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Abstract

Cardiovascular diseases are the leading cause of death wetstern world. Modern
medicine is moving towards less invasive surgery such &etatbased interventions that
reduce pain and hospitalization for the patient. Howevese interventions are highly de-
manding for the surgeon due to the lack of direct feedbaak fitee surgical site. During
these interventions high stresses and even damage may eqrudue to stent expansion
and balloon inflation. Numerical models, informed by expenntal data on the mechanical
response of human tissue at supra-physiological loadsingarove the design of stents,
balloons and surgical procedures. This PhD Thesis aims/ga®a computational frame-
work for modeling catheter-based interventions with anrappate constitutive damage
model fitted to experimental data for human arterial tissGemsequently, the work com-
prises three major topics, namely, experiments, mathealatiodeling and computational
simulation.

The experimental work involves uniaxial extension testfioman aortas in both physio-
logical and supra-physiological load ranges. These tests@ducted on the intact wall,
on the separated layers, intima, media and adventitia, atideoenzyme treated media. In
the enzyme treated specimens elastin and collagen, theloaa@rbearing components of
the arterial wall, are degraded to better understand th&ibations of these components
on the damage and softening behavior.

For modeling the softening behavior of the tissue, an estadd hyperelastic constitutive
model was extended with a damage function. Such a strairggfenction is capable of
describing the Mullins-like behavior of arterial tissudé€lexperimental data, together with
results from fitting the model, suggest that softening andaige are primarily associated
with the collagen fibers.

The framework for numerical simulations to model damagesitiemt-specific geometries
accounts for initial stresses, i.e. residual stresses agsirpsses. Residual stresses are
those stresses present in an unloaded artery to adjusinuaaisstresses at physiological
loads that result from the different material propertiesrmima, media and adventitia.

A method to include the residual stresses on patient-speggfometries is developed. If
the geometry of an artery is derived framvivo medical imaging, it is loaded by blood
pressure. Hence, the finite element algorithm has to acdourthis load on the given
geometry. This work presents an advanced method to inclusirpsses which reduces
computational costs compared to available algorithms.

In the future, more detailed experimental data on the ip&tient and intra-patient vari-
ability in the mechanical response of human tissue and thusaterial parameters will
further enhance the framework for patient-specific modetihdamage in human arteries.
Furthermore, multiscale models may lead to a better uralgtstg of the damage mecha-
nism.






Zusammenfassung

Krankheiten des Herz-Kreislauf-Systems sind die fuhrefagesursache in der westli-
chen Welt. Die moderne Medizin entwickelt katheterbasi&ihgriffe, durch die Schmer-
zen gelindert und Krankenhausaufenthalte verkirzt werSlelthe Eingriffe stellen hohe
Anspriche an den Chirurgen, da dieser kein direktes Feedtmacem Ort des Eingrif-
fes erhalt. AulRerdem kann es z.B. beim Einsetzen eines Stadtbeim Aufblasen ei-
nes Ballons zu hohen Spannungen und Schadigungen im Gewetmedio Mit numeri-
schen Modellen ist eine Verbesserung der Formgebung venislted Ballons moglich.
Eine Voraussetzung dafir sind experimentelle Daten dehareschen Eigenschaften des
menschlichen Gewebes. Diese Arbeit stellt eine numeriSamellationsmethode fur ka-
theterbasierte Operationen vor, die auf ein durch expetiiefie Daten gestitztes konstitu-
tives Modell fir menschliches Arteriengewebe zuriickgréie befasst sich mit den drei
Teilaspekten: Experimente, mathematische Modellierurdynumerische Simulation.

Der experimentelle Teil der Arbeit untersucht das meclweis/erhalten von menschli-
chen Aorten bei physiologischen und supra-physiologis@®hnungen anhand uniaxialer
Zugversuche. Unterschieden wird dabei zwischen den drec&en, Intima, Media und
Adventitia. Die mechanisch relevanten Komponenten degrfghwand, Elastin und Kol-
lagen, werden in der Media spezifisch von Enzymen verdautdiase Weise lasst sich
der Einfluss beider Komponenten auf die Schadigung im Gewstazsuchen.

Zur Modellierung der Entfestigung des Gewebes dient einlietées hyperelastisches Mo-
dell, das durch die Erweiterung mit einer Schadigungsionktlen ,Mullinseffekt in
arteriellem Gewebe beschreibt. Die experimentellen Dadggen, zusammen mit den Er-
gebnissen aus dem Parameterfit des Modells, dass die kEnifestdes Gewebes haupt-
séachlich mit den Kollagenfasern zusammenhéngt.

Das numerische Schadigungsmodell berlcksichtigt sowditiRemsspannungen als auch
Vorspannungen im Gewebe. Residuumsspannungen treten imdelasteten Arterien-
wand auf, um die Spannungsgradienten Uber die Wandstaskegleichen, die durch die
unterschiedlichen Materialeigenschaften von Initma, fead Adventitia auftreten. Eine
in der Arbeit entwickelte Methode bindet die Residuumsspagen in patientenspezifi-
sche Geometrien ein. Wird die Geometrie einer Arterieiawévo Bildgebungsverfahren
rekonstruiert, ist sie bereits mit Blutdruck belastet undutah verformt. Dies muss im
finite Elemente Algorithmus berlcksichtigt werden. DieBeit der Arbeit beschreibt eine
Methode, um Vorspannungen zu berucksichtigen, welche démemdigen Rechenauf-
wand gegenlber bestehenden Algorithmen verringert.

In der Zukunft kbnnen detailliertere experimentelle Daifder die Veranderlichkeit von
Materialkennwerten in einem Patienten und zwischen végdehen Patienten numerische
Modelle weiter verbessern. Aul3erdem ermaoglicht die Weitevicklung von mehrskali-
gen Modellen ein besseres Verstandnis fur die Schadiguegsanismen.
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1 INTRODUCTION

1.1 Motivation

Cardiovascular diseases go far back in human history. Altaah f] show that artheroscle-
rosis is commonplace in Egyptian mummies from a time of theldid Kingdom the
Greco-Roman period. Nowadays cardiovascular diseased@idedding cause of death
in the western world. In Europe cardiovascular diseasesecaver 4 million deaths each
year. This corresponds to 47 % of all deaths in Europe. Corselyucardiovascular dis-
eases causes high costs with an estim&®8é6 billion per year to the EU economy [2].
Similar trends are reported for the United States and Chihayev32.8 % and 32.0 % of
all deaths are attributed to cardiovascular disease, cegply [3, 4].

Modern medicine is developing towards less invasive safgicocedures where open
surgery is being replaced by catheter-based interventimsse reduce pain and hospi-
talization for the patient. However, they are highly demagdor the surgeon and thus
still have unacceptably high risks for patients. If the sang is provided with visual or
haptic feedback for catheter guidance, patient safety eamproved.

Deployment of stents-grafts or inflation of intra-aortidlbans can cause large deforma-
tions in the aorta, thus generating high stresses which muagecdamage in the tissue. Typ-
ically, an endograft for endovascular repair of aortic agsms is oversized by 10—-20%
to maintain adequate sealing between the vessel and thgSjrdhtra-aortic balloon in-
flation aims at temporarily shutting down the blood flow. Thsisch balloons also induce
large deformations and high stresses to the aorta.

Finite element simulation can provide informations to erdeathese surgical procedures
in two ways. First, based on simulation of induced stressdslamage, catheter and stent-
design can be improved. Second, real-time evaluationegsand damage fields in surgery
can support the surgeon. For example, visual feedback amthie stress distribution in
the arterial tissue at the site of balloon inflation or stexgamsion. In both cases, the
mechanical properties of the arterial wall have to be dategthexperimentally. Then,
stress and damage distribution can be computed from nuaherulations with reason-
able accuracy. Finite elements provide an excellent framnewo model soft biological
tissues with large deformations. The aim of this PhD Thesie develop a computational
framework to model catheter-based interventions and tplgupodel parameters from
experiments on human tissues.
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Figure 1.1: Three-layered structure of an aged artery showing |: inkimaaedia and A: adventitia,
adapted from [7].

The mechanism for the softening in arterial tissue is stll fully understood. More ex-
periments including mechanical and ultrastructural examns are needed for a better
understanding. This information will facilitate the dempinent of structural mechanical
models based on the physical principles that lead to softesid damage.

1.2 Arterial Tissue

Insight in the structure of the arterial wall is a preregeigor an adequate mechanical
description of the tissue. This section describes the comps of main interest for the
mechanical modeling. For a detailed description of the fnolggy of the arterial wall, the
reader is referred to [6].

1.2.1 Structure of Arterial Wall

Arteries consist of three layers, the innermost layer isritima followed by the media and
the adventitita, as shown in Fig. 1.1. Intima and media apars¢ed by the elastic lamina
interna, and media and adventitia are separated by thécdisina externa.

In healthy young arteries, the intima consists of a singyerdaf endothelial cells and is
assumed to bear no load. With age the intima thickens duepksiteof collagen fibers and
smooth muscle cells and thus becomes relevant from the mieahaoint of view.
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The media is a sandwich-like structure of elastin, bundfesobiagen fibrils and smooth
muscle cells. Two families of collagen fibers are helicalyund around the lumen and the
smooth muscle cells have a circumferential alignment.

The adventitia comprises collagen fibers organized in thigkdles which form two heli-
cally arranged families of fibers within a ground matrix. feblasts regulate the synthesis
of extracellular matrix and collagen.

1.2.2 Elastin

Elastin is responsible for the elasticity and resiliencexdfacellular tissues such as lung,
ligament, tendon and skin. It consists of a massively cidsstl array of tropoelastin. In
large arteries elastic fibers form concentric rings arotniedumen.

Elastin is the main component of the elastic fibers of whidoiins the elastic internal
core. It is interdispersed and surrounded by microfibrils Bectronmicroscopy studies
suggest that parallel-aligned filaments build up a fibridabstructure of elastin [9]. The
Marfan syndrome is caused by the loss of functionality ofilfilpranother component of
the elastic fibers [10].

1.2.3 Collagen

Collagen is the most abundant protein in vertebrae. Apam foeing an important con-
stituent of blood vessels, different collagen types aradbin other connective tissue like
bone, tendon, cartilage, teeth and skin.

The collagen molecule consists of three helically woundideghains. The human aortic
wall mainly consists of collagen type | and Ill. Both are filznl collagens where type
| consists of two identical peptide chains and a third dedtpeptide chain and type Il
consists of three identical chains [11]. The adventita pneéidantly contains collagen type
[, the media contains approximately 30 % of collagen typed @0 % of type Ill and the
initma contains mainly collagen type Il [12]. Mutations @ollagen can lead to diseases
like osteogenesis imperfecta or the Ehlers-Danlos syndrd@wcurvy is a disease were
collagen fibrils can no longer be synthesized any due to tledavitamin C [13].

1.2.4 Other Mechanically Relevant Components

Azeloglu et al. [14] show that proteoglycans can regulasedieal stresses in the aorta.
Hence, proteoglycans have a significant influence on thessthistribution in arterial tis-
sue. In [15] a microstructural model is proposed in whicht@oglycans serve as cross-
links between collagen fibrils.

The aforementioned components only describe the pasdiavioe of aortic tissue. For an
active stress contribution smooth muscle cells need to bsidered. Models of the active
response of smooth muscle cells have been proposed, 16-19].
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Intima ui ’{: ?%«s

Adventitia

Figure 1.2: Residual stresses in the artery, adapted from [24]. THe&top shows the intact wall
with three layers. The bottom figure shows intima, media and adventitia of the fissuwe strip
after separation. The change of dimensions for the different layesslting from residual stresses
within the tissue, is apparent.

1.2.5 Incompressibility

Arterial tissue is commonly modeled as an incompressibleenz. Experimental data
support this assumption, e.g., Lawton [20] shows that tthemwe changes upon elongation
are negligible. Furthermore, Carew et al. [21] investigheevolume change under internal
pressure and longitudinal stretch.

1.2.6 Residual Stresses

In the load-free configuration, arteries are still in a Segsstate. These residual stresses
have a significant influence on the in vivo transmural stresgildution and render the
stress distribution more uniform. When the arteries aretbese residual stresses are re-
leased leading to deformations.

Early researchers investigated residual stresses inesrtgr measuring the opening angles
of radially cut arterial rings, e.g., [22, 23]. The residsaless state, however, is more
complex. Holzapfel et al. [24] show that also upon sepamnaiidhe layers residual stresses
are set free, as illustrated in Fig. 1.2. The intima exparitls aeparation whereas the
media and adventitia contract. This means that the intimenger compression, and the
media and adventitia are under tension in the three-laymposite.

1.3 Continuum Mechanical Framework

The framework of continuum mechanics describes the mechbfields such as strain
and stress in the artery by treating bodies like a continundhdasregarding the molecu-
lar or atomic structure. The fundamentals of nonlineardswiechanics are detailed e.g.,
in [25].
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1.3.1 Description of Continuum Mechanical Quantities

The position vectoK labels a point on a body with respect to the reference corafigur
Qo att = 0. The position vectox labels a point on a body with respect to the current con-
figurationQ; att > 0. To describe the state of the body one has hence two passshil

In the Lagrangian description one follows a material petand describes the continuum
mechanical quantities such as displacement, strain aedssin terms of the reference
configuration. This approach is commonly used in solid meidsa

In the Eulerian description one describes the continuunhargcal quantities in terms of a
fixed point in space. Consequently, they are expressed istafrthe current configuration.
This approach is commonly used in fluid mechanics.

1.3.2 Kinematics

The displacement of a point labeled within the reference configuratiddy and withx
in the current configuratio; is u = x — X. This deformation is fully described by the

deformation gradient tensor
ox Ju
F=—=I1+— 1.1
X~ Tax’ D
wherel is the identity tensor. The deformation gradient is nonsytmim and connects the
initial configuration to the current configuration. The detamant

J=deF (1.2)

describes the volume change of the material, wletel denotes an incompressible de-
formation. In order to obtain a measure for the deformatiinich neglects rigid body
motion, the symmetric right and left Cauchy-Green tensors

C=F'F, b=FFT, (1.3)
respectively, are used.

1.3.3 The Concept of Stress

Stress is defined as the force per unit surface area. Fordafgemations different stress
measures are defined as both force and unit surface area cagalsered in the reference
and in the current configurations.

The traction vectot is defined as the current force per current unit surface artatie
outward normal vectan. Cauchy’s theorem

t=an (1.4)

states the existence of a unique second-order temsdhe Cauchy stress tensar, also
referred to as true stress tensor, is compatible with thertaul description. The symmetry
of o is postulated by the equilibrium of angular momentum.
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For the first Piola-Kirchhoff stress tend®the current force is related to the reference unit
surface area. It can be derived from the Cauchy stress tessor a

P=JoFT, (1.5)

using Nanson'’s formula. The first Piola-Kirchhoff stresgigeneral non-symmetric and
due to its definition a two point tensor with one index refegrio the current and one index
referring to the reference configuration.

The second Piola-Kirchhoff stress tensdrs fully compatible with the Lagrangian de-
scription. With a pull-back operation it is obtained frone tGauchy stress tensor as

S=JFloF'. (1.6)

Results are commonly reported using the Cauchy stress t8imoeigenvalues off cor-
respond to the principal stresses and the correspondiegwgtors point in the directions
of the principal stresses.

1.3.4 Hyperelasticity

One refers to a material as hyperelastic if a poteradxists from which the stress can
be derived. The Helmholz free-energy functidris defined per unit reference volume. If
W = Y(F) only depends on the deformation gradient it is called stesiergy function.

The Cauchy stress tensor is computed from the partial deegdfW as

_10¥(F)
=J 1 _FT 1.7
o=1J IF (1.7)

The normalization condition requires that the strain-gpéunction vanishes in the stress-
free reference configuration and from physical considenatit is obvious that the strain-
energy function increases with deformation, i.e.

W(1)=0 and W(F)>0. (1.8)

Objectivity is required for constitutive equations, ileetstrain energy has to be indepen-
dent of rigid body motion. Thereford may only depend on the stretching parfodnd

WY(F) = WY(QF) (1.9)

must hold for all orthogonal tensof3. It follows that by formulating the strain-energy
function W(C) in terms of the right Cauchy-Green tengorit fulfills the necessary and
sufficient conditions for the strain energy to be objectlvecause the rotational part bf
is removed.
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The strain-energy function may be represented in terms @t afsindependent strain
invariants. FolC these invariants are

l; = tr(C), IZ::—ZL[tr(C)Z—tr(CZ)], I3 = defC). (1.10)

For an anisotropic material with two families of fibers, theam-energy function also
depends on the direction vectdvsandM’, i.e. W = W(C,M @ M,M’ @ M’). The number
of independent invariants is increased to nine with the geenvariants

ls=M-CM, Is=M-C?M, Ilg=M"-CM’, l;=M"-CM’,
lg=M-CM', Ig=(M-M')2 (1.12)

Note thatl4 andlg represent the square of the stretch in the directdrsndM’, respec-
tively. To minimize the number of material parameters, tituis/e equations for arterial
tissue usually only consider the invariaihisl4 andlg [7].

1.3.5 Nonlinear Finite Element Formulation

The nonlinear behavior of arterial tissue, including ladgéormation and initial stresses,
pose several challenges to the finite element modeling.iheaniity in finite element for-
mulations applied to arterial tissue has two causes: neality of the material models and
nonlinearity due to large deformations.

Arterial tissue has a nonlinear stress-stretch resportbeaxponential stiffening. For non-
linear material models the stiffness matfi«| depends on the displaceméunt and thus
changes during loading. An iterative method such as the dleRiaphson method can
solve the nonlinear equation

[K ()] [u] = [f], (1.12)
wherelf] is the vector of external forces.

Upon loading, arterial tissues may undergo large defoonatiHence, the weak or vari-
ational formulation of the equilibrium equations can beadibed in the initial or in the
current configuration, also referred to as total Lagrangrashupdated Lagrangian formu-
lations [26].

Additionally, pressure always remains normal to the serfatence, it is not a conservative
load and can not be derived from a potential function. Thiamsethat the tangent matrix
IS, in general, unsymmetric and an unsymmetric solver feNbwton-Raphson method is
necessary [27].
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1.3.6 Incompressible Materials

Standard displacement-based finite element formulatibow solumetric locking for in-
compressible or nearly incompressible materials. A sotuto this problem is a mixed
variational approach following the Hu-Washizu princighere the variables solved for in
the matrix representation of the finite element problemlaealisplacement, the pressure
p and the volume changk[28].

To facilitate the computation of incompressible matertaks models are implemented in
a compressible form and rendered incompressible with alfyeparameter. To this end
a multiplicative decomposition of the deformation gradiEn= J%/3F is introduced that
splits the deformation into a volumetrid/3l and an isochori& part, where def = 1.
This multiplicative decomposition yields = J2/3C. The strain-energy functio# is split
into a volumetric (sphericaly, and an isochoric (deviatori) part according to

W(C) = Wyoi(J) +¥(C). (1.13)
An example for the volumetric part of the strain-energy tiorcis

K
Yool = 5109(3)*, (1.14)

whereK is a penalty parameter. The quasi-incompressible solgtiamcides with the in-
compressible solution if it is sufficiently large.

1.3.7 Initial Stresses

The term initial stress includes residual stresses andrpsses. Residual stresses are those
stresses present in the load-free configuration. Presg@se present in geometries recon-
structed from medical imaging an result framvivo axial pre-stretch and blood pres-
sure.

Medical imaging is usually performed in vivo, and hence teonstructed model geom-

etry in the problem of interest has in vivo boundary condsioe.g., a blood vessel at
physiological blood pressure. However, classical finiesrent methods assume that sim-
ulations begin from an unloaded, stress-free referencditton. The problem, hence, is

that the in vivo determined ‘initial’ geometry is not an uatted reference configuration.

To address this problem, Gee et al. [29, 30] proposed a mdthattlude prestresses

to patient-specific geometries of abdominal aortic aneusybased on an updated La-
grangian approach.

As part of this PhD Thesis, their algorithm was generalized inplemented to a finite
element software. The details are presented in Chapter 4ilyBa@ incremental defor-
mation gradient is calculated from the incremental disptaent for which each iteration
step is solved. The incremental displacement is then dkkatd the deformation gradi-
ent is updated with the incremental deformation gradienim@ared to the inverse design
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analysis [31, 32], where the actual load free configurattonomputed, the prestressing
algorithm is not prone to buckling and it is easier to implaine

Usually the opening angle method is used to incorporateluatistress to arterial mod-
els by closing an arterial segment with a certain openindeapgor to loading, see,
e.g., [33, 34]. Alastrué et al. [35] include residual stesst® a patient-specific model based
on the opening angle method. The residual stress stateybgvigemore complicated and
different dimension of the arterial layers after separatibould be considered. Chapter 4
presents a method to account for the data of Holzapfel e24). A summary of the liter-
ature modeling residual stress in patient-specific diskageries using the finite element
method is provided in Table 1 of [36].

1.4 Hyperelastic Modeling of Arterial Tissue

Several constitutive models have been proposed for drtexsaie. This section gives an
overview of the hyperelastic models proposed for artemektheir characteristics.

1.4.1 Constitutive Equation

Commonly, the passive behavior of arterial tissue is modatedn incompressible fiber
reinforced tissue. Assuming that the elastin matrix beb&a@ropically, it is modeled with
an isotropic strain energy-functiddy,. The symmetrically aligned collagen fibers stiffen
exponentially and are thus modeled with an anisotropidrseaergy function¥;. The
original form of the deviatoric part of such a strain-enefigyction is introduced in [7]

Y=y, +¢f,4 + ¢f,6

H ki -
— E(I1—1)+i;62—b{exp[k2(l. — 1) -1}, (1.15)

whereu > 0 andk; > 0O are stress like parameters dad> 0 is a dimensionless parame-
ter. The modified invariants are definedlas= J-%/3I, for a= 1,4,6. It is assumed that
the fibers are only load bearing under tension, therefoee athsotropic terni¥; only
contributes ifl; > 1.

1.4.2 Fiber Dispersion

The assumption that all fibers are aligned exactly in thecdesM andM’ is not cor-
rect as already shown by [37]. It is possible to account fer dispersion of the fibers
phenomenologically by replacirg ; in (1.15) with

W, = 2k—;2exp{kz[<1—p><l‘ 324 p(i—1)7), i=46 (1.16)
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where 0< p < 1is a dimensionless parameter [38]. The higher the parametiee higher
the isotropic contribution in the exponential responséeffibers. A structurally motivated
way of introducing dispersion is the dispersion parameter (1.15) where the pseudo-
invariantl 4 is replaced by, = kT1 + (1—3k)14[39], i.e.

_ k _ — .

Wi = i[exp{kz[KllJr (1-3k)Ti—12—1], i=46. (1.17)
2

Again, the value ok € [0,1/3] determines the proportion of isotropic contribution in the

mechanical response of the fibers. Both models encompadsy) @sllimiting cases for

p =1 andk = 0, respectively. The main drawback of these models is, tieyt assume

rotational symmetry of the fiber dispersion around the maierfdirection.

Recent measurements of the three-dimensional fiber digtrbaf collagen fibers [40] in
the arterial layers show that collagen fibers are alignesetlto the axial direction in the
adventitia, closer in the circumferential direction in thedia and around 45n the in-
tima. The data also suggest that the assumption of rotdsgnanetry does not hold. The
dispersion is rather in the axial and circumferential plesith very low dispersion along
the radial direction. The first continuous three-dimenalahstribution of collagen fibers
is reported in [41], showing that the media has an alterggtieferred fiber orientation
through the thickness of the wall. Such structural data gyeeaondition for adequately
modeling arterial tissue and the softening mechanism wite tissue.

Gasser [42] uses a Bingham distribution, which is not rotetily symmetric, to account
for the different fiber dispersion in the tangential and srssctional plane to model the
mechanical behavior of aneurysm tissue. However, thdyisela phenomenological model
for the collagen fibers.

1.4.3 Fiber Crimping

A further aspect that can be included in the models is fibenging. The collagen fibers
show a wavy arrangement in the unloaded configuration andrdyeload bearing after
they are straightened. One approach to account for thig imttoduction of the additional
parameter$gs > 1 andlpg > 1 that account for the crimping of the fibers in the unloaded
state by altering the exponential expression in (1.15) 8 [4

Wt = expka(li — o))’ —1, i=4,6. (1.18)

In this case the anisotropic term only contributes; if- Ig;, i.e. when the square of the
stretch of the fibers is greater théf A different approach was used by Li and Robert-
son [44], who introduce an activation criterion for the rgttnent of the collagen fibers
using a metric for the deformation following a scalar measairstrain.
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Figure 1.3: Continuum (a) and pseudo-elastic damage model (b) for tyating using the same
parameters for the undamaged strain-energy function (red). Comdréng pseudo-elastic model,
for the continuum damage model the primary loading does not corresptimeltodamaged strain-
energy function.

1.5 Damage Modeling of Arterial Tissue

There are two common approaches to add softening to thedigéc strain-energy func-
tions, namely the continuum damage approach and the psdasiic approach. In either
way, a hyperelastic strain-energy function is multipligdabreduction factor that governs
the softening behavior of the material. The two differerraaches, originally developed
to describe the mechanical behavior of rubber, are intredure the following.

1.5.1 Continuum Damage Models

The continuum damage model [45] has the form

W(C,D) = (1-D)¥°(C), (1.19)

where W0 is the effective strain-energy function and0D < 1 is an internal variable
describing the softening of the material. Incorporatingnédge only in the deviatoric part
of the strain-energy function and assuming that softenimly occurs in the anisotropic
term of the tissue response yields the constitutive equatio

@ =P+ (1 Dp)PY. (1.20)

The isochoric part of the second Piola-Kirchhoff stressteris obtained by the differen-
tiation of the strain-energy function with respect to thghtiCauchy-Green tensor. It has
the form
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(1.21)
Figure 1.3(a) shows the stress-stretch response of the ¢atrelss computed frorﬁfo
(red) ands (black) for the continuum damage model. The damage varlafd@verns the
hysteresis, leading to the typical Mullins-type behavidre stress without including the
damage variables differs from the primary loading path.

A possible evolution for the damage variable is given by Migt6] as

D(a) = Dmax {1—exp(—%)], (1.22)
whereDmax and B are dimensionless model parametdg,ayx constrains the maximum
softening angB determines how fast this softening occurs during the lapdnocess. The

evolution of the damage is governed by the variable’hich depends on the maximum
thermodynamic force that occurred over the history of tlagling. Examples of other evo-
lution equations are given in [47]. The continuum damage@ggh allows the inclusion

of continuous softening as introduced in [46].

1.5.2 Pseudo-Elastic Damage Models

The pseudo-elastic model has a common strain-energy &mftr the primary loading
path and a different strain-energy function for the unlagdand reloading paths. This
function is augmented by the damage variaplhich modulates the softening behavior.
In a general formulation, a pseudo-elastic strain-enanggtion has the form [48]

W(C,n)=n¥°(C)+D(n), (1.23)

where 0< n < 1 is a damage variabl&/%(C) is the strain-energy function of the undam-
aged material and(n ) is referred to as a damage function. Per definition the davege
able equalg) = 1 on the primary loading curve. A possible pseudo-elastarsenergy
function for soft tissue is

W =W+ ;W + &y (1.24)
The corresponding second Piola-Kirchhoff stress teBduas the form

o0

ov, ov; 0 -
"2 = Snt 1S = Sn+ S (1.25)

oC

S=2

Figure 1.3(b) shows the stress-stretch response of the ¢atiess computed frorﬁ?
(red) andS; (black) for the pseudo-elastic damage model. The essdtiffalence to
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Fig. 1.3(a) is that the primary loading curve and the strespanse of the undamaged
material coincide.

