
Secure and Efficient
Elliptic Curve Cryptography for

Embedded Environments

by
Erich Wenger

A PhD Thesis
Presented to the Faculty of Computer Science in Partial Fulfillment of the

Requirements for the PhD Degree

Assessors

Prof. Dr. Karl Christian Posch (Graz University of Technology, Austria)
Prof. Dr. Lejla Batina (Radboud University Nijmegen, The Netherlands)

October 2013

Institute for Applied Information Processing and Communications (IAIK)
Faculty of Computer Science

Graz University of Technology, Austria

Abstract

Radio-frequency identification (RFID), wireless sensor networks (WSN), and
embedded systems are three of the most pressing research topics at the present
time. Those technologies pose huge potentials for society and interesting
requirements for designers. Such embedded devices must be inexpensive, small,
power-efficient, energy-efficient, and/or sufficiently fast, while providing sufficient
functionality for high-level applications. Especially cryptography is becoming
one of the key enablers for many applications. However, in particular public-key
cryptography is very demanding and requires application-specific optimizations
for practical feasibility.

In this work, we focus on the practical realization and evaluation of elliptic curve
cryptography (ECC) for embedded systems. We consider the resource restrictions
which are imposed by the applications in the same way as practical physical
attacks. Already during the conceptual design of our ECC implementations,
power analysis and fault analysis attacks are considered. Practical evaluations
are performed to validate our security concepts.

This thesis contains two parts. In the first part, elliptic curve cryptography
is discussed from a high-level perspective and a side-channel secured scalar
multiplication method is derived. In the second part, several of our papers
are given without modification from their original publications. Those papers
have been (co)authored by the author and anonymously reviewed, accepted, and
presented at international conferences.

i

Acknowledgements

I would like to thank all the people who supported and challenged me during the
last three years. Especially, I want to thank my family and my fiancee Violetta
Krasnici. Without her mental support, this thesis would not have been possible.
With her on my side, no mountain is too high to be climbed.

Further, I want to thank my supervisors Jörn-Marc Schmidt, Karl Christian
Posch, and Manfred Aigner, who gave me the freedom to pursue any research, I
was interested in, and never were lost for words when I needed a helping hand.
My freedom can be traced back to the fact that the duties, I was assigned to
by Jörn-Marc Schmidt, matched my interests, which is a sign for exceptional
leadership. I will never forget Karl Christian Posch’s exceptional guidance during
the course IT-Security1 and his challenging opinions, which broadened my horizon.
I also want to thank Manfred Aigner for trusting in my skills when he hired me
and for giving me spiritual guidance during the tasting of local hop juice.

No thesis would be possible without the right social environment, in particular
my colleagues from the SEnSE group, Alexander Szekely, Florian Mendel, Hannes
Groß, Marcel Medwed, Maria Eichelseder, Mario Kirschbaum, Mario Lamberger,
Martin Feldhofer, Martin Schläffer, Michael Hutter, Raphael Spreitzer, Sandra
Dominikus, Thomas Korak, Thomas Plos, and Tomislav Nad, with some of
whom I also coauthored several papers. Additionally, I also want to thank my
other coauthors Christian Pendl, Johannes Feichtner, Johann Großschädl, Mario
Werner, Markus Pelnar, Norbert Felber, Thomas Baier, Thomas Unterluggauer,
and Zhe Liu. Without them, this thesis would not have been possible.

Finally, I want to thank my assessor Lejla Batina for many valuable comments
and taking the time to travel to Graz.

1IT-Security is a university course, I had the pleasure to lecture.

iii

Contents

Abstract i

Acknowledgements iii

Contents v

I ECC from a High-Level Perspective 1

1 Introduction 3

1.1 Main Contributions . 3

1.2 Key Distribution Problem . 4

1.3 Assumptions on Prior Knowledge 7

1.4 ECC within the Bigger Picture 7

1.5 RSA versus ECC versus AES . 9

1.6 The Premise for Using ECC . 11

1.7 Thesis Outline . 12

2 Requirements of Applications 13

2.1 Embedded Systems . 13

2.2 Wireless Sensor Networks . 14

2.3 Radio Frequency Identification 15

2.4 Conclusion . 17

v

vi CONTENTS

3 Implementing Elliptic Curve Cryptography 18

3.1 Notations . 19

3.2 Cryptographic Protocols to be Considered 19

3.2.1 Elliptic Curve Discrete Signature Algorithm 19

3.2.2 Elliptic Curve Diffie-Hellman Key Exchange 21

3.3 Methods for Scalar Multiplication 22

3.3.1 Methods for Insecure Scalar Multiplication 23

3.3.2 Montgomery Ladder . 24

3.4 Side-Channel Hardened Point Arithmetic 26

3.4.1 Vulnerability Analysis . 27

3.5 Conclusion . 31

4 Future Work 32

Bibliography 34

II Publications 45

List of Publications 47

5 8/16/32 Shades of Elliptic Curve Cryptography on Embedded
Processors 51

6 Hardware Architectures for MSP430-based Wireless Sensor Nodes
Performing Elliptic Curve Cryptography 71

7 A Lightweight ATmega-based Application-Specific Instruction-Set
Processor for Elliptic Curve Cryptography 91

8 Fast Multi-Precision Multiplication for Public-Key Cryptography on
Embedded Microprocessors 109

9 A Hardware Processor Supporting Elliptic Curve Cryptography for
Less Than 9 kGEs 127

CONTENTS vii

10 Exploring the Design Space of Prime Field vs. Binary Field ECC-
Hardware Implementations 147

11 Analyzing Side-Channel Leakage of RFID-Suitable Lightweight ECC
Hardware 165

Part I

Elliptic Curve Cryptography
from a High-Level Perspective

1

Chapter 1

Introduction

It is of upmost importance to work on the toughest challenge within one’s scope
of research. As our research deals with the implementation of cryptography for
extremely constrained devices, the challenge clearly is to implement asymmetric,
especially elliptic curve cryptography, as efficiently as possible. Within the big
picture, elliptic curve cryptography is just a puzzle piece. However, it is one of
the largest and most flexible puzzle pieces. With its huge design space, there is a
magnitude of design options to trim the design to a specific set of needs. In this
chapter, we revisit the main contributions of some of our papers and elaborate
on the significance of our research.

1.1 Main Contributions

Our papers deal with software design, hardware design, and hardware/software
co-design of ECC implementations. In regard to software implementations,
it is important to highlight [102, 103, 104, 105, 110, 111, 61]. Within those
papers, we did assembly-optimized software implementations for some of the
most used embedded microprocessors. In particular, our focus was on the
megaAVR series [7] by Atmel, the MSP430 series [95] by Texas Instruments and
the Cortex-M0+ family [6] by ARM. The goals of our implementations were
always rather similar: side-channel hardened implementations that require a
minimum amount of memory and are as fast as possible (security over size
over speed). Therefore, we hardly broke speed records, but we published
some of the smallest implementations. Implementations that are practically
more relevant than many of the related implementations. In [61], we layed the
foundation for the fastest multi-precision integer multiplication formulas for an
ATmega microprocessor. In [105], we even evaluated the latest non-standardized

3

4 INTRODUCTION

Edwards [30], Montgomery [82], and GLV [38] curves and compared them with
standardized elliptic curves.

We also worked on several papers on hardware/software co-design. In [102], we
equipped our clone (JAAVR) of the popular ATmega128 with different, highly
dedicated instruction-set extensions. Using these special instructions, we were
able to improve the ECC performance up to 39-fold and improved the suitability
of microprocessor-based designs for RFID applications. In [103], we investigated
an openMSP430-based design regarding its potentials for wireless sensor networks.
By equipping the openMSP430 with a dedicated ECC co-processor, its energy
requirements dropped by up to a factor of 36. However, more interesting for
microchip manufacturers is the drop-in concept in which you drop a special piece
of hardware right between the CPU and the memory. Thus, neither the CPU
nor the memory have to be modified. And the most important fact about the
drop-in concept is that it only requires 4 kGE of chip area, while it nearly delivers
stand-alone-ECC-processor-like performance.

Our smallest openMSP430-based design is 14 kGE in size. If you decide to go for a
full-custom microprocessor, just designed for ECC, Neptun [101] can significantly
reduce your area footprint. In [107], we were able to implement elliptic curve
cryptography, while only needing 9 kGE of hardware. This is one of the smallest
ECC implementations ever published. Further, in [108], we utilized Neptun to
make a fair comparison between prime-field and binary-field based elliptic curve
cryptography. It turns out that when side-channel attacks are considered, and
Montgomery ladders are implemented, binary fields outperform prime fields by
factors of 3.3 in runtime and 3.9 in energy. At the same time, the binary field
based ECC design is around 20% smaller.

Additionally, we did not only implement ECC, but also attacked a design
regarding its side-channel vulnerabilities. In [109], we analyzed a protected
ECC implementation, suitable for RFID tags, and were able to recover the secret
key using various attack approaches. Based on this paper, future ECC designs
must consider certain power-analysis attacks that have not been published before.

To emphasize the significance of our research, it is important to ask the question,
why asymmetric cryptography, in particular elliptic curve cryptography is
necessary in the first place. In order to answer this question, we start at the
most fundamental problem, the key distribution problem.

1.2 Key Distribution Problem

The key distribution problem describes a scenario in which n users want to interact
with each other using a symmetric cryptographic primitive. Unfortunately, for
that to work, each user has to store n−1 keys, which brings the system to a total
of n2−n

2 key pairs. In practical terms, e.g., if a million users are within a network,

KEY DISTRIBUTION PROBLEM 5

every user has to store 999,999 secret keys. But this number is small compared
to 499,999,500,000, which is the total number of keys needed. However, storing
16 megabytes of keys is no problem for current desktop computers and mobile
phones. Nevertheless, it is a problem for embedded devices, such as wireless
sensor nodes or RFID tags which only possess a few kilobits of memory. There
are three approaches to deal with this dilemma. One is to completely avoid
cryptography, another is to use key distribution centers, and a third approach is
to use asymmetric cryptography.

So, the most important question is whether we need cryptography in the first
place? And the answer clearly is: Yes, we do. Achieving common practical goals,
such as confidentiality, integrity, or privacy is infeasible without cryptography.
Without cryptography, it would not be possible to do secure online banking, to
do secure online shopping, or to confidentially exchange electronic mail. However,
cryptography poses certain requirements to the user, the applications, and the
hardware. About ten years ago it was believed that cryptography is not suitable
for certain embedded applications. However, in 2004, Feldhofer et al. [35] wrote
a landmark paper in which they proofed that cryptography is indeed suitable for
RFID tags.

The conclusion is that cryptography is an unavoidable necessity, but how can we
solve the problem of distributing keys? A solution which only uses symmetric
cryptography is based on key distribution centers. For this solution every user
only stores a single secret key, which she only shares with the key distribution
center. The key distribution center stores keys for every user in the network. So,
if two users want to communicate with each other, they ask the key distribution
center for help1. Protocols based on this principle work well. However, these
protocols are subject to several shortcomings: the key distribution center needs
to be contacted for every session; the key distribution center poses a single point
of failure; secure channels are needed during the initialization. Nevertheless, the
biggest problem is that companies do not want to share key distribution centers,
because they do not trust each other. So when, e.g., an RFID tag changes owners,
changing the key distribution center is a troublesome task. In order to avoid
such complex protocols, asymmetric cryptography could be used instead.

Asymmetric cryptography is at its foundation more complex than symmetric
cryptography, as it splits keys into key pairs. A key pair consists of a public key
and a private key. While the private key is only known to the user or the device,
the public key can be known to everybody2. With this concept, it is possible
to utilize protocols that are simply not feasible using symmetric cryptography.
In this sense, the most important protocol is the Diffie-Hellman key-exchange
algorithm [27]. With this fairly simple scheme it is possible that two users

1The key distribution center generates a random number, a random key, separately encrypts
this random number with the keys of the two users, and sends the encrypted key to the two
users. The users decrypt the key and use it for the following communication.

2Except in privacy preserving protocols, in which designers want to circumvent the fact that
public keys can be used as unique identifiers.

6 INTRODUCTION

generate a shared secret key via an insecure channel and therefore implicitly solve
the key distribution problem. However, and this is a capital HOWEVER, this
is not the full picture. Practically speaking, one needs to be aware of the huge
performance difference between public-key and symmetric-key cryptography and
the need of public-key infrastructures to avoid man-in-the-middle attacks.

There are big differences between the public-key schemes currently used. The
most common and standardized public-key schemes are either based on RSA [90],
ElGamal [31], or elliptic curve cryptography (ECC) [70, 80]. The big advantage
of the RSA and ElGamal schemes in comparison to ECC is that they are older,
therefore have been used and investigated for longer, and that they are simpler
to implement. For RSA, all you have to implement are a multiplication and
an exponentiation operation. For ECC, it is necessary to implement a finite-
field multiplication, an addition, a subtraction, an inversion, as well as point
arithmetics. However, the main drawback of RSA and ElGamal in comparison
to ECC is the requirement of larger keys. According to NIST [12] and ECRYPT
II [9], nicely visualized at www.keylength.com [26], an 160-bit elliptic curve has
approximately the same security level as 1024-bit RSA, namely 80 bits. At the
128-bit security level, which is considered to be secure for at least the next 20
years3, 256-bit ECC is equally difficult to attack as 3072-bit to 4096-bit RSA.
This difference in required parameter sizes has serious implications for ECC and
RSA implementations. For instance, in Section 1.5, we conclude that ECC is
14–90 times more efficient than RSA.

So, elliptic curve cryptography is the de-facto standard public-key algorithm for
embedded systems. However, it still is sometimes (cf. [104]) more than 10,000
times slower than most of the comparable symmetric primitives. In a system
that comprises of symmetric and asymmetric primitives, you should spend your
precious development time on the most expensive component of the system
(Amdahl’s Law). And in our case, the most expensive component is elliptic
curve cryptography. Therefore, any research which improves the runtime, the
area footprint, the power consumption, or the energy consumption of an ECC
implementation automatically improves the efficiency of the overall system.

In the remainder of this chapter, we review elliptic curve cryptography within
the bigger picture. To ease readability, we first make an assumption regarding
the background knowledge of the potential reader in Section 1.3. However, in
Section 1.4 a review of elliptic curve cryptography from an top-level view is
performed. Therefore, it is also necessary to understand the practical differences
between RSA, ECC, and AES, which are reviewed in Section 1.5. Based on that
comparison, we derive a premise in Section 1.6, on which we based our research
in the last few years. Section 1.7 outlines the rest of the thesis.

3The general assumption is that no new algorithm is found that solves the integer factorization
problem or the elliptic curve discrete logarithm problem more efficiently.

www.keylength.com

ASSUMPTIONS ON PRIOR KNOWLEDGE 7

1.3 Assumptions on Prior Knowledge

After this rather basic introduction on the importance of elliptic curve
cryptography, one usually introduces the building principles of elliptic curve
cryptography. However, nowadays an introduction to elliptic curve cryptography
is already taught in university courses, i.e. IT-Security. Therefore it is safe
to assume that the potential reader of this text already has a basic knowledge
of cryptography and is familiar with the building principles of elliptic curve
cryptography. Additionally, one of the most excellent and most thorough
introductions on elliptic curve cryptography has already been written by
Hankerson, Menezes, and Vanstone [48]. In their “Guide to Elliptic Curve
Cryptography” they give a thorough overview on finite-field arithmetic, elliptic-
curve arithmetic, cryptographic protocols, and implementation issues. For more
advanced literature we recommend Cohen et al.’s [22] “Handbook of Elliptic and
Hyperelliptic Curve Cryptography”.

1.4 Elliptic Curve Cryptography within the Bigger
Picture

Application

Finite-Field Arithmetic

Elliptic Curve Arithmetic

Cryptographic Protocol

Communication
Protocol

Figure 1.1: Hierarchic visualization of the dependencies between the application
and an elliptic curve implementation.

It is important to review elliptic curve cryptography within the bigger picture.
This is done in two different ways. In Chapter 2, elliptic curve cryptography is
reviewed from the standpoint of embedded applications, whereas in the following,
a hierarchical approach is taken. Common practice is to depict the bigger picture

8 INTRODUCTION

in a pyramid (e.g., Hankerson et al. [48, page 226]). In Figure 1.1, an extended
version of such a hierarchical chart is shown. It includes the application, the
communication protocol, the cryptographic protocol, the elliptic curve point
arithmetic, the finite-field arithmetic, as well as the integer and polynomial
arithmetic. In the following, the six layers are elaborated in more detail:

Application. Usually, the objective is not a stand-alone cryptographic primitive.
The goal always is to utilize a cryptographic primitive within a protocol
for a specific application. Therefore, a designer who is responsible for a
cryptographic library always has to be aware of the requirements which
come from the designated application for which cryptography is used.
Therefore, in Chapter 2 we perform a detailed review of the applications
which are within the scope of this thesis.

Communication Protocol. The design and specification of a protocol for a
certain application with certain use cases is one of the most fundamental
tasks a system designer must get right. The application in connection with
the communication protocol defines the requirements of the actual software
or hardware design. Therefore, the definition of the high-level protocol
has the biggest influence on the resulting implementation. Especially, the
fact whether public-key-based or secret-key-based protocols are needed
has a huge impact. In Section 1.5, we raise the awareness of the practical
differences between symmetric and asymmetric primitives. The resulting
message can be summed up in: “If it is possible to avoid public-key
cryptography, then avoid it.”

Cryptographic Protocol. When one defines a communication protocol, one
uses cryptographic primitives and cryptographic protocols. The most
important protocols within the scope of this thesis are the Elliptic Curve
Digital Signature Algorithm (ECDSA) and the elliptic curve Diffie-Hellman
(ECDH) key-exchange algorithm. ECDSA is standardized within ANSI
X9.62 [5], FIPS 186-3 [85], IEEE 1363-2000 [62], and ISO/IEC 15946-2 [65]
and therefore is the algorithm when user or entity authentication is needed.
The elliptic curve Diffie-Hellman key exchange can be used to collaboratively
derive a symmetric key over an insecure channel. Section 3.2 is dedicated
to those protocols.

Elliptic Curve Arithmetic. The foundation of ECDSA and ECDH is the
scalar multiplication, Q ← kP , in which the scalar k is multiplied with
the point P to derive a point Q. This rather simple-looking operation is
the most time-consuming part of all ECC-based protocols and therefore
must be implemented with special care. Additionally, the applications that
are within the scope of this PhD thesis (cf. Chapter 2) are vulnerable to
practical power-analysis and practical fault attacks. Therefore, the scalar
multiplication methodology must be implemented in a way such that the
ECDSA and ECDH algorithm are practically secure and sufficiently fast,

RSA VERSUS ECC VERSUS AES 9

small, power-efficient, and energy-efficient for the designated application.
Chapter 3 elaborates different design options for Elliptic Curve scalar
multiplications.

Finite-Field Arithmetic. Elliptic-curve point arithmetic is based on finite-
field arithmetic, which is based on integer and polynomial arithmetic.
The same requirements that apply to the scalar multiplication method
also apply to the finite-field arithmetic: Provide side-channel security and
be sufficiently fast. Usually more than 90 percent of the runtime of a
scalar multiplication is due to the runtime of the finite-field multiplication.
Hence, getting the finite-field multiplication “right” is of great importance.
Naturally, the “right” finite-field multiplication algorithm depends on the
design goals which are given by the application.

To summarize, the design goals given by the applications affect the design
strategies used within the underlying layers which handle elliptic curve and
finite-field arithmetic. On the other hand, the application is crucially dependent
on the underlying layers. Therefore, the conclusion must be that elliptic curve
cryptography is not an off-the-shelf commodity. Elliptic curve cryptography
needs to be hand-crafted for the unique requirements posed by the application.
In order to illustrate the huge difference in performance between asymmetric and
symmetric ciphers the following section compares RSA, ECC, and AES.

