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Abstract

Cardiovascular diseases are the leading cause of death in thewestern world. Modern
medicine is moving towards less invasive surgery such as catheter-based interventions that
reduce pain and hospitalization for the patient. However, these interventions are highly de-
manding for the surgeon due to the lack of direct feedback from the surgical site. During
these interventions high stresses and even damage may occur, e.g., due to stent expansion
and balloon inflation. Numerical models, informed by experimental data on the mechanical
response of human tissue at supra-physiological loads, canimprove the design of stents,
balloons and surgical procedures. This PhD Thesis aims to develop a computational frame-
work for modeling catheter-based interventions with an appropriate constitutive damage
model fitted to experimental data for human arterial tissues. Consequently, the work com-
prises three major topics, namely, experiments, mathematical modeling and computational
simulation.

The experimental work involves uniaxial extension tests onhuman aortas in both physio-
logical and supra-physiological load ranges. These tests are conducted on the intact wall,
on the separated layers, intima, media and adventitia, and on the enzyme treated media. In
the enzyme treated specimens elastin and collagen, the mainload bearing components of
the arterial wall, are degraded to better understand the contributions of these components
on the damage and softening behavior.

For modeling the softening behavior of the tissue, an established hyperelastic constitutive
model was extended with a damage function. Such a strain-energy function is capable of
describing the Mullins-like behavior of arterial tissue. The experimental data, together with
results from fitting the model, suggest that softening and damage are primarily associated
with the collagen fibers.

The framework for numerical simulations to model damage in patient-specific geometries
accounts for initial stresses, i.e. residual stresses and prestresses. Residual stresses are
those stresses present in an unloaded artery to adjust transmural stresses at physiological
loads that result from the different material properties ofintima, media and adventitia.
A method to include the residual stresses on patient-specific geometries is developed. If
the geometry of an artery is derived fromin vivo medical imaging, it is loaded by blood
pressure. Hence, the finite element algorithm has to accountfor this load on the given
geometry. This work presents an advanced method to include prestresses which reduces
computational costs compared to available algorithms.

In the future, more detailed experimental data on the inter-patient and intra-patient vari-
ability in the mechanical response of human tissue and thus of material parameters will
further enhance the framework for patient-specific modeling of damage in human arteries.
Furthermore, multiscale models may lead to a better understanding of the damage mecha-
nism.
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Zusammenfassung

Krankheiten des Herz-Kreislauf-Systems sind die führendeTodesursache in der westli-
chen Welt. Die moderne Medizin entwickelt katheterbasierte Eingriffe, durch die Schmer-
zen gelindert und Krankenhausaufenthalte verkürzt werden. Solche Eingriffe stellen hohe
Ansprüche an den Chirurgen, da dieser kein direktes Feedbackvon dem Ort des Eingrif-
fes erhält. Außerdem kann es z. B. beim Einsetzen eines Stentsund beim Aufblasen ei-
nes Ballons zu hohen Spannungen und Schädigungen im Gewebe kommen. Mit numeri-
schen Modellen ist eine Verbesserung der Formgebung von Stents und Ballons möglich.
Eine Voraussetzung dafür sind experimentelle Daten der mechanischen Eigenschaften des
menschlichen Gewebes. Diese Arbeit stellt eine numerischeSimulationsmethode für ka-
theterbasierte Operationen vor, die auf ein durch experimentelle Daten gestütztes konstitu-
tives Modell für menschliches Arteriengewebe zurückgreift. Sie befasst sich mit den drei
Teilaspekten: Experimente, mathematische Modellierung und numerische Simulation.

Der experimentelle Teil der Arbeit untersucht das mechanische Verhalten von menschli-
chen Aorten bei physiologischen und supra-physiologischen Dehnungen anhand uniaxialer
Zugversuche. Unterschieden wird dabei zwischen den drei Schichten, Intima, Media und
Adventitia. Die mechanisch relevanten Komponenten der Arterienwand, Elastin und Kol-
lagen, werden in der Media spezifisch von Enzymen verdaut. Auf diese Weise lässt sich
der Einfluss beider Komponenten auf die Schädigung im Gewebeuntersuchen.

Zur Modellierung der Entfestigung des Gewebes dient ein etabliertes hyperelastisches Mo-
dell, das durch die Erweiterung mit einer Schädigungsfunktion den „Mullinseffekt“ in
arteriellem Gewebe beschreibt. Die experimentellen Datenzeigen, zusammen mit den Er-
gebnissen aus dem Parameterfit des Modells, dass die Entfestigung des Gewebes haupt-
sächlich mit den Kollagenfasern zusammenhängt.

Das numerische Schädigungsmodell berücksichtigt sowohl Residuumsspannungen als auch
Vorspannungen im Gewebe. Residuumsspannungen treten in derunbelasteten Arterien-
wand auf, um die Spannungsgradienten über die Wandstärke auszugleichen, die durch die
unterschiedlichen Materialeigenschaften von Initma, Media und Adventitia auftreten. Eine
in der Arbeit entwickelte Methode bindet die Residuumsspannungen in patientenspezifi-
sche Geometrien ein. Wird die Geometrie einer Arterie ausin vivo Bildgebungsverfahren
rekonstruiert, ist sie bereits mit Blutdruck belastet und dadurch verformt. Dies muss im
finite Elemente Algorithmus berücksichtigt werden. DieserTeil der Arbeit beschreibt eine
Methode, um Vorspannungen zu berücksichtigen, welche den notwendigen Rechenauf-
wand gegenüber bestehenden Algorithmen verringert.

In der Zukunft können detailliertere experimentelle Datenüber die Veränderlichkeit von
Materialkennwerten in einem Patienten und zwischen verschiedenen Patienten numerische
Modelle weiter verbessern. Außerdem ermöglicht die Weiterentwicklung von mehrskali-
gen Modellen ein besseres Verständnis für die Schädigungsmechanismen.
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1 INTRODUCTION

1.1 Motivation

Cardiovascular diseases go far back in human history. Allam et al. [1] show that artheroscle-
rosis is commonplace in Egyptian mummies from a time of the Middle Kingdom the
Greco-Roman period. Nowadays cardiovascular diseases are the leading cause of death
in the western world. In Europe cardiovascular diseases cause over 4 million deaths each
year. This corresponds to 47 % of all deaths in Europe. Consequently, cardiovascular dis-
eases causes high costs with an estimatede196 billion per year to the EU economy [2].
Similar trends are reported for the United States and China, where 32.8 % and 32.0 % of
all deaths are attributed to cardiovascular disease, respectively [3, 4].

Modern medicine is developing towards less invasive surgical procedures where open
surgery is being replaced by catheter-based interventions. These reduce pain and hospi-
talization for the patient. However, they are highly demanding for the surgeon and thus
still have unacceptably high risks for patients. If the surgeon is provided with visual or
haptic feedback for catheter guidance, patient safety can be improved.

Deployment of stents-grafts or inflation of intra-aortic balloons can cause large deforma-
tions in the aorta, thus generating high stresses which may cause damage in the tissue. Typ-
ically, an endograft for endovascular repair of aortic aneurysms is oversized by 10 – 20 %
to maintain adequate sealing between the vessel and the graft [5]. Intra-aortic balloon in-
flation aims at temporarily shutting down the blood flow. Thus, such balloons also induce
large deformations and high stresses to the aorta.

Finite element simulation can provide informations to enhance these surgical procedures
in two ways. First, based on simulation of induced stresses and damage, catheter and stent-
design can be improved. Second, real-time evaluation of stress and damage fields in surgery
can support the surgeon. For example, visual feedback can show the stress distribution in
the arterial tissue at the site of balloon inflation or stent expansion. In both cases, the
mechanical properties of the arterial wall have to be determined experimentally. Then,
stress and damage distribution can be computed from numerical simulations with reason-
able accuracy. Finite elements provide an excellent framework to model soft biological
tissues with large deformations. The aim of this PhD Thesis is to develop a computational
framework to model catheter-based interventions and to supply model parameters from
experiments on human tissues.
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2 1 Introduction

Figure 1.1: Three-layered structure of an aged artery showing I: intima,M: media and A: adventitia,
adapted from [7].

The mechanism for the softening in arterial tissue is still not fully understood. More ex-
periments including mechanical and ultrastructural examinations are needed for a better
understanding. This information will facilitate the development of structural mechanical
models based on the physical principles that lead to softening and damage.

1.2 Arterial Tissue

Insight in the structure of the arterial wall is a prerequisite for an adequate mechanical
description of the tissue. This section describes the components of main interest for the
mechanical modeling. For a detailed description of the morphology of the arterial wall, the
reader is referred to [6].

1.2.1 Structure of Arterial Wall

Arteries consist of three layers, the innermost layer is theintima followed by the media and
the adventitita, as shown in Fig. 1.1. Intima and media are separated by the elastic lamina
interna, and media and adventitia are separated by the elastic lamina externa.

In healthy young arteries, the intima consists of a single layer of endothelial cells and is
assumed to bear no load. With age the intima thickens due to deposit of collagen fibers and
smooth muscle cells and thus becomes relevant from the mechanical point of view.
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The media is a sandwich-like structure of elastin, bundles of collagen fibrils and smooth
muscle cells. Two families of collagen fibers are helically wound around the lumen and the
smooth muscle cells have a circumferential alignment.

The adventitia comprises collagen fibers organized in thickbundles which form two heli-
cally arranged families of fibers within a ground matrix. Fibroblasts regulate the synthesis
of extracellular matrix and collagen.

1.2.2 Elastin

Elastin is responsible for the elasticity and resilience ofextracellular tissues such as lung,
ligament, tendon and skin. It consists of a massively crosslinked array of tropoelastin. In
large arteries elastic fibers form concentric rings around the lumen.

Elastin is the main component of the elastic fibers of which itforms the elastic internal
core. It is interdispersed and surrounded by microfibrils [8]. Electronmicroscopy studies
suggest that parallel-aligned filaments build up a fibrillarsubstructure of elastin [9]. The
Marfan syndrome is caused by the loss of functionality of fibrilin, another component of
the elastic fibers [10].

1.2.3 Collagen

Collagen is the most abundant protein in vertebrae. Apart from being an important con-
stituent of blood vessels, different collagen types are found in other connective tissue like
bone, tendon, cartilage, teeth and skin.

The collagen molecule consists of three helically wound peptide chains. The human aortic
wall mainly consists of collagen type I and III. Both are fibrillar collagens where type
I consists of two identical peptide chains and a third distinct peptide chain and type III
consists of three identical chains [11]. The adventita predominantly contains collagen type
I, the media contains approximately 30 % of collagen type I and 70 % of type III and the
initma contains mainly collagen type III [12]. Mutations incollagen can lead to diseases
like osteogenesis imperfecta or the Ehlers-Danlos syndrome. Scurvy is a disease were
collagen fibrils can no longer be synthesized any due to the lack of vitamin C [13].

1.2.4 Other Mechanically Relevant Components

Azeloglu et al. [14] show that proteoglycans can regulate residual stresses in the aorta.
Hence, proteoglycans have a significant influence on the stress distribution in arterial tis-
sue. In [15] a microstructural model is proposed in which proteoglycans serve as cross-
links between collagen fibrils.

The aforementioned components only describe the passive behavior of aortic tissue. For an
active stress contribution smooth muscle cells need to be considered. Models of the active
response of smooth muscle cells have been proposed, e.g., in[16–19].



4 1 Introduction

Figure 1.2: Residual stresses in the artery, adapted from [24]. The topfigure shows the intact wall
with three layers. The bottom figure shows intima, media and adventitia of the intact tissue strip
after separation. The change of dimensions for the different layers, resulting from residual stresses
within the tissue, is apparent.

1.2.5 Incompressibility

Arterial tissue is commonly modeled as an incompressible material. Experimental data
support this assumption, e.g., Lawton [20] shows that the volume changes upon elongation
are negligible. Furthermore, Carew et al. [21] investigate the volume change under internal
pressure and longitudinal stretch.

1.2.6 Residual Stresses

In the load-free configuration, arteries are still in a stressed state. These residual stresses
have a significant influence on the in vivo transmural stress distribution and render the
stress distribution more uniform. When the arteries are cut,these residual stresses are re-
leased leading to deformations.

Early researchers investigated residual stresses in arteries by measuring the opening angles
of radially cut arterial rings, e.g., [22, 23]. The residualstress state, however, is more
complex. Holzapfel et al. [24] show that also upon separation of the layers residual stresses
are set free, as illustrated in Fig. 1.2. The intima expands after separation whereas the
media and adventitia contract. This means that the intima isunder compression, and the
media and adventitia are under tension in the three-layer composite.

1.3 Continuum Mechanical Framework

The framework of continuum mechanics describes the mechanical fields such as strain
and stress in the artery by treating bodies like a continuum and disregarding the molecu-
lar or atomic structure. The fundamentals of nonlinear solid mechanics are detailed e.g.,
in [25].
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1.3.1 Description of Continuum Mechanical Quantities

The position vectorX labels a point on a body with respect to the reference configuration
Ω0 at t = 0. The position vectorx labels a point on a body with respect to the current con-
figurationΩt at t > 0. To describe the state of the body one has hence two possibilities.

In the Lagrangian description one follows a material particle and describes the continuum
mechanical quantities such as displacement, strain and stress in terms of the reference
configuration. This approach is commonly used in solid mechanics.

In the Eulerian description one describes the continuum mechanical quantities in terms of a
fixed point in space. Consequently, they are expressed in terms of the current configuration.
This approach is commonly used in fluid mechanics.

1.3.2 Kinematics

The displacement of a point labeled withX in the reference configurationΩ0 and withx
in the current configurationΩt is u = x−X. This deformation is fully described by the
deformation gradient tensor

F =
∂x
∂X

= I +
∂u
∂X

, (1.1)

whereI is the identity tensor. The deformation gradient is nonsymmetric and connects the
initial configuration to the current configuration. The determinant

J = detF (1.2)

describes the volume change of the material, whereJ = 1 denotes an incompressible de-
formation. In order to obtain a measure for the deformation,which neglects rigid body
motion, the symmetric right and left Cauchy-Green tensors

C = FTF, b = FFT, (1.3)

respectively, are used.

1.3.3 The Concept of Stress

Stress is defined as the force per unit surface area. For largedeformations different stress
measures are defined as both force and unit surface area can bemeasured in the reference
and in the current configurations.

The traction vectort is defined as the current force per current unit surface area with the
outward normal vectorn. Cauchy’s theorem

t = σσσn (1.4)

states the existence of a unique second-order tensorσσσ . The Cauchy stress tensorσσσ , also
referred to as true stress tensor, is compatible with the Eulerian description. The symmetry
of σσσ is postulated by the equilibrium of angular momentum.
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For the first Piola-Kirchhoff stress tensorP the current force is related to the reference unit
surface area. It can be derived from the Cauchy stress tensor as

P= JσσσFT, (1.5)

using Nanson’s formula. The first Piola-Kirchhoff stress isin general non-symmetric and
due to its definition a two point tensor with one index referring to the current and one index
referring to the reference configuration.

The second Piola-Kirchhoff stress tensorS is fully compatible with the Lagrangian de-
scription. With a pull-back operation it is obtained from the Cauchy stress tensor as

S= JF−1σσσFT. (1.6)

Results are commonly reported using the Cauchy stress tensor.The eigenvalues ofσσσ cor-
respond to the principal stresses and the corresponding eigenvectors point in the directions
of the principal stresses.

1.3.4 Hyperelasticity

One refers to a material as hyperelastic if a potentialΨ exists from which the stress can
be derived. The Helmholz free-energy functionΨ is defined per unit reference volume. If
Ψ = Ψ(F) only depends on the deformation gradient it is called strain-energy function.

The Cauchy stress tensor is computed from the partial derivatives ofΨ as

σσσ = J−1∂Ψ(F)
∂F

FT. (1.7)

The normalization condition requires that the strain-energy function vanishes in the stress-
free reference configuration and from physical considerations it is obvious that the strain-
energy function increases with deformation, i.e.

Ψ(I) = 0 and Ψ(F)≥ 0. (1.8)

Objectivity is required for constitutive equations, i.e. the strain energy has to be indepen-
dent of rigid body motion. ThereforeΨ may only depend on the stretching part ofF and

Ψ(F) = Ψ(QF) (1.9)

must hold for all orthogonal tensorsQ. It follows that by formulating the strain-energy
function Ψ(C) in terms of the right Cauchy-Green tensorC it fulfills the necessary and
sufficient conditions for the strain energy to be objective,because the rotational part ofF
is removed.
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The strain-energy function may be represented in terms of a set of independent strain
invariants. ForC these invariants are

I1 = tr(C), I2 =
1
2
[tr(C)2− tr(C2)], I3 = det(C). (1.10)

For an anisotropic material with two families of fibers, the strain-energy function also
depends on the direction vectorsM andM ′, i.e.Ψ = Ψ(C,M ⊗M ,M ′⊗M ′). The number
of independent invariants is increased to nine with the pseudo-invariants

I4 = M ·CM , I5 = M ·C2M , I6 = M ′ ·CM ′, I7 = M ′ ·C2M ′,

I8 = M ·CM ′, I9 = (M ·M ′)2. (1.11)

Note thatI4 andI6 represent the square of the stretch in the directionsM andM ′, respec-
tively. To minimize the number of material parameters, constitutive equations for arterial
tissue usually only consider the invariantsI1, I4 andI6 [7].

1.3.5 Nonlinear Finite Element Formulation

The nonlinear behavior of arterial tissue, including largedeformation and initial stresses,
pose several challenges to the finite element modeling. Nonlinearity in finite element for-
mulations applied to arterial tissue has two causes: nonlinearity of the material models and
nonlinearity due to large deformations.

Arterial tissue has a nonlinear stress-stretch response with exponential stiffening. For non-
linear material models the stiffness matrix[K ] depends on the displacement[u] and thus
changes during loading. An iterative method such as the Newton-Raphson method can
solve the nonlinear equation

[K(u)] [u] = [f], (1.12)

where[f] is the vector of external forces.

Upon loading, arterial tissues may undergo large deformations. Hence, the weak or vari-
ational formulation of the equilibrium equations can be described in the initial or in the
current configuration, also referred to as total Lagrangianand updated Lagrangian formu-
lations [26].

Additionally, pressure always remains normal to the surface. Hence, it is not a conservative
load and can not be derived from a potential function. This means that the tangent matrix
is, in general, unsymmetric and an unsymmetric solver for the Newton-Raphson method is
necessary [27].
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1.3.6 Incompressible Materials

Standard displacement-based finite element formulations show volumetric locking for in-
compressible or nearly incompressible materials. A solution to this problem is a mixed
variational approach following the Hu-Washizu principle.Here the variables solved for in
the matrix representation of the finite element problem are the displacementu, the pressure
p and the volume changeJ [28].

To facilitate the computation of incompressible materialsthe models are implemented in
a compressible form and rendered incompressible with a penalty parameter. To this end
a multiplicative decomposition of the deformation gradient F = J1/3F is introduced that
splits the deformation into a volumetricJ1/3I and an isochoricF part, where detF = 1.
This multiplicative decomposition yieldsC = J2/3C. The strain-energy functionΨ is split
into a volumetric (spherical)Ψvol and an isochoric (deviatoric)Ψ part according to

Ψ(C) = Ψvol(J)+Ψ(C). (1.13)

An example for the volumetric part of the strain-energy function is

Ψvol =
K
2

log(J)2, (1.14)

whereK is a penalty parameter. The quasi-incompressible solutioncoincides with the in-
compressible solution if it is sufficiently large.

1.3.7 Initial Stresses

The term initial stress includes residual stresses and prestresses. Residual stresses are those
stresses present in the load-free configuration. Prestresses are present in geometries recon-
structed from medical imaging an result fromin vivo axial pre-stretch and blood pres-
sure.

Medical imaging is usually performed in vivo, and hence the reconstructed model geom-
etry in the problem of interest has in vivo boundary conditions, e.g., a blood vessel at
physiological blood pressure. However, classical finite element methods assume that sim-
ulations begin from an unloaded, stress-free reference condition. The problem, hence, is
that the in vivo determined ‘initial’ geometry is not an unloaded reference configuration.
To address this problem, Gee et al. [29, 30] proposed a methodto include prestresses
to patient-specific geometries of abdominal aortic aneurysms based on an updated La-
grangian approach.

As part of this PhD Thesis, their algorithm was generalized and implemented to a finite
element software. The details are presented in Chapter 4. Briefly, an incremental defor-
mation gradient is calculated from the incremental displacement for which each iteration
step is solved. The incremental displacement is then deleted and the deformation gradi-
ent is updated with the incremental deformation gradient. Compared to the inverse design
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analysis [31, 32], where the actual load free configuration is computed, the prestressing
algorithm is not prone to buckling and it is easier to implement.

Usually the opening angle method is used to incorporate residual stress to arterial mod-
els by closing an arterial segment with a certain opening angle prior to loading, see,
e.g., [33, 34]. Alastrué et al. [35] include residual stresses to a patient-specific model based
on the opening angle method. The residual stress state, however, is more complicated and
different dimension of the arterial layers after separation should be considered. Chapter 4
presents a method to account for the data of Holzapfel et al. [24]. A summary of the liter-
ature modeling residual stress in patient-specific diseased arteries using the finite element
method is provided in Table 1 of [36].

1.4 Hyperelastic Modeling of Arterial Tissue

Several constitutive models have been proposed for arterial tissue. This section gives an
overview of the hyperelastic models proposed for arteries and their characteristics.

1.4.1 Constitutive Equation

Commonly, the passive behavior of arterial tissue is modeledas an incompressible fiber
reinforced tissue. Assuming that the elastin matrix behaves isotropically, it is modeled with
an isotropic strain energy-functionΨm. The symmetrically aligned collagen fibers stiffen
exponentially and are thus modeled with an anisotropic strain-energy functionΨf. The
original form of the deviatoric part of such a strain-energyfunction is introduced in [7]

Ψ = Ψm+Ψf,4+Ψf,6

=
µ
2
(I1−1)+ ∑

i=4,6

k1

2k2
{exp[k2(I i−1)2]−1}, (1.15)

whereµ > 0 andk1 > 0 are stress like parameters andk2 > 0 is a dimensionless parame-
ter. The modified invariants are defined asIa = J−2/3Ia for a = 1,4,6. It is assumed that
the fibers are only load bearing under tension, therefore, the anisotropic termΨf,i only
contributes ifI i > 1.

1.4.2 Fiber Dispersion

The assumption that all fibers are aligned exactly in the directionsM andM ′ is not cor-
rect as already shown by [37]. It is possible to account for the dispersion of the fibers
phenomenologically by replacingΨf,i in (1.15) with

Ψf,i =
k1

2k2
exp{k2[(1−ρ)(I1−3)2+ρ(I i−1)2]}, i = 4,6, (1.16)
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where 0≤ ρ ≤ 1 is a dimensionless parameter [38]. The higher the parameter ρ, the higher
the isotropic contribution in the exponential response of the fibers. A structurally motivated
way of introducing dispersion is the dispersion parameterκ in (1.15) where the pseudo-
invariantI4 is replaced byI

∗
4 = κI1+(1−3κ)I4 [39], i. e.

Ψf,i =
k1

2k2
[exp{k2[κI1+(1−3κ)I i−1]2}−1], i = 4,6. (1.17)

Again, the value ofκ ∈ [0,1/3] determines the proportion of isotropic contribution in the
mechanical response of the fibers. Both models encompass (1.15) as limiting cases for
ρ = 1 andκ = 0, respectively. The main drawback of these models is, that they assume
rotational symmetry of the fiber dispersion around the main fiber direction.

Recent measurements of the three-dimensional fiber distribution of collagen fibers [40] in
the arterial layers show that collagen fibers are aligned closer to the axial direction in the
adventitia, closer in the circumferential direction in themedia and around 45◦ in the in-
tima. The data also suggest that the assumption of rotational symmetry does not hold. The
dispersion is rather in the axial and circumferential planewith very low dispersion along
the radial direction. The first continuous three-dimensional distribution of collagen fibers
is reported in [41], showing that the media has an alternating preferred fiber orientation
through the thickness of the wall. Such structural data are aprecondition for adequately
modeling arterial tissue and the softening mechanism within the tissue.

Gasser [42] uses a Bingham distribution, which is not rotationally symmetric, to account
for the different fiber dispersion in the tangential and cross-sectional plane to model the
mechanical behavior of aneurysm tissue. However, they still use a phenomenological model
for the collagen fibers.

1.4.3 Fiber Crimping

A further aspect that can be included in the models is fiber crimping. The collagen fibers
show a wavy arrangement in the unloaded configuration and areonly load bearing after
they are straightened. One approach to account for this is the introduction of the additional
parametersI04 > 1 andI06 > 1 that account for the crimping of the fibers in the unloaded
state by altering the exponential expression in (1.15) to [43]

Ψf,i = exp[k2(I i− I0i)
2]−1, i = 4,6. (1.18)

In this case the anisotropic term only contributes ifI i > I0i , i.e. when the square of the
stretch of the fibers is greater thanI0i. A different approach was used by Li and Robert-
son [44], who introduce an activation criterion for the recruitment of the collagen fibers
using a metric for the deformation following a scalar measure of strain.
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Figure 1.3: Continuum (a) and pseudo-elastic damage model (b) for cyclicloading using the same
parameters for the undamaged strain-energy function (red). Contraryto the pseudo-elastic model,
for the continuum damage model the primary loading does not correspond tothe undamaged strain-
energy function.

1.5 Damage Modeling of Arterial Tissue

There are two common approaches to add softening to the hyperelastic strain-energy func-
tions, namely the continuum damage approach and the pseudo-elastic approach. In either
way, a hyperelastic strain-energy function is multiplied by a reduction factor that governs
the softening behavior of the material. The two different approaches, originally developed
to describe the mechanical behavior of rubber, are introduced in the following.

1.5.1 Continuum Damage Models

The continuum damage model [45] has the form

Ψ(C,D) = (1−D)Ψ0(C), (1.19)

whereΨ0 is the effective strain-energy function and 0< D ≤ 1 is an internal variable
describing the softening of the material. Incorporating damage only in the deviatoric part
of the strain-energy function and assuming that softening only occurs in the anisotropic
term of the tissue response yields the constitutive equation

Ψ = Ψm+(1−Df)Ψ
0
f . (1.20)

The isochoric part of the second Piola-Kirchhoff stress tensor is obtained by the differen-
tiation of the strain-energy function with respect to the right Cauchy-Green tensor. It has
the form
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S= Sm+Sf, Sm = 2
∂Ψm

∂C
, Sf = (1−Df)S

0
f , S

0
f = 2

∂Ψ0
f

∂C
. (1.21)

Figure 1.3(a) shows the stress-stretch response of the Cauchy stress computed fromS
0
f

(red) andSf (black) for the continuum damage model. The damage variableDf governs the
hysteresis, leading to the typical Mullins-type behavior.The stress without including the
damage variables differs from the primary loading path.

A possible evolution for the damage variable is given by Miehe [46] as

D(α) = Dmax

[

1−exp

(

−α
β

)]

, (1.22)

whereDmax andβ are dimensionless model parameters.Dmax constrains the maximum
softening andβ determines how fast this softening occurs during the loading process. The
evolution of the damage is governed by the variableα which depends on the maximum
thermodynamic force that occurred over the history of the loading. Examples of other evo-
lution equations are given in [47]. The continuum damage approach allows the inclusion
of continuous softening as introduced in [46].

1.5.2 Pseudo-Elastic Damage Models

The pseudo-elastic model has a common strain-energy function for the primary loading
path and a different strain-energy function for the unloading and reloading paths. This
function is augmented by the damage variableη which modulates the softening behavior.
In a general formulation, a pseudo-elastic strain-energy functionΨ has the form [48]

Ψ(C,η) = ηΨ0(C)+Φ(η), (1.23)

where 0< η ≤ 1 is a damage variable,Ψ0(C) is the strain-energy function of the undam-
aged material andΦ(η) is referred to as a damage function. Per definition the damagevari-
able equalsη = 1 on the primary loading curve. A possible pseudo-elastic strain-energy
function for soft tissue is

Ψ = Ψm+ηfΨf +Φf. (1.24)

The corresponding second Piola-Kirchhoff stress tensorShas the form

S= 2
∂Ψm

∂C
+2ηf

∂Ψ0
f

∂C
= Sm+ηfS

0
f = Sm+Sf. (1.25)

Figure 1.3(b) shows the stress-stretch response of the Cauchy stress computed fromS
0
f

(red) andSf (black) for the pseudo-elastic damage model. The essentialdifference to
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Fig. 1.3(a) is that the primary loading curve and the stress response of the undamaged
material coincide.