A possible evolution equation for the damage variable ippsed in [48] as
n=1- %erf {n%@max—Wo)} , (1.26)

whereW"® s the maximum of the strain energy reached over the histbityeodeforma-

tion. The parameter > 1 defines the maximum of the damage that can be accumulated
as the error function efk) for x > 0 only spans between 0 and 1. The parameter O
determines how fast damage is accumulated. The damagblessguals) = 1 on the pri-
mary loading curve so that it is possible to fit the materiabpgeters independently from
the damage parameters. The pseudo-elastic model can Imeledtts model the residual
deformation after unloading which is observed for artetigdue [49].

Guo and Slys [50] compare the performance of a continuum damedel and a pseudo-
elastic model to fit the mechanical response of rubber-likgenmal. As expected both mod-
els can well describe the Mullins type behavior of the matekHowever, the agreement
for the pseudo-elastic model is much better. This results fine fact that the parameter
estimation is much simpler, because material and damagengters are fitted separately.
For the continuum damage model, all parameters have to leengieed simultaneously,
leading to a more complicated problem for parameter esitomat

1.5.3 Multiscale Damage Models

To provide a basic review on damage models for arterial éisthe concepts of the mul-
tiscale models, namely the unit sphere and the referencen@klement approach, are
briefly presented. Introducing a failure criterion on theauoscopic scale, i.e. for the col-
lagen fiber network, leads to multi-scale damage models.

The concept of microsphere models for fibrous tissue undieeadeformation goes back
to Lanir [51]. The constitutive behavior of a single fibeg, the behavior on the microscale,
Is formulated explicitly. Then the macroscopic strain gyas obtained by integrating the
strain energy of the fibers over a unit sphere. Anisotropylarfalignment is included in
the integrand by a density function. The theory was expamd@dn-affine deformations
by Miehe et al. [52].

Using representative volume elements for the finite elemssthod, one can determine
the macroscopic behavior of a material based on the micposstructure. These mod-
els have two length scales, the microscopic scale of thearaée volume element and the
macroscopic scale of the finite element domain. The consejgscribed by Chandran and
Barocas [53] with the following four solution steps. Firstyaess of the macroscale de-
formation is generated for the macroscopic problem in wkhehfinite element equations
are formulated. Second, downscaling determines the detavmof the boundaries of the
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reference volume element from the macroscopic deformafioind, the microscopic prob-
lem is solved with the prescribed boundary conditions amdsthesses in the microscale
network are computed. Last, upscaling determines the g@estaess on the macroscale.

1.5.4 Experimental Data

Oktay et al. [54] first reported changes in the mechanicahbiehn of arteries after over-
stretching. They compare the mechanical response for flaiam of carotid arteries of
canines before and after inflating a balloon catheter. Arease in diameter after the bal-
loon inflation indicates that softening due to damage oeclrr

Horny et al. [55] report experimental data of uniaxial exien tests for human aortic
tissue. However, they tested the intact tissue withoutrsgipg the layers and thus neglect
the different mechanical and softening behavior of intimadia and adventitia.

Famaey et al. [56] evaluated tissue damage after arteaahgihg by endothelial and
smooth muscle integrity tests for mouse abdominal aortdortimately, tissue loading
is only quantified by the external load, i.e. the clampingé&rsuch that the stress-state
inside the tissue remains unknown. Furthermore, datarsdddrom animal tissue should
not be directly used to model surgical procedures for humang apparent difference,
for example, is the intimal thickening that is only obserwedhuman arteries and absent
in animals [57]. However, such experiments give valuabdggint in the impacts of supra-
physiological loading.

The data presented in Chapter 2 are the first to determine ybedpecific material and
damage parameter for human aortic tissue. They are a prisitedor patient-specific nu-
merical models of catheter-based interventions and mgy inetlerstanding the role of
each layer in softening and damage. Constitutive fitting eatggthat softening is related
to the collagen fibers and not to the elastin matrix. To vettifig hypothesis, Chapter 3
presents data on elastase treated and on collagenasd tissite and relates the structural
changes after enzyme treatment to changes in the mechbhalwalior. The data presented
in this PhD Thesis are the first to show experimentally thaalge is only associated to
the collagen fibers, i.e. to the anisotropic part of the steaiergy function.

1.5.5 Application of Damage Models to Arterial Tissue

Hokanson and Yazdani [58] propose an anisotropic damagesinfiodarteries using a
fourth-order weighting tensor linked to the Ogden matermiatiel. The model can represent
the Mullins effect, however, the model does not accountiferanisotropy in the tissue and
it is more complicated than utilizing a scalar damage végiab

Balzani et al. [59] introduce a continuum damage model agsgithiat damage is only ac-
cumulated in the anisotropic part of the strain-energytionci.e. in the collagen fibers of
the arterial tissue. The model describes the softeningwahgualitatively well, nonethe-

less, it is not calibrated to experimental data. Furtheenaovalue for the strain energy is
defined that describes the initial damage state. This medtesngg due to preconditioning
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is disregarded and softening due to damage is defined by enptarawhich is arbitrarily
defined without sound experimental data. Furthermore,ghecach implies that there is a
sharp threshold between softening in physiological andssppysiological conditions.

Subsequently, Balzani et al. [60] propose a framework fotinaom damage models that
are able to reflect remanent strains. The model gives a goalitajive fit to one set of
experimental data. Again, the issue of separation betwafegnsng due to preconditioning
and softening due to damage is not addressed adequatelynidheal extension data are
preconditioned to a stress of about 100 kPa which is an arpitralue in light of the fact
that uniaxial extension does not mimic physiological lo@dtonditions.

A continuum damage model is also used by Marini et al. [61}asadibe damage in aortic
aneurysm tissues. They do not focus on the softening buidemthe yield point as the
initiation of damage, i.e. the point at which the tangent mos has its maximum. Unfor-
tunately, the damage model does not advance the identificatirupture prone aneurysms
compared to other risk indices. However, the initiation afrdhge could be used to trigger
growth and remodeling processes in mechanobiological lmode

Rodriguez et al. [43] use a stochastic model where the fibatéfefent lengths are mod-
eled as worm-like chains, an approach which requires joatiéin. Collagen fibers of dif-
ferent length fail at different stretches and the incredsstretch leads to a consecutive
failure of the fibers. Thus, a damage mechanism is natunatifgduced in the fiber bun-
dle. However, the worm-like chain model is an entropy baseity and on the scale
of collagen fibers a model based on stored energy should beefdwvThe finite element
implementation and numerical examples are presented in f@in the calibration of
this structurally motivated model is the biggest challedge to the lack of experimental
data.

Calvo et al. [63] present a continuous damage model for fibbonlegical tissue that de-
scribes discontinuous softening in both matrix and fibersn@ared to the model proposed
by Rodriguez et al. [43], it does not need to be calibrated atdifferent length scales.
A comparison of the two models [64] shows that the perforreaasimilar with a larger
localization of damage in the stochastic model. Howeves, résults in the Chapters 2
and 3 show that softening is not present in the matrix but associated with the collagen
fibers.

Li and Robertson [65] consider two damage mechanisms, machalamage and enzy-
matic damage, for the matrix. No softening is consideredHercollagen fibers. The mo-
tivation for enzymatic damage is to model the growth of apsns rather than modeling
mechanical damage due to supra-physiological stresses.

Pefia et al. [66] consider continuous and discontinuous danratheir damage model
following an approach introduced in [46]. In [67, 68] theydadscoelasticity in the damage
models. Subsequently, Pefia [69] bases a new approach fenisgfin the collagen fibers
on the strain-energy function given in (1.18) where she sighe recruitment stretch
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loi with an internal variable. This is a more structurally mated approach to introduce
softening compared to including the damage variable intfobthe strain-energy function.
Furthermore, the model also describes a permanent deform@iserved after unloading
arterial tissue.

Famaey et al. [70] propose a damage model that accounts rieagiain three structural

components of the aortic wall, namely the elastin matrig,dbllagen fibers and the smooth
muscle cells. This leads to a total of 21 parameters to desthie constitutive behavior.

They propose an active and a passive damage mechanism femibath muscle cells

driven by the maximum strain energy encountered by the dmoniscle cells and the

matrix respectively. A finite element example discusses#ithigence of the passive smooth
muscle cell damage.

In an experimental study Colombo et al. [71] show that meairsttoes not significantly
influence cell growth whereas variations in the cyclic steanplitude result in a significant
change in cell proliferation and apoptosis. These datavetata damage model for smooth
muscle cells that does not primarily depend on the maximuainsenergy reached over
the history, but considers the strain amplitude in the daaigerion. This is supported by
experimental data on airway smooth muscle showing thatal&remodel when stretched
up to twice their initial length [72, 73].

Including the active response within damage models aneibettderstanding cell pro-
liferation and apoptosis in response to supra-physiodddoads are very important steps
towards better and more reliable damage models.

Gasser [15] models damage on the collagen fiber level andedieéin irreversible rear-
rangement of proteoglycans. The macroscopic stress igeltay integrating over a unit
sphere. Even though the model describes a possible mephamithe softening in arterial
tissue, sound experimental evidence is missing to suppedssumptions.

Saez et al. [74] propose a microsphere-based damage madeiah they regard damage
evolution in each integration direction separately. THewsthat the number of integration
points for the integration performed over the unit spheesatly depends on the number
of integration points which are beyond the yield point of ttssue. To obtain a smooth
response a high number of points is necessary leading todugtputational costs for

finite element models.

Hadi et al. [75] propose a multi-scale model for finite eletsemith a representative vol-
ume element comprised of a discrete fiber network. The fiversepresented by nonlinear
springs whose stiffness approaches zero if the stretchesacritical value. This can ei-
ther be interpreted as a rupture of a fiber or as a failure of-fdpé&ber cross-links. The

model is capable of predicting macroscopic failure of typellagen gels.

A general problem for multiscale models is parameter idieation because there are not
enough experimental data, and thus the damage mechanismetaret well understood.
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These models, however, can be used to test hypotheses ogelamahanisms and moti-
vate experimental investigations.

The damage model presented in this PhD Thesis uses the pskastic approach due to
advantages in the parameter estimation. One focus of tidy $ies on the use of patient-
specific material parameters, therefore it is important tha experimental data are ap-
proximated well by the constitutive model. The model andiitk experimental data are

presented in Chapter 3 and we show that damage is only retatbd tollagen fibers. In

a finite element framework for patent-specific modeling ahdge it is applied in Chap-

ter 5.

1.6 Organization of the PhD Thesis

The PhD Thesis is a compilation of four scientific papers¢mésd in the following chap-
ters:

« ‘Layer-Specific Damage Experiments and Modeling of Humaoradic and Ab-
dominal Aortas with Non-Atherosclerotic Intimal Thickeringeisbecker H, Pierce
DM, Regitnig P and Holzapfel GA, J. Mech. Behav. Biomed. Mat&2:93-106,
2012.

» ‘The role of elastin and collagen in the softening behavibthe human aortic me-
dia’, Weisbecker H, Viertler C, Pierce DM and Holzapfel GA, J. Biame46:1859-
1865, 2013.

* ‘A generalized prestressing algorithm for finite elememidations of pre-loaded
geometries with application to the aortaVeisbecker H, Pierce DM and Holzapfel
GA, Int. J. Numer. Method. Biomed. Eng., in press.

* ‘A computational framework for patient-specific modelinghaman arteries con-
sidering initial stresses and supra-physiological logd&feisbecker H, Pierce DM,
Rodriguez-Vila B, Gbmez EJ and Holzapfel GA, submitted.

The first paper presents experimental data on human aasiges in physiological and
supra-physiological load ranges for the separated layetisna, media and adventitia.
Based on these data we propose a pseudo-elastic damage orduetian arterial tissue.
The results indicate that damage is only associated to tisetawpic response of the col-
lagen fibers. The second paper more closely investigatesltdef elastin and collagen in
the softening behavior observed in the media by enzymagiestion of one of these com-
ponents, respectively. Our results support the hypotliegithe softening behavior is only
associated with the anisotropic response of the collagensfif he third paper presents a
numerical method to include prestretches into finite eldrgenmetries. The prestretches
are present in patient-specific geometries because meutiaging is performedn vivo,
and hence the aorta is loaded with internal blood pressutexal prestretch. The fourth
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paper describes a finite element framework for modelingstamd damage distributions
on a patient-specific framework by including residual stessand prestresses. The exper-
imental data and the model presented in the first paper aliedpyere again.

The work of this PhD Thesis contributed also to the followpegr-reviewed journal pa-
pers, conference proceedings and conference lectures:

* Weisbecker H, Unterberger MJ, Holzapfel GBpnstitutive modeling of arteries
considering fiber recruitment and the 3D fiber distributiampreparation.

» Pierce DM, Fastl TE, Weisbecker H, Rodriguez-Vila B, Gomezakd Holzapfel
GA, A method for incorporating residual stretches/stresses pratient-specific sim-
ulations of arteriesin preparation.

» Unterberger MJ, Weisbecker H, Holzapfel GRarsion of a circular cylinder versus
simple shear as a modeling basis for rheometer experimaptsication to rubber
and actin networkssubmitted.

» Pierce DM, Fastl TE, Weisbecker H, Rodriguez-Vila Bz, Gomédzad Holzapfel
GA, A method for incorporating residual stresses into patispecific finite element
simulations of arteries with an example on AABth European Congress on Compu-
tational Methods in Applied Sciences and Engineering (ECC@\2A12), Vienna,
Austria, September 10-14, 2012.

» Weisbecker H, Pierce DM, Holzapfel GAayer-specific modeling of damage in-
duced softening in the human aorta and the influence of rasgttetches8th Eu-
ropean Solid Mechanics Conference (ESMC2012), Graz, Ausulg 9—13, 2012.

» Fastl TE, Pierce DM, Weisbecker H and Holzapfel @Anethod for incorporating
residual stresses into finite element simulations with aniegjon to abdominal
aortic aneurysmgs8th European Solid Mechanics Conference (ESMC 2012), Graz,
Austria, July 9—13, 2012.

» Weisbecker H, Pierce DM, Rodriguez-Vila B, Gbmez EJ and HifdaG A, Patient-
specific modeling of human thoracic aortas with consideratb damageSCATh
Joint Workshop on New technologies for Computer/Robot AsdiSurgery, Madrid,
Spain, July 9-10, 2012

» Weisbecker H, Pierce DM, Regitnig P, Holzapfel G?amage modeling of the hu-
man aorta: Influence of collagenase and elastdstth Congress of the European
Society of Biomechanics (ESB2012), Lisbon, Portugal, July12012.

» Pierce DM, Weisbecker H, Schriefl AJ, Rodriguez-Vila B, GoredzHolzapfel GA,
Modeling arterial tissue and intraluminal thrombus: expeental and numerical re-
sults 2nd International Conference on Material Modelling (ICMM&gorporating



1.6 Organization of the PhD Thesis 19

the 12th European Mechanics of Materials Conference, Hamasice, August 31—
September 2, 2011.

» Weisbecker H, Pierce DM, Holzapfel GRseudo-elastic finite element modeling of
damage in arterial tissudUTAM Symposium on Computer Models in Biomechan-
ics: from Nano to Macro, Stanford, California, USA, August2September 2, 2011
(Poster presentation).

* Weisbecker H, Pierce DM, Holzapfel GRseudo-elastic modeling of damage for
healthy human aortas with non-atherosclerotic intimal kieicing 82nd Annual Sci-
entific Conference of the International Association of ApdlIMathematics and Me-
chanics (GAMM2011), Graz, Austria, April 18—-21, 2011.

* Weisbecker H, Pierce DM, Holzapfel GModeling of damage-induced softening
for arterial tissues Proceedings of the Joint Workshop on New Technologies for
Computer/Robot Assisted Surgery, Graz, Austria, July 11 203].



20

1 Introduction




2 LAYER-SPECIFIC DAMAGE EXPERIMENTS AND
MODELING OF HUMAN THORACIC AND ABDOMINAL
AORTAS WITH NON-ATHEROSCLEROTIC INTIMAL
THICKENING

Abstract Many treatments for cardiovascular diseases include aovasdular inser-
tion of stents or stent grafts into arteries, a procedurelwhay cause high tissue stresses
and even damage in the arterial wall. In order to study suohlpms by using finite ele-
ment methods, both appropriate constitutive models andrerpntal data on human tissue
samples are required. Layer-specific experimental dathdoran tissue tested up to the
supra-physiological loading range are rare in the litegatln this study intact and layer-
separated experimental data from uniaxial extension tastpresented for human tho-
racic and abdominal aortas with non-atherosclerotic iatithickening undergoing supra-
physiological loading. A novel pseudo-elastic damage m@deposed to describe discon-
tinuous softening in aortic arterial tissues, is fit to théanfed experimental data. Fitting of
the model with and without consideration of damage accutiaulan the non-collagenous
matrix material reveals that tissue damage is primarilgtesl to the collagen fiber fabric.
By employing the fit model, the effect of aortic tissue pre-ditioning on the material
parameters from the resulting data fits is evaluated. Higtoal examination of the colla-
gen fibers under different applied stretches is used to gane msights into the structural
changes of the tissue under supra-physiological loading.

2.1 Introduction

Cardiovascular diseases are one of the leading causes bfidgbe western world [76].
Treatment protocols for various pathologies of the aortaroinclude the insertion of stent
grafts such as endovascular thoracic or abdominal aneurgpair. The deployment of
stent grafts can generate high stresses and may cause denthgerterial wall. To im-
prove finite element (FE) studies aimed at improving thegiesif stent geometries and
to facilitate the application of catheter-based procesiune study the supra-physiological
stress-strain response of human aortic tissue.

Little experimental data for the stress-strain responsetefial tissue in the supra-physio-
logical range exists in the literature. Data on animal gs$ar example, for canines [54],
help with a basic understanding of the behavior of arteissute. However, such data are
not adequate for FE modeling of surgical procedures as #afgpproperties of the tissue
vary among species. To the authors’ knowledge the only spipyaiological experimental
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data on human tissue was presented recently by Horny eblvfto conduct uniaxial ten-
sion tests on the intact human aorta. Unfortunately, narlagecific data are yet presented
so that it is not possible to differentiate the amount of dgenahich may be induced in
the individual tissue layers, i.e. intima, media and aduent

In the present study uniaxial tension tests are conductdebthnintact and layer-separated
human aortic tissue samples, taken from both the thoracda@hdominal regions. Using
uniaxial tension tests, high supra-physiological loadsgnduced in the tissue, a crucial
requirement for damage experiments. The biaxial tensisnigebetter able to mimic the
physiological loading conditions, but the test is diffictdt perform at higher loads be-
cause of the attachment with hooks that rupture the tissgeraparatively low strains.
Nonetheless, a careful experimental protocol and fittirmc@dure can successfully de-
termine reliable material parameters for anisotropic,gngfastic constitutive models, as
shown by Holzapfel [77]. Experimental tests are realizethwhree repeated load cycles
for every prescribed load step in order to study both cowltisusoftening and discontin-
uous softening described by the Mullins effect. Histoladjigpecimens are prepared and
analyzed for tissues loaded to different stretches in artefi examine possible changes
in the mechanically relevant components.

In young arteries the intima is a thin layer of endothelidlscsuch that only the media
and the adventitia are load bearing. In aged arteries, hawthe intima thickens and all
three layers are load bearing, and hence relevant from tishaneal point of view. The
individual tissue layers can be modeled as fiber-reinfomadposites with an isotropic
matrix, mainly comprised of elastin, and two symmetricalfyanged families of collagen
fibers [7]. The material model was subsequently extendeddoumt for the dispersion in
the collagen fiber directions [39] and is used to model theehgfastic material behavior
observed after pre-conditioning of the tissue.

Hokanson and Yazdani [58] proposed a damage model forestlyi using a fourth-order
weighting tensor to account for possible anisotropy of dgend his model can describe
discontinuous damage, where damage accumulates onlyds legher than the maxi-
mum load reached within the deformation history. Howevee, approach is relatively
complicated compared to the approach used in continuum giammechanics, where a
scalar damage variable serves as a reduction factor fofectie¢ strain-energy function.
Balzani et al. [78] introduced a continuum damage model asguthat damage accumu-
lates only in the collagen fibers of the arterial tissue. Tiniglel can successfully describe
damage-induced softening qualitatively, but it has nonbesdibrated to data, and hence
the modeling assumptions were not proven experimentallizaBaet al. [60] recently
presented an extended version of the model and a good fit teedrtd experimental data
on the media of a human carotid artery. Rodriguez et al. [483€Ho model the collagen
fibers using a worm-like chain approach. Discontinuousesirfig is introduced by defining
different failure stresses for bundles of collagen fiberthwifferent lengths. A FE imple-
mentation and numerical examples are presented by RodrégaéZ79]. Here again, due
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to the lack of experimental data, calibration of this stawally-motivated model remains
the biggest challenge.

Calvo et al. [63] presented a stochastic damage model forusismlogical tissues which
describes discontinuous softening in both the tissue rard the fibers. Compared to the
model presented by Rodriguez et al. [43] it does not need taldwated at two different
length scales. Alastrué et al. [64] compared these moddistamwed that the performance
of the two models was similar, although with a larger locatiian of damage in the stochas-
tic model. Li and Robertson [65] considered two damage mashenfor the matrix, me-
chanical and enzymatic damage, whereas no softening ofltees fivas considered. The
inclusion of enzymatic damage was motivated by the studynefieysm growth, rather
than modeling mechanical damage due to supra-physiologficEsses. Pefa et al. [66]
added continuous damage, where damage is always accudhelete at loads lower than
the maximum reached within the deformation history, to tise@htinuous damage in their
models, following an approach introduced by Miehe [46].

In the present study a pseudo-elastic approach, which vasrfiroduced by Ogden and
Roxburgh [48], is used to describe damage-induced softesifiragterial tissues. In the
pseudo-elastic theory, the primary loading curve is dbscdriby an elastic strain-energy
function. For unloading and reloading of the tissue thigistenergy function is modified
by a damage parameter. Herein the material parameters datedendependently of the
damage parameters, a significant advantage relative toagpes based on continuum
damage. The model is proposed in the most general framevibeki@ describe damage
in both the matrix and the fiber components individually. Sfpgations of the model are
fit to experimental data assuming that damage accumulatestifie fibers only, (ii) in the
matrix only and (iii) in both constituents. Such a fitting pedure allows a judgement of
the quantitative fit of the model to the data in view of the nembf model parameters
employed.

Discontinuous softening is observed at all load levels &edpre-conditioning behavior
of the tissue can also be described by the Mullins effect.[Bi@nce, contrary to other
damage functions introduced in the literature, see, formpte, Balzani et al. [78] and
Calvo et al. [63], we define no threshold value for the damagéhdRdhen setting aa
priori threshold for tissue damage in the model, we seek to clarifgtwnodel values
of damage describe pre-conditioning-like softening andtwialues describe acute tissue
injury beyond the physiological load range.

In the following sections the constitutive model is preseirdnd the experimental protocol
and data analysis methods are explained. Results of theialngetension tests, the data
fitting and the histological examinations are presentedfiaadly discussed.
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2.2 Materials and Methods

2.2.1 Constitutive Modeling
Kinematics, Pseudo-Elastic Damage Model

With forethought to implementation into an FE code, a miittgisive decomposition of the
deformation gradien = (J¥/31)F is considered, wher& = defF > 0 is the determinant
of the deformation gradient, the volume ratio, dnig the second-order unit tensor. The
termJY/3| represents the volumetric part, whife with def = 1, is the isochoric part of
the deformation gradient [81]. Consequenty~ F'F denotes the right Cauchy-Green

tensor, andC = F'F is the modified right Cauchy-Green tensor [25].

To consider isotropic damage in the sense of decoupled waghigrisochoric response, ac-
cording to the multiplicative split of the deformation grewk F, we postulate a decoupled
representation of the strain-energy functi®(C, ), wheren €]0, 1] is a damage variable.
Thus, by consideration of the pseudo-elastic damage madet@duced by Ogden and
Roxburgh [48], we have

W(J3,C,n) = Wa(3) +nP°(C) + d(n), (2.1)

whereW,q is a strictly convex function (with the minimum at= 1) which describes the
volumetric elastic response, the second funcli®rdenotes the isochoric strain energy of
the undamaged material, which describes the isochorit@tasponse so that the damage
phenomenon affects only the isochoric part of the defowna(j45]); the superscript 0
denotes an undamaged material. We requirethgt(J) =0 andmo(f) = 0 hold if and
only if J =1 andC = I, respectively. The third functio® in (5.1) denotes a (smooth)
damage function. Note, that damage is only accumulatectidekiatoric part of the strain-
energy function and that the material remains isochorio @&#amage is induced.

By definition the damage variablgis set to 1 on the primary loading curve. The material
behavior on this curve is then described by the strain-gniemgction such that(1) =0

and¥(C,1) = W (J) +¢O(C). In the case of subsequent unloading and reloading, i.e.
whenn < 1, the damage evolves with the deformation so that [48]

v o~ ooy
oy =P C)+@ =0, (2.2)
where®'(n) =d®d(n)/dn. Thus,
(€)= /() (23)

implicitly defines the damage variable in terms of the deformation. Ogden and Rox-
burgh [48] have chosen the damage function as

Tinax

—@'(n) =merf 1r(n - )]+ ¥ (2.4)
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where erf(.) is the inverse of the error function éf and¥"* denotes the maximum of
the strain energy obtained in the deformation history. Salgebraic manipulation, using
(2.3), gives
1 1 —max <0
=l—-erf|—(W -V 2.5

n=1-ter| )| 25)
wherer > 1 characterizes the maximum material damage that can beeddwnder load-
ing, andm > 0 determines the dependence of the damage on the deforntatiat values
of mindicate that significant damage already occurs at smalinstr whereas for larger
values ofmdamage will progress more slowly. To characterize the denvadced to the
material, the minimum valug™" of the damage function is determined as

i 1 1 _max
min
nmM=1- - erf(—qJ ) . (2.6)

Other constitutive equations for the softening functionelaeen proposed by, for example,
Beatty and Krishnaswamy [82] and Elias-Zufiuiga [83].

Given the strain-energy function (5.1), the second Pidlaoff stress tensor is calcu-
lated asS = 29W/dC = S, + S. Hence, the volumetric part @& is given by S, =
20W,01(J)/dC, while the isochoric pars of the second Piola-Kirchhoff stress tensor is
determined by using (2.3), i.e.

o09°(C)
aC

BT EAL Akl | RS R P LA ()

S=2n oc Vac| =

2.7)

whereS’ is the isochoric second Piola-Kirchhoff stress tensorteeldo the undamaged
material.

Damage Model for Arterial Tissue

The individual layers of the artery are modeled as fiberfoeaed composites with an
additive decomposition of the strain-energy functiBhinto an energy stored in the non-

. —0 . , =0
collagenous matrix, sa¥,,, and an energy stored in the collagen fibers, $ayHence
(cf. [84]),

[T TR (2.8)
The non-collagenous matrix is assumed to be isotropic andetad as a neo-Hookean
material, i.e.

