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andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den be-
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Abstract

Variability and stochasticity constitute ubiquitous phenomena in mammalian neu-
ral processing, ranging from channel noise on the molecular level, to response
variability in neural populations, and trial-to-trial variability in perception. In re-
cent years, Bayesian probability theory has emerged as a successful description in
cognitive science and neuroscience to accommodate the apparent stochastic nature
of perception, reasoning and learning of humans and other mammals within a
coherent mathematical picture. This finding has led to the hypothesis that mammals
may perform probabilistic rather than logical inference based on a learned internal
model of their environment. However, our knowledge, how probabilistic compu-
tations could be supported by the neural substrate, is rudimentary at best. Joint
research in cognitive science, experimental and computational neuroscience has set
out to identify how probability distributions could be represented in neural activity
patterns, and how the involved probabilistic calculations could be performed by
cortical microcircuits.

In this thesis, principles of Bayesian computation and self-organization in mod-
els of recurrent spiking neural networks are investigated from the perspective of
probability theory and machine learning. Using the framework of Markov chain
Monte Carlo sampling, it is shown that recurrent networks of stochastic spiking
neurons can represent complex high-dimensional probability distributions in a
distributed spike code. In computer simulations, it is demonstrated how statistically
correct network-wide inference can be performed through simple neural operations
and local synaptic communication. The stochastic description of neural dynamics
thereby incorporates noise as a computational resource and could explain several
experimentally observed phenomena, such as neural response variability, spon-
taneous activity and perceptual multistability, as natural features of an ongoing
sampling process.

The Bayesian description further permits the investigation of experience-dependent
learning from presented spiking input streams. Specifically, it is shown that neural
networks can develop and refine an internal probabilistic model of their environ-
ment through purely local plasticity rules. Using machine learning theory, it is
first derived that in small winner-take-all network architectures the interplay of
homeostatic intrinsic and Hebbian synaptic plasticity can approximate a powerful
unsupervised learning algorithm, namely generalized stochastic online Expectation
Maximization. In a next step, this finding is generalized to a spatially extended
neural sheet model for inference and learning with a connectivity structure that
is reminiscent of cortical microcircuits. The neural sheet model combines aspects
of local competitive and large-scale associative learning under a unified Bayesian
account and gives rise to an important theoretical insight: stochastic adaptations,
acting on only locally and instantaneously available information in every neuron
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and synapse, can accomplish a well-defined network-wide optimization process
for long-term experience-dependent learning. A well-adapted neural sheet per-
forms variational sample-based inference through its inherent response dynamics
by transforming high-dimensional, and potentially noisy, spiking input streams
into a sparse and reliable distributed spike code. This enables a network to draw
statistically correct conclusions even in case of incomplete or ambiguous input.

Beyond computational neuroscience, the findings of this thesis are furthermore
relevant to the operation of biologically inspired neuromorphic hardware devices.
These artificial systems implement physical models of neurons and synapses in
microscale electronic circuitry with the aim to establish novel inherently parallel,
fault-tolerant, self-adapting computing platforms. Here, particular attention is given
to bistable memristive materials, which exhibit voltage-dependent stochastic switch-
ing of their electric conductance, as plastic neuromorphic synapses. It is shown
that, when multiple stochastic memristors are operated in parallel to jointly form
a plastic synapse, neuromorphic winner-take-all architectures are endowed with
statistical learning capabilities of remarkable robustness to device imperfections.
In summary, the network architectures for distributed probabilistic inference and
self-organized learning, presented in this thesis, provide an auspicious operation
paradigm for neuromorphic computing systems.
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Zusammenfassung

Variabilität und Stochastizität sind in der neuronalen Informationsverarbeitung
von Säugetieren allgegenwärtig. Sie reichen von molekularen Zufallsprozessen in
Ionenkanälen über Aktivitätsschwankungen in neuronalen Populationen bis zu
zeitlich veränderlichen Wahrnehmungen. In den letzten Jahren entwickelte sich die
Bayessche Wahrscheinlichkeitsrechnung zu einer erfolgreichen Beschreibungsspra-
che in den Kognitions- und Neurowissenschaften, um die scheinbar stochastische
Beschaffenheit von Wahrnehmungen und Schlussfolgerungen sowie des Lernens
von Menschen und anderen Säugetieren in einem kohärenten mathematischen
Rahmen zusammenzuführen. Diese Erkenntnis führte zu der Hypothese, dass
Säugetiere möglicherweise statistisch anstatt formallogisch schlussfolgern – basie-
rend auf einem erlernten internen Modell ihrer Lebensumwelt. Allerdings kann
unser Wissen darüber, wie probabilistische Berechnungen von neuronalen Netzen
als physikalische Grundlage unterstützt werden könnten, bestenfalls als rudimentär
bezeichnet werden. Fachübergreifende Forschungsarbeiten aus den Kognitionswis-
senschaften sowie aus den experimentellen und theoretischen Neurowissenschaften
haben zu erkunden begonnen, wie Wahrscheinlichkeitsverteilungen in neuronalen
Aktivitätsmustern repräsentiert, und wie die dafür benötigten probabilistischen
Rechenoperationen von kortikalen Netzwerken durchgeführt werden könnten.

In dieser Dissertation werden Prinzipien der Bayesschen Informationsverarbeitung
und Selbstorganisation in Modellen rekurrenter Netzwerke spikender Neuronen
mit den Methoden der Wahrscheinlichkeitstheorie und des Maschinellen Lernens
untersucht. Auf Grundlage der Theorie von Markov-Chain-Monte-Carlo-Verfahren
wird bewiesen, dass rekurrente Netze stochastisch spikender Neuronen komplexe,
hochdimensionale Wahrscheinlichkeitsverteilungen in räumlich verteilten Akti-
vitätsmustern repräsentieren können. Mithilfe von Computersimulationen wird ge-
zeigt, wie statistisch korrekte, netzwerkweite Inferenz durch elementare neuronale
Operationen und lokalen synaptischen Informationsaustausch erzielt werden kann.
Durch die stochastische Beschreibung neuronaler Dynamik werden Zufallsprozesse
dabei als integraler Bestandteil der Berechnung begriffen. In dieser Betrachtung
stellen sich zahlreiche experimentell beobachtbare Phänomene, wie zum Beispiel
Aktivitätsschwankungen, spontane Aktivität und zeitlich schwankende Wahrneh-
mungen, als sichtbare Merkmale eines permanent laufenden Berechnungsprozesses
dar.

Die Bayessche Beschreibung ermöglicht darüber hinaus eine Untersuchung er-
fahrungsbasierter Lernvorgänge, die auf der Integration zugeführter, spikender
Eingangsdatenströme beruhen. Es wird gezeigt, dass neuronale Netzwerke ein
internes statistisches Modell ihrer Umgebung unter Verwendung von strikt lokalen
Plastizitätsmechanismen ausbilden und verfeinern können. Mithilfe der Theorie
des Maschinellen Lernens wird zunächst für den Fall kleiner Winner-Take-All
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Netzwerkarchitekturen bewiesen, dass das Zusammenspiel von homöostatischer
intrinsischer Plastizität und Hebbscher synaptischer Plastizität einen leistungs-
starken Algorithmus für unüberwachtes Lernen (generalized stochastic online
Expectation Maximization) approximieren kann. Dieses Ergebnis wird im Folgen-
den auf ein räumlich ausgedehntes Modell neuronalen Zellgewebes generalisiert.
Die Verbindungsstruktur des räumlich ausgedehnte Modells weist Ähnlichkeiten
mit kortikalen Netzwerken im Gehirn auf. Außerdem besitzt es die Fähigkeit zu
statistischer Inferenz sowie zu unüberwachtem Lernen. Dabei werden Aspekte
kurzreichweitiger kompetitiver und langreichweitiger assoziativer Lernverfahren
unter einer einheitlichen Bayesschen Betrachtung vereint. Dies führt zu einem
wichtigen theoretischen Resultat: Stochastische Adaptionen in jedem Neuron und
jeder Synapse, lediglich auf Grundlage lokaler und instantan verfügbarer Infor-
mation, kann einen wohldefinierten, netzwerkweiten Optimierungsprozess für
langfristiges erfahrungsbasiertes Lernen verwirklichen. Ein hinreichend adaptiertes
Netzwerk approximiert durch seine natürliche Dynamik einen sample-basierten
Inferenzprozess und transformiert dabei hochdimensionale, und möglicherweise
störungsbehaftete, Eingangssignale in effiziente, zuverlässige Aktivierungsmuster.
Dies befähigt das Netzwerk auch im Falle unvollständiger oder mehrdeutiger
Eingangssignale, statistisch fundierte Schlussfolgerungen zu ziehen.

Die Ergebnisse dieser Dissertation sind – jenseits der theoretischen Neurowissen-
schaften – auch für den Einsatz biologisch inspirierter neuromorpher Compu-
terarchitekturen von Bedeutung. Diese künstlichen Systeme enthalten physische
Modelle von Neuronen und Synapsen in hochintegrierten elektronischen Schalt-
kreisen. Dies dient dem Ziel, neuartige inhärent parallel arbeitende, fehlertole-
rante, anpassungsfähige Berechnungsmaschinen zu entwickeln. In dieser Arbeit
gilt die besondere Aufmerksamkeit der Verwendbarkeit bistabiler Memristoren,
deren elektrische Leitfähigkeit in Abhängigkeit der anliegenden Spannung sto-
chastisch zwischen den beiden stabilen Zuständen springen kann, als plastische
neuromorphe Synapsen. Es stellt sich heraus, dass neuromorphe Winner-Take-
All Netzwerkarchitekturen die Fähigkeit zu statistischem Lernen erlangen, wenn
mehrere stochastische Memristoren parallel zu einer gemeinsamen Synapse ver-
schaltet werden, und dabei eine bemerkenswerte Robustheit gegen Bauteilmängel
aufweisen. Zusammenfassend lässt sich erwarten, dass die in dieser Dissertation
vorgestellten Netzwerkarchitekturen für verteile statistische Inferenz und selbstor-
ganisiertes Lernen ein vielversprechendes Leitbild für den Betrieb neuromorpher
Berechnungssysteme darstellen.
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Preface

One of the most fascinating skills of humans and other mammals is their ability
to adapt, as an individual, to the characteristics of their environment. This ability
extends well beyond a mere reaction to immediate sensory stimuli. Instead, it
appears that humans and mammals acquire custom knowledge on their specific
environment in that they develop and maintain a model of their surroundings
which enables them to classify impressions, to put perceptions into context, to
make predictions, and to perform goal-directed actions. Be it a human who grew
up on the countryside and moves to a vibrant city as an adult, be it a dog that
understands the instructions of its master, or be it a laboratory mouse that swiftly
finds its path to reward in a labyrinth task: Learning from experiences greatly
enhances the faculties passed across generations in a genetic code. It is safe to
assume that these abilities crucially rely on the formation of complex circuits in
our brains. Particularly, the mammalian cerebral cortex with its dense and highly
plastic recurrent networks of millions (mouse) to billions (human) of nerve cells
(Roth and Dicke, 2005) is believed to play an integral role in the emergence of
“intelligent” behavior. The primal impact of experience-shaped neural processing
on our perception of the world has been epitomized by neuroscientist Henry
Markram in a quote that inevitably triggers associations that reach back to Plato
and Descartes.

“The brain builds a version of the universe and projects this version of the
universe like a bubble all around us.” – “The vast majority of what you see is
not what comes in through the eyes. It is what you infer about that room.”

Henry Markram

It is an intriguing – intellectually beautiful and emotionally flattering – idea that the
brain maintains a faithful internal model of the outside world, that it makes sense of
the manifold sensory stimuli by developing abstract, generalizing representations,
that it identifies temporal, causal and statistical relations among these abstract rep-
resentations, and that it makes predictions which also incorporate consequences of
anticipated actions and future events. That it conceives plans, envisions alternatives,
and that it will never stop acquiring even more knowledge. The brain, a mighty
self-organized simulator of the world, serving a creature to attain its goals.

The particular goal behind this thesis is to contribute to this intriguing hypothesis
by exploring how models of plastic recurrent spiking neural networks could
develop capabilities of analytically correct inference and self-organized learning
from experience within a statistical description of brain computation.
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Chapter 1
Introduction

Understanding the organization of computations in the brain displays one of the
cardinal scientific challenges in the early twenty-first century. Ambitious multidis-
ciplinary research collaborations have been initiated to promote this endeavor, such
as the US-centered BRAIN initiative, the EU-centered Human Brain Project, or the
Swiss-based Blue Brain Project. For computational neuroscience, a subdiscipline
that attempts to mathematically model information processing in the brain, two
aspects of brain function turn out to be particularly challenging. First, there likely
exists no single appropriate level of detail for neuroscientific modeling. Instead
theoretical research must accommodate the complex and often subtle interactions
between multiple scales, ranging from the molecular level, via the cell level, up to
collective network phenomena. Second, neural activity exhibits substantial variabil-
ity in vivo, even in response to (almost) identical stimuli (Fiser et al., 2004). This
trial-to-trial variability does not originate only from deterministic circuit interac-
tions. Neural activity is also subject to numerous microscopic noise sources (Faisal

et al., 2008) and thus appears to be, at least to some extent, truly stochastic. This
observation has led to the idea to perceive stochasticity as a computational resource
and to incorporate variability into models of brain function (R. P. N. Rao et al., 2002;
Rolls and Deco, 2010). Many studies have found that perception, reasoning and
learning of humans and other mammals appear to be consistent with a Bayesian
interpretation of probability theory (Kersten et al., 2004; Körding and Wolpert,
2004; Griffiths and Tenenbaum, 2006; T. Yang and Shadlen, 2007; Orban et al.,
2008; Angelaki et al., 2009; Denison et al., 2009; Schulz, 2012). These findings
have led to the hypothesis that higher animals may perform probabilistic rather
than logical inference, an idea that has spawned a new branch in cognitive science
and neuroscience and that is often referred to as the Bayesian brain (T. S. Lee and
Mumford, 2003; Doya et al., 2007; Tenenbaum et al., 2011).

Bayesian probability theory as a normative framework of brain
computation

In the Bayesian brain, mammalian perception and reasoning are described by means
of probability distributions that integrate instantaneous observations, internal goals
or environmental context (a formal definition will be provided below). The success
of the probabilistic description on the behavioral level naturally raises the question
how probability distributions could be represented in the brain, and how the
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1 Introduction

involved computations are supported by neural circuitry as a physical substrate. In
recent years, several experimental studies identified potential neural correlates of
probabilistic computations (T. Yang and Shadlen, 2007; Berkes et al., 2011; Fetsch

et al., 2012). In general, however, in vivo measurements are challenging due to the
requirement to record from entire neural populations with high spatio-temporal
resolution. Novel recording techniques, such as two photon imaging in behaving
animals (Harvey et al., 2012), could provide promising methods for future research.
In order to facilitate targeted research, experimental work is being paralleled by
theoretical studies that investigate possible neural implementations of probabilistic
computations (R. S. Zemel et al., 1998; R. P. Rao, 2004; R. Zemel et al., 2005; Deneve,
2005; Ma et al., 2006; R. P. Rao, 2007; Deneve, 2008b; Steimer et al., 2009; Pecevski

et al., 2011; Savin and Deneve, 2014). Such theoretical studies focus especially on
the algorithmic constraints imposed, for instance, by a spike-based communication,
the spatially and temporally confined availability of information to neurons and
synapses, or the integration and storage of information across multiple time scales.
In this way, researchers from cognitive science, experimental and computational
neuroscience cooperatively explore the qualification of a Bayesian perspective on
neural processing as a unifying, normative framework of brain computation.

Another aspect of theoretical research addresses how the probabilistic relations,
that underlie perception and reasoning, could emerge in the brain from experiences.
Thoughts on probabilistic approaches to experience-dependent learning can be
traced back to Thomas Bayes and Hermann von Helmholtz (Westheimer, 2008).
Interestingly, it was a young engineering discipline, namely statistical machine
learning, that broached the topic again and became tremendously successful in
training artificial information processing systems during the last decades (Bishop,
2006; Barber, 2012; Shukoff and Ahlquist, 2012). Particularly in fields that deal
with typical tasks for biological organisms, such as image classification (Salakhut-
dinov and G. Hinton, 2009; Srivastava and Salakhutdinov, 2012) or speech
recognition (Graves et al., 2013), unsupervised statistical model optimization algo-
rithms rank among the most powerful training methods. In recent years, multiple
studies in computational neuroscience have set out to reintegrate probabilistic
learning approaches from machine learning theory into biologically inspired mod-
els of neural networks (Deneve, 2008a; Nessler et al., 2009a; Brea et al., 2012;
Rezende et al., 2012; Keck et al., 2012; Kappel et al., 2014). Of particular interest
are machine learning algorithms that can be formulated as distributed systems and
which are structurally reminiscent of biological networks. For this thesis, we will
focus on sample-based approaches since these were favored by theoretical work as
being well-suited for neural learning (Ackley et al., 1985; Fiser et al., 2010), were
proposed to mimic the dynamics of neural networks (Hoyer and Hyvärinen, 2003)
and perception (Gershman et al., 2009), were demonstrated to be applicable to
a variety of tasks (G. Hinton, 2002; G. Hinton and Salakhutdinov, 2006), and
appear to be consistent with cortical firing statistics during learning (Berkes et al.,
2011). Specifically, we will make use of sample-based approaches for maximum
likelihood learning to explore self-organization principles in models of spiking
neural networks.

4



Fig. 1.1: Illustration of the thesis according to Marr’s levels of analysis. (A) Computational level: The Bayesian
brain hypothesis proposes that humans and other mammals maintain a probabilistic model of their environment.
Inference amounts to calculating a posterior distribution according to Bayes rule. Experience-dependent learning
adapts the internal model to better suit the statistics of the environment. (B) Algorithmic/representational level: For
inference, the network trajectory is understood as an MCMC sampling process. Self-organized learning is realized
by small updates in the neuron and synapse parameters, thereby implementing an online version of a Generalized
Expectation Maximization algorithm. (C) Physical level: The neural substrate for inference and learning is described
on the level of individual spiking neurons which communicate via plastic synapses. To keep the analysis tractable,
idealized neuron and synapses models are employed. Copyright information: The illustration uses artwork from
www.openclipart.org that had been released into the public domain.

The rationale behind this thesis

The general ideas and research questions behind this thesis can be explained well
within Marr’s levels of analysis who proposed that a comprehensive understand-
ing of information processing in the brain comprises three levels of analysis: a
computational level, an algorithmic/representational level, and a physical level
(Marr and Vision, 1982). The rationale of this thesis according to the three levels
is illustrated in Fig. 1.1 and will be discussed in the following. On the computa-
tional level, sketched in Fig. 1.1A, we build upon the concept of generative models
(Bishop, 2006). The basic idea is that the brain maintains an abstract model of
the environment, including both representations of real-world objects, as well as
representations of less tangible entities such as velocities, predicted situations,
goals, feelings or potential threats. Furthermore, the internal model of the environ-
ment captures causal and statistical relations among the entities. For the formal
description, the abstract entities are enumerated by an index k and identified with
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1 Introduction

latent random variables zk. All knowledge about the expected state of entities – or
formally the value of the associated random variables zk – and about relations
among them is described by a joint probability distribution p(z) over the entire
latent state z = (z1, .., zK)

T. The distribution p(z) is termed the prior as it is in-
dependent of sensory stimuli or real-world observations (also called data, input
or observables). In the example of the traffic scene in Fig. 1.1A, the brain could
maintain an abstract representation of traffic lights, combined with the prior knowl-
edge that red and green signals are mutually exclusive. In order to connect the
abstract representations to the data, the Bayesian brain maintains a model of the
expected stimulus given a current state of the latent variables z. To this end, also
the observables are formally enumerated and associated with random variables yi.
The expectation, how likely an input configuration y occurs for a latent state z, is
described by means of a likelihood distribution p(y | z). The question what entities are
eventually considered to be latent or observable depends on the specific modeling
attempt. To give a simplified example from vision, a variable yi could represent the
firing activity of a retinal ganglion cell, and variables zk could be associated with
face-selective cells in cortical area IT (Purves et al., 2008). The full probabilistic
model p(y, z) = p(z) · p(y | z), formed jointly by prior and likelihood, contains all
knowledge required for (hypothetically) generating the expected distribution of
inputs p(y) by eliminating the internal representations through marginalization,

p(y) = ∑
z

p(y, z) , (1.1)

where the summation runs over all possible latent state configurations. This prop-
erty explains the term generative model and offers a mathematical correspondent to
the more vivid “universe in our brain”. In the generative view, the latent variables z
play the role of hypothetical hidden causes of the input y. For this reason, the terms
latent variable and hidden cause are often used interchangeably for the variables zk.
A key benefit of generative models is that they provide a principled method for
inferring the hidden causes z behind an observation: For any given observation y,
the distribution p(y, z) can be viewed as a function of z that assigns beliefs to all
possible states z according to the laws of probability theory. This idea is formalized
in Bayes rule,

p(z | y) = p(z) · p(y | z)
p(y)

, (1.2)

which assigns a posterior belief p(z | y) to each possible latent state z for any given
observation y. The inference process consists of two components: The likelihood
p(y | z) aligns the internal state z with the observation y; the prior p(z) reconciles
the beliefs inferred during the first step with general knowledge on typical latent
state configurations. The denominator p(y) only provides a normalization constant1

and has little conceptual importance.

The traffic scene in Fig. 1.1A illustrates the inference process. The posterior, sketched
in the thought bubble, captures the most essential aspects of the scene and neglects

1The denominator is fully determined by the numerator, p(y) = ∑z′ p(z = z′) p(y | z = z′),
where the summation runs over all possible latent states z′.
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arguably unimportant details, such as the texture of wheel rims or the detailed
shape of the traffic signal. Many generally possible abstract representations, e.g.
books and music (grayed out), play no role in the inferred state. Others, such as a
red traffic light or rainy weather, are actively suppressed since they are known to be
irreconcilable with competing concepts promoted by the observation (green light
and sunshine). Beyond these immediate conclusions, the posterior can also contain
enriched information that is not directly present in the data, for instance, on the ex-
pected evolution of the scene and arising threats. The traffic scene example further
illustrates a conceptual advantage of the Bayesian approach: Since the posterior
assigns a belief not only to the most likely latent state configuration, but also to
all possible alternatives, it naturally contains information on the (un-)certainty of
the inferred result. This property turns out to be particularly useful in cases of
incomplete or ambiguous observations, such as for the illustrated case of a partially
occluded speed limit sign. In such ambiguous situations, the likelihood p(y | z)
will assign similar values to multiple possible latent states. In combination with
previously obtained knowledge stored in the prior (e.g., the set of typical speed
limits in the particular country), the likelihood contribution could be modulated,
and thus yield a knowledgeable posterior belief on the different alternatives.

We next turn to the algorithmic/representational level, illustrated in Fig. 1.1B. In
order to be a successful inference device, the Bayesian brain has to solve (at least)
two general tasks. First, it is supposed to calculate and represent the posterior
distribution in response to sensory stimuli – or, to be a little lenient, at least
a close approximation q(z | y) to the correct posterior p(z | y). Second, it must
be capable of adapting its implicit generative model p(y, z), which underlies
the inferences, to suit the true statistics of the environment well. For the formal
description, we refer to the true statistics of the environment as p∗(y). Again, we
do not postulate a perfect match between the implicit model and reality. Instead,
we assume that the generative model p(y, z | θ) can be shaped to some degree by a
set of parameters θ. Learning then amounts to adapting the parameters θ such that
p∗(y) ≈ p(y | θ) = ∑z p(y, z | θ).

Regarding the first task, the calculation and representation of the posterior dis-
tribution, we follow a sampling approach (see Fig. 1.1B left). The basic idea is to
interpret the network trajectory as a sequence of latent state realizations z(t). Then,
the relative frequency, how often the network visits the different states z for a given
stimulus y, gives rise to a probability distribution q(z | y). The statement that a
network visits each state z proportionally to q(z | y) is, by definition, synonym to
the statement that the network samples from the distribution q(z | y). To describe
the temporal evolution of the system, we will employ the mathematical framework
of Markov chain Monte Carlo (MCMC) sampling that is often used in machine
learning (Andrieu et al., 2003; Bishop, 2006). In contrast to dynamical systems
theory, which deals with the evolution of deterministic systems, MCMC techniques
describe the evolution of a system by means of a stochastic transition operator.
Through this fundamentally stochastic formulation, MCMC techniques are natu-
rally suited to treat stochasticity as a computational resource (Gershman et al.,
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2009). The resulting sampling process during inference is sketched in Fig. 1.1B: the
network is expected to spend most of the time in regions of the state space that
are associated with the different likely percepts, and to evade other regions that
appear inconsistent with the data.

The second task, learning of the parameters θ, addresses the self-organized adapta-
tion of the generative model. We will pursue the simple objective that the learning
process aims at refining the generative model to mirror the input distribution, i.e.,
to develop a faithful probabilistic model p(y | θ) of the outside world p∗(y). For
this thesis, we restrict the investigation to unsupervised, experience-dependent
learning of a non-temporal generative model. In other words, we do not address
learning of temporal sequences in the environment, nor do we include any form of
external feedback, such as reward for actions. The rationale behind the focus on
unsupervised model optimization as a first step is that a faithful internal represen-
tation of the environment can provide a foundation for complimentary learning
approaches at a later stage. Such complimentary approaches, e.g., reinforcement
learning algorithms (Sutton and Barto, 1998), could then operate on a sparse and
stable representation of the input for temporal sequence learning, planning and
goal-directed behavior. To measure the fitness of the full generative model p(y, z | θ)
to the statistics of the environment p∗(y), we employ a standard objective function
from the machine learning literature, namely the log-likelihood L(θ) of the data
under the model (Bishop, 2006):

L(θ) := 〈 log p(y | θ) 〉p∗(y) = ∑
y

p∗(y) · log ∑
z

p(y, z | θ) . (1.3)

The log-likelihood function L(θ) assigns a value to each possible configuration θ
of the generative model, and has a maximum when the internal model matches
the true input distribution as closely as possible (in terms of the Kullback-Leibler
divergence) within the parameter domain of θ.

In summary, we pursue to unite two goals: (1) the maximization of L(θ) with
respect of θ, leading to a well-adapted generative model p(y, z | θ), and (2) the
ability to perform sample-based inference in this model, i.e., q(z | y) ≈ p(z | y,θ),
through the inherent response dynamics of a spiking network. In order to achieve
these goals, we will employ a Generalized Expectation Maximization algorithm (GEM), a
powerful learning framework from machine learning theory (Neal and G. Hinton,
1998; Sato, 1999). The fitness function F (θ, q) of GEM depends on the parameters θ
and on the variational posterior distribution q(z | y) of the network:

F (θ, q) = L(θ)− 〈DKL (q(z | y) || p(z | y,θ) 〉p∗(y) . (1.4)

The fitness F (θ, q) aims, on the one hand, to develop a faithful model by maxi-
mizing the log-likelihood and, on the other hand, to preserve the ability to exploit
the model for Bayesian inference by minimizing the average Kullback-Leibler
divergence between the network response and the analytically exact posterior dis-
tribution. Thus, F (θ, q) accommodates both of the above-described general tasks
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of a Bayesian brain in a single objective function. For the algorithmic implementa-
tion, we will employ an online version of the GEM algorithm that operates on a
continuous stream of input samples y(t) ∼ p∗(y) and increases F (θ, q) by means
of small parameter updates in θ and, simultaneously, small adaptations of the
network distribution q(z | y).

Finally, on the physical level sketched in Fig. 1.1C, we seek for spiking network
implementations which are specific in the sense that we aim to model neural
activity on the level of individual neurons which evolve in continuous time and
communicate via action potentials and plastic synapses. On this level of description,
the particular connectivity structure of the network and the spread of information
in the network via local synaptic interactions become essential aspects of the
investigation. Indeed, the constraints on the local availability of information in space
and time, imposed by a spike-based synaptic communication between neurons,
display one of the cardinal challenges addressed in this thesis.

Organization of the thesis

Each chapter of the thesis tackles a certain aspect of the broad question how collec-
tive network-wide function can emerge from purely local integration of information
and communication. The chapters are based on peer-reviewed publications I au-
thored together with Lars Büsing, Stefan Habenschuss, Bernhard Nessler, Wolfgang
Maass, and Robert Legenstein. Detailed references and author contributions are
provided at the beginning of each chapter.

In chapter 2 “Neural dynamics as sampling”, it is shown how a recurrent spiking
neural network can sample from a well-defined joint probability distribution. To
this end, neural dynamics are described in the theory of Markov chain Monte Carlo
sampling. Each network neuron monitors the spiking activity of a subset of other,
synaptically connected neurons and adapts its own instantaneous firing probability
such that the network-wide spike pattern instantiates a Gibbs sampling-inspired
sampling algorithm.

In chapter 3 “Homeostatic and Hebbian plasticity united under a Bayesian ac-
count”, it is explored how Hebbian synaptic plasticity can interact with forms of
homeostatic plasticity. The chapter extends previous work of (Nessler et al., 2009a;
Nessler et al., 2013) that linked STDP-type synaptic plasticity to the Expectation
Maximization learning algorithm. Here it is shown that, in conjunction with local
homeostatic processes, the network-wide effect of neural plasticity can be described
in the framework of Generalized Expectation Maximization. The resulting net-
work dynamics exhibit improved robustness during learning. Furthermore, the
generalized theory extends the scope of application by overcoming several limiting
assumptions of the previous work on the connectivity structure and the input
presentation.
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In chapter 4 “Statistical learning with compound memristive synapses”, the in-
vestigation, how collective function can emerge from stochastic local computations,
is extended to the structure of plastic synaptic connections. When the total synap-
tic weight between two neurons is composed of multiple plastic constituents, as
sketched in Fig. 1.1C, changes in the efficacy of each individual constituent will
affect the spike response of the post-synaptic neuron. This altered spike response
can be observed by the other constituents and establishes an indirect link between
the otherwise independent components. In the chapter it is shown that this seem-
ingly weak link can be utilized for cooperative learning when plastic changes in
the constituents occur stochastically. While originally developed for neuromorphic
applications, the theory could also be applied to biological models where pairs of
neurons can maintain multiple synaptic contacts.

In the final chapter 5 “Distributed Bayesian computation and learning in spik-
ing neural sheets”, the neural sampling theory of chapter 2 and the plasticity
dynamics of chapter 3 are combined in a spatially structured network model for
Bayesian inference and self-organized learning.2 The recurrent network model
integrates distributed spiking input streams and unites aspects of competitive
learning and associative learning in a continuous neural sheet. On the physical
level, these learning aspects are established via local lateral inhibition and sparse
recurrent excitation, respectively. While precise plasticity rules can be derived for
input synapses, an approximate solution is proposed for recurrent connections.
Over the course of learning, the network develops a sparse distributed spike code
which carries compressed information on salient input features combined with
knowledge on statistical relations among them. The ability to combine instanta-
neous observations with previously obtained knowledge within a well-defined
generative model enables the network to perform sample-based inference even on
incomplete or locally ambiguous input streams.

As we will show, connecting the physical level with the algorithmic/representational
and computational level allows to embed the spike response of individual neurons
(acting on the time scale of milliseconds) within a network-wide learning theory of
experience-dependent plasticity (spanning time scales of minutes to hours). In order
to keep this connection analytically tractable, simplifying modeling assumptions
have to be made. The most important assumptions made throughout this thesis are
as follows. For interpreting the neuronal spike response on the physical level as
network states z(t) on the representational level, we will employ a straightforward
one-to-one mapping: each latent variable zk is directly associated with the spiking
activity of one network neuron. For the neurons, we will employ a simple stochastic
spike response point neuron model that emits action potentials based on an abstract
membrane potential. For synaptic signaling, neurons communicate via non-additive
rectangular post-synaptic potentials. In most chapters, we will only model exci-
tatory neurons explicitly. The effect of interneurons, in contrast, will typically be
described by abstract forms of inhibition. Plasticity enters the network models in

2The findings presented in this chapter have been submitted for publication and are under review
by the time of writing this thesis.
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two ways: STDP-type plasticity changes the weight of input synapses and recurrent
synapses, and thereby adapts the parameters θ of the generative model p(y, z | θ);
homeostatic plasticity controls the neurons’ predisposition to spike in the absence
of input, and thereby contributes to keeping the network response distribution
q(z | y) within a stable activity regime. Other forms of plasticity, such as short-term
synaptic plasticity (Markram et al., 1998), dendritic plasticity (Tavosanis, 2012),
or third-factor rules (Vasilaki et al., 2009), are not addressed in the thesis. Further
assumptions of the different models are described in the respective chapters.

Other publications not included in the thesis

All chapters of this thesis employ roughly the same level of abstraction, using
simple stochastic neuron models and highly idealized synaptic communication. On
the one hand, the high level of abstraction permits a rigorous analytical treatment
of inference and learning in the network. On the other hand, however, the abstract
description disregards many well-established dynamical properties of neurons
and synapses. This raises the question how the abstract models relate to distinct
features of more elaborate neural models, and whether the identified computational
phenomena are preserved in more detailed network models. These questions
are addressed, at least to some extent, in two publications I contributed to in
collaboration with colleagues from Heidelberg university. In Petrovici et al. (2013),
it is investigated how recurrent networks of leaky integrate-and-fire (LIF) neurons
with conductance-based synapses and short-term plasticity dynamics can attain
the correct firing statistics for sampling from known joint probability distributions,
namely Boltzmann machines. To this study, I contributed as a functional first author,
and the manuscript on our findings is under review by the time of writing this
thesis. In a follow-up study (Probst et al., 2015), networks of LIF neurons were
endowed with the connectivity structure proposed by Pecevski et al. (2011) for
sample-based inference in general Bayesian networks. Our findings were published
in Frontiers in computational neuroscience in 2015.

Relevance to computational neuroscience and neuromorphic engineering

The probabilistic models of computation and self-organization in recurrent net-
works of spiking neurons explored in this thesis could provide new insight into
how computations can be organized in cortical microcircuits. Particularly, the
neural sheet model investigated in chapter 5 bears some resemblance to salient
connectivity motifs and response characteristics reported for superficial layers of
cerebral cortex. Yet, in view of the evolutionary process our brains have undergone,
it is unlikely that the brain “really” performs any mathematically pristine inference
algorithm or that it “actually” pursues one particular universal learning objective.
The main contribution of a comprehensive theoretical description of brain compu-
tation is found in a refinement of our conception of experimental results and in the
guidance it provides for the design of future experiments.
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Beyond computational neuroscience, the network architectures explored in this
thesis could provide promising operation principles for novel, neuro-inspired
computing platforms. These platforms, often termed neuromorphic hardware,
implement physical models of plastic neurons and synapses in nanoscale silicon
architectures (Mead and Ismail, 1989; Schemmel et al., 2010) and complement
traditional, strictly deterministic and serial, von Neumann computing designs. A
key intention of neuromorphic engineering is the development of fault-tolerant,
fundamentally parallel, self-adapting computing platforms. The network models of
this thesis could likely contribute to this endeavor since network neurons evolve in
parallel and exchange information fully asynchronously without a central clock sig-
nal via a spike event-based communication scheme. Furthermore, the simplicity of
the employed idealized neuron and synapse models could facilitate neuromorphic
implementations.

A major challenge for neuromorphic circuit design is the high-density integration
of plastic synapse arrays (Schemmel et al., 2006) which typically allocate most of
the chip area. Recently, memristive materials (Chua, 1971; Strukov et al., 2008; J. J.
Yang et al., 2013) have gained increasing attention as potential plastic neuromor-
phic synapses. Memristors are novel nanoscale circuit elements which change their
electrical conductance based on the history of voltage flux through the device. Due
to this inherent plasticity, memristors are expected to overcome the requirement
of extensive supporting plasticity circuitry in neuromorphic chip design (Indiveri

et al., 2013). In chapter 4, it is explored how a certain device class, namely mem-
ristors that exhibit stochastic switching between bistable states (Gaba et al., 2013;
Suri et al., 2013), could be utilized as plastic synapses for robust, self-organized
statistical learning in spiking networks. On these grounds, the Bayesian spiking
network models proposed in this thesis could likely contribute to the “software” of
neuromorphic hardware platforms.
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Chapter 2
Neural dynamics as sampling
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Abstract. The organization of computations in networks of spiking neurons in
the brain is still largely unknown, in particular in view of the inherently stochas-
tic features of their firing activity and the experimentally observed trial-to-trial
variability of neural systems in the brain. In principle there exists a powerful
computational framework for stochastic computations, probabilistic inference by
sampling, which can explain a large number of macroscopic experimental data
in neuroscience and cognitive science. But it has turned out to be surprisingly
difficult to create a link between these abstract models for stochastic computations
and more detailed models of the dynamics of networks of spiking neurons. Here
we create such a link, and show that under some conditions the stochastic firing
activity of networks of spiking neurons can be interpreted as probabilistic inference
via Markov chain Monte Carlo (MCMC) sampling. Since common methods for
MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent
with the dynamics of spiking neurons, we introduce a different approach based on
non-reversible Markov chains, that is able to reflect inherent temporal processes
of spiking neuronal activity through a suitable choice of random variables. We
propose a neural network model and show by a rigorous theoretical analysis that
its neural activity implements MCMC sampling of a given distribution, both for
the case of discrete and continuous time. This provides a step towards closing the
gap between abstract functional models of cortical computation and more detailed
models of networks of spiking neurons.
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2.1 Introduction

Attempts to understand the organization of computations in the brain from the
perspective of traditional, mostly deterministic, models of computation, such as
attractor neural networks or Turing machines, have run into problems: Experi-
mental data suggests that neurons, synapses, and neural systems are inherently
stochastic (Rolls and Deco, 2010), especially in vivo, and therefore seem less suit-
able for implementing deterministic computations. This holds for ion channels of
neurons (Cannon et al., 2010), synaptic release (Flight, 2010), neural response to
stimuli (trial-to-trial variability) (Azouz and Gray, 1999; Gerstner and Kistler,
2002), and perception (Brascamp et al., 2006). In fact, several experimental studies
arrive at the conclusion that external stimuli only modulate the highly stochas-
tic spontaneous firing activity of cortical networks of neurons (Fiser et al., 2004;
Ringach, 2009). Furthermore, traditional models for neural computation have
been challenged by the fact that typical sensory data from the environment is
often noisy and ambiguous, hence requiring neural systems to take uncertainty
about external inputs into account. Therefore many researchers have suggested that
information processing in the brain carries out probabilistic, rather than logical,
inference for making decisions and choosing actions (S. Geman and D. Geman,
1984; R. P. N. Rao et al., 2002; Doya et al., 2007; Körding and Wolpert, 2004;
Kersten et al., 2004; Gopnik and Tenenbaum, 2007; T. S. Lee and Mumford, 2003;
Hoyer and Hyvärinen, 2003; Sundareswara and Schrater, 2008; Gershman

et al., 2009; Griffiths et al., 2008; T. Yang and Shadlen, 2007; Gold and Shadlen,
2007; Sadaghiani et al., 2010). Probabilistic inference has emerged in the 1960‘s
(Pearl, 1988), as a principled mathematical framework for reasoning in the face
of uncertainty with regard to observations, knowledge, and causal relationships,
which is characteristic for real-world inference tasks. This framework has become
tremendously successful in real-world applications of artificial intelligence and ma-
chine learning. A typical computation that needs to be carried out for probabilistic
inference on a high-dimensional joint distribution p(z1, . . . , zl , zl+1, . . . , zK) is the
evaluation of the conditional distribution p(z1, . . . , zl |zl+1, . . . , zK) (or marginals
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thereof) over some variables of interest, say z1, . . . , zl , given variables zl+1, . . . , zK.
In the following, we will call the set of variables zl+1, . . . , zK, which we condition
on, the observed variables and denote it by o.1

Numerous studies in different areas of neuroscience and cognitive science have
suggested that probabilistic inference could explain a variety of computational
processes taking place in neural systems (see R. P. N. Rao et al. (2002); Doya et al.
(2007)). In models of perception the observed variables o are interpreted as the
sensory input to the central nervous system (or its early representation by the
firing response of neurons, e.g., in the LGN in the case of vision), and the variables
z1, . . . , zl model the interpretation of the sensory input, e.g., the texture and position
of objects in the case of vision, which might be encoded in the response of neurons
in various higher cortical areas (T. S. Lee and Mumford, 2003). Furthermore, in
models for motor control the observed variables o often consist not only of sensory
and proprioceptive inputs to the brain, but also of specific goals and constraints for a
planned movement (Friston et al., 2010; Toussaint, 2009; Toussaint and Goerick,
2010), whereas inference is carried out over the variables z1, . . . , zl representing a
motor plan or motor commands to muscles. Recent publications show that human
reasoning and learning can also be cast into the form of probabilistic inference
problems (Tenenbaum et al., 2006; Griffiths and Tenenbaum, 2006; Oaksford and
Chater, 2007). In these models learning of concepts, ranging from concrete to more
abstract ones, is interpreted as inference in lower and successively higher levels
of hierarchical probabilistic models, giving a consistent description of inductive
learning within and across domains of knowledge.

In spite of this active research on the functional level of neural processing, it turned
out to be surprisingly hard to relate the computational machinery required for
probabilistic inference to experimental data on neurons, synapses, and neural
systems. There are mainly two different approaches for implementing the com-
putational machinery for probabilistic inference in “neural hardware”. The first
class of approaches builds on deterministic methods for evaluating exactly or
approximately the desired conditional and/or marginal distributions, whereas
the second class relies on sampling from the probability distributions in question.
Multiple models in the class of deterministic approaches implement algorithms
from machine learning called message passing or belief propagation (R. P. Rao,
2007; Steimer et al., 2009; Deneve, 2008b; Litvak and Ullman, 2009). By clever
reordering of sum and product operators occurring in the evaluation of the desired
probabilities, the total number of computation steps are drastically reduced. The
results of subcomputations are propagated as ”messages” or ”beliefs” that are sent
to other parts of the computational network. Other deterministic approaches for
representing distributions and performing inference are probabilistic population

1In this chapter, the probability distribution a network samples from is directly denoted by p
(instead of q as suggested in the introduction of the thesis). The distinction between the two
distributions p and q will become important only in the context of learning, as addressed in
subsequent chapters. Furthermore, we denote the subset of observed variables by o in order to
distinguish them from inputs y, which will be modeled explicitly as being external in later chapters.
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code (PPC) models (Sahani and Dayan, 2003). Although deterministic approaches
provide a theoretically sound hypothesis about how complex computations can
possibly be embedded in neural networks and explain aspects of experimental data,
it seems difficult (though not impossible) to conciliate them with other aspects of
experimental evidence, such as stochasticity of spiking neurons, spontaneous firing,
trial-to-trial variability, and perceptual multistability.

Therefore other researchers (e.g., Fiser et al. (2010); Hoyer and Hyvärinen (2003);
Sundareswara and Schrater (2008); Gershman et al. (2009)) have proposed
to model computations in neural systems as probabilistic inference based on a
different class of algorithms, which requires stochastic, rather than deterministic,
computational units. This approach, commonly referred to as sampling, focuses on
drawing samples, i.e., concrete values for the random variables that are distributed
according to the desired probability distribution. Sampling can naturally capture
the effect of apparent stochasticity in neural responses and seems to be furthermore
consistent with multiple experimental effects reported in cognitive science literature
(Sundareswara and Schrater, 2008; Gershman et al., 2009). On the conceptual
side, it has proved to be difficult to implement learning in message passing and
PPC network models. In contrast, following the lines of (Ackley et al., 1985), the
sampling approach might be well suited to incorporate learning.

Previous network models that implement sampling in neural networks are mostly
based on a special sampling algorithm called Gibbs (or general Metropolis-Hastings)
sampling (S. Geman and D. Geman, 1984; Sundareswara and Schrater, 2008;
Gershman et al., 2009; G. E. Hinton et al., 2006). The dynamics that arise from this
approach, the so-called Glauber dynamics, however are only superficially similar to
spiking neural dynamics observed in experiments, rendering these models rather
abstract. Building on and extending previous models, we propose here a family of
network models, that can be shown to exactly sample from any arbitrary member
of a well-defined class of probability distributions via their inherent network
dynamics. These dynamics incorporate refractory effects and finite durations of
postsynaptic potentials (PSPs), and are therefore more biologically realistic than
existing approaches. Formally speaking, our model implements Markov chain
Monte Carlo (MCMC) sampling in a spiking neural network. In contrast to prior
approaches however, our model incorporates irreversible dynamics (i.e., no detailed
balance) allowing for finite time PSPs and refractory mechanisms. Furthermore,
we also present a continuous time version of our network model. The resulting
stochastic dynamical system can be shown to sample from the correct distribution.
In general, continuous time models arguably provide a higher amount of biological
realism compared to discrete time models.

The paper is structured in the following way. First we provide a brief introduction to
MCMC sampling. We then define the neural network model whose neural activity
samples from a given class of probability distributions. The model will be first
presented in discrete time together with some illustrative simulations. An extension
of the model to networks of more detailed spiking neuron models which feature
a relative refractory mechanism is presented. Furthermore, it is shown how the
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2.2 Recapitulation of MCMC sampling

neural network model can also be formulated in continuous time. Finally, as a
concrete simulation example we present a simple network model for perceptual
multistability.

2.2 Recapitulation of MCMC sampling

In machine learning, sampling is often considered the “gold standard” of inference
methods, since, assuming that we can sample from the distribution in question,
and assuming enough computational resources, any inference task can be carried
out with arbitrary precision (in contrast to some deterministic approximate infer-
ence methods such as variational inference). However sampling from an arbitrary
distribution can be a difficult problem in itself, as, e.g., many distributions can only
be evaluated modulo a global constant (the partition function). In order to circum-
vent these problems, elaborate MCMC sampling techniques have been developed
in machine learning and statistics (Andrieu et al., 2003). MCMC algorithms are
based on the following idea: instead of producing an ad-hoc sample, a process
that is heuristically comparable to a global search over the whole state space of
the random variables, MCMC methods produce a new sample via a “local search”
around a point in the state space that is already (approximately) a sample from the
distribution.

More formally, a Markov chain M (in discrete time) is defined by a set S of states
(we consider for discrete time only the case where S has a finite size, denoted by |S|)
together with a transition operator T. The operator T is a conditional probability
distribution T(s|s′) over the next state s given a preceding state s′. The Markov
chain M is started in some initial state s(0), and moves through a trajectory of
states s(t) via iterated application of the stochastic transition operator T. More
precisely, if s(t− 1) is the state at time t− 1, then the next state s(t) is drawn from
the conditional probability distribution T(s|s(t− 1)). An important theorem from
probability theory (see, e.g., p. 232 in (Grimmett and Stirzaker, 2001)) states that
if M is irreducible (i.e., any state in S can be reached from any other state in S in
finitely many steps with probability > 0) and aperiodic (i.e., its state transitions
cannot be trapped in deterministic cycles), then the probability p(s(t) = s|s(0))
converges for t → ∞ to a probability p(s) that does not depend on the initial
state s(0). This state distribution p is called the invariant distribution of M. The
irreducibility of M implies that it is the only distribution over the states S that is
invariant under its transition operator T, i.e.

p(s) = ∑
s′∈S

T(s|s′) · p(s′) . (2.1)

Thus, in order to carry out probabilistic inference for a given distribution p, it
suffices to construct an irreducible and aperiodic Markov chain M that leaves p
invariant, i.e., satisfies equation (2.1). Then one can answer numerous probabilistic
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2 Neural dynamics as sampling

inference questions regarding p without any numerical computations of probabil-
ities. Rather, one plugs in the observed values for some of the random variables
(RVs) and simply collects samples from the conditional distribution over the other
RVs of interest when the Markov chain approaches its invariant distribution.

A convenient and popular method for the construction of an operator T for a given
distribution p is looking for operators T that satisfy the following detailed balance
condition,

T(s|s′) · p(s′) = T(s′|s) · p(s) (2.2)

for all s, s′ ∈ S. A Markov chain that satisfies (2.2) is said to be reversible. In
particular, the Gibbs and Metropolis-Hastings algorithms employ reversible Markov
chains. A very useful property of (2.2) is that it implies the invariance property
(2.1), and this is in fact the standard method for proving (2.1). However, as our
approach makes use of irreversible Markov chains as explained below, we will have
to prove (2.1) directly.

2.3 Neural sampling

Let p(z1, . . . , zK) be some arbitrary joint distribution over K binary variables
z1, . . . , zK that only takes on values > 0. We will show that under a certain com-
putability assumption on p a network N consisting of K spiking neurons ν1, . . . , νK
can sample from p using its inherent stochastic dynamics. More precisely, we show
that the stochastic firing activity of N can be viewed as a non-reversible Markov
chain that samples from the given probability distribution p. If a subset o of the
variables are observed, modeled as the corresponding neurons being “clamped” to
the observed values, the remaining network samples from the conditional distribu-
tion of the remaining variables given the observables. Hence, this approach offers a
quite natural implementation of probabilistic inference. It is similar to sampling
approaches which have already been applied extensively, e.g., in Boltzmann ma-
chines, however our model is more biologically realistic as it incorporates aspects
of the inherent temporal dynamics and spike-based communication of a network
of spiking neurons. We call this approach neural sampling in the remainder of the
paper.

In order to enable a network N of spiking neurons to sample from a distribu-
tion p(z1, . . . , zK) of binary variables zk, one needs to specify how an assignment
(z1, . . . , zK) ∈ {0, 1}K of values to these binary variables can be represented by the
spiking activity of the network N and vice versa. A spike, or action potential, of a
biological neuron νk has a short duration of roughly 1 ms. But the effect of such
spike, both on the neuron νk itself (in the form of refractory processes) and on
the membrane potential of other neurons (in the form of postsynaptic potentials)
lasts substantially longer, on the order of 5 ms to 100 ms. In order to capture this
temporally extended effect of each spike, we fix some parameter τ that models the
average duration of these temporally extended processes caused by a spike. We say
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2.3 Neural sampling

that a binary vector (z1, . . . , zK) is represented by the firing activity of the network
N at time t for k = 1, . . . , K iff:

zk(t) = 1 ⇔ νk has fired within the time interval (t− τ, t]. (2.3)

In other words, any spike of neuron νk sets the value of the associated binary
variable zk to 1 for a duration of length τ.

An obvious consequence of this definition is that the binary vector (z1, . . . , zK) that
is defined by the activity of N at time t does not fully capture the internal state of
this stochastic system. Rather, one needs to take into account additional non-binary
variables (ζ1, . . . , ζK), where the value of ζk at time t specifies when within the time
interval (t− τ, t] the neuron νk has fired (if it has fired within this time interval,
thereby causing zk = 1 at time t). The neural sampling process has the Markov
property only with regard to these more informative auxiliary variables ζ1, . . . , ζK.
Therefore our analysis of neural sampling will focus on the temporal evolution of
these auxiliary variables. We adopt the convention that each spike of neuron νk
sets the value of ζk to its maximal value τ, from which it linearly decays back to 0
during the subsequent time interval of length τ.