A possible evolution equation for the damage variable is proposed in [48] as

η = 1− 1
r

erf

[

1
m
(Ψmax−Ψ0

)

]

, (1.26)

whereΨmax is the maximum of the strain energy reached over the history of the deforma-
tion. The parameterr > 1 defines the maximum of the damage that can be accumulated
as the error function erf(x) for x≥ 0 only spans between 0 and 1. The parameterm> 0
determines how fast damage is accumulated. The damage variable equalsη = 1 on the pri-
mary loading curve so that it is possible to fit the material parameters independently from
the damage parameters. The pseudo-elastic model can be extended to model the residual
deformation after unloading which is observed for arterialtissue [49].

Guo and Slys [50] compare the performance of a continuum damage model and a pseudo-
elastic model to fit the mechanical response of rubber-like material. As expected both mod-
els can well describe the Mullins type behavior of the material. However, the agreement
for the pseudo-elastic model is much better. This results from the fact that the parameter
estimation is much simpler, because material and damage parameters are fitted separately.
For the continuum damage model, all parameters have to be determined simultaneously,
leading to a more complicated problem for parameter estimation.

1.5.3 Multiscale Damage Models

To provide a basic review on damage models for arterial tissue, the concepts of the mul-
tiscale models, namely the unit sphere and the reference volume element approach, are
briefly presented. Introducing a failure criterion on the mircoscopic scale, i.e. for the col-
lagen fiber network, leads to multi-scale damage models.

The concept of microsphere models for fibrous tissue under affine deformation goes back
to Lanir [51]. The constitutive behavior of a single fiber, i.e. the behavior on the microscale,
is formulated explicitly. Then the macroscopic strain energy is obtained by integrating the
strain energy of the fibers over a unit sphere. Anisotropy in fiber alignment is included in
the integrand by a density function. The theory was expandedto non-affine deformations
by Miehe et al. [52].

Using representative volume elements for the finite elementmethod, one can determine
the macroscopic behavior of a material based on the microscopic structure. These mod-
els have two length scales, the microscopic scale of the reference volume element and the
macroscopic scale of the finite element domain. The concept is described by Chandran and
Barocas [53] with the following four solution steps. First, aguess of the macroscale de-
formation is generated for the macroscopic problem in whichthe finite element equations
are formulated. Second, downscaling determines the deformation of the boundaries of the
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reference volume element from the macroscopic deformation. Third, the microscopic prob-
lem is solved with the prescribed boundary conditions and the stresses in the microscale
network are computed. Last, upscaling determines the average stress on the macroscale.

1.5.4 Experimental Data

Oktay et al. [54] first reported changes in the mechanical behavior of arteries after over-
stretching. They compare the mechanical response for the inflation of carotid arteries of
canines before and after inflating a balloon catheter. An increase in diameter after the bal-
loon inflation indicates that softening due to damage occurred.

Horny et al. [55] report experimental data of uniaxial extension tests for human aortic
tissue. However, they tested the intact tissue without separating the layers and thus neglect
the different mechanical and softening behavior of intima,media and adventitia.

Famaey et al. [56] evaluated tissue damage after arterial clamping by endothelial and
smooth muscle integrity tests for mouse abdominal aorta. Unfortunately, tissue loading
is only quantified by the external load, i.e. the clamping force, such that the stress-state
inside the tissue remains unknown. Furthermore, data obtained from animal tissue should
not be directly used to model surgical procedures for humans. One apparent difference,
for example, is the intimal thickening that is only observedin human arteries and absent
in animals [57]. However, such experiments give valuable insight in the impacts of supra-
physiological loading.

The data presented in Chapter 2 are the first to determine the layer-specific material and
damage parameter for human aortic tissue. They are a prerequisite for patient-specific nu-
merical models of catheter-based interventions and may help understanding the role of
each layer in softening and damage. Constitutive fitting suggests that softening is related
to the collagen fibers and not to the elastin matrix. To verifythis hypothesis, Chapter 3
presents data on elastase treated and on collagenase treated tissue and relates the structural
changes after enzyme treatment to changes in the mechanicalbehavior. The data presented
in this PhD Thesis are the first to show experimentally that damage is only associated to
the collagen fibers, i.e. to the anisotropic part of the strain-energy function.

1.5.5 Application of Damage Models to Arterial Tissue

Hokanson and Yazdani [58] propose an anisotropic damage model for arteries using a
fourth-order weighting tensor linked to the Ogden materialmodel. The model can represent
the Mullins effect, however, the model does not account for the anisotropy in the tissue and
it is more complicated than utilizing a scalar damage variable.

Balzani et al. [59] introduce a continuum damage model assuming that damage is only ac-
cumulated in the anisotropic part of the strain-energy function, i.e. in the collagen fibers of
the arterial tissue. The model describes the softening behavior qualitatively well, nonethe-
less, it is not calibrated to experimental data. Furthermore a value for the strain energy is
defined that describes the initial damage state. This means softening due to preconditioning
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is disregarded and softening due to damage is defined by a parameter which is arbitrarily
defined without sound experimental data. Furthermore, the approach implies that there is a
sharp threshold between softening in physiological and supra-physiological conditions.

Subsequently, Balzani et al. [60] propose a framework for continuum damage models that
are able to reflect remanent strains. The model gives a good qualitative fit to one set of
experimental data. Again, the issue of separation between softening due to preconditioning
and softening due to damage is not addressed adequately. Theuniaxial extension data are
preconditioned to a stress of about 100 kPa which is an arbitrary value in light of the fact
that uniaxial extension does not mimic physiological loading conditions.

A continuum damage model is also used by Marini et al. [61] to describe damage in aortic
aneurysm tissues. They do not focus on the softening but consider the yield point as the
initiation of damage, i.e. the point at which the tangent modulus has its maximum. Unfor-
tunately, the damage model does not advance the identification of rupture prone aneurysms
compared to other risk indices. However, the initiation of damage could be used to trigger
growth and remodeling processes in mechanobiological models.

Rodríguez et al. [43] use a stochastic model where the fibers ofdifferent lengths are mod-
eled as worm-like chains, an approach which requires justification. Collagen fibers of dif-
ferent length fail at different stretches and the increase of stretch leads to a consecutive
failure of the fibers. Thus, a damage mechanism is naturally introduced in the fiber bun-
dle. However, the worm-like chain model is an entropy based theory and on the scale
of collagen fibers a model based on stored energy should be favored. The finite element
implementation and numerical examples are presented in [62]. Again the calibration of
this structurally motivated model is the biggest challengedue to the lack of experimental
data.

Calvo et al. [63] present a continuous damage model for fibrousbiological tissue that de-
scribes discontinuous softening in both matrix and fibers. Compared to the model proposed
by Rodríguez et al. [43], it does not need to be calibrated at two different length scales.
A comparison of the two models [64] shows that the performance is similar with a larger
localization of damage in the stochastic model. However, the results in the Chapters 2
and 3 show that softening is not present in the matrix but onlyassociated with the collagen
fibers.

Li and Robertson [65] consider two damage mechanisms, mechanical damage and enzy-
matic damage, for the matrix. No softening is considered forthe collagen fibers. The mo-
tivation for enzymatic damage is to model the growth of aneurysms rather than modeling
mechanical damage due to supra-physiological stresses.

Peña et al. [66] consider continuous and discontinuous damage in their damage model
following an approach introduced in [46]. In [67, 68] they add viscoelasticity in the damage
models. Subsequently, Peña [69] bases a new approach for softening in the collagen fibers
on the strain-energy function given in (1.18) where she weights the recruitment stretch
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I0i with an internal variable. This is a more structurally motivated approach to introduce
softening compared to including the damage variable in front of the strain-energy function.
Furthermore, the model also describes a permanent deformation observed after unloading
arterial tissue.

Famaey et al. [70] propose a damage model that accounts for damage in three structural
components of the aortic wall, namely the elastin matrix, the collagen fibers and the smooth
muscle cells. This leads to a total of 21 parameters to describe the constitutive behavior.
They propose an active and a passive damage mechanism for thesmooth muscle cells
driven by the maximum strain energy encountered by the smooth muscle cells and the
matrix respectively. A finite element example discusses theinfluence of the passive smooth
muscle cell damage.

In an experimental study Colombo et al. [71] show that mean strain does not significantly
influence cell growth whereas variations in the cyclic strain amplitude result in a significant
change in cell proliferation and apoptosis. These data motivate a damage model for smooth
muscle cells that does not primarily depend on the maximum strain energy reached over
the history, but considers the strain amplitude in the damage criterion. This is supported by
experimental data on airway smooth muscle showing that the cells remodel when stretched
up to twice their initial length [72, 73].

Including the active response within damage models and better understanding cell pro-
liferation and apoptosis in response to supra-physiological loads are very important steps
towards better and more reliable damage models.

Gasser [15] models damage on the collagen fiber level and defined an irreversible rear-
rangement of proteoglycans. The macroscopic stress is obtained by integrating over a unit
sphere. Even though the model describes a possible mechanism for the softening in arterial
tissue, sound experimental evidence is missing to support the assumptions.

Sáez et al. [74] propose a microsphere-based damage model inwhich they regard damage
evolution in each integration direction separately. They show that the number of integration
points for the integration performed over the unit sphere greatly depends on the number
of integration points which are beyond the yield point of thetissue. To obtain a smooth
response a high number of points is necessary leading to highcomputational costs for
finite element models.

Hadi et al. [75] propose a multi-scale model for finite elements with a representative vol-
ume element comprised of a discrete fiber network. The fibers are represented by nonlinear
springs whose stiffness approaches zero if the stretch reaches a critical value. This can ei-
ther be interpreted as a rupture of a fiber or as a failure of fiber-to-fiber cross-links. The
model is capable of predicting macroscopic failure of type Icollagen gels.

A general problem for multiscale models is parameter identification because there are not
enough experimental data, and thus the damage mechanisms are not yet well understood.
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These models, however, can be used to test hypotheses on damage mechanisms and moti-
vate experimental investigations.

The damage model presented in this PhD Thesis uses the pseudo-elastic approach due to
advantages in the parameter estimation. One focus of this study lies on the use of patient-
specific material parameters, therefore it is important that the experimental data are ap-
proximated well by the constitutive model. The model and itsfit to experimental data are
presented in Chapter 3 and we show that damage is only related to the collagen fibers. In
a finite element framework for patent-specific modeling of damage it is applied in Chap-
ter 5.

1.6 Organization of the PhD Thesis

The PhD Thesis is a compilation of four scientific papers presented in the following chap-
ters:

• ‘Layer-Specific Damage Experiments and Modeling of Human Thoracic and Ab-
dominal Aortas with Non-Atherosclerotic Intimal Thickening’ , Weisbecker H, Pierce
DM, Regitnig P and Holzapfel GA, J. Mech. Behav. Biomed. Mater.,12:93-106,
2012.

• ‘The role of elastin and collagen in the softening behavior of the human aortic me-
dia’, Weisbecker H, Viertler C, Pierce DM and Holzapfel GA, J. Biomech., 46:1859-
1865, 2013.

• ‘A generalized prestressing algorithm for finite element simulations of pre-loaded
geometries with application to the aorta’, Weisbecker H, Pierce DM and Holzapfel
GA, Int. J. Numer. Method. Biomed. Eng., in press.

• ‘A computational framework for patient-specific modeling ofhuman arteries con-
sidering initial stresses and supra-physiological loads’, Weisbecker H, Pierce DM,
Rodriguez-Vila B, Gómez EJ and Holzapfel GA, submitted.

The first paper presents experimental data on human aortic tissues in physiological and
supra-physiological load ranges for the separated layers:intima, media and adventitia.
Based on these data we propose a pseudo-elastic damage model for human arterial tissue.
The results indicate that damage is only associated to the anisotropic response of the col-
lagen fibers. The second paper more closely investigates therole of elastin and collagen in
the softening behavior observed in the media by enzymatic digestion of one of these com-
ponents, respectively. Our results support the hypothesisthat the softening behavior is only
associated with the anisotropic response of the collagen fibers. The third paper presents a
numerical method to include prestretches into finite element geometries. The prestretches
are present in patient-specific geometries because medicalimaging is performedin vivo,
and hence the aorta is loaded with internal blood pressure and axial prestretch. The fourth
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paper describes a finite element framework for modeling stress and damage distributions
on a patient-specific framework by including residual stresses and prestresses. The exper-
imental data and the model presented in the first paper are applied here again.

The work of this PhD Thesis contributed also to the followingpeer-reviewed journal pa-
pers, conference proceedings and conference lectures:

• Weisbecker H, Unterberger MJ, Holzapfel GA,Constitutive modeling of arteries
considering fiber recruitment and the 3D fiber distribution, in preparation.

• Pierce DM, Fastl TE, Weisbecker H, Rodriguez-Vila B, Gómez EJand Holzapfel
GA, A method for incorporating residual stretches/stresses into patient-specific sim-
ulations of arteries, in preparation.

• Unterberger MJ, Weisbecker H, Holzapfel GA,Torsion of a circular cylinder versus
simple shear as a modeling basis for rheometer experiments:application to rubber
and actin networks, submitted.

• Pierce DM, Fastl TE, Weisbecker H, Rodriguez-Vila Bz, Gómez EJ and Holzapfel
GA, A method for incorporating residual stresses into patient-specific finite element
simulations of arteries with an example on AAAs, 6th European Congress on Compu-
tational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna,
Austria, September 10 – 14, 2012.

• Weisbecker H, Pierce DM, Holzapfel GA,Layer-specific modeling of damage in-
duced softening in the human aorta and the influence of residual stretches, 8th Eu-
ropean Solid Mechanics Conference (ESMC2012), Graz, Austria, July 9 – 13, 2012.

• Fastl TE, Pierce DM, Weisbecker H and Holzapfel GA,A method for incorporating
residual stresses into finite element simulations with an application to abdominal
aortic aneurysms, 8th European Solid Mechanics Conference (ESMC 2012), Graz,
Austria, July 9 – 13, 2012.

• Weisbecker H, Pierce DM, Rodriguez-Vila B, Gómez EJ and Holzapfel GA,Patient-
specific modeling of human thoracic aortas with consideration of damage, SCATh
Joint Workshop on New technologies for Computer/Robot Assisted Surgery, Madrid,
Spain, July 9 – 10, 2012

• Weisbecker H, Pierce DM, Regitnig P, Holzapfel GA,Damage modeling of the hu-
man aorta: Influence of collagenase and elastase, 18th Congress of the European
Society of Biomechanics (ESB2012), Lisbon, Portugal, July 1 –4, 2012.

• Pierce DM, Weisbecker H, Schriefl AJ, Rodriguez-Vila B, GómezEJ, Holzapfel GA,
Modeling arterial tissue and intraluminal thrombus: experimental and numerical re-
sults, 2nd International Conference on Material Modelling (ICMM2)incorporating
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the 12th European Mechanics of Materials Conference, Paris,France, August 31 –
September 2, 2011.

• Weisbecker H, Pierce DM, Holzapfel GA,Pseudo-elastic finite element modeling of
damage in arterial tissue, IUTAM Symposium on Computer Models in Biomechan-
ics: from Nano to Macro, Stanford, California, USA, August 29– September 2, 2011
(Poster presentation).

• Weisbecker H, Pierce DM, Holzapfel GA,Pseudo-elastic modeling of damage for
healthy human aortas with non-atherosclerotic intimal thickening, 82nd Annual Sci-
entific Conference of the International Association of Applied Mathematics and Me-
chanics (GAMM2011), Graz, Austria, April 18 – 21, 2011.

• Weisbecker H, Pierce DM, Holzapfel GA,Modeling of damage-induced softening
for arterial tissues, Proceedings of the Joint Workshop on New Technologies for
Computer/Robot Assisted Surgery, Graz, Austria, July 11 – 13,2011.



20 1 Introduction



2 LAYER-SPECIFIC DAMAGE EXPERIMENTS AND
MODELING OF HUMAN THORACIC AND ABDOMINAL
AORTAS WITH NON-ATHEROSCLEROTIC INTIMAL
THICKENING

Abstract Many treatments for cardiovascular diseases include an endovascular inser-
tion of stents or stent grafts into arteries, a procedure which may cause high tissue stresses
and even damage in the arterial wall. In order to study such problems by using finite ele-
ment methods, both appropriate constitutive models and experimental data on human tissue
samples are required. Layer-specific experimental data forhuman tissue tested up to the
supra-physiological loading range are rare in the literature. In this study intact and layer-
separated experimental data from uniaxial extension testsare presented for human tho-
racic and abdominal aortas with non-atherosclerotic intimal thickening undergoing supra-
physiological loading. A novel pseudo-elastic damage model, proposed to describe discon-
tinuous softening in aortic arterial tissues, is fit to the obtained experimental data. Fitting of
the model with and without consideration of damage accumulation in the non-collagenous
matrix material reveals that tissue damage is primarily related to the collagen fiber fabric.
By employing the fit model, the effect of aortic tissue pre-conditioning on the material
parameters from the resulting data fits is evaluated. Histological examination of the colla-
gen fibers under different applied stretches is used to gain more insights into the structural
changes of the tissue under supra-physiological loading.

2.1 Introduction

Cardiovascular diseases are one of the leading causes of death in the western world [76].
Treatment protocols for various pathologies of the aorta often include the insertion of stent
grafts such as endovascular thoracic or abdominal aneurysmrepair. The deployment of
stent grafts can generate high stresses and may cause damagein the arterial wall. To im-
prove finite element (FE) studies aimed at improving the design of stent geometries and
to facilitate the application of catheter-based procedures, we study the supra-physiological
stress-strain response of human aortic tissue.

Little experimental data for the stress-strain response ofarterial tissue in the supra-physio-
logical range exists in the literature. Data on animal tissue, for example, for canines [54],
help with a basic understanding of the behavior of arterial tissue. However, such data are
not adequate for FE modeling of surgical procedures as the specific properties of the tissue
vary among species. To the authors’ knowledge the only supra-physiological experimental

21
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data on human tissue was presented recently by Horný et al. [55] who conduct uniaxial ten-
sion tests on the intact human aorta. Unfortunately, no layer-specific data are yet presented
so that it is not possible to differentiate the amount of damage which may be induced in
the individual tissue layers, i.e. intima, media and adventitia.

In the present study uniaxial tension tests are conducted onboth intact and layer-separated
human aortic tissue samples, taken from both the thoracic and abdominal regions. Using
uniaxial tension tests, high supra-physiological loadingis induced in the tissue, a crucial
requirement for damage experiments. The biaxial tension test is better able to mimic the
physiological loading conditions, but the test is difficultto perform at higher loads be-
cause of the attachment with hooks that rupture the tissue atcomparatively low strains.
Nonetheless, a careful experimental protocol and fitting procedure can successfully de-
termine reliable material parameters for anisotropic, hyperelastic constitutive models, as
shown by Holzapfel [77]. Experimental tests are realized with three repeated load cycles
for every prescribed load step in order to study both continuous softening and discontin-
uous softening described by the Mullins effect. Histological specimens are prepared and
analyzed for tissues loaded to different stretches in an effort to examine possible changes
in the mechanically relevant components.

In young arteries the intima is a thin layer of endothelial cells such that only the media
and the adventitia are load bearing. In aged arteries, however, the intima thickens and all
three layers are load bearing, and hence relevant from the mechanical point of view. The
individual tissue layers can be modeled as fiber-reinforcedcomposites with an isotropic
matrix, mainly comprised of elastin, and two symmetricallyarranged families of collagen
fibers [7]. The material model was subsequently extended to account for the dispersion in
the collagen fiber directions [39] and is used to model the hyperelastic material behavior
observed after pre-conditioning of the tissue.

Hokanson and Yazdani [58] proposed a damage model for arteries by using a fourth-order
weighting tensor to account for possible anisotropy of damage. This model can describe
discontinuous damage, where damage accumulates only at loads higher than the maxi-
mum load reached within the deformation history. However, the approach is relatively
complicated compared to the approach used in continuum damage mechanics, where a
scalar damage variable serves as a reduction factor for an effective strain-energy function.
Balzani et al. [78] introduced a continuum damage model assuming that damage accumu-
lates only in the collagen fibers of the arterial tissue. Thismodel can successfully describe
damage-induced softening qualitatively, but it has not been calibrated to data, and hence
the modeling assumptions were not proven experimentally. Balzani et al. [60] recently
presented an extended version of the model and a good fit to oneset of experimental data
on the media of a human carotid artery. Rodríguez et al. [43] chose to model the collagen
fibers using a worm-like chain approach. Discontinuous softening is introduced by defining
different failure stresses for bundles of collagen fibers with different lengths. A FE imple-
mentation and numerical examples are presented by Rodríguezet al. [79]. Here again, due
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to the lack of experimental data, calibration of this structurally-motivated model remains
the biggest challenge.

Calvo et al. [63] presented a stochastic damage model for fibrous biological tissues which
describes discontinuous softening in both the tissue matrix and the fibers. Compared to the
model presented by Rodríguez et al. [43] it does not need to be calibrated at two different
length scales. Alastrué et al. [64] compared these models and showed that the performance
of the two models was similar, although with a larger localization of damage in the stochas-
tic model. Li and Robertson [65] considered two damage mechanisms for the matrix, me-
chanical and enzymatic damage, whereas no softening of the fibers was considered. The
inclusion of enzymatic damage was motivated by the study of aneurysm growth, rather
than modeling mechanical damage due to supra-physiological stresses. Peña et al. [66]
added continuous damage, where damage is always accumulated even at loads lower than
the maximum reached within the deformation history, to the discontinuous damage in their
models, following an approach introduced by Miehe [46].

In the present study a pseudo-elastic approach, which was first introduced by Ogden and
Roxburgh [48], is used to describe damage-induced softeningof arterial tissues. In the
pseudo-elastic theory, the primary loading curve is described by an elastic strain-energy
function. For unloading and reloading of the tissue this strain-energy function is modified
by a damage parameter. Herein the material parameters can befitted independently of the
damage parameters, a significant advantage relative to approaches based on continuum
damage. The model is proposed in the most general framework able to describe damage
in both the matrix and the fiber components individually. Specifications of the model are
fit to experimental data assuming that damage accumulates (i) in the fibers only, (ii) in the
matrix only and (iii) in both constituents. Such a fitting procedure allows a judgement of
the quantitative fit of the model to the data in view of the number of model parameters
employed.

Discontinuous softening is observed at all load levels and the pre-conditioning behavior
of the tissue can also be described by the Mullins effect [80]. Hence, contrary to other
damage functions introduced in the literature, see, for example, Balzani et al. [78] and
Calvo et al. [63], we define no threshold value for the damage. Rather then setting ana
priori threshold for tissue damage in the model, we seek to clarify what model values
of damage describe pre-conditioning-like softening and what values describe acute tissue
injury beyond the physiological load range.

In the following sections the constitutive model is presented and the experimental protocol
and data analysis methods are explained. Results of the uniaxial extension tests, the data
fitting and the histological examinations are presented andfinally discussed.
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2.2 Materials and Methods

2.2.1 Constitutive Modeling

Kinematics, Pseudo-Elastic Damage Model

With forethought to implementation into an FE code, a multiplicative decomposition of the
deformation gradientF = (J1/3I)F is considered, whereJ = detF > 0 is the determinant
of the deformation gradient, the volume ratio, andI is the second-order unit tensor. The
termJ1/3I represents the volumetric part, whileF, with detF = 1, is the isochoric part of
the deformation gradient [81]. Consequently,C = FTF denotes the right Cauchy-Green

tensor, andC = FTF is the modified right Cauchy-Green tensor [25].

To consider isotropic damage in the sense of decoupled volumetric-isochoric response, ac-
cording to the multiplicative split of the deformation gradientF, we postulate a decoupled
representation of the strain-energy functionΨ(C,η), whereη ∈]0,1] is a damage variable.
Thus, by consideration of the pseudo-elastic damage model as introduced by Ogden and
Roxburgh [48], we have

Ψ(J,C,η) = Ψvol(J)+ηΨ0
(C)+Φ(η), (2.1)

whereΨvol is a strictly convex function (with the minimum atJ = 1) which describes the

volumetric elastic response, the second functionΨ0
denotes the isochoric strain energy of

the undamaged material, which describes the isochoric elastic response so that the damage
phenomenon affects only the isochoric part of the deformation ([45]); the superscript 0

denotes an undamaged material. We require thatΨvol(J) = 0 andΨ0
(C) = 0 hold if and

only if J = 1 andC = I , respectively. The third functionΦ in (5.1) denotes a (smooth)
damage function. Note, that damage is only accumulated in the deviatoric part of the strain-
energy function and that the material remains isochoric even if damage is induced.

By definition the damage variableη is set to 1 on the primary loading curve. The material
behavior on this curve is then described by the strain-energy function such thatΦ(1) = 0

andΨ(C,1) = Ψvol(J)+Ψ0
(C). In the case of subsequent unloading and reloading, i.e.

whenη < 1, the damage evolves with the deformation so that [48]

∂Ψ
∂η

= Ψ0
(C)+Φ′(η) = 0, (2.2)

whereΦ′(η) = ∂Φ(η)/∂η . Thus,

Ψ0
(C) =−Φ′(η) (2.3)

implicitly defines the damage variableη in terms of the deformation. Ogden and Rox-
burgh [48] have chosen the damage function as

−Φ′(η) = merf−1[r(η−1)]+Ψmax
, (2.4)
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where erf−1(·) is the inverse of the error function erf(·) andΨmax
denotes the maximum of

the strain energy obtained in the deformation history. Somealgebraic manipulation, using
(2.3), gives

η = 1− 1
r

erf

[

1
m
(Ψmax−Ψ0

)

]

, (2.5)

wherer > 1 characterizes the maximum material damage that can be induced under load-
ing, andm> 0 determines the dependence of the damage on the deformation. Small values
of m indicate that significant damage already occurs at small strains, whereas for larger
values ofm damage will progress more slowly. To characterize the damage induced to the
material, the minimum valueηmin of the damage function is determined as

ηmin = 1− 1
r

erf

(

1
m

Ψmax
)

. (2.6)

Other constitutive equations for the softening function have been proposed by, for example,
Beatty and Krishnaswamy [82] and Elías-Zúñuiga [83].

Given the strain-energy function (5.1), the second Piola-Kirchhoff stress tensor is calcu-
lated asS= 2∂Ψ/∂C = Svol +S. Hence, the volumetric part ofS is given bySvol =
2∂Ψvol(J)/∂C, while the isochoric partS of the second Piola-Kirchhoff stress tensor is
determined by using (2.3), i.e.

S= 2

[

η
∂Ψ0

(C)

∂C
+Ψ0

(C)
∂η
∂C

+Φ′
∂η
∂C

]

= ηS
0
, S

0
= 2

∂Ψ0
(C)

∂C
, (2.7)

whereS
0

is the isochoric second Piola-Kirchhoff stress tensor related to the undamaged
material.

Damage Model for Arterial Tissue

The individual layers of the artery are modeled as fiber-reinforced composites with an

additive decomposition of the strain-energy functionΨ0
into an energy stored in the non-

collagenous matrix, sayΨ0
m, and an energy stored in the collagen fibers, sayΨ0

f . Hence
(cf. [84]),

Ψ0
= Ψ0

m+Ψ0
f . (2.8)

The non-collagenous matrix is assumed to be isotropic and modeled as a neo-Hookean
material, i.e.

Ψ0
m =

µ
2
(Ī1−3), (2.9)

whereµ > 0 corresponds to the shear modulus of the material in the reference configura-
tion, andĪ1 = tr(C) is the first strain invariant of the modified right Cauchy-Green tensor
C.
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We assume here two collagen fiber families for all layers (as,for example, shown in
Schriefl et al. [40] and, therefore, we use a two-fiber family model according to Holzapfel
et al. [7] and Gasser et al. [39]. The related (anisotropic) strain-energy function may be
written as

Ψ0
f,i =

k1

2k2
[ek2(Ī⋆i −1)2−1], Ī⋆i = κ Ī1+(1−3κ)Īi , i = 4,6, (2.10)

wherei = 4 relates to one fiber family andi = 6 to the other. The pseudo-invariantsĪ4 =
C : M ⊗M and Ī6 = C : M ′⊗M ′ correspond to the square of the stretches of the fibers
in the fiber directions. The vectorsM andM ′ denote the directions of the collagen fibers
in the reference configuration. The fibers are symmetricallyoriented with respect to the
circumferential direction of the artery, and thus bothM andM ′ are uniquely defined by
the structural parameterϕ, which defines the angle between the circumferential direction
of the artery and the fiber direction. The dispersion parameterκ ∈ [0,1/3] describes radial
symmetry of the dispersion about the fiber direction. Furthermore, we have the stress-
like parameterk1 > 0 and the dimensionless parameterk2 > 0. In the proposed model
the anisotropic strain-energy function (2.10)1 only contributes toΨ when Ī⋆4 > 1 or Ī⋆6 >
1. If one or more of these conditions is not satisfied then the relevant part of (2.10)1 is
omitted.