—0 U, —

Wn=75(1-3), (2.9)
wherep > 0 corresponds to the shear modulus of the material in theereée configura-
tion, andl; = tr(C) is the first strain invariant of the modified right Cauchy-Gréensor
C.
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We assume here two collagen fiber families for all layers fas.example, shown in
Schriefl et al. [40] and, therefore, we use a two-fiber famitydel according to Holzapfel
et al. [7] and Gasser et al. [39]. The related (anisotropgi@irs-energy function may be
written as

W= Zk—l;[ekz('i*—l)2 —1, F=kli+1-3k);, i=468, (2.10)
wherei = 4 relates to one fiber family arid= 6 to the other. The pseudo-invariamjs=
C:M®M andlg = C: M’ ®M’ correspond to the square of the stretches of the fibers
in the fiber directions. The vectokd andM’ denote the directions of the collagen fibers
in the reference configuration. The fibers are symmetricalignted with respect to the
circumferential direction of the artery, and thus btdhandM’ are uniquely defined by
the structural parametgr, which defines the angle between the circumferential doect
of the artery and the fiber direction. The dispersion paramet [0,1/3] describes radial
symmetry of the dispersion about the fiber direction. Furtttee, we have the stress-
like parameteik; > O and the dimensionless parameltgr> 0. In the proposed model
the anisotropic strain-energy function (2.1@nly contributes ta¥ whenly > 1 or g >
1. If one or more of these conditions is not satisfied then #hevant part of (2.1Q)is
omitted.

For the fiber contribution an interesting limiting case &xi:amely fork, — 0; then the
corresponding strain-energy function reads

ki — .
m?,i - El(ll*_l)27 I = 47 67 (211)

such that the stiffening of the collagen fibers is describga@ louadratic function rather
than an exponential function.

We propose a general framework for modeling discontinuamate in soft biological
tissues by employing one damage functibi(nm) for the non-collagenous matrix, with
the damage variablgn, relating to the matrix, and two damage functiohss(ns 4) and
®; 6(ns,6) for the two families of fibers, with the two damage variabigg andns e de-
scribing damage in the two families of collagen fibers seteiraHence, we are able to
replace the strain-energy functidC, n) in (5.1) by

W(C.Mm. N1.4:11.6) = Wrol + MmPey(C) + Prm(m) + 5 [0 Pi (C) + ()], (2.12)
i=4,6

where the energie@g1 and@ﬁ i are specified in (2.9) and (2.10), respectively.

In (2.12), the evolution of the damage variapig in the non-collagenous matrix is char-
acterized by two parametensy, my), cf. (5.2), while damage in both families of collagen
fibers is characterized, in general, by four variabteg, ( 4,1t 6, g). The final form of
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Donor [0V vovEVIEVIHE X X XE X XN XIV XV XVIE XVII
Age [yrs] 55 48 47 53 61 79 61 69 77 68 53 44 48 68 74 62 69
Gender F FFMFMM F FMMM M F F F M

Table 2.1: Overview over age and gender of the donors; M: male, Fidema

(2.12) remains to be specified for aortic arterial tissueaparopriate mechanical tests,
where damage may accumulate only in the matrix materialntyr io the collagen fiber
fabric or in both constituents simultaneously.

Finally, by analogy with the procedure which led to (5.7), determineS from (2.12).
Thus,

o oW,

= =0 =0 =0 m <0 fi .

S nmsm‘l' 246’“7'8”’ Sm 0C’ Sf,l 0C ’ I ’6 ( 3)

|=
)

Where§g] and§2i are second Piola-Kirchhoff stress tensors related to tdamaged ma-
trix and fiber fabric, respectively. With the two strain-egefunctions (2.9) and (2.10) the
two stress tensors can be specified. From (2.13) we obtain

N L PRI

Sm=2% ac ~ Hac (2.14)
_0 — —
o O%iolr = H(iF-1201f -
=25 ¢ = 2l — 1)k o 1=46 (2.15)

where it is straightforward to specify the kinematic reiatic?l_l/dc and al?/ac. The
related Cauchy stress tenspe= J-1FSF' is obtained by a standard push-forward opera-
tion.

2.2.2 Experimental Protocol
Specimen Preparation

For the present study 16 thoracic and abdominal aortas withatherosclerotic intimal
thickening were harvested within 24 hrs of death and stangghiysiological solution at
4°C. Table 2.1 provides an overview of age and gender of the ioha¥ donors. Out of
this pool of aortas, 14 thoracic aortas (6Q2 yrs, meant SD) and 9 abdominal aortas
(61+ 11 yrs) were tested, and the rest were omitted due to calotfiicaf the tissue. All
tests, performed with the aim to obtain information of theehamical aortic behavior in the
supra-physiological deformation and loading domainsgveenducted within 48 hrs after
removal from the body. The use of autopsy material from huswjects was approved
by the Ethics Committee of the Medical University of Graz.
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In the regions without visible atherosclerosis, dog-bgrexsnens were cut from the arte-
rial tissue using a punching tool (length.3™m; width at the clamping region 8mm).
The gauge section had a width of 4 mm and a length of 10 mm. Titi@ ithickness of the
specimens was measured with a videoextensometer (ME 48vBS3physik, Furstenfeld,
Austria), where the average of four measurements at evesthjaited locations was taken
to determine one value for the mean thickness. Furthermeoehlack markers were glued
onto the specimen surface (with distance of about 5 mm) awded with a videoexten-
someter so that the local stretch could be calculated.

For the layer-separated specimens, intima, media and afizkevere separated manually.
During separation of the individual layers, the dissecti@s not always perfect, but only
(very) minor fractions of the media were found attached &ativentitia (cf. [85]). It was
assumed here that the effect of imperfect layer separatich@® mechanical behavior of
the individual layers can be neglected.

Uniaxial Tension Test

Mechanical tests of tissue strips taken along the axial amdiroferential directions of
the aorta were conducted with a uniaxial testing machin&train ME 30-1, Messphysik,
Furstenfeld, Austria), inside a tissue bath with physiaabsolution at 37C. A force
driven protocol was employed, where the forces were caledapriori such that tissue
loading resulted in a first Piola-Kirchhoff stress, i.e.c@related to the area of the refer-
ence configuration, of 100, 300, 600, 900 kPa for the advanéihd 50, 100, 300, 500 kPa
for all other specimens. The adventitia was loaded with f@igint protocol because of its
relatively high strength so that a similar number of loadleyavere tested for each layer.
Three cycles were executed for each load step in order tawabskéscontinuous soften-
ing of the tissue that was evident in the first cycle of a loaghsand to simultaneously
investigate the possibility of continuous tissue softgnitihat would be evident in sub-
sequent cycles of the same load. The specimens were loadsdsjatically at a rate of
5 mm/min.

Data Analysis

To evaluate the experimental data, and to specify and fitthyegsed constitutive damage
model, the Cauchy stress and the stretchA in the loading direction were computed.
The Cauchy stress was calculatedas- f/(tw), where f is the measured force,is
the specimen thickness amdis the width of the specimen in the current configuration.
By introducing the specimen lengthin the current configuration, we may write/l =
TW Ldue to the assumption of incompressibility of the tissupiealetters denote related
values in the undeformed configuration). The Cauchy strasthea be rewritten as

f
0=, (2.16)

whereA = | /L denotes the stretch in the loading direction.
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We assume here that the evolution of damage in both familiesliagen fibers is the same
so that damage is characterized by the two varialesrs 4 = r¢ g andmg = g 4 = My 6.
The constitutive parametess= [u,ky, ko, ¢, K,ri,mg] was performed using a nonlinear
least-squares trust region algorithm implemented in thgiMB (2009b, The MathWorks,
Inc., Massachusetts, United States). First the Cauchysstréke loading direction (2.16)
is determined. Next, the lateral and the through-the-tiesk stretches are calculated using
the incompressibility condition and an additional constr#hat the stress in the lateral
direction equals zero. The parameter optimization wasoped with these stresses and
stretches minimizing the objective function

X 5077(C) ~aric.o) (2.17)

wheren is the number of considered data poirr]f?(IO are the Cauchy stresses determined
experimentally andrim‘)d are the corresponding values predicted by the strain-gteng-
tion W for both the circumferential and the axial direction.

With the obtained constitutive parameters the lateral &nough-the-thickness stretches
were updated and the fitting was repeated until the solutimwerged. The material pa-
rameters were fit to the primary load path, and then the darpageneters were deter-
mined using the entire loading history. For the materiabpeeters associated with the
anisotropic part of the strain-energy function, it is assedrthat the fibers are not under
compression during the experiment and only results With 1 were considered. Differ-
ent sets of initially-guessed material parameters wetedess these may lead to different
fitting results [86], and in all physically-reasonable catige resulting material parame-
ters were nearly identical. The coefficient of determinaf®$ was used to evaluate the
goodness of fit.

Three different cases were tested in fitting the damage peamto specify an accu-
rate and efficient damage model for aortic tissues. Firststhain-energy function (2.12),
which considers damage accumulation in both the non-calags matrix and the collagen
fabric, was fit to the experimental data (Case I). Second, atitotive model considering
damage accumulation only in the collagen fibeyg € 1 and®,, = 0) was fit for compar-
ison (Case Il). Finally, for the sake of completeness, a moolesidering damage accumu-
lation only in the matrix material, i.e. (2.12) with 4 = Nt = 1 and®s 4 = ®r g = 0, was
also fit for comparison (Case lll).

Statistical Analysis

Values for the material parameters, which best charaetéhie entire specimen popula-
tions, are reported as the medians and interquartile raagesot all parameters show a
normal distribution and outliers can affect the mean anddsted deviation severely. A
correlation between the material parameters and age istigaged with the correlation
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coefficientrs and the significance of the correlation is tested using tebdfitransforma-
tion. The Wilcoxon rank-sum test is used to examine the Saarice of differences in the
parameters determined for abdominal and thoracic aonmastcaccess the influence of
gender on the fit parameters taking into account the BonfeHolm correction. For all
testsp < 0.05 was assumed to be significant.

Histology

Histological specimens were prepared to gain insight omttaditative structural changes
of collagen at various levels of stretch. To this end, axmal eircumferential specimens of
the same intact thoracic aorta (Donor XllIl) were stretchrethe circumferential direction
toAc. =1.05, 135, 150, and in the axial direction t, = 1.05, 120. The different stretches
in the two directions is a result of the anisotropy of theuessSpecimens were mounted
in a custom made frame at the specified stretches, fixed in aufdréd formaldehyde
solution (pH 74) and prepared for histology. Two types of specimen crestiens were
investigated: (i) cuts in the plane of the tissue, and (itsewrmal to this plane along the
loading direction. Picrosirius red stains were used toaliga collagen using its birefrin-
gent properties under polarized light.

2.3 Results and Discussion

2.3.1 Model Specification

The pseudo-elastic damage models related to Case | and Casedimgilarly good results
in terms of fitting the stress-stretch data, as quantifiedheyRE-values (both> 0.9 in
most cases). The model related to Case lll, considering damegumulation only in the
non-collagenous matrix, gives relatively poor results meirethe hysteresis in the data
is not reproduced. Therefore, the model describing Casedf dismissed from further
consideration.

Comparing the models of Cases | and Il more closely, for the ntgjof the stress-stretch
data the two models generate very similar damage paranretensl my from the fitting
process. In many of these fits, the parametgrandmy, are very large such thay,, re-
mains approximately one over the whole load history, and,@msequence, the inclusion
of the damage variablgy, for the non-collagenous matrix does not provide any aduitio
accuracy to the fit. In most of the remaining fits the paramgteés nearly zero at stretches
less than 101 such that the minimum of the damage function is alreadyhed, i.e. com-
plete damage occurs very early in the load history.

A comparison of a representative model fit is shown in Fig. ZHerein, experimental
data from the media of the thoracic aorta of Donor Il is coredawith the corresponding
model, i.e. Case I, Fig. 2.1(a), and Case Il, Fig. 2.1(c), wirergoodness of fit is the same
for both casesR? = 0.98). However, the damage evolution for Case I, Fig. 2.1(lwsh
that the minimum damage variabfg!™ for the non-collagenous matrix material remains
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Figure 2.1: Representative comparison of Case | (damage accumulatiath iméatrix and collagen
fibers) — top row, and Case Il (damage only in collagen fibers) — bottem foy the media of
Donor Il. Cauchy stresg versus stretcih (a) and (c); experimental data énd+) compared with
constitutive model (solid curve). Evolution of the minimum damage varigBI& with stretchA
(b) and (d);R? = 0.98 for both cases.

one for the entire loading range, hence the matrix materiensidered to be undamaged.
The damage evolution in the fibers is similar for the Cases llaisée Fig. 2.1(d).

The fitting of other specimens with Case | sometimes genecai@plete damage of the
non-collagenous matrix at stretches far below the phygio# loading range (results not
shown). However, this is not meaningful from a physical poirview.

Both Cases | and Il generate similar data fits, and the inclusi@@amage accumulation
in the matrix material results in either no damage or not ayly relevant damage. As
a consequence we propose that tissue softening is prinmatdied to collagen fibers and
we subsequently focus only on the model of Case II.
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2.3.2 Material and Damage Parameters

The representative stress-stretch responses, as shovgn i2. F; demonstrate the aniso-
tropic behavior of the aortic tissue and a hysteresis dumigading from the primary load
path. In all cases the proposed constitutive model is ablepgmduce the experimentally
determined stress-stretch data in an accurate manner.

The median thicknesses of the intima, media and advent#&@.48 mm, 118 mm and
0.93 mm for the thoracic aorta andé8 mm, 094 mm and 107 mm for the abdominal
aorta, respectively. The constitutive paramefer,, ko, ¢, K, ry andmg together with
the coefficient of determinatioR?, the median, the first quarti@®; and the third quartile
Qs, for the intima, media and the adventitia of the human thioraorta are summarized
in Table 2.2. The same model parameters are presented ia Z&bfor the layers of the
abdominal aortas and in Table 2.4 for the intact aortic Wik important to note that the
constitutive parametés in the intima of the abdominal aorta equals zero in the mgjofi
the cases (cf. (2.11)), in contrast to all other layersmatithickening is more pronounced
in the abdominal aorta than in the thoracic aorta, see [8@]ar], so that the remodeling
process might result in the change of the material respditbe antima. A comparison of
the median damage parameterfor the layer-separated tests suggests that the amount of
damage accumulated is highest in the intima, as we obtaitua wh 1 for both thoracic
and abdominal aortas. The median damage parametesise in the same range for all
layers. Due to the earlier exponential stiffening of thennat relative to the other layers,
the intima accumulates the most damage at a certain stredchp@re with Figs. 2.2(b)
and (d)). Nonetheless, this does not mean that the most deawitidpe accumulated in the
intima for loading the intact aortic wall due to compressigsidual stresses as reported
for the intima, for example, in [24].

In most cases thB?-value is higher than.9. The anglep for the intima varies between
38.1° and 542° for the thoracic aorta, and between.35and 489° for the abdominal
aorta. These results indicate that the fibers in the intingairarsome specimens more
aligned in the axial direction and in some specimens mor&encircumferential direc-
tion. It is important to note that non-atheroscleroticrmdi thickening increases with age,
wherein collagen fibers are deposited in the intimal lay&i.[blence, the collagen ori-
entations may strongly depend on age. The median valuesdoCauchy stress-stretch
response and the related damage evolution are illustratédys. 2.2(a), (b) for the tho-
racic aorta and in Figs. 2.2(c), (d) for the abdominal aoftae qualitative mechanical
stress-stretch response of the three tissue layers issitoithat reported for carotid arter-
ies [38]. The circumferential specimens of the media are seetiffen at lower applied
stretches in comparison to their respective orthogonalispns, see Figs. 2.2(a) and (c).
These results are in agreement with the obtained fiber akgtenwhich are more circum-
ferential in the medial layer, see tipevalues in the Table 2.2 and the values obtained from
polarized microscopy recently reported by Schriefl et &].[#However, the fit angles pro-
vided here are larger for the media, as compared againstehsured values. This may be
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Donor p[MPa] ki [MPa] k2 [] o[ K [] r [-] m [] R
Intima

| 0.021 4.90 15.52 40.5 0.20 1.95 0.007 0.95
Il 0.052 11.64 0.0 44.5 0.28 1.93 0.010 0.91
1] 0.034 1.45 7.36 44.8 0.12 1.00 0.017 0.96
\ 0.020 0.26 17.06 54.2 0.22 2.81 0.015 0.99
\Y 0.019 4.84 53.04 46.1 0.18 1.00 0.017 0.99
\Y! 0.091 20.07 0.0 44.4 0.22 1.00 0.015 0.99
Vil 0.031 2.54 11.31 47.0 0.13 1.00 0.021 0.99
VIl 0.046 6.28 10.76 47.8 0.20 1.00 0.014 0.98
IX 0.043 3.39 15.34 42.8 0.20 2.84 0.009 1.00
X 0.055 6.27 30.23 49.0 0.15 1.00 0.011 0.96
Xl 0.020 1.07 28.11 47.0 0.32 1.00 0.017 0.91
XIl 0.035 3.85 3.37 48.1 0.17 1.00 0.018 0.98
Xl 0.041 1.73 3.35 51.2 0.10 1.36 0.008 0.92
XV 0.029 6.33 36.52 38.1 0.22 1.00 0.011 0.97
Median 0.034 4.34 13.32 46.5 0.20 1.00 0.014 0.97
[Q1,Q3] [0.0230.045 [1.936.28 [4.37,25.35 [44.4,480] [0.150.22 [1.00,1.78 [0.010,0.017] [0.95,0.99
Media

| 0.030 0.12 7.62 44.6 0.02 3.10 0.002 0.98
1] 0.025 0.25 9.45 36.9 0.27 3.12 0.002 0.98
1] 0.021 0.02 15.88 42.2 0.07 2.35 0.007 0.99
\ 0.023 0.06 3.85 45.3 0.02 1.53 0.013 0.99
\ 0.021 0.12 1.75 43.2 0.02 1.78 0.005 0.90
\Y! 0.030 0.43 43.49 35.8 0.30 2.13 0.008 0.98
Vil 0.034 0.15 17.07 39.3 0.22 2.11 0.014 0.99
VIl 0.022 0.22 18.64 37.7 0.27 1.77 0.010 0.98
IX 0.032 0.29 18.26 36.4 0.20 1.17 0.025 0.99
X 0.038 0.12 4.47 39.1 0.15 1.48 0.016 0.99
Xl 0.021 0.14 6.74 37.3 0.27 1.96 0.009 0.99
Xl 0.043 0.12 15.24 46.5 0.05 2.68 0.003 1.00
Xl 0.027 0.15 1.79 36.0 0.23 1.77 0.012 0.99
XV 0.029 0.53 14.35 35.1 0.27 1.00 0.024 0.93
Median 0.028 0.14 11.90 38.4 0.21 1.87 0.009 0.99
[Q1,Q3] [0.0220.032 [0.12,0.24] [5.04,16.77] [36.54,42.97] [0.05,0.27] [1.59,2.29] [0.006,0.014 [0.98,0.99
Adventitia

| 0.020 0.39 9.03 53.7 0.27 2.21 0.006 0.93
Il 0.017 0.26 7.72 53.0 0.27 1.53 0.011 0.91
1] 0.017 0.29 411 51.0 0.02 1.01 0.023 0.88
\ 0.014 0.22 9.93 54.1 0.23 2.40 0.006 0.93
\Y 0.008 0.79 1.09 51.6 0.03 1.00 0.029 0.93
VI 0.032 0.84 22.47 55.9 0.32 1.00 0.051 0.87
Vil 0.024 0.40 11.01 54.7 0.25 1.00 0.224 0.91
Vil 0.032 1.58 2.04 48.7 0.05 1.20 0.022 0.91
IX 0.052 1.29 1.25 48.5 0.10 1.00 0.022 0.92
X 0.038 0.88 5.86 47.4 0.03 1.10 0.032 0.89
Xl 0.015 0.21 4.67 34.6 0.28 1.40 0.021 0.96
Xl 0.017 0.66 4.77 53.4 0.22 1.22 0.027 0.83
XMl 0.019 0.23 9.55 53.9 0.30 2.39 0.009 0.98
A\ 0.022 0.28 12.74 42.7 0.12 1.00 0.010 0.96
Median 0.020 0.39 6.79 52.3 0.23 1.15 0.022 0.92

[Q1,Qs] [0.017,0.030 [0.27,0.83 [4.259.83 [485539 [0.060.27] [1.00,1.50 [0.010,0.028 [0.90,0.93

Table 2.2: Constitutive parameters for the intima, media and the adventitia of tenhilhoracic
aorta; together with the coefficient of determinatigf) the median, the first quartil®; and the
third quartileQs.
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Figure 2.2: Cauchy stress-stretch response (a) and (c), and davaggon (b) and (d) for the
thoracic aorta (top row) and the abdominal aorta (bottom row) plotted with tlolkame@arameter
values from Tables 2.2-2.4.

due to the fact that the material model used does not takepurgrof the fibers into ac-
count. The un-crimping of fibers during stretching, as thated in Fig. 2.5, might change
the angular alignment of the fibers.

2.3.3 Effect of Pre-Conditioning

Arterial tissues need to be pre-conditioned prior to recgydata used for fitting the ma-
terial response to an elastic constitutive equation. Ia ¢hudy, however, the material is
modeled using a pseudo-elastic framework which can destisbue softening after the
initial load cycle. Hence, the pre-conditioning behavscaptured by the presented model
which allows us to evaluate the effect of pre-conditionimgloe material parameters.

As a representative example to evaluate the effect of atstine pre-conditioning on the
constitutive parameters, we use the constitutive parasieteDonor VIl. The analytical
solution for unloading and reloading the tissue to 150 kPg38] for pre-conditioning of
arterial tissue) was obtained. The reloading path was thday fusing the elastic part of
the material model.
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Donor p[MPa] ki [MPa] k2 [1] o[ K[ r [-] m [] R
Intima

| 0.044 5.51 0.00 35.3 0.22 2.27 0.008 0.92
\% 0.033 10.14 0.00 46.3 0.27 2.28 0.031 0.95
VIII 0.068 25.91 67.45 375 0.23 11.59 0.002 0.92
IX 0.105 30.90 16.24 47.6 0.28 1.00 0.025 0.99
XIl 0.138 22.98 0.00 40.5 0.25 1.00 0.016 0.98
Xl 0.005 0.98 49.78 47.6 0.17 1.00 0.003 0.98
XV 0.041 10.15 0.00 36.1 0.28 1.00 0.052 0.97
XVI 0.028 5.11 0.00 48.9 0.25 1.00 0.046 0.99
XVII 0.076 5.14 103.31 38.5 0.25 1.00 0.006 0.96
Median 0.044 10.14 0.00 40.5 0.25 1.00 0.016 0.97
[Q1,Qs] [0.0330.076 [5.14,22.98 [0.00,49.78] [37.5,47.6] [0.23,0.27] [1.00,2.27] [0.006,0.031] [0.95,0.98
Media

| 0.036 0.52 19.09 42.6 0.05 1.01 0.010 0.84
\% 0.033 1.42 29.26 43.9 0.10 1.00 0.008 0.96
VIl 0.032 1.01 0.00 35.2 0.18 1.43 0.020 0.95
IX 0.028 0.92 10.33 35.0 0.28 1.31 0.008 0.98
Xl 0.021 0.62 35.30 39.1 0.28 1.00 0.021 0.97
Xl 0.019 0.15 6.52 36.5 0.28 2.34 0.010 0.99
XIV 0.023 1.09 18.91 35.5 0.22 1.00 0.013 0.93
XVI 0.028 0.81 0.08 48.7 0.08 1.08 0.014 0.98
XVII 0.017 0.19 12.42 44.16 0.12 1.71 0.001 0.99
Median 0.028 0.81 12.42 39.1 0.18 1.07 0.010 0.97
[@1,Q3] [0.021,0.032 [0.51,1.01] [6.52,19.09 [355,439] [0.10,0.28 [1.00,1.42] [0.0080.014 [0.95,0.98
Adventitia

| 0.008 1.06 1.09 47.0 0.10 1.30 0.018 0.87
\% 0.005 0.38 5.55 36.3 0.12 1.41 0.006 0.91
VI 0.010 0.49 3.35 36.1 0.27 1.15 0.009 0.94
IX 0.016 0.44 3.41 45.9 0.12 1.00 0.008 0.95
Xl 0.008 1.06 1.09 47.0 0.10 1.30 0.018 0.87
Xl 0.010 0.30 6.31 51.2 0.30 1.79 0.010 0.93
XV 0.003 0.20 1.88 36.1 0.02 1.00 0.019 0.92
XVI 0.005 0.51 0.43 51.7 0.02 1.49 0.013 0.89
XVII 0.011 0.12 4.73 40.6 0.12 1 0.005 0.94
Median 0.010 0.38 3.35 40.59 0.11 1.15 0.010 0.92

[Q1,Qs] [0.0050.010 [0.28,0.49 [1.88,4.73 [36.3,47.0] [0.03,0.12 [1.00,1.41] [0.0080.018 [0.89,0.94]

Table 2.3: Constitutive parameters for the intima, media and the adventitia ofrtrentabdominal
aorta; together with the coefficient of determinatif) the median, the first quartil®; and the
third quartileQs.

The material parameters describing the elastic respomd®otb the non pre-conditioned
and the pre-conditioned tissue layers are summarized ite Tab. Note that the consti-
tutive parametergs andk; have the tendency to be slightly lower for the pre-condgubn
material, whereas the paramekeiis significantly higher. The consequences of these dif-
ferences on the stress-stretch response is illustrateéddonedia in Fig. 2.3, clearly show-
ing that exponential stiffening is greater for the pre-aboded material. In the supra-
physiological loading range thia vivo material is not pre-conditioned, which is in con-
trast to the physiological loading range. Therefore, théen behavior follows the pri-
mary loading curve. If this is modeled with the (higky value obtained from the pre-
conditioning tests, the stresses in the supra-physicb@pading range are overestimated
due to incorrect extrapolation of the stress-strain respoiience, material tests with
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Donor  p[MPa] ki [MPa] k2 [1] 9[°] K[] re [-] m [] R
Thoracic aorta

| 0.007 0.30 1.81 51.4 0.08 1.58 0.004 0.93
1l 0.017 0.25 16.88 54.2 0.25 3.32 0.002 0.96
1] 0.016 0.14 9.12 54.1 0.30 1.41 0.011 0.97
VI 0.015 0.91 71.80 38.6 0.32 1.00 0.026 0.98
VI 0.033 1.03 36.30 48.5 0.08 1.60 0.002 0.97
Vil 0.014 0.89 17.64 40.2 0.12 1.26 0.005 0.85
IX 0.022 1.07 34.29 53.7 0.28 1.84 0.008 0.98
X 0.019 1.80 1.74 51.1 0.08 1.22 0.012 0.98
Xl 0.015 0.20 6.92 53.9 0.28 1.82 0.010 0.97
Xl 0.018 0.56 15.55 49.4 0.00 1.74 0.009 0.94
Xl 0.010 0.18 2.42 50.9 0.00 1.88 0.008 0.99
XIvV 0.027 0.56 239.02 41.9 0.27 1.00 0.012 0.96
Median 0.017 0.56 16.21 51.0 0.18 1.59 0.008 0.97

[Q1,Q3] [0.014,0.019 [0.24,0.94] [5.79,34.79 [46.8,53.8] [0.08,0.28 [1.25,1.83 [0.004,0.01] [0.95,0.98
Abdominal aorta

| 0.014 2.87 17.26 36.0 0.25 1.86 0.005 0.99
\Y 0.047 14.98 0.00 40.4 0.27 1.00 0.025 0.99
Vil 0.164 36.77 149.44 41.0 0.25 1.00 0.017 0.98
IX 0.012 9.03 0.00 34.7 0.20 3.83 0.001 0.83
Xl 0.040 5.43 68.87 41.4 0.18 1.00 0.013 0.99
XMl 0.009 0.46 20.24 54.3 0.28 1.20 0.012 0.94
XV 0.024 4.87 0.00 35.3 0.22 1.00 0.054 0.90
XVI 0.009 1.71 0.01 37.3 0.23 1.43 0.012 0.98
Median 0.019 5.15 8.64 38.8 0.24 1.10 0.013 0.98

[Q1,Qs] [0.0120.042 [2.58,10.52 [0.00,32.40] [35.8,411] [0.21,0.25 [1.00,1.54 [0.010,0.019 [0.93,0.99]

Table 2.4: Constitutive parameters for the intact (three-layer compositepfathe human tho-
racic and abdominal aortas; together with the coefficient of determinBficime median, the first
guartileQ and the third quartil€s.

supra-physiological loading and accurate modeling ofssie at such load levels are an
important pre-requisite for modeling damage and undedstgndamage mechanisms in
the tissue.