1.5 RSA versus ECC versus AES

While RSA and ECC are two of the most important public-key algorithms, AES
is the most important symmetric-key block cipher. The Advanced Encryption
Standard (AES) [84] was established by the National Institute of Standards and
Technology after a five-year competition which was won by Rijndael [25]. AES
works on blocks of 128-bit of data, provides security levels of 128–256-bit, and
reached such an importance that, e.g., Intel even introduced instructions [63]
dedicated to improve the performance of AES.

In the following we review the software characteristics of RSA, ECC, and AES,
and the hardware characteristics of ECC and AES.

Software Characteristics

As the focus of this work are embedded, light-weight applications, we exemplarily
use the Atmel megaAVR architecture [7] as reference platform. Those small 8-bit
RISC microprocessors are already used in a wide range of embedded applications
and therefore are a good representative to compare the performance of RSA,
ECC, and AES.

10 INTRODUCTION

In 2004, Gura et al. [46] gave assembly-optimized implementations for RSA and
ECC. Their results show that a private-key 1024-bit RSA exponentiation (using
the Chinese remainder theorem for speedup) takes about 13.6 times longer than
an equivalently secure scalar multiplication over an 160-bit elliptic curve. At the
same time, the ECC implementation only needs a third of data memory. If a
larger security level of, e.g. 128-bit, is required, the difference between RSA and
ECC is even more significant. As both the runtimes for RSA and ECC scale
cubicly with their respective parameter sizes, an approximation gives that at the
128-bit security level RSA is about (3072/1024)3

(256/160)3 × 13.6 = 89.6 times slower than
ECC.

As ECC easily outperforms RSA, only the public-key algorithm ECC is compared
with the symmetric-key cipher AES. This comparison is done at the 128-
bit security level and is based on our own results [104]. Our latest scalar
multiplication implementation over the standardized secp256r1 [18] elliptic curve
for an ATmega processor needs 34.9 million cycles. Our assembly-optimized
implementation of AES-128 [104] needs 3,300 cycles for encryption. This means
that a single public-key operation takes 10,575 times longer than a comparable
symmetric-key operation.

However, one may argue that Rijndael [25] was specifically designed to give
good performance on 8-bit processors. Therefore, the following comparison in
hardware should complete the picture.

Hardware Characteristics

Again, we are not interested in fast implementations, but in small implementations.
Feldhofer et al. [35], Hämäläinen et al. [47], and Moradi et al. [83] presented
three of the smallest AES hardware implementations. Currently, the smallest
AES hardware implementation by Hämäläinen et al. [47] requires only 3,100GE4

in size. If the application allows to use AES in encryption mode only, Moradi et
al. [83] reduced the minimum AES size to 2,400GE. As the smallest ECC
implementations are all at the 80-bit security level, it is important to have also a
reference implementation at the 80-bit security level. One of the most popular
ciphers is PRESENT-80, by Bogdanov et al. [16]. This block cipher offers a
security level of 80-bit while requiring only 32 cycles and 1,507GE for encryption.

Two of the smallest ECC implementations in hardware are done by Wenger et
al. [106] and Lee et al. [75]. Wenger et al. takes advantage of area-efficient RAM
macros to achieve a size of 8,958GE at the 80-bit security level. Without RAM
macros, Lee et al.’s area-optimized implementation needs 11,904GE. Thus, in
terms of area their implementations are 2.9–7.9 times larger than the referenced
AES and PRESENT implementations. However, in terms of speed the differences

4GE stands for Gate Equivalent, which is a technology-independent measurement for area.
Note that a gate equivalent highly depends on the size of NAND gates and therefore designers
should ideally always make comparisons using the same technology.

THE PREMISE FOR USING ECC 11

Table 1.1: Light-weight AES, PRESENT, and ECC implementations.

Implementation Cipher Runtimea Chip Area
[Cycles] [GE]

Feldhofer et al. [35] AES-128 1,016 3,595
Hämäläinen et al. [47] AES-128 160 3,100
Moradi et al. [83] AES-128b 226 2,400
Bogdanov et al. [16] PRESENT-80 32 1,507
Wenger et al. [106] sect163r2 285,000 8,958
Lee et al. [75] sect163r2 296,000 11,904

aEncryption runtimes of AES and PRESENT. Scalar multiplication runtimes of ECC.
bEncryption only.

are much larger. Comparing Bogdanov et al.’s PRESENT-80 implementation
with Wenger et al.’s ECC implementation shows an 8,900 fold difference in
performance. If we scale Wenger et al.’s multi-precision ECC implementation of
a scalar multiplication to the 128-bit security level, we would get an excruciating
runtime of (256

163)3 × 285,000 ≈ 1,104,083 cycles. Comparing this number with
Hämäläinen et al.’s runtime gives a factor of 6,900 in terms of speed. Table 1.1
gives an overview of the presented results.

One important detail that was omitted in this comparison is that AES
usually requires costly countermeasures against differential power analysis (DPA)
attacks. Moradi et al.’s [83] threshold implementation which incorporates DPA
countermeasures increases the size of their AES implementation from 2,400GE
to 11,031GE. As ECC is usually used in settings in which ECC is not vulnerable
to differential power analysis attacks, ECC does not need such countermeasures.
Although this fact brightens the dimmed performance numbers of ECC, it should
not distract from the huge difference in runtime.

Conclusion

No matter which platform is taken as reference, AES is around four magnitudes
faster than ECC. And this huge disparity between AES and ECC brings us to
the following premise.

1.6 The Premise for Using ECC

Based on those performance values, the premise is to avoid elliptic curve
cryptography whenever possible. Symmetric ciphers are faster, smaller, more
energy-efficient, and more power-efficient. However, for the rest of this thesis, we
assume that both the application and protocol designers came to the conclusion

12 INTRODUCTION

that public-key cryptography is required. As already discussed above, without
public-key cryptography, many protocols are infeasible.

1.7 Thesis Outline

This thesis is split into two parts. In the first part, we review elliptic curve
cryptography from a high-level perspective. In the second part, a list of
publications as well as a digest of some of the most representative papers is given.

Chapter 2 highlights the requirements imposed by common embedded applications.
In detail, the demands of RFID and wireless sensor nodes on practical ECC
implementations are discussed. Those prerequisites were considered during the
work on of the papers given in Part II.

Chapter 3 reviews the protocol layer and the ECC point arithmetic layer.
Especially the danger of practical implementation attacks on commonly used
protocols and the underlying scalar multiplication method are discussed. Attacks
that cannot be handled on the protocol layer must be handled within the
scalar multiplication algorithm. We give an algorithm which incorporates many
countermeasures against practical attacks and analyze its vulnerability against
the latest implementation attacks.

An excerpt of some of the most interesting future research topics are discussed
in Chapter 4.

In the second part of this thesis a list of publications and some of our most
representative papers are given.

Chapter 2

Requirements of Applications

Currently, the most active fields of research which require elliptic curve
cryptography come with very scarce resources. Therefore one needs to utilize
the full spectrum of design options in order to meet the specification. As the
specification differs significantly from application to application, this chapter
elaborates on the different requirements of embedded systems in general, and in
particular wireless sensor networks and RFID systems.

2.1 Embedded Systems

According to Steve Heath [50], an embedded system is a “microprocessor-based
system that is built to control a function or range of functions and is not designed
to be programmed by the end-user”. This definition of embedded systems is
rather broad. More concrete is the classification by Koopman [73] who files
embedded systems within four categories. While “signal processing”, “mission
critical”, and “distributed” embedded systems are out of the scope of this thesis,
“small” embedded systems most certainly are. A small system must be small in
terms of physical dimensions and only utilize a minimum amount of resources
(e.g. memory) in order to minimize the cost of the embedded system.

In order to better classify the requirements of embedded systems, the runtime,
area, power, and energy characteristics are most commonly used to describe
software and hardware implementations:

Runtime. A microprocessor always has to fulfill some functionality within a
certain time frame. If some cryptographic operation has to be computed
as part of that functionality, the time requirement directly passes itself
on to the cryptographic implementation. In hardware design, the amount
of necessary computation can be measured as cycle count tc or actual

13

14 REQUIREMENTS OF APPLICATIONS

execution time t. The execution time can be computed as t = tc

f , where f
denotes the operating frequency.

Area. If a microchip is produced in large quantities, the manufacturing cost
of a microchip is proportional to its size. Therefore, it is important to
minimize the chip area in order to minimize the cost of a hardware design.
If the microprocessor is fixed, it is only possible to minimize the area by
removing functionality (e.g., embedded peripherals) or by reducing the
memory footprint. Therefore, the requirement for software implementations
is to minimize the amount of memory in order to keep the price as low as
possible.

Power. Electric power P is defined as the rate at which energy is transferred.
In complementary metal-oxide-semiconductor (CMOS) circuits, the power
consumption can be expressed as P = αCV 2f , where α denotes the activity
of a circuit, C the capacity of the switched circuit, V the power-supply
voltage, and f the frequency of the clock source. The job of a system
designer is to have a combination of α, C, V , and f that does not overload
the power source. This is particularly important for RFID tags that are
supplied wirelessly.

Energy is the product of power and runtime. Therefore, both the power and
runtime must be optimized to achieve an energy-saving architecture. For
hardware designers it is important to realize that E = P · t = αCV 2f · tc

f =
αCV 2tc. Therefore, the energy consumption is independent of the operating
frequency f of the device.

After this rather general introduction to embedded systems, the following two
sections investigate the more specific requirements of wireless sensor networks
and RFID tags.

2.2 Wireless Sensor Networks

A wireless sensor network consists of sensor nodes and a gateway so that the sensor
nodes are accessible from the outside. A sensor node is equipped with a sensor,
a communication interface, a light-weight and energy-saving microprocessor, as
well as a battery. Using sensor nodes, a wide range of monitoring [39] and target-
tracking [94] applications become feasible. In 2008, Yick et al. [114] performed
an extensive study on wireless sensor networks, in particular the platform, the
communication interface, and the network services.

As in some cases standard AAA batteries should last for a life-time of several
years, it is important to keep the energy consumption as low as possible. This
major requirement reflects in the used sensor, the used communication interface,
and the embedded microprocessor.

RADIO FREQUENCY IDENTIFICATION 15

Depending on the designated application, a wide range of sensors can be used.
Possible sensors range from simple temperature and humidity probes [98, 99] to
more expensive microphones and cameras [3]. Depending on the application, the
sensors are only active when necessary to minimize energy consumption.

There are several standards that define communication interfaces for wireless
sensor nodes. IEEE 802.15.4 [57] provides a low-cost solution especially suitable
for wireless personal area networks. With its low complexity and low data
rates it provides a platform for maximizing the battery life. On top of IEEE
802.15.4, Zigbee [115] automates the forming of mesh networks, in which hundreds
of sensor nodes can join. Other protocols include, but are not limited to,
WirelessHART [49], ISA100.11a [64], 6LoWPAN [96].

Apart from the sensor and the wireless interface, the biggest consumer of power is
the embedded microprocessor. Current platforms [97] such as the IRIS, MICAz,
MICA2, Imote2, and TelosB by Crossbow [24], or BEAN, COOKIES, EPIC
mode, PowWow, Shimmer, TelosB, T-Mote Sky, and XM1000, utilize light-
weight microprocessors such as the 8-bit Atmel megaAVR [7] or the 16-bit Texas
Instruments MSP430 [95] processors. Those long-tested microprocessors made a
name for themselves as being energy-efficient and used in a wide range of products.
Lately, ARM has tried to place a foot in the door with one of the most inexpensive
and most energy-efficient 32-bit microprocessor. The ARM Cortex-M0+ [6] is a
direct competitor of the ATmega and MSP430 microprocessors. Several vendors
already started to supply the market with their own Cortex-M0+ based sensor
nodes [8].

In Wenger et al. [110], we did a comparison of the megaAVR, the MSP430, and
the ARM Cortex-M0+ microprocessors and thoroughly opposed their respective
ECC performance. It turns out that if only the performance of ECC matters,
the Cortex-M0+ requires the smallest amount of energy for an elliptic curve
scalar multiplication. However, if it is necessary to further reduce the energy
requirement for an elliptic curve scalar multiplication, then it is necessary to
perform optimizations on the architectural level. In our ACNS paper [103] from
2013, we introduced new architectural options in order to further decrease the
energy consumption of sensor nodes.

We conclude that the energy consumption of a sensor node is of utmost importance.
Price per sensor node and wall-clock performance are only of secondary interest.
This is where RFID tags differ.

2.3 Radio Frequency Identification

Unlike wireless sensor nodes, passive RFID tags do not come with a battery.
Passive RFID tags are wirelessly supplied with power. An antenna (e.g., coil) is

16 REQUIREMENTS OF APPLICATIONS

used to harvest power from an electromagnetic field. To minimize the cost, the
same antenna is also used for communication purposes.

In general, in an RFID scenario it is important to distinguish between reader
and tag devices. A reader, which is somehow connected to the overall network,
emits an electromagnetic field. Thereby the general assumption is that the
reader device is connected to a permanent or non-critical power source. In terms
of computing power, any RFID reader easily outperforms an RFID tag. The
most simple tags are only capable of providing an unique serial number, which
can be used for identification purposes. In order to perform authentication,
cryptography is a necessity. In particular RFID tags providing Triple DES and
AES [86] are already used in order to do symmetric authentication. The drawback
of those tags is the elevated power consumption. The power consumption is
inversely proportional to the maximum reading distance. So the elevated power
consumption of cryptographic tags has an effect on the maximum reading distance.

In order to get a better understanding of the additional requirements for RFID
tags, it is important to review practical application scenarios. Finkenzeller [36]
and Shepard [93] list applications like access control (public transport, ski tickets,
electronic immobilization), personal identification (ski tickets, electronic passport),
supply-chain management (clothing, commodity), and contact-less payment. The
most common denominator of those applications is the requirement that RFID
tags must be inexpensive. If a carton of milk is equipped with an RFID tag,
the RFID tag must not have an influence on the price of the carton of milk.
The price of an RFID tag is defined by its housing, its antenna and its ASIC,
consisting of an analog and a digital integrated circuit. As the cost of an ASIC is
mostly defined by the number of chips that fit on a single waver, the size of the
chip must be minimal. So for a digital-circuit designer it is important to keep
the circuit as small as possible1.

So what is the role of elliptic curve cryptography within the context of RFID?
The main problem of symmetric cryptography is the key distribution problem.
A symmetric solution would be to host key-distribution centers with lists of
symmetric keys. However, as soon as there are serval companies involved which
do not want to share their secret keys, centralized key-distribution centers reach
their limit. Such a problem can be easily circumvented using ECC.

Another scenario in which public-key cryptography is unavoidable comes from
the sector of privacy preserving protocols, which are of great concern in the
context of RFID. Garfinkel et al. [40] and Juels [68] give overviews on potential
threats and elaborate possible solutions. Katherine Albrecht wrote a book [4]
about how “Spychips” are going to be used to track “your every move”. In a
holistic investigation of possible privacy scenarios, Serge Vaudenay [100] comes to

1It is also necessary to avoid any expensive manufacturing steps and to not require too
many metal layers. Such attributes also have a significant influence on the price of a microchip.

CONCLUSION 17

the conclusion that “[...] narrow-strong privacy2[...] essentially needs public-key
cryptography techniques.”

The big research question is not whether ECC can be successfully implemented
for RFID. Hutter et al. [58] proved it already by actually building a working
RFID tag capable of symmetric-key and public-key authentication. The question
is whether it is possible to implement ECC in such power-efficient and inexpensive
manner such that an ECC-enabled RFID tag becomes feasible for large-scale
applications.

In this context, our results from Wenger et al. [104] are highly encouraging.
Although we did not build an ASIC, we synthesized our design as ASIC and
successfully evaluated it on the IAIK RFID demo tag [87].

2.4 Conclusion

This chapter revisited the different needs of embedded systems in general and
in particular wireless sensor nodes and RFID tags. The main criteria for
cryptography on microprocessor-based embedded systems are high speed and
low memory footprint. However, when those light-weight microprocessors are
used within wireless sensor networks, it is most important to reduce the energy
consumption. The less energy elliptic curve cryptography actually needs, the
longer is the expected life time of a sensor node. On the other hand, an RFID tag
is limited by the amount of energy per time (power) it consumes. Additionally,
in order to be applicable for real-world systems, cryptographic protocols have to
be handled within several hundreds of milliseconds. Therefore, there is a certain
runtime requirement for RFID tags as well.

One of the most important criteria has not yet been discussed so far. Practical
implementation security is crucial for all of the discussed scenarios. If there is
some practical way to circumvent the cryptographic primitives, there is no use
of implementing cryptography in the first place. Such practical implementation
attacks are discussed in the following chapter.

2For a detailed definition of narrow-strong privacy, we refer to Vaudenay [100].

Chapter 3

Implementing Elliptic Curve
Cryptography

There are few practical, light-weight, and standardized public-key algorithms
which offer a similar huge design space as ECC does. With its rich mathematical
structure, it is possible to optimize ECC on three algorithmic levels: the point
arithmetic, the finite-field arithmetic, and the integer or polynomial arithmetic.
On each level it is possible to crucially influence the practical outcome. It is
therefore important to choose the appropriate algorithms for a given design goal.
The most common design goals have already been discussed in the previous
chapter. The target specification could demand to optimize for speed, area,
power, or energy. However, it is also important to keep track of additional
security requirements. Especially in a setting which contains wireless sensor
nodes or RFID tags, it is important to be safe from practical physical attacks,
such as passive and active implementation attacks.

In the following, we elaborate on different design options and discuss their
respective implications in terms of speed, area, power, energy, and security.
Hereby we look retrospectively at the lessons learned during the writing of
our paper; some of which are explicitly given in Part II. As most of our work
deals with embedded, area-constrained microprocessor and ASIC hardware1

implementations of elliptic curve cryptography, we explicitly avoid to discuss
strategies for high-speed and high-throughput applications.

1Doing area-optimized designs for ASICs largely differs from area-optimized designs for
FPGAs. One only has to consider a design with a lot of combinatorial. This logic needs
a lot of look-up tables which are part of slices. However, every slice also includes registers,
which basically come for free as they hardly can be re-used once the combinatoric logic use the
majority of the slices.

18

NOTATIONS 19

3.1 Notations

The following vocabulary is largely taken form the Guide to Elliptic Curve
Cryptography by Hankerson et al. [48] as we consider their book as the standard
book for implementing elliptic curve cryptography.

K = Fq General definition of a finite field. Most practical are prime fields Fp

and binary extension fields F2m .
p The order of the prime field Fp.

f(z) The reduction polynomial (of degree m).
E(K) Defines an elliptic curve over a finite field K. Commonly used

short-forms for standardized [5, 62, 65, 85] Weierstrass equations
are E(Fq) : y2 = x3 + ax+ b for elliptic curves over prime fields
and E(F2m) : y2 + xy = x3 + ax2 + b for elliptic curves over binary
fields. Non-Weierstrass-compatible elliptic curve equations are not
considered throughout this chapter.

a, b Coefficients of a given elliptic curve over either a prime field or binary
extension field.

x, y Coordinates of a point P = (x, y) which satisfy the elliptic curve
equation.

n The prime order of a base point P .
h The cofactor. n × h is equal to the number of points on E(K),

denoted as #E(K).