For the fiber contribution an interesting limiting case exists, namely fork2→ 0; then the
corresponding strain-energy function reads

Ψ0
f,i =

k1

2
(Ī⋆i −1)2, i = 4,6, (2.11)

such that the stiffening of the collagen fibers is described by a quadratic function rather
than an exponential function.

We propose a general framework for modeling discontinuous damage in soft biological
tissues by employing one damage functionΦm(ηm) for the non-collagenous matrix, with
the damage variableηm relating to the matrix, and two damage functionsΦf,4(ηf,4) and
Φf,6(ηf,6) for the two families of fibers, with the two damage variablesηf,4 andηf,6 de-
scribing damage in the two families of collagen fibers separately. Hence, we are able to
replace the strain-energy functionΨ(C,η) in (5.1) by

Ψ(C,ηm,ηf,4,ηf,6) = Ψvol +ηmΨ0
m(C)+Φm(ηm)+ ∑

i=4,6

[ηf,iΨ
0
f,i(C)+Φf,i(ηf,i)], (2.12)

where the energiesΨ0
m andΨ0

f,i are specified in (2.9) and (2.10), respectively.

In (2.12), the evolution of the damage variableηm in the non-collagenous matrix is char-
acterized by two parameters (rm, mm), cf. (5.2), while damage in both families of collagen
fibers is characterized, in general, by four variables (rf,4,mf,4, rf,6,mf,6). The final form of
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Donor I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII
Age [yrs] 55 48 47 53 61 79 61 69 77 68 53 44 48 68 74 62 69
Gender F F F M F M M F F M M M M F F F M

Table 2.1: Overview over age and gender of the donors; M: male, F: female.

(2.12) remains to be specified for aortic arterial tissue viaappropriate mechanical tests,
where damage may accumulate only in the matrix material, or only in the collagen fiber
fabric or in both constituents simultaneously.

Finally, by analogy with the procedure which led to (5.7), wedetermineS from (2.12).
Thus,

S= ηmS
0
m+ ∑

i=4,6

ηf,iS
0
f,i, S

0
m = 2

∂Ψ0
m

∂C
, S

0
f,i = 2

∂Ψ0
f,i

∂C
, i = 4,6. (2.13)

whereS
0
m andS

0
f,i are second Piola-Kirchhoff stress tensors related to the undamaged ma-

trix and fiber fabric, respectively. With the two strain-energy functions (2.9) and (2.10) the
two stress tensors can be specified. From (2.13) we obtain

S
0
m = 2

∂Ψ0
m

∂ Ī1

∂ Ī1
∂C

= µ
∂ Ī1
∂C

, (2.14)

S
0
f,i = 2

∂Ψ0
f,i

∂ Ī⋆i

∂ Ī⋆i
∂C

= 2k1(Ī
⋆
i −1)ek2(Ī⋆i −1)2 ∂ Ī⋆i

∂C
, i = 4,6, (2.15)

where it is straightforward to specify the kinematic relations∂ Ī1/∂C and∂ Ī⋆i /∂C. The
related Cauchy stress tensorσ = J−1FSFT is obtained by a standard push-forward opera-
tion.

2.2.2 Experimental Protocol

Specimen Preparation

For the present study 16 thoracic and abdominal aortas with non-atherosclerotic intimal
thickening were harvested within 24 hrs of death and stored in physiological solution at
4◦C. Table 2.1 provides an overview of age and gender of the individual donors. Out of
this pool of aortas, 14 thoracic aortas (60±12 yrs, mean± SD) and 9 abdominal aortas
(61±11 yrs) were tested, and the rest were omitted due to calcification of the tissue. All
tests, performed with the aim to obtain information of the mechanical aortic behavior in the
supra-physiological deformation and loading domains, were conducted within 48 hrs after
removal from the body. The use of autopsy material from humansubjects was approved
by the Ethics Committee of the Medical University of Graz.
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In the regions without visible atherosclerosis, dog-bone specimens were cut from the arte-
rial tissue using a punching tool (length 37.3 mm; width at the clamping region 8.7 mm).
The gauge section had a width of 4 mm and a length of 10 mm. The initial thickness of the
specimens was measured with a videoextensometer (ME 46-350, Messphysik, Fürstenfeld,
Austria), where the average of four measurements at evenly distributed locations was taken
to determine one value for the mean thickness. Furthermore,two black markers were glued
onto the specimen surface (with distance of about 5 mm) and tracked with a videoexten-
someter so that the local stretch could be calculated.

For the layer-separated specimens, intima, media and adventitia were separated manually.
During separation of the individual layers, the dissectionwas not always perfect, but only
(very) minor fractions of the media were found attached to the adventitia (cf. [85]). It was
assumed here that the effect of imperfect layer separation on the mechanical behavior of
the individual layers can be neglected.

Uniaxial Tension Test

Mechanical tests of tissue strips taken along the axial and circumferential directions of
the aorta were conducted with a uniaxial testing machine (µ-Strain ME 30-1, Messphysik,
Fürstenfeld, Austria), inside a tissue bath with physiological solution at 37◦C. A force
driven protocol was employed, where the forces were calculateda priori such that tissue
loading resulted in a first Piola-Kirchhoff stress, i.e. force related to the area of the refer-
ence configuration, of 100, 300, 600, 900 kPa for the adventitia, and 50, 100, 300, 500 kPa
for all other specimens. The adventitia was loaded with a different protocol because of its
relatively high strength so that a similar number of load cycles were tested for each layer.
Three cycles were executed for each load step in order to observe discontinuous soften-
ing of the tissue that was evident in the first cycle of a load step, and to simultaneously
investigate the possibility of continuous tissue softening, that would be evident in sub-
sequent cycles of the same load. The specimens were loaded quasi-statically at a rate of
5 mm/min.

Data Analysis

To evaluate the experimental data, and to specify and fit the proposed constitutive damage
model, the Cauchy stressσ and the stretchλ in the loading direction were computed.
The Cauchy stress was calculated asσ = f/(tw), where f is the measured force,t is
the specimen thickness andw is the width of the specimen in the current configuration.
By introducing the specimen lengthl in the current configuration, we may writetwl =
TWLdue to the assumption of incompressibility of the tissue (capital letters denote related
values in the undeformed configuration). The Cauchy stress can then be rewritten as

σ =
f

TW
λ , (2.16)

whereλ = l/L denotes the stretch in the loading direction.
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We assume here that the evolution of damage in both families of collagen fibers is the same
so that damage is characterized by the two variablesrf = rf,4 = rf,6 andmf = mf,4 = mf,6.
The constitutive parametersx = [µ,k1,k2,ϕ,κ, rf,mf] was performed using a nonlinear
least-squares trust region algorithm implemented in the MATLAB (2009b, The MathWorks,
Inc., Massachusetts, United States). First the Cauchy stress in the loading direction (2.16)
is determined. Next, the lateral and the through-the-thickness stretches are calculated using
the incompressibility condition and an additional constraint that the stress in the lateral
direction equals zero. The parameter optimization was performed with these stresses and
stretches minimizing the objective function

χ =
n

∑
i=1

[σexp
i (C)−σmod

i (C,x)]2, (2.17)

wheren is the number of considered data pointsσexp
i are the Cauchy stresses determined

experimentally andσmod
i are the corresponding values predicted by the strain-energy func-

tion Ψ for both the circumferential and the axial direction.

With the obtained constitutive parameters the lateral and through-the-thickness stretches
were updated and the fitting was repeated until the solution converged. The material pa-
rameters were fit to the primary load path, and then the damageparameters were deter-
mined using the entire loading history. For the material parameters associated with the
anisotropic part of the strain-energy function, it is assumed that the fibers are not under
compression during the experiment and only results withĪ∗4 ≥ 1 were considered. Differ-
ent sets of initially-guessed material parameters were tested as these may lead to different
fitting results [86], and in all physically-reasonable cases the resulting material parame-
ters were nearly identical. The coefficient of determination R2 was used to evaluate the
goodness of fit.

Three different cases were tested in fitting the damage parameters to specify an accu-
rate and efficient damage model for aortic tissues. First, the strain-energy function (2.12),
which considers damage accumulation in both the non-collagenous matrix and the collagen
fabric, was fit to the experimental data (Case I). Second, a constitutive model considering
damage accumulation only in the collagen fibers (ηm = 1 andΦm = 0) was fit for compar-
ison (Case II). Finally, for the sake of completeness, a modelconsidering damage accumu-
lation only in the matrix material, i.e. (2.12) withηf,4 = ηf,6 = 1 andΦf,4 = Φf,6 = 0, was
also fit for comparison (Case III).

Statistical Analysis

Values for the material parameters, which best characterize the entire specimen popula-
tions, are reported as the medians and interquartile ranges, as not all parameters show a
normal distribution and outliers can affect the mean and standard deviation severely. A
correlation between the material parameters and age is investigated with the correlation
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coefficientrs and the significance of the correlation is tested using the Fisher transforma-
tion. The Wilcoxon rank-sum test is used to examine the significance of differences in the
parameters determined for abdominal and thoracic aortas, and to access the influence of
gender on the fit parameters taking into account the Bonferroni-Holm correction. For all
testsp< 0.05 was assumed to be significant.

Histology

Histological specimens were prepared to gain insight on thequalitative structural changes
of collagen at various levels of stretch. To this end, axial and circumferential specimens of
the same intact thoracic aorta (Donor XIII) were stretched in the circumferential direction
to λc= 1.05, 1.35, 1.50, and in the axial direction toλa= 1.05, 1.20. The different stretches
in the two directions is a result of the anisotropy of the tissue. Specimens were mounted
in a custom made frame at the specified stretches, fixed in a 4% buffered formaldehyde
solution (pH 7.4) and prepared for histology. Two types of specimen cross-sections were
investigated: (i) cuts in the plane of the tissue, and (ii) cuts normal to this plane along the
loading direction. Picrosirius red stains were used to visualize collagen using its birefrin-
gent properties under polarized light.

2.3 Results and Discussion

2.3.1 Model Specification

The pseudo-elastic damage models related to Case I and Case II give similarly good results
in terms of fitting the stress-stretch data, as quantified by the R2-values (both> 0.9 in
most cases). The model related to Case III, considering damage accumulation only in the
non-collagenous matrix, gives relatively poor results wherein the hysteresis in the data
is not reproduced. Therefore, the model describing Case III was dismissed from further
consideration.

Comparing the models of Cases I and II more closely, for the majority of the stress-stretch
data the two models generate very similar damage parametersrf andmf from the fitting
process. In many of these fits, the parametersrm andmm are very large such thatηm re-
mains approximately one over the whole load history, and, asa consequence, the inclusion
of the damage variableηm for the non-collagenous matrix does not provide any additional
accuracy to the fit. In most of the remaining fits the parameterrm is nearly zero at stretches
less than 1.01 such that the minimum of the damage function is already reached, i.e. com-
plete damage occurs very early in the load history.

A comparison of a representative model fit is shown in Fig. 2.1. Therein, experimental
data from the media of the thoracic aorta of Donor II is compared with the corresponding
model, i.e. Case I, Fig. 2.1(a), and Case II, Fig. 2.1(c), wherethe goodness of fit is the same
for both cases (R2 = 0.98). However, the damage evolution for Case I, Fig. 2.1(b), shows
that the minimum damage variableηmin

m for the non-collagenous matrix material remains
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Figure 2.1: Representative comparison of Case I (damage accumulation in both matrix and collagen
fibers) – top row, and Case II (damage only in collagen fibers) – bottom row, for the media of
Donor II. Cauchy stressσ versus stretchλ (a) and (c); experimental data (◦ and+) compared with
constitutive model (solid curve). Evolution of the minimum damage variableηmin with stretchλ
(b) and (d);R2 = 0.98 for both cases.

one for the entire loading range, hence the matrix material is considered to be undamaged.
The damage evolution in the fibers is similar for the Cases I andII, see Fig. 2.1(d).

The fitting of other specimens with Case I sometimes generatescomplete damage of the
non-collagenous matrix at stretches far below the physiological loading range (results not
shown). However, this is not meaningful from a physical point of view.

Both Cases I and II generate similar data fits, and the inclusionof damage accumulation
in the matrix material results in either no damage or not physically relevant damage. As
a consequence we propose that tissue softening is primarilyrelated to collagen fibers and
we subsequently focus only on the model of Case II.
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2.3.2 Material and Damage Parameters

The representative stress-stretch responses, as shown in Fig. 2.1, demonstrate the aniso-
tropic behavior of the aortic tissue and a hysteresis duringunloading from the primary load
path. In all cases the proposed constitutive model is able toreproduce the experimentally
determined stress-stretch data in an accurate manner.

The median thicknesses of the intima, media and adventitia are 0.48 mm, 1.18 mm and
0.93 mm for the thoracic aorta and 0.68 mm, 0.94 mm and 1.07 mm for the abdominal
aorta, respectively. The constitutive parametersµ, k1, k2, ϕ, κ, rf andmf together with
the coefficient of determinationR2, the median, the first quartileQ1 and the third quartile
Q3, for the intima, media and the adventitia of the human thoracic aorta are summarized
in Table 2.2. The same model parameters are presented in Table 2.3 for the layers of the
abdominal aortas and in Table 2.4 for the intact aortic wall.It is important to note that the
constitutive parameterk2 in the intima of the abdominal aorta equals zero in the majority of
the cases (cf. (2.11)), in contrast to all other layers. Intimal thickening is more pronounced
in the abdominal aorta than in the thoracic aorta, see [87] and [57], so that the remodeling
process might result in the change of the material response of the intima. A comparison of
the median damage parametersrf for the layer-separated tests suggests that the amount of
damage accumulated is highest in the intima, as we obtain a value of 1 for both thoracic
and abdominal aortas. The median damage parametersmf are in the same range for all
layers. Due to the earlier exponential stiffening of the intima relative to the other layers,
the intima accumulates the most damage at a certain stretch (compare with Figs. 2.2(b)
and (d)). Nonetheless, this does not mean that the most damage will be accumulated in the
intima for loading the intact aortic wall due to compressiveresidual stresses as reported
for the intima, for example, in [24].

In most cases theR2-value is higher than 0.9. The angleϕ for the intima varies between
38.1◦ and 54.2◦ for the thoracic aorta, and between 35.3◦ and 48.9◦ for the abdominal
aorta. These results indicate that the fibers in the intima are in some specimens more
aligned in the axial direction and in some specimens more in the circumferential direc-
tion. It is important to note that non-atherosclerotic intimal thickening increases with age,
wherein collagen fibers are deposited in the intimal layer [57]. Hence, the collagen ori-
entations may strongly depend on age. The median values for the Cauchy stress-stretch
response and the related damage evolution are illustrated in Figs. 2.2(a), (b) for the tho-
racic aorta and in Figs. 2.2(c), (d) for the abdominal aorta.The qualitative mechanical
stress-stretch response of the three tissue layers is similar to that reported for carotid arter-
ies [38]. The circumferential specimens of the media are seen to stiffen at lower applied
stretches in comparison to their respective orthogonal specimens, see Figs. 2.2(a) and (c).
These results are in agreement with the obtained fiber alignments which are more circum-
ferential in the medial layer, see theϕ-values in the Table 2.2 and the values obtained from
polarized microscopy recently reported by Schriefl et al. [40]. However, the fit angles pro-
vided here are larger for the media, as compared against the measured values. This may be
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Donor µ [MPa] k1 [MPa] k2 [-] ϕ[◦] κ [-] rf [-] mf [-] R2

Intima
I 0.021 4.90 15.52 40.5 0.20 1.95 0.007 0.95
II 0.052 11.64 0.0 44.5 0.28 1.93 0.010 0.91
III 0.034 1.45 7.36 44.8 0.12 1.00 0.017 0.96
IV 0.020 0.26 17.06 54.2 0.22 2.81 0.015 0.99
V 0.019 4.84 53.04 46.1 0.18 1.00 0.017 0.99
VI 0.091 20.07 0.0 44.4 0.22 1.00 0.015 0.99
VII 0.031 2.54 11.31 47.0 0.13 1.00 0.021 0.99
VIII 0.046 6.28 10.76 47.8 0.20 1.00 0.014 0.98
IX 0.043 3.39 15.34 42.8 0.20 2.84 0.009 1.00
X 0.055 6.27 30.23 49.0 0.15 1.00 0.011 0.96
XI 0.020 1.07 28.11 47.0 0.32 1.00 0.017 0.91
XII 0.035 3.85 3.37 48.1 0.17 1.00 0.018 0.98
XIII 0.041 1.73 3.35 51.2 0.10 1.36 0.008 0.92
XIV 0.029 6.33 36.52 38.1 0.22 1.00 0.011 0.97
Median 0.034 4.34 13.32 46.5 0.20 1.00 0.014 0.97
[Q1,Q3] [0.023,0.045] [1.93,6.28] [4.37,25.35] [44.4,48.0] [0.15,0.22] [1.00,1.78] [0.010,0.017] [0.95,0.99]

Media
I 0.030 0.12 7.62 44.6 0.02 3.10 0.002 0.98
II 0.025 0.25 9.45 36.9 0.27 3.12 0.002 0.98
III 0.021 0.02 15.88 42.2 0.07 2.35 0.007 0.99
IV 0.023 0.06 3.85 45.3 0.02 1.53 0.013 0.99
V 0.021 0.12 1.75 43.2 0.02 1.78 0.005 0.90
VI 0.030 0.43 43.49 35.8 0.30 2.13 0.008 0.98
VII 0.034 0.15 17.07 39.3 0.22 2.11 0.014 0.99
VIII 0.022 0.22 18.64 37.7 0.27 1.77 0.010 0.98
IX 0.032 0.29 18.26 36.4 0.20 1.17 0.025 0.99
X 0.038 0.12 4.47 39.1 0.15 1.48 0.016 0.99
XI 0.021 0.14 6.74 37.3 0.27 1.96 0.009 0.99
XII 0.043 0.12 15.24 46.5 0.05 2.68 0.003 1.00
XIII 0.027 0.15 1.79 36.0 0.23 1.77 0.012 0.99
XIV 0.029 0.53 14.35 35.1 0.27 1.00 0.024 0.93
Median 0.028 0.14 11.90 38.4 0.21 1.87 0.009 0.99
[Q1,Q3] [0.022,0.032] [0.12,0.24] [5.04,16.77] [36.54,42.97] [0.05,0.27] [1.59,2.29] [0.006,0.014] [0.98,0.99]

Adventitia
I 0.020 0.39 9.03 53.7 0.27 2.21 0.006 0.93
II 0.017 0.26 7.72 53.0 0.27 1.53 0.011 0.91
III 0.017 0.29 4.11 51.0 0.02 1.01 0.023 0.88
IV 0.014 0.22 9.93 54.1 0.23 2.40 0.006 0.93
V 0.008 0.79 1.09 51.6 0.03 1.00 0.029 0.93
VI 0.032 0.84 22.47 55.9 0.32 1.00 0.051 0.87
VII 0.024 0.40 11.01 54.7 0.25 1.00 0.224 0.91
VIII 0.032 1.58 2.04 48.7 0.05 1.20 0.022 0.91
IX 0.052 1.29 1.25 48.5 0.10 1.00 0.022 0.92
X 0.038 0.88 5.86 47.4 0.03 1.10 0.032 0.89
XI 0.015 0.21 4.67 34.6 0.28 1.40 0.021 0.96
XII 0.017 0.66 4.77 53.4 0.22 1.22 0.027 0.83
XIII 0.019 0.23 9.55 53.9 0.30 2.39 0.009 0.98
XIV 0.022 0.28 12.74 42.7 0.12 1.00 0.010 0.96
Median 0.020 0.39 6.79 52.3 0.23 1.15 0.022 0.92
[Q1,Q3] [0.017,0.030] [0.27,0.83] [4.25,9.83] [48.5,53.9] [0.06,0.27] [1.00,1.50] [0.010,0.028] [0.90,0.93]

Table 2.2: Constitutive parameters for the intima, media and the adventitia of the human thoracic
aorta; together with the coefficient of determinationR2, the median, the first quartileQ1 and the
third quartileQ3.
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Figure 2.2: Cauchy stress-stretch response (a) and (c), and damageevolution (b) and (d) for the
thoracic aorta (top row) and the abdominal aorta (bottom row) plotted with the median parameter
values from Tables 2.2 – 2.4.

due to the fact that the material model used does not take crimping of the fibers into ac-
count. The un-crimping of fibers during stretching, as illustrated in Fig. 2.5, might change
the angular alignment of the fibers.

2.3.3 Effect of Pre-Conditioning

Arterial tissues need to be pre-conditioned prior to recording data used for fitting the ma-
terial response to an elastic constitutive equation. In this study, however, the material is
modeled using a pseudo-elastic framework which can describe tissue softening after the
initial load cycle. Hence, the pre-conditioning behavior is captured by the presented model
which allows us to evaluate the effect of pre-conditioning on the material parameters.

As a representative example to evaluate the effect of aortictissue pre-conditioning on the
constitutive parameters, we use the constitutive parameters of Donor VII. The analytical
solution for unloading and reloading the tissue to 150 kPa (cf. [38] for pre-conditioning of
arterial tissue) was obtained. The reloading path was then fit by using the elastic part of
the material model.
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Donor µ [MPa] k1 [MPa] k2 [-] ϕ[◦] κ [-] rf [-] mf [-] R2

Intima
I 0.044 5.51 0.00 35.3 0.22 2.27 0.008 0.92
V 0.033 10.14 0.00 46.3 0.27 2.28 0.031 0.95
VIII 0.068 25.91 67.45 37.5 0.23 11.59 0.002 0.92
IX 0.105 30.90 16.24 47.6 0.28 1.00 0.025 0.99
XII 0.138 22.98 0.00 40.5 0.25 1.00 0.016 0.98
XIII 0.005 0.98 49.78 47.6 0.17 1.00 0.003 0.98
XIV 0.041 10.15 0.00 36.1 0.28 1.00 0.052 0.97
XVI 0.028 5.11 0.00 48.9 0.25 1.00 0.046 0.99
XVII 0.076 5.14 103.31 38.5 0.25 1.00 0.006 0.96
Median 0.044 10.14 0.00 40.5 0.25 1.00 0.016 0.97
[Q1,Q3] [0.033,0.076] [5.14,22.98] [0.00,49.78] [37.5,47.6] [0.23,0.27] [1.00,2.27] [0.006,0.031] [0.95,0.98]

Media
I 0.036 0.52 19.09 42.6 0.05 1.01 0.010 0.84
V 0.033 1.42 29.26 43.9 0.10 1.00 0.008 0.96
VIII 0.032 1.01 0.00 35.2 0.18 1.43 0.020 0.95
IX 0.028 0.92 10.33 35.0 0.28 1.31 0.008 0.98
XII 0.021 0.62 35.30 39.1 0.28 1.00 0.021 0.97
XIII 0.019 0.15 6.52 36.5 0.28 2.34 0.010 0.99
XIV 0.023 1.09 18.91 35.5 0.22 1.00 0.013 0.93
XVI 0.028 0.81 0.08 48.7 0.08 1.08 0.014 0.98
XVII 0.017 0.19 12.42 44.16 0.12 1.71 0.001 0.99
Median 0.028 0.81 12.42 39.1 0.18 1.07 0.010 0.97
[Q1,Q3] [0.021,0.032] [0.51,1.01] [6.52,19.09] [35.5,43.9] [0.10,0.28] [1.00,1.42] [0.008,0.014] [0.95,0.98]

Adventitia
I 0.008 1.06 1.09 47.0 0.10 1.30 0.018 0.87
V 0.005 0.38 5.55 36.3 0.12 1.41 0.006 0.91
VIII 0.010 0.49 3.35 36.1 0.27 1.15 0.009 0.94
IX 0.016 0.44 3.41 45.9 0.12 1.00 0.008 0.95
XII 0.008 1.06 1.09 47.0 0.10 1.30 0.018 0.87
XIII 0.010 0.30 6.31 51.2 0.30 1.79 0.010 0.93
XIV 0.003 0.20 1.88 36.1 0.02 1.00 0.019 0.92
XVI 0.005 0.51 0.43 51.7 0.02 1.49 0.013 0.89
XVII 0.011 0.12 4.73 40.6 0.12 1 0.005 0.94
Median 0.010 0.38 3.35 40.59 0.11 1.15 0.010 0.92
[Q1,Q3] [0.005,0.010] [0.28,0.49] [1.88,4.73] [36.3,47.0] [0.03,0.12] [1.00,1.41] [0.008,0.018] [0.89,0.94]

Table 2.3: Constitutive parameters for the intima, media and the adventitia of the human abdominal
aorta; together with the coefficient of determinationR2, the median, the first quartileQ1 and the
third quartileQ3.

The material parameters describing the elastic response for both the non pre-conditioned
and the pre-conditioned tissue layers are summarized in Table 2.5. Note that the consti-
tutive parametersµ andk1 have the tendency to be slightly lower for the pre-conditioned
material, whereas the parameterk2 is significantly higher. The consequences of these dif-
ferences on the stress-stretch response is illustrated forthe media in Fig. 2.3, clearly show-
ing that exponential stiffening is greater for the pre-conditioned material. In the supra-
physiological loading range thein vivo material is not pre-conditioned, which is in con-
trast to the physiological loading range. Therefore, the material behavior follows the pri-
mary loading curve. If this is modeled with the (high)k2 value obtained from the pre-
conditioning tests, the stresses in the supra-physiological loading range are overestimated
due to incorrect extrapolation of the stress-strain response. Hence, material tests with



36 2 Layer-Specific Damage Experiments and Modeling

Donor µ [MPa] k1 [MPa] k2 [-] ϕ[◦] κ [-] rf [-] mf [-] R2

Thoracic aorta
I 0.007 0.30 1.81 51.4 0.08 1.58 0.004 0.93
II 0.017 0.25 16.88 54.2 0.25 3.32 0.002 0.96
III 0.016 0.14 9.12 54.1 0.30 1.41 0.011 0.97
VI 0.015 0.91 71.80 38.6 0.32 1.00 0.026 0.98
VII 0.033 1.03 36.30 48.5 0.08 1.60 0.002 0.97
VIII 0.014 0.89 17.64 40.2 0.12 1.26 0.005 0.85
IX 0.022 1.07 34.29 53.7 0.28 1.84 0.008 0.98
X 0.019 1.80 1.74 51.1 0.08 1.22 0.012 0.98
XI 0.015 0.20 6.92 53.9 0.28 1.82 0.010 0.97
XII 0.018 0.56 15.55 49.4 0.00 1.74 0.009 0.94
XIII 0.010 0.18 2.42 50.9 0.00 1.88 0.008 0.99
XIV 0.027 0.56 239.02 41.9 0.27 1.00 0.012 0.96
Median 0.017 0.56 16.21 51.0 0.18 1.59 0.008 0.97
[Q1,Q3] [0.014,0.019] [0.24,0.94] [5.79,34.79] [46.8,53.8] [0.08,0.28] [1.25,1.83] [0.004,0.011] [0.95,0.98]

Abdominal aorta
I 0.014 2.87 17.26 36.0 0.25 1.86 0.005 0.99
V 0.047 14.98 0.00 40.4 0.27 1.00 0.025 0.99
VIII 0.164 36.77 149.44 41.0 0.25 1.00 0.017 0.98
IX 0.012 9.03 0.00 34.7 0.20 3.83 0.001 0.83
XII 0.040 5.43 68.87 41.4 0.18 1.00 0.013 0.99
XIII 0.009 0.46 20.24 54.3 0.28 1.20 0.012 0.94
XIV 0.024 4.87 0.00 35.3 0.22 1.00 0.054 0.90
XVI 0.009 1.71 0.01 37.3 0.23 1.43 0.012 0.98
Median 0.019 5.15 8.64 38.8 0.24 1.10 0.013 0.98
[Q1,Q3] [0.012,0.042] [2.58,10.52] [0.00,32.40] [35.8,41.1] [0.21,0.25] [1.00,1.54] [0.010,0.019] [0.93,0.99]

Table 2.4: Constitutive parameters for the intact (three-layer composite) wall of the human tho-
racic and abdominal aortas; together with the coefficient of determinationR2, the median, the first
quartileQ1 and the third quartileQ3.

supra-physiological loading and accurate modeling of stresses at such load levels are an
important pre-requisite for modeling damage and understanding damage mechanisms in
the tissue.

Furthermore, the example implies that the response of the tissue greatly depends on the
maximum strain energy which the tissue has experienced in the load history. It is, thus,
important to pre-condition arterial tissues with loads very similar to physiological loading
states, otherwise a hyperelastic material model may not capture thein vivomaterial behav-
ior. For example, if pre-conditioning is conducted with loads that are too high, i.e. beyond
the physiological range, the tissue stresses will be underestimated because softening of the
tissue sample is greater than the softening of the tissuein vivo.