Furthermore, the example implies that the response of $isedigreatly depends on the
maximum strain energy which the tissue has experiencedeiodd history. It is, thus,
important to pre-condition arterial tissues with loadsp&milar to physiological loading
states, otherwise a hyperelastic material model may naoticaphein vivo material behav-
ior. For example, if pre-conditioning is conducted withdsahat are too high, i.e. beyond
the physiological range, the tissue stresses will be ustierated because softening of the
tissue sample is greater than the softening of the tissuieo.

2.3.4 Statistical Analysis

Here we analyze possible statistically-relevant diffeesnp < 0.05) between the fit con-
stitutive parameters from the thoracic and abdominal @atigsue layers. In addition, we
investigate possible correlations between the constgytarameters, and age and gen-
der.
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Intima p[MPa]l Kk [MPa] ka[-] ¢[°]1 kI[]
Pre-conditioned 0.031 2.4 62.3 47.0 0.13
Non pre-conditioned  0.031 2.5 11.3 47.0 0.13
Media

Pre-conditioned 0.032 0.09 19.0 416 0.12
Non pre-conditioned  0.034 0.15 17.1 393 0.22
Adventitia

Pre-conditioned 0.027 0.37 152 54.8 0.25
Non pre-conditioned  0.024 0.40 11.0 54.7 0.25

Table 2.5: Representative effect of pre-conditioning (up to a stresbdé¥50 kPa) on the (elastic)
constitutive parameters for both the non pre-conditioned and the pritiomed intima, media and

adventitia (Donor VII).
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Figure 2.3: Representative effect of pre-conditioning (up to a streeksdé 150 kPa) on the tissue
response for the media of Donor VII. Response for the non preitoneld material (solid curves),
and loading on the pre-conditioned material (dashed curves) for ttsitttive parameters in Ta-

ble 2.5.



38 2 Layer-Specific Damage Experiments and Modeling

Location Layer Parameter rg Cl Linear regression

TA M ky 0.61 [0.12,0.86 0.0083MPayrstx —0.304 MPa
TA M 1) —0.55[-0.83,-0.02 —0.18 yrs~1 x +50.26°

TA M re —0.59 [-0.85,—0.09] —0.033yrs 1 x +3.964

TA A U 0.69 [0.26,0.90 0.0007 MPayrs!x —0.0172 MPa
TA A kq 0.60 [0.11,0.86 0.0224 MPayrs!x —0.7458 MPa
TA A rr  —0.62[-0.87,-0.14 —0.023yrs 1 x +2.750

AA A rf  —0.88[-0.98 —0.53 —0.019yrs 1 x +2.362

Table 2.6: Significant correlation of the fit constitutive parameters withEggeconfidence interval

is calculated based on the confidence level of 95%. The equations farraggassion considers
which denotes the age in yrg: correlation coefficient, Cl: confidence interval, TA: thoracic aorta,
AA: abdominal aorta, M: media, A: adventitia.

A statistically-relevant difference between the thorarid abdominal aortas was found for
the constitutive parameteks(intima), forky, rf (media) and foiu, k>, ¢ andmy (adven-
titia). Age dependency for the constitutive parametersfaasd forky, ¢, r¢ (media) and
U, ki, r¢ (adventitia) of the thoracic aorta, and fgr(adventitia) of the abdominal aorta.

The constitutive parametegsandk; increase, whereas the fiber anglend the damage
parameter; decrease with age. The increase of paramé¢gend u with age indicates
that the aorta stiffens progressively. This observation &cordance with the arterial me-
chanics literature, see, for example, [88-90]. The deere&g with age may be due to
remodeling of collagen, or the increase of cross-linkintyeen the collagen fibers [89].
The decrease af: indicates that the maximum damage that can occur in theetissu
creases, cf. (5.2), which might be associated with stiffgmif the aortic tissue with age.

The values for the correlation coefficientand the confidence interval (Cl) together with
the equations for the linear regression are summarizedbte a6 for different layers of
thoracic and abdominal aortas. The linear dependency inasgehown in Table 2.6, can
be used in patient-specific finite element modeling of aortas

A dependence of the constitutive parameters on the gendlee dionors was not detected,
as also reported by, for example, [91]. Nonetheless, tla¢ively small sample population

(14 thoracic and 8 abdominal aortas) may contribute to tble d¢é a statistically-relevant

results.

2.3.5 Histology

Traverse histological cuts oriented in the loading ditf the specimens and stained
with picrosirius red are shown in Fig. 2.4; stretched withXa= 1.05 and (b)A; = 1.50
in the circumferential direction, and with (&) = 1.05 and (d)A; = 1.20 in the axial di-
rection. Note that in Figs. 2.4(a) and (b) the circumfer@rdgrientation of the specimen is
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Figure 2.4: Collagen in the aortic wall visualized by picrosirius red stainitg@tircumferential
stretches, i.e. (a)c = 1.05 and (b)A; = 1.50, and at two axial stretches, i.e. §g)= 1.05 and (d)

Aa = 1.20. The orientation of the specimen is®4gom the horizontal direction, and the direction
of the applied stretchA¢ and Ay) is indicated by a double-headed arrow; I: intima, M: media, A:
adventitia.

rotated 45 from the horizontal, while in (c) and (d) that direction cesponds to the axial
orientation of the specimen. For most specimens only a fewnlae of the adventitia are
still attached to the media, which is not due to the stretrloiithe tissue. The separation
happens during microtome cutting of the histological specis due to the different me-
chanical properties of the collagen fabric within the difiet layers. The brightness of the
collagen fibers increases in all three tissue layers wittlifagin the circumferential direc-
tion (see Figs. 2.4(a) and (b)) indicating an increase iratlgmment of the fibers. Higher
loading results in this alignment of fibers, from a wavy fomman unloaded state, where
only short and irregularly arranged sections of fibers aséig, to a more aligned form
in the loaded state, where longer and more parallel or nealidibers are visible. With
an increase of aligned fibers the birefringent structuresesse in one histological cutting
plane and result in more brightness. This effect is esdgg@abnounced in the intima and
adventitia. Under applied stretches in the axial directiba brightness of the collagen in
the media decreases while there is a brightness increasbefantima and the adventi-
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tia (see Figs. 2.4(c) and (d)). The decrease in brightnedhéomedia under axial stretch
is seen because the collagen fibers in the media are orierdezlimthe circumferential
direction so that an axial stretch does not align the fibetkercutting plane.

Planar histological cuts, oriented in the plane of the gssdiintimal specimens stretched
in the circumferential direction, again stained with pgiras red, are shown in Fig. 2.5,
for (a) Ac = 1.05, (b)A; = 1.35 and (c)A; = 1.50, where the direction of the applied stretch
corresponds to the horizontal direction of the image whsdiné circumferential direction
of the aorta. The alignment of the fibers increases with asirey applied stretches, and
the angle between the fiber families and the circumferediraiction ¢ decreases. This
observation is in agreement with the underlying kinematicsre the direction of the fibers
in the current configuratiom is obtained by applying the deformation gradient on the
fiber direction in the reference configuration, ne= FM. Collagen fiber alignment under
pressure is also reported in [37]. The mean angles of thagal fibers arg = 45.3°,
41.6°, 21.4° for Ac = 1.05, 135, 150, respectively. An increase of the anglés observed
for axial stretching of the tissue (results not shown).

Reviewing Figs. 2.4 and 2.5 in view of the mechanical strésteh data indicates that
softening in the physiological loading range as well as anghpra-physiological loading
range might be due to the alignment of these components,isfnot fully reversible.
Furthermore, it indicates that softening does not resathf(massive) fiber rupture as, for
example, assumed in the model by Rodriguez et al. [43].

2.3.6 Comparison with Other Models

The pseudo-elastic damage model gives an excellent fit texjperimental data, with rel-
atively few constitutive parameters, as it only introdutves damage parameters, contrary
to models that account for damage in matrix and fibers, seexample, [63]. Associ-
ating damage accumulation primarily in the collagen fibers previously been assumed
in several studies, for example, in the arterial damage tafdBalzani et al. [78]. This
assumption has now been justified by experimental data. Tuehiy Balzani et al. [78]
also uses two damage parameters. Additionally, a valuehtostrain energy, which de-
scribes the initial damage state, is defiregriori such that softening is not described in
the physiological loading range. Hence, three parametersi@eded in total to describe
the damage behavior of the tissue. Defining an appropridtes var the strain energy,
which describes the ‘initial damage state’, is difficultpesially as no adequate experi-
mental data exist to the authors’ knowledge. The proposedduselastic damage model
adequately describes softening that occurs during prei#toning and actual damage in
the supra-physiological loading range. This means thategafor the damage variable,
which distinguish tissue softening in the physiologicadog range from softening due
to damage, need to be determined. Therefore, the definifiam @ppropriate threshold
value for the damage variable, and more experimental an@&ncahstudies are necessary
for a correct interpretation of the damage variable.
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Figure 2.5: Collagen fibers in a planar cut of the intima visualized by picrgsigd staining at
increasing applied circumferential stretches: Xa)y= 1.05, (b)A; = 1.35 and (c)A; = 1.50. The
direction of applied stretch corresponds to the horizontal.
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As opposed to the model presented by Pefia et al. [66] and Balzah [60], our model
does not account for continuous damage. Some specimeed teste shown a very slight
continuous softening and permanent deformation afteraghhg, which is not captured by
the proposed pseudo-elastic damage model. Neverthdiesgraposed model is in good
agreement with the experimental data. Therefore, and ierdodavoid an increase in the
number of constitutive parameters, only discontinuousesdrig is accounted for in the
model. Pefa [69] presents a model that incorporates a pemhdaformation after tissue
unloading. The presented pseudo-elastic damage modebsdy lee extended to describe
this effect by using the approach presented by, for exari®é,

2.4 Conclusion

Experimental data on human tissues are crucial for the noadesimulation of catheter-
based procedures such as the placement of a stent grafis Biuty layer-specific experi-
mental data of uniaxial extension tests under supra-plogtal loading for human aortas
were presented. Uniaxial experiments were used becaukerHgads can be applied to
the tissues than in biaxial experiments. Fitting the modehe obtained data generates
physiologically consistent results, for example, for theefiangles. Hence, the model is
able to capture the behavior at physiological loading, eéldengh uniaxial extension tests
do not mimic the physiological loading condition.

A novel pseudo-elastic damage model, which describesnlisemus softening, was fit to
the experimental data. The pseudo-elastic damage appvwaechavored because therein
it is possible to first fit the material parameters, indeamly of the damage parameters,
which simplifies the fitting process. The proposed damageemigdable to provide an
excellent fit to the experimental data while employing atredédy low number of consti-
tutive parameters. The fits with and without consideratibdaonage accumulation in the
non-collagenous matrix material indicate that tissue dgaria only accumulated in the
collagen fiber fabric. Several models assume that damagaysatiributed to the colla-
gen fibers, however, experimental data and constitutives@ipgporting this phenomenon
have not been presented before. Nonetheless, the assomptivs study still needs to be
confirmed by appropriate experiments in future studies.

The proposed approach for modeling damage does not indlediefinition of a minimum
strain energy for damage initiation as done in several ptesvstudies (see, for example,
[63, 78]) because pre-conditioning can already be destiiyethe Mullins effect. How-
ever, this means that softening already occurs at physaablpad levels and a threshold
for the damage variable needs to be determined to distinggafiening in the physio-
logical loading range from softening due to tissue damageartier to analyze such a
distinction further experimental data and numerical tadire required.

Our model captures only the passive mechanical behaviticdissues which has impor-
tant ramifications; for example, active behavior due to stmoauscle cell may also play
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an important role with respect to damage accumulation. mfteance of smooth muscle
cell should, therefore, be considered in subsequent studeturally, adequate modeling
of the passive tissue response, as demonstrated here, esraquisite for modeling the
active tissue response. Furthermore, the purely mecHaratare of the model can only
predict the tissue response immediately after exposurnepi@sphysiological loading. We
do not account for biological or biochemical processes agleell death [56] or neo-
intimal hyperplasia [92] that are triggered by over-stngtg the tissue, and which may
alter mechanical properties of the tissue.
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3 THE ROLE OF ELASTIN AND COLLAGEN IN THE
SOFTENING BEHAVIOR OF THE HUMAN THORACIC
AORTIC MEDIA

Abstract In a previous study we were able to accurately fit experimielata on arte-
rial tissues at supra-physiological loads using a mateniadel that accounts for soften-
ing/damage only in the portion of the model associated véhdpllagen fibersJ( Mech.
Behav. Biomed. Matet293-106, 2012). Naturally, this result leads to the hypsiththat
the softening behavior is related only to the collagen fibensl not to the matrix mate-
rial. In this study we test this hypothesis by conductingauial extension tests on elastase
and collagenase treated tissues and on untreated corgmimgns from the media of hu-
man thoracic aortas. We relate structural changes in thediafter enzyme treatment to
changes in the corresponding mechanical behavior. Coléesgetneated tissue does not ex-
hibit any softening behavior under quasi-static cyclialiog, a result supporting our hy-
pothesis. Conversely, elastase treated tissue exhibitgiaons softening under the same
loading conditions, indicating that the integrity of thestie is destroyed upon removal of
the elastin. Finally, we fit isotropic and anisotropic camsive models to the mechanical
response of the collagenase treated arterial tissue. Winilarosotropic model better ap-
proximates the response of collagenase treated artessalets, we show that an isotropic
matrix model is sufficient to accurately reproduce the meidad response of untreated
control specimens, consistent with current practice irliteeature.

3.1 Introduction

In arecent study we showed that softening in aortic tissuegasupra-physiological loads

can be modeled by accounting only for the softening in thersenergy associated with

the collagen fibers, and not for the matrix material [93].slfphenomenological result leads
naturally to the hypothesis that the softening behaviossoaiated only with the collagen

fibers. To investigate this hypothesis, we perform expemisien both collagenase treated
tissues and elastase treated tissues, as well as untreateal tissues, to gain more insight

in the softening mechanisms associated with the collagensfib

Roach and Burton [94] conducted the first study which isolatedmechanically rele-
vant constituents of arteries, namely elastin and collaged investigated the resulting
mechanical responses. These authors showed that elas@ispisnsible for the initially
compliant behavior at lower strains and that collagen ipaasible for a stiffening behav-
ior at higher strains. Experiments conducted by Dobrin.40al showed that the radius of

45
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the vessels increases after elastase treatment, ingj¢hahelastin keeps the arterial wall
in its original shape. Dobrin and Canfield [96] stated thas m&écessary to select enzyme
activity and digestion time such that collagen is only @ditidigested, otherwise inflation
tests are not possible due to leaking or rupture of the spam

Determining the mechanical properties of elastin, the ncaimponent of elastic fibers,
has recently attracted increased attention. Gundiah ¢®4l.performed planar biaxial
extension tests that show an isotropic stress-stretchvimhahich they initially modeled
using the neo-Hookean material model. However, the auttemart that elastic fibers of
porcine arteries are oriented axially in the intima and tieatitia, and circumferentially
in the media. The authors believe that this finding motivatesnisotropic model for the
non-collagenous matrix. As a result of their structural ifigd, they propose an invariant-
based orthotropic strain-energy function [98].

Lille et al. [99] performed mechanical tests on purified etafgher network tissue obtained
from the thoracic aorta of pigs. In uniaxial tests this tessustiffer in the circumferential
direction compared to axial. The authors then compareddounstitutive models to predict
the pressure-circumferential stretch behavior. They lkewlecthat models incorporating
both anisotropy and nonlinearity best predict the meclamiehavior of the elastic fiber
network.

Similarly, Zou and Zang [100] investigated the mechanicapprties of the elastic fiber
network under biaxial tensile loading for the bovine thacamorta. Their experiments also
show an anisotropic mechanical response with the circianteal direction being stiffer
than the axial direction. The authors propose an eightac$tatistical mechanics based mi-
crostructural approach to model the mechanical behavitreoélastic fiber network. The
same authors also investigated the time-dependent behesing biaxial stress relaxation
and creep experiments [101]. Their experimental resultsalethat the creep response is
negligible.

In this study we perform uniaxial extension tests to studyrttechanical behavior of the
media of the human thoracic aorta under relatively largedo&@Vhile uniaxial extension
tests do not mimic the physiological loading condition, magful results can be obtained
when the resulting data are carefully fitted [77]. Planakiaicextension tests better rep-
resent the physiological loading conditions. Howevery thee difficult to perform within
the supra-physiological loading domain, and they may legubbr estimates of the stress,
as shown both experimentally [102] and numerically [103¢sBure inflation tests mimic
physiological conditions well, however, the size of our péas did not allow such tests.
Furthermore problems may arise due to leakage through thk siole branches, especially
at supra-physiological pressures.

In this study we compare the mechanical behavior of elastagdeollagenase treated me-
dia from human thoracic aorta to untreated control specanéfe seek to understand the
role of elastin and collagen in the softening behavior olesstin untreated specimens at
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physiological and supra-physiological loads. Furthememboth the isotropic neo-Hookean
model and an anisotropic model are used to mathematicadlgridbe the mechanical re-
sponse of the elastic fiber network. We discuss the imptioatof our model fits for elastin
on modeling the untreated aortic tissue. We also qualébtidescribe anisotropy observed
in the continuous softening of elastase treated specimens.

3.2 Materials and Methods

We conduct uniaxial extension tests on circumferentiatlg axially aligned specimens of
the media of 17 human thoracic aortas #68 yrs, meant SD), under stretch magnitudes
within the physiological and supra-physiological range.

We obtain the specimens from patients undergoing autopsy 2¢ hours after death un-
related to cardiovascular disease and we stored them ingbbgEal solution. When pos-
sible, we test tissue specimens within 48 hours after extidtherwise, we immediately
freeze the specimens and test them within 24 hours of unfrgezhe Ethics Commit-

tee of the Medical University of Graz approved the use of psyanaterial from human
subjects.

We base our protocol for enzyme treatment on the work of bathrid and Canfield [96]
and Kratzberg et al. [104]. We perform the elastase tredtfoetwo hours in a 100 U/ml
physiological solution for a complete digestion of elastid the collagenase treatment for
16 hours in a 4000 U/ml or 20 hours in a 5000 U/ml physiologgmution for partial or
complete digestion of collagen, respectively, all a&t@G7

For the collagenase treated tissue, we test seven spectmieiasning negligible amounts
of residual collagen (Donors 1 to 7) and five specimens wittigly digested collagen
(Donors 8 to 12). For the elastase treated tissue, we testlaofdive specimens (Donors
13 to 17). If the tissue specimens are sufficiently large, \ge gest untreated control
specimens from each donor for comparison.

In order to verify enzymatic digestion of the intended tssonstituent, we examine his-
tological images using both Elastica van Gieson and Pigussred stains. If collagen
is still visible in a histological image, we determine thearraction of collagen in the
cross-section using image analysis tools inTYAB (2009b, The MathWorks, Inc., Mas-
sachusetts, United States). We include specimens withl@isollagen residues of less than
5% area fraction in our analysis, but they are marked withstéerik * to distinguish them
from those specimens without visible collagen residueslithmhally, we have five speci-
mens with larger residues in the range of 20—40% collagemfametion. We compare the
latter qualitatively to corresponding data from controdl@mzyme-treated specimens.

In order to evaluate the ultrastructure of the tissue bystrassion electron microscopy
(TEM) we fix the aortic specimens in%26 glutaraldehyde in cacodylate buffer (pEBY
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for four hours at room temperature, followed by washing stepcacodylate buffer so-
lution. Subsequently, we postfix all specimens in 1% osmietroxide (OsQ) solution
for two hours, wash in cacodylate buffer, and dehydrate @neasing concentrations of
ethanol at room temperature, passed through propylenea@xid embedded in Agar 100
resin. We then collect ultrathin sections cut with a ultrammiome (Drukker International,
Cuijk, The Netherlands) on mesh copper grids, stain usingyliecetate and lead citrate,
and examine the specimens with a Philips 100 electron ndopes (Philips Electronics
N. V., Eindhoven, The Netherlands).

The protocol for mechanical testing is similar to that repdmpreviously in [93]. Briefly,
we cut dog bone specimens with a gage width of 4 mm from thecassue in both cir-
cumferential and axial directions. Next, we remove thematand adventitia using tweez-
ers. We assume that the mechanical influence of internal sednal elastic lamina, if
present, can be neglected. To calculate the thickness waga/&ur measurements taken
using a videoextensometer (ME 4850, Messphysik, Furstenfeld, Austria).

We conduct the mechanical tests using a uniaxial testincghimadu-Strain ME 30— 1,
Messphysik, Furstenfeld, Austria) with the tissue in a baftiphysiological solution at
37°C. The videoextensometer records the stretch in the gaugerefjthe specimen by
tracking two black markers glued onto the specimen. We deter the unloaded length
when the specimen is clamped and immersed in the bath atarem tabrosse et al. [105]
report, e.g., that the mean circumferential and axial ctiet are B1 and 111, respec-
tively, for the human thoracic aortic wall. Our force drivprotocol prescribes the first
Piola-Kirchhoff stress (engineering stress) to be 10, 25180 kPa for the elastase treated
specimens as well as the axially-aligned collagenaseetiesppecimens. Since they can
bear more load, we load the circumferentially-aligned agginase treated specimens as
well as the control specimens to 50, 100, 300, 500 kPa. Irette=ts we complete three
cycles for each load step. For four additional circumfaedigtaligned, elastase treated
specimens we apply cyclic loading to the first load step (18 k& monitor the evolution
of continuous softening in the specimen until rupture. Iitases the testing speed equals
5 mm/min to ensure quasi-static behavior of the tissue.

3.2.1 Data Analysis

In all our subsequent analyses we convert uniaxial forsptdcement data to Cauchy
stress-stretch data for constitutive model fitting. We eatd the Cauchy stress from

the experimental data as
f
=— 3.1
0= (3.1)
wheref is the current forcéV andT are initial width and thickness of the specimen, and

A is the applied uniaxial stretch [93, 106].

In all that follows we use convex strain-energy functioreg; ¥, defined per unit volume
in the reference configuration, to model nonlinear matetaldergoing finite strains. The
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Cauchy stress tensorfollows from the strain-energy function as=2J-1F(dW/dC)F',
whereC = F'F is the right Cauchy Green tensé,is the deformation gradient tensor
andJ> 0 is the Jacobian, the determinant of the deformation gnadié5]. Note that we
assume an incompressible behavior, and hence havé.

We determine the constitutive parameters using a nonlileaat squares algorithm imple-
mented in the MTLAB . The goodness-of-fit is reported using the square of thesBear
correlation coefficienR?.

Collagenase treated specimens

The macroscopic mechanical response of elastin in artiggles is commonly modeled
using an incompressible neo-Hookean material, see, &,g10[/]. Correspondingly, we
fit the experimental data from the collagenase treated @& using the strain-energy
function

HnH

o= 0 (12-3). (3.2)

wherepny > 0 is the initial shear modulus amg= trC.

Since we observe an anisotropic mechanical response fosslle specimens, and both
Clark and Glagov [108] and Gundiah et al. [97] show that elddtiers are arranged cir-
cumferentially in medial tissue, we propose a transverssdtropic strain-energy function

W;; of the form
Hii

Wy = 7(|1—3)+cﬁ(|4m—1)2, (3.3)
wherepy; > 0 andc; > 0 are material parameters, aagh= M- CMp, is the square of the
stretch in the directioM ,, describing the orientation of the elastic fibers in theneziee
configuration.

In this formulation, we assume thisty, is aligned with the circumferential direction, hence
l4m= )\C%rc. Additionally, the second term in (3.3) only contributeshe total strain energy
W, for Ism > 1, i.e. when the elastic fibers in the circumferential diacare in tension.

Untreated wall

We assess the influence of the two models for elastin by fitiegorimary loading curves

of the untreated control specimens, using B8ty andW; and the corresponding material
parameters for the elastin constituent as a starting pdiatmodel the primary loading

curve of the untreated arterial tissue by extending thénsemergy function using

W= W Wy, (3.4)

whereW,, m € [nH,ti], describes the mechanical response of the non-collagenatsix
material and¥s; describes the mechanical response of two families of ceficgbers
I =4,6. More specifically [39]

l4—’f7i:2k71{exp[kg(li*—l)z]—l}, I'=kli+(1-3kK)l;, =46, (3.5)
2
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wherek; > 0 andk, > 0 are material parameters, arddescribes the dispersion of the
collagen fibers about their principal directions. Additadly, W ; only contributes to the
strain-energy functio® if I > 1.

The pseudo-invariant, = M - CM andlg = M’ - CM’ correspond to the square of the
stretches of the collagen fibers in the mean fiber directiohde the vectorsM andM’
denote the directions of the collagen fibers in the referenoéiguration. Since the fibers
are assumed to be symmetrically oriented with respect tartieéial axis and located in the
tangential plane of the artery their directions are unigdelffined by the angl¢ measured
from the circumferential direction of the artery. We fit th@neated control specimens from
Donor 1 to 7 twice: once starting from the fitted result foR}3i.e. uny (denoted as Case
1 and indicated by subscript c1); and once starting from ttedfresult for (3.3), i.epy
andc; (denoted as Case 2 and indicated by subscript c2). We use thimess-of-fit to
determine whether it is necessary to use the more sophedicaaterial model (3.3) for
the elastin matrix when modeling the untreated tissue caitg0

Elastase treated specimens

The elastase treated specimens exhibit severe continndulscontinuous softening such
that we do not fit them to a constitutive model. Rather, we asallye amount of softening
in terms of the stress applied to the tissue. To this end, wigtlpd incremental increase in
stretch due to continuous softening, referred td\As versus both the applied stress and
the load step number. Specifically, we defise as the increase in stretch at maximum
load measured from one load step to the subsequent load step.

3.3 Results

To put the mechanical response of the enzyme treated speximi context, Fig. 3.1
shows data for a representative untreated control spedifeerale, 45 yrs). Note the pro-
nounced anisotropy and discontinuous softening as weleaanlinear stiffening.

3.3.1 Structural Changes After Enzyme Treatment

Figure 3.2 shows representative structural changes distase and collagenase treatment
compared to the control specimens.

In Figs. 3.2(a) — (c) Elastica van Gieson stains the elastergiblack. After elastase treat-
ment these fibers are removed, i.e. no longer visible, wedaahe collagenase treated
tissue no change is observed. SMC nuclei are still visittler &flastase treatment, see the
arrow in Fig. 3.2(b). In Figs. 3.2(d) — (f) Picrosirius reaisis the collagen fibers dark red.
After collagenase treatment these fibers are removedoilenger visible. However, after
elastase treatment collagen fibers remain in the tissuareelearly visible.