For the construction of the sampling network N , we assume that the membrane
potential uk(t) of neuron νk at time t equals the log-odds of the corresponding
variable zk to be active, and refer to this property as neural computability condition:

uk(t) = log
p(zk = 1|z\k)
p(zk = 0|z\k)

, (2.4)

where we write zk for zk(t) and z\k for the current values zi(t) of all other variables
zi with i 6= k. Under the assumption we make in equation (2.4), i.e., that the
neural membrane potential reflects the log-odds of the corresponding variable
zk, it is required that each single neuron in the network can actually compute
the right-hand side of equation (2.4), i.e., that it fulfills the neural computability
condition.

A concrete class of probability distributions, that we will use as an example in the
remainder, are Boltzmann distributions:

p(z) =
1
Z

exp

(
∑
i,j

1
2

Wijzizj + ∑
i

bizi

)
(2.5)

with arbitrary real valued parameters bi, Wij which satisfy Wij = Wji and Wii = 0
(the constant Z ensures the normalization of p(z)). For the Boltzmann distribution,
condition (2.4) is satisfied by neurons νk with the standard membrane potential

uk(t) = bk +
K

∑
i=1

Wkizi(t) , (2.6)
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2 Neural dynamics as sampling

where bk is the bias of neuron νk (which regulates its excitability), Wki is the strength
of the synaptic connection from neuron νi to νk, and Wkizi(t) approximates the time
course of the postsynaptic potential in neuron νk caused by a firing of neuron νi
with a constant signal of duration τ (i.e., a square pulse). As we will describe below,
spikes of neuron νk are evoked stochastically depending on the current membrane
potential uk and the auxiliary variable ζk.

The neural computability condition (2.4) links classes of probability distributions
to neuron and synapse models in a network of spiking neurons. As shown above,
Boltzmann distributions satisfy the condition if one considers point neuron models
which compute a linear weighted sum of the presynaptic inputs. The class of
distributions can be extended to include more complex distributions using a
method proposed in (Nessler et al., 2009b) which is based on the following idea.
Neuron νk representing the variable zk is not directly influenced by the activities z\k
of the presynaptic neurons, but via intermediate nonlinear preprocessing elements.
This preprocessing might be implemented by dendrites or other (inter-) neurons
and is assumed to compute nonlinear combinations of the presynaptic activities z\k
(similar to a kernel). This allows the membrane potential uk, and therefore the log-
odds ratio on the right-hand side of (2.4), to represent a more complex function of
the activities z\k, giving rise to more complex joint distributions p(z). The concrete
implementation of non-trivial directed and undirected graphical models with the
help of preprocessing elements in the neural sampling framework is subject of
current research. For the examples given in this study, we focus on the standard
form of the membrane potential (2.6) of point neurons. As shown below, these
spiking network models can emulate any Boltzmann machine (BM) (Ackley et al.,
1985).

A substantial amount of preceding studies has demonstrated that BMs are very
powerful, and that the application of suitable learning algorithms for setting the
weights Wij makes it possible to learn and represent complex sensory processing
tasks by such distributions (G. E. Hinton et al., 2006; G. E. Hinton, 2010). In
applications in statistics and machine learning using such Boltzmann distributions,
sampling is typically implemented by Gibbs sampling or more general reversible
MCMC methods. However, it is difficult to model some neural processes, such as
an absolute refractory period or a postsynaptic potential (PSP) of fixed duration,
using a reversible Markov chain, but they are more conveniently modeled using an
irreversible one. As we wish to keep the computational power of BMs and at the
same time to augment the sampling procedure with aspects of neural dynamics
(such as PSPs with fixed durations, refractory mechanisms) to increase biological
realism, we focus in the following on irreversible MCMC methods (keeping in
mind that this might not be the only possible way to achieve these goals).
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2.4 Neural sampling in discrete time

Fig. 2.1: Neuron model with absolute refractory mechanism. The figure
shows a schematic of the transition operator Tk for the internal state variable
ζk of a spiking neuron νk with an absolute refractory period. The neuron can
fire in the resting state ζk = 0 and in the last refractory state ζk = 1.

2.4 Neural sampling in discrete time

Here we describe neural dynamics in discrete time with an absolute refractory
period τ. We interpret one step of the Markov chain as a time step dt in biological
real time. The dynamics of the variable ζk, that describes the time course of the
effect of a spike of neuron νk, are defined in the following way. ζk is set to the value
τ when neuron νk fires, and decays by 1 at each subsequent discrete time step. The
parameter τ is chosen to be some integer, so that ζk decays back to 0 in exactly
τ time steps. The neuron can only spike (with a probability that is a function of
its current membrane potential uk) if its variable ζk ≤ 1. If however, ζk > 1, the
neuron is considered refractory and it cannot spike, but its ζk is reduced by 1 per
time step. To show that these simple dynamics do indeed sample from the given
distribution p(z), we proceed in the following way. We define a joint distribution
p(ζ, z) which has the desired marginal distribution ∑ζ p(ζ, z) = p(z). Further
we formalize the dynamics informally described above as a transition operator T
operating on the state vector (ζ, z). In Appendix B, we show that p(ζ, z) is the
unique invariant distribution of this operator T, i.e., that the dynamics described
by T produce samples z from the desired distribution p(z). We refer to sampling
through networks with this stochastic spiking mechanism as neural sampling with
absolute refractory period due to the persistent refractory process.

Given the distribution p(z) that we want to sample from, we define the following
joint distribution p(ζ, z) over the neural variables:

p(ζ, z) := p(ζ|z) · p(z) with p(ζ|z) :=
K

∏
k=1

p(ζk|zk)

where p(ζk|zk) :=


τ−1 for zk = 1 ∧ ζk > 0
1 for zk = 0 ∧ ζk = 0
0 otherwise .

(2.7)

This definition of p(ζk|zk) simply expresses that if zk = 1, then the auxiliary variable
ζk can assume any value in {1, 2, . . . , τ} with equal probability. On the other hand
ζk necessarily assumes the value 0 if zk = 0 (i.e., when the neuron is in its resting
state).

The state transition operator T can be defined in a transparent manner as a com-
position of K transition operators, T = T1 ◦ . . . ◦ TK, where Tk only updates the
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2 Neural dynamics as sampling

variables ζk and zk of neuron νk, i.e., the neurons are updated sequentially in the
same order (this severe restriction will become obsolete in the case of continuous
time discussed below). We define the composition as (Tk ◦ Tl)(·) = (Tk(Tl(·)), i.e.,
Tl is applied prior to Tk. The new values of ζk and zk only depend on the previous
value ζ ′k and on the current membrane potential uk(z\k). The interesting dynamics
take place in the variable ζk. They are illustrated in Fig. 2.1, where the arrows
represent transition probabilities greater than 0.

If the neuron νk is not refractory, i.e., ζ ′k ≤ 1, it can spike (i.e., a transition from
ζ ′k ≤ 1 to ζk = τ) with probability

Tk(ζk = τ|ζ ′k, z\k) = σ(uk − log τ) , (2.8)

where σ(x) = (1 + e−x)−1 is the standard sigmoidal activation function and the
log denotes the natural logarithm. The term uk is the current membrane potential,
which depends on the current values of the variables zi for i 6= k. The term log τ in
(2.8) reflects the granularity of a chosen discrete time scale. If it is very fine (say
one step equals one microsecond), then τ is large, and the firing probability at
each specific discrete time step is therefore reduced. If the neuron in a state with
ζ ′k ≤ 1 does not spike, ζk relaxes into the resting state ζk = 0 corresponding to a
non-refractory neuron.

If the neuron is in a refractory state, i.e., ζ ′k > 1, its new variable ζk assumes
deterministically the next lower value ζk = ζ ′k − 1, reflecting the inherent temporal
process:

Tk(ζk = ζ ′k − 1|ζ ′k, z\k) = 1 . (2.9)

After the transition of the auxiliary variable ζk, the binary variable zk is determinis-
tically set to a consistent state, i.e., zk = 1 if ζk ≥ 1 and zk = 0 if ζk = 0.

It can be shown that each of these stochastic state transition operators Tk leaves
the given distribution p invariant, i.e., satisfies equation (2.1). This implies that
any composition or mixture of these operators Tk also leaves p invariant, see, e.g.,
(Andrieu et al., 2003). In particular, the composition T = T1 ◦ . . . ◦ TK of these
operators Tk leaves p invariant, which has a quite natural interpretation as firing
dynamics of the spiking neural network N : At each discrete time step the variables
ζk, zk are updated for all neurons νk, where the update of ζk, zk takes preceding
updates for ζi, zi with i > k into account. Alternatively, one could also choose at
each discrete time step a different order for updates according to (Andrieu et al.,
2003). The assumption of a well-regulated updating policy will be overcome in the
continuous-time limit, i.e., in case where the neural dynamics are described as a
Markov jump process. In Appendix B, we prove the following central theorem:

Theorem 1. p(ζ, z) is the unique invariant distribution of operator T, i.e., T is aperiodic
and irreducible and satisfies

p(ζ, z) = ∑
ζ ′,z′

T(ζ, z|ζ ′, z′) · p(ζ ′, z′) . (2.10)
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2.5 Neural sampling with a relative refractory mechanism

The proof of this Theorem is provided by Lemmata 1 – 3 in Appendix B. The state-
ment that T (which is composed of the operators Tk) is irreducible and aperiodic
ensures that p is the unique invariant distribution of the Markov chain defined by
T, i.e., that irrespective of the initial network state the successive application of T
explores the whole state space in a non-periodic manner.

This theorem guarantees that after a sufficient ”burn-in“ time (more precisely in the
limit of an infinite ”burn-in“ time), the dynamics of the network, which are given
by the transition operator T, produce samples from the distribution p(ζ, z). As by
construction ∑ζ p(ζ, z) = p(z), the Markov chain provides samples from the given
distribution p(z). Furthermore, the network N can carry out probabilistic inference
for this distribution. For example, N can be used to sample from the posterior
distribution p(z1 . . . , zl |zl+1, . . . , zK) over z1 . . . , zl given zl+1, . . . , zK. One just needs
to clamp those neurons νl+1, . . . , νK to the corresponding observed values. This
could be implemented by injecting a strong positive (negative) current into the units
with zj = 1 (zj = 0). Then, as soon as the stochastic dynamics of N has converged
to its invariant distribution, the averaged firing rate of neuron ν1 is proportional to
the following desired marginal probability

p(z1 = 1|zl+1, . . . , zK) = ∑
z2,...,zl

p(z1 = 1, z2, . . . , zl |zl+1, . . . , zK) .

In a biological neural system this result of probabilistic inference could for example
be read out by an integrator neuron that counts spikes from this neuron ν1 within
a behaviorally relevant time window of a few hundred milliseconds, similarly as
the experimentally reported integrator neurons in area LIP of monkey cortex (T.
Yang and Shadlen, 2007; Gold and Shadlen, 2007). Another readout neuron that
receives spike input from νk could at the same time estimate p(zk = 1|zl+1, . . . , zK)
for another RV zk. But valuable information for probabilistic inference is not only
provided by firing rates or spike counts, but also by spike correlations of the
neurons ν1, . . . , νl in N . For example, the probability p(z1 = 1, z2 = 1|zl+1, . . . , zK)
can be estimated by a readout neuron that responds to superpositions of EPSPs
caused by near-coincident firing of neurons ν1 and ν2 within a time interval of
length τ. Thus, a large number of different probabilistic inferences can be carried
out efficiently in parallel by readout neurons that receive spike input from different
subsets of neurons in the network N .

2.5 Neural sampling with a relative refractory mechanism

For the previously described simple neuron model, the refractory process was
assumed to last for τ time steps, exactly as long as the postsynaptic potentials
caused by each spike. In this section we relax this assumption by introducing a
more complex and biologically more realistic neuron model, where the duration of
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2 Neural dynamics as sampling

Fig. 2.2: Neuron model with relative refractory mechanism. The figure shows the transition operator Tk, refrac-
tory functions g and activation functions f for the neuron model with relative refractory mechanism. (A) Transition
probabilities of the internal variable ζk given by Tk. (B) Three examples of possible refractory functions g. They
assume value 0 when the neuron cannot spike, and return to value 1 (full readiness to fire again) with different time
courses. The value of g at intermediate time points regulates the current probability of firing of neuron νk (see A).
The x-axis is equivalent to the number of time steps since last spike (running from 0 to τ from left to right). (C) As-
sociated activation functions f according to (2.11). (D) Spike trains produced by the resulting three different neuron
models with (hypothetical) membrane potentials that jump at time 0.25 s from a constant low value to a constant
high value. Black horizontal bars indicate spikes, and the active states zk = 1 are indicated by gray shaded areas of
duration τ · dt = 20ms after each spike. It can be seen from this example that different refractory mechanisms give
rise to different spiking dynamics.

the refractory process is decoupled from the duration τ of a postsynaptic potential.
Thus, this model can for example also fire bursts of spikes with an interspike
interval < τ. The introduction of this more complex neuron model comes at
the price that one can no longer prove that a network of such neurons samples
from the desired distribution p. Nevertheless, if the sigmoidal activation function
σ is replaced by a different activation function f , one can still prove that the
sampling is “locally correct”, as specified in equation (2.12) below. Furthermore,
our computer simulations suggest that also globally the error introduced by the
more complex neuron model is not functionally significant, i.e that statistical
dependencies between the RVs z are still faithfully captured.

The neuron model with a relative refractory period is defined in the following
way. Consider some arbitrary refractory function g : [0, . . . , τ] → R with g(τ) =
0, g(0) = 1, and g(l) ≥ 0 for l = 1, . . . , τ − 1. The idea is that g(ζk) models the
readiness of the neuron to fire in its state ζk. This readiness has value 0 when
the neuron has fired at the preceding time step (i.e., ζk = τ), and assumes the
resting state 1 when ζk has dropped to 0. In between, the readiness may take
on any non-negative value according to the function g(ζk). The function g does
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2.5 Neural sampling with a relative refractory mechanism

not need to be monotonic, allowing for example that it increases to high values
in between, yielding a preferred interspike interval of a oscillatory neuron. The
firing probability of neuron νk in state ζk is given by g(ζk) · f (uk), where f (uk) is
an appropriate function of the membrane potential as described below. Thus this
function g is closely related to the function η (called afterpotential) in the spike
response model (Gerstner and Kistler, 2002) as well as to the self-excitation kernel
in Generalized Linear Models (Pillow et al., 2008). In general, different neurons
in the network may have different refractory profiles, which can be modeled by a
different refractory function for each neuron νk. However for the sake of notational
simplicity we assume a single refractory function in the following.

In the presence of this refractory function g one needs to replace the sigmoidal
activation function σ(uk − log τ) by a suitable function f (uk) that satisfies the
condition

exp(u) = f (u)
∑τ

η=1 ∏τ
ζ=η+1(1− g(ζ) · f (u))

∏τ
ζ=1(1− g(ζ) · f (u))

(2.11)

for all real numbers u. This equation can be derived (see Appendix B, Lemma
5) if one requires each neuron νk to represent the correct distribution p(zk|z\k)
over zk conditioned the variables z\k. One can show that, for any g as above, there
always exists a continuous, monotonic function f which satisfies this equation (see
Lemma 4 in Appendix B). Unfortunately (2.11) cannot be solved analytically for
f in general. Hence, for simulations we approximate the function f for a given g
by numerically solving (2.11) on a grid and interpolating between the grid points
with a constant function. Examples for several functions g and the associated f are
shown in Fig. 2.2B and Fig. 2.2C respectively. Furthermore, spike trains emitted by
single neurons with these refractory functions g and the corresponding functions
f are shown in Fig. 2.2D for the case of piecewise constant membrane potentials.
This figure indicates, that functions g that define a shorter refractory effect lead to
higher firing rates and more irregular firing. It is worth noticing that the standard
activation function σ(uk − log τ) is the solution of equation (2.11) for the absolute
refractory function, i.e., for g(0) = g(1) = 1 and g(l) = 0 for 1 < l ≤ τ.

The transition operator Tk is defined for this model in a very similar way as before.
However, for 1 < ζ ′k ≤ τ, when the variable ζ ′k was deterministically reduced by 1
in the simpler model (yielding ζk = ζ ′k − 1), this reduction occurs now only with
probability 1− g(ζ ′k) · f (uk). With probability g(ζ ′k) · f (uk) the operator Tk sets
ζk = τ, modeling the firing of another spike of neuron νk at this time point. The
neural computability condition (2.4) remains unchanged, e.g., uk = bk + ∑K

i=1 Wkizi
for a Boltzmann distribution. A schema of the stochastic dynamics of this local
state transition operator Tk(ζk|ζ ′k, z′\k) is shown in Fig. 2.2A.

This transition operator Tk has the following properties. In Lemma 5 in Appendix B
it is proven that the unique invariant distribution of Tk, denoted as q∗k (ζk, zk|ζ\k, z\k),
gives rise to the correct marginal distribution over zk, i.e.

τ

∑
ζk=0

q∗k (ζk, zk|ζ\k, z\k) = p(zk|z\k) . (2.12)
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2 Neural dynamics as sampling

Fig. 2.3: Sampling from a Boltzmann distribution by spiking neurons with relative refractory mechanism.
(A) Spike raster of the network. (B) Traces of internal state variables of a neuron (# 26, indicated by orange spikes
in A). The rich interaction of the network gives rise to rapidly changing membrane potentials and instantaneous
firing rates. (C) Joint distribution of 5 neurons (gray shaded area in A) obtained by the spiking neural network and
Gibbs sampling from the same distribution. Active states zi = 1 are indicated by a black dot, using one row for each
neuron νi, the columns list all 25 = 32 possible states (z24, . . . , z28) of these 5 neurons. The tight match between both
distributions suggests that the spiking network represents the target probability distribution p with high accuracy.

This means that a neuron whose dynamics is described by Tk samples from the
correct distribution p(zk|z\k) if it receives a static input from the other neurons in
the network, i.e., as long as its membrane potential uk is constant. Hence the “local”
computation performed by such neuron can be considered as correct. If however,
several neurons in the network change their states in a short interval of time, the
joint distribution over z is in general not the desired one, i.e., ∑ζ q∗(ζ, z) 6= p(z),
where q∗(ζ, z) denotes the invariant distribution of T = T1 ◦ . . . ◦TK. In Appendix B,
we present simulation results that indicate that the error of the approximation to
the desired Boltzmann distributions introduced by neural sampling with relative
refractory mechanism is rather minute. It is shown that the neural sampling
approximation error is orders of magnitudes below the one introduced by a fully
factorized distribution (which amounts to assuming correct marginal distributions
p(zk) and independent neurons).

To illustrate the sampling process with the relative refractory mechanism, we exam-
ine a network of K = 40 neurons. We aim to sample from a Boltzmann distribution
(2.5) with parameters Wij, bi being randomly drawn from normal distributions.
For the neuron model, we use the relative refractory mechanism shown in the
mid row of Fig. 2.2B. A detailed description of the simulation and the parameters
used is given in Appendix B. A spike pattern of the resulting sampling network
is shown in Fig. 2.3A. The network features a sparse, irregular spike response
with average firing rate of 13.9 Hz. For one neuron ν26, indicated with orange
spikes, the internal dynamics are shown in Fig. 2.3B. After each action potential
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2.6 Neural sampling in continuous time

the neuron’s refractory function g(ζ26) drops to zero and reduces the probability
of spiking again in a short time interval. The influence of the remaining network
z\26 is transmitted to neuron ν26 via PSPs of duration τ · dt = 20 ms and sums
up to the fluctuating membrane potential u26. As reflected in the highly variable
membrane potential even this small network exhibits rich interactions. To repre-
sent the correct distribution p(z26|z\26) over z26 conditioned on z\26, the neuron
ν26 continuously adapts its instantaneous firing rate. To quantify the precision
with which the spiking network draws samples from the target distribution (2.5),
Fig. 2.3C shows the joint distribution of 5 neurons. For comparison we accompany
the distribution of sampled network states with the result obtained from the stan-
dard Gibbs sampling algorithm (considered as the ground truth). Since the number
of possible states z grows exponentially in the number of neurons, we restrict
ourselves for visualization purposes to the distribution p(z24, . . . , z28) of the gray
shaded units and marginalize over the remaining network. The probabilities are
estimated from 107 samples, i.e., from 107 successive states z of the Markov chain.
Stochastic deviations of the estimated probabilities due to the finite number of
samples are quite small (typical errors ∆p(z)/

√
p(z) ≈ 10−3) and are comparable

to systematic deviations due to the only locally correct computation of neurons
with relative refractory mechanism. In Appendix B, we present further simulation
results showing that the proposed networks consisting of neurons with relative
refractory mechanism approximate the desired target distributions faithfully over a
large range of distribution parameters.

In order to illustrate that the proposed sampling networks feature biologically quite
realistic spiking dynamics, we present in Appendix B several neural firing statistics
(e.g., the inter-spike interval histogram) of the network model. In general, the
statistics computed from the model match experimentally observed statistics well.
The proposed network models are based on the assumption of rectangular-shaped,
renewal PSPs. More precisely, we define renewal (or non-additive) PSPs in the
following way. Renewal PSPs evoked by a single synapse do not add up but are
merely prolonged in their duration (according to equation (2.6)); renewal PSPs
elicited at different synapses nevertheless add up in the normal way. In Appendix B,
we investigate the impact of replacing the theoretically ideal rectangular-shaped,
renewal PSPs with biologically more realistic alpha-shaped, additive PSPs. Simu-
lation results suggest that the network model with alpha-shaped PSPs does not
capture the target distribution as accurately as with the theoretically ideal PSP
shapes, statistical dependencies between the RVs z are however still approximated
reasonably well.

2.6 Neural sampling in continuous time

The neural sampling model proposed above was formulated in discrete time of
step size dt, inspired by the discrete time nature of MCMC techniques in statistics
and machine learning as well as to make simulations possible on digital computers.
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2 Neural dynamics as sampling

However, models in continuous time (e.g., ordinary differential equations) are
arguably more natural and “realistic” descriptions of temporally varying biological
processes. This gives rise to the question whether one can find a sensible limit of
the discrete time model in the limit dt→ 0, yielding a sampling network model in
continuous time. Another motivation for considering continuous time models for
neural sampling is the fact that many mathematical models for recurrent networks
are formulated in continuous time (Gerstner and Kistler, 2002), and a comparison
to these existing models would be facilitated. Here we propose a stochastically
spiking neural network model in continuous time, whose states still represent
correct samples from the desired probability distribution p(z) at any time t. These
types of models are usually referred to as Markov jump processes. It can be shown
that discretizing this continuous time model yields the discrete time model defined
earlier, which thus can be regarded as a version suitable for simulations on a digital
computer.

We define the continuous time model in the following way. Let tl
k, for l = 0, 1, . . .,

denote the firing times of neuron νk. The refractory process of this neuron, in
analogy to Fig. 2.1 and equation (2.8)-(2.9) for the case of discrete time, is described
by the following differential equation for the auxiliary variable ζk, which may now
assume any nonnegative real number 0 ≤ ζk ≤ 1:

d
dt

ζk(t) =
{
− 1

τ for ζk > 0
∑l δ(t− tl

k) for ζk = 0 .
(2.13)

Here δ(t− tl
k) denotes Dirac’s Delta centered at the spike time tl

k. This differential
equation describes the following simple dynamics. The auxiliary variable ζk(t)
decays linearly with time constant τ when the neuron is refractory, i.e., ζk(t) > 0.
Once ζk(t) arrives at its resting state 0 it remains there, corresponding to the neuron
being ready to spike again (more precisely, in order to avoid point measures we set
it to a random value in [−2ε,−ε], see Appendix B). In the resting state, the neuron
has the probability density 1

τ exp(uk(t)) to fire at every time t. If it fires at tl
k, this

results in setting ζk(tl
k) = 1, which is formalized in equation (2.13) by the sum of

Dirac Delta’s ∑l δ(t− tl
k). Here the current membrane potential uk(t) at time t is

defined as in the discrete time case, e.g., by uk = bk + ∑K
i=1 Wkizi(t) for the case of a

Boltzmann distribution (2.5). The binary variable zk(t) is defined to be 1 if ζk(t) > 0
and 0 if the neuron is in the resting state ζk(t) = 0. Biologically, the term Wkizi(t)
can again be interpreted as the value at time t of a rectangular-shaped PSP (with a
duration of τ) that neuron νi evokes in neuron νk. As the spikes are discrete events
in continuous time, the probability of two or more neurons spiking at the same
time is zero. This allows for updating all neurons in parallel using a differential
equation.

In analogy to the discrete time case, the neural network in continuous time can
be shown to sample from the desired distribution p(z), i.e., p(z) is an invariant
distribution of the network dynamics defined above. However, to establish this fact,
one has to rely on a different mathematical framework. The probability distribution
pt(ζ) of the auxiliary variables ζ1(t), . . . , ζK(t) as a function of time t, which
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2.6 Neural sampling in continuous time

describes the evolution of the network, obeys a partial differential equation, the
so-called Differential-Chapman-Kolmogorov equation (see Gardiner (2009)):

∂t pt(ζ) = (Tpt)(ζ), (2.14)

where the operator T, which captures the dynamics of the network, is implicitly
defined by the differential equations (2.13) and the spiking probabilities. This
operator T is the continuous time equivalent to the transition operator T in the
discrete time case. The operator T consists here of two components. The drift term
captures the deterministic decay process of ζk(t), stemming from the term −1/τ
in equation (2.13). The jump term describes the non-continuous aspects of the path
ζk(t) associated with “jumping” from ζk(tl

k − dt) = 0 to ζk(tl
k) = 1 at the time tl

k
when the neuron fires.

In Appendix B, we prove that the resulting time invariant distribution, i.e., the
distribution that solves ∂t pt(ζ) = 0, now denoted p(ζ) as it is not a function of
time, gives rise to the desired marginal distribution p(z) over z:

∫
dζ δ(z, ζ>0) p(ζ) = p(z) , (2.15)

where δ(z, ζ>0) = (δ(z1, ζ>0
1 ), . . . , δ(zK, ζ>0

K )) and ζ>0
k = 1 if ζk > 0 and ζ>0

k = 0
otherwise. δ(zk, ζ>0

k ) = 1 denotes Kronecker’s Delta with δ(zk, ζ>0
k ) = 1 if zk = ζ>0

k
and δ(zk, ζ>0

k ) = 0 otherwise. Thus, the function δ(z, ζ>0) simply reflects the
definition that zk(t) = 1 if ζk(t) > 0 and 0 otherwise. For an explicit definition of T,
a proof of the above statement, and some additional comments see Appendix B.

The neural samplers in discrete and continuous time are closely related. The model
in discrete time provides an increasingly more precise description of the inherent
spike dynamics when the duration dt of the discrete time step is reduced, causing an
increase of τ (such that τ · dt is constant) and therefore a reduced firing probability
of each neuron at any discrete time step (see the term log τ in equation (2.8)). In
the limit of dt approaching 0, the probability that two or more neurons will fire at
the same time approaches 0, and the discrete time sampler becomes equal to the
continuous time system defined above, which updates all units in parallel.

It is also possible to formulate a continuous time version of the neural sampler
based on neuron models with relative refractory mechanisms. In Appendix B, the
resulting continuous time neuron model with a relative refractory mechanism is
defined. Theoretical results similar to the discrete time case can be derived for
this sampler (see Lemmata 9 and 10 in Appendix B): It is shown that each neuron
“locally” performs the correct computation under the assumption of static input
from the remaining neurons. However one can no longer prove in general that the
global network samples from the target distribution p.
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2 Neural dynamics as sampling

2.7 Demonstration of perceptual multistability in sampling
networks

In the following we present a network model for perceptual multistability based
on the neural sampling framework introduced above. This simulation study is
aimed at showing that the proposed network can indeed sample from a desired
distribution and also perform inference, i.e., sample from the correct corresponding
posterior distribution. It is not meant to be a highly realistic or exhaustive model of
perceptual multistability nor of biologically plausible learning mechanisms. Such
models would naturally require considerably more modeling work.

Perceptual multistability evoked by ambiguous sensory input, such as a 2D drawing
(e.g., Necker cube) that allows for different consistent 3D interpretations, has
become a frequently studied perceptual phenomenon. The most important finding
is that the perceptual system of humans and nonhuman primates does not produce
a superposition of different possible percepts of an ambiguous stimulus, but
rather switches between different self-consistent global percepts in a spontaneous
manner. Binocular rivalry, where different images are presented to the left and
right eye, has become a standard experimental paradigm for studying this effect
(Leopold et al., 2002; Blake and Logothetis, 2002; Alais and Blake, 2005; Bartels

and Logothetis, 2010). A typical pair of stimuli are the two images shown in
Fig. 2.4A. Here the percepts of humans and nonhuman primates switch (seemingly
stochastically) between the two presented orientations. Multiple studies (Hoyer

and Hyvärinen, 2003; Sundareswara and Schrater, 2008; Gershman et al., 2009)
proposed that several aspects of experimental data on perceptual multistability
can be explained if one assumes that percepts correspond to samples from the
conditional distribution over interpretations (e.g., different 3D shapes) given the
visual input (e.g., the 2D drawing). Furthermore, the experimentally observed fact
that percepts tend to be stable on the time scale of seconds suggests that perception
can be interpreted as probabilistic inference that is carried out by MCMC sampling
which produces successively correlated samples. In (Gershman et al., 2009) it is
shown that this MCMC interpretation is also able to qualitatively reproduce the
experimentally observed distribution of dominance durations, i.e., the distribution
of time intervals between perceptual switches. However, in lack of an adequate
model for sampling by a recurrent network of spiking neurons, theses studies
could describe this approach only on a rather abstract level, and pointed out the
open problem to relate this algorithmic approach to neural processes. We have
demonstrated in a computer simulation that the previously described model for
neural sampling could in principle fill this gap, providing a modeling framework
that is on the one hand consistent with the dynamics of networks of spiking
neurons, and which can on the other hand also be clearly understood from the
perspective of probabilistic inference through MCMC sampling.

In the following we model some essential aspects of an experimental setup for
binocular rivalry with grating stimuli (see Fig. 2.4A) in a recurrent network of
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2.7 Demonstration of perceptual multistability in sampling networks

Fig. 2.4: Perceptual multistability as probabilistic inference with neural sampling. (A) Typical visual stimuli
for the left and right eye in binocular rivalry experiments. (B) Tuning curve of a neuron with preferred orientation ϕ̄.
(C) Distribution of dominance durations in the network under ambiguous input. The red curve shows a Gamma
distribution fitted the data. (D) 2-dim. projection (population vector) of the distribution p(z) encoded in the spiking
network. The network favors coherent global states of arbitrary orientation. (E) 2-dim. projection of the bimodal
posterior distribution under an ambiguous input (two different orientations mimicking the stimuli shown in A). Black
trace: 500 ms network trajectory z(t) around a perceptual switch. (F) Network states at 3 time points t1, t2, t3
marked in E. Neurons that fired in the preceding 20 ms (see gray bar in G) are plotted in the color of their preferred
orientation. Inactive neurons are shown in white. While states z(t1) and z(t3) represent coherent orientations, z(t2)
shows an incoherent state close to a perceptual switch. Clamped neurons (which the posterior is conditioned on)
are marked by a black dot. (G) Spike raster of the unclamped neurons during the 500 ms epoch marked by the black
trace in E. Gray bars indicate the 20 ms time intervals that define the network states shown in F.
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2 Neural dynamics as sampling

spiking neurons with the previously described relative refractory mechanism. We
assigned to each of the 217 neurons in the networkN a tuning curve Vk(ϕ), centered
around its preferred orientation ϕ̄k as shown in Fig. 2.4B. The preferred orientations
ϕ̄k of the neurons were chosen to uniformly cover the entire interval [0, π) of
possible orientations and were randomly assigned to the neurons. The neurons
were arranged on a hexagonal grid as depicted in Fig. 2.4F. Any two neurons with
distance ≤ 8 were synaptically connected (neighboring units had distance 1). We
assume that these neurons represent neurons in the visual system that have roughly
the same or neighboring receptive field, and that each neuron receives visual input
from either the left or the right eye. The network connections were chosen such
that neurons that have similar (very different) preferred orientations are connected
with positive (negative) weights (for details see Appendix B).

We examined the resulting distribution p(z) over the 217 dimensional network
states. To provide an intuitive visualization of these high dimensional network
states z, we resort to a 2-dimensional projection, the population vector of a state z
(see Appendix B for details of the applied population vector decoding scheme).
Only the endpoints of the population vectors are drawn (as colored points) in
Fig. 2.4D,E. The orientation of the population vector is assumed to correspond to
the dominant orientation of the percept, and its distance from the origin encodes
the strength of this percept. We also, somewhat informally, call the strength of a
percept its coherence and a network state which represents a coherent percept a
coherent network state. A coherent network state hence results in a population
vector of large magnitude. Each direction of a population vector is color coded
in Fig. 2.4D,E, using the color code for directions shown on the right hand side
of Fig. 2.4F. In Fig. 2.4D the distribution p(z) of the network is illustrated by
sampling of the network for 20 s, with samples z taken every millisecond. Each
dot equals a sampled network state z. In a biological interpretation the spike
response of the freely evolving network reflects spontaneous activity, since no
observations, i.e., no external input, was added to the system. Fig. 2.4D shows
that the spontaneous activity of this simple network of spiking neurons moves
preferably through coherent network states for all possible orientations due to
the chosen recurrent network connections (being positive for neurons with similar
preferred orientation and negative otherwise). This can directly be seen from the
rare occurrence of population vectors with small magnitude (vectors close to the
“center“) in Fig. 2.4D.

To study percepts elicited by ambiguous stimuli, where inputs like in Fig. 2.4A
are shown simultaneously to the left and right eye during a binocular rivalry
experiment, we provided ambiguous input to the network. Two cells with preferred
orientation ϕ̄k ≈ 45◦ and two cells with ϕ̄k ≈ 135◦ were clamped to 1. Additionally
four neurons with ϕ̄k ≈ 0◦ resp. 90◦ were muted by clamping to 0. This ambiguous
input is incompatible with a coherent percept, as it corresponds to two orthogonal
orientations presented at the same time. The resulting distribution over the state of
the 209 remaining neurons is shown for a time span of 20 s of simulated biological
time (with samples taken every millisecond) in Fig. 2.4E. One clearly sees that
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2.7 Demonstration of perceptual multistability in sampling networks

the network spends most of the time in network states that correspond to one of
the two simultaneously presented input orientations (45o and 135o), and virtually
no time on orientations in between. This implements a sampling process from a
bimodal conditional distribution. The black line marks a 500 ms trace of network
states z around a perceptual switch: The network remained in one mode of high
probability – corresponding to one percept – for some period of time, and then
quickly traversed the state space to another mode – corresponding to a different
percept.

Three of the states z around this perceptual switch (z(t1), z(t2) and z(t3) in
Fig. 2.4E) are explicitly shown in Fig. 2.4F. Neurons νk that fired during the preced-
ing interval of 20 ms (marked in gray in Fig. 2.4G) are drawn in the respective color
of their preferred orientation. Inactive neurons are drawn in white, and clamped
neurons are marked by a black dot (•).

Fig. 2.4G shows the action potentials of the 209 non-clamped neurons during the
same 500 ms trace around the perceptual switch. One sees that the sampling process
is expressed in this neural network model by a sparse, asynchronous and irregular
spike response. It is worth mentioning that the average firing rate when sampling
from the posterior distribution is only slightly higher than the average firing rate
of spontaneous activity (16.1 Hz and 15.4 Hz respectively), which is reminiscent
of related experimental data (Fiser et al., 2004). Thus on the basis of the overall
network activity it is indistinguishable whether the network carries out an inference
task or freely samples from its prior distribution. It is furthermore notable, that a
focus of the network activity on the two orientations that are given by the external
input can be achieved in this model, in spite of the fact that only two of the 217
neurons were clamped for each of them. This numerical relationship is reminiscent
of standard data on the weak input from LGN to V1 that is provided in the brain
(Binzegger et al., 2004; Binzegger et al., 2009), and indicates that the proposed
neural sampling model could provide a possible mechanism (under the modeling
assumptions made above) for cortical processing of such numerically weak external
inputs.

The distribution of the resulting dominance durations, i.e., the time between
perceptual switches, for the previously described setup with ambiguous input is
shown for a continuous run of 104 s in Fig. 2.4C (a similar method as in Gershman

et al. (2009) was used to measure dominance durations, see Appendix B). This
distribution can be approximated quite well by a Gamma distribution, which also
provides a good fit to experimental data (see the discussion in Gershman et al.
(2009)). We expect that also other features of the more abstract MCMC model for
biological vision of (Sundareswara and Schrater, 2008; Gershman et al., 2009),
such as contextual biases and traveling waves, will emerge in larger and more
detailed implementations of the MCMC approach through the proposed neural
sampling method in networks of spiking neurons.
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2 Neural dynamics as sampling

2.8 Discussion

We have presented a spiking neural network that samples from a given proba-
bility distribution via its inherent network dynamics. In particular the network
is able to carry out probabilistic inference through sampling. The model, based
on assumptions about the underlying probability distribution (formalized by the
neural computability condition) as well as on certain assumptions regarding the
underlying MCMC model, provides one possible neural implementation of the
“inference-by-sampling paradigm” emerging in computational neuroscience.

During inference the observations (i.e., the variables which we wish to condition
on) are modeled in this study by clamping the corresponding neurons by strong
external input to the observed binary value. Units which receive no input or input
with vanishing contrast (stimulus intensity) are treated as unobserved. Using this
admittedly quite simplistic model of the input, we observed in simulations that our
network model exhibits the following property: The onset of a sensory stimulus
reduces the variability of the firing activity, which represents (after stimulus onset)
a conditional distribution, rather than the prior distribution (see the difference
between panels D and E of Fig. 2.4). It is tempting to compare these results to
the experimental finding of reduced firing rate variability after stimulus onset
observed in several cortical areas (Churchland et al., 2010). We wish to point
out however, that a consistent treatment of zero contrast stimuli requires more
thorough modeling efforts (e.g., by explicitly adding a random variable for the
stimulus intensity (Fiser et al., 2010; Berkes et al., 2011)), which is not the focus of
the presented work.

Virtually all high-level computational tasks that a brain has to solve can be formal-
ized as optimization problems, that take into account a (possibly large) number
of soft or hard constraints. In typical applications of probabilistic inference in
science and engineering (see e.g. Bishop (2006); Koller and Friedman (2009))
such constraints are encoded in e.g., conditional probability tables or factors. In
a biological setup they could possibly be encoded through the synaptic weights
of a recurrent network of spiking neurons. The solution of such optimizations
problems in a probabilistic framework via sampling, as implemented in our model,
provides an alternative to deterministic solutions, as traditionally implemented
in neural networks (see, e.g., Hopfield and Tank (1985) for the case of constraint
satisfaction problems). Whereas an attractor neural network converges to one (pos-
sibly approximate) solution of the problem, a stochastic network may alternate
between different approximate solutions and stay the longest at those approximate
solutions that provide the best fit. This might be advantageous, as given more time
a stochastic network can explore more of the state space and avoid shallow local
minima. Responses to ambiguous sensory stimuli (Leopold et al., 2002; Blake

and Logothetis, 2002; Alais and Blake, 2005; Bartels and Logothetis, 2010)
might be interpreted as an optimization with soft constraints. The interpretation
of human thinking as sampling process solving an inference task, recently pro-
posed in cognitive science (Vul and Pashler, 2008; Denison et al., 2009; Griffiths

34



2.8 Discussion

and Tenenbaum, 2006), further emphasizes that considering neural activity as an
inferential process via sampling promises to be a fruitful approach.

Our approach builds on, and extends, previous work where recurrent networks of
non-spiking stochastic neurons (commonly considered in artificial neural networks)
were shown to be able to carry out probabilistic inference through Gibbs sampling
(Ackley et al., 1985). In G. Hinton and Brown (2000) a first extension of this
approach to a network of recurrently connected spiking neurons had been pre-
sented. The dynamics of the recurrently connected spiking neurons are described as
stepwise sampling from the posterior of a temporal Restricted Boltzmann Machine
(tRBM) by introducing a clever interpretation of the temporal spike code as time
varying parameters of a multivariate Gaussian distribution. Drawing one sample
from the posterior of a RBM is, by construction, a trivial one-step task. In contrast to
our model, the model of G. Hinton and Brown (2000) does not produce multiple
samples from a fixed posterior distribution, given the fixed input, but produces
exactly one sample consisting of the temporal sequence of the hidden nodes, given
a temporal input sequence. Similar temporal models, sometimes called Bayesian
filtering, also underlie the important contributions of (R. Zemel et al., 2005) and
(Deneve, 2008b). In (Deneve, 2008b) every single neuron is described as hidden
Markov Model (HMM) with two states. Instead of drawing samples from the in-
stantaneous posterior distribution using stochastic spikes, (Deneve, 2008b) presents
a deterministic spike generation with the intention to convey the analog probability
value rather then discrete samples. The approach presented here can be interpreted
as a biologically more realistic version of Gibbs sampling for a specific class of
probability distributions by taking into account a spike-based communication,
finite duration PSPs and refractory mechanisms. Other implementations based
on different distributions (e.g., directed graphical models) and different sampling
methods (e.g., reversible MCMC methods) are of course conceivable and worth
exploring.

In a computer experiment (see Fig. 2.4), we used our proposed network to model
aspects of biological vision as probabilistic inference along the lines of argumenta-
tion put forward in (Hoyer and Hyvärinen, 2003; Sundareswara and Schrater,
2008; Gershman et al., 2009). Our model was chosen to be quite simplistic, just
to demonstrate that a number of experimental data on the dynamics of sponta-
neous activity (Kenet et al., 2003; Fox and Raichle, 2007; Berkes et al., 2011) and
binocular rivalry (Alais and Blake, 2005; Blake and Logothetis, 2002; Leopold

et al., 2002; Bartels and Logothetis, 2010) can in principle be captured by this
approach. The main point of the modeling study is to show that rather realistic
neural dynamics can support computational functions rigorously formalized as
inference via sampling.

We have also presented a model of spiking dynamics in continuous time that
performs sampling from a given probability distribution. Although computer
simulations of biological networks of neurons often actually use discrete time, it
is desirable to also have a sound approach for understanding and describing the
network sampling dynamics in continuous time, as the latter is arguable a natural
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2 Neural dynamics as sampling

framework for describing temporal processes in biology. Furthermore comparison
to many existing continuous time neuron and network models of neurons is
facilitated.

We have made various simplifying assumptions regarding neural processes, e.g.,
simple symbolic postsynaptic potentials in the form of step-functions (reminiscent
of plateau potentials caused by dendritic NMDA spikes (Antic et al., 2010)). More
accurate models for neurons have to integrate a multitude of time constants that
represent different temporal processes on the physical, molecular, and genetic
level. Hence the open problem arises, to which extent this multitude of time
constants and other complex dynamics can be integrated into theoretical models
of neural sampling. We have gone one first step in this direction by showing that
in computer simulations the two temporal processes that we have considered
(refractory processes and postsynaptic potentials) can approximately be decoupled.
Furthermore, we have presented simulation results suggesting that more realistic
alpha-shaped, additive EPSPs are compatible with the functionality of the proposed
network model.

Finally, we want to point out that the prospect of using networks of spiking
neurons for probabilistic inference via sampling suggests new applications for
energy-efficient spike-based and massively parallel electronic hardware that is
currently under development (Merolla et al., 2007; Bruederle et al., 2010).
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Chapter 3
Homeostatic and Hebbian plasticity united under a
Bayesian account
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Abstract. Recent spiking network models of Bayesian inference and unsupervised
learning frequently assume either inputs to arrive in a special format or employ
complex computations in neuronal activation functions and synaptic plasticity
rules. Here we show in a rigorous mathematical treatment how homeostatic pro-
cesses, which have previously received little attention in this context, can overcome
common theoretical limitations and facilitate the neural implementation and perfor-
mance of existing models. In particular, we show that homeostatic plasticity can be
understood as the enforcement of a ’balancing’ posterior constraint during proba-
bilistic inference and learning with Expectation Maximization. We link homeostatic
dynamics to the theory of variational inference, and show that nontrivial terms,
which typically appear during probabilistic inference in a large class of models,
drop out. We demonstrate the feasibility of our approach in a spiking Winner-Take-
All architecture of Bayesian inference and learning. Finally, we sketch how the
mathematical framework can be extended to richer recurrent network architectures.
Altogether, our theory provides a novel perspective on the interplay of homeostatic
processes and synaptic plasticity in cortical microcircuits, and points to an essential
role of homeostasis during inference and learning in spiking networks.

Acknowledgments and author contributions. This chapter is based on the publi-
cation

Stefan Habenschuss, Johannes Bill, Bernhard Nessler (2012). “Homeo-
static plasticity in Bayesian spiking networks as Expectation Maximization with
posterior constraints.” In: Advances in Neural Information Processing Systems.
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3 Homeostatic and Hebbian plasticity united under a Bayesian account

To this study, I contributed as a functional first author (equal contribution with
SH). The theory was jointly developed by SH and JB, with support of BN for the
extension of the theory to recurrent networks. The computer experiments were
designed by SH and JB, and were performed by JB. All authors contributed to
writing the manuscript.

3.1 Introduction

Experimental findings from neuro- and cognitive sciences have led to the hypoth-
esis that humans create and maintain an internal model of their environment in
neuronal circuitry of the brain during learning and development (Körding and
Wolpert, 2004; Orban et al., 2008; Fiser et al., 2010; Berkes et al., 2011), and
employ this model for Bayesian inference in everyday cognition (Griffiths and
Tenenbaum, 2006; Angelaki et al., 2009). Yet, how these computations are carried
out in the brain remains largely unknown. A number of innovative models has
been proposed recently which demonstrate that in principle, spiking networks
can carry out quite complex probabilistic inference tasks (Deneve, 2008b; Steimer

et al., 2009; Buesing et al., 2011; Pecevski et al., 2011), and even learn to adapt to
their inputs near optimally through various forms of plasticity (Deneve, 2008a;
Nessler et al., 2009a; Brea et al., 2012; Rezende et al., 2012; Keck et al., 2012). Still,
in network models for concurrent online inference and learning, most approaches
introduce distinct assumptions: Both (Nessler et al., 2009a) in a spiking Winner-
take-all (WTA) network, and (Keck et al., 2012) in a rate based WTA network,
identified the limitation that inputs must be normalized before being presented
to the network, in order to circumvent an otherwise nontrivial (and arguably non-
local) dependency of the intrinsic excitability on all afferent synapses of a neuron.
Nessler et al. (2009a) relied on population coded input spike trains; Keck et al.
(2012) proposed feed-forward inhibition as a possible neural mechanism to achieve
this normalization. A theoretically related issue has been encountered by Deneve
(Deneve, 2008b; Deneve, 2008a), in which inference and learning is realized in a
two-state Hidden Markov Model by a single spiking neuron. Although synaptic
learning rules are found to be locally computable, the learning update for intrinsic
excitabilities remains intricate. In a different approach, Brea et al. (Brea et al., 2012)
have recently proposed a promising model for Bayes optimal sequence learning
in spiking networks in which a global reward signal, which is computed from the
network state and synaptic weights, modulates otherwise purely local learning
rules. Also the recent innovative model for variational learning in recurrent spiking
networks by Rezende et al. (Rezende et al., 2012) relies on sophisticated updates of
variational parameters that complement otherwise local learning rules.

There exists great interest in developing Bayesian spiking models which require
minimal non-standard neural mechanisms or additional assumptions on the input
distribution: such models are expected to foster the analysis of biological circuits
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Fig. 3.1: Homeostatic plasticity in WTA circuits. (A) Spiking WTA network model. (B) Input templates from MNIST
database (digits 0-5) are presented in random order to the network as spike trains (the input template switches after
every 250ms, black/white pixels are translated to high/low firing rates between 20 and 90 Hz). (C) Sketch of intrinsic
homeostatic plasticity maintaining a certain target average activation. (D) Homeostatic plasticity induces average
firing rates (blue) close to target values (red). (E) After a learning period, each WTA neuron has specialized on
a particular input motif. (F) WTA output spikes during a test phase before and after learning. Learning leads to a
sparse output code.

from a Bayesian perspective (Tenenbaum et al., 2011), and to provide a versatile
computational framework for novel neuromorphic hardware (Schemmel et al.,
2010). With these goals in mind, we introduce here a novel theoretical perspective
on homeostatic plasticity in Bayesian spiking networks that complements previous
approaches by constraining statistical properties of the network response rather than
the input distribution. In particular we introduce ’balancing’ posterior constraints
which can be implemented in a purely local manner by the spiking network through
a simple rule that is strongly reminiscent of homeostatic intrinsic plasticity in cortex
(Desai et al., 1999; Watt and Desai, 2010). Importantly, it turns out that the
emerging network dynamics eliminate a particular class of nontrivial computations
that frequently arise in Bayesian spiking networks.

First we develop the mathematical framework for Expectation Maximization (EM)
with homeostatic posterior constraints in an instructive Winner-Take-all network
model of probabilistic inference and unsupervised learning. Building upon the
theoretical results of (Graca et al., 2008), we establish a rigorous link between
homeostatic intrinsic plasticity and variational inference. In a second step, we sketch
how the framework can be extended to recurrent spiking networks; by introducing
posterior constraints on the correlation structure, we recover local plasticity rules
for recurrent synaptic weights.
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3 Homeostatic and Hebbian plasticity united under a Bayesian account

3.2 Homeostatic plasticity in winner-take-all networks

We first introduce, as an illustrative and representative example, a generative mix-
ture model p(z,y|V ) with hidden causes z and binary observed variables y, and a
spiking WTA network N which receives inputs y(t) via synaptic weights V . As
shown in (Nessler et al., 2009a), such a network N can implement probabilis-
tic inference p(z|y,V ) through its spiking dynamics, and maximum likelihood
learning through local synaptic learning rules (see Fig. 3.1A). The mixture model
comprises K binary and mutually exclusive components zk ∈ {0, 1}, ∑K

k=1 zk = 1,
each specialized on a different N-dimensional input pattern:

p(y, z|V ) =
K

∏
k=1

eb̂kzk
N

∏
i=1

[
(πki)

yi · (1− πki)
1−yi

]zk
(3.1)

⇔ log p(y, z|V ) =∑
k

zk

(
∑

i
Vkiyi − Ak + b̂k

)
, (3.2)

with ∑
k

eb̂k = 1 and πki = σ(Vki) and Ak = ∑
i

log(1 + eVki) , (3.3)

where σ(x) = (1 + exp(−x))−1 denotes the logistic function, and πki the expected
activation of input i under the mixture component k. For simplicity and notational
convenience, we will treat the prior parameters b̂k as constants throughout the
paper. Probabilistic inference of hidden causes zk based on an observed input y can
be implemented by a spiking WTA network N of K neurons which fire with the
instantaneous spiking probability (for δt→ 0),

p(zk spikes in [t, t + δt]) = δt · rnet ·
euk(t)

∑j euj(t)
∝ p(zk = 1|y,V ) , (3.4)

with the input potential uk(t) = ∑i Vkiyi(t)− Ak + b̂k. Each WTA neuron k receives
spiking inputs yi via synaptic weights Vki and responds with an instantaneous
spiking probability which depends exponentially on its input potential uk in
accordance with biological findings (Jolivet et al., 2006). Stochastic winner-take-
all (soft-max) competition between the neurons is modeled in (3.4) via divisive
normalization (E. Simoncelli and Heeger, 1998). The input is defined as yi(t) = 1
if input neuron i emitted a spike within the last τ milliseconds, and 0 otherwise,
corresponding to a rectangular post-synaptic potential (PSP) of length τ. We define
zk(t) = 1 at spike times t of neuron k and zk(t) = 0 otherwise.