2.3.4 Statistical Analysis

Here we analyze possible statistically-relevant differences (p< 0.05) between the fit con-
stitutive parameters from the thoracic and abdominal aortic tissue layers. In addition, we
investigate possible correlations between the constitutive parameters, and age and gen-
der.
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Intima µ [MPa] k1 [MPa] k2 [-] ϕ [◦] κ [-]
Pre-conditioned 0.031 2.4 62.3 47.0 0.13
Non pre-conditioned 0.031 2.5 11.3 47.0 0.13
Media
Pre-conditioned 0.032 0.09 19.0 41.6 0.12
Non pre-conditioned 0.034 0.15 17.1 39.3 0.22
Adventitia
Pre-conditioned 0.027 0.37 15.2 54.8 0.25
Non pre-conditioned 0.024 0.40 11.0 54.7 0.25

Table 2.5: Representative effect of pre-conditioning (up to a stress level of 150 kPa) on the (elastic)
constitutive parameters for both the non pre-conditioned and the pre-conditioned intima, media and
adventitia (Donor VII).

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
0

0.2

0.4

0.6

0.8

1

1.2

Stretch λ

C
au

ch
y 

st
re

ss
 σ 
 [M

P
a]

 

 
Primary loading
Pre−conditioning

Circ

Axial

Figure 2.3: Representative effect of pre-conditioning (up to a stress level of 150 kPa) on the tissue
response for the media of Donor VII. Response for the non pre-conditioned material (solid curves),
and loading on the pre-conditioned material (dashed curves) for the constitutive parameters in Ta-
ble 2.5.
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Location Layer Parameter rs CI Linear regression
TA M k1 0.61 [0.12,0.86] 0.0083 MPa yrs−1 x −0.304 MPa
TA M ϕ −0.55 [−0.83,−0.02] −0.18◦ yrs−1 x +50.26◦

TA M rf −0.59 [−0.85,−0.09] −0.033 yrs−1 x +3.964
TA A µ 0.69 [0.26,0.90] 0.0007 MPa yrs−1 x −0.0172 MPa
TA A k1 0.60 [0.11,0.86] 0.0224 MPa yrs−1 x −0.7458 MPa
TA A rf −0.62 [−0.87,−0.14] −0.023 yrs−1 x +2.750
AA A rf −0.88 [−0.98,−0.53] −0.019 yrs−1 x +2.362

Table 2.6: Significant correlation of the fit constitutive parameters with age.The confidence interval
is calculated based on the confidence level of 95%. The equations for linear regression considersx,
which denotes the age in yrs.rs: correlation coefficient, CI: confidence interval, TA: thoracic aorta,
AA: abdominal aorta, M: media, A: adventitia.

A statistically-relevant difference between the thoracicand abdominal aortas was found for
the constitutive parametersκ (intima), for k1, rf (media) and forµ, k2, ϕ andmf (adven-
titia). Age dependency for the constitutive parameters wasfound fork1, ϕ, rf (media) and
µ, k1, rf (adventitia) of the thoracic aorta, and forrf (adventitia) of the abdominal aorta.

The constitutive parametersµ andk1 increase, whereas the fiber angleϕ and the damage
parameterrf decrease with age. The increase of parametersk1 andµ with age indicates
that the aorta stiffens progressively. This observation isin accordance with the arterial me-
chanics literature, see, for example, [88–90]. The decrease of ϕ with age may be due to
remodeling of collagen, or the increase of cross-linking between the collagen fibers [89].
The decrease ofrf indicates that the maximum damage that can occur in the tissue in-
creases, cf. (5.2), which might be associated with stiffening of the aortic tissue with age.

The values for the correlation coefficientrs and the confidence interval (CI) together with
the equations for the linear regression are summarized in Table 2.6 for different layers of
thoracic and abdominal aortas. The linear dependency in age, as shown in Table 2.6, can
be used in patient-specific finite element modeling of aortas.

A dependence of the constitutive parameters on the gender ofthe donors was not detected,
as also reported by, for example, [91]. Nonetheless, the relatively small sample population
(14 thoracic and 8 abdominal aortas) may contribute to the lack of a statistically-relevant
results.

2.3.5 Histology

Traverse histological cuts oriented in the loading direction of the specimens and stained
with picrosirius red are shown in Fig. 2.4; stretched with (a) λc = 1.05 and (b)λc = 1.50
in the circumferential direction, and with (c)λa = 1.05 and (d)λa = 1.20 in the axial di-
rection. Note that in Figs. 2.4(a) and (b) the circumferential orientation of the specimen is
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Figure 2.4: Collagen in the aortic wall visualized by picrosirius red staining attwo circumferential
stretches, i.e. (a)λc = 1.05 and (b)λc = 1.50, and at two axial stretches, i.e. (c)λa = 1.05 and (d)
λa = 1.20. The orientation of the specimen is 45◦ from the horizontal direction, and the direction
of the applied stretch (λc andλa) is indicated by a double-headed arrow; I: intima, M: media, A:
adventitia.

rotated 45◦ from the horizontal, while in (c) and (d) that direction corresponds to the axial
orientation of the specimen. For most specimens only a few laminae of the adventitia are
still attached to the media, which is not due to the stretching of the tissue. The separation
happens during microtome cutting of the histological specimens due to the different me-
chanical properties of the collagen fabric within the different layers. The brightness of the
collagen fibers increases in all three tissue layers with loading in the circumferential direc-
tion (see Figs. 2.4(a) and (b)) indicating an increase in thealignment of the fibers. Higher
loading results in this alignment of fibers, from a wavy form in an unloaded state, where
only short and irregularly arranged sections of fibers are visible, to a more aligned form
in the loaded state, where longer and more parallel or near parallel fibers are visible. With
an increase of aligned fibers the birefringent structures increase in one histological cutting
plane and result in more brightness. This effect is especially pronounced in the intima and
adventitia. Under applied stretches in the axial direction, the brightness of the collagen in
the media decreases while there is a brightness increase forthe intima and the adventi-
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tia (see Figs. 2.4(c) and (d)). The decrease in brightness for the media under axial stretch
is seen because the collagen fibers in the media are oriented more in the circumferential
direction so that an axial stretch does not align the fibers inthe cutting plane.

Planar histological cuts, oriented in the plane of the tissue, of intimal specimens stretched
in the circumferential direction, again stained with picrosirius red, are shown in Fig. 2.5,
for (a)λc = 1.05, (b)λc = 1.35 and (c)λc = 1.50, where the direction of the applied stretch
corresponds to the horizontal direction of the image which is the circumferential direction
of the aorta. The alignment of the fibers increases with increasing applied stretches, and
the angle between the fiber families and the circumferentialdirectionϕ decreases. This
observation is in agreement with the underlying kinematicswhere the direction of the fibers
in the current configurationm is obtained by applying the deformation gradient on the
fiber direction in the reference configuration, i.e.m = FM . Collagen fiber alignment under
pressure is also reported in [37]. The mean angles of the collagen fibers areϕ = 45.3◦,
41.6◦, 21.4◦ for λc = 1.05, 1.35, 1.50, respectively. An increase of the angleϕ is observed
for axial stretching of the tissue (results not shown).

Reviewing Figs. 2.4 and 2.5 in view of the mechanical stress-stretch data indicates that
softening in the physiological loading range as well as in the supra-physiological loading
range might be due to the alignment of these components, if itis not fully reversible.
Furthermore, it indicates that softening does not result from (massive) fiber rupture as, for
example, assumed in the model by Rodríguez et al. [43].

2.3.6 Comparison with Other Models

The pseudo-elastic damage model gives an excellent fit to theexperimental data, with rel-
atively few constitutive parameters, as it only introducestwo damage parameters, contrary
to models that account for damage in matrix and fibers, see, for example, [63]. Associ-
ating damage accumulation primarily in the collagen fibers has previously been assumed
in several studies, for example, in the arterial damage model of Balzani et al. [78]. This
assumption has now been justified by experimental data. The model by Balzani et al. [78]
also uses two damage parameters. Additionally, a value for the strain energy, which de-
scribes the initial damage state, is defineda priori such that softening is not described in
the physiological loading range. Hence, three parameters are needed in total to describe
the damage behavior of the tissue. Defining an appropriate value for the strain energy,
which describes the ‘initial damage state’, is difficult, especially as no adequate experi-
mental data exist to the authors’ knowledge. The proposed pseudo-elastic damage model
adequately describes softening that occurs during pre-conditioning and actual damage in
the supra-physiological loading range. This means that values for the damage variable,
which distinguish tissue softening in the physiological loading range from softening due
to damage, need to be determined. Therefore, the definition of an appropriate threshold
value for the damage variable, and more experimental and numerical studies are necessary
for a correct interpretation of the damage variable.
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(a)

100µm

100µm

(b)

100µm

(c)

Figure 2.5: Collagen fibers in a planar cut of the intima visualized by picrosirius red staining at
increasing applied circumferential stretches: (a)λc = 1.05, (b)λc = 1.35 and (c)λc = 1.50. The
direction of applied stretch corresponds to the horizontal.
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As opposed to the model presented by Peña et al. [66] and Balzani et al. [60], our model
does not account for continuous damage. Some specimens tested have shown a very slight
continuous softening and permanent deformation after unloading, which is not captured by
the proposed pseudo-elastic damage model. Nevertheless, the proposed model is in good
agreement with the experimental data. Therefore, and in order to avoid an increase in the
number of constitutive parameters, only discontinuous softening is accounted for in the
model. Peña [69] presents a model that incorporates a permanent deformation after tissue
unloading. The presented pseudo-elastic damage model can easily be extended to describe
this effect by using the approach presented by, for example,[49].

2.4 Conclusion

Experimental data on human tissues are crucial for the numerical simulation of catheter-
based procedures such as the placement of a stent graft. In this study layer-specific experi-
mental data of uniaxial extension tests under supra-physiological loading for human aortas
were presented. Uniaxial experiments were used because higher loads can be applied to
the tissues than in biaxial experiments. Fitting the model to the obtained data generates
physiologically consistent results, for example, for the fiber angles. Hence, the model is
able to capture the behavior at physiological loading, eventhough uniaxial extension tests
do not mimic the physiological loading condition.

A novel pseudo-elastic damage model, which describes discontinuous softening, was fit to
the experimental data. The pseudo-elastic damage approachwas favored because therein
it is possible to first fit the material parameters, independently of the damage parameters,
which simplifies the fitting process. The proposed damage model is able to provide an
excellent fit to the experimental data while employing a relatively low number of consti-
tutive parameters. The fits with and without consideration of damage accumulation in the
non-collagenous matrix material indicate that tissue damage is only accumulated in the
collagen fiber fabric. Several models assume that damage is only attributed to the colla-
gen fibers, however, experimental data and constitutive fitssupporting this phenomenon
have not been presented before. Nonetheless, the assumption of this study still needs to be
confirmed by appropriate experiments in future studies.

The proposed approach for modeling damage does not include the definition of a minimum
strain energy for damage initiation as done in several previous studies (see, for example,
[63, 78]) because pre-conditioning can already be described by the Mullins effect. How-
ever, this means that softening already occurs at physiological load levels and a threshold
for the damage variable needs to be determined to distinguish softening in the physio-
logical loading range from softening due to tissue damage. In order to analyze such a
distinction further experimental data and numerical studies are required.

Our model captures only the passive mechanical behavior aortic tissues which has impor-
tant ramifications; for example, active behavior due to smooth muscle cell may also play
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an important role with respect to damage accumulation. The influence of smooth muscle
cell should, therefore, be considered in subsequent studies. Naturally, adequate modeling
of the passive tissue response, as demonstrated here, is a pre-requisite for modeling the
active tissue response. Furthermore, the purely mechanical nature of the model can only
predict the tissue response immediately after exposure to supra-physiological loading. We
do not account for biological or biochemical processes suchas cell death [56] or neo-
intimal hyperplasia [92] that are triggered by over-stretching the tissue, and which may
alter mechanical properties of the tissue.
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3 THE ROLE OF ELASTIN AND COLLAGEN IN THE
SOFTENING BEHAVIOR OF THE HUMAN THORACIC
AORTIC MEDIA

Abstract In a previous study we were able to accurately fit experimental data on arte-
rial tissues at supra-physiological loads using a materialmodel that accounts for soften-
ing/damage only in the portion of the model associated with the collagen fibers (J. Mech.
Behav. Biomed. Mater.12:93–106, 2012). Naturally, this result leads to the hypothesis that
the softening behavior is related only to the collagen fibers, and not to the matrix mate-
rial. In this study we test this hypothesis by conducting uniaxial extension tests on elastase
and collagenase treated tissues and on untreated control specimens from the media of hu-
man thoracic aortas. We relate structural changes in the tissue after enzyme treatment to
changes in the corresponding mechanical behavior. Collagenase treated tissue does not ex-
hibit any softening behavior under quasi-static cyclic loading, a result supporting our hy-
pothesis. Conversely, elastase treated tissue exhibits continuous softening under the same
loading conditions, indicating that the integrity of the tissue is destroyed upon removal of
the elastin. Finally, we fit isotropic and anisotropic constitutive models to the mechanical
response of the collagenase treated arterial tissue. While our anisotropic model better ap-
proximates the response of collagenase treated arterial tissues, we show that an isotropic
matrix model is sufficient to accurately reproduce the mechanical response of untreated
control specimens, consistent with current practice in theliterature.

3.1 Introduction

In a recent study we showed that softening in aortic tissues due to supra-physiological loads
can be modeled by accounting only for the softening in the strain energy associated with
the collagen fibers, and not for the matrix material [93]. This phenomenological result leads
naturally to the hypothesis that the softening behavior is associated only with the collagen
fibers. To investigate this hypothesis, we perform experiments on both collagenase treated
tissues and elastase treated tissues, as well as untreated control tissues, to gain more insight
in the softening mechanisms associated with the collagen fibers.

Roach and Burton [94] conducted the first study which isolated the mechanically rele-
vant constituents of arteries, namely elastin and collagen, and investigated the resulting
mechanical responses. These authors showed that elastin isresponsible for the initially
compliant behavior at lower strains and that collagen is responsible for a stiffening behav-
ior at higher strains. Experiments conducted by Dobrin et al. [95] showed that the radius of

45
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the vessels increases after elastase treatment, indicating that elastin keeps the arterial wall
in its original shape. Dobrin and Canfield [96] stated that it is necessary to select enzyme
activity and digestion time such that collagen is only partially digested, otherwise inflation
tests are not possible due to leaking or rupture of the specimens.

Determining the mechanical properties of elastin, the maincomponent of elastic fibers,
has recently attracted increased attention. Gundiah et al.[97] performed planar biaxial
extension tests that show an isotropic stress-stretch behavior which they initially modeled
using the neo-Hookean material model. However, the authorsreport that elastic fibers of
porcine arteries are oriented axially in the intima and the adventitia, and circumferentially
in the media. The authors believe that this finding motivatesan anisotropic model for the
non-collagenous matrix. As a result of their structural findings, they propose an invariant-
based orthotropic strain-energy function [98].

Lille et al. [99] performed mechanical tests on purified elastic fiber network tissue obtained
from the thoracic aorta of pigs. In uniaxial tests this tissue is stiffer in the circumferential
direction compared to axial. The authors then compared fourconstitutive models to predict
the pressure-circumferential stretch behavior. They conclude that models incorporating
both anisotropy and nonlinearity best predict the mechanical behavior of the elastic fiber
network.

Similarly, Zou and Zang [100] investigated the mechanical properties of the elastic fiber
network under biaxial tensile loading for the bovine thoracic aorta. Their experiments also
show an anisotropic mechanical response with the circumferential direction being stiffer
than the axial direction. The authors propose an eight-chain statistical mechanics based mi-
crostructural approach to model the mechanical behavior ofthe elastic fiber network. The
same authors also investigated the time-dependent behavior using biaxial stress relaxation
and creep experiments [101]. Their experimental results reveal that the creep response is
negligible.

In this study we perform uniaxial extension tests to study the mechanical behavior of the
media of the human thoracic aorta under relatively large loads. While uniaxial extension
tests do not mimic the physiological loading condition, meaningful results can be obtained
when the resulting data are carefully fitted [77]. Planar biaxial extension tests better rep-
resent the physiological loading conditions. However, they are difficult to perform within
the supra-physiological loading domain, and they may lead to poor estimates of the stress,
as shown both experimentally [102] and numerically [103]. Pressure inflation tests mimic
physiological conditions well, however, the size of our samples did not allow such tests.
Furthermore problems may arise due to leakage through the small side branches, especially
at supra-physiological pressures.

In this study we compare the mechanical behavior of elastaseand collagenase treated me-
dia from human thoracic aorta to untreated control specimens. We seek to understand the
role of elastin and collagen in the softening behavior observed in untreated specimens at
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physiological and supra-physiological loads. Furthermore, both the isotropic neo-Hookean
model and an anisotropic model are used to mathematically describe the mechanical re-
sponse of the elastic fiber network. We discuss the implications of our model fits for elastin
on modeling the untreated aortic tissue. We also qualitatively describe anisotropy observed
in the continuous softening of elastase treated specimens.

3.2 Materials and Methods

We conduct uniaxial extension tests on circumferentially and axially aligned specimens of
the media of 17 human thoracic aortas (66±8 yrs, mean± SD), under stretch magnitudes
within the physiological and supra-physiological range.

We obtain the specimens from patients undergoing autopsy upto 24 hours after death un-
related to cardiovascular disease and we stored them in physiological solution. When pos-
sible, we test tissue specimens within 48 hours after excision. Otherwise, we immediately
freeze the specimens and test them within 24 hours of unfreezing. The Ethics Commit-
tee of the Medical University of Graz approved the use of autopsy material from human
subjects.

We base our protocol for enzyme treatment on the work of both Dobrin and Canfield [96]
and Kratzberg et al. [104]. We perform the elastase treatment for two hours in a 100U/ml
physiological solution for a complete digestion of elastinand the collagenase treatment for
16 hours in a 4000 U/ml or 20 hours in a 5000 U/ml physiologicalsolution for partial or
complete digestion of collagen, respectively, all at 37◦C.

For the collagenase treated tissue, we test seven specimenscontaining negligible amounts
of residual collagen (Donors 1 to 7) and five specimens with partially digested collagen
(Donors 8 to 12). For the elastase treated tissue, we test a total of five specimens (Donors
13 to 17). If the tissue specimens are sufficiently large, we also test untreated control
specimens from each donor for comparison.

In order to verify enzymatic digestion of the intended tissue constituent, we examine his-
tological images using both Elastica van Gieson and Picrosirius red stains. If collagen
is still visible in a histological image, we determine the area fraction of collagen in the
cross-section using image analysis tools in MATLAB (2009b, The MathWorks, Inc., Mas-
sachusetts, United States). We include specimens with visible collagen residues of less than
5% area fraction in our analysis, but they are marked with an asterisk * to distinguish them
from those specimens without visible collagen residues. Additionally, we have five speci-
mens with larger residues in the range of 20 – 40% collagen area fraction. We compare the
latter qualitatively to corresponding data from control and enzyme-treated specimens.

In order to evaluate the ultrastructure of the tissue by transmission electron microscopy
(TEM) we fix the aortic specimens in 2.5% glutaraldehyde in cacodylate buffer (pH 7.3)
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for four hours at room temperature, followed by washing steps in cacodylate buffer so-
lution. Subsequently, we postfix all specimens in 1% osmium tetroxide (OsO4) solution
for two hours, wash in cacodylate buffer, and dehydrate in increasing concentrations of
ethanol at room temperature, passed through propyleneoxide and embedded in Agar 100
resin. We then collect ultrathin sections cut with a ultramicrotome (Drukker International,
Cuijk, The Netherlands) on mesh copper grids, stain using uranyl acetate and lead citrate,
and examine the specimens with a Philips 100 electron microscope (Philips Electronics
N. V., Eindhoven, The Netherlands).

The protocol for mechanical testing is similar to that reported previously in [93]. Briefly,
we cut dog bone specimens with a gage width of 4 mm from the aortic tissue in both cir-
cumferential and axial directions. Next, we remove the intima and adventitia using tweez-
ers. We assume that the mechanical influence of internal and external elastic lamina, if
present, can be neglected. To calculate the thickness we average four measurements taken
using a videoextensometer (ME 46−350, Messphysik, Fürstenfeld, Austria).

We conduct the mechanical tests using a uniaxial testing machine (µ-Strain ME 30− 1,
Messphysik, Fürstenfeld, Austria) with the tissue in a bathof physiological solution at
37◦C. The videoextensometer records the stretch in the gauge region of the specimen by
tracking two black markers glued onto the specimen. We determine the unloaded length
when the specimen is clamped and immersed in the bath at zero force. Labrosse et al. [105]
report, e.g., that the mean circumferential and axial stretches are 1.31 and 1.11, respec-
tively, for the human thoracic aortic wall. Our force drivenprotocol prescribes the first
Piola-Kirchhoff stress (engineering stress) to be 10, 25, 50, 100 kPa for the elastase treated
specimens as well as the axially-aligned collagenase treated specimens. Since they can
bear more load, we load the circumferentially-aligned collagenase treated specimens as
well as the control specimens to 50, 100, 300, 500 kPa. In these tests we complete three
cycles for each load step. For four additional circumferentially-aligned, elastase treated
specimens we apply cyclic loading to the first load step (10 kPa) to monitor the evolution
of continuous softening in the specimen until rupture. In all cases the testing speed equals
5 mm/min to ensure quasi-static behavior of the tissue.

3.2.1 Data Analysis

In all our subsequent analyses we convert uniaxial force-displacement data to Cauchy
stress-stretch data for constitutive model fitting. We evaluate the Cauchy stressσ from
the experimental data as

σ =
f

WT
λ , (3.1)

where f is the current force,W andT are initial width and thickness of the specimen, and
λ is the applied uniaxial stretch [93, 106].

In all that follows we use convex strain-energy functions, say Ψ, defined per unit volume
in the reference configuration, to model nonlinear materials undergoing finite strains. The
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Cauchy stress tensorσ follows from the strain-energy function asσ = 2J−1F(∂Ψ/∂C)FT,
whereC = FTF is the right Cauchy Green tensor,F is the deformation gradient tensor
andJ> 0 is the Jacobian, the determinant of the deformation gradient [25]. Note that we
assume an incompressible behavior, and hence haveJ = 1.

We determine the constitutive parameters using a nonlinear-least squares algorithm imple-
mented in the MATLAB . The goodness-of-fit is reported using the square of the Pearson’s
correlation coefficientR2.

Collagenase treated specimens

The macroscopic mechanical response of elastin in arterialtissues is commonly modeled
using an incompressible neo-Hookean material, see, e.g., [7, 107]. Correspondingly, we
fit the experimental data from the collagenase treated specimens using the strain-energy
function

ΨnH =
µnH

2
(I1−3) , (3.2)

whereµnH > 0 is the initial shear modulus andI1 = trC.

Since we observe an anisotropic mechanical response for alltissue specimens, and both
Clark and Glagov [108] and Gundiah et al. [97] show that elastic fibers are arranged cir-
cumferentially in medial tissue, we propose a transversally isotropic strain-energy function
Ψti of the form

Ψti =
µti

2
(I1−3)+cti (I4m−1)2 , (3.3)

whereµti > 0 andcti > 0 are material parameters, andI4m=Mm ·CMm is the square of the
stretch in the directionMm, describing the orientation of the elastic fibers in the reference
configuration.

In this formulation, we assume thatMm is aligned with the circumferential direction, hence
I4m= λ 2

circ. Additionally, the second term in (3.3) only contributes tothe total strain energy
Ψti for I4m> 1, i.e. when the elastic fibers in the circumferential direction are in tension.

Untreated wall

We assess the influence of the two models for elastin by fittingthe primary loading curves
of the untreated control specimens, using bothΨnH andΨti and the corresponding material
parameters for the elastin constituent as a starting point.We model the primary loading
curve of the untreated arterial tissue by extending the strain-energy function using

Ψ = Ψm+Ψf,i, (3.4)

whereΨm, m∈ [nH, ti], describes the mechanical response of the non-collagenousmatrix
material andΨf,i describes the mechanical response of two families of collagen fibers
i = 4,6. More specifically [39]

Ψf,i =
k1

2k2
{exp[k2(I

⋆
i −1)2]−1}, I⋆i = κI1+(1−3κ)Ii , i = 4,6, (3.5)
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wherek1 > 0 andk2 > 0 are material parameters, andκ describes the dispersion of the
collagen fibers about their principal directions. Additionally, Ψf,i only contributes to the
strain-energy functionΨ if I⋆i > 1.

The pseudo-invariantsI4 = M ·CM and I6 = M ′ ·CM ′ correspond to the square of the
stretches of the collagen fibers in the mean fiber directions,while the vectorsM andM ′

denote the directions of the collagen fibers in the referenceconfiguration. Since the fibers
are assumed to be symmetrically oriented with respect to thearterial axis and located in the
tangential plane of the artery their directions are uniquely defined by the angleϕ measured
from the circumferential direction of the artery. We fit the untreated control specimens from
Donor 1 to 7 twice: once starting from the fitted result for (3.2), i.e.µnH (denoted as Case
1 and indicated by subscript c1); and once starting from the fitted result for (3.3), i.e.µti
andcti (denoted as Case 2 and indicated by subscript c2). We use the goodness-of-fit to
determine whether it is necessary to use the more sophisticated material model (3.3) for
the elastin matrix when modeling the untreated tissue composite.

Elastase treated specimens

The elastase treated specimens exhibit severe continuous and discontinuous softening such
that we do not fit them to a constitutive model. Rather, we analyze the amount of softening
in terms of the stress applied to the tissue. To this end, we plot the incremental increase in
stretch due to continuous softening, referred to as∆λ , versus both the applied stress and
the load step number. Specifically, we define∆λ as the increase in stretch at maximum
load measured from one load step to the subsequent load step.

3.3 Results

To put the mechanical response of the enzyme treated specimens into context, Fig. 3.1
shows data for a representative untreated control specimen(female, 45 yrs). Note the pro-
nounced anisotropy and discontinuous softening as well as the nonlinear stiffening.

3.3.1 Structural Changes After Enzyme Treatment

Figure 3.2 shows representative structural changes after elastase and collagenase treatment
compared to the control specimens.

In Figs. 3.2(a) – (c) Elastica van Gieson stains the elastic fibers black. After elastase treat-
ment these fibers are removed, i.e. no longer visible, whereas for the collagenase treated
tissue no change is observed. SMC nuclei are still visible after elastase treatment, see the
arrow in Fig. 3.2(b). In Figs. 3.2(d) – (f) Picrosirius red stains the collagen fibers dark red.
After collagenase treatment these fibers are removed, i.e. no longer visible. However, after
elastase treatment collagen fibers remain in the tissue, i.e. are clearly visible.

The TEM images in Figs. 3.2(g) – (i) show collagen fibrils in the untreated control and the
elastase treated specimens, where the structure clearly changes. The collagen fibers in the
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Figure 3.1: Representative untreated control specimen (female, 45 yrs)showing pronounced
anisotropy, nonlinear stiffening and discontinuous softening.

elastase treated specimen (Fig. 3.2(h)) appear less organized and less densely packed when
compared to the control specimen (Fig. 3.2(g)). The TEM image in Fig. 3.2(i) shows that
the collagen fibrils in the collagenase treated specimen arecompletely removed, i.e. no
longer visible.

3.3.2 Collagenase Treated Specimens

The collagenase treated tissue exhibits a slightly anisotropic response with neither con-
tinuous nor discontinuous softening. Figure 3.3(a) compares the mechanical responses in
the circumferential direction of a representative untreated control specimen (blue) with
a specimen where collagen is partially digested (red) and a specimen where collagen is
completely digested (black). The mechanical response changes progressively from highly
nonlinear, with pronounced discontinuous softening, to nearly linear without softening.
Figure 3.3(b) shows a representative cross-section of a specimen with partially digested
collagen. Arrows mark the area in which residual collagen isstill present.

Table 3.1 summarizes the constitutive fit of the neo-Hookeanmodel (3.2) and of the
anisotropic model (3.3) to the mechanical data generated from the collagenase treated spec-
imens. Figure 3.4 shows a representative plot of the resulting constitutive model fits to the
data (Table 3.1, Donor 2). For all specimens tested, the circumferential direction exhibits
a stiffer response, and the anisotropic strain-energy function yields a better goodness-of-
fit.