3.2 Cryptographic Protocols to be Considered

For the sake of completeness we give two schemes which are most commonly
used within embedded environments. First, the Elliptic Curve Discrete Signature
Algorithm (ECDSA) is a standardized signature scheme which can be used
to reach common cryptographic goals like authentication and non-repudiation.
Second, the Elliptic Curve Diffie-Hellman key exchange (ECDHKE) algorithm,
based on Diffie and Hellman [27], is used to commonly derive a secret key over
an insecure channel. Note that there also exist several ECC-based protocols
especially designed for RFID tags that are non-standardized.

3.2.1 Elliptic Curve Discrete Signature Algorithm

The ECDSA algorithm is based on the Discrete Signature Algorithm (DSA) and
widely standardized within ANSI X9.62 [5], FIPS 186-3 [85], IEEE 1363-2000 [62],
and ISO/IEC 15946-2 [65], just to name some of the most important standards.
Algorithms 1 and 2 show how to generate a signature using the private key d
and how to verify a given signature (r, s) using the public key Q = dP .

20 IMPLEMENTING ELLIPTIC CURVE CRYPTOGRAPHY

Algorithm 1 ECDSA signature generation
Input: Domain parameters D = (q, a, b, P, n, h), private key d, message m.
Output: Signature (r, s).
1: Select k ∈R [1, n− 1].
2: Compute kP = (x1, y1) and convert x1 to an integer x1.
3: Compute r = x1 mod n. If r = 0 then go to step 1.
4: Compute e = H(m).
5: Compute s = k−1(e+ dr) mod n. If s = 0 then go to step 1.
6: Return (r, s).

Algorithm 2 ECDSA signature verification
Input: Domain parameters D = (q, a, b, P, n, h), public key Q, message m,

signature (r, s).
Output: Acceptance or rejection of the signature.
1: Verify that r and s are integers in the interval [1, n− 1]. If any verification

fails then return(“Reject the signature”).
2: Compute e = H(m).
3: Compute w = s−1 mod n.
4: Compute u1 = ew mod n and u2 = rw mod n.
5: Compute X = u1P + u2Q.
6: If X =∞ then return(“Reject the signature”);
7: Convert the x-coordinate x1 of X to an integer x1; compute v = x1 mod n.
8: If v = r then return(“Accept the signature”);

Else return(“Reject the signature”).

The most straight-forward use case for ECDSA is to sign a document. With
such a commitment, it is possible to authenticate a document, a person, or an
entity and the signature can be verified by anybody who posseses the public
key (non-repudiation). In embedded applications, ECDSA is usually used for
challenge-response protocols. In such protocols one party wants to proof its
identity to another party by signing a given random challenge. The signature
is then checked by the person who generated the challenge. Thereby, secure,
one-way authentication is performed.

Regarding side-channel security, Hutter et al. [60] practically demonstrated how
one can attack the multiplication dr in line 5 of Algorithm 1 using a differential
power analysis (DPA) attack. A straightforward countermeasure is to simply
rearrange s = k−1(e+ dr) to s = k−1e+ (k−1d)r. Therefore, the private key d
is always randomized with the random ephemeral k−1 and a DPA attack is not
possible any more. DPA attacks on the actual scalar multiplication kP are not
possible as random, ephemeral scalars are used.

Fault attacks on ECDSA have been shown by Schmidt and Medwed [92],
Barenghi et al. [10, 11], and Giraud and Knudsen [41]. Therefore, countermeasures

CRYPTOGRAPHIC PROTOCOLS TO BE CONSIDERED 21

Algorithm 3 Elliptic Curve Diffie-Hellman Key Exchange for party A.
Input: Domain parameters D = (q, a, b, P, n, h), secret scalar kA.
Output: Symmetric key K.
1: QA ← kAP .
2: Send QA to party B and receive QB = kBP from party B.
3: QAB ← kAQB .
4: K ← KDF (QAB).

against faults on the data-flow and the control-flow are necessary. Note that fault
attacks not only threaten the ECDSA signature generation, which involves the
private key, but also the ECDSA signature verification. It is possible to attack
the conditional branches which are used to check the validity of r, s, and the
equality of v = r.

Attacks on the actual scalar multiplication are not specific to the signature
generation algorithm and are discussed after a short introduction of the Elliptic
Curve Diffie-Hellman Key Exchange algorithm.

3.2.2 Elliptic Curve Diffie-Hellman Key Exchange

Algorithm 3 presents the pseudo-code for a Diffie-Hellman key exchange for one
of the two participating parties. In order to derive the algorithm for the other
party, some relabeling is necessary; replacing A with B and vice versa. A key
derivation function KDF is used to derive the shared secret key.

During an ECDHKE, parties A and B choose random scalars and perform
scalar multiplications with a random predefined base point P . Then, both parties
exchange their respective ephemeral points (QA = kAP , QB = kBP) and perform
scalar multiplications with the points from the other party (QAB = kAQB =
kBQA = kAkBP). Using a key derivation function (KDF) it is then possible to
use K = KDF (QAB) as symmetric key for further communications.

From an implementation point of view it is important to observe that the
initial scalar multiplication is performed with a fixed point, while the latter is
performed with a variable point. The scalar multiplication formula with the fixed
base point provides huge optimization potential. So one could either use two
performance-optimized scalar multiplication algorithms or a single, more general
scalar multiplication algorithm which would potentially save chip area. In the
following, we always assume to use a single scalar multiplication method, because
the job of securing a scalar multiplication algorithm is twice as hard when two
different algorithms must be secured.

In terms of implementation attacks, differential power analysis attacks are only
possible when static keys kA and kB are used. In general, it is assumed that kA

and kB are random ephemeral keys and therefore a DPA attack does not apply.

22 IMPLEMENTING ELLIPTIC CURVE CRYPTOGRAPHY

The same holds true for fault attacks. Fault attacks are not viable when random
keys are used. Simple power analysis and horizontal collision correlation power
analysis attacks are possible and are discussed in Section 3.4.1. It is up to the
used scalar multiplication algorithm to deal with such attacks.

Note that the biggest flaw of the DHKE algorithm is a viable (wo)man-in-the-
middle attack. Therefore, it is mandatory to use (standardized) protocols such
as the station-to-station (STS) protocol by Diffie, van Oorschot and Wiener [28]
or the three-pass key agreement protocol by Menezes, Qu and Vanstone, studied
in Law et al. [74].

The station-to-station protocols extends the DHKE with symmetric message
authentication codes (MAC) and asymmetric signatures. Basically, the
STS protocol is a Diffie-Hellman key exchange which uses ECDSA to proof
the authenticity of the keys. In all occurrences of security critical scalar
multiplications within the STS protocol, ephemeral keys are used as scalars.
Therefore, DPA attacks are not feasible for the ECDSA, the ECDHKE, or the
STS protocol.

Apart from those attacks, it is possible to perform, e.g., SPA attacks on the
scalar multiplication algorithm. Thus, it is mandatory to utilize a scalar
multiplication algorithm that is aware of practical physical attacks and applies
several countermeasures. In the following, we derive a secure scalar multiplication
algorithm from related work.

3.3 Methods for Scalar Multiplication

Within the scope of ECC-based cryptographic protocols, side-channel threats that
cannot be solved on the protocol layer must be handled within the point arithmetic
layer. The core algorithm within this layer is the scalar/point multiplication
algorithm. Using the right methodology crucially influences the performance and
the physical vulnerability of an actual implementation.

In the following, we review some insecure scalar multiplication algorithms and
build up to an algorithm which we consider to be secure against many types of
physical attacks. The scalar multiplication algorithm is designed to be used within
ECDHKE and ECDSA, two algorithms that only perform scalar multiplications
with random scalars. Therefore, the scalar multiplication algorithm must not
be secured against differential power analysis attacks. However, simple power
analysis and fault analysis attacks are an omnipresent danger.

METHODS FOR SCALAR MULTIPLICATION 23

Algorithm 4 Left-to-right double-and-add scalar multiplication.
Input: k = (kt−1, . . . , k1, k0), kt−1 = 1, P ∈ E(Fq).
Output: kP
1: Q← P
2: for i from t− 2 downto 0 do
3: Q← 2Q
4: if ki = 1 then
5: Q← Q+ P

6: end for
7: Return Q

Algorithm 5 Left-to-right double-and-add-always scalar multiplication.
Input: k = (kt−1, . . . , k1, k0), kt−1 = 1, P ∈ E(Fq).
Output: kP
1: Q← P
2: for i from t− 2 downto 0 do
3: Q← 2Q
4: if ki = 1 then
5: Q← Q+ P
6: else
7: T ← Q+ P

8: end for
9: Return Q

3.3.1 Methods for Insecure Scalar Multiplication

To understand how to securely perform scalar multiplications one needs to
understand how standard elliptic curve implementations can be attacked.
Algorithm 4 presents a standard left-to-right double-and-add scalar multiplication
algorithm. The scalar k is t = dlog2(k)e bits long and processed bit by bit. k
is represented as k =

∑t−1
i=0 2iki = 2t−1kt−1 + · · ·+ 22k2 + 21k1 + k0. The most

serious problem of Algorithm 4 is its power profile. It is rather easy to detect
when point doublings and additions are performed in dependency of the key bits
ki.

The standard solution to this problem is depicted in Algorithm 5. The double-
and-add-always algorithm also performs a point addition even when the key bit
is zero. Therefore, a constant timing and a constant power profile can be reached.
However, this algorithm is vulnerable to fault attacks. During the computation
of Algorithm 5, it is possible to induce a fault during the computation of a point
addition. If the result Q is corrupted, ki is equal to one, if Q is not corrupted,
the dummy operation was attacked and ki is equal to zero.

More craftily scalar multiplication methods are based on non-adjacent forms,

24 IMPLEMENTING ELLIPTIC CURVE CRYPTOGRAPHY

Algorithm 6 Scalar multiplication based on the atomicity principle.
Input: k = (kt−1, . . . , k1, k0), kt−1 = 1, P ∈ E(Fq).
Output: kP
1: Q[0]← P
2: Q[1]← P
3: i← t− 2, d← 0
4: while i ≥ 0 do
5: Q[0]← Q[0] +Q[d]
6: d← d⊕ ki, i← i− (d⊕ 1)
7: end while
8: Return Q[0]

window methods, and fixed-base comb methods, as thoroughly discussed in
Hankerson et al. [48]. The underlying problem of those methods is the
representation of the identity. There is no explicit representation of the identity
∞ = 0P in standard-conform Weierstrass curves. The identity must be specially
handled and breaks the algorithm flow. Therefore, any algorithm that performs
point additions in the form of Q← Q+ P must fail.

As additional alternative to a Montgomery ladder, it is important to consider
implementations based on the atomicity principle [19, 42, 77]. These specially
crafted formulas use a single primitive to calculate both point additions and
point doublings. The motive is that an attacker cannot distinguish the point
addition from the doubling in a power profile. Algorithm 6 depicts the underlying
algorithm. It is important to notice that its runtime directly depends on the
Hamming weight (the number of ones) of k. This is quite troublesome if one
ultimately wants to protect the control/program flow, as discussed later.

However, the rising research on horizontal collision correlation attacks has
practically defeated several formulas that are based on the atomicity principle.
Bauer et al. [13] showed how to distinguish operands which are re-used within
finite-field multiplications. If a key-dependent correlation can be performed, it is
possible to recover the key. Therefore, it is mandatory to use a different scalar
multiplication methodology.

3.3.2 Montgomery Ladder

The Montgomery ladder is named after Peter L. Montgomery who wrote several
of the most fundamental papers that are still used to improve the performance
of ECC (e.g., [81, 82]). In [82], he proposed special ECC formulas for differential
additions. In a differential point addition, the two points to be added, i.e.,
Q[0] and Q[1], have the special property that their difference Q[1]−Q[0] = P
is constant and known a priori. Using this knowledge, it is possible to derive
fast point addition algorithms which can be used within a Montgomery ladder.

METHODS FOR SCALAR MULTIPLICATION 25

Algorithm 7 Elliptic curve Montgomery ladder.
Input: k = (kt−1, . . . , k1, k0), kt−1 = 1, P ∈ E(Fq).
Output: R = kP
1: Q[0]← P
2: Q[1]← 2 · P
3: for i = t− 2 downto 0 do
4: Q[ki]← Q[ki] +Q[ki ⊕ 1]
5: Q[ki ⊕ 1]← 2 ·Q[ki ⊕ 1]
6: end for
7: Return Q[0]

However, the most important reason to use a Montgomery ladder nowadays is
its resistance against many simple side-channel attacks.

As depicted in Algorithm 7, two points with the constant difference Q[1]−Q[0] =
P are used within the Montgomery ladder. The core of the Montgomery ladder
are the point addition (Q[ki] ← Q[ki] + Q[ki ⊕ 1]) and the point doubling
(Q[ki ⊕ 1]← 2 ·Q[ki ⊕ 1]) operations. Those point operations are performed in
a key-independent fashion and do not utilize any dummy operations. At this
point we must urge a designer to actually implement Q[ki]← Q[ki] +Q[ki ⊕ 1],
but not Q[ki]← Q[0] +Q[1], as opposed to, e.g., Fan et al. [33]. Our experience
in Wenger et al. [109] showed that using Q[ki]← Q[0] +Q[1] as point addition
eases horizontal collision correlation attacks on Montgomery ladders.

From an implementation point of view, many formulas to efficiently compute
a Montgomery ladder were proposed. The original formulas by Peter
Montgomery [82] are not suitable for standardized Weierstrass curves. For
the standardized curves it is important to distinguish elliptic curves over binary
(extension) fields and elliptic curves over prime fields. The fastest formulas for
elliptic curves over binary fields are from López and Dahab [78]. For elliptic curves
over prime fields, formulas have been introduced by Izu et al. [66], Hutter et
al. [59], and Goundar et al. [44, 45].

Although a Montgomery ladder provides a good foundation against many
implementation attacks it is not sufficient to use Algorithm 7 just as is. According
to Fan et al. [33], a plain Montgomery ladder is not safe from comparative side-
channel attacks [113], zero point attacks [1], and twisted curve attacks [37]. In
the following section, a strengthened version of Algorithm 7 is introduced and
thoroughly analyzed regarding side-channel attacks.

26 IMPLEMENTING ELLIPTIC CURVE CRYPTOGRAPHY

Algorithm 8 Hardened scalar multiplication algorithm for a Weierstrass curve
over a prime field.
Input: Domain parametersD = (p, a, b, P, n, h), k = (kt−1, . . . , k1, k0), kt−1 = 1,

P ∈ E(Fp) = (x, y).
Output: R = kP
1: if y2 6= x3 + ax+ b then Perform Error Handling
2: (X,Y, Z)← (x · λ, y · λ, λ) . Randomize Projective Coordinates
3: if Y 2Z 6= X3 + aXZ2 + bZ3 then Perform Error Handling
4: Q[0]← (X,Z), Q[1]← 2 · (X,Y, Z) . Initial Point Doubling
5: for i = t− 2 downto 0 do . Montgomery Ladder
6: Q[ki]← Q[ki] +Q[ki ⊕ 1]
7: Q[ki ⊕ 1]← 2 ·Q[ki ⊕ 1]
8: end for
9: (X,Y, Z)← y-recovery(Q[0], Q[1])
10: if Y 2Z 6= X3 + aXZ2 + bZ3 then Perform Error Handling
11: (x, y)← (XZ−1, Y Z−1)
12: if y2 6= x3 + ax+ b then Perform Error Handling
13: Return R = (x, y)

3.4 Side-Channel Hardened Point Arithmetic

The algorithm, we came up with in Wenger et al. [110], is depicted in Algorithm 8.
Our initial assumption is that the most significant bit (MSB) of the scalar k in
Q = kP is always set to one. As we are also in control of the random number
generation, this is a reasonable assumption. Further, if the length of the scalar is
constant and constant-runtime finite-field operations are used, the Montgomery
ladder finishes in constant time. Therefore, lattice-based timing attacks, e.g., by
Brumley and Tuveri [17], on the Montgomery ladder are infeasible.

Algorithm 8 combines three countermeasures against side-channel attacks. First,
a Montgomery ladder is used. The underlying formulas use a projective (X,Z)
representation and therefore the recovery of the y-coordinate has to be performed.
Second, randomized projective coordinates (cf. Coron [23]) make sure that the
Montgomery ladder is processing randomized data. The processing of randomized
data makes any power analysis or fault attack much more complex. As we assumed
to have a random-number generator on the protocol layer, we can also assume to
use the same random number generator on the point-arithmetic layer. Also, as
projective coordinates are used anyways, this countermeasure is basically for free.

The third countermeasure consists of several point verification checks. They
make sure that the given points satisfy the elliptic curve equation. Such a
point verification check is relatively inexpensive to compute in comparison to
the Montgomery ladder. Therefore, doing the point verifications multiple times

SIDE-CHANNEL HARDENED POINT ARITHMETIC 27

is not costly. The initial point verification makes sure that the input point
P is indeed valid. After the point randomization, another point verification
is performed. Attacking both the randomization step and the second point
verification would already require multiple (different) fault attacks. After the
computation of the Montgomery ladder and the recovery of the y-coordinate
another two point verifications are performed. Like before, the processed point
is both checked within its projective-coordinate representation and within the
affine representation.

As the recovery of the y-coordinate can always be performed within the projective
coordinates, it does not require the use of a costly inversion. Although ECDSA
does not make use of the y-coordinate, the y-coordinate is needed for the final
two point verifications.

Algorithm 8 shows point verification checks for a Weierstrass curve over a prime
field. For a Weierstrass curve over a binary field, the implementation must check
whether the point P fulfills the equation y2 + xy = x3 + ax2 + b instead of
y2 = x3 + ax + b. Also the formulas used for the initial point doubling, the
Montgomery ladder, and the y-recovery must be adapted according to the used
underlying field. If Algorithm 8 is used for a non-standardized (non-Weierstrass)
curve, the formulas used have to be modified as well.

3.4.1 Vulnerability Analysis

In the following, we discuss Algorithm 8 in relation to the latest related work on
practical physical attacks and its nice security properties. The following analysis
is somehow based on Fan et al. [33, 34], who wrote several overview papers
on secure elliptic curve implementations and Karaklajić et al. [69], who did a
thorough investigation of fault attacks. The physical attacks are categorized
based on their feasibility to attack Algorithm 8.

Physical attacks that should not affect the security of Algorithm 8:

Timing Analysis. When the finite-field operations are implemented in a
constant-time fashion a timing attack similar to the one introduced by
Kocher [71] is not possible. Brumley and Tuveri [17] showed a timing attack
that measures the number of most significant zero bits of the Montgomery
ladder. In combination with the LLL algorithm [76], they recovered the
scalars used for the scalar multiplications. As we are in control of the
random number generator and manually set the most significant bit of the
scalar, the attack of Brumley and Tuveri does not affect Algorithm 8.

Simple Power Analysis. According to Kocher [72], it should not be possible
to directly interpret power-consumption measurements. While it is rather
easy to detect conditionally performed point additions on a power trace,
double-and-add operations within the Montgomery ladder are highly regular.

28 IMPLEMENTING ELLIPTIC CURVE CRYPTOGRAPHY

However, there is a key dependence (Q[ki]← Q[ki] +Q[ki ⊕ 1]) within the
Montgomery ladder. Therefore, it is a matter of practical evaluation to
make sure that no critical information leaks. Also noise generators help
in the suppression of this key-dependent information. Note that localized
electromagnetic-emanation analysis is a type of simple power analysis
attacks, but much more powerful. It is separately discussed below.