In addition to the spiking input, each neuron’s potential uk features an intrinsic
excitability −Ak + b̂k. Note that, besides the prior constant b̂k, this excitability
depends on the normalizing term Ak, and hence on all afferent synaptic weights
through (3.3): WTA neurons which encode strong patterns with high probabilities
πki require lower intrinsic excitabilities, while neurons with weak patterns require
larger excitabilities. In the presence of synaptic plasticity, i.e., time-varying Vki, it
is unclear how biologically realistic neurons could communicate ongoing changes
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3.2 Homeostatic plasticity in winner-take-all networks

in synaptic weights from distal synaptic sites to the soma. This critical issue was
apparently identified in (Nessler et al., 2009a) and (Keck et al., 2012); both papers
circumvent the problem (in similar probabilistic models) by constraining the input y
(and also the synaptic weights in (Keck et al., 2012)) in order to maintain constant
and uniform values Ak across all WTA neurons.

Here, we propose a different approach to cope with the nontrivial computations Ak
during inference and learning in the network. Instead of assuming that the inputs y
meet a normalization constraint, we constrain the network response during inference,
by applying homeostatic dynamics to the intrinsic excitabilities. This approach
turns out to be beneficial in the presence of time-varying synaptic weights, i.e.,
during ongoing changes of Vki and Ak. The resulting interplay of intrinsic and
synaptic plasticity can be best understood from the standard EM lower bound
(Bishop, 2006),

F (V , q(z|y)) = L(V )− 〈DKL (q(z|y) || p(z|y,V ) 〉p∗(y) → E-step, (3.5)

= 〈 log p(y, z|V ) 〉p∗(y)q(z|y) + 〈H(q(z|y)) 〉p∗(y) → M-step, (3.6)

where L(V ) = 〈log p(y|V )〉p∗(y) denotes the log-likelihood of the input under
the model, DKL (· || ·) the Kullback-Leibler divergence, and H(·) the entropy. The
decomposition holds for arbitrary distributions q. In hitherto proposed neural
implementations of EM (Deneve, 2008a; Nessler et al., 2009a; Keck et al., 2012;
Sato, 1999), the network implements the current posterior distribution in the E-step,
i.e., q = p and DKL (q || p) = 0. In contrast, by applying homeostatic plasticity, the
network response will be constrained to implement a variational posterior from
a class of “homeostatic” distributions Q: the long-term average activation of each
WTA neuron zk is constrained to an a priori defined target value. Notably, we
will see that the resulting network response q∗ describes an optimal variational E-
Step in the sense that q∗(z|y) = arg minq∈QDKL (q(z|y) || p(z|y,V )). Importantly,
homeostatic plasticity fully regulates the intrinsic excitabilities, and as a side effect
eliminates the non-local terms Ak in the E-step, while synaptic plasticity of the
weights Vki optimizes the underlying probabilistic model p(y, z|V ) in the M-step.

In summary, the network response implements q∗ as the variational E-step, the
M-Step can be performed via gradient ascent on (3.6) with respect to Vki. As derived
in section 3.3, this gives rise to the following temporal dynamics and plasticity rules
in the spiking network, which instantiate a stochastic version of the variational EM
scheme:

uk(t) = ∑
i

Vkiyi(t) + bk , ḃk(t) = ηb · (rnet ·mk − δ(zk(t)− 1)) , (3.7)

V̇ki(t) = ηV · δ(zk(t)− 1) · (yj(t)− σ(Vki)) , (3.8)

where δ(·) denotes the Dirac delta function, and ηb, ηV are learning rates (which
were kept time-invariant in the simulations with ηb = 10 · ηV). Note that (3.8)
is a spike-timing dependent plasticity rule (cf. (Nessler et al., 2009a)) and is
non-zero only at post-synaptic spike times t, for which zk(t) = 1. The effect of
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3 Homeostatic and Hebbian plasticity united under a Bayesian account

the homeostatic intrinsic plasticity rule (3.7) is illustrated in Fig. 3.1C: it aims to
keep the long-term average activation of each WTA neuron k close to a certain
target value mk. More precisely, if rk is a neuron’s long-term average firing rate,
then homeostatic plasticity will ensure that rk/rnet ≈ mk. The target activations
mk ∈ (0, 1) can be chosen freely with the obvious constraint that ∑k mk = 1. Note
that (3.7) is strongly reminiscent of homeostatic intrinsic plasticity in cortex (Desai

et al., 1999; Watt and Desai, 2010).

We have implemented these dynamics in a computer simulation of a WTA spik-
ing network N . Inputs y(t) were defined by translating handwritten digits 0-5
(Fig. 3.1B) from the MNIST dataset (LeCun et al., 1998) into input spike trains.
Fig. 3.1D shows that, at the end of a 104s learning period, homeostatic plasticity
has indeed achieved that rk ≈ rnet · mk. Fig. 3.1E illustrates the patterns learned
by each WTA neuron after this period (shown are the πki). Apparently, the WTA
neurons have specialized on patterns of different intensity which correspond to
different values of Ak. Fig. 3.1F shows the output spiking behavior of the circuit
before and after learning in response to a set of test patterns. The specialization to
different patterns has led to a distinct sparse output code, in which any particular
test pattern evokes output spikes from only one or two WTA neurons. Note that
homeostasis forces all WTA neurons to participate in the competition, and thus
prevents neurons from becoming underactive if their synaptic weights decrease,
and from becoming overactive if their synaptic weights increase, much like the
original Ak terms (which are nontrivial to compute for the network). Indeed, the
learned synaptic parameters and the resulting output behavior corresponds to
what would be expected from an optimal learning algorithm for the mixture model
(3.1)-(3.3).1

3.3 Theory for the WTA model

In the following, we develop the three theoretical key results for the WTA model
(3.1)-(3.3):

• Homeostatic intrinsic plasticity finds the network response distribution
q∗(z|y) ∈ Q closest to the posterior distribution p(z|y,V ), from a set of
“homeostatic” distributions Q.

• The interplay of homeostatic and synaptic plasticity can be understood from
the perspective of variational EM.

• The critical non-local terms Ak defined by (3.3) drop out of the network
dynamics.

1 Without adaptation of intrinsic excitabilities, the network would start performing erroneous
inference, learning would reinforce this erroneous behavior, and performance would quickly break
down. We have verified this in simulations for the present WTA model: Consistently across trials, a
small subset of WTA neurons became dominantly active while most neurons remained silent.
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3.3 Theory for the WTA model

E-step: variational inference with homeostasis

The variational distribution q(z|y) we consider for the model (3.1)-(3.3) is a 2N · K
dimensional object. Since q describes a conditional probability distribution, it
is non-negative and normalized for all y. In addition, we constrain q to be a
“homeostatic” distribution q ∈ Q such that the average activation of each hidden
variable (neuron) zk equals an a-priori specified mean activation mk under the input
statistics p∗(y). This is sketched in Fig. 3.2. Formally we define the constraint set,

Q = {q : 〈zk〉p∗(y)q(z|y) = mk, for all k = 1 . . . K} , with ∑
k

mk = 1 . (3.9)

The constrained maximization problem q∗(z|y) = arg maxq∈Q F (V , q(z|y)) can
be solved with the help of Lagrange multipliers (cf. (Graca et al., 2008)). We find
that the q∗ which maximizes the objective function F during the E-step (and thus
minimizes the KL-divergence to the posterior p(z|y,V )) has the convenient form
q∗(z|y) ∝ p(z|y,V ) · exp(∑k β∗kzk) with some β∗k . Hence, it suffices to consider
distributions of the form,

qβ(z|y) ∝ exp(∑
k

zk(∑
i

Vkiyi + b̂k − Ak + βk︸ ︷︷ ︸
=:bk

)) , (3.10)

for the maximization problem. We identify βk as the variational parameters which
remain to be optimized. Note that any distribution of this form can be implemented
by the spiking network N if the intrinsic excitabilities are set to bk = −Ak +
b̂k + βk. The optimal variational distribution q∗(z|y) = qβ∗(z|y) then has β∗ =
arg maxβ Ψ(β), i.e. the variational parameter vector which maximizes the dual
(Graca et al., 2008),

Ψ(β) = ∑
k

βkmk − 〈log ∑
z

p(z|y,V ) exp(∑
k

βkzk)〉p∗(y) . (3.11)

Due to concavity of the dual, a unique global maximizer β∗ exists, and thus
also the corresponding optimal intrinsic excitabilities b∗k = −Ak + b̂k + β∗k are
unique. Hence, the posterior constraint q ∈ Q can be illustrated as in Fig. 3.2B:
For each synaptic weight configuration V there exists, under a particular input
distribution p∗(y), a unique configuration of intrinsic excitabilities b such that
the resulting network output fulfills the homeostatic constraints. The theoretical
relation between the intrinsic excitabilities bk, the original nontrivial term −Ak
and the variational parameters βk is sketched in Fig. 3.2C. Importantly, while bk is
implemented in the network, Ak, βk and b̂k are not explicitly represented in the
implementation anymore. Finding the optimal b in the dual perspective, i.e. those
intrinsic excitabilities which fulfill the homeostatic constraints, amounts to gradient
ascent ∂βΨ(β) on the dual, which leads to the following homeostatic learning rule
for the intrinsic excitabilities,

∆bk ∝ ∂βk Ψ(β) = mk − 〈zk〉p∗(y)q(z|y) . (3.12)
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3 Homeostatic and Hebbian plasticity united under a Bayesian account

Fig. 3.2: Theory for the WTA model. (A) Homeostatic posterior constraints in the WTA model: Under the variational
distribution q, the average activation of each variable zk must equal mk. (B) For each set of synaptic weights V there
exists a unique assignment of intrinsic excitabilities b, such that the constraints are fulfilled. (C) Theoretical decom-
position of the intrinsic excitability bk into −Ak, b̂k and βk. (D) During variational EM the bk predominantly “track” the
dynamically changing non-local terms −Ak (relative comparison between two WTA neurons from Figure 3.1).

Note that the intrinsic homeostatic plasticity rule (3.7) in the network corresponds
to a sample-based stochastic version of this theoretically derived adaptation mecha-
nism (3.12). Hence, given enough time, homeostatic plasticity will automatically
install near-optimal intrinsic excitabilities b ≈ b∗ and implement the correct varia-
tional distribution q∗ up to stochastic fluctuations in b due to the non-zero learning
rate ηb. The non-local terms Ak have entirely dropped out of the network dynamics,
since the intrinsic excitabilities bk can be arbitrarily initialized, and are then fully
regulated by the local homeostatic rule, which does not require knowledge of Ak.

As a side remark, note that although the variational parameters βk are not explicitly
present in the implementation, they can be theoretically recovered from the network
at any point, via βk = bk + Ak − b̂k. Notably, in all our simulations we have consis-
tently found small absolute values of βk, corresponding to a small KL-divergence
between q∗ and p.2 Hence, a major effect of the local homeostatic plasticity rule
during learning is to dynamically track and effectively implement the non-local
terms −Ak. This is shown in Fig. 3.2D, in which the relative excitabilities of two
WTA neurons bk − bj are plotted against the corresponding non-local Ak − Aj over
the course of learning in the first simulation (Fig. 3.1).

M-step: interplay of synaptic and homeostatic intrinsic plasticity

During the M-step, we aim to increase the EM lower bound F in (3.6) w.r.t. the
synaptic parameters V . Gradient ascent yields,

∂VkiF (V , q(z|y)) = 〈∂Vki log p(y, z|V )〉p∗(y)q(z|y) (3.13)

= 〈 zk · (yj − σ(Vki)) 〉p∗(y)q(z|y) , (3.14)

2This is assuming for simplicity uniform prior parameters b̂k. Note that a small KL-divergence is
in fact often observed during variational EM since F , which contains the negative KL-divergence, is
being maximized.
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3.4 Spiking network dynamics with homeostatic plasticity

Fig. 3.3: Dynamical properties of homeostatically regulated spiking networks. (A) Input templates from MNIST
dataset (digits 0,3 at a ratio 2:1, and digits 0,3,4 at a ratio 1:1:1) used during the first and second learning period,
respectively. (B) Learned patterns at the end of each learning period. (C). Network performance converges in the
course of learning. F is a tight lower bound to L. (D) Illustration of pattern learning and re-learning dynamics in a
2-D projection in the input space. Each black dot corresponds to the pattern πki of one WTA neuron k. Colored dots
are input samples from the training set (blue/green/red↔ digits 0/3/4).

where q is the variational distribution determined during the E-step, i.e., we can
set q = q∗. Note the formal correspondence of (3.14) with the network synaptic
learning rule (3.8). Indeed, if the network activity implements q∗, it can be shown
easily that the expected update of synaptic weights due to the synaptic plasticity
(3.8) is proportional to (3.14), and hence implements a stochastic version of the
theoretical M-step (cf. (Nessler et al., 2009a)).

3.4 Spiking network dynamics with homeostatic plasticity

To highlight a number of salient dynamical properties emerging from homeostatic
plasticity in the considered WTA model, Fig. 3.3 shows a simulation of the same
network N with homeostatic dynamics as in Fig. 3.1, only with different input
statistics presented to the network, and uniform mk = 1

K . During the first 5000s,
different writings of 0’s and 3’s from the MNIST dataset were presented, with
0’s occurring twice as often as 3’s. Then the input distribution p∗(y) abruptly
switched to include also 4’s, with each digit occurring equally often. The following
observations can be made: Due to the homeostatic constraint, each neuron responds
on average to mk · T out of T presented inputs. As a consequence, the number
of neurons which specialize on a particular digit is directly proportional to the
frequency of occurrence of that digit, i.e. 8:4 and 4:4:4 after the first and second
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3 Homeostatic and Hebbian plasticity united under a Bayesian account

learning period, respectively (Fig. 3.3B). In general, if uniform target activations mk
are chosen, output resources are allocated precisely in proportion to input frequency.
Fig. 3.3C depicts the time course of the EM lower bound F as well as the average
likelihood L (assuming uniform b̂k) under the model during a single simulation run,
demonstrating both convergence and tightness of the lower bound. As expected
due to the stabilizing dynamics of homeostasis, we found variability in performance
among different trials to be small (not shown). Fig. 3.3D illustrates the dynamics of
learning and re-learning of patterns πki in a 2D projection of input patterns onto
the first two principal components.

3.5 Homeostatic plasticity in recurrent spiking networks

The neural model so far was essentially a feed-forward network, in which every
postsynaptic spike can directly be interpreted as one sample of the instantaneous
posterior distribution (Nessler et al., 2009a). The lateral inhibition served only
to ensure the normalization of the posterior. We will now extend the concept of
homeostatic processes as posterior constraints to the broader class of recurrent
networks and sketch the utility of the developed framework beyond the regulation
of intrinsic excitabilities.

Recently it was shown in (Buesing et al., 2011; Pecevski et al., 2011) that recurrent
networks of stochastically spiking neurons can in principle carry out probabilistic
inference through a sampling process. At every point in time, the joint network
state z(t) represents one sample of a posterior. However, (Buesing et al., 2011) and
(Pecevski et al., 2011) did not consider unsupervised learning on spiking input
streams.

For the following considerations, we divide the definition of the probabilistic model
in two parts. First, we define a Boltzmann distribution,

p(z) = exp(∑
k

b̂kzk +
1
2 ∑

j 6=k
Ŵkjzkzj)/norm. , (3.15)

with Ŵkj = Ŵjk as “prior” for the hidden variables z which will be represented
by a recurrently connected network of K spiking neurons. For the purpose of
this section, we treat b̂k and Ŵkj as constants. Secondly, we define a conditional
distribution in the exponential-family form (Bishop, 2006),

p(y|z,V ) = exp( f0(y) + ∑
k,i

Vkizk fi(y)− A(z,V )) , (3.16)

that specifies the likelihood of observable inputs y, given a certain network state z.
This defines the generative model p(y, z|V ) = p(z) p(y|z,V ).

We map this probabilistic model to the spiking network and define that for every k
and every point in time t the variable zk(t) has the value 1, if the corresponding
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3.5 Homeostatic plasticity in recurrent spiking networks

neuron has fired within the time window (t− τ, t]. In accordance with the neural
sampling theory, in order for a spiking network to sample from the correct posterior
p(z|y,V ) ∝ p(z) p(y|z,V ) given the input y, each neuron must compute in its
membrane potential the log-odd (Buesing et al., 2011),

uk = log
p(zk = 1|z\k,V )

p(zk = 0|z\k,V )
= ∑

i
Vki fi(y)︸ ︷︷ ︸

feedforward drive

−Ak(V ) + b̂k︸ ︷︷ ︸
intr. excitability

+ ∑
j 6=k

(−Akj(V ) + Ŵkj︸ ︷︷ ︸
recurrent weight

)zj − . . .

(3.17)

where z\k = (z1, . . . , zk−1, zk+1, . . . zK)
T. The Ak, Akj, . . . are given by the decompo-

sition of A(z,V ) along the binary combinations of z as,

A(z,V ) = A0(V ) + ∑
k

zk Ak(V ) +
1
2 ∑

j 6=k
zkzj Akj(V ) + . . . (3.18)

Note, that we do not aim at this point to give learning rules for the prior parameters
b̂k and Ŵkj. Instead we proceed as in the last section and specify a-priori desired
properties of the average network response under the input distribution p∗(y),

ckj = 〈zkzj〉p∗(y)q(z|y) and mk = 〈zk〉p∗(y)q(z|y) . (3.19)

Let us explore some illustrative configurations for mk and ckj. One obvious choice
is closely related to the goal of maximizing the entropy of the output code by fixing
〈zk〉 to 1

K and 〈zkzj〉 to 〈zk〉〈zj〉 = 1
K2 , thus enforcing second order correlations to be

zero. Another intuitive choice would be to set all 〈zkzj〉 very close to zero, which
excludes that two neurons can be active simultaneously and thus recovers the
function of a WTA. It is further conceivable to assign positive correlation targets
to groups of neurons, thereby creating populations with redundant codes. Finally,
with a topographical organization of neurons in mind, all three basic ideas sketched
above might be combined: one could assign positive correlations to neighboring
neurons in order to create local cooperative populations, mutual exclusion at
intermediate distance, and zero correlation targets between distant neurons.

With this in mind, we can formulate the goal of learning for the network in the
context of EM with posterior constraints: we constrain the E-step such that the
average posterior fulfills the chosen targets, and adapt the forward weights V in
the M-step according to (3.6). Analogous to the first-order case, the variational
solution of the E-step under these constraints takes the form,

qβ,ω(z|y) ∝ p(z|y,V ) · exp

(
∑

k
βkzk +

1
2 ∑

j 6=k
ωkjzkzj

)
, (3.20)

with symmetric ωkl = ωlk as variational parameters. A neural sampling network N
with input weights Vki will sample from qβ,ω if the intrinsic excitabilities are set to
bk = −Ak + b̂k + βk, and the symmetric recurrent synaptic weights to Wkj = −Akj +
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Ŵkj + ωkj. The variational parameters β,ω (and hence also b,W ) which optimize
the dual problem Ψ(b,ω) are uniquely defined and can be found iteratively via
gradient ascent. Analogous to the last section, this yields the intrinsic plasticity
rule (3.12) for bk. In addition, we obtain for the recurrent synapses Wkj,

∆Wkj ∝ ckj − 〈zkzj〉p∗(y)q(z|y) , (3.21)

which translates to an anti-Hebbian spike-timing dependent plasticity rule in the
network implementation.

For any concrete instantiation of f0(y), fi(y) and A(z,V ) in (3.16) it is possible
to derive learning rules for Vki for the M-step via ∂VkiF (V , q). Of course not all
models entail local synaptic learning rules. In particular it might be necessary to
assume conditional independence of the inputs y given the network state z, i.e.,
p(y|z,V ) = ∏i p(yi|z,V ). Furthermore, in order to fulfill the neural computability
condition (3.17) for neural sampling (Buesing et al., 2011) with a recurrent network
of point neurons, it might be necessary to choose A(z,V ) such that terms of order
higher than 2 vanish in the decomposition. This can be shown to hold, for example,
in a model with conditionally independent Gaussian distributed inputs yi. It is
ongoing work to find further biologically realistic network models in the sense
of this theory and to assess their computational capabilities through computer
experiments.

3.6 Discussion

Complex and non-local computations, which appear during probabilistic inference
and learning, arguably constitute one of the cardinal challenges in the development
of biologically realistic Bayesian spiking network models. In this paper we have
introduced homeostatic plasticity, which to the best of our knowledge had not
been considered before in the context of EM in spiking networks, as a theoretically
grounded approach to stabilize and facilitate learning in a large class of network
models. Our theory complements previously proposed neural mechanisms and
provides, in particular, a simple and biologically realistic alternative to the as-
sumptions on the input distribution made in (Nessler et al., 2009a) and (Keck

et al., 2012). Indeed, our results challenge the hypothesis of (Keck et al., 2012)
that feedforward inhibition is critical for correctly learning the structure of the
data with biologically plausible plasticity rules. More generally, it turns out that
the enforcement of a balancing posterior constraint often simplifies inference in
recurrent spiking networks by eliminating nontrivial computations. Our results
suggest a crucial role of homeostatic plasticity in the Bayesian brain: to constrain
activity patterns in cortex to assist the autonomous optimization of an internal
model of the environment.
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Chapter 4
Statistical learning with compound memristive
synapses
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Abstract. Memristors have recently emerged as promising circuit elements to
mimic the function of biological synapses in neuromorphic computing. The fabrica-
tion of reliable nanoscale memristive synapses, that feature continuous conductance
changes based on the timing of pre- and postsynaptic spikes, has however turned
out to be challenging. In this article, we propose an alternative approach, the com-
pound memristive synapse, that circumvents this problem by the use of memristors
with binary memristive states. A compound memristive synapse employs multiple
bistable memristors in parallel to jointly form one synapse, thereby providing a
spectrum of synaptic efficacies. We investigate the computational implications of
synaptic plasticity in the compound synapse by integrating the recently observed
phenomenon of stochastic filament formation into an abstract model of stochastic
switching. Using this abstract model, we first show how standard pulsing schemes
give rise to spike-timing dependent plasticity (STDP) with a stabilizing weight
dependence in compound synapses. In a next step, we study unsupervised learning
with compound synapses in networks of spiking neurons organized in a winner-
take-all architecture. Our theoretical analysis reveals that compound-synapse STDP
implements generalized Expectation-Maximization in the spiking network. Specifi-
cally, the emergent synapse configuration represents the most salient features of
the input distribution in a Mixture-of-Gaussians generative model. Furthermore,
the network’s spike response to spiking input streams approximates a well-defined
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Bayesian posterior distribution. We show in computer simulations how such net-
works learn to represent high-dimensional distributions over images of handwritten
digits with high fidelity even in presence of substantial device variations and under
severe noise conditions. Therefore, the compound memristive synapse may provide
a synaptic design principle for future neuromorphic architectures.
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4.1 Introduction

A characteristic property of massively parallel computation in biological and ar-
tificial neural circuits is the need for intensive communication between neuronal
elements. As a consequence, area- and energy consumption of neuromorphic cir-
cuits is often dominated by those circuits that implement synaptic transmission
between neural elements (Schemmel et al., 2008). Biological synapses are highly dy-
namic computational entities, exhibiting plasticity on various time scales (Malenka

and Bear, 2004). In order to capture the most salient of these aspects, silicon
synapses thus demand extensive circuitry if implemented in CMOS technology.
On this account, novel nanoscale circuit elements have recently gained interest in
the field of neuromorphic engineering as a promising alternative solution for the
implementation of artificial synaptic connections. In particular, for mixed-signal
neuromorphic CMOS architectures, which combine traditional digital circuits with
analog components, memristors are considered a promising class of circuit elements
due to high integration densities, synapse-like plasticity dynamics, and low power
consumption (Indiveri et al., 2013; S. H. Jo et al., 2010; Choi et al., 2009; Kuzum

et al., 2011). One particularly important feature of memristors is that their electrical
resistance (often termed “memristance”) can be altered in a persistent manner by
applying a voltage to its terminals, leading to the eponymous perception of memris-
tors as resistors with memory. As an important application of this property, it was
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shown that the memristance can be changed based on the spike timings of the pre-
and postsynaptic neurons in a manner that approximates spike-timing dependent
plasticity (STDP), a plasticity rule that is believed to represent a first approximation
for the changes of synaptic efficacies in biological synapses (Markram et al., 1997;
Caporale and Dan, 2008; Markram et al., 2012). On the level of single synapses,
this important property has been confirmed experimentally in real memristors
(Mayr et al., 2012) and has been included into computational models of memristive
plasticity (Serrano-Gotarredona et al., 2013). On the network level, models of
memristive STDP were employed in computer simulations to demonstrate the po-
tential applicability of neuromorphic designs with memristive synapses to pattern
recognition tasks (Querlioz et al., 2011).

In practice however, the production of functional memristive synapses with nanoscale
dimensions has proven difficult, mainly due to large device variations and their
unreliable behavior. It turned out to be particularly challenging to fabricate reliable
nanoscale memristive synapses that feature a continuous spectrum of conductance
values. As an alternative solution, it was proposed to employ bistable memristors
as neuromorphic synapses instead since they exhibit a high degree of uniformity
(Fang et al., 2011) and high durability (S. H. Jo et al., 2009b). For switching be-
tween their two stable conductance states, bistable memristors can be operated in a
deterministic as well as in a stochastic regime (S. H. Jo et al., 2009b).

Using machine learning theory, we show in this article that stochastically switching
bistable memristors become computationally particularly powerful in mixed-signal
neuromorphic architectures when multiple memristors are combined to jointly
form one synapse. Such a joint operation of multiple memristors can be interpreted
as the collective function of ion channels in biological synapses (Indiveri et al.,
2013). Concretely, we propose the compound memristive synapse model which employs
M bistable memristors operating in parallel to form a single synaptic weight
between two neurons. To implement synaptic plasticity, we employ standard STDP
pulsing schemes (Querlioz et al., 2011; Serrano-Gotarredona et al., 2013) and
exploit the stochastic nature of memristive switching (Yu et al., 2013; S. H. Jo et al.,
2009b; Gaba et al., 2013; Suri et al., 2013). For the analysis of the resulting plasticity
dynamics, we perceive individual memristors as binary stochastic switches. This
abstract description was previously utilized to capture the most salient features
of experimentally observed memristive switching (Suri et al., 2013) and appears
compatible with pivotal aspects of the experimental literature (S. H. Jo et al., 2009b;
Gaba et al., 2013).

We show analytically and through computer simulations that the change of the
synaptic efficacy for a given pairing of pre- and postsynaptic spikes follows an
STDP-like plasticity rule such that the expected weight change depends on the
momentary synaptic weight in a stabilizing manner. The resulting compound-synapse
STDP enables a synapse to attain many memristive states depending on the history
of pre- and postsynaptic activity. A stabilizing weight dependence of synaptic
plasticity exists in biological synapses (Bi and Poo, 1998) and has been shown
to facilitate learning and adaptation in neural systems (Morrison et al., 2007;
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M. C. Van Rossum et al., 2000). In particular, it has been shown in (Nessler

et al., 2013) that in stochastic winner-take-all (WTA) architectures, STDP with
stabilizing weight dependence implements an online Expectation-Maximization
algorithm. When exposed to input examples, neurons in the WTA network learn
to represent the hidden causes of the observed input in a well-defined generative
model. This adaptation proceeds in a purely unsupervised manner. We adopt a
similar strategy here and apply the compound memristive synapse model in a
network of stochastically spiking neurons arranged in a WTA architecture. We
show analytically that compound-synapse STDP optimizes the synaptic efficacies
such that the WTA network neurons in the hidden layer represent the most salient
features of the input distribution in a Mixture-of-Gaussians generative model. After
training, the network performs Bayesian inference over the hidden causes for the
given input pattern. We show in computer simulations that such networks are able
to learn to represent high-dimensional distributions over images of handwritten
digits. After unsupervised training, the network transforms noisy input spike-
patterns into a sparse and reliable spike code that supports classification of images.
It turns out that even small compound synapses, consisting of only four bistable
constituents per synapse, are sufficient for reliable image classification in our
simulations. We furthermore show that the proposed model is able to represent
the input distribution with high fidelity even in the presence of substantial device
variations and under severe noise conditions. These findings render the compound
synapse model a promising design principle for novel high-density, low-power
mixed-signal CMOS architectures.

4.2 Stochastic memristors as plastic synapses

Memristors have gained increasing attention in neuromorphic engineering as
possible substrates for plastic synapses (S. H. Jo et al., 2010) due to the possibility to
change their electrical conductance without the requirement of extensive supporting
circuitry. Recently, Zamarreño-Ramos et al. (2011) and Querlioz et al. (2011)
have proposed a pulsing scheme to realize spike-timing dependent plasticity
(STDP) with memristive synapses in response to pre- and postsynaptic activity as
sketched in Fig. 4.1A: Pre-synaptic spikes trigger a rectangular voltage pulse of
duration τ (shown in green) that is sent to the memristor’s presynaptic terminal.
Similarly, postsynaptic neurons send back a copy of their spikes to the postsynaptic
terminal as a brief voltage pulse (shown in blue). The combined effect of these
pulses was shown to trigger STDP-type plasticity in the memristor as illustrated
in Fig. 4.1B, where we adopted the convention to measure the voltage drop at the
memristor as “presynaptic minus postsynaptic potential”. If only the postsynaptic
neuron spikes (Fig. 4.1B, left), the voltage pulse exceeds the lower threshold of the
memristor, leading to long-term depression (LTD). Conversely, if a postsynaptic
spike follows a presynaptic spike within duration τ (Fig. 4.1B, right), the combined
voltage trace exceeds the memristor’s upper threshold, thus resulting in long-term
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Fig. 4.1: Compound synapse model with stochastic memristors. (A) STDP pulsing scheme. Input spikes elicit
a rectangular voltage trace (green, left) that is sent to the presynaptic terminal of the memristor synapse. Post-
synaptic spikes elicit a brief voltage pulse (blue) which is sent back to the synapse. (B) Solitary postsynaptic spikes
trigger LTD since the voltage exceeds the lower threshold of the memristor. Simultaneous pre- and postsynaptic
spikes trigger LTP since the voltage exceeds the upper threshold. (C) Compound memristive synapse model. A
synapse is composed of M bistable memristors operating in parallel. Each memristor can either be active (weight
ω) or inactive (weight 0). The total synaptic weight Wki between input neuron yi and network neuron zk is the sum
of the individual memristor weights. (D) Bistable memristors switch stochastically between the active and inactive
state depending on the applied voltage difference across its terminals. Switching to the active state (inactive state)
occurs with probability πup (πdown) if a certain threshold voltage (dotted line) is exceeded. (E) Summary of stochastic
transitions for compound-synapse STDP. (F) In an STDP pairing experiment, the stabilizing weight dependence of
compound synapse plasticity governs convergence to a dynamic equilibrium. 10,000 plasticity pulses were applied
to a synapse with M = 10 constituents. During the first half, 80% (20%) of the events were of LTP (LTD) type.
During the second half, the probability for LTP (LTD) events was inverted to 20% (80%). Thin lines: number of active
memristors mki(t) for two example simulation runs. Thick line: Average 〈mki(t) 〉 over 100 runs. The average weight
converges to a dynamic equilibrium.

potentiation (LTP). Pre-synaptic pulses alone do not trigger any plasticity. Overall,
the memristor’s conductance obeys an STDP-type plasticity rule.

The direct implementation of the above plasticity rule in mixed-signal neuro-
morphic architectures, however, faces practical challenges due to the continuous
spectrum of the conductance values it relies on. Memristors that support a (quasi-)
continuous spectrum of memristive states often suffer from instabilities to maintain
their conductance value (“volatility”) and typically show unreliable changes under
repetitive application of identical pulses.

Here we explore an alternative approach that employs multiple bistable memristors,
that support only two distinct conductance states per memristor, to jointly form one
synapse. Such devices were reported to exhibit a high degree of uniformity (Fang

et al., 2011). Concretely, we propose a synapse model which employs M bistable
memristors operating in parallel to form a single synaptic weight Wki between
the i-th input neuron yi and the k-th network neuron zk. The model which we
refer to as compound memristive synapse is sketched in Fig. 4.1C. Each memristor
is assumed to provide two stable states: a high-conductive (active) state and a
low-conductive (inactive) state. Since the dynamic range of memristors typically
covers several orders of magnitude, the weight contribution of inactive memristors
is almost negligible. In line with this notion, each inactive memristor contributes
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weight 0 in the synapse model and each active memristor contributes weight ω.
Since parallel conductances sum up, the total weight of the compound memristive
synapse reads

Wki = ω ·mki (4.1)

with mki ∈ {0, 1, . . . , M} denoting the number of active memristors. As a conse-
quence, a compound memristive synapse supports M + 1 discrete weight levels,
ranging from 0 to the maximum weight Wmax = ω ·M.

Plasticity in this synapse model naturally emerges from transitions between the
active and inactive state of the bistable constituents. However, deterministic transi-
tions, which are, for instance, desirable in memristor-based memory cells, impair
the performance in a neuromorphic online learning setup with compound mem-
ristive synapses: If all constituents of a synapse, that experience the same pre-
and postsynaptic spikes, change their state simultaneously, the compound weight
toggles between Wki = 0 and Wki = Wmax depending on the latest pulse pair, not
showing any gradual trace of memory formation as required for STDP.

A possible remedy to this issue can be found in memristors that exhibit stochastic
rather than deterministic switching between their stable states. Yu et al. (2013), for
instance, reported stochastic transitions in HfOx/TiOx memristors (from the class
of anion-based memristors) and explored in computer simulations how stochastic
bistable memristors could be used in a neuromorphic learning architecture. Similar
studies explored the usability of stochastically switching bistable cation-based
memristive materials (S. H. Jo et al., 2009b; Gaba et al., 2013; Suri et al., 2013). In
these nanoscale devices, changes in the memristance were shown to be dominated
by the formation of a single conductive filament (S. H. Jo et al., 2009b). Stochastic
switching was demonstrated for both directions (active ↔ inactive) (Suri et al.,
2013) with switching probabilities being adjustable via the duration (Suri et al.,
2013; Gaba et al., 2013) and amplitude (S. H. Jo et al., 2009b; Gaba et al., 2013)
of the voltage applied across the terminals. These observations have led to the
conclusion that “switching can be fully stochastic” with switching probabilities
being almost unaffected by the rate at which consecutive plasticity pulses are
delivered (Gaba et al., 2013). Furthermore, bistable memristors can be extremely
durable, not showing any notable degradation over hundreds of thousands of
programming cycles (S. H. Jo et al., 2009b). Owing to these pivotal properties,
Suri et al. (2013) proposed an STDP-type plasticity rule that perceives bistable
memristors as simple stochastic switches.

Here we generalize this idea to compound memristive synapses and investigate
the computational function of the arising plasticity rules in spiking networks from
a machine learning perspective. Fig. 4.1D illustrates a simple model of stochastic
switching of individual memristors that employs the STDP-pulsing scheme from
Zamarreño-Ramos et al. (2011) and Querlioz et al. (2011) discussed above: If
the voltage between the pre- and postsynaptic terminal of a device exceeds a
certain threshold (dotted lines) for the duration of the back-propagating spike
signal, stochastic switching may occur. Inactive memristors jump to the active state
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with probability πup provided a sufficiently strong positive voltage, resulting in
stochastic LTP. Similarly, active memristors turn inactive with probability πdown
given a sufficiently strong negative voltage, leading to stochastic LTD. No switching
occurs if only a small (or zero) voltage is applied, or if the memristor is already in
the respective target state. Since the applied pre- and postsynaptic pulse amplitudes
are free parameters in the model, the jumping probabilities πup and πdown can be
controlled, to a certain extent, by the experimenter. This simple model captures
the most salient aspects of stochastic switching in bistable memristive devices as
discussed above, cp. also (Suri et al., 2013) and the Discussion section. In order
to distinguish the abstract memristor model from physical memristive devices,
we will in the following refer to the model memristors as “stochastic switches”,
“constituents”, or simply as “switches” for the sake of brevity. Furthermore, we
refer to the resulting stochastic plastic behavior of compound memristive synapses
in response to pre-post spike pairs, summarized in Fig. 4.1E, as compound-synapse
STDP.

From the transition probabilities of individual stochastic switches we can calcu-
late the expected temporal weight change

〈
d
dt Wki

〉
of the compound memristive

synapse as a function of pre- and postsynaptic activity. Formally, we denote the
presence of a rectangular input pulse (green in Fig. 4.1A) of the i-th input by
yi(t) = 1 (and the absence by yi(t) = 0). The brief pulses that are sent back from
a postsynaptic neuron zk to the synapse (blue in Fig. 4.1A) are formally treated
as point events at the spike times of the postsynaptic neuron. We denote the
spike time of the f th spike of neuron zk by t f

k . The spike train sk(t) of a neu-
ron zk is formally defined as the sum of Dirac delta pulses δ(·) at the spike times:
sk(t) = ∑ f δ(t− t f

k ). When a synaptic efficacy Wki is subject to a stochastic LTP
update, there are (M − mki) constituents in the compound memristive synapse
that are currently inactive and could undergo an LTP transition. Each constituent
independently switches to its active state with probability πup, thereby contributing
ω to the compound weight Wki. Hence, the expected weight change for the LTP
condition reads (M−mki)ω πup. A similar argumentation applies to the LTD case.
In summary, considering that plasticity always requires a postsynaptic spike, and
that LTP is induced in the presence of a presynaptic pulse (yi(t) = 1), while LTD
is induced in the absence of a presynaptic pulse (yi(t) = 0), the expected weight
change of the compound memristive synapse reads:

〈
d
dt

Wki

〉
= sk(t) ·

(M−mki)ω πup yi(t)︸ ︷︷ ︸
LTP

−mki ω πdown (1− yi(t))︸ ︷︷ ︸
LTD

 (4.2)

= sk(t) ·
[
Mωπup yi(t)−mkiωπup yi(t)−mkiωπdown + mkiωπdown yi(t)

]
= sk(t) ·

[
Wmax πup yi(t)−Wkiπdown

]
+ sk(t)Wki yi(t) · (πdown − πup) .

In order to obtain a simple closed form solution of the weight changes, we set
πup = πdown, i.e., the probability of potentiation of a single switch under LTP
equals its probability of depression under LTD. This choice will facilitate the
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theoretical analysis of learning in a spiking network, later on. In a hardware
implementation, the switching probabilities could be adjusted via the pre- and
postsynaptic amplitudes of the STDP pulses. We obtain the following closed form
solution for the expected weight change:

〈
d
dt

Wki

〉
= πup Wmax · sk(t) · [yi(t)−Wki/Wmax] . (4.3)

Notably, the plasticity rule (4.3) differs from standard additive STDP rules in
that it includes the weight dependent term Wki/Wmax. This weight dependence
has its origin in the varying number of (in-)active stochastic switches mki that
could actually undergo plastic changes and is in line with a prominent finding
from neurobiology (Bi and Poo, 1998): Relative changes ∆Wki/Wki become weaker
for strong weights under LTP, while under LTD the relative change is weight-
independent. Studies in computational neuroscience, see e.g. (M. C. Van Rossum

et al., 2000), found that this type of weight dependence facilitates the formation of
stable connections in spiking networks.

In Fig. 4.1F, we illustrate the stochastic convergence of a compound synaptic
weight to a stable, dynamic equilibrium in a simple STDP pairing experiment. The
synapse consists of M = 10 bistable switches with switching probabilities set to
πup = πdown = 0.001. These synapse parameters will also be used in network level
simulations, later on. In a small computer simulation, 5 of the 10 constituents are
initially set active (mki(t = 0) = 5). Then, 5000 postsynaptic spikes are sent to
the postsynaptic terminal of the synapse for triggering stochastic switching in the
bistable constituents. 80% of these events are randomly paired with a presynaptic
pulse, i.e., 80% of the events are of LTP type and 20% are of LTD type. After 5000

plasticity pulses, the statistics are inverted to 20% LTP and 80% LTD events for
another 5000 plasticity pulses. The thin lines in Fig. 4.1F show the evolution of
mki(t) in this STDP pairing experiment for two independent simulation runs. In the
first half, the synaptic weight tends to settle around higher weight values, while in
the second half, it stochastically declines towards lower weight values. The gradual
convergence of the average weight, as suggested by eq. (4.3), becomes apparent
by taking the mean over 100 simulation runs (thick line). The stabilizing weight
dependence of the STDP rule leads to convergence to a dynamic equilibrium such
that the mean value shows slow, continuous changes as expected from the theory.
Individual synapses fluctuate stochastically around this mean.

Eq. (4.3) is reminiscent of a theoretically derived synaptic plasticity rule for statis-
tical model optimization in spiking neural networks proposed by Nessler et al.
(2013). Building upon the theoretical approach developed by Nessler et al. (2013),
we will next turn to the question how to conceive stochastic learning with com-
pound memristive synapses from a Bayesian perspective as unsupervised model
optimization via a powerful optimization method that is known as Expectation-
Maximization in the machine learning literature.
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Fig. 4.2: Spiking network for probabilistic inference and online learning. (A) Winner-take-all network architec-
ture with lateral inhibition and synaptic weights Wki. (B) Network neurons zk implicitly maintain a Gaussian likeli-
hood function for each input yi in their afferent synaptic weights Wki. The mean µki of the distribution is encoded
by the fraction Wki/Wmax = mki/M of active switches in the compound memristive synapse, i.e. stronger synaptic
weights Wki correspond to higher mean values µki. Inset: Local implicit graphical model. (C) Illustration of Bayesian
inference for two competing network neurons zk, zj and one active input yi(t) = 1. Different means µki, µji encoded
in the weights give rise to different values in the likelihood function and shape the posterior distribution according to
Bayes rule.

4.3 Compound memristive synapses in winner-take-all
networks

The winner-take-all (WTA) network structure is a ubiquitous circuit motif in
neocortex (Douglas and Martin, 2004; Lansner, 2009) and is often utilized in
neuromorphic engineering (Mead and Ismail, 1989; Indiveri, 2000). Recently, WTA
networks attracted increasing attention in theoretical studies on statistical learning
(Keck et al., 2012; Habenschuss et al., 2012; Habenschuss et al., 2013b; Nessler et
al., 2013; Kappel et al., 2014) because their comparatively simple network dynamics
facilitate a comprehensive mathematical treatment. In this section, we introduce
the WTA architecture that we will use to study the learning capabilities of spiking
neural networks with compound memristive synapses subject to STDP.

The WTA network architecture is sketched in Fig. 4.2A. The network consists
of N spiking input neurons y1, . . . , yN and K spiking network neurons z1, . . . , zK
with all-to-all connectivity in the forward synapses. Lateral inhibition introduces
competition among the network neurons. Network neurons are stochastic spike
response neurons (Gerstner and Kistler, 2002) with the membrane potential uk
of network neuron zk being given by

uk(t) = bk +
N

∑
i=1

Wki · yi(t) . (4.4)

The membrane potential uk(t) integrates the inputs yi(t), i.e., the rectangular
voltage pulses following each input spike, linearly through the synaptic weights Wki.
The parameter bk denotes the intrinsic excitability of the neuron and controls its
general disposition to fire. In Appendix C, we outline how the linear membrane
potential (4.4) can be realized with leaky integrators, a common neuron model
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in neuromorphic designs. For the spike response of the network neurons zk, a
stochastic firing mechanism is employed. In the WTA network, neurons zk spike
in a Poissonian manner with instantaneous firing rate ρk(t) that depends on the
membrane potential uk(t) and on lateral inhibition uinh(t):

ρk(t) = rnet · euk(t)−uinh(t) , (4.5)

with a constant rnet > 0 that scales the overall firing rate of the network. In other
words, the neuron spikes with probability ρk(t) · δt in a small time window δt→ 0.
The inhibitory contribution uinh(t) := log ∑K

j=1 exp(uj(t)) summarizes the effect of
lateral inhibition in the network and introduces WTA-competition between the
network neurons to fire in response to a given stimulus y1(t), . . . , yN(t). Notably,
the exponential relationship (4.5) between an idealized membrane potential and
neuronal firing is consistent with biological findings about the response properties
of neocortical pyramidal neurons (Jolivet et al., 2006).

The feed-forward synapses from inputs yi to network neurons zk are implemented
as compound memristive synapses and their synaptic weights Wki are adapted
through stochastic STDP as described above. The intrinsic excitabilities bk are
adapted according to a homeostatic plasticity rule (Habenschuss et al., 2012) that
ensures that all network neurons take part in the network response and thus fa-
cilitates the emergence of a rich neural representation that covers the entire input
space. Besides its observed stabilizing effect (Querlioz et al., 2011), homeostatic
intrinsic plasticity plays a distinct computational role when combined with synap-
tic learning: Network neurons that maintain many strong synapses Wki gain an
“unrightful advantage” during WTA competition over neurons that are specialized
on low-activity input patterns (and therefore maintain weaker weights). A detailed
analysis of the learning dynamics in the network shows that, in order to compen-
sate for this advantage, the former must be burdened with a lower excitability bk
than the latter. A formal definition of the homeostatic plasticity mechanism and
a discussion of its computational role from a theory perspective are provided in
Appendix C, see also (Habenschuss et al., 2012).

4.4 Memristive synapses support inference and online
learning

In this section, we thoroughly analyze the learning effects of STDP in compound
memristive synapses in the stochastic WTA network model. For the mathematical
analysis, we describe the inputs yi(t) and the stochastic neuron responses sk(t)
with the help of probability theory. To this end, we perceive the spiking activity
of the input neurons yi and network neurons zk as samples of random variables
(RVs) Yi and Zk respectively. Consistent with the assumption that spikes from input
neurons produce voltage pulses of duration τ in the circuit implementation (see
Fig. 4.1A), we set Yi = yi(t), i.e., Yi = 1 if input neuron yi spiked within [t− τ, t]
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and Yi = 0 otherwise. The assignment of output spikes sk(t) to RVs Zk is different:
The random variable Zk labels the winner of the WTA network at spike times of
network neurons. Hence, the value of Zk is only defined at the moments when
one of the K network neurons spikes, i.e., when the spike train sj(t) 6= 0 for some
neuron zj. In this case, Zk encodes which neuron spiked, and we set Zk = 1 if k = j
and Zk = 0 if k 6= j.

Using this interpretation of neural activity as realizations of RVs, the network’s
stochastic response sk(t) to an input configuration y(t) = (y1(t), . . . , yN(t)) gives
rise to a conditional probability distribution pnet(Z |Y ) over the network RVs
Z := (Z1, . . . , ZK) conditioned on the input RVs Y := (Y1, . . . , YN).1 In line with
the definition of the RVs Zk, the distribution pnet(Z |Y ) describes the network
response only when one of the network neurons zk fires. The response distribution
pnet(Z |Y = y(t)) for any fixed input configuration y(t) can directly be calculated
from equations (4.4) and (4.5) (note that the probability pnet(Zk = 1 |Y = y(t))
for an individual RV Zk to be active is proportional to the firing rate ρk(t) of
neuron zk):

pnet(Zk = 1 |Y = y(t)) = ρk(t)/rnet = euk(t)−uinh(t) =
ebk+∑N

i=1 Wki ·yi(t)

∑K
j=1 ebj+∑N

i=1 Wji ·yi(t)
. (4.6)

Equation (4.6) fully characterizes the network response distribution pnet(Z |Y )
for any given input Y = y(t). We next turn to the question how the response
distribution pnet(Z |Y ) can be understood as the result of a meaningful proba-
bilistic computation. Specifically, we will show that the spike response of the WTA
network approximates the Bayesian posterior distribution during inference in a
well-defined probabilistic model. This probabilistic model is implicitly encoded
in the synaptic weights Wki, and synaptic plasticity can thus be perceived as an
ongoing refinement of the involved probability distributions. Indeed, the STDP
rule (4.3) of the compound memristive synapses turns out to be optimal in the
sense that it instantiates generalized Expectation-Maximization in the WTA network,
a powerful algorithm for unsupervised learning from machine learning theory.
Our findings build upon theoretical work on synaptic learning in spiking neural
networks from Nessler et al. (2009a); Nessler et al. (2013); Habenschuss et al.
(2012) and Habenschuss et al. (2013b).

The key idea for identifying the response distribution pnet(Z |Y ) as the result of a
Bayesian computation, is to hypothetically reverse the network computation and
view the spike response of a network neuron zk as the hidden cause behind the
observed input y(t). In this view, the network is treated as a generative model that
implicitly defines a prior distribution p(Z) over hidden causes Zk and a set of
likelihood distributions p(Y |Zk = 1), one for each hidden cause Zk. The shape of

1In Appendix C, the distribution pnet(Z |Y ) will be identified as the variational distribu-
tion q(z |y) for generalized EM learning, in the sense of the Introduction of this thesis.
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the distributions is defined by the parameters of the network, e.g., the synaptic
weights Wki. An important property of these implicitly encoded distributions – that
also motivates the term ’generative model’ – is that they give rise to a (hypothetical)
distribution over the inputs, p(Y = y(t)) = ∑K

k=1 p(Y = y(t)|Zk = 1) · p(Zk =
1). This equation also explains why a RV Zk is called a hidden cause: If we
observe an input vector y(t), that has high probability only in one of the likelihood
distributions p(Y = y(t)|Zk = 1), then we can consider the RV Zk as a likely
(but unobservable) cause for the observation according to the generative model.
A common objective in machine learning theory, known as Maximum-Likelihood
learning, is to find parameters that bring the implicit distribution p(Y ) of the
generative model as close as possible to the distribution of the actually observed
input. Then the hidden causes of the generative model are expected to represent
important features of the observed input (e.g., some typical input clusters). Leaving
the hypothetical generative perspective again, in the network’s real operation an
input y(t) is presented to the network and the hidden causes Zk need to be inferred
(e.g., the cluster the input y(t) belongs to). The mathematically correct result of
this inference is given by Bayes rule

p(Zk = 1 |Y = y(t)) ∝ p(Zk = 1) · p(Y = y(t) | Zk = 1) (4.7)

which combines the likelihood p(Y = y(t) | Zk = 1) with the prior p(Zk = 1).

Nessler et al. (2013) showed that in a WTA network architecture, that evolves
according to eq. (4.4) and (4.5), the synaptic weights Wki can be understood as
an implicit neural encoding of likelihood distributions p(Y | Zk = 1), and that the
network response pnet(Z |Y ) approximates the posterior distribution according
to eq. (4.7). Hence, WTA networks can be regarded as implicit generative models.
Furthermore – and even more importantly from a theoretical perspective – Nessler

et al. (2013) showed that the implicit likelihood model, that is encoded in the
weights Wki, can be optimized in an unsupervised manner by a weight-dependent
STDP rule. Indeed, there exists a tight link between the type of weight dependence
in the STDP rule and the type of implicit likelihood model it optimizes. The
exponential weight dependence in Nessler’s rule, however, differs from the linear
weight dependence we identified for the plasticity rule in eq. (4.3). This raises the
question what type of implicit likelihood model is encoded and optimized by the
compound memristive synapses.