The TEM images in Figs. 3.2(g) — (i) show collagen fibrils ie tmtreated control and the
elastase treated specimens, where the structure cleamgek. The collagen fibers in the
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Figure 3.1: Representative untreated control specimen (female, 4Slyosying pronounced
anisotropy, nonlinear stiffening and discontinuous softening.

elastase treated specimen (Fig. 3.2(h)) appear less negbaind less densely packed when
compared to the control specimen (Fig. 3.2(g)). The TEM ienagFig. 3.2(i) shows that
the collagen fibrils in the collagenase treated specimerc@amgletely removed, i.e. no
longer visible.

3.3.2 Collagenase Treated Specimens

The collagenase treated tissue exhibits a slightly ampatrresponse with neither con-
tinuous nor discontinuous softening. Figure 3.3(a) compéne mechanical responses in
the circumferential direction of a representative unegdatontrol specimen (blue) with
a specimen where collagen is partially digested (red) angeaisien where collagen is
completely digested (black). The mechanical responseggsaprogressively from highly
nonlinear, with pronounced discontinuous softening, tarlyelinear without softening.
Figure 3.3(b) shows a representative cross-section of @mpa with partially digested
collagen. Arrows mark the area in which residual collagestilspresent.

Table 3.1 summarizes the constitutive fit of the neo-Hookeedel (3.2) and of the
anisotropic model (3.3) to the mechanical data generatedl tine collagenase treated spec-
imens. Figure 3.4 shows a representative plot of the regutibnstitutive model fits to the
data (Table 3.1, Donor 2). For all specimens tested, themiferential direction exhibits
a stiffer response, and the anisotropic strain-energytimmgields a better goodness-of-
fit.

Table 3.2 summarizes the constitutive fit and goodnesd-dbifithe composite tissue
model (3.4)-(3.5), using eithé¥,y (3.2) or¥; (3.3) for Wy, in (3.4), to the mechanical
data generated from the untreated tissue specimens. Thlagssof-fit does not increase
notably if the anisotropic strain-energy function (3.3)ig®d to describe the elastin matrix
in (3.4).
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Figure 3.2: Representative comparison of elastase treated (middle) evatgtreated (right) and
untreated control specimens (left) of the medial layer of the human thomatécia light and trans-
mission electron microscopy (TEM): (a)—(c) Elastica van Gieson stain lidgug elastic fibers
and SMC nuclei (arrow) in black; (d)—(f) Picrosirius red stain visuaiziwllagen fibers in dark
red; (g) — (i) TEM of the ultrastructure of collagen and elastin.

3.3.3 Elastase Treated Specimens

The elastase treated tissue from the medial layer of humanadit aorta exhibits con-
tinuous softening as well as discontinuous softening. feigu5(a) shows representative
experimental data for the elastase treated tissue. Figb(b)3hows the incremental in-
crease in stretchA, as defined in Fig. 3.5(a), versus the Cauchy stress at eatlcyoke
for all tested specimens. The first hysteresis loop at eaxchdtep is slightly larger than the
subsequent load steps, indicating discontinuous sofjefissue anisotropy is clearly vis-
ible in the data; the stress values at a fixed stretch are nowddr lfor the axial specimens
than for the circumferential specimens. Additionally, theremental increase of stretch at
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Figure 3.3: The influence of collagen digestion on the media from the humaactb@orta: (a)
representative mechanical responses in the circumferential directam witreated control spec-
imen (blue, female, 45yrs), a specimen with partial collagen digestion @ethlé, 45yrs) and
a specimen with completely digested collagen (black, male 66 yrs); (b) Piososd stain of a
representative specimen with partially digested collagen, the area withaksallagen present is
indicated by arrows.
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Figure 3.4: Representative constitutive model fits for the neo-Hooksatndpic) model and the
anisotropic model compared to the experimental data generated on cofladegated tissue from
the medial layer of a human thoracic aorta (female, 62 yrs).

each load cycle is higher for the axial direction than forelreumferential direction for a
given stress.

Figure 3.6(a) shows a representative behavior of an elasteated aortic media after a
high number of quasi-static load cycles up to a constantmmaxi load, while Figure 3.6(b)
shows again that the first hysteresis loop is bigger thanuhsesjuent ones. The hystere-
sis resulting from continuous softening does not changeeably with the number of
applied load cycles conducted in the experiment.
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Donor Gender Agé phn Ry | Wi Ci Re

[mA] [yrs]| [kPa] [-] |[kPa] [kPa] [-]
1 f 63 | 6204 0864|5320 1265 0992
2 f 62 | 6558 0894|5278 1203 0997
3* m 76 | 44.60 0926|3135 7.62 0990
4 m 66 | 50.11 0988|37.15 467 0990
5* m 53 {11690 0917,88.09 1608 0988
6 m 66 | 7594 0748|5810 2046 0979
7 m 64 {10804 0919(89.07 1145 0984
Median 64 | 6558 0917|5320 1203 0990

Table 3.1: Constitutive parameters for the non-collagenous (elastin) nfabnx the medial layer

of human thoracic aorta, for both the neo-Hookean mogdg})(and the anisotropic constitutive
model (g andcg), including age and gender of the patients (m = male and f = female). Specimen
marked with an asterisk showed small residues of collagen on the histological specimens (area
fraction < 5%).

Additionally, the specimens exhibit residual deformatadter unloading the tissue. The
magnitude of residual deformation increases both witheiasing load (cf. Fig. 3.5(a)) and
with increasing number of load cycles (cf. 3.6(a)).

3.4 Discussion

3.4.1 Collagenase Treated Specimens

Our results demonstrate that the elastic fiber network &sham anisotropic mechanical
response, consistent with several other studies repantétkiliterature [98—100]. Addi-
tionally, Gundiah et al. [97] suggest that, in spite of themtropic data, it is better to
describe the non-collagenous matrix using an orthotropatenal model based on the
structure of the elastic fiber network which shows axialigoted fibers in the intima and
the adventitia, and circumferentially oriented fibers ia thedia.

The circumferential orientation of the elastic fibers mighkplain the higher stiffness ex-
perimentally measured in the circumferential directioroof collagenase treated tissues.
Furthermore, Fig. 3.2(b) shows that smooth muscle cellpegsent in the tissue after
the collagenase treatment. These smooth muscle cellssaralaned circumferentially in
the media [108]. Thus, it is possible that their passive@asp might slightly add to the
measured anisotropy in the tissue.

We compare the performance of a neo-Hookean to an anisotrogierial model. The
neo-Hookean model is commonly used to model the elastintitoeist in arterial tissues.
However, the collagenase treated tissue exhibits a higligress in specimens oriented
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Donor kici kKoer  @c1 Ker Rgl Kicz Koz o2 Ke2 R§2
MPa] [-] [°1 [-] [-] |MPa] [-] [°1 [-] [-]
0.191 Q00 5414 028 0981/ 0.113 Q00 4911 015 0983
0.013 1062 3358 000 0977/ 0.067 1549 1914 023 0980
n.a. n.a.
1163 1654 4651 023 0997 1.539 1140 4724 027 0996
0.046 1045 3684 000 0989| 0.128 750 3557 008 0989
2.879 5341 5400 028 0940| 2.296 2405 4886 020 0939
7 0.214 855 3894 000 0966|0.319 609 3811 007 0961
Median 0118 1054 4168 012 0985/ 0.120 945 4141 019 0986

OOk, WN PP

Table 3.2: Constitutive parameters and goodness-of-fit for the primadirig curve generated
from the untreated media of the human thoracic aorta using either a ne@&totikotropic) model
(subscript c1) or an anisotropic model (subscript ¢c2) to describedheallagenous matrix. Pa-
rameters related to the elastin matrix correspond to those given in Table githfar(3.2) or (3.3),
and parameters related to the collagen fibers correspond to (3.5), @itiagrto (3.4).

circumferentially. This result motivates an additionahtdn the strain-energy function to
capture the higher stiffness in the circumferential dimttThe constitutive model that
we present is a special case of the orthotropic model prapbgeGundiah et al. [98].

Therein, motivated by modeling the complete, untreateeriattwall where elastic fibers
are oriented axially in both the intima and the adventitie, authors add a third term to
their strain-energy function which they use to increasinsss in the axial direction as
well.

For collagenase treated tissue specimens, the anisotropdel provides a notably im-
proved fit to the experimental data relative to the neo-Haokeodel, as shown in Ta-
ble 3.1 and Fig. 3.4. Hence, if the mechanical response ohéimecollagenous matrix
are to be accurately described, a transversely isotropatetshould be favored over the
commonly used neo-Hookean model.

For the non-collagenous matrix, our measured initial sheadulus has a median value of
approximately 62 kPa. Gundiah et al. [97, 98] report avekadges of 163 kPa and 73 kPa
for the initial shear modulus measured from autoclavedispats. This is a reasonably
good agreement when comparing porcine and human tissue.

We previously reported a lower value (28 kPa) for the medhéral shear modulus associ-
ated with the non-collagenous matrix of the untreated méalyar of the human thoracic
aorta [93]. If we model untreated specimens including ébations from both the matrix
and the fibers to the total strain energy (3.4), the constguesponse in the low-stress
region is defined by both the parametgrandk;. If we model collagenase treated speci-
mens, the low-stress response is described only (®uch that, effectiveli; = 0). Hence,
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Figure 3.5: Representative mechanical response of an elastase tneatiadrom the human tho-
racic aorta — softening for three load cycles at each load step: (apdiecential (blue) and axial
(red) responses; (b) continuous softening of tissue in the circuntif@récrosses) and axial (cir-
cles) directions, incremental increases in strétéhversus Cauchy stress for all tested specimens.
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Figure 3.6: Representative behavior of an elastase treated media frdmrttan thoracic aorta
under quasi-static cyclic loading of a circumferentially oriented specimgmx@erimentally ob-
tained Cauchy stress versus stretch; (b) incremental stretch inceyase load step number shows
softening at each load cycle.

in the latter cas@ must be higher to describe the same initial stiffness. Thelt@summa-
rized in Table 3.2 suggest that using a neo-Hookean mod#idéaron-collagenous matrix,
when building a constitutive model for the composite tissomposed of elastin and colla-
gen, is justified despite the anisotropy of the elastic filedwork. The goodness-of-fit does
not increase notably between the composite model (3.4 fikeng a neo-Hookean model
for the matrix constituent and that including anisotropyref matrix, while the number of
material parameters is increased.
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Our data (Fig. 3.3), support the hypothesis that the saftebehavior is attributed only
to the collagen fibers [93]. Thus, it is sufficient to model & in arterial tissues by
accounting for softening only in the part of the total strairergy function associated with
the collagen fibers, as performed by, e.g., [33, 93].

3.4.2 Elastase Treated Specimens

Anisotropy in the mechanical response of elastase treatsthh aortic tissue, as shown
in Fig. 3.5(a), is largely due to the alignment of the colladgibers within the tissue. Col-
lagen fibers in the medial layer of human thoracic aorta gdlyealign more toward the
circumferential direction (albeit with dispersion abdog imean direction), and, therefore,
under an equivalent load the stretch of circumferentidiyne@d specimens is less than that
of axially aligned specimens. The alignment of collagenrSbe arterial tissues has been
shown with imaging techniques, see, e.g., [37, 40].

The specimens tested exhibit continuous softening, ifeersiag increases with the appli-
cation of constant load cycles. We believe this mechanitati&eimplies that the collagen
fibers are no longer adequately connected to the non-coldaggamatrix, and that the fibers
are ‘sliding’ against one other. Consequently, the collddears can be pulled apart easily
and show a creep-like behavior. The TEM image in Fig. 3.2flows that the collagen
fibers are less organized relative to the control specimewshn Fig. 3.2(g). This sup-
ports our conjuncture that the integrity of the fiber netwiorkhe elastase treated tissue is
reduced relative to the control specimen.

The creep-like mechanical behavior of the elastase traas®gae specimens is not likely
to appear under physiological conditions as the arteridl wauld enlarge during each
cardiac cycle.

3.4.3 Limitations

The present study is restricted to the thoracic aortic metiiarteries with non-athero-

sclerotic intimal thickening. Thus the dependence of thehmaical properties on age or
on the location of the artery is not discussed, leaving roammfuirther experimental studies.
Furthermore, the collagenase and elastase treated tissuldsnot be taken from the same
patient due to the sample size. However, the main conclasibthis study are not affected
by this shortcoming.

The intima and adventitia were mechanically separated ftemedia, which may lead
to artifacts or even damage in the vicinity of the separatethse. We assumed that these
effects are negligible.

The model we selected to describe the untreated tissue sywided (3.5); it assumes
rotational symmetry of the collagen fibers. This is a limdatof the model as [40] showed
that the out-of-plane dispersion is much lower than thelamg dispersion. Therein, the
authors also show that the collagen fibers are generallgedignore towards the circum-
ferential direction in the media. In this light one would exp¢$ angels below 45in
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Table 3.2. This is not the case for all samples; however, tigela presented in Table 3.2
are fitting parameters.

Elastase treatment is used in several studies to digesinelasarterial tissue, see, e.g.,
[23, 89, 96]. Elastase can attack denatured collagen, asdiflis [109] suggest to add
trypsin inhibitor during the elastase treatment to prewatiagen digestion; with such a
treatment Fig. 3.6(a) may look different. Kronick and Safks0] use trypsin to digest
proteoglycans in sheep skin. It hence is possible thatasdastithout trypsin inhibitor
digests elastin and proteoglycans, whereas with trypsibitor only elastin is digested.
The role of proteoglycans on the softening of the tissue sigmte investigated in further
studies.

Following Dobrin and Canfield [96], we assume that the infl@enicelastase treatment on
the mechanical response of collagen is negligible. Reshtw/is in Fig. 3.2 support our
assumption by showing that collagen is still present aftestase treatment. Furthermore,
significant digestion of collagen by collagenase takes ahnhoreger time than digestion
of elastin by elastase. Hence if denatured collagen iskathby elastase treatment, it is
likely that the activity and time of digestion are too low tavie a noticeable influence on
the mechanical behavior of the tissue.

3.5 Conclusion

Our mechanical experiments on the medial layer of the hurharatic aorta support a
hypothesis commonly adopted in damage modeling of artgsgle — that no softening is
accumulated in the non-collagenous matrix. This matrixdraanisotropic mechanical re-
sponse, with a higher stiffness in the circumferentialaion. We propose an anisotropic
constitutive model to describe this behavior, and sucadgsit it to the experimental data.
Despite the mechanical anisotropy of the non-collagencatsixnwe show that the neo-
Hookean material model provides a sufficient descriptiornvbuilding a phenomeno-
logical constitutive model for untreated tissue. Howewenstitutive models describing
other structural aspects, e.g., growth and remodeling,waany to retain the anisotropy of
the non-collagenous matrix or elastin. The mechanicalaesp of elastase treated tissue
shows both discontinuous softening and continuous saftedihus, interaction between
elastin and collagen fibers appears to be responsible fprasging continuous damage in
the untreated media.



4 A GENERALIZED PRESTRESSING ALGORITHM FOR FINITE
ELEMENT SIMULATIONS OF PRE-LOADED GEOMETRIES
WITH APPLICATION TO THE AORTA

Abstract  Finite element models reconstructed from medical imagiaig,de.g., com-
puted tomography or magnetic resonance imaging (MRI) sagrserally represent ge-
ometries undem vivo load. Classical finite element approaches start from an debba
reference configuration. We present a generalized presigealgorithm based on a con-
cept introduced by Gee et al. (Int. J. Num. Meth. Biomed. R6§2-72, 2012) in which
an incremental update of the displacement field in the dakapproach is replaced by an
incremental update of the deformation gradient field. Omegalized algorithm can be im-
plemented in existing finite element codes with relatively Implementation effort on the
element level, and is suitable for material models formadan the current or initial config-
urations. Applicable to any finite element simulationstsi@from pre-loaded geometries,
we demonstrate the algorithm and its convergence propamie@n academic example and
on a segment of a thoracic aorta meshed from MRI data. Furtiveryme present an exam-
ple to discuss the influence of neglecting prestresses imgees obtained from medical
images, a topic on which conflicting statements are founteriterature.

4.1 Introduction

Medical imaging is frequently performed vivo, and hence the reconstructed model ge-
ometry in the problem of interest representsithevo state, e.g., an artery at physiological
blood pressure. Sugh vivo states are generally loaded, and hence deformed and stresse
These stresses exist prior to reconstruction of the moaehgéy and thus we refer to this
state as prestressed.

Classical continuum mechanics and finite element (FE) metlften assume that con-
stitutive models, and the corresponding simulationst $tam unloaded and stress-free
reference conditions. When applying such classical appesato patient-specific simula-
tions of arteries a theoretical inconsistency arisesirtvé/o determined ‘initial’ geometry
Is not an unloaded reference configuration.

Previous researchers have studied this theoretical istensy and generated various so-
lutions. Schield [31] showed that the condition of equililon for a given elastically homo-
geneous material (with zero body forces) defines an inveegamation, which for some
other material is a state of equilibrium. Capitalizing onsthéleas he proposed a formula-
tion for inverse deformation problems in finite elasticiBhadwick [111] used the duality
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of the undeformed and deformed states in hyperelasticitgwoite Schield’s equilibrium
equations into an energy-momentum formulation. Govindjeg Mihalic [32, 112] pro-
vided a re-parameterized formulation of the equilibriuraagpns in finite hyperelasticity
to accommodate inverse deformations of compressible aasi-gucompressible engineer-
ing materials in a FE setting. The method is generally know/imgerse design analysis
and can be used to compute an unloaded reference configuhiatio a known deformed
configuration with known boundary conditions. Inverse gesanalysis has been applied
to engineering of turbine blades [113] and analysis of smftolgical tissues [114, 115],
[116] with success.

Specifically in soft tissue simulations initiated framvivo imaged geometries, often the
‘unloaded’ reference configuration is not required, buydhht the stress state within the
tissue is in equilibrium with the known boundary conditiasimaged such that simula-
tions can begin from this equilibrium state. This reframedbem has been approached
by several researchers in the context of simulations ofiagteDe Putter et al. [117] pro-
posed a backward incremental method and validated it usweyal simple test problems
with a neo-Hookean material. Unfortunately the authorvipielittle detail on the imple-
mentation of their method. Gee et al. [29, 30] proposed a oteliased on a Modified
Updated Lagrangian Formulation (MULF), and used a muttgilve split of the deforma-
tion gradient to produce a displacement-free prestrassado configuration. They obtain
a prestressed state in the correct range and shape, andximeumavon Mises stress is
generally predicted to within approximately 5% absolut®ebut do not discuss conver-
gence properties of the algorithm. Gee et al. [30] showetth®implementation of the
inverse design analysis into general FE codes is more iaddlvan implementing MULF,
and that application to comparatively thin-walled geomestcan lead to buckling.

In the present work we suggest a Generalized Prestressgayithim (GPA) to simulate

pre-loaded FE geometries, which is based on the seminakpbitroduced by Gee et
al. [30]. Briefly, an incremental deformation gradient isccddted from the incremental
displacement field generated to ensure equilibrium at @action step. The incremental
displacement field is then deleted and the deformation gradield is updated with the
incremental deformation gradient field. The proposed #lgworis not restricted to a spe-
cific FE formulation and can be used for hyperelastic mdtenadels formulated in the

initial or current configuration. Furthermore, changesurnesgl to implement our algorithm
are relatively minor and are all defined on the element level.

We demonstrate the convergence properties of the suggegt@ithm using a simple aca-
demic example and a patient-specific, three-layer (intmedia, adventitia) segment of an
thoracic aorta. To the authors’ knowledge this is the firpigpaliscussing the influences of
a prestressing algorithm on a three-layer, patient-speauiita segment including realistic
fiber-reinforced material models based on experimenta. dadir results show that inclu-
sion of the prestress increases the maximum stresses testimghe artery versus classical
forward approaches, and that the error of the stress estimdepends on the size of the
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load step per time increment. This implies that the errorlmamade arbitrarily small by
sufficiently increasing the number of time steps. Convergaadhe correct solution can
be achieved with reduced computational cost by adding inadment-free time steps at
the end of the simulation.

Starting from the correct reference configuration is noy amiportant for stress and rup-
ture prediction in aneurysms but also for numerical simoiabf catheter-based proce-
dures such as stent-graft placement. We demonstrate thatarect initial reference
configuration not only influences the stress magnitude asilitolition, but also the esti-
mated diameter of the vessel. Such errors have importarnfications in the simulation of
patient-specific placements of stent-graft devices asekiee diameter is pre-selected by
the surgeon based on the artery diameter determined froncahédages [5], and, e.g., its
sealing properties can only be correctly predicted if trearditer and stiffness of the aorta
are well approximated.

In the arterial wall mechanics literature, conflicting staents exist on how maximum
stresses in the aortic wall change when accounting for i@ests in model geometries
derived from medical images. Lu et al. [114] report that atmg for the correct stress-
free reference configuration reduces the maximum stresedgcfed in abdominal aortic

aneurysms versus classical forward approaches. Using MGEE et al. [29, 30] report

that including the effect of prestressing reduces the mawimvall stress in the artery.

Speelman et al. [118] also applied the backward incrememéghod for patient-specific

wall stress analyses. They also conclude that accountmgréstress in a simulation in-

creases the maximum wall stress. Raghavan et al. [119] intemtla method to compute
the zero-pressure geometry of an arterial aneurysm usagsbumption of a consistent
deformation field with varying applied pressure. This israightforward approximation

method, and as such, recovers only an approximation of thieederesult. Here also the
authors report that a theoretically consistent treatmigiieareference configuration results
in a reduced estimate for the maximum wall stresses.

In the context of tubular structures like arteries, we destiate that a change in maximum
wall stress, calculated when comparing classical FE appesato those accounting for
prestresses, depends crucially on changes in the localtcmevof the geometry and on how
close the initial cross-section is to circular. To this engl pvesent, as an example which
accounts for prestressing, an elliptical geometry whergamg the ratio of major to minor
axes. We show that for such ratios close to unity the maximwesses decrease relative
to classical FE approaches, while for ratios that differabbt from unity the maximum
stresses increase.
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Stress-free unloaded

) Intima
reference configuration Qg ‘

Media
Adventitia

Loaded
F=F,bFpe configuration 2

Prestressed configuration
Qimg
Figure 4.1. Schematic of the different configurations during a prestgessalysis:Qq, stress-

free and unloaded reference configuratiQp,g, prestressed configuratiof, loaded configuration
(prestressed configuration with added arbitrary deformation).

4.2 Materials and Methods

4.2.1 Configurations During a Prestressing Analysis

We consider a general boundary-value problem in finite ielastvith respect to a stress-
free and unloaded reference configuraianc R2. Figure 4.1 shows the different config-
urations that occur in a prestressing analysis. The corigur during medical imaging is
Qimg and is represented, e.g., by an artery with an inner preggpgeluring imaging due
to the blood pressure of the patient. The deformation graffigie, in our approach com-
puted, maps the reference configuratidnon the prestressed configuratiOg,g. When
Fore Is known, then configurations with arbitrary loads desatibg a deformation gradi-
entF,p can be computed by the multiplicative decomposittoa FarpFpre, WhereF is the
deformation gradient associated with the mapping from éffierence configuratiofg to
the loaded configuratio€.

FE codes usually start from the undeformed and stressdfesance configuratiog and
update the displacemenfor each time incrememiit with the displacement incremeftl,
i.e.,Ut11 = Ut +Au. The subscript + 1 (advancing the solution to+ At) denotes values
from the current time step, wheretaslenotes values with respect to the previous time
step. In the suggested prestressing algorithm the incringrdate of the displacement is
replaced by the incremental update of the deformation gradi
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4.2.2 Determination of the Prestressed State

To compute the deformation gradiefg.e of the prestressed state, we start our simula-
tion from the configuratio®img C RR3 at timet, which corresponds to the geometry ob-
tained from medical imaging. The coordinates of points is donfiguration at timé are
subsequently denoted by while coordinates in the stress-free and unloaded referenc
configurationQq are denoted b¥.

We propose to define the local deformation gradignat timet as a history variable,
initialized as the identity tensarat the beginning of the analysis. After each time step, we
determine the incremedu of displacements.

For classical FE formulations, the deformation gradiehteatime instantsandt + 1 are
defined as

_oOx Oy _ OXy1 OUgg
“ox taxs = =k
However, for a prestressing analysisjs unknown and (4.%)has to be reformulated in
terms of known quantities, i.e., in termsxf Thus,

Fi (4.1)

dxt+1 aXt+1 dxt dXt+1 JdAu
F — — —_ = F — I _— F . 4.2
BIT X T ax oX  ax b\ T ax ) (4.2)
Now we define the increment of the deformation gradient as
J0Au
AF =+ —— 4.3

see also [30]. When storirig as a history variable, we can then update the deformation
gradient according to
Fir1 = AFF. (4.4)

Note that the notation differs from the notation used in [30]

Figure 4.2 illustrates the different configurations ocogrduring the generalized pre-
stressing algorithm. We start from the geometry determiinech medial imaging (but
without any external load), and hence with the deformati@adigntF = |. At timet we
load the artery with pressuie= p;, which we obtain by mapping, with the deformation
gradientF},re, from the corresponding unloaded reference configuraignAdvancing
one time step, we compute an increment of the displacefenfrom which we deter-
mine an increment of the deformation gradi&ft This yields a configuration loaded with
p= pt+1. TO regain the geometry from medical imaging, we/seback to zero. Thus the
configuration with the geometry from medical imaging anditiveer pressurgy_ 1 has a
new stress-free reference configura@ﬁ’f 1. This configuration deviates from equilibrium
by the displacement incremefiti and is marked with an asterisk (*). We repeat this pro-
cedure for each time step until we obtain an equilibrium aprition very close tQimg.
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Stress-free unloaded Stress-free unloaded Final unloaded
reference configuration ) reference configuration Q}™ reference configuration €2,
at time ¢ at time t+1 after last time step

Stress-free configuration Qg
from medical imaging
at t=0

Intima
Media
Adventitia

Equilibrium configuration Qg
*configuration deviates from equilibrium by Au for last increment

Figure 4.2: Schematic of the generalized prestressing algorithm to inclustegsinto pre-loaded
finite element models. The different configurations with the corresporeitegnal loads that occur
during the prestressing computations are shown.

The time steps should be sufficiently small to ensure@hay is close to the configuration
determined from medical imagin@i*mg and the inner pressungmg. To assure this, we
propose to add load-increment-free time steps at the erftecdilmulation method.

In our algorithm we define one set of history variables at gaahss point, i.e. the nine
entries of the local deformation gradient, and we do not neetbre or update the inverse
of the Jacobian mapping. Both the deformation gradieni and the incremenmAF are
provided on the element level.

Figure 4.2 also illustrates the drawback of the approaeh,that equilibrium is computed
in a virtual configuration that does not correspond to thengetoy of the imaging data,
cf. [30]. Hence, the larger the load increment per time dieg Jarger the difference be-
tween the configuration obtained from imaging and equiliorconfiguration. This effect
results in a dependence of the solution accuracy on the tiepesgze.
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Initialize F = I; for each time incremerdt fromt tot + 1:
. Computedu from equilibrium

. ComputeAF from (4.3), cf. (4.7)

. Readr; from history

. Compute~; 1 from (4.2)

. Updater; < F;. 1 (write to history)

. SetAu +- 0

. Repeat from 1. for«+t+1

~No oabhowbNBE

Table 4.1: Computation of the prestressed deformation gradient within tieeadized prestressing
algorithm.