Differential Power Analysis (DPA). First introduced by Kocher et al. [72],
the DPA provides statistical means to deduce the processed key from given
power profiles. DPA attacks are very powerful and complex masking and
hiding schemes must be used to guard the cryptographic implementation.
For DPA attacks to work, several power measurements with known
plaintexts and a constant key are necessary. As we initially assumed
that Algorithm 8 is used in settings with random, ephemeral keys, a DPA
attack is not applicable. The decryption operation of the Elliptic Curve
Integrated Encryption Scheme (ECIES) performs a scalar multiplication
involving a private key. For such scenarios additional countermeasures such
as the random scalar split by Ciet and Joye [20] are necessary.

Template Attack. According to Medwed and Oswald [79], template attacks
can be used to attack ECDSA and the only way to be safe from template-
based SPA attacks is to be secure against differential power analysis attacks.
In 2008, Herbst and Medwed [51] also showed how to use templates to
attack the randomization step of Algorithm 8. According to Fan et al. [33],
only the randomization of the coordinates provides protection against
template attacks. Also, additional countermeasures must be in place to
inhibit the building of templates in the first place (e.g., during the ECDSA
verification).

Refined (Zero-Value) Power Analysis. In 2003, Akishita et al. [2] intro-
duced the zero-value point analysis and Goubin [43] the refined power
analysis. Both attacks are based on the same working principle. The
attacker chooses the input point in such a way, that she can detect the
occurrence of a “special” elliptic-curve point in the power trace. Thereby
she can recover a bit of the key. As this attack is only practical in the case
of constant scalars, which contradicts our initial assumption, we do not
need to handle those attacks.

Comparative Side-Channel Analysis. Like the zero-value power analysis,
the comparative power analysis chooses specially prepared input points to
generate repeating patterns in the power profile. While zero-value power
analysis aims to detect coordinates equal to zero, the comparative side-
channel attack, first introduced by by Homma et al. [55, 56], tests for
repeating patterns in multiple power profiles. Similar to above, they use
random, ephemeral scalars counters comparative side-channel analysis.

C & M Safe-Error Analysis. Algorithm 5 is a great example for not being
safe from safe-error analysis (cf. Joye and Yen [67, 112]). If a fault is

SIDE-CHANNEL HARDENED POINT ARITHMETIC 29

introduced right before or during the point addition, the fault will or will
not propagate to the output, depending on the key bit ki. Thereby the
attacker can reveal one key bit per induced fault. As Algorithm 8 uses a
dummy-operation-free Montgomery ladder and ephemeral keys, it is not
threatened by safe-error attacks.

Weak Curve-Based Analysis. The core idea of those attacks is to change the
used elliptic curve from E to E′. E′ is a cryptographically weak curve
with subgroups that are vulnerable to the Pohlig-Hellman attack2 [88].
Performing point verification before and after scalar multiplication counters
invalid-point attacks. For invalid-curve attacks, the stored curve parameters
must be checked (see below). Biehl et al. [14] and Ciet and Joye [21] discuss
details on invalid-point and invalid-curve attacks. Even more critical
are the twist-curve-based attacks by Fouque et al. [37] which even affect
Montgomery-ladder implementations. The problem is that the twists of the
standardized elliptic curves secp160-224r1 are below 60 bits. However,
according to Ebeid and Lambert [29] recovering the y-coordinate and
verifying the recovered point, counters the twist-curve-based attack by
Fouque et al..

Sign-Change Fault Analysis. Ebeid and Lambert also analyze the effect of
the sign-change fault analysis by Blömer et al. [15] on the protected
Montgomery ladder and come to the conclusion that the sign-change attack
is not feasible on a protected Montgomery ladder.

Though the attacks mentioned above are handled by Algorithm 8, Algorithm 8
cannot solve all types of attacks. Below, we give some physical attacks that we
believe to threaten an ECC implementation, even though it utilizes Algorithm 8:

Program-Flow Fault Attacks. Fault attacks which target the program flow,
as done by Schmidt et al. [91, 92], can skip operations, function calls, or
point-validation checks. To circumvent such types of attacks, we recommend
to use additional hardware countermeasures which are subject to future
work (see Chapter 4).

Invalid-Curve Analysis. Ciet and Joye [21] raise the question what happens
when the stored elliptic-curve parameters get modified. Especially in
combination with other fault attacks, an invalid curve is hard to detect
using the presented countermeasures. As already mentioned above, we
recommend the usage of hardware countermeasures which are subject to
future work.

Electromagnetic-Emanation Analysis. In [52, 53, 54], Heyszl et al. perform
localized electromagnetic-emanation analysis attacks. If an attacker is able

2Factorize the order n′ of E′, solve the ECDLP in all subgroups and derive the actually
used k.

30 IMPLEMENTING ELLIPTIC CURVE CRYPTOGRAPHY

Algorithm 9 Elliptic curve Montgomery ladder with memory randomization.
Input: k = (kt−1, . . . , k1, k0), kt−1 = 1, P ∈ E(Fq).
Output: R = kP
1: T [0]← P
2: T [1]← 2 · P
3: r ← rand()
4: Q[r]← T [0]
5: Q[r ⊕ 1]← T [1]
6: for i = t− 2 downto 0 do
7: T [0]← Q[ki ⊕ r]
8: T [1]← Q[ki ⊕ r ⊕ 1]
9: T [0]← T [0] + T [1]
10: T [1]← 2 · T [1]
11: r ← rand()
12: Q[ki ⊕ r]← T [0]
13: Q[ki ⊕ r ⊕ 1]← T [1]
14: end for
15: Return Q[r]

to detect which memory location is accessed at which cycle, she can derive
the key from that information. A countermeasure must not randomize the
data in the memory but the location where the data is actually stored.
Algorithm 9 outlines how such a countermeasure might work. While the
point-doubling and the point-addition steps are performed at fixed memory
locations, the points Q[0] and Q[1] are stored at random locations within
the memory. This countermeasure comes at the cost of four copy operations.
However, another intrinsic countermeasure is related to improvement of
CMOS (Moore’s law). The smaller the CMOS manufacturing technologies
become and the closer registers are physically located, the less exact localized
electromagnetic-emanation attacks are.

Horizontal Collision Correlation Analysis have recently become a more
active research topic. The idea is that there are two power-consumption
profiles which do not leak any information by themselves, but when
correlated, secret information leaks. E.g., in Wenger et al. [109], we
investigated the leakage of a Montgomery ladder and we were able to
recover the key. A countermeasure against horizontal collision correlation
attacks might be to re-randomize the projective points after each double-
and-add step, i.e., (X,Y) ← (λX, λY). It might also be sufficient to use
a λ that is only 8 bits, 16 bits, or 32 bits long (depending on the word
size of the microprocessor). It is subject to future work to investigate the
vulnerability of formulas used within Montgomery ladders.

CONCLUSION 31

3.5 Conclusion

The challenge is not only to be safe from a single attack scenario, because every
arbitrary combination of attacks is possible. E.g., at CHES 2011, Fan et al. [32]
presented a technique in which they combined a fault attack with a power-analysis
attack. Intentionally, Algorithm 8 is safe from their combined attack, but it is
unclear with which attacks or combination of attacks researchers will come up
with.

Chapter 4

Future Work

We implemented elliptic curve cryptography for many different platforms and
in many different ways. We also evaluated some implementations regarding
their side-channel security. However, because of the complexity of implementing
elliptic curve cryptography there is a lot more research to be done.

Here is just a short digest of ideas for future research papers:

• It is just a matter of time until a horizontal collision correlation attack
on a Montgomery Ladder is successfully performed in practice. We are
certain that the threat of correlation analysis attacks on elliptic curve
cryptography must be handled with the same seriousness as the differential
power analysis attacks on symmetric ciphers. Future research must include
practical evaluations of correlation analysis attacks on ECC as well as
research on light-weight countermeasures.

• During the implementation of an assembly optimized ECC for the ATmega
we made an implementation error within the assembly code. This is nothing
exceptional and has to be expected in practice. However, the problem was
the detection of the error. E.g., for NIST P-192, the error only occurred
with a probability of approximately 264

2192 = 2−128 when testing with random
data. Therefore, the error never occurred in practical randomly generated
test cases. However, such an implementation error can be misused for fault
analysis attacks. The conclusion from this anecdote is that future research
must include a formal verification of the cryptographic implementation.
Especially when carry-bits are involved.

• While elliptic curve cryptography is already used within a wide range of
applications, paring-based cryptography is still in its childhood days. Using
pairing-based cryptography, a larger range of protocols and applications
become practically feasible. However, pairing-based cryptography from

32

FUTURE WORK 33

an implementors standpoint is much more complex and therefore requires
much more optimization.

• Apart from power analysis attacks on elliptic curve cryptography also fault
attacks are a serious threat. Fault attacks on the data can easily be detected
by doing point verifications. However, fault attacks on the control/program
flow are a much more serious threat. They can happen anytime, at any
position in the chip. And they do not only threaten cryptographic primitives
and protocols, but also conditional branches. For instance, to check the
validity of a password, a conditional branch is necessary. Using a fault
attack on the control-flow, it is possible to circumvent the validity check,
no matter how protected the cryptographic implementation is.

These are just a fraction of the more concrete ideas we have planned for the
future.

Bibliography

[1] T. Akishita and T. Takagi. Zero-Value Point Attacks on Elliptic Curve
Cryptosystem. In C. Boyd and W. Mao, editors, ISC, volume 2851 of
Lecture Notes in Computer Science, pages 218–233. Springer, 2003.

[2] T. Akishita and T. Takagi. Zero-Value Point Attacks on Elliptic Curve
Cryptosystem. In C. Boyd and W. Mao, editors, Information Security,
6th International Conference, ISC 2003, Bristol, UK, October 1-3, 2003,
Proceedings, volume 2851 of Lecture Notes in Computer Science, pages
218–233. Springer, 2003.

[3] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury. A survey on wireless
multimedia sensor networks. Computer networks, 51(4):921–960, 2007.

[4] K. Albrecht. Spychips: How major corporations and government plan to
track your every move with RFID. Thomas Nelson Inc, 2005.

[5] American National Standards Institute (ANSI). AMERICAN NATIONAL
STANDARD X9.62-2005. Public Key Cryptography for the Financial
Services Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA),
2005.

[6] ARM. Cortex-M0+ Processor, August 2013. Available online at http:
//www.arm.com/products/processors/cortex-m/cortex-m0plus.php.

[7] Atmel Corporation. megaAVR Microcontroller. Available online
at http://www.atmel.com/products/microcontrollers/avr/megaavr.
aspx, August 2013.

[8] Avnet, Inc. Avnet Wi-Go Module, August 2013. Avail-
able online at http://www.em.avnet.com/en-us/design/drc/Pages/
Avnet-Wi-Go-Module.aspx.

[9] S. Babbage, D. Catalano, C. Cid, B. de Weger, O. Dunkelman,
C. Gehrmann, L. Granboulan, T. Güneysu, J. Hermans, T. Lange,
A. Lenstra, C. Mitchell, M. Näslund, P. Nguyen, C. Paar, K. Paterson,
J. Pelzl, T. Pornin, B. Preneel, C. Rechberger, V. Rijmen, M. Robshaw,

34

http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php
http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php
http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx
http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx
http://www.em.avnet.com/en-us/design/drc/Pages/Avnet-Wi-Go-Module.aspx
http://www.em.avnet.com/en-us/design/drc/Pages/Avnet-Wi-Go-Module.aspx

BIBLIOGRAPHY 35

A. Rupp, M. Schläffer, S. Vaudenay, F. Vercauteren, and M. Ward.
ECRYPT II Yearly Report on Algorithms and Keysizes (2011-2012).
Available online at http://www.ecrypt.eu.org/documents/D.SPA.20.
pdf, September 2012.

[10] A. Barenghi, G. Bertoni, A. Palomba, and R. Susella. A novel fault attack
against ECDSA. In HOST, pages 161–166. IEEE Computer Society, 2011.

[11] A. Barenghi, G. M. Bertoni, L. Breveglieri, G. Pelosi, and A. Palomba. Fault
attack to the elliptic curve digital signature algorithm with multiple bit
faults. In M. A. Orgun, A. Elçi, O. B. Makarevich, S. A. Huss, J. Pieprzyk,
L. K. Babenko, A. G. Chefranov, and R. Shankaran, editors, SIN, pages
63–72. ACM, 2011.

[12] E. Barker, W. Barker, W. Burr, W. Polk, , and M. Smid. NIST Special
Publication 800-57: Recommendation for Key Management – Part 1:
General (Revision 3). Available online at http://csrc.nist.gov/groups/
ST/toolkit/key_management.html, July 2012.

[13] A. Bauer, E. Jaulmes, E. Prouff, and J. Wild. Horizontal Collision
Correlation Attack on Elliptic Curves. In Selected Areas in Cryptography,
Lecture Notes in Computer Science. Springer, 2013. In press.

[14] I. Biehl, B. Meyer, and V. Müller. Differential Fault Attacks on Elliptic
Curve Cryptosystems. In M. Bellare, editor, Advances in Cryptology -
CRYPTO 2000, 20th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 2000, Proceedings, volume 1880
of Lecture Notes in Computer Science, pages 131–146. Springer, 2000.

[15] J. Blömer, M. Otto, and J.-P. Seifert. Sign Change Fault Attacks on Elliptic
Curve Cryptosystems. In FDTC, pages 36–52, 2006.

[16] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An
Ultra-Lightweight Block Cipher. In P. Paillier and I. Verbauwhede,
editors, Cryptographic Hardware and Embedded Systems – CHES 2007,
9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages
450–466. Springer, September 2007. ISBN 978-3-540-74734-5.

[17] B. B. Brumley and N. Tuveri. Remote Timing Attacks Are Still Practical.
In V. Atluri and C. Díaz, editors, ESORICS, volume 6879 of Lecture Notes
in Computer Science, pages 355–371. Springer, 2011.

[18] Certicom Research. Standards for Efficient Cryptography, SEC 2:
Recommended Elliptic Curve Domain Parameters, Version 2.0. Available
online at http://www.secg.org/, January 2010.

http://www.ecrypt.eu.org/documents/D.SPA.20.pdf
http://www.ecrypt.eu.org/documents/D.SPA.20.pdf
http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://www.secg.org/

36 BIBLIOGRAPHY

[19] B. Chevallier-Mames, M. Ciet, and M. Joye. Low-Cost Solutions for
Preventing Simple Side-Channel Analysis: Side-Channel Atomicity. IEEE
Transactions on Computers, 53(6):760–768, June 2004. ISSN 0018-9340.

[20] M. Ciet and M. Joye. (Virtually) Free Randomization Techniques for
Elliptic Curve Cryptography. In S. Qing, D. Gollmann, and J. Zhou,
editors, ICICS, volume 2836 of Lecture Notes in Computer Science, pages
348–359. Springer, 2003.

[21] M. Ciet and M. Joye. Elliptic Curve Cryptosystems in the Presence of
Permanent and Transient Faults. Des. Codes Cryptography, 36(1):33–43,
2005. Available online at http://eprint.iacr.org/2003/028.pdf.

[22] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and
F. Vercauteren, editors. Handbook of Elliptic and Hyperelliptic Curve
Cryptography. Discrete Mathematics and its Applications (Boca Raton).
Chapman & Hall/CRC, Boca Raton, FL, 2006.

[23] J.-S. Coron. Resistance against Differential Power Analysis for Elliptic
Curve Cryptosystems. In Ç. K. Koç and C. Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES’99, First International Workshop,
Worcester, MA, USA, August 12-13, 1999, Proceedings, volume 1717 of
Lecture Notes in Computer Science, pages 292–302. Springer, 1999.

[24] Crossbow Technology. Crossbow Wireless Modules Portfolio. http://
bullseye.xbow.com:81/Products/productdetails.aspx?sid=156, Au-
gust 2013.

[25] J. Daemen and V. Rijmen. The Design of Rijndael. Information Security
and Cryptography. Springer, 2002. ISBN 3-540-42580-2.

[26] Damien Giry. Keylength - Cryptographic Key Length Recommendations.
Available online at http://www.keylength.com/, August 2013.

[27] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, November 1976.

[28] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and
Authenticated Key Exchanges. Designs, Codes and Cryptography, 2(2):107–
125, 1992.

[29] N. Ebeid and R. Lambert. Securing the Elliptic Curve Montgomery Ladder
Against Fault Attacks. In Workshop on Fault Diagnosis and Tolerance
in Cryptography - FDTC 2009, Lausanne, Switzerland, 2009, Proceedings,
pages 46–50, September 2009.

[30] H. Edwards. A Normal Form for Elliptic Curves. Bulletin of the American
Mathematical Society, 44:393–422, 2007.

http://eprint.iacr.org/2003/028.pdf
http://bullseye.xbow.com:81/Products/productdetails.aspx?sid=156
http://bullseye.xbow.com:81/Products/productdetails.aspx?sid=156
http://www.keylength.com/

BIBLIOGRAPHY 37

[31] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. In Advances in Cryptology - CRYPTO ’84, Santa
Barbara, California, USA, August 19-22, 1984, Proceedings, volume 196 of
Lecture Notes in Computer Science, pages 10–18. Springer, 1984.

[32] J. Fan, B. Gierlichs, and F. Vercauteren. To Infinity and Beyond: Combined
Attack on ECC Using Points of Low Order. In B. Preneel and T. Takagi,
editors, CHES, volume 6917 of Lecture Notes in Computer Science, pages
143–159. Springer, 2011.

[33] J. Fan, X. Guo, E. D. Mulder, P. Schaumont, B. Preneel, and
I. Verbauwhede. State-of-the-Art of Secure ECC Implementations: A
Survey on known Side-Channel Attacks and Countermeasures. In Hardware-
Oriented Security and Trust - HOST 2010, In 3rd IEEE International
Symposium, California, USA, June 13-14, 2010, Proceedings., pages 76–87.
IEEE, 2010.

[34] J. Fan and I. Verbauwhede. An Updated Survey on Secure ECC
Implementations: Attacks, Countermeasures and Cost. In Cryptography
and Security: From Theory to Applications, LNCS. Springer, 2012.

[35] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong Authentication
for RFID Systems Using the AES Algorithm. In CHES, pages 357–370,
2004.

[36] K. Finkenzeller. RFID-Handbook. Carl Hanser Verlag, 2nd edition, April
2003. ISBN 0-470-84402-7.

[37] P.-A. Fouque, R. Lercier, D. Réal, and F. Valette. Fault Attack on Elliptic
Curve Montgomery Ladder Implementation. In L. Breveglieri, S. Gueron,
I. Koren, D. Naccache, and J.-P. Seifert, editors, Fault Diagnosis and
Tolerance in Cryptography, Fifth International Workshop, FDTC 2008,
Washington DC, USA, August 10, 2008, Proceedings, pages 92–98. IEEE
Computer Society, August 2008.

[38] R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster Point
Multiplication on Elliptic Curves with Efficient Endomorphisms. In
J. Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 190–200. Springer, 2001.

[39] T. Gao, D. Greenspan, M. Welsh, R. Juang, and A. Alm. Vital Signs
Monitoring and Patient Tracking Over a Wireless Network. In 27th Annual
International Conference of the Engineering in Medicine and Biology
Society, pages 102–105. IEEE, 2006.

[40] S. Garfinkel, A. Juels, and R. Pappu. RFID Privacy: An Overview of
Problems and Proposed Solutions. IEEE Security and Privacy Magazine,
3(3):34–43, May-June 2005.

38 BIBLIOGRAPHY

[41] C. Giraud and E. W. Knudsen. Fault Attacks on Signature Schemes. In
H. Wang, J. Pieprzyk, and V. Varadharajan, editors, Information Security
and Privacy: 9th Australasian Conference, ACISP 2004, Sydney, Australia,
July 13-15, 2004. Proceedings, volume 3108 of Lecture Notes in Computer
Science, pages 478–491. Springer, July 2004.