An intuition about an appropriate probabilistic interpretation of compound-synapse
STDP can be obtained from the equilibrium points of the plasticity rule (4.3). We
first observe, that plasticity is always triggered by a postsynaptic spike, i.e., Zk = 1
for some neuron zk. In the spirit of spike-triggered averaging (E. P. Simoncelli

et al., 2004), we can then study the conditional distribution p(Yi = yi(t) | Zk = 1) of
an input yi at the moment of the network response since the coincidence of pre- and
postsynaptic spiking activity is the driving force behind any weight change in the
STDP rule. By assuming that plasticity has converged to a dynamic equilibrium, the
average contributions of LTP and LTD cancel each other, i.e.,

〈
d
dt Wki

〉
p(Yi | Zk=1)

= 0.
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4.4 Memristive synapses support inference and online learning

From this condition, we obtain the following relation between the synaptic weight
Wki and the conditional input distribution p(Yi | Zk = 1):

0 !
=

〈
d
dt

Wki

〉
p(Yi | Zk=1)

=
〈

πup Wmax · [Yi −Wki/Wmax]
〉

p(Yi | Zk=1)

⇒ Wki = Wmax · 〈Yi 〉p(Yi | Zk=1) . (4.8)

According to this analysis, the synaptic weight Wki represents the expected value
of input neuron yi at the moment of a postsynaptic spike in network neuron zk in a
linear manner. In the compound memristive synapse, this expectation is encoded
in the M + 1 possible weight states Wki = 0, ω, . . . , Wmax of the synapse. The linear
encoding (4.8) is compatible with the convergence points which we observed
previously in the small STDP pairing experiment in Fig. 4.1F.

The above analysis only serves as an intuition and is no substitute for a thorough
mathematical treatment of the learning process. A rigorous formal derivation that,
for instance, also takes into account the dynamically changing response properties
of the network neurons due to recurrent interactions and plastic changes in the
weights, is provided in Appendix C. It reveals that the above intuition holds. More
precisely, the likelihood distributions p(Y | Zk = 1) that are optimized in a WTA
circuit with compound-synapse STDP are given by the product of the likelihoods
of individual inputs

p(Y = y(t) | Zk = 1) =
N

∏
i=1

p(Yi = yi(t) | Zk = 1) , (4.9)

and the likelihood for each individual input channel yi is given by a Gaussian
distribution

p(Yi = yi(t) | Zk = 1) =
1√

2πσ2
· e−

(yi(t)−µki)
2

2σ2 . (4.10)

The mean values µki and the standard deviation σ of the likelihood distribu-
tions (4.10) are identified as

µki = Wki/Wmax = mki/M and σ = 1/
√
(Wmax) . (4.11)

Hence, the mean µki of the distribution for input channel yi is given by the
fraction of active constituents in the compound memristive synapse. The width
σ = 1/

√
(Wmax) of the distribution is determined by the maximum weight

Wmax = M · ω and could, for instance, be controlled by the weight contribu-
tion ω of an individual stochastic switch. The resulting probabilistic model of the
WTA network is a Mixture-of-Gaussians generative model (see Appendix C for a
formal definition).

In order to illustrate the computational properties of this generative model, the
likelihood distribution p(Yi | Zk = 1) for a single input yi and a single active hidden
cause Zk = 1 is sketched in Fig. 4.2B. An active hidden cause Zk = 1 assigns
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4 Statistical learning with compound memristive synapses

probabilities to all possible instantiations yi(t) of Yi. In principle, the Gaussian
likelihood distribution supports arbitrary real-valued input instantiations yi(t) ∈ R.
We will come back to this observation in the Discussion section where we address
possible extensions of the WTA network to support more complex input types. In
this article, we consider only binary inputs that take on the value 0 (input pulse
absent) or 1 (input pulse present), see the presynaptic pulses in Fig. 4.1A. The
corresponding likelihood values p(Yi = 0 | Zk = 1) and p(Yi = 1 | Zk = 1) are
determined by the mean µki and the variance σ of the likelihood distribution, see
eqs. (4.10) and (4.11). The task of the network when presented with an input y(t)
is to infer the posterior distribution over hidden causes p(Zk = 1 |Y = y(t)) and
produce spikes according to this distribution. The optimal solution is given by
Bayes rule (4.7) with the likelihood p(Y = y(t) | Zk = 1) given by equations (4.9)
and (4.10), and an (input independent) a priori probability p(Zk = 1). As we prove
in Appendix C, the response distribution pnet(Z |Y = y(t)) of the spiking WTA
network implements a close and well-defined variational approximation of this
posterior distribution. A minimal example of such Bayesian inference is sketched
in Fig. 4.2C, where we consider a small WTA network with only one input yi and
two network neurons zk and zj. For a given input instantiation yi(t) the values
p(Yi = yi(t) | Zk = 1) and p(Yi = yi(t) | Zj = 1) measure the likelihoods of the
two competing hypotheses that neuron zk or neuron zj is the hidden cause of
the observed input yi(t). These likelihood values shape the Bayesian posterior
distribution (4.7) by contributing one factor to the product in eq. (4.9).

As a consequence, a network neuron zk is particularly responsive to those in-
put configurations y(t) that are associated with high likelihood values p(Y =
y(t) | Zk = 1). The likelihood distributions are determined by the means µki, i.e.,
by the number mki of active switches in the synapses that change according to
the compound-synapse STDP rule. Through this mechanism, synaptic plasticity
governs the emergence of prototypic patterns that the network neurons are most
responsive to, and thereby turns each neuron zk into a probabilistic expert for
certain input configurations y(t). The aim of learning in the WTA network is to
distribute the probabilistic experts zk such that the likelihood of the presented
input is (on average) as high as possible. This objective is an equivalent formulation
of Maximum-Likelihood learning, and the log-likelihood function, which measures
the average (logarithm of the) input likelihood, is a widely-used measure to deter-
mine how well a learning system is adapted to the presented input. Formally, the
learning process can be described within the framework of generalized Expectation-
Maximization (Dempster et al., 1977; Nessler et al., 2013; Habenschuss et al.,
2012). In Appendix C, we show that the generalized Expectation-Maximization
algorithm is implemented in the WTA network via the interplay of the compound-
synapse STDP rule (4.3), that adapts the synaptic weights Wki, and the homeostatic
intrinsic plasticity rule, that regulates the intrinsic excitability bk of the neurons
such that each neuron maintains a long-term average firing rate. The interplay of
synaptic and intrinsic plasticity achieves the aim of Maximum-Likelihood learning
in the WTA network in the following sense:
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4.5 Demonstration of unsupervised learning

Fig. 4.3: Learning of hand-written digits. (A) Synaptic weights at time t = 0 s after random initialization. Color
intensities show the number mki ∈ [0, 10] of active switches for each connection. The indices k of the postsynaptic
neurons are indicated in the top-left corners. (B) Examples from the MNIST data set. Pixel intensities of the digits
were encoded as Poisson spike trains and presented to the network. Digits 0 to 4 were presented with a new
digit being shown every 100 ms. (C) Weight matrix at time t = 200 s. Memristive synapses start to integrate salient
features of the input stream. (D) Over the course of learning the log-likelihood function (red) increases, indicating
that the network continuously refines its implicit statistical model of the presented data. This refinement leads to an
improved classification performance (blue) on an independent test set. (E) At the end of the learning experiment at
t = 5000 s, the synapses have specialized on different prototypes of the presented digits, rendering each network
neuron a probabilistic expert for a certain digit. (F) Network response for 1 s at the end of learning. The presented
digit is shown at the top. The input is transformed into a sparse and reliable spike code. Some digits invoke a
spike response of more than one neuron. This ambiguous response encodes uncertainty in the variational posterior
distribution.

The expected synaptic weight changes
〈

d
dt Wki

〉
of the compound memristive

synapses on average increase a lower bound of the log-likelihood function in a
Mixture-of-Gaussians generative model during online learning until a (local)
optimum is reached.

4.5 Demonstration of unsupervised learning

We tested the learning capabilities of the compound memristive synapse model in
a standard machine learning task for hand-written digit recognition. In a computer
simulation, we set up a WTA network with N = 24× 24 input neurons and K = 10
network neurons. Each synaptic weight Wki was composed of M = 10 stochastic
bistable switches, each contributing ω = 0.1 in its active state. The switching
probabilities πup = πdown = 0.001 were set to a quite low value. This corresponds
to a long integration time for gradual memory formation in order to assess the
general ability of the synapse model in online learning tasks. Before training, the
stochastic switches were initialized randomly as shown in Fig. 4.3A. The network
was then exposed to hand-written digits 0 to 4 from the MNIST training data set
(LeCun et al., 1998). Examples from the data set are shown in Fig. 4.3B. Each pixel
was encoded by one input neuron yi. Digits were presented as Poisson spike trains
with firing rates depending on pixel intensities. Overall, the network was trained
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4 Statistical learning with compound memristive synapses

in an unsupervised setup for 5000 s with a new digit being presented every 100 ms.
Fig. 4.3C shows the weight matrix in an early stage of learning at t = 200 s. At
this stage, the synapses begin to integrate salient statistical features of the input,
such as the generally low activity along the frame. Furthermore, a specialization to
certain digit classes becomes apparent for some of the network neurons.

Over the course of learning, the synapses continuously improve the network’s
implicit generative model of the presented input. This refinement is reflected in the
log-likelihood function shown in Fig. 4.3D that measures how well the probabilistic
model is adapted to the input distribution. The ongoing refinement also becomes
apparent by a more intuitive – and practically more relevant – measure, namely
the classification performance of the network on an independent test set of hand-
written digits. The classification error (blue in Fig. 4.3D; see Appendix C for details)
continuously decreases as training progresses. The improved performance on an
independent test set furthermore indicates that the network develops a generally
well-suited representation of the input and evades the risk of over-fitting.

At the end of training, after t = 5000 s, a set of prototypic digits has emerged in the
compound memristive synapses as shown in Fig. 4.3E. The well-adapted synapse
array turns each network neuron into a probabilistic expert for a certain digit class.
As a consequence, the network has learned to transform the N-dimensional, noisy
spike input into a sparse and reliable spike code, as shown in Fig. 4.3F. Typically,
exactly one network neuron zk fires in response to the input. But also the seem-
ingly unclear cases, when two neurons respond simultaneously, carry meaningful
information in a Bayesian interpretation: Since network spikes approximate the
posterior distribution p(Z |Y = y(t)) through sampling, an ambiguous spike
response encodes the level of uncertainty during probabilistic inference.

4.6 Influence of synaptic resolution

In the previous section, we have demonstrated that the compound memristor
synapse model is able to learn statistical regularities in the input stream and
enables the spiking WTA network to perform probabilistic inference in a well-
defined generative model. The demonstration employed compound synapses with
M = 10 stochastic switches per synapse. Notably, the number of constituents M is a
free parameter of the model and determines the weight resolution of the compound
synapse. Increasing the synaptic resolution by recruiting more bistable switches per
synapse is generally expected to improve the accuracy of the input representation,
but comes at the cost of reduced integration density in a neuromorphic design.
In the following, we therefore explore the opposite direction, i.e., unsupervised
learning with a low weight resolution.

For estimating the influence of the weight resolution on the learning capabilities
of the WTA network, we repeated the above computer simulation for different
values of M, while holding the maximum weight Wmax = ω · M, and thus the
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4.6 Influence of synaptic resolution

Fig. 4.4: Influence of the synaptic resolution.
(A) Examples of learned weight matrices with dif-
ferent numbers of constituents M per synapse.
Even binary weights with only one stochastic
switch learn to maintain a coarse image of pro-
totypic digits. In the limit of large M, compound
synapses support a quasi-continuous weight spec-
trum. (B) Classification error for different weight
resolutions after 5000 s of learning, based on 20 in-
dependently trained networks for each value of M.
Errorbars: standard deviation among networks.

variance σ = 1/
√
(Wmax) of the implicit generative model, fixed. Fig. 4.4A shows

examples of the digits stored in the synapse array after 5000s of learning for M = 1,
2, 4 and 100 stochastic switches per synapse. Even binary synapses with M = 1
successfully identify noisy archetypes of the input digits. This observation is in line
with previous studies on learning with binary weights (Fusi, 2002). The accuracy
of the representation quickly increases with higher M-values. As an (academic)
reference, we also included a simulation with M = 100 switches per synapse which
support a quasi-continuous state spectrum.

The resulting ability of the WTA network to recognize hand-written digits is shown
in Fig. 4.4B in terms of the classification error on a test set. Each bar depicts the
mean performance of 20 independently trained networks per M-value, errorbars
show the standard deviation among networks. Taking the academic example with
M = 100 as a reference for the performance achievable by the small WTA network,
the computer simulations suggest that as few as M = 4 constituents per synapse
may be sufficient for practical applications. While individual weights Wki only
store little information (ca. 2.3 bits in case of M = 4) about the expected input in
channel yi, the partial evidence received from each of the N = 576 input channels
is integrated by the network in a statistically correct manner to form a sharply
peaked posterior, most of the time.
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4 Statistical learning with compound memristive synapses

Fig. 4.5: Robustness to spatial and temporal noise. (A) Noise was added by drawing the weight ω of the active
state from a normal distribution. Three types of noise were tested: For spatial noise, a value ω ∼ N (ω; ω̄, σ2

ω) was
assigned to each switch and maintained throughout the experiment. For temporal noise, the value ω was redrawn
after every LTP transition. For spatial + temporal noise, the device specific spatial weight value determined the mean
for redrawing ω after LTP transitions. (B-D) Number mki of active switches after learning at t = 5000 s. Shown are
example networks for all three noise types. (E) Classification error after learning, based on 20 independently trained
networks per noise type. Errorbars denote standard deviation among networks.

4.7 Robustness to device variations

We have demonstrated so far that spiking networks with compound memristive
synapses can learn a faithful representation of their input when synapses consist
of idealized bistable constituents. Large-scale physical implementations, however,
are likely to exhibit substantial device variabilities and imperfections. Plasticity in
the compound synapse model depends on two device properties that are likely
to be distorted in physical implementations: the conductance of each individual
constituent ω and the switching probabilities πup/πdown. In the following, we
address the impact of distortions in these two properties on the WTA network
learning capabilities, separately.

We first turned to the conductance value ω of individual switches and investigated
the robustness of learning to two fundamentally different types of noise in ω,
namely spatial noise and temporal noise:

• Spatial noise describes device-to-device variations and addresses peculiarities
of individual memristors that remain stable over time.

• Temporal noise refers to trial-to-trial variations and covers device instabilities
over the course of learning.

Both types of noise can be suspected to induce serious disturbances during learning:
In case of spatial noise, although device-to-device variations could average out if
many memristors are employed, any remaining deviations give rise to sustained
systematic errors that may build up over the course of learning. In case of temporal
noise, while trial-to-trial variations could average out over time, any synaptic
update rests upon a disturbed instantiation of the weight matrix, i.e., on a noisy
(and false) assumption. In computer simulations, we accounted for these types of
noise separately by disturbing the active-state weight value ω of the switches as

66



4.7 Robustness to device variations

Fig. 4.6: Robustness to unbalanced switching
probabilities. (A) Examples of learned weight ma-
trices when the switching probabilities πup and
πdown are systematically unbalanced. The param-
eter ∆ := (πup − πdown)/πup measures the rela-
tive imbalance between LTP and LTD transitions.
The top (bottom) row shows weight matrices re-
sulting from a 50% decrease (increase) of the LTD
switching probability. The balanced case is shown
in the middle row for comparison. (B) Systematic
imbalance (∆ 6= 0) leads to changed equilibrium
points in the STDP rule and can be theoretically
understood as a non-linear encoding of the ex-
pected input by the synaptic weights.

sketched in Fig. 4.5A. To model spatial noise, the weight ω was randomly drawn
prior to training for each stochastic switch from a normal distribution N (ω ; ω̄, σ2

ω)
with mean ω̄ and standard deviation σω. To capture the effect of temporal noise, in
contrast, the weight ω was redrawn from N (ω ; ω̄, σ2

ω) whenever the constituent
switched to its active state in an LTP transition. Furthermore, we examined the
combined effect of both noise types being present simultaneously. In this combined
case, the mean value for temporal noise was determined by the device-specific
spatially perturbed weight value of each constituent. In any case, the range of
perturbed weights was truncated to ω ≥ 0 to rule out negative conductances.

We repeated the experiment of Figure 4.3 under each of these noise conditions. The
mean ω̄ = 0.1 was set to the undisturbed weight value of the previous, idealized
experiment. The noise level was set to σω = 0.05, i.e., to 50% of the mean. Exam-
ple cases of weight matrices after learning (shown are the mki’s from individual
simulation runs) are presented in Fig. 4.5B-D for the three noise conditions “spa-
tial”, “temporal” and “spatial+temporal”, respectively. Surprisingly, hardly any
difference to the idealized setup is observable. Nevertheless, under 20 repetitions
of the learning simulation the detrimental influence of noise becomes visible in
the classification performance (see Fig. 4.5E) as noise appears to slightly increase
the mean of the classification error. In summary, these results reveal a remarkable
robustness of learning with compound memristive synapses to substantial device
variability and severe temporal instability.
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We next turned to the question how distorted switching probabilities πup and
πdown influence the learning dynamics in the WTA network. In the theory section,
we had assumed that πup = πdown, i.e., that the switching probabilities underly-
ing LTP and LTD are balanced. This assumption, which could to some extent be
achieved in a calibration step, yielded the elegant learning rule (4.3) and thereby
facilitated the theoretical analysis. A physical implementation, however, will likely
exhibit unbalanced switching probabilities in the majority of memristors. We exam-
ined the influence of unbalanced switching, in two ways. First, we applied spatial
noise to the switching probabilities of individual constituents by drawing πup
and πdown (separately) from normal distributions with 50% noise level (truncated
to 0 ≤ πup, πdown ≤ 1). Thus, about half of the stochastic switches were more
responsive to LTP pulses, the other half more to LTD pulses; even more, some of the
constituents only showed switching in one direction, or were completely unrespon-
sive. Nevertheless, synapses developed a faithful representation of prototypic digits
in a repetition of the experiment in Figure 4.3 (data not shown). Also the classifica-
tion performance was only mildly impaired (classification error: 8.7%± 2.7% based
on 20 networks) compared to ideal, noisefree synapses (class. error: 7.5%± 1.9%).

In a second step, we pursued a slightly different – more principled – approach
that permits a theoretical interpretation of how the altered synapse dynamics give
rise to a different encoding of the expected input by the synaptic weights. Instead
of drawing random parameters for each constituent, we systematically chose the
LTD switching probability πdown larger (or smaller) than the LTP probability πup
throughout the synapse array. This systematic imbalance displays a worst-case sce-
nario during learning since all synapses either favor (or suppress) LTD over LTP. We
denote the relative imbalance between πup and πdown by ∆ := (πup − πdown)/πup.
For instance, ∆ = −0.5 means that the probability for LTD transitions is 50% higher
than for LTP transitions. Fig. 4.6A shows examples of weight matrices after 5000s
of learning in a repetition of the experiment in Figure 4.3. In the top row, ∆ = +0.5,
LTP transitions are favored over LTD transitions, resulting in generally stronger
weights in comparison with balanced STDP (∆ = 0.0, middle row). Conversely, in
the bottom row, ∆ = −0.5, the systematic strengthening of LTD leads to weaker
weight patterns. Nevertheless, synaptic weight values converged to a dynamic
equilibrium in either case since the STDP rule preserves its general stabilizing
weight dependence. As can be expected from the prototypic digits that emerged in
the weight matrices, the classification performance of the WTA networks was not
considerably impaired by the unbalanced switching (classification errors estimated
from 20 networks: 6.7%± 0.8% for ∆ = +0.5; 7.5%± 1.9% for ∆ = 0; 11.8%± 4.0%
for ∆ = −0.5). Indeed, positive ∆-values even performed slightly (but not signifi-
cantly) better than balanced switching. A conceptual understanding of the altered
learning dynamics can be obtained from the equilibrium points of the unbalanced
STDP rule. The short calculation, that had led to eq. (4.8) for the balanced case, can
be repeated for unbalanced switching probabilities. Fig. 4.6B shows the resulting
encoding of the expected input value 〈Yi 〉p(Yi | Zk=1) by the synaptic weight Wki
for different ∆-values. The example digits shown in panel A correspond to the
red, green and blue graph in panel B, respectively. This analysis illustrates how

68



4.8 Discussion

unbalanced switching probabilities give rise to a non-linear encoding of the input
in the WTA network. In particular, it can be seen how the same expected input
value 〈Yi 〉p(Yi | Zk=1) leads to stronger weights for ∆ > 0, and weaker weights for
∆ < 0.

4.8 Discussion

We have proposed the compound memristive synapse model for neuromorphic
architectures that employs multiple memristors in parallel to form a plastic synapse.
A fundamental property of the synapse model is that individual memristors exhibit
stochastic switching between two stable memristive states rather than obeying
a deterministic update rule. Yet, the expected weight change of the compound
memristive synapse, as it arises from the stochastic switching of its constituents,
yielded an STDP-type plasticity rule with a stabilizing, linear weight dependence.
We examined the computational capabilities of the compound-synapse STDP rule
in WTA networks, a common circuit motif in cortical and neuromorphic archi-
tectures, by analyzing the network and synapse dynamics from the perspective
of probability theory and machine learning. The comprehensive mathematical
treatment revealed that compound memristive synapses enable a spiking network
to perform Bayesian inference in and autonomous statistical optimization of a
Mixture-of-Gaussians generative model via generalized Expectation-Maximization.
Accompanying computer simulations demonstrated the practical capability of the
synapse model to perform unsupervised classification tasks and, furthermore,
revealed a remarkable robustness of the compound synapses to substantial device
variations and imperfections.

Comprehensive learning theory of memristive plasticity

Our work contributes a theoretical foundation for memristive learning in neural net-
works to the endeavor to employ memristors as plastic synapses in self-calibrating
systems. Snider (2008); Querlioz et al. (2011) and Serrano-Gotarredona et al.
(2013) have investigated how different pre- and postsynaptic waveforms can shape
a memristive STDP learning window. S. H. Jo et al. (2010) and Mayr et al. (2012)
have demonstrated STDP-type plasticity in Ag/Si and BiFeO3 memristors. Yu

et al. (2013) reported stochastic switching between stable states in oxide-based
memristive synapses. Gaba et al. (2013) studied the parameter dependence of
switching probabilities in metal filament based memristors, indicating a renewal
process that is independent of the overall network firing rate. A strategy for inte-
grating nanoscale memristive synapses into a hybrid memristor-CMOS network
architecture was proposed by Indiveri et al. (2013). The beneficial contribution
of stochasticity to learning with CMOS synapse circuits was explored by Chicca

et al. (2014). Here we have established a firm link between the emergent synapse
configurations observed in such architectures (see e.g., Querlioz et al. (2011))
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and a rigorous mathematical description of memristive learning on the system
level using machine learning theory. Our findings on memristive learning from
a Bayesian perspective build upon a series of theoretical contributions on synap-
tic learning in spiking neural networks: Nessler et al. (2009a) and Nessler et al.
(2013) identified a general link between STDP-type synaptic plasticity and statistical
model optimization for probabilistic inference in WTA networks. Habenschuss

et al. (2012) extended this work to incorporate also homeostatic intrinsic plasticity,
thereby overcoming several limiting assumptions on the input presentation. Finally,
Habenschuss et al. (2013b) investigated how the learning framework can be gener-
alized to support a broad class of probability distributions. We expect that utilizing
machine learning theory for describing the effects of specific memristor synapse
models can significantly promote our understanding of memristive learning and
its computational prospects.

Heading for a full hardware integration

Plasticity in the compound memristor synapse model relies on stochastic transitions
between two stable states. Such bistable devices – or more generally, devices with a
clearly discrete state spectrum – were reported to exhibit a high degree of uniformity
(D. Lee et al., 2006; Fang et al., 2011) and temporal stability (Indiveri et al., 2013).
Notably, the theoretical approach we have pursued in this work could likely be
extended to cover memristors with more than two stable states and to support more
complex input and plasticity mechanisms. For instance, the Gaussian likelihood
distributions p(Y |Z) identified in the present study, in principle support inference
over arbitrary real-valued input states y(t). Such states could arise if the input is
presented in the form of exponentially decaying or additive postsynaptic potentials.
Such more complex input types could afford more versatile STDP pulsing schemes,
and the resulting memristor plasticity rules could likely be incorporated in an
adapted model of statistical learning. The reason we restricted the input to binary
values yi(t) is found in the STDP pulsing scheme that employs binary presynaptic
waveforms. In this case, the theoretically derived generative model reveals how
active and inactive inputs contribute to the network’s spike response by means of
a Gaussian likelihood distribution p(Yi = yi(t) | Zk = 1) that is sampled only at
yi(t) = 0 and yi(t) = 1.

In this article, we have employed a simple model for stochastic switching in
memristive devices where switching occurs with probabilities πup, πdown which
depend on the applied voltage difference across the memristor terminals. This
phenomenological model captures the most salient aspects of switching in real
memristive materials (S. H. Jo et al., 2009b; Gaba et al., 2013) and was used as an
abstraction of memristive switching in a recent experimental study (Suri et al., 2013).
In future research, it will be important to evaluate the effectiveness of this model
either with physical memristors or in simulations based on detailed memristor
models. The authors of (Suri et al., 2013) raised the concern that the precise
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Parameter name Hardware Theory

Learning rate πup ·Wmax ηW
Max. weight Wmax ω ·M 1/σ2

Likelihood mean µki mki/M σ2 ·Wki
Synaptic resolution ω 1/(M · σ2)

Table 4.1: Translation of synapse parameters between the hardware and theory domain.

switching probabilities of individual devices are potentially hard to control in large-
scale systems. In this regard, our simulation results indicate that learning with
compound memristive synapses tolerates significant noise levels in the switching
probabilities. We expect the origin for the observed robustness to be twofold: Firstly,
imbalances in πup, πdown between different constituents are expected to partly
average out in compound synapses according to the central limit theorem; secondly,
the stabilizing weight dependence of compound-synapse STDP ensures that even
unbalanced switching leads to stable weight configurations, albeit with slightly
shifted convergence points.

Another potential issue for learning with compound memristive synapses is the
absolute value of the switching probability. The product πup ·Wmax can be linked
to a learning rate in the theory domain (see Table 4.1) which controls how many
samples from the input history are integrated into the implicit generative model
during online learning. A slow and gradual memory formation, which is desirable
for developing a representation of large and complex input data sets, relies on small
learning rates, i.e., on small switching probabilities. It has to be seen if memristive
materials that exhibit stochastic switching provide sufficiently small switching
probabilities. A possible remedy in a hardware integration could be to multiplex
the back-propagating signals from network neurons such that only a random subset
of the memristors is notified of a network spike at a time (Fusi, 2002).

Regarding the physical model neurons of a hybrid memristor-CMOS architec-
ture, two types of currents occur in the WTA network. The input integration via
forward-synapses is spike based and could be realized with standard leaky inte-
grators (see Appendix C). Lateral inhibition, in contrast, depends on the neuronal
membrane potentials, and the involved inhibitory circuits should ideally transmit
potentials instead of spikes. Alternatively, the effect of lateral inhibition could be
approximated in a spike-based manner by populations of inhibitory neurons. Inde-
pendent of the specific implementation of lateral inhibition, the resulting potential
uk − uinh controls the stochastic response of the WTA neurons that could either be
implemented genuinely with a stochastic firing mechanism or be emulated with
integrate-and-fire neurons (Petrovici et al., 2013).
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Inherently stochastic nature of compound-synapse STDP

The spiking WTA network architecture with compound memristive synapses ex-
ploits stochasticity in various ways, in that the stochastic firing of network neurons
in response to a transient input trajectory triggers stochastic STDP updates in the
synaptic weights. From a learning perspective, the high degree of stochasticity
contributes to the network’s ongoing exploration for potential improvements in the
parameter space. While the learning theory only guarantees convergence to a local
optimum of the weight configuration, the stochastic nature of the ongoing explo-
ration enables the network to evade small local optima in the parameter landscape,
and thereby improves the robustness of learning (compared to traditional batch
Expectation-Maximization).

For the derivation of the learning algorithm, we have focused on the weight-
dependent STDP rule (4.3) which describes the expected temporal weight change〈

d
dt Wki

〉
of the compound synapse. The stochasticity of memristive switching,

however, gives rise to a probability distribution over the weights, as well. Indeed,
in equilibrium we expect that the number of active constituents mki follows a
binomial-type weight distribution. This points to a potential knob for adjusting the
amount of stochasticity used during online learning: when many memristors are
recruited per synapse, i.e., for large M, we expect a reduced variance in the weight
distribution.

Besides the level of stochasticity, the parameter M also controls the weight resolu-
tion of the compound synapse. In Figure 4.4, we have investigated the impact of
the weight resolution on the learning capabilities of the WTA network. Notably, we
observed that even with M = 4, i.e., with synapses that feature only 5 weight levels,
the network performed reasonably well in the hand-written digit recognition task.
The observation that even a low synaptic weight resolution can yield a satisfactory
performance has important practical implications for nanoscale circuit designs,
where integration density and power consumption impose crucial constraints, since
the area allocated by the synapse array grows linearly in the synaptic size M.
For instance, SRAM cells can be fabricated with a cell size of 0.127 µm2 (S.-Y. Wu

et al., 2009), corresponding to a memory density of . 1 Gb/cm2. Importantly,
this estimate does not include any additional plasticity circuits for implementing
STDP or similar plasticity mechanisms. Functional Ag/Si memristive crossbars
with 2 Gb/cm2 memory density were demonstrated by (S. H. Jo et al., 2009a),
with densities up to 10 Gb/cm2 being envisioned (S. H. Jo et al., 2009a; S. H. Jo
et al., 2009b). In the long term, memristive crossbars are expected to combine the
advantages of SRAM and Flash memory regarding energy efficiency, non-volatility
and integration density (J. J. Yang et al., 2013).
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4.8 Discussion

Generalization to other materials and future research

In recent years, a plethora of (in a broader sense) memristive materials has been
discovered, and the characterization and refinement of their switching dynam-
ics is evolving rapidly. At least four types of stochastically switching memristive
devices can be distinguished: Switching in (1) anion-based (e.g., HfOx/TiOx (Yu

et al., 2013)) and (2) cation-based (e.g., Ag/GeS2 (Suri et al., 2013)) devices mainly
originates from conductive filament formation (J. J. Yang et al., 2013). In contrast,
(3) single-electron latching switches (e.g., CMOS/MOLecular (CMOL) CrossNets
(J. H. Lee et al., 2006)) rely on electronic tunneling effects and, thus, their stochastic
switching dynamics arise directly from the underlying physical process. Similarly,
(4) magnetoresistive devices (e.g., spin-transfer torque magnetic memory (STT-
MRAM) (Vincent et al., 2014)) can inherit stochastic switching dynamics from
fundamental physical properties. Some manufacturing processes related to these
ideas (like conductive-bridging RAM and STT-MRAM) reached already an early
industrial stage, others are still primarily subject of academic research. While the
microscopic origins of plasticity in these memristor types are fundamentally differ-
ent, they all share stochastic, persistent switching between bistable memory states
on a phenomenological level. We therefore believe that the compound memristive
synapse model displays a promising concept for future work in diverse research
fields.

Independent of the underlying switching mechanism, any nanoscale synaptic
crossbar will likely exhibit imperfections and imbalances due to process variations.
Here, we have investigated spatial and temporal noise in the weight values as well
as deviations in the switching probabilities under unbiased, uniform conditions.
However, physical implementations can be expected to also suffer from more
systematic imperfections, such as structural imbalances (e.g., one corner of the
array being more reactive) or crosstalk between neighboring devices. While our
computer simulations indicate a remarkable general robustness against device
variations of various types, additional research is required to estimate the influence
of such systematic, and potentially coupled, deviations.

Conclusion

In this article, we have introduced the compound memristive synapse model
together with the compound-synapse STDP rule for weight adaptation. Compound-
synapse STDP, a stabilizing weight-dependent plasticity rule, naturally emerges
under a standard STDP pulsing scheme. In addition, by employing memristors
with bistable memristive states, compound memristive synapses may circumvent
practical challenges in the design of reliable nanoscale memristive materials. Both,
our theoretical analysis and our computer simulations confirmed that compound-
synapse STDP endows networks of spiking neurons with powerful learning capa-
bilities. Hence, the compound memristive synapse model may provide a synaptic
design principle for future neuromorphic hardware architectures.
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Chapter 5
Distributed Bayesian computation and learning in
spiking neural sheets
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Abstract. During the last decade, Bayesian probability theory has emerged as a
framework in cognitive science and neuroscience for describing perception, reason-
ing and learning of mammals. However, our understanding of how probabilistic
computations could be organized in the brain, and how the observed connectivity
structure of cortical microcircuits supports these calculations, is rudimentary at
best. In this study, we investigate statistical inference and self-organized learning
in a spatially extended spiking network model, that accommodates both local
competitive and large-scale associative aspects of neural information processing,
under a unified Bayesian account. Specifically, we show how the spiking dynamics
of a recurrent network with lateral excitation and local inhibition in response to
distributed spiking input, can be understood as sampling from a variational poste-
rior distribution of a well-defined implicit probabilistic model. This interpretation
further permits a rigorous analytical treatment of experience-dependent plasticity
on the network level. Using machine learning theory, we derive update rules for
neuron and synapse parameters which equate with Hebbian synaptic and homeo-
static intrinsic plasticity rules in a neural implementation. In computer simulations,
we demonstrate that the interplay of these plasticity rules leads to the emergence
of probabilistic local experts that form distributed assemblies of similarly tuned
cells communicating through lateral excitatory connections. The resulting sparse
distributed spike code of a well-adapted network carries compressed information
on salient input features combined with prior experience on correlations among
them. Our theory predicts that the emergence of such efficient representations
benefits from network architectures in which the range of local inhibition matches
the spatial extent of pyramidal cells that share common afferent input.
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5.1 Introduction

Humans and animals perceive their environment through a stream of data from
various high-dimensional sensory modalities. Successful behavior requires that
the individual dimensions of this data stream are aligned with one another and
integrated into a compact representation that promotes rapid decision making and
generalization. Typically, the available sensory information on which decisions
have to be based is noisy, unreliable and incomplete. Hence, it is essential that such
representations respect the statistical nature of sensory data and that knowledge
about statistical and causal relations among events in the external world are taken
into account when a representation is generated. In recent years, Bayesian inference
has been identified in cognitive science as a powerful normative framework for
the description of cognitive processes in face of uncertainty in humans (Tenen-
baum et al., 2011; Téglás et al., 2011) and animals (Angelaki et al., 2009). The
Bayesian framework has also been successfully employed for a formal description
of learning, for instance in perceptual (Goodman et al., 2008; Orban et al., 2008)
and sensorimotor (Körding and Wolpert, 2004; Berniker et al., 2010) learning
tasks.

In the Bayesian framework, quantities of interest are formally treated as random
variables (RVs), and beliefs about their current values are formalized as probability
distributions over these RVs (Bishop, 2006). Typically, one distinguishes between
observations yi, i = 1, .., N, representing directly observable variables, and latent
variables zk, k = 1, .., K which cannot be observed directly. Latent variables represent
abstract features and concepts that allow to structure and conceive the given input.
As an everyday example, the high dimensional vector y = (y1, .., yN)

T of input
RVs could summarize the entire sensory stream from the visual, auditory, and
vestibular system while driving by bike in a city during rush hour. Latent variables
z = (z1, .., zK)

T could represent streets, cars, and pedestrians, or even more abstract
features, such as estimated velocities, potential threats or anticipated actions. Thus,
the latent variables z form a compact representation of relevant aspects of the scene
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5.1 Introduction

which is typically more stable and informative than individual local observables yi.
In this manner, local observations yi, which are often unreliable, e.g., due to noise
or an occluding obstacle, can be integrated into a consistent global interpretation.

In a Bayesian framework, all knowledge about statistical dependencies between
RVs is represented in terms of a probability distribution p (z,y | θ), where the
parameter vector θ shapes the statistical model of the environment. The aim of
Bayesian inference is to infer a belief over the possible states of the latent variables z
for the given observations y. More precisely, Bayesian inference is the calculation of
the posterior distribution p (z | y, θ) over the latent variables z given the input y.
In ambiguous situations (e.g. when estimating the speed of a car), the posterior
p (z | y, θ) provides not only the most likely interpretation of the input, but rather
the probabilities of the most likely and all alternative interpretations. Finally,
p (z | y, θ) can also capture correlations among hidden variables (e.g. different
drivers will maintain roughly the same speed level).

During recent years, several modeling approaches explored how Bayesian compu-
tations can be performed by spiking networks, and how the involved probability
distributions can be represented by the neuronal spike response (R. S. Zemel et al.,
1998; R. P. Rao, 2004; Deneve, 2005; Ma et al., 2006; R. P. Rao, 2007; Steimer et al.,
2009; Buesing et al., 2011; Habenschuss et al., 2013a; Petrovici et al., 2013; Kappel

et al., 2014; Savin and Deneve, 2014; Legenstein and Maass, 2014). Two major
lines of research regarding the neural representation of probability distributions
can be distinguished: distributional (probabilistic) population codes (R. S. Zemel

et al., 1998; Ma et al., 2006) and sample-based representations (Hoyer and Hyväri-
nen, 2003; Fiser et al., 2010). In sample-based representations, spike responses are
interpreted as samples z from the posterior distribution as illustrated in Fig. 5.1A:
Through its inherent dynamics, the network trajectory visits states z(t) proportion-
ally to p (z | y, θ). Thus, neural activity is hypothesized to encode distributions in
the sequence of network states. Sample-based representations are particularly ap-
pealing for theoretical considerations, since they are highly versatile and naturally
support the representation of complex, potentially multimodal distributions over
large numbers of variables (Fiser et al., 2010; Habenschuss et al., 2013a).

Recently, a generic spiking network model that samples from a known probability
distribution was proposed by Buesing et al. (Buesing et al., 2011). The underlying
theory describes the dynamics of networks of idealized stochastic spiking neurons
as a Markov chain Monte Carlo (MCMC) sampling algorithm. In this model, each
binary RV zk ∈ {0, 1} is associated with one spiking neuron in the network, and
spikes of these neurons are interpreted as realizations of the corresponding RVs,
see Fig. 5.1B. After a spike of the k-th neuron at time ts, the associated RV zk turns
active, i.e. zk = 1, for a fixed duration τ, typically on the order of 10 milliseconds.
At time ts + τ, the RV switches back to the inactive ground state zk = 0. This
interpretation of neuronal spike patterns as realizations of RVs defines the vector
z = (z1, .., zK) of all associated RVs at any time t:
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5 Distributed Bayesian computation and learning in spiking neural sheets

Fig. 5.1: Neural sheet model with local inhibition for distributed Bayesian inference and self-organized learn-
ing. (A) The sampling hypothesis proposes that probability distributions are represented in the brain such that the
time the network spends in state z is proportional to the probability p(z). (B) In (BUESING et al., 2011) it was
shown that recurrent networks of stochastic spiking neurons can implement Markov chain Monte Carlo sampling in
a well-defined graphical model (inset). Each neuron is identified with a binary random variable (RV). The state of
the RV at time t encodes whether the neuron has fired shortly before (right). (C) In (NESSLER et al., 2013) it was
shown that a local population of neurons (orange), organized in a Winner-Take-All (WTA) architecture, can learn an
implicit probabilistic model of spiking input (green) through STDP-type plasticity. In (NESSLER et al., 2013), compe-
tition between the neurons was established via a global inhibitory current. Inset: Corresponding graphical mixture
model. (D) We propose a spatially structured neural sheet model with lateral inhibition and recurrent excitation for
distributed Bayesian computation and self-organized learning. The network model unites the benefits of (BUESING
et al., 2011) and (NESSLER et al., 2013). Strong inhibitory connections (dashed blue) between nearby network
neurons establish local competition. Sparse recurrent excitatory synapses (red) connect more distant neurons. In
addition, each network neuron integrates spiking input from a local subset of input neurons (green). (E) Graphical
model of the neural sheet in D. Nearby binary network RVs zk (orange nodes) maintain competitive links (blue) while
more distant variables can maintain associative links (red). Bottom-up input synapses in D give rise to generative
downward arrows to the input RVs yi (green nodes).

zk(t) = 1⇔ Neuron k fired in ( t− τ, t ] . (5.1)

Based on this link between random variables and neuronal spike responses, the
authors of (Buesing et al., 2011) identified a sufficient condition for a population
of stochastic spiking neurons to sample from a well-defined probability distribu-
tion p (z | θ), i.e., the relative occurrences of states z(t) visited by the network
trajectory are distributed according to p (z | θ) in the limit t→ ∞. This implementa-
tion of MCMC sampling in networks of spiking neurons was termed neural sampling.
The inset of Fig. 5.1B depicts the graphical model of the distribution p (z | θ) which
the small neural network in the figure samples from. Notably, the links in the
graphical model mirror the structure of synaptic network connections.

The neural sampling theory explains how networks of spiking neurons can sample
from a given distribution p (z | θ) over latent variables z for given parameters θ. It
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does, however, not cover the question how these latent variables enter the network
in the first place, i.e., how observed input y can be integrated and represented
through latent variables z and how this representation can be learned from the
statistics of observables y. This question is addressed in the current article. In
particular, we exhibit a network architecture for sheets of stochastically spiking
neurons for which

• the spike response can be understood as neural sampling from the Bayesian
posterior distribution of a well-defined probabilistic model,

• local synaptic plasticity rules can be derived for self-organized model opti-
mization of the parameters θ using machine learning theory, and

• emerging recurrent connections store correlations between latent variables z
and help to maintain coherent network states for resolving ambiguous input.

For the self-organized adaptation of network parameters θ based on the statistics
of observations y, we adopt a ”generative perspective” which is often used in
Bayesian modeling (Bishop, 2006; R. P. Rao and Ballard, 1999; Lochmann and
Deneve, 2011; Nessler et al., 2013). In the generative perspective, we interpret the
latent variables z as so-called hidden causes of the inputs y. This view permits to
identify a conditional distribution p (y | z, θ) (called “likelihood”) which describes
the distribution over inputs if the network would (hypothetically) generate its own
spiking inputs based on its current network state z. The conditional distribution
p (y | z, θ) describes how likely an observation y is under the assumption that it
was generated by the hidden cause z. In a complementary, reversed perspective,
by holding the observation y fixed and viewing p (y | z, θ) as a function of z, this
allows to assess how well different z-configurations could serve as explanations for
the given observation. This reversed perspective is formalized in Bayes rule

p (z | y, θ) =
p (y | z, θ) p (z | θ)

p (y | θ) . (5.2)

Bayes rule (5.2) tells us how to infer the statistically optimal posterior distribution
p (z | y, θ) of network responses z to any stimulus y. For this inference, two
components are essential. The prior p (z | θ) encodes that some combinations of
latent variables are generally more likely than others (e.g. driving speeds of cars
are highly correlated during rush hour). The likelihood p (y | z, θ) formalizes the
constraint that the values of latent variables z should be such that the current
observations y are probable under the generative probabilistic model. Note that
the shape of both distributions is determined by the network parameters θ. The
denominator p (y | θ) can often be ignored since it just provides a normalizing
factor for the posterior. A key benefit of the generative perspective is that it provides
a theoretically well-founded approach to self-organized (unsupervised) learning.
This is because inference of hidden causes works best when the parameters θ are
tuned such that the hypothetical generative distribution of the network p (y | θ)
matches the true distribution of observables p∗(y). The process of minimizing the
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mismatch between the probabilistic model and the input statistics is known as
“maximum likelihood learning”.

Adopting the generative perspective, Nessler et al. (Nessler et al., 2013) recently
developed a model for inference and learning in local populations of stochastic
spiking neurons with lateral inhibition, see Fig. 5.1C. Network neurons in this
model receive all-to-all connections from a set of input neurons, and each network
neuron maintains a set of afferent synaptic weights that render it an expert for
detecting certain input patterns. A global inhibitory current enforces competition
among the network neurons. Nessler et al. showed that the spiking activity of such
a network with K neurons in response to input can be understood as Bayesian
inference in an implicit probabilistic mixture model with K hidden causes (see
inset of Fig. 5.1C). Furthermore, it was shown that maximum likelihood learning
in this model gives rise to synaptic update rules that appear compatible with
experimental data on spike-timing dependent plasticity (STDP) (Nessler et al.,
2013; Habenschuss et al., 2013b).

In this article, we combine the benefits of maximum likelihood learning in networks
with lateral inhibition with the general theory of neural sampling. We consider a
spatially structured network architecture (see Fig. 5.1D) where network neurons
represent latent variables z. The spatially extended architecture generalizes the
network motif considered in (Nessler et al., 2013) in that network neurons inhibit
each other locally through lateral inhibition (Douglas and Martin, 2004) and,
in addition, may form sparse excitatory connections beyond the range of lateral
inhibition (Bosking et al., 1997; Stepanyants et al., 2009). Afferent connections
from input neurons, that represent observables y, branch and synapse locally in
the sheet of network neurons. Lateral inhibition structures the network in local
WTA-like subcircuits similar to (Nessler et al., 2013) such that network neurons
that receive input from overlapping sets of input neurons are subject to strong
lateral inhibition. As we will see, this constraint ensures that theoretically correct
inference and learning can be implemented through simple local neural operations.
In contrast to (Nessler et al., 2013) however, which considered only a single WTA
circuit motif, each network neuron in the architecture proposed here can participate
in several WTA-subcircuits, and multiple network neurons with disjoint input can
be recruited in parallel to cooperatively explain the spatially distributed input.
Building on the neural sampling theory (Buesing et al., 2011), we show that the
response of this network architecture to spiking input can be understood as neural
sampling-based Bayesian inference in the structured graphical model shown in
Fig. 5.1E. The graphical model has two main components: recurrent links between
network nodes, and generative input links pointing from network nodes to input
nodes. The recurrent links encode statistical correlations between latent variables z
by shaping the prior distribution p (z | θ) in Bayes rule (5.2). The generative input
links encode the likelihood model p (y | z, θ). We show that both these components
of the probabilistic model can be optimized concurrently through local synaptic
plasticity rules in this network architecture. In particular, we derive iterative update
rules for maximum likelihood learning which give rise to Hebbian-type synaptic
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and homeostatic intrinsic plasticity rules in the neural network. The joint application
of these rules can be understood as Stochastic Online Expectation-Maximization
(Sato, 1999), a powerful machine learning algorithm for unsupervised model
optimization. While a theoretically optimal STDP-type plasticity rule can be derived
for afferent connections that define the likelihood model p (y | z, θ), an approximate
solution is proposed for recurrent connections that define the prior distribution
p (z | θ) over latent variables. In computer simulations, we verify that the spiking
network can calculate and represent the theoretically correct Bayesian posterior
distribution with high accuracy. We demonstrate how synaptic plasticity shapes the
network response to extract and convey the most salient features of the input in a
sparse distributed spike code, and how recurrent connections capture correlations
between latent variables z to maintain a coherent network-wide interpretation.
These simulations also reveal how the sampling network calculates and represents
uncertainty in case of ambiguous or uninformative input. When the presented input
appears consistent with multiple possible (but mutually incompatible) explanations,
the network response encodes the associated multimodal posterior distribution
p (z | y, θ) by switching iteratively between different coherent network states.
Finally, our theoretical analysis points to an integral role of lateral inhibition during
learning: it is the local inhibition network motif that gives rise to local synaptic
plasticity rules and that facilitates the emergence of probabilistic local experts. The
resulting well-adapted network transforms high-dimensional spiking input streams
into an efficient sparse code.

The remainder of the manuscript is structured as follows. We first introduce the
probabilistic model and show how the resulting posterior distribution p (z | y, θ)
can be calculated and represented by a spiking neural network with local affer-
ent connections, lateral inhibition and sparse recurrent excitation through neural
sampling. We then investigate synaptic learning of afferent connections and recur-
rent connections in separate subsections. Finally, we apply the complete spiking
network architecture to a two-dimensional model of neural tissue in which we
observe the emergence of excitatory subnetworks through the interplay of afferent
and recurrent synaptic plasticity.

5.2 Probabilistic inference in spatially extended spiking
networks

In this section, we derive how the spike response of the neural sheet model with
the architecture in Fig. 5.1D can be understood as an ongoing sampling process
from a Bayesian posterior distribution p (z | y, θ) that arises from the graphical
model in Fig. 5.1E.
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Spiking neural network model

The network architecture in Fig. 5.1D comprises network neurons and input neu-
rons. The spiking activity of input neurons is fed externally into the network. For
the network neurons, we employ the stochastic spike response neuron model from
Buesing et al. (Buesing et al., 2011) that describes the state of each network neuron
by a binary variable zk(t) ∈ {0, 1} according to eq. (5.1): After a spike of the k-th
network neuron, zk(t) turns active for duration τ. After that period, the variable
switches back to the inactive state zk(t) = 0. Similarly, the state of the i-th input
neuron is described by a binary variable yi(t) ∈ {0, 1} with yi(t) = 1 for duration τ
after a spike of the i-th input neuron. The membrane potential of the k-th network
neuron is given by

uk(t) = bk +
K

∑
j=1

Wexc
kj zj(t) +

K

∑
j=1

Winh
kj zj(t) +

N

∑
i=1

Vki yi(t) . (5.3)

Here, bk denotes a neuron’s intrinsic excitability and captures, for instance, the
influence of the voltage gap between resting and threshold potential in more
detailed neuron models (Jolivet et al., 2006; Petrovici et al., 2013). Wexc

kj and
Winh

kj are recurrent synaptic weights between network neurons to instantiate sparse
recurrent excitation (Bosking et al., 1997) and local lateral inhibition (Markram

et al., 2004). For simplicity, we model the effect of inhibition as direct negative
connections Winh

kj between network neurons, i.e., we do not model interneurons
explicitly. The afferent weights Vki denote the strength of synapses from the i-th
input to the k-th network neuron. For notational convenience, weight 0 is assigned
to non-existing connections. As in (Buesing et al., 2011), neurons communicate via
rectangular post-synaptic potentials (PSPs) of duration τ and with amplitude Wexc

kj ,
Winh

kj and Vki respectively. Throughout this work, we chose τ = 10 ms as an estimate
for PSP durations. Thus, the membrane potential uk(t) integrates the current value
of all presynaptic variables zj(t) and yi(t) at any time.

