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Abstract

The state of the art in motor imagery brain-computer interfaces (BCIs) is to use
band power features along with optimized spatial filters such as common spatial
patterns (CSP). However, this approach does not take information about causal
connectivity within the brain into account for classification. The aim of the thesis
is to use information about causal interactions and apply connectivity features
to applications such as BCIs or functional brain monitoring. Such applications
require single-trial features in order to operate online. Thus, a framework for
single-trial connectivity estimation using vector autoregressive (VAR) models was
implemented at the core of this thesis. The framework allows use of connectivity
features in BCIs or online visualization systems.

Two key issues for single-trial connectivity estimation were identified: appropriate
source selection and regularization of the VAR models. By taking these issues into
consideration, single-trial connectivity estimation was successfully applied in motor
imagery BCI simulations. In consequence, the connectivity measures full frequency
directed transfer function (ffDTF) and direct directed transfer function (dDTF)
achieved classification results similar to band power features. Furthermore, an
online connectivity visualization system was implemented and successfully tested
with motor execution and resting tasks. Only three other studies used effective
connectivity measures in BCI related experiments, which is likely caused by the
inherent difficulties of single-trial connectivity estimation. This thesis tackled these
difficulties and demonstrated successful online application of the methods, which
opens the door for future research in the direction of BCIs and other applications
that utilize connectivity measures.
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Kurzfassung

Der aktuelle Stand der Technik bei Hirn-Computer-Schnittstellen (sogenannten
brain-computer interfaces; BCIs) basiert auf der Analyse von Bandleistung der
Hirnströme in Kombination mit optimierten räumlichen Filtern (z.B. common
spatial patterns (CSP)). Veränderungen in den jeweiligen Frequenzbändern (zum
Beispiel Alpha, 8-13 Hz) werden unter anderem durch Bewegungsvorstellung
hervorgerufen. Aufgrund dieser Veränderungen können Steuersignale abgeleitet
werden. Allerdings kann diese Herangehensweise Informationen über kausale
Verbindungen (Konnektivität) zwischen Gehirnregionen nicht nutzen. Das Ziel
dieser Dissertation ist es daher, Informationen über diese kausalen Verbindungen
zugänglich zu machen, um sie für BCIs oder andere Echtzeitanwendungen zu
nutzen.

Da diese Anwendungen ”online“funktionieren sollen, ist es erforderlich, dass die
Berechnung von Merkmalen aus einzelnen und relativ kurzen Zeitfenstern (Single-
Trial), erfolgen kann. Im Zuge dieser Dissertation wurde ein System entwickelt,
das es ermöglicht Single-Trial-Konnektivität für BCIs zu nutzen oder diese online
zu visualisieren.

Zwei grundlegende Probleme bei der Implementierung von Single-Trial-Konnektivität
wurden behandelt. (1) Die Bestimmung von geeigneten Signalquellen im Gehirn,
und (2) die Regularisierung der zugrundeliegenden mathematischen Modelle.
Damit konnte Single-Trial-Konnektivität in BCI-Simulationen erfolgreich eingesetzt
werden. Die Konnektivitätsmaße ”full frequency directed transfer function“(ffDTF)
und ”direct directed transfer function“(dDTF) lieferten mit Bandleistung gleichw-
ertige Klassifikationsgenauigkeit. Zudem wurden die entwickelten Methoden zur
Onlinevisualisierung von Konnektivität während EEG-Messungen eingesetzt.

Bisher haben nur wenige Studien kausale Konnektivität in BCI-Experimenten einge-
setzt. Dies liegt vermutlich an den Problemen die die Berechnung von Single-Trial-
Konnektivität bereitet. In dieser Dissertation werden Lösungen für diese Probleme
präsentiert und die erfolgreiche Onlineanwendung der Methoden demonstriert.
Damit wird der der Weg für zukünftige Forschung in Richtung Anwendung von
Onlinekonnektivität geebnet.
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1. Introduction

1.1. Brain-Computer Interfaces

1.1.1. Overview

Human communication requires physical interaction with the environment in order
to send messages to other individuals, who in turn need to be able to understand
and interpret the messages. Such messages may take the form of short texts typed
into a cell phone, or more traditionally, manifest as modulated pressure waves in air,
commonly known as speech. Other forms of communication include body language
or gestures. Different as they seem, these forms of communication have a common
denominator: they rely on the ability to voluntarily or unconsciously control the
motor system. A person’s ability to do so can be impaired by disorders that affect the
central nervous system (e.g. stroke [1], cerebral palsy [2], trauma [3]), the peripheral
nervous system (e.g. amytrophic lateral sclerosis (ALS) [4], trauma [5]), or the
muscles themselves. People most severely affected, who have lost all possibilities
of communication, are considered to be in a complete locked-in state [6]. Such
patients could benefit from a device that provides a non-muscular channel for
communicating or exerting control over the environment [7, 8]. If such a device
relies on brain activity directly it is called a brain-computer interface (BCI) [9, 10].

Apart from the medical field, the gaming industry and the military are interested
in the possibilities offered by BCIs [11, 12]. They explore new ways to control
computer games and provide additional input sources such as brain switches.
Other applications include passive monitoring of an operator’s brain state for
arousal or weariness [13] or utilizing the brain’s contextual response for image
search [14], where even a multi-brain BCI was recently developed for detecting
targets in a stream of satellite images [15].

1.1.2. Definition of BCI

A BCI is a communication device that interprets brain activity and can be used
to control other assistive devices such as spelling applications [16, 6], neuropros-
theses [17, 18, 19], or wheelchairs [9, 20]. A decade ago BCIs were defined to use
signals directly recorded from the brain, use goal-directed behavior (i.e. the user
needs to actively seek an action), operate online, and provide feedback [9]. A more
recent definition focuses on the application of BCIs. According to this definition a
BCI must replace, restore, enhance, supplement, or improve central nervous system
(CNS) output by measuring and converting CNS activity [10]. This definition does

1



1. Introduction

not require intentional control and therefore includes so-called passive BCIs [13].
Applications of passive BCIs include attention monitoring of drivers and pilots, or
systems that react on the emotional state of their user [21]. A system that combines
other assistitve devices with a BCI or different types of BCI is a hybrid BCI [22,
23, 24]. Hybrid BCIs can combine multiple inputs or switch between inputs if
they degrade. For example, a hybrid BCI could switch from joystick to BCI mode
if muscles become fatigued in the user, and switch back to joystick if the user’s
concentration level required for BCI operation drops [25].

1.1.3. Data Acquisition

The brain signals typically used in BCI research are electroencephalogram (EEG),
magnetoencephalogram (MEG), electrocorticogram (ECoG), local field potentials
(LFPs), neuron spiking activity (SA), near-infrared spectroscopy (NIRS), and func-
tional magnetic resonance imaging (fMRI). While EEG, ECoG, and MEG measure
the electrical activity from large populations of neurons, NIRS, and fMRI measure
the metabolic activity. Electrical activity measured by the aforementioned methods
is thought to be primarily the result of ionic currents caused by synchronously
occuring postsynaptic potentials [26, 27]. In contrast, metabolic activity measures
local oxygen consumption of the CNS. Naturally, electrical activity occurs at faster
time scales (∼milliseceonds) than metabolic activity (∼seconds) [28].

From a practical point of view, MEG and fMRI belong to the more unwieldy
data acquisition methods. Both require expensive and stationary machinery for
conducting measurements, which makes them practically useless outside the lab.
At the other end of the economic spectrum, EEG and NIRS require only light
measurement equipment that is relatively portable and inexpensive. As invasive
methods ECoG, LFP, and SA take a rather unique place among the acquisition
methods. For ECoG an electrode grid is placed on the surface of the brain, which
gives bette spatial resolution than EEG but comes at a high risk for the patient. Such
grids are rarely implanted for the purpose of BCI research. Instead, they are used in
epilepsy treatment to find epileptogenic locations for surgery [29]. Thus, the grids
are only implanted for a limited time and there is no guarantee that BCI relevant
regions of the cortex are covered [30]. LFPs and SA can measure the activity of
small groups or even single neurons by inserting micro electrodes into the neuronal
tissue. Thus, these methods have excellent spatial and temporal resolution but are
highly invasive. However, studies in monkeys [31, 32] and humans [33, 34] showed
that BCI operation is possible with signals recorded from micro electrode arrays,
even years after implantation [35].

EEG is the acquisition method most widely used in BCI related publications [36].
The EEG is well understood and exposes neurophysiological phenomena that are
directly applicable to BCIs (see section 1.1.5). Therefore, the studies that comprise
this thesis focuses on EEG.

2
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(a) Equivalent dipole (b) Scalp potential

Figure 1.1.: Dipolar model of the EEG. (a) The EEG is modeled as a discrete set
of cortical dipoles that correspond to ensembles of neurons. Inhomo-
geneities in the conductivity of tissues and irregular shape of source
areas lead to smeared scalp potentials, but the dipolar distribution is
still visible in the EEG component shown in (b).

1.1.4. An Electrophysiological Model of the EEG

The EEG is only measured at a considerable distance from where it is generated.
Thus, activity of a neuron ensemble only contributes to the EEG if the responsible
neurons are regularly arranged and activated more or less synchronously. A typical
regular arrangement is found in the pyramidal neurons of the cortex, whose
dendrites are arranged perpendicular to the cortical surface. Postsynaptic potentials
in ensembles of those neurons result in a laminar net current along the dendrites. At
a macroscopic level, the electrical field generated by this currents behaves roughly
like a dipole layer [27]. However, the electrical field is distorted by inhomogeneities
in the conductive media (cerebrospinal fluid, skull, and scalp).

For neuroimaging purposes the cortical surface is often modeled as a discretized
dipole layer [37]. However, the number of dipoles typically exceeds the number
of EEG electrodes. Thus, estimating the activity of these dipoles from the EEG is
an ill-posed problem [38]. An even simpler model replaces the dipole layer of a
neuron ensemble with one equivalent dipole [39]. This model assumes that the
EEG is made of a discrete set of such dipoles (Figure 1.1). Most of the work in this
thesis is based on this simplified model assumption.

1.1.5. Neurophysiological Phenomena

Two neurophysiological phenomena are commonly utilized in BCIs based on EEG:
event-related potentials (ERPs) and spontaneous EEG. ERPs are associated with
the brain’s response to a variety of stimuli or events. An example of ERPs are
movement-related cortical potentials (MRCPs) [40], which occur in relation to
movement intention. Sensory evoked potentials (EPs) are a subset of ERPs that are
caused by sensory (visual, auditory, somatosensory) stimuli [41]. These potentials
often require multiple repetitions of a stimulus to become distinguished from the
background activity in the brain. While EPs require external stimuli, oscillations

3
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Figure 1.2.: Event-related desynchronization during right hand motor imagery (90

trials of one subject). See B.3 for a description of the measurement pro-
cedures. Top: ERD map of Laplacian channel C3 where only significant
(p < 0.001) deviations from the baseline are shown. Desynchronization
is clearly visible in the mu and beta bands. Center: time course of ERD
in the subject specific mu band (10-13 Hz) with mean and standard
error of the mean (sem). Bottom: scalp distribution of ERD/ERS in the
mu band over time.

occur naturally in the brain. The most prominent oscillations are the alpha (8-
13 Hz), mu (8-12 Hz), and beta (14-30 Hz) rhythms [42, 43]. Distinguishing these
rhythms by the frequency bands they occur in dates back to the early days of EEG
research. However, the EEG rhythms turned out to be more complicated than this.
For example the mu rhythm is different from the alpha despite being located in the
same frequency band. Furthermore, the mu rhythm can be subdivided in a lower
(8-10 Hz) and an upper (10-12 Hz) mu rhythm [44]. The alpha rhythm is generally
associated with resting and eyes closed conditions. The mu rhythm is associated
with the resting-state of motor areas and typically desynchronizes contralaterally
during motor-related activity such as actively or passively executed movement
and even expected, intended, attended or imagined movement. Similarly, the beta
rhythm is known to synchronize shortly after a motor activity (post movement
beta synchronization [45]). Additionally, harmonics of the alpha or mu rhythms
can sometimes be observed that fall in the frequency range of the beta band.
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1. Introduction

Desynchronization and synchronization of motor rhythms is known as event-
related desynchronization (ERD) and event-related synchronization (ERS). These
occur during executed or imagined movement for many people. Figure 1.2 shows a
prime example of mu ERD during motor imagery [46]. A BCI can use these band
power (BP) changes for control by distinguishing between two or more different
imagined movements such as left hand, right hand, or feet [47].

1.1.6. Data Processing

Preprocessing ClassificationFeature
Extraction

Application
Interface

Application

Brain-Computer Interface

Signal
Acquisition

Signal Processing

Feedback

Figure 1.3.: Typical processing loop of a BCI.

A typical signal processing pipeline of BCIs comprises preprocessing, feature
extraction, and classification stages (Figure 1.3). In the preprocessing stage, signals
are filtered in the spatial and/or frequency domain. Spatial filters usually create a
linear mixture of existing signal channels; popular techniques include bipolar and
Laplace filters, or common spatial patterns (CSP) [48, 49]. After preprocessing, the
data is further processed in the feature extraction stage. To date, most non-invasive
BCIs use features derived from individual channels or linear combinations of
channels [36]. Commonly used feature types include BP [50, 51, 52], autoregressive
(AR) model coefficients [53, 54], and wavelets [55]. Using suitable classification
algorithms in the next stage, these features allow BCIs to discriminate between
different brain states or mental tasks. Commonly used classifiers include simple
thresholds, linear discriminant analysis (LDA) [56, 57], support vector machines [58],
and neural networks [59]. However, these features do not contain information about
causal relationships between channels. This thesis shows that such information
can provide useful features for BCIs. Although this has been studied before [60,
61, 62], these articles lack important details or are based only on artificial data,
which makes their results neither reproducible nor very conclusive. In contrast,
throughout this thesis a rigorous framework is developed that supports evaluation
of causality features in BCIs.
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(a) Structural (b) Functional (c) Effective

Figure 1.4.: Examples of connectivity categories: (a) Structural connectivity mea-
sured with diffusion tensor imaging [67], (b) Functional connectivity
measured with functional magnetic resonance imaging [68], (c) Effec-
tive connectivity measured with EEG.
(a) Source: Wikimedia Commons http://commons.wikimedia.org/wiki/File:White_Matter_Connections_Obtained_with_

MRI_Tractography.png, License: Creative Commons Attribution 2.5 Generic http://creativecommons.org/licenses/by/2.

5/deed.en

(b) Source: Wikimedia Commons http://commons.wikimedia.org/wiki/File:Default_mode_network-WRNMMC.jpg, License:
Public Domain

1.2. Connectivity

1.2.1. Overview

Each of the human brain’s 20 billion neurons connects on average to about 7000

other neurons via chemical synapses [63]. Only by forming such vast and dynamic
networks, groups of relatively simple neurons can perform complex tasks such as
learning, motor control, or writing a PhD thesis. Obviously, inter-connectivity is
an important characteristic of the brain. Connectivity in the brain can be observed
at different scales; from synaptic connections that link individual neurons up to
brain regions linked by fiber pathways. With steadily increasing computational
power and improvements in neuroimaging techniques, scientists are now able to
study brain connectivity at different time and spatial scales. Relevant examples for
connectivity research include anatomical tracing of white matter fibers [64] and
measuring functionally coupled brain activity [65].

1.2.2. Categories of Brain Connectivity

Brain connectivity is fundamentally categorized as structural, functional, or effective
connectivity (Figure 1.4). While structural connectivity is concerned with anatomical
structures such as fiber pathways, functional connectivity is related to the activity of
brain areas, and is often expressed in terms of correlations between the brain signals
of different areas. However, functional connectivity does not provide information
about the direction of interaction. Inspecting functional connectivity in detail may
reveal causal relations between correlated brain areas. Such causal or directed
interaction is measured with effective connectivity [66].

6

http://commons.wikimedia.org/wiki/File:White_Matter_Connections_Obtained_with_MRI_Tractography.png
http://commons.wikimedia.org/wiki/File:White_Matter_Connections_Obtained_with_MRI_Tractography.png
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://commons.wikimedia.org/wiki/File:Default_mode_network-WRNMMC.jpg
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1.2.3. Connectivity Estimation

Functional connectivity measures such as coherence or phase coupling are typi-
cally computed from the auto- and cross-spectra of signal pairs [69]. Accordingly,
effective connectivity (causality) can be inferred to some extent from spectral phase
differences between signals. However, this can lead to misinterpretations in net-
works that contain more than two sources. Causality analysis in general is very
susceptible to unobserved sources or confounders [65]. Thus, causality is often
modeled with vector autoregressive (VAR) models that generalize AR models to
multivariate signals. VAR models describe the causal interactions of all observed
sources together. This section explains these models and discusses how to obtain
connectivity measures from VAR models.

Autoregressive Models

AR models (1.1) are mathematical models that predict a signal or time series from
its own past. The current sample x(n) is predicted by the sum of P previous
samples, each weighted with a weight ak, and an additive white noise term ε(n)1.

x(n) =
p

∑
k=1

akx(n− k) + ε(n) (1.1)

An interesting interpretation of AR models is that they form an infinite impulse
response (IIR) filter of order p. This filter takes a white noise signal ε(n) as input,
and produces an output signal whose spectrum resembles that the original signal x.
Thus, by fitting an AR model to a signal we effectively model the signal’s spectrum.
This has an important application in power spectral density (PSD) estimation.
Parametric PSD estimation is a way of estimating a signal’s PSD by fitting an AR
model to the signal to estimate the spectrum [70]. The model order p determines
the number of spectral peaks the estimate can have and is therefore a parameter
for the smoothness of the estimated spectrum, as illustrated in Figure 1.5.

Vector Autoregressive Models

AR models can be extended to model multiple signals simultaneously (1.2). x[n]
is a vector containing the current sample of each signal, e[n] is an additive vector
of white noise, and B(k) are matrices that describe how previous samples x[n− k]
contribute to the current sample. Thus each signal can potentially contribute to any
other signal. This makes fitting such models more complex, but has the advantage

1In the AR literature the noise term is often restricted to Gaußian white noise. However, Gaußian-
ity is not strictly a requirement. It mainly simplifies the mathematics of fitting the model in a
least-squares sense. Later in this thesis, AR models will be applied to independent components,
which would contradict an assumption of Gaußianity because independent component analysis (ICA)
cannot separate multiple Gaußian components.
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Figure 1.5.: Autoregressive power spectrum estimation. The figure shows the PSD
of a 10 s EEG window with 100 s−1 sample rate at location C3. The
PSD was estimated from the FFT of the signal, and from autoregressive
models with orders 3 and 15. The AR-PSD are much smoother than
the FFT-PSD estimates. However, a very low model order only captures
the 1/ f -characteristic of the EEG spectrum, while a higher model order
can capture more spectral peaks, such as the 10 Hz alpha peak in
this example. Note that the spurious peak below 3 Hz is caused by a
high-pass filter cutting off the lower end of the spectrum.

8



1. Introduction

of capturing causal relations between the signals. In other words, a VAR model is
time-domain model of functional connectivity between multiple signals.

x[n] =
p

∑
k=1

B(k)x[n− k] + e[n] (1.2)

Model Fitting

Methods to estimate AR or VAR coefficients from data include solving the Yule-
Walker equations [71, 72], Burg’s method [70], or least squares regression. The latter
is performed by rewriting the the AR/VAR model as a set of linear equations of
the form Ax = b. Regardless of which method is used, the number of unknown
coefficients is γ = m2 p, where m is the number of signal (1 for an AR model), and
p is the model order. The amount of independent expressions is approximately
β = mn, where n is the length of the estimation window in samples. Thus, the
window must be longer than nmin = mp. However, in practice, the window length
should be at least 5-10 times larger in order to get reliable estimates [73]. Consider
typical values of m = 21 signals, model order p = 15, and a sample rate of 100 Hz:
the estimation window length should be at least 3.15 s, ideally more than 15 s.
A time resolution of several seconds poses a severe limitation to data analysis.
However, the estimation window can be shortened by utilizing multiple trials.
Instead of one long window multiple shorter windows that correspond to the same
condition are used to provide additional data [74]. The minimum window length
becomes nmin = mp/t, where t is the number of trials. In consequence, the window
length can be reduced significantly with a sufficient number of trials. This approach
can be understood as a way to average VAR estimates over multiple trials.

Connectivity Measures

VAR coefficients can be interpreted as filter coefficients. The diagonal elements
of B(k) form IIR filters where the input is noise and the output is a signal. The
off-diagonal elements form finite impulse response (FIR) filters where the input is
a signal and the output is another signal. A filter is represented in the time domain
by its impulse response and in the frequency domain by its transfer function. Like
conventional filters, VAR models can be represented in the frequency domain.
Various combinations and normalizations of frequency domain VAR coefficients
lead to different connectivity measures (Table 1.1). Some of these measures depend
on the noise covariance matrix, which ideally is a diagonal matrix.

Measures such as the coherence (COH), partial coherence (pCOH), or even cross
spectral density (S) are symmetric, which means they do not show information
about direction or causality. Thus, they measure functional connectivity. Measures
from the partial directed coherence (PDC) or the directed transfer function (DTF)
families can be asymmetric, which allows them to measure causality (effective
connectivity). However, the DTF does not distinguish between direct and indirect
connections (Figure 1.6).
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1. Introduction

Table 1.1.: Summary of connectivity measures. Strictly speaking, A, H, S and G are
no connectivity measures, but were included for completeness.

Measure Definition Description
A(z) = I−∑

p
k=1 B(k)z−k Spectral VAR coefficients [73]

H(z) = A(z)−1 Multivariate transfer function [73]
S(z) = H(z)ΣeH(z)T Cross-spectral density [73]
G(z) = A(z)TΣ−1

e A(z) Inverse cross-spectral density [73]

COHij(z) = |Sij(z)|√
Sii(z)Sjj(z)

Coherence [69]

pCOHij(z) = |Gij(z)|√
Gii(z)Gjj(z)

Partial coherence [75]

PDCij(z) = |Aij(z)|√
AT

:j (z)A:j(z)
Partial directed coherence [76]

PDCFij(z) = |Aij(z)|√
AT

:j (z)Σ
−1
e A:j(z)

PDC factor [76]

GPDCij(z) = |Aij(z)|
σi

√
AT

:j (z)diag(Σe)−1A:j(z)
Generalized PDC [77]

DTFij(z) = |Hij(z)|√
Hi:(z)HT

i: (z)
Directed transfer function [78]

ffDTFij(z) = |Hij(z)|√
∑z Hi:(z)HT

i: (z)
Full frequency DTF [79]

dDTFij(z) = pCOHij(z) · ffDTFij(z) Direct DTF [79]

GDTFij(z) =
σj|Hij(z)|√

Hi:(z)diag(Σe)HT
i: (z)

Generalized DTF [77]

10



1. Introduction

x1 x2

x3 x4

ground truth

x1 x2

x3 x4

COH

x1 x2

x3 x4

pCOH

x1 x2

x3 x4

PDC

x1 x2

x3 x4

DTF

x1 x2

x3 x4

dDTF

Figure 1.6.: A qualitative example of various connectivity measures. The ground
truth consists of four sources xi, where x3 is causally related to x2,
which in turn is related to x1. Coherence (top middle) only reveals
that some of the sources are related, but gives no information about
direction or indirect connections. Partial coherence (top right) lacks
directional information but only shows direct connections. Partial di-
rected coherence (bottom left) shows only direct connections and their
direction, while the directed transfer function (bottom middle) also
shows indirect connections. The direct DTF (bottom right) resolves
only direct connections and their direction. All measures have different
normalizations that lead to different connectivity spectra, which is not
shown in this figure.
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Figure 1.7.: Electrical activity at the cortex spreads to multiple electrodes. Each of
the large arrows corresponds to an entry in the mixing matrix M. The
original signals at the cortex should be modeled with a VAR model
instead of trying to interpret connectivity in the mixture of signals at
the electrode sites.

1.2.4. Volume Conduction

If a VAR model is unable to explain some interactions between signals, these are
expressed as interactions between elements of the residual noise e. In other words, if
there are correlations in the noise there are also correlations in the signals, but these
correlations are not explained by the VAR model. However, ideally all elements of e
are mutually independent, in which case all relations between signals are explained
by the VAR model. When fitting VAR models to EEG data, a common cause for
dependencies in the residual noise is volume conduction. Electrical signals spread
from cortical sources almost instantly to multiple electrodes (Figure 1.7). However,
this instantaneous spread is not modeled by VAR models and leads to correlations
in the residual noise. This impedes interpreting actual relations between the signals
because the relations are only partially explained by the VAR model.