Table 3.2 summarizes the constitutive fit and goodness-of-fit for the composite tissue
model (3.4)-(3.5), using eitherΨnH (3.2) orΨti (3.3) for Ψm in (3.4), to the mechanical
data generated from the untreated tissue specimens. The goodness-of-fit does not increase
notably if the anisotropic strain-energy function (3.3) isused to describe the elastin matrix
in (3.4).
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Figure 3.2: Representative comparison of elastase treated (middle), collagenase treated (right) and
untreated control specimens (left) of the medial layer of the human thoracic aorta in light and trans-
mission electron microscopy (TEM): (a) – (c) Elastica van Gieson stain visualizing elastic fibers
and SMC nuclei (arrow) in black; (d) – (f) Picrosirius red stain visualizing collagen fibers in dark
red; (g) – (i) TEM of the ultrastructure of collagen and elastin.

3.3.3 Elastase Treated Specimens

The elastase treated tissue from the medial layer of human thoracic aorta exhibits con-
tinuous softening as well as discontinuous softening. Figure 3.5(a) shows representative
experimental data for the elastase treated tissue. Figure 3.5(b) shows the incremental in-
crease in stretch∆λ , as defined in Fig. 3.5(a), versus the Cauchy stress at each load cycle
for all tested specimens. The first hysteresis loop at each load step is slightly larger than the
subsequent load steps, indicating discontinuous softening. Tissue anisotropy is clearly vis-
ible in the data; the stress values at a fixed stretch are much lower for the axial specimens
than for the circumferential specimens. Additionally, theincremental increase of stretch at
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Figure 3.3: The influence of collagen digestion on the media from the human thoracic aorta: (a)
representative mechanical responses in the circumferential direction ofan untreated control spec-
imen (blue, female, 45 yrs), a specimen with partial collagen digestion (red, female, 45 yrs) and
a specimen with completely digested collagen (black, male 66 yrs); (b) Picrosirius red stain of a
representative specimen with partially digested collagen, the area with residual collagen present is
indicated by arrows.
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Figure 3.4: Representative constitutive model fits for the neo-Hookean (isotropic) model and the
anisotropic model compared to the experimental data generated on collagenase treated tissue from
the medial layer of a human thoracic aorta (female, 62 yrs).

each load cycle is higher for the axial direction than for thecircumferential direction for a
given stress.

Figure 3.6(a) shows a representative behavior of an elastase treated aortic media after a
high number of quasi-static load cycles up to a constant maximum load, while Figure 3.6(b)
shows again that the first hysteresis loop is bigger than the subsequent ones. The hystere-
sis resulting from continuous softening does not change appreciably with the number of
applied load cycles conducted in the experiment.
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.

Donor Gender Age µnH R2
nH µti cti R2

ti
[m/f] [yrs] [kPa] [−] [kPa] [kPa] [−]

1 f 63 62.04 0.864 53.20 12.65 0.992
2 f 62 65.58 0.894 52.78 12.03 0.997
3∗ m 76 44.60 0.926 31.35 7.62 0.990
4 m 66 50.11 0.988 37.15 4.67 0.990
5∗ m 53 116.90 0.917 88.09 16.08 0.988
6 m 66 75.94 0.748 58.10 20.46 0.979
7 m 64 108.04 0.919 89.07 11.45 0.984

Median 64 65.58 0.917 53.20 12.03 0.990

Table 3.1: Constitutive parameters for the non-collagenous (elastin) matrix,from the medial layer
of human thoracic aorta, for both the neo-Hookean model (µnH) and the anisotropic constitutive
model (µti andcti), including age and gender of the patients (m = male and f = female). Specimens
marked with an asterisk∗ showed small residues of collagen on the histological specimens (area
fraction≤ 5%).

Additionally, the specimens exhibit residual deformationafter unloading the tissue. The
magnitude of residual deformation increases both with increasing load (cf. Fig. 3.5(a)) and
with increasing number of load cycles (cf. 3.6(a)).

3.4 Discussion

3.4.1 Collagenase Treated Specimens

Our results demonstrate that the elastic fiber network exhibits an anisotropic mechanical
response, consistent with several other studies reported in the literature [98–100]. Addi-
tionally, Gundiah et al. [97] suggest that, in spite of theirisotropic data, it is better to
describe the non-collagenous matrix using an orthotropic material model based on the
structure of the elastic fiber network which shows axially oriented fibers in the intima and
the adventitia, and circumferentially oriented fibers in the media.

The circumferential orientation of the elastic fibers mightexplain the higher stiffness ex-
perimentally measured in the circumferential direction ofour collagenase treated tissues.
Furthermore, Fig. 3.2(b) shows that smooth muscle cells arepresent in the tissue after
the collagenase treatment. These smooth muscle cells are also aligned circumferentially in
the media [108]. Thus, it is possible that their passive response might slightly add to the
measured anisotropy in the tissue.

We compare the performance of a neo-Hookean to an anisotropic material model. The
neo-Hookean model is commonly used to model the elastin constituent in arterial tissues.
However, the collagenase treated tissue exhibits a higher stiffness in specimens oriented



3.4 Discussion 55

.

Donor k1,c1 k2,c1 ϕc1 κc1 R2
c1 k1,c2 k2,c2 ϕc2 κc2 R2

c2
[MPa] [−] [◦] [−] [−] [MPa] [−] [◦] [−] [−]

1 0.191 0.00 54.14 0.28 0.981 0.113 0.00 49.11 0.15 0.983
2 0.013 10.62 33.58 0.00 0.977 0.067 15.49 19.14 0.23 0.980
3 n.a. n.a.
4 1.163 16.54 46.51 0.23 0.997 1.539 11.40 47.24 0.27 0.996
5 0.046 10.45 36.84 0.00 0.989 0.128 7.50 35.57 0.08 0.989
6 2.879 53.41 54.00 0.28 0.940 2.296 24.05 48.86 0.20 0.939
7 0.214 8.55 38.94 0.00 0.966 0.319 6.09 38.11 0.07 0.961

Median 0.118 10.54 41.68 0.12 0.985 0.120 9.45 41.41 0.19 0.986

Table 3.2: Constitutive parameters and goodness-of-fit for the primary loading curve generated
from the untreated media of the human thoracic aorta using either a neo-Hookean (isotropic) model
(subscript c1) or an anisotropic model (subscript c2) to describe the non-collagenous matrix. Pa-
rameters related to the elastin matrix correspond to those given in Table 3.1 foreither (3.2) or (3.3),
and parameters related to the collagen fibers correspond to (3.5), all according to (3.4).

circumferentially. This result motivates an additional term in the strain-energy function to
capture the higher stiffness in the circumferential direction. The constitutive model that
we present is a special case of the orthotropic model proposed by Gundiah et al. [98].
Therein, motivated by modeling the complete, untreated arterial wall where elastic fibers
are oriented axially in both the intima and the adventitia, the authors add a third term to
their strain-energy function which they use to increase stiffness in the axial direction as
well.

For collagenase treated tissue specimens, the anisotropicmodel provides a notably im-
proved fit to the experimental data relative to the neo-Hookean model, as shown in Ta-
ble 3.1 and Fig. 3.4. Hence, if the mechanical response of thenon-collagenous matrix
are to be accurately described, a transversely isotropic model should be favored over the
commonly used neo-Hookean model.

For the non-collagenous matrix, our measured initial shearmodulus has a median value of
approximately 62 kPa. Gundiah et al. [97, 98] report averagevalues of 163 kPa and 73 kPa
for the initial shear modulus measured from autoclaved specimens. This is a reasonably
good agreement when comparing porcine and human tissue.

We previously reported a lower value (28 kPa) for the median initial shear modulus associ-
ated with the non-collagenous matrix of the untreated medial layer of the human thoracic
aorta [93]. If we model untreated specimens including contributions from both the matrix
and the fibers to the total strain energy (3.4), the constitutive response in the low-stress
region is defined by both the parametersµ andk1. If we model collagenase treated speci-
mens, the low-stress response is described only byµ (such that, effectivelyk1 = 0). Hence,



56 3 The Role of Elastin and Collagen in the Softening Behavior

1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.1

0.2

0.3

0.4

0.5

Stretch λ [−]

C
au

ch
y 

st
re

ss
 σ 
[M

P
a]

 

 
Data circ
Data axial

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

Cauchy stress σ [MPa]

In
cr

em
en

ta
l s

tr
et

ch
 in

cr
ea

se
 

∆ 
λ 

[−
]

 

 

Data circ
Data axial
Linear regression

(b)

Figure 3.5: Representative mechanical response of an elastase treatedmedia from the human tho-
racic aorta – softening for three load cycles at each load step: (a) circumferential (blue) and axial
(red) responses; (b) continuous softening of tissue in the circumferential (crosses) and axial (cir-
cles) directions, incremental increases in stretch∆λ versus Cauchy stress for all tested specimens.
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Figure 3.6: Representative behavior of an elastase treated media from thehuman thoracic aorta
under quasi-static cyclic loading of a circumferentially oriented specimen: (a) experimentally ob-
tained Cauchy stress versus stretch; (b) incremental stretch increase versus load step number shows
softening at each load cycle.

in the latter caseµ must be higher to describe the same initial stiffness. The results summa-
rized in Table 3.2 suggest that using a neo-Hookean model forthe non-collagenous matrix,
when building a constitutive model for the composite tissuecomposed of elastin and colla-
gen, is justified despite the anisotropy of the elastic fiber network. The goodness-of-fit does
not increase notably between the composite model (3.4) fitted using a neo-Hookean model
for the matrix constituent and that including anisotropy ofthe matrix, while the number of
material parameters is increased.
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Our data (Fig. 3.3), support the hypothesis that the softening behavior is attributed only
to the collagen fibers [93]. Thus, it is sufficient to model damage in arterial tissues by
accounting for softening only in the part of the total strain-energy function associated with
the collagen fibers, as performed by, e.g., [33, 93].

3.4.2 Elastase Treated Specimens

Anisotropy in the mechanical response of elastase treated human aortic tissue, as shown
in Fig. 3.5(a), is largely due to the alignment of the collagen fibers within the tissue. Col-
lagen fibers in the medial layer of human thoracic aorta generally align more toward the
circumferential direction (albeit with dispersion about the mean direction), and, therefore,
under an equivalent load the stretch of circumferentially aligned specimens is less than that
of axially aligned specimens. The alignment of collagen fibers in arterial tissues has been
shown with imaging techniques, see, e.g., [37, 40].

The specimens tested exhibit continuous softening, i.e. softening increases with the appli-
cation of constant load cycles. We believe this mechanical effect implies that the collagen
fibers are no longer adequately connected to the non-collagenous matrix, and that the fibers
are ‘sliding’ against one other. Consequently, the collagenfibers can be pulled apart easily
and show a creep-like behavior. The TEM image in Fig. 3.2(h) shows that the collagen
fibers are less organized relative to the control specimen shown in Fig. 3.2(g). This sup-
ports our conjuncture that the integrity of the fiber networkin the elastase treated tissue is
reduced relative to the control specimen.

The creep-like mechanical behavior of the elastase treatedtissue specimens is not likely
to appear under physiological conditions as the arterial wall would enlarge during each
cardiac cycle.

3.4.3 Limitations

The present study is restricted to the thoracic aortic mediaof arteries with non-athero-
sclerotic intimal thickening. Thus the dependence of the mechanical properties on age or
on the location of the artery is not discussed, leaving room for further experimental studies.
Furthermore, the collagenase and elastase treated tissuescould not be taken from the same
patient due to the sample size. However, the main conclusions of this study are not affected
by this shortcoming.

The intima and adventitia were mechanically separated fromthe media, which may lead
to artifacts or even damage in the vicinity of the separated surface. We assumed that these
effects are negligible.

The model we selected to describe the untreated tissue is widely used (3.5); it assumes
rotational symmetry of the collagen fibers. This is a limitation of the model as [40] showed
that the out-of-plane dispersion is much lower than the in-plane dispersion. Therein, the
authors also show that the collagen fibers are generally aligned more towards the circum-
ferential direction in the media. In this light one would expect ϕ angels below 45◦ in
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Table 3.2. This is not the case for all samples; however, the angels presented in Table 3.2
are fitting parameters.

Elastase treatment is used in several studies to digest elastin in arterial tissue, see, e.g.,
[23, 89, 96]. Elastase can attack denatured collagen, and Missirlis [109] suggest to add
trypsin inhibitor during the elastase treatment to preventcollagen digestion; with such a
treatment Fig. 3.6(a) may look different. Kronick and Sacks[110] use trypsin to digest
proteoglycans in sheep skin. It hence is possible that elastase without trypsin inhibitor
digests elastin and proteoglycans, whereas with trypsin inhibitor only elastin is digested.
The role of proteoglycans on the softening of the tissue needs to be investigated in further
studies.

Following Dobrin and Canfield [96], we assume that the influence of elastase treatment on
the mechanical response of collagen is negligible. Results shown in Fig. 3.2 support our
assumption by showing that collagen is still present after elastase treatment. Furthermore,
significant digestion of collagen by collagenase takes a much longer time than digestion
of elastin by elastase. Hence if denatured collagen is attacked by elastase treatment, it is
likely that the activity and time of digestion are too low to have a noticeable influence on
the mechanical behavior of the tissue.

3.5 Conclusion

Our mechanical experiments on the medial layer of the human thoracic aorta support a
hypothesis commonly adopted in damage modeling of arterialtissue – that no softening is
accumulated in the non-collagenous matrix. This matrix hasan anisotropic mechanical re-
sponse, with a higher stiffness in the circumferential direction. We propose an anisotropic
constitutive model to describe this behavior, and successfully fit it to the experimental data.
Despite the mechanical anisotropy of the non-collagenous matrix, we show that the neo-
Hookean material model provides a sufficient description when building a phenomeno-
logical constitutive model for untreated tissue. However,constitutive models describing
other structural aspects, e.g., growth and remodeling, maywant to retain the anisotropy of
the non-collagenous matrix or elastin. The mechanical response of elastase treated tissue
shows both discontinuous softening and continuous softening. Thus, interaction between
elastin and collagen fibers appears to be responsible for suppressing continuous damage in
the untreated media.



4 A GENERALIZED PRESTRESSING ALGORITHM FOR FINITE
ELEMENT SIMULATIONS OF PRE-LOADED GEOMETRIES
WITH APPLICATION TO THE AORTA

Abstract Finite element models reconstructed from medical imaging data, e.g., com-
puted tomography or magnetic resonance imaging (MRI) scans,generally represent ge-
ometries underin vivo load. Classical finite element approaches start from an unloaded
reference configuration. We present a generalized prestressing algorithm based on a con-
cept introduced by Gee et al. (Int. J. Num. Meth. Biomed. Eng.26:52-72, 2012) in which
an incremental update of the displacement field in the classical approach is replaced by an
incremental update of the deformation gradient field. Our generalized algorithm can be im-
plemented in existing finite element codes with relatively low implementation effort on the
element level, and is suitable for material models formulated in the current or initial config-
urations. Applicable to any finite element simulations started from pre-loaded geometries,
we demonstrate the algorithm and its convergence properties on an academic example and
on a segment of a thoracic aorta meshed from MRI data. Furthermore we present an exam-
ple to discuss the influence of neglecting prestresses in geometries obtained from medical
images, a topic on which conflicting statements are found in the literature.

4.1 Introduction

Medical imaging is frequently performedin vivo, and hence the reconstructed model ge-
ometry in the problem of interest represents thein vivostate, e.g., an artery at physiological
blood pressure. Suchin vivostates are generally loaded, and hence deformed and stressed.
These stresses exist prior to reconstruction of the model geometry and thus we refer to this
state as prestressed.

Classical continuum mechanics and finite element (FE) methods often assume that con-
stitutive models, and the corresponding simulations, start from unloaded and stress-free
reference conditions. When applying such classical approaches to patient-specific simula-
tions of arteries a theoretical inconsistency arises: thein vivodetermined ‘initial’ geometry
is not an unloaded reference configuration.

Previous researchers have studied this theoretical inconsistency and generated various so-
lutions. Schield [31] showed that the condition of equilibrium for a given elastically homo-
geneous material (with zero body forces) defines an inverse deformation, which for some
other material is a state of equilibrium. Capitalizing on these ideas he proposed a formula-
tion for inverse deformation problems in finite elasticity.Chadwick [111] used the duality
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of the undeformed and deformed states in hyperelasticity torewrite Schield’s equilibrium
equations into an energy-momentum formulation. Govindjeeand Mihalic [32, 112] pro-
vided a re-parameterized formulation of the equilibrium equations in finite hyperelasticity
to accommodate inverse deformations of compressible and quasi-incompressible engineer-
ing materials in a FE setting. The method is generally known as inverse design analysis
and can be used to compute an unloaded reference configuration from a known deformed
configuration with known boundary conditions. Inverse design analysis has been applied
to engineering of turbine blades [113] and analysis of soft biological tissues [114, 115],
[116] with success.

Specifically in soft tissue simulations initiated fromin vivo imaged geometries, often the
‘unloaded’ reference configuration is not required, but only that the stress state within the
tissue is in equilibrium with the known boundary conditionsas imaged such that simula-
tions can begin from this equilibrium state. This reframed problem has been approached
by several researchers in the context of simulations of arteries. De Putter et al. [117] pro-
posed a backward incremental method and validated it using several simple test problems
with a neo-Hookean material. Unfortunately the authors provide little detail on the imple-
mentation of their method. Gee et al. [29, 30] proposed a method based on a Modified
Updated Lagrangian Formulation (MULF), and used a multiplicative split of the deforma-
tion gradient to produce a displacement-free prestressedin vivoconfiguration. They obtain
a prestressed state in the correct range and shape, and the maximum von Mises stress is
generally predicted to within approximately 5% absolute error but do not discuss conver-
gence properties of the algorithm. Gee et al. [30] showed that the implementation of the
inverse design analysis into general FE codes is more involved than implementing MULF,
and that application to comparatively thin-walled geometries can lead to buckling.

In the present work we suggest a Generalized Prestressing Algorithm (GPA) to simulate
pre-loaded FE geometries, which is based on the seminal concept introduced by Gee et
al. [30]. Briefly, an incremental deformation gradient is calculated from the incremental
displacement field generated to ensure equilibrium at each iteration step. The incremental
displacement field is then deleted and the deformation gradient field is updated with the
incremental deformation gradient field. The proposed algorithm is not restricted to a spe-
cific FE formulation and can be used for hyperelastic material models formulated in the
initial or current configuration. Furthermore, changes required to implement our algorithm
are relatively minor and are all defined on the element level.

We demonstrate the convergence properties of the suggestedalgorithm using a simple aca-
demic example and a patient-specific, three-layer (intima,media, adventitia) segment of an
thoracic aorta. To the authors’ knowledge this is the first paper discussing the influences of
a prestressing algorithm on a three-layer, patient-specific aorta segment including realistic
fiber-reinforced material models based on experimental data. Our results show that inclu-
sion of the prestress increases the maximum stresses estimated in the artery versus classical
forward approaches, and that the error of the stress estimation depends on the size of the
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load step per time increment. This implies that the error canbe made arbitrarily small by
sufficiently increasing the number of time steps. Convergence to the correct solution can
be achieved with reduced computational cost by adding load-increment-free time steps at
the end of the simulation.

Starting from the correct reference configuration is not only important for stress and rup-
ture prediction in aneurysms but also for numerical simulation of catheter-based proce-
dures such as stent-graft placement. We demonstrate that anincorrect initial reference
configuration not only influences the stress magnitude and distribution, but also the esti-
mated diameter of the vessel. Such errors have important ramifications in the simulation of
patient-specific placements of stent-graft devices as the device diameter is pre-selected by
the surgeon based on the artery diameter determined from medical images [5], and, e.g., its
sealing properties can only be correctly predicted if the diameter and stiffness of the aorta
are well approximated.

In the arterial wall mechanics literature, conflicting statements exist on how maximum
stresses in the aortic wall change when accounting for prestresses in model geometries
derived from medical images. Lu et al. [114] report that accounting for the correct stress-
free reference configuration reduces the maximum stresses predicted in abdominal aortic
aneurysms versus classical forward approaches. Using MULF, Gee et al. [29, 30] report
that including the effect of prestressing reduces the maximum wall stress in the artery.
Speelman et al. [118] also applied the backward incrementalmethod for patient-specific
wall stress analyses. They also conclude that accounting for prestress in a simulation in-
creases the maximum wall stress. Raghavan et al. [119] introduced a method to compute
the zero-pressure geometry of an arterial aneurysm using the assumption of a consistent
deformation field with varying applied pressure. This is a straightforward approximation
method, and as such, recovers only an approximation of the desired result. Here also the
authors report that a theoretically consistent treatment of the reference configuration results
in a reduced estimate for the maximum wall stresses.

In the context of tubular structures like arteries, we demonstrate that a change in maximum
wall stress, calculated when comparing classical FE approaches to those accounting for
prestresses, depends crucially on changes in the local curvature of the geometry and on how
close the initial cross-section is to circular. To this end we present, as an example which
accounts for prestressing, an elliptical geometry where wevary the ratio of major to minor
axes. We show that for such ratios close to unity the maximum stresses decrease relative
to classical FE approaches, while for ratios that differ notably from unity the maximum
stresses increase.
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Figure 4.1: Schematic of the different configurations during a prestressing analysis:Ω0, stress-
free and unloaded reference configuration;Ωimg, prestressed configuration;Ω, loaded configuration
(prestressed configuration with added arbitrary deformation).

4.2 Materials and Methods

4.2.1 Configurations During a Prestressing Analysis

We consider a general boundary-value problem in finite elasticity with respect to a stress-
free and unloaded reference configurationΩ0⊂R

3. Figure 4.1 shows the different config-
urations that occur in a prestressing analysis. The configuration during medical imaging is
Ωimg and is represented, e.g., by an artery with an inner pressurepimg during imaging due
to the blood pressure of the patient. The deformation gradient Fpre, in our approach com-
puted, maps the reference configurationΩ0 on the prestressed configurationΩimg. When
Fpre is known, then configurations with arbitrary loads described by a deformation gradi-
entFarb can be computed by the multiplicative decompositionF = FarbFpre, whereF is the
deformation gradient associated with the mapping from the reference configurationΩ0 to
the loaded configurationΩ.

FE codes usually start from the undeformed and stress-free reference configurationΩ0 and
update the displacementu for each time increment∆t with the displacement increment∆u,
i.e., ut+1 = ut +∆u. The subscriptt +1 (advancing the solution tot +∆t) denotes values
from the current time step, whereast denotes values with respect to the previous time
step. In the suggested prestressing algorithm the incremental update of the displacement is
replaced by the incremental update of the deformation gradient.
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4.2.2 Determination of the Prestressed State

To compute the deformation gradientFpre of the prestressed state, we start our simula-
tion from the configurationΩimg ⊂ R

3 at timet, which corresponds to the geometry ob-
tained from medical imaging. The coordinates of points in this configuration at timet are
subsequently denoted byxt while coordinates in the stress-free and unloaded reference
configurationΩ0 are denoted byX.

We propose to define the local deformation gradientFt at time t as a history variable,
initialized as the identity tensorI at the beginning of the analysis. After each time step, we
determine the increment∆u of displacements.

For classical FE formulations, the deformation gradients at the time instantst andt+1 are
defined as

Ft =
∂xt

∂X
= I +

∂ut

∂X
, Ft+1 =

∂xt+1

∂X
= I +

∂ut+1

∂X
. (4.1)

However, for a prestressing analysis,X is unknown and (4.1)2 has to be reformulated in
terms of known quantities, i.e., in terms ofxt . Thus,

Ft+1 =
∂xt+1

∂X
=

∂xt+1

∂xt

∂xt

∂X
=

∂xt+1

∂xt
Ft =

(

I +
∂∆u
∂xt

)

Ft . (4.2)

Now we define the increment of the deformation gradient as

∆F = I +
∂∆u
∂xt

, (4.3)

see also [30]. When storingFt as a history variable, we can then update the deformation
gradient according to

Ft+1 = ∆FFt . (4.4)

Note that the notation differs from the notation used in [30].

Figure 4.2 illustrates the different configurations occurring during the generalized pre-
stressing algorithm. We start from the geometry determinedfrom medial imaging (but
without any external load), and hence with the deformation gradientF = I . At time t we
load the artery with pressurep= pt , which we obtain by mapping, with the deformation
gradientFt

pre, from the corresponding unloaded reference configurationΩt
0. Advancing

one time step, we compute an increment of the displacement∆u, from which we deter-
mine an increment of the deformation gradient∆F. This yields a configuration loaded with
p= pt+1. To regain the geometry from medical imaging, we set∆u back to zero. Thus the
configuration with the geometry from medical imaging and theinner pressurept+1 has a
new stress-free reference configurationΩt+1

0 . This configuration deviates from equilibrium
by the displacement increment∆u and is marked with an asterisk (*). We repeat this pro-
cedure for each time step until we obtain an equilibrium configuration very close toΩimg.
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Figure 4.2: Schematic of the generalized prestressing algorithm to include prestress into pre-loaded
finite element models. The different configurations with the correspondingexternal loads that occur
during the prestressing computations are shown.

The time steps should be sufficiently small to ensure thatΩimg is close to the configuration
determined from medical imagingΩ∗img and the inner pressurepimg. To assure this, we
propose to add load-increment-free time steps at the end of the simulation method.

In our algorithm we define one set of history variables at eachGauss point, i.e. the nine
entries of the local deformation gradient, and we do not needto store or update the inverse
of the Jacobian mapping. Both the deformation gradientFt+1 and the increment∆F are
provided on the element level.

Figure 4.2 also illustrates the drawback of the approach, i.e., that equilibrium is computed
in a virtual configuration that does not correspond to the geometry of the imaging data,
cf. [30]. Hence, the larger the load increment per time step,the larger the difference be-
tween the configuration obtained from imaging and equilibrium configuration. This effect
results in a dependence of the solution accuracy on the time step size.
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Initialize F = I ; for each time increment∆t from t to t +1:
1. Compute∆u from equilibrium
2. Compute∆F from (4.3), cf. (4.7)
3. ReadFt from history
4. ComputeFt+1 from (4.2)
5. UpdateFt ← Ft+1 (write to history)
6. Set∆u← 0
7. Repeat from 1. fort← t +1

Table 4.1: Computation of the prestressed deformation gradient within the generalized prestressing
algorithm.

4.2.3 Implementation Details

In a standard FE implementation the discrete positionx and the discrete deformation field
u are approximated as

x =
ne

∑
i=1

Ni(ξξξ )xi , u =
ne

∑
i=1

Ni(ξξξ )ui , (4.5)

whereNi(ξξξ ) are shape functions,ξξξ are the natural coordinates of the element,xi are (spa-
tial) nodal positions,ui are nodal displacements andne is the number of nodes per element.
In (4.3), we require differentiation of the displacement increment∆u with respect to the
current spatial configurationxt ; this is given as

∂∆u
∂xt

= ∆ui
∂Ni(ξξξ )

∂xt
= ∆ui

∂Ni(ξξξ )
∂ξξξ

∂ξξξ
∂xt

, (4.6)

where summation is implied over the repeated index. Hence wemay rewrite (4.3) as

∆F = I +∆ui
∂Ni(ξξξ )

∂ξξξ
∂ξξξ
∂xt

. (4.7)

We complete this computation immediately after the computation of ∆u (and thus∆ui)
since the coordinatesxt correspond to the imaged configuration, and thus we know all
terms on the right-hand-side of (4.7). Note that (4.7) corresponds to (39) in [30] where
∂ξξξ/∂xt is denoted as the inverse JacobianJ−1

t . We summarize the implementation details
for the generalized prestressing algorithm in Table 5.1. All necessary modifications to a
standard FE code can be accomplished at the element level.

At the end of the prestressing computation we obtain a distribution of deformation gra-
dients for the prestressed state corresponding toFpre(x) for each Gauss point in the FE
mesh. We implement the GPA as a custom user defined element in the FE code FEAP
(University of California at Berkeley).
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4.2.4 Forward Simulation Based on Prestressed State

From the prestressed geometry, e.g., thein vivo geometry in equilibrium with thein vivo
loads, we can apply arbitrary loads to study boundary-valueproblems of interest. We de-
fine Farb as an arbitrary deformation gradient associated with such arbitrary loads. From
the prestressed state, we compute the deformation and the stresses using the overall defor-
mation gradient as

F(x, t) = Farb(x, t)Fpre(x). (4.8)

In practice, we compute the deformation gradientF(x, t) in (4.8) using two steps. First,
we compute the deformation gradient describing the prestressed stateFpre(x) for each
Gauss point using a custom GPA element, and we write out this distribution as a his-
tory file. Next, we perform a classical forward computation with a standard element from
the prestressed configuration, and the deformation gradient computed here under arbitrary
loadingFarb(x, t) is multiplied by the deformation gradient describing the prestressed state
Fpre(x) to obtain the final solutionF(x, t). We solved all of the following examples using
the Newton-Raphson algorithm implemented in FEAP.

