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A gentle introduction
written in layman’s terms

A couple of days after Emmy Noether, one of the leading mathematicians of her time, had passed away,
Albert Einstein wrote a letter to the editor of the New York Times. It was published as an obituary on
Sunday, the 5th of May 1935, and contained the words

“Pure mathematics is, in its way, the poetry of logical ideas.”

This is a good description of what is driving people like me. In pure mathematics, one often starts
with a set of axioms and wonders about the objects that satisfy these axioms. More precisely, one seeks
to understand the objects and their properties. The method to achieve this goal is logical conclusion,
which makes research engaging and, occasionally, extremely frustrating. But, every single thought
experiment expels the fog a little bit and improves the view on hidden structures of intrinsic perfection
and beauty. Unfortunately, this view is hard to communicate without using a particular language. So,
in case you want to have a closer look into my thesis, which you are cordially invited to, please keep in
mind that the content is not necessarily difficult but formulated in the language of mathematics which
takes a while to get used to. Nevertheless, let me try to give you an impression of the projects that
constitute my thesis. We shall do this in reverse order and start with the third one.

Project C: Distinguishing graphs with infinite motion and non-linear growth

The third project of my thesis is about a conjecture in graph theory. Let me emphasise that the graphs
under investigation are by no means graphs of functions as they are studied at school. For us, a graph
is nothing but a vertex set and a collection of two-element subsets, the edges. An example is the graph
with vertex set {a,b, c,d } and edges {a,b }, {b, c }, { c,d }, {d,a }. If you want to, you may think of this
graph as illustrated in the first part of Figure 1. But, keep in mind that this is only a geometric model
of the abstract data.

Let us make use of this geometric model and think of the vertices as balls. We may thus take the
vertices in hands and later return them to possibly different positions. This is a permutation of the
vertices, see the second part of Figure 1. If you have followed me until now, you have started playing
with an abstract object, which is the key to pure mathematics. Let us go on. Among the permutations
there are good and bad ones. Consider for example the permutation that swaps the vertices a and b
and leaves the vertices c and d at their original position. After this permutation, go to the vertex a and
have a look into the neighbourhood. The vertex d is not a neighbour any more and the vertex c has
become a new neighbour. We consider this as a bad permutation. Good permutations are the ones that
preserve neighbourhoods in the sense that every vertex has precisely the same neighbours as before.
These permutations are called automorphisms. An example is the identity, which leaves every vertex
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Figure 1: The graph with vertex set {a,b, c,d } and edges {a,b }, {b, c }, { c,d }, {d,a }.

at its original position. Two slightly more instructive examples are illustrated in the third and fourth
part of Figure 1. We will come back to them later. For now, let me tell you that our graph has eight
automorphisms. Can you find them all?

We seek to develop an understanding of the interplay between automorphisms and colourings.
Imagine we assigned a colour to every vertex. Then, we say that an automorphism or, more generally,
a permutation preserves this colouring if it can be obtained by permuting the vertices of each colour
among themselves. I recommend to digest this definition for a second and to observe that, no matter
which colouring we have chosen, the identity will certainly preserve it. Here is a challenge: “Assume
we are given a graph and a number of colours, can we find a colouring such that the identity is the only
automorphism that preserves it?”

For the graph with vertex set {a,b, c,d } and edges {a,b }, {b, c }, { c,d }, {d,a } we will certainly master
the challenge with four colours, simply by giving each vertex an individual colour. Notice that we will
even master the challenge with three colours. In order to do so, we give the vertices a and b the first
colour, the vertex c the second colour, and the vertex d the third colour. Then, the only two permutations
that preserve this colouring are the identity and the one that swaps the vertices a and b and leaves the
vertices c and d at their original position. But, as discussed above, the latter is not an automorphism.
So, we are done. However, we will not be able to master the challenge with two or fewer colours. Can
you give an argument?

The minimal number of colours needed to master the challenge is called the distinguishing number
of the graph. With your help, we have just proved that the graph with vertex set {a,b, c,d } and edges
{a,b }, {b, c }, { c,d }, {d,a } has distinguishing number three. The third project of my thesis focuses
on graphs with infinitely many vertices (“infinite”) and two more properties. First, every vertex has
only finitely many neighbours (“locally finite”) and, second, one can connect every pair of vertices by
a sequence of edges (“connected”). An example of such an infinite, locally finite, connected graph is
illustrated in Figure 2. In light of this figure, it should not surprise you that this graph in an example
of what is called a tree. In the year 2007, Watkins and Zhou showed that many trees, including our one,
are two-distinguishable, i. e. have distinguishing number one or two, see [WZ07, Theorem 3.1].

Another property of our tree is that, as soon as an automorphism is not the identity, it has to move
infinitely many vertices.1 This property is called infinite motion and, roughly speaking, it seems to
facilitate two-distinguishability. Tucker even conjectured that every infinite, locally finite, connected
graph with infinite motion is two-distinguishable. His conjecture is still open but, in the third project

1I will not give a rigorous proof of this statement. But, we should at least have a look at Figure 2 and observe that if an
automorphism swaps the vertices a and b, then it has to leave the vertex c, being the only common neighbour of a and b, at
its original position. Therefore, it has to move all the infinitely many vertices from the box A to the box B, and vice versa.
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Figure 2: This tree has infinite motion.

of my thesis, my coauthors and I prove its validity under the assumption that the graph does not grow
too fast. If you want to know what growing means, then I succeeded in making you curious and refer to
page 80 where Sections 2.3 and 2.4 provide you with the necessary definitions.

Project B: The Tits alternative for non-spherical triangles of groups

Recall the graph with vertex set {a,b, c,d } and edges {a,b }, {b, c }, { c,d }, {d,a }. As I told you and
you might have checked, it has eight automorphisms. A very nice property of automorphisms is that
we can multiply them. More precisely, we can take any two automorphisms and compose them to get
another one. Take, for example, the automorphisms α and β illustrated in the third and fourth part of
Figure 1, and apply first α and then β. The resulting automorphism, which we denote by α∗β, swaps
the vertices b and d and leaves the vertices a and c at their original position. Another way to get the
same automorphism is β∗α∗α∗α.

Let me give you three properties of the automorphisms and their composition. First, the composition
is associative, i. e. rearranging parentheses as in (β∗α)∗ (α∗α) and β∗ (α∗ (α∗α)) does not change the
resulting automorphism. Second, the identity is a neutral element, i. e. for every automorphism ϕ the
equations id∗ϕ = ϕ and ϕ∗ id = ϕ hold. Third, every automorphism has an inverse, i. e. for every
automorphism ϕ there is an automorphism ϕ̃ such that the equations ϕ̃∗ϕ= id and ϕ∗ ϕ̃= id hold.

These properties are very important, and one takes them as axioms: “A group is a set equipped with
a multiplication that is associative, has a neutral element, and has the property that every element has an
inverse.” There are a lot of examples of groups, not only the automorphisms and their composition but
also the integers and their addition and many more. In fact, group theory is an active field of research
and the second project of my thesis belongs into this field. More precisely, it is about a construction
principle for groups. The fundamental ingredient is a triangle of groups. For now, you may think of a
triangle of groups as a collection of three groups A, B, C that intersect2 as illustrated in Figure 3. Based
on such a triangle of groups, we may construct its colimit group G. This is another group into which the
elements of the triangle of groups are mapped.3

2This deserves an explanation. Recall that each group comes with its own multiplication. So, if we take two elements that
are both in the group A and both in the group B, then there are a priori two ways to multiply them. We shall only consider
situations where the two products are the same. In other words, we assume that the multiplications of the three groups
agree on the intersections. Moreover, we assume that each intersection, on which we now have a unique way to multiply two
elements, forms again a group.

3This mapping is even compatible with the multiplications. More precisely, if we take two elements from the same group,
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Figure 3: A triangle of groups with its colimit and a billiard shot.

One may ask different questions about the colimit group G. Here is one of them: “If we take two
distinct elements from the same group, for example from the group A, are they always mapped to distinct
elements of the colimit group G?”

There are examples for which the answer is negative. But, in the year 1991, Gersten and Stallings
found a condition under which the answer is positive, see [Sta91]. It is called non-sphericity. In the
second project of my thesis, my coauthor and I prove that, for non-spherical triangles of groups, two
distinct elements, be they from the same group or not, are always mapped to distinct elements of the
colimit group G.4 It is therefore legitimate to say that the colimit group G contains a copy of the triangle
of groups.

We were originally interested in a different question. Let me explain. The automorphisms α and β

illustrated in the third and fourth part of Figure 1 satisfy the equation α∗β∗α∗β = id. So, products
sometimes turn out to be the neutral element, and it is desirable to have criteria that help to decide
in advance whether a product can be the neutral element or not.5 We have found such a criterion for
the colimit group G. Given a non-spherical triangle of groups, we construct a triangular billiard table.
Each of the three cushions corresponds to one of the three sets that are indicated in different shades
of grey in Figure 3. The billiard table helps us to analyse products whose factors are taken from these
sets. More precisely, we show that if there is a billiard shot that hits at least one cushion and has the
property that the sequence of cushions agrees with the sequence of sets where the factors are taken
from, then the product cannot be the neutral element.

Assume, for example, we are given a non-spherical triangle of groups with the property that the
billiard table is an equilateral triangle. Now, consider the product ϕ1 ∗ϕ2 ∗ϕ3 with factors ϕ1 taken
from the darkest set, ϕ2 taken from the intermediate set, ϕ3 taken from the brightest set, then the
billiard shot on the right-hand side of Figure 3 shows that ϕ1 ∗ϕ2 ∗ϕ3 cannot be the neutral element.

for example from the group A, then it does not matter whether we first multiply them using the multiplication of A and then
map the product to the colimit group G or first map them to the colimit group G and then multiply the images using the
multiplication of G.

4As illustrated in Section 3.1 on page 51, this is not a consequence of the result obtained by Gersten and Stallings.
5A wonderful example of such a criterion is Britton’s Lemma, see also the second paragraph in Section 1.1.1 on page 15.
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Figure 4: The Cayley graph with respect to the generators α and β.

Moreover, by hitting the ball a bit stronger, it shows that the same holds for ϕ1∗ϕ2∗ϕ3∗. . .∗ϕ1∗ϕ2∗ϕ3.

So, this criterion translates between a geometric and an algebraic property. And, in some way,
geometry is the way we think. However, we succeed in applying this criterion to prove a theorem about
the structure of the colimit group G, essentially by playing billiards, see e. g. Figure 16 on page 74.

Project A: Random walks on Baumslag-Solitar groups

After these abstract considerations let us, once again, return to our initial example of the graph with
vertex set {a,b, c,d } and edges {a,b }, {b, c }, { c,d }, {d,a }. We have introduced its automorphism group
and already mentioned that the equations α∗β = β∗α∗α∗α and α∗β∗α∗β = id hold. In order
to understand all possible ways to compose α and β and the automorphisms they produce, we may
draw the diagram given in Figure 4. The eight vertices represent the eight automorphisms. Each
automorphism ϕ has two outgoing arrows; one is labelled by α and goes to ϕ∗α and the other one is
labelled by β and goes to ϕ∗β. Once we have drawn this diagram, we can actually read off the equation
α∗β= β∗α∗α∗α because, starting at the identity, the sequences α−→ β−→ and β−→ α−→ α−→ α−→ both end up at
the same vertex. Similarly, we can read off the equation α∗β∗α∗β= id because, starting at the identity,
the sequence α−→ β−→ α−→ β−→ returns to its origin. The diagram is called the Cayley graph with respect to
the generators α and β, even though it is rather a quiver than a graph. Such a Cayley graph can be
constructed for any group with respect to any set of generators.

The first project of my thesis considers random walks on Baumslag-Solitar groups. Instead of giving
an abstract definition of these groups, I recommend to have a look on page 17 where Figure 1 illustrates
a part of the Cayley graph of the Baumslag-Solitar group BS(1,2). Before running a random walk on
this group, let me give you an introductory example.

Consider the graph with vertex set {1,2,3,4,5,6 } and edges {1,2 }, {2,3 }, {3,4 }, {4,5 }, {5,6 }. Let us
now define a random walk on this graph. Imagine we were starting at vertex 5 and proceeding according
to the following rule. From time to time, we select one of the two neighbours and move there, say with
probability 2/3 to the smaller one and with probability 1/3 to the larger one. This procedure goes on until
we reach vertex 1 or vertex 6.

9
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A natural question is: “How likely is it to end up at vertex 1?” In fact, the answer to this question is
a classic. Before reading it, have a guess. Is it smaller or larger than 1/2? To find the answer, we make a
thought experiment.

Let p(n) be the probability to end up at vertex 1 when starting at vertex n. In the two cases n = 1
and n = 6, we would stop immediately. Therefore, p(1) = 1 and p(6) = 0. But, if n is between 2 and 5,
we can make a first step decomposition. More precisely, starting at n, the first step goes either to n−1
or to n+1. After this first step, the probability to end up at vertex 1 has become p(n−1) or p(n+1),
respectively. So, we obtain the formula p(n)= 2/3 · p(n−1)+1/3 · p(n+1). Hence, we know that 1 p(1)= 1,
2 p(2)= 2/3·p(1)+1/3·p(3), 3 p(3)= 2/3·p(2)+1/3·p(4), 4 p(4)= 2/3·p(3)+1/3·p(5), 5 p(5)= 2/3·p(4)+1/2·p(6),
6 p(6)= 0. This system of equations can be solved using the techniques we have learnt at school, and it
turns out that p(5)= 16/31 ≈ 52%. Record from the above that, if n is between 2 and 5, in which case n is
called an interior vertex, we obtained the formula p(n) = 2/3 · p(n−1)+ 1/3 · p(n+1). Functions with this
property are called harmonic on the interior vertices. As soon as it is clear which vertices are the interior
ones, we just call them harmonic. The probability p(n) is not the only harmonic function. Another one
is the probability q(n) to end up at vertex 6 when starting at vertex n. The probabilities p(n) and q(n)
allow us to master the following challenge: “Assume we are given two arbitrary real numbers a and b,
can we find a harmonic function h : {1, . . . ,6 } → R with h(1) = a and h(6) = b?” The answer is positive,
and h(n) := a · p(n)+b · q(n) is the unique solution.

As already mentioned, we are interested in random walks on Baumslag-Solitar groups. So, recall
the Cayley graph of the Baumslag-Solitar group BS(1,2) and imagine that we start a random walk at
the neutral element. Again, from time to time, we select for example one of the four neighbours and
move there, say to each neighbour with probability 1/4. In this model, we do not stop when reaching some
vertex such as 1 or 6 in the introductory example. So, there is no obvious analogue to the probabilities
p(n) and q(n). Nevertheless, we may still wonder about harmonic functions, i. e. functions with the
property that the value at each vertex is the average of the values at the four neighbours.

It turns out that one can describe all bounded harmonic functions by constructing a new space called
the Poisson-Fürstenberg boundary. Its elements are, roughly speaking, all possible kinds of long-time
behaviour of the random walk. And, while we previously ended up in a random element of the set {1,6 },
we now end up in a random element of the Poisson-Fürstenberg boundary.

The latter has the nice property that we can describe all bounded harmonic functions on the group
in terms of the probabilities to hit certain parts of the Poisson-Fürstenberg boundary. The problem is
to understand this boundary and to identify it geometrically. For the Baumslag-Solitar group BS(1,2),
this has been done by Kaı̆manovich in [Kaı̆91, Theorem 5.1]. We extend his result and investigate all
non-amenable Baumslag-Solitar groups such as BS(2,3). Even though these groups are substantially
different, my coauthor and I obtain similar results.
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Summary

This thesis consists of three projects, each of which focuses on a different aspect of infinite graphs and
groups. The first project is joint with Ecaterina Sava-Huss. We consider random walks on non-amenable
Baumslag-Solitar groups and give an extrinsic description of the Poisson-Fürstenberg boundary. First,
we recall Baumslag-Solitar groups and their geometry. Then, we change our focus to random walks
on groups. The Poisson-Fürstenberg boundary is, roughly speaking, a probability space that serves as
a model to describe the long-time behaviour of the random walk. For random walks on non-amenable
Baumslag-Solitar groups we describe it in terms of the boundary of the hyperbolic plane, denoted by ∂H,
and the space of ends of the associated Bass-Serre tree, denoted by ∂T. Our main result is:

Theorem 2.12 (see p. 39) Let Z = (Z0, Z1, . . .) be a random walk on a non-amenable Baumslag-Solitar
group G = BS(p, q) with 1 < p < q. Assume there is an ε > 0 such that the increment X1 has finite
(2+ε)-th moment. If the vertical drift is non-negative, i. e. δ≥ 0, then the Poisson-Fürstenberg boundary
is isomorphic to (∂T,B∂T,ν∂T). On the other hand, if the vertical drift is negative, i. e. δ < 0, then the
Poisson-Fürstenberg boundary is isomorphic to (∂H×∂T,B∂H×∂T,ν∂H×∂T).

The second project is joint with Jörg Lehnert. A triangle of groups is a commutative diagram of
groups and injective homomorphisms of the following form. For every subset J ⊆ {1,2,3 } with |J| ≤ 2
there is a group GJ and for every two subsets J1 ⊂ J2 ⊆ {1,2,3 } with |J2| ≤ 2 there is a homomorphism
ϕJ1 J2 : GJ1 → GJ2 . We shall always assume that in each G{i, j} the images of G{i} and G{ j} intersect
precisely along the image of G∅. In analogy to the pushout, which yields the amalgamated free product
of two groups, we consider the generalised pushout of the diagram, also known as the colimit.

The fundamental question is: “What can be said about the structure of the colimit group?” Gersten
and Stallings introduced the notion of curvature showed that, for non-spherical triangles of groups, the
homomorphisms from the groups GJ with J ⊆ {1,2,3} and |J| ≤ 2 to the colimit group are all injective.
We first give an example showing that, despite of the fact that these homomorphisms are injective, the
intersection of the images of G{1,2} and G{1,3} may be strictly larger than the image of G{1}. However, our
example happens to be a spherical triangle of groups and we can prove an intersection theorem saying
that for non-spherical triangles of groups and, more generally, for non-spherical Corson diagrams this
surprising behaviour is not possible.

Bridson’s theory of two-dimensional metric simplicial complexes allows us to construct non-abelian
free subgroups in the colimit groups of many non-spherical triangles of groups. The language we use
is the one of billiards. In the end, we give two natural conditions, each of which ensures that in those
cases where our construction does not produce a non-abelian free subgroup, the colimit group is already
virtually solvable. More precisely:

Theorem 4.24 (see p. 75) The Tits alternative holds for the class of colimit groups of non-degenerate
non-spherical triangles of groups with the property that the group G∅ either has a non-abelian free
subgroup or is virtually solvable.
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SUMMARY

Theorem 4.25 (see p. 75) The Tits alternative holds for the class of colimit groups of non-spherical
triangles of groups with the property that every group GJ with J ⊆ {1,2,3} and |J| ≤ 2 either has a
non-abelian free subgroup or is virtually solvable.

The third project is joint with Wilfried Imrich and Florian Lehner. It asks for the minimal number
of colours needed to colour the vertices of a given graph in such a way that the trivial automorphism is
the only one that preserves the colouring. The infinite motion conjecture concerns infinite, locally finite,
connected graphs and states that if such a graph has the property that every non-trivial automorphism
moves infinitely many vertices, then the minimal number of colours needed is either 1 or 2. It holds for
graphs with linear growth. In our project, we obtained the first result going beyond the realm of linear
growth:

Corollary 3.5 (see p. 85) Let G be an infinite, locally finite, connected graph with infinite motion and
v0 ∈V(G). Moreover, let ε> 0. If there are infinitely many n ∈N such that

∣∣Bv0(n)
∣∣≤ n2

(2+ε) log2(n)
,

then the distinguishing number D(G) is either 1 or 2. In particular, Tom Tucker’s infinite motion
conjecture holds for all graphs of growth o(n2/ log2(n)).

The project has stimulated further research. Inspired by our joint project, Florian Lehner extended
the result to graphs with a higher growth rate, including all graphs of polynomial growth. Moreover,
interesting new questions have come up. For example, the one asking for a two-colouring that makes
mainly use of one colour and rarely use of the other one, and still breaks all non-trivial automorphisms.
Also the question of endomorphism distinguishability seems to be a promising playground.

14



Project A

Random walks on
Baumslag-Solitar groups

( with Ecaterina Sava-Huss )

1 Introduction and preliminaries

1.1 Baumslag-Solitar groups

1.1.1 Introduction

For any two non-zero integers p and q, the Baumslag-Solitar group BS(p, q) is given by the presentation
BS(p, q) = 〈a,b | abpa−1 = bq 〉. These groups were introduced by Baumslag and Solitar in [BS62],
who identified BS(2,3) as the first example of a two-generator one-relator non-Hopfian group and thus
answered a question by B. H. Neumann, see [Neu54]. Later on, was shown that BS(p, q) is Hopfian if
and only if |p| = 1 or |q| = 1 or P (p)=P (q), where P (x) denotes the set of prime divisors of x, see [BS62]
and [Mes72].

The structure of Baumslag-Solitar groups can be studied by means of HNN extensions. Indeed,
BS(p, q) is precisely the HNN extension Z∗ϕ with isomorphism ϕ : pZ→ qZ given by ϕ(p) := q. This
fact allows us to use the respective machinery, such as Britton’s Lemma, see [Bri63], which implies that
a freely reduced non-empty word w over the letters a and b and their formal inverses can only represent
the identity element 1 ∈BS(p, q) if it contains abra−1 with p | r or a−1bra with q | r as a subword.

Now, one can easily conclude that, if neither |p| = 1 nor |q| = 1, the elements x := a and y := bab−1

generate a non-abelian free subgroup. So, BS(p, q) is non-amenable. On the other hand, if |p| = 1 or
|q| = 1, a simple calculation shows that the normal subgroup 〈〈b 〉〉E BS(p, q) is abelian with quotient
isomorphic to Z. So, in this case, BS(p, q) is solvable and therefore amenable. As we will discuss, the
distinction between these two cases is of importance when working with random walks.

This paper is organised as follows. For the remainder of Section 1 and for Section 2, we will assume
that the two non-zero integers p and q satisfy 1≤ p < q. In Lemma 2.7 and in the subsequent results, we
will restrict ourselves to the non-amenable subcase 1< p < q. Later, in the Appendix, we will investigate
the remaining non-amenable cases.
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1.1.2 Projection to the Bass-Serre tree

So, let us first assume that 1≤ p < q. The Cayley graph Γ of the group G :=BS(p, q) with respect to the
standard generators a and b is the quiver (= directed multigraph) with vertex set G, edge set G× {a,b },
source function s : G × {a,b } → G given by s(g, x) := g, and target function t : G × {a,b } → G given by
t(g, x) := gx. As usual, we label the edges by a and b, respectively.

Remark 1.1 (“quiver” vs. “graph”) In contrast to a quiver, a graph is just a pair consisting of a vertex
set and an edge set with the property that every edge is a two-element subset of the vertex set. Every quiver
can be converted into a graph by ignoring the direction and the multiplicity of the edges and deleting the
loops. For the purpose of this paper it is sufficient to think of Γ as a graph, and we shall tacitly do so.

Consider the illustration of Γ in Figure 1. Intuitively speaking, we may look at it from the side
to see the associated Bass-Serre tree. Formally, let B := 〈b 〉 ≤ G and let T be the graph with vertex
set G/B = { gB | g ∈ G } and edge set { { gB, gaB } | g ∈ G }. This graph is actually a tree; it is obviously
connected and, by Britton’s Lemma, it does not contain a cycle. Notice that the canonical projection
πT : G → G/B given by πT(g) := gB is a weak graph homomorphism from Γ to T, i. e. whenever the
vertices g and h are adjacent in Γ, their images gB and hB either agree or they are adjacent in T.

Remark 1.2 (“levels”) Consider the infinite cyclic group Z and the map λ : {a,b }→Z given by λ(a) := 1
and λ(b) := 0. The latter can be uniquely extended to a group homomorphism λ : G → Z. Indeed, the
equation λ(a)+ p ·λ(b)−λ(a) = q ·λ(b) holds in Z so that we can apply von Dyck’s Theorem to extend λ,
see e. g. [Rot95, p. 346, fn. 2]. Since λ(b)= 0, the group homomorphism λ : G →Z is constant on the cosets
from G/B and therefore induces a well-defined map λ̃ : G/B →Z given by λ̃(gB) :=λ(g). We shall think of
λ and λ̃ as level functions, they assign a level to every vertex of Γ and T, respectively.

Lemma 1.3 Every vertex gB of T has exactly p+ q neighbours, p of them are located one level below the
vertex gB and q of them are located one level above it.

Proof. By construction, the levels of two adjacent vertices always differ exactly by 1. The defining
relation abpa−1 = bq (“⇐”) and Britton’s Lemma (“⇒”) imply that gaB = gbraB if and only if q | r,
whence the vertex gB has exactly q neighbours above. Similarly, it has exactly p neighbours below
because ga−1B = gbra−1B if and only if p | r.

1.1.3 Projection to the hyperbolic plane

The second projection captures the information that is obtained by looking at Γ from the front. In order
to construct it, we introduce another group. Let Aff+(R) be the set of all affine transformations of the real
line that preserve the orientation, i. e. all maps ϕ :R→R of the form ϕ(x)=αx+β with α,β ∈R and α> 0.
This set, endowed with the composition (ϕ2◦ϕ1)(x) :=ϕ2(ϕ1(x))=α2(α1x+β1)+β2 = (α2α1)x+(α2β1+β2),
forms a group. Similarly to the construction of the level function λ : G →Z in Remark 1.2, consider the
map πAff+(R) : {a,b } → Aff+(R) given by πAff+(R)(a) := (x 7→ q/p · x) and πAff+(R)(b) := (x 7→ x+1). Again, due
to von Dyck’s Theorem, it can be uniquely extended to a group homomorphism πAff+(R) : G → Aff+(R).
The group Aff+(R) has a geometric interpretation. In order to describe it, let H be the hyperbolic plane
as per the Poincaré half-plane model, i. e. H= { z ∈C | ℑ(z)> 0 }, endowed with the standard metric

dH(z1, z2) := ln
( |z1 − z2|+ |z1 − z2|
|z1 − z2|− |z1 − z2|

)
= arcosh

(
1+ |z1 − z2|2

2ℑ(z1)ℑ(z2)

)
,
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a a

b b

b

Figure 1: The Cayley graph Γ of BS(1,2) with respect to the standard generators a and b.

and notice that every ϕ ∈Aff+(R) can be thought of as an isometry of H. Indeed, the isometries of H are
precisely the maps ϕ :H→H of the form

ϕ(z)= αz+β
γz+δ or ϕ(z)= α · (−z)+β

γ · (−z)+δ with α,β,γ,δ ∈R and αδ−βγ> 0,

see e. g. [Bea83, Theorem 7.4.1]. Now, we are prepared to construct the second projection πH : G → H.
Pick an element g ∈G, map it via πAff+(R) to Aff+(R), think of the latter as an isometry of H, and evaluate
it at i ∈H. Here are two lemmas to illustrate this construction and to record some of its properties.

Lemma 1.4 For every g ∈ G the point πH(ga) ∈H is above the point πH(g) ∈H; the two points have the
same real part and their distance is `a := ln q/p. Similarly, for every g ∈ G the point πH(gb) ∈H is right
from the point πH(g) ∈H; the two points have the same imaginary part and their distance is `b := ln 3+p5

2 .
So, in some way, we are actually looking at Γ from the front.

Proof. This is clear for g = 1. Now, pick an arbitrary element g ∈G. The points πH(ga) ∈H and πH(g) ∈H
are obtained by applying πAff+(R)(g) to the points πH(a) ∈H and πH(1) ∈H.1 But, since πAff+(R)(g) is the
composition of a dilation z 7→ αz and a translation z 7→ z+β, the relative position of the two points is
preserved. The same argument works for the second assertion, which completes the proof.

Lemma 1.5 The projection πH : G →H is injective if and only if p = 1.

Proof. If p = 1, it follows from the defining relation aba−1 = bq that every g ∈ G can be expressed as
a−kblam with exponents k,m ∈N0 (=N∪ {0 }) and l ∈Z such that q | l ⇒ k = 0∨m = 0. Now, it is not hard
to see that the knowledge of the point πH(g)=πH(a−kblam)= qm/qk · i+l/qk ∈H allows us to reconstruct the
exponents k, l, and m. Hence, we can also reconstruct g ∈G, and the projection πH : G →H is injective.
On the other hand, if p ≥ 2, we can make use of the fact that the Bass-Serre tree T branches both in
upward and downward direction. More precisely, let g := a−1b−1ab−1a−1bab ∈ G. Then, both πH(g) = i
and πH(1)= i. But, by Britton’s Lemma, g 6= 1 in G. So, the projection πH : G →H is not injective.

1Notice that the equation (ϕ2 ◦ϕ1)(x) = ϕ2(ϕ1(x)) remains true when replacing x ∈ R by z ∈H. Therefore, we may actually
conclude that πH(ga)=πAff+(R)(ga)(i)= (πAff+(R)(g)◦πAff+(R)(a))(i)=πAff+(R)(g)(πAff+(R)(a)(i))=πAff+(R)(g)(πH(a)).
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ℜ

ℑ

1

2

3

Figure 2: A part of a discrete hyperbolic plane Γv and its projection to H.

1.1.4 Discrete hyperbolic plane

Definition 1.6 (“path”, “reduced path”) Given a graph with vertex set V , we consider finite paths
v : {0,1, . . . ,n } → V, infinite paths v : N0 → V, and doubly infinite paths v : Z→ V. In any case, being a
path means that for every possible k the vertices v(k) and v(k+1) are adjacent in the graph. Moreover,
we say that a path is reduced if for every possible k the vertices v(k) and v(k+2) are distinct.

Fix an ascending doubly infinite path v :Z→ G/B in the tree T. Here, the word ascending refers to
the level function defined in Remark 1.2, and it means that for every k ∈ Z the vertex v(k) is located
above the preceding vertex v(k−1). Now, let Gv be the full πT-preimage of v, i. e. the set consisting
of all g ∈ G such that the image πT(g) is traversed by v. The subgraph Γv ≤ Γ spanned by Gv, see 1

in Figure 2, is obviously connected so that the graph distance dΓv becomes a metric. This subgraph is
sometimes referred to as discrete hyperbolic plane or plane of bricks, which makes particular sense in
light of Lemma 1.7.

Lemma 1.7 The restriction πH|Gv : Gv →H is a quasi-isometry between the graph Γv, endowed with the
graph distance dΓv , and the hyperbolic plane H, endowed with the standard metric dH.

Proof. We realise the edges of the graph Γv geometrically. Whenever two vertices g,h ∈Gv are adjacent,
we connect their images πH(g) ∈ H and πH(h) ∈ H by a geodesic in H. In order to avoid confusion, we
refer to these images as H-vertices and to the geodesics between them as H-edges. By the proof of
Lemma 1.3 and by Lemma 1.4, the H-vertices and H-edges define a tessellation of the hyperbolic plane
with isometric bricks of the following shape. The H-vertices of each brick are located on two distinct
horizontal lines; on the upper one there are p+1 of them and on the lower one there are q+1 of them.
In either case, the H-vertices are connected by H-edges of length `b to form a chain (= piecewise geodesic
curve). Due to the curvature, both the two leftmost and the two rightmost H-vertices are located exactly
above each other and connected by vertical H-edges of length `a, see 2 in Figure 2 and Figure 3. Since
the bricks are uniformly bounded and cover the hyperbolic plane H, the restriction πH|Gv : Gv → H is
certainly quasi-surjective.

Pick any two vertices g,h ∈ Gv. We aim to estimate the distances dΓv(g,h) and dH(πH(g),πH(h)) by
multiples of each other. So, choose a path of minimal length from g to h in Γv. It corresponds to a chain
of H-edges from πH(g) to πH(h), see 3 in Figure 2. This chain consists of dΓv(g,h) many H-edges, each of
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upper

lower

`a

`b
γ

x x′

yy′

Figure 3: Approximation of the geodesic γ in the case p = 2 and q = 3.

which has length at most max{`a,`b }. Hence,

dH(πH(g),πH(h))≤ dΓv(g,h) ·max{`a,`b } .