The problem of volume conduction has been recognized and addressed in the
literature [80, 81, 82, 83, 84, 85, 86, 87]. Three approaches are predominant: de-
riving measures that are invariant to volume conduction [80, 82, 87], adding an
instantaneous term to the VAR model [83, 84, 85], and transforming the estimation
problem into source space [81, 86]. The first two approaches implicitly assume that
the sources of brain signals coincide with the EEG electrode locations. However,
EEG electrodes are placed on the surface of the scalp, whereas the electrical signals
originate from the brain, which is located inside the skull. Transforming the estima-
tion into source space is done by inversely modeling the way signals spread from
the brain to the EEG electrodes, and subsequently finding connectivity between
actual brain sources.
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Extended VAR Models

Erla et al. [83] and Faes et al. [84] introduced an extension to VAR models by includ-
ing an instantaneous term (1.3) in the model equation. This term can model volume
conduction under certain conditions. However, solving for B(0) is ambiguous. The
authors worked around this ambiguity by imposing a triangular structure on B(0).
This structure implies that volume conduction can occur only in certain directions
that depend on how the signals are ordered. This ordering is a useful assumption
if EEG channels are sampled in sequential order. However, sequential sampling
interferes with causality analysis. Thus, connectivity analysis on sequentially sam-
pled data is a questionable approach. Furthermore, modern amplifiers typically
sample all channels simultaneously or re-align the data to correct for the sampling
sequence. For these reasons, extended VAR models are not further considered in
this thesis.

x[n] = B(0)x[n] +
p

∑
k=1

B(k)x[n− k] + e[n] (1.3)

The VAR-Mixing Model

By modeling the EEG with a VAR model as in (1.2) or (1.3) signals are implicitly
assumed to be generated directly at the EEG electrode locations. In reality however,
the EEG is generated in the cortex, which is separated from the EEG electrodes by
layers of tissue such as skin and bone. A practical model of the EEG is described
in section 1.1.4. Cortical sources representing ensembles of neurons are modeled
in (1.4). Activations of cortical sources s are modeled by a VAR model, and the
signals x measured at the EEG electrode sites are related to these activations by the
mixing matrix M (often referred to as Leadfield matrix) [81].

s[n] =
p

∑
k=1

B(k)s[n− k] + e(n) (1.4a)

x[n] = Ms[n] (1.4b)

Here, model fitting requires an additional step: estimation of the mixing matrix
M and respective unmixing matrix U. These matrices can be obtained in two
ways: (1) from electrical forward models that model the conductivity and shape of
different tissues in the head, electrode positions, and current sources, or (2) from
EEG data alone with blind source decomposition. Electrical forward models math-
ematically describe how signals propagate from distributed sources in the brain
to the EEG electrodes. The equations of the forward model directly correspond to
the mixing matrix. However, the unmixing matrix can only be obtained by solving
the inverse problem, which does not have a unique solution. Various methods to
solve the inverse problem have been proposed. Among them are sLORETA, beam
forming, or minimum norm estimation [37]. ICA takes a different approach by
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decomposing the EEG into a discrete set of independent components. Some of
these ICs relate to artifacts such as eye blinks or muscle activity, but many are of
cortical origin. These latter components often have scalp distributions that resemble
dipolar sources in the cortex [39] (similar to Figure 1.1b). This thesis focuses on
the ICA-based blind source decomposition approach for estimating the unmixing
matrix.

The most straight-forward way to obtain source space VAR estimates is to first
transform the EEG signals x into source space signals s with ICA. Subsequently,
the VAR model is fitted in source space. This approach was taken in the second
paper contributing to this thesis [88]. However, there is a drawback to this method.
ICA maximizes independence between the sources, which interferes with the
dependence introduced by the VAR process. While this does not in principle
interfere with classification (no information is lost in the linear transform), it may
invalidate interpretation of connectivity patterns.

Improved source space estimates are obtained by MVARICA, which first fits a VAR
model in EEG space, and reconstructs the mixing process by applying ICA to the
model’s residuals [81]. This approach might seem counter-intuitive at a first glance,
but it is important to recognize that a VAR process can be transformed by any
mixing matrix M. If MTM is non-singular the models are equivalent2. Thus, the
VAR model fitted in EEG space is equivalent to a VAR model fitted in source space.
Only the interpretation of connectivity is different in both models.

Convolutive ICA was suggested as an alternative to MVARICA [89]. Here, source
space VAR coefficients and the mixing process are estimated simultaneously. How-
ever, this requires a specially designed ICA algorithm, while MVARICA can use
any standard ICA algorithm such as FastICA or Infomax.

1.2.5. Dimensionality Reduction

ICA-based methods have one important drawback: They always find exactly as
many sources as there are EEG channels. However, there is no guarantee that all
these sources are of cortical origin. In fact, sources are often related to artifacts or
noise. The number of sources can be reduced with principal component analysis
(PCA). First, the EEG signals are pre-transformed with PCA. This transformation
has no negative effect on the VAR and ICA estimates because PCA is a linear
transformation, and VAR models are invariant to such transformations (see section
A.1). However, data dimensionality can be reduced in PCA space by removing
low-variance components, which are considered to only contain background noise.
This step is part of the original MVARICA procedure [81].

Dimensionality reduction with PCA retains components with high variance. These
components include large artifacts like electrooculogram (EOG) or electromyogram
(EMG), while potentially task relevant components with lower amplitude may be
discarded. By replacing PCA with common spatial patterns (CSP), the criterion
for deciding which components to retain is changed. PCA tends to keep large

2See section A.1 for a formal derivation.

14



1. Introduction

(high variance) components. In contrast, CSP component are optimized to have
high variance in one condition and low variance in the other condition. Thus,
CSP components are good for distinguishing between conditions. CSPVARICA, a
supervised variant of MVARICA was developed in this thesis by replacing the PCA
step in MVARICA with CSP. Thus, CSPVARICA can automatically obtain a subset
of task relevant sources along with VAR estimates.

1.2.6. Relevance for Brain-Computer Interfaces

Typical BCI features such as band power (BP) measure the instantaneous activity of
brain areas. However, they do not contain information about interactions of brain
areas. Such interactions comprise additional information about processes in the
brain and might improve BCI performance. Several previous studies have applied
connectivity to BCIs. Most used functional connectivity [90, 91, 92, 93, 94, 95], with
a few exceptions of effective connectivity [60, 61, 62]. While functional connectiv-
ity, especially phase coupling measures, are well established for BCIs, effective
connectivity BCIs have received scant attention. One of the reasons certainly is
the difficulty of obtaining reliable single-trial estimates of effective connectivity.
Throughout this thesis a rigorous framework was developed for evaluating both
effective and functional connectivity measures for use in BCIs. Using connectivity
in BCIs poses two important challenges. First, the EEG is strongly affected by
volume conduction, which leads to spurious connectivity. Second, BCIs need to
operate online with short response times, which severely limits the amount of data
available for estimation.

1.3. Aim of this Thesis

One of the main weaknesses of current BCIs is their accuracy. Under controlled
conditions some individuals achieve almost perfect control over two classes while
many people perform just above chance level [96]. The situation gets even worse
when moving BCIs out of the lab into real-life applications. This challenge needs to
be tackled from many sides. Improving control paradigms, mobile data acquisition,
and signal processing strategies are some of the approaches that are under active
research. In order to find better signal processing strategies researchers need a
broad set of tools to choose from.

The aim of this thesis is to add connectivity to the pool of feature extraction
methods currently available for BCI research. Apart from BCIs, other applications
might benefit from connectivity estimation. These include online visualization and
functional monitoring of wakefulness, workload, or brain surgery. To accomplish
this aim, existing methods need to be adapted to work on single-trial basis in a
BCI framework. This framework can be used to evaluate different connectivity
measures for BCIs in an offline study. Finally, the framework needs to be moved
to an online setting in order to demonstrate the feasibility of online connectivity
estimation.
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To start with, it is not clear if estiblished connectivity measures based on linear
models are sufficient for use in BCIs, or if a non-linear approach is required. The
first study aims to clarify whether VAR, AR, or bilinear AR models are more suitable
for motor imagery classification [54]. Based on these results existing connectivity
estimation methods can be adapted for single-trial use, or new methods may need
to be developed.

Obtaining connectivity measures from VAR models is straight-forward. However,
correctly fitting the model is challenging in an online application. The basic idea be-
hind this thesis is to first solve the challenge of VAR model fitting, and subsequently
determine which of the numerous connectivity measures (Table 1.1) are suitable for
BCIs. Finally, an online implementation demonstrates the feasibility of the methods.
Furthermore, the implementation of the methods is made publicly available as a
more practical contribution to the field of brain connectivity research.

The thesis comprises four main scientific papers [88, 54, 97, 98] and several sec-
ondary publications [99, 100, 101, 102, 103]. According to the concept outlined
above, [54, 99] looked at different aspects of AR models, [100] proposed a method to
automatically select spectral features, and [103] discussed performance metrics for
BCIs. A framework for evaluating connectivity-based BCIs was developed and pre-
sented in [88, 101, 102] and further refined in [97, 104]. Finally, online connectivity
estimation was presented in [98].

1.4. Organization of the Thesis

Chapter 1 gives an introduction to the topics covered by the thesis. Brain-computer
interfaces are introduced and an overview of brain connectivity is given. The aim
of the thesis – combining BCIs and connectivity – is explained in the last part of
this chapter.

The publications that comprise the thesis are summerized in chapter 2. Each main
publication is dedicated a short section that summarizes the publication and sets it
in relation to the thesis. The last publication is currently in review. Thus, the full
text is included as part of this section.

Chapter 3 contains the thesis’ overall discussion and conclusions. Here, the main
contributions of the thesis to the scientific community are listed. Design choices,
results and insights are discussed in detail, followed by an outlook on future
directions that single-trial connectivity research might take.

Finally, the appendix A mathematically proofs that VAR models are invariant
to linear transformations and appendix B contains copies of the published main
papers.
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2.1. Primary Publications

2.1.1. A comparison of univariate, vector, bilinear autoregressive, and
band power features for brain–computer interfaces

[54] C. Brunner, M. Billinger, C. Vidaurre, and C. Neuper. “A comparison of
univariate, vector, bilinear autoregressive, and band power features for brain-
computer interfaces.” In: Medical & Biological Engineering & Computing 49 (11

2011), pp. 1337–1346. issn: 0140-0118. doi: 10.1007/s11517-011-0828-x

The main goal of this thesis is the application of connectivity to BCIs, and a very
versatile way to estimate connectivity is provided by VAR models. Thus, the aim
of the first study was to determine if it is feasible to use VAR models in motor
imagery BCIs. The study was designed to answer two questions: (1) Do linear
models sufficiently represent the EEG during motor imagery? (2) Is information
about signal interactions as provided by VAR models useful for BCIs?

Univariate AR models, bilinear autoregressive (bAR) models, and VAR models
were compared for EEG based motor imagery classification. VAR and bAR models
are extensions to univariate AR models. While univariate AR models are linear
models of each individual signal, VAR models model all signals together and
explain causal interactions. bAR models are nonlinear univariate models that can
model bursts or arc-shaped oscillations such as the µ-rhythm. To compare the
different models they were fitted adaptively to motor imagery EEG data, and the
model coefficients were then used as features for classification in an offline study.
VAR models achieved reasonable classification performance and were significantly
better than the other models.

Contribution to this work Showing that VAR models are superior to univariate
and bilinear models supports the hypothesis that BCIs can indeed benefit from
features that contain information about signal interactions. This result encouraged
further research towards online BCIs driven by VAR-based connectivity.
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2.1.2. Single-trial connectivity estimation for classification of motor
imagery data

[88] M. Billinger, C. Brunner, and G. R. Müller-Putz. “Single-trial connectivity
estimation for classification of motor imagery data.” In: Journal of Neural
Engineering 10 (2013), p. 046006

The first study showed that VAR models adequately model the EEG. Thus, the
information about connectivity they contain seems to be useful for motor imagery
classification. In this second study a BCI framework was developed for evaluating
and comparing connectivity measures based on VAR models.

VAR models describe the EEG in the time domain, and model the full spectrum.
However, only certain frequency bands contain task relevant information. Among
the most prominent bands are the µ and β bands during motor execution or
imagery. Analysis can be limited to such bands by using spectral connectivity
measures. Spectral connectivity measures represent connectivity as a function of
frequency, which facilitates selection of interesting frequency bands. Note that the
VAR model still models the whole spectrum, and interesting frequency bands are
picked afterwards.

In this second work, a framework was developed for offline BCI classification of
motor imagery (MI) with connectivity features (Figure 2.1). The EEG was decom-
posed into ICs prior to connectivity estimation, instead of using the raw EEG like in
the previous study. A BCI requires single-trial feature extraction but ICA is difficult
to perform on a single-trial basis. Thus, a two-stage approach was developed where
ICA was performed only in the initialization estimate of the unmixing matrix. By
pruning the unmixing matrix, components were selected based on pre-calculated
connectivity between all available sources. Single-trial connectivity estimation was
then performed on selected components which were extracted from novel data us-
ing the pruned unmixing matrix. Finally, the connectivity in automatically selected
frequency bands was used as features for classification.

Contribution to this work This is the first publication that compared a large
number of connectivity measures in a rigorous BCI framework. It directly supports
the main goal of the thesis: development of a connectivity-based BCI. The offline
BCI results showed that some connectivity measures can perform en par with band
power features. This result encouraged further development and improvement of
the estimation procedures.
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Figure 2.1.: The single-trial connectivity framework resembles the workflow of a
typical BCI: parameters are optimized on available data and applied to
unseen data. This workflow is embedded in a cross-validation proce-
dure, where parts of the pre-recorded data serve as the novel testing
set. Broad arrows depict data flow and narrow arrows correspond to
system parameters. This figure was taken from [88].

2.1.3. SCoT: a Python toolbox for EEG source connectivity

[97] M. Billinger, C. Brunner, and G. R. Müller-Putz. “SCoT: A Python Toolbox
for EEG Source Connectivity.” In: Front. Neuroinform. 8 (2014)

The second study showed that spectral connectivity measures can be used in a
motor imagery BCI. However, the source selection procedures are rather cumber-
some. The initialization step requires two passes of connectivity estimation to select
sources, frequency bands and train the classifier. Furthermore, applying ICA to
the raw EEG prior to VAR model fitting is not the ideal approach. Joint estimation
methods such as MVARICA [81] have been shown to perform better [89]. In this
third study the complexity of the connectivity BCI framework was reduced, and
source decomposition and VAR model fitting were improved.

A new method, CSPVARICA, was developed for the SCoT toolbox. CSPVARICA is a
combination of CSP, ICA, and VAR model. CSPVARICA is similar to MVARICA, but
replaces PCA with CSP. Both PCA and CSP are used for dimensionality reduction.
While PCA selects dimensions along which the original signal varies most, CSP
selects dimensions along which there is most difference between conditions. Thus,
CSPVARICA automatically selects sources that are most discriminative for two
conditions and jointly estimates ICA and a VAR model. This results in sources that
are well suited for connectivity estimation.

Additionally, the VAR model fitting procedure was adapted to support regulariza-
tion of the coefficients. Regularization penalizes the magnitude of the VAR model
coefficients. This imposes an external constraint on the model coefficients, and in
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Figure 2.2.: (a) CSPVARICA gives better classification performance than MVARICA.
Sources in CSPVARICA are selected based on how well they discrimi-
nate classes, which makes it an important tool for BCIs. (b) Regularized
VAR model fitting significantly improves classification performance.
The figure shows that regularization can be applied generously: the
classifcation performance is less sensitive to too much regularization
than to no regularization at all. These figures were taken from [97].

consequence less data is required for fitting the model. This improves the quality
of the model in the single-trial situation where data is scarce. Furthermore, all
these methods were made publicly available in SCoT, the first open source Python
toolbox for connectivity estimation.

Contribution to this work The development of CSPVARICA was an important
step (Figure 2.2). It is not only useful for BCIs, but for any application where
connectivity is compared between two conditions. Also, SCoT is a contribution to
the entire research community. Furthermore, streamlining the initialization step for
single-trial connectivity estimation made the procedures ready for use in an online
system.
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2.2. Online Visualization of Brain Connectivity

The goal of this final study was to apply single-trial connectivity in an online
setting. A system for live visualization of connectivity patterns in the ongoing
EEG was implemented. Such a system may have applications in biofeedback or
brain surgery. The system was tested with twelve participants, who performed
two motor execution tasks (left/right wrist extension) and resting tasks with eyes
open and closed. Monitoring connectivity during these tasks revealed in most
subjects increased cross-talk between occipital areas while their eyes were closed,
but only some subjects had different connectivity patterns for left and right wrist
extension.

Implementing the online system required adaptions to the framework that allowed
it to run in a parallel signal processing environment. Furthermore, new strategies
for online visualization of connectivity had to be developed. In contrast to a static
representation, online connectivity changes constantly, and there is little time to
take in details. However, online visualization offers possibilities not available to the
static representation. Colors and particularly animations help visualizing the “flow”
of connectivity between sources.

At the time of writing the thesis, this paper has not been published but is still in the
review process. Therefore, the submitted manuscript is included in this section.

Contribution to this work This study concludes the thesis by showing that the
single-trial connectivity estimation methods are feasible for use in an online sys-
tem.

2.2.1. Introduction

Functional and effective connectivity can be estimated from various measures of
brain activity such as fMRI [105], EEG [106], MEG [107], functional near infrared
spectroscopy (fNIRS), or positron emission tomography (PET) [108] in different
temporal and spatial resolutions. In our work, we focus on EEG, because it is
an inexpensive and portable technique that directly captures neural activity on a
millisecond scale. Estimation of connectivity from the EEG faces two challenges:
(1) EEG channels are highly correlated due to volume conduction and a common
reference, and (2) EEG sensor locations are not the actual sources of cortical brain
activity. These challenges can be solved by measuring connectivity in the cortical
source space rather than in the sensor space [106].

Routines for connectivity analysis are included in many popular EEG analysis
tools such as MNE-Python [109], Fieldtrip [110], and EEGLAB [86]. However, most
of these tools are designed for offline analysis. This means that they can utilize
multiple repetitions of the experimental conditions to increase time and frequency
resolution of the connectivity estimates. Using connectivity in online applications
such as BCIs or brain activity visualizations requires more advanced estimation
strategies.
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Recently, we developed a framework for single-trial connectivity estimation [88],
where EEG channel data is transformed into the source space with ICA prior to VAR
based connectivity estimation. In contrast to multi-trial connectivity estimation,
single-trial estimation can be applied online during ongoing EEG recordings. Online
connectivity estimation may have applications in workload monitoring, biofeedback,
monitoring awakeness in minimally conscious patients, or brain surgery, where
other visualization strategies have already been successfully deployed [111, 112, 62,
113].

In this work, we demonstrate online visualization of source-based connectivity from
ongoing EEG recordings. Previously, we applied single-trial connectivity estimation
only in cross-validated offline studies [88]. Here, we transfer the knowledge gained
from offline experiments to an online validation of our single-trial connectivity
estimation concept. Even though a system for online connectivity visualization
has been proposed before [62] and the Glass Brain1 project has received recent
attention in popular science magazines [114], this is the first time that actual online
visualization of source-based connectivity is performed and validated in a study
with several participants.

2.2.2. Methods

Connectivity estimation

A common practice in connectivity estimation is to model the signals with a VAR
model. Such a model describes causal interactions in the time domain. Various spec-
tral connectivity measures can be extracted from frequency domain representations
of the model [73]. In this manuscript, we will refer to the two steps of VAR model
fitting and subsequent extraction of connectivity measures simply as connectivity
estimation.

When performing multi-trial connectivity estimation, a large amount of data is
available from many repetitions of the experiment. If one considers a typical
experiment with 64 EEG channels, 100 trials and an estimation window length of
100 samples, 640,000 data points are available for estimation. Thus, reliable estimates
including statistical measures such as the mean and its confidence interval can
be obtained in offline analyses. Figure 2.3 shows an example of multi-trial PDC
estimation.

In contrast, only a fraction of data is available in the single-trial case – typically only
one short time window. This would amount to only 6,400 data points in the example
above. In general, this is not sufficient for meaningful interpretation of connectivity
estimates and leads to large inter-trial variance. However, this variance can be
reduced by imposing constraints on the VAR model. In particular, regularization
of the VAR model leads to more consistent single-trial estimates compared to
unconstrained VAR models. We use ridge regression to regularize our VAR models.
Ridge regression imposes a penalty on the l2-norm of the model coefficients, which

1http://neuroscapelab.com/projects/glass-brain/
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Figure 2.3.: Multi-trial connectivity. Each plot shows the mean PDC (bold lines) with
95 % confidence intervals for left (blue) and right (green) wrist extension.
The gray area indicates the 95 % confidence interval under the null
hypothesis of no connectivity. The topoplots on the diagonal represent
cortical sources used in this example. The direction of connectivity is
always from the source in the column to the source in the row.

leads to smaller coefficients and limits the influence of noise. Figure 2.4 illustrates
the impact of regularization on single-trial connectivity estimation.

Figure 2.4.: Single-trial connectivity without (left) and with (right) regularization.
The plots show PDC spectra for individual single trials for left (blue)
and right (green) wrist extension. The topoplots on the diagonal repre-
sent cortical sources used in this example. The direction of connectivity
is always from the source in the column to the source in the row.

In this study, we extend our previously developed single-trial connectivity frame-
work [88, 97] to online visualization of connectivity. This framework facilitates a
two-step approach for single-trial connectivity estimation. In the first step, offline
analysis is performed to initialize the single-trial analysis in the second step. In
the initialization step, we decompose EEG channels into independent components.
By manually selecting ICs that represent cortical sources, we derive an unmixing
matrix that we can later use to extract signals from the same sources, but using
new recordings. Furthermore, we determine hyper-parameters such as VAR model
order and the regularization penalty weight in this step.

Finally, in the second single-trial estimation step, we obtain ICs by applying the un-
mixing matrix to the ongoing EEG. This is a very fast operation and always returns
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the same sources. Subsequently, we estimate single-trial connectivity between these
sources by fitting a VAR model and extracting the direct directed transfer function
(dDTF). The dDTF is a spectral connectivity measure that measures causality be-
tween all source pairs as a function of frequency. It shows the inflow of causality
from directly connected sources only [73].

To obtain the unmixing matrix, we use CSPVARICA. This supervised method finds
a subset of ICs that maximizes the contrast between two conditions. We describe
CSPVARICA in more detail elsewhere [97].

Connectivity Visualization

Connectivity is a measure of how signal sources interact. In order to visualize
connectivity, a large amount of information must be presented concisely, including
a good representation of the sources. Existing representations are suitable for offline
analysis and presentation of results in scientific papers. For online visualization, a
new approach is required.

When estimating spectral connectivity measures, we do not only estimate which
sources interact, but also how strong and at which frequencies sources are con-
nected. Consequently, connectivity contains four dimensions of information: (1)
source pair, (2) direction, (3) frequency, and (4) magnitude. For offline visualization,
we use a matrix representation to visualize connectivity along these four dimen-
sions. That is, the connectivity spectrum is plotted for all pairs of sources in both
directions (as shown in Figures 2.3 and 2.4).

Interpretation of such a relatively complex cartoon can be challenging in an online
setting, because connectivity can vary rapidly in time. Therefore, we reduce the
amount information during online representation by showing only a single relevant
frequency band. Spectral connectivity is averaged over this band. Thus, connections
can be represented by simple arrows instead of spectra.

However, continuously changing arrows are still not ideal in an online setting.
Instead of visualizing online connectivity with arrows, we decided to engage
different visual modalities to represent the information efficiently to facilitate rapid
evaluation of continuously changing connectivity patterns. Figure 2.5 shows a
screenshot of our online visualization. First, we marked each source with a unique
color (circles around sources in Figure 2.5). Active connections between sources are
indicated by arcs connecting these circles. There are up to two arcs between any two
sources, representing forward and backward connections. To distinguish directions,
the arcs have the same color as the originating sources (i. e. a red arc always
indicates an outgoing connection from the red source). In addition to color-coding
the direction of information, we also use an animation. The arcs are shaded with a
pattern that moves along the arc in the direction of the connection, representing the
flow of information. Additionally, we map connectivity magnitude (strength) to the
intensity of the arc color and the velocity of the flow animation. Furthermore, we
limit the number of visible connections by only showing connections that exceed a
certain threshold.
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Figure 2.5.: Screenshot of our online connectivity visualization. Each source is
assigned a unique color. Arcs between pairs of sources indicates an
active connection, with the intensity representing the strength of the
connection. The color of an arc corresponds to the color of the origi-
nating source, thus indicating the direction of causality. Additionally,
causality is visualized by the pattern moving along the arcs, which is
not apparent in the screenshot.

Experimental Procedures

Twelve healthy participants aged between 22 and 30 years took part in our study.
They were seated in a comfortable chair 1.5 m from a 21.5” flat panel display.
Two BrainAmp MR plus amplifiers (Brain Products, Germany) recorded 64 EEG
channels (Table 2.1) with passive Ag/AgCl ring electrodes. Electrode impedances
were below 10 kΩ. Furthermore, a twin axis XM series goniometer (Biometrics Ltd,
UK) was attached to each wrist in order to continuously measure the angle of
extension of the left and right hand. All signals were sampled at 1 kHz and filtered
between 0.016 and 250 Hz. A notch filter at 50 Hz was enabled to remove power
line noise.

Participants completed two different paradigms, the rest paradigm and the motor
paradigm. The rest paradigm had two conditions: eyes open and eyes closed. In
the motor paradigm, participants were instructed to perform slow extension of the
left or the right wrist. A total of three and five runs were recorded with the rest
paradigm and the motor paradigm, respectively.