4.3 Numerical Examples

4.3.1 Unit Cube Test

In this section we present results from testing an incompressible unit cube meshed with
one solid mixed element (Q1P0). We assume that the cube in theunloaded configuration
has dimensionsa× a× a with a = 1 mm, which corresponds to the geometry used for
the classical forward computation of the solution, see Fig.4.3(a). We use a compressible
neo-Hookean model, with a shear modulus of 1 MPa, and a penalty term that is used to
accommodate the incompressibility condition numerically. To achieve large deformations
we apply a force ofP= 4 N. The load increment for each time stepn is ∆Pn = P/N, where
N is the total number of time steps.

Solving the system of equations analytically we arrive atσ = 16.24 MPa for the Cauchy
stress in the direction of loading, with a corresponding stretch ofλ = 4.061. In the two
directions transverse to the loading axis, the stretch isλ = 0.496 (the Cauchy stress is zero).
The final equilibrium geometry is thusb× c× c, with b = 4.061 mm andc = 0.496 mm,
which corresponds to the geometry used as input for the GPA, see Fig. 4.3(b).

In Fig. 4.4(a), we investigate the error in the stress prediction versus the number of time
steps by comparing the result from the GPA to the corresponding result from the forward
computation. ForN = 101 andN = 102 the errors are reasonable for practical applications,
2.5% and 0.5% relative error, respectively (forN = 5 the error is 86% and forN = 1
no solution was found using the GPA). AtN = 103 almost no deviation in the result is
observable. A close-up of Fig. 4.4(a) is given in Fig. 4.4(b), which shows that the solutions
of the GPA converge to the analytical solution.
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a

aa c=0.496ac

b=4.061a

(b)(a)

P

Figure 4.3: Configurations for a single element test of the Generalized Prestressing Algorithm
(GPA): (a) unloaded reference configuration of a unit cube; (b) deformed configuration in equi-
librium with P= 4 N, illustrating the large deformation. The classical forward computation starts
from (a) and is in equilibrium at (b), while the GPA uses only configuration (b) to estimate the same
stress/strain state.
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Figure 4.4: Error in the stress prediction calculated using the analytical solution versus the number
of time stepsN: (a) comparison of the classical forward computation with the Generalized Pre-
stressing Algorithm (GPA); (b) detail of (a) to demonstrate the GPA convergence for a sufficiently
high number of time steps.
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Figure 4.5: The effect of adding load-increment-free time steps to the end of a Generalized Pre-
stressing Algorithm (GPA) computation: (a) the first ten load-increment-free time stepsNIF show
an oscillation of the error between negative and positive values, however the magnitude of the error
decreases with the number of time steps; (b) the error for a total number of timesteps after apply-
ing the load with the GPA usingN = 10 and 100 load steps and addingNIF = 1, 10, 100 and 1000
load-increment-free time steps.

Noting that the solution for a given load depends on the number of time steps used to
achieve that load, we investigate the possibility of minimizing the error by adding load-
increment-free time stepsNIF at the end of the GPA simulations. In Fig. 4.5(a) we start
with N = 100 GPA time increments to apply the load, and then include upto ten load-
increment-free time stepsNIF. The magnitude of the error decreases with each additional
time step, however, there is an oscillation between a positive and a negative error.

In Fig. 4.5(b) we start with bothN = 10 andN = 100 GPA time increments to apply the
load, and then includeNIF = 1, 10, 100 and 1000 load-increment-free time steps. Results
for the same total number of time steps differ depending on the partitioning of the number
of time steps with and without load increments, e.g., the error for a total of 110 time
steps is 0.31% usingN+NIF = 100+10 load steps while the error is only 0.03% using
N+NIF = 10+100 load steps.

4.3.2 Representative Patient-Specific Model of a Thoracic Aorta

To demonstrate the applicability of our algorithm to largerproblems, we simulate vari-
ousin vivo conditions of a human thoracic aorta using a realistic fiber-reinforced material
model, and parameters which are based on experimental data.We use a representative
patient-specific geometry (male, 62 yrs) obtained from segmenting MRI data, and a finite
element mesh using a custom meshing algorithm [120]. Briefly,the edges of the inner and
outer aortic wall are segmented from the imaging data. We first divided the resulting vol-
ume into slices in the axial direction, and then these slicesare divided into sections in the
circumferential direction. The resulting mesh contains 23040 mixed eight-node brick ele-
ments (P1Q0). We used thickness ratios of 0.18/0.46/0.36 to define the three arterial tis-
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sue layers (intima/media/adventitia, respectively) as previously determined by experiment
[93]. Atherosclerotic plaques are neglected in the exampleand therefore not modeled.

We mesh each layer of the thoracic tissue with four elements through the thickness in order
to resolve radial stress gradients. The interfaces betweenthe layers are considered to be
bonded.

To generate a representative numerical test case we assume that this geometry is a stress-
free and unloaded configuration, and we complete a classicalforward computation using
an inner pressure ofp= 85 mmHg, i.e. 11.33 kPa, which corresponds to the diastolic pres-
surein vivo (we will refer to this as case I). To test the GPA performance we compare the
solution of case I to the GPA solution (case IIa); this solution uses the deformed geometry
of the aorta computed in case I (atp= 85 mmHg) as the initial geometry. To compute these
solutions we useN = 17 time steps for both cases. To show that additional load-increment-
free time steps reduce error we repeat the computation of case IIa with 83 additionalNIF

time steps after the pressure ofp= 85 mmHg is reached (case IIb). To study convergence
properties of the GPA in more detail, we also calculate and compare several error mea-
sures for GPA solutions generated using various combinations of standard time steps plus
load-increment-free time steps. To compare differences inthe deformation and stress dis-
tributions resulting from a theoretically consistent calculation (versus the test cases I and
IIa and IIb) we also use the GPA to calculate a solution using the medical imaged geometry
as starting point (case III).

We describe the three tissue layers of the aorta using a hyperelastic material model con-
sidering dispersion of the collagen fibers [39]. The isochoric part of the deformation is
captured by the strain-energy function

Ψ =
µ
2
(Ī1−3)+ ∑

i=4,6

k1

2k2

{

ek2[κ Ī1+(1−3κ)Īi−1]2−1
}

, (4.9)

whereµ represents the initial shear modulus of the non-collagenous matrix,k1 is a stress-
like parameter,k2 is a dimensionless parameter,Ī1 is the trace of the isochoric right Cauchy-
Green tensorC, [25], andκ ∈ [0,1/3] is a dimensionless parameter describing distributed
collagen fiber orientations.

We assume that two families of collagen fibers are oriented inthe plane of the tissue, where
i = 4 relates to one fiber family andi = 6 to the other. The pseudo-invariantsĪ4=C : M⊗M
andĪ6 = C : M ′⊗M ′ correspond to the square of the stretches of the fibers in the fiber di-
rections [7]. The vectorsM andM ′ denote the mean directions of the collagen fibers in the
reference configuration. The fibers are assumed to be symmetrically oriented with respect
to the circumferential direction of the artery, and thus both M andM ′ are uniquely defined
by the structural parameterϕ, which defines the angle between the circumferential direc-
tion of the artery and the fiber direction. The mean directions of the fiber reinforcement
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Layer µ [MPa] k1 [MPa] k2 [-] ϕ [◦] κ [-]
Intima 0.034 4.3 13.3 46.5 0.20
Media 0.028 0.14 11.9 38.4 0.21
Adventitia 0.020 0.39 6.79 52.3 0.23

Table 4.2: Median constitutive parameters for intima, media and adventitia of the human thoracic
aorta; adopted from [93].

are input at the element level using an approach similar to that of Kiousis et al. [121] im-
plemented in MATLAB (2009b, The MathWorks, Inc., Massachusetts, United States). We
use material parameters associated with the hyperelastic response taken from our previous
work, as summarized in Table 5.2, [93].

As mentioned, we subject the inner wall of the artery to a pressure ofp= 85 mmHg. Dis-
placements in thez-direction (along the main axis of the aorta) are constrained at nodes
on the cutting planes. Furthermore, on the same cutting planes, we suppress the displace-
ment tangential to the main axis at the nodes on the luminal side of the aortic segment.
Without loss of generality, axial prestretch is neglected in the scope of these numerical
examples, but it can easily be included if desired, cf. e.g.,the boundary conditions of
Kiousis et al. [121]. By qualitatively comparing the resultsof the forward calculation with
the GPA the stress values and the stress distributions are virtually identical. Figure 4.6(a)
compares the distribution of the principal Cauchy stresses through the wall thickness for
case I (crosses) and case IIa (diamonds), i.e., of the forward and the GPA computations,
respectively. Figure 4.6(b) shows the percent error of the first principal Cauchy stress for
the GPA withN = 17 (diamonds) andN+NIF = 17+83 (circles), i.e., 83 additional load-
increment-free time steps. The errors decrease notably with the inclusion of additionalNIF.

In Table 4.3 we investigate the accuracy of the GPA solution for various solution ap-
proaches. Therein, the total number of time steps isN+NIF, the total number of Newton
iterations isNI, the maximum value of the first principal stress in the entiresegment is
σmax

1 , the absolute and relative error ofσmax
1 with respect to the forward computation are

ea(σmax
1 ) ander(σmax

1 ), respectively, and the average magnitude of the absolute error is
em(σ1).

For our patient-specific segment of the thoracic aorta, 12 equally-sized time steps are re-
quired to generate a solution in equilibrium withp = 85 mmHg internal pressure. Even
for N+NIF = 12+ 0 the GPA provides a reasonable solution with the absolute and rel-
ative error ofσmax

1 of ea(σmax
1 ) = 5.54% ander(σmax

1 ) = 1.87%, respectively. Focusing
on the effect of load-increment-free time stepsNIF specifically, we see that for our rep-
resentative exampleN+NIF = 100+0 total time steps provides a modestly better result
thanN+NIF = 17+ 83 time steps, but requires almost twice the number of Newtonit-
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Figure 4.6: Representative comparisons of the Cauchy stress distributions through the wall thick-
ness of the patient-specific thoracic aorta: (a) classical forward (case I, crosses) and the Generalized
Prestressing Algorithm (GPA) (case II, diamonds) computations, both withN = 17 time steps; (b)
percent error (with respect to the forward calculation) of the first principal Cauchy stress estimated
using the GPA forN = 17 and forN+NIF = 17+83 time steps.

.

N + NIF NI σmax
1 ea(σmax

1 ) er(σmax
1 ) em(σ1)

[–] [–] [kPa] [kPa] [%] [%]
12+0 53 434.1 25.5 5.54 1.87
17+0 71 436.1 23.5 5.11 1.68
17+83 195 438.8 20.8 4.53 1.43

100+0 385 440.1 19.5 4.24 1.40
100+17 435 440.5 19.1 4.16 1.38
200+0 742 440.5 19.1 4.16 1.38

1000+0 3002 440.8 18.8 4.09 1.37

Table 4.3: Representative accuracy of the generalized prestressing algorithm for various solution
approaches: total number of time stepsN+NIF, total number of Newton iterationsNI, maximum
value of the first principal Cauchy stress in the entire segmentσmax

1 , absolute and relative error of
σmax

1 with respect to the forward computation,ea(σmax
1 ) ander(σmax

1 ), respectively, and average
magnitude of the absolute errorem(σ1).
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Figure 4.7: Comparison of the first principal Cauchy stress (circumferential stress) generated for
a test case on a representative patient-specific thoracic aorta: (a) conventional forward calculation
from the imaged geometry up top = 85 mmHg (case I); (b) Generalized Prestressing Algorithm
(GPA) computation from the imaged geometry up top = 85 mmHg (case III); (c) conventional
forward calculation from the imaged geometry up top= 120 mmHg; (d) GPA computation from
the imaged geometry up top= 85 mmHg (case III) with a subsequent forward calculation fromp=
85 mmHg up top = 120 mmHg. The stress distributions are very similar. Note that the relatively
high stresses near the cutting planes are effects related to the boundary conditions and should not
be considered physiologically relevant.

erations to find this solution, thus greatly increasing the computational cost. Conversely,
we can match the solution error generated usingN+NIF = 200+0 total time steps using
insteadN+NIF = 100+17 time steps, which reduces to nearly half the number of Newton
iterations required to find this solution.

To compare differences in the deformation and stress distributions resulting from a theoret-
ically consistent calculation (versus the test cases I and IIa and IIb) we also use the GPA to
calculate a solution using the medical imaged geometry as starting point. Here we perform
two sets of simulations for comparison: the classical forward computation from the imaged
geometry to bothp = 85 mmHg (case I) andp = 120 mmHg (15.999 kPa); and the GPA
simulation from the imaged geometry top = 85 mmHg (case III) and then a consistent
forward simulation from this GPA result up top= 120 mmHg (∆p= 35 mmHg).

Figures 4.7(a) and (b) compare the first principal Cauchy stress distributions for an inner
pressure ofp= 85 mmHg of a conventional forward computation (a) with the GPA compu-
tation starting on the imaged geometry (b). Figures 4.7(c) and (d) compare the stress distri-
bution atp= 120 mmHg for the forward computation (c) and for the GPA computation to
p= 85 mmHg followed by a forward computation fromp= 85 mmHg top= 120 mmHg
(d). Note that the relatively high stresses near the cuttingplanes are effects related to the
boundary conditions and should not be considered physiologically relevant.

In both comparisons (Figures 4.7(a) versus (b), and (c) versus (d)) the stress distributions
are very similar, however, the minima and maxima are furtherapart in the GPA solutions.
The magnitude of the first principal Cauchy stress marginallyincreases in the GPA solu-
tions, due in part to the larger local curvature. We note a significant difference in the results
from the forward and the GPA computations in the inner diameter of the aorta at both di-
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astolic (85 mmHg) and systolic blood pressure (120 mmHg). Atdiastole the values of a
representative diameter for the forward and GPA computations are 22.1 mm and 20.1 mm,
respectively, while at systole the corresponding values are 22.6 mm and 20.5 mm. Such
results correspond to an overestimation in the inner aorticdiameter of approximately 10%
if prestressing the model is ignored.

4.3.3 Elliptical Cross-Section Resulting in Varying Local Curvature

To study the effect of prestressing on the calculated stresses within the aortic wall, we build
a simple parameterized FE model. Because we suspect that local curvature has a major
influence, the model has an elliptical cross-section, and thus a varying local curvature,
with the major axisa and the minor axisb. In the limiting case (a= b) we obtain a circle.
The wall thickness is constant along the circumferential direction as well as along the axial
direction of the idealized aortic segment.

Using symmetry we model one quarter of the ellipse with one layer of elements in the axial
direction, seven elements in radial direction and 25 elements circumferentially along the
90◦ segment. In addition to the symmetry boundary conditions, we allow free movement
in the axial direction. We use a quasi-incompressible neo-Hookean material model with an
initial shear modulusµ = 1 MPa and a bulk modulusK = 100 MPa. Starting from zero,
we increase the inner pressure up top= 10 kPa.

We use this model to perform two representative simulations: (i) the correct computation
of the stresses (including prestress), case I, and (ii) neglecting the prestress (assuming that
the geometry was obtained from medical images, case II. For the case I we compute the
stresses at 10 kPa for a range ofa : b ratios. Note, if we started from the configuration
deformed underp= 10 kPa, and appliedp= 10 kPa using the GPA algorithm, we would
end with the same result. For the case II we use the deformed configuration of case I as the
initial configuration and, subsequently, we apply a pressure of 10 kPa. Hence, the initial
configuration of case II corresponds to a geometry determined from medical images. Case
II corresponds to results of a computation performed without accounting for prestresses in
the aorta. Note that in this example the prestressing algorithm is not used but a conventional
FE analysis is performed from two different reference configurations. As regards the aortic
simulations, the initial configuration of case I corresponds to Ωt

0 in Fig. 4.2, while the
initial configuration of case II corresponds toΩ∗img. To assess the influence of the local
curvature, we vary the ratio of the minor and major axisa : b, with a = 1+∆d andb =
1−∆d with ∆d = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 mm, where∆d = 0 generates a circle.

Figure 4.8 illustrates the change in both maximum and mean first principal stressσ1 ver-
sus∆d. For the simulation with the circular cross-section both the average and the mean
stress decrease when accounting for prestress, and hence the diagram in Fig. 4.8 shows
negative values. As the eccentricity of the model increases(increasing ratio of major to
minor axis) but∆d remains less than 0.4, the maximum stress increases while the average
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Figure 4.8: Change in maximum and average first principal Cauchy stressσ1 between omitting and
considering prestress in an elliptical cross-section with minor and major axisa : b, with a= 1+∆d
andb= 1−∆d (∆d = 0 corresponds to a circular cross-section,a : b equals unity).

stress decreases when accounting for prestress. Above∆d = 0.4, both average and mean
stress increase when accounted for prestress.

Figure 4.9 illustrates the first principal Cauchy stressσ1 for the extreme case of∆d = 0.6.
The Figures 4.9(a) and (b) illustrate case I at 0 kPa and at 10 kPa respectively, while the
Figures 4.9(c) and (d) show the corresponding information for case II. The configuration
in Fig. 4.9(a) clearly shows the higher local curvature for the reference configuration of
case I. The reference configuration for case II has the same geometry as the deformed
configuration for case I, and thus a much lower local curvature.

The high stress gradient in case I results from bending stresses. Due to the applied inner
pressure the ellipse wants to deform towards a circle. Thus,at the position of highest local
curvature the ellipse bends open. These bending stresses are greatly reduced in case II
because the ratio of major and minor axis is much lower in the initial configuration.

4.4 Discussion

4.4.1 Unit Cube Test

Results from the unit cube test (Section 4.3.1) demonstrate that the accuracy of the method
depends on the size of the load increment per time step. This effect results from the fact
that equilibrium is computed in a virtual configuration determined by the displacement
increment∆u which acts on the imaged geometry. Thus, the smaller the loadincrement
per time step, the smaller∆u, and hence the smaller the error resulting from the ‘wrong’
configuration on which the equilibrium is fulfilled.
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Figure 4.9: Stress distributions in the elliptical cross-section (∆d = 0.6) for (a) case I atp= 0 kPa,
(b)case I atp = 10 kPa, (c) case II atp = 0 kPa and (d) case II atp = 10 kPa. The high stress
gradient in case I results from bending stresses when the elliptical cross-section deforms towards a
circle. Bending stresses in case II are much lower because the ratio of major to minor axes is lower
in the stress-free reference configuration.

Figure 4.10: Oscillation of the error while using load-increment-free time stepsNIF with the gener-
alized prestressing algorithm.

The oscillation in Fig. 4.5(a) can be explained by studying the difference between the
configurationΩt+1 on which the equilibrium is fulfilled, and the configurationΩt for which
we seek a final solution. For clarity, consider, for example,the uniaxial extension of a
unit cube, as shown in Fig. 4.10. Assume a standard application of the GPA results in
an equilibrium stress/strain distribution after the final time step of load application on the
configurationΩt+1 in Fig. 4.10, and the tensile Cauchy stress in this configuration to be
σt+1.
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The deformation is larger inΩt+1 than in Ωt , henceσt+1 > σt , whereσt is the exact
solution for the stress in configurationΩt , and thus the result we seek. Before the first
load-increment-free time step is computed, the configuration Ωt+1 is set back toΩt , i.e.,
∆ut+1 = 0, but the deformation gradient (in the history) remains the same. In this case, the
stress value remainsσt+1 and is, therefore, overestimated. In an effort to better approxi-
mate equilibrium under the constant loadP the geometry must change to the configuration
Ωt+2 in the next load-increment-free time step. Once the geometry is set back to the im-
aged configuration, the stress inΩt is underestimated. For the next load-increment-free
time stepΩt+3 the cube must now extend to better approximate equilibrium.This oscil-
lation of the solution proceeds while the magnitude of the error decreases monotonically
until the solution converges within an acceptable tolerance. Note that the stress estimated
in configurationΩt oscillates at each time step (even though the load is constant) because
the implied unloaded reference configuration changes for each time step when the dis-
placement is set back to zero.

It is important to regard two different aspects of solution convergence when discussing
convergence of the generalized prestressing algorithm. First is the convergence of the so-
lution for the iterations of each time step. This convergence is not affected by the GPA, and
hence is the same for a given material model using a conventional forward or a GPA com-
putation. Second is the convergence of the stress distribution for the deformed geometry
Ωt (cf. Fig. 4.4) to the exact solution. This convergence depends on the size of the time step
and on the number of additional load-increment-free time steps. For a given convergence
tolerance, results in Fig. 4.5(b), and Table 4.3, imply it iscomputationally less expensive to
use relatively few time steps for application of the load andadd load-increment-free time
steps to the solution, than to use the equivalent number of time steps only for application
of the load.

4.4.2 Patient-Specific Model of a Thoracic Aorta

Focusing now on the representative test case of the patient-specific thoracic aorta model
(Section 4.3.2), agreement between the results from the classical forward computation
(case I) and from the GPA calculated entirely on the corresponding deformed configura-
tion (case IIa), as shown in Fig. 4.6, is very good, even when using the same number of
time steps (relatively few) for both computations. Adding load-increment-free time steps
decreases the solution error, but increases the computational cost. Therefore, it is neces-
sary to find a good compromise between accuracy and computational cost, which depends
strongly on the problem to be solved. Table 4.3 shows that theinclusion of load-increment-
free time steps yields a similar accuracy for the same total number of time steps while
reducing the computational cost, i.e., the number of Newtoniterations is drastically re-
duced.

When initiating simulations from the correct imaged geometry, there is a difference in the
stress distributions and especially in the maximum stresses between the forward computa-
tion (case I) and the GPA computation (case III), as shown in Fig. 4.7. Our results indicate
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the inclusion of prestressing on patient-specific simulations increases both the distribu-
tion and maximum of the first principal Cauchy stress. We postulate that this effect is due
to larger local curvatures in the imaged geometry versus thedeformed geometry of the
classical forward computation.

The significant difference between the classical forward (case I) and the GPA computa-
tions (case III) for the predicted inner diameter of the aorta, at both diastolic and systolic
blood pressure, is due to the relatively low stiffness of thearterial tissue at relatively low
stress, cf. [80]. A correct prediction of the diameter is especially important for modeling
clinically relevant problems, e.g., surgical procedures such as stent-graft placement for
thoracic or abdominal aneurysm repair. In such interventions the diameter of the stent is
selected before the procedure begins, based on the diameterof the aorta but oversized by
approximately 10 to 20% to insure adequate sealing [5]. Thusoverestimating the inner
diameter of the aorta by approximately 10% could lead to severe misinterpretations of the
simulation results.

4.4.3 Influence of Prestress on Stress Distribution

Our results demonstrating increased stresses in the patient-specific model when accounting
for prestresses are consistent with those reported by De Putter et al. [117] and Speelman
et al. [118]. Both conclude that accounting for prestress in the patient-specific FE simula-
tions leads to an increase in the maximum arterial wall stress. Raghavan et al. [119] report
that their approximate, but theoretically consistent treatment of the reference configuration
results in a reduced estimate for the maximum wall stresses.However, the result depends
on the assumption of a consistent deformation field within the arterial aneurysm under
varying applied pressure; thus changes in local curvature under finite deformation are ne-
glected. Interestingly, both Lu et al. [114] and Gee et al. [29, 30] report that accounting for
the correct stress-free reference configuration reduces the maximum stresses predicted in
abdominal aortic aneurysms with respect to the use of a classical formulation.

In view of our example with a parameterized elliptical cross-section (Section 4.3.3), the
contradiction of changes in stress distributions may result from different geometries used
in the examples. When the geometry deviates from a circle, naturally, the local curvature
inside the aortic model changes. When a distorted circular cross-section geometry, such as
the ellipse, is inflated, the inner pressure tends to deform the distorted geometry towards
a circle. This induces bending stresses and the maximum and average stresses increase in
proportion to the enforced amount of bending.

As stresses resulting from bending motion play a role in the stress distribution, the transmu-
ral stress distribution should be resolved with an appropriate number of elements through
the thickness of the arterial wall.
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4.4.4 Limitations

As stated by Gee et al. [30], a major disadvantage is that equilibrium is not achieved on
the in vivoconfiguration but in a configuration that deviates from thein vivoconfiguration
by the increment of the deformation gradient∆F. However, in two examples we show that
our solution using the GPA from the deformed configuration converges to the solution
obtained from a classical forward computation. Load-increment-free time steps at the end
of the computation only account for the differences betweenthe desired equilibrium on the
imaged geometry and the obtained equilibrium on the virtualgeometry. The method can be
used on arbitrary geometries. However, it is only applicable to derive stress distributions
in loaded geometries provided that the material can be modeled with a path-independent
material law.

Regarding the example of the patient-specific model, the values of the stresses in Fig. 4.7(b)
specifically, the maximum first principal stress reported inthe simulation at diastole (p=
85 mmHg) is relatively large. However, the maximum values ofthe stress appear near the
cutting planes at the upper and lower ends of the aortic section and are attributed to bound-
ary effects. These should not be considered physiologically relevant. The maximum and
mean first principal stresses near the center of the section simulated are approximately
σ1 = 0.3 MPa andσ1 = 0.1 MPa, respectively. These stress values are within the range
reported by Holzapfel et al. [7] for aortic tissue.

Furthermore, the stresses reported for the intima are notably higher than the stresses in
the media and the adventitia. This result is not likely from the physiological point of view
because the tissue is known to be residually stressedin vivo [24]. Including the effect of
residual stresses into our modeling framework would generally tend to homogenize our
results across the layers, as the intima is under compression and the media and adventitia
are under tension in the three-layer composite tissuein vivo [24]. Furthermore, large open-
ing angles may lead to an increase in circumferential and longitudinal stresses towards
the outer radius of the aortic wall [122]. Hence, to obtain a plausible result for the stress
prediction in three-layer patient-specific models of the aorta, residual stresses need to be
included in future work. This topic lies outside the scope ofthe current paper, and hence
was not pursued further.

4.5 Conclusion

We present a Generalized Prestressing Algorithm (GPA) for finite element simulations
of general pre-loaded geometries. Relative to available formulations of a similar nature,
our algorithm is applicable to FE formulations based on total Lagrangian or updated La-
grangian formulations. A disadvantage of the GPA is that we enforce equilibrium in a vir-
tual, non-existent configuration, and this may lead to errors in the stress prediction. This
disadvantage can be overcome by decreasing the load increment per time step, or by adding
additional load-increment-free time steps at the end of a simulation. We demonstrate the
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accuracy of the GPA using both a unit cube under uniaxial tension and a patient-specific
model of a thoracic aorta including a realistic anisotropicmaterial model for the arterial
wall. Our results show very good agreement with corresponding results from a classi-
cal forward computation and demonstrate that the solution error can be made arbitrarily
small. With a parameterized model, in which we progressively change the geometry, we
address contradicting statements in the arterial wall mechanics literature, hence an open
question. Our results demonstrate that the maximum and average first principal stresses in
the arterial wall may increase or decrease depending on the local curvatures of the initial
configuration.
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5 A COMPUTATIONAL FRAMEWORK FOR PATIENT-SPECIFIC
MODELING OF HUMAN ARTERIES CONSIDERING INITIAL
STRESSES AND SUPRA-PHYSIOLOGICAL LOADS

Abstract Catheter-based surgeries such as stent-graft placement, intra-aortic balloon oc-
clusion or angioplasty may cause high stresses and damage inthe aorta. We present a mod-
eling framework to numerically evaluate stress and damage distributions inside the layers
of patient-specific human aortas. Our constitutive model describes the supra-physiological
load range, and our framework accounts for both layer-specific residual stresses within the
tissue, and prestresses which exist because finite element models reconstructed from med-
ical images generally represent geometries underin vivo loads, e.g., blood pressure. In our
representative, patient-specific simulations we note significant correlation between local
wall curvature and stress magnitude, resulting in large variations in the stresses predicted
along the circumference of the aorta. While such effects are present in virtually all cur-
rent patient-specific simulations, large stress variations are unlikely to occurin vivo. Thus,
we propose to ‘precondition’ the aorta with a maximum loading corresponding to rigor-
ous exercise, a pragmatic approach to account for material inhomogeneity, but one that
leads none-the-less to physiologically relevant results.Our modeling framework, together
with the material and structural parameters all based on experimental data, can be used to
analyze endovascular procedures and, in the future, may help improve patient outcomes.

5.1 Introduction

Catheter-based procedures reduce pain and hospitalizationtime for patients with cardio-
vascular disease, a major cause of morbidity and death in thewestern world. However, de-
ployment of stents-grafts or inflation of intra-aortic balloons can cause large deformations
in the aorta, thus generating high stresses which may cause damage in the tissue. Typically,
an endograft for endovascular repair of aortic aneurysms isoversized by 10 – 20% to main-
tain adequate sealing between the vessel and the graft [5]. Intra-aortic balloon inflation is
another procedure which may cause damage in the aorta. None-the-less, balloon occlu-
sion is performed at a variety of positions along the aorta aspart of many treatments, e.g.,
with hemorrhagic shock resulting from pelvic fracture [123], with aneurysm repair [124],
with ruptured abdominal aortic aneurysms (AAAs) [125, 126], or to stop gastrointestinal
bleeding [127].