[42] C. Giraud and V. Verneuil. Atomicity Improvement for Elliptic Curve Scalar
Multiplication. In D. Gollmann, J.-L. Lanet, and J. Iguchi-Cartigny, editors,
Smart Card Research and Advanced Application - CARDIS 2010, 9th
International Conference, Passau, Germany, April 14-16, 2010. Proceedings
2010, volume 6035 of Lecture Notes in Computer Science, pages 80–101.
Springer, 2010.

[43] L. Goubin. A Refined Power-Analysis Attack on Elliptic Curve
Cryptosystems. In Y. Desmedt, editor, Public Key Cryptography - PKC
2003, 6th International Workshop on Theory and Practice in Public Key
Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings, volume
2567 of Lecture Notes in Computer Science, pages 199–210. Springer, 2003.

[44] R. Goundar, M. Joye, and A. Miyaji. Co-Z Addition Formulae and
Binary Ladders on Elliptic Curves. In S. Mangard and F.-X. Standaert,
editors, Cryptographic Hardware and Embedded Systems – CHES 2010, 12th
International Workshop Santa Barbara, California, USA, 2010 Proceedings,
volume 6225 of Lecture in Computer Science, pages 65–79. Springer, 2010.

[45] R. R. Goundar, M. Joye, A. Miyaji, M. Rivain, and A. Venelli. Scalar
multiplication on Weierstraß elliptic curves from Co-Z arithmetic. J.
Cryptographic Engineering, 1(2):161–176, 2011.

[46] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing
Elliptic Curve Cryptography and RSA on 8-Bit CPUs. In M. Joye and
J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Systems –
CHES 2004, 6th International Workshop, Cambridge, MA, USA, August 11-
13, 2004, Proceedings, volume 3156 of Lecture Notes in Computer Science,
pages 119–132. Springer, 2004.

[47] P. Hämäläinen, T. Alho, M. Hännikäinen, and T. D. Hämäläinen.
Design and Implementation of Low-Area and Low-Power AES Encryption
Hardware Core. In 9th EUROMICRO Conference on Digital System Design:
Architectures, Methods and Tools (DSD 2006), Dubrovnik, Croatia, 30.
August-1 September, 2006. Proceedings, pages 577–583. IEEE Computer
Society, September 2006.

[48] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve
Cryptography. Springer, Berlin, Germany / Heidelberg, Germany / London,
UK / etc., 2004.

BIBLIOGRAPHY 39

[49] HART Communication Foundation. WirelessHART Technology Website.
http://www.hartcomm.org/protocol/wihart/wireless_technology.
html.

[50] S. Heath. Embedded systems design. Newnes, 2002.

[51] C. Herbst and M. Medwed. Using Templates to Attack Masked Montgomery
Ladder Implementations of Modular Exponentiation. In K.-I. Chung,
M. Yung, and K. Sohn, editors, 9th International Workshop on Information
Security Applications (WISA 2008), Jeju Island, Korea, September 23-25,
2008, Proceedings, volume 5379 of Lecture Notes in Computer Science,
pages 1–13. Springer, Februar 2008.

[52] J. Heyszl, A. Ibing, S. Mangard, F. De Santis, and G. Sigl. Clustering
Algorithms for Non-Profiled Single-Execution Attacks on Exponentiations.
Technical report, Cryptology ePrint Archive, Report 2013/438, 2013. http:
//eprint.iacr.org.

[53] J. Heyszl, S. Mangard, B. Heinz, F. Stumpf, and G. Sigl. Localized
Electromagnetic Analysis of Cryptographic Implementations. In
O. Dunkelman, editor, CT-RSA, volume 7178 of Lecture Notes in Computer
Science, pages 231–244. Springer, 2012.

[54] J. Heyszl, D. Merli, B. Heinz, F. D. Santis, and G. Sigl. Strengths and
Limitations of High-Resolution Electromagnetic Field Measurements for
Side-Channel Analysis. In S. Mangard, editor, CARDIS, volume 7771 of
Lecture Notes in Computer Science, pages 248–262. Springer, 2012.

[55] N. Homma, A. Miyamoto, T. Aoki, A. Satoh, and A. Shamir. Collision-
Based Power Analysis of Modular Exponentiation Using Chosen-Message
Pairs. In E. Oswald and P. Rohatgi, editors, CHES, volume 5154 of Lecture
Notes in Computer Science, pages 15–29. Springer, 2008.

[56] N. Homma, A. Miyamoto, T. Aoki, A. Satoh, and A. Shamir. Comparative
Power Analysis of Modular Exponentiation Algorithms. IEEE Transactions
on Computers, 59(6):795–807, 2010.

[57] I. Howitt and J. A. Gutierrez. IEEE 802.15.4 Low Rate-Wireless Personal
Area Network Coexistence Issues. In Wireless Communications and
Networking, volume 3, pages 1481–1486. IEEE, 2003.

[58] M. Hutter, M. Feldhofer, and T. Plos. An ECDSA Processor for RFID
Authentication. In RFIDSec, pages 189–202, 2010.

[59] M. Hutter, M. Joye, and Y. Sierra. Memory-Constrained Implementations
of Elliptic Curve Cryptography in Co-Z Coordinate Representation.
In A. Nitaj and D. Pointcheval, editors, Progress in Cryptology -
AFRICACRYPT 2011 Fourth International Conference on Cryptology in
Africa, Dakar, Senegal, July 5-7, 2011. Proceedings, volume 6737 of Lecture
Notes in Computer Science, pages 170–187. Springer, 2011.

http://www.hartcomm.org/protocol/wihart/wireless_technology.html
http://www.hartcomm.org/protocol/wihart/wireless_technology.html
http://eprint.iacr.org
http://eprint.iacr.org

40 BIBLIOGRAPHY

[60] M. Hutter, M. Medwed, D. Hein, and J. Wolkerstorfer. Attacking ECDSA-
Enabled RFID Devices. In M. Abdalla, D. Pointcheval, P.-A. Fouque, and
D. Vergnaud, editors, Applied Cryptography and Network Security – ACNS
2009, 7th International Conference, Paris-Rocquencourt, France, June 2-5,
2009, Proceedings, volume 5536 of Lecture Notes in Computer Science,
pages 519–534. Springer, May 2009.

[61] M. Hutter and E. Wenger. Fast Multi-Precision Multiplication for
Public-Key Cryptography on Embedded Microprocessors. In B. P. und
Tsuyoshi Takagi, editor, Cryptographic Hardware and Embedded Systems
– CHES 2011, 13th International Workshop, Nara, Japan, September 28 -
October 1, 2011, Proceedings, volume 6917 of Lecture Notes in Computer
Science, pages 459–474. Springer, 2011.

[62] IEEE. IEEE Standard 1363-2000: IEEE Standard Specifications for Public-
Key Cryptography. Available online at http://ieeexplore.ieee.org/
servlet/opac?punumber=7168, 2000.

[63] Intel Corporation. Advanced Encryption Standard (AES) Instructions Set.
http://softwarecommunity.intel.com/articles/eng/3788.htm.

[64] ISA100 Wireless Compliance Institute. ISA100, Wireless Systems for
Automation. http://www.isa.org/isa100.

[65] ISO. ISO/IEC 15946-2:2002: Information technology – Security techniques
– Cryptographic techniques based on elliptic curves – Part 2: Digital
signatures, 2002.

[66] T. Izu, B. Möller, and T. Takagi. Improved Elliptic Curve Multiplication
Methods Resistant against Side Channel Attacks. In A. Menezes and
P. Sarkar, editors, INDOCRYPT, volume 2551 of Lecture Notes in Computer
Science, pages 296–313. Springer, 2002.

[67] M. Joye and S.-M. Yen. The Montgomery Powering Ladder. In G. Goos,
J. Hartmanis, and J. van Leeuwen, editors, Cryptographic Hardware and
Embedded Systems – CHES 2002, 4th International Workshop, Redwood
Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523 of
Lecture Notes in Computer Science, pages 291–302. Springer, 2003.

[68] A. Juels. RFID Security and Privacy: A Research Survey. IEEE Journal
on Selected Areas in Communications, 24(2):381–394, February 2006.

[69] D. Karaklajić, J.-M. Schmidt, and I. Verbauwhede. Hardware Designer’s
Guide to Fault Attacks. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, February 2013.

[70] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48:203–209, 1987.

http://ieeexplore.ieee.org/servlet/opac?punumber=7168
http://ieeexplore.ieee.org/servlet/opac?punumber=7168
http://softwarecommunity.intel.com/articles/eng/3788.htm
http://www.isa.org/isa100

BIBLIOGRAPHY 41

[71] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In CRYPTO, pages 104–113, 1996.

[72] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, volume 1666 of Lecture Notes in Computer Science,
pages 388–397. Springer, 1999.

[73] P. Koopman. Embedded System Design Issues (The Rest of the Story). In
International Conference on Computer Design: VLSI in Computers and
Processors, pages 310–317. IEEE, 1996.

[74] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An
Efficient Protocol for Authenticated Key Agreement. Designs, Codes
and Cryptography, 28(2):119–134, March 2003.

[75] Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede. Elliptic-Curve-
Based Security Processor for RFID. IEEE Transactions on Computers,
57(11):1514–1527, November 2008.

[76] A. K. Lenstra, H. Lenstra, and L. Lovász. Factoring Polynomials with
Rational Coefficients. Mathematische Annalen, 261:515–534, 1982.

[77] P. Longa. Accelerating the Scalar Multiplication on Elliptic Curve
Cryptosystems over Prime Fields. Master’s thesis, School of Information
Technology and Engineering, University of Ottawa, Canada, 2007.

[78] J. López and R. Dahab. Fast Multiplication on Elliptic Curves over GF(2m)
without Precomputation. In Ç. K. Koç and C. Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES’99, First International Workshop,
Worcester, MA, USA, August 12-13, 1999, Proceedings, volume 1717 of
Lecture Notes in Computer Science, pages 316–327. Springer, 1999.

[79] M. Medwed and E. Oswald. Template Attacks on ECDSA. In K.-I. Chung,
M. Yung, and K. Sohn, editors, 9th International Workshop on Information
Security Applications (WISA 2008), Jeju Island, Korea, September 23-25,
2008, Pre-Proceedings, pages 14–27, 2008.

[80] V. S. Miller. Use of Elliptic Curves in Cryptography. In H. C. Williams,
editor, Advances in Cryptology - CRYPTO ’85, Santa Barbara, California,
USA, August 18-22, 1985, Proceedings, volume 218 of Lecture Notes in
Computer Science, pages 417–426. Springer, 1986.

[81] P. L. Montgomery. Modular Multiplication without Trial Division.
Mathematics of Computation, 44:519–521, 1985.

[82] P. L. Montgomery. Speeding the Pollard and Elliptic Curve Methods of
Factorization. Mathematics of Computation, 48(177):243–264, January
1987. ISSN 0025-5718.

42 BIBLIOGRAPHY

[83] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the
Limits: A Very Compact and a Threshold Implementation of AES. In
K. G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011,
30th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 69–88. Springer,
2011.

[84] National Institute of Standards and Technology (NIST). FIPS-197:
Advanced Encryption Standard, November 2001. Available online at
http://www.itl.nist.gov/fipspubs/.

[85] National Institute of Standards and Technology (NIST). FIPS-186-3:
Digital Signature Standard (DSS), 2009. Available online at http://www.
itl.nist.gov/fipspubs/.

[86] NXP Semiconductors Austria GmbH. Website mifare.net - contactless
smartcard technology. http://www.mifare.net.

[87] T. Plos, M. J. Aigner, T. Baier, M. Feldhofer, M. Hutter, T. Korak, and
E. Wenger. Semi-Passive RFID Development Platform for Implementing
and Attacking Security Tags. International Journal of RFID Security and
Cryptography, 1:16–24, 2012.

[88] S. Pohlig and M. Hellman. An Improved Algorithm for Computing
Logarithms over GP(p) and Its Cryptographic Significance. Information
Theory, IEEE Transactions on, 24(1):106–110, 1978.

[89] E. Prouff, editor. Smart Card Research and Advanced Applications -
10th IFIP WG 8.8/11.2 International Conference, CARDIS 2011, Leuven,
Belgium, September 14-16, 2011, Revised Selected Papers, volume 7079 of
Lecture Notes in Computer Science. Springer, 2011.

[90] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM,
21(2):120–126, February 1978. ISSN 0001-0782.

[91] J.-M. Schmidt and C. Herbst. A Practical Fault Attack on Square and
Multiply. In L. Breveglieri, S. Gueron, I. Koren, D. Naccache, and J.-
P. Seifert, editors, Fault Diagnosis and Tolerance in Cryptography, Fifth
International Workshop, FDTC 2008, Washington DC, USA, August 10,
2008, Proceedings, pages 53–58. IEEE Computer Society, August 2008.

[92] J.-M. Schmidt and M. Medwed. A Fault Attack on ECDSA. In
D. Naccache and E. Oswald, editors, Fault Diagnosis and Tolerance
in Cryptography, Sixth International Workshop, FDTC 2009, Lausanne,
Switzerland, September 6, 2009, Procceedings, pages 93–99. IEEE-CS Press,
September 2009.

http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://www.mifare.net

BIBLIOGRAPHY 43

[93] S. Shepard. RFID Radio Frequency Identification. McGraw-Hill Companies,
2005.

[94] G. Simon, M. Maróti, Á. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap,
J. Sallai, and K. Frampton. Sensor network-based countersniper system.
In Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 1–12. ACM, 2004.

[95] Texas Instruments. Overview for MSP430 Ultra-Low Power 16-bit MCUs.
Available online at http://www.ti.com/msp430, August 2013.

[96] The Wireless Embedded Internet. 6lowpan Website. http://6lowpan.
net/.

[97] TIK WSN Research Group at ETH Zurich. The Sensor Network Museum.
http://www.snm.ethz.ch/snmwiki/Main/HomePage, August 2013.

[98] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
T. Dawson, P. Buonadonna, D. Gay, et al. A macroscope in the redwoods.
In Proceedings of the 3rd international conference on Embedded networked
sensor systems, pages 51–63. ACM, 2005.

[99] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. Data collection,
storage, and retrieval with an underwater sensor network. In Proceedings
of the 3rd international conference on Embedded networked sensor systems,
pages 154–165. ACM, 2005.

[100] S. Vaudenay. On Privacy Models for RFID. In Conference on the Theory
and Application of Cryptology and Information Security – ASIACRYPT
2007, 13th International Conference, Kuching, Malaysia, December 2-6,
2007. Proceedings, volume 4833, pages 68–87, 2007.

[101] E. Wenger. Neptun - ECC Processor for RFID Tags and Smart Cards.
Master thesis, Swiss Federal Institute of Technology Zürich, Graz University
of Technology, Inffeldgasse 16a, 8010 Graz, Austria, May 2010.

[102] E. Wenger. A Lightweight ATmega-based Application-Specific Instruction-
Set Processor for Elliptic Curve Cryptography. In G. Avoine and O. Kara,
editors, Lightweight Cryptography for Security and Privacy, Lecture Notes
in Computer Science, pages 1–15. Springer, 2013.

[103] E. Wenger. Hardware Architectures for MSP430-Based Wireless Sensor
Nodes Performing Elliptic Curve Cryptography. In M. J. Jacobson, M. E.
Locasto, P. Mohassel, and R. Safavi-Naini, editors, ACNS, volume 7954 of
Lecture Notes in Computer Science, pages 290–306. Springer, 2013.

[104] E. Wenger, T. Baier, and J. Feichtner. JAAVR: Introducing the Next
Generation of Security-Enabled RFID Tags. In DSD, pages 640–647. IEEE,
2012.

http://www.ti.com/msp430
http://6lowpan.net/
http://6lowpan.net/
http://www.snm.ethz.ch/snmwiki/Main/HomePage

44 BIBLIOGRAPHY

[105] E. Wenger and J. Großschädl. An 8-bit AVR-Based Elliptic Curve
Cryptographic RISC Processor for the Internet of Things. In MICRO
Workshops, pages 39–46. IEEE Computer Society, 2012.

[106] E. Wenger and M. Hutter. A Hardware Processor Supporting Elliptic
Curve Cryptography for Less than 9 kGEs. In Prouff [89], pages 182–198.

[107] E. Wenger and M. Hutter. A Hardware Processor Supporting Elliptic
Curve Cryptography for Less Than 9kGEs. In E. Prouff, editor, Smart
Card Research and Advanced Application Conference - CARDIS 2011, 10th
Conference, September 15-16, 2011, Leuven, Belgium, Proceedings, volume
7079 of Lecture Notes in Computer Science, pages 182–198. Springer Berlin
Heidelberg, 2011.

[108] E. Wenger and M. Hutter. Exploring the Design Space of Prime Field vs.
Binary Field ECC-Hardware Implementations. In P. Laud, editor, 16th
Nordic Conference on Secure IT Systems, NordSec 2011, Tallinn, Estonia,
October 26-28, 2011, Revised Selected Papers, volume 7161 of Lecture Notes
in Computer Science, pages 256–271. Springer Berlin Heidelberg, 2011.

[109] E. Wenger, T. Korak, and M. Kirschbaum. Analyzing Side-Channel Leakage
of RFID-Suitable Lightweight ECC Hardware. In Workshop on RFID
Security 2013 (RFIDSec 2013), July 9-11, Graz, Austria. Springer, 2013.
in press.

[110] E. Wenger, T. Unterluggauer, and M. Werner. 8/16/32 Shades of Elliptic
Curve Cryptography on Embedded Processors. In G. Paul and S. Vaudeney,
editors, INDOCRYPT, Lecture Notes in Computer Science. Springer, 2013.
in press.

[111] E. Wenger and M. Werner. Evaluating 16-Bit Processors for Elliptic Curve
Cryptography. In Prouff [89], pages 166–181.

[112] S.-M. Yen and M. Joye. Checking Before Output May Not Be Enough
Against Fault-Based Cryptanalysis. In IEEE Transactions on Computers,
volume 49 of IEEE Transactions on Computers, pages 967–970. IEEE
Computer Society, 2000.

[113] S.-M. Yen, L.-C. Ko, S.-J. Moon, and J. Ha. Relative Doubling Attack
Against Montgomery Ladder. In D. Won and S. Kim, editors, ICISC, volume
3935 of Lecture Notes in Computer Science, pages 117–128. Springer, 2005.

[114] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey.
Computer networks, 52(12):2292–2330, 2008.

[115] ZigBee Alliance. The ZigBee Alliance Website. http://www.zigbee.org/.

http://www.zigbee.org/

Part II

Publications

45

List of Publications

Lecture Notes in Computer Science

1. Erich Wenger, Thomas Unterluggauer, and Mario Werner. 8/16/32 Shades
of Elliptic Curve Cryptography on Embedded Processors. In Goutam Paul
and Serge Vaudeney, editors, INDOCRYPT, volume 8250 of Lecture Notes
in Computer Science, Springer, 2013. Note: in press.

• See page 51.

2. Erich Wenger. A Lightweight ATmega-based Application-Specific
Instruction-Set Processor for Elliptic Curve Cryptography. In Gildas
Avoine and Orhun Kara, editors, Second International Workshop on
Lightweight Cryptography for Security and Privacy - LightSec 2013, volume
8162 of Lecture Notes in Computer Science, pages 1–15, Springer, 2013.

• See page 91.

3. Erich Wenger, Thomas Korak, and Mario Kirschbaum. Analyzing Side-
Channel Leakage of RFID-Suitable Lightweight ECC Hardware. Michael
Hutter and Jörn-Marc Schmidt, editors, RFIDSec, volume 8262 of Lecture
Notes in Computer Science, Springer, 2013. Note: in press.