Rest paradigm The goal of the rest paradigm was to compare resting with eyes
open and resting with eyes closed. One trial per condition was recorded during each
run of this paradigm. Trials started with a fixation cross on the screen, followed
by a visual cue that instructed the participant which task to perform. The cue
appeared 1 second after trial start and showed an image of open or closed eyes for
3 seconds. After 60 seconds, the fixation cross disappeared and a short beep tone

25



2. Materials and Methods

Table 2.1.: EEG electrode names and approximate locations.
Fp1 Fpz Fp2

AF7 AF3 AFz AF4 AF8

F7 F5 F3 F1 Fz F2 F4 F6 F8

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FC8

T7 C5 C3 C1 Cz C2 C4 C6 T8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

P7 P5 P3 P1 Pz P2 P4 P6 P8

PO7 PO3 POz PO4 PO8

O1 Oz O2

O9 Iz O10

Fixation Cross

Cue

0 s 1 s 4 s 64 s

A

(a) Rest Paradigm

Fixation Cross

Cue

0 s 1 s 2 s 5 s

B

(b) Motor Paradigm

Figure 2.6.: Timing of the rest paradigm (a) and the motor paradigm (b).

indicated the end of the trial. Figures 2.6 (top) and 2.7 (top) show the timing and
visuals of the rest paradigm. Participants were instructed to stay relaxed for the
duration of the trial and keep their gaze fixed at the center of the screen in the eyes
open condition. They were encouraged to avoid swallowing and blinking for the
duration of the trial.

Motor paradigm The goal of the motor paradigm was to compare extension of
the left and the right wrist. 25 trials per condition were performed in randomized
order during each run of the motor paradigm. Trials started with a fixation cross
on the screen, followed by a visual cue that instructed the participant which task to
perform. The cue appeared 1 second after trial start and showed a hand pointing
left or right for 1 second. A short beep tone accompanied the cue. The motor
execution period lasted 3 seconds and was followed by a short break of 1–2 seconds.
Figures 2.6 (bottom) and 2.7 (middle) show the timing and visuals of the motor
paradigm. Participants were instructed to stay relaxed, keep their gaze fixed on the
fixation cross, and blink or swallow in the breaks rather than during the trial. They
were instructed to start the movement right after the cue disappeared. Importantly,
we told them to perform the movement slowly, smoothly, and consciously. The
maximum extension angle should be reached after approximately 1 s, immediately
followed by returning the hand to the resting position at the same slow pace.
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Figure 2.7.: Cues for eyes open/closed (left) and left/right extension (middle) con-
ditions, as well as the fixation cross and visualization during guidance
trials (right).

Guidance trials These trials were part of the motor paradigm, but are excluded
from analysis. Their purpose was to help participants adjust the speed of their
movement. These trials were similar to the trials in the motor paradigm, but they
additionally provided feedback about the movement as follows. A ball moved
horizontally across the screen with constant speed. The vertical position of the
ball was controlled by the angle of extension. Furthermore, a curved track was
shown on the screen (Figure 2.7 bottom). Participants were instructed to follow
this track with the ball, which was possible only if they performed the movement
correctly. Two such trials (left and right) were performed at the beginning of the
motor paradigm, and after every 10 motor execution trials.

Session structure A session consisted of 8 runs. A rest condition run was followed
by three motor execution runs. After recording these runs, there was a short break
during which connectivity visualization was initialized with the data recorded so far.
This amounts to a total of 75 trials per condition for initializing the motor paradigm
and 60 s of continuous EEG per condition for initializing the rest paradigm.

After initialization, two runs of each type were performed during which the
supervisor monitored online connectivity. This resulted in a total of 50 testing trials
per condition for the motor paradigm and 120 s of testing data per condition for
the rest paradigm. Note that participants did not see the connectivity visualization
during the experiment. Instead, they received the same instructions as in the
initialization runs.

Hardware Setup

Three computers were used to perform this study (Figure 2.8). The operand PC
provided the interface to the participant. It was running Windows 7 on an Intel
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EEG amplifier

Operand PC Operator PC Signal Monitor

Instructions

shielded room

TiA

visualization commands

Figure 2.8.: Hardware infrastructure. The operand PC provided the interface to the
participant. It recorded physiological signals and presented instructions
according to the paradigm. The operator PC performed necessary
computations, controlled the paradigm, and showed the connectivity
visualization. A third computer was used to continuously monitor
recorded EEG signals.

Core 2 machine with 2.4 GHz and 6 GB memory. This computer hosted the TOBI
signal server (TSS) [115] for data acquisition and the visualization of the paradigm
that instructed the participant. The operator PC provided the computational power
for online signal processing and connectivity visualization. It was running Debian
Linux on an Intel Core i7 machine with 3.4 GHz and 8 GB memory. The third
computer was used to monitor the EEG during the measurements.

Computational Environment

We selected Python as our main development platform because it is freely available,
has numerous libraries for scientific computing, and is suitable for rapid devel-
opment. Despite being an interpreted programming language, it can perform fast
numerical computations and supports multitasking.

Online estimation of connectivity needs to be fast so it can be updated as soon as
new data becomes available. Thus, it differs from offline analysis in two important
aspects: (1) less data is available for the estimation process, and (2) computational
resources need to be carefully managed. Regularization, limiting the model order,
and selecting only relevant sources help to deal with these issues.

Parallelization can distribute the workload and allows us to implement a com-
putational pipeline. The typical steps required for online visualization are data
acquisition, connectivity estimation, and visualization. In a sequential design, a
new chunk of data can enter the processing chain only after the previous chunk has
passed through the entire chain. Also, each step has to wait until the previous step
is completed, which is an inefficient use of computational resources. In contrast, a
parallel pipeline design allows the processing chain to visualize chunk A, while
connectivity estimation works on chunk B, and data is collected for chunk C.
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In general, a program can execute code in parallel using threads or processes. While
threads share their memory, processes have their own memory space. Communica-
tion between threads does not require copying of data, which makes threads more
efficient than processes. However, Python’s global interpreter lock (GIL) does not
allow multiple threads to access the interpreter simultaneously [116]. Consequently,
threads have to wait for each other to complete their computations, which limits
their usefulness in a computationally intensive parallel environment. However,
this limitation does not apply to processes, which have their own instances of the
Python interpreter. While some of the lightweight tasks in the processing pipeline
can be put into threads, critical and computationally intensive tasks such as data
acquisition or connectivity estimation should be performed in separate processes
or even on different computers. Transmitting data between threads, processes,
and computers requires different communication mechanisms, which makes the
implementation of such an environment cumbersome and error-prone. However,
the zero message queue (ØMQ) [117] library solves this problem effectively by
providing a communication layer that transparently connects threads, processes
or computers. This allowed us to implement functionality in small and highly
specialized function blocks that communicate through ØMQ sockets. These blocks
can transparently run as threads, processes, or even on different computers to
optimally utilize computational resources.

Initialization Procedure

As alluded to in section 2.2.2, we use a two-stage approach for single-trial connec-
tivity estimation. The first stage is initialization, which was performed separately
for the motor and the rest paradigm. Initialization for the motor paradigm was
performed with data from runs 2–4, resulting in a total of 75 trials per condition.
Initialization for the rest paradigm was performed with data from the first run,
resulting in 60 s of data per condition.

The following steps performed for initialization are almost the same for motor and
rest paradigms; only step 2 (alignment/segmentation of epochs) is different:

1. Channel rejection In order to remove signals from bad EEG locations, signals
were excluded from further processing if their standard deviation over the entire
recording exceeded 100 µV.

2a. Trial alignment (motor paradigm) Timing of the movement task is subject
to high variability. Thus, trials were temporally re-aligned based on the actual
movement. The point where the wrist extension started to reverse direction was
chosen for common alignment. This point appears as a peak in the goniometer
signals. First, the goniometer signals were low-pass filtered to 3 Hz with a fourth
order Butterworth filter. Then, the peak was defined as the first point where the
numerical derivative of the filtered signal changed sign from positive to negative.
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Figure 2.9.: Trial alignment. These plots show the left and right wrist angles mea-
sured by the goniometers (in arbitrary units). In the upper panel, the
signals are aligned with the cue. In the lower panel, the signals are
aligned with the movement peak, which reduces temporal variability
in the extension. This information was used to align the EEG segments.

EEG signals were extracted from 1 s windows right before the peaks2. Thus, we
obtained segmented EEG data for the left and right extension conditions.

2b. Segmentation (rest paradigm) The 60 s rest periods were cut into non-
overlapping 1 s windows. Thus, we obtained segmented EEG data for the two
rest conditions.

3. Downsampling EEG signals were downsampled from 1000 Hz to 100 Hz.

4. Artifact rejection Trials were rejected if one of the following three criteria
was fulfilled: (1) Maximum amplitude exceeds 75 µV anywhere in the trial, (2) the
variance of any channel in the trial is higher than three times the variance of the
same channel over all trials, or (3) the variance of any ICA component in the trial is
higher than three times the variance of the same component over all trials.

5. Source decomposition CSPVARICA [97] performs joint VAR model fitting and
ICA. In contrast to MVARICA [81], it is designed to yield sources whose signal
power varies maximally between conditions. Based on prior experience, we set the
number of sources to M = 15 and fitted VAR models of order p = 20 for each of
the two conditions. Subsequently, the quality of the VAR model fit was verified by
testing the VAR residuals for whiteness with the Ljung-Box test up to a lag of 75.
The tests indicated no significant deviation from whiteness for all participants.

2With the exception of P12, who performed the movements too fast. Here, we used ±0.5 s around
the peak.
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Figure 2.10.: Examples of sources obtained with CSPVARICA. Top left: muscle
activity identified by localization at the side of the head and high fre-
quency components. Top right: sporadic neck muscle activity. Bottom
left: typical occipital component with alpha peak and 1/ f spectrum.
Bottom right: EOG is frontally localized, has dominant low frequency
components, and occurs sporadically.

6. Source selection Sources were manually selected depending on topographic,
spectral, and stationarity criteria. Sources were retained if their topography indi-
cated cortical origin, if they had a typical 1/ f spectrum, or if they exhibited a clear
alpha peak. Sources were removed if they were clearly caused by artifacts or had
high activity in only a few trials. Figure 2.10 shows examples of typical sources
encountered in this step.

7. Optimization The single-trial VAR model order was set to p = 15, and the opti-
mal ridge penalty was determined with cross-validation and bisection search [97].

8. Single-trial preview Finally, single-trial estimates of the dDTF were plotted
to show the spectral inflow of causality for each source. From these plots, the
frequency band and thresholds were manually chosen for online visualization.
The frequency range was selected so that it contained frequencies with strongest
differences in the dDTF between conditions. In most cases, this range contained
the alpha peak. The threshold was chosen so that the dDTF from most trials of one
condition was below the threshold, while most trials of the other condition were
above the threshold.
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Function Blocks

Figure 2.11 shows an overview of the signal processing pipeline for online visual-
ization. Most parts of the pipeline run as part of the main program on the operator
PC. Components that form the interface to the subject (visualization and signal
acquisition) run on the operand PC. Each block in the figure corresponds to a
sub-program that can either run as a thread, a process, or a stand-alone program.
The functionality of each block is described below.

The pipeline receives data from the TSS, which handles the acquisition of data from
various sources (EEG, goniometer) and provides the data through the standardized
TOBI interface A (TiA) [115]. The TiA meta block reads meta information such as
sampling rate, number of signals, and signal labels from the TSS and provides them
upon request. This information is required for storage and for initializing some of
the other blocks (e. g. the resampler). Complementary to the TiA meta block, the
TiA data block reads data packets from the TSS. Whenever a data packet becomes
available, it broadcasts the data to any subscribers. However, for our purposes, the
only subscriber is the Proxy block, which simply forwards all data it receives to
subscribers. It serves as a hub to which data sources and data sinks can connect
without having to be aware of one another. For example, the storage block does not
need to connect to each individual data/event source separately, but only to the
Proxy block. This promotes encapsulation in block design and makes adding new
blocks easier.

The Storage block continuously streams all data it receives to disk. This includes
signals, events, and TiA meta information at the beginning of the stream. After all
processing is finished, the raw data stream is converted to a .mat file, which can be
opened with MATLAB, Python, and many other platforms.

The following four blocks are used for manipulating data streams. Typically, they
perform only simple operations and consist only of a few lines of source code.
The Demux block extracts an individual data sub-stream (such as EEG or sensor
signals). The Resampler block downsamples a data stream by applying a low-pass
filter and decimating the data. We use a 12

th order Butterworth 38 Hz low-pass filter
to prevent aliasing when downsampling from 1000 Hz to 100 Hz. This filter allowed
pass-band attenuation to be less than 0.01 dB with a signal-to-noise ratio (SNR)
of at least 60 dB below 30 Hz. The Sliding Window block implements a sliding
window with a circular buffer (double-ended queue). We use this buffer to estimate
connectivity on 1 s EEG windows every 0.1 s. The 0-Hold block is similar to the
Sliding Window block. Basically, it is a 1 sample sliding window that provides
zero-order hold functionality. In contrast to the other block, it does not forward
the data as soon it becomes available. Instead, the most current data sample is
provided upon request. We use this block to sample the goniometer signals, giving
the participant feedback about the timing of their movement during the guidance
trials.

The remaining five blocks are more complex and very specific to our application.
Events that define the paradigm are generated by the Paradigm block. This block is
responsible for the timing of presenting the fixation cross, showing the cue, clearing
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Figure 2.11.: Online signal processing. The figure indicates signal flow between
the function blocks. Threads (dark background) run within the main
process and share resources, while processes (white background) need
to copy resources between each other but are not affected by the
global interpreter lock. Note that this figure shows only the signal
flow during runtime. Some blocks require information from the TiA
meta block for initialization, which is not shown here.
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Table 2.2.: Participant-specific settings. N is the number of trials in each class
available for training (left/right, eyes open/closed), M is the number of
sources selected for visualization, f is the visualized frequency band,
and “range” is the value range for visualizing the dDTF. Values below
the range are not shown as connections, and values above the range are
shown at full intensity.

motor paradigm rest paradigm
participant N M f (Hz) range N M f (Hz) range

P01 74/72 6 10–12 2–8 54/54 5 8–12 2–10

P02 70/66 6 7–13 2–10 50/54 6 9–13 4–10

P03 65/65 5 8–12 3–10 60/56 7 7–11 3.5–10

P04 69/69 7 10–14 3–10 57/45 6 9–13 3–10

P05 67/68 7 10–14 2.8–10 58/52 7 10–14 3.4–10

P06 52/53 4 10–13 3–10 52/55 5 12–16 3.5–10

P07 56/43 6 10–14 3–10 43/55 5 8–12 3–10

P08 60/59 6 7–10 3–10 52/53 8 8–12 3–10

P09 48/52 3 7–30 1–2 40/54 6 9–12 3–10

P10 62/64 9 8–10 6–10 49/40 4 8–10 3–10

P11 55/47 5 12–16 3–10 45/58 5 12–16 3–10

P12 71/66 5 8–12 2–10 54/60 6 8–12 3–10

the screen, selecting the next trial, and so on. The Paradigm Visualization block is
closely related; it presents the paradigm (cross, cue, beep, etc.) to the participant.

The SCoT block estimates connectivity on 1 s windows of EEG data. It projects the
data into the source space using the unmixing matrix obtained during initialization,
fits a VAR model, and calls connectivity estimation routines from the source connec-
tivity toolbox (SCoT) [97] to estimate the dDTF. The Visualization Configuration
block processes the connectivity estimates from the previous block and decides
if and how to visualize them. This block also presents a GUI dialog where the
operator can adjust frequency band and thresholds during the measurement. It
sends visualization commands to the Connectivity Visualization block, which
shows representations of cortical sources and active connections between them.

2.2.3. Results

The number of sources, the frequency band, and the visualization threshold were
selected individually for each participant. Table 2.2 shows a summary of these
settings.

Connectivity visualization was enabled for the last two runs in each paradigm.
Quantifying online visualization is not straightforward, because there is no ground
truth to compare against. Furthermore, visualization was active throughout the
entire run, including breaks, where participants had no specific instructions and
generated many artifacts. Thus, we limit the following analysis to the parts of
the recordings where instructions were specific. For the motor paradigm, we use
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the 1-s epoch containing the extension, and for the rest paradigm, we use all
non-overlapping 1-s windows. We analyze each paradigm separately, and test if a
connection is present in one of the tasks more often than in the other task.

Cohen’s Kappa (κ) [118] is a measure of agreement that we can use here. It measures
how well the occurrence of a connection agrees with the tasks. A value of κ = 0
means the connection is equally present during both or neither task(s), and κ = ±1
means that the connection is always present in only one of the tasks. The measure
is defined in (2.1), where ki is the number of trials in condition i where a connection
exceeds the threshold for one condition, k̄i is the number of trials in condition i
where the threshold is not exceeded, n1 and n2 are the total number of trials in
each condition, and p0 is the probability of random agreement.

κ =

k1+k̄2
n1+n2

− p0

1− p0
(2.1)

For equal numbers of trials in both conditions (n1 = n2 = n
2 ) and p0 = 0.5, the

equation simplifies to

κ = 2
(k1 − k2)

n
. (2.2)

We statistically tested κ against the null hypothesis of no connectivity in either
condition. To obtain data under the null hypothesis, we generated surrogate source
time series by randomly changing the phase of the original time series [119]. This
procedure destroys connectivity information in the data, but leaves the power
spectra intact. After computing κ for 100 such surrogates, we determined their
95

th percentile as the critical value κ0. Connections were considered significantly
discriminant if κ ≥ κ0.

We visualized significant connections between source pairs with arrows pointing
in the direction of causality. The value of κ is mapped to the color of the arrow.
Positive values range from white (0) to dark blue (+1), and negative values range
from white (0) to dark green (-1). There is, for example, a blue arrow pointing
both ways between two sources near the left motor cortex in the top left plot
of Figure 2.12. This indicates that these sources often had synchronous activity
during the left extension task. Accordingly, the corresponding ERD map shows less
desynchronization during the left extension task. Four out of twelve participants
had significant discriminative connections in the motor paradigm (Figure 2.12), and
seven participants had significant discriminative connections in the rest paradigm
(Figure 2.13). Three participants were in both groups, and four participants had no
significant connections at all.

An important measure of an online system is the delay introduced by the signal
processing pipeline, because this is an upper limit on how fast the system can
respond to changes in the signals. We tracked the delay by passing time stamps
through the processing pipeline along with the data. This allowed us to measure
the time difference between update of the display and acquisition of the most
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Figure 2.12.: Significant connections (left) and ERD/S maps (right) during motor
execution from four subjects (P01, P05, P07, P10). In the left plot, green
or blue arrows indicate connections that tended to be more active
during right or left extension, respectively. The ERD/S maps show
synchronization (blue) and desynchronization (red) of Laplacian EEG
channels.
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Figure 2.13.: Significant connections during rest. Blue arrows indicate connections
that tended to be more active while the participants had their eyes
closed.

recent sample in the estimation window. Figure 2.14 shows the distribution of this
delay measured with seven sources. Most of the processing delay is approximately
normally distributed with mean 68.1 ms and standard deviation 0.57 ms. There is
a cluster of lower delays between 66 ms and 67 ms, and the delay never exceeded
72 ms.

2.2.4. Discussion

We performed online connectivity visualization during rest and motor execution.
This study builds on our previous work [88, 97], where we simulated offline
BCIs based on connectivity. We tested the method on two different paradigms:
long-duration (60 s) resting, and relatively transient (1 s) motor execution.

We found significant results from seven participants in the resting paradigm, and
from four participants in the motor paradigm. This indicates that our methods
work better for the rest paradigm. There are two possible explanations for these
results. First, the resting state is stationary over a long time period, while the motor
task is transient. This might cause instationarities in the estimation window of
the motor task, which interfere with connectivity estimation. Second, we observe
differences between conditions that are based on the synchronization or desynchro-
nization of task-specific brain rhythms. Occipital alpha synchronization is stronger
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Figure 2.14.: Visualization delay when processing seven sources, measured over
a period of 5 minutes. The delay is measured as the time difference
between update of the display and acquisition of the most recent
sample in the estimation window. This is the time it takes for the
sample to pass through the signal processing pipeline.

than µ-rhythm desynchronization. Thus, we observe stronger effects in the rest
paradigm.

In this study, we based our analysis of the motor task on movement-related µ-
desynchronization. In other words, absence of the contralateral µ-rhythm is the
neural correlate of the motor task. However, identifying task-related fine structure
in connectivity is difficult in a rhythm that is absent. Thus, future studies could
attempt to investigate the post-movement beta synchronization [120, 121] instead,
because the increased beta rhythm might exhibit stable task-related connectivity
patterns.

Our results show high inter-subject variability. This is not surprising, because
sources are selected for each user individually. The results do not only depend
on variability in the participants’ activation patterns, but also on the quality of
the data. This makes comparing results across individuals difficult. Source models
that incorporate anatomical information to obtain cortical current source density
(CSD) estimates could potentially reduce variability across individuals by mapping
activations to anatomical features. However, this might reduce discriminability
of conditions. CSPVARICA does not have this drawback because sources are
specifically optimized to enhance contrasts between conditions.

A recently published conference paper [62] reports efforts partially similar to ours.
The authors successfully tested their connectivity estimation based on cortical
CSD with artificial data and pre-recorded EEG channel data from one subject. In
contrast, our approach applies ICA based source decomposition. Cortical CSD may
give more accurate results, but requires an accurate anatomical head model and is
computationally more demanding than our ICA approach. We plan to integrate
CSD estimation into our system in the future. However, ICA will remain a feasible
fall-back for data-driven source decomposition if no anatomical information is
available.

In recent years, different real-time visualization systems have been proposed for
use in research and clinical practice. Such systems are mainly used for real-time
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brain mapping based on EEG [111] or electrocorticography [112, 113]. These sys-
tems are concerned with localization of brain activity, but not with interactions
within the brain. In contrast, tools such as MNE-Python [109], Fieldtrip [110], or
SIFT/EEGLAB [86] that analyze and visualize brain connectivity are typically
intended for offline use. Systems for brain monitoring and mapping could benefit
from adding online connectivity information. The Glass Brain project has already
demonstrated that brain connectivity can not only produce aesthetically pleasing
visualizations, but that there is also considerable public interest in the topic [114].
With this paper, we attempt to take a further step towards bridging the gap between
real-time monitoring/mapping and connectivity analysis.

2.2.5. Conclusion

We provided a proof of concept that online visualization of connectivity is possible.
Furthermore, we were able to observe plausible changes in connectivity during
different tasks. However, interpreting causality from online results should not be
done lightly. The limited number of sources and the strong restrictions on the
VAR model might bias the results. Anatomically informed source estimates and
advanced VAR model fitting strategies may have the potential to get even more
information out of the limited data available online. Therefore, we believe our work
is an important first step towards serious real-time causality analysis.
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3.1. Overview

The research goal of this thesis was to apply connectivity estimation to online
applications such as BCIs or brain connectivity monitoring. A very general basis
for obtaining various kinds of connectivity measures are vector autoregressive
models [73]. Thus, the ability to perform single-trial VAR model fitting was the key
to fulfill the thesis’ goals. This led to development of new methods and procedures.
In consequence, the fundamental contributions of the thesis can be summarized in
four points:

1. strategies for estimating single-trial connectivity
2. enhanced source selection with CSPVARICA (by adding class information)
3. SCoT, a publicly available open source toolbox
4. strategies for online visualization of connectivity

3.2. Model fitting

Before actually tackling connectivity estimation for BCIs it was necessary to deter-
mine which type of AR model is most suitable. The first study compared different
types of models: linear univariate AR, linear multivariate AR (VAR), and bilinear
univariate AR (bAR) [54]. It showed that VAR models were superior to the other
models and there was no significant difference between bAR and AR models. These
results indicated that (1) multivariate models improved classification accuracy, and
(2) bAR models did not improve classification. Of course this result does not prove
that linear models are better than nonlinear models. Bilinear models implement
only a specific type of nonlinearity but there are infinitely many possibilities of
formulating nonlinear models, some of which may perform better than linear
models. However, multivariate models were clearly better than univariate models.
Thus, lacking a hypothesis about which type of nonlinearity might prove useful, it
was decided to use VAR models for further research on single-trial connectivity.

There are two alternatives to obtain single-trial VAR models: Adaptive fitting with
a Kalman filter [53] or fitting with a sliding-window. In principle, adaptive fitting
is similar to fitting with an exponential sliding window [122]. However, there
are differences in the implementation details. First, the length of the exponential
window depends on the adaption rate, which makes it difficult to chose a suitable
window length. Furthermore, the adaptive approach needs to process every sample,
while a sliding window can be moved in steps of arbitrary size. Thus, a sliding
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window approach makes the computational load easier to control in an online
application. Another drawback of adaptive fitting is that the Kalman filter’s memory
requirement rises quadratic with the number of coefficients [123]. The number
of coefficients is proportional to the squared number of signals modeled in a AR
model. Thus, the memory consumption of adaptive fitting rises with the fourth
power of the number of signals. In contrast, segmented fitting rises with less than
the second power of the number of signals. Because of these reasons the model
fitting approach was changed from adaptive Kalman filtering to sliding-window
fitting after the first study.