In order to study such problems using a patient-specific, finite element (FE) framework,
one requires both appropriate constitutive models, fitted to experimental data on human tis-
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sue samples, and methods to account for initial stresses, namely both prestresses and resid-
ual stresses, in the simulations. In this study we use a FE implementation of the damage
model published by Weisbecker et al. [93] to simulate and study the supra-physiological
stress-strain response of human aortic tissue. In aged arteries the intima thickens and all
three layers (intima, media, adventitia) bear significant load, and hence are mechanically
relevant [77, 93]. To improve the fidelity of current modeling approaches we demonstrate
our modeling framework on a representative three-layer, patient-specific model of the hu-
man thoracic aorta derived from cardiac-gated Magnetic Resonance Images (MRI).

Medical imaging is most often performedin vivo, and hence the reconstructed model
geometry in the problem of interest will represent thein vivo state, e.g., a blood vessel
deformed under physiological blood pressure. However, classical continuum mechanics
and FE methods assume that constitutive models and the corresponding simulations begin
from unloaded, stress-free reference conditions. When applying such classical approaches
to patient-specific simulations of arteries a theoretical inconsistency arises: thein vivo
determined ‘initial’ geometry is not an unloaded referenceconfiguration. To address this
problem Gee et al. [29, 30] proposed a method to include prestresses (stresses in equilib-
rium with the known boundary conditions of the initial modelgeometry) to patient-specific
geometries of AAAs based on an updated Lagrangian approach.

We recently proposed a Generalized Prestressing Algorithm(GPA), [128], based on the
concept introduced by Gee et al. [30]. Briefly, an incrementaldeformation gradient is
calculated from the incremental displacement field. The incremental displacement field is
then deleted and the deformation gradient field is updated with the incremental deforma-
tion gradient field. Our algorithm requires fewer history terms relative to Gee et al. [30],
thus decreasing the memory requirements and computationalcost, an advantage for large
patient-specific simulations. Compared to the inverse design analysis [31, 32], which com-
putes the actual load-free configuration prior to classicalforward simulations, our GPA is
easier to implement and is not prone to geometric buckling.

Residual stresses exist in healthy human arteries, and residual stresses have a significant
effect on thein vivo distribution of stresses, and hence on the development of arterial tis-
sues, see, e.g., Chuong and Fung [129] and Bustamante and Holzapfel [130]. Early studies
investigated residual stresses in arteries by measuring the ‘opening angles’ of radially cut
arterial rings, e.g., Fung [22] and Fonck et al. [23]. Residual stresses/stretches have pre-
viously been incorporated into FE models by simulating the closing of arterial segments,
modeled with a single opening angle, to create thick-walledtubular segments prior to ad-
ditional loading, see e.g., Balzani et al. [78] and Holzapfeland Gasser [34].

Holzapfel et al. [24] investigated 3D residual deformations for layer-separated tissue strips
(intima, media and adventitia) in their passive states, andshowed that residual deforma-
tions are three dimensional and cannot be described by a single parameter such as the
‘opening angle’. We base our approach to including residualstretches in FE simulations
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on the experimental data of Holzapfel et al. [24], where residual deformations of the aor-
tic tissue layers are reported after separating these layers from one another. From these
deformations we compute a residual deformation gradient and map it element-wise into
our FE models. The prescribed residual deformation is not necessarily in equilibrium and
may induce deformation in the geometry. We propose an iterative process to include resid-
ual stresses and to still ensure that the residually stressed geometry equals the geometry
determined from medical imaging.

Alastrué et al. [35, 131] included residual stresses into patient-specific simulations of arter-
ies using methods based on the ‘opening angle’. One drawbackto their approach relative
to our study is that the residually stressed configuration does not match the geometry de-
termined from the medical images. Subsequently we refer to both the prestress and the
residual stress distributions as the initial stresses present in the configuration determined
from the medical images.

Several researches have proposed constitutive models for soft biological tissues which in-
clude the damage behavior of particular tissue components,see, e.g., [43, 63, 132, 133].
Recently researchers have also proposed damage models specifically for arterial tissues.
Li and Robertson [65] suggest a layer-specific damage model focusing on sub-failure me-
chanical damage of the elastin, ground matrix and collagen,represented by the recruitment
of collagen fibers, gradual degeneration, failure of arterial components and changes in the
tissue properties. Li et al. [134] then demonstrate the constitutive model by simulating
cerebral angioplasty, however, they use axisymmetric FE geometries (not patient-specific)
for the cerebral artery and do not use layer-specific experimental data for the elastic and
damage properties of the artery. Marini et al. [61] propose an isotropic continuum damage
model for AAA wall considering tissue heterogeneity. They demonstrate their simulation
approach using a series of patient-specific models of AAA forrupture prediction and dis-
cuss potential applications in growth and remodeling. Balzani et al. [60] propose a contin-
uum damage model using internal scalar variables to represent collagen fiber damage de-
fined such that no damage occurs in the physiological loadingdomain. To demonstrate the
framework, they evaluate softening in a patient-specific, arterial cross-section (2D model)
at supra-physiological intraluminal pressure. None of themodels discussed here employ
three-layer, 3D patient-specific arterial geometries, account for initial stresses, nor examine
the stress distribution through the thickness of the vesselwall.

Alastrué et al. [131] propose a similar numerical frameworkfor patient-specific modeling
of vascular tissue where a residually stressed and geometrically consistent model of the
patient is obtained. However, they assume a constant wall thickness for the artery, using
a single set of material parameters obtained from porcine tissue, determining the residual
stresses based on an opening angle approach, and neglectingtissue softening due to supra-
physiological loads. Contrary to that, the wall thickness weuse is estimated from MRI,
the material parameters as well as the residual stretches for all three layers are determined
experimentally from human tissue and we include the softening behavior to the material.
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This adds to the improved method to apply the residual stresses to geometry obtained form
medical imaging.

We combine these elements with the aforementioned featuresto establish a framework for
modeling surgical procedures such as stent-graft placement or intra-aortic balloon occlu-
sion. Furthermore, we define a new measure, an increment of tissue damage, to describe
softening associated with supra-physiological loads, as opposed to softening associated
with the preconditioning behavior of arterial tissue [80].

In Section 2 we summarize the constitutive model and detail its algorithmic implemen-
tation in the context of the FE method. Furthermore, we detail our numerical methods to
include initial stresses, both the residual stress/stretch and the prestress/stretch. In Section 3
we show that the three-layer model can reproduce experimental data from the intact wall.
We also discuss a 3D patient-specific model of a human thoracic aorta loaded with inter-
nal pressure and study aspects of the modeling framework, including the the influence of
initial stresses on the predicted stress distributions andthe correlation between local tissue
stresses and the local curvature along the circumference ofthe aorta. As a final demonstra-
tion, we simulate intra-aortic balloon occlusion in a humanthoracic aorta. In Section 4 we
discuss our results, while we conclude in Section 5.

5.2 Constitutive and numerical modeling

5.2.1 Constitutive relations

We consider a multiplicative decomposition of the deformation gradientF= (J1/3I)F with
the Jacobian determinantJ= detF> 0. The termJ1/3I is associated with volume-changing
deformations (I is the second-order unit tensor), whileF, with detF = 1, is associated with
volume-preserving deformations of the material [81].

We base our approach on the pseudo-elastic damage model introduced by Ogden and Rox-
burgh [48], which has the form

Ψ(J,C,η) = Ψvol(J)+ηΨ0
(C)+Φ(η), (5.1)

whereΨvol andΨ0
describe the volumetric and isochoric elastic responses, respectively,

C = FTF denotes the modified right Cauchy-Green tensor, whileΦ denotes the damage
function which implicitly defines the damage variableη . Here we choose the evolution
equation

η = 1− 1
r

erf

[

1
m
(Ψmax−Ψ0

)

]

, (5.2)

wherer > 1 determines the maximum material damage that can be inducedunder mechan-
ical loading,m> 0 characterizes the dependence of the damage on the deformation and
Ψmax

is the maximum isochoric strain energy recorded over the load history.
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With this definition of the damage variable,η = 1 relates to a path on the primary loading
curve. Therefore, the minimum of the damage variable

ηmin = 1− 1
r

erf

(

1
m

Ψmax
)

(5.3)

characterizes damage induced to the material. For more details on pseudo-elastic damage
theory and the derivation of this damage variable from the damage function we refer to
Ogden and Roxburgh [48].

In Weisbecker et al. [93] we propose a pseudo-elastic damagemodel for arterial tissues,
and in [135] we conclude that damage is primarily related to the collagen fibers by testing
specimens where either elastin or collagen are digested. Hence, the strain-energy function
we use is

Ψ(J,C,η4,η6)=Ψvol(J)+Ψ0
m(C)+ ∑

i=4,6

[ηiΨ
0
f,i(C)+Φf,i(ηi)], (5.4)

ηi =1− 1
r i

erf

[

1
mi

(Ψmax
f,i −Ψ0

f,i)

]

, i = 4,6, (5.5)

where the subscript m refers to the non-collagenous matrix components of the tissue,
and the subscript f to the collagen fiber network. Note, that the damage variableηi only

alters the strain energy of the fibers, i.e.Ψ0
f,i. The volumetric part of the strain-energy

function has the formΨvol = Klog(J)2/2, where the penalty parameterK enforces quasi-
incompressibility. We choose a neo-Hookean behavior for the matrix component such that
Ψ0

m = µ(Ī1−3)/2, whereµ > 0 is the initial shear modulus and̄I1 = trC. The two families
of collagen fibers [7] form a network which exhibits an exponential response according to
Gasser et al. [39] such that

Ψ0
f,i =

k1

2k2
{exp[k2(Ī

∗
i −1)2]−1}, i = 4,6, (5.6)

wherek1 > 0 is a stress-like parameter andk2 > 0 is a dimensionless parameter. We define
the mixed invariants̄I∗i = κ Ī1+(1−3κ)Īi by usingĪ4 = M ·CM andĪ6 = M ′ ·CM ′, where
the unit vectorsM andM ′ characterize the mean fiber orientations. These are defined by
a single parameter, namely the fiber angle±ϕ measured from the circumferential direc-
tion of the aorta (fiber components along the radial direction of the artery wall are here
neglected). The parameterκ ∈ [0,1/3] describes the dispersion of the fiber orientation.

The anisotropic partsΨ0
f,i, i = 4,6 of the strain-energy function only contribute to the total

strain energyΨ if Ī∗i > 0. This implies that damage, which is associated with the collagen
fibers, is only accumulated if̄I∗i > 0. For more details on the constitutive model, and it’s fit
to experimental data, we refer to Weisbecker et al. [93].

We compute the second Piola-Kirchhoff stress tensor from (5.4) viaS= 2∂Ψ/∂C=Svol+

Sm+Sf,i, i = 4,6. Hence, withSvol = 2∂Ψvol/∂C, Sm = 2∂Ψm/∂C and usingΨ0
f,i = Φ′f,i
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we have

Sf,i = 2

[

ηi
∂Ψ0

f,i

∂C
+Ψ0

f,i
∂ηi

∂C
+Φ′f,i

∂ηi

∂C

]

= ηiS
0
f,i, S

0
f,i = 2

∂Ψ0
f,i

∂C
. (5.7)

From here we then obtain the Kirchhoff stress tensorτ and the Cauchy stress tensorσ by
the push forward operationτ = FSFT, with σ = J−1τ.

In order to obtain efficient nonlinear solutions in the context of the FE method, we need
the consistently linearized elasticity tensor for use in iterative techniques of Newton’s type.
The elasticity tensor in the Lagrangian description isC= 4∂ 2Ψ/∂C∂C=Cvol+Cm+Cf,i,
and thusCvol = 4∂ 2Ψvol/∂C∂C, Cm = 4∂ 2Ψm/∂C∂C and

Cf,i = 4ηi
∂ 2Ψ0

f,i

∂C∂C
+4

∂Ψ0
f,i

∂C
⊗ ∂ηi

∂C
, i = 4,6, (5.8)

where
∂ηi

∂C
=

∂ηi

∂Ψ0
f,i

∂Ψ0
f,i

∂C
(5.9)

such that we can write with (5.7)2

Cf,i = 4ηi
∂ 2Ψ0

f,i

∂C∂C
+

∂ηi

∂Ψ0
f,i

S
0
f,i⊗S

0
f,i, i = 4,6. (5.10)

Furthermore,
∂ηi

∂Ψ0
f,i

=
2

mir i
√

π
exp{−[m−1

i (Ψmax
f,i −Ψ0

f,i)]
2}, (5.11)

where the property d[erf(z)]/dz= 2exp(−z2)/
√

π has been used. On the primary loading

curveηi = 1 and∂ηi/∂C = O, henceCf,i = 4∂ 2Ψ0
f,i/∂C∂C. A derivation for the isotropic

part of the elasticity tensor can be found in, e.g., Miehe [136], while the anisotropic elastic
part (i.e. without damage) can be found in Gasser et al. [39].The full anisotropic part of the
Lagrangian elasticity tensorCf,i and the Eulerian elasticity tensorCf,i we derive in A.1.

It is well established that softening of arterial tissues occurs during mechanical testing
at physiological loadings, a phenomenon usually referred to as preconditioning behavior
of the tissue [80]. In order to distinguish softening in the physiological loading range
from softening due to tissue damage, and thus allow a more accurate interpretation of the
simulation results, we define the increase in softening fromthe physiological load, say, e.g.,
systolic blood pressure, to supra-physiological loads as∆η . We calculate the new measure,
the increment of tissue damage∆η , by comparing the minimum of the damage variable
at arbitrary supra-physiological loadsηmin and the minimum of the damage variable at
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.
Initialize Ψmax

f,i = 0 (i = 4,6), for each Newton iteration and each fiber familyi:
1. Computeτ0

f,i from the push forward of (5.7)2 and determineC0
f,i, see the A.1

2. ComputeΨ0
f,i from (5.6)

3. ReadΨmax
f,i from history

4. Check:

if Ψ0
f,i > Ψmax

f,i

Ψmax
f,i ←Ψ0

f,i (write to history)
end if.

5. Computeηi,
∂ηi

∂Ψ0
f,i

andτ0
f,i from (5.5), (5.11) and the push forward of (5.7)2

6. Computeτ f,i = ηiτ0
f,i andCf,i = ηiC

0
f,i +

∂ηi

∂Ψ0
f,i

τ0
f,i⊗ τ0

f,i

Table 5.1: Computation of fiber contributions (fiber familiesi = 4,6) to the total Kirchhoff stress
and the Eulerian elasticity tensors for the damage model presented in Section 5.2.1.

physiological blood pressureηmin
phy . In order to have consistency with the definition of the

damage variableη (i.e. ∆ηi = 1 refers to an undamaged collagen fiber networki, and
∆ηi → 0 refers to severely damaged fibers), we propose

∆ηi = 1− (ηmin
phy,i−ηmin

i ), i = 4,6. (5.12)

Using the generalized error function

erf(a,b) =
2√
π

b
∫

a

e−s2
ds= erf(b)−erf(a), (5.13)

we can reinterpret∆ηi as

∆ηi = 1− 1
r

erf

(

Ψmax
phy,i

m
,
Ψmax

f,i

m

)

, i = 4,6, (5.14)

which has the same form as (5.3), and whereΨmax
phy,i is the isochoric strain energy recorded

in the fiber familyi under physiological loads andΨmax
f,i is the maximum isochoric strain

energy recorded in the fiber familyi over the (supra-physiological) load history. In what
follows we refer to∆ηi as the damage increase in the collagen fiber familyi.

5.2.2 Numerical implementation

We realize the algorithmic FE implementation of the damage model for each fiber family
in the collagen network. For the corresponding hyperelastic model of Gasser et al. [39] the
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Figure 5.1: Deformation history of the aortic arterial layers up to loading with an arbitrary internal
pressureparb including the effects of initial stresses. The reference configurationΩ0a relates to the
imaginary residually stressed configuration without an iteration procedure. The reference configu-
ration Ω0b relates to the geometry ofΩimg with an iteration procedure but without a prestressing
algorithm. The reference configurationΩ0c relates to the arbitrary loaded configuration. The aster-
isk and the dashed arrows denote deformations in which the current configuration does not change
its geometry.

iterative process to compute the entries for the stress and stiffness matrices is shown in
Table 5.1.

Figure 5.1 schematically illustrates the steps used to include initial stresses and describes
the deformation history. The configuration we assume to be stress-free and on which we
apply the residual stresses isΩ0a. Here the residual stresses are released by separating
the layers, therefore the layers form a non-compatible geometry. No internal pressure acts
on the inner aortic wall. After applying the residual stresses with an iterative procedure
and obtaining a compatible geometry, the configurationΩres is achieved [128]. This con-
figuration comprises residual stresses but the internal pressurep remains zero. By using
the iterative procedure, we obtain a residually stressed state onΩres= Ωimg, which corre-
sponds to the geometry from medical imaging. Since the strain-energy function uniquely
relates stresses and strains, and the stress state changed without any changes of the geom-
etry, the configurationΩresobtained with the iteration procedure relates to a new reference
configurationΩ0b.
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In the next step, we increase the internal pressure without updating the geometry and ob-
tain the configurationΩimg. The stress state has now changed compared toΩres but the
geometry has not. Again, as the strain-energy function uniquely relates stresses and strains
the unloaded reference configuration ofΩimg has changed compared toΩres, sayΩ0c. After
applying the initial stresses, the geometry can be loaded with arbitrary loads and we obtain
Ωarb. The individual steps described here are detailed in what follows. In Fig. 5.1 solid
curves depict deformations that relate two configurations.If the reference configurations
change due to the used algorithms (iteration procedure or prestressing), it is marked with
dashed curves and the corresponding deformation gradientsare marked with an asterisk.

Residual stresses

In order to account for residual stresses in our modeling framework, we draw on the exper-
imentally measured residual deformations from Holzapfel et al. [24]. Therein, when the
three layers of the composite aortic wall (Intima, Media, Adventitia) are separated, the au-
thors measure the resulting residual deformations experimentally, e.g., the intima enlarges
and the media and adventitia shrink after separation. We usethese data to define a defor-
mation gradientFres(x) describing the residual deformation in the intact aortic wall. To
map the deformation gradient into a (possibly patient-specific) FE model, we compute a
local coordinate system for each element, where the local circumferential directionθ , the
local axial directionzand the local radial directionr of the aortic geometry are determined
based on the element’s position within the aorta.

To this end, we define the element coordinate system at the center of each element using
the local circumferentialNθ , axialNz and radialNr basis vectors of the aortic section, im-
plemented using a custom MATLAB (2009b, The MathWorks, Inc., Massachusetts, USA)
code. First we define the local axial directionNz parallel to the direction of the lumen
center line, at the MRI stack height of the element center. We next define the local circum-
ferential directionNθ as normal to the plane spanned byNz and a vector from the lumen
center line (at the MRI stack height of the element center) to the center of the element.
Finally, the local radial directionNr is the direction perpendicular to bothNθ andNz. Our
method is similar to that introduced in Kiousis [121].

We define the local deformation gradient in the initial element coordinate system as (in
matrix notation)

[Floc
res,l ] =





λθ ,l 0 0
0 λz,l 0
0 0 λr,l



 , (5.15)

with l ∈ [Intima, Media, Adventitia] and stretchesλθ ,l and λz,l determined experimen-
tally [24]; we computeλr,l assuming isochoric deformations, i.e. det[Floc

res,l ] = 1. For the
FE model, we need the deformation gradient in the global coordinate system and thus
transform it using the tensor transformation

Fres= QTFloc
res,l Q (5.16)
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whereQ is an orthogonal (transformation) tensor. Prior to the firstload step, the FE pro-
gram reads in the deformation gradient and prescribes the corresponding values to the
Gauss points. As a result, the stress-free configurationΩ0 is not part of the numerical
simulation.

After we prescribe the deformation gradientFres to Ω0a at each Gauss point of a simula-
tion, global equilibrium is no longer fulfilled. To generatea robust solution we initially
apply fixed displacement boundary conditions to the model which we gradually relax such
that the residually stressed geometry represents a load-free configuration. However, once
the residual stresses are in equilibrium, the deformed model geometry differs from the
imaged geometryΩres. In order to correct this situation, we propose an iterativescheme
to map the residual stresses back ontoΩres. We map the deformation gradient field from
the first relaxationFres,1 onto the geometryΩres and again relax the boundary conditions.
We then map the resultant deformation gradient fieldFres,2 onto the imaged geometry and
again relax the boundary conditions. We repeat this processuntil the change between the
resulting deformation gradient fieldsFres,n andFres,n+1 falls below a prescribed tolerance.
In our example five iterations are sufficient to reduce the mean square error between the
deformation gradient fields calculated from two subsequentrelaxations to approximately
10−5 to 10−8. After this iterative relaxation procedure we obtain the compatible residually
stressed, unloaded configuration onΩres.

Prestresses

In order to account for prestresses in our modeling framework, we use the GPA [128], a
generalized and modified version of an algorithm introducedby Gee et al. [29, 30]. Briefly,
we calculate an incremental deformation gradient from the incremental displacement de-
termined from each converged iteration step. We then deletethe incremental displacement
and update the total deformation gradient with the incremental deformation gradient. To
do this, we define the total deformation gradient as an additional history variable during
the computation.

After accounting for both residual stresses and prestress,an arbitrary deformationFarb,
now computed with a conventional FE scheme, yields the corresponding configuration
Ωarb. In summary, we compute the total deformation gradient at each Gauss point in the
FE model as

F(x, t) = Farb(x, t)Fpre(x)Fres(x). (5.17)

The essential idea is similar to the strategy presented in [131], however, details such as
the iteration procedure for the initial stresses are improved and the implementation of the
prestressing algorithm differ.

5.2.3 Numerical examples

To demonstrate different aspects of our modeling framework, we simulate both the uniax-
ial extension of a tissue sample taken from the thoracic aorta and physiological and supra-
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µ [MPa] k1 [MPa] k2 [-] ϕ [◦] κ [-] rf [-] mf [-]
Intima 0.034 4.34 13.3 46.5 0.20 1.00 0.014
Media 0.028 0.14 11.9 38.4 0.21 1.87 0.009
Adventitia 0.020 0.39 6.79 52.3 0.23 1.15 0.022

Table 5.2: Median constitutive parameters for the intima, media and adventitia of the human tho-
racic aorta, as reported in [93].

λθ ,l [-] λz,l [-]
Intima 0.963 0.959
Media 1.081 1.042
Adventitia 1.059 1.096

Table 5.3: Residual stretches in the circumferential and axial directions,λθ ,l andλz,l , respectively,
for the intima, media and adventitia, as reported in [24]. Residual stretch in theradial directionλr,l

is calculated assuming isochoric deformations, i.e.λθ ,l λz,l λr,l = 1.

physiological loading conditions of the human thoracic aorta. For all examples presented
in this paper we use 8-node mixed (Q1P0) brick elements within FEAP (University of Cali-
fornia at Berkeley, CA, USA). We model aortic tissue as a three-layer composite, where we
specifically model the intima, media and adventitia of the tissue. To this end, we use exper-
imentally determined thickness ratios of 0.19/0.45/0.36 for the intima/media/adventitia,
as reported in Weisbecker et al. [93]. To describe the layersof the thoracic aorta we use the
median constitutive parameters for intima, media and adventitia reported also in [93] and
summarized in Table 5.2. We incorporate residual stretches(resulting in residual stresses)
into our simulations based on the experimental results reported in Holzapfel et al. [24], as
summarized in Table 5.3.

Uniaxial extension of a tissue sample taken from the thoracic aorta

First, we study the influence of residual stresses on the predicted transmural stress distri-
butions by comparing results generated with the inclusion of experimentally determined
residual stretches (Table 5.3), and without these residualstretches, coincident with the
framework described in Fig. 5.1, but omitting the prestresses. We simulate one-fourth of a
square sample of thoracic arterial tissue (10×10 mm) with symmetry boundary conditions
on two perpendicular edges. The total sample thickness (2.59 mm) and the thickness ratios
of the individual layers are experimentally determined [93].

Next, we use this three-layer model with residual stretches, to obtain a stress-stretch re-
sponse of the intact wall. We simulate a uniaxial extension test with displacement con-
trolled quasi-static cyclic loading toλ = 1.3 and then toλ = 1.4. We calculate an average
Cauchy stress, saȳσ = fsum/Af, by using the sum of the reaction forcesfsum and the
current cross-sectional areaAf normal to the force. For a comparison with the correspond-
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ing experimentally determined constitutive parameters, we then fit the constitutive model
to the stretch-stress relationship representing the mechanical behavior of the intact three-
layer aortic wall.

Physiological and supra-physiological loadings of the human thoracic aorta

To test our modeling framework on clinically relevant problems, we study physiological
and supra-physiological loading conditions of the human thoracic aorta on a representative
patient. Our representative patient-specific simulationsuse the thoracic aorta geometry of
a 62 year old male patient, derived from MRI. We simulate a section of his aorta which has
an inner diameter of approximately 20 mm and a length of 32 mm.Briefly, we segment the
edges of the inner and outer aortic wall from the imaging data, and mesh this geometry
using a custom meshing algorithm.

We compute the nodes of the hexahedral mesh using the axial slices of the binary seg-
mented MRI. In each slice, we divide the axial contour of both the lumen and the outer
wall edge into 10 sections of 36◦, using the center of mass of the lumen in each slice. With
these nodes, we compute the spline curves that minimize the fitting error. Then we use the
resulting spline curves to divide each section into six cubically interpolated subsections,
thus determining the 60 circumferential elements. We perform a similar procedure in the
axial direction, interpolating along subsets of nodes withequal circumferential positions
to determine 32 elements axially. Using the experimentallydetermined thickness ratios
(0.18/0.46/0.36) from [93] to define three arterial tissue layers (intima/media/adventitia)
in the FE mesh, we generate each layer of thoracic tissue withfour elements through the
thickness in order to resolve radial stress and damage gradients. In total the mesh contains
23040 eight-node brick elements.

Regarding the boundary conditions, we constrain the displacement inz-direction (along
the main axis of the aorta) at nodes on the cutting planes of our model, i.e. at the top and
bottom of the segment shown in Fig. 5.2(b). Furthermore, on each of these cutting planes,
we constrain four nodes on the luminal side at approximately90◦ increments along the
circumferential direction. These eight nodes can only movein the radial direction within
the cutting planes to prevent rigid body rotation around theaxial direction.

Once the mesh is finalized, we input the mean fiber directions at the element level, using
an approach similar to that of Kiousis et al. [121], implemented in MATLAB and using the
local element basis described in Section 5.2.2.

For our initial simulations, we subject the inner wall of theartery to a pressure ofp =
85 mmHg (= 11.3 kPa), corresponding to the (physiological) diastolic blood pressure and
we demonstrate some aspects of our modeling framework. To assess the influence of initial
stresses, both residual stresses and prestresses, on the tissue’s transmural stress distribu-
tions we complete four simulations: (i) a conventional forward calculation from the MRI
determined geometry; (ii) a calculation including only prestretches; (iii) a calculation in-
cluding only residual stretches; (iv) a calculation including both residual stretches and
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Figure 5.2: Representative intra-aortic balloon occlusion in the thoracic aorta: (a) angiogram of an
inflated balloon occlusion in the thoracic aorta [124]; (b) correspondingsimulation with the fully
inflated balloon inside the patient’s aorta. Since the introducer sheath and thecatheter shaft do not
influence the stress distributions in the aortic segment of our example we do not include them in
the simulation.

prestretches. Using these models we also study other aspects of the predicted stress distri-
butions, including those predicted after a load history including a systolic blood pressure of
200 mmHg (= 26.7 kPa) representing rigorous exercise, see, e.g., MacDougall et al. [137].
To this end, we compare the stresses predicted in the thoracic aorta atp= 85 mmHg for a
maximum loading over the history of bothpmax= 85 and 200 mmHg.