On the other hand, let us make the following auxiliary definition. Every point x ∈H that is not in the
interior of a brick is either an H-vertex, in which case we define x′ to be x, or it is in the interior of an
H-edge, in which case we define x′ to be one of the endpoints of the H-edge, whichever is closer. In the
case that x is exactly in the middle of the H-edge, we choose the left endpoint rather than the right one
and the lower endpoint rather than the upper one. With this notion in mind, consider the geodesic γ
from πH(g) to πH(h), see Figure 3. Whenever γ traverses the interior of a brick B, it enters the interior
at some point x ∈ ∂B and leaves it at some other point y ∈ ∂B. In this situation, approximate the part
of γ from x to y by a chain of H-edges from x′ to y′. We may choose this chain such that, whenever
x′ = y′, the chain has no H-edge at all and, otherwise, the number of H-edges in the chain is at most
c := b1/2 · (p+ q+2)c. But, by a compactness argument, there is an ε > 0 such that if the part of γ has
length smaller than ε, then x′ = y′ and the chain has no H-edge at all. Therefore, we may conclude that

number of H-edges in the chain ≤ c
ε
· length of the part of γ .

It is not hard to see that if we do this for every brick B whose interior is traversed by γ, we finally
obtain a chain of H-edges from πH(g) to πH(h). Depending on whether a part of γ originally traversed
the interior of a brick or ran along an H-edge, we may estimate the number of H-edges approximating
it by c/ε, by 1/̀ a, or by 1/̀ b times its length. Hence,

dΓv(g,h)≤ dH(πH(g),πH(h)) ·max
{

c
ε

,
1
`a

,
1
`b

}
.

Remark 1.8 Notice that the horizontal lines mentioned in the proof of Lemma 1.7 are horospheres, and
by no means geodesics. For example, one may pick such a horizontal line and observe that the part
of the line contained in the ball B(i,n) ⊆ H with centre i ∈ H and radius n ∈ N has a length growing
exponentially in n, see also Figure 12 on page 42.

Remark 1.9 The projections πT : G → G/B and πH : G →H are certainly not independent, e. g. the level
of a vertex g ∈ G can be reconstructed both from πT(g) ∈ G/B and from πH(g) ∈ H. In fact, the image of
πT×πH : G → G/B×H is contained in the horocyclic product of the tree T and the hyperbolic plane H,
which is sometimes referred to as treebolic space, see [BSCSW] for details.
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1.1.5 Compactifications

Both the tree T and the hyperbolic plane H have a natural compactification. In case of T it is the end
compactification, which can be constructed as follows. Fix a base point, say B ∈ G/B, and consider the
set T̂ of all reduced paths that start in B, be they finite or infinite. The endpoint map yields a one-to-one
correspondence between the finite paths in T̂ and the vertices G/B. We may therefore think of G/B as a
subset of T̂. The set T̂ can be endowed with the metric

dT̂(x, y)=
{

2−|x∧y| if x 6= y
0 if x = y

.

Here, the symbol |x∧ y| denotes the number of edges the two paths run together until they separate,
i. e. |x∧ y| = max{n ∈N0 | x(n) and y(n) are both defined and x(n) = y(n) }, see 1 in Figure 4. Hence, the
later the paths separate the closer they are. The set T̂, endowed with the metric dT̂, is a compact metric
space that contains G/B as a discrete and dense subset. The complement of G/B is the set of infinite
paths in T̂, it is usually denoted by ∂T and called the space of ends.

In case of H, we could simply construct the closure of H after identifying it as a subspace of the
Riemann sphere C∪ {∞ }, which is the one-point compactification of the complex plane C. But, in order
to visualise the compactification of H a little better, we temporarily switch to the Poincaré disc model.
More precisely, instead of working in the half-plane H= { z ∈C | ℑ(z)> 0 }, we consider the open unit disc
D := { z ∈ C | |z| < 1 }. The Cayley transform W :H��D given by W(z) := z−i

z+i is one possibility to convert
between the two models. Since we are currently interested in the topological structure, let us underline
that the hyperbolic topology on D is the one induced by the Cayley transform, i. e. the one that turns the
Cayley transform into a homeomorphism. It agrees with the standard topology on D. So, topologically
speaking, the hyperbolic plane in the Poincaré disc model is just a subspace of the complex plane C.
We may therefore compactify it by taking the closed unit disc D̂ := { z ∈C | |z| ≤ 1 }. In order to translate
this compactification back to the Poincaré half-plane model, we first extend both the domain and the
codomain of the Cayley transform so that we obtain a bijection W :H∪R∪ {∞ }�� D̂, and then apply its
inverse. The resulting space Ĥ :=H∪R∪{∞ } is our compactification. It is, once again, endowed with the
induced topology, and thus a compact space that contains H as a dense subset. The complement of H is
the union R∪ {∞ }, it is usually denoted by ∂H and called the hyperbolic boundary. Having introduced
the hyperbolic boundary this way, the following lemma gives us a helpful criterion for convergence.

Lemma 1.10 A sequence (x0, x1, . . .) in H converges to ∞∈ ∂H if and only if the absolute values |xn| tend
to infinity. Moreover, it converges to a point ξ ∈ ∂Hr{∞ } if and only if it does with respect to the standard
topology on the complex plane C.

Proof. By definition, a sequence (x0, x1, . . .) in H converges to a point ξ ∈ ∂H if and only if its pointwise
image (W(x0),W(x1), . . .) in D converges to W(ξ) ∈ ∂D. But, as mentioned above, the latter can be verified
using the standard topology on the complex plane C. In particular, the sequence (x0, x1, . . .) converges to
∞∈ ∂H if and only if

|W(xn)−W(∞)| =
∣∣∣∣ xn − i
xn + i

− ∞− i
∞+ i

∣∣∣∣= 2
|xn + i|

n→∞−−−−−→ 0,

which holds if and only if the absolute values |xn| tend to infinity. In order to prove the second assertion,
let us fix, once and for all, the standard topology on the complex plane C and observe that we may
again adjust both the domain and the codomain of the Cayley transform so that we obtain a bijection
W : Cr {−i }�� Cr {1 }. This is a homeomorphism between subspaces of the complex plane C, whence
W(xn)→W(ξ) if and only if xn → ξ.
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x
1

y

B

Figure 4: The space of ends and the hyperbolic boundary in the Poincaré disc model.

1.2 Random walks on groups

1.2.1 Discrete Markov chains

In this paper, we aim to study random walks on Baumslag-Solitar groups. Let us therefore recall some
basic notions from the theory of random walks. Given a countable state space X , an initial probability
measure2 ϑ : X → [0,1], and transition probabilities p : X × X → [0,1], we are interested in the Markov
chain Z = (Z0, Z1, . . .) that starts according to ϑ and proceeds according to p.

In order to construct Z rigorously, take the space of trajectories Ω := { (x0, x1, . . . ) | ∀n ∈N0 : xn ∈ X }.
For every n ∈N0 there is a projection Zn :Ω→ X given by Zn(x0, x1, . . . ) := xn. Now, endow Ω with the
smallest σ-algebra A having the property that all projections Zn are measurable. It is called the product
σ-algebra. An equivalent way to define A is via cylinder sets. First, fix some time t ∈N0. Given a tuple
a = (a0,a1, . . . ,at) ∈ X t+1, the associated cylinder set C(a) consists of all trajectories that start according
to a and continue arbitrarily, i. e. C(a) := { (a0,a1, . . . ,at, xt+1, xt+2, . . . ) | ∀n ≥ t+1 : xn ∈ X }. Let At be the
σ-algebra generated by all cylinder sets that are determined until time t, i. e. At :=σ({C(a) | a ∈ X t+1 }).
Observe that A0 ⊆ A1 ⊆ . . . is an increasing sequence of σ-algebras. Their union F := ⋃

t∈N0 At is an
algebra; it generates the σ-algebra A , i. e. A := σ(F ). The latter definition is certainly more involved
but it facilitates the construction of a probability measure. For each time t ∈ N0 there is a probability
measure νt on the σ-algebra At given by

νt(A) := ∑
a=(a0 ,a1 ,...,at)

with C(a)∈A

ϑ(a0) · p(a0,a1) · p(a1,a2) · . . . · p(at−1,at) .

These probability measures νt are compatible in the sense that they assemble to a content ν with
total mass 1 on the algebra F . One can even show σ-additivity, whence ν is a premeasure and, by
Carathéodory’s extension theorem, uniquely extends to a probability measure P on A .

We may therefore consider the probability space (Ω,A ,P). Doing so, the projections Zn : Ω→ X
become random variables that constitute the Markov chain. For details on the terminology used above,
see e. g. [Kle14, §1], and for a gentle introduction to discrete Markov chains, see e. g. [Woe09, §1]. From
now on, we will always use the term random walk instead of Markov chain.

2Here, and throughout the paper, we use the term probability measure to denote probability measures and probability mass
functions on discrete spaces.
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(Ω,A ,P) Z0

Z1 = X1

Z2 = X1 · X2

Figure 5: The first steps of a random walk on BS(1,2).

1.2.2 From countable sets to countable groups

In Section 1.2.1, we considered a countable state space X without any structure. Now, we assume that
X is a countable group G, in which case we may study random walks whose transition probabilities
are adapted to the group structure. In order to do so, we first pick a probability measure µ : G → [0,1]
whose support supp(µ) = { g ∈ G | µ(g) > 0 } generates G as a semigroup. Then, we consider the random
walk given by the following data. The initial probability measure ϑ : G → [0,1] puts all mass on the
identity element 1 ∈G and the transition probabilities p : G×G → [0,1] are given by p(g,h) := µ(g−1h).
We could also have said p(g, gx) :=µ(x), which leads to a handy interpretation. The random walk starts
a. s. (= almost surely) at the identity element and has independent µ-distributed increments each of
which is multiplied from the right to the current state. Therefore, Z0 = 1 a. s. and for every n ∈ N we
may decompose Zn = X1 · . . . · Xn, where X1, X2, . . . is a sequence of independent µ-distributed random
variables, see the right-hand side of Figure 5.

Remark 1.11 Since we assume that supp(µ) generates G as a semigroup, the random walk is irreducible,
i. e. any two states can be reached from each other with positive probability. In particular, the following
dichotomy holds. Either every state is recurrent, i. e. the return probability is equal to 1, or every state
is transient, i. e. the return probability is smaller than 1. In the latter case, the probability that every
finite set of states will eventually be left and the random walker escapes to infinity is equal to 1. Roughly
speaking, the Poisson-Fürstenberg boundary, which we are about to identify in this paper, serves as a
probabilistic model to describe the long-time behaviour of the random walk in more detail.

1.2.3 Moment conditions

As soon as supp(µ) is infinite, it is harder to understand the behaviour of the random walk. In this
situation, we often need to assume that the probability of huge jumps is sufficiently low. The notion of
moments helps us to make this assumption rigorous. Recall that, given a probability space, e. g. (Ω,A ,P)
constructed in Section 1.2.1, and a random variable X : Ω→ R, the latter has finite first moment if∫ |X |dP<∞. In this case both

∫
X+dP<∞ and

∫
X−dP<∞, and we are able to define the expectation

E(X ) := ∫
X+dP− ∫

X−dP. Of course, the difference would still make sense if only one of the two
integrals was finite. But this is not of relevance for us. So, when writing “E(X )” we implicitly mean
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that −∞< E(X ) <∞. More generally, given any non-negative k ∈ R, the random variable X :Ω→ R has
finite k-th moment if

∫ |X |k dP<∞. In our setting, the increments X1, X2, . . . take values in G, whence
we need to define the hugeness of a jump before talking about their moments.

Definition and Lemma 1.12 (“word metric”, “finite k-th moment”) If G is a finitely generated
group and S ⊆G is a finite generating set, then the word metric dS on G is given by

dS(g,h) :=min{n ∈N0 | ∃ s1, . . . , sn ∈ S : ∃ε1, . . . ,εn ∈ {1,−1 } : g−1h = s1
ε1 · . . . · sn

εn } .

Notice that the word metric coincides with the distance in the respective Cayley graph. Using the word
metric dS on G, a random variable X :Ω→ G has finite k-th moment if the image dS(1, X ) :Ω→ R has
finite k-th moment in the classical sense, i. e. if

∫ |dS(1, X )|k dP = ∫
dS(1, X )k dP <∞. This property does

not depend on the choice of S ⊆G.

Proof. Let S,T ⊆ G be finite generating sets and assume that X has finite k-th moment with respect
to S. It is a basic fact from geometric group theory, see e. g. [Mei08, Lemma 11.37], that the identity
map between the metric spaces (G,dS) and (G,dT) is a quasi-isometry. In particular, there are a,b ∈ R
such that for all g,h ∈ G the inequality dT(g,h) ≤ adS(g,h)+ b holds. Now, given a and b, we can also
find A,B ∈ R such that for all g,h ∈G the inequalities dT(g,h)k ≤ (adS(g,h)+ b)k ≤ A dS(g,h)k +B hold.
Hence, ∫

dT(1, X )k dP≤
∫

A dS(1, X )k +B dP≤ A ·
∫

dS(1, X )k dP︸ ︷︷ ︸
<∞

+B ·
∫

dP︸ ︷︷ ︸
= 1

< ∞ .

1.2.4 Further notions concerning random walks on Baumslag-Solitar groups

Let us now return to the situation we are interested in, namely that G =BS(p, q) with 1≤ p < q. When
working with the projection πH : G → H, we often consider the imaginary parts ℑ(πH(g)) and the real
parts ℜ(πH(g)) separately, and it is convenient to abbreviate the former by Ag and the latter by Bg.
Occasionally, we do not need to assume that X1 has some finite moment but impose this assumption
only on the images ln(AX1) and ln(1+|BX1 |). The following lemma relates these two situations.

Lemma 1.13 If X1 has finite k-th moment, then ln(AX1) and ln(1+|BX1 |) have finite k-th moment, too.

Remark 1.14 Before we prove Lemma 1.13, notice that for every g ∈ G the imaginary part Ag can be
expressed in terms of the level λ(g), namely by the formula Ag = (q/p)λ(g). Taking the logarithm on both
sides yields ln(Ag)= ln(q/p) ·λ(g). So, instead of thinking of ln(Ag) we may think of a multiple of λ(g).

Proof of Lemma 1.13. Let S := {a,b }⊆G be the standard generating set. We may now estimate∫
| ln(AX1)|k dP= ln(q/p)k ·

∫
|λ(X1)|k dP≤ ln(q/p)k ·

∫
dS(1, X1)k dP︸ ︷︷ ︸

<∞

<∞ .

Concerning the second assertion, observe that dH(πH(1),πH(g)) ≤ max{`a,`b } ·dS(1, g), which can be
shown by the same argument as in the proof of Lemma 1.7. This observation allows us to estimate
ln(1+|Bg|) by a multiple of dS(1, g). Indeed,

ln(1+|Bg|)≤ ln
(
1+ 1/2 · |Bg|2 +

√
(1+ 1/2 · |Bg|2)2 −1

)
= arcosh

(
1+ 1/2 · |Bg|2

)= dH(i, i+Bg)
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≤ dH(i, Ag · i+Bg)+dH(Ag · i+Bg, i+Bg)= dH(πH(1),πH(g))+| ln(Ag)|

≤max{`a,`b } ·dS(1, g)+ ln(q/p) · |λ(g)| ≤max{`a,`b } ·dS(1, g)+ ln(q/p) ·dS(1, g) .

Therefore, ∫
ln(1+|BX1 |)k dP≤ (max{`a,`b }+ ln(q/p))k ·

∫
dS(1, X1)k dP︸ ︷︷ ︸

<∞

<∞ .

In addition to the moments of ln(AX1) and ln(1+ |BX1 |), we will use the notion of vertical drift.
Consider a random walk Z = (Z0, Z1, . . . ) on G and its pointwise projection λ(Z)= (λ(Z0),λ(Z1), . . . ) to the
levels. Since λ(Zn) = λ(X1 · . . . · Xn) = λ(X1)+ . . .+λ(Xn), these projections constitute a random walk on
the set of integers with i. i. d. (= independent and identically distributed) increments.

Definition 1.15 (“vertical drift”) If ln(AX1) has finite first moment, then λ(X1) has finite first moment
and we are able to define the expectation E(λ(X1)). The latter is called the vertical drift and denoted by δ.
We will distinguish between positive vertical drift, i. e. δ > 0, negative vertical drift, i. e. δ < 0, and no
vertical drift, i. e. δ= 0, which is the most subtle of the three cases.

1.3 Poisson-Fürstenberg boundary

1.3.1 Definition and basic examples of Lebesgue-Rohlin spaces

As mentioned in Remark 1.11, the Poisson-Fürstenberg boundary serves as a probabilistic model to
describe the long-time behaviour of a random walk. In order to define it, we need to ensure that we
are working with Lebesgue-Rohlin spaces. In this section, we recall their definition and basic examples.
Further details can be found e. g. in [Roh52], [Hae73], [Rud90]. Moreover, let us mention the collection
of facts in [KKR04, Appendix] and the more informal introduction in [CK12].

Definition 1.16 (“separable probability space”) A probability space (Ω,A ,P) is called separable if
it is 1 complete, 2 countably generated, i. e. there is a subset A = { A1, A2, . . . }⊆A such that the σ-algebra
generated by A and completed with respect to P is the σ-algebra A , and 3 separable in the narrow sense,
i. e. for any two x, y ∈Ω there is an index k ∈N such that either x ∈ Ak and y 6∈ Ak or x 6∈ Ak and y ∈ Ak.
In this case, the subset A ⊆A is called a base of (Ω,A ,P).

Let us fix a separable probability space (Ω,A ,P) with base A = { A1, A2, . . . } ⊆ A and consider the
map iA :Ω→ {0,1 }N given by iA(x) := (1A1(x),1A2(x), . . . ). Here, 1Ak denotes the characteristic function of
the set Ak. Let B be the product σ-algebra on {0,1 }N. The map iA is σ(A)-B-measurable, i. e. iA is a
measurable map from (Ω,σ(A)) to ({0,1 }N,B), see [Hae73, Proposition 1]. We may therefore consider the
pushforward probability measure Q := iA(P), and construct the completion BQ of the σ-algebra B with
respect to Q. It is not hard to see that the map iA is also A -BQ-measurable, see [Hae73, Proposition 2].
Moreover, by separability in the narrow sense, it is certainly injective. If it is also surjective, then the
separable probability space (Ω,A ,P) with base A ⊆ A is called “complete”. A weaker notion is the one
of “almost completeness”.

Definition 1.17 (“almost complete”) A separable probability space (Ω,A ,P) with base A ⊆A is called
almost complete if the image iA(Ω)⊆ {0,1 }N is BQ-measurable, i. e. if iA(Ω) ∈BQ .
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It turns out that almost completeness is an intrinsic property of the separable probability space, and
does not depend on the choice of the base, see [Hae73, Proposition 4].

Definition 1.18 (“Lebesgue-Rohlin space”) A separable probability space (Ω,A ,P) which is almost
complete is called a Lebesgue-Rohlin space.

The most prominent examples of Lebesgue-Rohlin spaces are discrete probability spaces and the
unit interval [0,1] equipped with the Lebesgue σ-algebra L and the Lebesgue measure λ. In fact, every
Lebesgue-Rohlin space is isomorphic3 either to one of these examples or to the disjoint union of an
interval [0,α] with 0<α≤ 1 and countably many atoms with total mass 1−α, see [Roh52, §2.4].

Remark 1.19 (“Polish spaces”) A Polish space is a topological space that is separable, i. e. contains
a countable and dense subset, and completely metrisable, i. e. there is a metric that induces the topology
and turns the space into a complete metric space. All Polish spaces equipped with the Borel σ-algebra B

and a Borel measure µ become after completion examples of Lebesgue-Rohlin spaces, see [Roh52, §2.7]
and [Hae73, p. 248, Example 1].

Example 1.20 (“Variation of the perforated interval”) A separable probability space that is not
a Lebesgue-Rohlin space can be obtained as follows. Consider the half-closed interval [0,1) and fix an
irrational number α ∈ RrQ. The transformation τ : [0,1) → [0,1) given by τ(x) := x+α mod 1 has the
property that for every point x ∈ [0,1) the bidirectional orbit {τn(x) | n ∈Z } is countably infinite. Consider
all these orbits and use the axiom of choice to pick one representative from each of them. Let A be the
union of these representatives. We claim that A is non-measurable with respect to the Lebesgue measure.
Indeed, if A was measurable, then the translation invariance would imply that for every n ∈Z the values
λ(τn(A)) and λ(A) agree. But, by construction, the interval [0,1) is the disjoint union of all τn(A), whence
1 = λ([0,1)) = ∑

n∈Zλ(τn(A)) = ∑
n∈Zλ(A), and each of the assumptions λ(A) = 0 and λ(A) > 0 yields an

immediate contradiction. The same argument shows that A has inner Lebesgue measure λ∗(A) = 0.
Hence, we know that the complement B := [0,1)r A has outer Lebesgue measure λ∗(B) = 1. Now, equip
the set B with the induced σ-algebra LB and the measure β that assigns to every S′ ∈ LB the Lebesgue
measure of an arbitrary S ∈ L with S ∩B = S′. Since λ∗(B) = 1, the outcome does not depend on the
choice of S ∈L . The probability space (B,LB,β) constructed this way can be equipped with the induced
base and therefore inherits separability from ([0,1),L ,λ). But, since B is non-measurable in [0,1), its
image cannot be measurable in {0,1}N .

Remark 1.21 As illustrated on the left-hand side of Figure 6, we may use x 7→ exp(2πix) to identify the
half-closed interval [0,1) with the sphere S1, in which case the transformation τ becomes a rotation by
an irrational multiple of 2π.

1.3.2 Definition of the Poisson-Fürstenberg boundary

In light of Remark 1.19, we may observe that the space of trajectories Ω introduced in Section 1.2.1
is the product XN0 and can therefore be equipped with the product topology. One can show that the
latter is actually a Polish space, see e. g. [Wil70, Theorem 24.11]. Since its Borel σ-algebra agrees with
the σ-algebra A , the completion of (Ω,A ,P) is a Lebesgue-Rohlin space. From now on, let us assume

3We shall consider probability spaces up to subsets of measure 0. So, we actually mean isomorphic mod 0. Recall that
two probability spaces (Ω1,A1,P1) and (Ω2,A2,P2) are isomorphic mod 0 if there are null sets Nk ⊆Ωk with k ∈ {1,2} and a
bijection ϕ :Ω1rN1 →Ω2rN2 which is measurable and measure preserving in both directions.
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Figure 6: A rotation (left) and a harmonic extension of a continuous function (right).

that, as soon as a measurable space is equipped with a probability measure, we are working with the
completion. So, abusing notation, we say that (Ω,A ,P) is a Lebesgue-Rohlin space.

Since we are interested in the long-time behaviour of the trajectories x = (x0, x1, . . . ) ∈Ω, we identify
those pairs of trajectories whose tails sooner or later behave identically. More precisely, we define an
equivalence relation ∼ on Ω by

x ∼ y :⇐⇒ ∃ t1, t2 ∈N0 :∀ n ∈N0 : xt1+n = yt2+n .

Notice that we allow the times t1 and t2 to be different. If we did not, we would end up with the tail
boundary instead of the Poisson-Fürstenberg boundary. Consider the partition ζ of Ω into equivalence
classes mod ∼, see 1 in Figure 5. This partition induces a sub-σ-algebra Aζ of A , consisting of all A ∈A

which are compatible with the partition ζ, i. e. which are unions of equivalence classes mod ∼, see 2 in
Figure 5. The resulting probability space (ζ,Aζ,P|Aζ

) is not necessarily a Lebesgue-Rohlin space. We
solve this issue by taking the measurable hull ζ1 of ζ, see [Roh52, §3.3] and [CK12, §1.4]. This is a
coarsening of ζ, characterised mod 0, with the property that the induced sub-σ-algebras Aζ1 and Aζ

agree, again mod 0, and the probability space (ζ1,Aζ1 ,P|Aζ1
) is a Lebesgue-Rohlin space. We denote the

latter by (B,B,ν) and call it the Poisson-Fürstenberg boundary. The map from the trajectory space Ω
to the Poisson-Fürstenberg boundary B that assigns to every trajectory x ∈Ω the respective element of
the partition ζ1 is called the boundary map bnd :Ω→ B. Notice that is not the only possible definition
of the Poisson-Fürstenberg boundary, further equivalent ones are given in [KV83].

1.3.3 Representation of bounded harmonic functions

Motivation 1.22 (“Classical Poisson integral representation formula”) The Dirichlet problem
considers a region A ⊆ Rn and a continuous function f : ∂A → R. It asks whether f can be extended to
a function ϕ : A ∪ ∂A → R which is continuous in the closure A ∪ ∂A and harmonic in the interior A,
i. e. twice continuously differentiable and satisfying the Laplace equation ∆ϕ= 0. In the special case that
A is the open unit disc in R2, the Dirichlet problem can be solved explicitly by the Poisson formula. An
example is illustrated on the right-hand side of Figure 6. In order to write the unique solution ϕ down,
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let us identify R2 with the complex plane C. Then, ϕ assigns to every a ∈ A the value

ϕ(a)=
∫ 1

0
f (exp(2πxi))

1−|a|2
|exp(2πxi)−a|2 dx︸ ︷︷ ︸

=: dνa(x)

.

One important feature of the Poisson-Fürstenberg boundary is that it can be used to describe all
bounded harmonic functions on the state space X . Let us therefore translate the notion of harmonic
functions to our situation, where no derivatives are available. So, assume we are given a countable
state space X and transition probabilities p : X × X → [0,1] as introduced in Section 1.2.1.

Definition 1.23 (“harmonic”, “superharmonic”) A function ϕ : X →R is called harmonic if for every
element x ∈ X the equation ϕ(x) = ∑

y∈X p(x, y)ϕ(y) holds. In other words, being at x ∈ X, the value of ϕ
today is precisely as large as the expected value of ϕ tomorrow. A function called is superharmonic if the
same holds with “≥” instead of “=”.

The initial probability measure of a random walk is denoted by ϑ : X → [0,1]. First, we pick some
reference measure ϑ with supp(ϑ) = X . Then, we consider the random walk Z = (Z0, Z1, . . . ) that starts
according to ϑ and has probability measure Pϑ and Poisson-Fürstenberg boundary (B,B,νϑ).

All other initial probability measures, in particular the Dirac measures δx at points x ∈ X , are
absolutely continuous with respect to ϑ. Therefore, the measures Px := Pδx are absolutely continuous
with respect to Pϑ, which implies that we may equip (B,B) with measures νx := νδx in order to obtain the
respective Poisson-Fürstenberg boundaries. From this point of view, it would have made sense to define
the Poisson-Fürstenberg boundary as a measurable space (B,B) equipped with a family of measures.

Now, a first step decomposition shows that the equation νx = ∑
y∈X p(x, y) ·νy holds for every two

points x, y ∈ X . Hence, given an essentially bounded function f mapping from the Poisson-Fürstenberg
boundary (B,B,νϑ) to the real numbers R, we can construct a bounded harmonic function ϕ : X → R

given by the Poisson integral representation formula ϕ(x) := ∫
f dνx.

There is also a way back from ϕ to f using martingale convergence so that, in the end, one obtains
a one-to-one correspondence, even an isometry of Banach spaces, between the space L∞(B,B,νϑ) of
equivalence classes of essentially bounded functions and the space H∞(X ,µ) of bounded harmonic
functions, see e. g. [KV83]. Let us illustrate this by an example.

Example 1.24 (“Non-triviality of the boundary implies transience”) It is known that the random
walk Z = (Z0, Z1, . . . ) is transient if and only if there is a non-constant non-negative superharmonic
function, see e. g. [Woe00, Theorem 1.16]. Now, assume that the Poisson-Fürstenberg boundary B is
non-trivial with respect to some νx. Then, it is non-trivial with respect to νϑ. So, there are non-constant
functions f ∈ L∞(B,B,νϑ) and ϕ ∈ H∞(X ,µ). But, then, every ϕ+ c with c := − inf{ϕ(x) | x ∈ X } is a
non-constant non-negative superharmonic function, and the random walk Z is transient.

1.3.4 The triviality and identification problem

Given a random walk, be it on a set or on a group, a challenging problem is to decide whether the
Poisson-Fürstenberg boundary is trivial or not. In the latter case, one may go on and wonder how to
identify it geometrically. We shall only outline a few results about the Poisson-Fürstenberg boundary of
random walks on countable groups. A recent survey has been given by Erschler in [Ers10].

As before, let Z = (Z0, Z1, . . . ) be a random walk on a countable group G driven by the probability
measure µ. We assume that the support supp(µ) generates G as a semigroup, see Section 1.2.2.
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If G is abelian, then the Poisson-Fürstenberg boundary is always trivial, see [Bla55] and [CD60].
The same holds true for all groups of polynomial growth, and for groups of subexponential growth with
a probability measure µ of finite first moment. It has been shown in [Ers04], that the assumption of
finite first moment cannot be dropped.

If G is amenable, then one can show that there is at least one symmetric probability measure µ

such that the Poisson-Fürstenberg boundary is trivial, see the conjecture in [Fü73, §9]. The latter has
been proved in [Ros81] and [KV83]. For example, in case of the Baumslag-Solitar group G = BS(1,2),
the Poisson-Fürstenberg boundary may or may not be trivial depending on the vertical drift δ. More
precisely, for random walks on G = BS(1,2) with finite first moment the Poisson-Fürstenberg boundary
is isomorphic to R for δ< 0 and trivial for δ= 0 and isomorphic to Q2 for δ> 0, see [Kaı̆91, Theorem 5.1].
We may think of Q2 as the space of upper ends of the corresponding Bass-Serre tree T. Further results
about random walks on rational affinities are given in [Bro06]. Finally, if G is non-amenable, then
the Poisson-Fürstenberg boundary is always non-trivial4, see [Fü73, §9]. This holds in particular for
random walks on non-amenable Baumslag-Solitar groups G =BS(p, q), also for δ= 0.

1.3.5 Statement of the strip criterion

Kaı̆manovich’s strip criterion is a tool to identify the Poisson-Fürstenberg boundary geometrically. The
strategy is to guess a suitable candidate. In our situation, this candidate will be given in terms of
the boundaries ∂H and ∂T. The strip criterion enables us to prove that this candidate is actually the
Poisson-Fürstenberg boundary. We will first state it and then, in Sections 1.3.6 and 1.3.7, discuss the
notions that have not been mentioned so far. A proof can be found in [Kaı̆00, §6.4].

Theorem 1.25 (“Strip criterion”) Let Z = (Z0, Z1, . . . ) be a random walk on a countable group G
driven by a probability measure µ with finite entropy H(µ). Moreover, let (B−,B−,ν−) and (B+,B+,ν+)
be µ̌- and µ-boundaries, respectively. If there exist a gauge G = (G1,G2, . . . ) on G with associated gauge
function | · | = | · |G and a measurable G-equivariant map S assigning to pairs of points (b−,b+) ∈ B−×B+
non-empty strips S(b−,b+)⊆G such that for every g ∈G and ν−⊗ν+-almost every (b−,b+) ∈ B−×B+

1/n · ln(
card

(
S(b−,b+)g∩G|Zn|

)) n→∞−−−−−→ 0 in probability,

then the µ-boundary (B+,B+,ν+) is maximal.

Remark 1.26 The proof shows that, under certain conditions, it is not even necessary to verify the
convergence for every g ∈ G and it suffices to consider the special case g = 1. The only thing we have to
ensure is that a random strip contains the identity element 1 ∈G with positive probability, i. e. that

ν−⊗ν+{ (b−,b+) ∈ B−×B+ | 1 ∈ S(b−,b+) }> 0.

1.3.6 Remark about Entropy

Roughly speaking, the entropy of the probability measure µ is the expected amount of information
contained in the outcome of a random variable that is distributed according to µ. More precisely, it is
the real number given by H(µ) := ∑

g∈G − log2(µ(g)) ·µ(g). Here, as usual, one defines − log2(0) ·0 := 0.
For us, the assumption of finite entropy will be no issue because Baumslag-Solitar groups are finitely
generated and the increments under investigation have finite first moment. This implies that their
probability measures µ have finite entropy, as shown by the following well-known lemma.