3.3. Source-Connectivity Framework

In this thesis a two-step strategy for single-trial connectivity estimation was de-
veloped [88]. The first step is intended as initialization where cortical sources are
identified and selected. Only in the second step actual single-trial connectivity
estimation is performed. Recently a different approach to a connectivity-based
BCI has been proposed [62]. Allegedly, this approach does not rely on a two-step
procedure to select sources. Instead, it works with current source densities in pre-
defined cortical regions, which requires an inverse solution of an accurate forward
model. However, obtaining the model and selecting regions of interest could be
understood as an initialization step too. While that approach selects sources using
a-priori information about brain anatomy, the approach in this thesis selects sources
as ICA components based on actual EEG data. This data-driven approach has the
advantage that it does not depend on any a-priori information or explicit forward
models.

A common misconception about ICA and connectivity is that these concepts
contradict each other. This seems obvious - how can sources be independent
if they are related? Independence between sources is often naively understood
as “have nothing to do with each other”. This is not necessarily the case with
ICA sources. Consider the cocktail party example: ICA can separate individual
speakers in a room full of people given only the signals of multiple microphones
distributed around the room. This is possible even though there may be causal
relations between speakers that have a conversation. However, their speech signals
are independent because they have different voices and say different things. In
summary, while ICA is the process of identifying individual speakers, connectivity
analysis is finding out who talks to whom. This also works for neural ensembles in
the brain that “talk” to each other. In more technical terms, ICA blindly reconstructs
a linear mixture of sources, for example by decorrelating maximally non-Gaussian
components, or by minimizing mutual information. Sources are assumed to be
statistically independent and non-Gaussian. However, sources are not required to
be white (temporally independent), which allows them to be causally related or
have a underlying connectivity structure.

Single-trial connectivity estimation relies on two key measures: source selection
and regularization [97]. By selecting only a subset sources the total number of
possible connections is limited. Regularization of the VAR model penalizes large
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model coefficients. Both measures reduce the degrees of freedom in the VAR model
coefficients, which results in a reduced amount of time samples required for fitting
the model. Thus, estimation window lengths as low as 1 s are possible, which is the
typical analysis window length in a motor imagery BCI [20].

In the second study source selection was performed by considering how much each
IC contributed to connectivity [88]. This requires multiple passes of connectivity
estimation, which is a rather cumbersome procedure. In contrast, the number of
sources in MVARICA can be limited by reducing the dimensionality of the EEG
with PCA [81]. Sources obtained with MVARICA explain a certain percentage of
the EEG’s variance, which leads to sources with high amplitude signals. While
this heuristic is much simpler than selecting sources based on their contribution
to connectivity, the sources are not necessarily relevant for BCI operation because
they are opitimzed without knowledge about the tasks. Thus, CSPVARICA was de-
veloped [97], which uses CSP instead of PCA. By using CSP CSPVARICA can select
sources that have high amplitudes during one condition/task but low amplitudes
during another condition/task. In consequence, CSPVARICA tends to select more
task relevant sources than MVARICA. Both methods were compared in the third
study of this thesis, where CSPVARICA was shown to significantly outperform
MVARICA in motor imagery classification [97]. Apart from BCIs, other fields of
neuroscience could benefit from CSPVARICA too since it is applicable whenever
task-related changes in connectivity are researched.

3.4. Connectivity

Starting with the second study, spectral connectivity measures were used for
limiting connectivity estimates to interesting frequency bands. Alternatively, it
might seem like a good idea to band-limit the data first. However, the band-pass
would become the most prominent feature of the spectrum. Since AR models fit the
entire spectrum they would mostly fit the filter’s transfer function. On the other
hand, downsampling (including an appropriate low-pass filter) helps to reduce the
model order required to fit the data [122]. Thus, downsampling is a useful step
when analyzing connectivity at lower frequencies ranges such as alpha and beta
where a sampling rate of 100 Hz is enough.

Offline results showed that effective connectivity is useful for motor imagery
BCIs [88, 97]. However, the results also revealed that classification performance
based on connectivity is similar to classification performance based on band power.
Similar results were obtained for functional connectivity by Krusienski, McFarland,
and Wolpaw [94], who argued that functional connectivity and band power basically
carry the same information. If this is also the case for effective connectivity remains
an open question. However, this idea is supported by the way causality is defined.
Causality is a measure about how much knowledge of one signal can improve
prediction of another signal [124]. Signals with a high amplitude are easier to predict
than signals with a low amplitude because high amplitude signals have a higher
SNR in relation to the noise floor. In consequence, connectivity is easiest to detect
during ERS (high amplitudes) and difficult to detect during ERD (low amplitudes).
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This is reflected in the results of the fourth study, where more connectivity was
observed during the eyes closed condition (large occipital alpha oscillations). Also,
during motor tasks, connectivity in the mu band drops similarly to band power,
which indicates a relation between connectivity and ERD [98].

3.5. Relation to the State of the Art

The current state of the art in motor imagery based BCI features are CSP [48, 49]
and band power [47]. Connectivity features performed en par with band power,
but currently there is no benefit in using connectivity instead of band power
for BCIs. However, other applications might benefit from single-trial connectivity
estimation. For example, a recent study used offline connectivity to detect the origin
of epileptic seizures [125] for subsequent surgical removal. Single trial connectivity
could be applied to online monitoring during brain surgery to help surgeons direct
their actions. Thus, the aspect of online connectivity visualization was explored in
this thesis. Online visualization of connectivity is different from visualization in
printable media. The displayed information evolves constantly. The viewer has little
time to take in the whole picture before it changes again. Colors and animation can
support the information conveyed in the visualization, which helps to give a rapid
impression of the changing “flow” of connectivity [98].

Throughout this thesis, methods that support two-step and joint estimation of
connectivity were implemented. These were publicly released in the SCoT1 toolbox
for connectivity analysis in Python. This toolbox contains low-level routines for
VAR model fitting, connectivity estimation, source decomposition and visualization.
Furthermore, various high level routines are available, among them are MVARICA,
CSPVARIACA, and statistics related to VAR models and connectivity. Python is an
interpreted programming language that is increasingly gaining importance in sci-
entific programming. However, no tools for connectivity analysis were available for
Python so far, while similar toolboxes are available for Matlab (EEGLAB/SIFT [86],
Fieldtrip [110]). Currently, core functionality of SCoT is being made available
through MNE-Python2, the leading MEG/EEG analysis solution in Python, which
highlights the need for connectivity analysis software.

3.6. Summary and Conclusions

Only three other studies used effective connectivity measures in BCI related stud-
ies [60, 61, 62] although such measures have been applied to the EEG as early as
1991 [78]. This lack of attention is likely caused by the difficulties of single-trial
connectivity estimation. The requirement of short time windows, limited amount of
available data, and volume conduction stand in the way of successfully performing

1http://scot-dev.github.io/scot-doc/index.html
2http://martinos.org/mne/stable/mne-python.html
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single-trial connectivity estimation on EEG data. This thesis tackled these difficul-
ties and demonstrated successful single-trial connectivity estimation. This opens
the door for future research in the direction of BCIs and other applications that
utilize connectivity measures. Especially the new SCoT toolbox can help to make
single-trial connectivity available to a broad audience.

3.7. Outlook

Connectivity features work well for BCIs but similar performance can be obtained
with simpler band power features. However, research towards single-trial connectiv-
ity has only just begun yet. Development of improved VAR model fitting techniques,
new connectivity measures, or specially designed paradigms may lead to improved
connectivity features for BCIs. In particular, different regularization strategies might
prove useful. Currently, only regularization with an `2-norm penalty has been ex-
plored. Other regularization strategies might lead to improved results. Especially
sparse regularizers such as the group Lasso [126] seem promising because they
limit the amount of estimated connections. Another promising approach could be
application of shrinkage to VAR models. In a nutshell, shrinkage aims to find the
optimal trade-off between a complex model with low bias and high variance, and a
simple model with high bias and low variance [127]. In terms of VAR models these
could be a low order model and a high order model. In consequence, shrinkage
would implicitly resolve model order selection and might replace regularization.

It is important to note that future research might show that connectivity and band
power features really carry the same information as far as BCIs are concerned. In
this case band power would remain the preferred features for BCIs. However single-
trial and online connectivity could still prove useful for alternative applications
such as brain surgery or monitoring of wakefulness.
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K.-R. Müller. “Robustly estimating the flow direction of information in
complex physical systems.” In: Physical Review Letters 100 (2008), p. 234101.
doi: 10.1103/PhysRevLett.100.234101 (cit. on p. 12).

[83] S. Erla, L. Faes, E. Tranquillini, D. Orrico, and G. Nollo. “Multivariate
Autoregressive Model with Instantaneous Effects to Improve Brain Connec-
tivity Estimation.” In: International Journal of Bioelectromagnetism 11.2 (2009),
pp. 74–79 (cit. on pp. 12, 13).

[84] L. Faes and G. Nollo. “Extended causal modeling to assess Partial Directed
Coherence in multiple time series with significant instantaneous interac-
tions.” English. In: Biological Cybernetics 103.5 (2010), pp. 387–400. issn:
0340-1200. doi: 10.1007/s00422-010-0406-6 (cit. on pp. 12, 13).

[85] A. Hyvärinen, K. Zhang, S. Shimizu, P. O. Hoyer, and P. Dayan. “Estimation
of a Structural Vector Autoregression Model Using Non-Gaussianity.” In:
Journal of Machine Learning Research 11 (2010), pp. 1709–1731 (cit. on p. 12).

[86] A. Delorme, T. Mullen, C. Kothe, Z. Akalin Acar, N. Bigdely-Shamlo, A.
Vankov, and S. Makeig. “EEGLAB, SIFT, NFT, BCILAB, and ERICA: new
tools for advanced EEG processing.” eng. In: Comput Intell Neurosci 2011

(2011), pp. 1–12. doi: 10.1155/2011/130714 (cit. on pp. 12, 21, 39, 44).

[87] A. H. Omidvarnia, G. Azemi, B. Boashash, J. M. O. Toole, P. Colditz, and
S. Vanhatalo. “Orthogonalized Partial Directed Coherence for Functional
Connectivity Analysis of Newborn EEG.” In: Neural Information Processing.
Ed. by Tingwen Huang, Zhigang Zeng, Chuandong Li, and ChiSing Leung.
Vol. 7664. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2012, pp. 683–691. isbn: 978-3-642-34480-0. doi: 10.1007/978-3-642-34481-
7_83 (cit. on p. 12).

[88] M. Billinger, C. Brunner, and G. R. Müller-Putz. “Single-trial connectivity
estimation for classification of motor imagery data.” In: Journal of Neural
Engineering 10 (2013), p. 046006 (cit. on pp. 14, 16, 18, 19, 22, 23, 37, 42, 43).

[89] S. Haufe, R. Tomioka, G. Nolte, K.-R. Müller, and M. Kawanabe. “Modeling
Sparse Connectivity Between Underlying Brain Sources for EEG/MEG.” In:
IEEE Transactions on Biomedical Engineering 57.8 (Aug. 2010), pp. 1954–1963.
issn: 0018-9294. doi: 10.1109/TBME.2010.2046325 (cit. on pp. 14, 19).

[90] E. Gysels and P. Celka. “Phase synchronization for the recognition of mental
tasks in a brain computer interface.” In: IEEE Transactions on Neural Systems
and Rehabilitation Engineering 12 (2004), pp. 406–415. doi: 10.1109/TNSRE.
2004.838443 (cit. on p. 15).

[91] C. Brunner, R. Scherer, B. Graimann, G. Supp, and G. Pfurtscheller. “Online
control of a brain-computer interface using phase synchronization.” In:
IEEE Transactions on Biomedical Engineering 53 (2006), pp. 2501–2506. doi:
10.1109/TBME.2006.881775 (cit. on p. 15).

53

http://dx.doi.org/10.1016/j.neuroimage.2008.07.032
http://dx.doi.org/10.1103/PhysRevLett.100.234101
http://dx.doi.org/10.1007/s00422-010-0406-6
http://dx.doi.org/10.1155/2011/130714
http://dx.doi.org/10.1007/978-3-642-34481-7_83
http://dx.doi.org/10.1007/978-3-642-34481-7_83
http://dx.doi.org/10.1109/TBME.2010.2046325
http://dx.doi.org/10.1109/TNSRE.2004.838443
http://dx.doi.org/10.1109/TNSRE.2004.838443
http://dx.doi.org/10.1109/TBME.2006.881775


Bibliography

[92] Q. Wei, Y. Wang, X. Gao, and S. Gao. “Amplitude and phase coupling
measures for feature extraction in an EEG-based brain-computer interface.”
In: Journal of Neural Engineering 4 (2007), pp. 120–129. doi: 10.1088/1741-
2560/4/2/012 (cit. on p. 15).

[93] B. Hamner, R. Leeb, M. Tavella, and J. del R. Millán. “Phase-based features
for motor imagery brain-computer interfaces.” In: 2011 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
2011, pp. 2578–2581. doi: 10.1109/IEMBS.2011.6090712 (cit. on p. 15).

[94] D. J. Krusienski, D. J. McFarland, and J. R. Wolpaw. “Value of amplitude,
phase, and coherence features for a sensorimotor rhythm-based brain-
computer interface.” In: Brain Research Bulletin 87 (2012), pp. 130–134. doi:
doi:10.1016/j.brainresbull.2011.09.019 (cit. on pp. 15, 43).

[95] I. Daly, S. J. Nasuto, and K. Warwick. “Brain computer interface control
via functional connectivity dynamics.” In: Pattern Recognition 45.6 (2012),
pp. 2123–2136. doi: 10.1016/j.patcog.2011.04.034 (cit. on p. 15).

[96] C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, and G. Pfurtscheller.
“How many people are able to operate an EEG-based brain-computer in-
terface (BCI)?” In: IEEE Transactions on Neural Systems and Rehabilitation
Engineering 11 (2003), pp. 145–147. doi: 10.1109/TNSRE.2003.814481 (cit.
on p. 15).

[97] M. Billinger, C. Brunner, and G. R. Müller-Putz. “SCoT: A Python Toolbox
for EEG Source Connectivity.” In: Front. Neuroinform. 8 (2014) (cit. on pp. 16,
19, 20, 23, 24, 30, 31, 34, 37, 42, 43).

[98] M. Billinger, C. Brunner, and G. R. Müller-Putz. “Online Visualization of
Connectivity.” In: tba. (2014-2015), in preparation (cit. on pp. 16, 44).

[99] M. Billinger, C. Brunner, and C. Neuper. “Classification of Adaptive Au-
toregressive Models at Different Sampling Rates in a motor Imagery-Based
BCI.” In: Fourth International BCI Meeting. 2010 (cit. on pp. 16, 40).

[100] M. Billinger, V. Kaiser, C. Neuper, and C. Brunner. “Automated frequency
band selection for BCIs with ERDS difference maps.” In: Proceedings of the
Fifth International BCI Conference (2011) (cit. on pp. 16, 40).

[101] M. Billinger, C. Brunner, R. Scherer, A. Holzinger, and G. R. Müller-Putz.
“Towards a framework based on single trial connectivity for enhancing
knowledge discovery in BCI.” In: Active Media Technologies, Springer Lecture
Notes in Computer Science. 2012, pp. 658–667 (cit. on pp. 16, 40).

[102] M. Billinger, C. Brunner, R. Scherer, and G. R. Müller-Putz. “Estimating
Brain Connectivity from Single-Trial EEG Recordings.” In: Proceedings of the
BMT. 2013 (cit. on pp. 16, 40).

[103] M. Billinger, I. Daly, V. Kaiser, J. Jin, B. Z. Allison, G. R. Müller-Putz, and
C. Brunner. “Is it Significant? Guidelines for Reporting BCI Performance.”
In: Towards Practical BCIs: Bridging the Gap from Research to Real-World Appli-
cations. Springer, 2013, pp. 333–354 (cit. on pp. 16, 40).

54

http://dx.doi.org/10.1088/1741-2560/4/2/012
http://dx.doi.org/10.1088/1741-2560/4/2/012
http://dx.doi.org/10.1109/IEMBS.2011.6090712
http://dx.doi.org/doi:10.1016/j.brainresbull.2011.09.019
http://dx.doi.org/10.1016/j.patcog.2011.04.034
http://dx.doi.org/10.1109/TNSRE.2003.814481


Bibliography

[104] M. Billinger, C. Brunner, and G. R. Müller-Putz. “Analyzing EEG Source
Connectivity with SCoT.” In: Proceedings of the 6th International BCI Conference.
2014 (cit. on pp. 16, 40).

[105] Stephen M. Smith. “The future of FMRI connectivity.” In: Neuroimage 62(2)
(2012), pp. 1257–1266 (cit. on p. 21).

[106] Christoph M. Michel and Micah M. Murray. “Towards the utilization of
EEG as a brain imaging tool.” In: Neuroimage 61.2 (June 2012), pp. 371–385.
doi: 10.1016/j.neuroimage.2011.12.039 (cit. on p. 21).

[107] M. J. Brookes, M. W. Woolrich, and G. R. Barnes. “Measuring functional
connectivity in MEG: a multivariate approach insensitive to linear source
leakage.” In: Neuroimage 63 (2 2012), pp. 910–920 (cit. on p. 21).

[108] K. J. Friston, Frith C. D., P. F. Liddle, and R. S. Frackowiak. “Functional
connectivity: the principal-component analysis of large (PET) data sets.”
In: Journal of Cerebral Blood Flow and Metabolism 13 (1993), pp. 5–14 (cit. on
p. 21).

[109] Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A Engemann, Daniel
Strohmeier, Christian Brodbeck, Roman Goj, Mainak Jas, Teon Brooks, Lauri
Parkkonen, and Matti Hinen. “MEG and EEG data analysis with MNE-
Python.” In: Frontiers in Neuroscience 7.267 (2013). issn: 1662-453X. doi:
10.3389/fnins.2013.00267 (cit. on pp. 21, 39).

[110] R. Oostenveld, P. Fries, E. Maris, and JM. Schoffelen. “FieldTrip: Open
Source Software for Advanced Analysis of MEG, EEG, and Invasive Elec-
trophysiological Data.” In: Computational Intelligence and Neuroscience (2011).
doi: 10.1155/2011/156869 (cit. on pp. 21, 39, 44).

[111] P. M. Birgani and M. Ashtiyani. “Wireless Real-time Brain Mapping.” En-
glish. In: 3rd Kuala Lumpur International Conference on Biomedical Engineering
2006. Ed. by Fatimah Ibrahim, NoorAzuanAbu Osman, Juliana Usman, and
NahrizulAdib Kadri. Vol. 15. IFMBE Proceedings. Springer Berlin Heidel-
berg, 2007, pp. 444–446. isbn: 978-3-540-68016-1 (cit. on pp. 22, 39).

[112] Peter Brunner, Anthony L Ritaccio, Timothy M Lynch, Joseph F Emrich,
J Adam Wilson, Justin C Williams, Erik J Aarnoutse, Nick F Ramsey, Eric
C Leuthardt, Horst Bischof, and Gerwin Schalk. “A Practical Procedure
for Real-Time Functional Mapping of Eloquent Cortex Using Electrocor-
ticographic Signals in Humans.” In: Epilepsy & behavior : E&B 15.3 (2009),
pp. 278–286. issn: 1525-5069 (cit. on pp. 22, 39).

[113] Hiroshi Ogawa, Kyousuke Kamada, Christoph Kapeller, Satoru Hiroshima,
Robert Prueckl, and Christoph Guger. “Rapid and Minimum Invasive
Functional Brain Mapping by Real-Time Visualization of High Gamma
Activity During Awake Craniotomy.” In: World Neurosurgery (2014). doi:
10.1016/j.wneu.2014.08.009 (cit. on pp. 22, 39).

[114] L. Greenmeier. “Glass Brain” Offers Tours of the Space between Your Ears. Sept.
2014. url: http://www.scientificamerican.com/article/glass-brain-
offers-tours-of-the-space-between-your-ears/ (cit. on pp. 22, 39).

55

http://dx.doi.org/10.1016/j.neuroimage.2011.12.039
http://dx.doi.org/10.3389/fnins.2013.00267
http://dx.doi.org/10.1155/2011/156869
http://dx.doi.org/10.1016/j.wneu.2014.08.009
http://www.scientificamerican.com/article/glass-brain-offers-tours-of-the-space-between-your-ears/
http://www.scientificamerican.com/article/glass-brain-offers-tours-of-the-space-between-your-ears/


Bibliography

[115] C. Breitwieser, I. Daly, C. Neuper, and G. R. Müller-Putz. “Proposing a
Standardized Protocol for Raw Biosignal Transmission.” In: IEEE Transactions
on Biomedical Engineering 59 (3 2012), pp. 852–859 (cit. on pp. 28, 32).

[116] David Beazley. “Understanding the Python GIL.” In: PyCon. 2010 (cit. on
p. 29).

[117] Pieter Hintjens. ZeroMQ: Messaging for Many Applications. O’Reilly Media,
2013 (cit. on p. 29).

[118] J. Cohen. “A coefficient for agreement for nominal scales.” In: Educational
and Psychological Measurement 20 (1960), pp. 37–46 (cit. on p. 35).

[119] Luca Faes, Alberto Porta, and Giandomenico Nollo. “Surrogate data ap-
proaches to assess the significance of directed coherence: application to
EEG activity propagation.” In: Conf Proc IEEE Eng Med Biol Soc 2009 (2009),
pp. 6280–6283. doi: 10.1109/IEMBS.2009.5332477 (cit. on p. 35).

[120] G. Pfurtscheller, A. Stancák Jr., and C. Neuper. “Post movement beta syn-
chronization: a correlate of an idling motor area?” In: Electroencephalography
and Clinical Neurophysiology 98 (1996), pp. 281–293 (cit. on p. 38).

[121] M. T. Jurkiewicz, W. C. Gaetz, A. C. Bostan, and D. Cheyene. “Post-movement
beta rebound is generated in motor cortex: evidence from neuromagnetic
recordings.” In: NeuroImage 32 (2006), pp. 1281–1289 (cit. on p. 38).

[122] D. J. McFarland and J. R. Wolpaw. “Sensorimotor rhythm-based brain-
computer interface (BCI): model order selection for autoregressive spectral
analysis.” In: Journal of Neural Engineering 5 (2008), pp. 155–162. doi: 10.
1088/1741-2560/5/2/006 (cit. on pp. 41, 43).

[123] J. M. Mendel. “Computational Requirements for a Discrete Kalman Filter.”
In: IEEE Transactions on Automatic Control 16(6) (1971), pp. 748–758 (cit. on
p. 42).

[124] B. P. Bezruchko and D. A. Smirnov. Extracting Knowledge From Time Series:
An Introduction to Nonlinear Empirical Modeling. Springer, 2010 (cit. on p. 43).

[125] M. Miyakoshi, A. Delorma, T. Mullen, K. Kojima, S. Makeig, and E. Asano.
“Automated detection of cross-frequency coupling in the electrocorticogram
for clinical inspection.” In: Engineering in Medicine and Biology Society. 35th
Annual International Conference of the IEEE. 2013 (cit. on p. 44).

[126] S. Haufe, K.-R. Müller, G. Nolte, and N. Krämer. “Sparse Causal Discovery
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Appendix A.

Mathematical Derivations

A.1. VAR Model Transformations

Consider a data set consisting of M signals and N samples. Each multivariate
sample in the data set is a vector x[n] of size M. When fitting a VAR model (A.1) to
this data set, we attempt to find linear combinations of p previous samples that
best predict the current sample x[n]. This linear combination is expressed by the
model coefficients as M×M matrices B(k), where k = 1 . . . p.

x[n] =
p

∑
k=1

B(k)x[n− k] + r[n] (A.1)

We want to find the model coefficients that give on average the best prediction
over all samples in the data set. In other words, we try to minimize the sum of the
squared model residuals r. This leads to the cost function J (A.2), which can be
written as a sum of partial cost functions Jn.

J = ∑
n

Jn = ∑
n

rT[n]r[n] (A.2)

The partial cost function is given by (A.3). Apparently, this function is quadratic in
the coefficient matrices B(k), and we can find the minimum by setting the gradient
of J to zero and solving for each B(k)

ij . Although there are more practical approaches
to actually fit a VAR model, this approach is well suited for a formal derivation.

Jn = xT[n]x[n]− 2
p

∑
u=1

xT[n]B(u)x[n− u] +
p

∑
v=1

p

∑
w=1

xT[n− v]B(v)TB(w)x[n− w]

(A.3)

The gradient of the cost function ∇J is formed by partially deriving J by each
element B(k)

ij . Grouping the elements of the gradient by k leads to a compact
representation (A.4, A.5). We could solve for the model coefficients by setting
∇J = 0. However, we will stop here, because comparing the gradients of the basic
VAR model and a transformed VAR model is sufficient for our derivation.