• See page 165.

4. Erich Wenger. Hardware Architectures for MSP430-based Wireless Sensor
Nodes Performing Elliptic Curve Cryptography. In Michael Jacobson,
Michael Locasto, Payman Mohassel and Reihaneh Safavi-Naini, editors,
Applied Cryptography and Network Security, volume 7954 of Lecture Notes
in Computer Science, pages 290–306, Springer, 2013.

• See page 71.

5. Erich Wenger and Michael Hutter. Exploring the Design Space of Prime
Field vs. Binary Field ECC-Hardware Implementations. In Peeter Laud,
editor, Information Security Technology for Applications, volume 7161 of
Lecture Notes in Computer Science, pages 256–271, Springer, 2012.

47

48 LIST OF PUBLICATIONS

• See page 147.

6. Erich Wenger and Mario Werner. Evaluating 16-bit Processors for Elliptic
Curve Cryptography. In Emmanuel Prouff, editor, Smart Card Research
and Advanced Applications, volume 7079 of Lecture Notes in Computer
Science, pages 166–181, Springer, 2011.

7. Erich Wenger and Michael Hutter. A Hardware Processor Supporting
Elliptic Curve Cryptography for Less Than 9 kGEs. In Emmanuel Prouff,
editor, Smart Card Research and Advanced Applications, volume 7079 of
Lecture Notes in Computer Science, pages 182–198, Springer, 2011.

• See page 127.

8. Michael Hutter and Erich Wenger. Fast Multi-Precision Multiplication for
Public-Key Cryptography on Embedded Microprocessors. In Bart Preneel
and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded
Systems, CHES 2011, volume 6917 of Lecture Notes in Computer Science,
pages 459–474, Springer, 2011.

• See page 109.

9. Erich Wenger, Martin Feldhofer, and Norbert Felber. Low-Resource
Hardware Design of an Elliptic Curve Processor for Contactless Devices. In
Yongwha Chung and Moti Yung, editors, Information Security Applications
– WISA, volume 6513 of Lecture Notes in Computer Science, pages 92–106,
Springer, 2011.

IEEE Proceedings

1. Erich Wenger, Thomas Baier, and Johannes Feichtner. JAAVR: Introducing
the Next Generation of Security-enabled RFID Tags. In Euromicro
Conference on Digital System Design (DSD), pages 640–647, IEEE
Computer Society, 2012.

2. Erich Wenger and Johann Großschädl. An 8-bit AVR-Based Elliptic Curve
Cryptographic RISC Processor for the Internet of Things. In International
Symposium on Microarchitecture Workshops (MICROW), pages 39–46,
IEEE Computer Society, 2012.

3. Martin Feldhofer, Manfred Josef Aigner, Michael Hutter, Thomas Plos,
Erich Wenger, and Thomas Baier. Semi-Passive RFID Development
Platform for Implementing and Attacking Security Tags. In International
Conference for Internet Technology and Secured Transactions (ICITST),
pages 1–6, 2010.

LIST OF PUBLICATIONS 49

Under Review

1. Johann Großschädl, Zhe Liu, and Erich Wenger. MoTE-ECC: Energy-
Scalable Elliptic Curve Cryptography for Wireless Sensor Networks. Under
review at an international conference.

2. Michael Hutter and Erich Wenger. Fast Multi-precision Multiplication for
Public-Key Cryptography on Embedded Microprocessors. Under review at
an international journal.

Book Chapter

1. Michael Hutter, Erich Wenger, Markus Pelnar, and Christian Pendl.
Elliptic Curve Cryptography on WISPs. In Pedro Peris Lopez, Julio C.
Hernandez-Castro, and Tieyan Li, editors, Security and Trends in Wireless
Identification and Sensing Platform Tags: Advancements in RFID, IGI
Global, pages 120–143, August, 2012.

Workshops

1. Erich Wenger. Comparing the Elliptic Curve Digital Signature Algorithm
over GF(p) and GF(2m) on an Area-Optimized Custom Microprocessor. In
Javier Lopez and Gene Tsudik, editors, Applied Cryptography and Network
Security – Industrial Track, pages 103–118, 2011.

50 LIST OF PUBLICATIONS

2. Erich Wenger, Martin Feldhofer, and Norbert Felber. A 16-Bit
Microprocessor Chip for Cryptographic Operations on Low-Resource
Devices. In Austrochip – Workshop on Microelectronics, pages 55–60,
2010. ISBN 978-3-200-01945-4.

Journal Paper

1. Thomas Plos, Manfred Aigner, Thomas Baier, Martin Feldhofer, Michael
Hutter, Thomas Korak, and Erich Wenger. Semi-Passive RFID Devel-
opment Platform for Implementing and Attacking Security Tags. In
International Journal of RFID Security and Cryptography (IJRFIDSC),
Volume 1, pages 16–24, 2012.

Patent

1. Michael Hutter, Erich Wenger. Multiplication of large operands. WO
2013044276 A1, Filing September 27, 2011.

Chapter 5

8/16/32 Shades of Elliptic Curve
Cryptography on Embedded
Processors

Publication Data

Erich Wenger, Thomas Unterluggauer, and Mario Werner. 8/16/32 Shades
of Elliptic Curve Cryptography on Embedded Processors. In Goutam Paul
and Serge Vaudeney, editors, INDOCRYPT, volume 8250 of Lecture Notes in
Computer Science, Springer, 2013. Note: in press.

Contributions

Idea. ATmega clone. Software implementations (except for modified MSP430).
Hardware evaluations. Algorithms, Tables, and Figures. 80% of Text.

51

8/16/32 Shades of Elliptic Curve Cryptography
on Embedded Processors

Erich Wenger, Thomas Unterluggauer, and Mario Werner

Graz University of Technology
Institute for Applied Information Processing and Communications

Erich.Wenger@iaik.tugraz.at,

{T.Unterluggauer,M.Werner}@student.tugraz.at

Abstract. The decision regarding the best suitable microprocessor for a
given task is one of the most challenging assignments a hardware designer
has to face. In this paper, we make a comparison of cycle-accurate VHDL
clones of the 8-bit Atmel ATmega, the 16-bit Texas Instruments MSP430,
and the 32-bit ARM Cortex-M0+. We investigate their runtime, chip
area, power, and energy characteristics regarding Elliptic Curve Cryp-
tography (ECC), one of the practically most resource-critical public-key
cryptography systems. If ECC is not implemented with greatest care,
its implementation can lead to excruciating runtimes or enable practi-
cal side-channel attacks. Considering those important requirements, we
present a constant runtime, side-channel protected, and resource sav-
ing scalar multiplication algorithm. To tap the full potential of all three
microprocessors, we perform assembly optimizations and add carefully
crafted instruction-set extensions. To the best of our knowledge, this is
the first thorough software and hardware comparison of these three em-
bedded microprocessors.

Keywords: ATmega, MSP430, Cortex-M0+, Elliptic Curve Cryptogra-
phy, Instruction-Set Extension, Software and Hardware Evaluation.

1 Introduction

Motivation. It is a well-known fact that embedded microprocessors play a sig-
nificant role within a huge number of consumer, industrial, commercial and mil-
itary applications. Microprocessors are being produced and deployed in huge
numbers and are the beating heart of, e.g., smart cards, wireless sensor net-
works, or in future even RFID tags. Those applications require solutions that are
highly optimized in order to be cheap, energy-efficient, and/or power-efficient,
while being versatile and delivering the necessary performance.

To meet all these requirements, the high demands of security and cryptogra-
phy have too often been disregarded. Especially public-key cryptography needs
to be implemented with great care in order to achieve small, performant, and
energy-saving solutions. Since RSA and ElGamal based crypto systems simply
require too much memory, Elliptic Curve Cryptography (ECC) seems to be the

G. Paul and S. Vaudeney (Eds.): INDOCRYPT 2013, in press, 2013.
© Springer-Verlag Berlin Heidelberg 2013

54 INTRODUCTION

best choice. However, ECC is a highly demanding challenge within most appli-
cations, and therefore the decision regarding the most suitable microprocessor
usually is the most discussed topic within a hardware manufacturer. To evaluate
the performance of ECC in software and in hardware, we built VHDL clones of
three of the most popular microprocessors.

Related Work. The research community recognized the challenge of effi-
ciently implementing ECC. In this context, we want to cite [19, 20, 22, 33, 42,
45], just to name a few. Those papers presented and used a lot of different
approaches to improve the performance of ECC on embedded microprocessors.
Unfortunately, in many papers, the authors sacrifice practical crucial proper-
ties, e.g., the memory footprint or practical side-channel security threats for the
sake of fastest runtimes. Other characteristics like power and energy consump-
tions are also often neglected. Szczechowiak et al [42] is a welcome exception as
they presented measured power values for the ATmega and the MSP430 micro-
processor. However, how comparable are those values as both processors were
manufactured in different ASIC technologies by different vendors? A fair com-
parison of the investigated microprocessors must utilize a common design flow,
common technologies, and practically secured software implementations.

Our Contribution. In this paper, we perform a systematic and comprehen-
sive approach to evaluate ECC on cycle-accurate VHDL clones1 of three of the
most popular microprocessors: the 8-bit Atmel AVR ATmega, the 16-bit Texas
Instruments MSP430, and the 32-bit ARM Cortex-M0+. Our contribution is
composed of the following points:

– We derive a point multiplication methodology from previous work which is
light-weight and secure against (most) side-channel attacks. The resulting
algorithm can be applied to any future embedded designs.

– All our software implementations for the three processors are secure against
side-channel attacks and highly optimized using state-of-the-art multi-
precision integer multiplication techniques. Runtime, chip area, power,
and energy results are given for four different standardized elliptic curves
(secp160-192-224-256r1).

– We built three cycle-accurate clones of three of the most popular micro-
processors and evaluate them in an 130 nm ASIC manufacturing process.
The hardware models are based on publicly available design documents and
software simulators. It is quite unlikely that Atmel, Texas Instruments, or
ARM would have given us their cores for such a comparison. Their chips are
produced in different technologies, so any comparison of actual chips is im-
practicable for our purposes. Regarding code quality, we want to emphasize
that Atmel, Texas Instruments, and ARM use similar libraries and tools as
we do. Therefore our designs are probably very close to the real deal.

– We are the first to integrate instruction-set extensions (ISE) in actual clones
of those microprocessors. The only common denominator of those three pro-
cessors is the 16-bit instruction-set. In every other key aspect, they differ (e.g.

1 Closed source for now, done by the authors.

ELLIPTIC CURVE CRYPTOGRAPHY 55

8, 16, 32 bit datapaths, Harvard/Von Neumann architecture, ...). Therefore
the multiply-accumulate ISEs have to be carefully crafted for each CPU core.

– We are the first to optimize ECC on the Cortex-M0+.
– Our results represent state-of-the-art of side-channel protected, fast, light-

weight, and standardized asymmetric cryptography for embedded processors.

The paper is structured as follows: Section 2 presents and analyzes the side-
channel protected elliptic-curve point multiplication algorithm. Within Section 3
the three processors are reviewed and compared on an architectural level. Sec-
tions 4 and 5 summarize the assembly and instruction-set optimizations. A rig-
orous analysis of all implementation results is performed in Section 6. Section 7
concludes the paper.

2 Elliptic Curve Cryptography

When implementing elliptic curve cryptography, a designer has a multitude of
options. In the following we present an algorithm for the point multiplication
which was chosen based on four characteristics:

– It is easy to tamper with embedded microprocessors. Timing attacks,
power-analysis attacks and fault-analysis attacks are a real and omnipresent
danger. For that matter we will not claim to be secure against all kinds of at-
tacks, but by choosing a methodology that is aware of many kind of attacks,
we emphasize the practical significance of the results presented later.

– ECC is a feature. Unlike, e.g., the work in [42] (Comb method with window
size w = 4), we think that only a small fraction of the available program and
data memory resource should be used for ECC so that the actual application
is not hindered in its operation. Therefore we choose a point-multiplication
formula which does not allocate the whole memory for pre-computed or
temporary points. Reduced memory requirements further allows hardware
designers to save money by equipping the chip with smaller memories.

– Standards were made to be used and simplify the interoperability of prod-
ucts. Thus, by choosing a NIST [35] or SECG [7] standard, any company can
be sure that their product is compatible with products from other vendors.

– Achieving a high speed is an ubiquitous goal of nearly every designer. By
getting the most out of an available hardware, one reduces latency times
(important in real-time protocols) and saves energy (important for battery-
powered devices and from an economic point of view). As we do not sacrifice
our security requirements for speed, we concentrate on improving the finite-
field operations by doing assembly and instruction-set optimizations.

In Algorithm 1, we present the point multiplication formula used for all our
practical evaluations. A detailed analysis of Algorithm 1 is given in Appendix A.
Our goal was to design an algorithm which can be used for Diffie-Hellman key
exchanges (DHKE) and elliptic-curve based signatures (ECDSA [35]), which
are the major features embedded applications actually require. The algorithm

56 MICROPROCESSOR ARCHITECTURES

Algorithm 1 Elliptic curve point-multiplication algorithm used for evaluation.

Input: Domain parameters, secret scalar k with MSB = 1, point P = (x, y).
Output: R = k × P
1: if y2 6= x3 + ax+ b then Perform Error Handling

2: (X,Y, Z)← (x · λ, y · λ, λ) . Randomize Projective Coordinates
3: if Y 2Z 6= X3 + aXZ2 + bZ3 then Perform Error Handling

4: Q[0]← (X,Z), Q[1]← 2 · (X,Y, Z) . Initial Point Doubling
5: for i = |k| − 2 downto 0 do . Montgomery Ladder
6: Q[ki]← Q[ki] +Q[ki ⊕ 1]
7: Q[ki ⊕ 1]← 2 ·Q[ki ⊕ 1]
8: end for
9: (X,Y, Z)← y-recovery(Q[0], Q[1])

10: if Y 2Z 6= X3 + aXZ2 + bZ3 then Perform Error Handling

11: R = (x, y)← (XZ−1, Y Z−1)
12: if y2 6= x3 + ax+ b then Perform Error Handling

is using a Montgomery ladder [34] with Randomized Projective Coordinates
(RPC) [10] and multiple point validation (PV) checks. After an initial PV check
the coordinates are randomized. In step 3, the point is again checked within the
projective coordinates. A fault attack on the randomized projective coordinates
is much more complex. Then, an initial point doubling within the RPC is per-
formed. The double of the original point is needed for the following Montgomery
ladder. Here we use the common-z interleaved point addition and doubling for-
mulas by Hutter, Joye, and Sierra [25]. As this is the most costly part of the
algorithm, no PV checks are performed within it. For the following recovery
of the y-coordinates, both Q[0] and Q[1] are used. Another two PV checks are
performed before and after the inversion of the Z-coordinate. One may argue
that several of the PV checks are redundant, but because they hardly have any
impact on the speed, we perform them anyways.

Runtimes of all finite-field operations are constant and data-independent.
Therefore, a finite-field inversion was implemented based on Fermat’s little the-
orem (inversion by exponentiation). Particularly, the algorithm is based on the
exponentiation trick by Itoh and Tsujii [27]. Although this trick is usually applied
to elliptic curves over binary fields, we utilize it to optimize the inversion for the
standardized Mersenne-like primes, nearly halving the number of multiplications
needed for an exponentiation with a fixed exponent.

Summarizing, it is important to utilize the available resources. Therefore a
detailed knowledge of the used microprocessors is necessary to achieve competi-
tive results. Section 3 discusses the characteristics of the investigated embedded
microprocessors.

3 Microprocessor Architectures

This paper focuses on three of the most popular embedded microprocessors: the
8-bit Atmel ATmega AVR, the 16-bit Texas Instruments MSP430 and the 32-

MICROPROCESSOR ARCHITECTURES 57

bit ARM Cortex-M0+ microprocessors. All of them were designed for embedded
applications, in which price and power consumption matter more than the max-
imum clock speed or the amount of available data or program cache. In fact,
those RISC processors do not have any cache. In this section, we introduce the
three processor architectures and discuss their capabilities relevant for ECC.

Atmel ATmega AVR series. In 1996, two students from the Norwegian
Institute of Technology developed the first AVR processor. Today, designers can
choose from a vast range of descendants. Especially the ATmega series [2] has
been and is used in a magnitude of commercial products.

The ATmega is a 8-bit RISC processor with separated program, data, and
I/O memory buses (Harvard architecture). It comes with 32 general-purpose reg-
isters (GPR) and 91 (133 including simulated) instructions. To perform integer
arithmetic, operands need to be loaded (2 cycles) to the GPRs, processed within
the GPRs, and stored back (2 cycles) to the data memory. A for multi-precision
integer arithmetic [9] interesting 8-bit multiply-accumulate operation (LD, LD,
MUL, ADD, ADC, ADC) takes 9 cycles.

Texas Instruments MSP430 series 1. One of the most successful, direct
competitor of the ATmega is the MSP430 processor series [43] by Texas Instru-
ments. With its six low-power modes it is most interesting for low power, and
low-energy applications. This is why it is used for many wireless sensor nodes
such as the EPIC Mote, TelosB, T-Mote Sky, and XM1000 platforms.

The original series-1 MSP430 is a 16-bit RISC processor with a single com-
bined data and program bus. Merely 12 of its 16 16-bit registers are actually
usable as general-purpose registers. The MSP430 series comes with a fully or-
thogonal instruction set of only 27 instructions with 7 addressing modes. Unfor-
tunately, there is no dedicated multiplication instruction, but a memory mapped
16× 16→ 32-bit multiplier, with multiply-accumulate feature, is available. De-
spite the high costs introduced by transfering the operands from data memory
to the multiplier, a 16-bit multiply-accumulate operation (MOV, MOV, NOP, ADD)
can be performed in 13 cycles.

ARM Cortex-M0+ series. In the recent years, ARM made a name for
itself with supplying smart phones and tablets with powerful energy-saving pro-
cessors, namely the Cortex-A series. For embedded applications however, Cortex-
M series processors are more suitable. The Cortex-M0+ embedded microproces-
sor [1] is the smallest, most energy-efficient ARM ever built and supports a
subset of the Thumb-2 instruction-set. This 32-bit RISC processor is designed
as direct competitor for the ATmega and MSP430 processors. Launched in 2012,
major companies (e.g., Freescale [15], Fujitsu [16], or NXP [36]) just started to
introduce the Cortex-M0+ to their lineups.

Similar to the MSP430, the Cortex-M0+ comes with a Von Neumann archi-
tecture. Its 32-bit address and data buses enable the addressing of up to 4 GByte
of data, preparing it perfectly for future memory requirements. Exactly 13 of its
16 32-bit registers can be used as general-purpose registers, but most of its 56
instructions can only access the lower 8 registers R0–R7. Registers R8–R15 are ac-
cessible through a MOV instruction only. Optionally, the Cortex-M0+ comes with

58 MICROPROCESSOR ARCHITECTURES

Table 1. Summary of the embedded microprocessors.