4By Example 1.24, this tells us in particular that all random walks on non-amenable groups are transient.
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Lemma 1.27 Let G be a finitely generated group5 and let µ : G → [0,1] be a probability measure. If a
random variable X :Ω→G distributed according to µ has finite first moment, then µ has finite entropy.

Proof. Let S ⊆ G be a non-empty finite generating set. Moreover, let b := 2 · |S| +1, whence b ≥ 3. We
have to show that the entropy H(X ) = ∑

g∈G − log2(µ(g)) ·µ(g) is finite. First, we change the base of the
logarithm

H(X )= ∑
g∈G

− log2(µ(g)) ·µ(g)= log2(b) · ∑
g∈G

− logb(µ(g)) ·µ(g) ,

and split the summands appropriately

. . .= log2(b) ·

− logb(µ(1)) ·µ(1)+ ∑
g∈Gr{1} with

µ(g)≤b−dS(1,g)

− logb(µ(g)) ·µ(g)+ ∑
g∈Gr{1} with

µ(g)>b−dS(1,g)

− logb(µ(g)) ·µ(g)

 .

Then, we recall that the function x 7→ − logb(x) · x is increasing on the interval [0,1/e], and conclude that∑
g∈Gr{1} with

µ(g)≤b−dS(1,g)

− logb(µ(g)) ·µ(g)≤ ∑
g∈Gr{1} with

µ(g)≤b−dS(1,g)

− logb

(
b−dS(1,g)

)
·b−dS(1,g)

= ∑
g∈Gr{1} with

µ(g)≤b−dS(1,g)

dS(1, g) ·b−dS(1,g)

≤ ∑
g∈G

dS(1, g) ·b−dS(1,g)

≤
∞∑

n=0
(2 · |S|)n ·n ·b−n <∞

On the other hand, since X has finite first moment,∑
g∈Gr{1} with

µ(g)>b−dS(1,g)

− logb(µ(g)) ·µ(g)≤ ∑
g∈Gr{1} with

µ(g)>b−dS(1,g)

dS(1, g) ·µ(g)≤ ∑
g∈G

dS(1, g) ·µ(g)<∞ .

So, both sums are finite, whence H(X ) must be finite, too.

1.3.7 Further remarks about µ-boundaries, gauges, . . .

• The notion of a µ-boundary goes back to Fürstenberg. Two equivalent definitions can be found in
[Kaı̆00, §1.5]. For us, it suffices to record that every Lebesgue-Rohlin space (B+,B+,ν+) equipped
with a left G-action and a boundary map bnd+ :Ω→ B+ that is 1 measurable, 2 ∼-invariant, and
3 G-equivariant is a µ-boundary.

Here, 1 measurable means being a homomorphism (= measurable and measure preserving map)
between Lebesgue-Rohlin spaces. It turns out that there is a natural correspondence between
these homomorphisms and the measurable partitions of their domain, see [Roh52, §3.2] and
[Hae73, p. 255, Remark] for details.

The other two properties are standard. 2 ∼-invariant means constant on the equivalence classes
mod ∼ and 3 G-equivariant means that for every g ∈ G and every trajectory ω = (x0, x1, . . . ) ∈Ω
the equation bnd′(g.ω) := bnd′(g.(x0, x1, . . . )) := bnd′(gx0, gx1, . . . )= g. bnd′(ω) holds.

5This assumption is necessary. For example, imagine the group (Q,+) and a probability measure µ with infinite entropy
supported on the generating set S := {1,−1,1/2,−1/2,1/3,−1/3, . . . }. Then, X has finite first moment with respect to the word
metric dS :Q×Q→R, but it has infinite entropy.
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• A µ̌-boundary is the space that arises when the probability measure µ is replaced by the reflected
probability measure µ̌ given by µ̌(g) :=µ(g−1).

• A gauge G is an exhaustion G = (G1,G2, . . . ) of the group G, i. e. a sequence of subsets Gk ⊆G which
is increasing G1 ⊆ G2 ⊆ . . . and whose union G1 ∪G2 ∪ . . . is the whole group G. Given a gauge G

and an element g ∈G, we may ask for the minimal index k ∈N with the property that g ∈Gk. This
index is the value of the associated gauge function | · | = | · |G at g.

• The power set {0,1 }G is naturally equipped with the product σ-algebra, which enables us to talk
about measurability of the map S : B−×B+ → {0,1 }G .

• The conclusion of the strip criterion, namely that the µ-boundary (B+,B+,ν+) is maximal, is
equivalent to saying that it is isomorphic to the Poisson-Fürstenberg boundary.

2 Identification of the Poisson-Fürstenberg boundary

In this section, we still assume 1 ≤ p < q and consider a random walk Z = (Z0, Z1, . . . ) on G = BS(p, q).
Also, recall the abbreviations AZn :=ℑ(πH(Zn)) and BZn :=ℜ(πH(Zn)) introduced in Section 1.2.4.

2.1 Convergence to the boundary of the hyperbolic plane

The following lemmas concern the behaviour of the projections πH(Zn). They seem to be well-known and
we do not claim originality. But, for the sake of completeness, we give rigorous proofs.

Lemma 2.1 Assume that ln(AX1) has finite first moment. If the vertical drift is positive, i. e. δ> 0, then
the projections πH(Zn) converge a. s. to ∞∈ ∂H.

Proof. We can use the strong law of large numbers, see e. g. [Kle14, Theorem 5.17], to obtain

λ(Zn)
n

= λ(X1)+ . . .+λ(Xn)
n

n→∞−−−−−→
a. s.

E(λ(X1))= δ> 0.

Hence, the projections λ(Zn) tend a. s. to infinity and, by Remark 1.14, the imaginary parts AZn do. This,
of course, implies that the absolute values |πH(Zn)| tend a. s. to infinity, and Lemma 1.10 completes the
proof.

Lemma 2.2 Assume that ln(AX1) and ln(1+ |BX1 |) have finite first moment. If the vertical drift is
negative, i. e. δ< 0, then the projections πH(Zn) converge a. s. to a random element ξ ∈ ∂Hr {∞ }.

Proof. Notice that the argument given in the proof of Lemma 2.1 can be adapted to show that the
imaginary parts AZn converge a. s. to 0, whence we only need to understand the behaviour of the real
parts BZn . The equation πH(Zn) = AZn · i+BZn yields πAff+(R)(Zn)(z) = AZn · z+BZn , and in light of the
multiplication in Aff+(R) we obtain

πH(Zn)=πAff+(R)(Zn)(i)=πAff+(R)(X1 · . . . · Xn)(i)

= (
πAff+(R)(X1)◦ . . .◦πAff+(R)(Xn)

)
(i)

= AX1 · . . . · AXn · i+
n∑

k=1
AX1 · . . . · AXk−1 ·BXk .
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Hence, the real parts BZn are partial sums of the infinite series
∑∞

k=1 Ck with Ck := AX1 · . . . · AXk−1 ·BXk .
In order to verify a. s. convergence of the latter, we apply Cauchy’s root test,

|Ck|1/k ≤ exp

ln(q/p) · λ(X1)+ . . .+λ(Xk−1)
k−1︸ ︷︷ ︸

→ E(λ(X1))= δ< 0 a. s.

· k−1
k︸ ︷︷ ︸

→ 1

 ·exp

 ln(1+|BXk |)
k︸ ︷︷ ︸

→ 0 a. s.

 k→∞−−−−−→
a. s.

(q/p)δ < 1.

For the first factor we can use the strong law of large numbers, for the second one the Borel-Cantelli
Lemma. Indeed, let us write Qk for the quotient 1/k · ln(1+ |BXk |). In order to show that Qk → 0 a. s.,
recall that ln(1+|BX1 |) has finite first moment. For every ε> 0 we may thus estimate

∞∑
k=1

P({ω ∈Ω |Qk(ω)> ε })≤
∞∑

k=1
P

({
ω ∈Ω

∣∣∣∣ ⌈
ln(1+|BX1(ω)|)

ε

⌉
≥ k

})
= E

(⌈
ln(1+|BX1 |)

ε

⌉)
.

Therefore, the Borel-Cantelli Lemma yields P({ω ∈Ω | ∃ infinitely many k ∈N such that Qk(ω) > ε }) = 0.
Replacing ε by 1,1/2,1/3, . . . , we obtain a countable family of null sets whose union is, of course, again a
null set that consists of all ω ∈Ω with Qk(ω)→0. Hence, Qk → 0 a. s., see also [Kle14, Exercise 5.1.3]. So,
we have finally convinced ourselves that limsupk→∞ |Ck|1/k < 1 a. s., whence

∑∞
k=1 Ck converges a. s. to a

random element ξ ∈R.

The natural question that remains is the one asking for the driftless case. An answer has been given
by Brofferio in [Bro03, Theorem 1]. It says that under the same mild assumptions, namely that ln(AX1)
and ln(1+|BX1 |) have finite first moment, the projections πH(Zn) converge a. s. to ∞∈ ∂H. But, for us, a
result of slightly different flavour will be of relevance.

Lemma 2.3 Assume that ln(AX1) has finite second moment and there is an ε> 0 such that ln(1+|BX1 |)
has finite (2+ ε)-th moment. If there is no vertical drift, i. e. δ = 0, then the projections πH(Zn) have
sublinear speed, i. e.

dH(πH(Z0),πH(Zn))
n

n→∞−−−−−→
a. s.

0.

The proof is based on ideas that go back to Élie in [Éli82, Lemme 5.49] and have also been used
by Cartwright, Kaı̆manovich, and Woess in [CKW94, Proposition 4b]. We first adapt these ideas to our
situation by stating and proving Lemma 2.4, and then deduce Lemma 2.3.

By assumption, there is no vertical drift so that λ(Z) = (λ(Z0),λ(Z1), . . . ) is recurrent. Indeed, see
Pólya’s Theorem in [Pól21] for recurrence of the simple random walk and the Chung-Fuchs Theorem
in [CF51] for the general case. In particular, we know that there is a. s. a strictly increasing sequence
τ(0),τ(1), . . . given by τ(0) := 0 and τ(n) := inf {k ∈N | τ(n−1)< k and λ(Zτ(n−1))<λ(Zk) }. We call τ(n) the
n-th ladder time, see Figure 7 for an illustration of the first ladder times τ(0) and τ(1). The following
lemma concerns the random variable ln(1+∑τ

k=1 |BXk |) with τ := τ(1).

Lemma 2.4 Under the same assumptions as in Lemma 2.3, namely that ln(AX1) has finite second
moment and there is an ε > 0 such that ln(1+ |BX1 |) has finite (2+ ε)-th moment and, of course, that
there is no vertical drift, the random variable ln(1+∑τ

k=1 |BXk |) has finite first moment.

Proof. Adapting the proof of [Éli82, Lemme 5.49], we begin with some preliminaries. Pick an ε> 0 that
satisfies the requirements of Lemma 2.4 and let β := 1

2+ε . Since ln(AX1) has finite second moment, we
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πH(Zτ(0))

πH(Zτ(1))

Figure 7: The first ladder times τ(0) and τ(1).

know that also λ(X1) has finite second moment and P({ω ∈Ω | τ(ω)> k })∼ const ·k−1/2, see [Éli82, §5.44]
referring to [Fel71, p. 415]. Using this asymptotics, we obtain that∫

τβdP≤
∫ ⌈

τβ
⌉

dP=
∞∑

k=1
P

({
ω ∈Ω

∣∣∣ ⌈
τ(ω)β

⌉
≥ k

})
=

∞∑
k=0

P
({
ω ∈Ω

∣∣∣ τ(ω)> k1/β
})

︸ ︷︷ ︸
∼ const ·k−(1+ε/2)

.

In particular, there is a k0 ∈N such that for all k ≥ k0 the summands P({ω ∈Ω | τ(ω) > k1/β }) are strictly
smaller than k−(1+ε/4). And, since

∑∞
k=k0

k−(1+ε/4) <∞, we know that
∫
τβdP<∞. Moreover, notice that, by

construction of the ladder times τ(0),τ(1), . . . , the differences τ(1)−τ(0),τ(2)−τ(1), . . . are i. i. d., whence
the fact that 0<β< 1, ⇒ (x+ y)β ≤ xβ+ yβ, and the strong law of large numbers yield

τ(n)β

n
≤ (τ(1)−τ(0))β+ . . .+ (τ(n)−τ(n−1))β

n
n→∞−−−−−→
a. s.

E
(
τβ

)
, =⇒ limsup

n→∞
τ(n)β

n
<∞ a. s. (∗)

Now, we are prepared for the main argument. Recall that we aim to show that ln(1+∑τ
k=1 |BXk |) has

finite first moment. The sums
∑τ(1)

k=τ(0)+1 |BXk |,
∑τ(2)

k=τ(1)+1 |BXk |, . . . are i. i. d. and non-negative with the
additional property that they are not a. s. equal to 0. Hence, by [Éli82, Lemme 5.23],∫

ln

(
1+

τ∑
k=1

|BXk |
)

dP<∞ ⇐⇒ limsup
n→∞

(
τ(n)∑

k=τ(n−1)+1
|BXk |

)1/n

︸ ︷︷ ︸
=: K

<∞ a. s.

In order to verify the right-hand side, we would like to estimate

K ≤ limsup
n→∞

exp

 ln
(
1+∑τ(n)

k=1 |BXk |
)

n

≤ exp

limsup
n→∞

ln
(
1+∑τ(n)

k=1 |BXk |
)

τ(n)β︸ ︷︷ ︸
=: L

· limsup
n→∞

τ(n)β

n︸ ︷︷ ︸
<∞ a. s. (∗)

 .

A priori, it might be the case that L = ∞ and the second factor in the rightmost term is 0, in which
case the product would not make any sense. But, we claim that L is a. s. finite, which does not only
legitimate the above estimate but then also completes the proof. Indeed, observe that

L = limsup
n→∞

ln
(
1+∑τ(n)

k=1 |BXk |
)

τ(n)β
≤ limsup

n→∞
ln

(
1+τ(n) ·max1≤k≤τ(n){ |BXk | }

)
τ(n)β

≤ limsup
n→∞

ln(τ(n))
τ(n)β︸ ︷︷ ︸

= 0

+ limsup
n→∞

ln
(
1+max1≤k≤τ(n){ |BXk | }

)
τ(n)β
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= limsup
n→∞

max1≤k≤τ(n)

{
ln

(
1+|BXk |

)1/β
}

τ(n)

β

≤ limsup
n→∞


∑τ(n)

k=1 ln
(
1+|BXk |

)1/β

τ(n)︸ ︷︷ ︸
=: Mn


β

.

Now, recall that 1/β = 2+ε. So, by the strong law of large numbers, the sequence Mn converges a. s. to
the expectation E(ln(1+ |BX1 |)1/β), which implies that L ≤ limsupn→∞ Mn

β <∞ a. s., and completes the
proof.

Remark 2.5 Élie makes a conclusion concerning the horizontal displacement at the first ladder time,
see [Éli82, Lemme 5.49]. The corresponding result in our situation would be that ln(1+|BZτ

|) has finite
first moment. But, whereas Élie assumes that the horizontal increments are i. i. d., this is not the case
in our situation. Just recall from the proof of Lemma 2.2 that our horizontal increments amount to
Ck = AX1 · . . . · AXk−1 ·BXk . One brutal way to solve this issue is to ignore the factors AX1 · . . . · AXk−1 . And,
indeed, this turns out to work. We actually obtain that ln(1+ |BZτ

|) has finite first moment. The only
thing we have to do is to observe that

|BZτ
| =

∣∣∣∣∣ τ∑
k=1

Ck

∣∣∣∣∣=
∣∣∣∣∣ τ∑

k=1
AX1 · . . . · AXk−1 ·BXk

∣∣∣∣∣≤ τ∑
k=1

AX1 · . . . · AXk−1︸ ︷︷ ︸
≤1 a. s.

· |BXk | ≤
τ∑

k=1
|BXk | a. s. (∗∗)

Proof of Lemma 2.3. Recall from [Éli82, §5.44] and [Fel71, p. 415] that P({ω ∈Ω | τ(ω)> k })∼ const ·k−1/2

with a strictly positive constant. In particular, there is a k0 ∈N such that for all k ≥ k0 the summands
P({ω ∈Ω | τ(ω)> k }) are larger than k−1 and we obtain that∫

τdP=
∞∑

k=1
P({ω ∈Ω | τ(ω)≥ k })=

∞∑
k=0

P({ω ∈Ω | τ(ω)> k })≥
∞∑

k=k0

k−1 =∞ .

As we have noticed in the proof of Lemma 2.4, the differences τ(1)−τ(0),τ(2)−τ(1), . . . are i. i. d., and
they are non-negative. So, we may deduce from the strong law of large numbers that

τ(n)
n

= (τ(1)−τ(0))+ (τ(2)−τ(1))+ . . .+ (τ(n)−τ(n−1))
n

n→∞−−−−−→
a. s.

∞ and
n

τ(n)
n→∞−−−−−→
a. s.

0.

This can be used to estimate the distance between πH(Z0) and πH(Zn) from above. First, for every n ∈N0

let m = m(n) ∈N0 be the unique element with τ(m) ≤ n < τ(m+1). This element exists a. s. because the
ladder times τ(0),τ(1), . . . do. Now, we may estimate

dH(πH(Z0),πH(Zn))
n

≤ dH(i, AZτ(m) · i)
n︸ ︷︷ ︸
1

+ dH(AZτ(m) · i, AZτ(m) · i+BZn )
n︸ ︷︷ ︸
2

+ dH(AZτ(m) · i+BZn , AZn · i+BZn )
n︸ ︷︷ ︸
3

.

The numbers refer to Figure 8. We will consider the three summands separately and show that each of
them converges a. s. to 0. For 1 and 3 this is straightforward. Indeed,

1 = | ln(AZτ(m))|
n

≤ | ln(AZτ(m))|
τ(m)

= ln(q/p) ·
∣∣∣∣λ(X1)+ . . .+λ(Xτ(m))

τ(m)

∣∣∣∣ n→∞−−−−−→
a. s.

ln(q/p) · |E(λ(X1))| = ln(q/p) · |δ| = 0
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1

2

3

πH(Zτ(k))

πH(Zn)
πH(Z0)

Figure 8: Estimate of the distance between πH(Z0) and πH(Zn).

and similarly

3 ≤ dH(AZτ(m) · i, i)
n

+ dH(i, AZn · i)
n

= 1 + | ln(AZn )|
n

= 1 + ln(q/p) ·
∣∣∣∣λ(X1)+ . . .+λ(Xn)

n

∣∣∣∣ n→∞−−−−−→
a. s.

0.

For 2 recall again from the proof of Lemma 2.2 that BZn =
∑n

k=1 AX1 ·. . .·AXk−1 ·BXk and observe that not
just for the case m = 0 and `= τ, which has been studied in (∗∗) in Remark 2.5, but for every m,` ∈N0

with τ(m)≤ `≤ τ(m+1) the following estimate holds

|BZ`
−BZτ(m) |

AZτ(m)

≤
AX1 · . . . · AXτ(m) ·

∑`
k=τ(m)+1 AXτ(m)+1 · . . . · AXk−1 · |BXk |
AX1 · . . . · AXτ(m)

= ∑̀
k=τ(m)+1

AXτ(m)+1 · . . . · AXk−1︸ ︷︷ ︸
≤1

· |BXk | ≤
∑̀

k=τ(m)+1
|BXk | a. s.

Hence, using that AZτ(0) < AZτ(1) < . . .< AZτ(m) a. s. and that n < τ(m+1) a. s., we obtain

2 = 1/n ·arcosh

(
1+ 1/2 ·

( |BZn |
AZτ(m)

)2
)
= 1/n · ln

1+ 1/2 ·
( |BZn |

AZτ(m)

)2
+

√√√√(
1+ 1/2 ·

( |BZn |
AZτ(m)

)2
)2

−1


≤ 1/n ·

(
ln(2)+ ln

(
1+

( |BZn |
AZτ(m)

)2
))

≤ 1/n ·
(
ln(2)+2 · ln

(
1+ |BZn |

AZτ(m)

))

≤ 1/n ·
(
ln(2)+2 · ln

(
1+ |BZτ(1) −BZτ(0) |

AZτ(0)

+ |BZτ(2) −BZτ(1) |
AZτ(1)

+ . . .+ |BZτ(m) −BZτ(m−1) |
AZτ(m−1)

+ |BZn −BZτ(m) |
AZτ(m)

))

≤ 1/n ·
(
ln(2)+2 · ln

(
1+

n∑
k=1

|BXk |
))

≤ 1/n ·
(
ln(2)+2 · ln

(
1+

τ(m+1)∑
k=1

|BXk |
))

≤ ln(2)
n︸ ︷︷ ︸
→ 0

+2 ·
ln

(
1+∑τ(1)

k=τ(0)+1 |BXk |
)
+ . . .+ ln

(
1+∑τ(m+1)

k=τ(m)+1 |BXk |
)

m+1︸ ︷︷ ︸
→ E(ln(1+∑τ

k=1 |BXk |)) a. s. by Lemma 2.4

· m+1
τ(m)︸ ︷︷ ︸
→ 0
a. s.

· τ(m)
n︸ ︷︷ ︸
≤1
a. s.

n→∞−−−−−→
a. s.

0.
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2.2 Convergence to the space of ends of the Bass-Serre tree

Unlike the ones considered in Section 2.1, the projections πT(Zn) do not need to satisfy the Markov
property. Consider, for example, the random walk Z = (Z0, Z1, . . . ) driven by the uniform measure on
the standard generators and their formal inverses. Then, given πT(Zk−2) = B and πT(Zk−1) = a−1B, the
projection πT(Zk) comes back to B with probability 1/4. On the other hand, coming back to B would not
be possible if the history was πT(Zk−3)= B and πT(Zk−2)=πT(Zk−1)= a−1B. Despite of this subtlety, the
following lemmas yield almost sure convergence of the projections πT(Zn) to a random end.

Lemma 2.6 Assume that X1 has finite first moment. If the vertical drift is different from 0, i. e. δ 6= 0,
then the projections πT(Zn) converge a. s. to a random end ξ ∈ ∂T.

We give an argument using the notion of regular sequences, see [CKW94, §2.C]. One difference is
that we do not fix any particular end ω ∈ ∂T. Therefore, we replace the Busemann function h, which
depends on the choice of ω ∈ ∂T, by the graph distance to the basepoint B. The other difference is that
we work with the limit inferior instead of the limit in order to be prepared to deal with the driftless
case, too.

Proof of Lemma 2.6. Let dT be the graph distance in the tree T. Accordingly, the symbol |x| denotes the
graph distance dT(B, x) from the basepoint B to the vertex x. We call a sequence (x0, x1, . . . ) of vertices
regular if

1 liminf
n→∞

|xn|
n

> 0 and 2
dT(xn, xn+1)

n
n→∞−−−−−→ 0.

In order to prove Lemma 2.6, we pursue a two-step strategy. First, we show that every regular sequence
converges to an end and, second, that the projections πT(Zn) constitute a. s. a regular sequence.

Concerning the first part, we pick an arbitrary regular sequence (x0, x1, . . . ) and claim that there
is an end ξ ∈ ∂T such that for every ε > 0 the open ball Bε(ξ) := { x ∈ T̂ | dT̂(ξ, x) < ε } contains infinitely
many xk. Assume there was no such end. Then, we know that for every ξ ∈ ∂T there is an ε1 = ε1(ξ)> 0
such that Bε1(ξ) contains only finitely many xk, whence there is also an ε2 = ε2(ξ) > 0 such that Bε2(ξ)
does not contain any xk at all. The open balls Bε2(ξ) with ξ ∈ ∂T and the singletons { x } with x ∈ T
form an open covering of T̂. By compactness, it contains a finite subcovering. But, since the constants
ε2 = ε2(ξ) > 0 have been chosen in such a way that the sequence (x0, x1, . . . ) does not enter any of the
open balls Bε2(ξ), it must remain in a finite subset of the tree, which contradicts 1 .

Next, we pick such an end ξ ∈ ∂T and claim that the sequence (x0, x1, . . . ) converges to ξ. Let ε> 0. We
define α := 1/3 · liminfn→∞ |xn|/n. In this case, all but finitely many |xn| are strictly greater than 2αn. The
elements in Bε(ξ) are characterised by the property that the paths starting in B and representing them
must have a certain finite initial piece. Let m be the length of this piece, i. e. m := max{0,b1− log2(ε)c }.
By 1 and 2 , there is an n0 ∈N such that for all n ≥ n0 the inequalities |xn| >αn+m and dT(xn, xn+1)<αn
hold. Since Bε(ξ) contains infinitely many xk, we can even find an n1 ≥ n0 such that xn1 ∈ Bε(ξ). It turns
out that not just for n1 but for all n ≥ n1 we have xn ∈ Bε(ξ). Indeed, if there was an n ≥ n1 such that
xn ∈ Bε(ξ) and xn+1 6∈ Bε(ξ), we know that

dT(xn, xn+1)≥ dT(xn, xn ∧ xn+1)= |xn|− |xn ∧ xn+1| ≥ |xn|−m >αn .

The latter, of course, contradicts dT(xn, xn+1) < αn, see Figure 9. So, the two claims show that every
regular sequence converges to an end. Concerning the second part, we aim to prove that

1 liminf
n→∞

|πT(Zn)|
n

> 0 a. s. and 2
dT(πT(Zn),πT(Zn+1))

n
n→∞−−−−−→
a. s.

0.
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ξ

Bε(ξ)

xn

xn+1

xn ∧ xn+1

B

eventually left

Figure 9: Jumping away from Bε(ξ).

Recall from Lemma 1.13 and Remark 1.14 that not just X1 but also λ(X1) has finite first moment. So,
the strong law of large numbers yields

|πT(Zn)|
n

≥ |λ(Zn)|
n

= |λ(X1)+ . . .+λ(Xn)|
n

n→∞−−−−−→
a. s.

|E(λ(X1))| = |δ| > 0, =⇒ liminf
n→∞

|πT(Zn)|
n

> 0 a. s.

Next, let S := {a,b } ⊆ G be the standard generating set. The numerators d(πT(Zn),πT(Zn+1)) of the
fraction considered in 2 are i. i. d., and the first one satisfies∫

dT(πT(Z0),πT(Z1))dP≤
∫

dS(Z0, Z1)dP=
∫

dS(1, X1)dP<∞ .

So, again, by the strong law of large numbers

dT(πT(Z0),πT(Z1))+ . . .+dT(πT(Zn),πT(Zn+1))
n+1

n→∞−−−−−→
a. s.

E(dT(πT(Z0),πT(Z1))) .

Now, a simple calculation yields

dT(πT(Zn),πT(Zn+1))
n

n→∞−−−−−→
a. s.

0.

For the driftless case, the situation is not as easy and in order to show almost sure convergence of
the projections πT(Zn) to a random end, we restrict ourselves to the non-amenable subcase 1< p < q.

Lemma 2.7 Let 1 < p < q. Assume that X1 has finite first moment and there is an ε > 0 such that
ln(1+|BX1 |) has finite (2+ε)-th moment. If there is no vertical drift, i. e. δ= 0, then the projections πT(Zn)
converge a. s. to a random end ξ ∈ ∂T.

Proof. Again, we claim that the projections πT(Zn) constitute a. s. a regular sequence. But, since δ= 0,
we need to modify the argument from the proof of Lemma 2.6 that showed 1 . By assumption, G is
non-amenable and, in particular, the spectral radius %(µ) of the random walk Z = (Z0, Z1, . . .) is strictly
smaller than 1, see e. g. [Woe00, Corollary 12.5]. This, together with the fact that the random walk is
uniformly irreducible, yields that

liminf
n→∞

dS(Z0, Zn)
n

> 0.

For a proof, see e. g. [Woe00, Proposition 8.2]. In order to estimate the numerators dS(Z0, Zn) from
above, we apply an auxiliary result: There are α,β > 0 such that for every element g ∈ G the inequality
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dS(1, g) ≤ α · |πT(g)| +β ·dH(πH(1),πH(g)) holds. Let us postpone the proof and record that, using this
auxiliary result and Lemma 2.3, we obtain

liminf
n→∞

|πT(Zn)|
n

≥ 1
α
· liminf

n→∞

dS(Z0, Zn)
n

−β · dH(πH(Z0),πH(Zn))
n︸ ︷︷ ︸

→ 0 a. s. by Lemma 2.3

> 0 a. s.

This is 1 . Concerning 2 , notice that the respective argument from the proof of Lemma 2.6 did not use
the assumption that δ 6= 0, and therefore works also for δ= 0. So, we know that the projections πT(Zn)
constitute a. s. a regular sequence, which converges to a random end by the proof of Lemma 2.6.

It remains to show the auxiliary result. In order to do so, we construct a path from 1 to g in the
Cayley graph Γ with at most α · |πT(g)| +β ·dH(πH(1),πH(g)) many edges, where the values of α and β

are to be determined uniformly, i. e. not depending on g. First, we aim to adjust the tree component.
Either combinatorially using the defining relation abpa−1 = bq or geometrically using the properties
of the Cayley graph Γ, we can find a path from 1 to the coset gB with at most (bq/2c+1) · |πT(g)| many
edges. Let h ∈ gB be the endpoint of this path. Next, recall the notion of a discrete hyperbolic plane
from Section 1.1.4. We pick an arbitrary ascending doubly infinite path v : Z→ G/B in the tree T that
traverses the vertex gB and follow a shortest path from h to g in the discrete hyperbolic plane Γv. By
the proof of Lemma 1.7, its length dΓv(h, g) can be estimated from above by κ ·dH(πH(h),πH(g)) with
κ :=max{ c/ε,1/̀ a,1/̀ b }> 0. We may continue this estimate and finally obtain

dΓv(h, g)≤ κ ·dH(πH(h),πH(g))

≤ κ ·dH(πH(h),πH(1))+κ ·dH(πH(1),πH(g))

≤ κ ·max{`a,`b } · (bq/2c+1) · |πT(g)|+κ ·dH(πH(1),πH(g)) .

So, the concatenation of the two paths considered above has at most α·|πT(g)|+β·dH(πH(1),πH(g)) many
edges with α := (1+κ ·max{`a,`b }) · (bq/2c+1)> 0 and β := κ> 0.

2.3 Construction of the Poisson-Fürstenberg boundary

Resuming Sections 2.1 and 2.2, we may formulate the following theorem.

Theorem 2.8 (“Convergence theorem”) Let Z = (Z0, Z1, . . .) be a random walk on a non-amenable
Baumslag-Solitar group G = BS(p, q) with 1 < p < q. If there is an ε > 0 such that the increment X1

has finite (2+ ε)-th moment, then the projections πH(Zn) converge a. s. to a random element in ∂H and
the projections πT(Zn) converge a. s. to a random element in ∂T. Moreover, if there is no vertical drift,
i. e. δ= 0, then the projections πH(Zn) have sublinear speed.

Proof. Recall from Lemma 1.13 that not only the increment X1 but also ln(AX1) and ln(1+|BX1 |) have
finite (2+ε)-th moment, which implies that for every k ≤ 2+ε they also have finite k-th moment. Now,
apply the lemmas from Sections 2.1 and 2.2, and Brofferio’s result mentioned on page 31.

The boundaries ∂H and ∂T are equipped with their Borel σ-algebras B∂H and B∂T. Under the
assumptions of the convergence theorem, there are boundary maps bnd∂H :Ω→ ∂H and bnd∂T :Ω→ ∂T,
defined almost everywhere, assigning to a trajectory ω= (x0, x1, . . . ) ∈Ω the limits

bnd∂H(ω) := lim
n→∞πH(xn) ∈ ∂H and bnd∂T(ω) := lim

n→∞πT(xn) ∈ ∂T .
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Even though they are only defined almost everywhere, the boundary maps are measurable in the
sense that the preimages of measurable sets are measurable. Their product bnd∂H×∂T :Ω→ ∂H×∂T is
measurable with respect to the product σ-algebra B∂H⊗B∂T. Since both ∂H and ∂T are metrisable and
separable topological spaces, it is not hard to see that the product σ-algebra B∂H⊗B∂T agrees with the
Borel σ-algebra B∂H×∂T, see e. g. [Bil99, Appendix M.10].