∇J =
[
∇J(1) . . .∇J(p)

]
(A.4)

∇J(k) =
∂J

∂B(k)
= 2 ∑

n

(
p

∑
u=1

B(u)x[n− u]xT[n− k]− x[n]xT[n− k]

)
(A.5)
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Appendix A. Mathematical Derivations

Next, we will derive the gradient of the cost function in a transformed VAR
model. Consider the transformed signals y[n] = Mx[n], with inverse transform
x[n] = Uy[n]. Expressing the model from (A.1) in y leads to (A.6) with residuals
e = Mr.

y[n] =
p

∑
k=1

MB(k)Uy[n− k] + e[n] (A.6)

Again, the cost function J′ of the transformed model (A.7) is a sum of partial cost
functions (A.8).

J′ = ∑
n

J′n = ∑
n

e[n]Te[n] = ∑
n

rT[n]MTMr[n] (A.7)

J′n = xT[n]MTMx[n]− 2
p

∑
u=1

xT[n]MTMB(u)x[n− u]

+
p

∑
v=1

p

∑
w=1

xT[n− v]B(v)TMTMB(w)x[n− w] (A.8)

Finally, the gradient of the transformed cost function simplifies to the gradient of
the original model transformed with MTM (A.10).

∂J′

∂B(k)
= 2MTM ∑

n

(
p

∑
u=1

B(u)x[n− u]xT[n− k]− x[n]xT[n− k]

)
(A.9)

∇J′ = MTM∇J (A.10)

From (A.10) it is easy to see that both cost functions J and J′ have the same
minimum if MTM is invertible:

∇J′ = 0

MTM∇J = 0

∇J = (MTM)−10 = 0

This has important practical implications. First, it does not matter in which signal
space a VAR model is fitted. The same model can be obtained from cortical sources,
EEG signals, principal components, or ICs. However, if information is lost during
the transform, MTM becomes singular and the original model can no longer be
recovered. This is for example the case if y contains less signals than x. Second,
although both models are equivalent, the model coefficients in the transformed
model are MB(k)U. These are different from the coefficients in the original model
B(k). When interpreting connectivity, it is important to check in which space the
model was fitted, and if an interpretation of connectivity is valid in this space.
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Appendix B.

Primary Publications

B.1. Contributions

This section lists the approximate amount of work each author has contributed to
each of the four main publications.

Author work contribution

1

C. Brunner 30 % idea, writing
M. Billinger 55 % programming, analysis, proofreading
C. Vidaurre 10 % technical advice, proofreading

C. Neuper 5 % general advice, proofreading

2

M. Billinger 70 % idea, programming, analysis, writing
C. Brunner 20 % technical advice, partial writing, proofreading

G. Müller-Putz 10 % general advice, proofreading

3

M. Billinger 70 % idea, programming, writing
C. Brunner 20 % idea, technical advice, proofreading

G. Müller-Putz 10 % general advice, proofreading

4

M. Billinger 70 % idea, programming, measurements, video, writing
C. Brunner 20 % idea, technical advice, proofreading

G. Müller-Putz 10 % idea, advice on paradigm, proofreading
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Abstract Selecting suitable feature types is crucial to

obtain good overall brain–computer interface performance.

Popular feature types include logarithmic band power

(logBP), autoregressive (AR) parameters, time-domain

parameters, and wavelet-based methods. In this study, we

focused on different variants of AR models and compare

performance with logBP features. In particular, we ana-

lyzed univariate, vector, and bilinear AR models. We used

four-class motor imagery data from nine healthy users over

two sessions. We used the first session to optimize

parameters such as model order and frequency bands. We

then evaluated optimized feature extraction methods on the

unseen second session. We found that band power yields

significantly higher classification accuracies than AR

methods. However, we did not update the bias of the

classifiers for the second session in our analysis procedure.

When updating the bias at the beginning of a new session,

we found no significant differences between all methods

anymore. Furthermore, our results indicate that subject-

specific optimization is not better than globally optimized

parameters. The comparison within the AR methods

showed that the vector model is significantly better than

both univariate and bilinear variants. Finally, adding the

prediction error variance to the feature space significantly

improved classification results.

Keywords Brain–computer interface � Autoregressive

model � Logarithmic band power � Feature extraction �
Motor imagery

1 Introduction

A brain–computer interface (BCI) is a device that measures

signals from the brain and translates them into control

commands for an application such as a wheelchair, an

orthosis, or a spelling device [43]. By definition, a BCI

does not use signals from muscles or peripheral nerves.

Furthermore, a BCI operates in real-time, presents feed-

back, and requires goal-directed behavior from the user

[27].

Most non-invasive BCIs record the electroencephalo-

gram (EEG) from the surface of the scalp [19]. In general,

there are several components which process the raw EEG

signals before an actual output of the system is available.

Typically, signals are first preprocessed with temporal or

spatial filters. Examples of preprocessing techniques

include bandpass filters, bipolar filters, or more advanced

approaches such as common spatial patterns (CSP) [4]. The

next stage extracts suitable features from the preprocessed

signals, that is, relevant (discriminative) signal character-

istics are isolated. Popular features for BCIs include loga-

rithmic band power (logBP) [25, 26], autoregressive (AR)

parameters [35], time-domain parameters [42], and wave-

let-based methods [11]. Finally, a classification or regres-

sion algorithm translates the features into an output signal
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for a specific application. Examples of widely used classi-

fiers in BCI research are linear discriminant analysis (LDA),

support vector machines, neural networks, and nearest

neighbor classifiers [18, 19, 40]. Optionally, and depending

on the application, the output of the classification stage can

be post-processed, for example by averaging over time or

by introducing additional constraints such as a dwell time

and refractory period [37].

Selecting suitable features is crucial to obtain good

overall BCI performance [7, 8]. In this study, we focus on

BCIs based on event-related desynchronization [28] and

explore extensions of the simple AR model and compare

the resulting features with logBP features. More specifi-

cally, we compare the performance of a standard univariate

AR (UAR) model, a vector AR (VAR) model, and a

bilinear AR (BAR) model on BCI data. We also study the

influence of adding the error variance as a feature for all

three AR model types. Similar to logBP, AR parameters

can be used to estimate the power spectral density [20], but

they can also serve directly as features for BCIs [35]. Many

groups have used AR parameters as features for BCIs in

either way; some groups used short segments of time and

fitted an AR model to this data segment [9, 30], whereas

others adapted the model coefficients continuously [35, 39]

(for example with a Kalman filter approach).

Most studies used UAR models, which means that each

EEG channel is described with a separate AR model. This

means that information about the relationships between

signals is completely neglected. In contrast, a VAR model

describes all channels at once and therefore includes

information about the correlation between individual sig-

nals. Only a few studies have described VAR parameters

applied to BCI data, but they reported promising results [2,

24]. Furthermore, the additional information inherent in

VAR models can be used to compute explicit coupling

measures such as the partial directed coherence and the

directed transfer function [34].

Another extension of the AR model is the BAR model.

In contrast to the classical linear AR model, a BAR model

can describe certain non-linear signal properties [29] such

as non-Gaussian signals. Many real-world time series

exhibit such behavior, for example the arc-shaped senso-

rimotor mu rhythm [10] in the case of EEG signals. Con-

sequently, a bilinear model (which is a special case of

general non-linear models) should be better suited to model

such data.

The objective of this study is to assess the influence of

different feature types based on AR models on the per-

formance of a BCI (for example as measured by the clas-

sification accuracy). More specifically, we compared

standard UAR models with VAR and BAR models, and

variants including the prediction error variance as an

additional feature. We also used logBP features as state-of-

the-art features for comparison. We hypothesized that both

VAR and BAR models could yield higher BCI perfor-

mance than UAR parameters, because they contain more

information on the underlying signals and/or describe the

signals more accurately. Moreover, adding the error vari-

ance as a feature could add discriminative information and

thus increase BCI performance.

2 Methods

2.1 Data

We used data set 2a from the BCI Competition IV1, which

comprises data from nine users over two sessions each

(recorded on separate days). The data was recorded with

prior consent of all participants, and the study conformed

to guidelines established by the local ethics commission. In

each trial, participants performed one out of four different

motor imagery tasks: movement imagination of left hand,

right hand, both feet, and tongue. In total, each of the two

sessions consists of 288 trials (72 trials per class) in ran-

dom order.

Subjects were sitting in front of a computer monitor. At

the beginning of a trial, a cross appeared on the black

screen. In addition, subjects heard a tone indicating trial

onset. After 2 s, subjects viewed an arrow that pointed

either to the left, right, top or bottom of the screen. They

performed the corresponding motor imagery task until the

cross disappeared after 6 s. A short break between 1.5 and

2.5 s followed before the next trial.

The data set consists of 22 EEG signals recorded mo-

nopolarly (referenced to the left mastoid and grounded to

the right mastoid). Signals were sampled at 250 Hz and

bandpass-filtered between 0.5 and 100 Hz. An additional

50 Hz notch filter removed line noise. In this study, we

used only three bipolar channels, calculated by subtracting

channels anterior to C3, Cz, and C4 from sites posterior to

these locations (the inter-electrode distance was 3.5 cm).

2.2 Features

We compared three different AR variants, namely (1) a

UAR model, (2) a VAR model, and (3) a BAR model. In

all three cases, we used the corresponding AR coefficients

as features. In addition, we enhanced each AR method by

adding the prediction error variance to the feature space. In

summary, we analyzed six different AR-based feature

types, described in more detail in the following paragraphs.

1 http://www.bbci.de/competition/iv/.
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2.2.1 UAR model

A UARðpÞ model is defined as

xk ¼
Xp

i¼1

aixk�i þ ek; ð1Þ

where xk is the value of the time series x at time point k. The

current value of xk can be predicted by the weighted sum of

p past values xk-i plus an additional error term ek. The weights

ai are called the AR parameters. In a typical BCI, xk corre-

sponds to the amplitude of an EEG channel at time k.

2.2.2 VAR model

A VARðpÞ model is an extension of the UAR case

described above, because it simultaneously describes sev-

eral time series. Thus, it is defined as

xk ¼
Xp

i¼1

Aixk�i þ ek; ð2Þ

where xk is a vector of time series at time k. The p AR

parameters from the UAR model generalize to p matrices

Ai; and the error term ek becomes a vector. In contrast to a

UAR model, a VAR model explicitly models the correla-

tion between the different time series. Applied to EEG

data, VAR models can describe the relationships between

different EEG channels, which might contain discriminable

information for BCIs [5].

2.2.3 BAR model

In contrast to UAR and VAR models (which are linear time

series models), non-linear models can describe non-linear

characteristics such as large bursts or extremely rapid and

large fluctuations [29]. A BARðp; q1; q2Þ model is an exten-

sion of a linear UARðpÞ model and a special case of general

non-linear models with finite parameters. It is defined as

xk ¼
Xp

i¼1

aixk�i þ ek þ
Xq1

i¼1

Xq2

j¼1

bijxk�iek�j; ð3Þ

where the first part is a UARðpÞ model and the last part

describes the bilinear contribution with the q1 � q2 bilinear

coefficients bij.

BAR models might be more suitable to describe EEG

signals, because EEG signals may contain non-linear fea-

tures such as the arc-shaped mu rhythm [10]. Such charac-

teristics cannot be captured by linear time series models [29].

2.2.4 Parameter estimation

We estimated AR parameters adaptively for all AR-based

methods (UAR, VAR, and BAR) using a Kalman filter

[14]. A Kalman filter operates in the state space, which is

defined by the following two equations:

zk ¼ G � zk�1 þ wk�1 ð4Þ
yk ¼ H � zk þ vk ð5Þ

Here, zk is the state at time k;G is the state transition

matrix, and wk�1 is the process noise with

wk�1�Nð0;WÞ: Furthermore, yk is the measurement

vector, H is the measurement sensitivity matrix, and vk is

the measurement noise with vk�Nð0;VÞ: For univariate

models UAR and BAR, yk and vk reduce to scalars yk and

vk (with vk �Nð0;VÞ), respectively.

We used these equations to estimate AR parameters by

assigning zk ¼ ak (where ak ¼ a1; a2; . . .; ap

� �T
is a vector

containing all AR coefficients), yk ¼ xk;G ¼ I (the identity

matrix), and H ¼ xk�1; xk�2; . . .; xk�p

� �
: These assignments

hold for the UAR model only, but they can be easily

generalized for the VAR case by using matrix equivalents

of the corresponding variables, and for the BAR model by

extending zk and H:

We adopted an estimation approach based on results

presented in [36] and as recommended and implemented in

the BioSig2 toolbox [33] function tvaar.m. We imple-

mented this function in C and added a MATLAB3 inter-

face, which speeded up computation time significantly.

In the first step, we tried to find suitable initial values for

parameters such as the AR coefficients, the process noise

covariance, and the measurement noise covariance. We

updated all parameters in this first run over the complete

first data session. Once we found initial values with this

procedure, we estimated AR parameters in a second run

over the session using another update mode, which essen-

tially keeps the process noise and measurement noise

covariances constant at the previously found values. In the

final evaluation step on the unseen second session, we only

used mode the latter mode, but initialized parameters with

values found in the optimization step using the first session

(see Sects. 2.3, 2.4 for more details).

2.2.5 Features based on AR models

The prediction error ek at time k can be estimated by

subtracting the prediction H � zkð Þ from the measurement

yk :

ek ¼ yk �H � zk ð6Þ

We used the logarithm of the estimated covariance of

the prediction error log E\ekeT
k [

� �
to augment the feature

2 http://biosig.sourceforge.net/.
3 http://www.mathworks.com/.
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space of UAR, VAR, and BAR models, thus yielding three

additional AR feature types termed xUAR, xVAR, and

xBAR. Note that we adapted the covariance estimation in

each step directly with UC.

In summary, we compared the following six AR-based

feature extraction methods: (1) UAR, (2) xUAR, (3) VAR,

(4) xVAR, (5) BAR, and (6) xBAR.

2.2.6 LogBP

We compared our AR features with results obtained from

logBP, which is commonly used in many BCI systems [19].

The calculation procedure is as follows:

– Bandpass-filter raw EEG signal in a specific frequency

band (we used a fifth order Butterworth filter)

– Square samples

– Smooth over a one second time window (we used a

moving average filter)

– Compute the logarithm

2.3 Parameter optimization

We conducted two independent parameter optimization

procedures. In the first analysis (individual optimization),

we optimized parameters for each subject individually. In

the second analysis (global optimization), we searched for

parameters that were optimal for all subjects in the data set.

Importantly, we used only data from the first session in

both procedures; we never used data from the second

session during parameter optimization.

2.3.1 Individual optimization

For each AR method, we optimized model order(s) and

update coefficient UC (a parameter which determines the

update speed in each iteration of the Kalman filter algo-

rithm) for each subject individually. We used a grid search

to find the optimal parameter combination. Table 1 lists the

search spaces for the different methods. In summary, we

searched in 41 � 20 ¼ 820 (UAR, xUAR), 41 � 15 ¼ 615

(VAR, xVAR), and 41 � 15 � 3 � 3 ¼ 5535 (BAR, xBAR)

parameter combinations, respectively.

For each parameter combination and method, we per-

formed the following steps:

– Extract features (see Sects. 2.2.4, 2.2.5)

– Find best segment for classifier setup using a running

classifier [22] (we divided a trial into 1 s segments with

0.5 s overlap and used all samples within a segment for

the running classifier procedure; see Sect. 2.4 for more

details on the classifier)

– Leave-8-trials-out cross-validation (train a classifier on

best segment found in the previous step, test on whole

trial)

– Use 0.9 quantile of classification accuracy p0 as

performance measure

Finally, we selected the parameter combination associ-

ated with the highest performance measure.

In contrast to the grid search optimization for AR

methods, we used a method based on neurophysiological

principles instead of classification results to optimize log-

BP features; we refer to this method as band power dif-

ference maps [3], which is similar to the approach

described in [4]. The procedure is as follows (applied to

each EEG channel separately):

– Compute time-frequency maps of signal power for each

motor imagery task and the three remaining tasks

combined (using only data from within trials)

– Calculate difference maps by subtracting the map of

one task from the map of the three remaining tasks

combined

– Iteratively find and remove connected patches in maps

(corresponding to largest differences)

– Combine adjacent or overlapping bands.

We calculated time–frequency maps with high time and

frequency resolution (we varied time from 0–8 s in steps of

0.04 s and frequency from 5 to 40 Hz with 1 Hz bands in

steps of 0.1 Hz). We also calculated confidence intervals

for each time–frequency point by first applying a Box-Cox

transformation and then computing confidence intervals

from the normal distribution.

In summary, we calculated eight time–frequency maps

for the following motor imagery tasks and combination of

tasks: 1, 2, 3, 4, 234, 134, 124, and 123 (the numbers 1, 2,

3, and 4 correspond to left hand, right hand, feet, and

Table 1 Search spaces for the AR-based feature extraction methods

Methods log(UC) p q1 q2

UAR, xUAR �8. . .0 1. . .20 – –

VAR, xVAR �8. . .0 1. . .15 – –

BAR, xBAR �8. . .0 1. . .15 1. . .3 1. . .3

We varied linear and bilinear model orders p, q1, and q2 in steps of 1, and the logarithmic update coefficient log UC in steps of 0.2

1340 Med Biol Eng Comput (2011) 49:1337–1346

123

Appendix B. Primary Publications

64



tongue motor imagery, respectively; the numbers 234, 134,

124, and 123 are combinations of these tasks). Next, we

calculated four difference maps, namely 1–234, 2–134,

3–124, and 4–123. Within each difference map, we itera-

tively searched for connected significant patches (inspired

by a four-way flood fill algorithm), starting with the pixel

with the largest difference. If the area of such a patch was

over a predefined threshold of 1 s Hz, we used its upper

and lower frequency borders to define a band for the logBP

feature extraction method. We then removed this patch

from the map and repeated the search procedure, searching

again for the pixel with the largest difference. We contin-

ued this procedure until the algorithm had removed all

patches from the map. Finally, we combined all frequency

bands found in the four difference maps and combined

adjacent or overlapping frequency bands.

2.3.2 Global optimization

In addition to the individual optimization, we also tried to

find parameters that are optimal for all subjects. For each

AR method, we averaged the performance measures

(calculated for all parameter combinations) over all nine

subjects. From these averaged results, we selected the

combination of linear model order(s) and update coefficient

with the highest performance measure.

For logBP, we simply selected standard frequency bands

8–12 and 16–24 Hz (containing alpha and beta bands) for

all channels.

2.4 Evaluation

We evaluated all feature extraction methods in two dif-

ferent ways. First, we calculated the cross-validated (XV)

classification accuracy p0 on the second session. Second,

we estimated the session transfer (ST) by calculating

classifier weights on the first session and computing the

classification accuracy p0 on the second session. We car-

ried out this evaluation for both individually and globally

optimized features (see Sect. 2.2.4).

2.4.1 Cross-validation (XV)

With the optimized parameter values found in the optimi-

zation step (using data from the first session only), we cal-

culated the cross-validated classification accuracy p0 on the

second session. Therefore, we used a similar classification

procedure as described in Sect. 2.2.4. First, we extracted

features from the second session. Next, we determined the

best segment for classifier setup using a running classifier

[22]. As before, we divided each trial into 1 s segments with

0.5 s overlap. We used a combination of LDA classifiers in a

one-versus-rest scheme; this classifier assigned one out of

four classes to the class with the highest discriminant value.

We performed a leave-8-trials-out cross-validation, which

means that we used segments of 280 trials to train and eight

trials to test a classifier. We repeated this procedure until all

segments had been used as a test set once. Finally, we

averaged over all folds, and we calculated the 0.9 quantile of

the cross-validated classification accuracy. That is, instead of

reporting the maximum of the classification accuracy within

a trial, we chose the 0.9 quantile as a more robust measure of

performance, because it effectively removes outliers.

2.4.2 Session transfer

The ST estimates the performance of a real-world BCI

system more realistically, but it requires a sufficiently high

number of unseen test data trials. In this analysis, we

determined optimal parameters and classifier weights from

the first session. After that we extracted features from the

second session and applied the classifier from the previous

step. We used the same one-versus-rest classifier scheme as

in the cross-validation analysis.

2.4.3 Statistical analysis

We used repeated measures analysis of variance (ANOVA)

to statistically analyze the classification results. First, we

checked the sphericity assumption with Mauchly’s speric-

ity test. Then, we performed the ANOVA and corrected

degrees of freedom if necessary. If we found significant

effects, we used Newman–Keuls post-hoc tests to deter-

mine significant differences.

Basically, we performed ANOVAs for XV and ST

results separately. First, we wanted to assess differences

over all seven feature extraction methods (factor ‘‘method’’;

7 levels; UAR, xUAR, VAR, xVAR, BAR, xBAR, and

logBP) and optimization strategies (factor ‘‘optimization’’;

2 levels; individual and global). Second, we were also

interested in differences between the three AR-based

methods only (factor ‘‘method’’; 3 levels; U, V, and B), the

influence of the prediction error variance feature (factor

‘‘x’’; 2 levels; yes or no), and the optimization strategies

(factor ‘‘optimization’’; 2 levels; individual or global).

We repeated these analyses with both XV and ST results

combined into a factor ‘‘ST/XV’’ (2 levels; ST and XV). In

summary, we performed six repeated measures ANOVAs.

3 Results

3.1 Parameter optimization

Tables 2 and 3 show the results of the optimization pro-

cedure for both the individual and global optimization,
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respectively. On average, univariate methods (UAR, BAR,

xUAR, and xBAR) require a higher model order p as

opposed to vector models (VAR and xVAR). The opti-

mized values of the update coefficient UC are similar for

all methods, except in the case of BAR for subjects A01

and A02, where the UC is significantly lower (see Fig. 1).

This might be due to our optimization procedure, where we

selected the parameter combination with the highest fitness

function. However, only a slightly lower classification

accuracy is associated with a log(UC) around -2.5, a value

found for all other subjects.

Finally, note that we used the achieved classification

accuracies only within our optimization procedure. We

report it here only for the sake of completeness, and stress

that we did not use these accuracies for evaluation of the

methods. The evaluation results are described in the next

section.

3.2 Evaluation

Using the optimal parameter combinations found in the

optimization step, we evaluated the methods on the second

session. Table 4 shows the results for the ST analysis,

whereas Table 5 shows the cross-validated (XV) results.

As expected, classification accuracies are generally higher

in the cross-validated case than in the ST analysis. In both

cases, there is no obvious difference in the means for the

individual and global optimization. The following para-

graphs describe the outcomes of the statistical analyses.

3.2.1 Overall comparison

A two-way repeated measures ANOVA for the ST case

(factors ‘‘method’’ and ‘‘optimization’’) found a significant

main effect of ‘‘method’’ (F6,48 = 8.104, Greenhouse-

Table 2 Results of parameter optimization for AR-based methods UAR, VAR, and BAR without the prediction error variance feature

UAR VAR BAR

p0 p log(UC) p0 p log(UC) p0 p q log(UC)

A01 0.582 13 -2.8 0.612 4 -2.6 0.601 8 2, 2 -0.8

A02 0.446 6 -3.0 0.461 6 -2.8 0.461 14 1, 1 -0.6

A03 0.573 12 -2.6 0.625 2 -2.8 0.578 12 1, 3 -2.6

A04 0.418 10 -2.2 0.395 4 -2.2 0.421 12 2, 2 -2.6

A05 0.406 4 -2.6 0.410 2 -2.4 0.418 5 1, 2 -2.2

A06 0.429 15 -2.2 0.434 12 -2.2 0.457 15 1, 1 -2.6

A07 0.544 14 -2.6 0.533 13 -2.4 0.559 14 1, 3 -2.6

A08 0.635 15 -2.4 0.673 4 -2.4 0.639 5 1, 2 -2.4

A09 0.614 3 -2.2 0.640 3 -2.0 0.623 7 1, 2 -2.2

Global 0.494 13 -2.6 0.507 4 -2.6 0.499 13 1, 1 -2.4

All nine subjects (A01, A02, . . .) are shown. Columns show the 0.9 quantile of the classification accuracy p0, linear model order p, bilinear model

order q, and update coefficient logUC. The last row shows the results of the global optimization

Table 3 Results of parameter optimization for AR-based methods xUAR, xVAR, and xBAR (including the prediction error variance feature)

xUAR xVAR xBAR

p0 p log(UC) p0 p log(UC) p0 p q log(UC)

A01 0.619 12 -2.6 0.626 4 -2.6 0.619 13 1, 1 -2.6

A02 0.509 8 -2.8 0.506 4 -3.0 0.509 8 1, 1 -2.8

A03 0.654 5 -2.6 0.651 2 -2.8 0.651 5 1, 1 -2.6

A04 0.410 18 -2.0 0.400 3 -2.0 0.425 15 2, 2 -2.2

A05 0.418 2 -2.8 0.410 6 -2.4 0.414 5 1, 2 -2.2

A06 0.436 2 -2.2 0.434 13 -2.2 0.457 15 1, 2 -2.6

A07 0.556 14 -2.6 0.541 13 -2.4 0.563 15 2, 3 -2.0

A08 0.654 16 -2.4 0.677 4 -2.6 0.639 4 1, 1 -2.6

A09 0.629 3 -2.2 0.653 3 -2.0 0.640 7 1, 2 -2.2

Global 0.511 13 -2.6 0.518 4 -2.4 0.513 12 1, 1 -2.4

The notation is the same as in Table 2
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Geisser-adjusted P \ 0.01). A Newman–Keuls post-hoc

test found that logBP is significantly better than all six

AR-based methods (mean classification accuracies of

0.355, 0.389, 0.392, 0.430, 0.346, 0.406, and 0.485 for

UAR, xUAR, VAR, xVAR, BAR, xBAR, and logBP,

respectively). Furthermore, xVAR is significantly better

than both UAR and BAR. The factor ‘‘optimization’’ was

not significant (F1,8 = 0.030, P = 0.87).