4.2.3 Implementation Details

In a standard FE implementation the discrete positiand the discrete deformation field
u are approximated as

X = -iNi(f)Xi, u= -iNi(E)Uh (4.5)

whereN; (&) are shape functiong, are the natural coordinates of the elemangre (spa-
tial) nodal positionsyj are nodal displacements anglis the number of nodes per element.
In (4.3), we require differentiation of the displacemerndramentAu with respect to the
current spatial configuratiaox; this is given as

onuON(@E) , IN(E) 0F
ax AU TR axe

(4.6)

where summation is implied over the repeated index. Hencenawerewrite (4.3) as

INi(§) 9§
56 (3xt'

AF = | + Au; (4.7)

We complete this computation immediately after the comparteof Au (and thusAu;)
since the coordinates correspond to the imaged configuration, and thus we know all
terms on the right-hand-side of (4.7). Note that (4.7) agpoads to (39) in [30] where
0& /0x: is denoted as the inverse Jacob.ﬂa‘ﬁ. We summarize the implementation details
for the generalized prestressing algorithm in Table 5.1 nAtessary modifications to a
standard FE code can be accomplished at the element level.

At the end of the prestressing computation we obtain a digion of deformation gra-

dients for the prestressed state correspondingpfg(x) for each Gauss point in the FE
mesh. We implement the GPA as a custom user defined elemems iRE code FEAP

(University of California at Berkeley).
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4.2.4 Forward Simulation Based on Prestressed State

From the prestressed geometry, e.g.,itheivo geometry in equilibrium with thén vivo
loads, we can apply arbitrary loads to study boundary-vatoblems of interest. We de-
fine F4p as an arbitrary deformation gradient associated with sugitrary loads. From
the prestressed state, we compute the deformation andésses using the overall defor-
mation gradient as

F(X,t) = Far(X,t)Fpre(X). (4.8)

In practice, we compute the deformation gradiEf,t) in (4.8) using two steps. First,
we compute the deformation gradient describing the prestcb statd=pe(x) for each
Gauss point using a custom GPA element, and we write out thighiition as a his-
tory file. Next, we perform a classical forward computatiothva standard element from
the prestressed configuration, and the deformation gradeenputed here under arbitrary
loadingF4p(X,t) is multiplied by the deformation gradient describing thegtressed state
Fore(X) to obtain the final solutioifr(x,t). We solved all of the following examples using
the Newton-Raphson algorithm implemented in FEAP.

4.3 Numerical Examples

4.3.1 Unit Cube Test

In this section we present results from testing an incongaoks unit cube meshed with
one solid mixed element (Q1P0). We assume that the cube wnilbaded configuration
has dimensiona x a x a with a = 1 mm, which corresponds to the geometry used for
the classical forward computation of the solution, see #ig(a). We use a compressible
neo-Hookean model, with a shear modulus of 1 MPa, and a peteaih that is used to
accommodate the incompressibility condition numericdltyachieve large deformations
we apply a force oP = 4 N. The load increment for each time stejs AP, = P/N, where

N is the total number of time steps.

Solving the system of equations analytically we arriverat 16.24 MPa for the Cauchy
stress in the direction of loading, with a correspondingtstr of A = 4.061. In the two
directions transverse to the loading axis, the stretah49.496 (the Cauchy stress is zero).
The final equilibrium geometry is thusx ¢ x ¢, with b = 4.061 mm andc = 0.496 mm,
which corresponds to the geometry used as input for the GFAFg). 4.3(b).

In Fig. 4.4(a), we investigate the error in the stress ptemioversus the number of time
steps by comparing the result from the GPA to the corresmgndisult from the forward
computation. FoN = 10! andN = 107 the errors are reasonable for practical applications,
2.5% and 05% relative error, respectively (fdd = 5 the error is 86% and fol = 1

no solution was found using the GPA). At= 10° almost no deviation in the result is
observable. A close-up of Fig. 4.4(a) is given in Fig. 4.4¢ich shows that the solutions
of the GPA converge to the analytical solution.
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a
(a)

b=4.061a

c §:0.496a

(b)

Figure 4.3: Configurations for a single element test of the Generalizestr&sing Algorithm
(GPA): (a) unloaded reference configuration of a unit cube; (frdeed configuration in equi-
librium with P = 4 N, illustrating the large deformation. The classical forward computatiotsstar
from (a) and is in equilibrium at (b), while the GPA uses only configuratijnd estimate the same

stress/strain state.
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Figure 4.4: Error in the stress prediction calculated using the analyticaisoltersus the number
of time stepsN: (a) comparison of the classical forward computation with the Generalieed P
stressing Algorithm (GPA); (b) detail of (a) to demonstrate the GPA cgevere for a sufficiently

high number of time steps.
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Figure 4.5: The effect of adding load-increment-free time steps to the feadseneralized Pre-
stressing Algorithm (GPA) computation: (a) the first ten load-incremestiiree stepdN;r show
an oscillation of the error between negative and positive values, hoteenagnitude of the error
decreases with the number of time steps; (b) the error for a total number détépe after apply-
ing the load with the GPA usiny = 10 and 100 load steps and addixg = 1, 10, 100 and 1000
load-increment-free time steps.

Noting that the solution for a given load depends on the nurmobdéime steps used to
achieve that load, we investigate the possibility of mirziimg the error by adding load-
increment-free time step§r at the end of the GPA simulations. In Fig. 4.5(a) we start
with N = 100 GPA time increments to apply the load, and then includéouen load-
increment-free time stef$r. The magnitude of the error decreases with each additional
time step, however, there is an oscillation between a pesdtnd a negative error.

In Fig. 4.5(b) we start with botlN = 10 andN = 100 GPA time increments to apply the
load, and then includblg = 1, 10, 100 and 1000 load-increment-free time steps. Results
for the same total number of time steps differ depending erp#rtitioning of the number

of time steps with and without load increments, e.g., thereior a total of 110 time
steps is B1% usingN + Njg = 100+ 10 load steps while the error is only03% using

N+ Njg = 104100 load steps.

4.3.2 Representative Patient-Specific Model of a Thoracic Atat

To demonstrate the applicability of our algorithm to largeoblems, we simulate vari-
ousin vivo conditions of a human thoracic aorta using a realistic fiegrforced material

model, and parameters which are based on experimental \Wataise a representative
patient-specific geometry (male, 62 yrs) obtained from saging MRI data, and a finite
element mesh using a custom meshing algorithm [120]. Brigibyedges of the inner and
outer aortic wall are segmented from the imaging data. Wediv&ded the resulting vol-

ume into slices in the axial direction, and then these skeeslivided into sections in the
circumferential direction. The resulting mesh contain@4Bmixed eight-node brick ele-
ments (P1QO0). We used thickness ratios 4890.46/0.36 to define the three arterial tis-
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sue layers (intima/media/adventitia, respectively) avipusly determined by experiment
[93]. Atherosclerotic plaques are neglected in the exaraptetherefore not modeled.

We mesh each layer of the thoracic tissue with four eleméntsigh the thickness in order
to resolve radial stress gradients. The interfaces betweztayers are considered to be
bonded.

To generate a representative numerical test case we askatiibis geometry is a stress-
free and unloaded configuration, and we complete a clagsic@ard computation using
an inner pressure gf= 85 mmHg, i.e. 1133 kPa, which corresponds to the diastolic pres-
surein vivo (we will refer to this as case 1). To test the GPA performaneecampare the
solution of case | to the GPA solution (case lla); this solutises the deformed geometry
of the aorta computed in case | @ 85 mmHg) as the initial geometry. To compute these
solutions we usé&l = 17 time steps for both cases. To show that additional loackment-
free time steps reduce error we repeat the computation efltasvith 83 additionaNe
time steps after the pressuremf= 85 mmHg is reached (case IIb). To study convergence
properties of the GPA in more detail, we also calculate andpare several error mea-
sures for GPA solutions generated using various combinatd standard time steps plus
load-increment-free time steps. To compare differencélsardeformation and stress dis-
tributions resulting from a theoretically consistent cédtion (versus the test cases | and
[la and llb) we also use the GPA to calculate a solution usiegnedical imaged geometry
as starting point (case llI).

We describe the three tissue layers of the aorta using a élgséic material model con-
sidering dispersion of the collagen fibers [39]. The isoahpart of the deformation is
captured by the strain-energy function

U, - ky Kl1+(1—3k)l;—1)2
P=C"(1-3)+ § o {elkh I (4.9)
2 i_§62k2{ }

wherep represents the initial shear modulus of the non-collagemaatrix,k; is a stress-
like parameterk, is a dimensionless parametaris the trace of the isochoric right Cauchy-
Green tenso€, [25], andk < [0,1/3] is a dimensionless parameter describing distributed
collagen fiber orientations.

We assume that two families of collagen fibers are orientdiokiplane of the tissue, where

i = 4 relates to one fiber family anié= 6 to the other. The pseudo-invariahfs=C: M @M
andlg = C : M’ @M’ correspond to the square of the stretches of the fibers inttbedi-
rections [7]. The vector! andM’ denote the mean directions of the collagen fibers in the
reference configuration. The fibers are assumed to be symaitoriented with respect

to the circumferential direction of the artery, and thushddtandM’ are uniquely defined

by the structural parametér, which defines the angle between the circumferential direc-
tion of the artery and the fiber direction. The mean dire&iohthe fiber reinforcement
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Layer  p[MPa] ki[MPa] ko[] ¢[7] K[
Intima 0034 43 133 465 020
Media Q028 Q14 119 384 021
Adventiia Q020 Q39 679 523 023

Table 4.2: Median constitutive parameters for intima, media and adventitia ofitharhthoracic
aorta; adopted from [93].

are input at the element level using an approach similargbdhKiousis et al. [121] im-
plemented in MTLAB (2009b, The MathWorks, Inc., Massachusetts, United Stafés
use material parameters associated with the hyperelasponse taken from our previous
work, as summarized in Table 5.2, [93].

As mentioned, we subject the inner wall of the artery to aguresofp = 85 mmHg. Dis-
placements in the-direction (along the main axis of the aorta) are constchaenodes
on the cutting planes. Furthermore, on the same cuttingeplame suppress the displace-
ment tangential to the main axis at the nodes on the lumidal sf the aortic segment.
Without loss of generality, axial prestretch is neglectedhe scope of these numerical
examples, but it can easily be included if desired, cf. alge, boundary conditions of
Kiousis et al. [121]. By qualitatively comparing the resufghe forward calculation with
the GPA the stress values and the stress distributions duaNy identical. Figure 4.6(a)
compares the distribution of the principal Cauchy stredsesigh the wall thickness for
case | (crosses) and case lla (diamonds), i.e., of the fdramad the GPA computations,
respectively. Figure 4.6(b) shows the percent error of tis¢ firincipal Cauchy stress for
the GPA withN = 17 (diamonds) antll + Njr = 17+ 83 (circles), i.e., 83 additional load-
increment-free time steps. The errors decrease notaltietinclusion of additionad k.

In Table 4.3 we investigate the accuracy of the GPA solutmmvhrious solution ap-
proaches. Therein, the total number of time stepg$ 4sNg, the total number of Newton
iterations isNI, the maximum value of the first principal stress in the ergggment is
01"®, the absolute and relative error of"® with respect to the forward computation are
ea(07"™) and e (0"®), respectively, and the average magnitude of the absolute isr

em(01).

For our patient-specific segment of the thoracic aorta, 1@kgsized time steps are re-
quired to generate a solution in equilibrium wigh= 85 mmHg internal pressure. Even
for N+ Njg = 12+ 0 the GPA provides a reasonable solution with the absolutereln
ative error ofo]"® of ey(07"®) = 5.54% ande(07"®) = 1.87%, respectively. Focusing
on the effect of load-increment-free time stdyyg specifically, we see that for our rep-
resentative exampld + Njg = 100+ 0O total time steps provides a modestly better result
thanN + Njg = 17+ 83 time steps, but requires almost twice the number of Neugton
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Figure 4.6: Representative comparisons of the Cauchy stress distribthimugh the wall thick-
ness of the patient-specific thoracic aorta: (a) classical forward (casses) and the Generalized
Prestressing Algorithm (GPA) (case Il, diamonds) computations, bothNvithl 7 time steps; (b)
percent error (with respect to the forward calculation) of the firstggal Cauchy stress estimated
using the GPA foN = 17 and forN + N = 17+ 83 time steps.

N+ N NI o7™ e(07™) e(0]™) e(0y)

[-] [-] [kPa] [kPa]  [%]  [%]
12+0 53 4341 255 554 187
17+0 71 4361 235 511 168

174-83 195 438 208 4.53 143
10040 385 4401 195 4.24 140
100+17 435 440 191 4.16 138
200+0 742 4405 191 4.16 138

1000+0 3002 448 188 4.09 137

Table 4.3: Representative accuracy of the generalized prestresganghen for various solution
approaches: total number of time stéyg- Nir, total number of Newton iteratiori$1, maximum
value of the first principal Cauchy stress in the entire segragfft, absolute and relative error of
o"® with respect to the forward computatios,(o"®) ande (07"®), respectively, and average
magnitude of the absolute erref(o1).



72 4 A Generalized Prestressing Algorithm

o,[MPa ‘ c,[MPa
0.57 \ 0.8
E E 0.6
- 0.4 [
0:2 ‘ 0.2
E 0 E 0
(a) (b) (c) (d)

Figure 4.7: Comparison of the first principal Cauchy stress (circumfiatestress) generated for

a test case on a representative patient-specific thoracic aorta: (@ntional forward calculation
from the imaged geometry up f@= 85 mmHg (case |); (b) Generalized Prestressing Algorithm
(GPA) computation from the imaged geometry uppte= 85 mmHg (case lll); (c) conventional
forward calculation from the imaged geometry uppte- 120 mmHg; (d) GPA computation from
the imaged geometry up = 85 mmHg (case Ill) with a subsequent forward calculation frps

85 mmHg up top = 120 mmHg. The stress distributions are very similar. Note that the relatively
high stresses near the cutting planes are effects related to the boundditjons and should not

be considered physiologically relevant.

erations to find this solution, thus greatly increasing tbmputational cost. Conversely,
we can match the solution error generated udingN;r = 200+ 0 total time steps using

insteadN 4+ Njg = 100+ 17 time steps, which reduces to nearly half the number of Niewt
iterations required to find this solution.

To compare differences in the deformation and stress bligions resulting from a theoret-
ically consistent calculation (versus the test cases | Enaind 11b) we also use the GPA to
calculate a solution using the medical imaged geometryaasrgy point. Here we perform
two sets of simulations for comparison: the classical fedr@mputation from the imaged
geometry to bothp = 85 mmHg (case I) ang = 120 mmHg (15999 kPa); and the GPA
simulation from the imaged geometry o= 85 mmHg (case IIl) and then a consistent
forward simulation from this GPA result up o= 120 mmHg QAp = 35 mmHgQ).

Figures 4.7(a) and (b) compare the first principal Cauchystdestributions for an inner
pressure op = 85 mmHg of a conventional forward computation (a) with theA@Bmpu-
tation starting on the imaged geometry (b). Figures 4.#d)(d) compare the stress distri-
bution atp = 120 mmHg for the forward computation (c) and for the GPA cotapan to

p = 85 mmHg followed by a forward computation fro;m= 85 mmHg top = 120 mmHg
(d). Note that the relatively high stresses near the cutilages are effects related to the
boundary conditions and should not be considered physaatyg relevant.

In both comparisons (Figures 4.7(a) versus (b), and (cuggd)) the stress distributions
are very similar, however, the minima and maxima are furétpart in the GPA solutions.
The magnitude of the first principal Cauchy stress margiriattyeases in the GPA solu-
tions, due in part to the larger local curvature. We note aiggant difference in the results
from the forward and the GPA computations in the inner di@met the aorta at both di-
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astolic (85 mmHg) and systolic blood pressure (120 mmHg)diastole the values of a
representative diameter for the forward and GPA computatawe 221 mm and 20L mm,
respectively, while at systole the corresponding values2&6 mm and 2 mm. Such
results correspond to an overestimation in the inner adidimeter of approximately 10%
if prestressing the model is ignored.

4.3.3 Elliptical Cross-Section Resulting in Varying Local Cuvature

To study the effect of prestressing on the calculated sisasghin the aortic wall, we build
a simple parameterized FE model. Because we suspect thatlovature has a major
influence, the model has an elliptical cross-section, ang thvarying local curvature,
with the major axisa and the minor axi®. In the limiting cased = b) we obtain a circle.
The wall thickness is constant along the circumferentia@ation as well as along the axial
direction of the idealized aortic segment.

Using symmetry we model one quarter of the ellipse with ogeraf elements in the axial
direction, seven elements in radial direction and 25 elésmeincumferentially along the
90° segment. In addition to the symmetry boundary conditioresallow free movement
in the axial direction. We use a quasi-incompressible neokdan material model with an
initial shear modulugt = 1 MPa and a bulk moduluk = 100 MPa. Starting from zero,
we increase the inner pressure upte: 10 kPa.

We use this model to perform two representative simulatiGihthe correct computation
of the stresses (including prestress), case |, and (iiecégl the prestress (assuming that
the geometry was obtained from medical images, case Il.lHéeocase | we compute the
stresses at 10 kPa for a rangeaofb ratios. Note, if we started from the configuration
deformed undep = 10kPa, and applie@ = 10 kPa using the GPA algorithm, we would
end with the same result. For the case Il we use the deformé@jaocation of case | as the
initial configuration and, subsequently, we apply a pressifirlO kPa. Hence, the initial
configuration of case Il corresponds to a geometry determirfroen medical images. Case
Il corresponds to results of a computation performed witla@mgounting for prestresses in
the aorta. Note that in this example the prestressing akgoiis not used but a conventional
FE analysis is performed from two different reference camfigjons. As regards the aortic
simulations, the initial configuration of case | correspea Q) in Fig. 4.2, while the
initial configuration of case Il corresponds @j,,. To assess the influence of the local
curvature, we vary the ratio of the minor and major axis, with a= 1+ Ad andb =
1— Ad with Ad =0, 0.05, 01, 0.2, 0.3, 04, 0.5, 0.6 mm, whereAd = O generates a circle.

Figure 4.8 illustrates the change in both maximum and meangiimcipal stresg; ver-
susAd. For the simulation with the circular cross-section both éiverage and the mean
stress decrease when accounting for prestress, and hendeagram in Fig. 4.8 shows
negative values. As the eccentricity of the model increéseseasing ratio of major to
minor axis) butAd remains less than4, the maximum stress increases while the average
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Figure 4.8: Change in maximum and average first principal Cauchy strdstween omitting and
considering prestress in an elliptical cross-section with minor and majoaakisvith a= 1+ Ad
andb =1—Ad (Ad = 0 corresponds to a circular cross-secti@anb equals unity).

stress decreases when accounting for prestress. Akobve0.4, both average and mean
stress increase when accounted for prestress.

Figure 4.9 illustrates the first principal Cauchy stras$or the extreme case @ = 0.6.
The Figures 4.9(a) and (b) illustrate case | at 0 kPa and aPaQ&spectively, while the
Figures 4.9(c) and (d) show the corresponding informatayrcése Il. The configuration
in Fig. 4.9(a) clearly shows the higher local curvature foe teference configuration of
case |. The reference configuration for case Il has the sammeajey as the deformed
configuration for case |, and thus a much lower local cuneatur

The high stress gradient in case | results from bendingsgsePue to the applied inner
pressure the ellipse wants to deform towards a circle. Tdtubge position of highest local
curvature the ellipse bends open. These bending stressegeatly reduced in case Il
because the ratio of major and minor axis is much lower inrfi@l configuration.

4.4 Discussion

4.4.1 Unit Cube Test

Results from the unit cube test (Section 4.3.1) demonstnatetie accuracy of the method
depends on the size of the load increment per time step. Tieist eesults from the fact
that equilibrium is computed in a virtual configuration deteed by the displacement
incrementAu which acts on the imaged geometry. Thus, the smaller theilgadment
per time step, the smalléw, and hence the smaller the error resulting from the ‘wrong’
configuration on which the equilibrium is fulfilled.
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Figure 4.9: Stress distributions in the elliptical cross-sectlah=£ 0.6) for (a) case | ap = 0kPa,
(b)case | atp = 10kPa, (c) case Il ap = OkPa and (d) case Il gt = 10kPa. The high stress
gradient in case | results from bending stresses when the ellipticaleeotisn deforms towards a
circle. Bending stresses in case Il are much lower because the ratio aftmajmor axes is lower
in the stress-free reference configuration.
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Figure 4.10: Oscillation of the error while using load-increment-free time $gpsith the gener-
alized prestressing algorithm.

The oscillation in Fig. 4.5(a) can be explained by studyihg tifference between the
configuratiorQ;, 1 on which the equilibrium is fulfilled, and the configurati@afor which
we seek a final solution. For clarity, consider, for examghe, uniaxial extension of a
unit cube, as shown in Fig. 4.10. Assume a standard applicati the GPA results in
an equilibrium stress/strain distribution after the finale step of load application on the
configurationQ;. 1 in Fig. 4.10, and the tensile Cauchy stress in this configumat be

Ot+1-
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The deformation is larger i1 than in Q;, henceadi,1 > a;, wheregy is the exact
solution for the stress in configuratid®, and thus the result we seek. Before the first
load-increment-free time step is computed, the configomd®; ., 1 is set back td, i.e.,
Aut 1 = 0, but the deformation gradient (in the history) remains tn@e. In this case, the
stress value remaing_ 1 and is, therefore, overestimated. In an effort to better@pp
mate equilibrium under the constant Idathe geometry must change to the configuration
Qi 2 in the next load-increment-free time step. Once the gegmeet back to the im-
aged configuration, the stressdh is underestimated. For the next load-increment-free
time stepQ;. 3 the cube must now extend to better approximate equilibrilinis oscil-
lation of the solution proceeds while the magnitude of thheredlecreases monotonically
until the solution converges within an acceptable toleeaiNote that the stress estimated
in configurationQ; oscillates at each time step (even though the load is cap&tacause
the implied unloaded reference configuration changes foh ¢éiane step when the dis-
placement is set back to zero.

It is important to regard two different aspects of solutimmeergence when discussing
convergence of the generalized prestressing algorithrst iBithe convergence of the so-
lution for the iterations of each time step. This convergasaot affected by the GPA, and
hence is the same for a given material model using a conveitiorward or a GPA com-
putation. Second is the convergence of the stress distibidr the deformed geometry
Q; (cf. Fig. 4.4) to the exact solution. This convergence ddpem the size of the time step
and on the number of additional load-increment-free tinepstFor a given convergence
tolerance, results in Fig. 4.5(b), and Table 4.3, imply domputationally less expensive to
use relatively few time steps for application of the load add load-increment-free time
steps to the solution, than to use the equivalent numbemaf siteps only for application
of the load.

4.4.2 Patient-Specific Model of a Thoracic Aorta

Focusing now on the representative test case of the pajeuific thoracic aorta model
(Section 4.3.2), agreement between the results from tlesickl forward computation

(case I) and from the GPA calculated entirely on the corredpm deformed configura-

tion (case lla), as shown in Fig. 4.6, is very good, even whgnguthe same number of
time steps (relatively few) for both computations. Addiogd-increment-free time steps
decreases the solution error, but increases the computiost. Therefore, it is neces-
sary to find a good compromise between accuracy and congmaatiost, which depends
strongly on the problem to be solved. Table 4.3 shows thahtitesion of load-increment-

free time steps yields a similar accuracy for the same tataiber of time steps while

reducing the computational cost, i.e., the number of Nevitlemations is drastically re-

duced.

When initiating simulations from the correct imaged geomaetrere is a difference in the
stress distributions and especially in the maximum steelseveen the forward computa-
tion (case I) and the GPA computation (case Ill), as showngn47. Our results indicate
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the inclusion of prestressing on patient-specific simakeiincreases both the distribu-
tion and maximum of the first principal Cauchy stress. We gasduhat this effect is due

to larger local curvatures in the imaged geometry versusiéiermed geometry of the

classical forward computation.

The significant difference between the classical forwaesécl) and the GPA computa-
tions (case lll) for the predicted inner diameter of the aoat both diastolic and systolic
blood pressure, is due to the relatively low stiffness ofdtterial tissue at relatively low
stress, cf. [80]. A correct prediction of the diameter isexsplly important for modeling
clinically relevant problems, e.g., surgical procedureshsas stent-graft placement for
thoracic or abdominal aneurysm repair. In such intervaestiihe diameter of the stent is
selected before the procedure begins, based on the dianfidker aorta but oversized by
approximately 10 to 20% to insure adequate sealing [5]. Tdwesestimating the inner
diameter of the aorta by approximately 10% could lead toreewasinterpretations of the
simulation results.

4.4.3 Influence of Prestress on Stress Distribution

Our results demonstrating increased stresses in the papenific model when accounting
for prestresses are consistent with those reported by DerRatal. [117] and Speelman
et al. [118]. Both conclude that accounting for prestresténpatient-specific FE simula-

tions leads to an increase in the maximum arterial wall stfieaghavan et al. [119] report
that their approximate, but theoretically consistentttresnt of the reference configuration
results in a reduced estimate for the maximum wall stres$asever, the result depends
on the assumption of a consistent deformation field within @lterial aneurysm under
varying applied pressure; thus changes in local curvamdefinite deformation are ne-

glected. Interestingly, both Lu et al. [114] and Gee et @, 0] report that accounting for

the correct stress-free reference configuration redueesmtiximum stresses predicted in
abdominal aortic aneurysms with respect to the use of aici$ermulation.

In view of our example with a parameterized elliptical crssstion (Section 4.3.3), the
contradiction of changes in stress distributions may tdsuin different geometries used
in the examples. When the geometry deviates from a circleyalyt, the local curvature
inside the aortic model changes. When a distorted circutesesection geometry, such as
the ellipse, is inflated, the inner pressure tends to defomdistorted geometry towards
a circle. This induces bending stresses and the maximum\eamege stresses increase in
proportion to the enforced amount of bending.

As stresses resulting from bending motion play a role in tiess distribution, the transmu-
ral stress distribution should be resolved with an appedemumber of elements through
the thickness of the arterial wall.
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4.4 4 Limitations

As stated by Gee et al. [30], a major disadvantage is thatiequm is not achieved on
thein vivo configuration but in a configuration that deviates fromitheivo configuration
by the increment of the deformation gradiéft. However, in two examples we show that
our solution using the GPA from the deformed configurationvenges to the solution
obtained from a classical forward computation. Load-inezat-free time steps at the end
of the computation only account for the differences betwberdesired equilibrium on the
imaged geometry and the obtained equilibrium on the vigealmetry. The method can be
used on arbitrary geometries. However, it is only applieablderive stress distributions
in loaded geometries provided that the material can be reddeith a path-independent
material law.

Regarding the example of the patient-specific model, theegadfithe stresses in Fig. 4.7(b)
specifically, the maximum first principal stress reportethm simulation at diastolgy(=

85 mmHg) is relatively large. However, the maximum valueghefstress appear near the
cutting planes at the upper and lower ends of the aorticaseatid are attributed to bound-
ary effects. These should not be considered physiologicalevant. The maximum and
mean first principal stresses near the center of the sedmanated are approximately
0, = 0.3MPa ando; = 0.1 MPa, respectively. These stress values are within theerang
reported by Holzapfel et al. [7] for aortic tissue.

Furthermore, the stresses reported for the intima are lyokadpher than the stresses in
the media and the adventitia. This result is not likely fréma physiological point of view
because the tissue is known to be residually stressevo [24]. Including the effect of
residual stresses into our modeling framework would géiyetend to homogenize our
results across the layers, as the intima is under compreasib the media and adventitia
are under tension in the three-layer composite tigswevo [24]. Furthermore, large open-
ing angles may lead to an increase in circumferential andifodinal stresses towards
the outer radius of the aortic wall [122]. Hence, to obtairlaupible result for the stress
prediction in three-layer patient-specific models of the@aesidual stresses need to be
included in future work. This topic lies outside the scopehaf current paper, and hence
was not pursued further.