Network neurons emit spikes stochastically with instantaneous firing probability

ρk(t) = lim
δt→0

1
δt

p(Neuron k fires in [t + δt) ) =
1
τ

euk(t)(1− zk(t)) . (5.4)

Here, (1 − zk(t)) describes a refractory period that is inversely related to the
state zk(t), i.e., when zk(t) is active, the neuron is refractory and cannot emit
another spike. The exponential dependence of the firing probability ρk on uk
was confirmed to be a reasonable modeling assumption for neurons in a noisy
environment (Jolivet et al., 2006; Petrovici et al., 2013).
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The network response as the result of a meaningful Bayesian
computation

We aim to understand the activity of the network neurons in response to spiking
input as the result of a Bayesian computation. To this end, we establish a link
between the stochastic spike response properties of individual neurons and the
joint activity distribution of the entire network. As in the neural sampling the-
ory (Buesing et al., 2011), the states zk(t) and yi(t) of the neurons are formally
treated as random variables zk and yi. This probabilistic description of stochastic
network activity in response to given input amounts to a conditional probability
distribution p (z | y, θ) for each possible input configuration y. In order to assign
a computational meaning to the conditional distributions p (z | y, θ), we seek to
identify a generative model, consisting of prior p (z | θ) and likelihood p (y | z, θ),
for which the conditional distributions p (z | y, θ) arise from Bayes rule (5.2) as the
correct posterior. If we find such a generative model, the network’s spike response
can be understood as probabilistic inference through sampling from the posterior
p (z | y, θ).

To decide whether the posterior distribution of a generative model is compatible
with the neural dynamics of the spiking network, we make use of a sufficient condi-
tion that was identified in (Buesing et al., 2011). The so-called neural computability
condition connects the membrane potentials uk of individual spike response neu-
rons (5.4) with the activity distribution of the recurrent network. For our case of
a posterior distribution p (z | y, θ) with arbitrary (but fixed) input y, the neural
computability condition reads:

uk
!
= log

p
(
zk = 1 | z\k, y, θ

)
p
(
zk = 0 | z\k, y, θ

) for all k = 1, .., K (5.5)

with z\k = (z1, .., zk−1, zk+1, .., zK) denoting the state of the remaining network. If
the condition holds for all possible input states y and all possible network states z,
the neural sampling theory guarantees that the trajectory of network states z(t) is
distributed according to p (z | y, θ) in the limit t → ∞ for any fixed input y, i.e.,
the spiking network samples from p (z | y, θ).

To establish the equivalence between the spiking network in Fig. 5.1D and the
Bayesian model in Fig. 5.1E, we proceed as follows. First, we introduce prior
p (z | θ) and likelihood distributions p (y | z, θ) that match the graphical model
in Fig. 5.1E. These distributions are shaped by a set of parameters that preserve
additional degrees of freedom. From these distributions, we can then calculate the
posterior p (z | y, θ) according to Bayes rule (5.2). Finally, we apply the sufficient
condition (5.5) to decide under what conditions the spiking network will sample
from the correct posterior distribution. In particular, this will allow us to determine
the connectivity structure of the network in detail, and furthermore, to precisely
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map the abstract parameters of the generative model to the synaptic efficacies and
intrinsic excitabilities of the neural sheet model.

We set out with a class of prior distributions p (z | θ), namely Boltzmann distribu-
tions, that have been shown (Buesing et al., 2011) to be compatible with the neural
sampling dynamics of the recurrent spiking network model (without input):

p (z | θ) = 1
Z

exp
[

1
2
zTŴexcz +

1
2
zTŴ inhz + zTb̂

]
, (5.6)

where Z is a normalizing factor. The distribution assigns probabilities to binary
random vectors z = (z1, .., zK)

T with zk ∈ {0, 1}. The parameters b̂, Ŵexc, Ŵ inh

shape the distribution and consist of a real-valued bias vector b̂ = (b̂1, .., b̂K)
T and

symmetric, zero-diagonal K×K coupling matrices Ŵexc and Ŵ inh. The matrix nota-
tions zTŴz denote bilinear forms. Distributions of the form (5.6) are the maximum
entropy distributions for given first and second moments, i.e., this class of distri-
butions captures all mean activations 〈 zk 〉 and covariances

〈
zk zj

〉
− 〈 zk 〉

〈
zj
〉

of
network variables. We endow the prior (5.6) with the spatial structure sketched
in the upper row of Fig. 5.1E. Orange circles depict the random variables zk that
correspond to network neurons. The random variables zk maintain sparse excitatory
recurrent connections Ŵexc

kj (red links) on an intermediate range. Excitatory links
between variables make their coactivation more probable in the prior (5.6) and
thus encode network-wide state combinations z that are more likely to occur than
others. This associative memory aspect will turn out to be particularly powerful in
the context of recurrent learning where structural knowledge is integrated by the
prior and will allow the network to maintain coherent network states even in face
of ambiguous input. The sparse excitatory links on intermediate distances are com-
plemented with strong negative connections Ŵinh

kj (theoretically Ŵinh
kj → −∞, blue

links) on a local scale among nearby network neurons. These negative connections
will correspond to local lateral inhibition in the network and, as we will see in the
context of learning, facilitate self-organized statistical model optimization through
synaptic plasticity.

We next turn to the likelihood distribution p (y | z, θ) that establishes the con-
nection between the network variables zk and the input variables yi. We adopt a
generative perspective in order to identify the likelihood distribution p (y | z, θ)
and view the network variables zk as “hidden causes” of their inputs yi. Taking the
generative perspective, we assume that each input yi is (hypothetically) generated
by the corresponding subset of connected network variables zk. This amounts to
the downward arrows in Fig. 5.1E where each input yi (green circles) receives con-
verging arrows only from nearby network variables zk, the so-called parents of yi.
For our idealized architecture, we further assume that no two parents zk and zj of
an individual input yi can be active simultaneously. This is ensured by zk and zj

sharing strong negative connections Ŵinh
kj , i.e., the parents of yi are assumed to lie

within the range of lateral inhibition (blue links in Fig. 5.1E). As a consequence,
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5.2 Probabilistic inference in spatially extended spiking networks

each input yi is generated by at most one of its parents at a time. We denote the
probability of yi to be active by πki (with 0 < πki < 1) given that it is generated by
the active hidden cause zk. If none of its parents is active, the chance of activity is
assigned a default value π0i which we treat as a constant. This is summarized in
the following Bernoulli distribution:

p (yi = 1 | z, θ) =
{

πki if zk = 1 for a parent zk of yi
π0i if zk = 0 for all parents of yi.

(5.7)

The extension to the full likelihood distribution p (y | z, θ), that obeys the graphical
model in Fig. 5.1E, is straightforward: Since p (y | z, θ) is conditioned on the entire
random vector z, which trivially comprises the parents of all inputs, the yi’s are
conditionally independent and we obtain p (y | z, θ) = ∏N

i=1 p (yi | z, θ) for the
likelihood of all N input variables. This completes the definition of prior and
likelihood distributions that match the graphical model sketched in Fig. 5.1E. A
formal definition of the probabilistic model is provided in Generative model in
Appendix D. There we also describe extensions of the likelihood distribution to
support natural and real-valued inputs, i.e., to yi ∈N and yi ∈ R.

The neural network can sample from the posterior of the generative
model

From the prior (5.6) and the likelihoods (5.7), the posterior distribution p (z | y, θ)
can be calculated in closed-form using Bayes rule. By applying the neural com-
putability condition (5.5), a straightforward derivation reveals that the membrane
potential (5.3) is indeed compatible with the posterior p (z | y, θ) of the generative
model. The closed-form posterior and the derivation are provided in Inference in the
generative model in Appendix D. Furthermore, the calculation yields a translation
between the network parameters bk, Wexc

kj , Winh
kj , Vki and the abstract parameters

b̂k, Ŵexc
kj , Ŵinh

kj , πki (and the constants π0i), and results in the following corollary:

Corollary 1 (Inference). Let network parameters and abstract parameters be identified
via

bk = b̂k − Ak (5.8)

Vki = log
(

πki

1− πki

)
− log

(
π0i

1− π0i

)
(5.9)

Wexc
kj = Ŵexc

kj , Winh
kj = Ŵinh

kj (5.10)

with Ak := ∑N
i=1 log

[
1 + π0i ·

(
eVki − 1

)]
, and let the recurrent weights Ŵexc and Ŵ inh

be symmetric matrices with zero diagonal. Then, for any fixed input instantiation y(t) = y,
the response z(t) of a recurrent spiking network consisting of stochastic neurons (5.4) with
linear membrane potential (5.3) is distributed according to z(t) ∼ p (z | y, θ) in the limit
t→ ∞, i.e. the network samples from the posterior distribution of the probabilistic model
defined by the prior (5.6) and the likelihoods (5.7).
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5 Distributed Bayesian computation and learning in spiking neural sheets

Corollary 1 explains the structural similarity of the graphical model in Fig. 5.1E
and the network architecture in Fig. 5.1D: Each red (blue) recurrent link between
latent variables zk and zj in the graph corresponds to a symmetric reciprocal
excitatory (inhibitory) synaptic connection between the k-th and j-th network
neuron; and each downward arrow from zk to yi in the graph gives rise to a
synapse Vki from the i-th input neuron to the k-th network neuron. In particular, the
assumption in the abstract model, that at most one parent zk explains a dependent
input variable yi at a time, translates to a local lateral inhibition motif in the
spiking network: Any two network neurons, that share common input, inhibit
each other through lateral inhibition. This theoretically derived network motif is
reminiscent of cortical lateral inhibition frequently reported across areas and species
(Douglas and Martin, 2004). In the neural sheet model, local lateral inhibition
introduces Winner-take-all (WTA) competition among nearby network neurons
which thus play the role of local feature detectors. However, the local WTA circuits
are not separated in the sheet, but rather interwoven such that each network
neuron can participate in multiple overlapping WTA sub-circuits. In addition,
lateral excitatory connections Wexc

kj encode associations between spatially distant
feature combinations. This generalized concept of WTA circuits in the continuous
sheet contrasts with existing models of interacting WTAs (Lansner, 2009) which
investigated disjoint non-overlapping WTA sub-circuits that operate in parallel.
The full probabilistic model p (y, z | θ) of the neural sheet can thus be understood
as a spatially extended reservoir of contiguous competing local feature detectors
(corresponding to the likelihood p (y | z, θ)) and an associative memory over the
feature set (corresponding to the prior p (z | θ)).

The implementation of Bayes rule (5.2) by the spiking network is illustrated in
Fig. 5.2A and B for the minimal example of two neighboring neurons with an
overlapping, but not identical, subset of inputs yi. Both neurons z1 and z2 maintain
an implicit likelihood model for their respective local inputs (top-down arrows in A,
bottom-up synapses in B). Additionally, the prior installs competition between the
neurons via negative reciprocal connections Winh (blue edge in A, blue synapses
in B). Consequently, the neurons z1 and z2 preferentially fire to different input
patterns y. The response of z1 and z2 could be further modulated by the activity
of other latent variables zj via recurrent excitatory connections (red edges in
A, red synapses in B). To illustrate how Bayesian inference is realized in the
network, let us consider this two-neuron example and assume that there are no
other network neurons. For the small graphical model sketched in Fig. 5.2A and B,
suppose that both neurons have the same excitability b1 = b2 = −2 and that
afferent weights are given by (V11, .., V15) = (2.0, 0.1, 1.0, 2.5,−) and (V21, .., V25) =
(−, 2.0, 0.2, 0.5, 1.5) with ’−’ indicating a non-existing connection. According to
eq. (5.9), these afferent weight values correspond to expected activity patterns
(π11, .., π15) = (0.65, 0.22, 0.40, 0.75,−) and (π21, .., π25) = (−, 0.65, 0.23, 0.29, 0.53)
where we assumed π0i = 0.2 for the default constant. Then, if only inputs y1 and
y4 are active, z1 will typically win the competition, and z2 will be suppressed due
to inhibition and remain silent most of the time. In contrast, if only y2 and y5 are
active, z2 will be predominantly active. Finally, if y1 and y2 are active, z1 and z2
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5.2 Probabilistic inference in spatially extended spiking networks

Fig. 5.2: Sheets of spiking neurons can perform Bayesian inference on distributed spiking input. (A) Lo-
cal generative model with two competing hidden causes and five inputs. Each hidden cause stores a specific
input pattern in the top-down parameters πki. (B) Corresponding local neural network. Top-down parameters πki
translate to bottom-up synaptic weights Vki, turning each network neuron into a probabilistic expert for a specific
local input pattern. (C) Example network with six network neurons. Neighboring neurons with overlapping input
inhibit each other (dashed line: range of lateral inhibition for red neuron). The spiking network is linked to a gener-
ative model p (y, z | θ) according to Corollary 1. (D) The network in C performs sample-based inference of hidden
causes z under time-varying input y(t) in the associated generative model. Comparison of posterior marginals
p (zk = 1 |y(t), θ) between the analytically calculated exact posterior (top) and the average network response (bot-
tom, estimated from 1000 simulation runs) under the time-varying input y(t) in panel E. All traces were smoothed
with a 20ms box kernel for visual clarity. (E) Top: Network spike response in a single simulation run. Bottom: Input
spike trains (colored: structured input, gray: background activity). The network response is an ongoing sampling
process from the posterior p (z |y(t), θ). Time points marked by a ’∗’ exemplify characteristic properties of sample-
based Bayesian information processing. (F) Top: Bottom-up weights Vki of the red neuron. Bottom: Average input
activity while the matching pattern is presented (during the 300ms period marked in E).

will respond approximately equally often. In this case, the network activity will
alternate between the posterior states (z1, z2) = (0, 0), (0, 1) and (1, 0). In general,
according to Corollary 1, the frequency of occurrence of each network state (z1, z2)
will be proportional to the Bayesian posterior probability p (z1, z2 | y, θ) for any
input instantiation y.

Demonstration of sample-based inference on transient spiking input

Corollary 1 ensures that the network will sample from the correct posterior dis-
tribution p (z | y, θ) in arbitrarily large network architectures for any fixed input
configuration y(t) = y. However, Corollary 1 offers no strict guarantees in case of
time-varying input since it only ensures that the network activity converges to the
equilibrium distribution p (z | y, θ) in the limit t→ ∞. For transient spiking input,
the underlying Markov chain cannot fully converge to its equilibrium distribution
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5 Distributed Bayesian computation and learning in spiking neural sheets

and the sampling network will “lag behind” the true posterior. Therefore, the net-
work can only be expected to provide approximate samples from the analytically
correct posterior distribution in response to transient spiking input.

We quantitatively assessed the network’s ability to perform inference on time-
varying input y(t) with the help of computer simulations in the small, analytically
tractable network architecture shown in Fig. 5.2C. This 6-neuron network will
furthermore serve to illustrate salient response properties of the neural sheet during
neural sampling-based inference. In the network, the prior features both sparse
excitatory connections and local lateral inhibition such that neighboring neurons
compete with each other through inhibitory connections. More distant neurons
maintain excitatory connections (red links: Wexc

kj = 1), representing knowledge
that these two hidden causes are likely to co-occur. Furthermore, each neuron
has a (randomly generated) preferred local input pattern stored in its synaptic
weights Vki. For instance, the top panel of Fig. 5.2F shows the afferent weights of
the red neuron. A demonstration of neural sampling by this circuit in response
to time-varying input y(t) is shown in Fig. 5.2E: High-dimensional (N = 108)
input spike trains are presented to the network (bottom). Input spikes consist
of uninformative background spikes (gray), interleaved with periods of more
structured inputs (colored spikes). Uninformative background spikes are Poisson
spike trains with a uniform rate chosen such that the average activation of input
neurons is 〈 yi 〉 = 0.2 (ca. 20 Hz). This value also determined the constant π0i.
Structured input spikes are Poisson spike trains with rates that were chosen to
match the activity patterns stored in the afferent weights Vki of the network neurons.
For example, the red neuron is particularly good at detecting the red spike pattern.
Fig. 5.2E (top) shows the network response to the input spike pattern (bottom)
during a single simulation run. Whenever a structured local input pattern occurs,
the corresponding network neuron starts firing. Yet, the network response is not
deterministic: sometimes network neurons elicit spikes even when presented with
unstructured input (see e.g. at the 1

st time point marked by a ’∗’); in other cases,
a competing neighboring neuron emits a spike (see e.g. at the 2

nd time point
marked by a ’∗’). Due to the stochastic nature of the network response, the exact
spike pattern of the network will be slightly different in each simulation run.
This apparent trial-to-trial variability is an inherent feature of any sample-based
inference process.

We next turn to the question how well the network response approximates the
correct Bayesian posterior at any time t. As we have seen, Corollary 1 suggests
to interpret the network states z(t) as approximate samples from the posterior
distribution p (z | y(t), θ). Owing to the transient input signal y(t), however, only
few samples z(t) can be drawn under stable conditions, thereby impeding full con-
vergence to the equilibrium. A quantitative comparison addressing this question is
provided in Fig. 5.2D. From many repetitions of the experiment – all with the same
input spike pattern y(t) – we can estimate the distribution the network actually
samples from. The top row of Fig. 5.2D shows the exact marginal probabilities
ptheo (zk = 1 | y(t), θ) at any time t, analytically calculated from Bayes rule. The
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5.3 Emergence of local experts through synaptic plasticity

bottom row shows the average network response pnet (zk = 1 | y(t), θ), estimated
from the samples from 1000 repetitions of the experiment. The comparison indicates
that the sampling network approximates the correct posterior probabilities with
high accuracy at almost any time, capturing not only qualitative aspects of the
transient posterior distribution but also the quantitative composition of the distri-
bution in face of input fluctuations. Only for particularly rapid input fluctuations,
which lead to sharp peaks in the posterior, the network shows a slightly delayed
and sometimes inaccurate response. A more detailed statistical evaluation of the
sampling quality is provided in Details to the computer simulations in Appendix D,
along with a brief discussion on the origins of stochastic and systematic deviations
in the sampled distribution. In conclusion, the quantitative comparison in Fig. 5.2D
shows that the stochastic network response z(t) can be understood as an ongoing
Bayesian inference process, even in case of time-varying input y(t).

Fig. 5.2D and E also exemplify characteristic properties of sample-based Bayesian
information processing. At times, input instantiations y(t) may be noisy or am-
biguous such that the hidden causes of the presented input cannot be inferred with
certainty. Two typical examples are marked with a ’∗’ symbol: At the first time point
marked, the unstructured background input accidentally bears some resemblance
to the red and the yellow input patterns, such that the posterior probability for
inferring the red/yellow patterns temporarily jumps to p (zk = 1 | y(t), θ) ≈ 1/2
for k = 3 and k = 5. This brief moment of uncertainty due to stochastic fluctuations
in the input is represented by the network via a small number of spikes of the red
(k=3) and the yellow (k=5) network neurons. While the exact timing of the spikes is
a stochastic process, the instantaneous spiking probability in the sampling network
is well in line with the analytically calculated posterior. At the second time point
marked, two competing neurons (dark blue and green) could explain their local
input well, as can be seen from the marginal posterior p (zk = 1 | y, θ). In such
ambiguous situations, both neurons are eager to fire, yet they compete due to lateral
inhibition. As a result, network activity switches between two local interpretations
where either one of the two hidden causes is active. Due to the stochastic nature of
the sampling process, the particular switching times between the competing net-
work states change with each repetition of the experiment, leading to trial-to-trial
variability from the perspective of an external observer.

5.3 Emergence of local experts through synaptic plasticity

Animals and humans possess the ability not only to infer hidden causes of their
perceptions, but also to adapt their internal model, that underlies these inferences, to
their specific environment. From a Bayesian perspective, this amounts to reshaping
the parameters of the internal model p (y, z | θ) to better suit the true input statistics.
For our analysis of plasticity, we keep the lateral inhibition structure, i.e, the effect
of interneurons, fixed, and focus on plasticity of excitatory synapses. The guiding
questions for the following two subsections are:
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5 Distributed Bayesian computation and learning in spiking neural sheets

• How can the afferent weights Vki, recurrent weights Wexc
kj and neuronal

excitabilities bk be adapted to support inference in a statistically optimal
manner?

• To what extent can this network-wide optimization be accomplished with
only local plasticity rules?

To address these questions we employed a standard objective function (Bishop,
2006) for statistical model optimization, namely the log-likelihood of the input
under the model:

L(θ) = 〈 log p (y | θ) 〉p∗(y) , (5.11)

where p∗(y) denotes the true distribution of inputs y actually presented to the
network. Eq. (5.11) makes use of a conceptual advantage of the Bayesian ap-
proach: So far we were only interested in the posterior distribution p (z | y, θ)
which describes the stochastic network response z under a given stimulus y; now
we switch to the complementary generative view and examine the distribution
p (y | θ) = ∑z p (y, z | θ) of data hypothetically generated by the model. The distri-
bution p (y | θ) can be viewed as the outcome when the probabilistic model would
“dream” its own environment. Adopting the complementary view is only possible
because a full probabilistic model p (y, z | θ) of the network is available. The func-
tion L(θ) then measures the likelihood of the actually presented input y ∼ p∗(y)
to occur in p (y | θ). Since L(θ) = −DKL (p∗ || p) + const., increasing L(θ) is equiv-
alent to reducing the Kullback-Leibler divergence DKL (p∗ || p) that measures the
dissimilarity between the two distributions. Therefore, maximizing L(θ) means
to align the internal model p (y | θ) with the true input distribution p∗(y). This
objective is commonly known as “maximum likelihood learning” in the machine
learning literature (Bishop, 2006).

In a first step, we investigated the maximization of L(θ) with respect to V , i.e., we
examined the role of plastic afferent synapses Vki. Plastic recurrent connections Wexc

kj
will be addressed in a separate subsection, and we set W exc = 0 for now. Update
rules for the afferent weights Vki can be directly derived from the probabilistic model
using the mathematical framework of generalized online Expectation Maximization
(Nessler et al., 2013; Habenschuss et al., 2012). The derivation is provided in Model
optimization via Generalized Expectation Maximization in Appendix D, and yields the
following plasticity rules for synaptic weights Vki and intrinsic excitabilities bk:

∂

∂t
Vki = ηV · zk(t) · (yi(t)− σ(Vki + V0i)) (5.12)

∂

∂t
bk = ηb · (mk − zk(t)) . (5.13)

Here, ηV and ηb denote small learning rates, σ(x) := 1/(1 + exp(−x)) is the
logistic function, V0i := log(π0i/(1− π0i)) is a constant in order to respect the
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5.3 Emergence of local experts through synaptic plasticity

default activity π0i, and mk is a long-term average target response 〈 zk 〉 of the
k-th network neuron. Importantly, both plasticity rules only rely on information
that is locally and instantaneously available to the neurons and synapses: Each
afferent synapse Vki adapts its weight in a Hebbian-type update based on pre-(yi)
and post-(zk) synaptic activity through the weight-dependent plasticity rule (5.12);
each neuron changes its intrinsic excitability bk in a homeostatic fashion based on
its current spike response zk. The joint application of the rules (5.12) and (5.13) can
be shown to implement unsupervised statistical model optimization in the sense of
the following corollary:

Corollary 2 (Learning of afferent synapses). The implicit probabilistic model defined
by (5.6) and (5.7) can be optimized with respect to the afferent synaptic parameters Vki by
a Generalized Expectation Maximization algorithm which continuously increases a lower
bound

F ≤ L(θ)

of the log-likelihood L(θ) until a local optimum of F is reached. The concurrent applica-
tion of the learning rules (5.12) and (5.13) implements an online approximation of this
optimization algorithm.

The approximate character of the network implementation only arises from incom-
plete convergence of the network’s Markov chain during inference and from the
non-infinitesimally small learning rates ηV and ηb. Ignoring these effects, i.e., in the
limit of small learning rates (ηb → 0 and ηV/ηb → 0) and assuming instantaneous
convergence of the Markov chain, we find that the plasticity rules become exact.
Then, the direction of the expected learning update is given by,

〈 zk · (yi − σ(Vki + V0i)) 〉 =
∂F
∂Vki

for all k, i, (5.14)

where the expectation 〈 · 〉 is taken with respect to the presented input y(t) and the
network response z(t). In other words, plastic changes in the synaptic weights Vki
point on average in the direction of increasing F . Maximizing a lower bound F
on L, instead of direct optimization of L, is a common trick (Graca et al., 2008)
in machine learning to obtain a tractable learning problem. In our model this
approach serves to obtain a spiking network implementation of maximum likeli-
hood learning in which all required information is available locally at the neurons
and synapses. The local availability of information during learning comes at a
cost. The network does not sample from the exact posterior anymore, but from
a well-defined variational posterior (Habenschuss et al., 2012): The variational
posterior, the network samples from, is the closest distribution to the analytically
exact posterior (measured in terms of the Kullback-Leibler divergence) that satisfies
the homeostatic long-term target activations mk. A full derivation of the plasticity
rules (5.12) and (5.13), including a precise definition of the lower bound F and the
variational posterior distribution, is provided in Model optimization via Generalized
Expectation Maximization in Appendix D.
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5 Distributed Bayesian computation and learning in spiking neural sheets

Fig. 5.3: Emergence of probabilistic local experts through synaptic plasticity. (A) Network architecture with
21×6 inputs and 7×3 network neurons. The green, red and blue neuron receive input from the same 6×6 subset
of input neurons. The input subsets of neighboring groups are shifted by three. The dashed line indicates the
range of lateral inhibition. (B) At each of the overlapping 6×6 locations, three randomly drawn activity patterns can
occur. Shown are the activity patterns for the location highlighted in A. (C) Synaptic and intrinsic plasticity shape
the probabilistic model that is encoded by the network. The log-likelihood function L(θ) measures how well the
network is adapted to the presented input. (D) One-to-one comparison of the synaptic weights Vki to analytically
calculated optimal weight values, at the end of learning (T = 10, 000 s). (E) 2-dimensional projection of the local input
distribution p∗(y). Each dot is one input instantiation y(t) at the 6×6 input field in A. Dots are colored according to
which of the three neurons (green/red/blue) fired in response (gray: none fired). The neural plasticity rules achieve a
clustering of local inputs into local categories. (F) Evolution of synaptic weights Vki of the green/red/blue neuron over
the course of learning. Each neuron becomes a probabilistic local expert for a certain input pattern (cp. panel B).
(G) The plastic network develops a sparse, structured spike code that conveys compressed information about the
presented input. Bottom: input spike trains. Top: Network response at different stages of learning.
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Demonstration of self-organized learning in the neural sheet

We tested the derived learning rules for afferent weights Vki and intrinsic excitabil-
ities bk in a computer simulation of a sheet of 7×3 network neurons (Fig. 5.3A).
The sheet model receives synaptic input from a total 21×6 afferent cells. Each
network neuron receives input from a subset of 6×6 inputs. The network neurons
are arranged such that in each column there are three neurons sharing the same
6×6 input (such as the green/red/blue neuron in Fig. 5.3A). Neighboring columns
of network neurons receive inputs from an overlapping subset of afferent cells
(6×6 input subset shifted by three columns of input neurons to the left and right
respectively). Neurons in the same column as well as neurons in neighboring
columns inhibit each other. The input data was generated in a similar manner
as in Fig. 5.2, by interleaving a background Poisson spike train with periods of
structured Poisson spikes generated from a small number of stereotypical rate
patterns. At each 6×6 input field there are three such recurring activity patterns.
At any moment, at most one such pattern is presented at any spatial position in
the input. The resulting spike trains have complex spatio-temporal structure, as
shown in Fig. 5.3G (bottom).

Initially all afferent weights are set to Vki = 0. Afferent weights are plastic and
follow eq. (5.12). For the purpose of neuroscientific modeling, synaptic weights Vki
were restricted to positive values. The theory for inference and learning would
support positive and negative weights, including sign changes. Excitabilities are
uniformly initialized at bk = −2 and follow eq. (5.13) with the average target
response 〈 zk 〉 of each network neuron set to mk = 6.5%. Whenever a network
neuron spikes, synaptic plasticity is triggered and the current activity of the local
6×6 input field, that is connected to the active network neuron, leaves a small
trace in the afferent synaptic weights of that neuron. As a result, the same neuron
is more likely to fire again when a similar input pattern occurs in the future,
which leads to further strengthening of the synaptic weights. Due to the combined
effect of synaptic plasticity and local competition among neurons, network neurons
start specializing on different salient input patterns of their respective 6×6 input
fields (Fig. 5.3F). Homeostatic intrinsic plasticity ensures during this learning
process that neurons which specialize on weak patterns (weak synaptic weights)
are not disadvantaged compared to neurons which focus on strong patterns (strong
synaptic weights), by regulating intrinsic excitabilities such that all network neurons
maintain their long-term average activity mk.

A direct consequence of the gradual specialization of network neurons on local
salient input patterns is that the network response becomes increasingly more
structured and reliable during learning (Fig. 5.3G, top): each network neuron
becomes a probabilistic local expert for one of the salient activity patterns in its
local 6×6 input field. This assigns a particular meaning to each of the random
variables zk of the network: The activity of neuron zk represents the presence or
absence of the salient local input feature which is encoded in its afferent weights Vki.
Nearby network neurons (such as the blue/red/green neurons in Fig. 5.3A) are in
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competition due to lateral inhibition. Therefore, whenever an input is presented
to the network, the activity in the local 6×6 input field is effectively categorized
by similarity to the preferred patterns of the three neurons. This is visualized in
Fig. 5.3E: Each dot in the 2D-projection represents one instantiation of the local
6×6 input field highlighted in Fig. 5.3A. Grey dots indicate that none of the three
neurons (green/red/blue) fired in response to the local input (≈ 80% of the time in
accordance with the targets mk). Colored dots indicate that the respective network
neuron fired (colors as in Fig. 5.3A). After learning, the input space is segmented
into three regions (Fig. 5.3E, right). Ambiguous input instances at borders between
regions evoke probabilistic responses (e.g. between blue and red region). In this
case, the network stochastically responds with one of the two (or three) possible
interpretations in order to approximate the posterior probabilities of each hidden
cause. The resulting representation on the network level is a sparse structured spike
response that conveys highly compressed information about the input.

The qualitative changes in network behavior described above are paralleled by a
quantitative improvement of network performance measured by the log-likelihood
L(θ) (Fig. 5.3C), as predicted by Corollary 2: From the perspective of statisti-
cal model optimization, the learning dynamics due to synaptic and homeostatic
plasticity guide a local stochastic search in parameter space which on average
increases the lower bound F of the log-likelihood L(θ). At the end of learning,
after T = 10, 000 s, the network has identified a faithful representation of the ac-
tually presented local activity patterns (see Fig. 5.3D). For the shown comparison,
theoretically optimal weights were calculated from the presented activity patterns
according to eq. (5.9). The reason for the small but systematic differences (learned
weights are a bit stronger than predicted) can be found in the facts that the network
samples from a variational posterior distribution and that the plasticity rules (5.12)
and (5.13) optimize a low bound F instead of the log-likelihood L.

In summary, we have demonstrated in this subsection how a neural-sampling
network can adapt its internal parameters to perform probabilistic inference on
distributed spiking input streams. The theoretically derived plasticity rules (5.12)
and (5.13) enable the sampling network to develop a sparse and reliable spike
code that carries the most salient information of the input stream. This statistical
optimization process evolves in a fully self-organized manner by turning network
neurons into probabilistic local experts that compete in explaining the presented
spike input according to the rules of probability theory.

The distinct role of lateral inhibition for synaptic learning

Before we address plasticity of recurrent synapses, an important contribution of
inhibition to synaptic learning deserves a brief discussion. The simplicity of the
synaptic plasticity rule (5.12) arises from the salient lateral inhibition network
motif. To identify the role of lateral inhibition for synaptic learning, it is instructive
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to review the derivation of (5.12) in the absence of inhibition. By repeating the
derivation with W inh = 0, we obtain:

∂

∂t
Vki = ηV · zk(t) ·

[
yi(t)− σ

(
V0i +

K

∑
j=1

Vji zj(t)

)]
. (5.15)

The sum on the right-hand side in (5.15) depends on the activity of neighboring
cells zj, j 6= k, as well as on their afferent weights Vji, thereby rendering statistically
optimal learning non-local. In contrast, local inhibition introduces competition
among nearby neurons such that each input variable yi is explained by at most
one hidden cause zk at a time, and, as a consequence, the complex non-local
term in eq. (5.15) vanishes. Notably, this outcome is not an artifact of the specific
probabilistic model we use, but rather is a general consequence of explaining away
effects in any graphical model with converging arrows. This finding suggests that
lateral inhibition among nearby neurons assists synaptic learning in a Bayesian
framework of model optimization. On the other hand, when lateral inhibition
extends beyond neurons with shared afferent input, the expressive power of the
probabilistic model is reduced since less hidden causes zk are allowed to be active
simultaneously. These theoretical considerations suggest that the emergence of
efficient representations benefits from network architectures in which the range of
local inhibition matches the spatial extent of excitatory cells that share common
afferent input.

5.4 Plastic recurrent synapses integrate structural
knowledge

We have demonstrated how synaptic plasticity can guide statistically optimal
learning of afferent connections Vki. This learning process led to the emergence of
probabilistic local experts. As a result, the configuration z(t) of active network neu-
rons indicates the subset of currently present local features in the spiking input y(t).
In most biologically relevant scenarios, these local input features are unlikely to
be statistically independent. For early visual areas, for instance, we can expect
the input in nearby spatial receptive fields to exhibit some degree of correlation.
Similarly, across sensory modalities certain visual, auditory or tactile stimuli will
often occur together. These statistical correlations among local features give rise to
non-vanishing covariances

〈
zkzj

〉
− 〈 zk 〉

〈
zj
〉

in the network. In the probabilistic
model p (y, z | θ), the covariance between network neurons is determined by the
recurrent weights Wexc

kj which shape the prior distribution p (z | θ). Since a proba-
bilistic model supports inference best if its prior p (z | θ) reflects the input-evoked
correlation structure (Berkes et al., 2011), we extend our investigation of statistically
optimal learning to plastic recurrent synapses Wexc

kj . For the derivation, we can
follow the same approach that has already afforded the plasticity rule (5.12) for
afferent synapses. The key idea is to identify a synaptic plasticity rule that points
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5 Distributed Bayesian computation and learning in spiking neural sheets

on average in the direction of ∂F/∂Wexc
kj , i.e., in the direction of increasing F . The

derivation is provided in Model optimization via Generalized Expectation Maximization
in Appendix D and yields the following theoretically optimal plasticity rule for
recurrent weights:

∂

∂t
Wexc

kj = ηW ·
(

zk(t) zj(t)− φ
opt
kj (Ŵexc, Ŵ inh, b̂)

)
(5.16)

with learning rate ηW and φ
opt
kj (Ŵexc, Ŵ inh, b̂) =

〈
zkzj

〉
p(z | θ). The plasticity rule (5.16)

features a long-term potentiation (LTP) and a long-term depression (LTD) term:
Concurrent activation zk(t) zj(t) of network neurons in response to the input
strengthens the synapse in a local Hebbian LTP update. Depression, however, turns
out to be non-local since the term φ

opt
kj depends on all parameters Ŵexc, Ŵ inh

and b̂ of the prior distribution p (z | θ). This increased complexity of learning in
recurrent systems is well-known in machine learning theory (Salakhutdinov and
G. Hinton, 2009), and we can employ (non-local) machine learning techniques to
determine the value of φ

opt
kj in a so-called sleep phase. This algorithmic approach

is known as wake-sleep learning in the literature (G. E. Hinton and Sejnowski,
1986). Since the calculation of φ

opt
kj is often computationally costly, the develop-

ment of approximate solutions (such as contrastive divergence (G. Hinton, 2002;
Carreira-Perpinan and G. E. Hinton, 2005)), which are tailored to particular
network architectures and learning tasks, turned out beneficial in machine learning.
The question, whether the brain makes use of similar learning strategies, is subject
of ongoing theoretical and experimental research (see e.g. (Peyrache et al., 2009;
Z.-W. Liu et al., 2010), or (Tononi and Cirelli, 2014) for a recent review), and it
appears indeed conceivable that nature found ways to estimate φ

opt
kj .

In the present study, we contribute to this intriguing hypothesis by exploring to
what extent even simple plasticity rules could be sufficient to approximate the
non-local plasticity dynamics of eq. (5.16) in the neural sheet model. Specifically,
we are interested in plasticity rules which (i) rely on only local information, (ii)
can be applied uniformly to all recurrent synapses, and (iii) are shaped by only a
small set of parameters. In case of the architectures often considered in the machine
learning literature (stacked Restricted Boltzmann Machines (RBMs) and variants
thereof) this would likely be a hopeless endeavor. However, the network architecture
of the neural sheet is fundamentally different from stacked RBM architectures,
and the local integration of input may further ease the complexity of recurrent
learning. The conceptual separation of feature detection (through plastic afferent
weights Vki) on the one hand, and feature structure (through plastic recurrent
weights Wexc

kj ) on the other hand, can be expected to facilitate learning in that –
once the essential features have been identified – the complexity of learning the
prior shows some resemblance to the reduced complexity of training a fully visible
Boltzmann machine (Hyvärinen, 2006). Thus, the emergence of probabilistic local
experts may provide a guidance for learning of recurrent connections. Inspired by

96



5.4 Plastic recurrent synapses integrate structural knowledge

the structure of eq. (5.16) and the weight dependence of the LTD term in eq. (5.12),
we make the following ansatz for a local synaptic plasticity rule:

∂

∂t
Wexc

kj = ηW ·
(

zk(t) zj(t)− φϑ(Wexc
kj )

)
(5.17)

where the LTD-term φϑ(Wexc
kj ) only depends on the weight of the respective synapse,

and the parameters ϑ of φϑ are to be determined for the given learning task. Ide-
ally, the LTD function φϑ should be chosen such that eq. (5.16) and (5.17) lead to
the same weight values Wexc

kj under given neuronal spike patterns. In the simple
rule, plasticity is governed by two antagonistic terms: LTP is proportional to the
average coactivation

〈
zkzj

〉
of a synapse’s pre- and post-synaptic neurons; LTD

is proportional to φϑ(Wexc
kj ). Hence, if φϑ is a continuous and monotonically in-

creasing function in Wexc
kj , there exists an equilibrium weight Wexc

kj for each value
of the coactivation

〈
zkzj

〉
. Based on this observation, a principled approach to

identify a suitable LTD function φϑ is to first determine optimal weights Wopt
kj for a

given learning problem using the theoretically optimal wake-sleep rule (5.16), and
then to fit φϑ(Wexc

kj ) such that the identified optimal weights are approximately
reproduced under given coactivations

〈
zkzj

〉
by the simple rule (5.17). In Approx-

imate plasticity rule for recurrent synapses in Appendix D, we show how for a set
of optimal weights Wopt

kj and corresponding coactivations
〈

zkzj
〉

an LTD function

φϑ(Wexc
kj ) can be constructed that features the desired convergence points Wopt

kj . It
must be noted that the local plasticity rule (5.17) can only serve as a heuristic for
approximating the plasticity dynamics of the theory-based wake-sleep rule (5.16).
As such, the parameters ϑ need to be adjusted for every learning scenario and
there exists no strict guarantee of stable plasticity dynamics. Therefore, we explored
the suitability of the local recurrent plasticity rule in computer simulations by
comparing the learning results of the local rule with the outcome of wake-sleep
learning.

Demonstration of self-organized integration of structural knowledge

We tested the learning capabilities of the simple plasticity rule (5.17) and compared
it with the theoretically optimal wake-sleep rule (5.16) in a computer simulation
with seven spatially separate network populations (see Fig. 5.4A). Each population
consisted of three neurons and received spiking input from a group of 6×6 inputs.
Within each population neurons are subject to lateral inhibition. Neurons from
different populations are linked via all-to-all recurrent excitatory connections. At
each spatially separate 6×6 input location one of three local activity patterns may
occur. The local activity patterns are simple stripe patterns (see Fig. 5.4B top) that
can easily be learned by the afferent weights Vki. For brevity, we refer to the three
activity patterns as the ’red’, ’green’ and ’blue’ pattern in the following.
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5 Distributed Bayesian computation and learning in spiking neural sheets

Fig. 5.4: Plastic recurrent synapses integrate structural knowledge. (A) Network architecture with seven
recurrently connected local populations (all-to-all beyond inhibition). Input weights Vki and recurrent excitatory
weights Wexc

kj are plastic. One of three stripe activity patterns (visualized as red/green/blue) is presented as spiking
input to each local population. (B) Examples of the input structure. Top: input activity of the strip patterns (250 ms
average). Bottom: The two outer locations serve as left and right cue (LQ,RQ). Cue input patterns are chosen in-
dependently. The cues determine the type (“color”) of the inner patterns in that the inner inputs are always different
from both cues. In addition, inner patterns are always consistent. Hence, inner network neurons must consider both
cues and the state of the other inner network neurons to infer their own state. (C) Recurrent weights of the high-
lighted blue-tuned neuron after 25, 000 s of learning with the simple local plasticity rule (5.17). Network neurons are
colored according to the local pattern they have become experts for. Line width encodes the synaptic weight Wexc

kj
(min. line width 0.2 for Wexc

kj = 0). In accordance with the input structure, the inner blue neuron has developed strong
excitatory connections to the other inner blue neurons and moderately strong connections to the red and green cue
neurons. (D) Comparison of the log-likelihood over the first 10, 000 s of learning for three recurrent plasticity con-
ditions: with the simple recurrent plasticity rule (red), with the wake-sleep algorithm (dashed black), and without
recurrent excitation (dashed gray). Recurrent plasticity significantly enhances the network’s learning capabilities.
(E) The knowledge on the input structure, that was learned by the recurrent synapses Wexc

kj , enables inference of
correct global network states in face of incomplete input. Only the outer cues are presented while all inner inputs
show an uninformative (“gray”) pattern. With red and green cues, the network correctly infers that the inner hidden
causes should be blue, most of the time. Horizontal bars: mean activity 〈 zk 〉 of network neurons (average over
100 s). (F) When both outer cues are blue, the already incomplete input is furthermore ambiguous. During inference,
the network switches stochastically between the two consistent global interpretations.

In order to assess the network’s ability to detect and integrate highly interdependent
correlation structures among features at different locations, we introduced complex
dependencies between the input presented to the seven populations: While the two
outer input locations served as a left cue (LQ) and right cue (RQ), and were chosen
independently, the five inner locations were chosen to be (a) different from the
cues, and (b) consistent with each other. For instance, if the outer cue patterns were
red and green, all inner input patterns were blue. If, however, both cues showed
the same pattern (e.g., both blue), an ambiguous situation arose: In this case, the
inner patterns were still chosen to be different from the cue, but additionally all
inner patterns were consistently of the same type (either all red or all green).
Several examples illustrating this correlation structure are sketched in Fig. 5.4B. As
a consequence, an inner network neuron, that is tuned to one of the three local
patterns, has to consider both cues and the state of all other inner network neurons
in order to infer its own state correctly.
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5.4 Plastic recurrent synapses integrate structural knowledge

We tested the network’s ability to recover the statistical structure of the input in
a simulation with concurrent learning of afferent weights and recurrent weights
(initial values: Vki = Wexc

kj = 0 and restricted to positive values). In a first simulation
run, recurrent synaptic plasticity followed the theoretically optimal wake-sleep
plasticity rule (5.16). As expected from the theory, all network neurons developed a
tuning to one of the local input patterns, and recurrent weights correctly reflected
the correlation structure of the task after 25, 000 s of learning: Similarly tuned inner
network neurons formed strong excitatory recurrent links Wexc

kj ; in addition, inner
neurons developed excitatory connections with compatible cue neurons (e.g. with
the red and green cue for a blue-tuned inner neuron). The ongoing adaptation
of the network is reflected in the log-likelihood function L(θ) shown in Fig. 5.4D.
The black dashed line shows the learning progress with the theoretically optimal
learning rule. For comparison, we performed an independent simulation with
recurrent plasticity switched off (dashed gray, all Wexc

kj fixed at zero). Without
recurrent excitation, the log-likelihood settled at a significantly lower value. The
gap in L between the two simulations corresponds to the structural information
stored in the prior p (z | θ).

Building on the theory-based learning result, we constructed a suitable LTD func-
tion φϑ to obtain a simple plasticity rule. The set of target weights Wopt

kj , that
emerged during the first simulation run, and the set of coactivations

〈
zkzj

〉
, that

had led to these weights, are provided in Details to the computer simulations in
Appendix D. Based on the observed functional dependence between Wopt

kj and〈
zkzj

〉
, we chose the following LTD function:

φϑ(Wexc
kj ) = mk ·mj +

1
γ

tan

(
π

2

Wexc
kj

Wmax

)
(5.18)

with parameters ϑ = (Wmax = 1.41, γ = 31.6) fitted to the data. The LTD func-
tion (5.18) has two components: The term mk ·mj describes the expected coactiva-
tion

〈
zkzj

〉
if the neurons were statistically independent. This case is associated

with weight Wexc
kj = 0 when synaptic plasticity follows eq. (5.17). The second term

accounts for positive correlations between zk and zj through a stabilizing weight
dependence. While the specific tangent-shape is a heuristic, the functional form
has some properties that are generally expected for Hebbian-type plasticity: The
LTD function is strictly monotonically increasing such that higher coactivations
settle at stronger efficacies; and, the maximum efficacy of a synapse is bounded
since the LTD contribution goes to infinity as Wexc

kj approaches Wmax. The scaling
parameter γ sets the strength of LTD.

In a second simulation run, all recurrent and afferent weights were reset to zero,
and recurrent synaptic plasticity followed the simple local plasticity rule given
by eq. (5.17) and (5.18). As seen in Fig. 5.4D, the simple rule is virtually indis-
tinguishable from the theoretically optimal rule in terms of the log-likelihood.
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5 Distributed Bayesian computation and learning in spiking neural sheets

The resulting recurrent connectivity structure after 25, 000 s of learning is shown
in Fig. 5.4C for the example of an inner network neuron that has specialized on
the blue input pattern: The neuron developed strong recurrent weights with all
other inner neurons of similar tuning, and moderately strong weights with red-
and green-tuned cue neurons. This connectivity matrix mirrors the connectivity
structure obtained with theoretically optimal wake-sleep learning (see Details to the
computer simulations in Appendix D for numerical values).

The learned structural knowledge can be exploited by the sampling network
during inference. Most distinctly, the benefits of well-adapted recurrent excitatory
connections become apparent in response to incomplete, or even ambiguous, stimuli
(Fig. 5.4E and F). To emulate a scenario of incomplete observations, only outer
cues were presented to the network while all inner inputs showed uninformative,
uniform activity (indicated as gray). For example, when the cues are set to red and
green, as shown in Fig. 5.4E, the network correctly infers that all inner features
should be blue most of the time. In the given experimental protocol, this knowledge
can only be communicated via recurrent excitatory synapses. In a second example
shown in Fig. 5.4F, the already incomplete input is furthermore chosen to be
ambiguous by presenting a both-blue cue. Hence, the inner features should be
either all red or all green. In this case, the network activity stochastically switches
between the two inferred consistent interpretations (note that the switching of
network neurons at inner locations is synchronized), as expected for sampling from
a bi-modal posterior distribution p (z | y, θ).

In conclusion, the computer experiment in Fig. 5.4 demonstrates that the sampling
network model can concurrently identify salient features of its input stream and
recover complex correlations among spatially distributed features through synap-
tic plasticity. Self-organized learning of recurrent excitatory connections can be
understood as an ongoing refinement of the prior distribution in the network’s
internal model of presented input. The obtained structural knowledge on the in-
put distribution significantly enhances the network’s ability to maintain globally
coherent network states in face of incomplete and ambiguous observations. For
the examined inference task, which required integration of two independent cues
as well as the state of multiple other network neurons, we observed that even the
simple local plasticity rule (5.17)+(5.18) endowed the network with close-to-perfect
learning capabilities. As a word of caution, owing to theoretical considerations
it is unlikely, that such simple plasticity rules will be sufficient to solve arbitrar-
ily sophisticated learning problems. Yet, as we have seen, the architecture of the
neural sheet model eases the complexity of recurrent learning in that the local
input integration through probabilistic experts can guide learning of recurrent
connections.
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Fig. 5.5: Emergence of excitatory subnetworks in neural sheets. (A) Network architecture with 24×24 inputs
and 12×12 network neurons. Each network neuron receives input from a subset of 6×6 inputs, as illustrated for the
highlighted neuron. Input subsets of neighboring neurons are shifted by two. The dashed line marks the range of
lateral inhibition for the highlighted neuron. Additionally, pairs of network neurons, that do not inhibit each other, main-
tain sparse recurrent excitatory synapses Wexc

kj (25% prob. for a reciprocal connection). All bottom-up weights Vki

and recurrent weights Wexc
kj are plastic. (B) Three exemplary input activity patterns (top; 500 ms average) and spik-

ing input instantiations y(t) therefrom (bottom). Two of three local input templates (grid/diagonals/checker) are
presented at different random locations at a time. (C) Input spike trains (bottom) and network response (top) after
10, 000 s of learning. Input patterns switch every 500 ms. Only a random subset of 144 inputs is shown to facilitate
the comparison of spike density. The network response is considerably sparser than the input. (D) Reconstruction
of the input from the sparse network response. Bottom: Input 〈y(t) 〉 averaged over the highlighted periods in C.
Top: Average network response 〈 z(t) 〉 during the same periods. Middle: Reconstruction 〈ygen 〉 of the input from
the network response by means of the learned generative model. (E) Emergence of distributed assemblies of local
experts. During learning each network neuron becomes a probabilistic expert for one of the local activity patterns
(indicated by red/green/blue color). Input weights Vki are shown for highlighted neurons. In addition, the network
developed recurrent excitatory connections Wexc

kj . Neurons, that are experts for similar patterns, form excitatory
subnetworks after learning (line width proportional to Wexc

kj ). (F) Recurrent excitatory connections between similarly
tuned neurons are considerably stronger than connections between neurons with different specialization (left). In
addition, connections between nearby pairs of network neurons are stronger than between distant pairs (Euclidean
distance; based on 4198 recurrent exc. synapses).
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5.5 Emergence of excitatory subnetworks in neural sheets

In previous subsections, we have examined how small sheets of spiking neurons
with local lateral inhibition and recurrent excitation can perform probabilistic
inference by sampling from the posterior distribution p (z | y, θ) of a well-defined
probabilistic model, and how the parameters θ of the underlying probabilistic
model can be adapted to the presented input by plastic afferent and recurrent
synapses. For illustration purposes, network architectures were small and computer
simulations were tailored to highlight specific aspects of sample-based inference
and statistical learning.

In this final subsection, we combine all mechanisms described above and explore
Bayesian information processing and self-organized learning in a spatially extended
neural sheet model. The employed network architecture is shown in Fig. 5.5A.
Network neurons are organized in a two-dimensional lamina and integrate spiking
input locally via plastic afferent synapses (initial weight Vki = 0). Lateral inhibition
is spatially confined for any point of reference (dashed line for the highlighted cell)
yet omnipresent in the homogeneous continuous tissue, giving rise to a plethora of
interleaved and overlapping competitive subcircuits. Beyond the range of inhibition,
network neurons maintain sparse, plastic excitatory connections (per pair: 25%
chance of a reciprocal connection, initial weight Wexc

kj = 0). Note that, due to the
sheer amount of possible network states z(t), a traditional analytical calculation of
the posterior distribution p (z | y, θ) becomes intractable in this architecture.