In the XV case, an ANOVA with the same factors as in

the ST analysis also found a significant main effect of

‘‘method’’ (F6,48 = 3.247, P \ 0.01). A Newman–Keuls

post-hoc test revealed that BAR (mean accuracy of 0.460)

is significantly worse than xUAR, VAR, xVAR, and logBP

(mean accuracies of 0.507, 0.509, 0.525, and 0.510,

respectively). Again, the factor ‘‘optimization’’ was not

significant (F1,8 = 2.901, P = 0.13).

We also conducted a repeated measures ANOVAs as

described above for the combined evaluation results (that is,

we combined ST and XV results and introduced a new factor

‘‘ST/XV’’). This analysis yielded significant main effects

‘‘ST/XV’’ (F1,8 = 22.797, P \ 0.01) and ‘‘method’’ (F6,48 =

6.700, P \ 0.01), as well as a significant interaction between

‘‘ST/XV’’ and ‘‘method’’ (F6,48 = 5.746, Greenhouse-

Geisser-adjusted P \ 0.01). Post-hoc tests showed that XV

results (mean accuracy 0.499) are significantly higher than

ST results (0.400). Furthermore, logBP yielded significantly

higher results than UAR, VAR, BAR, and xBAR. BAR was

significantly worse than xUAR, VAR, xVAR, and logBP.

Finally, xVAR was significantly better than UAR. The mean

accuracies for UAR, xUAR, VAR, xVAR, BAR, xBAR, and

logBP were 0.420, 0.448, 0.451, 0.477, 0.403, 0.452, and

0.497, respectively.

Fig. 1 Optimization results for subjects A01 (left) and A02 (right)
for BAR with the best bilinear model order q. Maps show the 0.9

quantile of the classification accuracy for all parameter combinations

of log(UC) (x-axis) and model order p (y-axis). The white cross marks

the location of the maximum

Table 4 ST evaluation results (0.9 quantile of the classification accuracy) for each feature extraction method and optimization strategy on the

second session

Individual Global

UAR xUAR VAR xVAR BAR xBAR LogBP UAR xUAR VAR xVAR BAR xBAR LogBP

A01 0.471 0.571 0.521 0.550 0.275 0.600 0.650 0.554 0.611 0.521 0.575 0.511 0.593 0.596

A02 0.340 0.376 0.351 0.372 0.294 0.351 0.340 0.312 0.379 0.390 0.411 0.326 0.390 0.351

A03 0.357 0.555 0.452 0.529 0.379 0.548 0.645 0.360 0.467 0.563 0.599 0.419 0.511 0.601

A04 0.273 0.282 0.291 0.379 0.282 0.273 0.410 0.260 0.282 0.317 0.292 0.269 0.300 0.441

A05 0.258 0.298 0.273 0.258 0.273 0.265 0.287 0.291 0.291 0.258 0.276 0.273 0.284 0.305

A06 0.374 0.308 0.350 0.336 0.369 0.369 0.369 0.360 0.355 0.294 0.318 0.369 0.355 0.369

A07 0.239 0.239 0.239 0.326 0.239 0.239 0.395 0.239 0.290 0.239 0.250 0.239 0.264 0.471

A08 0.467 0.407 0.581 0.567 0.563 0.533 0.641 0.481 0.481 0.548 0.585 0.552 0.504 0.641

A09 0.498 0.498 0.487 0.597 0.327 0.498 0.608 0.259 0.304 0.380 0.517 0.270 0.430 0.601

Mean 0.364 0.393 0.394 0.435 0.333 0.408 0.483 0.346 0.384 0.390 0.425 0.359 0.403 0.486

SD 0.10 0.12 0.12 0.13 0.10 0.14 0.15 0.11 0.11 0.13 0.15 0.11 0.11 0.13

The last two rows show the mean and standard deviation (SD)
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3.2.2 Comparison of AR-based methods

We also analyzed the six AR-based methods in more detail

and performed three-way repeated measures ANOVAs

(factors ‘‘method’’, ‘‘x’’, and ‘‘optimization’’). In the ST

case, we found significant main effects of ‘‘method’’

(F2,16 = 3.939, P \ 0.05) and ‘‘x’’ (F1,8 = 6.324,

P \ 0.05). Post-hoc tests revealed that vector methods

(mean accuracy of 0.411) are significantly better than

bilinear methods (mean accuracy of 0.376). Furthermore,

methods including the prediction error variance are signif-

icantly better (mean accuracy 0.408) than their counterparts

without this additional feature (mean accuracy 0.364). In

the XV case, we found a significant main effect of

‘‘method’’ (F2,16 = 6.753, P \ 0.01). Post-hoc tests

showed that vector models (mean accuracy of 0.517) are

significantly better than bilinear models (mean accuracy of

0.479).

Finally, we analyzed the six AR methods for the combined

ST and XV results (by introducing the factor ‘‘ST/XV’’). We

found significant main effects of ‘‘ST/XV’’ (F1,8 =

20.604, P \ 0.01), ‘‘method’’ (F2,16 = 5.597, P \ 0.05),

and ‘‘x’’ (F1,8 = 6.778, P \ 0.05). Post-hoc tests showed

that cross-validated results (mean accuracy 0.497) were

significantly higher than ST results (mean accuracy 0.386).

Furthermore, vector models (mean accuracy of 0.464) were

significantly better than both univariate and bilinear models

(mean accuracies of 0.434 and 0.427, respectively). Finally,

results were significantly higher for methods using the pre-

diction error variance feature (mean accuracy of 0.459)

compared to methods that did not use this feature (mean

accuracy of 0.425).

4 Discussion

In summary, logBP features yielded the highest classifi-

cation results in this study. In the ST analysis, where fea-

tures and classifiers are determined on the first session and

then applied to the second (completely unseen) session,

logBP was significantly better than all AR-based methods.

When assessing this result in more detail, we found out that

it might be due to our optimization and evaluation proce-

dure, which resembles a practical BCI setup. In such a

setup, users control the BCI in different sessions on dif-

ferent days, and only data from previous sessions can be

used to tune parameters. However, this only works if the

features are stable over sessions, that is, the bias of the

classifiers does not change significantly. In fact, it turned

out that all AR methods led to a much higher bias in the

second session compared to logBP features, where the bias

was about as small as in the first session. A statistical

analysis comparing all feature extraction methods after

adapting the bias in the second session resulted in no sig-

nificant differences in the ST analysis. Therefore, adapting

the bias of the classifier [15] or using adaptive classifiers

[12, 38, 41] to improve ST is necessary for AR features.

Due to the high dimensionality of the feature space in

our globally optimized features (see Tables 2, 3), and

because similarly high classification accuracies could be

obtained for lower model orders in the optimization step,

we assessed the performance of univariate models with a

lower model order of p = 5 for all subjects. It turned out

that classification accuracies improved slightly, but statis-

tical analyses showed that the overall results did not

change. That is, all results described above are also valid

Table 5 Cross-validated evaluation results (0.9 quantile of the classification accuracy) for each feature extraction method and optimization

strategy on the second session

Individual Global

UAR xUAR VAR xVAR BAR xBAR LogBP UAR xUAR VAR xVAR BAR xBAR LogBP

A01 0.621 0.664 0.611 0.629 0.318 0.657 0.650 0.639 0.664 0.611 0.646 0.618 0.664 0.614

A02 0.382 0.420 0.427 0.444 0.299 0.392 0.375 0.406 0.410 0.417 0.392 0.385 0.406 0.377

A03 0.502 0.603 0.610 0.658 0.518 0.603 0.680 0.496 0.599 0.627 0.647 0.518 0.610 0.603

A04 0.425 0.463 0.408 0.421 0.379 0.454 0.458 0.430 0.451 0.391 0.405 0.421 0.434 0.524

A05 0.411 0.377 0.406 0.400 0.364 0.363 0.293 0.375 0.367 0.404 0.407 0.393 0.389 0.329

A06 0.332 0.355 0.309 0.356 0.326 0.333 0.424 0.343 0.350 0.358 0.378 0.356 0.343 0.424

A07 0.489 0.504 0.482 0.518 0.496 0.411 0.418 0.486 0.507 0.532 0.543 0.493 0.500 0.489

A08 0.620 0.612 0.642 0.645 0.599 0.609 0.647 0.600 0.598 0.645 0.632 0.602 0.602 0.643

A09 0.599 0.613 0.619 0.646 0.608 0.615 0.615 0.581 0.577 0.672 0.683 0.581 0.570 0.624

Mean 0.487 0.512 0.502 0.524 0.434 0.493 0.507 0.484 0.503 0.517 0.526 0.485 0.502 0.514

SD 0.11 0.11 0.12 0.12 0.12 0.13 0.14 0.10 0.11 0.13 0.13 0.10 0.11 0.12

The last two rows show the mean and standard deviation (SD)
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for univariate models with lower model orders. Therefore,

we can safely rule out overfitting effects that might have

explained the inferior performance of (univariate) AR

models, especially in the ST analysis. Other studies such as

[20] have also found similarly high or higher model orders

(although they did not use AR coefficients directly for

classification, but calculated the power spectrum).

Furthermore, we have shown that optimizing parameters

for individual subjects does not result in better classification

rates. Indeed, there was no significant difference between

globally and individually optimized parameters. This

implies that using logBP with default bands (8–12 and

16–24 Hz) works as well as with subject-specific bands.

Note that we used bipolar channels in this study, which is

very common in BCI research [1, 6, 16, 17, 23, 32, 31, 40].

Had we used subject-specific spatial filters such as CSP,

subject-specific bands might have yielded better results than

default bands [4].

The comparison of all analyzed AR methods showed

that vector models yielded higher classification results than

both univariate and bilinear models. On the one hand, this

is not surprising, because vector models consider more

information, namely the relationships between individual

signals. On the other hand, the potentially more accurate

signal description with bilinear models could not be

translated into improved classification results. This could

be due to two reasons: first, the EEG might not contain

signal characteristics that cannot be described by linear

models; or second, although bilinear signal properties

might improve the model fit, they do not contribute dis-

criminative information for BCIs.

Clearly, all AR methods benefited from the inclusion of

the prediction error variance as an additional feature. This

feature makes initialization of parameters even more

important, because the prediction error variance is updated

directly with the update coefficient UC. Without initialization

to suitable values, it would take a long time until this feature

was in its operating range. This underscores the importance of

estimating good initial values, for example with a first run

over the optimization data set as implemented in our study.

In conclusion, logBP is superior to AR-based methods, at

least with the procedure and implementation used in this

study. However, as described above, the performance of AR

features can be improved when adapting the bias of the

classifiers in new sessions [21, 41]. We also found that low

model orders generalized better, and the high model orders

determined in our optimization step on the first session

resulted in significantly lower classification accuracies on

the unseen second session. Moreover, for the settings used in

this study (which is very common in BCI experiments), it is

not necessary to optimize features for each user individually

globally optimized parameters for all users yield equally

high classification rates. In particular, we recommend using

low model orders (such as a model order of 5) for univariate

models to ensure generalization of the features. Finally,

vector models should be preferred over univariate models,

and the prediction error variance improved classification

performance of all AR models. Future study should apply

these findings to online BCIs, where users receive feedback

based on their brain patterns, for example to control a

prosthesis [13]. Although we are confident that our results

will generalize to online sessions with feedback, we are

currently working on an online study to verify our findings.

Another follow-up study could explore the combination of

AR and logBP features to assess whether they contain

complimentary information on the data.
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Abstract
Objective. Many brain–computer interfaces (BCIs) use band power (BP) changes in the
electroencephalogram to distinguish between different motor imagery (MI) patterns. Most
current approaches do not take connectivity of separated brain areas into account. Our
objective is to introduce single-trial connectivity features and apply these features to BCI data.
Approach. We introduce a procedure for extracting single-trial connectivity estimates from
vector autoregressive (VAR) models of independent components in a BCI setting.
Main results. In a simulated BCI, we demonstrate that the directed transfer function (DTF)
with full-frequency normalization and the direct DTF give classification results similar to BP,
while other measures such as the partial directed coherence perform significantly worse.
Significance. We show that single-trial MI classification is possible with connectivity measures
extracted from VAR models, and that a BCI could potentially utilize such measures.

(Some figures may appear in colour only in the online journal)

1. Introduction

A brain–computer interface (BCI) is a communication device
that classifies brain activity and controls a device such as a
spelling application, a neuroprosthesis, or a wheelchair [1].
Most non-invasive BCIs rely on the electroencephalogram
(EEG) to record brain signals. A typical signal processing
pipeline for such a BCI comprises preprocessing, feature
extraction, and classification stages. In the preprocessing stage,
signals are typically filtered in the spatial and/or spectral
domain. Spatial filters usually create a linear mixture of
existing signal channels; popular techniques include bipolar
derivations, Laplace filters, and common spatial patterns (CSP)
[2]. Next, the preprocessed data is further processed in the
feature extraction stage. To date, most non-invasive BCIs have
used features derived from individual channels. Commonly
used feature types include band power (BP), autoregressive
(AR) model coefficients, and wavelets [3]. Using suitable
classification algorithms in the next stage, these features allow
BCIs to discriminate between different brain states or mental

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

tasks. However, these features do not contain information
about causal relationships between channels. It is reasonable
to assume that such information could provide useful features
for BCIs.

The interaction of spatially separated brain areas can
be observed through functional or effective connectivity
[4, 5]. Functional connectivity reflects statistically related
activation of brain areas, while effective connectivity explains
the causality of these observed dependencies [5]. Numerous
connectivity measures have been developed and applied in
neuroscientific studies, including coherence (COH), partial
directed coherence (PDC) [6], directed transfer function (DTF)
[7], and many others [8, 9]. Some of these measures have also
been used in BCI studies [10–18]. Most of these measures
are related to vector autoregressive (VAR) models and can be
extracted from the model coefficients.

Volume conduction or instantaneous connectivity causes
spurious connectivity between raw EEG channels [19].
Different solutions to this problem have been proposed. These
solutions can be divided into three groups: (1) connectivity
measures designed to suppress instantaneous effects [20–22],
(2) inclusion of an instantaneous term in VAR models [23–25],
and (3) modeling the EEG as a mixture of sources [26, 27].

1741-2560/13/046006+08$33.00 1 © 2013 IOP Publishing Ltd Printed in the UK & the USA
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Figure 1. Layout of the EEG electrode montage. Left mastoid:
ground. Right mastoid: reference. EEG locations in order: AF7,
AFz, AF8, F3, F1, Fz, F2, F4, FT7, FC5, FC3, FC1, FCz, FC2, FC4,
FC6, FT8, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, Pz, CP2,
CP4, CP6, P7, P3, Pz, P4, P8, PO3, POz, PO4, O1, Oz, O2, I1, Iz, I2.

We decided to tackle the problem of instantaneous
connectivity by applying a VAR model to EEG sources. In
contrast to measures specifically designed to suppress volume
conduction, our procedures can be easily extended to include
new connectivity measures, provided that these new measures
can be extracted from VAR models.

Adding an additional instantaneous term in the VAR
model definition, as suggested in [23], imposes certain
restrictions on the structure of this term. Specifically, the
instantaneous term cannot contain any cycles [25]. This
implies that instantaneous interaction in any pair of signals
can originate from only one of these signals. In other words,
if the signal spreads from electrode A to B, it cannot spread
from B to A.

In contrast, modeling the EEG as a mixture of
sources does not impose such restrictions. Instead, sources
are assumed to be independent and non-Gaussian, which
is a reasonable assumption for EEG sources [28]. This
assumption makes blind source identification possible
with independent component analysis (ICA). Since these
sources are independent, they exhibit minimal instantaneous
interaction. Therefore, they can be modeled with simple VAR
models.

For our purposes, modeling the EEG as a mixture of
sources results in a better model than adding an instantaneous
term, because EEG is commonly assumed to be the result of
mostly cortical sources that appear smeared over the scalp due
to volume conduction [28]. Thus, we use the connectivity
estimation approach recommended and implemented in
EEGLAB with the SIFT toolbox [27]: fitting of VAR models
to component signals obtained by extended Infomax ICA [29].

For use in BCIs, connectivity measures need to be
extracted online from the on-going EEG. However, in practice,
many connectivity measures are extracted from VAR models,
which are fitted to data that contains multiple realizations of the
EEG time series (multiple trials) [30]. Single-trial estimation
is inherently more difficult, because only a fraction of the data
is available for model fitting.

In this paper, we propose a procedure for obtaining single-
trial estimates of connectivity measures between ICA sources
for motor imagery (MI) classification. We solve the problem
of single-trial estimation by automatically selecting a subset
of signals for analysis to reduce the amount of data. This
procedure enables us to evaluate different measures in a BCI
simulation. The measures we test include univariate measures
as well as functional and effective connectivity measures for
classification of BCI tasks. Although we use pre-recorded data
in our analysis, our work flow easily generalizes to online
applications.

2. Methods

2.1. Data acquisition

We recorded 45 EEG and three electrooculogram (EOG)
channels with sintered Ag/AgCl ring electrodes. The
locations of the EEG channels corresponded to the extended
international 10–20 system (see figure 1 for montage details).
We recorded all signals at a sampling rate of 300 Hz
with three synchronized g.USBamp amplifiers (g.tec, Guger
Technologies OEG, Graz, Austria). The amplifiers filtered the
raw data with a 0.5–100 Hz bandpass and a 50 Hz notch filter.
EOG components in the EEG were reduced with a regression-
based approach [31]. For this study, the signals were further
resampled to 100 Hz.

Fourteen healthy volunteers (five male, age 29.6 ± 4.2
and nine female, age 24.8 ± 2.3) without prior experience
in BCI control participated in our BCI experiment. All
participants except one female were right-handed. Each
participant took part in two sessions on separate days, with
six screening and three feedback runs on each day. At the
beginning of each session, participants performed an artifact
run to estimate the influence of EOG artifacts on the EEG.
The screening runs were based on the synchronous Graz
BCI training paradigm [32], which we modified to visually
resemble the feedback runs in this study. We only use data from
the artifact and screening runs in this study. During feedback
runs, we instructed the participants to steer a virtual plane
along a path using hand and foot MI. After four screening
runs, one feedback run, two further screening runs, and two
final feedback runs followed.

Each session comprised 90 right hand MI and 90 foot MI
trials. Figure 2 illustrates the timing of a trial. A trial lasted
7 s, followed by a break of 3 ± 0.5 s. An acoustic beep and the
appearance of a fixation symbol indicated the start of a trial.
2.5 s after the start of the trial, an arrow appeared, pointing
either up or down to instruct participants to perform hand or
foot MI, respectively.

2

Appendix B. Primary Publications

72



J. Neural Eng. 10 (2013) 046006 M Billinger et al

Figure 2. Timing of the experimental paradigm. Trial duration is 7 s
with a break of 3 s (on average) between trials. Trial start is indicated
with an acoustic beep and the appearance of the fixation symbol.
After 2.5 s, participants are cued as to which MI task to perform.

2.2. Autoregressive models for connectivity estimation.

We can derive various connectivity measures from VAR
models, which are a multivariate generalization of univariate
AR models. VAR models consist of univariate and multivariate
terms. Univariate terms model individual channels, whereas
multivariate terms describe how channels depend on past
values of other channels. As such, VAR models are related
to the concept of Granger causality. Their structure mirrors
effective connectivity in the time domain, as shown in (1),
where the [M × 1] vectors y[n] and x[n] are the M-channel
EEG sample and residual at time instant n, and β(k) is the
[M × M] AR coefficient matrix at time lag k. By transforming
the model equations into the frequency domain, we obtain (2), a
spectral representation of the model. The [M × 1] vectors y(z)
and x(z) correspond to EEG and residuals in the z-domain.
We define the [M × M] matrix function A(z) in (3), which
is the inverse of the multivariate transfer function H(z), as
shown in (4):

y[n] =
p∑

k=1

β(k)y[n − k] + x[n] (1)

x(z) =
(

I −
p∑

k=1

β(k)z−k

)
y(z) (2)

A(z) = I −
p∑

k=1

β(k)z−k (3)

y(z) = A(z)−1x(z) = H(z)x(z). (4)

2.3. Instantaneous connectivity

Applying VAR models directly to raw EEG data is
problematic. Volume conduction causes EEG channels to
be highly correlated. This is expressed as instantaneous
connectivity between EEG channels, which is not included
in the VAR model. Instead, the residuals x are no
longer independent; they have non-zero covariances. Some
connectivity measures such as the PDC or DTF do not include
the residual covariance matrix in their definition. Thus, they
are distorted by instantaneous connectivity.

We propose a solution based on blind source separation,
which does not impose directional restrictions as is the case
when adding an instantaneous term. It is possible to use ICA as
a preprocessing step to transform the EEG from the electrode

space into the source space. ICA minimizes the statistical
dependence between signals. We use the extended Infomax
ICA algorithm [29] to minimize instantaneous dependencies.
Delayed dependencies between signals are preserved and can
thus be modeled with VAR models.

In this paper, we refer to data channels obtained from ICA
as sources, although they are not necessarily related to cortical
sources or dipoles.

2.4. Connectivity measures

Using the above equations, we can derive connectivity
measures from VAR models (see [8] for more details).

The cross-spectral density (S) is obtained by

S(z) = H(z)�xH(z)H . (5)

The COH is similar to S, but normalized by the
corresponding auto-spectra:

COHi j(z) = |Si j(z)|√
Sii(z)S j j(z)

. (6)

Variations of COH are imaginary coherence (iCOH) and
partial coherence (pCOH):

iCOHi j(z) = �{Si j(z)}√
Sii(z)S j j(z)

(7)

pCOHi j(z) = |Gi j(z)|√
Gii(z)G j j(z)

(8)

with

Gi j(z) = A(z)H�−1
x A(z). (9)

While the above measures are symmetric, the PDC
provides directional connectivity information:

PDCi j(z) = |Ai j(z)|√
AH

: j (z)A: j(z)
. (10)

The partial directed coherence factor (PDCF) incorporates
the residual error covariance in the normalization:

PDCFi j(z) = |Ai j(z)|√
AH

: j (z)�
−1
x A: j(z)

. (11)

The generalized partial directed coherence (GPDC) is a
generalization of the PDC that does not depend on signal scale:

GPDCi j(z) = |Ai j(z)|
σi

√
AH

: j (z)diag(�x)−1A: j(z)
. (12)

Another measure that provides directed connectivity
information is the DTF:

DTFi j(z) = |Hi j(z)|√
Hi:(z)HH

i: (z)
. (13)

The full-frequency DTF (ffDTF) is similar to the DTF,
except that normalization is performed over the full frequency
range:

ffDTFi j(z) = |Hi j(z)|√∑
z Hi:(z)HH

i: (z).
(14)
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Figure 3. The proposed procedure resembles the workflow of a typical BCI: parameters are optimized on available data and applied to
unseen data. This workflow is embedded in a cross-validation procedure, where parts of the pre-recorded data serve as the novel testing set.
Broad arrows depict data flow and narrow arrows correspond to system parameters.

While the ffDTF reveals direct and indirect connections,
the direct DTF (dDTF) only shows direct connections:

dDTFi j(z) = pCOHi j(z) · ffDTFi j(z). (15)

The directed coherence (DCOH) can be understood as a
generalization of the DTF, just like GPDC is a generalization
of the PDC:

DCOHi j(z) = σ j|Hi j(z)|√
Hi:(z)diag(�x)HH

i: (z)
. (16)

2.5. BCI simulation

Application of connectivity measures in BCIs based on
MI requires estimation of these measures from a single
realization of the time series. More channels and higher
frequency resolution (model order) require longer estimation
windows. However, we cannot increase the estimation window
length indefinitely, because the time series are required to be
stationary throughout the window. In addition, long estimation
windows lead to a slow BCI response.

We propose a procedure that solves the problem of single-
trial connectivity estimation in two steps. First, we compute
connectivity estimates with low time and frequency resolution
from all 45 available sources with estimation windows of
length 4.5 s. Sources are ranked based on these estimates,
and eight sources are selected for further use (a detailed
description of source ranking and selection follows below).
Second, the final connectivity estimates are obtained from the
subset of eight sources with windows of length 1.5 s. In both
steps, optimal model orders are determined by Akaike’s final
prediction error (FPE) [33].

In a typical BCI experiment, the first step (initialization)
is performed on training data recorded without feedback.

Then, single-trial connectivity estimation and classification
can be performed on the ongoing EEG. We simulate this
strategy on pre-recorded data with an outer cross-validation
loop. Classifier training requires a further nested cross-
validation loop to optimize the time of training. Figure 3 shows
schematically the functional blocks of our procedure. In the
following sections, we will describe each block in detail.