To study a representative catheter-based procedure on a specific patient, we simulate infla-
tion of an intra-aortic balloon, which may cause high tissuestresses and thus damage in the
tissue. Figure 5.2(a) shows an angiogram of an inflated balloon in the thoracic aorta [124].
Figure 5.2(b) shows a cross-section of our corresponding simulation with the fully inflated
balloon inside the patient’s aorta. To complete this simulation, we approximate the intra-
aortic balloon as a rigid sphere since these balloons generally exhibit very high stiffness
once they are (nearly) fully inflated, see, e.g., Fig. 7 in [138]. The sphere representing the
balloon is fixed at its center on the center line of the aorta. Then the radius of the sphere
is increased with each time step until it first comes into contact with the tissue and then
it is ‘inflated’ to its final diameter. The contact algorithm for the simulation is the rigid to
node formulation using the penalty method as implemented inFEAP. Since the introducer
sheath and the catheter shaft do not influence the stress distributions in the aortic segment
of our example we do not include them in the simulation, they are shown only for illustra-
tive purposes. We complete our simulation in two steps. First, we apply an intra-luminal
pressure ofp= 85 mmHg, and second, we ‘inflate’ the intra-aortic balloon toa diameter
of d = 23.2 mm. When presenting our results, we plot element stress distributions from
the axial center of the aorta on a plane normal to the axial direction. We plot Cauchy stress
distributions versus the circumferential directionθ of the aorta.
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Figure 5.3: Three-layer tissue sample of a human thoracic aorta under a circumferential stretch
of 1.3. Representative transmural distributions predicted by including experimentally determined
residual stretches in the simulation, and without including these residual stretches: (a) first principal
Cauchy stressσθ and (b) fiber damage distribution in form of the damage variableηmin versus
normalized wall tissuet/tmax.

To investigate the influence of the curvature on the predicted stress distributions, we com-
pute the local curvature in the circumferential directionκθ as

κθ =
r2+2ṙ2− r r̈

(r2+ ṙ2)2/3
, (5.18)

where ˙r = ∂ r(θ)/∂θ . We use a least-squares differentiation filter for unequally spaced
data to compute the differentiation of the radiusr(θ) with respect to the circumferential
coordinateθ [139].

5.3 Results

5.3.1 Uniaxial extension of a tissue sample taken from the thoracic aorta

First, we report the influence of residual stresses on the predicted transmural stress dis-
tributions by comparing results generated with and withoutincluding experimentally de-
termined residual stretches. Figure 5.3(a) shows a representative transmural distribution
of the first principal Cauchy stressσθ , while Fig. 5.3(b) shows the resulting fiber damage
distribution in form of the damage variableηmin for an applied uniaxial (circumferential)
stretch ofλ = 1.3.

Next, we compare the stress-stretch behavior of the three-layer finite element model with
experimental data obtained from arterial tissue to see whether we can reproduce the behav-
ior of arterial wall. As we use the median of the constitutiveparameters for the numerical
model, we compare the results to the median values of the intact tissue. We then fit the con-
stitutive model to the obtained stretch-stress relationship to obtain constitutive parameters
for the numerical experiment. The results of this simulation correspond to the parameters
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Figure 5.4: Average Cauchy stress̄σ versus applied stretchλ (up to 1.4) of numerical uniaxial
extension tests in the circumferential (diamonds) and the axial (+) directions, and the corresponding
constitutive model fit.

.
µ [MPa] k1 [MPa] k2 [-] ϕ [◦] κ [-] rf [-] mf [-]

Simulation 0.019 0.66 6.72 45.9 0.1 1.27 0.0076
Experiment 0.017 0.56 16.21 51.0 0.18 1.59 0.008
[Q1,Q3] [0.014,0.019] [0.24,0.94] [5.79,34.79] [46.8,53.8] [0.08,0.28] [1.25,1.83] [0.004,0.011]

Table 5.4: Comparison of constitutive parameters from the finite element model with experimen-
tally obtained data from [93] for the intact wall of the thoracic aorta.

measured in uniaxial extension tests of the intact wall, seeWeisbecker et al. [93]. Figure 5.4
shows the resulting model fit to the simulated uniaxial extension test which accounts for
residual stresses, and Table 5.4 compares the experimentally and numerically obtained
values for the constitutive parameters. The coefficient-of-determination for our fitting is
r2= 0.999, and except for the angleϕ all fitted parameters lie within the interquartile range
of the experimental data. Furthermore, if we prescribeϕ to be located within the bounds
corresponding to the interquartile rage during the fitting process, then all constitutive pa-
rameters are within the interquartile range and the coefficient-of-determination remains
excellent, withr2 = 0.998.

5.3.2 Physiological and supra-physiological loadings of the human thoracic aorta

Iterative process to determine residual stresses on the imaged geometry

This section demonstrates the influence of the iteration process on the geometry and the
stress distribution of the tissue in the unloaded configuration. Figure 5.5 shows the first
principal Cauchy stress with (a) and without (b) the iteration procedure. The geometry in
Fig. 5.5(a) is the same as the geometry segmented from MRI. In Fig. 5.5(b) the geometry
changes, as highlighted by the underlying gray area from imaging. Hence, the iteration
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Figure 5.5: Comparison of the first principal Cauchy stress with (a) and without (b) the iteration
procedure for the residual stresses. The gray area in (b) corresponds to the geometry obtained
from medical imaging. Note that (a) has the reference configurationΩ0b and (b) the reference
configurationΩ0a, compare with Fig. 5.1.

process has a notable influence on the geometry, whereas the influence on the stress distri-
bution is negligible.

Influence of initial stresses

To assess the influence of initial stresses on the tissue’s transmural stress distribution
we analyze four simulations with an arterial pressure ofp = 85 mmHg, as shown in the
Figs. 5.6(a)-(d). Figure 5.6(a) illustrates the numerically obtained principal Cauchy stress
results of a conventional forward computation from the MRI-determined geometry, while
Fig. 5.6(b) illustrates a computation where only prestresses are included, Fig. 5.6(c) shows
the computational results including only residual stresses and Fig. 5.6(d) shows the com-
putation including both residual stresses and prestresses. Since we plot the cross-sections,
it is clear that the diameter predicted atp= 85 mmHg changes notably with the inclusion
of initial stresses.

Figure 5.7(a) shows the circumferential Cauchy stresses at the luminal side of the intima
plotted along the circumference of the aorta (referring to the case described in Fig. 5.6(d)).
The stress variations along the circumferential directionare very high. Figure 5.7(b) shows
the correlation between the circumferential Cauchy stress with the local circumferential
curvature. The correlation coefficientr2 equals 0.89 and the positive correlation between
the Cauchy stress magnitude and the aortic curvature is statistically significant withp <
0.05.
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Figure 5.6: First principal Cauchy stressσ1 in the thoracic aorta at diastolic blood pressurep =
85 mmHg at the center of the aortic section: (a) conventional forward computation; (b) results
including only prestresses; (c) computation including only residual stresses and (d) computation
including both residual stresses and prestresses.

Numerical preconditioning

To illustrate that stress softening occurs after tissue exposure to high blood pressure and
that it effects the stress distributions predicted at physiological blood pressure, we com-
pare the stresses predicted atp = 85 mmHg for both a maximum load ofpmax= 85 and
of 200 mmHg over the history, the latter representing an example of intraluminal pres-
sure that can be reached during rigorous exercise. Figure 5.8(a) shows the circumferential
Cauchy stressσθ for p= 85 mmHg, with the load history ofpmax= 85 mmHg, at the lu-
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Figure 5.7: Representative results from a patient-specific simulation of a human thoracic aorta at a
blood pressure ofp= 85 mmHg reached during primary loading: (a) circumferential Cauchy stress
σθ (black), axial stressσz (red) and radial stressσr (green) at the luminal side of the intima versus
the circumferential positionθ ; (b) circumferential Cauchy stressσθ versus the local circumferential
curvatureκθ , the correlation is statistically significant (p< 0.05).
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Figure 5.8: Representative patient-specific simulation of a human thoracic aorta at a blood pressure
of p= 85 mmHg, circumferential Cauchy stressσθ in the intima at the lumen interface (diamonds)
and at the interface with the media (crosses) versus the circumferential directionθ : (a) predicted
with pmax= 85 mmHg in the load history; (b) predicted withpmax= 200 mmHg in the load history.

minal (diamonds) and medial (crosses) side of the intima. The difference between these
curves illustrates the high stress gradient through the thickness of the intima at several cir-
cumferential locations of the aorta. Figure 5.8(b) shows the corresponding circumferential
Cauchy stressσθ for p = 85 mmHg, with the load history ofpmax = 200 mmHg, at the
luminal (diamonds) and medial (crosses) side of the intima,showing a marked decrease
in both the stress variation along the circumferential direction θ and the stress gradient
through the thickness of the intima.
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Figure 5.9: Representative patient-specific simulation of a human thoracic aorta undergoing intra-
aortic balloon occlusion: (a),(d) distribution of first principal Cauchy stressσ1 at maximum balloon
inflation; (b),(e)∆η at maximum balloon inflation for the first family of fibers; (d),(f)∆η at maxi-
mum balloon inflation for the second family of fibers.

Intra-aortic balloon occlusion

Figure 5.9 shows stress and damage distributions for a representative simulation of an
intra-aortic balloon occlusion, as shown in Fig. 5.2. In particular, Figs 5.9(a),(d) illustrate
the distribution of the first principal Cauchy stressσ1 after intra-aortic balloon occlusion
due to a full expansion of the device. As expected, the stresses vary notably around the
circumferential direction and reach a maximum value of 0.89 MPa. Figures 5.9(b),(e) and
(c),(f) show the damage increase∆η , based on the damage variableηmin at p= 85 mmHg,
for both families of fibers. Figure 5.10 illustrates the evolution of the damage increase∆η
for the most damaged aortic tissue versus the diameter of theinflated balloon ranging from
21 mm to over 23 mm.

5.4 Discussion

To the authors’ knowledge this is the first study proposing a modeling framework with
such fidelity, particularly for analyzing surgical procedures, where:

(i) 3D patient-specific models include the measured arterial wall thickness estimated
from medical images,
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Figure 5.10: Damage increase∆η versus diameter of the intra-aortic balloon during a representative
patient-specific simulation of intra-aortic balloon occlusion.

(ii) three layers of the aorta are explicitly simulated based on experimentally determined
thickness ratios of intima/media/adventitia,

(iii) both layer-specific residual stresses and prestresses are mapped on the exact geome-
try determined from medical imaging to maintain theoretical consistency,

(iv) constitutive model specifically captures the supra-physiological stress-strain response
of human arteries,

(v) all layer-specific material parameters and residual stretches are determined experi-
mentally.

Humphrey and Holzapfel [140] emphasize the necessity to include a non-uniform wall
thickness to FE models, a request which is based on experimental results, see, e.g., Raghaven
et al. [141].

Addressing our FE modeling framework, our custom meshing algorithm allows a great
deal of control in the number and distribution of the hexahedral elements using three input
parameters specifying the number of elements in the circumferentialθ , axialzand radialr
directions. In preliminary computations with different meshes (not shown), we found that
the presented mesh gives converged solution for the stress and damage distributions.

In addition, data presented in the literature on the thickness ratios of intima/media/adventitia
vary. For example, Holzapfel et al. [24] measured the ratiosas 0.21/0.46/0.33 [93], while in
our recent study we measured 0.19/0.45/0.36. We studied howvarying the thickness ratios
of the intima/media/adventitia in our numerical simulations, by up to 25% from our mea-
sured values, impacts the predicted stress distributions (while including initial stresses).
Our results (not shown) demonstrate that the predicted stress distributions are relatively



5.4 Discussion 101

insensitive to variations in the thickness ratios within this range. Hence, we present all our
results using recently published data [93].

5.4.1 Uniaxial extension of a tissue sample taken from the thoracic aorta

Figure 5.3 shows that accounting for residual stresses in the modeling framework has a sig-
nificant influence on the predicted transmural stress and damage distributions. As a result,
the maximum stresses and damage, both occurring in the intima, decrease. Meanwhile, the
stresses and damage in both the media and the adventitia increase, resulting in more homo-
geneous transmural distributions of stresses and damage. Chuong and Fung [129, 142] and
Fung [22] demonstrated that arterial residual stresses tend to homogenize the transmural
stress distribution of the tissue in the physiological state. Additionally, numerous studies
have shown that the inclusion of residual stresses in analyses of arteries under physio-
logical loading conditions substantially reduces the variation in circumferential and axial
stresses within the arterial wall [7, 80, 131, 143–147].

Figure 5.4 and Table 5.4 show that the constitutive model provides an excellent fit to the
numerical experiment, and that the resulting material (anddamage) parameters are close
to the median parameters determined from the correspondingmechanical tests. Thus, our
simulation of the three-layer tissue, based on experimentally determined constitutive pa-
rameters and residual stretches, can reproduce the mechanical behavior of the intact wall
satisfactorily.

5.4.2 Physiological and supra-physiological loadings of the human thoracic aorta

As opposed to the studies of Alastrué et al. [35, 131] we use aniterative procedure to
maintain the geometry from medical imaging after applying residual stresses to our model.
As Fig. 5.5 demonstrates, the iterative procedure has little impact on the stress distribution
but assures that the geometry reconstructed from MRI remainsunchanged.

Figure 5.6 compares qualitatively the distributions of thefirst principal Cauchy stressσ1

predicted from a classical forward simulation to those including only residual stresses,
only prestresses, or including both sources of initial stresses. Without considering resid-
ual stresses, i.e. Figs 5.6(a),(b), the intima exhibits unrealistically higher stresses than the
media and the adventitia. This effect results from the exponential stiffening of the intimal
layer which occurs at much lower stretches compared to the medial and adventitial lay-
ers [38, 93]. Residual stresses reduce this discrepancy, as the intima is under compression
while both the media and adventitia are under tension in the composite tissue [24]. In fact,
we estimate the lowest stress variations along the circumference and through the layers
when only residual stresses are included. Compared to the conventional forward computa-
tion, inclusion of both prestresses and residual stresses leads to stress distributions that are
more uniform through the layers, but higher stress gradients are estimated.

We require prestresses in the modeling framework for theoretical consistency, and have
accounted for them using the generalized prestressing algorithm as documented in [128].
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Accounting for prestresses generally yields a geometry that has a smaller diameter com-
pared to that predicted from a conventional calculation. Naturally, smaller diameters mean
larger local curvatures in the imaged geometry versus the deformed geometry of the clas-
sical forward calculation. As a result, the magnitudes and gradients of the Cauchy stresses
increase. Our results are consistent with those reported byPutter et al. [117] and Speelman
et al. [118], who both conclude that accounting for prestresses in the patient-specific FE
simulations leads to an increase in the maximum arterial wall stress. When accounting for
initial stresses the first principal stressσ1 is larger in the adventitia than in the media. Our
results differ from those reported in [34], where the authors account only for the opening
angle of the medial and adventitial layers, and neglect the mechanical significance of the
intima.

Figure 5.7(a) shows the principal Cauchy stresses at the luminal side of the intima along
the circumference of the aorta. The predicted stresses along the circumference vary on the
order of 100 kPa. Such large variations have also been shown in other studies with patient-
specific geometries of arteries, see, e.g., [35, 131, 145, 147], but the circumferential vari-
ation ofσ1 in these results was never discussed in detail. Such resultsare a consequences
of the patient-specific geometry where the tissue geometry and thickness is estimated from
MRI, however this is not plausible under physiological loads. Experiments suggest that
remodeling in healthy arteries aims at maintaining a nearlyconstant wall stress, e.g., by
changing the composition of constituents or the wall thickness [148, 149]. Additionally,
the high stress variation contradicts growth and remodeling theories that assume deviation
from a uniform homeostatic stress is the principal driver oftissue adaptation [150, 151].

Figure 5.7(b) shows the correlation between the circumferential Cauchy stress and the in-
ner aortic curvature, which is again an artifact of our 3D patient-specific modeling frame-
work. There are several references noting the influence of local curvature on predicted
stress results in simulations of aortic aneurysms (see, e.g., [152, 153]), but to the author’s
knowledge corresponding analysis in healthy human aortas with patient-specific geome-
tries has not yet been reported.

In light of the stress variations highlighted in Fig. 5.7, wesuggest to ‘precondition’ the
thoracic aorta with a maximum loading over the history. To this end, Fig. 5.8 compares, for
a representative patient-specific simulation of a human thoracic aorta at an internal pressure
of p = 85 mmHg, the circumferential stress in the intima (both at the lumen interface
and at the interface with the media) with the circumferential position for results predicted
with pmax= 85 mmHg in the load history and those predicted withpmax= 200 mmHg in
the load history. The stress distribution after numerical preconditioning of the tissue, cf.
Fig. 5.8(b), yields more realistic results, where the circumferential stresses after numerical
preconditioning are in the same range as those reported in, e.g., [7] or [134].

After numerical preconditioning stress gradients inside the tissue decrease, as shown, e.g.,
in Fig. 5.8. This is a rather pragmatic approach to account for the inhomogeneity of the
material parameters or residual stresses within the layersof the tissue. Variations along the
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circumferential direction still remain but the transmuralstress gradient reduces to almost
zero. Such results motivate growth and remodeling schemes for predicting the distribution
of material parameters and residual stresses in patient-specific geometries based on the
physical principles of remodeling.

Experimental studies, such as Nicosia et al. [154] and Kim and Baek [155], report that
the stiffness of aortic tissue varies along the circumferential direction. Thus, we hypoth-
esize that the material parameters might change along the circumference of the aorta in
proportion to the local tissue thickness or the local curvature of the tissue. Recently, Reeps
et al. [156] found that for abdominal aortic aneurysm wall stiffness and strength correlate
with wall thickness. Although this result is derived from diseased tissue, it is possible that
the same holds for healthy aortic tissues. Further studies are necessary to better under-
stand intra-patient variation in material parameters, andto reveal correlations between the
material parameters and local geometric features such as wall thickness and curvature.

Figure 5.9 shows the distribution of the first principal Cauchy stress after intra-aortic bal-
loon occlusion due to full expansion of the device. We attribute the large stress variations
in the contact interface shown in Fig. 5.9(a),(d) to features present in the patient-specific
geometry. Hence, simulation of balloon or stent interventions using an idealized geometry,
e.g., a cylindrical tube [134], can not lead to a full understanding of the influence of the
device inside a patient’s artery. The first principal stresses vary notably around the circum-
ferential direction and reach a maximum value of 0.89 MPa at the maximum balloon infla-
tion. This maximum value lies well below the circumferential failure stress for the thoracic
aorta of 1.8 MPa, reported in Vorp et al. [157] (cf. also Humphrey and Holzapfel [140]).

Figures 5.9(b),(e) and (c),(f) show the damage increase∆η , based on the damage variable
ηmin at p= 85 mmHg. We choseηmin at p= 85 mmHg as an example reference because
the blood pressure during the occlusion procedure is likelylowered due to the effects of
anesthesia. There are slight differences in the distribution of ∆η for each family of fibers,
however, the overall picture is the same. Contrary to the intima, there is much less damage
associated with the fibers present in the media or adventitia.

Figure 5.10 shows the maximum damage increase∆η versus the diameter of the balloon
during the intra-aortic balloon occlusion detailed in Fig.5.9. Damage is mainly accumu-
lated in the intimal layer, and hence the maximum damage increase∆η occurs in the intima
for all of our representative simulations. This figure is an example of the type of data that
can be generated in advance of a specific procedure to help surgeons define thresholds for
balloon diameter or balloon pressure.

5.4.3 Limitations

There are some limitations in our modeling framework. When accounting for residual
stresses by using the residual stretch data determined experimentally (from Holzapfel et
al. [24] and summarized in Table 5.3), we consider only the changes in the dimensions of
the separated layers. When the separated layers are fully relaxed, they also have residual
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curvatures which are not taken into account here. This simplification may affect the stress
distribution through the thickness of each layer, but it should not alter the mean stress val-
ues because the stresses resulting from the curvatures can be regarded as bending stresses,
thus the mean values should all be about zero.

By focusing specifically on our representative example of theintra-aortic balloon occlu-
sion, we modeled the balloon as a rigid sphere in light of its relatively high stiffness. It
would be more informative to accurately model the constitutive behavior of the balloon
so that the pressure-diameter response of the device is accurately predicted. Such an ap-
proach would improve the insights on surgical procedures employing intra-aortic balloons.
However, the focus of this study is to demonstrate the feasibility of the proposed modeling
framework to predict stress and damage distributions in aortic tissues using patient-specific
geometries, not to accurately model the balloon device.

Our definition of the damage variableη and damage increase∆η uses a phenomenological
approach. More experiments are required to actually get a better physical interpretation of
the damage variable and to better understand the evolution of the damage. Nonetheless, we
provide a repeatable quantitative measure to help surgeonsto better define thresholds for
balloon expansion diameter or balloon pressure, ultimately to improve patient outcomes of
catheter-based interventions.

5.5 Conclusion

We present a modeling framework to numerically evaluate stress and damage distributions
inside the layers of the human aorta of specific patients undergoing surgical procedures.
Our constitutive model, including damage associated with the collagen fibers, describes the
material behavior in the supra-physiological range, and our FE implementation accounts
for both layer-specific residual stresses within the tissueand for prestresses, i.e. the fact
that the geometry reconstructed fromin vivo imaging data is loaded by blood pressure.

Large variations in the stresses and stress gradients, noted especially in the intima, can be
explained by the local, patient-specific curvature of the aorta. Such large stress variations
are not likely to occur in the tissue in the physiological environment. Thus, we propose to
‘precondition’ the thoracic aorta by loading up by an internal pressure to 200 mmHg. This
is a rather pragmatic approach to account for the inhomogeneity of the material parameters
or residual stresses within the layers of the tissue. In the future we suggest either to vary
the material parameters or to vary the residual stretches along the circumference of the
aorta based on the local curvature or other geometric features.

Our modeling framework, together with the material and structural parameters which are
all based on experimental data, can be used to simulate endovascular procedures such as
intra-aortic balloon occlusion or stent-graft placement.
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A.1 Elasticity Tensor

We first provide more details of the Lagrangian form of the elasticity tensorCf,i, i = 4,6,
for each family of fibers, see (5.8) – (5.11). In all that follows the indexi = 4,6 does not
employ Einstein summation notation; it refers to a specific family of collagen fibers. De-
noting the fictitious elasticity tensor as

C̃f,i = 4J−4/3 ∂ 2Ψ0
f,i

∂C∂C
= 4J−4/3ψ ′′f,iH i⊗H i , (A.1)

with the Lagrangian structure tensorsH4 = κI + (1− 3κ)M ⊗M and H6 = κI + (1−
3κ)M ′⊗M ′, and the scalar elasticity function

ψ ′′f,i= k1[1+2k2(Ī
∗
i −1)2]exp[k2(Ī

∗
i −1)2]. (A.2)

The elasticity tensorCf,i can then be written as

Cf,i =ηiP : C̃f,i : PT +
2
3

ηiTr(J−2/3S̃
0
f,i)P̃

−2
3

ηi(C−1⊗S
0
f,i +S

0
f,i⊗C−1)+

∂ηi

∂Ψf,i
S

0
f,i⊗S

0
f,i, (A.3)

where∂ηi/∂Ψf,i is according to (5.11), then Tr(·) = (·) : C, P = I− (C−1⊗C)/3 is the
Lagrangian projection tensor,(I)KLMN = (δKMδLN + δKNδLM)/2 is the the fourth-order

unit tensor,S̃
0
f,i = 2∂Ψ0

f,i/∂C is the fictitious second Piola-Kirchhoff stress tensor,P̃ =

C−1⊙C−1− (C−1⊗C−1)/3 is a modified projection tensor and(C−1⊙C−1)KLMN =
(C−1

KMC−1
LN +C−1

KNC−1
LM)/2, see [25].

Now we perform the push-forward operation twice to obtain the Eulerian description of
the elasticity tensorCf,i, which (in index notation) gives

(Cf,i)klmn= FkKF lLFmMFnN(Cf,i)KLMN, (A.4)

with the result

Cf,i =ηiP : C̃f,i : P+
2
3

ηi tr(τ̃0
f,i)P

−2
3

ηi(I ⊗ τ0
f,i + τ0

f,i⊗ I)+
∂ηi

∂Ψf,i
τ0

f,i⊗ τ0
f,i, (A.5)
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where tr(·) = (·) : I , τ̃0
f,i = FS̃

0
f,iF

T
is the fictitious Kirchhoff stress tensor,P = I− (I ⊗ I)/3

is the Eulerian projection tensor andP : C̃f,i : P= 4J−4/3ψ ′′f,i(P : hi)⊗(P : hi), with the Eulerian

structure tensorsh4 = κb+(1−3κ)m⊗m, h6 = κb+(1−3κ)m′⊗m′, the modified left

Cauchy-Green tensorb = FFT, andm = FM , m′ = FM ′, while ψ ′′f,i is according to (A.2).
Thus, the Eulerian elasticity tensor consists of four terms, which we write as

Cf,i = C
1
f,i + C

2
f,i + C

3
f,i + C

4
f,i, (A.6)

where

C
1
f,i = ηiP : C̃ : P = 4ηiJ

−4/3ψ ′′f,i(P : hi)⊗ (P : hi), (A.7)

C
2
f,i =

2
3

ηi tr(τ̃0
f,i)P, (A.8)

C
3
f,i =−

2
3

ηi(I ⊗ τ0
f,i + τ0

f,i⊗ I), (A.9)

C
4
f,i =

∂ηi

∂Ψf,i
τ0

f,i⊗ τ0
f,i. (A.10)

To facilitate implementation in a FE code we write these terms in matrix notation. We
write the matrix quantities consistent with the implementation in FEAP, where the elas-
tic Kirchhoff stress matrix is[τ̃0

f,i ] = [τ̃0
f,i 11, τ̃

0
f,i 22, τ̃

0
f,i 33, τ̃

0
f,i 12, τ̃

0
f,i 23, τ̃

0
f,i 13]

T. The deviatoric
elastic Kirchhoff stress matrix is

[τ0
f,i ] = [τ̃0

f,i 11− tr(τ̃0
f,i)/3, τ̃0

f,i 22− tr(τ̃0
f,i)/3, τ̃0

f,i 33− tr(τ̃0
f,i)/3, τ̃0

f,i 12, τ̃
0
f,i 23, τ̃

0
f,i 13]

T, (A.11)

and the projection of the Eulerian structure tensor gives

[P : hi ] =

















h̄11− tr(hi)/3
h̄22− tr(hi)/3
h̄33− tr(hi)/3

h̄12

h̄23

h̄13

















=

















(ph̄)1

(ph̄)2

(ph̄)3

(ph̄)4

(ph̄)5
(ph̄)6

















. (A.12)

The four terms of the Eulerian elasticity tensor are thus

[C1
f,i] =4ηiJ

−4/3ψ ′′f,i

















(ph̄)2
1 (ph̄)11(ph̄)2 (ph̄)1(ph̄)3 (ph̄)1(ph̄)4 (ph̄)1(ph̄)5 (ph̄)1(ph̄)6

(ph̄)2
2 (ph̄)2(ph̄)3 (ph̄)2(ph̄)4 (ph̄)2(ph̄)5 (ph̄)2(ph̄)6

(ph̄)2
3 (ph̄)3(ph̄)4 (ph̄)3(ph̄)5 (ph̄)3(ph̄)6

(ph̄)2
4 (ph̄)4(ph̄)5 (ph̄)4(ph̄)6

sym (ph̄)2
5 (ph̄)5(ph̄)6

(ph̄)2
6

















, (A.13)
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[C2
f,i] =

2
3

ηitr(τ̃0
f,i)

















2/3−1/3−1/3 0 0 0
2/3 −1/3 0 0 0

2/3 0 0 0
1/2 0 0

sym 1/2 0
1/2

















, (A.14)

[C3
f,i] =−

2
3

ηi



















2τ0
f,i 11 τ0

f,i 11+ τ0
f,i 22 τ0

f,i 11+ τ0
f,i 33 τ0

f,i 12 τ0
f,i 23 τ0

f,i 13

2τ0
f,i 22 τ0

f,i 22+ τ0
f,i 33 τ0

f,i 12 τ0
f,i 23 τ0

f,i 13

2τ0
f,i 33 τ0

f,i 12 τ0
f,i 23 τ0

f,i 13
0 0 0

sym 0 0
0



















, (A.15)

and

[C4
f,i] =

∂ηi

∂Ψf,i



















τ02
f,i 11 τ0

f,i 11τ0
f,i 22 τ0

f,i 11τ0
f,i 33 τ0

f,i 11τ0
f,i 12 τ0

f,i 11τ0
f,i 23 τ0

f,i 11τ0
f,i 13

τ02
f,i 22 τ0

f,i 22τ0
f,i 33 τ0

f,i 22τ0
f,i 12 τ0

f,i 22τ0
f,i 23 τ0

f,i 22τ0
f,i 13

τ02
f,i 33 τ0

f,i 33τ0
f,i 12 τ0

f,i 33τ0
f,i 23 τ0

f,i 33τ0
f,i 13

τ02
f,i 12 τ0

f,i 12τ0
f,i 23 τ0

f,i 12τ0
f,i 13

sym τ02
f,i 23 τ0

f,i 23τ0
f,i 13
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














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