Characteristic ATmega MSP430 (1 Series) Cortex-M0+

Data-Width 8 bits 16 bits 32 bits
Instruction-Word Size 16 bits 16 bits 16 bits
Architecture Harvard Von Neumann Von Neumann
General-Purpose Registers 32 12/16 8/13/16
Number of Instructions 81 27 56
Max. Data Memory 16 kByte 10 KByte 4 GByte
Max. Program Memory 256 kByte 60 KByte 4 GByte
Multiply Accumulatea 9 cycles 13 cycles 29 cycles

Used Clone JAAVR [47] IDLE430 [50] Xetroc-M0+ [44]

Core areab 6,140 GE 4,913 GE 15,262 GE
Registers 2,002 GE 1,732 GE 4,176 GE
Multiplier 372 GE 1,751 GEc 2,766 GE

a Load two operands, multiply and accumulate them.
b Including memory arbiter and necessary special function registers.
c Memory mapped and therefore not part of the core area.

a bit-serial or a single-cycle 32 × 32 → 32-bit multiplication instruction. Note
that for ECC, also the upper half of the product is necessary for multi-precision
integer arithmetic. In the following, we use this multiplier as 16 × 16 → 32-bit
multiplier. Section 4 illustrates the implementation of an efficient 29-cycle 32-bit
multiply-accumulate operation.

Summary of the Embedded Microprocessors. The common denomina-
tors of the three embedded microprocessors are that they are RISC processors,
support single-cycle register-to-register operations, and have 16-bit instruction
sets (with some 32-bit exceptions). The major differences are summarized in
Table 1. The three microprocessors utilize different architectures, have different
amounts of available registers, clearly distinct instruction sets and support dif-
ferent amounts of data and program memory. Those differences become apparent
when the actual hardware footprint is evaluated. Most remarkably, the 16-bit
MSP430 (4,913 GE) requires less chip area than the 8-bit ATmega (6,140 GE).
This is the price the ATmega has to pay for its three memory buses and the
vast instruction set. To efficiently perform integer multiplications, the MSP430
additionally needs a memory mapped multiplier which is 1,751 GE in size. Com-
pared to the ATmega and the MSP430, the 32-bit Cortex-M0+ is much larger.
It requires 15,262 GE in a configuration with a single-cycle 32-bit multiplier. The
optional 32-cycle bit-serial multiplier saves 1,363 GE which brings the Cortex-
M0+ to a minimum size of 13,899 GE in the used 130 nm UMC process.

Related Work. ARM specifies that their Cortex-M0+ is only 12 kGE large
in a 90 nm process. When synthesizing our clone in a 90 nm UMC process it
requires 12,436 GE. So in terms of area, our Cortex-M0+ is (as aimed for) very
close to the original. As neither Atmel nor Texas Instruments released char-
acteristics of their processors, we can only compare our clones to the versions

ASSEMBLY OPTIMIZATIONS FOR ECC 59

uploaded to opencores.org. Compared to the openMSP430 [37], our MSP430
is 5, 958 − 4, 913 = 1, 045 GE smaller. Compared to other (insufficiently tested)
ATmega or AVR clones, our ATmega clone is similarly small.

4 Assembly Optimizations for ECC

As we already fixed the point arithmetic, we focus our effort on the finite-field
operations. Most crucial is the finite-field multiplication as it contributes to
90 % of the runtime of a point multiplication. Hence, optimizing the runtime of
the finite-field multiplication automatically improves the runtime of the point-
multiplication algorithm. Additionally, it leads to a speedup of the finite-field
squaring, exponentiation and inversion operation. To optimize the finite-field
multiplication, one can either perform assembly optimizations or extend the
instruction-set (see Section 5).

While the currently fastest multi-precision multiplication approaches for the
ATmega and the MSP430 are based on related work, it was necessary to come
up with a new technique for the Cortex-M0+ as it has not yet been investigated.

ATmega. In 2004, Gura et al. [22] presented an efficient multi-precision
multiplication method and applied it to the ATmega. Hutter and Wenger [26]
presented the “Operand Caching” method in 2011. It further reduced the number
of memory load operations at the cost of some memory store operations. As it
fully utilizes the available general purpose registers as caches and currently is
one of the fastest ways to perform multi-precision multiplications on an ATmega,
we used their technique.

MSP430. The MSP430 only has 12 useable GPRs, of which three registers
have to be used as pointers and further three registers are necessary for the ac-
cumulation of intermediate results. With the remaining six registers, we applied
the product-scanning technique by Comba [9]. This technique fully utilizes the
multiply-accumulate functionality of the memory-mapped multiplier. It was first
described by Gouvêa and López [19] and is fully tailored to the MSP430.

Cortex-M0+. ECC performance of the Cortex-M0+ has never been exam-
ined before. Most notable are the works of Aydos et al. [3], who optimized ECC
for an ARM7TDMI processor, and Bernstein and Schwabe [4], who optimized
the NaCl cryptographic library for a Cortex-A8. However, none of their work
had to deal with the limitations of a Cortex-M0+: Its multiplier only computes
32-bit products, most instructions are restricted to registers R0–R7, and, for most
instructions, the destination register must equal one of the source registers, i.e.
in each multiplication one of the operands is overwritten by the product.

We evaluated several multiplication techniques and finally settled for a
product-scanning multi-precision multiplication method. Its centerpiece is shown
in Algorithm 2: the two operand references are moved from registers R8 and R9

to R1 and R2. Consequently, we can load their values from the memory. Then,
five registers are available to perform four 16×16→ 32-bit multiplications (steps
9–13), whereby the 16-bit masking steps are performed only once (steps 5–7).
Steps 14–27 accumulate the four 32-bit products into the registers R3–R5.

60 ASSEMBLY OPTIMIZATIONS FOR ECC

Algorithm 2 Multiply-Accumulate Operation on Cortex-M0+.

Input: R8 and R9 are pointers.
Output: R3, R4, R5 contain the sum.
1: MOV R1, R8

2: LDR R1, [R1, #offset1]

3: MOV R2, R9

4: LDR R2, [R2, #offset2]

5: UXTH R6, R1

6: UXTH R7, R2

7: LSR R1, R1, #16

8: LSR R2, R2, #16

9: MOV R0, R6

10: MUL R0, R0, R7 . Low–Low
11: MUL R6, R6, R2 . Low–High
12: MUL R2, R2, R1 . High–High
13: MUL R1, R1, R7 . High–Low

14: MOV R7, #0

15: ADD R3, R3, R0 . Low–Low
16: ADC R4, R4, R2 . High–High
17: ADC R5, R5, R7

18: LSL R0, R6, #16 . Low–High
19: LSR R2, R6, #16

20: ADD R3, R3, R0

21: ADC R4, R4, R2

22: ADC R5, R5, R7

23: LSL R0, R1, #16 . High–Low
24: LSR R2, R1, #16

25: ADD R3, R3, R0

26: ADC R4, R4, R2

27: ADC R5, R5, R7

The stack is used to temporarily store the product of the multi-precision
integer multiplication. Hence, we benefit from addressing relative to the stack
pointer and avoid moving the address to one of the registers R0–R7. In a second
step, a reduction is performed by taking advantage of the Mersenne-like primes.

Assembler Optimized Results. We did all assembly optimizations for
four standardized elliptic curves (secp160-192-224-256r1). In order to keep
the general view, Table 2 depicts the memory footprints, the runtimes for finite-
field operations and the point multiplication over the secp160r1 elliptic curve.

In terms of ROM size the processors behave converse their word sizes. The
implementation for the ATmega takes up 7,762 bytes in ROM, which is twice
as much as for the Cortex-M0+. This is mainly a result of the unrolled integer
multiplication. The MSP430 behaves well as it requires only 13% more ROM
than the Cortex-M0+. With respect to RAM, the ATmega (402 byte) and the
Cortex-M0+ (404 byte) perform similarly, consuming about 40% more RAM
than the MSP430 (290 byte). The increased RAM footprint of the ATmega is
due to the elliptic curve constants that need to be loaded to the RAM at startup.
The root of the increased memory usage of the Cortex-M0+ lies within its calling
hierarchy. Each PUSH operation stores four bytes of data within the RAM. These
facts combined make the MSP430 an economic platform in terms of memory
footprint and chip area.

Impressingly, the finite-field addition on the Cortex-M0+ is 2.6 times
faster than an addition on the MSP430. The main reason for that is the load-
multiple LDM instruction of the Cortex-M0+, which allows loading multiple words
into several registers requiring only #words+1 cycles. The load LDR instruction
takes 2 cycles per word and therefore 2×#words cycles would be needed.

INSTRUCTION-SET MODIFICATIONS 61

Table 2. Benchmark data of assembly optimized implementations for secp160r1.

Processor ROM RAM Addition Mult. Inversion Point Mult. Core Area
[Bytes] [Bytes] [Cycles] [Cycles] [Cycles] [Cycles] [kGE]

Atmega 8,358 402 291 3,024 519,217 9,230,048 6,140
MSP430 4,788 290 163 1,905 327,366 5,779,957 7,003
CortexM0+ 4,256 404 62 942 162,500 2,809,619 15,262

Relative Performance

Atmega 1.96 1.46 4.69 3.21 3.20 3.29 1.00
MSP430 1.13 1.00 2.63 2.02 2.01 2.06 1.14
CortexM0+ 1.00 1.39 1.00 1.00 1.00 1.00 2.49

As the runtime of integer multiplication scales quadratically, one expects
the 32-bit Cortex-M0+ to be four times faster than the 16-bit MSP430 and the
16-bit MSP430 to be four times faster than the 8-bit ATmega. But they are not.
The Cortex-M0+ is only twice as fast as the MSP430. The reason for that is the
tremendous overhead needed to perform a 32× 32→ 64-bit multiplication using
the 32× 32→ 32-bit integer multiplier (see the highly optimized Algorithm 2).
But also the MSP430 is only 1.6 times faster than the ATmega. This is because
the MSP430 has a memory mapped multiplier and the ATmega has an integrated
multiplier.

By combining finite-field additions, multiplications, and inversions, the run-
times for secp160r1 point multiplications were obtained. They are 9.2 million
cycles for the ATmega, 5.8 million cycles for the MSP430, and 2.8 million cycles
for the Cortex-M0+. As the finite-field multiplication contributes to the majority
of this runtime, the ratios for the point multiplications are nearly identical to the
ratios of the finite-field multiplication. Equipping the Cortex-M0+ with a bit-
serial multiplier quadruples its runtime: With 11.9 million cycles the bit-serial
multiplier simply defeates the purpose of having a 32-bit processor. Hence, we do
not recommend implementing prime-field based ECC on a Cortex-M0+ without
single-cycle multiplier. Consequently, instruction-set extensions were equipped
to improve runtimes and to monitor how the performance ratios change.

5 Instruction-Set Modifications

We carefully crafted the VHDL clones of the ATmega, the MSP430, and the
Cortex-M0+ to be cycle-compatible with its originals. During that process, we
also observed some minor shortcomings regarding their respective potentials.
This section is all about maximizing the performance by improving the runtime
of existing instructions and adding multiply-and-accumulate [21] instructions.
This MULACC instruction is optimal for multi-precision multiplication. It is used
to multiply two n-bit registers and add the 2n-bit product to three accumulation
registers. As the three processors differ significantly, MULACC had to be integrated
differently for each processor.

ATmega. Our modifications of the ATmega are based on Wenger [46]. In this
paper, we showed among other things how to improve load, store, and multiply

62 INSTRUCTION-SET MODIFICATIONS

Table 3. Benchmarks of processors with instruction-set modifications for secp160r1.

Processor ROM RAM Addition Mult. Inversion Point Mult. Core Area
[Bytes] [Bytes] [Cycles] [Cycles] [Cycles] [Cycles] [kGE]

Atmega 5,828 402 176 984 170,053 3,268,486 7,039
MSP430 3,898 286 150 718 123,939 2,445,508 7,197
CortexM0+ 3,088 408 62 369 64,859 1,231,946 18,700

Relative Performance of Modified Processors

Atmega 1.89 1.41 2.84 2.67 2.62 2.65 1.00
MSP430 1.26 1.00 2.42 1.95 1.91 1.99 1.02
CortexM0+ 1.00 1.43 1.00 1.00 1.00 1.00 2.66

Modified versus Assembly-optimized Implementations (Table 2)

Atmega −30.3% ±0.0% −39.5% −67.5% −67.2% −64.6% 14.6%
MSP430 −18.6% −1.4% −8.0% −62.3% −62.1% −57.7% 2.8%
CortexM0+ −27.4% 1.0% ±0.0% −60.8% −60.1% −56.2% 22.5%

instructions and execute them within a single cycle instead of two. Additionally,
we added a single-cycle multiply-and-accumulate instruction, which was com-
bined with the Operand-Caching multiplication method. In a special operating
mode, activated by writing a memory-mapped configuration register, the existing
MUL instruction is reinterpreted as MULACC instruction. Therefore, the software
toolchain does not need to be modified. In fact, the trick of having a special
mode for the instruction-set extension has also been applied for the MSP430
and Cortex-M0+.

MSP430. The advantage of the MSP430 is, that operands do not have to
be explicitly loaded to core registers before their usage. The drawback is that
the multiplier is only accessible via the memory. To get rid of this bottleneck,
we removed the memory-mapped multiplier (saved 1,751 GE) and added a dedi-
cated MULACC instruction within its core. Unfortunately, the 7 existing addressing
modes were insufficient for our purposes. By perfectly utilizing the pre-existing
auto-increment and a new auto-decrement addressing mode it is possible to load
two operands, multiply-and-accumulate the data, and update the addressing reg-
isters. To omit manual pointer updates completely, we combined the new MULACC

instruction with Wenger and Werner’s [49] zig-zag product-scanning multiplica-
tion method. Other modifications with less impact on the ECC runtime improved
move, jump, push, and call instructions by one to two cycles. This modifications
do not only minimize the overhead of the C-calling convention, but also poten-
tially improve the runtimes of any other algorithm run on the modified MSP430.

Cortex-M0+. As it is only possible to compute a 16 × 16 → 32-bit prod-
uct with the internal multiplier of the Cortex-M0+ and 29 cycles are necessary
to perform a 32-bit (c.f. Algorithm 2) multiply-and-accumulate operation, it is
specially important to equip the Cortex-M0+ with a MULACC extension. This
extension reduced the for the product-scanning important sequence of LDR, LDR,
MULACC instructions to mere 5 cycles. To save area, the pre-existing 32×32→ 32-
bit multiplier is reused and only extended to compute a 64-bit product. There-
fore, the MULACC extension did only cost 3.4 kGE.

DISCUSSION OF HARDWARE IMPLEMENTATIONS 63

Results using Instruction-Set Modifications. In general, the core idea
of all modifications was to improve the performance without adding unnecessary
hardware. So the modifications of the ATmega (+14.8 %) and the Cortex-M0+
(+22.5 %) only marginally increased the size of the CPU cores. The effective size
of the MSP430 only increased by 2.8 %. The slow, memory-mapped multiplier
was approximately as large as the new dedicated datapath to multiply-and-
accumulate within a single cycle. While the size of the CPU cores increased, the
size of the program memory decreased by 19-30 %. The rather large unrolled in-
teger multi-precision multiplication functions shrunk significantly and therefore
the total chip areas actually decreased. However, the modifications only have
very little impact on data memory utilization.

As intended, the modifications achieve a massive speedup of multiplications
in the prime field (cf. Table 3). Throughout, the corresponding runtimes dropped
by 60%, with the highest speedup achieved on the ATmega (-67%). As inver-
sions are based on exponentiation to counteract side-channel attacks, the same
impressing speedup is found there. Accordingly, point multiplication runtimes
slumped by 65% on the ATmega and plunged by 57% on the others. Concerning
addition, there are no performance gains for the Cortex-M0+ and the MSP430.
Contrary to that, addition is performed 40% faster on the ATmega due to the
improved timings of the load and store operations. Relating runtimes of the three
modified processors, the Cortex-M0+ again achieves the best performance, being
between 2-3 times faster than its competitors. However, its advantage diminishes
slightly compared to the unmodified ATmega.

6 Discussion of Hardware Implementations

All our implementations for the three microprocessors, with and without
instruction-set modifications, and over four elliptic curves were tested for cor-
rectness using externally generated test vectors, synthesized in a Faraday UMC
130 nm low-leakage ASIC library, placed-and-routed, and power-simulated (us-
ing Cadence RTL Compiler, Cadence Encounter). The huge number of results
are accumulated within Table 4 and discussed in the following.

Memories. We used area-efficient single-port RAM macros as data memo-
ries and single-port Via-1 ROM macros as program memories. As their necessary
sizes depend on the ECC implementation, they were chosen appropriately for
each implementation. Experiments showed that synthesizing the program mem-
ories as standard logic cells resulted in smaller program memories after synthesis,
but there were two problems: Firstly, it was virtually impossible to place and
route the program memories without significantly decreasing the cell density,
which actually increased the effective size of the program memory. Secondly,
the ROM macros have a significantly lower power consumption compared to the
synthesized program memories.

Runtime. The runtime is measured at 10 MHz and visualized in Figure 1.
The time for a single, side-channel secured point multiplication varies between
123–923 ms. As expected, the 32-bit processor is faster than the 16-bit processor,

64 DISCUSSION OF HARDWARE IMPLEMENTATIONS

Table 4. Summary of all experiments.

Processor Version Program Dataa Chip Area Power Energy Runtime
Memory Memory ROM RAM Core Total @10 MHz @10 MHz

[Bytes] [Bytes] [GE] [GE] [GE] [GE] [µW] [µJ] [ms]

secp160r1

ATmega ASM 8,358 402 11,807 3,754 6,140 21,701 545 503 923
MSP430 ASM 4,788 290 7,796 3,250 7,003 18,048 583 337 578
CortexM0+ ASM 4,256 404 8,270 4,308 15,262 27,840 718 202 281

ATmega ISE 5,828 402 8,202 3,754 7,039 18,995 666 218 327
MSP430 ISE 3,898 286 6,363 3,225 7,197 16,786 794 194 245
CortexM0+ ISE 3,088 408 6,416 4,334 18,700 29,450 1,306 161 123

secp192r1, NIST P-192

ATmega ASM 10,238 462 11,807 4,107 6,140 22,054 556 839 1,509
MSP430 ASM 5,408 330 8,202 3,475 7,003 18,679 581 533 918
CortexM0+ ASM 4,860 448 8,270 4,560 15,262 28,092 716 329 459

ATmega ISE 6,564 462 10,040 4,107 7,039 21,186 670 336 502
MSP430 ISE 4,142 330 7,796 3,475 7,197 18,468 801 283 353
CortexM0+ ISE 3,164 444 6,416 4,535 18,700 29,652 1,318 241 183

secp224r1, NIST P-224

ATmega ASM 12,570 526 15,484 4,485 6,140 26,109 571 1,326 2,321
MSP430 ASM 6,294 374 10,040 3,750 7,003 20,792 584 819 1,403
CortexM0+ ASM 5,672 496 8,270 4,838 15,262 28,369 716 496 693

ATmega ISE 7,600 526 10,040 4,485 7,039 21,564 664 500 754
MSP430 ISE 4,588 370 7,796 3,725 7,197 18,718 805 419 521
CortexM0+ ISE 3,352 492 6,416 4,812 18,700 29,929 1,330 334 251

secp256r1, NIST P-256

ATmega ASM 16,112 590 17,029 4,838 6,140 28,006 548 1,914 3,493
MSP430 ASM 8,378 418 11,878 4,000 7,003 22,881 580 1,286 2,217
CortexM0+ ASM 7,168 540 10,123 5,089 15,262 30,475 719 771 1,073

ATmega ISE 9,596 590 11,807 4,838 7,039 23,684 655 779 1,190
MSP430 ISE 6,168 416 10,040 3,975 7,197 21,212 791 717 907
CortexM0+ ISE 4,124 536 8,270 5,064 18,700 32,034 1,339 546 408

a Including Stack.

which in turn is faster than the 8-bit processor. Quite remarkably though is that
the modified ATmega is nearly as fast as the native Cortex-M0+.