2.5.1. Outer cross-validation. We employ a cross-validation
scheme for validating the BCI system. From six available runs
in a recording session, one is used for testing and the five
remaining runs for training. This is repeated until every run
was in the testing set once. Thus, trials from the same run
can never occur in both the training and the testing set, and
every trial is used for testing exactly once (see also [34]). The
training sets are used for initialization of our procedure, and
results are obtained from the respective testing sets.

2.5.2. Initialization. First, the unmixing matrix for extracting
source signals from the EEG is estimated. This is accomplished
by applying Infomax ICA [29] to the training data set. The
unmixing matrix serves as a spatial filter that extracts the
source signals from the EEG.

Next, the connectivity estimator fits VAR models to a
sliding window of length 4.5 s over all 45 source signals, and
subsequently extracts connectivity measures. The window is
moved in steps of 0.3 s from t = 0 (cue) to t = 6 (end of trial),
creating 21 time segments. This results in a four-dimensional
data set ck(i, j, f , t) for each trial k, which describes a measure
of connectivity from channel j to channel i at frequency f
and time t relative to the cue. BP is estimated from the source
autospectra obtained by fast Fourier transform. Although BP is
not a connectivity measure, it can be treated as ck(i, j, f , t) = 0

4
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for i �= j. We extract connectivity measures in the frequency
range from 0–50 Hz in steps of 0.5 Hz. Once all connectivity
measures are extracted, the following steps are performed for
each measure separately.

The class correlator estimates the correlation coefficient
r(i, j, f , t) of ck with corresponding class labels lk. A class
label is a numeric value that indicates if a trial contains hand
MI (lk = 1) or foot MI (lk = −1). Thus, r indicates how
strongly a connectivity measure can distinguish between both
types of MI in channel pair (i, j) at time t and frequency f .
A high positive correlation means the measure’s magnitude is
higher during hand MI and lower during foot MI. Likewise,
negative correlation relates to foot MI.

With the information obtained so far, the eight most
important sources are selected. Sources that form a network
with connections that differentiate strongly between classes
are considered the most important. Thus, sources are ranked
by the amount of correlation found in their in- and out-going
connections, according to the ranking criterion e defined in
(17).

em =
∑

f

∑
t

⎛
⎝∑

i

r2(i, m, f , t) +
∑

j

r2(m, j, f , t)

⎞
⎠. (17)

Once a subset of sources is selected, the unmixing matrix
is pruned to only yield the selected sources. Connectivity
estimates are obtained for these sources in a sliding window
of length 1.5 s and the class-correlation r(i, j, f , t) is obtained
for the estimates.

p(i, j, f , t)-values are obtained from the asymptotic
normal distribution of r, for testing against the null-hypothesis
of no correlation. To determine which correlations are
statistically significant, the significance mapper attempts to
control the false discovery rate (FDR) [35] so that the
probability of falsely detected correlations does not exceed
0.01. To reduce noise in the significance maps, we modified
the FDR method so that correlations are only considered
significant if they form a cluster of minimum size in the t/ f -
plane. Minimum cluster size was set to an area of 2 s Hz.

Features for classification are extracted from frequency
bands where the connectivity exhibits significant class-
correlation. The band selector identifies a list of frequency
bands and connections (i, j) where r is significant for a
duration of at least 2 s. For functional connectivity measures,
where ck is symmetric, only one of the equivalent connections
( j, i) and (i, j) is used. If no bands are found, the system resorts
to a broad default band from 8 to 28 Hz for each connection.

A shrinkage linear discriminant analysis classifier [36]
is trained on the features as follows. We use a nested cross-
validation loop to estimate the classification performance for
each time segment. In a leave-one-out procedure, each trial
of the original training set is used for validation exactly once.
A margin of ten trials before and after the validation trial is
excluded from classifier training. This is repeated for each
time segment. The final classifier is then trained on the best
performing segment using all trials from the original training
set.

Table 1. ANOVA results for classification performance. The factors
Selection, Features and Session are abbreviated as f1, f2, and f3,
respectively. F is the value of the f -statistic, with degrees of
freedom DFn and DFd.

Effect DFn DFd F p Sig

f1 11 143 2.321 0.012 *
f2 11 143 28.588 0.000 **
f3 1 13 5.640 0.034 *
f1: f2 121 1573 1.418 0.003 **
f1: f3 11 143 0.632 0.799
f2: f3 11 143 0.678 0.758
f1: f2: f3 121 1573 0.731 0.986

2.5.3. Single-trial connectivity classification. Single-trial
analysis is performed on the testing set. The testing set was
not used during initialization, thus this analysis is performed
on completely unseen data. First, the pruned unmixing matrix
obtained during initialization is used to extract selected sources
from the testing set EEG. Connectivity measures are obtained
from a sliding window of length 1.5 s, and selected frequency
bands are extracted as features. Subsequently, the features are
classified by the classifier trained during initialization.

We measure classification performance with Cohen’s
kappa κ . To obtain a simple and robust measure of
performance, we estimate κ(t) for each time segment between
1 s and 4 s after the cue, and report the median of κ(t) from
these segments as classification performance.

2.6. Data analysis

Each connectivity measure was independently applied to
source channel selection and classification. We analyzed
classification performance across subjects and factors with
repeated measures analysis of variance (ANOVA). The
independent variable was κ , and the three factors were f1

(Selection, 11 levels), f2 (Features, 11 levels), and f3 (Session,
2 levels). Significant factors were further analyzed with Holm–
Bonferroni corrected paired t-tests.

3. Results

Table 1 shows the results of the ANOVA for classification
performance. There are highly significant (p < 0.01) effects
for f2 (Features) and the interaction between f1 (Selection)
and f2 (Features). The factors f1 (Selection) and f3 (Session)
were significant (p < 0.05).

Post tests were performed for significant effects. Post tests
of the interaction between f1 (Selection) and f2 (Features)
led to similar results as analyzing the main effects; we could
not identify an interpretable pattern. Thus, only the main
effects are presented for improved clarity. Post tests found
no significant differences in f1 (Selection) (see figure 4). The
results of post tests on factor f2 (Features) are shown in
figure 5. BP performed best for classification. However, it
was not significantly better than S, ffDTF and dDTF. All other
measures performed significantly worse. Factor f3 (Session)
is shown in figure 6. Classification accuracy in the second
session was significantly better than in the first session.
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Figure 4. Factor f1 (Selection). Left: classification performance κ (mean and standard deviation) for each measure used for source channel
selection. Right: significant (gray) and highly significant (black) differences between measures. Note. Since there are no significant
differences, the plot is white and does not contain gray or black boxes.

Figure 5. Factor f2 (Features). Left: classification performance κ (mean and standard deviation) for each measure used as feature for
classification. Right: significant (gray) and highly significant (black) differences between measures.

Figure 6. Factor f3 (Session). Left: classification performance (mean and standard deviation) for each session. Right: significant (gray)
differences between sessions.

The optimal VAR model order, which depends on the data,
was different every time the VAR model was fitted. Table 2
shows the relative amount of selected model orders. For 45

sources, a model order of p = 2 was chosen most frequently.
For the reduced set of eight sources, a model order of p = 4
was selected in the majority of cases.
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Table 2. Optimal model orders determined by Akaike’s FPE for
VAR models fitted to 45 and 8 sources, respectively. p is the model
order, and fraction is the total percentage of each model order being
selected.

45 sources 8 sources

p Fraction p Fraction

1 22% 4 86%
2 77% 5 8%
3 1% 6 3%
4 <1% 7 2%

8 1%

4. Discussion

We proposed a procedure for an offline simulation of single-
trial connectivity BCIs. This procedure can be easily applied in
an online BCI. Currently, we are working toward implementing
an online version of that approach. There is no outer cross-
validation in an online setting. Instead, the training set is
replaced by pre-recorded screening data, and the testing set
is replaced by the online data stream as it is recorded.

We selected the optimal time to train the classifier based
on estimates of classification performance obtained with the
inner cross-validation loop. Ideally, the feature selection would
also utilize classification performance as a ranking criterion.
However, this would require even more cross-validation runs,
thus increasing the initialization time dramatically. With an
online BCI application in mind, we chose the computationally
much less demanding feature selection based on correlation.

We validated the procedure by obtaining BP classification
performance similar to other studies (e. g. [37, 16]). Also,
the finding that classification performance improved in the
second session is plausible, especially since only naive subjects
participated in our measurements.

In a recent study, S, COH, and phase coupling were shown
to yield similar results in terms of classification performance
[16]. The authors concluded that this was caused by a
bias toward zero phase between EEG channels. Indeed, our
results support this conclusion. With ICA preprocessing, we
effectively reduced zero-phase bias, leading to significantly
worse classification with COH features. Thus, it is reasonable
to assume that the COH between sources includes less
task-relevant information than spectral power measures such
as BP. In contrast, COH between EEG channels contains
similar information as spectral power measures due to highly
correlated EEG channels.

Our results indicate that features derived from univariate
BP perform at least as well as any connectivity measure.
Clearly, measures such as COH as well as the unmodified
DTF are not suitable for a BCI application. However, S,
dDTF, and ffDTF perform similarly to BP. For S, this is not
surprising, since the cross-spectral density is a generalization
of the spectral density, the basis of BP.

The dDTF is similar to the ffDTF, but only characterizes
direct connections [38]. The fact that they perform equally
well indicates that this difference might not be relevant for
discriminating MI tasks.

ICA is ambiguous in terms of component order and scale.
VAR models are invariant to permutations of the signals, but
signal scale has a direct impact on the relative scaling of
the VAR coefficients. This might introduce an error in the
magnitude of connectivity measures. However, this error can
be mitigated by using scale invariant connectivity measures
such as GPDC or DCOH. We use both scale dependent and
scale invariant measures, which allows us to determine the
practical relevance of scale ambiguity for MI classification.

GPDC and DCOH are similar generalizations of the PDC
and the DTF, respectively. This generalization makes the
GPDC and the DCOH invariant to the scaling of the signals.
However, the generalized measures do not outperform the
unmodified measures in terms of classification performance.
This indicates that MI classification is unaffected by the scale
ambiguity of ICA sources.

Resolution of the proposed measures is limited due to
the single-trial estimation constraint. However, a possible
solution could be provided by employing regularization or
sparse methods for VAR model fitting [39, 40]. By setting
unimportant AR coefficients to zero, fewer free parameters
need to be estimated. This, in turn, would permit higher
model orders, more channels, or shorter estimation windows.
Better time resolution would allow the BCI to react faster
to the user’s input, and better frequency or spatial resolution
might improve classification as more information about the
underlying structures and processes is resolved. Furthermore,
the implicit coefficient selection of sparse model fitting might
remove the need for our procedure’s source selection pass.

5. Conclusions

Although there is potential for further improvement, we were
able to show that reliable classification of MI tasks is possible
with single-trial estimation of the effective connectivity
measures ffDTF and dDTF.

The procedure we proposed in this paper can be used to
consistently evaluate connectivity measures for BCI use. Thus,
it may provide the basis for further research in the direction of
connectivity-based BCIs.

To validate our findings in an online BCI system, the
described methods can be easily adapted to an online system,
since no major changes in the signal processing work flow are
required.
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Analysis of brain connectivity has become an important research tool in neuroscience.
Connectivity can be estimated between cortical sources reconstructed from the
electroencephalogram (EEG). Such analysis often relies on trial averaging to obtain reliable
results. However, some applications such as brain-computer interfaces (BCIs) require
single-trial estimation methods. In this paper, we present SCoT—a source connectivity
toolbox for Python. This toolbox implements routines for blind source decomposition
and connectivity estimation with the MVARICA approach. Additionally, a novel extension
called CSPVARICA is available for labeled data. SCoT estimates connectivity from various
spectral measures relying on vector autoregressive (VAR) models. Optionally, these VAR
models can be regularized to facilitate ill posed applications such as single-trial fitting.
We demonstrate basic usage of SCoT on motor imagery (MI) data. Furthermore, we
show simulation results of utilizing SCoT for feature extraction in a BCI application. These
results indicate that CSPVARICA and correct regularization can significantly improve MI
classification. While SCoT was mainly designed for application in BCIs, it contains useful
tools for other areas of neuroscience. SCoT is a software package that (1) brings combined
source decomposition and connectivtiy estimation to the open Python platform, and (2)
offers tools for single-trial connectivity estimation. The source code is released under the
MIT license and is available online at github.com/SCoT-dev/SCoT.

Keywords: electroencephalogram, connectivity, Python, single-trial, brain-computer interface

1. INTRODUCTION
Quantifying interactions between brain areas is an important and
useful tool in neuroscience (Michel and Murray, 2012). Spatially
separated brain areas form dynamic large-scale networks that are
described by functional and effective connectivity (Schnitzler and
Gross, 2005; Siegel et al., 2012). While functional connectivity
measures synchronous activation, effective connectivity explains
causal relations between areas (Friston, 1994, 2011). We will use
the term connectivity for both functional and effective connectiv-
ity throughout this manuscript.

Estimates of connectivity can be deduced from the multi-
channel EEG by employing a VAR model. However, fitting such a
model requires a large amount of data. In particular, the required
number of time samples is proportional to the number of chan-
nels and the model order. A common approach to generate
enough data is to use repeated trials of the same task. However,
the EEG also contains task-related activity that varies from trial
to trial, which would disappear when averaging over trials. Such
activity can only be studied at the single-trial level (Michel and
Murray, 2012). A framework for performing single-trial time-
varying system identification and visualization was published
recently (Mullen et al., 2013). An important use case for single-
trial analysis are BCIs, which extract control signals from ongoing
brain activity (Millán et al., 2010). Connectivity measures have
already been used in several BCI-related studies (Gysels et al.,
2005; Shoker et al., 2005; Brunner et al., 2006; Wei et al., 2007;
Hamner et al., 2011; Lim et al., 2011; Daly et al., 2012; Billinger
et al., 2013a).

Measuring connectivity from the EEG entails methodological
challenges such as volume conduction and multiple comparison
problems (Siegel et al., 2012). Due to volume conduction, electri-
cal signals originating from one source in the brain are detected
by multiple EEG electrodes. Conversely, each electrode measures a
superposition of activity from multiple sources. Thus, interpret-
ing connectivity between EEG channels if of limited usefulness.
This can be overcome by transforming the problem from the
electrode domain to the source domain. Common approaches to
estimate source activities include source localization techniques
and independent component analysis (ICA). Source localization
attempts to map the scalp potential distribution to current source
densities on the cortex. However, this approach requires accu-
rate models of head anatomy and electrical properties, as well
as accurate electrode locations (Baillet et al., 2001). In contrast,
ICA performs a blind decomposition of EEG channels with-
out having to rely on a head model. Additionally, source signals
obtained from ICA can be interpreted as originating from corti-
cal dipoles (Makeig et al., 1996). When measuring connectivity
between ICA sources, the seemingly contradictory assumptions
of dependence for connectivity estimation and independence for
ICA must be carefully taken into account. We give a detailed
discussion of this issue in section 2.

Our source connectivity toolbox (short SCoT) is a software
package for Python that contains tools for estimating connec-
tivity between cortical sources. While various implementations
of connectivity are available on other platforms, source connec-
tivity toolbox (SCoT) is the first Python package dedicated to
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Table 1 | VAR-derived measures included in SCoT.

Measure Description

A Spectral representation of the VAR coefficients

H Transfer function that transforms the innovation process into
the VAR process

S Cross spectral density

G Inverse cross-spectral density

PHI Phase angle

COH Coherence Nunez et al., 1997

pCOH Partial coherence Franaszczuk et al., 1985

PDC Partial directed coherence Baccalá and Sameshima, 2001

ffPDC Full frequency partial directed coherence

PDCF PDC factor Baccalá and Sameshima, 2001

GPDC Generalized partial directed coherence Faes et al., 2012

DTF Directed transfer function Kamiński and Blinowska, 1991

ffDTF Full frequency directed transfer function Korzeniewska et al.,
2003

dDTF Direct directed transfer function Korzeniewska et al., 2003

GDTF Generalized directed transfer function (known as directed
coherence) Faes et al., 2012

connectivity estimation. Apart from common multi-trial analy-
sis techniques, SCoT also supports single-trial connectivity. The
toolbox contains separate modules for ICA, VAR model fit-
ting, and spectral connectivity measure estimation (supported
measures are listed in Table 1). While the tools were originally
designed for single-trial BCI feature extraction, they equally work
with multiple trials and are useful for functional and effec-
tive connectivity analysis of EEG signals. SCoT implements the
MVARICA approach (Gómez-Herrero et al., 2008), which com-
bines VAR models and ICA for jointly estimating sources and
connectivity. Furthermore, we implemented a novel supervised
variant of MVARICA specifically tailored toward classification of
BCI data, which we named CSPVARICA. The toolbox contains
built-in routines for data processing, but can be configured to
use the machine learning package scikit-learn (Pedregosa et al.,
2011) or custom routines as backends. Unit tests assure correct
functionality of the core routines.

The aim of this article is twofold. First, we want to intro-
duce SCoT to researchers along with code snippets that show
basic usage examples. Second, we give a technical overview of the
methods we implemented and present our new CSPVARICA.

2. MATERIALS AND METHODS
2.1. SOURCE ESTIMATION AND VAR MODEL FITTING
The EEG is commonly modeled as a linear mixture of underly-
ing cortical source activations (1). These source activations are
modeled as VAR processes (2), which contain information about
connectivity (Gómez-Herrero et al., 2008).

xn = Msn (1)

sn =
p∑

k = 1

B(k)sn−k + en (2)

FIGURE 1 | Connectivity and correlation in a bivariate AR(1) model of

order p = 1 with two signals x and y . The VAR coefficients bij describe
the dependency of signal i on the previous sample of signal j. In this
example, there is effective connectivity from x to y , but not from y to x.
Although no direct interaction between xn and yn exists, the signals are
correlated, since both xn and yn depend on xn−1. The strength of this
correlation depends on byy , byx , and additive noise (which is not shown in
this figure).

The mixing matrix M transforms every sample n of the source
activations sn into the observable EEG, which is denoted as xn.
VAR model coefficient matrices B(k) and innovation process en

form the VAR model of order p that describes the source activa-
tions; en is assumed to be a vector of independent non-Gaussian
white noise processes.

The most naive approach to connectivity estimation is to
ignore the mixing of cortical sources and assume that each EEG
sensor corresponds to a unique cortical source. However, vol-
ume conduction between EEG sensors is not correctly captured
by VAR models and therefore severely limits the usefulness of
connectivity at the sensor level (Siegel et al., 2012).

More sophisticated approaches obtain source activations by
constructing an unmixing matrix U that mathematically reverses
the mixing process so that sn = Uxn (with UM equal to the iden-
tity matrix I). ICA performs such a decomposition by attempting
to find spatial EEG components with minimal instantaneous
cross-dependencies between each other. These components can
be interpreted as cortical source activations that are not affected
by volume conduction. However, connectivity between sources
can also cause instantaneous cross-dependencies (Figure 1). ICA
assumes no temporal dependence structure within the data, but
connectivity between sources violates this assumption. Thus, ICA
treats the signals as though instantaneous cross-dependencies
were exclusively caused by the mixing process. This might
decrease the reliability of subsequent connectivity estimates, as
was demonstrated by Haufe et al. (2010).

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 22 | 2

Appendix B. Primary Publications

80



Billinger et al. SCoT

We provide an implementation of ICA source decomposi-
tion in SCoT. However, limitations and conflicting assumptions
of VAR and ICA should be carefully considered before apply-
ing this approach. Therefore, we recommend more sophisticated
techniques such as MVARICA or our novel CSPVARICA.

2.2. MVARICA
SCoT implements the MVARICA approach, which performs joint
source decomposition and VAR model fitting while respect-
ing their respective assumptions about dependencies (Gómez-
Herrero et al., 2008). MVARICA works in three steps (see
Figure 2). First, the EEG is transformed by applying principal
component analysis (PCA) as follows:

yn = Cxn = CMsn (3)

The signals in yn contain the PCA-transformed EEG. The PCA
transformation matrix C is pruned to remove components that
contribute least to the total EEG variance. This step reduces the
dimensionality for subsequent processing and limits the num-
ber of sources found by MVARICA. Second, a VAR model with
coefficients A(k) and residual processes rn is fitted to yn:

yn =
p∑

k = 1

A(k)yn−k + rn (4)

By combining (2–4) we can relate the VAR model fitted to yn with
the VAR model that describes the source activations:

A(k) = (CM)B(k)(CM)−1 (5)

rn = (CM)en (6)

The residuals r contain cross-dependencies that cannot be
explained by the VAR model. According to (6), all cross-
dependencies remaining in the residuals are due to the trans-
formation CM. In the third step, the residuals are decomposed
by ICA in order to obtain an estimate of the transformation
ˆCM. Finally, an estimated unmixing matrix Û is obtained as

Û = ( ˆCM)−1C so that

ŝn = Ûxn. (7)

Typically, estimates of the VAR coefficients at the source level are
obtained by inserting estimates Â and ˆCM in (5) and solving for
B̂. However, if sources are spatially stationary (constant M), the
unmixing estimate Û can be reused on other data sets to obtain
source activations and fit VAR models directly to these activa-
tions according to (2). This allows us to determine the unmixing
matrix from a set of training data, and subsequently perform
connectivity estimation between the same sources on new data.

In general, MVARICA is applied to multi-trial data. Different
strategies to obtain the VAR residuals r can be employed, depend-
ing on which stationarity assumptions hold on the data. If sta-
tionarity can be assumed across all trials, a single VAR model may
be fitted to all trials. If stationarity can be assumed only across

FIGURE 2 | Source decomposition with MVARICA and CSPVARICA.

Both approaches estimate source activations ŝ from the EEG. The EEG
signals x are transformed to y either by PCA (MVARICA) or CSP
(CSPVARICA). Subsequently, the residuals r of a VAR model fitted to y are
decomposed by ICA to obtain an estimate of the combined matrix CM. This
matrix, along with the transformation C is used to obtain estimated source
activations ŝ.

trials from the same condition, a different VAR model may be fit-
ted for each condition. Finally, if stationarity cannot be assumed
across trials, a different VAR model may be fitted for each individ-
ual trial. The last approach requires single-trial VAR model fitting,
which we will discuss in section 2.6.

2.3. CSPVARICA
MVARICA reduces the input dimensionality by discarding the
principal components that contribute least to the total EEG vari-
ance. However, EEG components of interest often have a low
signal-to-noise ratio. Thus, PCA might remove such compo-
nents while retaining noise with higher variance. We propose
to use common spatial patterns (CSP) instead of PCA. While
PCA finds components according to their contribution to the
total variance, CSP finds components that explain the differ-
ences (in variance) between two conditions (Koles et al., 1990).
Thus, we expect CSP to be superior to PCA whenever differences
between two conditions (e.g., baseline/task, task/task, etc.) are
analyzed. CSPVARICA is implemented in SCoT as a supervised
alternative to MVARICA (see Figure 2). CSPVARICA is similar to
MVARICA except for the first step, where we replaced PCA with
CSP. Equations (3–7) are equally valid for CSPVARICA; only the
tranformation matrix C is different because it represents the CSP
transform instead of the PCA transform.

2.4. MODEL VALIDATION
MVARICA and CSPVARICA apply ICA to the residuals of VAR
models. ICA assumes no temporal structure in the data. Thus, it
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is important that the VAR models adequately describe the data so
that the residuals are serially uncorrelated.

SCoT implements a multivariate portmanteau test to test for
whiteness in the residuals (Hosking, 1980). The test compares
the multivariate Li-McLeod statistic Q against the null hypoth-
esis that the residuals are white (Lütkepohl, 2005). When the
residuals are normally distributed, Q follows a chi-squared dis-
tribution. However, we explicitly assume non-Gaussian residuals.
Thus, we estimate the distribution of Q0 under the null hypoth-
esis from surrogate residuals. Temporal structure in the residuals
is destroyed by randomly permuting the residuals along the time
axis. We repeatedly calculate Q0 from different permutations
and calculate the probability of observing a Q0 larger than Q.
A probability of less than 0.05 indicates significantly non-white
residuals.

2.5. CONNECTIVITY
Once source estimates are available, numerous connectivity mea-
sures can be extracted from VAR models. Table 1 lists all measures
currently implemented in SCoT. Some of the most commonly
used measures are summarized in Schlögl and Supp (2006). All
these measures may be extracted directly from the VAR coeffi-
cients returned by MVARICA or CSPVARICA.

In addition to well known measures, SCoT implements the
full frequency partial directed coherence (ffPDC). The ffPDC is
obtained by normalizing the partial directed coherence (PDC)
over all frequencies instead of each frequency individually:

ffPDCij(z) =
∣∣Aij(z)

∣∣
√∑

z AH
:j (z)A:j(z)

(8)

Here, i and j correspond to the indices of the sink and the source
signals, respectively. A is the inverse of the VAR transfer function.

In general, repeatedly applying MVARICA or CSPVARICA
to different data segments yields components in different order.
This makes tracking of connectivity patterns difficult. However,
it is possible to overcome this issue by re-using the unmixing
matrix obtained from one decomposition. Applying this unmix-
ing matrix to new portions of data results in varying activations
of the same sources, which facilitates three important use cases:
single-trial estimation, time-varying analysis, and comparing dif-
ferent conditions.