4.5 Conclusion

We present a Generalized Prestressing Algorithm (GPA) fotefielement simulations
of general pre-loaded geometries. Relative to availableddations of a similar nature,
our algorithm is applicable to FE formulations based onl toégrangian or updated La-
grangian formulations. A disadvantage of the GPA is that mferee equilibrium in a vir-

tual, non-existent configuration, and this may lead to srnoithe stress prediction. This
disadvantage can be overcome by decreasing the load increerdime step, or by adding
additional load-increment-free time steps at the end ofrausition. We demonstrate the
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accuracy of the GPA using both a unit cube under uniaxialid@nsnd a patient-specific
model of a thoracic aorta including a realistic anisotrapi@terial model for the arterial
wall. Our results show very good agreement with correspandesults from a classi-
cal forward computation and demonstrate that the solutrcor ean be made arbitrarily
small. With a parameterized model, in which we progresgieblange the geometry, we
address contradicting statements in the arterial wall meick literature, hence an open
question. Our results demonstrate that the maximum andgedirst principal stresses in
the arterial wall may increase or decrease depending orotad ¢urvatures of the initial
configuration.
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5 A COMPUTATIONAL FRAMEWORK FOR PATIENT-SPECIFIC
MODELING OF HUMAN ARTERIES CONSIDERING INITIAL
STRESSES AND SUPRA-PHYSIOLOGICAL LOADS

Abstract Catheter-based surgeries such as stent-graft placentestaortic balloon oc-
clusion or angioplasty may cause high stresses and dam#geaorta. We present a mod-
eling framework to numerically evaluate stress and daméaighiitions inside the layers
of patient-specific human aortas. Our constitutive modstdbees the supra-physiological
load range, and our framework accounts for both layer-§peesidual stresses within the
tissue, and prestresses which exist because finite elenwel@isreconstructed from med-
ical images generally represent geometries uindeivo loads, e.g., blood pressure. In our
representative, patient-specific simulations we noteifsogmt correlation between local
wall curvature and stress magnitude, resulting in largatians in the stresses predicted
along the circumference of the aorta. While such effects egegmt in virtually all cur-
rent patient-specific simulations, large stress varigtame unlikely to occuin vivo. Thus,
we propose to ‘precondition’ the aorta with a maximum logdoorresponding to rigor-
ous exercise, a pragmatic approach to account for matehaimogeneity, but one that
leads none-the-less to physiologically relevant res@ts. modeling framework, together
with the material and structural parameters all based oeré@xpntal data, can be used to
analyze endovascular procedures and, in the future, mayrhplrove patient outcomes.

5.1 Introduction

Catheter-based procedures reduce pain and hospitalizatierfor patients with cardio-
vascular disease, a major cause of morbidity and death wekseern world. However, de-
ployment of stents-grafts or inflation of intra-aortic loalhs can cause large deformations
in the aorta, thus generating high stresses which may causage in the tissue. Typically,
an endograft for endovascular repair of aortic aneurysmegdssized by 10 —20% to main-
tain adequate sealing between the vessel and the grafhieg-aortic balloon inflation is
another procedure which may cause damage in the aorta. terless, balloon occlu-
sion is performed at a variety of positions along the aortaaatsof many treatments, e.g.,
with hemorrhagic shock resulting from pelvic fracture [L28ith aneurysm repair [124],
with ruptured abdominal aortic aneurysms (AAAs) [125, 128]to stop gastrointestinal
bleeding [127].

In order to study such problems using a patient-specifidefieiement (FE) framework,
one requires both appropriate constitutive models, fittexkperimental data on human tis-

81
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sue samples, and methods to account for initial stresseslpdoth prestresses and resid-
ual stresses, in the simulations. In this study we use a FEemgntation of the damage
model published by Weisbecker et al. [93] to simulate andysthe supra-physiological
stress-strain response of human aortic tissue. In agedeartbe intima thickens and all
three layers (intima, media, adventitia) bear significaadl and hence are mechanically
relevant [77, 93]. To improve the fidelity of current modeliapproaches we demonstrate
our modeling framework on a representative three-laydreptspecific model of the hu-
man thoracic aorta derived from cardiac-gated Magnetic Fesme Images (MRI).

Medical imaging is most often performed vivo, and hence the reconstructed model
geometry in the problem of interest will represent thevivo state, e.g., a blood vessel
deformed under physiological blood pressure. Howevegsatal continuum mechanics
and FE methods assume that constitutive models and thesponding simulations begin
from unloaded, stress-free reference conditions. Wheryaqgp$uch classical approaches
to patient-specific simulations of arteries a theoretiogbnsistency arises: tha vivo
determined ‘initial’ geometry is not an unloaded referenogafiguration. To address this
problem Gee et al. [29, 30] proposed a method to include neesgs (stresses in equilib-
rium with the known boundary conditions of the initial modelometry) to patient-specific
geometries of AAAs based on an updated Lagrangian approach.

We recently proposed a Generalized Prestressing AlgoriRA), [128], based on the

concept introduced by Gee et al. [30]. Briefly, an incremed&dbrmation gradient is

calculated from the incremental displacement field. Theeimental displacement field is
then deleted and the deformation gradient field is updatéul tve incremental deforma-
tion gradient field. Our algorithm requires fewer historgnte relative to Gee et al. [30],

thus decreasing the memory requirements and computatosglan advantage for large
patient-specific simulations. Compared to the inverse desiglysis [31, 32], which com-

putes the actual load-free configuration prior to clasdmalard simulations, our GPA is

easier to implement and is not prone to geometric buckling.

Residual stresses exist in healthy human arteries, anduesttesses have a significant
effect on thean vivo distribution of stresses, and hence on the developmenteriairtis-
sues, see, e.g., Chuong and Fung [129] and Bustamante angféb[280]. Early studies
investigated residual stresses in arteries by measurepgening angles’ of radially cut
arterial rings, e.g., Fung [22] and Fonck et al. [23]. Redidti@sses/stretches have pre-
viously been incorporated into FE models by simulating tlesing of arterial segments,
modeled with a single opening angle, to create thick-watildailar segments prior to ad-
ditional loading, see e.g., Balzani et al. [78] and Holzapfed Gasser [34].

Holzapfel et al. [24] investigated 3D residual deformasidor layer-separated tissue strips
(intima, media and adventitia) in their passive states, smaved that residual deforma-
tions are three dimensional and cannot be described by & gpagameter such as the
‘opening angle’. We base our approach to including residtratches in FE simulations
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on the experimental data of Holzapfel et al. [24], wheredeai deformations of the aor-
tic tissue layers are reported after separating theseddy@m one another. From these
deformations we compute a residual deformation gradiedtraap it element-wise into
our FE models. The prescribed residual deformation is ncesearily in equilibrium and
may induce deformation in the geometry. We propose an iterptocess to include resid-
ual stresses and to still ensure that the residually stlegsemetry equals the geometry
determined from medical imaging.

Alastrué et al. [35, 131] included residual stresses intepaspecific simulations of arter-

ies using methods based on the ‘opening angle’. One drawtbatleir approach relative

to our study is that the residually stressed configuratiesdwt match the geometry de-
termined from the medical images. Subsequently we refeotb the prestress and the
residual stress distributions as the initial stressesepitaa the configuration determined
from the medical images.

Several researches have proposed constitutive modelsftdyislogical tissues which in-
clude the damage behavior of particular tissue componse¢s,e.g., [43, 63, 132, 133].
Recently researchers have also proposed damage modelcsigdior arterial tissues.
Li and Robertson [65] suggest a layer-specific damage modesiog on sub-failure me-
chanical damage of the elastin, ground matrix and collaggmesented by the recruitment
of collagen fibers, gradual degeneration, failure of atemponents and changes in the
tissue properties. Li et al. [134] then demonstrate the tttotise model by simulating
cerebral angioplasty, however, they use axisymmetric FeEngdries (not patient-specific)
for the cerebral artery and do not use layer-specific experial data for the elastic and
damage properties of the artery. Marini et al. [61] propas&atropic continuum damage
model for AAA wall considering tissue heterogeneity. Theyrbnstrate their simulation
approach using a series of patient-specific models of AAAdpture prediction and dis-
cuss potential applications in growth and remodeling. Baleaal. [60] propose a contin-
uum damage model using internal scalar variables to represéiagen fiber damage de-
fined such that no damage occurs in the physiological loadiimgain. To demonstrate the
framework, they evaluate softening in a patient-specifteral cross-section (2D model)
at supra-physiological intraluminal pressure. None ofrtieels discussed here employ
three-layer, 3D patient-specific arterial geometriespancfor initial stresses, nor examine
the stress distribution through the thickness of the vesakl

Alastrué et al. [131] propose a similar numerical framewloripatient-specific modeling
of vascular tissue where a residually stressed and geaagtrconsistent model of the
patient is obtained. However, they assume a constant welréss for the artery, using
a single set of material parameters obtained from porcgsei¢i, determining the residual
stresses based on an opening angle approach, and negtesirggsoftening due to supra-
physiological loads. Contrary to that, the wall thicknessuse is estimated from MRI,
the material parameters as well as the residual stretched three layers are determined
experimentally from human tissue and we include the saftgbiehavior to the material.
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This adds to the improved method to apply the residual ssgssgeometry obtained form
medical imaging.

We combine these elements with the aforementioned featimestablish a framework for
modeling surgical procedures such as stent-graft placeamantra-aortic balloon occlu-
sion. Furthermore, we define a new measure, an incremerdsoietidamage, to describe
softening associated with supra-physiological loads,@ssed to softening associated
with the preconditioning behavior of arterial tissue [80].

In Section 2 we summarize the constitutive model and ddaw#lgorithmic implemen-
tation in the context of the FE method. Furthermore, we tletai numerical methods to
include initial stresses, both the residual stress/stratd the prestress/stretch. In Section 3
we show that the three-layer model can reproduce experaheata from the intact wall.
We also discuss a 3D patient-specific model of a human thoeaxtia loaded with inter-
nal pressure and study aspects of the modeling framewarkidimg the the influence of
initial stresses on the predicted stress distributiongl@dorrelation between local tissue
stresses and the local curvature along the circumferenibe @orta. As a final demonstra-
tion, we simulate intra-aortic balloon occlusion in a hurttaoracic aorta. In Section 4 we
discuss our results, while we conclude in Section 5.

5.2 Constitutive and numerical modeling

5.2.1 Constitutive relations

We consider a multiplicative decomposition of the defoiioragradient = (J%/31)F with
the Jacobian determinaht= def > 0. The termJ1/3| is associated with volume-changing
deformations|(is the second-order unit tensor), whiewith def = 1, is associated with
volume-preserving deformations of the material [81].

We base our approach on the pseudo-elastic damage modelio&d by Ogden and Rox-
burgh [48], which has the form

W(J3,C,n) = Wa(3) + nP°(C) + (), (5.1)

whereW, and®° describe the volumetric and isochoric elastic respongspectively,
C = F'F denotes the modified right Cauchy-Green tensor, wihildenotes the damage
function which implicitly defines the damage variabjje Here we choose the evolution
equation

1 1 —max 0
=1-Cerf| (W -@ 5.2
n ; {m( )} : (5.2)
wherer > 1 determines the maximum material damage that can be indunckt mechan-

ical loading,m > O characterizes the dependence of the damage on the deforraat
P s the maximum isochoric strain energy recorded over the hestory.
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With this definition of the damage variable,= 1 relates to a path on the primary loading
curve. Therefore, the minimum of the damage variable

i 1 1 max
mn__ 4 =
n""r=1 ; erf<mLP ) (5.3)

characterizes damage induced to the material. For mordsdetapseudo-elastic damage
theory and the derivation of this damage variable from theatge function we refer to
Ogden and Roxburgh [48].

In Weisbecker et al. [93] we propose a pseudo-elastic dammagke| for arterial tissues,
and in [135] we conclude that damage is primarily relatedhodollagen fibers by testing
specimens where either elastin or collagen are digestattd;éhe strain-energy function
we use is

W(J,C, N, N6) = Wol(J) + Pon(C) +§ @51 (C) + i ()], (5.4)

max

ni = 1—1erf{m(‘Pf, _wf,i):| , i :4,6, (55)

where the subscript m refers to the non-collagenous matimponents of the tissue,
and the subscript f to the collagen fiber network. Note, thatdamage variablg; only

alters the strain energy of the fibers, i._kégi. The volumetric part of the strain-energy

function has the formi,o = Klog(J)2/2, where the penalty parametérenforces quasi-
incompressibility. We choose a heo-Hookean behavior fentlatrix component such that

w?n u(l1—3)/2, whereu > 0 is the initial shear modulus amg= trC. The two families
of collagen fibers [7] form a network which exhibits an expatie response according to
Gasser et al. [39] such that

W, = (el ~ 12 -1}, 1=46 5.6)

wherek; > 0 is a stress-like parameter alkd> 0 is a dimensionless parameter We define
the mixed mvanantﬁ =Kl + (1—3k)li by usmgl4 =M-CM andl6 =M’.CM’, where

the unit vectorsM andM’ characterize the mean fiber orientations. These are defined b
a single parameter, namely the fiber angfl¢ measured from the circumferential direc-
tion of the aorta (fiber components along the radial directdthe artery wall are here
neglected). The parameterc [0,1/3] describes the dispersion of the fiber orientation.

The anisotropic pgrt@]? i, | = 4,6 of the strain-energy function only contribute to the total
strain energy if 1" > 0. This implies that damage, which is associated with thiageh
fibers, is only accumulatedif > 0. For more details on the constitutive model, and it’s fit
to experimental data, we refer to Weisbecker et al. [93].

We compute the second Piola-Kirchhoff stress tensor fra#) (aS= 20W/9C = S| +
Sn+Si, i = 4,6. Hence, withS,o = 20W,)/dC, Sy = 20Wr,/dC and using@% = Py
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we have

—0 [0
- oW 0O | o 0| _ < sl
Si=2 '”Iia—C’IJFLPn 0CI +q)f| 0~.CI =i, Sf,l - 25—(; (5.7)

From here we then obtain the Kirchhoff stress terrsand the Cauchy stress tengoby
the push forward operation= FSF', with o = J11.

In order to obtain efficient nonlinear solutions in the cahigf the FE method, we need
the consistently linearized elasticity tensor for useendtive techniques of Newton'’s type.
The elasticity tensor in the Lagrangian descriptiofi is 4(92‘P/0C0C =Cyol +@m+@7i,
and thusCyo = 492W,/dCAC, Cry = 40%Wp,/dCAC and

Ci—4 oW, 40%' on; i—4.6 5.8
i =M5eac tae Pac =48 &8

where 0
: oV
% _ ar)l fi (5.9)
oC al_p Fle
such that we can write with (5.7)
— (32¢f i arll —0 .
Ctj =4n; 9CaC 0_0 Sfl Sf,iv I =4,6. (5.10)
Furthermore,
om _ exp{ —[my (P -T2, (5.11)
(9¢f mirl\/TT ’

where the property[drf(z)] /dz = 2exp(— 22)/ﬁ has been used. On the primary loading

curven; =1 anddn;/dC =0, hencein. = 02% i/0COC. A derivation for the isotropic
part of the elasticity tensor can be found in, e.g., Mieh&[1®hile the anisotropic elastic
part (i.e. without damage) can be found in Gasser et al. [38].full anisotropic part of the
Lagrangian elasticity tens@m and the Eulerian elasticity tensgr, we derive in A.1.

It is well established that softening of arterial tissuesuss during mechanical testing
at physiological loadings, a phenomenon usually referoealst preconditioning behavior
of the tissue [80]. In order to distinguish softening in theygiological loading range
from softening due to tissue damage, and thus allow a mongaecinterpretation of the
simulation results, we define the increase in softening ttephysiological load, say, e.g.,
systolic blood pressure, to supra-physiological loadSrasNe calculate the new measure,
the increment of tissue damads), by comparing the minimum of the damage variable
at arbitrary supra-physiological loadg™" and the minimum of the damage variable at
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Initialize lel =0 (i =4,6), for each Newton iteration and each fiber family
1. ComputerfI from the push forward of (5.%)and determlnef ., seethe Al

2. ComputeLPfI from (5.6)
3. ReacHJf, *from history
4.

Check
it Wp; > w?‘,ax
max . .
Wi« lev, (write to history)

end if.

5. Computen;, 5Tl7(i) andT]‘?./i from (5.5), (5.11) and the push forward of (%7)
fi
e 0 .o -0, 9N o

6. Computers; = niTy; anderj = Nicy; + —5 11, © Tf,

f i

Table 5.1: Computation of fiber contributions (fiber families 4, 6) to the total Kirchhoff stress
and the Eulerian elasticity tensors for the damage model presented in Se2tibn 5

physiological blood pressunqep”;j)’). In order to have consistency with the definition of the
damage variable) (i.e. An; = 1 refers to an undamaged collagen fiber netwior&nd
An; — 0 refers to severely damaged fibers), we propose

Any=1—(nii—n™),  i=46. (5.12)

Using the generalized error function
erf(a,b) = / e Sds= erf(b) — erf(a), (5.13)

we can reinterprehn; as

l wmaX LIJmaX -
Ar)i =1- Ferf( F;T:M I]irll s I = 47 67 (514)

which has the same form as (5.3), and wHefg,; is the isochoric strain energy recorded

in the fiber familyi under physiological loads arﬁ?}ax is the maximum isochoric strain
energy recorded in the fiber familyover the (supra-physiological) load history. In what
follows we refer taAn; as the damage increase in the collagen fiber family

5.2.2 Numerical implementation

We realize the algorithmic FE implementation of the damageehfor each fiber family
in the collagen network. For the corresponding hyperealastidel of Gasser et al. [39] the
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Stress-free configuration

for residually stressed state
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Figure 5.1: Deformation history of the aortic arterial layers up to loading witaraitrary internal
pressure,, including the effects of initial stresses. The reference configur&igrelates to the
imaginary residually stressed configuration without an iteration procet@beereference configu-
ration Qqp, relates to the geometry @ing with an iteration procedure but without a prestressing
algorithm. The reference configurati€hy relates to the arbitrary loaded configuration. The aster-
isk and the dashed arrows denote deformations in which the currenjue@tion does not change
its geometry.

iterative process to compute the entries for the stress @ifrtess matrices is shown in
Table 5.1.

Figure 5.1 schematically illustrates the steps used tadelinitial stresses and describes
the deformation history. The configuration we assume to lesstfree and on which we
apply the residual stresses, Here the residual stresses are released by separating
the layers, therefore the layers form a non-compatible g#ymiNo internal pressure acts
on the inner aortic wall. After applying the residual stesssvith an iterative procedure
and obtaining a compatible geometry, the configurafdpsy is achieved [128]. This con-
figuration comprises residual stresses but the internalsprep remains zero. By using
the iterative procedure, we obtain a residually stressaé sihQes= Qimg, Which corre-
sponds to the geometry from medical imaging. Since thersaergy function uniquely
relates stresses and strains, and the stress state chaitiysat wny changes of the geom-
etry, the configuratio®,es Obtained with the iteration procedure relates to a new eefss
configurationQqp,.
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In the next step, we increase the internal pressure withpdéting the geometry and ob-
tain the configuratio;mg. The stress state has now changed comparéedobut the
geometry has not. Again, as the strain-energy functionuetjorelates stresses and strains
the unloaded reference configuratiorthf,q has changed compared®s, sayQqc. After
applying the initial stresses, the geometry can be loadddaxbitrary loads and we obtain
Qarb- The individual steps described here are detailed in wHiiwe. In Fig. 5.1 solid
curves depict deformations that relate two configuratidinthe reference configurations
change due to the used algorithms (iteration proceduressti@ssing), it is marked with
dashed curves and the corresponding deformation gradientearked with an asterisk.

Residual stresses

In order to account for residual stresses in our modelingéwsork, we draw on the exper-
imentally measured residual deformations from Holzapfedle[24]. Therein, when the
three layers of the composite aortic wall (Intima, Mediayuititia) are separated, the au-
thors measure the resulting residual deformations exgeratly, e.g., the intima enlarges
and the media and adventitia shrink after separation. Wehese data to define a defor-
mation gradienfes(X) describing the residual deformation in the intact aortidl.wio
map the deformation gradient into a (possibly patient-s$gg¢d-E model, we compute a
local coordinate system for each element, where the looaliferential directior®, the
local axial directiorz and the local radial directionof the aortic geometry are determined
based on the element’s position within the aorta.

To this end, we define the element coordinate system at therogfheach element using
the local circumferentidNg, axial N, and radialN; basis vectors of the aortic section, im-
plemented using a customAvILAB (2009b, The MathWorks, Inc., Massachusetts, USA)
code. First we define the local axial directidly parallel to the direction of the lumen
center line, at the MRI stack height of the element center. ¥¥¢ define the local circum-
ferential directionNg as normal to the plane spannediyand a vector from the lumen
center line (at the MRI stack height of the element centerhédenter of the element.
Finally, the local radial directiolN; is the direction perpendicular to boity andN,. Our
method is similar to that introduced in Kiousis [121].

We define the local deformation gradient in the initial el@tmeoordinate system as (in
matrix notation)
Ag) O O
[Flg =10 Ay O |, (5.15)
0 0 Ay

with | € [Intima, Media, Adventitia] and stretchely | and A, determined experimen-
tally [24]; we computeA,; assuming isochoric deformations, i.e. [EQ%,] = 1. For the
FE model, we need the deformation gradient in the globaldinate system and thus
transform it using the tensor transformation

Fres= QTFLcéng (5-16)
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whereQ is an orthogonal (transformation) tensor. Prior to the foat step, the FE pro-
gram reads in the deformation gradient and prescribes thresponding values to the
Gauss points. As a result, the stress-free configurdligns not part of the numerical
simulation.

After we prescribe the deformation gradiéhtsto Qo at each Gauss point of a simula-
tion, global equilibrium is no longer fulfilled. To generaerobust solution we initially
apply fixed displacement boundary conditions to the modéthwve gradually relax such
that the residually stressed geometry represents a leadzbnfiguration. However, once
the residual stresses are in equilibrium, the deformed ingelemetry differs from the
imaged geometrf,es In order to correct this situation, we propose an iterativieeme
to map the residual stresses back of?atgs We map the deformation gradient field from
the first relaxatiorf-re51 onto the geometrfes and again relax the boundary conditions.
We then map the resultant deformation gradient figld, onto the imaged geometry and
again relax the boundary conditions. We repeat this progesisthe change between the
resulting deformation gradient fiel#sesn andFresn1 falls below a prescribed tolerance.
In our example five iterations are sufficient to reduce thermsgpiare error between the
deformation gradient fields calculated from two subsequelakations to approximately
10-°to 1078, After this iterative relaxation procedure we obtain thenpatible residually
stressed, unloaded configuration@ps.

Prestresses

In order to account for prestresses in our modeling framkywee use the GPA [128], a
generalized and modified version of an algorithm introdune@ee et al. [29, 30]. Briefly,
we calculate an incremental deformation gradient from ticeemental displacement de-
termined from each converged iteration step. We then diHetancremental displacement
and update the total deformation gradient with the increaledeformation gradient. To
do this, we define the total deformation gradient as an amditihistory variable during
the computation.

After accounting for both residual stresses and prestegssrbitrary deformatioft;p,
now computed with a conventional FE scheme, yields the sparding configuration
Qarb- In summary, we compute the total deformation gradient el €@auss point in the
FE model as

F(X,t) = Far(X,t)Fpre(X) Fres(X). (5.17)

The essential idea is similar to the strategy presented 8i][however, details such as
the iteration procedure for the initial stresses are impdoand the implementation of the
prestressing algorithm differ.

5.2.3 Numerical examples

To demonstrate different aspects of our modeling frameywweksimulate both the uniax-
ial extension of a tissue sample taken from the thoraci@ard physiological and supra-
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H[MPa] ki [MPa] ko[] ¢ [°] k[] re[] m¢[]
Intima 0034 434 133 465 020 100 0014
Media Q028 Q14 119 384 021 187 0009
Adventiia Q020 039 679 523 023 115 0022

Table 5.2: Median constitutive parameters for the intima, media and adventitia btithan tho-
racic aorta, as reported in [93].

Agi[-] Az []
Intima 0963 0959
Media 1081 1042
Adventitia 1059 1096

Table 5.3: Residual stretches in the circumferential and axial directdgnsandA;,, respectively,
for the intima, media and adventitia, as reported in [24]. Residual stretch radied direction;
is calculated assuming isochoric deformations Ag@ Az Ar | = 1.

physiological loading conditions of the human thoracictaofFor all examples presented
in this paper we use 8-node mixed (Q1PO0) brick elementsmiBAP (University of Cali-
fornia at Berkeley, CA, USA). We model aortic tissue as a thager composite, where we
specifically model the intima, media and adventitia of teeue. To this end, we use exper-
imentally determined thickness ratios 0fl9/0.45/0.36 for the intima/media/adventitia,
as reported in Weisbecker et al. [93]. To describe the laykse thoracic aorta we use the
median constitutive parameters for intima, media and aitieeneported also in [93] and
summarized in Table 5.2. We incorporate residual stret@iessilting in residual stresses)
into our simulations based on the experimental resultsrte@an Holzapfel et al. [24], as
summarized in Table 5.3.

Uniaxial extension of a tissue sample taken from the thoraciaorta

First, we study the influence of residual stresses on theqteettransmural stress distri-
butions by comparing results generated with the inclusioexperimentally determined

residual stretches (Table 5.3), and without these resislmetches, coincident with the
framework described in Fig. 5.1, but omitting the prestess$Ve simulate one-fourth of a
square sample of thoracic arterial tissue 11D mm) with symmetry boundary conditions
on two perpendicular edges. The total sample thickne§8 (@m) and the thickness ratios
of the individual layers are experimentally determined][93

Next, we use this three-layer model with residual stretctesbtain a stress-stretch re-
sponse of the intact wall. We simulate a uniaxial extensest with displacement con-
trolled quasi-static cyclic loading td = 1.3 and then ta\ = 1.4. We calculate an average
Cauchy stress, say = fsum/As, by using the sum of the reaction forcésm, and the
current cross-sectional aréanormal to the force. For a comparison with the correspond-
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ing experimentally determined constitutive parametesestiven fit the constitutive model
to the stretch-stress relationship representing the nmecdiebehavior of the intact three-
layer aortic wall.

Physiological and supra-physiological loadings of the huimn thoracic aorta

To test our modeling framework on clinically relevant prearnls, we study physiological
and supra-physiological loading conditions of the humanabic aorta on a representative
patient. Our representative patient-specific simulatisesthe thoracic aorta geometry of
a 62 year old male patient, derived from MRI. We simulate aisedf his aorta which has
an inner diameter of approximately 20 mm and a length of 32 Bmefly, we segment the
edges of the inner and outer aortic wall from the imaging ,data mesh this geometry
using a custom meshing algorithm.

We compute the nodes of the hexahedral mesh using the aixia$ sif the binary seg-
mented MRI. In each slice, we divide the axial contour of bd#h lumen and the outer
wall edge into 10 sections of 3gusing the center of mass of the lumen in each slice. With
these nodes, we compute the spline curves that minimizettimg ferror. Then we use the
resulting spline curves to divide each section into six calty interpolated subsections,
thus determining the 60 circumferential elements. We perfa similar procedure in the
axial direction, interpolating along subsets of nodes iflaal circumferential positions
to determine 32 elements axially. Using the experimentddiermined thickness ratios
(0.18/0.46/0.36) from [93] to define three arterial tissagels (intima/media/adventitia)
in the FE mesh, we generate each layer of thoracic tissuefauthelements through the
thickness in order to resolve radial stress and damageaytadin total the mesh contains
23040 eight-node brick elements.