Definition 2.9 (“hitting measures”) The three pushforward probability measures ν∂H := bnd∂H(P),
ν∂T := bnd∂T(P), ν∂H×∂T := bnd∂H×∂T(P) on the measurable spaces (∂H,B∂H), (∂T,B∂T), (∂H×∂T,B∂H×∂T)
are called the hitting measures. Notice that we may again, tacitly, complete the probability spaces with
respect to ν∂H, ν∂T, ν∂H×∂T.

Each of the boundaries ∂H and ∂T is equipped with a left G-action. The one on ∂H is induced by the
action g.z := πAff+(R)(g)(z) on H and the one on ∂T is induced by the action g.hB := ghB on T. Let us
describe them in more detail. The former is an action by isometries, and in light of their classification
mentioned in Section 1.1.3, we can also evaluate them at ∂H. For the latter, recall that ends are infinite
reduced paths that start in B. The coordinatewise action on the ends maps every such path ξ ∈ ∂T to
some other path that need not start in B any more. The end g.ξ ∈ ∂T is obtained by connecting B with
the initial vertex of this path and reduce the concatenation. This way, it is not hard to see that we can
map every ξ ∈ ∂T to an end with an arbitrarily chosen finite initial piece6. In particular, every orbit
{ g.ξ | g ∈G } is infinite and dense in ∂T.

By changing the initial probability measure of Z = (Z0, Z1, . . . ) as in Section 1.3.3, we may obtain
stationarity of the measure ν∂T. More precisely, for every measurable set A ⊆ ∂T

ν∂T(A)= ν∂T,1(A)= ∑
g∈G

µ(g) ·ν∂T,g(A)= ∑
g∈G

µ(g) ·ν∂T,1(g−1.A)= ∑
g∈G

µ(g) ·ν∂T(g−1.A) . (∗)

The same result holds true for ∂H and the product ∂H×∂T, which is equipped with the componentwise
left G-action. These observations will be helpful in a moment, when we show that the hitting measures
are either Dirac measures or non-atomic. Our proof is based on [Woe89, Lemma 3.4], which is much
more general. The original idea for our special case might be older.

Lemma 2.10 The hitting measure ν∂T is non-atomic. Moreover, if δ≥ 0, then the hitting measure ν∂H is
the Dirac measure at ∞∈ ∂H and, if δ< 0, then it is non-atomic as well.

Proof. Let us first consider the hitting measure ν∂T. Suppose, it contained elements of positive measure.
Then, we may choose such an element ξ ∈ ∂T with maximal measure a. In particular, for every element
η ∈ { g.ξ | g ∈ G } we know that ν∂T(η) ≤ a. We claim that ν∂T(η) = a. Indeed, let us first suppose that
there was an element h ∈ supp(µ)⊆G with ν∂T(h−1.ξ)< a. Then,

a = ν∂T(ξ)
(∗)= ∑

g∈G
µ(g) ·ν∂T(g−1.ξ)=µ(h) ·ν∂T(h−1.ξ)︸ ︷︷ ︸

<µ(h)·a

+ ∑
g∈Gr{h }

µ(g) ·ν∂T(g−1.ξ)︸ ︷︷ ︸
≤ (1−µ(h))·a

.

This is a contradiction. Due to the irreducibility of the random walk, ν∂T(h−1.ξ) = a does not only hold
for all h ∈ supp(µ) ⊆ G but inductively for all h ∈ G, which proves our claim. But, the orbit { g.ξ | g ∈ G }
is infinite, so 1= ν∂T(∂T)≥ |{ g.ξ | g ∈G }| ·a =∞. And this is, again, a contradiction.

6Consider such a finite initial piece, i. e. a finite reduced path from B to some vertex gB. Given the end ξ ∈ ∂T, we construct
its image g.ξ ∈ ∂T. This image will already have the correct finite initial piece unless cancellation takes place. It this case,
consider the image gb.ξ ∈ ∂T instead. Since |p| 6= 1 and |q| 6= 1, cancellation will take place in at most one of the two cases.
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If δ ≥ 0, the fact that the hitting measure ν∂H is the Dirac measure at ∞ ∈ ∂H is an immediate
consequence of Lemma 2.1 and Brofferio’s result mentioned on page 31. On the other hand, if δ < 0,
then ν∂H(∞) = 0 by Lemma 2.2. Now, we can repeat the above argument. Suppose, there was an
element of positive measure. Then, we may choose such an element ξ ∈ ∂Hr {∞ } of maximal measure.
Again, all elements in its orbit { g.ξ | g ∈G } must have the same measure and, since the orbit is infinite,
this yields a contradiction.

Lemma 2.11 The hitting measure ν∂T has full support, i. e. every non-empty open subset A ⊆ ∂T has
positive measure. Moreover, if δ < 0, the hitting measure ν∂H×∂T on the Cartesian product ∂H×∂T has
full support.

Proof. We classify the ends of the tree T according to which neighbour of the vertex B they first traverse.
This yields a partition of the the space of ends into p+ q open subsets, i. e. the open balls of radius 1.
At least one of them must have positive measure, call it P ⊆ ∂T. Now, let A ⊆ ∂T be a non-empty open
subset. In particular, there is a vertex gB, such that all ends traversing gB belong to A. Similarly to
the argument given in Footnote 6, either g.P or gb.P is contained in A, see Figure 10. We may assume
w. l. o. g. that g.P ⊆ A. Moreover, due to the irreducibility of the random walk, there is an n ∈ N such
that µ(n)(g)> 0, i. e. the probability to reach g in precisely n steps is positive. Hence,

ν∂T(A)≥µ(n)(g) ·ν∂T,g(A)≥µ(n)(g) ·ν∂T,g(g.P)=µ(n)(g) ·ν∂T(P)> 0.

The proof of the second assertion is similar. Since we have to keep track of two components, it is slightly
more technical so that we give only a proof sketch. Recall from above the set P ⊆ ∂T. Given the random
variable bnd∂T takes a value in P, at least one open interval (k,k+1) ⊆ ∂H with k ∈Z will be hit by the
random variable bnd∂H with positive probability, call it Q ⊆ ∂H. So, we know that ν∂H×∂T(Q ×P) > 0.
Now, let A ⊆ ∂H×∂T be a non-empty open subset. By definition of the product topology, A contains a
rectangle of open sets A∂H ⊆ ∂H and A∂T ⊆ ∂T. Now, we seek to construct an element h ∈ G such that
h.Q ⊆ A∂H and h.P ⊆ A∂T, from where we may finally conclude as above that ν∂H×∂T(A)> 0.

Again, there is a vertex gB of the tree, such that all ends traversing gB belong to A∂T. Moreover,
there is a number r ∈R and an ε> 0 such that the open interval (r, r+ε) is contained in A∂H. Based on
this data, we construct an element h ∈G of the form h = gbk1 a−k2 bk3 with the desired properties.

Let us first look at the tree component. The exponent k1 is either 0 or 1, whichever ensures that
the reduced path from B to gbk1 a−1B traverses gB. Now, let us turn to the hyperbolic component.
The image gbk1.Q ⊆ ∂H is a bounded open interval. The exponent k2 ∈N is chosen in such a way that
the length of the image gbk1 a−k2.Q ⊆ ∂H is at most ε/3. Finally, there is an integer k ∈Z such that both
images gbk1 a−k2 bk.Q ⊆ ∂H and gbk1 a−k2 bk+1.Q ⊆ ∂H are contained in the interval (r, r+ε) and therefore
both belong to A∂H. The exponent k3 will be either k or k+1. Let us return to the tree and choose it in
such a way that all ends in the image gbk1 a−k2 bk3.P traverse gbk1 a−k2 B. Then, by construction, they
also traverse the vertex gB and belong to A∂T.

We claim that these spaces are the Poisson-Fürstenberg boundaries of the random walk.

Theorem 2.12 (“Identification theorem”) Let Z = (Z0, Z1, . . .) be a random walk on a non-amenable
Baumslag-Solitar group G =BS(p, q) with 1< p < q. Assume there is an ε> 0 such that the increment X1

has finite (2+ε)-th moment. If the vertical drift is non-negative, i. e. δ≥ 0, then the Poisson-Fürstenberg
boundary is isomorphic to (∂T,B∂T,ν∂T). On the other hand, if the vertical drift is negative, i. e. δ < 0,
then the Poisson-Fürstenberg boundary is isomorphic to (∂H×∂T,B∂H×∂T,ν∂H×∂T).
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Figure 10: The hitting measure ν∂T has full support.

Proof. As already mentioned, we seek to apply the strip criterion, see Theorem 1.25. By Lemma 1.27,
the probability measure µ driving the random walk has finite entropy. Moreover, it is not hard to see
that ∂H and ∂T are Polish spaces, and so is their product ∂H× ∂T. Therefore, by Remark 1.19, the
probability spaces (∂T,B∂T,ν∂T) and (∂H× ∂T,B∂H×∂T,ν∂H×∂T) are Lebesgue-Rohlin spaces. They are
equipped with a left G-action and boundary maps bnd∂T :Ω→ ∂T and bnd∂H×∂T :Ω→ ∂H×∂T, defined
almost everywhere7. In order to show that they are µ-boundaries, we have to ensure that the boundary
maps are 1 measurable, 2 ∼-invariant, and 3 G-equivariant. But, all three properties are immediate
by construction, compare also [Kaı̆00, End of §1.5].

If the vertical drift is negative, i. e. δ < 0, take the µ-boundary (∂H× ∂T,B∂H×∂T,ν∂H×∂T) and the
µ̌-boundary (∂T,B∂T, ν̌∂T). Here, ν̌∂T denotes the hitting measure of the random walk Ž = (Ž0, Ž1, . . . )
driven by the probability measure µ̌. Since δ< 0, the random walk Ž has positive vertical drift.

Next, we need to define gauges and strips. Let S := {a,b } ⊆ G be the standard generating set and
define gauges Gk := { g ∈ G | dS(1, g) ≤ k }. In other words, the gauges exhaust the group G with balls
centred at the identity 1 ∈ G, and the gauge function | · | = | · |G is nothing but the distance to 1 with
respect to the word metric dS.

By Lemma 2.10, we know that ν̌∂T⊗ν∂H×∂T-almost every pair of points (ξ−, (r+,ξ+)) ∈ ∂T× (∂H×∂T)
has distinct ends ξ−,ξ+ ∈ ∂T and a boundary value r+ ∈R. In this situation, we may connect ξ− and ξ+ by
a unique doubly infinite reduced path v :Z→T and define the strip S(ξ−, (r+,ξ+)) as follows. It consists
of all group elements g ∈G that are contained in the πT-preimage of v, i. e. their image πT(g) is traversed
by v, and have the property that the real part ℜ(πH(g)) has minimal distance to r+ ∈ R among all real
parts ℜ(πH(h)) with h ∈ gB, see the left-hand side of Figure 11. To all remaining pairs we assign the
whole of G as a strip. This way, the map S becomes measurable and G-equivariant. By Lemma 2.11,
a random strip contains the identity element 1 ∈ G with positive probability, i. e. the map S satisfies
the inequality of Remark 1.26. So, it suffices to verify the following convergence for an arbitrary pair
(ξ−, (r+,ξ+)) ∈ ∂T× (∂H×∂T) of the first kind,

1/n · ln(
card

(
S(ξ−, (r+,ξ+))∩G|Zn|

)) n→∞−−−−−→
a. s.

0.

But, the strip S(ξ−, (r+,ξ+)) intersects the gauge G|Zn| in at most 2 · |Zn|+1 many cosets of the form G/B,

7To be precise, we should declare what to do with the remaining trajectories. Since (Ω,A ,P) is complete, we may extend the
definition arbitrarily. However, for the following, it will be more convenient to add another point † equipped with the trivial
left G-action to each codomain onto which all remaining trajectories are mapped. It has hitting measure 0 and, in the end,
can be removed without changing the isomorphism type of the Poisson-Fürstenberg boundary.
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r+ ∈R

Figure 11: Strips for the cases δ 6= 0 (left) and δ= 0 (right).

and each of them contains at most two elements of the strip. Therefore,

1/n · ln(
card

(
S(ξ̌, (r,ξ))∩G|Zn|

))≤ ln((2 · |Zn|+1) ·2)
n

= ln((2 ·dS(1, Zn)+1) ·2)
n

n→∞−−−−−→
a. s.

0.

In the final step of the above calculation, we use again that the increments X1 have finite first moment.
Indeed, 1/n ·dS(1, Zn) = 1/n ·dS(1, X1 · . . . · Xn) ≤ 1/n ·∑n

k=1 dS(1, Xk) → E(dS(1, X1)) a. s., from where we may
conclude that the sequence 1/n ·dS(1, Zn) is a. s. bounded and that the above calculation is correct.

So, we can finally apply the strip criterion and obtain that (∂H×∂T,B∂H×∂T,ν∂H×∂T) is isomorphic
to the Poisson-Fürstenberg boundary. Vice versa, if the vertical drift is positive, i. e. δ > 0, the same
argument yields that (∂T,B∂T,ν∂T) is isomorphic to the Poisson-Fürstenberg boundary.

It remains to consider the driftless case, i. e. δ= 0. Then, both µ and µ̌ are driftless and there is no
natural candidate for a real number that determines the horizontal position of the strip. But, the fact
that the projections πH(Zn) have sublinear speed allows us to solve this issue. More precisely, take the
µ-boundary (∂T,B∂T,ν∂T) and the µ̌-boundary (∂T,B∂T, ν̌∂T). Now, define gauges

Gk := {
g ∈G

∣∣dT(πT(1),πT(g))≤ k2 and dH(πH(1),πH(g))≤ k
}

.

Again, we know that ν̌∂T⊗ν∂T-almost every pair of points (ξ−,ξ+) ∈ ∂T×∂T has distinct ends ξ−,ξ+ ∈ ∂T,
which we may connect by a unique doubly infinite reduced path v : Z→ T. Let S(ξ−,ξ+) be the full
πT-preimage of v, i. e. the set of all group elements g ∈ G such that the image πT(g) is traversed by v,
see the right-hand side of Figure 11. Again, to all remaining pairs we assign the whole of G as a strip.
This way, the map S becomes measurable, G-equivariant, and satisfies the inequality of Remark 1.26.
Now, pick an arbitrary pair (ξ−,ξ+) ∈ ∂T×∂T of the first kind. We claim that

1/n · ln(
card

(
S(ξ−,ξ+)∩G|Zn|

))≤ ln
(
(2 · |Zn|2 +1) ·exp(|Zn|+2)

)
n

= ln
(
2 · |Zn|2 +1

)
n︸ ︷︷ ︸
1

+ |Zn|+2
n︸ ︷︷ ︸
2

.

Indeed, the inequality holds for a similar reason as above; the strip S(ξ−,ξ+) intersects the gauge G|Zn|
in at most 2·|Zn|2+1 many cosets of the form G/B. Slightly more involved is the observation that each of
them contains at most exp(|Zn|+2) many elements of the gauge. Fix a coset gB. The projections πH(h)
of the elements h ∈ gB are located on the horizontal line L ⊆H with imaginary part y :=ℑ(πH(g)). One
necessary condition for such an element h ∈ gB to be contained in the gauge G|Zn| is that the projection
πH(h) is contained in the ball B := { z ∈H | dH(i, z) ≤ |Zn| } ⊆H. If L∩B is empty, then the coset gB does
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z1 =−x+ i y z2 = x+ i y

Figure 12: The horizontal line L, the ball B, and their intersection L∩B.

not contain any element of the gauge and we are done. Otherwise, there is a unique x ∈ R with x ≥ 0
such that L∩B is the horizontal line between z1 :=−x+ i y to z2 := x+ i y, see Figure 12. The projections
πH(h) with h ∈ gB have the property that the real parts ℜ(πH(h)) and ℜ(πH(hb)) differ precisely by y.
So, the horizontal line L∩B contains at most 1+2x/y many of them. Let us now estimate 1+2x/y in terms
of |Zn|. Since z1 and z2 are both contained in B, their distance is at most 2 · |Zn|. Therefore,

2 · |Zn| ≥ dH(z1, z2)= arcosh
(
1+ |z2 − z1|2

2ℑ(z1)ℑ(z2)

)
= arcosh

(
1+ 2x2

y2

)
≥ ln

(
1+ 2x2

y2

)
.

And, in particular,

exp(2 · |Zn|)≥ 1+ 2x2

y2 , =⇒ exp(2 · |Zn|)≥ 2x2

y2 , =⇒ exp(2 · |Zn|+ ln(2))≥ 4x2

y2 ,

=⇒ exp(|Zn|+ 1/2 · ln(2))≥ 2x
y

, =⇒ exp(|Zn|+2)≥ 1+ 2x
y

.

So, the coset gB contains at most exp(|Zn|+2) many elements of the gauge. We will now show that both
summands 1 and 2 converge a. s. to 0, which completes the proof. Concerning 1 , it suffices to observe
that |Zn| ≤max{`a,`b,1 } ·dS(1, Zn)+1 and therefore, as above,

1 = ln
(
2 · |Zn|2 +1

)
n

≤ ln
(
2 · (max{`a,`b,1 } ·dS(1, Zn)+1)2 +1

)
n

n→∞−−−−−→
a. s.

0.

On the other hand, concerning 2 , we observe that

|Zn|−1≤max
{

dH(πH(1),πH(Zn)),
√

dT(πT(1),πT(Zn))
}
≤max

{
dH(πH(1),πH(Zn)),

√
dS(1, Zn)

}
.

Hence, by Lemma 2.3,

2 = |Zn|+2
n

≤
max

{
dH(πH(1),πH(Zn)),

√
dS(1, Zn)

}
+3

n
n→∞−−−−−→
a. s.

0.

A Appendix: The remaining non-amenable cases

Recall from Section 1.1.1 that a Baumslag-Solitar group BS(p, q) is non-amenable if and only if neither
|p| = 1 nor |q| = 1. Until now, we have only considered non-amenable Baumslag-Solitar groups BS(p, q)
with 1< p < q. Replacing one of the generators by its inverse, it is easy to see that

BS(p, q)∼=BS(q, p) and BS(p, q)∼=BS(−p,−q) .
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So, in order to investigate the remaining non-amenable Baumslag-Solitar groups, the only cases that
we have to consider are 1 < p <−q and 1 < p = |q|. In this appendix, we shall review our methods from
Section 2 and explain how to adjust the arguments in order to obtain similar results for these cases.

A.1 Action by suitable isometries on the hyperbolic plane

Let us first assume that G = BS(p, q) with 1 < p <−q. In order to define the projection πH : G →H back
in Section 1.1.3, we considered the map πAff+(R) : {a,b } → Aff+(R) given by πAff+(R)(a) := (x 7→ q/p · x) and
πAff+(R)(b) := (x 7→ x+1), and extended it to a homomorphism.

Now, we are assuming that 1< p <−q, in which case the transformation x 7→ q/p ·x is not orientation
preserving any more. If we replaced q by |q| in the definition, then πAff+(R)(a) := (x 7→ |q|/p · x) would be
orientation preserving but πAff+(R)(a)◦πAff+(R)(a)p◦πAff+(R)(a)−1 6=πAff+(R)(b)q, whence we could not apply
von Dyck’s theorem any more. So, we have to change the approach.

Let A be the set of all maps ϕ :C→C either of the form ϕ(z)=αz+β or of the form ϕ(z)=α · (−z)+β
with α,β ∈R and α> 0. This set, endowed with the composition, forms again a group. Consider the map
πA : {a,b } → A given by πA(a) := (z 7→ |q|/p · (−z)) and πA(b) := (z 7→ z+1). With this map, it is possible
to apply von Dyck’s theorem and to extend it uniquely to a group homomorphism πA : G → A. Finally,
as in the case of Aff+(R), every ϕ ∈ A can be thought of as an isometry of H. So, we may consider the
projection πH : G →H given by πH(g) :=πA(g)(i). The following lemma illustrates this definition.

Lemma A.1 For every g ∈ G the point πH(ga) ∈H is above the point πH(g) ∈H; the two points have the
same real part and their distance is `a := ln |q|/p. But, for every g ∈G the point πH(gb) ∈H is either right
or left from the point πH(g) ∈H depending on whether the level λ(g) is even or odd; in any case, the two
points have the same imaginary part and their distance is `b := ln 3+p5

2 .

Proof sketch. The proof is similar to the one of Lemma 1.4. So, we only discuss the differences. Let us
consider the two points πH(1) ∈H and πH(b) ∈H. If πA(g) is of the form z 7→ αz+β, then it is again the
composition of a dilation z 7→ αz and a translation z 7→ z+β, whence the relative position of the two
points is preserved. On the other hand, if πA(g) is of the form z 7→α · (−z)+β, then it is the composition
of a reflection at the imaginary axis z 7→ −z, a dilation z 7→αz, and a translation z 7→ z+β, in which case
the relative position of the two points is preserved with the exception that right and left are switched.

In order to decide whether πA(g) is of the first or the second form, we can write the element g ∈ G
as a product over a±1 and b±1. Since πA is a homomorphism, the image πA(g) can be written as the
respective product over πA(a±1) and πA(b±1). But, each occurrence of πA(a±1) yields one reflection. So,
the image πA(g) is of the first form if and only if λ(g) is even.

Using this projection πH : G →H and, of course, replacing q by |q| wherever it is necessary, we can
repeat the arguments from Section 2. The definition of the tree T and the level functions λ and λ̃,
including Lemma 1.3, as well as the definition of the discrete hyperbolic plane Γv, including Lemma 1.7,
can be adapted. Recall that, in Section 1.2.4, we considered the imaginary and real parts of πH(g) ∈H
separately, and introduced the shorthand notation Ag :=ℑ(πH(g)) and Bg :=ℜ(πH(g)). Let us highlight
that we now have ln(Ag)= ln(|q|/p) ·λ(g), which allows us to adapt the proof of Lemma 1.13.

In order to identify the Poisson-Fürstenberg boundary geometrically, we have to ensure convergence
to the boundaries ∂H and ∂T. Let us first consider the boundary ∂H. The proof of Lemma 2.1 for δ> 0
can be adapted. The proof of Lemma 2.2 for δ< 0, in turn, deserves a bit of work. We have to show that
the real parts BZn converge a. s. to a random element ξ ∈ ∂Hr {∞ }. In the original proof, we observed
that AZn = AX1 · . . . · AXn and BZn = ∑n

k=1 Ck with Ck := AX1 · . . . · AXk−1 ·BXk . While the first formula
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remains true, the second one does not. We are now in a situation where not only the scaling but also the
direction of the next horizontal increment depends on the current level. However, instead of the above,
we obtain that Ck := εX1 ·AX1 · . . . ·εXk−1 ·AXk−1 ·BXk with εg := 1 if λ(g) is even and εg :=−1 if λ(g) is odd.
This observation allows us to apply Cauchy’s root test precisely as in the proof of Lemma 2.2. For the
same reason, namely because all the estimates are not in terms of the the actual horizontal increments
but of their absolute values, the proofs of Lemmas 2.3 and 2.4 for δ= 0 can be adapted. The same holds,
concerning the boundary ∂T, for the proofs of Lemma 2.6 for δ 6= 0 and Lemma 2.7 for δ= 0.

Remark A.2 Notice that we do not claim that Brofferio’s result still holds. It said that, if there is no
vertical drift, i. e. δ= 0, then the projections πH(Zn) converge a. s. to ∞∈ ∂H. However, this point is not of
relevance for us. If there is no vertical drift, we do not need to take the hyperbolic component into account
because our candidate for the Poisson-Fürstenberg boundary is (∂T,B∂T,ν∂T).

From these observations, we may deduce the following results.

Theorem A.3 (Version of the “convergence theorem”) Let Z = (Z0, Z1, . . .) be a random walk on a
non-amenable Baumslag-Solitar group G =BS(p, q) with 1< p <−q. Assume there is an ε> 0 such that
the increment X1 has finite (2+ε)-th moment. If the vertical drift is different from 0, i. e. δ 6= 0, then the
projections πH(Zn) converge a. s. to a random element in ∂H and the projections πT(Zn) converge a. s. to a
random element in ∂T. If there is no vertical drift, i. e. δ= 0, then the projections πH(Zn) have sublinear
speed and the projections πT(Zn) converge a. s. to a random element in ∂T.

Theorem A.4 (Version of the “identification theorem”) Let Z = (Z0, Z1, . . .) be a random walk on
a non-amenable Baumslag-Solitar group G = BS(p, q) with 1 < p < −q. Assume there is an ε > 0 such
that the increment X1 has finite (2+ε)-th moment. If the vertical drift is non-negative, i. e. δ≥ 0, then the
Poisson-Fürstenberg boundary is isomorphic to (∂T,B∂T,ν∂T). On the other hand, if the vertical drift is
negative, i. e. δ< 0, then the Poisson-Fürstenberg boundary is isomorphic to (∂H×∂T,B∂H×∂T,ν∂H×∂T).

A.2 Action by isometries on the Euclidean plane

Let us now assume that G = BS(p, q) with 1 < p = |q|. This situation differs fundamentally from the
ones discussed so far.8 We use the Euclidean plane R2 instead on the hyperbolic plane H. In order to
construct a projection πR2 : G →R2, let A := Isom(R2) and consider the map πA : {a,b }→ A given by

πA(b) :=
((

x
y

)
7→

(
x+1

y

))
and πA(a) :=



((
x
y

)
7→

(
x

y+1

))
if q > 0

((
x
y

)
7→

(
−x

y+1

))
if q < 0.

In both cases, it is possible to apply von Dyck’s theorem and to extend the map uniquely to a group
homomorphism πR2 : G → A. So, we may consider the projection πR2 : G →R2 given by πR2(g) :=πA(g)(0).

The definition of the tree T and the level functions λ and λ̃, including Lemma 1.3, remain the same.
But, instead of the discrete hyperbolic plane, we now obtain a discrete Euclidean plane Γv. The proof of
Lemma 1.7 can be adapted to the new situation and shows that the graph Γv, endowed with the graph
distance dΓv , is quasi-isometric to the Euclidean plane R2, endowed with the standard metric dR2 .

8Let us motivate the new construction by a heuristic argument. Consider the brick illustrated in Figure 3. If 1 < p = |q|,
then the brick would have to have the same number of H-edges on the upper and the lower horizontal line. This would be
possible if the horizontal lines agreed or we worked in a space without curvature. And the latter is what we are going to do.
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We aim to show that, as soon as the projections converge to a random element in ∂T, independently
of the vertical drift, the Poisson-Fürstenberg boundary is (∂T,B∂T,ν∂T). So, we don’t need to worry
about a boundary for the projections πR2(Zn). Concerning the projections πT(Zn), we have to distinguish
between two cases. If the vertical drift is different from 0, i. e. δ 6= 0, then the proof of Lemma 2.6 can
be adapted and we obtain that the projections πT(Zn) still converge a. s. to a random end in ∂T. But, if
there is no vertical drift, then the proof of Lemma 2.7 cannot be adapted because it was based on the
fact that the projections πH(Zn) had sublinear speed. Now, the projections πR2(Zn) do not need to have
this property any more. However, we conjecture that if the probability measure µ driving the random
walk Z = (Z0, Z1, . . . ) has finite support, the projections πT(Zn) eventually leave every finite ball and
hence converge a. s. to a random end in ∂T.

As soon as they do, we can show as in Lemmas 2.10 and 2.11 that the hitting measure νT is again
non-atomic and has full support. Moreover, we obtain the following version of the identification theorem.

Theorem A.5 (Version of the “identification theorem”) Let Z = (Z0, Z1, . . .) be a random walk on a
non-amenable Baumslag-Solitar group G =BS(p, q) with 1< p = |q|. Assume that the increment X1 has
finite first moment. If the projections πT(Zn) converge a. s. to a random end in ∂T, e. g. if the vertical drift
is different from 0, i. e. δ 6= 0, then the Poisson-Fürstenberg boundary is isomorphic to (∂T,B∂T,ν∂T).

Proof sketch. Again, we apply the strip criterion. As in the original proof of the identification theorem,
take the µ-boundary (∂T,B∂T,ν∂T) and the µ̌-boundary (∂T,B∂T, ν̌∂T). Next, we define gauges

Gk := {
g ∈G

∣∣dT(πT(1),πT(g))≤ k and dR2(πR2(1),πR2(g))≤ k
}

.

We know that ν̌∂T⊗ν∂T-almost every pair of points (ξ−,ξ+) ∈ ∂T×∂T has distinct ends ξ−,ξ+ ∈ ∂T, which
we may connect by a unique doubly infinite reduced path v :Z→T.

Let S(ξ−,ξ+) be the full πT-preimage of v. To all remaining pairs we assign the whole of G as a strip.
This way, the map S becomes measurable, G-equivariant, and satisfies the inequality of Remark 1.26.
Now, pick an arbitrary pair (ξ−,ξ+) ∈ ∂T×∂T of the first kind. We claim that

1/n · ln(
card

(
S(ξ−,ξ+)∩G|Zn|

))≤ ln
(
(2 · |Zn|+1) · (2 · |Zn|+1)

)
n

= . . .

Indeed, the inequality is easy to see. The strip S(ξ−, (r+,ξ+)) intersects the gauge G|Zn| in at most
2 · |Zn|+1 many cosets of the form G/B, and each of them contains at most 2 · |Zn|+1 many elements of
the gauge. Now, it suffices to consider the standard generating set S := {a,b } ⊆ G and to observe that
|Zn| ≤ dS(1, Zn)+1. Then, as above, using the fact that 1/n ·dS(1, Zn) is a. s. bounded, we may conclude
that

. . .= ln
(
(2 · |Zn|+1)2)

n
≤ ln

(
(2 ·dS(1, Zn)+3)2)

n
n→∞−−−−−→
a. s.

0,

which allows us to apply the strip criterion.
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The Tits alternative for
non-spherical triangles of groups

( with Jörg Lehnert )

The following text is essentially the corresponding publication:
Transactions of the London Mathematical Society, to appear.

Abstract

Triangles of groups were introduced by Gersten and Stallings in 1991. They are, roughly speaking, a
generalisation of the amalgamated free product of two groups and occur in the framework of Corson
diagrams. First, we prove an intersection theorem for Corson diagrams. Then, we focus on triangles
of groups. It has been shown by Howie and Kopteva that the colimit of a hyperbolic triangle of groups
contains a non-abelian free subgroup. We give two natural conditions, each of which ensures that the
colimit of a non-spherical triangle of groups either contains a non-abelian free subgroup or is virtually
solvable.

Keywords: Tits alternative, triangles of groups, disc pictures, metric simplicial complexes, non-positive
curvature.

MSC classes: 20E06 (primary), 20F05, 20F65, 20E05, 20E07 (secondary).

1 Introduction

Given a commutative diagram of groups and injective homomorphisms, we may construct its colimit (in
the category of groups). The colimit, or, more precisely, the colimit group, can be obtained by taking the
free product of the groups and identifying the factors according to the homomorphisms. A good example
is the amalgamated free product X ∗A Y , which is the colimit group of the diagram X ← A →Y .

We are interested in Corson diagrams. A Corson diagram is based on a set I. For every subset
J ⊆ I with |J| ≤ 2 there is a group GJ and for every two subsets J1 ⊂ J2 ⊆ I with |J2| ≤ 2 there is a
homomorphism ϕJ1 J2 : GJ1 →GJ2 , see Figure 1. Notice that both Artin groups and Coxeter groups have
a natural interpretation as colimit groups of Corson diagrams. A triangle of groups is nothing but a
Corson diagram based on a set I with |I| = 3.
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G{i} G{ j}

G{i, j}

G∅

Figure 1: A Corson diagram based on a set I with |I| = 5. For simplicity, the homomorphisms
ϕ∅J : G∅ → GJ with J ⊆ I and |J| = 2 have been omitted in this figure. Notice that, if |I| = n, then
the graphical representation of the Corson diagram has exactly 1/2 · (n2 +n+2) vertices.

Gersten and Stallings introduced the notion of curvature and proved that for non-spherical triangles
of groups the natural homomorphisms νJ from the groups GJ to the colimit group G are injective, see
[Sta91]. A similar result holds for non-spherical Corson diagrams, see [Cor96]. While these two results
can be proved by nice arguments based on Euler’s formula for planar graphs, spherical Corson diagrams
are much harder to investigate, see e. g. [Che95] and [All12].

In Section 2, we introduce the basic notions for this paper. Then, in Section 3, we give an example
of a spherical triangle of groups showing that, even though the natural homomorphisms νJ : GJ →G

are injective, the intersections of their images may be larger than the amalgamated subgroups. But
this can only happen in the spherical realm. For non-spherical triangles of groups and, more generally,
non-spherical Corson diagrams, there are no large intersections, see Theorem 3.8.