2.6. SINGLE-TRIAL ESTIMATION
VAR model fitting typically requires a large amount of data. To
obtain a sufficient amount of data, a model can be fitted to mul-
tiple trials, assuming stationarity across trials (i.e., each trial is
a realization of the same process). However, this is not feasible
in applications such as MI BCIs, where trial duration is several
seconds or continuous control is required. Instead, connectivity
estimates need to be obtained from a single window of data. In
SCoT, we perform single-trial connectivity estimation on short
windows of source activations, but use a training set of multiple
trials to obtain sources that are assumed to be spatially stationary.

One procedure for single-trial connectivity estimation is
described in our previous work (Billinger et al., 2013a), where
various connectivity measures were estimated on selected ICA
sources. This procedure can be improved by replacing ICA and

source selection with MVARICA or CSPVARICA. Importantly,
single-trial VAR model fitting is prone to overfitting due to the
limited amount of data available in a single trial. However, this
problem can be alleviated by regularization. Therefore, SCoT
supports ridge regression for fitting VAR models to individual
and multiple time windows. The scikit-learn backend provides
additional model fitting routines including Lasso, Elastic Net,
and generalized cross-validation (GCV) for determining the ridge
parameter.

The degrees of freedom when fitting a VAR model depends on
the model order. Typically, the order of VAR models is determined
with cross-validation or selection criteria such as Akaike infor-
mation criterion (AIC) or Bayesian information criterion (BIC).
Regularization effectively limits the degrees of freedom, so both
model order and regularization penalty can be optimized. For
simplicity, we manually set the model order to a reasonably high
value and optimize only the regularization penalty.

2.7. STATISTICS
So far, we have only discussed point estimates of connectivity.
However, scientists will usually want to make statistical inferences
about connectivity to either determine if there really is connec-
tivity from one source to another, or to determine if there is a
difference in connectivity between two conditions.

In SCoT, presence of connectivity is deduced using the method
of surrogate data generated by phase randomization. While
removing connectivity from each signal pair individually may give
better results (Faes et al., 2009), we took a simpler approach,
where connectivity is destroyed between all signals simultane-
ously. We obtain the distribution of connectivity under the null
hypothesis of no connectivity by repeatedly estimating connec-
tivity on surrogates. Connectivity estimated from actual data can
be compared against this distribution to test if it is significantly
non-zero.

Statistical difference in connectivity is obtained by perform-
ing bootstrap resampling. Bootstrap samples are drawn at the
trial level, thus this method only works for multi-trial data
sets. The distribution of difference in connectivity is obtained
by bootstrapping both conditions. The difference is signifi-
cantly different from zero if the confidence interval does not
contain 0.

Typically, such tests are performed for each frequency bin
and channel pair, which requires correction for multiple testing.
However, individual tests are likely to be positively correlated.
Thus, controlling for the family-wise error rate is likely to be
overly conservative. Instead, controlling for the false discovery
rate (Benjamini and Hochberg, 1995) is implemented in SCoT.

2.8. SOURCE CONNECTIVITY WORKFLOW
SCoT implements routines for estimating connectivity between
EEG sources. Two estimation approaches are possible in SCoT.
Too many Ps in approach is to estimate sources and connectiv-
ity jointly on the same data set using MVARICA or CSPVARICA.
Alternatively, a two-step approach is supported, where sources
and connectivity are estimated on different data sets. Both
approaches impose strong spatial stationarity assumptions on the
sources. However, in the latter approach source activity may vary
over time.
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Joint estimation is performed by applying MVARICA or
CSPVARICA to a data set where sources are spatially and tem-
porally stationary. Two-step estimation consists of separately
performing source decomposition and VAR model fitting, pos-
sibly on different data sets. MVARICA or CSPVARICA can be
employed in the source decomposition step by discarding their
VAR estimates. In the second step, the unmixing matrix is used
to obtain source activations on a different data set. Connectivity
measures are estimated from VAR models fitted to these source
activations.

The two-step approach is useful whenever connectivity
is expected to vary between spatially stationary sources.
Possible applications include comparing different conditions,
analyzing time-varying connectivity, and estimating single-trial
connectivity.

It is often useful to estimate time-varying connectivity. This
can be done on a multi-trial or a single-trial basis, whichever
is appropriate for the data and the research question. Time-
varying multi-trial connectivity estimation facilitates analysis of
cue-locked connectivity dynamics. Here, we estimate connec-
tivity on the first time segment of multiple trials, then for the
second (possibly overlapping) segment, and so on. This results
in an average time-course of connectivity related to the trial
start. Time-varying single-trial connectivity estimation may be
employed when connectivity dynamics are not cue locked, or no
cues are available such as in continuous BCIs. Here, we estimate
connectivity on short (possibly overlapping) windows, resulting
in a time course of instantaneous connectivity.

3. IMPLEMENTATION
3.1. OVERVIEW
SCoT is distributed as a Python package named scot. The
package contains several modules that implement the toolbox’s
functionality and the two sub-packages scot.backend and
scot.builtin. The former contains backend modules that
allow SCoT to use different implementations of low-level routines
such as PCA, ICA, or model fitting. The other package imple-
ments built-in versions of these routines. See Figure 3 for an
overview of the package structure.

SCoT depends on NumPy, SciPy (Oliphant, 2007), and
optionally on scikit-learn (Pedregosa et al., 2011). Matplotlib is
required for visualization only. Furthermore, SCoT contains the
complementary eegtopo package, which is used for EEG topog-
raphy plots based on spherical spline interpolation (Perrin et al.,
1989).

Development is test-driven, with unit tests covering core func-
tionality as far as the stochastic nature of the implemented algo-
rithms allows. The source code is released under the open source
MIT license and is available online at github.com/SCoT-dev/
SCoT.

3.2. BACKEND MECHANISM
A design goal of SCoT is to keep external dependencies at
a minimum. The backend mechanism provides a common
interface that allows SCoT to optionally utilize routines from
third-party software without introducing unnecessary depen-
dencies. A backend consists of targets that represent thin

FIGURE 3 | Overview of the dependency hierarchy in the SCoT API.

High-level interfaces are depicted above the interfaces they depend on.

wrapper functions, class implementations or even modules.
These are stored in a global dictionary, where they can
be accessed from within SCoT. The dictionary is updated
when including a backend module. Thus, the user can eas-
ily select a backend by simply importing the module. SCoT
comes with two backends: scot.backend.builtin, which
provides basic implementations of backend functionality and
scot.backend.sklearn, which provides wrappers for rou-
tines implemented in the external scikit-learn package.

The built-in ICA backend calls BINICA to perform Infomax
ICA (Makeig et al., 1996). BINICA is an external binary, which
is either shipped with EEGLAB (Delorme and Makeig, 2004), or
separately available online1 and is downloaded on demand.

Currently, the following backend targets are used by SCoT:
ICA (ICA function), PCA (PCA function), VAR (VAR model
fitting class), and utils (miscellaneous helper routines). The
backend mechanism relies on duck-typing, which allows users
to easily create custom backends by simply putting their own
functions in the global backend dictionary.

3.3. WORKSPACE
The scot.ooapi module exposes the class Workspace,
which provides convenient access to SCoT from interactive
Python sessions. This class also serves as an example for usage
of the more flexible low-level application programming inter-
face (API), which is described in detail later. An instance of the
Workspace class is optionally initialized with sampling rate,
desired dimensionality reduction, number of fast Fourier trans-
form (FFT) bins and/or electrode locations. This alleviates the
user of the burden to pass these parameters to each individual
function call. The Workspace class can perform source decom-
position on EEG data, estimate connectivity on the same or a

1http://sccn.ucsd.edu/eeglab/binica/

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 22 | 5

Appendix B. Primary Publications

83



Billinger et al. SCoT

different data set, conduct statistical analysis, and visualize the
results.

3.4. PACKAGE STRUCTURE
Here, we provide a summary of the modules that form the SCoT
package. Please refer to the API reference in the SCoT documen-
tation for a more detailed description. A summary of the modules
is listed in Table 2.

3.4.1. Internal modules
These are modules mainly intended for internal use in SCoT.

builtin is actually a sub-package. It contains SCoT’s own
implementations of PCA, CSP, VAR, and a wrapper to the
BINICA binary.

The config module defines global variables for configuring
SCoT. Currently, it contains only the backend dictionary. This
dictionary is populated when importing a backend. Functions like
mvarica query this variable to determine which implementa-
tions of PCA, ICA, etc., to use.

Internal utility functions are defined in the utils module.
These include among others a function for calculating autocovari-
ance matrices and the memoize decorator that caches function
return values.

3.4.2. User facing modules
These are modules that users of SCoT will often work with.

backend is actually a sub-package. It contains a separate
module for each backend currently available in SCoT. At the
moment these are builtin and sklearn.

The connectivity module provides a class for extracting
connectivity measures from VAR model coefficients (see Table 1
for a list of available connectivity measures). Some connectivity
measures are calculated from other measures (e.g., the dDTF).
To avoid unnecessary recalculations of repeatedly used measures,
this class makes use of the memoize decorator to quickly get the
cached return values of member functions that have been called
before.

Functions for statistical evaluation of connectivity are avail-
able in connectivity_statistics. These include surro-
gate estimation under the null-hypothesis of no connectivity,
bootstrapping, statistical tests, and correction for multiple testing.

The datatools module contains functions for manipulat-
ing EEG data, such as cutting segments from continuous data
or applying spatial filters to segmented data. The matfiles
module allows loading and saving of MATLAB .mat files. This
module converts the result of scipy’s loadmat to nested Python
dictionaries.

The ooapimodules provides the Workspace class, which is
described in detail above.

ICA source decomposition is implemented in the plainica
module. It performs optional dimensionality reduction with PCA
and subsequent ICA source decomposition.

The plotting module contains visualization routines.
This module depends on matplotlib to create plots similar to
MATLAB. The dependency is optional and required only for visu-
alization; if matplotlib is not available, the module can still be
imported, but the functions cannot be called. The visualization

Table 2 | Python modules that form the SCoT API.

Module Purpose

backend (sub-package) Backend interfaces

builtin (sub-package) Implementation of the
builtin backend

config Global configuration

connectivity Connectivity analysis

connectivity_statistics Statistical evaluation of connectivity

datatools Basic data manipulation

matfiles Routines for loading and saving
MATLAB. mat files

ooapi Object oriented API (Workspace)

plainica Source decomposition with ICA

plotting Visualization

utils Utility functions

VAR VAR model interface

varica Joint source/VAR estimation

xvschema Cross-validation strategies

routines rely on the eegtopo package to plot scalp projections
of sources.

The VAR module contains the class VARBase, which is the
VAR base class for VAR models in SCoT. This class implements
routines common to all implementations of VAR models, such as
prediction or model validation. However, model fitting routines
are provided by the derived classes scot.builtin.var.VAR
and scot.backend.sklearn.VAR.

The MVARICA and CSPVARICA procedures are implemented
in the varica module. The module exposes one function for
each procedure.

Cross-validation strategies are implemented in xvschema.
This module contains functions that generate indices for test-
ing and training sets for single-trial and multi-trial opti-
mization. While multi-trial strategy is a normal leave-one-out
cross-validation, the single-trial strategy creates training sets that
contain only single trials.

4. RESULTS
4.1. USING SCoT
4.1.1. Basic usage
Here, we will demonstrate how to use SCoT to estimate multi-
trial connectivity from EEG data. More detailed examples are
distributed with the source code.

First, the SCoT package must be made available to the Python
interpreter. By default, SCoT uses the built-in routines for PCA
and ICA. Alternatively, scikit-learn can be used by importing the
sklearn backend.

import scot
import scot.backend.sklearn

SCoT works with three-dimensional NumPy arrays. The three
dimensions of an EEG data set are time, signals, and trials. An
example data set is available with SCoT. This data set contains a
recording of 45 EEG channels from one subject performing hand
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and foot MI. The subject was instructed to perform either MI task
by a visual cue. Every 9.5–10.5 s such cues were presented 90 times
for each class in randomized order.

from motorimagery import data

In the following code snippets we use the variables raweeg,
triggers, classes, and fs. These variables are taken from
the example data set and contain the continuous EEG data (sam-
ples × channels), a list of trigger locations (sample indices) that
mark individual trials, class labels (’hand’, ’foot’) for each
trial, and the sampling rate (Hz).

Convenience functions for basic data manipulation are avail-
able. The following example cuts segments of 1 s starting 3 s after
each trigger from continuous EEG and arranges them in three
dimensions as described above.

eeg =
scot.datatools.cut_segments(
raweeg, triggers, 3*fs, 4*fs)

The Workspace class provides a high-level interface to the tool-
box. As the name suggests, an instance of this class provides
a workspace on which SCoT routines operate. The workspace
contains data, source and connectivity estimates, and settings.

ws = scot.Workspace(
{’model_order’: 40},
reducedim=4,
locations=locs)

This command initializes a new workspace with VAR model
order 40, dimensionality reduction to four components, and EEG
electrode locations described in the variable locs.

If reducedim was not set, it would default to retaining 99 %
of the EEG variance. Alternatively, PCA can be disabled by setting
reducedim to ’no pca’.

A dataset is passed to the workspace with the set_data
method. The optional second argument may contain a list of
labels that assigns a class label to each trial in the data. The
method do_mvarica decomposes the EEG data into source
activations and fits a VAR model in the process. It is important
to test the VAR residuals for whiteness. A p-value of less than
e.g., 0.05 returned by VAR.test_whiteness would indicate
significantly non-white residuals, and the VAR settings would
need to be tuned. To obtain separate VAR models for each class,
we call set_used_labels() to specify which classes to use
in subsequent operations. Once VAR models are fitted with the
fit_var method, we can plot spectral connectivity measures
with get_connectivity. Finally, show_plots displays the
plots.

# perform source decomposition
# and plot source topos
ws.set_data(eeg, classes)
ws.do_mvarica()
p = ws.var_.test_whiteness(50)
print(’Whiteness:’, p)
fig = ws.plot_connectivity_topos()

# estimate and plot connectivity
ws.set_used_labels([’foot’])
ws.fit_var()
ws.get_connectivity(’ffDTF’, fig)

# estimate and plot connectivity
ws.set_used_labels([’hand’])
ws.fit_var()
ws.get_connectivity(’ffDTF’, fig)

ws.show_plots()

Figure 4 (left) shows the result of applying these steps
to the example data set. By replacing do_mvarica with
do_cspvarica, we obtain different sources (Figure 4, right).
The two frequency bands μ (8–12 Hz) and β (16–24 Hz)
are known to play a part in motor processing (Pfurtscheller,
1981). While MVARICA detects connectivity mostly in the μ

band, CSPVARICA reveals connectivity in the μ and β bands.
Furthermore, connectivity between the CSPVARICA sources
varies more between classes. This difference between MVARICA
and CSPVARICA is somewhat expected, because MVARICA
selects sources that explain as much of the EEG variance as pos-
sible, while CSPVARICA prefers sources with maximally different
activations between classes.

4.1.2. Time-varying connectivity
The plots in Figure 4 only show a snapshot of connectiv-
ity in one time segment. In order to get an overview on
how connectivity evolves over time, the estimation process is
repeated for multiple time-shifted segments. However, source
decomposition should not be performed for every time seg-
ment individually. Even if the same sources were detected
in consecutive windows, their signs and order would change
randomly. This in turn would make interpreting the results
very difficult. Instead, it is reasonable to re-use the same
sources (represented by the unmixing matrix) in each time
segment.

In the following example, such time-frequency analysis is per-
formed over the whole trial of the data set. The new data set is
prepared by cutting 10 s long slices starting 2 s before each trigger
from the continuous EEG.

eeg_long =
scot.datatools.cut_segments(
raweeg, triggers, -2*fs, 8*fs)

The source decomposition obtained before from the short time
segments will be re-used by simply assigning the new data set to
the workspace. Time-frequency analysis does not require the user
to call fit_var. Instead, separate models are fitted internally
for each time segment. The function get_tf_connectivity
takes three mandatory arguments: the measure to use, window
length, and step size.

fig = ws.plot_connectivity_topos()
ws.set_used_labels([’hand’])
ws.get_tf_connectivity(’ffDTF’,

1*fs, fs/5, plot=fig)
ws.show_plots()
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FIGURE 4 | Directed connectivity with MVARICA (left) and CSPVARICA

(right). The ffDTF between four components is plotted for hand (green) and
foot (blue) motor imagery. The estimation window was set from 3 s to 4 s
after cue on-set. The x-axes correspond to frequencies from 0 to 30 Hz, and

the y -axes are the magnitude of the ffDTF (in arbitrary units). Columns
correspond to sources and rows to sinks. Scalp projections are arbitrarily
scaled to provide a qualitative representation of the sources. Each source’s
power spectral density is plotted along the diagonal for reference.

The code snippet above produces output similar to the right side
of Figure 5. Here, it becomes clear that most of the differences
between the classes are due to reduced connectivity during hand
motor imagery.

4.2. BCI SIMULATION
Using SCoT, we performed a BCI simulation study to demon-
strate the efficacy of CSPVARICA and MVARICA on single trial
classification on EEG recordings of MI data. Fourteen subjects
participated in this study, all of them gave informed consent and
were paid for their participation. Each participant took part in
two sessions on separate days, with six recording runs of 30 tri-
als in each session. The sessions comprised 90 right hand MI and
90 foot MI trials. Trial duration was 7 s with breaks of varying
duration (2.5–3.5 s) between trials. EEG preprocessing included
removing electrooculogram (EOG) artifacts (Schlögl et al., 2007)
and downsampling to 100 Hz. A more detailed description of the
data and preprocessing procedure can be found in Billinger et al.
(2013a).

We performed cross-validation per subject and session, using
each of the six runs for testing once and the remaining five
runs for initializing the procedure. In each cross-validation step,
we decomposed the raw EEG into 16 components with either
CSPVARICA or MVARICA. Subsequently, we split the compo-
nent activation signals into segments of 1.5 s length that over-
lapped by 0.2 s. The following two steps were applied to each
segment individually. First, we determined the optimal regular-
ization parameter λ for subsequent single-trial VAR model fitting.
Second, we extracted full frequency directed transfer function
(ffDTF), ffPDC, and band power (BP) features in two frequency
bands (7–13 Hz and 15–25 Hz). While ffDTF and ffPDC were
based on the VAR model, logarithmic BP was calculated directly
from the time signals to serve as a baseline. Finally, we trained

a shrinkage linear discriminant analysis (sLDA) classifier on the
time segment where classes were best discriminated for each
feature type.

We tested the procedure on the run that was previously with-
held from initialization. First, we decomposed the EEG into the
same components as in the initialization step by spatially filtering
the test set with the unmixing matrix obtained during initializa-
tion. For each time segment, we subsequently fitted regularized
VAR models individually on every trial, extracted the ffDTF,
ffPDC, and BP features, and applied the classifier. This resulted in
a confusion matrix for each time segment. We calculated Cohen’s
kappa κ for each segment during the MI phase. The κ metric is
preferable over classification accuray because it takes class distri-
bution into account (Billinger et al., 2013b). From all segments,
we took the 0.9 quantile of κ as classification performance, which
is less sensitive to outliers than peak performance. This measure
of classification performance was obtained for each subject and
session.

Classification performance is significantly higher with
CSPVARICA than with MVARICA (Figure 6). Thus, CSPVARICA
seems to be preferable over MVARICA for MI classification.
It is also reasonable to assume that CSPVARICA is use-
ful for studying connectivity under varying conditions or
tasks.

Furthermore, we demonstrate the effects of regularization
on classification performance. In Figure 7, we compare per-
subject optimization of the regularization parameter with no
regularization and with applying over-regularization by set-
ting the parameter to a high value. Optimal regularization was
determined in the initialization phase of the cross-validation
for each time segment individually, resulting in κ = 0.62 ±
0.18. Clearly, no regularization performs worst with κ = 0.38 ±
0.11. For over-regularization, we chose λ roughly an order
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FIGURE 5 | Time/frequency plots as obtained with CSPVARICA. The
ffDTF between four components is plotted for foot (left) and hand
(right) motor imagery. A 1 s long estimation window was sliding
between t = −2 and t = 8. The x-axes correspond to the center of
the sliding window which ranges from −1.5 to 7.5 s, where t = 0

represents the trigger (cue). The y -axes correspond to frequencies
from 0 to 30 Hz. Columns correspond to sources and rows to sinks,
while the diagonal shows the scalp projections of the respective
components. Scalp projections are arbitrarily scaled to provide a
qualitative representation of the sources.

FIGURE 6 | Classification performance (0.9 quantile of Cohen’s kappa)

for PCA-based dimensionality reduction (MVARICA) and CSP-based

dimensionality reduction (CSPVARICA). The standard error of mean
classification performance is indicated on top of the bars.

of magnitude higher than the average optimal value, which
slightly decreased classification performance to κ = 0.57 ± 0.15.
However, the impact of too much regularization is difficult to
quantify.

5. DISCUSSION
In this article, we introduced SCoT, the Python toolbox for source
connectivity estimation. It provides tools for ICA-based source
decomposition, VAR model fitting, and extraction of connectivity
measures.

FIGURE 7 | Classification performance (0.9 quantile of Cohen’s kappa)

for different regularization approaches. Regularization was optimized for
individual subjects (λopt), set to zero (λ0), and to a high value (λ300). The
standard error of mean classification performance is indicated on top of the
bars.

Widely used neuroscience software packages 2 (Hanke and
Halchenko, 2011) such as EEGLAB (Delorme and Makeig, 2004),
Fieldtrip (Oostenveld et al., 2011), and Biosig (Schlögl and
Brunner, 2008) support connectivity analysis. Particularly, the
SIFT toolobx (Delorme et al., 2011) includes routines for adap-
tive and segmented VAR model fitting with various smooth and
sparse regularization techniques. Furthermore, SIFT supports

2http://neuro.debian.net/survey/2011/results.html
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SCSA (Haufe et al., 2010) for jointly estimating sources and con-
nectivity. These packages are released under open source licenses
and are available for MATLAB 3. In contrast, the MNE soft-
ware package 4 supports model-based source reconstruction and
exposes functionality for calculating several non-parametric con-
nectivity measures in a Python API. With SCoT, we attempt to
provide reusable and modular routines, which can help appli-
cation developers avoid re-implementing the wheel in future
projects based on Python.

For the first time, we presented our new CSPVARICA method
and demonstrated that it is a useful source decomposition
approach for data that contains different labeled conditions.
Currently, our implementation supports only two conditions, but
generalization to an arbitrary number of conditions is planned for
a future release. Our BCI simulations showed that CSPVARICA
outperforms MVARICA in terms of classification performance.
This is not surprising since CSPVARICA favors sources that con-
tain highly discriminative signals. However, MVARICA might be
less susceptible to noise because it retains high-variance compo-
nents. Whether or not one of these methods yields physiologically
more meaningful results is an open question.

Although we conceived CSPVARICA mainly for application in
BCIs, it is likely to be useful for other disciplines of neuroscience
as well. Therefore, we encourage researchers to consider using
CSPVARICA when analyzing differences between conditions.

SCoT relies on MVARICA or CSPVARICA for source
decomposition. Alternative joint source/connectivity estimation
techniques such as SCSA (Haufe et al., 2010) have not been imple-
mented yet in SCoT. Furthermore, model-based source recon-
struction is not included, because source localization is not within
the scope of SCoT. However, SCoT can work with source decom-
positions obtained from such approaches by utilizing unmixing
matrices obtained from other software packages.

VAR model fitting in SCoT is performed with regularized least
squares optimization in general. Routines for ridge regression are
built in, and other approaches such as Lasso, Elastic Net, LARS, or
Bayesian regression are available through scikit-learn. Our simu-
lations show an improvement in classification performance from
κ = 0.38 without regularization to κ = 0.62 when applying ridge
regression, which underscores the importance of regularization in
single-trial connectivity. Support for more VAR fitting and reg-
ularization strategies is planned. A noteworthy approach is the
group LASSO (Vidaurre et al., 2013), which promotes sparse con-
nectivity. This could prove useful for the visualization of large
networks, as it limits the number of non-zero connections.

Time-varying connectivity analysis is possible in SCoT by
employing a sliding window. An alternative could be adaptive
VAR models. However, adaptive models can be more difficult to
handle due to their inherent exponential window. Furthermore,
such models need to be updated for every single sample, while
sliding windows can skip an arbitrary number of samples.

Our default implementation of ICA uses an external
Linux binary to perform Infomax ICA. On other platforms,
the FastICA implementation from scikit-learn may be used

3http://www.mathworks.com/products/matlab/
4http://www.martinos.org/mne/

instead. Furthermore, the flexible backend mechanism should
make it easy to include other ICA implementations such as
CUDAICA (Raimondo et al., 2012) or the ICAs shipped with
MDP (Zito et al., 2009).

In summary, SCoT provides tools required for estimating con-
nectivity on EEG data to the free and open Python platform. It is
designed to tightly integrate with popular scientific computation
and visualization modules in order to be accessible to researchers
familiar with Python.
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