We presented spiking input to the network as shown in Fig. 5.5B: Three local
activity motifs (grid, checkerboard, diagonal stripes; top row of Fig. 5.5B) can
appear at different locations in the input space. Each local motif is larger than the
diameter of afferent connections Vki to individual network neurons (highlighted
green neurons in Fig. 5.5A). At any time, two randomly drawn motifs are presented
at different non-overlapping random locations. Inputs yi that are not part of a local
motif maintain a low-activity background firing rate. Poisson spike trains were
generated from the resulting rate patterns (top row of Fig. 5.5B), leading to versatile
(and seemingly noisy) input y(t) that was presented to the network (bottom row
of Fig. 5.5B).

This input mimics some important aspects of cortical information processing: First,
input neurons are tuned to certain input features (the presence/absence of the three
input motifs), but their spiking activity is highly stochastic and the same input
neuron yi can be responsive to multiple different input patterns. Consequently,
inputs yi are not very informative when observed individually. Second, input
motifs are too large to be explained by a single network neuron, and thus multiple
network neurons must be recruited in parallel for the explanation. Finally, multiple
independent streams of information can be presented to the network at different
locations simultaneously.

We tested the capability of the neural sheet to integrate and adapt to this input
in a 10, 000 s learning experiment. All parameters (Wexc

kj , Vki, bk) were plastic. As
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before, we first trained the network with the theoretically optimal recurrent plas-
ticity rule (5.16). Fitting the parameters ϑ for the simple rule (5.17)+(5.18) yielded
Wmax = 2.70 and γ = 734. Note that, even though the two parameters ϑ are tai-
lored to the learning task and are thus assumed to be given to the network, the
resulting plasticity rule φϑ is of drastically reduced complexity compared with
wake-sleep learning. In particular, all recurrent synapses share the same LTD func-
tion φϑ(Wexc

kj ). Using the fully-local plasticity rules for Wexc
kj , Vki, and bk, the network

was then simulated again “from scratch”. Fig. 5.5C shows spike trains of the input
and the network neurons after learning. To facilitate the comparison of the network
response to the input, only a random subset of 144 input neurons is shown. The
network response is considerably sparser than the input, with only few network
neurons firing simultaneously at a long-term average firing rate of ca. 2.5 Hz. To
examine what aspects of the input are conveyed by the sparse response, we can
adopt the generative perspective, again. From the learned afferent weights Vki, the
translation to the input domain as established by eq. (5.9) and the likelihood model
p (y | z, θ), we can reconstruct the average input 〈 ygen 〉 expected from the network
response z(t) during a short time window:

〈
ygen

i

〉
=

1
∆

∫ t0+∆

t0

σ

(
V0i + ∑

k
zk(t)Vki

)
dt , (5.19)

where we chose ∆ = 500 ms. This reconstruction is shown in Fig. 5.5D for the two
highlighted time windows of Fig. 5.5C. The reconstructed 〈 ygen 〉 are plotted in
gray scale alongside the true average inputs 〈 y(t) 〉 plotted in green. While small
differences, especially at the spatial feature boundaries, are visible, the network
response still conveys the most salient information of the presented input. In other
words, the network has developed a code which is not only sparse but also very
efficient, carrying highly compressed information about the presented input spike
patterns in only few spikes.

Fig. 5.5E provides insight into how this code has been established: Each network
neuron has become a local expert for one of the three local inputs motifs, and
together, network neurons cover the entire input and feature space. Excitatory
connections among network neurons store positive associations, i.e., a strong
excitatory weight between two network neurons indicates that the corresponding
local features tend to co-occur in the input. In line with this notion, we observe the
emergence of recurrent excitatory subnetworks among those neurons that receive
input from contiguous spatial domains and exhibit tuning to similar input features.
These learned associations can be used during inference for ensuring that more
likely configurations of network states are preferentially visited by the network
in case of uncertainty. The qualitative observation of excitatory subnetworks is
further supported by the statistical analysis shown in Fig. 5.5F: Synaptic weights
between network neurons with similar tuning are on average stronger than weights
between neurons with different tuning properties (left). And, synapses between
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nearby cells are stronger than connections between distant cells (right), reflecting
the local nature of the presented input.

5.6 Discussion

We have proposed a spatially structured spiking network model for distributed
Bayesian inference and self-organized learning through synaptic plasticity. Building
on the theory of MCMC sampling, we have shown how the transient spike response
of the recurrent neural network can be understood as an ongoing sampling process
from a well-defined Bayesian posterior distribution. Our study extends work by
Buesing et al. in that it endows the generic network architecture of (Buesing et al.,
2011) with a spatial structure (namely, local lateral inhibition and sparse recurrent
excitation) and the ability to integrate distributed spiking input. It turned out
that the local integration of distributed spiking input streams assigns a particular
meaning to the previously abstract random variables of the neural circuit: Network
neurons encode the presence or absence of salient input features which are stored
in the network’s afferent synapses. This leads to the conception of network neurons
as probabilistic local experts which are organized in a tissue of interwoven local
winner-take-all circuit motifs. Beyond the range of lateral inhibition, network neu-
rons communicate via sparse recurrent excitatory connections on an intermediate
spatial scale. From a theoretical perspective, the recurrent transfer of information is
linked to the prior distribution in Bayes rule and captures structural knowledge
on statistical correlations among spatially separate input features. This ability to
align instantaneous observations with previously obtained structural knowledge
according to the rules of probability theory enables the neural sheet to maintain
coherent global network states even when the presented input is incomplete or
ambiguous. Moreover, having a full probabilistic description p (y, z | θ), that covers
both the input and the network response, at hand permitted a rigorous mathe-
matical treatment of self-organized learning. Extending work of (Habenschuss

et al., 2012) and (Nessler et al., 2013), we demonstrated that the interplay of
STDP-type synaptic and homeostatic intrinsic plasticity can approximate stochastic
online Expectation Maximization, a powerful machine learning algorithm. This
is a remarkable finding: Global statistical model optimization can be achieved in
a spatially extended network through only local information exchange (pre- and
post-synaptic spiking activity) in a fully unsupervised manner.

Theoretical aspects of information processing in the neural sheet

The theoretical analysis of inference and learning in the neural sheet model revealed
a distinct functional role of individual network components. These are briefly
addressed in the following and comprise the functional contribution of precise
relative spike timing, the lateral inhibition connectivity motif, and the dynamics of
self-organized synaptic learning.
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The relative spike timing carries essential information. In the proposed neural
sheet model, multivariate posterior distributions p (z | y, θ) are represented by
interpreting network spikes as realizations of random variables zk according to
eq. (5.1): After a spike of the k-th network neuron, the associated RV zk turns active
for a short time τ (10 ms in this study). This gives rise to vector-valued network
states z(t) in which multiple RVs zk will typically be active, simultaneously. As a di-
rect consequence, the relative spike timing of neuronal subgroups carries important
information on a millisecond time scale: overlapping on-times encode the probabil-
ity of coactivation of the associated RVs in the multivariate distribution p (z | y, θ).
The computational importance of incorporating coactivations during inference be-
comes particularly evident in ambiguous situations that support multiple coherent
– but mutually exclusive – explanations. The sampling network’s spike response
in such an ambiguous scenario was demonstrated in Fig. 5.4 where the network
switched stochastically between two coherent perceptual modes in a synchronized
manner. The information density conveyed by this structured, bimodal response
goes far beyond the quality of conclusions that could be drawn from just observing
the average firing of individual neurons. Figuratively, considering only marginal
responses would disregard the insight that an obstacle could be circumvented
either on the left hand or the right hand side, but would instead suggest to steer a
happy medium.

Lateral inhibition facilitates local synaptic learning. This information-rich neural
representation of globally coherent network states was shown to emerge fully au-
tonomously through the interplay of local synaptic and intrinsic plasticity rules. The
derivation of the weight-dependent plasticity rule (5.12) for afferent synapses Vki
furthermore revealed an essential role of the local lateral inhibition network motif
during learning. The contribution of lateral inhibition becomes apparent when the
derivation of eq. (5.12) is repeated in the absence of the inhibition motif, result-
ing in the update rule (5.15). The latter rule (5.15) requires information not only
on the pre- and post-synaptic spiking activity of a plastic synapse, but also on
the specific weight values of other nearby synapses, thereby rendering learning
non-local. This increased complexity of parameter learning is a general problem in
graphical models with converging arrows, known as explaining away, and thus,
the locality of synaptic learning displays a conceptual challenge for a wide range
of Bayesian network architectures. In the neural sheet model, lateral inhibition
establishes a particularly strong form of explaining away by ensuring that each
input yi is explained by at most one network variable zk, at a time. The resulting
competition among network neurons restores the locality of information required
for synaptic learning. We therefore suspect that the competition introduced by local
lateral inhibition could assist synaptic learning in a wide range of network models
in that it facilitates global statistical model optimization through local synaptic plas-
ticity rules. In particular, in order to maximize the expressive power of the system
while preserving local synaptic learning, our theory suggests that self-organized
learning of efficient representations benefits from network architectures in which
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the range of lateral inhibition matches the spatial extent of network neurons that
share common afferent input.

Recurrent plasticity integrates structural knowledge. Regarding plasticity of re-
current connections Wexc

kj in the neural sheet, we found optimal learning rules
to be fundamentally non-local; a hardly surprising finding for recurrent systems.
We therefore explored in computer simulations to what extent even simple local
plasticity rules with approximately matching convergence properties could be
sufficient to recover complex structural correlations in the presented input. In the
small computer experiments of Fig. 5.4 and Fig. 5.5, we observed no significant
impairment in the emergent weight configuration when simple local plasticity
rules were used (compared with the theoretically optimal non-local rule). This
observation indicates that, for tasks of “not too high” complexity, the prior p (z | θ)
could indeed be adjusted by only local synaptic plasticity. The specific shape of the
employed plasticity rule, however, needs to be tailored to statistical properties of
the given task. For biological systems, it is thus conceivable that evolution forged
tailored simple plasticity dynamics for certain neuronal populations and brain
areas that interact with more elaborate plasticity types.

Robust evasion of suboptimal solutions. Finally, the learning dynamics of the
underlying stochastic online Expectation Maximization algorithm, that performs
local gradient ascent in the synaptic weights, deserves a brief discussion. Like every
local optimization algorithm, learning in the neural sheet is only guaranteed to
converge to a local optimum of the objective function F . This is a general issue
in unsupervised learning since the likelihood functions of complex probabilistic
models may possess many local optima. However, two properties of the neural sheet
model are expected to mitigate this issue: First, the network employs stochasticity
in two ways, via the random presentation of input samples y ∼ p∗(y) and via the
stochastic nature of the network response z ∼ p (z | y, θ). This induces stochastic
fluctuations in the synaptic weights and facilitates the evasion of local optima
(compared with a fully deterministic batch algorithm as often used in machine
learning). Second, homeostatic intrinsic plasticity forces all neurons to participate
in explaining the input. Thereby, many “particularly bad” local optima, which
recruit only a small fraction of hidden causes zk in the average posterior, are
automatically evaded. In accordance with these properties, we observed in the
computer simulations that learning was generally very robust and that the network
reliably identified near-optimal parameter settings most of the time.

Idealized modeling assumptions and conceptual limitations

Connectivity structure and neural dynamics of the proposed sheet model have their
origin in top-down principles of Bayesian information processing and machine
learning theory. In the spiking network implementation of the abstract algorithms,
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the time scales involved during inference and learning span multiple orders of
magnitude, ranging from milliseconds for the instantaneous sampling process, over
tens of seconds for homeostatic plasticity, up to minutes and hours for synaptic
plasticity (see also Interaction of time scales in Appendix D). In order to keep these
complex interactions in the recurrent system theoretically tractable, several idealized
modeling assumptions had to be made. We employed a simple spike response
neuron model that elicits action potentials stochastically based on an idealized
membrane potential. The membrane potential integrates synaptic input linearly,
and synaptic transmission is mediated via rectangular non-additive post-synaptic
potentials without delay. Homeostasis entered the system only in a single process,
namely as homeostatic intrinsic plasticity, with the aim to maintain a predefined
average firing activity. In order to stay close to the derived learning rules, synaptic
plasticity was implemented on the level of neuronal states, i.e., on the value of yi(t)
and zk(t), and was not further mapped to the level of spikes. However, in (Nessler

et al., 2013) and (Habenschuss et al., 2013b) it has been demonstrated that (variants
of) the plasticity rule (5.12) can be mapped down to the spike level, and that the
resulting plasticity dynamics are tightly linked to spike-timing dependent plasticity.
In the computer simulations, lateral inhibition was transmitted via strong reciprocal
synapses between directly connected network neurons, thereby integrating out the
dynamics of putative interneurons. Regarding the connectivity structure, lateral
inhibition strictly obeyed the condition that a reciprocal inhibitory connection exists
between two network neurons if the neurons share common inputs. In line with
the generic probabilistic model of (Buesing et al., 2011), that was employed for
the network population, recurrent excitatory connections were symmetric. On a
more conceptual level, it is noteworthy that, while the sampling process of the
network evolves in time, the underlying probabilistic model p (y, z | θ) is inherently
non-temporal, i.e., the theory makes no predictions on the temporal structure of
network trajectories or the integration of salient temporal features of the input.
Possible extensions of the theory in order to support more complex recurrent
(and also asymmetric) connectivity structures, soft lateral inhibition, as well as the
integration of temporal sequences are outlined below.

Relation to cortical microcircuits

The proposed neural sheet model shares some striking similarities with cortical mi-
crocircuits. These similarities range from salient connectivity motifs, to microscopic
neural dynamics of single cells and synapses, up to population-level response
characteristics in living animals. Most clearly, the neural sheet model can be linked
to salient aspects of cortical layer 2/3, with network neurons being associated with
pyramidal cells and lateral inhibition being mediated disynaptically by fast-spiking
interneurons (e.g., basket cells). Certainly, the idealized neural dynamics of the
model cannot be expected to find any precise counterpart in biology. And, of
course, the abstract network model does not (and could not) intend to provide
any complete description of all the subtleties found in cortical microcircuits. Yet,
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we belief that the evident similarities, as briefly reviewed in the following, could
contribute to sharpening our conception of the complex neural dynamics observed
in living tissue.

Disynaptic inhibition establishes local competition among pyramidal cells. In
vitro experiments indicate that central aspects of the ubiquitous lateral inhibition
network motif in the neural sheet model are established in layer 2/3 by soma-
targeting, fast-spiking (FS) interneurons. FS interneurons preferably form synapses
locally (Stepanyants et al., 2009) and show particularly high connection probabil-
ity with nearby pyramidal cells (PCs) (Avermann et al., 2012). These GABAergic
connections typically involve many (ca. 15) contacts (Markram et al., 2004) per
cell-pair and inhibit the target close to its cell body (Markram et al., 2004). In addi-
tion, FS-PC connections were reported to feature very short transmission delays of
only approx. 1ms (Avermann et al., 2012). The dense and fast inhibition of PCs by
FS interneurons is complemented with an increased probability for reciprocal con-
nections (Yoshimura and Callaway, 2005), i.e., bidirectional links between nearby
PC-FS pairs. Notably, reciprocal PC-FS connections were reported to be especially
strong in either direction (see (Yoshimura and Callaway, 2005; Mateo et al., 2011)
for PC→FS, and (Yoshimura and Callaway, 2005) for PC←FS). Furthermore,
also the PC→FS connection was found to have below-average transmission delays
(Avermann et al., 2012). This led the authors of (Avermann et al., 2012) to the
conclusion that, “[t]aken together, our in vitro data (this study) and our related in vivo
data (Mateo et al., 2011) suggest that disynaptic inhibition driven by FS GABAergic
neurons in the neocortex mediates competition among excitatory neurons such that perhaps
only a small fraction of excitatory layer 2/3 neurons can be active at any given time.” The
finding of lateral competition among PCs in layer 2/3 was also confirmed in vivo
by (Adesnik and Scanziani, 2010).

Pyramidal cells are clearly tuned while local lateral inhibition is unspecific. In
vivo studies with awake animals characterized typical response properties of PCs
and interneurons. During quiet wakefulness, PCs show a much lower firing activity
than FS cells (Gentet et al., 2010). This was explained by the stronger synaptic
drive required for exciting PCs compared with FS cells, which maintain an average
membrane potential close below threshold (Gentet et al., 2010). Furthermore,
detailed patch-clamp recordings, that separated individual conductance contribu-
tions, pointed to significantly sharper spatial tuning of excitation than inhibition
(Haider et al., 2013). This finding is supported by studies with anesthetized mice
that reported clear orientation selectivity of excitatory neurons, while GABAergic
cells showed only little tuning (Sohya et al., 2007; Zariwala et al., 2011), but
see (Runyan et al., 2010). Indeed, experimental data suggests that the stimulus
dependence of interneuron responses could be explained by the integrated activity
of surrounding neurons (Kerlin et al., 2010).
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Sparse coding and structured connectivity of excitatory neurons. Experimental
data on the spike response of PCs in layer 2/3 appears to be compatible with
a sparse coding scheme. For instance, it was observed in vivo by (Smith and
Häusser, 2010) that even neurons with overlapping receptive fields showed only
low correlation. Also (Ecker et al., 2010) reported generally weak noise correlations
between neighboring neurons of similar tuning, suggesting a mechanism of active
decorrelation among nearby neurons. A recent review (Barth and Poulet, 2012),
that assessed experimental evidence for sparse coding, emphasized the particularly
sparse response of layer 2/3 and pointed to the generally low firing activity in
superficial layers compared with neurons from layer 4, which are considered to
be a major input to layer 2/3. The functional characterization of PC responses
is complemented by studies on physical connections between excitatory neurons.
While inhibition was shown to act mostly locally, recurrent excitation spans larger
distances (Stepanyants et al., 2009). Furthermore, neurons with positively cor-
related responses were found to also have an increased probability to maintain
reciprocal connections (Ko et al., 2011). More specifically, in (Bosking et al., 1997)
an increased connection probability was reported between neurons with similar
orientation tuning and cell body distances larger than 500 µm.

Bottom-up models propose similar network architectures and function. Based
on the rich experimental data on cortical layer 2/3 both in vivo and in vitro, experi-
mental neurobiologists and computational neuroscientists have proposed functional
models of information processing in layer 2/3 that appear compatible with the
architecture of the neural sheet model in this article. Douglas and Martin (Douglas

and Martin, 2004) as well as Lansner (Lansner, 2009) sketched functional models
of layer 2/3 that rely on local competitive circuits which communicate via asso-
ciative excitatory links, although these studies did not emphasize the interwoven
structure of local inhibition. The local competitive aspect of information processing
in layer 2/3 was examined in detail by (Avermann et al., 2012) and (Mateo et al.,
2011). Finally, the architecture of the neural sheet model is highly reminiscent of the
connectivity structures within a cortical column model of barrel cortex, as proposed
in a recent review by Petersen and Crochet (Petersen and Crochet, 2013).

Experimentally testable predictions

In our model, the correlation structure between stimulus features is reflected in
the lateral connectivity of the network after learning. In the generative model, the
plastic modification of lateral connections corresponds to reshaping the prior dis-
tribution p (z | θ) . Whether such correlation structure of features can be observed
in the prior could be tested in an experiment that extends the setup of Berkes et
al. (Berkes et al., 2011). There, it was observed in ferret V1 that the distribution of
spontaneous activity (dark stimulus condition, identified with the prior p (z | θ) )
became increasingly similar with the average evoked activity (natural stimulus con-
ditions, identified with the average posterior 〈 p (z | y, θ) 〉 ) during development.
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Our model predicts that a change in the correlation structure of environmental
features should be mirrored in the generative prior and thus in the correlation
structure of cortical spontaneous activity after learning.

In Fig. 5.4, we have demonstrated synchronized perceptual switching between
two modes of activity under ambiguous stimulus conditions. Such stochastic
switching displays a characteristic property of sample-based representations when
the posterior distribution is bimodal. Note that in our model, perceptual switching
is a result of the learned prior p (z | θ) that assigns very low probability to network
states that seem inconsistent with previous experience. According to our model,
the prior is subject to ongoing learning. Hence, for initial presentations of an
ambiguous stimulus, the prediction is that network activity will alternate between
response patterns that are consistent with the alternative stimulus interpretations
rather than evoking a stable intermediate response (see Fig. 5.4F). After sufficient
learning time, however, it is expected that a distinct neural representation emerges
for the previously ambiguous stimulus, on which the network activity settles.

Related theoretical work and integration into larger networks

During the last decade, several theoretical studies examined how Bayesian com-
putations could be performed and represented by spiking neural networks. In the
following, we discuss how the neural sheet model relates to existing work with a
focus on two key aspects: (1) The fundamental (and unanswered) question how
probability distributions are encoded in neuronal activity patterns, and (2) the
compatibility of the proposed sheet model, that focused on spatial aspects of dis-
tributed inference and learning, with spiking network models that addressed other
aspects of Bayesian information processing, such as more complex causal relations
or temporal integration. The two aspects are discussed separately.

Neural representations of Bayesian computation. The algorithms that underlie
Bayesian computations in neural network models are diverse. However, regarding
the representation of the arising posterior distributions p (z | y, θ) two general lines
of research can be identified, namely sample-based codes and distributional codes.
In sample-based codes (as employed by the neural sheet model) the observed net-
work state is interpreted as an instantiation of one or more random variables z. By
observing the sequence z(t) of network states over time, the distribution p (z | y, θ)
is represented with increasing precision through the relative frequency of state
occurrences (Hoyer and Hyvärinen, 2003; Fiser et al., 2010). Examples of a direct
(one-to-one) mapping between neurons and random variables are found in (Berkes

et al., 2011), (Buesing et al., 2011), (Nessler et al., 2013) and (Kappel et al., 2014). A
conceptual separation between network neurons and the represented RVs was ex-
plored by (Pecevski et al., 2011) where only a subset of so-called principle neurons
carry meaningful information for downstream populations. The idea to rigorously
separate neuronal spike patterns from the represented RVs was recently explored
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by (Savin and Deneve, 2014), thereby allowing the simultaneous operation of mul-
tiple entangled sampling chains within a single network. In a different direction,
recent theoretical work (Habenschuss et al., 2013a) has shown that the notion of
“network states” can be extended to also cover entire population trajectories. On a
general account, it has been emphasized (Fiser et al., 2010) that sample-based codes
offer several conceptual advantages, such as high representational flexibility, easy
marginalization, natural emergence of response variability, and general suitability
for learning.

Distributional codes provide a complementary (and at first glance, irreconcilable)
neural representation of probability distributions. A characteristic property of dis-
tributional codes is the (almost) instantaneous representation of either the entire
posterior distribution or, at least, pivotal statistical properties thereof (e.g. marginals
or mean values). Just as the case for sampling networks, the exact inference algo-
rithms implemented by distributional code network models are manifold. One line
of research (R. P. Rao, 2004; Deneve, 2005; R. P. Rao, 2007; Steimer et al., 2009),
builds upon the belief propagation algorithm that aims to calculate the marginal
posteriors 〈 zk 〉p(z |y,θ) for all variables. This approach enables inference in com-
plex graphical models, including temporal integration. However, since correlations
among RVs in the posterior are not accommodated, the precise relative spike timing
between different neurons carries no relevant information: what matters is the spike
count in a given time interval, not the spike timing. A second line of research is
established by (probabilistic) population codes (see e.g., (R. S. Zemel et al., 1998;
Ma et al., 2006; Pouget et al., 2013)). These models aim to infer the posterior of a
hidden (’true’) stimulus parameter (e.g., bar orientation) from the observed input
activity in a known generative model. The inference process relies on integrating
the spike count of many input neurons with known tuning properties, simultane-
ously. Neuronal trial-to-trial variability arises in this deterministic inference scheme
solely from stochasticity in the spiking input.

Despite their different origins, sample-based codes and probabilistic population
codes can provide mutually compatible interpretations, at least in some scenarios.
Consider, for instance, a local column in the neural sheet model with multiple
network neurons within the range of lateral inhibition. This local network is very
similar to the competitive networks examined in (Nessler et al., 2013). Over the
course of learning, each neuron will develop a tuning, e.g., a preferred bar orien-
tation (cp. Fig. 5 in (Nessler et al., 2013)), such that the local network neurons
will jointly cover the entire local input space. Due to the width of the likelihood
distribution associated with each hidden cause, the response curves of roughly
similarly tuned neurons will partially overlap. Formally, the resulting spike re-
sponse of the local population to a given stimulus displays a sample-based code of
a multinomial (mixture) posterior distribution. However, by knowing the tuning
curves of each network neuron, the response of the sampling network could equally
well be interpreted as a distributional code of the stimulus parameter (cp. Fig. 2 in
(Pouget et al., 2013)). Conversely, the continuous hidden stimulus parameter in
PPC models could always be mapped to a set of locally competing network neurons
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in a sampling sheet. Thus, it appears that, at least in some cases, sample-based
codes and probabilistic population codes are mutually compatible, and further
experimental research will be required to investigate spike response characteristics
in more complex scenarios.

Integration into larger Bayesian spiking networks. In this work, we have em-
ployed a rather basic prior distribution p (z | θ) for associative memory formation,
namely a single-layer Boltzmann distribution. The theory of the neural sheet model,
however, also supports more complex network structures such as deep learning
architectures (Salakhutdinov and G. Hinton, 2009) that constitute one of the most
powerful tools for unsupervised learning in machine learning theory. Such deep
network architectures would add hierarchical information exchange to the system
(e.g., top-down or contextual information). Furthermore, arbitrary Bayesian net-
works, i.e., directed graphical models, could likely be used for the prior distribution
as long as the graphical model features the local lateral inhibition network motif
(mutually exclusive activity of hidden variables with shared input). Several spiking
network implementations for sample-based inference in general graphical models
can be found in (Pecevski et al., 2011). Notably, these implementations overcome
the constraint of symmetric recurrent connections in the network. An asymmetric
recurrent connectivity structure is also a salient property of temporal models. To
endow the spatial model with the ability of temporal integration, it would therefore
be intriguing to combine the proposed sheet model with the Hidden Markov Model
network implementation by (Kappel et al., 2014) or the neural particle filtering
approach by (Legenstein and Maass, 2014). In a different research direction, we
observed in computer simulations that relaxing the assumption of strong lateral
inhibition still leads to reasonable learning results in many scenarios. This indicates
that even soft inhibition could be sufficient to govern the emergence of probabilistic
experts. Yet, our current theory does not provide a proper interpretation of the
resulting network response since the arising coactivation of neighboring neurons
likely demands a generative model that supports soft explaining away. Finally,
it would be interesting to combine the fully self-organized network model with
reinforcement learning signals from the environment (e.g., via top-down feedback
or third-factor plasticity rules). This could endow the spiking network with the
ability of Bayesian decision making and action selection.

Operation paradigm for novel computing platforms

Beyond neuroscience, the proposed neural sheet model displays an intriguing
design principle for neuromorphic architectures (Mead and Ismail, 1989). Neu-
romorphic systems rely on rigorous parallelization of information processing by
implementing physical models of neurons and synapses in microscale electronic
circuitry (Schemmel et al., 2008). A key intention behind the development of these
systems is the construction of fault tolerant, self-organized computing devices that
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overcome the traditional strictly serial and deterministic design of von Neumann
architectures.

The proposed neural sheet model appears to be ideally suited for neuromorphic
implementations: information exchange is fully asynchronous without a central
clock; the emergent sparse spike code reduces the load on the interneuronal
bus system; and the local confinement of lateral inhibition facilitates compact
mapping and efficient routing. Furthermore, idealized modeling assumptions, such
as stochastic neurons, rectangular PSP shapes or tailored inhibitory connections,
could likely be accounted for in engineered systems.

One of the main challenges in neuromorphic engineering lies in the required high-
density integration of plastic synapses (Schemmel et al., 2006). On the way to a
principled solution, material scientists have made great progress in recent years
in using memristors as plastic synapses (Indiveri et al., 2013; J. J. Yang et al.,
2013). Memristors (Chua, 1971; Strukov et al., 2008) are novel nanoscale materials
that adapt their electrical conductance based on the history of the current and
voltage flux through the device. Thus, memristors are expected to accommodate
both synaptic transmission and synaptic plasticity without the need of extensive
supporting circuitry. Experimental (Suri et al., 2013; Mayr et al., 2012) and theoret-
ical (Snider, 2008; Serrano-Gotarredona et al., 2013) studies have explored how
the plasticity dynamics of memristors can be utilized in spiking neural networks.
In particular, it was shown in (Querlioz et al., 2011) and (Bill and Legenstein,
2014) that conductance changes in certain memristive materials appear compatible
with (variants of) the weight dependent plasticity rule (5.12). Therefore, we expect
that the proposed neural sheet model can provide a promising paradigm for the
efficient operation of neuromorphic hardware as massively parallel computing
devices for probabilistic inference and self-organized learning.

Conclusion

We have proposed a spiking neural sheet model for sample-based probabilistic
inference and self-organized learning. The spatially structured network combines
aspects of local competitive learning and large-scale associative memory formation
under a unified Bayesian account. While the model has been derived from mathe-
matical principles of Markov chain Monte Carlo sampling and Machine Learning
theory, the resulting network architecture and neural dynamics bear striking resem-
blance with salient connectivity motifs and neuronal response properties observed
experimentally in cortical microcircuits. Therefore, we believe that the theoretical
findings presented in this article can significantly contribute to our understanding
of the intricate dynamics observed in cortical networks.
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Appendix B
Appendix to chapter 2: Neural dynamics as
sampling

In this appendix, we provide details and proofs for the neural sampling theory,
followed by details for the computer simulations. Then we investigate typical
firing statistics of individual neurons during neural sampling and examine the
approximation quality of neural sampling with different neuron and synapse
models.

B.1 Derivation of the neural sampling theory

Notation

To keep the derivations in a compact form, we introduce the following notations.
We define the function ζ>0

k of ζk to be 1 if ζk > 0 and 0 otherwise. Analogously we
define ζ>0

\k = (ζ>0
1 , . . . , ζ>0

k−1, ζ>0
k+1, . . . , ζ>0

K ). Let δ(·, ·) denote Kronecker’s Delta, i.e.,
δ(x, y) = 1 if x = y and 0 whereas δ(·) denotes Dirac’s Delta, i.e.,

∫
f (x)δ(x)dx =

f (0). Furthermore χI(x) is the indicator function of the set I, i.e., χI(x) = 1 if x ∈ I
and χI(x) = 0 if x /∈ I.

Details to neural sampling with absolute refractory period in discrete
time

The following Lemmata 1 – 3 provide a proof of Theorem 1. For completeness we
begin this paragraph with a recapitulation of the definitions stated in Chapter 2. We
then identify some central properties of the joint probability distribution p(ζ, z) and
proof that the proposed network samples from the desired invariant distribution.

For a given distribution p(z) over the binary variables z ∈ {0, 1}K with ∀z ∈
{0, 1}K p(z) 6= 0, the joint distribution over (ζ, z) with ζ ∈ {0, 1, . . . , τ}K is defined
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in the following way (see equation 2.7):

p(ζk|zk) :=


τ−1 for zk = 1 ∧ ζk > 0
1 for zk = 0 ∧ ζk = 0
0 otherwise

p(ζ|z) :=
K

∏
k=1

p(ζk|zk)

p(ζ, z) := p(ζ|z)p(z).

The assumption p(z) 6= 0 for all z is required to show the irreducibility of the
Markov chain, a prerequisite to ensure the uniqueness of the invariant distribution
of the MCMC dynamics. Furthermore, for the given distribution p(z) we define
the functions uk : {0, 1}K−1 → R for k ∈ {1, . . . , K} which map z\k 7→ uk(z\k):

uk(z\k) := logit(p(zk = 1|z\k)) = log
p(zk = 1|z\k)
p(zk = 0|z\k)

.

Instead of uk(z\k) we simply write uk in the following.

Lemma 1. The distribution p(ζ, z) has conditional distributions of the following form:

p(ζk|ζ\k, z\k) = p(ζk|z\k) =
{

σ(uk)
τ for ζk > 0

1− σ(uk) otherwise

p(zk|ζ, z\k) = p(zk|ζk) =


1 for ζk > 0 ∧ zk = 1
1 for ζk = 0 ∧ zk = 0
0 otherwise .

These results can also be written more compactly in the following form: p(ζk|z\k) =

σ(uk)χ{1,...,τ}(ζk)
1
τ + (1− σ(uk))δ(ζk, 0) and p(zk|ζk) = δ(zk, ζ>0

k ).

Proof. Here we use the fact that the logistic function σ is the inverse of the logit
function, i.e., p(zk = 1|z\k) = σ(uk).

p(ζk|ζ\k, z\k) =
1

∑
zk=0

p(ζ, z)
p(ζ\k, z\k)

=
1

∑
zk=0

p(ζ, z)
p(ζ\k|z\k)p(z\k)

=
1

∑
zk=0

(
∏l 6=k p(ζl |zl)

)
p(ζk|zk)p(z)(

∏l 6=k p(ζl |zl)
)

p(z\k)

=
1

∑
zk=0

p(ζk|zk)p(zk|z\k) = σ(uk)χ{1,...,τ}(ζk)
1
τ
+ (1− σ(uk))δ(ζk, 0).

This also shows that ζk is independent from ζ\k given z\k, i.e, p(ζk|ζ\k, z\k) =
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p(ζk|z\k). Now we show the second relation using Bayes’ rule:

p(zk|ζ, z\k) =
p(ζk|ζ\k, z)

p(ζk|ζ\k, z\k)
p(zk|ζ\k, z\k)

=
zkχ{1,...,τ}(ζk)

1
τ + (1− zk)δ(ζk, 0)

σ(uk)χ{1,...,τ}(ζk)
1
τ + (1− σ(uk))δ(ζk, 0)

p(zk|z\k)

=

{
zk for ζk > 0
1− zk for ζk = 0

= δ(zk, ζ>0
k ).

�

In order to facilitate the verification of the next two Lemmata, we first restate the
definition of the operators Tk in a more concise way:

T := T1 ◦ . . . ◦ TK

Tk(ζ, z|ζ ′, z′) := Tk(ζk, zk|ζ ′, z′)δ(ζ\k, ζ ′\k)δ(z\k, z′\k)

Tk(ζk, zk|ζ ′, z′) := δ(zk, ζ>0
k ) · Tk(ζk|ζ ′k, z′\k)

Tk(ζk|ζ ′k, z′\k) :=


σ(u′k − log τ) for ζk = τ ∧ ζ ′k = 0, 1
1− σ(u′k − log τ) for ζk = 0 ∧ ζ ′k = 0, 1
1 for ζk = ζ ′k − 1 ∧ ζ ′k > 1
0 otherwise

,

where u′k := uk(z
′
\k) = logit(p(zk = 1|z′\k)).

Lemma 2. For all k = 1, . . . , K the operator Tk(ζk|ζ ′k, z′\k) leaves the conditional distribu-
tion p(ζk|z′\k) invariant.

Proof. For sake of simplicity, denote Tk(ζk = i|ζ ′k = j, z′\k) = Tk
ij for i, j ∈ {0, 1, . . . , τ}

and p(ζk = i|z′\k) = pi. We have to show pi
!
= ∑τ

j=0 Tk
ij pj for i ∈ {0, 1, . . . , τ}.

First we show pτ = ∑τ
j=0 Tk

τ j pj using p0 = 1− σ(uk) and p1 = p2 = . . . = pτ =

σ(uk)τ
−1 (which results from Lemma 1):

τ

∑
j=0

Tk
τ j pj = Tk

τ0 p0 + Tk
τ1 p1 = σ(uk − log τ)(1− σ(uk)) + σ(uk − log τ)σ(uk)τ

−1

= σ(uk − log τ)σ(uk)τ
−1 (τ exp(−uk) + 1) = σ(uk − log τ)σ(uk)τ

−1(σ(uk − log τ))−1

= σ(uk)τ
−1 !

= pτ.

Here we used the definition of the logistic function σ(x) = (1 + exp(−x))−1 and
σ(x)(1− σ(x))−1 = exp(x). Now we show p0 = ∑τ

j=0 Tk
0j pj:
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τ

∑
j=0

Tk
0j pj = Tk

00 p0 + Tk
01 p1 = (1− σ(uk − log τ))(1− σ(uk)) + (1− σ(uk − log τ))σ(uk)τ

−1

= (1− σ(uk − log τ))(1− σ(uk))
(

1 + exp(uk)τ
−1
)

= σ(−uk + log τ)(1− σ(uk))(σ(−uk + log τ))−1

= 1− σ(uk)
!
= p0.

Here we used 1− σ(x) = σ(−x).

It is trivial to show pi = ∑τ
j=0 Tk

ij pj for i = 1, . . . , τ − 1 as ∑τ
j=0 Tk

ij pj = Tk
i,i+1 pi+1 =

pi+1 = pi. Here we used the facts that Tk
i,i+1 = 1 and pi = pi+1 for i = 1, . . . , τ − 1

by definition.

�

Lemma 3. For all k = 1, . . . , K the operator Tk(z, ζ|ζ ′, z′) leaves the distribution p(ζ, z)
invariant.

Proof. We start from Lemma 2, which states that Tk(ζk|ζ ′k, z′\k) leaves the conditional
distribution p(ζk|z′\k) invariant:

∑
ζ ′k

Tk(ζk|ζ ′k, z′\k)p(ζ ′k|z′\k) = p(ζk|z′\k)

⇔ ∑
ζ ′k ,z′\k

δ(z\k, z′\k)T
k(ζk|ζ ′k, z′\k)p(ζ ′k|z′\k) = ∑

z′\k

δ(z\k, z′\k)p(ζk|z′\k) = p(ζk|z\k)

⇔ ∑
ζ ′k ,z′\k

δ(zk, ζ>0
k )δ(z\k, z′\k)T

k(ζk|ζ ′k, z′\k)p(ζ ′k|z′\k) = δ(zk, ζ>0
k )p(ζk|z\k) = p(zk|ζk)p(ζk|z\k)

⇔ ∑
ζ ′k ,z′

δ(zk, ζ>0
k )δ(z\k, z′\k)T

k(ζk|ζ ′k, z′\k)p(z′k, ζ ′k|z′\k) = p(zk, ζk|z\k)

⇔ ∑
ζ ′k ,z′

δ(zk, ζ>0
k )δ(z\k, z′\k)T

k(ζk|ζ ′k, z′\k)p(z′k, ζ ′k|z′\k)p(ζ\k|z′\k)p(z′\k) = p(zk, ζk|z\k)p(ζ\k|z\k)p(z\k)

⇔ ∑
ζ ′k ,z′

δ(zk, ζ>0
k )δ(z\k, z′\k)T

k(ζk|ζ ′k, z′\k)p(ζ ′k, ζ\k, z′) = p(ζ, z)

⇔ ∑
ζ ′,z′

Tk(zk, ζk|ζ ′, z′)δ(ζ\k, ζ ′\k)δ(z\k, z′\k)p(z′, ζ ′) = p(ζ, z)

⇔ ∑
ζ ′,z′

Tk(z, ζ|ζ ′, z′)p(z′, ζ ′) = p(ζ, z).

Here we used the relations δ(zk, ζ>0
k ) = p(zk|ζk) and p(ζk, zk|z\k) = p(zk|ζk)p(ζk|z\k)

as well as p(ζk|z\k) = p(ζk|ζ\k, z\k) which directly follow from the definitions of
Tk(ζ, z, |ζ ′, z′) and p(ζ, z).
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�

Finally, we can verify that the composed operator T = T1 ◦ . . . ◦ TK samples from
the given distribution p.

Theorem 1. p(ζ, z) is the unique invariant distribution of operator T.

Proof. As all Tk leave p(ζ, z) invariant, so does the concatenation T = T1 ◦ . . . ◦ TK.
To ensure that p(ζ, z) is the unique invariant distribution, we have to show that
T is irreducible and aperiodic. T is aperiodic as the transition probabilities Tk

00 =
1− σ(uk − log τ) > 0 and Tk

00 < 1 (this follows from the assumption ∀z p(z) 6= 0
made above).

The operator T is also irreducible for the following reason. First we see that
from any state (ζ ′, z′) in at most τ steps we can get to the zero-state (ζ, z) =
02K (and stay there) with non-zero probability, as Tk

i,i+1 = 1 for i = 1, . . . , τ − 1
and Tk

01 = 1 − σ(uk − log τ) > 0. Furthermore, it can be seen that any state
(ζ̂, ẑ) can be reached from the zero-state (ζ, z) = 02K in at most τ steps since
Tk

N0 = σ(uk − log τ) > 0 for any value of uk. Hence every final state (ζ̂, ẑ) can be
reached from every starting state (ζ ′, z′) in at most 2τ steps with non-vanishing
probability.

�

Details to neural sampling with a relative refractory period in discrete
time

We augment the neuron model with a relative refractory period described by a
function g(ζk). We first ensure existence of the corresponding function f (uk). Based
on these functions we then introduce the transition operator T of the Markov chain.
This operator is shown to entail correct “local” computations.

Lemma 4. Let (g1, . . . , gτ) ∈ (R+
0 )

τ be a tuple of non-negative real numbers, with gτ = 0
and at least one element gi ≥ 1. This defines the refractory function via g(ζk) := gζk . There
exists a unique C∞ function f : R→ (0, 1) with the following property ∀u ∈ R:

f (u)
∑τ

i=1 ∏τ
j=i+1(1− gj f (u))

∏τ
j=1(1− gj f (u))

= exp(u). (B.1)

Furthermore, the function f has the property:

∀i ∈ {1, . . . , τ} ∀u ∈ R : 0 ≤ gi f (u) < 1
∃i ∈ {1, . . . , τ} ∀u ∈ R : 0 < gi f (u) < 1.
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B Appendix to chapter 2: Neural dynamics as sampling

Proof. Let gmax := maxj∈{1,...τ} gj; we know that gmax ≥ 1. We define the function
F : (0, 1/gmax)→ R+:

F(x) := x
τ

∑
i=1

(
1

∏i
j=1(1− gjx)

)
We can see that F is a positive C∞ function on (0, 1/gmax). Furthermore, F(x)/x
is defined as a sum of functions of the form 1

∏i
j=1(1−gjx)

. Each factor 1/(1− gjx) is

positive and strictly monotonous. Therefore, F is strictly monotonous on (0, 1/gmax)
with the limits:

lim
x→0

F(x) = 0

lim
x→1/gmax

F(x) = ∞.

Hence the equation F(x) = exp(u) has a unique solution for x called f (u) ∈
(0, 1/gmax) for all u ∈ R. From applying the implicit function theorem to F(x, u) :=
F(x)− exp(u) it follows that f is C∞.

�

From here on, with the letter f we will denote the function characterized by
the above Lemma for the given tuple g (which denotes the chosen refractory
function).

Definition 1. Define g0 = 1. The transition operator Tk is defined in the following way
for all k = 1, . . . , K:

Tk(ζk, zk|ζ ′, z′) := δ(zk, ζ>0
k )Tk(ζk|ζ ′k, z′\k)

Tk(ζk|ζ ′k, z′\k) :=


gζ ′k

f (uk) for ζk = τ

1− gζ ′k
f (uk) for ζk = ζ ′k − 1 ∧ ζ ′k > 0

1− f (uk) for ζk = 0 ∧ ζ ′k = 0
0 otherwise

,

with uk = uk(z
′
\k).

Lemma 5. For all k = 1, . . . , K the unique invariant distribution q∗(zk, ζk|ζ ′\k, z′\k) of
the operator Tk(zk, ζk|ζ ′, z′) fulfills ∑ζk

q∗(zk, ζk|ζ ′\k, z′\k) = p(zk|z′\k). This means, for a
constant configuration z′\k, the operator Tk produces samples z∗k from the correct conditional
distribution p(zk|z′\k).

Proof. We define:
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B.1 Derivation of the neural sampling theory

q∗(zk, ζk|ζ ′\k, z′\k) := δ(zk, ζ>0
k )q(ζk|z′\k) := δ(zk, ζ>0

k )
(

σ(uk)h(ζk|z′\k) + (1− σ(uk))δ(ζk, 0)
)

,

where the function h(ζk|z′\k) is defined as:

h(ζk|z′\k) :=

{ ∏τ
j=ζk+1(1−gj f (uk))

∑τ
α=1 ∏τ

j=α+1(1−gj f (uk))
for ζk > 0

0 otherwise
.

It is trivial to see that q∗ has the correct marginal distribution over zk:

∑
ζk

q∗(zk, ζk|ζ ′\k, z′\k) = ∑
ζk

δ(zk, ζ>0
k )

(
σ(uk)h(ζk|z′\k) + (1− σ(uk))δ(ζk, 0)

)
= σ(uk)

zk(1− σ(uk))
1−zk = p(zk|z′\k).

We now show that q∗ is the unique invariant distribution of Tk. Because of the
definition of Tk, we only have to show that q∗(ζk|z′\k) is the unique invariant

distribution of Tk(ζk|ζ ′k, z′\k). We denote q∗(ζk = i|z′\k) =: qi and Tk(ζk = i|ζ ′k =

j, z′\k) =: Tij, i.e., we have to show ∀i ∈ {0, 1, . . . , τ} : qi = ∑j Tijqj.

It is trivial to show qi = ∑j Tijqj for 1 ≤ i ≤ τ− 1, as there is only one non-vanishing
element of transition operator, namely Ti,i+1:

τ

∑
j=0

Tijqj = Ti,i+1qi+1 = (1− gi+1 f (uk))qi+1

= (1− gi+1 f (uk))h(ζk = i + 1|z\k)σ(uk)

= h(ζk = i|z\k)p(zk = 1|z\k)
!
= qi.

Here we used qi = h(ζk = i|z\k)σ(uk) for i > 0 and the definition of h(ζk|z\k).

Now we show q0 = ∑j T0jqj starting from equation (B.1) and additionally using the
relations exp(uk) = σ(uk)/(1− σ(uk)) and q0 = 1− σ(uk) as well as the definition
of q1. We define for the sake of simplicity ψ := ∑τ

α=1 ∏τ
j=α+1(1− gj f (uk)):

τ

∑
j=0

T0jqj = (1− f (uk))q0 + (1− g1 f (uk))q1

= (1− f (uk))(1− σ(uk)) +
σ(uk)

ψ

τ

∏
j=1

(1− gj f (uk))

= (1− f (uk))(1− σ(uk)) + σ(uk) f (uk) exp(−uk)

= (1− f (uk))(1− σ(uk)) + f (uk)(1− σ(uk))
!
= q0.

We finally show qτ = ∑j Tτ jqj, using the definition of qτ = σ(uk)h(ζk = τ|z\k) =
σ(uk)

ψ :
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B Appendix to chapter 2: Neural dynamics as sampling

τ

∑
i=0

Tτiqi =
τ

∑
i=1

gi f (uk)qi + f (uk)q0

=
τ

∑
i=1

gi f (uk)
τ

∏
j=i+1

(1− gj f (uk))
σ(uk)

ψ
+ f (uk)q0

=
σ(uk)

ψ

(
τ

∑
i=1

gi f (uk)
τ

∏
j=i+1

(1− gj f (uk)) + (1− g1 f (uk))
τ

∏
j=2

(1− gj f (uk))

)

=
σ(uk)

ψ

(
−

τ

∑
i=1

(1− gi f (uk))
τ

∏
j=i+1

(1− gj f (uk)) +
τ

∑
i=1

τ

∏
j=i+1

(1− gj f (uk)) +
τ

∏
j=1

(1− gj f (uk))

)

=
σ(uk)

ψ

(
−

τ

∑
i=1

τ

∏
j=i

(1− gj f (uk)) +
τ

∑
i=0

τ

∏
j=i+1

(1− gj f (uk))

)

=
σ(uk)

ψ

(
−

τ−1

∑
i=0

τ

∏
j=i+1

(1− gj f (uk)) +
τ

∑
i=0

τ

∏
j=i+1

(1− gj f (uk))

)

=
σ(uk)

ψ

(
τ

∏
j=τ+1

(1− gj f (uk))

)
=

σ(uk)

ψ

!
= qτ.

The argument that the transition operator Tk is aperiodic and irreducible is similar
to the one presented in Lemma 1.

�

Details to neural sampling with an absolute refractory period in
continuous time

In contrast to the discrete time model we define the state space of ζk to be R+ ∪
[−2ε,−ε] for ε > 0, i.e., as the union of the positive real numbers and a small
interval [−2ε,−ε]. We will define the sampling operator in such a way that after
neuron k was refractory for exactly its refractory period τ, its refractory variable
ζk is uniformly placed in the small interval [−2ε,−ε], which represents now the
resting state and replaces ζk = 0. This avoids point measures (Dirac’s Delta) on the
value ζk = 0. This system is still exactly equivalent to the system discussed in the
main paper, as all spike-transition probabilities of T for ζk < 0 are constant. Hence,
it does not matter which values ζk assumes with respect to the spike mechanism
during its non-refractory period as long as ζk < 0.

Definition 2. For a given distribution p(z) over the binary variables z ∈ {0, 1}K with
∀z ∈ {0, 1}K p(z) 6= 0, we define a joint distribution over (ζ, z) with ζ ∈ RK in the
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B.1 Derivation of the neural sampling theory

following way:

p(ζk|zk) :=


1 for 1 ≥ ζk > 0 ∧ zk = 1
ε−1 for ζk ∈ Iε ∧ zk = 0
0 otherwise

p(ζ|z) :=
K

∏
k=1

p(ζk|zk)

p(ζ, z) := p(ζ|z)p(z),

where Iε := [−2ε,−ε] is the refractory resting state interval. In accordance with this
definition we can also write p(ζk|zk) = zkχ[0,1](ζk) + (1− zk)ε

−1χIε(ζk).

Lemma 6. The distribution p(ζ, z) has the following marginal distribution:

p(ζk|ζ\k) = σ(uk)χ[0,1](ζk) + (1− σ(uk))ε
−1χIε(ζk)

=

{
σ(uk) for 1 ≥ ζk > 0
(1− σ(uk))ε

−1 for ζk ∈ Iε
,

where uk := uk(ζ
>0
\k ).

Definition 3. For k ∈ {1, . . . , K} and x ∈ R the operator Tk
x is defined in the following

way for a function q : R→ R:

(Tk
x q)(ζk) := τ−1

(
∂ζk(q(ζk)χR+(ζk))− δ(ζk)F(q) + exp(x)δ(ζk − 1)

∫
Iε

q(ζ ′k)dζ ′k

+ χIε(ζk)
(

ε−1F(q)− exp(x)q(ζk)
) )

.

where the functional F is defined as the one-sided limit from above at 0:

F(q) := lim
x→0+

q(x).

The operator T is defined in the following way for a probability distribution q(ζ) on RK:

(Tq)(ζ) :=
K

∑
k=1

(Tk
uk

q(ζ1, . . . , ζk−1, ·, ζk+1, ζK))(ζk),

where q(ζ1, . . . , ζk−1, ·, ζk+1, ζK) : R → R denotes the function q(ζ) of ζk where ζ\k is
held constant and uk := uk(ζ

>0
\k ).