It seems worth mentioning that the absence of large intersections shall not be confused with the
developability of complexes of groups, which is implied by the injectivity of the natural homomorphisms
νJ : GJ →G, see [BH99, Corollary III.C.2.15].

Howie and Kopteva showed that, under mild assumptions, the colimit group of a hyperbolic triangle
of groups has a non-abelian free subgroup, see [HK06]. In Section 4, we focus on the Euclidean case and
discuss the following version of the Tits alternative: A class C of groups satisfies the Tits alternative
if each G ∈ C either has a non-abelian free subgroup or is virtually solvable. The Tits alternative is
named after Jacques Tits, who proved in 1972 that the class of finitely generated linear groups has
this property, see [Tit72, Corollary 1]. Since then, the Tits alternative has been proved for many other
classes of groups. For a list of results and open problems we refer to [SW05].

As indicated above, we are interested in Euclidean triangles of groups. In the case that none of
the Gersten-Stallings angles is 0, we may follow Bridson’s construction of a simplicial complex X ,
see [Bri91], and use billiards on a suitable triangle in the Euclidean plane to obtain geodesics in the
geometric realisation |X |. These geodesics allow us to prove that, as soon as the simplicial complex X

branches, the colimit group has a non-abelian free subgroup, see Theorems 4.18 and 4.19.
The remaining cases can be analysed with quotients and amalgamated free products. In the end, we
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generalise the result by Howie and Kopteva mentioned above and prove that the Tits alternative holds
for the class of colimit groups of non-spherical triangles of groups with the property that none of the
Gersten-Stallings angles is 0 and the group G∅ either has a non-abelian free subgroup or is virtually
solvable, see Theorem 4.24, or with the property that every group GJ with J ⊆ I and |J| ≤ 2 either has
a non-abelian free subgroup or is virtually solvable, see Theorem 4.25.
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2 Preliminaries

2.1 Corson diagrams and their colimits

Let I be an arbitrary set. Assume we are given for every subset J ⊆ I with |J| ≤ 2 a group GJ and for
every two subsets J1 ⊂ J2 ⊆ I with |J2| ≤ 2 an injective homomorphism ϕJ1 J2 : GJ1 → GJ2 . Moreover,
assume the resulting diagram to be commutative, i. e. for every sequence of subsets ∅= J1 ⊂ J2 ⊂ J3 ⊆ I
with |J3| = 2 the equation ϕJ1 J3 =ϕJ2 J3 ◦ϕJ1 J2 holds.

Since these diagrams were introduced by Corson in [Cor96], we refer to them as Corson diagrams.
In the case |I| = 3, Corson diagrams are known as triangles of groups. Whenever we consider a triangle
of groups, we may assume w. l. o. g. that I = {1,2,3}.

Given a Corson diagram, we will mostly be interested in its colimit group. The colimit group can
be obtained by taking the free product of the groups GJ and identifying the factors according to the
homomorphisms. Let us make this construction a little more precise. Think of each GJ as a set, and let
RJ be the set of all words over the group elements and their formal inverses that represent the identity.
Then, the colimit group G is given by the following presentation:

G=
〈 ⊔

J⊆I
|J|≤2

GJ :
⊔
J⊆I
|J|≤2

RJ ,
⊔

J1⊂J2⊆I
|J2 |≤2

{
g =ϕJ1 J2(g) : g ∈GJ1

}〉
(∗)

This presentation, though not very economic, turns out to be suitable for our purposes. For every subset
J ⊆ I with |J| ≤ 2 we may consider the natural homomorphism νJ : GJ →G given by g 7→ g. The colimit
group, equipped with these homomorphisms, is called the colimit. For further reading about it we refer
to [Tit86, 1.1] and [AHS90, Chapter 3].

2.2 Curvature of Corson diagrams

The homomorphisms νJ : GJ →G do not need to be injective. An example of a triangle of groups in which
they are not has been given by Gersten and Stallings in [Sta91, 1.4]. On the other hand, it turns out that
for non-spherical triangles of groups and, more generally, for non-spherical Corson diagrams they are.
Let us therefore introduce the notion of curvature. For every two distinct i, j ∈ I the homomorphisms
ϕ{i}{i, j} and ϕ{ j}{i, j} uniquely determine a homomorphism α : G{i}∗G∅ G{ j} →G{i, j}. If α is not injective, let
m̂ denote the minimal length of a non-trivial element in its kernel (in the usual length function on the
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amalgamated free product). Recall that the homomorphisms ϕ{i}{i, j} and ϕ{ j}{i, j} are injective, whence
the minimal length m̂ must be even. The Gersten-Stallings angle ^{i, j} is now defined by:

^{i, j} =
{

2π/m̂ if α is not injective

0 if α is injective

Three pairwise distinct elements i, j,k ∈ I are called a spherical triple if ^{i, j} +^{i,k} +^{ j,k} is strictly
larger than π. The Corson diagram is called spherical if it has a spherical triple, and non-spherical
otherwise.

Consider a non-spherical triangle of groups. Since |I| = 3, there is only one set of three pairwise
distinct elements. Depending on whether ^{1,2} +^{1,3} +^{2,3} is strictly smaller than π or equal to π,
the triangle of groups is called hyperbolic or Euclidean. This distinction is of relevance in Section 4.

2.3 Embedding theorems

We are now able to state the theorem about non-spherical triangles of groups that has been mentioned
above.

Theorem 2.1 (Gersten-Stallings) For every non-spherical triangle of groups and every subset J ⊆ I
with |J| ≤ 2 the natural homomorphism νJ : GJ →G is injective.

This theorem has been proved in [Sta91]. Later, it has been generalised to non-spherical Corson
diagrams in [Cor96]. Even more has been shown in [Cor96]. Not only the groups GJ but also the colimit
groups of subdiagrams naturally embed into G. Let us clarify. Given a Corson diagram and a subset
K ⊆ I we may restrict our focus to the subdiagram spanned by the groups GJ with J ⊆ K and |J| ≤ 2,
see the bold vertices and arrows in Figure 1 for an example. The colimit group of such a subdiagram
can be obtained by modifying (∗) as follows:

GK =
〈 ⊔

J⊆K
|J|≤2

GJ :
⊔
J⊆K
|J|≤2

RJ ,
⊔

J1⊂J2⊆K
|J2 |≤2

{
g =ϕJ1 J2(g) : g ∈GJ1

}〉

Analogously to νJ : GJ →G introduced in Section 2.1, we may now consider the natural homomorphisms
ν̃K :GK →G given by g 7→ g.

Theorem 2.2 (Corson) For every non-spherical Corson diagram and every subset K ⊆ I the natural
homomorphism ν̃K :GK →G is injective.

Remark 2.3 For every subset K ⊆ I with |K | ≤ 2 there is an isomorphism µK : GK →GK given by g 7→ g.
Hence, the injectivity of ν̃K : GK →G implies the injectivity of νK = ν̃K ◦µK : GK →G and, in particular,
Theorem 2.2 implies Theorem 2.1.

Remark 2.4 In order to keep the notation simple, we make the following convention: Whenever we know
that the homomorphisms ν̃K : GK →G are injective, e. g. in case of a non-spherical Corson diagram, we
do not need to mention them any more and may tacitly interpret GK as a subgroup of G. In this case, the
symbol GK refers to the subgroup of G that is generated by the elements of the groups GJ with J ⊆ K and
|J| ≤ 2. Now, we can easily observe that K1 ⊆ K2 implies GK1 ⊆GK2 .
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2.4 Standing assumption on the Gersten-Stallings angles

We will have to make one more assumption, which has already been indicated by Gersten and Stallings
in [Sta91, p. 493, ll. 4–6] and Corson in [Cor96, p. 567, l. 15], even though Theorems 2.1 and 2.2 hold
without it, also compare with [Pri92, p. 210, ll. 18–21] and [KW08, p. 58, ll. 12–16].

Standing Assumption In this paper, we shall always assume, without stating it explicitly, that none of
the Gersten-Stallings angles is equal to π, or, equivalently, that for every two distinct i, j ∈ I the equation
ϕ{i}{i, j}(G{i})∩ϕ{ j}{i, j}(G{ j})=ϕ∅{i, j}(G∅) holds.

3 Intersection theorem

Assume we are given a Corson diagram with the property that the homomorphisms ν̃K : GK →G are
injective. One question we are interested in is whether two subgroups GK1 and GK2 intersect only along
the obvious subgroup GK1∩K2 or along some larger subgroup of G. In Section 3.1, we give an example
of a spherical Corson diagram in which the homomorphisms ν̃K : GK →G are injective but there are
K1,K2 ⊆ I such that GK1 ∩GK2 6=GK1∩K2 . Then, we recall the notion of disc pictures and use it to prove
an intersection theorem showing that this can only happen in the spherical realm.

3.1 Example

Let us consider the following Corson diagram: I = {1,2,3}, G∅ = {1}, G{1} = 〈a : −〉, G{2} = 〈b : −〉,
G{3} = 〈c : −〉, G{1,2} = 〈a,b : b−1ab = a2〉, G{1,3} = 〈a, c : c−1ac = a2〉, and G{2,3} = 〈b, c : bc = cb〉. Here,
the homomorphisms ϕJ1 J2 : GJ1 → GJ2 are implicitly given by a 7→ a, b 7→ b, and c 7→ c. Since G∅ is
trivial, the resulting diagram is commutative. Britton’s Lemma [Bri63, Principal Lemma] shows that
the homomorphisms ϕJ1 J2 : GJ1 →GJ2 are injective and the Gersten-Stallings angles amount to π/2 each.
So, it is a spherical Corson diagram in the sense of Section 2.2.

Proposition 3.1 The natural homomorphisms ν̃K :GK →G are injective.

Proof. Since the homomorphism ν̃{1,2,3} : G{1,2,3} → G is obviously injective, it suffices to verify the
injectivity of the homomorphisms ν̃K : GK → G with K ⊆ {1,2,3} and |K | ≤ 2. But then, we already
know from Remark 2.3 that there are isomorphisms µK : GK →GK with νK = ν̃K ◦µK . So, it suffices to
verify the injectivity of the homomorphisms νK : GK →G.

Recall the presentation (∗) of the colimit group G and notice that, in our situation, it can be
simplified by deleting superficial generators and relators so that we finally obtain the presentation
G = 〈a,b, c : b−1ab = a2, c−1ac = a2,bc = cb〉. If K = {1,2} or K = {1,3}, let N := 〈〈bc−1〉〉 E G and let
π :G→G/N be the canonical projection. It is easy to see that both π◦ν{1,2} and π◦ν{1,3} are isomorphisms
and, hence, both ν{1,2} and ν{1,3} are injective. If K = {2,3}, let N := 〈〈a〉〉 E G instead and proceed
analogously. Finally, if |K | ≤ 1, then K is contained in some K̃ ⊆ {1,2,3} with |K̃ | = 2. By construction of
the colimit, we have νK = νK̃ ◦ϕKK̃ . Since both νK̃ and ϕKK̃ are injective, their composition is injective,
too.

Proposition 3.2 The equation G{1,2} ∩G{1,3} =G{1} does not hold.

Proof. Use the isomorphism µ{1,2} : G{1,2} → G{1,2} and Britton’s Lemma to show that the word bab−1

represents an element in G{1,2} that is not in G{1}. On the other hand, in the colimit group G, the
equations bab−1 = bca2c−1b−1 = cba2b−1c−1 = cac−1 hold. So, the words bab−1 and cac−1 represent
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Dk

Figure 2: Some elements of a disc picture (left) and an example showing that bab−1 = cac−1 holds in
G = 〈a,b, c : b−1ab = a2, c−1ac = a2,bc = cb〉 (right).

the same element of the colimit group G, which is in G{1,2} ∩G{1,3} but not in G{1}. This calculation is
also illustrated in Figure 2, in terms of disc pictures.

3.2 Preliminaries about disc pictures

The proof of the intersection theorem involves disc pictures. Let us therefore follow Corson’s preliminary
section, see [Cor96], and recall some basic notions.

Consider a group G and a presentation G = 〈X : R〉. A disc picture P over this presentation consists
of the disjoint union of closed discs D1,D2, . . . ,Dn in the interior of a closed disc D and a compact
1-manifold M properly embedded into Drint(D1∪D2∪·· ·∪Dn). The closed discs D1,D2, . . . ,Dn are called
vertices, the components of M are called arcs. Moreover, the components of int(D)r(D1∪D2∪·· ·∪Dn∪M)
are called regions. Every arc has a transversal orientation and is labelled by a generator, see 1 in
Figure 2. Every vertex Dk has the property that one can read off a relator along its boundary ∂Dk,
i. e. by starting at some point on ∂Dk r M and going once around ∂Dk in some orientation, see 2 in
Figure 2. Every word that can be read off along the outer boundary ∂D is called a boundary word of
the disc picture, see 3 in Figure 2. It is well known, and easy to verify, that a word over the generators
and their formal inverses represents the identity of the group G if and only if it is a boundary word of
some disc picture over the presentation G = 〈X : R〉. Disc pictures are, roughly speaking, duals of van
Kampen diagrams. For further reading about them we refer to [BP93]. In addition to the above, the
following notions will be of relevance for us.

Definition 3.3 (“subpicture”) Consider a closed disc DQ in D. If the parts of the disc picture P

that are contained in DQ assemble to a disc picture Q, we call Q a subpicture of P . Notice that every
boundary word of a subpicture does necessarily represent the identity of the group G. A simple kind of
subpicture is a spider. It consists of exactly one vertex Dk and some arcs, each of which connects Dk to
the outer boundary ∂DQ of the subpicture Q.

Since we are interested in Corson diagrams and their colimit groups, we will focus on disc pictures
over (∗). Here, it makes sense to distinguish between local and joining vertices.
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g1 g2 g3
−1 ∈ RJ
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ϕJ1 J2(g)

g

g ∈GJ1 and
ϕJ1 J2(g) ∈GJ2

Figure 3: A local vertex (bright) and a joining vertex (dark).

Definition 3.4 (“local and joining vertices”) A vertex Dk is called local if one can read off a relator
of the form g1

ε1 g2
ε2 · · · gm

εm ∈ RJ along its boundary. Otherwise, it is called joining, in which case one
can read off a relator of the form g =ϕJ1 J2(g) with g ∈GJ1 and ϕJ1 J2(g) ∈GJ2 , see Figure 3.

Definition 3.5 (“bridge”) Let B be the union of the compact 1-manifold M and the joining vertices.
The components of B are called bridges. Every simply connected bridge has two distinct endpoints, each
of which lies either on the boundary of some local vertex or on the outer boundary. Two local vertices,
say Dk and Dl , are called neighbours if there is a bridge that connects Dk and Dl , i. e. a bridge with one
endpoint on the boundary ∂Dk and the other endpoint on the boundary ∂Dl .

Definition 3.6 (“inner and outer”) A bridge is called inner if it connects two local vertices. Similarly,
a region is called inner if its closure does not meet the outer boundary ∂D. A bridge or a region that is
not inner is called outer.

Let us consider a non-spherical Corson diagram. As stated in Remark 2.4, we may interpret GK as
a subgroup of G. The following lemma uses this interpretation to describe the labels of the arcs of a
bridge.

Lemma 3.7 Consider a bridge with m arcs labelled by generators b1 ∈GJ1 , b2 ∈GJ2 , . . . ,bm ∈GJm . Then,
all these generators represent the same element of the colimit group G. This element, say b ∈G, is called
the value of the bridge. It is contained in the subgroup GJ1∩J2∩···∩Jm .

Proof. The first assertion is immediate. So, we only need to verify that the value of the bridge is actually
contained in GJ1∩J2∩···∩Jm . Let us make two observations. First, if one of the sets J1, J2, . . . , Jm is empty,
say Jk =∅, then the value of the bridge can be represented by bk ∈G∅. So, b ∈G∅. This, of course, can
be written as b ∈GJ1∩J2∩···∩Jm , whence we are done. Therefore, we may assume w. l. o. g. that none of
the sets J1, J2, . . . , Jm is empty, in which case they must alternately have cardinality 1 and 2. Second,
if m = 1, there is nothing to show. So, we may assume w. l. o. g. that m ≥ 2. But then, there must be at
least one set of cardinality 1 among J1, J2, . . . , Jm.

1. If all the sets of cardinality 1 are equal, say equal to {i}, then b ∈G{i}. But, in this case, all sets of
cardinality 2 must contain i, which implies that J1 ∩ J2 ∩·· ·∩ Jm = {i}. Therefore, b ∈G{i} can be
written as b ∈GJ1∩J2∩···∩Jm .

2. If there are two distinct sets of cardinality 1 among J1, J2, . . . , Jm, say {i} and { j}, then b ∈G{i}∩G{ j}.
We claim that G{i} ∩G{ j} = G∅. Once this has been shown, we know that b ∈ G∅. And, again,
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since J1 ∩ J2 ∩ ·· ·∩ Jm =∅, this can be written as b ∈GJ1∩J2∩···∩Jm . So, it remains to show that
G{i}∩G{ j} =G∅. By our standing assumption, the equation ϕ{i}{i, j}(G{i})∩ϕ{ j}{i, j}(G{ j})=ϕ∅{i, j}(G∅)
holds in G{i, j}. In order to transport this equation to the colimit group G, we apply the injective
homomorphism ν{i, j} : G{i, j} →G. This yields:

ν{i, j}
(
ϕ{i}{i, j}

(
G{i}

))∩ν{i, j}
(
ϕ{ j}{i, j}

(
G{ j}

))= ν{i, j}
(
ϕ∅{i, j}

(
G∅

))
Using the equations ν{i, j}(ϕK{i, j}(GK )) = νK (GK ) = ν̃K (µK (GK )) = ν̃K (GK ) for the subsets K ⊂ {i, j},
we finally obtain ν̃{i}(G{i})∩ ν̃{ j}(G{ j}) = ν̃∅(G∅), which reads as G{i} ∩G{ j} =G∅ in the shorthand
notation of Remark 2.4.

3.3 Statement and proof of the intersection theorem

We are now ready to discuss the intersection theorem. The proof is based on ideas and techniques that
go back to Gersten and Stallings in [Sta91] and Corson in [Cor96], but we have to be more careful when
counting weights.

Theorem 3.8 For every non-spherical Corson diagram and every two subsets K1,K2 ⊆ I the equation
GK1 ∩GK2 =GK1∩K2 holds.

Proof. The inclusion “⊇” is a consequence of Remark 2.4. So, we only need to verify the inclusion “⊆”.
Suppose there were a non-spherical Corson diagram and subsets K1,K2 ⊆ I with GK1 ∩GK2 6⊆GK1∩K2 .
Then, we can find an element g ∈G with g ∈GK1 ∩GK2 but g 6∈GK1∩K2 . Being contained in GK1 , it can
be represented by a word w1 over the generators from the groups GJ with J ⊆ K1 and |J| ≤ 2, and their
formal inverses. On the other hand, being contained in GK2 , it can also be represented by a word w2

over the generators from the groups GJ with J ⊆ K2 and |J| ≤ 2, and their formal inverses.
Since w1 and w2 represent the same element of the colimit group G, there is a disc picture P over

(∗) with boundary word w1w2
−1. By construction, g 6∈GK1∩K2 . So, it cannot be the identity of the colimit

group G. Therefore, the words w1 and w2 cannot be empty and there are at least two arcs, or one arc
twice, incident with the outer boundary ∂D.

We may assume w. l. o. g. that the element g, the words w1 and w2, and the disc picture P are
chosen in such a way that the complexity of the disc picture is minimal, i. e. the number of local vertices
is minimal and, among all disc pictures with this minimal number of local vertices, the number of
bridges is minimal. This assumption has many consequences on the structure of the disc picture.

(1) The disc picture P is connected. In particular, since there are arcs incident with the outer boundary
∂D, every local vertex is incident with at least one arc. Moreover, all bridges and regions are
simply connected. We claim that if P was not connected, we could remove at least one component
and, hence, obtain a disc picture with strictly fewer local vertices or with the same number of
local vertices but strictly fewer bridges. In other words, we could obtain a disc picture of lower
complexity.

First, notice that there are two distinct points x, y ∈ ∂DrM such that one can read off the words
w1 and w2 when going from x to y along the respective side of ∂D, see 1 in Figure 4. If there is a
component of P that is incident with at most one side of ∂D, we can remove it. In this case, the
boundary words of the disc picture may change. But the new disc picture gives rise to new words
w̃1 and w̃2. Since the removed component has been incident with at most one side of ∂D, at least
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Figure 4: The disc picture P is connected.

one of the words w̃i remains equal to wi. So, both w̃1 and w̃2, which represent the same element
of the colimit group G, still represent g. In the following steps, as here, we may obtain new words
w̃1 and w̃2, and sometimes even a new element g̃ ∈G. But, in each step, it is easy to see that this
data could have been chosen right at the beginning.

By the above, we may assume w. l. o. g. that every component of P is incident with both sides of
∂D. Suppose there is more than one such component and let C be the first one traversed when
going from x to y along ∂D. For a moment, let us focus on C and ignore all the other components.
Now, one can read off new words w̃1 and w̃2 along the respective sides of ∂D that represent a new
element g̃ ∈G, see 2 in Figure 4. By construction, g̃ ∈GK1 ∩GK2 . If g̃ 6∈GK1∩K2 , the component
C is already a suitable disc picture and we can remove the other components completely. On the
other hand, if g̃ ∈GK1∩K2 , we can keep the other components and remove C. Then, the words that
one can read off along the respective sides of ∂D represent the element g̃−1 g ∈ G, which is the
product of an element in GK1∩K2 and an element not in GK1∩K2 . Therefore, g̃−1 g 6∈GK1∩K2 and,
again, we end up with a suitable disc picture.

Definition 3.9 (“type of a local vertex”) Since every local vertex is incident with at least one
arc, we can associate a type to every local vertex. More precisely, for every local vertex Dk there is
a unique1 subset J ⊆ I with |J| ≤ 2 such that all arcs incident with Dk are labelled by generators
from GJ . In this case, we say that Dk is of type J.

(2) The disc picture P has at least one local vertex. Since w1 and w2 cannot be empty, there is at least
one arc incident with each side of ∂D. Therefore, if P had no local vertex at all, it would have to
be a single bridge B connecting the two sides of ∂D. Depending on the transversal orientation of
its arcs, the value of B is either g or g−1. The extremal arcs of B are labelled by generators, say
b1 ∈GJ1 and bm ∈GJm with J1 ⊆ K1 and Jm ⊆ K2. Using Lemma 3.7 and Remark 2.4, we can now
observe that g ∈GJ1∩J2∩···∩Jm ⊆GJ1∩Jm ⊆GK1∩K2 , in contradiction to g 6∈GK1∩K2 .

1Recall that the set of generators is the disjoint union of all GJ with J ⊆ I and |J| ≤ 2.
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Figure 5: Replace the subpictures Q by spiders.

(3) A local vertex cannot be a neighbour of itself. If there was such a local vertex Dk, say of type
J, we could consider the subpicture Q consisting of the local vertex Dk, one of the bridges that
connect Dk with itself, everything that is enclosed by this bridge, and the extremal parts of the
remaining arcs incident with Dk, see 1 in Figure 5. Every boundary word w of the subpicture Q

is a word over generators from GJ and their formal inverses that represents the identity of the
colimit group G. Since the natural homomorphism νJ : GJ →G is injective, the word w does not
only represent the identity of the colimit group G but also the identity of the group GJ . Therefore,
we can remove the subpicture Q and replace it by a single spider with boundary word w, see 2 in
Figure 5. After this modification, we obtain a disc picture with at most as many local vertices and
stricly fewer bridges, and, hence, of lower complexity.

(4) Two local vertices of the same type cannot be neighbours. If there were two such local vertices Dk

and Dl , w. l. o. g. Dk 6= Dl , we could consider the subpicture Q consisting of the local vertices Dk

and Dl , one of the bridges that connect Dk and Dl , and the extremal parts of the remaining arcs
incident with Dk and Dl , see 3 in Figure 5. By the same arguments as in (3), we can remove the
subpicture Q and replace it by a single spider with the same boundary word, see 4 in Figure 5.
Again, we obtain a disc picture of lower complexity.

(5) Every bridge has at least two arcs. If there was a bridge B with only one arc, we could distinguish
between three cases. First, if B is connecting two local vertices, say of types J1 and J2, then
J1 = J2, in contradiction to (4). Second, if B is connecting the outer boundary ∂D with itself, then,
by (1), B is already the whole disc picture, in contradiction to (2). So, we may assume w. l. o. g. that
B is connecting a local vertex Dk, say of type J, and the outer boundary ∂D, say at the side of ∂D
along which one can read off the word w1.

By the former, B is labelled by some generator from GJ and, by the latter, J ⊆ K1. Now, consider
the subpicture Q consisting of the local vertex Dk, the bridge B, and the extremal parts of the
remaining arcs incident with Dk, see 1 in Figure 6. Replace it by a subpicture in which the arcs
traversing ∂DQ , which are all labelled by generators from GJ , are extended to the outer boundary
∂D, see 2 in Figure 6. This gives a disc picture with one fewer local vertex and, hence, of lower
complexity.

(6) The two regions on either side of a bridge cannot be the same. Suppose there was a bridge B
having the same region R on either side. Then, we can find a subpicture Q whose boundary ∂DQ
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Figure 6: Replace the subpicture Q by some arcs (left) and remove the bridge B (right).

is contained in R, except for one point where it crosses B, see 3 in Figure 6. Therefore, the value
of B is the identity of the colimit group G. Since the natural homomorphisms νJ : GJ →G are
injective, the labels of the arcs of B must also be the identities of the respective groups GJ . So, we
can remove the bridge B and obtain a disc picture of lower complexity.

(7) The value of a bridge cannot be an element of G∅. Suppose there was a bridge B with value
b ∈G∅. Since b ∈G∅, there is a generator b∅ ∈G∅ that represents it. In fact, for every J ⊆ I with
1≤ |J| ≤ 2 there is a generator bJ ∈GJ that represents it, namely bJ :=ϕ∅J(b∅) ∈GJ .

By (6), the two regions on either side of B cannot be the same. Among these two distinct regions
choose the region R with the property that the arcs of B are heading away from R. Now, remove
B and relabel all the remaining arcs in the boundary ∂R as follows: If an arc is labelled by a
generator a ∈GJ and is heading towards R, relabel it by a ·bJ ∈GJ . If it is heading away from R,
relabel it by bJ

−1 ·a ∈GJ . This guarantees that one can still read off relators along the boundaries
of the remaining vertices. Here, we leave the details to the reader, see [Cor96, Appendix] for
another description and 1 – 3 in Figure 7 for some examples. Notice that, in 2 , the generator
ϕJ1 J2(a) ·bJ2 ∈GJ2 satisfies the following equation:

ϕJ1 J2(a) ·bJ2 =ϕJ1 J2(a) ·ϕ∅J2(b∅)

=
{
ϕJ1 J2(a) ·ϕJ1 J2(bJ1) if J1 =∅
ϕJ1 J2(a) ·ϕJ1 J2(ϕ∅J1(b∅)) otherwise

=ϕJ1 J2(a) ·ϕJ1 J2(bJ1)

=ϕJ1 J2(a ·bJ1)

Therefore, one can actually read off the relator a · bJ1 = ϕJ1 J2(a · bJ1) along the boundary of the
respective joining vertex. So, we obtain a disc picture with the same number of local vertices and
strictly fewer bridges and, hence, of lower complexity.

(8) For every bridge there is a unique element i ∈ I such that the value of the bridge is in G{i}rG∅. Let
B be a bridge with m arcs that are labelled by generators b1 ∈GJ1 , b2 ∈GJ2 , . . . ,bm ∈GJm . By (7),
none of the sets J1, J2, . . . , Jm is empty, which implies that they must alternately have cardinality

57



PROJECT B: The Tits alternative . . .

a ·bJ1

ϕJ1 J2(a) ·bJ2

B

a

ϕJ1 J2(a)

a2

a1

a2 ·bJ

a1 ·bJ

a ·bJ
bJ

a

R

2

1

3

Figure 7: Relabel the remaining arcs in the boundary ∂R.

1 and 2. By (5), every bridge has at least two arcs, i. e. m ≥ 2. Therefore, there must be at least
one set Jk of cardinality 1, say Jk = {i}. So, the value of B is an element of G{i} and, again by (7),
cannot be an element of G∅. The element i ∈ I is unique; in the proof of Lemma 3.7, we have seen
that for any two distinct i, j ∈ I the equation G{i}∩G{ j} =G∅ holds, whence B cannot have a value
that is simultaneously in G{i}rG∅ and G{ j}rG∅.

Definition 3.10 (“type of a bridge”) In this case, we say that the bridge B is of type i.

(9) If a bridge of type i is incident with a local vertex of type J, then i ∈ J. Similarly, if it is incident
with one side of the outer boundary ∂D, then i ∈ K1 or i ∈ K2 respectively. We give a proof of the
first assertion, the proof of the second one is essentially the same. Let B be a bridge of type i that
is incident with a local vertex Dk of type J. As we have seen in (8), one of the arcs of B is labelled
by a generator from G{i}. Moreover, the extremal arc of B that is incident with Dk is labelled by a
generator from GJ . By Lemma 3.7 and Remark 2.4, we can conclude that B has a value in G{i}∩J .
By (7), this value is not in G∅. Therefore, {i}∩ J 6=∅, whence i ∈ J.

(10) There are no local vertices of type ∅. By (1), every local vertex is incident with at least one arc. So,
if there was a local vertex of type ∅, it would have to be incident with an arc that is labelled by
some generator a ∈G∅. But this arc is part of a bridge with value in G∅, in contradiction to (7).

(11) There are no local vertices of type {i} with i ∈ I. First, observe that if there was such a local vertex
Dk, it would have to be a neighbour of some other local vertex Dl . Suppose it wasn’t. Then, all
bridges that are incident with Dk must either connect it to itself, which is not possible by (3), or
to the outer boundary ∂D. But, by (1), the disc picture P is connected. So, this is already the
whole disc picture. In particular, all bridges are incident with Dk, which is a local vertex of type
{i}. Therefore, by (9), all bridges are of type i. But this means that each letter of w1 and w2
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Figure 8: Replace each arc by a sequence of three arcs.

represents an element in G{i}, whence g ∈G{i}. On the other hand, since both w1 and w2 are not
empty, there is at least one bridge connecting Dk to either side of ∂D. Again, by (9), this implies
both i ∈ K1 and i ∈ K2. But since {i}⊆ K1∩K2, we can use Remark 2.4 to conclude that g ∈GK1∩K2 ,
in contradiction to g 6∈GK1∩K2 .

So, we may assume w. l. o. g. that Dk is a neighbour of some other local vertex Dl . Consider a
bridge that connects Dk and Dl . Again, by (9), this bridge is of type i and the local vertex Dl

is of some type J with i ∈ J, i. e. {i} ⊆ J. By (4), two local vertices of the same type cannot be
neighbours. So, we actually obtain that {i} ⊂ J. Now, replace every arc that is incident with Dk,
say labelled by some generator a ∈ G{i}, by a sequence of three arcs with the same transversal
orientation. The first and the third are labelled by a ∈ G{i}, the second by ϕ{i}J(a) ∈ GJ , see 1 in
Figure 8. Then, consider the subpicture Q indicated in 2 in Figure 8. By the same arguments
as in (3) and (4), we can remove the subpicture Q and replace it by a single spider with the same
boundary word. Again, we obtain a disc picture of lower complexity.

Definition 3.11 (“angle and swap”) By (10) and (11), we know that every local vertex Dk is of
some type {i, j} with distinct i, j ∈ I. By (9), such a local vertex is incident with bridges each of
which is either of type i or of type j. Consider the connected components of ∂Dk r M. They are
called angles. An angle is called a swap if one of the two bridges enclosing it is of type i and the
other one is of type j.

(12) Every local vertex has at least one swap in its boundary. Suppose there was a local vertex Dk, say
as above of type {i, j}, without any swap in its boundary. Then, all bridges that are incident with
Dk are of the same type, say of type i.

