 1157 836 55.0 29.3 114 72.0

KwQ 431 347 1015 932 50.2 31.7 114 72.4 408 331 960 809 54.6 31.4 114 71.6
KwQA 398 304 1008 835 51.6 31.3 113 72.9 395 300 969 691 53.6 31.0 114 72.8
KwQA+S 420 295 1036 858 49.2 31.5 113 72.9 399 319 959 678 53.5 31.1 114 72.8

VMKB 367 354 961 916 62.3 39.8 169 125 405 331 966 879 62.9 40.3 169 124
VMKB,shared 212 209 852 843 38.1 19.9 75.2 42.5 81.1 79.6 445 514 40.1 18.9 73.5 39.1
VMK 362 378 962 913 63.5 40.3 122 80.9 397 318 977 856 65.9 39.8 122 80.6
VMKshared 225 209 833 825 44.5 19.2 69.3 32.1 81.7 84.0 459 505 39.9 18.9 66.7 30.6
VMKshared,out 195 192 855 865 43.5 19.1 69.5 32.0 49.4 53.1 249 243 40.6 18.7 66.4 33.3
VMKshared,dyn 198 185 908 818 46.0 21.4 80.2 44.2 259 313 503 457 46.3 21.5 82.3 47.5

Table D.9: Pipeline test with synthetic memory load on a GTX 680
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7 Stages
Big Small

Mixed Packages Mixed Packages
et vt et vt et vt et vt

er vr er vr er vr er vr er vr er vr er vr er vr

K 1291 1022 1358 1111 102 94.8 881 863 1167 872 1597 1416 113 95.7 933 861

KwQ 900 908 1251 1192 109 95.1 523 474 831 695 1163 1038 112 93.6 523 473
KwQA 731 550 1232 1098 105 93.6 524 472 828 552 1169 869 106 93.7 519 476
KwQA+S 703 580 1300 1010 105 95.2 523 473 776 564 1113 850 106 92.9 524 474

VMKB 544 550 1189 1073 152 139 1152 1074 682 588 1252 1169 151 123 1127 1068
VMKB,shared 488 497 1195 1079 80.4 59.7 676 604 246 302 697 659 80.9 55.6 653 585
VMK 605 563 1133 1135 157 140 981 905 702 542 1141 1092 148 137 969 894
VMKshared 480 492 1083 1119 82.1 66.5 648 566 248 287 698 692 79.3 56.4 624 544
VMKshared,out 473 477 1083 1081 81.7 61.8 674 601 275 302 786 712 73.3 54.6 617 541
VMKshared,dyn 436 422 1183 1239 107 71.7 832 778 374 413 1022 906 94.2 71.3 846 783

Table D.10: Pipeline test with synthetic memory load on a GTX 680
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D
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4 Stages
Big Small

Mixed Packages Mixed Packages
et vt et vt et vt et vt

er vr er vr er vr er vr er vr er vr er vr er vr

K 91.7 68.0 212 155 32.5 21.3 51.6 30.3 89.3 61.7 209 147 32.3 19.6 51.5 29.7

KwQ 31.7 28.5 112 94.1 32.6 21.2 51.5 30.3 30.9 30.5 109 103 32.4 19.6 51.6 29.7
KwQA 28.5 29.4 93.9 89.8 32.6 21.1 51.5 29.8 26.6 27.7 95.1 80.5 32.6 19.5 51.5 29.6
KwQA+S 28.9 29.1 94.0 86.0 32.7 21.1 51.4 29.9 27.3 27.9 94.2 81.7 32.6 19.4 51.5 29.5

DP n.a. n.a. n.a. n.a. 168 126 427 350 n.a. n.a. n.a. n.a. 170 123 429 348

HDP 59.5 39.7 n.a. 179 43.4 19.8 69.3 30.9 56.8 35.0 n.a. 180 46.9 19.1 67.8 30.3
HDPA 65.0 45.0 n.a. 239 45.5 19.1 68.2 30.4 65.1 43.2 n.a. 235 46.1 19.2 67.8 30.3

VMKB 48.7 44.3 151 144 31.3 17.7 64.4 35.8 34.7 33.0 155 137 31.4 17.9 63.9 35.6
VMKB,shared 37.4 31.4 115 126 31.9 17.4 52.3 27.6 30.3 24.9 88.4 92.6 31.8 17.5 52.3 27.8
VMK 47.9 43.6 157 145 31.4 20.9 50.5 27.2 38.7 34.2 111 141 31.5 17.8 50.2 27.0
VMKshared 36.4 31.8 117 131 32.0 17.6 50.9 24.1 29.8 25.6 90.5 93.3 31.6 17.5 50.2 24.0
VMKshared,out 35.9 31.1 116 131 31.8 17.7 51.0 24.2 26.8 21.6 77.5 75.4 31.7 17.6 50.8 24.2
VMKshared,dyn 48.5 43.8 142 176 31.6 17.4 50.5 26.3 48.1 47.0 112 119 36.3 17.5 50.7 29.6

Table D.11: Pipeline test with synthetic memory load on a GTX TITAN
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7 Stages
Big Small

Mixed Packages Mixed Packages
et vt et vt et vt et vt

er vr er vr er vr er vr er vr er vr er vr er vr

K 215 147 293 168 77.6 66.0 506 444 212 139 290 163 75.9 65.3 505 449

KwQ 55.4 58.1 130 103 77.4 66.1 506 449 49.9 56.8 126 109 77.2 66.0 505 448
KwQA 36.9 44.5 108 94.1 77.8 66.3 506 443 40.3 49.3 106 89.4 77.3 64.9 506 441
KwQA+S 37.4 43.3 108 95.3 77.3 66.2 504 441 41.9 47.7 107 89.2 78.0 66.1 507 440

DP n.a. n.a. n.a. n.a. 361 329 2311 2149 n.a. n.a. n.a. n.a. 354 323 2293 2097

HDP 97.5 80.7 n.a. n.a. 97.1 77.2 n.a. n.a. 98.1 63.8 n.a. n.a. 104 74.4 n.a. n.a.
HDPA 107 73.1 n.a. n.a. 101 79.3 n.a. n.a. 111 71.7 n.a. n.a. 103 74.1 n.a. n.a.

VMKB 74.2 66.9 149 184 75.2 62.0 534 478 58.8 57.6 150 186 75.1 61.5 530 476
VMKB,shared 57.6 59.3 157 182 76.1 60.8 508 444 52.4 45.3 118 147 75.5 61.4 507 445
VMK 77.0 67.2 183 167 75.2 61.4 500 448 60.2 52.4 133 159 75.6 61.9 493 449
VMKshared 58.9 52.6 144 156 75.9 62.0 517 469 52.8 45.3 114 122 75.7 61.6 528 479
VMKshared,out 59.3 52.9 146 171 76.8 61.8 517 467 48.7 37.9 116 130 76.8 60.9 527 479
VMKshared,dyn 83.4 58.4 183 242 77.5 61.6 501 451 66.0 55.6 157 188 76.0 62.4 502 449

Table D.12: Pipeline test with synthetic memory load on a GTX TITAN
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