The transition operator T defines the following Fokker-Planck equation for a time-
dependent distribution qt(ζ):
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B Appendix to chapter 2: Neural dynamics as sampling

∂tqt(ζ) = (Tqt)(ζ).

The jump and drift functions Wk(ζ|ζ ′) and Ak(ζ) associated to the operator T are
given by:

Wk(ζ|ζ ′) =
(
(ετ)−1χIε(ζk)δ(ζ

′
k) + δ(ζk − 1) exp(uk(ζ

′
\k)− log τ)χIε(ζ

′
k)
)

δ(ζ\k − ζ ′\k)

Ak(ζ) = −τ−1χR+(ζk)

⇒ (Tqt)(ζ) = −
K

∑
k=1

∂ζk(Ak(ζ)qt(ζ)) +
K

∑
k=1

∫ (
Wk(ζ|ζ ′)p(ζ ′)−Wk(ζ ′|ζ)p(ζ)

)
dζ ′.

Lemma 7.The operator Tk
uk

leaves the conditional distribution p(ζk|ζ\k) invariant with
uk = uk(ζ

>0
\k ), i.e.:

(Tk
uk

p(·|ζ\k))(ζk) = 0.

Proof. This is easy to proof using calculus and the relations ∂ζk χR+(ζk) = δ(ζk) and
F(p(·|ζ\k)) = σ(uk) = exp(uk)(1− σ(uk)).

�

Lemma 8. p(ζ) is an invariant distribution of T, i.e., it is a solution to the invariant
Fokker-Planck equation:

∂t p(ζ) = (Tp)(ζ) = 0.

Proof. We observe that Tk(αp) = αTk p for a constant α ∈ R (which is not a function
of ζk). Hence:

Tk
uk

p(ζ1, . . . , ζk−1, ·, ζk+1, . . . , ζK) = Tk
uk
(p(·|ζ\k)p(ζ\k))

= p(ζ\k)(T
k
uk

p(·|ζ\k))
= 0.

The Lemma follows then from the definition of T := ∑k Tk
uk

.

�
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Details to neural sampling with a relative refractory period in continuous
time

As already assumed in the case of the absolute refractory sampler in continuous
time, we define the state space of ζk to be R+ ∪ [−2ε,−ε] for ε > 0.

Lemma 9. Let g be a continuous, non-negative function g : [0, 1]→ R+
0 with g(ζk) = 1

for ζk ≤ 0. There exists a unique C∞ function f : R → R+ with the following property
∀u ∈ R:

f (u)
∫ 1

0
exp

(
f (u)

∫ ζk

0
g(ζ ′k)dζ ′k

)
dζk = exp(u). (B.2)

Proof. We define the function F : R+
0 → R in the following way:

F(x) := x
∫ 1

0
exp (xα(ζk)) dζk,

where α(r) :=
∫ r

0 g(ζ ′k)dζ ′k. From g(ζk) ≥ 0 we can follow that α : [0, 1] → R+
0 is

non-negative. F(x) is differentiable with the derivative:

F′(x) =
∫ 1

0
exp (xα(ζk)) dζk + x

∫ 1

0
exp (xα(ζk)) α(ζk)dζk

⇒ F′(x) > 0.

Hence F is strictly monotonously increasing. Furthermore, the following relations
hold:

F(0) = 0
F(x) ≥ x.

Therefore the equation:

F(x) = exp(u),

has exactly one solution f (u) with F( f (u)) = exp(u) in R+. From applying the
implicit function theorem to F(x, u) := F(x)− exp(u) it follows that f is C∞.

�

Definition 4. For all k ∈ {1, . . . , K} and x ∈ R the operator Tk
x is defined in the following

way for a function q : R→ R:

(Tk
x q)(ζk) := τ−1

(
∂ζk(q(ζk)χR+(ζk))− δ(ζk)q(ζk) + f (x)δ(ζk − 1)

∫
R

g(ζ ′k)q(ζ
′
k)dζ ′k

+ χIε(ζk)ε
−1F(q)− f (x)q(ζk)g(ζk)

)
.
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The transition operator Tk
x defines the following Fokker-Planck equation for a

time-dependent distribution qt(ζk):

∂tqt(ζk) = (Tk
x qt)(ζk).

The jump and drift functions Wk(ζk|ζ ′k) and Ak(ζk) associated to the operator Tk
x

are given by:

Wk(ζk|ζ ′k) = (ετ)−1χIε(ζk)δ(ζ
′
k) + τ−1δ(ζk − 1) f (x)g(ζ ′k)

Ak(ζk) = −τ−1χR+(ζk)

⇒ (Tk
x qt)(ζk) = −∂ζk(Ak(ζk)qt(ζk)) +

∫ (
Wk(ζk|ζ ′k)p(ζ ′k)−Wk(ζ ′k|ζk)p(ζk)

)
dζ ′k.

Lemma 10. For all k = 1, . . . , K the invariant distribution q∗(ζk|z\k) of the operator Tk
uk

fulfills
∫

δ(zk, ζ>0
k )q∗(ζk|z\k)dζk = p(zk|z\k).

Proof. We define the distribution q∗(ζk|z\k) as:

q∗(ζk|z\k) = (1− σ(uk))
(

f (uk)χ[0,1](ζk) exp( f (uk)α(ζk)) + ε−1χIε(ζk)
)

,

where α(ζk) :=
∫ 1

0 g(ζ ′k)dζ ′k. By applying the operator Tk
uk

to q∗ one can verify that
Tk

uk
q∗ = 0 holds using the definition of f (uk) given in (B.2). Furthermore we can

compute the ratio:∫ 1
0 q∗(ζk|z\k)dζk∫
Iε

q∗(ζk|z\k)dζk
=

p(zk = 1|z\k)
p(zk = 0|z\k)

= f (uk)
∫ 1

0
exp

(
f (uk)

∫ ζk

0
g(ζ ′k)dζ ′k

)
dζk = exp(uk).

�

B.2 Details to the computer simulations

The simulation results shown in Fig. 2.2, Fig. 2.3 and Fig. 2.4 used the biologically
more realistic neuron model with the relative refractory mechanism. During all
experiments the first second of simulated time was discarded as burn-in time. The
full list of parameters defining the experimental setup is given in Table B.1. All
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Description Variable Value Figure Comment
Simulation Time
Simulation step size dt 1 ms 2-7 interpretation of an MCMC step
Burn-in time tburn 1 s 2-7 before recording spikes
Simulation time tsim 0.5 s 2

104 s 3,5-7
20 s 4 104 s for Figure 2.4C

Network
Number of neurons K 3 2 unconnected

40 3,5,6 randomly connected
217 4

10 7 100 networks
Connection radius 0 2

∞ 3,5-7
8 4

Recurrent weights Wki N (0, 0.32) 3,5-7 from Gaussian distribution
Falling edge τ+ 20 ms 6,7 for realistic PSP shapes
Rising edge τ− 3 ms 6,7
Scaling factor λ 20/17 6,7
Neuron Model
Number recovery steps τ 20 2-7 PSP duration = τ · dt = 20 ms
Refractory function g(ζ)

[
4(1− ζ) + 1

2π sin(8πζ)
]

2↑ normalized to ζ ∈ [0, 1],[
1− ζ + 1

2π sin(2πζ)
]

2-7 [x] := min{1, max{0, x}}[
1− 2ζ + 1

2π sin(4πζ)
]

2↓,7
Excitability bk −1 or 2 2 defines membrane potential uk

N (−1.5, 0.52) 3,5-7 from Gaussian distribution
0 4 initial value

Tuning Function, Training and Inference (Figure 4)
Peakedness κ 3 4 measured: 1.78± 0.15
Base sensitivity v0 0.05 4 measured: 0.017± 0.009
Sensitivity contrast C 0.9 4 measured: 0.760± 0.020
Training samples Ntrain 105

4

Decorrelation steps 20 4 for contrastive divergence
Learning rate η 10−4

4

Number of neurons clamped on/off 4/4 4

Table B.1: List of parameters of the computer simulations.
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occurring joint probability distributions are Boltzmann distributions of the form
given in equation (2.5). Example Python (G. Van Rossum and Drake Jr, 1995)
scripts for neural sampling from Boltzmann distributions are available on request
and will be provided on our webpage. The example code comprises networks
with both absolute and relative refractory mechanism. It requires standard Python
packages only and is readily executable.

Details to Figure 2: Neuron model with relative refractory mechanism

The three refractory functions g(ζ) of panel (B) as well as all other simulation
parameters are listed in Table B.1. Panel (C) shows the corresponding functions
f (u), which result from numerically solving equation (2.11). The spike patterns in
panel (D) show the response of the neurons when the membrane potential is low
(uk = −1 for 0 < t < 250 ms) or high (uk = +2 for 250 ms < t < 500 ms). These
membrane potentials encode p(zk = 1) = 0.269 and p(zk = 1) = 0.881, respectively
according to (2.3) and (2.4). The binary state zk = 1 is indicated by gray shaded
areas of duration τ · dt = 20 ms after each spike.

Details to Figure 3: Sampling from a Boltzmann distribution by spiking
neurons with relative refractory mechanism

We examined the spike response of a network of 40 randomly connected neurons
which sampled from a Boltzmann distribution. The excitabilities bk as well as the
the synaptic weights Wki(= Wik) were drawn from Gaussian distributions (with
diagonal elements Wii = 0). For the full list of parameters please refer to Table B.1.
One second of the arising spike pattern is shown in panel (A). The average firing
rate of the network was 13.9 Hz. To highlight the internal dynamics of the neuron
model, the values of the refractory function g(ζ26), the membrane potential u26
and the instantaneous firing rate r26 of neuron ν26 (indicated with red spikes) are
shown in panel (B). Here, the instantaneous firing rate r26 is defined for the discrete
time Markov chain as

r26 = p(spike)/dt = T26(τ|ζ26, z\26)/dt = g(ζ26) · f (u26)/dt . (B.3)

As stated before, the neuron model with relative refractory mechanism gk(ζ)
does not entail the correct overall invariant distribution p(z). To estimate the
impact of this approximation on the joint network dynamics, we compared the
distribution p(z24, . . . , z28) over five neurons (indicated by gray background in A)
in the spiking network with the correct distribution obtained from Gibbs sampling.
The probabilities were estimated from 107 samples. A more quantitative analysis of
the approximation quality of neural sampling with a relative refractory mechanism
is provided below.
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Details to Figure 4: Modeling perceptual multistability as probabilistic
inference with neural sampling

We demonstrate probabilistic inference and learning in a network of orientation
selective neurons. As a simple model we consider a network of 217 neurons on
a hexagonal grid as shown in panel (F). Any two neurons with distance ≤ 8
were synaptically connected (neighboring units had distance 1). For the remaining
parameters of the network and neuron model please refer to Table B.1. Each neuron
featured a π-periodic tuning curve as depicted in panel (B):

Vk(ϕ) = v0 + C · exp [κ · cos (2(ϕ− ϕ̄k))− κ] (B.4)

with base sensitivity v0, contrast C, peakedness κ and preferred orientation ϕ̄k. The
preferred orientations ϕ̄k of the neurons were chosen to cover the entire interval
[0, π) of possible orientations with equal spacing and were randomly assigned to
the neurons.

For simplicity we did not incorporate the input dynamics in our probabilistic model,
but rather trained the network directly like a fully visible Boltzmann machine. We
used for this purpose a standard Boltzmann machine learning rule known as
contrastive divergence (G. Hinton, 2002; G. E. Hinton, 2010). This learning rule
requires posterior samples z̃, i.e., network states under the influence of the present
input, and approximate prior samples z?, which reflect the probability distribution
of the network in the absence of stimuli. The update rules for synaptic weights and
neuronal excitabilities read:

∆Wki = ηki · (z̃k z̃i − z?k z?i ) (B.5)
∆bk = η · (z̃k − z?k )

ηki =

{
η if νk and νi are connected
0 otherwise .

While more elaborate policies can speed up convergence, we simply used a global
learning rate η which was constant in time. The values of Wki and bk were initialized
at 0. We generated binary training patterns in the following way:

1. A global orientation ϕ was drawn uniformly from [0, π),
2. each neuron was independently set to be active with probability p(zk = 1) =

Vk(ϕ),
3. the resulting network state z̃ was taken as posterior sample.

To obtain an approximate prior sample z? we let the network run for a short time
freely starting from (ζ̃, z̃). The variables ζ̃ were also assumed to be observed with
ζ̃k ∼ iid. uniformly in {1, . . . , τ} if z̃k = 1 and ζ̃k = 0 otherwise. After evolving
freely for 20 time steps, the resulting network state z? was taken as approximate
prior sample and W and b were updated according to (B.5). This process was
repeated Ntrain = 105 times. As a result, neurons with similar preferred orientations
featured excitatory synaptic connections (Wki = 6.4 · 10−3 ± 6.7 · 10−3 = mean
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± standard deviation of weight distribution), those with dissimilar orientations
maintained inhibitory synapses (Wki = −4.9 · 10−3 ± 5.2 · 10−3). Here, preferred
orientations ϕ̄i and ϕ̄j are defined as similar if Vi(ϕ̄j)− v0 = Vj(ϕ̄i)− v0 > 0.5 C,
otherwise they are dissimilar. Neuronal biases converged to bk = −0.08± 0.03.

We illustrate the learned prior distribution p(z) of the network through sampled
states when the network evolved freely. As seen in panel (D), the population vector
– a 2-dimensional projection of the high dimensional network state – typically
reflected an arbitrary, yet coherent, orientation (for the definition of the population
vector see below). Each dot represents a sampled network state z.

To apply an ambiguous cue, we clamped 8 out of 217 neurons: Two units with
ϕ̄k ≈ π/4 and two with ϕ̄k ≈ 3π/4 were set active, two units with ϕ̄k ≈ 0 and
two with ϕ̄k ≈ π/2 were set inactive. This led to a bimodal posterior distribution
as shown in panel (E). The sampling network represented this distribution by
encoding either global perception separately: The trace of network states z(t)
roamed in one mode for multiple steps before quickly crossing the state space
towards the opposite percept.

We define the population vector x of a network state z as a function of the preferred
orientations of all active units:

x = (x0, xπ/4) =
K

∑
k=1

zk · (cos 2ϕ̃k, sin 2ϕ̃k) . (B.6)

This definition of x is not based on the preferred orientations ϕ̄k which are used
for generating external input to the network from a given stimulus with orientation
ϕ. It is rather based on the preferred orientations ϕ̃k measured from the network
response. We used population vector decoding based on the measured values ϕ̃k,
as they are conceptually closer to experimentally measurable preferred orientations,
and this decoding hence does not require knowledge of the (unobservable) ϕ̄k. For
every neuron νk the preferred orientation ϕ̃k was measured in the following way.
We estimated a tuning curve Ṽk(ϕ) by a van-Mises fit (of the form (B.4)) to data
from stimulation trials in which neuron νk was not clamped, i.e., where νk was
only stimulated by recurrent input (feedforward input was modeled by clamping 8

out of 217 neurons as a function of stimulus orientation ϕ as before). Due to the
structured recurrent weights, the experimentally measured tuning curves Ṽk(ϕ)
were found to be reasonably close to the tuning curves Vk(ϕ) used for external
stimulation. ϕ̃k was set to the preferred orientation of Ṽk(ϕ) (localization parameter
of the van-Mises fit). The measured values ϕ̃k turned out to be consistent with
the preferred orientations ϕ̄k (ϕ̄k − ϕ̃k = 6 · 10−4 ± 8.3 · 10−3 averaged over all K
neurons). The mean and standard deviation of the remaining parameter values v0,
C and κ of the fitted tuning curves Ṽk(ϕ) are listed in Table B.1 next to the ones
used for stimulation.

The population vector x was defined in (B.6) with the argument 2ϕ̃k (instead of ϕ̃k)
as orthogonal orientations should cancel each other and neighborhood relations
should be respected. For example neurons with ϕ̃k = ε and ϕ̃k = π − ε contribute
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Fig. B.1: Firing statistics of neural sampling networks. (A) Shown is the membrane potential histogram of a
typical neuron during sampling. The data is that of neuron ν26 from the simulation shown in Fig. 2.3 (the membrane
potential and spike trace of ν26 are highlighted in Fig. 2.3). (B) The plot shows the ISI distribution of a typical neuron
(again ν26 from Fig. 2.3) during sampling. The distribution is roughly gamma-shaped, reminiscent of experimentally
observed ISI distributions. (C) A scatter plot of the coefficient of variation (CV) versus the average interspike interval
(ISI) of each neuron taken from the simulation shown in Fig. 2.3. The value of neuron ν26 from Fig. 2.3 is marked by
a cross. The simulated data is in accordance with experimentally observed data.

similarly to the population vector for small ε. But counter to intuition the population
vector of a state z with dominant orientation ϕz will point into direction ϕx = 2ϕz.
For visualization in panel (D) and (E) we therefore rescaled the population vector:
If (x0, xπ/4) 7→ (rx, ϕx) in polar coordinates, then the dot is located at (rx, ϕx/2) in
accord with intuition. The black semicircles equal |x| = rx = 45.

The population vector (x0, xπ/4) ∈ R2 was also used for measuring the dominance
durations shown in panel (C). To this R2 was divided into 3 areas: (a) xπ/4 < −35,
(b) −35 ≤ xπ/4 ≤ 35, (c) 35 < xπ/4. We detected a perceptual switch when the
network state entered area (a) or (c) while the previous perception was (c) or (a),
respectively.

In panel (F) neurons νk with zk = 1 are plotted with their preferred orientation
color code, inactive neurons are displayed in white. Cells marked by a dot (•) were
part of the observed variables o. The three network states correspond to z(ti) with
t1 = 100 ms, t2 = 250 ms and t3 = 400 ms in the spike pattern in panel (G). The
spike pattern shows the response of the freely evolving units around a perceptual
switch during sampling from the posterior distribution. The corresponding trace of
the population vector is drawn as black line in panel (E). The width of the light-gray
shaded areas in the spike pattern equals the PSP duration τ · dt, i.e., neurons that
spiked in these intervals were active in the corresponding state in (F).

B.3 Firing statistics of neural sampling networks

In previous sections it was shown that a spiking neural network can draw samples
from a given joint distribution which is in a well-defined class of probability
distributions (see the neural computability condition (2.4)). Here, we examine some
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statistics of individual neurons in a sampling network which are commonly used
to analyze experimental data from recordings. The spike trains and membrane
potential data are taken from the simulation presented in Fig. 2.3.

Fig. B.1A,B exemplarily show the distribution of the membrane potential uk and
the interspike interval (ISI) histogram of a single neuron, namely neuron ν26 which
was already considered in Fig. 2.3B. The responses of other neurons yield quali-
tatively similar statistics. The bell-shaped distribution of the membrane potential
is commonly observed in neurons embedded in an active network (Pospischil

et al., 2009). The ISI histogram reflects the reduced spiking probability immediately
after an action potential due the refractory mechanism. Interspike intervals larger
than the refractory time constant τ · dt = 20 ms roughly follow an exponential
distribution. Similar ISI distributions were observed during in-vivo recordings in
awake, behaving monkeys (Shinomoto et al., 2009).

Fig. B.1C shows a scatterplot of the coefficient of variation (CV) of the ISIs versus
the average ISI for each neuron in the network. The neurons exhibited a variety of
average firing rates between 3.5 Hz and 31.5 Hz. Most of the neurons responded
in a highly irregular manner with a CV ≈ 1. Neurons with high firing rates had a
slightly lower CV due to the increased influence of the refractory mechanism The
dashed line marks the CV of a Poisson process, i.e., a memoryless spiking behavior.
The CV of neuron ν26 is marked by a cross. The structure of this plot resembles,
e.g., data from recordings in behaving macaque monkeys (Softky and Koch, 1993)
(but note the lower average firing rate).

B.4 Approximation quality of different neuron and synapse
models

The theory of the neuron model with absolute refractory mechanism guarantees
sampling form the correct distribution. In contrast, the theory for the neuron model
with a relative refractory mechanism only shows that the sampling process is
“locally correct”, i.e., that it would yield correct conditional distributions p(zk|z\k)
for each individual neuron if the state of the remaining network z\k stayed con-
stant. Therefore, the stationary distribution of the sampling process with relative
refractory mechanism only provides an approximation to the target distribution. In
the following we examine the approximation quality and robustness of sampling
networks with different refractory mechanisms for target Boltzmann distributions
with parameters randomly drawn from different distributions. Furthermore, we
investigate the effect of additive PSP shapes with more realistic time courses.

We generated target Boltzmann distributions with randomly drawn weights Wki
and biases (excitabilities) bk and computed the similarity between these reference
distributions and the corresponding neural sampling approximations. The setup
of these simulations is the same as for the simulation presented in Fig. 2.3. As
we aimed to compare the distribution q∗(z) sampled by the network with the
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σ Absolute refractory Rel. late recovery Rel. moderate recovery Prod. of marginals
0.03 (3.10± 0.18) · 10−4 (3.21± 0.15) · 10−4 (3.33± 0.17) · 10−4 (4.65± 1.28) · 10−4

0.3 (2.98± 0.19) · 10−4 (3.20± 0.15) · 10−4 (3.58± 0.3) · 10−4 (4.94± 1.91) · 10−2

3.0 (1.32± 0.45) · 10−4 (4.20± 8.70) · 10−3 (1.00± 1.82) · 10−2 (5.36± 6.71) · 10−1

Table B.2: Approximation quality of networks with different refractory mechanisms. Mean and standard devia-
tion of the Kullback-Leibler divergence DKL(p||q∗) between reference Boltzmann distributions p and neural sampling
approximations q∗ for three different neuron models (corresponding to columns) and three different values for the
reference distribution hyperparameter σ (corresponding to rows). The parameter σ controls the standard deviation
of the weights of the reference distributions p(z). In case of very strong synaptic interactions (leading to sharply
peaked distributions, σ = 3) the approximation quality of the spiking network degrades, if the neurons feature a
relative refractory mechanism. The data was computed from 100 randomly generated Boltzmann distributions and
their neural approximations for each value of σ.

exact Boltzmann distribution p(z), we reduced the number of neurons per network
to K = 10. This resulted in a state space of 210 possible network states z for
which the normalization constant for the target Boltzmann distribution could be
computed exactly. The weight matrix W was constraint to be symmetric with
vanishing diagonal. Off-diagonal elements were drawn from zero-mean normal
distributions with three different standard deviations σ = 0.03, σ = 0.3 and
σ = 3, whereas the bk were sampled from the same distribution as in Fig. 2.3.
For every value of the hyperparameter σ we generated 100 random distributions.
For Boltzmann distributions with small weights (σ = 0.03), the RVs are nearly
independent, whereas distributions with intermediate weights (σ = 0.3) show
substantial statistical dependencies between RVs. For very large weights (σ = 3),
the probability mass of the distributions is concentrated on very few states (usually
90% on less than 10 out of the 210 states). Hence, the range of the hyperparameter
0.03 ≤ σ ≤ 3 considered here covers a range a very different distributions.

The approximation quality of the sampled distribution was measured in terms of
the Kullback-Leibler divergence between the target distribution p and the neural
approximation q∗

DKL(p||q∗) = ∑
z

p(z) log
p(z)
q∗(z)

. (B.7)

We estimated q∗ from 107 samples for each simulation trial using a Laplace estima-
tor, i.e., we added a priori 1 to the number of occurrences of each state z.

Table B.2 shows the means and the standard deviations of the Kullback-Leibler
divergences between the target Boltzmann distributions and the estimated approx-
imations stemming from neural sampling networks with three different neuron
and synapse models: the exact model with absolute refractory mechanism and
two models with different relative refractory mechanisms shown in the bottom
and middle row in Fig. 2.2B. Additionally, as a reference, we provide the (analyti-
cally calculated) Kullback-Leibler divergences for fully factorized distributions, i.e.,
q∗(z) = ∏k q∗(zk) with correct marginals q∗(zk) = p(zk) but independent variables
zi, zj for i 6= j.
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Fig. B.2: Comparison of neural sampling with different neuron and synapse models. The figure shows a his-
togram of the Kullback-Leibler divergence between 100 different Boltzmann distributions over K = 10 variables (with
parameters randomly drawn, see setup of Figure 2.3) and approximations stemming from different neural sampling
networks. Networks with absolute refractory mechanism provide the best approximation (as expected from theo-
retical guarantees). Networks consisting of neurons with relative refractory mechanisms, with only “locally” correct
sampling, also provide a close fit to the true distribution (see inset) compared to a fully factorized approximation
(assuming correct marginals and independent variables). Furthermore, it can be seen that sampling networks with
more realistic, alpha-shaped, additive PSPs still fit the true distribution reasonably well.

The absolute refractory model provides the best results as we expected due to the
theoretical guarantee to sample from the correct distribution (the non-zero Kullback-
Leibler divergence is caused by the estimation from a finite number of samples). The
models with relative refractory mechanism provide faithful approximations for all
values of the hyperparameter σ considered here. These relative refractory models
are characterized by the theory to be “locally correct” and turn out to be much more
accurate approximations than fully factorized distributions if substantial statistical
dependencies between the RVs are present (i.e., σ = 0.3, σ = 3). As expected, a
late recovery of the refractory function g(ζ) is beneficial for the approximation
quality of the model as it is closer to an absolute refractory mechanism. Fig. B.2
explicitly shows the full histograms of the Kullback-Leibler divergences for the
intermediate weights group (σ = 0.3). Systematic deviations due to the relative
refractory mechanism are on the same order as the effect of estimating from finite
samples (as can be seen, e.g., from a comparison with the absolute refractory model
which has 0 systematic error). For completeness, we mention that the divergences
of the fully factorized distributions of 2 out of the 100 networks with DKL > 0.1
are not shown in the plot.

The theorems presented in this article assumed renewed (i.e., non-additive), rect-
angular PSPs. In the following we examine the effect of additive PSPs with more
realistic time courses. We define additive, alpha-shaped PSPs in the following way.
The influence ∆uki of each presynaptic neuron νi on the postsynaptic membrane
potential uk is modeled by convolving the input spikes with a kernel κ:

∆uki(t) = Wki ·∑
f

κ(t− t f
i ) (B.8)

where κ(s) = λ · (e−s/τ+ − e−s/τ−) for s ≥ 0 and κ(s) = 0 for s < 0, and t f
i
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Fig. B.3: Sampling from a Boltzmann distribution with more realistic PSP shapes. (A) The upper panel shows
the shape of a single PSP elicited at time t = 0. The lower panel shows the time course of the refractory function
g(ζk(t)) caused by a single spike of neuron νk at t = 0. The gray-shaded area of length τ · dt = 20 ms indicates
the interval of neuron νk being active (i.e., zk = 1) due to a single spike of neuron νk at time t = 0. (B) Shown
is the probability distribution of 5 out of 40 neurons. The plot is similar to Fig. 2.3C, however it is generated with
a sampling network that features alpha-shaped, additive PSPs. It can be seen that the network still produces a
reasonable approximation to the true Boltzmann distribution (determined by Gibbs sampling).

for f ∈ N are the spike times of the presynaptic neuron νi. The time constant
governing the rising edge of the PSPs was set to τ− = 3 ms. The time constant
controlling the falling edge was chosen equal to the duration of rectangular PSPs,
τ+ = τ · dt = 20 ms. The scaling parameter λ was set such that the time integral over
a single PSP matches the time integral over the theoretically optimal rectangular
PSP, i.e., λ = τ · dt/(τ+ − τ−) = 20/17. These parameters display a simple and
reasonable choice for the purpose of this study (an optimization of λ, τ+ and τ− is
likely to yield an improved approximation quality). Fig. B.3A shows the resulting
shape of the non-rectangular PSP. Furthermore the time course of the function
g(ζk(t)) caused by a single spike of neuron νk is shown in order to illustrate that the
time constants of g and of a PSP are closely related due to the assumption τ+ = τ · dt
made above. Preliminary and non-exhaustive simulations seem to suggest that the
choice τ+ = τ · dt yields better approximation quality than setting τ+ � τ · dt or
τ+ � τ · dt; however it is very well possible that a mismatch between τ+ and τ · dt
can be compensated for by adapting other parameters, e.g., the PSP magnitude
or a specific choice of the refractory function g. Fig. B.3B shows the results of an
experiment, similar to the one presented in Fig. 2.3C, with additive, alpha-shaped
PSPs and relative refractory mechanism. While differences to Gibbs sampling
results are visible, the spiking network still captures dependencies between the
binary random variables quite well.

For a quantitative analysis of the approximation quality, we repeated the experiment
of Fig. B.2 with additive, alpha-shaped PSPs (shown as green bars). The Kullback-
Leibler divergence DKL(p||q∗) to the true distribution is clearly higher compared
to the case of renewed, rectangular PSPs. Still networks with this more realistic
synapse model account for dependencies between the random variables z and
yield a better approximation of p(z) than fully factorized distributions.
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Appendix C
Appendix to chapter 4: Statistical learning with
compound memristive synapses

In this appendix, we provide the full theory for inference and learning with com-
pound memristive synapses. The theory covers the formal definition of the joint
probabilistic model, the analytical calculation of the posterior distribution, and
the derivation of updated rules within the framework of generalized Expectation
Maximization. We then describe, how the required computations can be calculated
and represented by a spiking network, and give details to the computer simula-
tions. Finally, we outline how the abstract stochastic spike response neuron model
could be implemented with leaky integrator neurons, a standard neuron model in
neuromorphic systems.

C.1 Probabilistic model definition

The probabilistic model that corresponds to the spiking network is a mixture model
with K mixture components and Gaussian likelihood function. Formally, we define a
joint distribution p (Y = y(t), Z = z(t) | θ) over K hidden binary random variables
Z = (Z1, . . . , ZK)

T with values zk(t) ∈ {0, 1}, and N real-valued visible random
variables Y = (Y1, . . . , YN)

T with values yi(t) ∈ R. The parameter set θ = {b̂, W }
consists of a real-valued bias vector b̂ = (b̂1, . . . , b̂K)

T and a real-valued K × N
weight matrix W . The hidden RVs Zk display an unrolled representation of a
multinomial RV Z̃ ∈ {1, . . . , K} that enumerates the mixture components, and we
identify Z̃ = k ⇔ Zk = 1, i.e. exactly one binary RV Zk is active in the random
vector Z. In the following, we stick to the unrolled vector notation Z, and, for
readability, omit the time-dependent notation and further shorten the notation by
identifying the RVs with their values, e.g., we write p (z | θ) for p (Z = z(t) | θ).

The likelihood distribution fulfills the naı̈ve Bayes property, i.e., all statistical
dependencies between visible RVs yi, yj are explained by the hidden state z. More
precisely, the generative model has the following structure:

p (y, z | θ) = p (z | θ) ·
K

∏
k=1

N

∏
i=1

p (yi | zk = 1,θ)zk , (C.1)
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with the prior

p (z | θ) = ez
Tb̂

∑K
j=1 eb̂j

(C.2)

and the likelihood

p (yi | zk = 1,θ) =
1√

2πσ2
· e−

(yi−µki)
2

2σ2 , (C.3)

with σ2 denoting an arbitrary (but fixed) variance which displays a constant in
the model. Eq. (C.3) defines a Gaussian likelihood model for each input RV yi
with mean µki which is selected by the active hidden cause zk = 1 in eq. (C.1). For
theoretical considerations, it is convenient to reorganize eq. (C.3) according to its
dependency structure:

p (yi | zk = 1,θ) =
e−y2

i /(2σ2)

√
2πσ2

· e
µki
σ2 ·yi · e−µ2

ki/(2σ2) (C.4)

=: h(yi) · eWki ·yi · e−Aki , (C.5)

where we set Wki = µki/σ2 and Aki = µ2
ki/(2σ2) = σ2W2

ki/2. The first factor does
neither depend on the hidden causes zk nor on the weight Wki and will play no role
during inference and learning. The second factor describes the coupling between
the visible RV yi and the active latent RV zk through the mean Wki = µki/σ2. Finally,
the third factor solely depends on the weight Wki (and not on yi) and ensures
correct normalization of the distribution.

C.2 Inference

The posterior distribution given an observation y follows directly from Bayes
rule:

p (z | y,θ) = p (z | θ) · p (y | z,θ) / Norm. (C.6)

= ez
Tb̂

K

∏
k=1

N

∏
i=1

h(yi)
zk · ezk ·Wki ·yi · e−zk ·Aki / Norm. (C.7)

= ez
T·[b̂−A+W ·y] ·

N

∏
i=1

h(yi) / Norm. (C.8)

with A := (A1, . . . , Ak, . . . , AK)
T and Ak := ∑N

i=1 Aki. We evaluate the posterior
for a specific hidden RV zk to be active and provide the normalization constant
explicitly:

p (zk = 1 | y,θ) =
eb̂k−Ak+∑N

i=1 Wki ·yi ·∏N
i=1 h(yi)

∑K
j=1 eb̂j−Aj+∑N

i=1 Wji ·yi ·∏N
i=1 h(yi)

(C.9)

=
eûk

∑K
j=1 eûj

(C.10)
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where we defined ûk = b̂k − Ak + ∑N
i=1 Wki · yi. The quantities ûk are reminiscent of

neuronal membrane potentials which consist of bias terms b̂k − Ak and synaptic
input ∑N

i=1 Wki yi. However, implicitly the bias terms depend on all afferent synaptic
weights since b̂k − Ak = b̂k − σ2

2 ∑i W2
ki and, thus, rely on information not locally

available to the neurons. This issue will be resolved in the context of learning: We
will identify update rules for both biases and synapses which only use information
available locally and thereby make a neural network implementation feasible.

C.3 Learning via generalized Expectation-Maximization

We investigate unsupervised learning of the probabilistic model based on general-
ized online Expectation-Maximization (EM) (Dempster et al., 1977), an optimization
algorithm from machine learning theory. To this end, we impose additional con-
straints on the posterior distribution (Graca et al., 2008) which will enable a neural
network implementation via homeostatic intrinsic plasticity (Habenschuss et al.,
2012) and STDP-type synaptic plasticity (Nessler et al., 2013; Habenschuss et al.,
2013b). Since the derivation is almost identical to (Habenschuss et al., 2012), we
only outline the key steps and main results in the following and refer to (Haben-
schuss et al., 2012) for a the details.

The algorithmic approach rests upon the generalized EM decomposition:

F (W , q(z|y)) =L(θ)− 〈DKL (q(z|y) || p(z|y,θ) 〉p∗(y) → E-step (C.11)

=〈 log p(y, z|θ) 〉p∗(y)q(z|y) + 〈H(q(z|y)) 〉p∗(y) → M-step (C.12)

with the log-likelihood L(θ) = 〈 log p (y | θ) 〉p∗(y), the Kullback-Leibler diver-
gence DKL (q(z) || p(z)) = ∑z q(z) · log (q(z)/p(z)) and the entropy H(q(z)) =
−∑z q(z) · log q(z). The distribution p∗(y) denotes the input distribution actually
presented to the system. The distribution p (· | θ) is the probabilistic model defined
above. The distribution q(z|y) is called variational posterior and will ultimately be
implemented by the spiking network. The short hand notation 〈 · 〉p∗(y)q(z|y) denotes

the concatenated average
〈
〈 · 〉q(z|y)

〉
p∗(y)

with respect to the input distribution

and the resulting variational posterior. In principle, the above decomposition holds
for any choice of q, and since the Kullback-Leibler divergence in eq. (C.11) is strictly
non-negative, the objective function F is a lower bound of the log-likelihood L.
During optimization the algorithm will pursue two goals: to increase L, i.e. to
better adapt the probabilistic model to the data, and to keep 〈DKL (q || p) 〉 small,
i.e. to maintain a reliable approximation q(z|y) of the exact posterior p (z | y,θ).

We first impose a homeostatic constraint on the variational posterior q(z|y), namely
that the long term average activation of any hidden RV zk matches a predefined
target value ck (with ∑k ck = 1). Formally, we define a set of constrained distribu-
tions Q = {q : 〈 zk 〉p∗(y)q(z|y) = ck ∀ 1 ≤ k ≤ K} and demand q(z|y) ∈ Q. The
optimization algorithm then relies on the joint application of an E(expectation)-step

143



C Appendix to chapter 4: Statistical learning with compound memristive synapses

and an M(aximization)-step: During the E-step, we aim to minimize the Kullback-
Leibler divergence with respect to q ∈ Q in eq. (C.11); during the M-step, we
perform gradient ascent on 〈 log p (y, z | θ) 〉 with respect to the weights Wki in
eq. (C.12). The E- and M-step will be discussed separately.

The E-step is a constrained optimization problem, namely the minimization of
〈DKL (q || p) 〉 such that q ∈ Q, that can be solved through Lagrange multipliers.
Since we imposed K constraints (one per RV zk), we need K Lagrange multipliers
βk. It turns out that the solution to this optimization problem simply adds the
multipliers βk to the biases b̂k − Ak in eq. (C.9). This convenient result gives rise to
the definition of intrinsic excitabilities bk := b̂k − Ak + βk which unify biases and
multipliers in a single quantity. Furthermore, it turns out that the optimal values of
the βk’s (and thus the bk’s) can be determined via iterative update rules that solely
rely on the hidden RVs zk under the variational response q(z|y) and overwrite the
non-local terms Ak. In summary, we obtain the variational posterior distribution q
that solves the E-step:

q(z|y) = euk

∑K
j=1 euj

with uk = bk +
N

∑
i=1

Wki · yi (C.13)

∆bk ∝ 〈 ck − zk 〉p∗(y)q(z|y) . (C.14)

The variational posterior in eq. (C.13) is described in terms of membrane potentials
uk which consist of synaptic input ∑i Wki yi and intrinsic excitabilities bk. Eq. (C.14)
regulates the intrinsic excitabilities bk in a homeostatic fashion: When the average
response exceeds the target ck, the excitability is reduced, and vice versa.

The M-step can be solved via gradient ascent on F with respect to the weights
Wki. The variational posterior q is a constant during the M-step in EM, and thus
the log-joint distribution log p (y, z | θ) remains as the only Wki-dependent term in
eq. (C.12). By taking the derivative of the log-joint defined by eq. (C.1), (C.2) and
(C.5) with respect to Wki, we obtain:

dF
dWki

= 〈 ∂Wki log p (y, z | θ) 〉p∗(y)q(z|y) (C.15)

= 〈 ∂Wki zk · log p (yi | zk = 1,θ) 〉p∗(y)q(z|y) (C.16)

=
〈

zk · (yi − σ2 ·Wki)
〉

p∗(y)q(z|y) . (C.17)

The gradient with respect to the weights Wki yields Hebbian-type update rules that
use pre-(yi) and post-(zk) synaptic activity and the current weight Wki given the
input p∗(y) and the variational response q(z|y). Importantly, only local information
is required during the E- and M-step.

C.4 Spiking network implementation

The spiking neural network model instantiates eq. (C.13), (C.14) and (C.17), i.e., it
represents the variational posterior q(z|y) for probabilistic inference through its
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C.4 Spiking network implementation

spike response and implements the derived update rules for generalized online
EM learning through intrinsic and synaptic plasticity.

Each of the RVs zk is represented by one of the K network neurons, and each spike
in the network is a sample from the variational posterior q(z|y) by identifying
zk = 1 for a spike of the k-th network neuron. By setting the instantaneous firing
rate ρk to be

ρk = lim
δt→0

p(spike in [t, t + δt])/δt = rnet · euk−uinh (C.18)

with uinh := log ∑K
j=1 exp(uj) the network thus implements eq. (C.13) for any choice

of rnet, i.e., pnet = q.

The learning rules (C.14) and (C.17) rely on expected values 〈 · 〉p∗(y)q(z|y). The
expectations can be approximated from input samples y ∼ p∗(y) and posterior
samples z ∼ q(z|y) in response to this input. The input vector y is defined at
any time t in the network as it measures the instantaneous presence or absence
of rectangular input pulses. Samples of the latent variable z, in contrast, are only
defined at the spike times of the network. Hence integrating expected values 〈 zk 〉
from the spike response can be expressed most conveniently in terms of the spike
train function sk(t) = ∑ f δ(t− t f

k ) of the network neurons. We obtain the following
plasticity rules:

dbk

dt
= ηb · [rnet · ck − sk(t)] (C.19)

dWki

dt
= ηW · sk(t) ·

[
yi − σ2 ·Wki

]
(C.20)

with small learning rates ηb and ηW . The homeostatic rule (C.19) regulates the
intrinsic excitabilities bk such that the average target activations 〈 zk(t) 〉 ≈ ck are
maintained over the presentation of many different input patterns y(t) ∼ p∗(y)
in accordance with eq. (C.14), and thereby implements the E-step. Building on
the network response shaped by the E-step, the synaptic rule (C.20) on average
increases the objective function F since synaptic changes d

dt Wki on average point in
the direction of the W -gradient of F given by eq. (C.17), thereby implementing the
M-step. Since synaptic updates rely on a (sufficiently) precise E-step which, in turn,
needs to integrate any changes in the network response due to synaptic plasticity,
homeostatic intrinsic plasticity is required to act on faster time scales than synaptic
plasticity. As a consequence, the learning rate ηb will typically exceed the learning
rate ηW in the spiking network implementation.

The homeostatic intrinsic plasticity rule (C.19) can readily be implemented by the
spiking neurons: The intrinsic excitability bk of each neuron increases linearly in
time with a slow drift ηb · rnet · ck and is lowered abruptly by ηb at the spike times of
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neuron zk. Similarly, mapping the synaptic plasticity rule (C.20) to the compound-
synapse STDP rule (4.3) is straight-forward due to the structural equivalence of
equations (4.3) and (C.20): The learning rate ηW in the theory domain corresponds
to πup ·Wmax in the hardware domain, e.g., high jumping probabilities πup and
large weight contributions ω = Wmax/M of individual stochastic switches lead to
high learning rates ηW . Furthermore, the maximum weight Wmax can directly be
identified with the precision 1/σ2 of the likelihood distribution (C.3). In the theory
domain, we know that µki = σ2 ·Wki, and hence, µki = Wki/Wmax = mki/M for the
compound synapses. Finally, due to the structural equivalence of equations (4.3)
and (C.20) we find that the compound memristor plasticity rule (4.3) inherits the
convergence properties from the theoretically derived plasticity rule (C.20) during
online learning. The resulting translation of memristor synapse parameters to the
abstract model is summarized in Table 4.1.

C.5 Details to the computer simulations

All computer simulations were performed with customized Python scripts. For the
computer simulations, we employed a network architecture with K = 10 network
neurons and N = 24 · 24 = 576 inputs. The simulation time step was δt = 1 ms
and the PSP time constant τ = 10 ms. The overall network firing rate was set to
rnet = 100 Hz, the homeostatic target activation uniformly to ck = 1/K. Synapses
were composed of M = 10 constituents with weight ω = 0.1 each. Switching
probabilities were set to πup = πdown = 10−3. This corresponds to a Gaussian
likelihood model with variance σ2 = 1 and learning rate ηW = 10−3. The learning
rate for homeostatic intrinsic plasticity was set to ηb = 20 · ηW . For the simulations
in Figure 4.4-4.6, certain parameters deviated from the above, depending on the
simulation setup. For Figure 4.6, the switching probability πup = 10−3 was kept
fixed, and πdown was adapted for different ∆-values. All other changes are described
directly in Chapter 4.

For learning experiments, digits 0, 1, 2, 3, 4 were extracted in equal proportion from
the MNIST training data set (LeCun et al., 1998). A frame of two pixels width was
removed, leaving images of size 24× 24. The images (indexed by s) were scaled
linearly to activity patterns xs

i ∈ [0.05, 0.9], with i = 1, . . . , N, which were presented
to the network as follows. For given activity pattern xs = (xs

1, . . . , xs
N), each input i

spiked with probability pspike
i = 1−

(
1− xs

i
)δt/τ per time step δt. During training,

a new activity pattern xs was randomly drawn from the training set every 100 ms.
Each network was trained for 5000 s. To obtain the unweighted PSP values yi,
the resulting spike patterns were convolved with a box kernel of duration τ and
amplitude 1, and then clipped to values [0, 1]. This defined the input y(t), and thus
(implicitly) the data distribution y(t) ∼ p∗(y). Notably, the spiking probability
pspike

i is chosen such that 〈 yi 〉 = xs
i .
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C.6 Implementation with leaky integrator neurons

The estimate of the log-likelihood in Figure 4.3D was based on 5000 input samples
y(t), which were randomly drawn from the training data, and assumed a uniform
prior p (zk = 1 | θ) = 1/K in accordance with the homeostatic target activation.
The classification performance in Figure 4.3D, Figure 4.4B and Figure 4.5E was
determined as follows. For given configuration of the synapses and intrinsic ex-
citabilities, 100 versions of each digit from the training data set were presented to
the network for 1s each. Each neuron was labeled to be tuned to the digit class it
was most responsive to. Then 500 versions of each digit from the MNIST test data
set were presented to the network for 1s each. The network neuron that spiked
most during the 1s period determined the network’s classification of the input digit.
The classification error is the fraction of wrongly classified digits.

C.6 Implementation with leaky integrator neurons

The idealized stochastic neurons in the WTA network model feature abstract mem-
brane potentials uk that integrate the input y(t) through the weights Wki linearly.
In a hardware integration, however, synaptic weights arise from the conductance of
memristors, and neurons are physical implementations based on capacitors and
various other circuit elements. Here, we outline one possible hardware integra-
tion and consider a leaky integrator with membrane potential Uk that obeys the
following dynamics:

τm ·
dUk

dt
= −(Uk − Bk) + Ik/GL , (C.21)

with membrane time constant τm, leak conductance GL, resting potential Bk and
synaptic input current Ik. In the setup of Fig. 4.1A, input spikes trigger a rect-
angular voltage pulse of duration τ and with amplitude Upre. Denoting the
conductance of the memristive synapse by G, this generates a synaptic current
I = Upre · G. The equilibrium membrane potential (i.e. d

dt Uk = 0) under this current
is Uk = Bk + (Upre/GL) · G. For small membrane time constant τm → 0, e.g., for a
small neuron capacitance, the fast membrane will closely resemble the rectangular
presynaptic pulse shape, and the PSP amplitude (Uk − Bk) will be proportional to
the weight G. This linear integration property of Uk also holds in case of multiple
memristive synapses acting in parallel, and we find

Uk = Bk +
Upre

GL
·∑

i
Gki · yi . (C.22)

Consequently, the membrane potential Uk of the leaky integrator matches the
idealized membrane potential uk employed in Chapter 4 up to a linear function
that serves to translate the voltage-based potential Uk to the unitless potential uk.
Using the membrane potential Uk, the exponential firing behavior (C.18) of the
neurons could either be realized with an inherently stochastic firing mechanism.
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Alternatively, deterministic leaky integrate-and-fire neurons could be operated in a
stochastic regime by adapting, for instance, the approach taken in (Petrovici et al.,
2013).
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Appendix D
Appendix to chapter 5: Distributed Bayesian
computation and learning in spiking neural sheets

In the following, we provide the full definition and derivation of the neural sheet
model for inference and unsupervised learning. We first describe the probabilistic
model and show that the spiking network model can sample from the posterior dis-
tribution. Then we derive parameter updates for unsupervised model optimization
and link them to plasticity rules for sample-based online learning. The heuristic
recurrent plasticity rule and a brief discussion on the interacting time scales are
presented in separate subsections. Finally, we provide details to the computer
simulations and figures.

D.1 Generative model

Definition of variables

We introduce a generative model

p (y, z | θ) = p (y | z, θ) · p (z | θ) (D.1)

over N observed variables y1, .., yN , subsumed in the vector y, and K latent variables
z1, .., zK, subsumed in the vector z. The latent variables are binary, zk ∈ {0, 1},
and said to be “active” iff zk = 1. The possible values of the observed variables
yi depend on the employed likelihood model. The full model is governed by
parameters θ = (V , V0, Ŵ , b̂) with real-valued K × N afferent weight matrix V ,
N-dimensional default vector V0 (which will be a constant during learning), K× K
recurrent weight matrix Ŵ , and K-dimensional bias vector b̂. Furthermore, each latent
variable zk is connected to a subset of the input variables (its afferent field) which is
described by an index set Ik ⊆ {1, 2, .., N}. Likewise, we define the projection field
for each input variable yi as the index set Pi = {k | i ∈ Ik}. We refer to all-but-one
variables of a vector by the shorthand notation z\k := (z1, .., zk−1, zk+1, .., zK).
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Generative Model: Likelihood

Provided the state of the hidden units z, the inputs are defined to be independent
(local “Naive Bayes”):

p (y | z, θ) =
N

∏
i=1

p (yi | z, θ) . (D.2)

For each yi, the prior will ensure that at most one hidden unit zk in Pi is active. We
assume that, if present, this single active unit zk governs the distribution of yi. In
case all hidden variables in Pi are 0, a “default hypothesis” is used. The resulting
input distribution is assumed to be in the natural exponential family. For instance,
Bernoulli, Poisson, or Gaussian distributions are in this class. In natural exponential
family form, p (yi | z, θ) reads:

p (yi | zk = 0, ∀ k ∈ Pi, θ) = hi(yi) eV0i yi−A0i (D.3)

p (yi | zk = 1, k ∈ Pi, θ) = hi(yi) e(Vki+V0i) yi−(Aki+A0i) (D.4)

where hi(yi) denotes the base measure, and the normalization constants Aki and
A0i depend on the parameters Vki and V0i. In anticipation of (D.6), the parameters
in (D.4) were written as (Vki + V0i), i.e. relative to the default hypothesis. We adopt
the convention that Vki = 0 for k /∈ Pi to obtain a closed form expression for (D.3)
and (D.4):

p (yi | z, θ) = hi(yi) eV0i yi−A0i ∏
k∈Pi

[
eVki yi−Aki

]zk
(D.5)

= hi(yi) eV0i yi−A0i exp

[
K

∑
k=1

zk Vki yi − zk Aki

]
(D.6)

By combining (D.2) and (D.6) we obtain the full likelihood

p (y | z, θ) = h(y) exp
[
zTV y − zTA

]
(D.7)

with A = (A1, .., AK)
T and Ak = ∑N

i=1 Aki. Here we use the shorthands zTV y =

∑k ∑i zkVkiyi and zTA = ∑k zk Ak. The function h(y) := ∏i hi(yi) eV0i yi−A0i com-
prises only terms that do not depend on z, and hence, it will play no role in the
inference. In Chapter 5, we employed a Bernoulli likelihood model:

p (yi = 1 | zk = 0, ∀ k ∈ Pi, θ) = π0i , p (yi = 1 | zk = 1, k ∈ Pi, θ) = πki
(D.8)

or in closed form:

p (yi | z, θ) = π
yi
0i (1− π0i)

1−yi ∏
k

[
π

yi
ki (1− πki)

1−yi

π
yi
0i (1− π0i)1−yi

]zk

. (D.9)
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D.1 Generative model

By rewriting (D.9) in the exponential family form (D.6), we identify

Vki = log
πki

1− πki
−V0i , Aki = log(1 + eVki+V0i)− A0i , (D.10)

V0i = log
π0i

1− π0i
, A0i = log(1 + eV0i) .

In particular, the cluster centers can be recovered via πki = σ(Vki + V0i).