Since Dk is a local vertex of type {i, j}, the arcs that are incident with Dk are labelled by generators
a1,a2, . . . ,am ∈G{i, j}. The respective bridges are all of type i. So, each of the generators represents
an element in G{i} rG∅, whence we can even find generators ã1, ã2, . . . , ãm ∈ G{i} representing
the same elements, i. e. satisfying the equations ν{i, j}(as) = ν{i}(ãs) = ν{i, j}(ϕ{i}{i, j}(ãs)). Now, we
can use the injectivity of the homomorphism ν{i, j} : G{i, j} → G to conclude that as = ϕ{i}{i, j}(ãs).
Similarly to the modification described above in (11), we replace every arc that is incident with
Dk by a sequence of two arcs with the same transversal orientation. If the arc has been labelled
by as ∈ G{i, j}, the new arc that is incident with Dk is labelled by ãs ∈ G{i} whereas the other one
is labelled by as ∈ G{i, j}, see 1 in Figure 9. Now, let ε1,ε2, . . . ,εm ∈ {−1,1} such that the word
a1

ε1 a2
ε2 · · ·am

εm has originally been a boundary word of Dk. After this modification, one can read
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Figure 9: Replace each arc by a sequence of two arcs (left) and create a new local vertex (right).

off the word ã1
ε1 ã2

ε2 · · · ãm
εm along ∂Dk. But:

ϕ{i}{i, j}
(
ã1

ε1 ã2
ε2 · · · ãm

εm
)= a1

ε1 a2
ε2 · · ·am

εm = 1 in G{i, j}

The injectivity of ϕ{i}{i, j} : G{i} →G{i, j} implies that Dk has become a local vertex of type {i} and can
be removed as in (11). We obtain a disc picture of lower complexity.

Definition 3.12 (“sufficiently many swaps”) Assume we are given a local vertex Dk of some
type {i, j} with distinct i, j ∈ I. Then, the local vertex Dk has sufficiently many swaps in its boundary
if the Gersten-Stallings angle ^{i, j} 6= 0 and the number of swaps m ≥ 2π/̂ {i, j}.

(13) Every local vertex has sufficiently many swaps in its boundary. Suppose there was a local vertex
Dk without sufficiently many swaps in its boundary. By (12), there is at least one swap. If we start
at some swap and go from swap to swap once around ∂Dk, then we can read off words v1,v2, . . . ,vm,
see 2 in Figure 9. Each of these words represents an element in G, so it makes sense to write
v1,v2, . . . ,vm ∈G. Their product v1 ·v2 ·. . .·vm is the identity element. We may assume w. l. o. g. that
v1,v3, . . . ,vm−1 ∈G{i} and v2,v4, . . . ,vm ∈G{ j}. In order to show that at least one of these elements is
contained in G∅, we construct their preimages under the injective homomorphisms νK : GK →G:

ν{i}
−1(v1),ν{i}

−1(v3), . . . ,ν{i}
−1(vm−1) ∈G{i}

ν{ j}
−1(v2),ν{ j}

−1(v4), . . . ,ν{ j}
−1(vm) ∈G{ j}

The preimages assemble to an element x := ν{i}
−1(v1) ·ν{ j}

−1(v2) · . . . ·ν{ j}
−1(vm) of the amalgamated

free product G{i}∗G∅G{ j}. Now, recall the definition of the Gersten-Stallings angle from Section 2.2.
The homomorphism α : G{i} ∗G∅ G{ j} →G{i, j} introduced there satisfies:

α(x)=ϕ{i}{i, j}
(
ν{i}

−1(v1)
) ·ϕ{ j}{i, j}

(
ν{ j}

−1(v2)
) · . . . ·ϕ{ j}{i, j}

(
ν{ j}

−1(vm)
)

= ν{i, j}
−1(v1) ·ν{i, j}

−1(v2) · . . . ·ν{i, j}
−1(vm)

= ν{i, j}
−1(v1 ·v2 · . . . ·vm)

= ν{i, j}
−1(1)

= 1
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So, x ∈ ker(α). Since Dk does not have sufficiently many swaps in its boundary, we know that
either the Gersten-Stallings angle ^{i, j} = 0 or the length of x, which is at most m, is strictly
smaller than 2π/̂ {i, j}, which is nothing but the minimal length of a non-trivial element in ker(α).
In either case, x must be trivial in G{i} ∗G∅ G{ j}.

It is a consequence of the normal form theorem, see [Mil68, Lemma 1], that there is an index
k ∈ {1,2, . . . ,m} such that ν{i}

−1(vk) ∈ϕ∅{i}(G∅) or ν{ j}
−1(vk) ∈ϕ∅{ j}(G∅), depending on the parity of

k. But then:

vk ∈
{
ν{i}

(
ϕ∅{i}(G∅)

)
if k is odd

ν{ j}
(
ϕ∅{ j}(G∅)

)
if k is even

}
= ν∅(G∅)=G∅

In either case, vk ∈ G∅. Now, we add a new local vertex and a new bridge to the disc picture
as illustrated in 3 in Figure 9. The arcs that had been traversed when reading off the word vk

end up at the new local vertex, which is connected to Dk by a single arc labelled by ν{i, j}
−1(vk).

This increases both the number of local vertices and the number of bridges by 1. But still, some
of the properties we have discussed so far, in particular (1), hold true and the bridge connecting
the new local vertex and Dk, which has a value in G∅, can be removed as in (6) or (7). Next, we
want to get rid of the new local vertex. If the removal of the bridge has made the disc picture P

disconnected, we can remove one of the two components as in (1). Otherwise, there is still a path
from the new local vertex to Dk, which implies that the new local vertex is a neighbour of some
other local vertex. Once this is clear, we can remove it as in (12) and in the final step of (11). In
either case, in particular in the latter, we do not only remove the new local vertex but also at least
one more bridge. So, in either case, we obtain a disc picture of lower complexity.

After all these observations, we can give an easy combinatorial argument that yields a contradiction.
The principal idea is to distribute weights over certain parts of the disc picture. Every local vertex gets
the weight 2π, every inner bridge gets the weight −2π, and every inner region gets the weight 2π. For
the notion of inner see Definition 3.6. The weighted parts of the disc picture correspond to vertices,
edges, and bounded regions of a planar graph, which is non-empty, finite, and connected. So, we may
use Euler’s formula for planar graphs to calculate the total weight:

2π · #local vertices−2π · #inner bridges+2π · #inner regions= 2π

Let us count again. But, this time, we reallocate the weights to the regions. Every inner bridge
distributes its weight −2π equally to the two regions on either side and every local vertex distributes
its weight 2π equally to the swaps in its boundary, each of which lets it traverse to the adjacent region.
The new total weight of a region R is denoted by wt(R) and can be estimated from above using (14),
(15), and (16):

(14) The weight traversing each swap is bounded by the Gersten-Stallings angle associated to the type
of the local vertex. In particular, it is at most π/2. Let Dk be a local vertex of type J = {i, j}. By (13),
Dk has sufficiently many swaps in its boundary. So, the Gersten-Stallings angle ^{i, j} 6= 0 and the
number of swaps is at least 2π/̂ {i, j}. Since Dk distributes its weight 2π equally to the swaps, the
weight traversing each swap is at most ^{i, j}.

(15) There are no inner regions of positive weight. Let R be an inner region. By (1), R is an open disc.
By (6), the boundary ∂R contains some number of inner bridges, say m, and the same number of
angles, some of which may be swaps. By (3), m ≥ 2. By (6), each of the m inner bridges contributes
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−π to wt(R) and, by (14), each of the at most m swaps contributes at most π/2. Therefore, we can
estimate wt(R) as follows:

If m ≥ 4, then wt(R) ≤ 1 ·2π−m ·π+m · π/2 ≤ 0. If m = 3 and there are at most two swaps, then
wt(R) ≤ 1 ·2π−3 ·π+2 · π/2 = 0. If m = 3 and there are exactly three swaps, then there are three
pairwise distinct i, j,k ∈ I such that the local vertices in the boundary ∂R are of types {i, j},
{i,k}, { j,k}. Since we consider a non-spherical Corson diagram, there are no spherical triples.
In particular, ^{i, j}+^{i,k}+^{ j,k} is at most π, whence wt(R)≤ 1 ·2π−3 ·π+^{i, j}+^{i,k}+^{ j,k} ≤ 0.
What remains is the case that m = 2. But if there were two distinct i, j ∈ I such that one of the
inner bridges is of type i and the other is of type j, then both local vertices must be of type {i, j}, in
contradiction to (4). So, in this case, there cannot be any swap, whence wt(R)= 1 ·2π−2 ·π+0= 0.

(16) There are at most two outer regions of positive weight, and each of them has at most weight π/2.
Let R be an outer region. By (1), R is an open disc. The boundary ∂R contains some number of
bridges, say m, and some number of angles. By (1), (2), and (6), exactly two of the bridges are
outer, which implies that m ≥ 2. Moreover, it contains exactly m−1 angles, some of which may be
swaps.

Again, if m ≥ 3, then wt(R)≤ 0 ·2π− (m−2) ·π+ (m−1) ·π/2 = (−m+3) ·π/2 ≤ 0. If m = 2 and there is
no swap, then wt(R)= 0 ·2π−0 ·π+0= 0. What remains is the case that m = 2 and there is a swap.
Then, wt(R) might well be positive, but wt(R)≤ 0 ·2π−0 ·π+1 ·π/2 = π/2.

Next, we show that this can happen at most twice. Since there is a swap, we know that there are
two distinct i, j ∈ I such that one of the outer bridges is of type i and the other one is of type j. If
both bridges end up at the same side of ∂D, say at the side of ∂D along which one can read off the
word w1, then, by (9), both i ∈ K1 and j ∈ K1. This allows us to remove the respective local vertex
Dk of type {i, j} ⊆ K1 as in the final step of (5) and to obtain a disc picture of lower complexity.
So, we may assume w. l. o. g. that the two bridges end up at different sides of ∂D. But, by (1), we
know that the disc picture P is connected. Hence, this can happen at most twice, namely when
the boundary ∂R contains one of the two points x and y that have been chosen in (1).

By (15) and (16), the total weight given to the disc picture is at most π. This is a contradiction to the
above observation that the total weight amounts to 2π, which completes the proof.

3.4 Interpretation

In case of a non-spherical triangle of groups, the intersection theorem says that the groups GK with
K ⊆ {1,2,3} and |K | ≤ 2 intersect exactly as sketched in Figure 10. One particularly nice way of reading
the intersection theorem is to start with such a setting. Let M be the union of three groups with
the property that each two of them intersect along a common subgroup, by which we implicitly mean
that the two multiplications agree on the subgroup. M is a set equipped with a partial multiplication
and the question arises whether M can be homomorphically embedded into a group, i. e. whether
there exists an injective map into a group such that the restriction to each of the three groups is a
homomorphism. In order to give a partial answer to this question, we may interpret our three groups
and their intersections, equipped with the inclusion maps, as a triangle of groups. By construction of
the colimit, the natural homomorphisms νJ : GJ →G agree on the intersections and, hence, yield a map
ν : M →G. This map is injective if and only if the natural homomorphisms νJ : GJ →G are injective
and the equations GK1 ∩GK2 =GK1∩K2 hold.
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G∅

G{2}

G{1,2}

G{1}

Figure 10: G{1,2} intersecting G{1,3} and G{2,3}.

So, if the triangle of groups is non-spherical, the answer is affirmative. On the other hand, it is a
consequence of the universal property, see [AHS90, Chapter 3], that if the map ν : M →G is not injective,
then M cannot be homomorphically embedded into any group and the answer is negative.

4 Billiards theorem for triangles of groups

In the previous section, we used a combinatorial argument based on Euler’s formula for planar graphs
to prove the intersection theorem. This kind of argument, be it in the language of homotopies, see
e. g. [Sta91], in the language of van Kampen diagrams, see e. g. [ERST00] and [HK06], or in the language
of disc pictures, see e. g. [Cor96], turned out to be very powerful in our context, and we highlight
the following two results from [ERST00] and [HK06]. In each of them, one considers a non-spherical
triangle of groups and assumes that for every a ∈ {1,2,3} there is an element ga ∈G{a}rG∅.

Theorem 4.1 (Edjvet et al.) The product g1 g2 g3 ∈G has infinite order.

Theorem 4.2 (Howie-Kopteva) If the triangle of groups is hyperbolic, then there is an n ∈N such that
the elements (g1 g2 g3)n ∈G and (g1 g3 g2)n ∈G generate a non-abelian free subgroup.

Remark 4.3 Both, in Theorems 4.1 and 4.2, the authors had the case G∅ = {1} in mind and, therefore,
used α : G{i} ∗G{ j} → G{i, j} instead of α : G{i} ∗G∅ G{ j} → G{i, j} to define the angle ^{i, j}. Notice that their
notion of a group-theoretic angle coincides with Pride’s property-Wk, which has been introduced in [Pri87]
and generalised in [Pri92]. In fact, following their notion, the angle ^{i, j} is strictly smaller than π/k if
and only if the group G{i, j} has Pride’s property-Wk. Our notion is reminiscent of Pride’s property-Wk, but
using the amalgamated free product prevents us from measuring the intersection along the group G∅.
And one can check that Theorems 4.1 and 4.2 also hold in our setting with arbitrary groups G∅ and
Gersten-Stallings angles as defined in Section 2.2; see [Cun11] for details.

In the light of Theorem 4.2, one may wonder about the Euclidean case. Let us therefore assume
that the triangle of groups is Euclidean and ask under which conditions the colimit group G has a
non-abelian free subgroup. A first class of examples to look at are Euclidean triangle groups:

∆(k, l,m)= 〈
a,b, c : a2,b2, c2, (ab)k, (ac)l , (bc)m〉

with (k, l,m) ∈ {(3,3,3), (2,4,4), (2,3,6)}
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σ

gσ

ghσ

{G{1,3}}

{G{1,2}} {G{2,3}}

Figure 11: ∆(2,4,4) realised as S ≤ Isom(E2) (left) and a part of the simplicial complex X including
translates of σ by group elements g and gh with g ∈G{1} and h ∈G{2} (right).

Each of these groups happens to be the colimit group of the Euclidean triangle of groups based on the
following data:

G∅ = {1}, G{1} =
〈
a : a2 = 1

〉
, G{2} =

〈
b : b2 = 1

〉
, G{3} =

〈
c : c2 = 1

〉
,

G{1,2} =
〈
a,b : a2 = b2 = (ab)k = 1

〉
, G{1,3} =

〈
a, c : a2 = c2 = (ac)l = 1

〉
,

G{2,3} =
〈
b, c : b2 = c2 = (bc)m = 1

〉
Here, as in Section 3.1, the homomorphisms ϕJ1 J2 : GJ1 →GJ2 are implicitly given by a 7→ a, b 7→ b, and
c 7→ c. It turns out that the Gersten-Stallings angles amount to ^{1,2} = π/k, ^{1,3} = π/l, and ^{2,3} = π/m,
whence the triangle of groups is actually Euclidean.

The algebraic structure of the colimit group G can be revealed by geometry. Consider three lines in
the Euclidean plane E2 enclosing a triangle with angles π/k, π/l, and π/m, see Figure 11. The reflections
along these lines generate a subgroup S ≤ Isom(E2) that is isomorphic to ∆(k, l,m). Since Isom(E2) is
solvable, S ≤ Isom(E2) must be solvable, too. So, ∆(k, l,m) is solvable and cannot have a non-abelian free
subgroup, see e. g. [Joh80] and [Cun11] for more detailed descriptions of the geometry.

In this section, we generalise the geometric approach and use a construction introduced by Bridson
in [Bri91] to study all non-degenerate Euclidean triangles of groups, i. e. all Euclidean triangles of groups
with the property that each Gersten-Stallings angle is strictly between 0 and π. Since the strict upper
bound π is our standing assumption, see Section 2.4, being non-degenerate actually means that none of
the Gersten-Stallings angles is 0. But even if there was no such standing assumption, it is clear that
a Euclidean triangle of groups is non-degenerate if and only if none of the Gersten-Stallings angles is
0. Given such a triangle of groups, we will construct a simplicial complex X . The action of G on X

will give us new insight into the structure of G. Actually, it turns out that if X branches, i. e. if |X |
is not a topological manifold any more, then the colimit group G has a non-abelian free subgroup, see
Theorem 4.19. This allows us to give an answer to a problem mentioned by Kopteva and Williams in
[KW08, p. 58, l. 24], who wondered if the class of colimit groups of non-spherical triangles of groups
satisfies the Tits alternative.

As already mentioned, the construction and the basic properties of X were introduced by Bridson
in [Bri91]. In Section 4.1, we summarise what is relevant for our work, and apply it from Section 4.2
onwards. Our proofs are based on ideas and techniques that go back to two Diplomarbeiten under
supervision of Bieri, namely by Lorenz in [Lor95] and Brendel in [Bre04]. Lorenz and Brendel use
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altitudes in triangles to detect non-abelian free subgroups, but under additional assumptions on the
Gersten-Stallings angles. We use the language of billiards instead, which gives us the flexibility we
need.

4.1 Bridson’s simplicial complex

Given a non-degenerate Euclidean triangle of groups, we define an abstract simplicial complex X as
follows (notice that the same definition can be given for any triangle of groups, but we need it only in
the non-degenerate Euclidean case):

0-simplices := {{
gG{1,2}

}
: g ∈G}

t{{
gG{1,3}

}
: g ∈G}

t{{
gG{2,3}

}
: g ∈G}

1-simplices := {{
gG{1,2}, gG{1,3}

}
: g ∈G}

t{{
gG{1,2}, gG{2,3}

}
: g ∈G}

t{{
gG{1,3}, gG{2,3}

}
: g ∈G}

2-simplices := {{
gG{1,2}, gG{1,3}, gG{2,3}

}
: g ∈G}

4.1.1 Group action and stabilisers

We will use the letter σ to denote the 2-simplex that is represented by the identity of the colimit group G,
i. e. σ := {G{1,2},G{1,3},G{2,3}}. There is a natural action of G on X given by left-multiplication of each
coset. A fundamental domain for this action consists of the 2-simplex σ and its faces, see Figure 11.

Bridson mentioned in [Bri91, p. 431, ll. 8–9] that “the pattern of stabilisers in this fundamental
domain is precisely the original triangle of groups.” Since we distinguish between the diagram and its
image in the colimit group, we would replace “original triangle of groups” by “pattern of subgroups GK

with K ⊆ {1,2,3} and |K | ≤ 2.” Anyway, notice that there is an easy way to prove this observation using
the intersection theorem because we can observe that for all pairwise distinct elements a,b, c ∈ {1,2,3}:

1. stabG
({
G{a,b}

})= {
g ∈G : gG{a,b} =G{a,b}

}=G{a,b}

2. stabG
({
G{a,b},G{a,c}

})
= {

g ∈G : gG{a,b} =G{a,b}, gG{a,c} =G{a,c}
}

=G{a,b} ∩G{a,c} =G{a}

3. stabG
({
G{a,b},G{a,c},G{b,c}

})
= {

g ∈G : gG{a,b} =G{a,b}, gG{a,c} =G{a,c}, gG{b,c} =G{b,c}
}

=G{a,b} ∩G{a,c} ∩G{b,c} =G∅

Hence, by (1) to (3), the stabilisers of the 0-simplices are the groups GK with K ⊆ {1,2,3} and |K | = 2.
The stabilisers of the 1-simplices and the 2-simplex are their pairwise and triple intersections, which
are precisely the groups GK with K ⊆ {1,2,3} and |K | = 1 and |K | = 0.
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{1}

{1,3}

{3}

{2}{1,2} {2,3}

{G{1,3}}

{G{1,2}} {G{2,3}}

Figure 12: Labelling the triangle ∆ and constructing h : |X |→∆.

4.1.2 Simple connectedness

Let us now consider the geometric realisation |X |. As usual, it is equipped with the weak topology.
For details about abstract simplicial complexes and their geometric realisations we refer to [Mun84,
Sections 1.1–1.3].

Lemma 4.4 (Behr) The geometric realisation |X | is simply connected.

Behr has proved a slightly more general version of this lemma in 1975, see [Beh75, Satz 1.2].
Roughly speaking, he translates edge paths in |X | to products h1h2 · · ·hn of elements hi ∈ GK i with
K i ⊆ {1,2,3} and |K i| = 2, and vice versa.

Remark 4.5 In order to keep the notation simple, we use the same symbols to refer to simplices in X

and to their geometric realisations in |X |. Moreover, whenever we talk about a simplex in |X | without
further specification, we mean the closed simplex.

4.1.3 Metric structure

The geometric realisation |X | can be equipped with a piecewise Euclidean metric structure. The
triangle of groups is non-degenerate and Euclidean. We may therefore pick a closed triangle ∆ in the
Euclidean plane E2 with the property that its angles agree with the Gersten-Stallings angles. For every
subset K ⊆ {1,2,3} with |K | = 2 we label the corresponding vertex of ∆ with angle ^K by K . For later
purposes, let us label the edges of ∆, too. The edge between the two vertices that are labelled by K1 and
K2 is labelled by their intersection K1 ∩K2.

Next, we construct a continuous map h : |X | → ∆. Every 0-simplex is of the form {gGK } for some
K ⊆ {1,2,3} with |K | = 2. Map it to the vertex that is labelled by K . In order to continue this map to the
higher dimensional simplices, map the 1-simplices homeomorphically to the corresponding edges, i. e. if
a 1-simplex is of the form {gG{a,b}, gG{a,c}}, map it to the edge that is labelled by {a,b}∩ {a, c} = {a}. For
every 2-simplex τ, use Schoenflies’ Theorem to continue the homeomorphism h|∂τ : ∂τ→ ∂∆ to h|τ : τ→∆.
The latter ones assemble to the desired continuous map h : |X | → ∆. Given two points x, y ∈ τ we can
now measure their local distance:

dτ(x, y) := ||h|τ(x)−h|τ(y) ||
The local distance dτ : τ×τ→ R is a metric on the single 2-simplex τ. The geometric realisation |X |
equipped with the local distances is called an E-simplicial complex. For a formal definition, see [Bri91,
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Section 1.1]. In order to extend the local distances to a metric on |X |, we follow Bridson’s work.

Definition 4.6 (“m-chain”) Let x, y ∈ |X |. An m-chain from x to y is a finite sequence C = (x0, x1, . . . , xm)
of points in |X | with the property that x0 = x and xm = y, and that for every 1 ≤ i ≤ m both xi−1 and xi

are contained in some common 2-simplex τi.

Let C be an m-chain as above. Then, the length of C is defined by:

length(C ) :=
m∑

i=1
dτi (xi−1, xi)

For every 1 ≤ i ≤ m there is a unique geodesic from xi−1 to xi in τi. We call it the segment from xi−1

to xi. The concatenation of all segments is called the path induced by C . It is denoted by [[C ]]. Notice
that neither length(λ) nor [[C ]] depends on the choice of τi, i. e. if there are two 2-simplices τi and τ̃i

such that xi−1, xi ∈ τi ∩ τ̃i, then the local distances dτi (xi−1, xi) and dτ̃i (xi−1, xi) agree and the segment
[[xi−1, xi]] is well defined.

Let x, y ∈ |X |. Since |X | is path connected, there is a path from x to y. By the construction given
in Behr’s proof or by a direct argument, we can even find a path from x to y that is induced by some
m-chain C . Hence, there is a function d : |X |× |X |→R given by:

d(x, y) := inf {length(C ) : ∃m such that C is an m-chain from x to y}

It is easy to see that d : |X | × |X | → R is a pseudometric. On the other hand, distinguishability,
i. e. d(x, y) = 0 implies x = y, is an issue. Here, a lemma from [Bri91, Section 1.2] comes into play.
It uses that |X | is an E-simplicial complex with a finite set of shapes, i. e. with a finite set of isometry
classes of simplices.

Lemma 4.7 (Bridson) For every x ∈ |X | there is an ε(x) > 0 with the following property: For every
y ∈ |X | with d(x, y)< ε(x) there is a common 2-simplex τ containing both x and y such that the distances
dτ(x, y) and d(x, y) agree.

This lemma implies distinguishability, whence the pseudometric d : |X | × |X | → R is actually a
metric. Even more, it makes |X | a complete geodesic metric space, see [Bri91, Theorem 1.1]. As
mentioned in [Bri91, p. 381, ll. 25–31], the topology induced by the metric d : |X | × |X | → R is coarser,
and may even be strictly coarser, than the weak topology. However, |X | remains simply connected as a
metric space.

Remark 4.8 Another important application of Lemma 4.7 concerns the arc length of paths. Given an
m-chain C = (x0, x1, . . . , xm), the metric d : |X |× |X |→R allows us to determine the arc length of the path
[[C ]], see e. g. [BH99, Definition I.1.18]. In the light of Lemma 4.7, it is easy to verify that the arc length
of the path [[C ]] agrees with length(C ).

4.1.4 CAT(0) property

From now on, we will consider |X | as a metric space. A crucial observation is that |X | has the CAT(0)
property. In order to prove this, we will verify the link condition.

Definition 4.9 (“geometric link”) Let x ∈ |X |. The (geometric) closed star St(x) is the union of the
geometric realisations of all simplices that contain x. If y ∈St(x)r{x}, then there is at least one 2-simplex
that contains both x and y. So, we may consider the segment [[x, y]]. Two such segments [[x, y]] and [[x, y′]]
are called equivalent if one of them is contained in the other. We call the set of equivalence classes the
geometric link of x. It is denoted by Lk(x, |X |).
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2 31

Figure 13: The sets Lk(x,τ) for different points x ∈ τ.

The geometric link Lk(x, |X |) can be equipped with a metric structure. First, we consider certain
subsets of Lk(x, |X |). For every 2-simplex τ in St(x) let Lk(x,τ) be the subset of all elements of Lk(x, |X |)
that are represented by segments in τ. Notice that, as soon as one representative has this property, all
representatives do. The subset Lk(x,τ) ⊆ Lk(x, |X |) has a natural metric dLk(x,τ) : Lk(x,τ)×Lk(x,τ) → R

given by the Euclidean angle:

dLk(x,τ)
(
[[x, y]]∼, [[x, y′]]∼

)
:=∠h|τ(x)

(
h|τ(y),h|τ(y′)

) ∈ [0,π]

If x is in the 1-skeleton of |X |, then every (Lk(x,τ),dLk(x,τ)) is isometrically isomorphic to a closed
interval of length ^{1,2}, ^{1,3}, ^{2,3}, or π, see 1 and 2 in Figure 13. In particular, we may interpret
the subsets Lk(x,τ) ⊆ Lk(x, |X |) as 1-simplices and, at least after a barycentric subdivision of each
simplex, the whole geometric link Lk(x, |X |) as a simplicial complex. Even more, it is an E-simplicial
complex with a finite set of shapes. As in Section 4.1.3, the connected components of Lk(x, |X |) can be
equipped with a pseudometric. This pseudometric turns out to be a metric which makes every connected
component a complete geodesic metric space. If we set the distance of elements from distinct connected
components to ∞, we obtain an extended metric dLk(x,|X |) : Lk(x, |X |)×Lk(x, |X |)→R∪ {∞}.

On the other hand, if x is not in the 1-skeleton of |X |, then it must be in the interior of some
2-simplex τ. In this case, (Lk(x,τ),dLk(x,τ)) is isometrically isomorphic to the standard 1-sphere S1,
see 3 in Figure 13. Since Lk(x,τ) = Lk(x, |X |), the metric dLk(x,τ),τ)×Lk(x,τ) → R is already a metric
dLk(x,|X |) : Lk(x, |X |)×Lk(x, |X |)→R on the geometric link. For more details, in particular for a remark
about equivalent definitions, we refer to [BH99, Sections 1.7.14–1.7.15]. Notice that Bridson and
Haefliger consider the open star instead of the closed one. But, in the end, this does not make a
difference.

Definition 4.10 (“link condition”) The geometric realisation |X | satisfies the link condition if for
every x ∈ |X | and every pair of points a,b ∈ Lk(x, |X |) with dLk(x,|X |)(a,b) < π there is a unique geodesic
from a to b, or, equivalently, if every injective loop λ :S1 →Lk(x, |X |) has arc length at least 2π.

The equivalence relies on the fact that |X | is a 2-dimensional E-simplicial complex with a finite set
of shapes. One can either prove it directly or apply [BH99, Theorem I.7.55, (3)⇔ (1)], [BH99, Theorem
II.5.5, (3)⇔ (2)], and [BH99, Lemma II.5.6].

Lemma 4.11 (Bridson, Gersten-Stallings) The geometric realisation |X | satisfies the link condition.

A proof of this lemma has been given by Bridson in [Bri91, p. 431, ll. 19–25] and by Gersten and
Stallings in [Sta91, p. 499, ll. 19–28]. The argument is both simple and important, so let us outline the
main ideas. The most interesting case occurs when x is a 0-simplex, w. l. o. g. x ∈ {{gG{1,2}} : g ∈ G}.
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Recall the definition of σ from Section 4.1.1, it allows us to describe the set of 2-simplices of |X |
as the orbit {gσ : g ∈ G}. Every injective loop λ : S1 → Lk(x, |X |) traverses some finite number of
1-simplices, say m. If the first one is Lk(x, gσ), the next ones are Lk(x, gh1h2 · · ·hiσ) with elements
hi alternately in G{1} rG∅ and G{2} rG∅. At the end, λ traverses Lk(x, gh1h2 · · ·hm−1σ). Since λ is
a loop, we know that there is an hm such that Lk(x, gh1h2 · · ·hmσ) = Lk(x, gσ), which is equivalent to
h1h2 · · ·hm ∈G∅. Let us write h := h1h2 · · ·hm. We may assume w. l. o. g. that h1,h3, . . . ,hm−1 ∈G{1}rG∅
and h2,h4, . . . ,hm ∈G{2}rG∅. Since h ∈G∅, also hmh−1 ∈G{2}rG∅. Now, we proceed similarly to (13) in
the proof of the intersection theorem. We construct the preimages under the injective homomorphisms
νK : GK →G:

ν{1}
−1(h1),ν{1}

−1(h3), . . . ,ν{1}
−1(hm−1) ∈G{1}rϕ∅{1}(G∅)

ν{2}
−1(h2),ν{2}

−1(h4), . . . ,ν{2}
−1(hmh−1) ∈G{2}rϕ∅{2}(G∅)

Again, the preimages assemble to an element ν{1}
−1(h1)·ν{2}

−1(h2)·. . .·ν{2}
−1(hmh−1) of the amalgamated

free product G{1} ∗G∅ G{2} that is contained in the kernel of the homomorphism α : G{1} ∗G∅ G{2} →G{1,2}

introduced in Section 2.2. But, by the normal form theorem, see [Mil68, Lemma 1], this element is
non-trivial. Therefore, m ≥ 2π/̂ {1,2}. Now, Remark 4.8 also holds for m-chains in Lk(x, |X |). It implies
that the arc length of λ is equal to m ·^{1,2}, which can be estimated from below by 2π/̂ {1,2} ·^{1,2} = 2π,
whence we are done. The link condition for the other cases, i. e. if x is in the interior of a 1-simplex or in
the interior of a 2-simplex, is almost immediate.

Once we have convinced ourselves that the geometric realisation |X | satisfies the link condition, we
may apply Bridson’s main theorem [Bri91, Section 2, Main Theorem, (11)⇒ (2)].

Theorem 4.12 (Bridson) Since |X | is a simply connected E-simplicial complex with a finite set of
shapes that satisfies the link condition, it has the CAT(0) property.

4.1.5 Geodesics

Let [[C ]] be the path induced by an m-chain C = (x0, x2, . . . , xm). There is a necessary and, as we will see
in Lemma 4.15, sufficient condition for [[C ]] to be a geodesic, namely that C is straight, i. e. that there
are no obvious shortcuts at the points x1, x3, . . . , xm−1. Let us make the notion of straightness a little
more precise.

Definition 4.13 (“straight m-chain”) An m-chain C = (x0, x1, . . . , xm) is called straight if for every
1≤ i ≤ m−1 the distance between [[xi, xi−1]]∼ and [[xi, xi+1]]∼ in Lk(xi, |X |) is at least π.

Remark 4.14 In general, it is not easy to determine the distance between [[xi, xi−1]]∼ and [[xi, xi+1]]∼ in
Lk(xi, |X |). But the link condition ensures that, once we are able to connect them by an injective path of
arc length π, the distance between them is actually equal to π.