Regarding the boundary conditions, we constrain the disph@nt inz-direction (along
the main axis of the aorta) at nodes on the cutting planesmofiamadel, i.e. at the top and
bottom of the segment shown in Fig. 5.2(b). Furthermore,amh®f these cutting planes,
we constrain four nodes on the luminal side at approxim&étyincrements along the
circumferential direction. These eight nodes can only mowv&e radial direction within
the cutting planes to prevent rigid body rotation aroundatkial direction.

Once the mesh is finalized, we input the mean fiber directibtizeaelement level, using
an approach similar to that of Kiousis et al. [121], impleteeihin MATLAB and using the
local element basis described in Section 5.2.2.

For our initial simulations, we subject the inner wall of theery to a pressure g =
85 mmHg & 11.3kPa), corresponding to the (physiological) diastolicdol@ressure and
we demonstrate some aspects of our modeling framework.sEsashe influence of initial
stresses, both residual stresses and prestresses, ossthestitransmural stress distribu-
tions we complete four simulations: (i) a conventional fard/calculation from the MRI
determined geometry; (ii) a calculation including only giretches; (iii) a calculation in-
cluding only residual stretches; (iv) a calculation ingdhglboth residual stretches and
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Introducer sheath

Inflated balloon

Catheter shaft

Intima
Media
Adventitia

Figure 5.2: Representative intra-aortic balloon occlusion in the thoradia: gda) angiogram of an
inflated balloon occlusion in the thoracic aorta [124]; (b) corresponsiimgilation with the fully
inflated balloon inside the patient’s aorta. Since the introducer sheath aodttieter shaft do not
influence the stress distributions in the aortic segment of our example wet dachale them in
the simulation.

prestretches. Using these models we also study other asgfeébe predicted stress distri-
butions, including those predicted after a load historjudimg a systolic blood pressure of
200 mmHg & 26.7 kPa) representing rigorous exercise, see, e.g., Macllaiga [137].
To this end, we compare the stresses predicted in the tioaadia atp = 85 mmHg for a
maximum loading over the history of bofiax = 85 and 200 mmHg.

To study a representative catheter-based procedure omificpatient, we simulate infla-
tion of an intra-aortic balloon, which may cause high tisswesses and thus damage in the
tissue. Figure 5.2(a) shows an angiogram of an inflated trallo the thoracic aorta [124].
Figure 5.2(b) shows a cross-section of our correspondinglation with the fully inflated
balloon inside the patient’s aorta. To complete this sithoite we approximate the intra-
aortic balloon as a rigid sphere since these balloons gignesdibit very high stiffness
once they are (nearly) fully inflated, see, e.g., Fig. 7 irB[13he sphere representing the
balloon is fixed at its center on the center line of the aorteerilthe radius of the sphere
is increased with each time step until it first comes into aonwith the tissue and then
it is ‘inflated’ to its final diameter. The contact algorithior fthe simulation is the rigid to
node formulation using the penalty method as implement&dEiiP. Since the introducer
sheath and the catheter shaft do not influence the stresbulisins in the aortic segment
of our example we do not include them in the simulation, theyslown only for illustra-
tive purposes. We complete our simulation in two stepst,Rive apply an intra-luminal
pressure op = 85 mmHg, and second, we ‘inflate’ the intra-aortic ballooratdiameter
of d = 23.2mm. When presenting our results, we plot element stressbdisbns from
the axial center of the aorta on a plane normal to the axiatton. We plot Cauchy stress
distributions versus the circumferential directi@mof the aorta.
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Figure 5.3: Three-layer tissue sample of a human thoracic aorta undesuantérential stretch
of 1.3. Representative transmural distributions predicted by including expetafhedetermined
residual stretches in the simulation, and without including these residuahstse (a) first principal

Cauchy stresy and (b) fiber damage distribution in form of the damage variagd®® versus
normalized wall tissué/tmax-

To investigate the influence of the curvature on the predisteess distributions, we com-
pute the local curvature in the circumferential directignas

2422 —rf
Ko = T (5.18)
wherer'= 0dr(6)/06. We use a least-squares differentiation filter for unegusilaced
data to compute the differentiation of the radii€) with respect to the circumferential
coordinatef [139].

5.3 Results

5.3.1 Uniaxial extension of a tissue sample taken from the tracic aorta

First, we report the influence of residual stresses on theigieel transmural stress dis-
tributions by comparing results generated with and withoaluding experimentally de-
termined residual stretches. Figure 5.3(a) shows a repase transmural distribution
of the first principal Cauchy stregg, while Fig. 5.3(b) shows the resulting fiber damage
distribution in form of the damage variabtg"" for an applied uniaxial (circumferential)
stretch ofA = 1.3.

Next, we compare the stress-stretch behavior of the tlags-finite element model with
experimental data obtained from arterial tissue to seelvenete can reproduce the behav-
ior of arterial wall. As we use the median of the constitupaameters for the numerical
model, we compare the results to the median values of thet itidaue. We then fit the con-
stitutive model to the obtained stretch-stress relatigmhobtain constitutive parameters
for the numerical experiment. The results of this simulatorrespond to the parameters
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Figure 5.4: Average Cauchy stregsversus applied stretch (up to 14) of numerical uniaxial
extension tests in the circumferential (diamonds) and the axial (+) direcéindshe corresponding
constitutive model fit.

pH[MPa] ki [MPa] ka[-] ¢[°) K[] re[-] m [-]
Simulation 0019 066 672 459 0.1 127 00076
Experiment 17 056 1621 510 0.18 159 0008

[Q1,Qs]  [0.0140.019 [0.24,0.94) [5.79,34.79] [46.8,53.8] [0.08,0.28] [1.25,1.83 [0.004,0.011]

Table 5.4: Comparison of constitutive parameters from the finite element mdttieéxperimen-
tally obtained data from [93] for the intact wall of the thoracic aorta.

measured in uniaxial extension tests of the intact wallVgeisbecker et al. [93]. Figure 5.4
shows the resulting model fit to the simulated uniaxial esitem test which accounts for
residual stresses, and Table 5.4 compares the experihgeatal numerically obtained
values for the constitutive parameters. The coefficierdeiermination for our fitting is
r2 =0.999, and except for the angpeall fitted parameters lie within the interquartile range
of the experimental data. Furthermore, if we prescribi® be located within the bounds
corresponding to the interquartile rage during the fittingcess, then all constitutive pa-
rameters are within the interquartile range and the coeffteof-determination remains
excellent, withr? = 0.998.

5.3.2 Physiological and supra-physiological loadings ohe human thoracic aorta
Iterative process to determine residual stresses on the inged geometry

This section demonstrates the influence of the iterationga® on the geometry and the
stress distribution of the tissue in the unloaded configematigure 5.5 shows the first
principal Cauchy stress with (a) and without (b) the iteratiwocedure. The geometry in
Fig. 5.5(a) is the same as the geometry segmented from MRIgIrbF(b) the geometry
changes, as highlighted by the underlying gray area fronginga Hence, the iteration
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Figure 5.5: Comparison of the first principal Cauchy stress with (a) atitbut (b) the iteration
procedure for the residual stresses. The gray area in (b) cormrésgo the geometry obtained
from medical imaging. Note that (a) has the reference configur&ignand (b) the reference
configurationQo,, compare with Fig. 5.1.

process has a notable influence on the geometry, whereasltienice on the stress distri-
bution is negligible.

Influence of initial stresses

To assess the influence of initial stresses on the tissua'sritural stress distribution

we analyze four simulations with an arterial pressurgei 85 mmHg, as shown in the

Figs. 5.6(a)-(d). Figure 5.6(a) illustrates the numehjcabtained principal Cauchy stress
results of a conventional forward computation from the MRtestmined geometry, while

Fig. 5.6(b) illustrates a computation where only preseesse included, Fig. 5.6(c) shows
the computational results including only residual stress®l Fig. 5.6(d) shows the com-
putation including both residual stresses and prestreSgase we plot the cross-sections,
it is clear that the diameter predictedmt 85 mmHg changes notably with the inclusion
of initial stresses.

Figure 5.7(a) shows the circumferential Cauchy stressdgeduminal side of the intima
plotted along the circumference of the aorta (referrindidase described in Fig. 5.6(d)).
The stress variations along the circumferential direcéignvery high. Figure 5.7(b) shows
the correlation between the circumferential Cauchy strads e local circumferential
curvature. The correlation coefficiert equals 089 and the positive correlation between
the Cauchy stress magnitude and the aortic curvature iststatly significant withp <
0.05.
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Figure 5.6: First principal Cauchy streas in the thoracic aorta at diastolic blood presspre-
85mmHg at the center of the aortic section: (a) conventional forward ctatigu; (b) results
including only prestresses; (c) computation including only residual stsemsd (d) computation
including both residual stresses and prestresses.

Numerical preconditioning

To illustrate that stress softening occurs after tissuesupe to high blood pressure and
that it effects the stress distributions predicted at piiggical blood pressure, we com-
pare the stresses predictedpat 85 mmHg for both a maximum load qf,ax = 85 and
of 200 mmHg over the history, the latter representing an @tarof intraluminal pres-
sure that can be reached during rigorous exercise. Fig8fa)shows the circumferential
Cauchy stressy for p = 85 mmHg, with the load history gbnax = 85 mmHg, at the lu-
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Figure 5.7: Representative results from a patient-specific simulation aharnthoracic aorta at a
blood pressure gb = 85 mmHg reached during primary loading: (a) circumferential Cauchysstres
op (black), axial stresg, (red) and radial stress; (green) at the luminal side of the intima versus
the circumferential positiof; (b) circumferential Cauchy stresg versus the local circumferential
curvaturekg, the correlation is statistically significarp & 0.05).
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Figure 5.8: Representative patient-specific simulation of a human thoratacaaa blood pressure
of p=85 mmHg, circumferential Cauchy stresgin the intima at the lumen interface (diamonds)
and at the interface with the media (crosses) versus the circumferendelialir: (a) predicted
with pmax= 85 mmHg in the load history; (b) predicted witkhax = 200 mmHg in the load history.

minal (diamonds) and medial (crosses) side of the intima difference between these
curves illustrates the high stress gradient through tlokmi@ss of the intima at several cir-
cumferential locations of the aorta. Figure 5.8(b) shovescbrresponding circumferential
Cauchy stresgg for p = 85 mmHg, with the load history opmax = 200 mmHg, at the
luminal (diamonds) and medial (crosses) side of the intish@wing a marked decrease
in both the stress variation along the circumferentialcios 6 and the stress gradient
through the thickness of the intima.
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Figure 5.9: Representative patient-specific simulation of a human thoraticuamlergoing intra-
aortic balloon occlusion: (a),(d) distribution of first principal Cauchgsso; at maximum balloon
inflation; (b),(e)An at maximum balloon inflation for the first family of fibers; (d),ff); at maxi-
mum balloon inflation for the second family of fibers.

Intra-aortic balloon occlusion

Figure 5.9 shows stress and damage distributions for ageptative simulation of an
intra-aortic balloon occlusion, as shown in Fig. 5.2. Intjgatar, Figs 5.9(a),(d) illustrate
the distribution of the first principal Cauchy stressafter intra-aortic balloon occlusion
due to a full expansion of the device. As expected, the sisegary notably around the
circumferential direction and reach a maximum value 88MPa. Figures 5.9(b),(e) and
(c),(f) show the damage increadq, based on the damage variabplgi, at p = 85 mmHg,
for both families of fibers. Figure 5.10 illustrates the exmn of the damage increase
for the most damaged aortic tissue versus the diameter afflaged balloon ranging from
21 mm to over 23 mm.

5.4 Discussion

To the authors’ knowledge this is the first study proposingad@ting framework with
such fidelity, particularly for analyzing surgical procees, where:

(i) 3D patient-specific models include the measured afterédl thickness estimated
from medical images,
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Figure 5.10: Damage increadg versus diameter of the intra-aortic balloon during a representative
patient-specific simulation of intra-aortic balloon occlusion.

(i) three layers of the aorta are explicitly simulated lwhee experimentally determined
thickness ratios of intima/media/adventitia,

(i) both layer-specific residual stresses and presteeasemapped on the exact geome-
try determined from medical imaging to maintain theordtomasistency,

(iv) constitutive model specifically captures the suprggiblogical stress-strain response
of human arteries,

(v) all layer-specific material parameters and residuaitsiies are determined experi-
mentally.

Humphrey and Holzapfel [140] emphasize the necessity tludeca non-uniform wall
thickness to FE models, a request which is based on expaahnesults, see, e.g., Raghaven
et al. [141].

Addressing our FE modeling framework, our custom meshiggraghm allows a great
deal of control in the number and distribution of the hexabkelements using three input
parameters specifying the number of elements in the ciretanfial@, axialzand radiar
directions. In preliminary computations with different shes (not shown), we found that
the presented mesh gives converged solution for the stnelsdaanage distributions.

In addition, data presented in the literature on the thiskmatios of intima/media/adventitia
vary. For example, Holzapfel et al. [24] measured the rat£3.21/0.46/0.33 [93], while in
our recent study we measured 0.19/0.45/0.36. We studiedraoxng the thickness ratios
of the intima/media/adventitia in our numerical simulaspby up to 25% from our mea-
sured values, impacts the predicted stress distributivhdg including initial stresses).
Our results (not shown) demonstrate that the predicte@sstiistributions are relatively
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insensitive to variations in the thickness ratios withirs ttange. Hence, we present all our
results using recently published data [93].

5.4.1 Uniaxial extension of a tissue sample taken from the thacic aorta

Figure 5.3 shows that accounting for residual stressegimthdeling framework has a sig-
nificant influence on the predicted transmural stress anddardistributions. As a result,

the maximum stresses and damage, both occurring in theantietrease. Meanwhile, the
stresses and damage in both the media and the adventigagg;resulting in more homo-
geneous transmural distributions of stresses and damagen@land Fung [129, 142] and
Fung [22] demonstrated that arterial residual stresseksttehomogenize the transmural
stress distribution of the tissue in the physiologicalestétdditionally, numerous studies
have shown that the inclusion of residual stresses in aeslg$ arteries under physio-
logical loading conditions substantially reduces theatésn in circumferential and axial

stresses within the arterial wall [7, 80, 131, 143-147].

Figure 5.4 and Table 5.4 show that the constitutive modeliges an excellent fit to the
numerical experiment, and that the resulting material @ntage) parameters are close
to the median parameters determined from the correspoma@udpanical tests. Thus, our
simulation of the three-layer tissue, based on experinigrdatermined constitutive pa-
rameters and residual stretches, can reproduce the meahbahavior of the intact wall
satisfactorily.

5.4.2 Physiological and supra-physiological loadings ohe human thoracic aorta

As opposed to the studies of Alastrué et al. [35, 131] we usieaative procedure to
maintain the geometry from medical imaging after applyiegjdual stresses to our model.
As Fig. 5.5 demonstrates, the iterative procedure hags iittbact on the stress distribution
but assures that the geometry reconstructed from MRI rentaicisanged.

Figure 5.6 compares qualitatively the distributions of fingt principal Cauchy stress;
predicted from a classical forward simulation to thoseudolg only residual stresses,
only prestresses, or including both sources of initialsstes. Without considering resid-
ual stresses, i.e. Figs 5.6(a),(b), the intima exhibitealstically higher stresses than the
media and the adventitia. This effect results from the egptial stiffening of the intimal
layer which occurs at much lower stretches compared to thdialhend adventitial lay-
ers [38, 93]. Residual stresses reduce this discrepandygastima is under compression
while both the media and adventitia are under tension inéneposite tissue [24]. In fact,
we estimate the lowest stress variations along the circemée and through the layers
when only residual stresses are included. Compared to tivestional forward computa-
tion, inclusion of both prestresses and residual stressels to stress distributions that are
more uniform through the layers, but higher stress gradiarg estimated.

We require prestresses in the modeling framework for thimaleconsistency, and have
accounted for them using the generalized prestressingiflgoas documented in [128].
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Accounting for prestresses generally yields a geometryhtaa a smaller diameter com-
pared to that predicted from a conventional calculatiortuNdly, smaller diameters mean
larger local curvatures in the imaged geometry versus tfermed geometry of the clas-
sical forward calculation. As a result, the magnitudes anadignts of the Cauchy stresses
increase. Our results are consistent with those report&itigr et al. [117] and Speelman
et al. [118], who both conclude that accounting for presissn the patient-specific FE
simulations leads to an increase in the maximum arteridlstr@ss. When accounting for
initial stresses the first principal stressis larger in the adventitia than in the media. Our
results differ from those reported in [34], where the aushexcount only for the opening
angle of the medial and adventitial layers, and neglect thehmanical significance of the
intima.

Figure 5.7(a) shows the principal Cauchy stresses at thenalrside of the intima along
the circumference of the aorta. The predicted stresseg #h@circumference vary on the
order of 100 kPa. Such large variations have also been showthér studies with patient-
specific geometries of arteries, see, e.g., [35, 131, 144, b4t the circumferential vari-
ation of gy in these results was never discussed in detail. Such resel® consequences
of the patient-specific geometry where the tissue geomatiylackness is estimated from
MRI, however this is not plausible under physiological laagperiments suggest that
remodeling in healthy arteries aims at maintaining a neeotystant wall stress, e.g., by
changing the composition of constituents or the wall theds) [148, 149]. Additionally,
the high stress variation contradicts growth and remodeheories that assume deviation
from a uniform homeostatic stress is the principal driveiissfue adaptation [150, 151].

Figure 5.7(b) shows the correlation between the circumteakCauchy stress and the in-
ner aortic curvature, which is again an artifact of our 30guatspecific modeling frame-
work. There are several references noting the influenceaaf lourvature on predicted
stress results in simulations of aortic aneurysms (see,[@#5, 153]), but to the author’s
knowledge corresponding analysis in healthy human aoridspatient-specific geome-
tries has not yet been reported.

In light of the stress variations highlighted in Fig. 5.7, su#ggest to ‘precondition’ the
thoracic aorta with a maximum loading over the history. Tie &nd, Fig. 5.8 compares, for
a representative patient-specific simulation of a humarattioaorta at an internal pressure
of p = 85mmHg, the circumferential stress in the intima (both a&t ltmen interface
and at the interface with the media) with the circumferdm@asition for results predicted
with pmax = 85 mmHg in the load history and those predicted wighx = 200 mmHg in
the load history. The stress distribution after numericaktpnditioning of the tissue, cf.
Fig. 5.8(b), yields more realistic results, where the aiméerential stresses after numerical
preconditioning are in the same range as those reportedyin[4 or [134].

After numerical preconditioning stress gradients insidetissue decrease, as shown, e.g.,
in Fig. 5.8. This is a rather pragmatic approach to accounthi®e inhomogeneity of the
material parameters or residual stresses within the lafene tissue. Variations along the
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circumferential direction still remain but the transmuwstiess gradient reduces to almost
zero. Such results motivate growth and remodeling scheangsédicting the distribution
of material parameters and residual stresses in patietifgpgeometries based on the
physical principles of remodeling.

Experimental studies, such as Nicosia et al. [154] and Kich Baek [155], report that
the stiffness of aortic tissue varies along the circumfeaédirection. Thus, we hypoth-
esize that the material parameters might change along tbentierence of the aorta in
proportion to the local tissue thickness or the local cumebf the tissue. Recently, Reeps
et al. [156] found that for abdominal aortic aneurysm waffre¢ss and strength correlate
with wall thickness. Although this result is derived fronseased tissue, it is possible that
the same holds for healthy aortic tissues. Further studese@cessary to better under-
stand intra-patient variation in material parameters,tandveal correlations between the
material parameters and local geometric features suchlaghwaness and curvature.

Figure 5.9 shows the distribution of the first principal Caustress after intra-aortic bal-

loon occlusion due to full expansion of the device. We atitelthe large stress variations
in the contact interface shown in Fig. 5.9(a),(d) to featyreesent in the patient-specific
geometry. Hence, simulation of balloon or stent internvargiusing an idealized geometry,
e.g., a cylindrical tube [134], can not lead to a full undansling of the influence of the

device inside a patient’s artery. The first principal stessgary notably around the circum-
ferential direction and reach a maximum value &®MPa at the maximum balloon infla-
tion. This maximum value lies well below the circumferehtslure stress for the thoracic

aorta of 18 MPa, reported in Vorp et al. [157] (cf. also Humphrey andzdgpfel [140]).

Figures 5.9(b),(e) and (c),(f) show the damage incréagebased on the damage variable
Nmin at p = 85 mmHg. We chos@ni, at p= 85 mmHg as an example reference because
the blood pressure during the occlusion procedure is lileliered due to the effects of
anesthesia. There are slight differences in the distobutf An for each family of fibers,
however, the overall picture is the same. Contrary to thenatithere is much less damage
associated with the fibers present in the media or adventitia

Figure 5.10 shows the maximum damage incréagerersus the diameter of the balloon
during the intra-aortic balloon occlusion detailed in F5¢. Damage is mainly accumu-
lated in the intimal layer, and hence the maximum damageas&An occurs in the intima
for all of our representative simulations. This figure is aaraple of the type of data that
can be generated in advance of a specific procedure to hgleans define thresholds for
balloon diameter or balloon pressure.

5.4.3 Limitations

There are some limitations in our modeling framework. Whecoaating for residual
stresses by using the residual stretch data determinedimgueally (from Holzapfel et
al. [24] and summarized in Table 5.3), we consider only thengles in the dimensions of
the separated layers. When the separated layers are fudkecklthey also have residual
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curvatures which are not taken into account here. This dicgtion may affect the stress
distribution through the thickness of each layer, but ittdtimot alter the mean stress val-
ues because the stresses resulting from the curvatureg cagdrded as bending stresses,
thus the mean values should all be about zero.

By focusing specifically on our representative example ofitiw@-aortic balloon occlu-
sion, we modeled the balloon as a rigid sphere in light ofetatively high stiffness. It
would be more informative to accurately model the cons#ubehavior of the balloon
so that the pressure-diameter response of the device isadelyupredicted. Such an ap-
proach would improve the insights on surgical procedurga@ying intra-aortic balloons.
However, the focus of this study is to demonstrate the fdagibf the proposed modeling
framework to predict stress and damage distributions iticatigsues using patient-specific
geometries, not to accurately model the balloon device.

Our definition of the damage varialreand damage incread#) uses a phenomenological
approach. More experiments are required to actually gettarljghysical interpretation of
the damage variable and to better understand the evolutibe damage. Nonetheless, we
provide a repeatable quantitative measure to help surgedretter define thresholds for
balloon expansion diameter or balloon pressure, ultimateimprove patient outcomes of
catheter-based interventions.

5.5 Conclusion

We present a modeling framework to numerically evaluatsstand damage distributions
inside the layers of the human aorta of specific patients ngiteg surgical procedures.
Our constitutive model, including damage associated wigrtbllagen fibers, describes the
material behavior in the supra-physiological range, andr&tiimplementation accounts
for both layer-specific residual stresses within the tissoe for prestresses, i.e. the fact
that the geometry reconstructed framvivo imaging data is loaded by blood pressure.

Large variations in the stresses and stress gradients] aspecially in the intima, can be
explained by the local, patient-specific curvature of theaacuch large stress variations
are not likely to occur in the tissue in the physiologicalieonment. Thus, we propose to
‘precondition’ the thoracic aorta by loading up by an insmpressure to 200 mmHg. This
is a rather pragmatic approach to account for the inhomatyesfehe material parameters
or residual stresses within the layers of the tissue. Inth&é¢ we suggest either to vary
the material parameters or to vary the residual stretclegyahe circumference of the
aorta based on the local curvature or other geometric festur

Our modeling framework, together with the material andtral parameters which are
all based on experimental data, can be used to simulate ascldar procedures such as
intra-aortic balloon occlusion or stent-graft placement.
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A.1 Elasticity Tensor

We first provide more details of the Lagrangian form of thestdtaty tensor@’i, i =4,6,
for each family of fibers, see (5.8)—(5.11). In all that fellothe index = 4,6 does not
employ Einstein summation notation; it refers to a spec#nify of collagen fibers. De-
noting the fictitious elasticity tensor as
—0
~ 929
Cri =43 =L = 4 Y3y/H o Hy, Al
fi 9CIC Ll’f7| i i ( )
with the Lagrangian structure tensdfig = kIl + (1—3k)M ® M andHg = kIl + (1 —
3k)M’®@M’, and the scalar elasticity function

;= Ka[1+ 2ko(If — 1)? explke(If — 1)]. (A.2)
The elasticity tensofff’i can then be written as

_ ~ 2 ~0 .~
Cri=nP:Cri P+ éniTr(J_Z/gsgi)IP’
2 1.0 =0 _ onNi =0 =0
—oMCT R T ®C Y+ e, (A3)
3 0Ws,
wheredn;/dWs; is according to (5.11), then T) = (-) : C,P=T— (C"1®C)/3 is the
Lagrangian projection tensoff)kLmun = (kmALN + &ndim)/2 is the the fourth-order
unit tensor,éﬁi = 2a¢2i/aé is the fictitious second Piola-Kirchhoff stress tengoe-
Cloct-(ctec1)/3is a modified projection tensor af@ 1 C Hkwn =
(CkmCLx +CkCim)/2. see [25].
Now we perform the push-forward operation twice to obtai Bulerian description of
the elasticity tensaf; ;, which (in index notation) gives

(.i)kimn = FkkFILF mMF N (Ct i ) KLMN, (A.4)
with the result
- 2 -
Cri=1Mir:C; ip+ él’)itr(TEi)P

2 0 . = oni _ o
3n.( RT(;+T1; ® )+0L|Jf,i Tt @ Tt (A.5)
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where t(-) = (-) : 1, T¢; = féﬁFT is the fictitious Kirchhoff stress tenser=1— (1 ®1)/3
is the Eulerian projection tensor antk,; : » = 43-4/3yy’, (> : hi) @ (= : h;), with the Eulerian
structure tensors, = kb + (1— 3k)M®m, hg = kb + (1 — 3k )M @M, the modified left
Cauchy-Green tens@r= FFT, andm = FM, i = EM’, while y{ is according to (A.2).
Thus, the Eulerian elasticity tensor consists of four termisch we write as

T =T+ Ch T T (A.6)
where
i = n.w'«?'u»—4n. I3y (e ) @ (21 ), (A7)
i = mtr(rf.) (A.8)
2 _
&= —3mle 2 4+70 01), (A.9)
on _ _
4 I =0 0
Cti IP;, £i O Tfj ( )

To facilitate implementation in a FE code we write these srmmatrix notation. We

write the matrix quantities consistent with the impleméotain FEAP, where the elas-
tic Kirchhoff stress matrix i$%¢;] = [7;11, 10 22, T a3 Tfi12 23 Tri2al |- The deviatoric

elastic Kirchhoff stress matrix is

[T?J [Tf|11 tr(Tfu)/3Tf|22 (T?,i)/&ff?iss (Tfl)/sTf|12>Tf0|237Tf|13] (A.11)

and the projection of the Eulerian structure tensor gives

s —tr(i)/3]  [(ph)1]
hpo —tr(hi)/3 (ph)2
e hi] = h33_h1;<2hi)/3 = Eggj . (A.12)
hp3 (ph)s
. iz | L(ph)e]

The four terms of the Eulerian elasticity tensor are thus
(5] =4mid~ ¥y

[(ph)2 (ph)11(ph)2 (ph)1(ph)s (ph)1(ph)a (ph)1(ph)s (ph)1(ph)e]
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