Likewise, Poisson and Gaussian distributions can be written in the exponential
family form (D.6). This extends the input domain to yi ∈N and yi ∈ R respectively.
For a Poisson model with expected values λ0i and λki (for the default hypothesis
and the hidden causes resp.),

p (yi | zk = 0, ∀ k ∈ Pi, θ) = (yi!)−1λ
yi
0ie
−λ0i , p (yi | zk = 1, k ∈ Pi, θ) = (yi!)−1λ

yi
kie
−λki , (D.11)

we obtain

Vki = log(λki)−V0i , Aki = exp(Vki + V0i)− A0i , (D.12)
V0i = log(λ0i) , A0i = exp(V0i) .

For Gaussians with centers µ0i and µki and fixed variance σ2,

p (yi | zk = 0, ∀ k ∈ Pi, θ) = N (yi; µ0i, σ2) , p (yi | zk = 1, k ∈ Pi, θ) = N (yi; µki, σ2) , (D.13)

we obtain

Vki =
µki

σ2 −V0i , Aki =
σ2

2
(Vki + V0i)

2 − A0i , (D.14)

V0i =
µ0i

σ2 , A0i =
σ2

2
V2

0i .

Generative model: Prior

The prior p (z | θ) guarantees that no two (or more) hidden units zk, zj with
overlapping input fields, Ik ∩ Ij 6= ∅, are active simultaneously, i.e., it ensures
that at most one unit zk generates each input variable yi at the same time. For this
work, we choose a Boltzmann machine prior which can introduce dependencies
between units with non-overlapping receptive fields through symmetric parameters
Ŵexc

kj = Ŵexc
jk . Furthermore each variable zk has a bias value b̂k which directly affects

its prior probability of activity:

p (z | θ) = 1
Z

exp
[

1
2
zTŴexcz + zTb̂

]
·

K

∏
k=1

K

∏
j=1

(
δIk∩Ij, ∅

)zk ·zj
, (D.15)
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with δ denoting the Kronecker delta and 00 := 1. The double-product factor ensures,
that the assumptions on z made in the likelihood (D.7) are satisfied, and can be
approximated with arbitrary precision by using strong inhibitory weights Ŵinh

jk

Ik ∩ Ij 6= ∅⇒ Ŵinh
kj → −∞ for k 6= j , (D.16)

and setting ∏K
k=1 ∏K

j=1

(
δIk∩Ij, ∅

)zk ·zj
= exp[ 1

2z
TŴ inhz]. Note that the range of

strong inhibition could also extend beyond the minimal required range (D.16).
For notational brevity, we subsume the excitatory and inhibitory recurrent weight
matrices in a single matrix Ŵ = Ŵexc + Ŵ inh for the derivation. Ŵ is symmetric
(Ŵ = Ŵ

T
) and has zero diagonal (Ŵkk = 0). Using this notation, the prior simply

reads

p (z | θ) = 1
Z

exp
[

1
2
zTŴz + zTb̂

]
. (D.17)

D.2 Inference in the generative model (Corollary 1)

By applying Bayes rule p (z | y, θ) ∝ p (z | θ) · p (y | z, θ) on eq. (D.17) and eq. (D.7)
we obtain the posterior in closed form:

p (z | y, θ) = exp
[

1
2
zTŴz + zTV y + zT

(
b̂−A

)] /
Norm. (D.18)

where the normalization sums the exponential over all possible states of the pos-
terior. To establish the link to the neural sampling theory via the sufficient condi-
tions (5.5), we solve (D.18) for the logit of a single unit zk:

uk
!
= log

p
(
zk = 1 | z\k, y, θ

)
p
(
zk = 0 | z\k, y, θ

) = log
p
(
zk = 1, z\k | y, θ

)
p
(
zk = 0, z\k | y, θ

) (D.19)

= log
exp

[
1
2 ∑j 6=k(1 · Ŵkjzj + zjŴjk · 1) + ∑i(1 ·Vkiyi) + 1 · (b̂k − Ak)

]
exp

[
1
2 ∑j 6=k(0 · Ŵkjzj + zjŴjk · 0) + ∑i(0 ·Vkiyi) + 0 · (b̂k − Ak)

] (D.20)

+ log
exp

[
1
2 ∑j,l 6=k zjŴjlzl + ∑j 6=k ∑i(zjVjiyi) + ∑j 6=k zj · (b̂j − Aj)

]
exp

[
1
2 ∑j,l 6=k zjŴjlzl + ∑j 6=k ∑i(zjVjiyi) + ∑j 6=k zj · (b̂j − Aj)

] (D.21)

= log
exp

[
∑j 6=k Ŵkjzj + ∑i Vkiyi + (b̂k − Ak)

]
exp [0]

+ log 1 (D.22)

=
K

∑
j=1

Ŵkjzj +
N

∑
i=1

Vkiyi + (b̂k − Ak) . (D.23)
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D.3 Model optimization via Generalized Expectation Maximization

Here we made use of the symmetry of Ŵ and Ŵkk = 0. Hence, we can map the
neuronal membrane potential (5.3) to the parameters of the Bernoulli likelihood
model. We find Ŵkj = Ŵexc

kj + Ŵinh
kj = Wexc

kj + Winh
kj for recurrent weights, Vki =

log πki
1−πki

− log π0i
1−π0i

for afferent weights according to eq. (D.10), and bk = b̂k − Ak
for excitabilities, with Ak = ∑i Aki given by eq. (D.10). This proves Corollary 1.

D.3 Model optimization via Generalized Expectation
Maximization

In the presence of plastic input synapses Vki, the terms Ak change over time and,
in a spiking network implementation, add to the intrinsic excitability of the cells.
Arguably, the information required for calculating Ak is not locally available to
the neurons since Ak depends on all afferent synaptic efficacies Vki. We follow the
approach of (Habenschuss et al., 2012) who showed that homeostatic intrinsic
plasticity can enable a spiking network to account for time varying Ak’s. More
precisely, the interplay of homeostatic intrinsic plasticity and synaptic plasticity
can be understood in the generalized Expectation Maximization framework, and a
spiking network can implement a variational posterior distribution q(z | y) which
maintains a long-term average target activity. In close analogy to the derivation
in (Habenschuss et al., 2012), we transfer this approach to the spatially extended
sheet model in the following.

We impose a posterior constraint on the latent variables z and investigate learning
in the generalized online EM framework. The EM decomposition (Neal and G.
Hinton, 1998) reads

F (θ, q(z|y)) = L(θ)− 〈DKL (q(z|y) || p (z | y, θ)) 〉p∗(y) → E-step , (D.24)

= 〈 log p (y, z | θ) 〉p∗(y)q(z|y) + 〈H(q(z|y)) 〉p∗(y) → M-step , (D.25)

with the log-likelihood L(θ) = 〈log p (y | θ)〉p∗(y) of the input under the model, the
Kullback-Leibler divergence DKL (· || ·), and the entropy H(·). The decomposition
holds for any probability distribution q, and q(z | y) defines a variational posterior
for every input state. For this work, we constrain q to a class of “homeostatic”
distributions, q ∈ Q, such that each variable zk maintains a long-term average
activity mk,

Q = {q : 〈zk〉p∗(y)q(z|y) = mk for all k = 1, .., K} . (D.26)

The desired target activations m = (m1, .., mK) are assumed to be compatible with
the inhibition structure (D.16), e.g. by choosing mk sufficiently small.
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E-step: Homeostatic intrinsic plasticity

During the E-step (D.24), we seek the distribution q∗ ∈ Q that minimizes the
Kullback-Leibler divergence to the model posterior p (z | y, θ), and thus, maximizes
the lower bound F on the likelihood L. This constrained optimization problem can
be solved with Lagrange multipliers. We examine the Lagrange function

Λ(q) =
〈

DKL
(
q(z′ | y′) || p

(
z′ | y′, θ

)) 〉
p∗(y′) −

K

∑
k=1

βk

(〈
z′k
〉

q(z′ |y′) p∗(y′) −mk

)
− λ

(
〈 1 〉q(z′ |y′) − 1

)
(D.27)

where the apostrophes indicate that y′ and z′ are summation variables, and βk
are the Lagrange multipliers for the K constraints. The additional Lagrange mul-
tiplier λ ensures correct normalization of q. The root of the derivative with re-
spect to q(z | y), with any particular choice of z and y, fulfills ∂q(z |y)Λ(q) =

p∗(y) [log (q(z | y) / p (z | y, θ)) + 1− λ−∑k βk zk]
!
= 0 and, thus, the optimal so-

lution q∗ has the form

q∗(z | y) = p (z | y, θ) exp

[
λ− 1 + ∑

k
βk zk

]
∝ exp

[
1
2
zTŴz + zTV y + zT( b̂−A+ β︸ ︷︷ ︸

:= b= (b1,..,bK)

)

]
. (D.28)

Note that the variational distribution in (D.28) is already correctly normalized
through the free constant exp(λ− 1).

However, the optimal multipliers β = (β1, .., βK) are still to be determined. Analo-
gous to (Graca et al., 2008; Habenschuss et al., 2012), gradient ascent on the dual
function

∂βk Ψ(β) = ∂βk β
T m−

〈
∂βk log ∑

z

p (z | y, θ) exp(βT z)

〉
p∗(y)

(D.29)

= mk − 〈 zk 〉p∗(y)q(z|y) (D.30)

yields an iterative update rule to determine the optimal Lagrange multipliers βk in
q∗ for the E-step (D.24). During the E-step, the synaptic weights Vki remain constant
(synaptic weight updates are the M-step). Thus, optimizing βk is equivalent to
optimizing bk := b̂k − Ak + βk since bk and βk differ only by an additive constant.
In particular, the update rule

∂bk Ψ = ∂βk Ψ = mk − 〈 zk 〉p∗(y)q(z|y) (D.31)

remains unchanged and describes a form of homeostatic plasticity. It compares
the average activation 〈 zk 〉p∗(y)q(z|y) with the target activation mk and adapts the
intrinsic excitability accordingly: When the average activity 〈 zk 〉 is too low, the
excitability bk will be increased; if the activity is too high, the excitability will be
reduced. Importantly, the homeostatic rule (D.31) requires only local information
and “overwrites” the non-local terms Ak in eq. (D.28) and in bk.
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D.3 Model optimization via Generalized Expectation Maximization

M-step in Vki: Weight-dependent plasticity of afferent weights

During the M-step (D.25), we perform gradient ascent on 〈 log p (y, z | θ) 〉p∗(y)q(z|y)
with respect to the parameters θ. This increases the lower bound F on the likelihood
L(θ) since the entropy 〈H(q(z|y)) 〉p∗(y) does not depend on θ. For the afferent
weights V , the derivative of the log-joint model (D.7) × (D.17) reads

∂VkiF = ∂Vki 〈 log p (y, z | θ) 〉p∗(y)q(z|y) = 〈 zk · (yi − ∂Vki Aki) 〉p∗(y)q(z|y) . (D.32)

For a Bernoulli likelihood distribution, we obtain from eq. (D.10) that ∂Vki Aki =
σ(Vki + V0i) = πki and hence:

∂VkiF = 〈 zk · (yi − σ(Vki + V0i)) 〉p∗(y)q(z|y) . (D.33)

The update rule eq. (D.33) only depends on local information, namely pre-(yi) and
post-(zk) synaptic activity and the current synaptic weight Vki. The same holds true
for Poisson distributions with ∂Vki Aki = exp(Vki + V0i) and Gaussian distributions
with ∂Vki Aki = σ2 · (Vki + V0i). Intuitively, since ∂Vki Aki = 〈 yi 〉p(yi | zk=1,θ) in any
natural exponential family, the plasticity rule (D.32) compares the true input value
yi ∼ p∗(y) with the current expectation of the probabilistic model whenever zk is
active.

M-step in Ŵ exc
kj : Wake-sleep plasticity of recurrent weights

Similarly, we can examine the derivative of F with respect to the recurrent weights
Ŵ and biases b̂ in the prior:

∂Ŵkj
〈 log p (y, z | θ) 〉p∗(y)q(z|y) =

〈
zk zj

〉
p∗(y)q(z|y) −

〈
zk zj

〉
p(z | θ) (D.34)

∂b̂k
〈 log p (y, z | θ) 〉p∗(y)q(z|y) = 〈 zk 〉p∗(y)q(z|y) − 〈 zk 〉p(z | θ) (D.35)

These update rules compare expected values from the variational posterior with
expected values from the model prior, i.e., they are a variant of the wake-sleep
algorithm. In the neural sheet model, we will apply recurrent learning only to
lateral excitatory connections Wexc

kj and keep lateral inhibitory connections Winh
kj

fixed since lateral inhibition is the foundation for local synaptic plasticity rules of
the afferent connections Vki.

Plasticity rules for sample-based online learning (Corollary 2)

The above learning scheme revealed local update rules for unsupervised model
optimization via Generalized Expectation Maximization. The derived algorithm
relies on three ingredients:

1. the variational posterior distribution q(z | y) in eq. (D.28),
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D Appendix to chapter 5: Distributed Bayesian computation and learning in spiking neural sheets

2. the homeostatic update rule (D.31) to solve the E-step, and
3. the synaptic update rule (D.33) to solve the M-step.

Ingredient 1: By applying the sufficient condition (5.5) on the homeostatic posterior
q(z | y), we find that the network can sample from q(z | y) when we use the
same form of the membrane potential uk, but with bk := b̂k − Ak + βk (instead of
bk = b̂k − Ak for sampling from the model posterior p (z | y, θ)). This establishes
an equivalent to Corollary 1 for the variational posterior.

Ingredient 2: A sample-based online approximation of eq. (D.31) is established by

∂

∂t
bk = ηb · (mk − zk(t)) , (D.36)

with ηb denoting a small learning rate. This homeostatic intrinsic plasticity rule
approximates the expected values 〈 zk 〉p∗(y)q(z |y) in eq. (D.31) through samples
z ∼ q(z | y) in response to the input y ∼ p∗(y). The required samples z ∼
q(z | y) · p∗(y) are naturally provided by the network in response to presented
input. The homeostatic plasticity rule (D.36) uses only locally available informa-
tion. When homeostatic plasticity has converged, i.e., when the average update
〈 ∂

∂t bk〉 = 0 vanishes for all neurons, the network implements the variational pos-
terior distribution (D.28) with optimal multipliers βk, i.e., the network solves the
E-step by sampling from from q∗(z | y). Due to the non-infinitesimal learning rate
ηb, this equilibrium is subject to small stochastic fluctuations.

Ingredient 3: A sample-based online approximation of eq. (D.33) is established by

∂

∂t
Vki = ηV · zk(t) · (yi(t)− σ(Vki + V0i)) , (D.37)

with a small learning rate ηV . This synaptic plasticity rule approximates the gradient
in eq. (D.33) from samples y ∼ p∗(y) and the evoked response z ∼ q(z | y). The
required samples z ∼ q(z | y) · p∗(y) are provided by the network if the homeostatic
posterior q(z | y) is correctly implemented in the E-step. Hence, it must be ensured
that homeostatic intrinsic plasticity acts on significantly faster time scales than
synaptic plasticity. This can be achieved by separating the time scales of intrinsic
and synaptic plasticity via the learning rates ηb and ηV , such that homeostatic
intrinsic plasticity can react quickly to changes in the synaptic weights (see also
Interaction of time scales below).

Since eq. (D.36) approximates the E-step, and eq. (D.37) approximates the M-
step, the joint application of these rules approximates the previously described
Generalized Expectation Maximization algorithm. This proves Corollary 2.

In addition, theoretically optimal learning of recurrent connections can be realized
by sample-based implementations of eq. (D.34) and (D.35). This gives rise to the
plasticity rule eq. (5.16). The LTD term φ

opt
kj (Ŵexc, Ŵ inh, b̂) =

〈
zk zj

〉
p(z | θ) can

be determined by using an independent prior sampler, thereby giving rise to a
sample-based sleep phase. In computer simulations with wake-sleep learning, we
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D.4 Approximate plasticity rule for recurrent synapses

used such a prior sampler. This sampler maintained independent parameters b̂
which were updated according to a sample-based approximation of eq. (D.35),
i.e., according to the difference of samples from the variational posterior and the
prior. Since it is not known if (or how) the LTD term φ

opt
kj (Ŵexc, Ŵ inh, b̂) can be

calculated by a single spiking network, we did not include recurrent plasticity in
Corollary 2. Nevertheless, algorithmically the theory supports concurrent learning
of input synapses and recurrent synapses.

D.4 Approximate plasticity rule for recurrent synapses

As shown above, theoretically optimal learning of recurrent weights Wexc
kj is chal-

lenging in a spiking network since the model expectations in eq. (D.34) are not di-
rectly available from the network response and demand an independent sleep phase.
Therefore, we investigated to what extent the simple local plasticity rule (5.17) could
entail similar weight configurations as the theoretically exact wake-sleep rule. In
the following, we describe how the simple rule was obtained.

For a given learning problem, we first performed wake-sleep learning to obtain
optimized weights Wopt

kj , along with covariances

ckj :=
〈
(zk − 〈 zk 〉) · (zj −

〈
zj
〉
)
〉

p∗(y)q(z |y) (D.38)

that led to these weights. Then, we fit a function W(ckj) to the data. For constructing
the local plasticity rule, we use that mk = 〈 zk 〉p∗(y)q(z |y) due to homeostatic
intrinsic plasticity, i.e.,

ckj =
〈

zk · zj
〉

p∗(y)q(z |y) −mk ·mj . (D.39)

Importantly, the information
〈

zk · zj
〉

p∗(y)q(z |y) on the pre-post spike response
during inference is locally available to a synapse. The following weight-dependent
plasticity rule for Wexc

kj then has a fixed point at Wexc
kj = W(ckj) ≈Wopt

kj (ckj):

∂

∂t
Wexc

kj = ηW ·
[
zk · zj −

(
mk ·mj + W−1(Wexc

kj )
)]

(D.40)

with W−1 denoting the inverse function of W(ckj). This follows directly from
inspecting

0 !
=

〈
∂

∂t
Wexc

kj

〉
p∗(y)q(z |y)

=
〈

zk · zj
〉

p∗(y)q(z |y) −mk ·mj −W−1(Wexc
kj ) (D.41)

and solving for Wexc
kj . For this work, we assumed the following functional form of

W(ckj):

W(ckj) =
Wmax

π/2
arctan(γ · ckj) (D.42)
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D Appendix to chapter 5: Distributed Bayesian computation and learning in spiking neural sheets

with two free parameters Wmax and γ. This function turned out to match the data
points (Wopt

kj , ckj), as obtained from wake-sleep learning, well, and results in the
following heuristic plasticity rule:

∂

∂t
Wexc

kj = ηW ·
[

zk · zj −
(

mk ·mj +
1
γ

tan

(
π

2

Wexc
kj

Wmax

))]
, (D.43)

i.e., φϑ(Wexc
kj ) = mk ·mj +

1
γ tan

(
π
2

Wexc
kj

Wmax

)
. While this plasticity rule preserves the

symmetry of recurrent weights and features the desired fixed points Wexc
kj = W(ckj),

it must be noted that there exists no theoretical guarantee for convergence under
recurrent network dynamics.

D.5 Interaction of time scales

The learning rates ηb, ηV and ηW control the typical time scales for significant
changes in the parameters b, V and W exc. In an online EM learning scenario, these
changes are interrelated with the network’s spike response and variations in the
external input. In total, four different processes are to be distinguished which
jointly orchestrate the learning dynamics:

1. On the fastest time scale, the synaptic time constant τ sets the typical scale
for inference and mixing during sampling from the posterior. For this study,
we set τ = 10 ms.

2. On a slower time scale – let’s refer to it as τinp for this discussion – significant
changes in the presented input statistics occur, i.e. the input vector y ∈ {0, 1}N

switches to substantially different regions in the space of possible inputs
during sampling from p∗(y).

3. The variational E-step integrates the average network response 〈 z 〉p∗(y)q(z |y),
and thus, relies on a representative coverage of the input space. Therefore,
changes in b, which happen on a time scale τE ≈ η−1

b , must be slower than
the mixing of y ∼ p∗(y).

4. Finally, the M-step adapts synaptic weights V and W exc based on a reliable
E-step, and hence, τM ≈ η−1

V (or η−1
W ) need to be large compared to τE.

In summary, from a strictly theoretical perspective we require τ � τinp � τE � τM.
In practice, we typically find a factor 5-20 per �-relation to be sufficient. For
instance, the network responds on the time scale of few to tens of milliseconds;
input statistics vary on the time scale of hundreds of milliseconds to seconds;
intrinsic neuronal excitabilities adapt on the time scale of tens of seconds to
minutes; and synapses change their weight on the time scale of minutes to hours.

158



D.6 Details to the computer simulations

Category Parameter Symbol Fig 2 Fig 3 Fig 4 Fig 5 Comments
Simulation Sim. time T 2.5 10,000 25,000 10,000 Unit [s]

Time step δt 0.001 0.001 0.001 0.001 Unit [s]

Network Network nrn’s K 6 21 21 144

Geometry 6× 1 7× 3 7× 3 12× 12
Neuron distance 3 3× 2 6× 1 2× 2 Rel. to inp. space
Rec. exc. range – – ∞ ∞ Max. norm
Rec. exc. prob. – – 1 0.25
Inh. conn. dist. 3 3 1 4 Max. norm
Inh. weight Winh -100 -100 -100 -100

Inputs N 108 126 252 576

Geometry 18× 6 21× 6 42× 6 24× 24
Afferent conn. 6× 6 6× 6 6× 6 6× 6
PSP-/Ref.-time τ 0.010 0.010 0.010 0.010 Unit [s]
Backgr. act. π0i 0.2 0.1 0.1 0.1

Stimulus Activity range 0.2/0.55 0.1/0.6 0.1/0.4 0.1/0.5 Min./Max. 〈 yi 〉
Pattern duration – 200ms1)

250ms 100ms During learning

Plasticity Hom. target mk – 0.065 0.95/3 0.025

Init bias bk −1− Ak -2 -1 -3 at t = 0
Init inp. weight Vki eq. (D.10) 0 0 0 at t = 0
Init rec. weight Wexc

kj 0 or 1 0 0 0 at t = 0
Learn rate bias ηb 0 1 0.1 10 Unit [Hz]
Learn rate inp. ηV 0 0.2 0.1 2 Unit [Hz]
Learn rate rec. ηW 0 – 0.0052) 1 Unit [Hz]

Table D.1: Parameters of the computer simulations. 1) Average duration of locally occurring patterns. 2) 0.05 for
wake-sleep learning.

D.6 Details to the computer simulations

All computer simulations were performed with custom Python (G. Van Rossum

and Drake Jr, 1995) scripts, using a discrete time version for spiking neurons and
synaptic plasticity with simulation time step δt = 1 ms and PSP time constant
τ = 10 ms. In order to avoid boundary effects at the edge of the network, a torus-
like network topology is used, i.e., neurons at the left-hand edge are adjacent to
neurons at the right-hand edge, and neurons at the top edge are adjacent to neurons
at the bottom edge of the sheet. Inhibitory connections were non-plastic. Excitatory
connections, if plastic, were restricted to positive weight values. The constraint to
positive weights was imposed for the purpose of neuroscientific modeling, only.
The theory for inference and learning supports positive and negative weights (incl.
sign changes). In the following, we first describe the implementation of neurons
and synapses as used in all simulations. Then we provide specific simulation details
for each figure. An overview of used parameters is provided in Table D.1.
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D Appendix to chapter 5: Distributed Bayesian computation and learning in spiking neural sheets

Stochastic neuron model (common to all figures). We employed the simplest
neuron model from (Buesing et al., 2011) with an absolute refractory period.
Neurons are characterized by their membrane potential uk and a refractory time τ
that matches the time constant the associated RV zk is active after a spike. In discrete
time, the active period lasts for τ̃ := τ/δt = 10 time steps. The spiking probability
in each time step reads p(spike) = σ(uk − log τ̃) if the neuron is non-refractory. A
neuron is non-refractory if zk = 0 or if it is in its last active time step (to allow
an uninterrupted active state, see (Buesing et al., 2011)). Neurons in a network
were updated sequentially such that state transitions of one cell are visible in the
same time step to subsequently updated neurons. In the computer simulations, the
update order was chosen randomly, in every time step. In the limit δt → 0 and
τ̃ → ∞ while keeping τ = const., we obtain the above continuous-time neuron
model and the sequential update policy disappears. In the other extreme, for τ̃ = 1,
neurons can spike immediately again, and we recover the common Gibbs sampling
algorithm. For a discrete time implementation of homeostatic intrinsic plasticity, we
updated the excitability b in every time step according to δbk = δt · ηb · (mk − zk).
This is a simple Euler integration of the continuous-time plasticity rule.

Synaptic transmission and plasticity (common to all figures). A spike of the i-th
neuron elicits a rectangular post-synaptic potential (PSP) at the k-th neuron with
duration τ and amplitude Vki (Wki) for afferent (recurrent) connections. Synaptic
transmission has zero-delay and is non-additive, and thus, PSPs encode the value of
the pre-synaptic random variable times the synaptic weight at any time. In discrete
time, PSPs last for τ̃ time steps, accordingly. For a discrete time implementation
of plasticity, we updated the weights V , W exc in every time step according to
δVki = δt · ηV · zk · (yi − σ(Vki + V0i)) and δWexc

kj = δt · ηW · (zk · zj − φ). Here φ

denotes the LTD term of wake-sleep learning and the approximate plasticity
rule, respectively. Again, this is a simple Euler integration of the continuous-time
plasticity rules.

Spiking input generation (common to all figures). In all simulation, spiking input
was presented to the network in form of Poisson spike trains with time varying
firing rate. In accordance with the synaptic transmission in the network via non-
additive, rectangular PSPs, an input RV yi(t) has value 1 if a spike had occurred in
the i-th input channel within (t− τ, t], and value 0 otherwise. Firing rates are chosen
such that the expected value of yi matches a target activity xi, i.e., 〈 yi 〉 = xi. The
specific target values xi used for the simulations are provided below for each figure.
In order to achieve 〈 yi 〉 = xi in a discrete time simulation, the spiking probability
of an input is set to pi := p(spike in δt) = 1− (1− xi)

1/τ̃ for each time step. This
assignment originates from the following thought. An input is inactive when there
was no spike in the last τ̃ time steps, i.e., p(yi = 0) = (1− pi)

τ̃. The expected

value 〈 yi 〉 is thus given by 〈 yi 〉 = p(yi = 1) = 1− p(yi = 0) !
= xi. Solving for pi
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Fig. D.1: Sampling quality and heuristic learning rule. (A) Sampling quality of the spiking network. Red: His-
togram over the difference between the traces in Fig. 5.2D for every neuron and time point. For visual clarity, the
data in Fig. 5.2D had been smoothed with a 20ms box kernel. Gray: Histogram over the non-smoothed, raw data. (B)
Recurrent plasticity function in the setup of Fig. 5.4. Weights obtained with wake-sleep learning vs. the covariance
of network variables (blue dots), alongside the fitted plasticity function W(ckj)(red line). (C) Same for Fig. 5.5.

yields the above assignment. In the limit δt→ 0 such that τ = τ̃ · δt = const., these
spiking dynamics yield a Poisson process with firing rate log[(1− xi)

−1/τ].

Figure 2: Sheets of spiking neurons can perform Bayesian inference on
distributed spiking input

The network consists of N = 18× 6 input neurons and K = 6 network neurons.
Each network neuron receives local input from 6× 6 inputs, with local connec-
tions being shifted by 3 between neighboring network neurons. Neurons with
overlapping input inhibit each other, resulting in nearest-neighbor inhibition. In
addition, three neuron pairs ((k, j) = (1, 3), (3, 5) and (4, 6)) maintain excitatory
recurrent connections of weight Wexc

kj = Wexc
jk = 1. Preferred local activity patterns

xkj ∈ (0.2, 0.55), 1 ≤ k ≤ 6 and 1 ≤ j ≤ 36, were drawn for each network neu-
ron from a uniform distribution. Background activity was set to π0i = 0.2, and
afferent synaptic weights were set to match the patterns according to eq. (D.10).
Neuronal excitabilities were set to bk = b̂k − Ak with b̂k = −1 and Ak = ∑i Aki
being calculated for each neuron according to eq. (D.10).

Spiking input was generated with the aim that the input distribution p∗(y) closely
resembles the model distribution p (y | θ) of the network: At each location and
time point, at most one local input pattern xkj is active. If pattern xkj is active,
it governs the firing rate of all those inputs that are connected to neuron k, i.e.,
〈 yi 〉 = xkj for i = [(18 · (k − 1) + (j − 1) − 6) mod N] + 1. The presence of an
input pattern is indicated by colored spikes in Fig. 5.2E. If no dedicated pattern is
active, inputs fire with the background activity, i.e., 〈 yi 〉 = π0i (gray spikes). The
data shown in Fig. 5.2 and evaluated Fig. D.1A covers 1.5s simulation time. The
total simulation time was 2.5s with a short period before and after the shown data
being discarded. This serves to provide a burn-in phase for the sampling network,
and to prevent boundary artifacts when smoothing the posterior marginals. In
panel D, the posterior marginals pnet were estimated from the network response
z(t) during 1000 simulation runs, all with exactly the same input (spike-level
identity). The correct posterior ptheo is given by eq. (D.18). For visual clarity, the
traces of the posterior marginals have been smoothed with a 20 ms box kernel.
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A comparison of non-smoothed data is provided in Fig. D.1A. The figure shows a
more systematic analysis of the sampling quality of the spiking network by means
of a histogram over the mismatch (pnet(zk = 1 | y(t)) − ptheo(zk = 1 | y(t)). The
red dotted counts were evaluated on the smoothed data of Fig. 5.2D; the gray
bars depict the non-smoothed (raw) data, evaluated on a millisecond basis. This
quantitative analysis confirms the excellent approximation quality of the sampling
network. In conclusion, the data shown in Fig. 5.2D and Fig. D.1A indicate that
the sampling network can calculate and represent the general structure as well
as quantitative specificities of the time-varying posterior distribution with high
accuracy. However, small differences between the traces in Fig. 5.2D are visible.
Most notably, rapid and sharp peaks in the posterior, which arise from pronounced
but transient jumps in the input, are not fully integrated by the network. The origin
of these deviations is of stochastic and systematic nature. Stochastic fluctuations
arise from the general sample-based representation. For time-varying input sig-
nals y(t), only few independent samples can be drawn from the target posterior
distribution p (z | y(t), θ) under (almost) stable conditions, i.e., before the target
distribution changes. Any representation based on a limited number of samples
can approximate the posterior only with limited precision. Systematic deviations
result from incomplete convergence of the Markov chain. The Markov chain, that
underlies the network dynamics, is guaranteed to converge to the correct equilib-
rium distribution p (z | y, θ) only for any constant input y in the limit t→ ∞. For
time-varying input y(t), convergence of the network will typically “lag behind” the
“moving target” p (z | y(t), θ). Theoretical work (Habenschuss et al., 2013a) has
shown that the network distribution converges exponentially fast to its equilibrium
in almost arbitrary network architectures. Notably, the local WTA architecture
is expected to facilitate mixing of the Markov chain since typically only a few
competing neurons will attempt to fire in response to the presented input at the
same time.

Figure 3: Emergence of probabilistic local experts through synaptic
plasticity

The network consists of N = 21× 6 input neurons and K = 7× 3 network neurons.
Network neurons are organized in 7 local populations. The 3 neurons within a
population share the same 6× 6 field of afferent connections. Afferent fields of
neighboring populations are shifted by 3 (measured in the domain of input neurons).
Due to the torus-like topology, every network neuron has overlapping inputs
with 8 other network neurons (2 in its population and 2× 3 in the neighboring
populations). This is the range of lateral inhibition.

Spatio-temporal spiking input (that determines the samples y and thus p∗(y)) was
generated as follows. For each of the 7 afferent field locations, 3 random activity
patterns xp

lj, (1 ≤ p ≤ 3, 1 ≤ l ≤ 7, 1 ≤ j ≤ 36), were drawn. To facilitate the
generation of locally different activity patterns, each input location was drawn from
a Dirichlet distribution and scaled to the activity range [0.1, 0.6]: (x1

l j, x2
l j, x3

l j) ∼
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0.5 · Dir(0.3, 0.3, 0.3) + 0.1. Whenever a local activity pattern xp
l was presented,

Poisson spike trains were generated such that 〈 yi 〉 = xp
lj with i = (18 · l + j

mod N) + 1. The presence of local activity patterns xp
l was determined as follows.

Three chains c = 1, 2, 3 were started at time t = 0. Each chain can either be active or
inactive. If it is active, it appears at a location l and presents one of the local activity
patterns xp

l . Initially, all chains were inactive and the initial duration of inactivity
(in ms) was drawn for each chain from a Gamma distribution Γ(k = 10, θ = 10),
leading to an average initial inactivity of 100 ms. Whenever inactivity of a chain
ends, it turns active for a duration (in ms) drawn from Γ(k = 10, θ = 20), leading
on average to 200 ms duration of activity. When a chain turns active, a random
pattern p is drawn uniformly, and a random location l is drawn such that the
invoked activity pattern xp

l does not overlap with the local activity pattern of a
different currently active chain. Such a valid location always exists in the given
architecture. After a chain’s active phase, it turns inactive again for a duration (in
ms) drawn from Γ(k = 10, θ = 10). Inputs, that are not covered by a currently
active chain, maintain a background activity with 〈 yi 〉 = π0i = 0.1. This process
leads to spatially non-overlapping, but temporally interleaved input spike patterns
as shown in Fig. 5.3F.

The network was exposed to this spiking input for 10000 s. Afferent weights Vki and
intrinsic excitabilities bk were plastic; recurrent connections Wexc

kj and Winh
kj were

non-plastic, and Wexc
kj = 0.

Details to the plotting: Panel B shows the activity patterns xp
lj, p = 1, 2, 3, for the

input region highlighted in panel A. For estimating the log-likelihood in panel
C, S = 10000 input samples ys were randomly drawn from the training data
as a proxy for p∗(y). Furthermore, the network has 337 possible z-states that
respect the inhibition structure. Thus, the log-likelihood can be calculated via
L(θ) ≈ 1

S ∑s log ∑z p(z) ·∏i p
(
ys

i | z, θ
)
, with p

(
ys

i | z, θ
)

given by eq. (D.6), for
any afferent weight configuration V that emerges over the course of learning. The
joint distribution depends on the parameters W inh, V and b̂. While the synaptic
parameters W inh, V are directly accessible in the spiking network, the biases b̂ in
the prior must be determined differently. We calculated the biases b̂ offline such
that the prior exhibited the homeostatic target activity, i.e. 〈 zk 〉p(z | θ) = mk for all k.
This is a canonical choice since these are the biases b̂ a Bayesian observer would
determine from observing the network response. In panel D, optimal weights
were calculated from the generating input patterns xp

lj according to eq. (D.10). This
is possible since the data distribution p∗(y) is structurally similar to the model
distribution p (y | θ). For each of the seven input locations, each of the three local
network neurons was assigned to the best matching pattern of optimal weights. The
assignment was unambiguous, since each network neuron had clearly specialized
on one of the local input patterns, and determines the one-to-one mapping between
learned weights Vki and optimal weights plotted in panel D. For panels E and
G, four additional simulations were run with network parameters (V (t), b(t))
taken from different training time points t = 0 s, 1000 s, 3000 s, 10000 s. Identical
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100s-spike patterns were presented to the network in these four simulations. Panel
G shows 2.5 s of the input spike pattern alongside the network response for these
simulations. Panel F shows the corresponding afferent weights V (t) for the three
highlighted network neurons. For the 2-dimensional linear projection in panel E,
the input states y(t) of each 100s-simulation were sampled every 10 ms (i.e. 10000

data points per scatter plot) and projected onto the 2d plane. The color of each data
point is determined by the network response: red, green, blue if one the neurons
marked in panel A responded; and gray otherwise. The projection plane is spanned
by the two leading principle components (PCA) of those input samples the three
highlighted network neurons responded to at the end of learning, i.e., the PCA is
based on the colored samples in the rightmost panel. This biased selection only
concerns the choice of the projection plane with the aim to visually discern the
clusters of interest; the plotted data points are unbiased.

Figure 4: Plastic recurrent synapses integrate structural knowledge

The network consists of N = 7× 6× 6 input neurons and K = 7× 3 network
neurons. Network neurons are organized in 7 local populations. The 3 neurons
within a population share the same 6× 6 field of afferent connections. The afferent
fields of different populations are disjoint. Network neurons within the same
population share lateral inhibition. Network neurons, which belong to different
populations, maintain excitatory recurrent connections Wexc

kj ≥ 0.

For the spiking input, a simpler temporal input structure than in Figure 5.3 was
used since the focus of this simulation was set at the correlation structure of the
input beyond the range of individual input fields. There are three local activity
patterns xp

l , p = 1, 2, 3, referred to as the red, green and blue pattern, each consisting
of “vertical stripes” at shifted locations: xp

lj = 0.4 if b(j− 1)/3c mod 3 = (p− 1),
and 0.1 otherwise, with b·c denoting the floor function. To generate a global activity
pattern x, two (potentially identical) cue patterns xp

l were picked for the outermost
locations l = 1 and l = 7. Then the inner locations l = 2 - 6 were filled with a
consistent valid pattern, with “validity” referring to the condition to show a pattern
that differs from the cues. Thus, in case of two different cue patterns, the choice
of the inner pattern was fully determined (e.g. a red and green cue leads to blue
inner patterns); in case of two identical cues, the inner pattern could show either
of two valid patterns with all inner locations showing the same pattern (e.g. a
double-green cue leads to either all-red or all-blue inner patterns). Hence, both
cues (l = 1 and l = 7) must be taken into consideration to determine the validity of
inner patterns (2 ≤ l ≤ 6) during inference, and all inner patterns are supposed
to be of equal type. As in previous simulations, input Poisson spike trains were
generated such that the average value 〈 y 〉 matched the activity pattern x. Input
activity patterns x were presented for a fixed duration before the global activity
pattern switched: The patterns iterated over the nine possible cue combinations.
In case of differently colored cues the global pattern was presented for 500 ms; in
case of identical cues the two valid global patterns were presented for 250 ms each.
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Thus all cue combinations were presented for an equal amount of time. After all
cues were presented, the presentation was repeated.

For the learning experiments, the network was exposed to this spiking input for
25000 s. In total, three learning experiments were conducted with recurrent plastic-
ity being (a) governed by the theoretically optimal wake-sleep rule, (b) governed
by the simple heuristic rule, (c) switched off. In all simulations, afferent weights Vki
and intrinsic excitabilities bk were plastic. In (a) and (b) recurrent connections Wexc

kj
were plastic and restricted to positive (excitatory) weight values. For (a) “wake-sleep
learning”, the theoretically derived learning rule (D.34) was used with ηW = 0.05,
and prior samples being drawn from an independent sampling network which
shared its recurrent weights Wexc

kj with the learning network but maintained inde-
pendent (homeostatically regulated) biases and was not exposed to any input. After
learning, the covariances ckj were calculated from the posterior samples z(t) of the
last 1000s of the simulation. To obtain data points (Wexc

kj , ckj) for fitting the function
W(ckj), only excitatory synapses were considered that had a weight Wexc

kj > 0.01 at
the end of learning. This is to prevent distortions in the fit due to synapses between
negatively correlated neurons that would have developed negative weights during
wake-sleep learning (but were bounded to Wexc

kj ≥ 0 in the simulation). Fitting
the function (D.42) to this data yielded Wmax = 1.4113 and γ = 31.606 for the free
parameters. Data points and fitted function are shown in Fig. D.1. For (b) “heuristic
learning”, the fitted learning rule was used with ηW = 0.005. All recurrent weights
Wexc

kj converged to stable values. Weights connecting inner neurons (2 ≤ l ≤ 6),
that had specialized on equal activity patterns, settled at Wexc

kj ≈ 1.27. Weights
between cue neurons and compatible inner neurons settled at Wexc

kj ≈ 0.90. Weights
between cue neurons responsive to the same pattern settled at Wexc

kj ≈ 0.32. All
other weights settled close to zero (Wexc

kj < 0.003).

For the demonstration of inference in face of incomplete observations (panels E and
F), activity patterns x were generated as follows. Two cues were chosen at the outer
locations. These cues had increased contrast to ensure that the spike pattern at the
cue locations was unambiguous: xp

lj = 0.6 if b(j− 1)/3c mod 3 = (p− 1), and 0.1
otherwise (for l = 1 and l = 7). All inner locations l = 2 - 6 showed uninformative
uniform activity of moderate intensity: xl j = (0.6 + 0.1)/2 = 0.35 for all j. We
refer to the uninformative patterns as “gray” patterns. For each cue combination,
Poisson spike trains with 〈 y 〉 = x were presented to the network for 100 s. The
vertical bars in panel E and F show the mean activity 〈 zk 〉 of each network neuron
during the simulation given an unambiguous cue (panel E) and an ambiguous cue
(panel F).

The log-likelihood L(θ(t)) in panel D was estimated as follows. S = 10000 input
samples ys were randomly drawn from the training data as a proxy for p∗(y).
Furthermore, the network has 47 = 16384 possible z-states (zero or one active
neuron in each local population). Thus, the log-likelihood can be calculated via
L(θ) ≈ 1

S ∑s log ∑z p(z) ·∏i p
(
ys

i | z, θ
)

for each time point t and each network
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z, zk Network neurons k = 1, .., K Index for z
y, yi Input neurons i = 1, .., N Index for y
x, xi Activity patterns Ik ⊆ {1, 2, .., N} Afferent field (index set)
τ PSP and ref. time constant Pi ⊆ {1, 2, .., K} Projection field (index set)
ρk Network neuron firing rate uk Membrane potential
θ Model params Z Partition function prior
b̂, b̂k Prior bias vector b, bk Neuronal excitability
Ŵ , Ŵexc, Ŵ inh, Prior weight matrices W exc,W inh Exc. and inh. weight matrix
πk, πki Cluster center (Bernoulli) V , Vki Afferent weights
π0, π0i Default hypothesis V0, V0i Exp. family default hypo.
Ak, Aki Log-partition (likelihood) m, mk Target activation
h(y), hi(yi) Base measure (likelihood) β, βk Hom. Lagrange mult.
t Current time T Total simulation time
p (· | θ) Model related prob. distr. δt Simulation time step
p (z | y, θ) Conditional probability δWkj, δVki, δbk Discrete time plast. updates
p∗(·) Data related prob. distr. ηb, ηV , ηW Learning rates
q(·), q∗(·) Variational posterior φϑ, φopt LTD term in rec. learning
〈 x 〉p(x) Expected value Wopt

kj Opt. weights from WS learning
Q Homeostatic constraint set W(ckj) Simple rule fit function
ckj Var. posterior covariance γ, Wmax Simple rule parameters
L(θ) Log-likelihood λ Lagrange mult. for norm. to 1

F Gen. EM lower bound H(p) Entropy
DKL (q || p) Kullback-Leibler divergence Λ, Ψ Lagrange and Dual function

Table D.2: List of symbols used in Appendix D.

type (a)-(c). The joint distribution depends on the parameters W exc, W inh, V and b̂.
While the synaptic parameters W exc, W inh, V are directly accessible in the spiking
network, the biases b̂ in the prior must be determined differently. We calculated the
biases b̂ offline for each weight configuration (W exc(t), W inh) such that the prior
matched the homeostatic target activity, i.e. 〈 zk 〉p(z | θ) = mk. The log-likelihood is
shown only for the first 10,000s of the simulation in order to highlight the early
stage of learning.

Figure 5: Emergence of excitatory subnetworks in neural sheets

The network consists of N = 24× 24 input neurons and K = 12× 12 network
neurons. Network neurons are organized in a sparse grid with twice the distance
of inputs. Each network neuron maintains afferent connections with 6× 6 inputs,
such that the input field of neighboring neurons is shifted by two. Lateral inhibition
has a range of 2 (in the network grid; maximum norm). Additionally, any pair of
network neurons (beyond the range of inhibition) maintains a reciprocal excitatory
connection Wexc

kj with 25% probability. All excitatory connections are plastic with
initial values Vkj(t = 0) = 0 and Wexc

kj (t = 0) = 0.

Spiking input is composed of three prototypic rate patterns xp
i , 1 ≤ p ≤ 3 (grid,

diagonal stripes, checkerboard), occurring locally at random locations (cp. panel
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B). Activity patterns are binary with a high rate of xp
i = 0.5 and a low rate of

xp
i = π0i = 0.1. The diameter of local patterns is variable, but exceeds the 6× 6

input field of individual network neurons. Two randomly selected (and possibly
equal) patterns are presented simultaneously at non-overlapping locations. New
patterns and locations are drawn every 100ms during training. All inputs not
covered by a pattern fire with the background activity 〈 yi 〉 = 0.1. Homeostatic
target activations mk = 0.025 are chosen such that the network explains on average
approx. 130 inputs; this is roughly half of the average area covered by rate patterns
xp

i , i.e., ca. 50% of the input is on average being explained by the network.

The network was first trained with wake-sleep learning and variable learning
rates until all parameters had converged to stable values. The simple learning rule
was fitted to the resulting (Wexc

kj , ckj)-pairs just as for Fig. 5.4, yielding parameters
Wmax = 2.7049 and γ = 733.69. See Fig. D.1 for data and fitted function W(ckj).
The high value of the sensitivity γ, compared to Fig. 5.4, likely originates from the
generally much lower covariance ckj, which in turn arises from the lower average
network activity mk.

For the subsequent spiking network simulation with the simple plasticity rule, a
new network with different connected pairs of network neurons was generated.
Thus, the extracted plasticity rule is only tailored to the general learning setup,
but not to a specific network instance. The total simulation time was T = 10, 000s.
Learning rates were set to quite high values (ηb = 10, ηV = 2, ηW = 1) since
the focus of this simulation was on the general structure of emerging weight
configurations, rather than on numerical precision. After training, recurrent weights
covered the entire range of positive weight values with max[Wexc

kj ] = 2.275. To verify
that the emergent weight configuration was stable even in face of high learning
rates, the simulation was continued for another 10, 000s, showing no signs of
instability.

Details to the plotting: For panels C and D, the trained network was exposed to
spiking input with patterns switching every 500ms. This was to obtain more stable
estimates for the “expected input” 〈 ygen 〉 in panel D. For panel E, all neurons
could unambiguously be labeled to be responsive to one of the three local patterns,
since their afferent weights Vki showed an evident preference for either one of
them. Panel F uses the euclidean distance in the lattice coordinates of the network
neurons, i.e., directly neighboring network neurons have distance one.
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Mrsic-Flogel (2011). “Functional specificity of local synaptic connections in
neocortical networks.” In: Nature 473.7345, pp. 87–91 (cit. on p. 109).

Koller, D. and N. Friedman (2009). Probabilistic Graphical Models: Principles and
Techniques. MIT Press (cit. on p. 34).

Körding, K. P. and D. M. Wolpert (2004). “Bayesian integration in sensorimotor
learning.” In: Nature 427.6971, pp. 244–247 (cit. on pp. 3, 14, 38, 76).

Kuzum, D., R. G. Jeyasingh, B. Lee, and H.-S. P. Wong (2011). “Nanoelectronic
programmable synapses based on phase change materials for brain-inspired
computing.” In: Nano letters 12.5, pp. 2179–2186 (cit. on p. 50).

Lansner, A. (2009). “Associative memory models: from the cell-assembly theory
to biophysically detailed cortex simulations.” In: Trends in neurosciences 32.3,
pp. 178–186 (cit. on pp. 57, 86, 109).

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-based learning
applied to document recognition.” In: vol. 86. 11. IEEE, pp. 2278–2324 (cit. on
pp. 42, 63, 146).

Lee, D., D.-j. Seong, H. jung Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun,
S.-o. Seo, S. Heo, et al. (2006). “Excellent uniformity and reproducible resis-

174



Bibliography

tance switching characteristics of doped binary metal oxides for non-volatile
resistance memory applications.” In: Electron Devices Meeting, 2006. IEDM’06.
International. IEEE, pp. 1–4 (cit. on p. 70).

Lee, J. H., X. Ma, and K. Likharev (2006). “CMOL Crossnets: Possible neuro-
morphic nanoelectronic circuits.” In: Advances in Neural Information Processing
Systems 18, p. 755 (cit. on p. 73).

Lee, T. S. and D. Mumford (2003). “Hierarchical Bayesian inference in the visual
cortex.” In: J. Opt. Soc. Am. A 20.7, pp. 1434–1448 (cit. on pp. 3, 14, 15).

Legenstein, R. and W. Maass (2014). “Ensembles of Spiking Neurons with Noise
Support Optimal Probabilistic Inference in a Dynamically Changing Environ-
ment.” In: PLoS computational biology 10.10, e1003859 (cit. on pp. 77, 112).

Leopold, D. A., M. Wilke, A. Maier, and N. K. Logothetis (2002). “Stable
perception of visually ambiguous patterns.” In: Nat Neurosci 5, pp. 605–609

(cit. on pp. 30, 34, 35).
Litvak, S. and S. Ullman (2009). “Cortical Circuitry Implementing Graphical

Models.” In: Neural Comput 21, pp. 1–47 (cit. on p. 15).
Liu, Z.-W., U. Faraguna, C. Cirelli, G. Tononi, and X.-B. Gao (2010). “Direct

evidence for wake-related increases and sleep-related decreases in synaptic
strength in rodent cortex.” In: The Journal of Neuroscience 30.25, pp. 8671–8675

(cit. on p. 96).
Lochmann, T. and S. Deneve (2011). “Neural processing as causal inference.” In:

Current Opinion in Neurobiolospatial aspectgy 21.5, pp. 774 –781 (cit. on p. 79).
Malenka, R. C. and M. F. Bear (2004). “LTP and LTD: an embarrassment of riches.”

In: Neuron 44.1, pp. 5–21 (cit. on p. 50).
Markram, H., W. Gerstner, and P. J. Sjöström (2012). “Spike-timing-dependent
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lier, T. Serrano-Gotarredona, and B. Linares-Barranco (2011). “On spike-
timing-dependent-plasticity, memristive devices, and building a self-learning
visual cortex.” In: Frontiers in neuroscience 5 (cit. on pp. 52, 54).

Zariwala, H., L. Madisen, K. Ahrens, A. Bernard, E. Lein, A. Jones, and H.
Zeng (2011). “Visual Tuning Properties of Genetically Identified Layer 2/3

Neuronal Types in the Primary Visual Cortex of Cre-Transgenic Mice.” In:
Frontiers in Systems Neuroscience 4.00162 (cit. on p. 108).

Zemel, R., Q. J. M. Huys, R. Natarajan, and P. Dayan (2005). “Probabilistic
computation in spiking populations.” In: Proceedings of the 17th Conference on
Advances in Neural Information Processing Systems; December 2004; Vancouver,
Canada. NIPS 2004 (cit. on pp. 4, 35).

Zemel, R. S., P. Dayan, and A. Pouget (1998). “Probabilistic interpretation of
population codes.” In: Neural computation 10.2, pp. 403–430 (cit. on pp. 4, 77,
111).

181