Now, the CAT(0) property comes into play. It allows us to conclude from the local property “straight
m-chain” to the global property “geodesic”.

Lemma 4.15 (Bridson) If C is a straight m-chain, then [[C ]] is a geodesic.

This lemma can be proved by showing that every straight m-chain induces a local geodesic, which
is an easy consequence of [Bri91, Section 2, Main Theorem, (2)⇒ (5)]. And once we know this, [BH99,
Proposition II.1.4 (2)] tells us that every local geodesic is a geodesic.

Remark 4.16 By Lemma 4.15, we are now able to construct geodesics easily; and these geodesics are
unique, see [Bri91, Section 2, Main Theorem, (2)⇒ (1)], which will be of relevance in the proof of the
billiards theorem.
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4.2 Billiards theorem

In this section, we still assume given a non-degenerate Euclidean triangle of groups and consider
billiard shots and billiard sequences on the triangle ∆.

4.2.1 Billiard shots and billiard sequences

We choose some point y0 in the interior of ∆ and some direction. Then, we consider the path that starts
at y0 and goes in a straight line into the chosen direction. Eventually, this path leaves ∆. Let y1 ∈ ∂∆ be
its last point in ∆. If this point is a vertex (“the ball is in the pocket”), we withdraw the path. Otherwise,
it is in the interior of an edge (“the ball hits the cushion”), which allows us to reflect the path according
to the rule that the angle of incidence is equal to the angle of reflection. Now, we can go on. Whenever
the path leaves ∆ at some point in the interior of an edge, we reflect it again. After some finite number
of reflections, say at the points y1, y2, . . . , ym−1 ∈ ∂∆, we stop at some point ym in the interior of ∆. The
sequence B = (y0, y1, . . . , ym) is called a billiard sequence, the induced path [[B]] = [[y0, y1, . . . , ym]] is
called a billiard shot.

4.2.2 Statement and proof of the billiards theorem

The notion of billiard shots and billiard sequences allows us to prove that certain elements of the colimit
group G are non-trivial.

Definition 4.17 (“adapted”) Given a billiard sequence B = (y0, y1, . . . , ym), we call an element g ∈G

adapted to B, if it is a product g1 g2 · · · gm−1 such that each g i ∈G{ai}rG∅, where {ai} is the label of the
edge whose interior contains yi.

Theorem 4.18 Assume we are given a non-degenerate Euclidean triangle of groups and a closed triangle
∆ in the Euclidean plane E2 as constructed in Section 4.1.3. If an element g ∈G is adapted to a billiard
sequence B = (y0, y1, . . . , ym) on ∆ with at least one reflection, i. e. with m ≥ 2, then g is non-trivial.

Proof. The idea is to lift the billiard shot [[B]] to the geometric realisation |X |. For every 1 ≤ i ≤ m we
use h|g1 g2···g i−1σ : g1 g2 · · · g i−1σ→∆ to lift the segment [[yi−1, yi]]. Let us make some observations.

(1) These lifts assemble to a path in |X |. For every 1 ≤ i ≤ m−1 the first segment [[yi−1, yi]] is lifted
by h|g1 g2···g i−1σ, the second segment [[yi, yi+1]] is lifted by h|g1 g2···g iσ. To show that these two lifts
actually fit together, we convince ourselves that in either case yi is lifted to the same point. If
the edge whose interior contains yi is labelled by {a}, then the two adjacent vertices are labelled
by {a,b} and {a, c}, where b and c are the remaining two elements of {1,2,3}. We can therefore
observe: (

h|g1 g2···g i−1σ

)−1 (yi) ∈
{
g1 g2 · · · g i−1G{a,b}, g1 g2 · · · g i−1G{a,c}

}(
h|g1 g2···g iσ

)−1 (yi) ∈
{
g1 g2 · · · g iG{a,b}, g1 g2 · · · g iG{a,c}

}
Since g i ∈G{a}, the two 1-simplices agree. Call them τ and observe:(

h|g1 g2···g i−1σ

)−1 (yi)=
(
h|τ

)−1(yi)=
(
h|g1 g2···g iσ

)−1 (yi)

So, the lift of yi is well defined. Let us denote it by xi. For the lifts of the extremal points y0

and ym we define analogously x0 := (h|σ)−1(y0) and xm := (h|gσ)−1(ym), whence the lifts of each two
segments [[yi−1, yi]] and [[yi, yi+1]] assemble to the path [[xi−1, xi, xi+1]] and, more general, the lifts
of all segments [[y0, y1]], [[y1, y2]], . . . , [[ym−1, ym]] assemble to the path [[C ]] induced by the m-chain
C := (x0, x1, . . . , xm).
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xi

x̃i

xi+1

xi−1

ỹi

yi yi+1

yi−1

L

Figure 14: Lift the billiard shot to g1 g2 · · · g i−1σ and g1 g2 · · · g iσ.

(2) The m-chain C is straight. Let 1 ≤ i ≤ m − 1. We construct a 2-chain L from [[xi, xi−1]]∼ to
[[xi, xi+1]]∼ in Lk(xi, |X |) such that length(L ) = π and the path [[L ]] is injective. By Remark 4.8,
the path [[L ]] is of arc length π and, by Remark 4.14, the distance between [[xi, xi−1]]∼ and
[[xi, xi+1]]∼ in Lk(xi, |X |) is equal to π. First, consider the edge whose interior contains yi and
choose another point ỹi in the interior of this edge. Let x̃i := (h|g1 g2···g i−1σ)−1( ỹi)= (h|g1 g2···g iσ)−1( ỹi)
be its lift. Then, move to the geometric link Lk(xi, |X |) and construct the 2-chain illustrated in
Figure 14, namely L := ([[xi, xi−1]]∼, [[xi, x̃i]]∼, [[xi, xi+1]]∼).

Observe that the path [[L ]] traverses the interval Lk(xi, g1 g2 · · · g i−1σ) until it reaches its endpoint
[[xi, x̃i]]∼. Then, it traverses the interval Lk(xi, g1 g2 · · · g iσ). Therefore:

length(L )= dLk(xi ,g1 g2···g i−1σ) ([[xi, xi−1]]∼, [[xi, x̃i]]∼)

+ dLk(xi ,g1 g2···g iσ) ([[xi, x̃i]]∼, [[xi, xi+1]]∼)

=∠yi (yi−1, ỹi)+∠yi ( ỹi, yi+1)=π
Since g i 6∈G∅, the two intervals traversed by [[L ]] are actually not the same. So, [[L ]] must be
injective.

With these two observations in mind the final conclusion that g is non-trivial in G is almost immediate.
By Lemma 4.15, [[C ]] is a geodesic from x0 ∈σ to xm ∈ gσ. Before going on, observe that any two points
in σ can be connected by a 1-chain, which is, of course, straight and therefore induces a geodesic. But, as
mentioned in Remark 4.16, geodesics are unique. Hence, the unique geodesic between any two points
in σ is completely contained in σ. Let us now go back to our situation. We assume that m ≥ 2. So,
the geodesic [[C ]] leaves σ eventually and, therefore, does not end in σ, i. e. xm 6∈ σ, which implies that
gσ 6=σ and, finally, g 6= 1.

4.2.3 A first example

We conclude Section 4.2 with an example that illustrates the application of the billiards theorem.
Assume we are given a triangle of groups with Gersten-Stallings angles ^{1,2} =^{1,3} =^{2,3} = π/3. Since
none of them is equal to 0, it is easy to see2 that for every a ∈ {1,2,3} there is an element ga ∈G{a}rG∅.

2If there was no element ga ∈ G{a} rG∅, then G{a} = G∅, which means ν̃{a}(G{a}) = ν̃∅(G∅). Now, observe that
ν{a}(G{a}) = ν̃{a}(µ{a}(G{a})) = ν̃{a}(G{a}) = ν̃∅(G∅) = ν̃∅(µ∅(G∅)) = ν∅(G∅) = ν{a}(ϕ∅{a}(G∅)). Since the homomorphism
ν{a} : G{a} →G is injective, we obtain G{a} = ϕ∅{a}(G∅), whence G{a} ∗G∅ G{b} is generated by G{b}. So, the homomorphism
α : G{a} ∗G∅ G{b} →G{a,b} is injective and the Gersten-Stallings angle ^{a,b} = 0.
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y0
y1 y2

y3

y4

Figure 15: A first billiard shot.

Their product g := g1 g2 g3 ∈ G, which has been considered in Theorem 4.1, is adapted to the billiard
sequence B = (y0, y1, y2, y3, y4) drawn in Figure 15 and is therefore non-trivial. We may also continue
the billiard shot. This yields billiard sequences of the form (y0, y1, y2, y3, y1, y2, y3, . . . , y1, y2, y3, y4). Every
power of g, i. e. every element gn ∈G with n ∈N, is adapted to such a billiard sequence and is therefore
non-trivial. Hence, g has infinite order.

4.3 Constructing non-abelian free subgroups

Again, assume we are given a non-degenerate Euclidean triangle of groups. So, for every a ∈ {1,2,3}
there is an element ga ∈G{a} rG∅. Let us recall the notion of branching. We say that the simplicial
complex X branches if the geometric realisation |X | is not a topological manifold any more. It is easy
to see that X branches if and only if there is an a ∈ {1,2,3} such that the index of G∅ in G{a} is at least
3 or there are two distinct a,b ∈ {1,2,3} such that G{a,b} is not generated by G{a} and G{b}. The following
theorem says that branching already implies the existence of non-abelian free subgroups in G.

Theorem 4.19 Assume we are given a non-degenerate Euclidean triangle of groups. If the simplicial
complex X branches, the colimit group G has a non-abelian free subgroup.

Remark 4.20 Notice that Theorem 4.19 is the 2-dimensional analogue of a well known fact. Consider
an amalgamated free product X ∗A Y with the property that the image of A in X and the image of A in
Y have index at least 2. The associated Bass-Serre tree T branches if and only if one of the indices is at
least 3. In this case, the amalgamated free product X ∗A Y has a non-abelian free subgroup.

Proof of Theorem 4.19. We may assume w. l. o. g. that ^{1,2} ≥^{1,3} ≥^{2,3}. So, there are exactly three
possibilities for the Gersten-Stallings angles, each of which is considered in a separate column in
Figure 16.

First, if there is an a ∈ {1,2,3} such that the index of G∅ in G{a} is at least 3, consider the element
h ∈G that is given in the respective entry in Figure 16. It is constructed in such a way that both h and
h−1 are adapted to a billiard sequence B1 with the following property: The billiard shot [[B1]] starts at
some point in the interior of ∆ and goes orthogonally away from the edge labelled by {a}. After a couple
of reflections, it comes back to the starting point, but in the opposite direction, see 1 in Figure 16.

Notice that, given an element g ∈ G with a decomposition into factors that are alternately from
{h,h−1} and G{a} rG∅, we may concatenate the billiard shot [[B1]] and the orthogonal reflection at the
edge labelled by {a}, see 2 in Figure 16, accordingly. This yields a billiard sequence B2, which g is
adapted to. Hence, we know: If there is at least one factor in the decomposition of g, then there is at least
one reflection in the billiard sequence B2 and, by the billiards theorem, g is non-trivial.
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Since the index of G∅ in G{a} is at least 3, we can find an element g̃a ∈ G{a} that is neither in
G∅ nor in gaG∅. In particular, neither g̃a

−1 ga nor ga
−1 g̃a is in G∅. Define x := gahg̃a

−1 ∈G and
y := hgahg̃a

−1h−1 ∈G. We claim that x and y generate a non-abelian free subgroup of G. Consider a
non-empty freely reduced word over the letters x and y and their formal inverses. The element g ∈G

that is represented by this word has a natural decomposition into factors from {h±1, ga
±1, g̃a

±1}. Cancel
each h−1h and subsume each g̃a

−1 ga and each ga
−1 g̃a to a single element in G{a} rG∅. This yields a

new decomposition of g into factors that are alternately from {h,h−1} and G{a} rG∅. It is easy to see
that, despite of the cancellation of each h−1h, there is at least one factor left in the new decomposition
of g. So, by our preliminary discussion, g is non-trivial, which completes the proof that x and y generate
a non-abelian free subgroup of G.

Second, consider the case that there are two distinct a,b ∈ {1,2,3} such that G{a,b} is not generated
by G{a} and G{b}. In this case, let X :=G{a,b}, A := 〈G{a},G{b}〉 ≤G, and Y := 〈G{a,c},G{b,c}〉 ≤G, where c is
the remaining element of {1,2,3}.

Using the presentation (∗) one can show that G ∼= X ∗A Y . Here, the homomorphisms are the ones
induced by the inclusions. By assumption, |X : A| ≥ 2. On the other hand, we know that there is an
element gc ∈G{c}rG∅. By the intersection theorem, G{c}∩G{a,b} =G∅. So, gc ∈G{c}rG{a,b} ⊆Y rA and
|Y : A| ≥ 2. If |Y : A| = 2, then A is a normal subgroup of Y . Again, by the intersection theorem:

gc
−1 ga gc ∈ A∩G{a,c} ⊆G{a,b} ∩G{a,c} =G{a}

gc
−1 gb gc ∈ A∩G{b,c} ⊆G{a,b} ∩G{a,b} =G{b}

This implies that ^{a,c} =^{b,c} = π/2. Hence ^{a,b} = 0, which is not possible since we assume the triangle
of groups to be non-degenerate. So, |Y : A| ≥ 3 and, by Remark 4.20, G∼= X ∗A Y has a non-abelian free
subgroup.

Remark 4.21 The idea of Theorems 4.18 and 4.19 is certainly ping-pong-ish. In the above proof, we
construct products g = g1 g2 · · · gm whose factors g i are alternately from {h,h−1} and G{a}rG∅. Therefore,
the sequence σ 7→ gmσ 7→ gm−1 gmσ 7→ . . . 7→ g1 · · · gm−1 gmσ moves the fundamental domain σ back and
forth through |X |. But, instead of defining ping-pong sets, we construct geodesics to ensure that the final
position of σ is actually different from the initial one. The language of billiards helps us to see these
geodesics without getting unnecessarily confused by the surrounding complex.

4.4 Tits alternative

In this section, we ask about the cases that are not covered by Theorems 4.2 and 4.19, and discuss the
following version of the Tits alternative.

Definition 4.22 (“Tits alternative”) A class C of groups satisfies the Tits alternative if each G ∈ C

either has a non-abelian free subgroup or is virtually solvable.

Remark 4.23 There are groups that neither have a non-abelian free subgroup nor are virtually solvable.
For example, take Thompson’s group F. It has been shown by Brin and Squier in [BS85] that F ≤PLF(R)
doesn’t have a non-abelian free subgroup. And if F was virtually solvable, then [F,F] would have to be
virtually solvable, too. But [F,F] is infinite and simple, see [CFP96, Section 4], which implies that [F,F]
cannot be virtually solvable.

We may use Thompson’s group F to prove that the Tits alternative doesn’t hold for the class of
colimit groups of non-spherical triangles of groups. For example, let Γ1 be the triangle of groups with
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a = 1

a = 2

a = 3

h := g1 g2 g1 h := g1 g2 g3 g2 g1 h := g1 g2 g3 g2 g1

h := g1 g3 g1 h := g3 g1 g3 h := g3 g1 g2 g3 g2 g3 g2 g1 g3

h := g2 g3 g2

1

2

h := g3 g2 g3 h := g3 g2 g3 g2 g3

Figure 16: The first column refers to Gersten-Stallings angles ^{1,2} =^{1,3} =^{2,3} = π/3, the second to
^{1,2} = π/2, ^{1,3} =^{2,3} = π/4, the third to ^{1,2} = π/2, ^{1,3} = π/3, ^{2,3} = π/6.
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the property that the groups GJ are all equal to F and the injective homomorphisms ϕJ1 J2 : GJ1 →GJ2

are all identities. The Gersten-Stallings angles amount to ^{1,2} = ^{1,3} = ^{2,3} = 0, whence Γ1 is a
degenerate hyperbolic triangle of groups. But the colimit group is isomorphic to F and, therefore,
neither has a non-abelian free subgroup nor is virtually solvable.

Notice that there are non-degenerate examples, too. Pick one of the three triangles of groups given in
the introduction to Section 4 and replace every group GJ by F ×GJ and every injective homomorphism
ϕJ1 J2 : GJ1 → GJ2 by idF ×ϕJ1 J2 : F ×GJ1 → F ×GJ2 . The Gersten-Stallings angles remain the same,
whence the new triangle of groups, call it Γ2, is non-degenerate and Euclidean. But the colimit group
is isomorphic to F ×∆(k, l,m) and, therefore, neither has a non-abelian free subgroup nor is virtually
solvable.3

Let us now assume that G∅ either has a non-abelian free subgroup or is virtually solvable, which is
certainly true if G∅ = {1} as in Remark 4.3. In the non-degenerate case, this assumption already implies
the Tits alternative.

Theorem 4.24 The Tits alternative holds for the class of colimit groups of non-degenerate non-spherical
triangles of groups with the property that the group G∅ either has a non-abelian free subgroup or is
virtually solvable.

Interestingly, in the degenerate case, it doesn’t. Just consider the triangle of groups Γ3 given by the
following data:

G∅ = {1}, G{1} = F, G{2} =
〈
a : a2 = 1

〉
, G{3} =

〈
b : b2 = 1

〉
,

G{1,2} = F ×〈
a : a2 = 1

〉
, G{1,3} = F ×〈

b : b2 = 1
〉

, G{2,3} =
〈
a,b : a2 = b2 = 1

〉
Here, the homomorphisms ϕJ1 J2 : GJ1 →GJ2 are given by ∀ f ∈ F : f 7→ ( f ,1), by a 7→ (1,a) and a 7→ a, and
by b 7→ (1,b) and b 7→ b. The Gersten-Stallings angles amount to ^{1,2} = π/2, ^{1,3} = π/2, and ^{2,3} = 0,
whence Γ3 is a degenerate Euclidean triangle of groups. Its colimit group is isomorphic to F × (Z2 ∗Z2)
and, therefore, neither has a non-abelian free subgroup nor is virtually solvable. The following theorem
is an analogue of Theorem 4.24. It includes the degenerate case.

Theorem 4.25 The Tits alternative holds for the class of colimit groups of non-spherical triangles of
groups with the property that every group GJ with J ⊆ {1,2,3} and |J| ≤ 2 either has a non-abelian free
subgroup or is virtually solvable.

Given Theorem 4.19, the proofs of Theorems 4.24 and 4.25 are elementary. But we need an auxiliary
result. It had been asked by Button and was answered independently by several authors thereafter, see
[But10, Problem 3] for details.

Lemma 4.26 (Linnell, Minasyan, Klyachko, . . . ) Let G be a group and let N E G be a normal
subgroup. If both N and G/N are virtually solvable, then G is virtually solvable, too.

Proof of Theorem 4.24. Consider a non-degenerate non-spherical triangle of groups with the property
that the group G∅ either has a non-abelian free subgroup or is virtually solvable. If G∅, and hence
G∅, has a non-abelian free subgroup, then the colimit group G has so, too. So, we may assume
w. l. o. g. that G∅, and hence G∅, are virtually solvable. The triangle of groups is non-degenerate. So,

3Recall the following two results: Let G be a group and let N EG be a normal subgroup. G has a non abelian free subgroup
if and only if N or G/N does. So, F ×∆(k, l,m) does not have a non-abelian free subgroup. On the other hand, if G is virtually
solvable, then every subgroup of G is virtually solvable, too. So, F ×∆(k, l,m) is not virtually solvable.
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for every a ∈ {1,2,3} there is an element ga ∈G{a}rG∅. If the triangle of groups is hyperbolic, then, by
Theorem 4.2, the colimit group G has a non-abelian free subgroup. So, we may assume w. l. o. g. that the
triangle of groups is Euclidean. Now, let a ∈ {1,2,3}. Since ga ∈G{a} rG∅, the index of G∅ in G{a} is at
least 2. If it is strictly larger than 2, then the simplicial complex X branches and, by Theorem 4.19, G
has a non-abelian free subgroup. So, we may assume w. l. o. g. that it is equal to 2. In particular, G∅ is
normal in G{a}. By the same argument, we may assume w. l. o. g. that for every two distinct a,b ∈ {1,2,3}
the group G{a,b} is generated by G{a} and G{b}. Therefore, G∅ is normal in G{1}, G{2}, G{3}, G{1,2}, G{1,3},
G{2,3}, and, finally, in G.

Notice that this property also holds in the triangle of groups itself, i. e. for every J ⊆ {1,2,3} with
1 ≤ |J| ≤ 2 the image ϕ∅J(G∅) is normal in GJ . For a formal proof, apply the natural homomorphism
νJ : GJ →G, which is injective, and observe:

νJ ◦ϕ∅J(G∅) = ν∅(G∅)= ν̃∅ ◦µ∅(G∅)= ν̃∅(G∅)

E ν̃J(GJ)= ν̃J ◦µJ(GJ)= νJ(GJ)

We may therefore construct the quotient triangle of groups, which is obtained by replacing the group G∅
by G∅/G∅ ∼= {1} and for every J ⊆ {1,2,3} with 1≤ |J| ≤ 2 the group GJ by GJ /ϕ∅J(G∅). Here, one needs
to verify that every injective homomorphism ϕJ1 J2 : GJ1 →GJ2 induces an injective homomorphism
between the quotients and that the Gersten-Stallings angles remain the same. We leave this work to
the reader. However, the resulting diagram is a non-degenerate Euclidean triangle of groups. Moreover,
using the presentation (∗) one can show that its colimit group is isomorphic to G/G∅. We will now study
the quotient triangle of groups in some more detail. For every a ∈ {1,2,3} the index of ϕ∅{a}(G∅) in G{a} is
equal to 2, i. e. the quotient G{a}/ϕ∅{a}(G∅) has two elements. Therefore, the quotient triangle of groups
must be isomorphic to one of the three triangles of groups given in the introduction to Section 4 and, in
particular, its colimit group G/G∅ is (virtually) solvable. Moreover, by assumption, G∅, and hence G∅,
is virtually solvable, too. So, by Lemma 4.26, we may conclude that G is virtually solvable.

Proof of Theorem 4.25. Consider a non-spherical triangle of groups with the property that every group
GJ with J ⊆ {1,2,3} and |J| ≤ 2 either has a non-abelian free subgroup or is virtually solvable. Again, we
may assume w. l. o. g. that the groups GJ , and hence their images GJ , are virtually solvable. Moreover, if
the triangle of groups is non-degenerate, then we know by Theorem 4.24 that G either has a non-abelian
free subgroup or is virtually solvable. So, we may assume w. l. o. g. that the Gersten-Stallings angle
^{2,3} = 0, which means that the homomorphism α : G{2} ∗G∅ G{3} →G{2,3} induced by ϕ{2}{2,3} and ϕ{3}{2,3}

is injective. As mentioned in the proof of Theorem 4.19, one can always show that G ∼= X ∗A Y with
X :=G{2,3}, A := 〈G{2},G{3}〉 ≤G, Y := 〈G{1,2},G{1,3}〉 ≤G. Depending on |X : A| and |Y : A|, we distinguish
between four cases:

(1) If |X : A| = 1, then G{2,3} is generated by G{2} and G{3} or, equivalently, G{2,3} is generated by
ϕ{2}{2,3}(G{2}) and ϕ{3}{2,3}(G{3}). So, α is bijective, whence G{2} ∗G∅ G{3} ∼= G{2,3}. This allows us to
simplify the original presentation (∗) of the colimit group G by deleting superficial generators and
relators:

G= 〈
G{1},G{1,2},G{1,3} : R{1},R{1,2},R{1,3},{

g =ϕ{1}{1,2}(g) : g ∈G{1}
}
,{

g =ϕ{1}{1,3}(g) : g ∈G{1}
}〉

So, G ∼= G{1,2} ∗G{1} G{1,3} or, equivalently, G ∼= G{1,2} ∗G{1} G{1,3}. Now, we may, again, distinguish
between four cases:
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(a) If |G{1,2} :G{1}| = 1, then G∼=G{1,3}, which is virtually solvable.

(b) If |G{1,3} :G{1}| = 1, then G∼=G{1,2}, which is virtually solvable.

(c) If |G{1,2} : G{1}| = |G{1,3} : G{1}| = 2, then G{1} is normal in G{1,2}, G{1,3}, and G. The quotient
G/G{1} ∼= Z2 ∗Z2, which is (virtually) solvable. On the other hand, G{1} itself is virtually
solvable. So, by Lemma 4.26, the colimit group G is virtually solvable.

(d) Otherwise, |G{1,2} : G{1}| ≥ 2 and |G{1,3} : G{1}| ≥ 2 and not both equal to 2. But then, by
Remark 4.20, G∼=G{1,2} ∗G{1} G{1,3} has a non-abelian free subgroup.

(2) If |Y : A| = 1, then G∼= X =G{2,3}, which is virtually solvable.

(3) If |X : A| = |Y : A| = 2, then A is normal in X , Y , and G. The quotient G/A ∼= Z2 ∗Z2, which is
(virtually) solvable. Let us now study the normal subgroup A in some more detail. Since the
homomorphism α : G{2} ∗G∅ G{3} → G{2,3} is injective, its image 〈ϕ{2}{2,3}(G2),ϕ{3}{2,3}(G3)〉 ≤ G{2,3},
and hence A = 〈G{2},G{3}〉 ≤G{2,3} ≤G, is isomorphic to G{2} ∗G∅ G{3}. By a case analysis analogue
to the one in (1), we can see that A is either virtually solvable, namely in cases (a)–(c), or has a
non-abelian free subgroup, namely in case (d). In the former cases, by Lemma 4.26, the colimit
group G is virtually solvable. In the latter case, the colimit group G, which contains A as a
subgroup, has a non-abelian free subgroup.

(4) Otherwise, |X : A| ≥ 2 and |Y : A| ≥ 2 and not both equal to 2. But then, by Remark 4.20, G∼= X∗AY
has a non-abelian free subgroup.

Remark 4.27 In [KW08, Theorem 1], Kopteva and Williams have proved that the Tits alternative holds
for the class of non-spherical Pride groups that are based on graphs with at least four vertices. One way
to read Theorem 4.24 is the following: The Tits alternative does not hold for the class of non-spherical
Pride groups that are based on graphs with three vertices. But once we assume that each edge is genuine,
i. e. that none of the Gersten-Stallings angles is equal to 0, it does.

A Appendix: Further applications

In Sections 4.1 and 4.2, we worked with non-degenerate Euclidean triangles of groups. The construction
can be extended to all non-degenerate non-spherical triangles of groups. In the hyperbolic case, one can
either pick a triangle ∆ in the hyperbolic plane H2, as suggested by Bridson in [Bri91, p. 431, ll. 13–16],
or we can pick a triangle ∆ in the Euclidean plane E2 “whose angles are perhaps a little bit larger than
the group-theoretic angles,” as suggested by Gersten and Stallings in [Sta91, p. 499, ll. 7–9]. Let us
sketch an application for each of the two alternatives.

A.1 Normal forms

In the billiards theorem, we assume given an element g ∈ G that is adapted to a billiard sequence,
i. e. that is equipped with a suitable decomposition into factors from G{1}rG∅, G{2} rG∅, G{3} rG∅.
But we could also go the other way and use the simplicial complex X to construct decompositions.
More precisely, given a non-degenerate non-spherical triangle of groups, pick a triangle ∆ either in the
Euclidean plane E2 or in the hyperbolic plane H2 whose angles agree with the Gersten-Stallings angles
and construct the simplicial complex X . Notice that all the results from Sections 4.1 and 4.2 still hold
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true. Given an arbitrary element g ∈G, consider the unique geodesic in |X |, see Remark 4.16, from the
barycentre of σ to the barycentre of gσ. As soon as g 6∈G∅, the geodesic traverses several 2-simplices.
First, it traverses σ. Then, depending on whether it leaves σ crossing a 0-simplex or the interior of
a 1-simplex, there is an element g1 ∈ GK with K ⊆ {1,2,3} and |K | = 2 or |K | = 1 such that the next
2-simplex it traverses is g1σ. This procedure goes on. At the end, it traverses g1 g2 · · · gmσ= gσ, which
yields a decomposition of g into factors from the groups GK with K ⊆ {1,2,3} and 1 ≤ |K | ≤ 2 and one
final factor from G∅.

Notice that this decomposition is not well defined, even in the case G∅ = {1}. Just imagine the
geodesic running along some 1-simplex. Then, there are many possibilities to choose the respective
2-simplex g1 g2 · · · g iσ. On the other hand, if we fix a set of coset representatives for each pair of
subgroups GK1 ≤GK2 with K1 ⊂ K2 ⊆ {1,2,3} and |K2| ≤ 2, there is a well defined decomposition in terms
of these coset representatives and one final factor from G∅. Even though it seems to be inconvenient to
work with, we may call it a normal form.

A.2 Euclidean domination

The second alternative has the advantage that there are only three different triangles ∆. More precisely,
given a non-degenerate non-spherical triangle of groups, the Gersten-Stallings angles are always of the
form 2π/m̂, where m̂ is even. Let us think of them as π/k, π/l, π/m with k, l,m ∈N and k ≤ l ≤ m. It is easy to
see that either (π/3,π/3,π/3) or (π/2,π/4,π/4) or (π/2,π/3,π/6) dominates (π/k,π/l,π/m), i. e. is coordinatewise at least
as large as (π/k,π/l,π/m). If we take the dominating triple instead of the original Gersten-Stallings angles,
then, again, all the results from Sections 4.1 and 4.2, in particular the link condition and the billiards
theorem, hold true. Therefore, the proof of Theorem 4.19 extends to all non-degenerate non-spherical
triangles of groups.

Remark A.1 Our methods almost yield an alternative proof of Theorem 4.2; we cannot say anything
about the generators (g1 g2 g3)n and (g1 g3 g2)n but we can prove the existence of another non-abelian free
subgroup. If the hyperbolic triangle of groups is non-degenerate and the simplicial complex X branches,
then Theorem 4.19 does the job. The remaining cases are elementary. If it is non-degenerate and the
simplicial complex X does not branch, then the quotient G/G∅ is a hyperbolic triangle group, has a
non-abelian free subgroup, and so has G. Finally, if it is degenerate, say with ^{2,3} = 0, then G contains
G{1,2} ∗G{1} G{1,3} as a subgroup. Since there are elements g2 ∈G{2} rG∅ and g3 ∈G{3} rG∅, the indices
|G{1,2} : G{1}| and |G{1,3} : G{1}| are both at least 2. If one of these indices is equal to 2, the respective
Gersten-Stallings angle must be equal to π/2. But the triangle of groups is hyperbolic, so either ^{1,2} or
^{1,3} is smaller than π/2, which implies that either |G{1,2} : G{1}| or |G{1,3} : G{1}| is larger than 2. So, by
Remark 4.20, G has a non-abelian free subgroup.
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Abstract

The distinguishing number D(G) of a graph G is the least cardinal d such that G has a colouring
with d colours which is only preserved by the trivial automorphism. We show that the distinguishing
number of an infinite, locally finite, connected graph G with infinite motion and growth o(n2/ log2(n)) is
either 1 or 2, which proves Tom Tucker’s infinite motion conjecture for this type of graphs.

Keywords: Distinguishing number, automorphisms, infinite graphs.

MSC classes: 05C25, 05C63, 05C15.

1 Introduction

Albertson and Collins, see [AC96], introduced the distinguishing number D(G) of a graph G as the
least cardinal d such that G has a colouring with d colours which is only preserved by the trivial
automorphism. This seminal concept spawned many papers on finite and infinite graphs.

In this paper, we are mainly interested in infinite, locally finite, connected graphs of polynomial
growth, see also [IJK08], [Tuc11], [STW12]. In particular, there is one conjecture on which we focus our
attention, namely Tom Tucker’s infinite motion conjecture. Before stating it, we introduce the notation
m(ϕ) for the number of elements moved by an automorphism ϕ. In other words, m(ϕ) is the size of the
support supp(ϕ). We call m(ϕ) the motion of ϕ.

Conjecture 1.1 (“Tom Tucker’s infinite motion conjecture”) Let G be an infinite, locally finite,
connected graph. If every non-trivial automorphism of G has infinite motion, then the distinguishing
number D(G) is either 1 or 2.
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For the origin of the conjecture and partial results, we refer to [STW12]. Here, we only mention that
the conjecture is true if the automorphism group of the graph is countable. In this case, the validity of
the conjecture follows from either one of two different results in [ISTW15]. Hence, we may concentrate
on graphs with uncountable automorphism group.

The first of the above results is [ISTW15, Corollary 3.8]. It replaces the requirement of infinite
motion by a lower and upper bound on the size of the automorphism group. More precisely, it asserts
that every infinite, locally finite, connected graph G whose automorphism group is infinite, but strictly
smaller than 2ℵ0 , must have countably infinite automorphism group, infinite motion, and distinguishing
number 2. The proof is not easy and follows from results of either Halin [Hal73], Trofimov [Tro85], or
Evans [Eva87]. On the other hand, the second result is [ISTW15, Lemma 3.3]. It relaxes the condition
of local finiteness and requires only that the automorphism group is countably infinite. The proof is
short and elementary.

Acknowledgements

We thank the two referees for their comments and remarks, as they contributed considerably to the
readability of the paper. Furthermore, we are grateful to Norbert Sauer and Claude Laflamme for their
suggestions.

2 Preliminaries

Throughout this paper the symbol N denotes the set {1,2,3, . . . } of positive integers, whereas N0 denotes
the set {0,1,2,3, . . . } of non-negative integers.

2.1 Distinguishing number

Let G be a graph with vertex set V(G), and let C be a set of colours. A C-colouring χ of G is a function
χ : V(G)→ C. For us, the set of colours C will mostly be the set {black,white }, in which case we speak of
a two-colouring of G.

Assume given a C-colouring χ of G. Let ϕ ∈Aut(G). If, for every v ∈V(G), the equation χ(ϕ(v))= χ(v)
holds, we say that χ is preserved by ϕ. Otherwise, we say that χ breaks ϕ. A C-colouring χ of G is called
distinguishing if it is only preserved by the trivial automorphism. The distinguishing number D(G) is
the least cardinal d such that there is a distinguishing C-colouring of G with d colours, i. e. |C| = d.

2.2 Group action on a graph

Given a group A equipped with a homomorphism ϕ : A → Aut(G), we say that A acts on G. Moreover,
we say that A acts non-trivially on G if there is an a ∈ A such that ϕ(a) moves at least one vertex of G.
By abuse of language, we write a(v) instead of ϕ(a)(v) and say that a C-colouring χ of G is preserved by
a ∈ A if it is preserved by ϕ(a) ∈Aut(G).

2.3 Balls and spheres

The ball with centre v0 ∈ V(G) and radius r is the set of all vertices v ∈ V(G) with dG(v0,v) ≤ r, it is
denoted by BG

v0
(r). On the other hand, SG

v0
(r) stands for the set of all vertices v ∈V(G) with dG(v0,v)= r.

It is called the sphere with centre v0 ∈ V(G) and radius r. If G is clear from the context, we just write
Bv0(r) and Sv0(r) respectively. For terms not defined in Sections 2.1 – 2.3, we refer to [HIK11].
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2.4 Growth rate of a graph

Although our graphs are infinite, as long as they are locally finite, all balls and spheres of finite radius
are finite. The number of vertices in BG

v0
(r) is a monotonically increasing function of r. Indeed, notice

that ∣∣∣BG
v0

(r)
∣∣∣= r∑

i=0

∣∣∣SG
v0

(i)
∣∣∣ and

∣∣∣SG
v0

(i)
∣∣∣≥ 1.

Nonetheless, the precise growth function depends very much on the choice of v0 ∈V(G), and it is helpful
to define the growth rate of G. We say that an infinite, locally finite, connected graph G has polynomial
growth if there is a vertex v0 ∈V(G) and a polynomial p such that

∀ r ∈N0 :
∣∣∣BG

v0
(r)

∣∣∣≤ p(r) .

It is easy to see that this implies that all growth functions r 7→ ∣∣BG
v (r)

∣∣ are bounded by polynomials of
the same degree as p, independent of the choice of v ∈ V(G). In this context, it should be clear what
we mean by linear and quadratic growth. For example, observe that the two-sided infinite path has
linear growth, and that the growth of the grid of integers in the plane is quadratic. We say that G has
exponential growth if there is a constant c > 1 such that

∀ r ∈N0 :
∣∣∣BG

v0
(r)

∣∣∣≥ cr .

Homogeneous trees of degree d > 2, i. e. infinite trees in which every vertex has the same degree d,
have exponential growth. For the distinguishability of such trees and tree-like graphs, see [WZ07] and
[IKT07].

2.5 Toolbox

In this paper, we are mainly interested is the distinguishability of infinite, locally finite, connected
graphs of polynomial growth. Here, we provide a toolbox that helps us to break automorphisms.

Lemma 2.1 Let A be a finite group acting on a graph G. If a colouring χ : V(G)→ C breaks some element
of A, then it breaks at least half of the elements of A.

Proof. The elements of A that preserve a colouring χ form a subgroup. If some element of A is broken
by a colouring χ, then this subgroup is proper. Thus, by Lagrange’s theorem, it cannot contain more
than half of the elements of A.

Corollary 2.2 Let A be a finite group acting non-trivially on a graph G. Then, there is a two-colouring
of G that breaks at least half of the elements of A.

The proof of Lemma 2.1 is based on the fact that A is a group. But a very similar result holds for
any finite family of non-trivial automorphisms, as the following lemma shows.

Lemma 2.3 Let G be a finite graph. If A is a finite set equipped with a function ϕ : A → Aut(G)r { id },
then there is a two-colouring of G that breaks ϕ(a) for at least half of the elements of A.

Proof. Let V(G) = {v1,v2, . . . ,vn }. For every k ∈ {1,2, . . . ,n }, let Ak be the set of all elements a ∈ A with
supp(ϕ(a))⊆ {v1,v2, . . . ,vk }. We show by induction that the assertion holds for all Ak and, in particular,
for A. Because A1 is the empty set, the assertion is true for A1. Suppose it is true for Ak−1. Then, we
can choose a two-colouring of G that breaks ϕ(a) for at least half of the elements of Ak−1. This remains
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true, even when we change the colour of vk. Notice that, for every a ∈ Ak r Ak−1, ϕ(a) either maps vk

into a white vertex in {v1,v2, . . . ,vk−1 } or into a black vertex in {v1,v2, . . . ,vk−1 }. Depending on which
of the two alternatives occurs more often, we colour vk black or white such that this two-colouring also
breaks ϕ(a) for at least half of the elements of Ak r Ak−1 and, hence, for at least half of the elements
of Ak.

2.6 Graphs with infinite motion

If every non-trivial automorphism of a graph G has infinite motion, we say that G has infinite motion.
For graphs with infinite motion, the following lemma is easy to see. Nevertheless, a rigorous proof can
be found in [Leh14, Corollary 4.8].

Lemma 2.4 Let G be an infinite, locally finite, connected graph with infinite motion. If an automorphism
ϕ ∈ Aut(G) fixes a vertex v0 ∈ V(G) and moves at least one vertex in Sv0(k), then, for every i ≥ k, it moves
at least one vertex in Sv0(i).

3 Main result about graphs with non-linear growth

Let us mention that infinite, locally finite, connected graphs with infinite motion and linear growth have
countable automorphism group, see e. g. [Leh14, Proof of Theorem 4.5], and therefore distinguishing
number either 1 or 2. But, if the growth rate of such graphs becomes non-linear, then the automorphism
group can become uncountable. This holds, even if the growth rate becomes only slightly non-linear.

Example 3.1 (“Stretched tree”) Let ε> 0. Then, there is an infinite, locally finite, connected graph G
with uncountable automorphism group, infinite motion, and non-linear growth function g :N0 →N0 such
that, for sufficiently large n ∈N0, g(n) is bounded from above by n1+ε.

Proof. We construct G from T3, i. e. the tree in which every vertex has degree 3. First, choose an
arbitrary vertex v0 ∈V(T3). Our strategy is to replace the edges of T3 by paths such that, for sufficiently
large n ∈N0, g(n)= ∣∣BG

v0
(n)

∣∣≤ n1+ε. For every i ∈N0, there are 3 ·2i edges from ST3
v0 (i) to ST3

v0 (i+1). If we
replace them by paths of the same length, then the cardinality of the balls BG

v0
(n) grows linearly with

slope 3 ·2i from ST3
v0 (i) to ST3

v0 (i+1).
Observe that, given any affine linear function h :N0 →N0, there is a number nh ∈N such that, for all

n ≥ nh, h(n)≤ n1+ε. In particular, we may consider the functions hi :N0 →N0 defined by hi(x)= 3·2i·x+1,
and choose numbers ni ∈N such that, for every n ≥ ni, hi(n)≤ n1+ε.

As illustrated in Figure 1, for every i ∈ N0, we replace the edges from ST3
v0 (i) to ST3

v0 (i+1) by paths
of length ni+1. For every i ∈ N and every vertex v ∈ V(G) on such a path from ST3

v0 (i) to ST3
v0 (i+1), we

have dG(v,v0)≥ ni and, hence, g(dG(v,v0))≤ 3·2i ·dG(v,v0)+1= hi(dG(v,v0))≤ dG(v,v0)1+ε. So, for every
n ≥ n1, g(n) is bounded from above by n1+ε.

Every automorphism of T3 that fixes v0 induces an automorphism of G. It is easy to see that this
correspondence is bijective. Thus, Aut(G) is uncountable. Furthermore, G inherits infinite motion
from T3. Since Aut(G) is uncountable, the result mentioned at the beginning of Section 3 implies that
G cannot have linear growth.

Though we cannot assume that the automorphism groups of our graphs are countable, we prove
that infinite, locally finite, connected graphs with infinite motion and non-linear, but moderate, growth
are still two-distinguishable, i. e. they have distinguishing number either 1 or 2.
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ST3
v0 (1)ST3

v0 (0) ST3
v0 (2) ST3

v0 (3)

v0

n3n2n1

Figure 1: Replacing the edges of T3 by paths.

v0

Sv0(k+2)Sv0(0)

Sv0(1) Sv0(k+4)

Sv0(2k+4)

Figure 2: Breaking all automorphisms that move v0.

Our construction of a suitable colouring consists of several steps. In Lemma 3.2, we colour a part of
the vertices in order to break all automorphisms that move a distinguished vertex v0. In Lemma 3.3,
we show how to colour some of the remaining vertices in order to break more automorphisms. Iteration
of this procedure yields a distinguishing colouring, as shown in Theorem 3.4.

Lemma 3.2 Let G be an infinite, locally finite, connected graph with infinite motion and v0 ∈ V(G).
Then, for every k ∈ N, one can two-colour all vertices in Bv0(k+3) and Sv0(λk+4), λ ∈ N, such that, no
matter how one colours the remaining vertices, all automorphisms that move v0 are broken.

Proof. If k = 1, then we colour v0 black and all v ∈ V(G)r {v0 } white, whence all automorphisms that
move v0 are broken. So, let k ≥ 2. First, we colour all vertices in Sv0(0), Sv0(1), and Sv0(k+2) black and
the remaining vertices in Bv0(k+3) white. Moreover, we colour all vertices in Sv0(λk+4), λ ∈N, black
and claim that, no matter how we colour the remaining vertices, v0 is the only black vertex that has
only black neighbours and only white vertices at distance r ∈ {2,3, . . . ,k+1 }, see Figure 2.

It clearly follows from this claim that this colouring breaks every automorphism that moves v0. So,
it remains to verify the claim. Consider a vertex v ∈ V(G)r {v0 }. If v is not in Sv0(1), then it is easy
to see that v cannot have the aforementioned properties. So, let v be in Sv0(1) and assume it has only
black neighbours and only white vertices at distance 2. Then, it cannot be neighbour to any vertex in
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Sv0(m) Sv0(n)

kv0

Figure 3: Breaking all automorphisms that fix v0 and act non-trivially on Bv0(m).

Sv0(2), but must be neighbour to all vertices in Bv0(1) except itself. Therefore, the transposition of the
vertices v and v0 is a non-trivial automorphism of G with finite support. Since G has infinite motion,
this is not possible.

Lemma 3.3 Let G be an infinite, locally finite, connected graph with infinite motion and v0 ∈ V(G).
Moreover, let ε> 0. Then, there is a k ∈N such that, for every m ∈N and every n ∈N which is sufficiently
large and fulfils ∣∣Sv0(n)

∣∣ ≤ n
(1+ε) log2(n)

, (∗)

one can two-colour all vertices in Sv0(m+1),Sv0(m+2), . . . ,Sv0(n), but not those in Sv0(λk+4), λ ∈N, such
that all automorphisms that fix v0 and act non-trivially on Bv0(m) are broken.

Proof. Notice that the meaning of the variables m, n, and k is illustrated in Figure 3. First, choose a
k ∈N that is larger than 1+ 1

ε
. Then

k−1
k

> 1
1+ε . (1)

Next, let m ∈N. By (1), there is an n0 ∈N such that

∀n ≥ n0 : (n−m) · k−1
k

≥ n · 1
1+ε +1. (2)

Now, let n ∈ N be sufficiently large, i. e. n ≥ n0, and assume it fulfils (∗). Then, by (2), the number of
spheres Sv0(m+1),Sv0(m+2), . . . ,Sv0(n) that are not of type Sv0(λk+4), λ ∈N, is at least⌊

(n−m) · k−1
k

⌋
≥

⌊
n · 1

1+ε +1
⌋
> n

1+ε · (3)

Our goal is to two-colour the vertices in these spheres in order to break all automorphisms that
fix v0 and act non-trivially on Bv0(m). Let Aut(G,v0) be the group of all automorphisms that fix v0.
Every ϕ ∈Aut(G,v0) induces a permutation ϕ|Bv0(n) of the vertices in Bv0(n). These permutations form
a group A. If σ and τ are different elements of A, then στ−1 ∈ A acts non-trivially on Bv0(n). By
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Lemma 2.4, it also does so on Sv0(n), which means that σ and τ do not agree on Sv0(n). Therefore, the
cardinality of A is at most

∣∣Sv0(n)
∣∣!, for which the following rough estimate suffices for our purposes:

∣∣Sv0(n)
∣∣!≤ ∣∣Sv0(n)

∣∣∣∣Sv0 (n)
∣∣−1 ≤

(
n

(1+ε) log2(n)

) n
(1+ε) log2(n)−1

≤ n
n

(1+ε) log2(n)−1 = 2
(

n
(1+ε) log2(n)−1

)
log2(n) ≤ 2

n
1+ε−1 .

(4)

It is clear that, if an element σ ∈ A that acts non-trivially on Bv0(m) is broken by a suitable two-colouring
of some spheres in Bv0(n), then all ϕ ∈Aut(G,v0) with ϕ|Bv0(n)=σ are broken at once. So, it suffices to
break all σ ∈ A which act non-trivially on Bv0(m) by a suitable two-colouring of some spheres in Bv0(n)
in order to ensure that all ϕ ∈Aut(G,v0) which act non-trivially on Bv0(m) are broken.

Before doing this, let us remark that any element σ ∈ A which acts non-trivially on the ball Bv0(m),
also acts non-trivially on every sphere Sv0(m+1), . . . ,Sv0(n). This is a consequence of Lemma 2.4, and
implies that we can break σ by breaking the action of σ on any one of the spheres Sv0(m+1), . . . ,Sv0(n).

Now, consider the subset S ⊆ A of all elements that act non-trivially on Bv0(m). As already remarked,
every σ ∈ S acts non-trivially on every sphere Sv0(m+1), . . . ,Sv0(n). Hence, we can apply Lemma 2.3 to
break at least half of the elements of S by a suitable colouring of Sv0(m+1). What remains unbroken is
a subset S′ ⊆ S of cardinality at most |S|/2. Now, we proceed to the next sphere. We can break at least
half of the elements of S′ by a suitable colouring of Sv0(m+2). What still remains unbroken, is a subset
S′′ ⊆ S of cardinality at most |S|/4.

Iterating the procedure, but avoiding spheres of type Sv0(λk+4), λ ∈N, we end up with the empty
subset ∅⊆ S after at most log2(|S|)+1 ≤ log2(|A|)+1 ≤ n

1+ε steps, see (4). This is less than the number
of spheres not of type Sv0(λk+4), λ ∈N, between Sv0(m+1) and Sv0(n), see (3). Thus, we remain within
the ball Bv0(n). Hence, all s ∈ S and, therefore, all ϕ ∈ Aut(G,v0) that act non-trivially on Bv0(m) are
broken, and we are done.

Theorem 3.4 Let G be an infinite, locally finite, connected graph with infinite motion and v0 ∈ V(G).
Moreover, let ε> 0. If there are infinitely many n ∈N such that∣∣Sv0(n)

∣∣≤ n
(1+ε) log2(n)

, (∗∗)

then the distinguishing number D(G) is either 1 or 2.

Proof. Consider the number k ∈ N provided by Lemma 3.3. First, we use Lemma 3.2 to two-colour all
vertices in Bv0(k+3) and in Sv0(λk+4), λ ∈N, such that, no matter how we colour the remaining vertices,
all automorphisms that move v0 are broken.

Let m1 = k+3. Among all n ∈ N that satisfy (∗∗) we choose a number n1 ∈ N that is larger than
m1 and sufficiently large to apply Lemma 3.3. Hence, we can two-colour all vertices in Sv0(m1 +1),
Sv0(m1 +2), . . . ,Sv0(n1), except those in Sv0(λk+4), λ ∈N, such that all automorphisms that fix v0 and
act non-trivially on Bv0(m1) are broken. Next, let m2 = n1 and choose an n2 ∈ N to apply Lemma 3.3
again. Iteration of this procedure yields a two-colouring of G.

If an automorphism ϕ ∈ Aut(G)r { id } moves v0, then it is broken by our colouring. If it fixes v0,
consider a vertex v with ϕ(v) 6= v. Since G is connected and m1 < m2 < m3 < . . . , there is an i ∈ N
such that v is contained in Bv0(mi). Hence, ϕ acts non-trivially on Bv0(mi) and is again broken by our
colouring.
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Corollary 3.5 Let G be an infinite, locally finite, connected graph with infinite motion and v0 ∈ V(G).
Moreover, let ε> 0. If there are infinitely many n ∈N such that

∣∣Bv0(n)
∣∣≤ n2

(2+ε) log2(n)
, (∗∗∗)

then the distinguishing number D(G) is either 1 or 2. In particular, Tom Tucker’s infinite motion
conjecture holds for all graphs of growth o(n2/ log2(n)).

Proof. Let n1 < n2 < n3 < . . . be an infinite sequence of numbers that fulfil (∗∗∗). Notice that, for every
k ∈N,

nk∑
i=1

i
(1+ ε

2 ) log2(i)
> nk

2

(2+ε) log2(nk)
≥ ∣∣Bv0(nk)

∣∣> nk∑
i=1

∣∣Sv0(i)
∣∣ .

Since

lim
k→∞

((
nk∑
i=1

i
(1+ ε

2 ) log2(i)

)
− nk

2

(2+ε) log2(nk)

)
=∞ ,

we infer that

lim
k→∞

nk∑
i=1

(
i

(1+ ε
2 ) log2(i)

− ∣∣Sv0(i)
∣∣)=∞ ,

and that, for infinitely many i ∈N, ∣∣Sv0(i)
∣∣< i

(1+ ε
2 ) log2(i)

.

Hence, we can apply Theorem 3.4 to show that the distinguishing number D(G) is either 1 or 2.

86



Bibliography

[AC96] M. O. Albertson and K. L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3 (1996), no. 1,
Research Paper 18, 17 pp. (electronic).

[AHS90] J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and concrete categories, Pure and Applied
Mathematics (New York), John Wiley & Sons, Inc., New York, 1990, The joy of cats, A Wiley-
Interscience Publication.

[All12] D. Allcock, Triangles of Baumslag-Solitar groups, Canad. J. Math. 64 (2012), no. 2, 241–253.

[Bea83] A. F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-
Verlag, New York, 1983.

[Beh75] H. Behr, Explizite Präsentation von Chevalleygruppen über Z [Explicit presentations for Chevalley
groups over Z], Math. Z. 141 (1975), 235–241.

[BH99] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319,
Springer-Verlag, Berlin, 1999.

[Bil99] P. Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability and
Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999, A Wiley-Interscience
Publication.

[Bla55] D. Blackwell, On transient Markov processes with a countable number of states and stationary
transition probabilities, Ann. Math. Statist. 26 (1955), 654–658.

[BP93] W. A. Bogley and S. J. Pride, Calculating generators of Π2, Two-dimensional homotopy and
combinatorial group theory, London Math. Soc. Lecture Note Ser., vol. 197, Cambridge Univ. Press,
Cambridge, 1993, pp. 157–188.

[Bre04] D. Brendel, Nichtsphärische und sphärische Dreiecke nilpotenter Gruppen [non-spherical and spherical
triangles of nilpotent groups], Diplomarbeit, Goethe-Universität Frankfurt am Main, 2004.

[Bri63] J. L. Britton, The word problem, Ann. of Math. (2) 77 (1963), 16–32.

[Bri91] M. R. Bridson, Geodesics and curvature in metric simplicial complexes, Group theory from a
geometrical viewpoint (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, pp. 373–463.

[Bro03] S. Brofferio, How a centred random walk on the affine group goes to infinity, Ann. Inst. H. Poincaré
Probab. Statist. 39 (2003), no. 3, 371–384.

[Bro06] , The Poisson boundary of random rational affinities, Ann. Inst. Fourier (Grenoble) 56 (2006),
no. 2, 499–515.

[BS62] G. Baumslag and D. Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math.
Soc. 68 (1962), 199–201.

[BS85] M. G. Brin and C. C. Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math.
79 (1985), no. 3, 485–498.

87



BIBLIOGRAPHY

[BSCSW] A. Bendikov, L. Saloff-Coste, M. Salvatori, and W. Woess, Brownian motion on treebolic space: escape
to infinity, Rev. Mat. Iberoam., to appear.

[But10] J. O. Button, Largeness of LERF and 1-relator groups, Groups Geom. Dyn. 4 (2010), no. 4, 709–738.

[CD60] G. Choquet and J. Deny, Sur l’équation de convolution µ = µ∗σ, C. R. Acad. Sci. Paris 250 (1960),
799–801.

[CF51] K. L. Chung and W. Fuchs, On the distribution of values of sums of random variables, Mem. Amer.
Math. Soc. 1951 (1951), no. 6, 12.

[CFP96] J. W. Cannon, W. J. Floyd, and W. R. Parry, Introductory notes on Richard Thompson’s groups, Enseign.
Math. (2) 42 (1996), no. 3-4, 215–256.

[Che95] A. Chermak, Triangles of groups, Trans. Amer. Math. Soc. 347 (1995), no. 11, 4533–4558.

[CK12] V. Climenhaga and A. Katok, Measure theory through dynamical eyes, 2012, arXiv:1208.4550.

[CKW94] D. I. Cartwright, V. A. Kaı̆manovich, and W. Woess, Random walks on the affine group of local fields
and of homogeneous trees, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 4, 1243–1288.

[Cor96] J. M. Corson, Amalgamated sums of groups, Proc. Edinburgh Math. Soc. (2) 39 (1996), no. 3, 561–570.

[Cun11] J. Cuno, Nichtsphärische Dreiecke von Gruppen [Non-spherical triangles of groups], Diplomarbeit,
Goethe-Universität Frankfurt am Main, 2011.

[Éli82] L. Élie, Comportement asymptotique du noyau potentiel sur les groupes de Lie, Ann. Sci. École Norm.
Sup. (4) 15 (1982), no. 2, 257–364.

[Ers04] A. Erschler, Boundary behavior for groups of subexponential growth, Ann. of Math. (2) 160 (2004),
no. 3, 1183–1210.

[Ers10] , Poisson-Furstenberg boundaries, large-scale geometry and growth of groups, Proceedings of
the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010,
pp. 681–704.

[ERST00] M. Edjvet, G. Rosenberger, M. Stille, and R. M. Thomas, On certain finite generalized tetrahedron
groups, Computational and geometric aspects of modern algebra (Edinburgh, 1998), London Math.
Soc. Lecture Note Ser., vol. 275, Cambridge Univ. Press, Cambridge, 2000, pp. 54–65.

[Eva87] D. M. Evans, A note on automorphism groups of countably infinite structures, Arch. Math. (Basel) 49
(1987), no. 6, 479–483.

[Fel71] W. Feller, An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley
& Sons, Inc., New York-London-Sydney, 1971.

[Fü73] H. Fürstenberg, Boundary theory and stochastic processes on homogeneous spaces, Harmonic analysis
on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass.,
1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 193–229.

[Hae73] J. Haezendonck, Abstract Lebesgue-Rohlin spaces, Bull. Soc. Math. Belg. 25 (1973), 243–258.

[Hal73] R. Halin, Automorphisms and endomorphisms of infinite locally finite graphs, Abh. Math. Sem. Univ.
Hamburg 39 (1973), 251–283.

[HIK11] R. Hammack, W. Imrich, and S. Klavžar, Handbook of product graphs, second ed., Discrete
Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2011, With a foreword by
Peter Winkler.

[HK06] J. Howie and N. Kopteva, The Tits alternative for generalized tetrahedron groups, J. Group Theory 9
(2006), no. 2, 173–189.

88



BIBLIOGRAPHY

[IJK08] W. Imrich, J. Jerebic, and S. Klavžar, The distinguishing number of Cartesian products of complete
graphs, European J. Combin. 29 (2008), no. 4, 922–929.

[IKT07] W. Imrich, S. Klavžar, and V. Trofimov, Distinguishing infinite graphs, Electron. J. Combin. 14 (2007),
no. 1, Research Paper 36, 12 pp. (electronic).

[ISTW15] W. Imrich, S. M. Smith, T. W. Tucker, and M. E. Watkins, Infinite motion and 2-distinguishability of
graphs and groups, J. Algebraic Combin. 41 (2015), no. 1, 109–122.

[Joh80] D. L. Johnson, Topics in the theory of group presentations, London Mathematical Society Lecture Note
Series, vol. 42, Cambridge University Press, Cambridge-New York, 1980.

[Kaı̆91] V. A. Kaı̆manovich, Poisson boundaries of random walks on discrete solvable groups, Probability
measures on groups, X (Oberwolfach, 1990), Plenum, New York, 1991, pp. 205–238.

[Kaı̆00] , The Poisson formula for groups with hyperbolic properties, Ann. of Math. (2) 152 (2000), no. 3,
659–692.

[KKR04] V. A. Kaı̆manovich, Y. Kifer, and B.-Z. Rubshtein, Boundaries and harmonic functions for random
walks with random transition probabilities, J. Theoret. Probab. 17 (2004), no. 3, 605–646.

[Kle14] A. Klenke, Probability theory, second ed., Universitext, Springer, London, 2014, A comprehensive
course.

[KV83] V. A. Kaı̆manovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy, Ann.
Probab. 11 (1983), no. 3, 457–490.

[KW08] N. Kopteva and G. Williams, The Tits alternative for non-spherical Pride groups, Bull. Lond. Math.
Soc. 40 (2008), no. 1, 57–64.

[Leh14] F. Lehner, Symmetry breaking in graphs and groups, Dissertation, Technische Universität Graz, 2014.

[Lor95] S. Lorenz, Freie Untergruppen in Dreiecken von Gruppen [Free subgroups in triangles of groups],
Diplomarbeit, Goethe-Universität Frankfurt am Main, 1995.

[Mei08] J. Meier, Groups, graphs and trees, London Mathematical Society Student Texts, vol. 73, Cambridge
University Press, Cambridge, 2008, An introduction to the geometry of infinite groups.

[Mes72] S. Meskin, Nonresidually finite one-relator groups, Trans. Amer. Math. Soc. 164 (1972), 105–114.

[Mil68] C. F. Miller, III, On Britton’s theorem A, Proc. Amer. Math. Soc. 19 (1968), 1151–1154.

[Mun84] J. R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA,
1984.

[Neu54] B. H. Neumann, An essay on free products of groups with amalgamations, Philos. Trans. Roy. Soc.
London. Ser. A. 246 (1954), 503–554.

[Pól21] G. Pólya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz,
Math. Ann. 84 (1921), no. 1-2, 149–160.

[Pri87] S. J. Pride, Groups with presentations in which each defining relator involves exactly two generators, J.
London Math. Soc. (2) 36 (1987), no. 2, 245–256.

[Pri92] , The (co)homology of groups given by presentations in which each defining relator involves at
most two types of generators, J. Austral. Math. Soc. Ser. A 52 (1992), no. 2, 205–218.

[Roh52] V. A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Translation 1952 (1952),
no. 71, 55.

[Ros81] J. Rosenblatt, Ergodic and mixing random walks on locally compact groups, Math. Ann. 257 (1981),
no. 1, 31–42.

89



BIBLIOGRAPHY

[Rot95] J. J. Rotman, An introduction to the theory of groups, fourth ed., Graduate Texts in Mathematics, vol.
148, Springer-Verlag, New York, 1995.

[Rud90] D. J. Rudolph, Fundamentals of measurable dynamics, Oxford Science Publications, The Clarendon
Press, Oxford University Press, New York, 1990, Ergodic theory on Lebesgue spaces.

[Sta91] J. R. Stallings, Non-positively curved triangles of groups, Group theory from a geometrical viewpoint
(Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, pp. 491–503.

[STW12] S. M. Smith, T. W. Tucker, and M. E. Watkins, Distinguishability of infinite groups and graphs,
Electron. J. Combin. 19 (2012), no. 2, Paper 27, 10 pp. (electronic).

[SW05] M. Sageev and D. T. Wise, The Tits alternative for CAT(0) cubical complexes, Bull. London Math. Soc.
37 (2005), no. 5, 706–710.

[Tit72] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270.

[Tit86] , Buildings and group amalgamations, Proceedings of groups—St. Andrews 1985, London
Math. Soc. Lecture Note Ser., vol. 121, Cambridge Univ. Press, Cambridge, 1986, pp. 110–127.

[Tro85] V. I. Trofimov, Groups of automorphisms of graphs as topological groups, Mat. Zametki 38 (1985), no. 3,
378–385, 476.

[Tuc11] T. W. Tucker, Distinguishing maps, Electron. J. Combin. 18 (2011), no. 1, Paper 50, 21 pp. (electronic).

[Wil70] S. Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont.,
1970.

[Woe89] W. Woess, Boundaries of random walks on graphs and groups with infinitely many ends, Israel J. Math.
68 (1989), no. 3, 271–301.

[Woe00] , Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol. 138,
Cambridge University Press, Cambridge, 2000.

[Woe09] , Denumerable Markov chains, EMS Textbooks in Mathematics, European Mathematical
Society (EMS), Zürich, 2009.

[WZ07] M. E. Watkins and X. Zhou, Distinguishability of locally finite trees, Electron. J. Combin. 14 (2007),
no. 1, Research Paper 29, 10 pp. (electronic).

90


	A gentle introduction written in layman's terms
	Summary
	Random walks on Baumslag-Solitar groups
	Introduction and preliminaries
	Baumslag-Solitar groups
	Random walks on groups
	Poisson-Fürstenberg boundary

	Identification of the Poisson-Fürstenberg boundary
	Convergence to the boundary of the hyperbolic plane
	Convergence to the space of ends of the Bass-Serre tree
	Construction of the Poisson-Fürstenberg boundary

	Appendix: The remaining non-amenable cases
	Action by suitable isometries on the hyperbolic plane
	Action by isometries on the Euclidean plane


	The Tits alternative for non-spherical triangles of groups
	Introduction
	Preliminaries
	Corson diagrams and their colimits
	Curvature of Corson diagrams
	Embedding theorems
	Standing assumption on the Gersten-Stallings angles

	Intersection theorem
	Example
	Preliminaries about disc pictures
	Statement and proof of the intersection theorem
	Interpretation

	Billiards theorem for triangles of groups
	Bridson's simplicial complex
	Billiards theorem
	Constructing non-abelian free subgroups
	Tits alternative

	Appendix: Further applications
	Normal forms
	Euclidean domination


	Distinguishing graphs with infinite motion and non-linear growth
	Introduction
	Preliminaries
	Distinguishing number
	Group action on a graph
	Balls and spheres
	Growth rate of a graph
	Toolbox
	Graphs with infinite motion

	Main result about graphs with non-linear growth

	Bibliography