Area. The area visualized in Figure 1 accumulates the respective areas of
the CPU, the ROM, the RAM, and core building blocks, such as an arbiter.
Quite remarkably, the native and the modified MSP430 represent the smallest
implementation, requiring around 16.8–18.0 kGE. Compared to that, the modi-
fied Cortex-M0+ (29 kGE) is 75 % larger.

Area-runtime-product. In the prestigious category of area-runtime-
product, the modified implementations clearly outperform its native counter-
parts (see the dashed lines within Figure 1). The modified Cortex-M0+ system
performs best, and the native ATmega system performs worst. However, the
modified ATmega system provides a better performance for the used chip area
than the native Cortex-M0+. Consequently, if some commercial company eval-
uates whether to switch to a more powerful Cortex-M0+, we can clearly recom-
mend to replace the native MSP430 or ATmega with its modified counterpart,

DISCUSSION OF HARDWARE IMPLEMENTATIONS 65

0 100 200 300 400 500 600 700 800 900 1,000
1.5

2

2.5

3
·104

ATmega

MSP430

Cortex-M0+

Mod. ATmega

Mod. MSP430

Mod. Cortex-M0+ Faster

More Efficient

Smaller

Runtime [milliseconds]

A
re

a
[G

E
]

Fig. 1. Area-runtime-characteristics for secp160r1 at 10 MHz.

presented within this paper. As nice side-effect, the software code-base does not
have to be updated for a different processor.

Power. According to Figure 2, all designs require between 545–1,305 µW.
The 8-bit ATmega requires the least amount of power, slightly less (6.5 %)
than the MSP430. However, when their modified counterparts are compared,
the modified ATmega needs 16 % less power than the modified MSP430. The
Cortex-M0+ and the modified Cortex-M0+ need the most power.

Power-runtime-product: Energy. However, the same two processors
shine within the energy-efficiency race. As represented by the dashed lines in
Figure 2, the Cortex-M0+ based designs only need 161–202 µJ, while the other
designs need 194–503 µJ. That is up to 60 % less. The MSP430 is 11–33 % more
energy efficient than the ATmega.

Relating the Different Elliptic Curves. As initially stated and depicted
in Table 4, we did not do our evaluation only with secp160r1, but also with
secp192r1, secp224r1, and secp256r1. Most importantly, the results observed
at the 80-bit security level are reproducible for the larger elliptic curves. On
average, changing from one elliptic curve to the next larger one, costs 6 % of
additional chip area, 53 % of additional runtime and 54 % of additional energy.
The power consumption is not effected by the chosen elliptic curve.

Related Work. In terms of software implementations (c.f. Table 5), our
implementations distinct themselves from related work with their low memory
footprints and the side-channel countermeasures. In fact none of the implemen-
tations done by [20, 22, 33, 42, 45] have side-channel countermeasures built in.
Therefore it is expected that, e.g., [20, 22, 42], achieve faster runtimes than we

66 CONCLUSION

0 100 200 300 400 500 600 700 800 900 1,000
0

500

1,000

1,500

ATmega
MSP430

Cortex-M0+
Mod. ATmega

Mod. MSP430

Mod. Cortex-M0+
Faster

More Energy-Efficient

Less Power

Runtime [milliseconds]

P
ow

er
[µ

W
]

Fig. 2. Power-runtime-characteristics for secp160r1 at 10 MHz.

do. However, e.g., [20, 42] need up to 7–10 times more program and data memory
than we do.

For the sake of completeness, we also compare our modified processors with
related hardware implementations (c.f. Table 6). Unfortunately, those dedicated
hardware designs are faster than our flexible microprocessor based designs. How-
ever, in terms of chip area, our smallest modified MSP430 implementation is
smaller than the work of [17, 24, 29, 38, 39]. Only the custom microprocessor de-
sign by Wenger et al. [48] is smaller. However, their microprocessor does not come
with the vast (open-source) compiler toolchains, the ATmega, the MSP430, or
the Cortex-M0+ provide.

7 Conclusion

In this work, three of the most popular micro-processors were evaluated re-
garding their runtime, chip area, power, and energy consumption on standard-
compatible side-channel protected elliptic curve cryptography. By comparing
them using a single design flow, the same application, and with a common tech-
nology, we achieve a fair comparison between the different architectures. Our
work might help any system architect on their decision regarding best suitable
processor, best suitable security level, and whether or not to implement hard-
ware extensions. Our results show that the Cortex-M0+ is the fastest and most
energy-efficient processor (e.g., ideal for Wireless Sensor Nodes), the MSP430
enables the smallest and least power consuming hardware design (e.g., ideal for
RFID tags), and the ATmega gains the most performance when instruction-
set modifications are applied (e.g., ideal for long-lived products that must be

CONCLUSION 67

Table 5. Comparison with related soft-
ware implementations (80 bit security
level).

Curve ROM RAM Runtime
[Bytes] [Bytes] [kCycles]

ATmega

Custom [42] 46,100 1,800 9,376
secp160r1 [33] 20,768 1,774 15,060
secp160r1 [22] 3,682 282 6,480
Our secp160r1 8,358 402 9,230

MSP430

Custom [42] 31,300 2,900 5,898
secp160r1 [20] 23,300 2,800 2,528
secp160r1 [33] 16,218 1,866 11,821
secp160r1 [45] 12,500 1,300 28,080
Our secp160r1 4,788 290 5,780

Table 6. Comparison with related hard-
ware implementations.

Implementation Area Runtime
[GE] [kCycles]

96-bit security level

Satoh et al. [39] 29,655 4,165
Hutter et al. [24] 19,115 859
Wenger et al. [48] 11,686 1,377

80-bit security level

Öztürk et al. [38] 30,333 545
Fürbass et al. [17] 23,656 500
Kern et al. [29] 18,247 512

Our Mod. ATmega 18,995 3,268
Our Mod. MSP430 16,786 2,446
Our Mod. Cortex-M0+ 29,450 1,232

equipped with ECC). Any designer now has to define their own metric and
weigh the characteristics with each other. To the best of our knowledge, such an
comprehensive evaluation has not been done before.

Acknowledgments

This work has been supported in part by the Austrian Government through the
research program FIT-IT under the project number 835917 (project NewP@ss)
and by the European Commission through the ICT Programme under contract
ICT-SEC-2009-5-258754 TAMPRES.

References

1. ARM. Cortex-M0+ Processor, 2013. Available online at http://www.arm.com/

products/processors/cortex-m/cortex-m0plus.php.
2. Atmel Corporation. megaAVR Microcontroller, 2013. Available online at http:

//www.atmel.com/products/microcontrollers/avr/megaavr.aspx.
3. M. Aydos, T. Yanik, and Ç . K. Koç. A High-Speed ECC-based Wireless Authen-

tication Protocol on an ARM Microprocessor. In ACSAC. IEEE, 2000.
4. D. Bernstein and P. Schwabe. Neon crypto. CHES, 2012.
5. I. Biehl, B. Meyer, and V. Müller. Differential Fault Attacks on Elliptic Curve

Cryptosystems. In CRYPTO, LNCS. Springer, 2000.
6. B. Brumley and N. Tuveri. Remote timing attacks are still practical. ESORICS,

2011.
7. Certicom Research. Standards for Efficient Cryptography, SEC 2: Recommended

Elliptic Curve Domain Parameters, Version 1.0, 2000.

68 CONCLUSION

8. M. Ciet and M. Joye. Elliptic Curve Cryptosystems in the Presence of Permanent
and Transient Faults. Designs, Codes and Cryptography, 2005.

9. P. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems Journal,
1990.

10. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In CHES, LNCS. Springer, 1999.

11. N. Ebeid and R. Lambert. Securing the Elliptic Curve Montgomery Ladder Against
Fault Attacks. In FDTC, pages 46–50. IEEE Computer Society, 2009.

12. J. Fan, X. Guo, E. D. Mulder, P. Schaumont, B. Preneel, and I. Verbauwhede.
State-of-the-Art of Secure ECC Implementations: A Survey on known Side-
Channel Attacks and Countermeasures. In HOST. IEEE, 2010.

13. J. Fan and I. Verbauwhede. An Updated Survey on Secure ECC Implementations:
Attacks, Countermeasures and Cost. In Cryptography and Security: From Theory
to Applications, LNCS. Springer, 2012.

14. P.-A. Fouque, R. Lercier, D. Réal, and F. Valette. Fault Attack onElliptic Curve
Montgomery Ladder Implementation. In FDTC. IEEE Computer Society, 2008.

15. Freescale Semiconductor. Kinetis L Series MCUs, 2013. Available online at http://
www.freescale.com/webapp/sps/site/taxonomy.jsp?code=KINETIS_L_SERIES.

16. Fujitsu Semiconductors. Fujitsu Semiconductor Widely Expands Lineup of 32-bit
General Purpose Microcontrollers with the Release of Products Adopting 2 New
ARM Cores, November 2012. Press Release.

17. F. Fürbass and J. Wolkerstorfer. ECC Processor with Low Die Size for RFID
Applications. In IEEE International Symposium on Circuits and Systems, 2007.

18. L. Goubin. A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems. In
PKC, LNCS, 2003.

19. C. P. L. Gouvêa and J. López. Software Implementation of Pairing-Based Cryptog-
raphy on Sensor Networks Using the MSP430 Microcontroller. In INDOCRYPT,
2009.

20. C. P. L. Gouvêa, L. Oliveira, and J. López. Efficient Software Implementation
of Public-Key Cryptography on Sensor Networks Using the MSP430X Microcon-
troller. Journal of Cryptographic Engineering, 2012.

21. J. Großschädl and E. Savaş. Instruction Set Extensions for Fast Arithmetic in
Finite Fields GF(p) and GF(2m). In CHES, 2004.

22. N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing Elliptic
Curve Cryptography and RSA on 8-Bit CPUs. In CHES, LNCS. Springer, 2004.

23. J. Heyszl, S. Mangard, B. Heinz, F. Stumpf, and G. Sigl. Localized Electromagnetic
Analysis of Cryptographic Implementations. CT-RSA, 2012.

24. M. Hutter, M. Feldhofer, and T. Plos. An ECDSA Processor for RFID Authenti-
cation. In RFIDSec, 2010.

25. M. Hutter, M. Joye, and Y. Sierra. Memory-Constrained Implementations of Ellip-
tic Curve Cryptography in Co-Z Coordinate Representation. In AFRICACRYPT,
2011.

26. M. Hutter and E. Wenger. Fast Multi-Precision Multiplication for Public-Key
Cryptography on Embedded Microprocessors. In CHES, LNCS. Springer, 2011.

27. T. Itoh and S. Tsujii. Effective recursive algorithm for computing multiplicative
inverses in GF (2m). Electronic Letters, 1988.

28. M. Joye and S.-M. Yen. The Montgomery Powering Ladder. In CHES, LNCS,
2003.

29. T. Kern and M. Feldhofer. Low-Resource ECDSA Implementation for Passive
RFID Tags. In ICECS, pages 1236–1239. IEEE, 2010.

CONCLUSION 69

30. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In CRYPTO, LNCS. Springer, 1996.

31. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO,
LNCS. Springer, 1996.

32. A. K. Lenstra, H. Lenstra, and L. Lovász. Factoring Polynomials with Rational
Coefficients. Mathematische Annalen, 1982.

33. A. Liu and P. Ning. TinyECC: A Configurable Library for Elliptic Curve Cryptog-
raphy in Wireless Sensor Networks. In International Conference on Information
Processing in Sensor Networks, 2008.

34. P. L. Montgomery. Speeding the Pollard and Elliptic Curve Methods of Factoriza-
tion. Mathematics of Computation, 1987.

35. National Institute of Standards and Technology (NIST). FIPS-186-3: Digital Sig-
nature Standard (DSS), 2009.

36. NXP Semiconductors. NXP Licenses ARM Cortex-M0+ Processor, March 2012.
Press Release.

37. Olivier Girard. openMSP430, 2013. Available online at http://opencores.org/

project,openmsp430.

38. E. Öztürk, B. Sunar, and E. Savas. Low-Power Elliptic Curve Cryptography Using
Scaled Modular Arithmetic. In CHES, LNCS, pages 92–106, 2004.

39. A. Satoh and K. Takano. A Scalable Dual-Field Elliptic Curve Cryptographic
Processor. IEEE Transactions on Computers, 2003.

40. J.-M. Schmidt and C. Herbst. A Practical Fault Attack on Square and Multiply.
In FDTC. IEEE Computer Society, 2008.

41. J.-M. Schmidt and M. Medwed. A Fault Attack on ECDSA. In FDTC. IEEE,
2009.

42. P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab. NanoECC:
Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. In Wireless
Sensor Networks 5th European Conference, LNCS. Springer, 2008.

43. Texas Instruments. MSP430 Ultra-Low Power 16-Bit Microcontrollers, 2013. Avail-
able online at http://www.ti.com/msp430.

44. T. Unterluggauer. Xetroc-M0+. An implementation of ARMs Cortex-M0+. Master
project, Graz University of Technology, 2013.

45. H. Wang, B. Sheng, and Q. Li. Elliptic Curve Cryptography-based Access Control
in Sensor Networks. International Journal of Security and Networks, 2006.

46. E. Wenger. A Lightweight ATmega-based Application-Specific Instruction-Set Pro-
cessor for Elliptic Curve Cryptography. In LightSec, LNCS, pages 1–15, 2013.

47. E. Wenger, T. Baier, and J. Feichtner. JAAVR: Introducing the Next Generation
of Security-Enabled RFID Tags. In DSD, pages 640–647. IEEE, 2012.

48. E. Wenger, M. Feldhofer, and N. Felber. Low-Resource Hardware Design of an
Elliptic Curve Processor for Contactless Devices. In WISA, 2010.

49. E. Wenger and M. Werner. Evaluating 16-bit Processors for Elliptic Curve Cryp-
tography. In Smart Card Research and Advanced Applications. Springer, 2011.

50. M. Werner. IDLE430 - an ImproveD msp LikE processor. Master project, Graz
University of Technology, 2013.

51. S.-M. Yen and M. Joye. Checking Before Output May Not Be Enough Against
Fault-Based Cryptanalysis. In IEEE Transactions on Computers. IEEE, 2000.

70 ANALYSIS OF POINT MULTIPLICATION FORMULA

A Analysis of Point Multiplication Formula

The following analysis discusses how Algorithm 1 holds up against the most
common side-channel attacks. It is based on the overview papers of Fan et al. [12,
13]. Attacks that are considered not to affect the security of the given algorithm:

Timing analysis [30] is not possible, because the used Montgomery Lad-
der [25] has a key-independent runtime, and all finite-field operations have
a constant runtime as well. To avoid leading-zero-bits timing attacks [6]
based on the LLL algorithm [32], we set the most-significant bit of the secret
ephemeral scalar to one.

Simple power analysis [31] is hindered by using a Montgomery Ladder and
Randomized Projective Coordinates.

Differential power analysis [31], Refined power analysis [18] are not pos-
sible as random ephemeral scalars are used for DHKE and ECDSA.

M & C safe-error analysis [28, 51] are not possible because a Montgomery
ladder in conjunction with random ephemeral scalars is used.

Invalid point analysis [5], Twist-curve based analysis [14] is not possi-
ble because in lines 1, 3, 10, and 12 point-validity checks are performed.

Subgroup analysis [5] is not possible because an y-recovery with subsequent
point verification is performed. Ebeid and Lambert [11] provide a thorough
analysis of the y-recovery as countermeasure.

Attacks that may affect the security of the given algorithm:

Program-flow fault analysis [40, 41]. A fault attack applied on the program
flow can hardly be detected by the program flow itself. To circumvent such
paths of attacks, hardware countermeasures are recommended.

Invalid-curve analysis [8] has to be additionally handled by checking the va-
lidity of the stored curve parameters. This is not done within Algorithm 1,
but the point-validity checks certainly handicap any invalid-curve attack.

Electromagnetic-emanation analysis [23] is possible if the attacker can de-
tect which memory locations are accessed at certain points in time. A coun-
termeasure would be to randomize the memory access patterns.

Chapter 6

Hardware Architectures for
MSP430-based Wireless Sensor
Nodes Performing Elliptic Curve
Cryptography

Publication Data

Erich Wenger. Hardware Architectures for MSP430-based Wireless Sensor Nodes
Performing Elliptic Curve Cryptography. In Michael Jacobson, Michael Locasto,
Payman Mohassel and Reihaneh Safavi-Naini, editors, Applied Cryptography and
Network Security, volume 7954 of Lecture Notes in Computer Science, pages 290–
306. Springer, 2013.

Contributions

Main author.

71

Hardware Architectures for MSP430-based
Wireless Sensor Nodes Performing

Elliptic Curve Cryptography

Erich Wenger

Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, 8010 Graz, Austria
erich.wenger@iaik.tugraz.at

Abstract. Maximizing the battery lifetime of wireless sensor nodes and
equipping them with elliptic curve cryptography is a challenge that re-
quires new energy-saving architectures. In this paper, we present an ar-
chitecture that drops a hardware accelerator between CPU and RAM.
Thus neither the CPU nor the data memory need to be modified. In
a detailed comparison with a software-only and a dedicated hardware
architecture, we show that the drop-in concept is smaller than the ded-
icated hardware module, while achieving similarly fast runtimes. Most
interesting for micro-chip manufacturers is that only 4 kGE of chip area
need to be committed for the dedicated drop-in accelerator.

Keywords: MSP430, ASIC, Hardware, Software, Elliptic Curve Cryp-
tography, Wireless Sensor Nodes.

1 Introduction

Privacy, authenticity, and confidentiality pose three of the most challenging cur-
rent demands on wireless sensor networks. To solve those requirements the use of
cryptography is essential. Unfortunately, it is hardly possible to solve this chal-
lenge using only symmetric cyphers. The most promising solutions are based on
asymmetric cryptography, in particular Elliptic Curve Cryptography (ECC).

Efficiently implementing ECC is a complex task, especially when a designer
also needs to be aware of the capabilities of the entities of a sensor network: A
sensor node usually comes with a microprocessor, a sensor (e.g., for humidity),
a wireless communication interface (e.g., IEEE 802.15.4 [16], ZigBee [31]), and
a battery, which should keep the sensor-node alive for a lifetime (some years)
within a hostile environment. This means that a solution to the initial require-
ments should be light-weight and efficient. For maximizing the battery live and
keeping the price of a sensor node at a minimum, ECC has to be implemented
with care. To realize the scope of the difficulty, be aware that within the time
M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 290–306, 2013.
The original publication is available at http://link.springer.com/chapter/10.1007/978-3-642-38980-1_18
© Springer-Verlag Berlin Heidelberg 2013

74 A SHORT INTRODUCTION TO ECC

required for a single elliptic-curve point multiplication, several hundreds of sym-
metric encryptions and decryptions can be preformed. Thus ECC has a major
impact on both communication latency and energy consumption.

A lot of research has been focused on efficiently and securely implement-
ing ECC. The research is performed based on three different approaches: one
is based on efficiently implementing ECC in software, one is based on adding
dedicated hardware, and one is a combination of the two preceding approaches.
Several papers discuss the use of assembly optimizations [12], instruction-set ex-
tensions [6, 10], and dedicated ECC hardware designs [19, 20]. The drawback of
those techniques are the relatively low performance, the requirement to change
the microprocessor, and the potential waste of precious chip area, respectively.
As CPU vendors usually do not give away the source code of microprocessors,
but obfuscated code instead, adding new instructions is a troublesome task.
Dedicated hardware modules provide locally optimized solutions, but ignore the
existence of already available hardware modules. Our paper fills this gap.

Our contribution. In this paper, we perform a fair comparison (common algo-
rithms, technologies, tools) of three different hardware architectures, all capable
of performing ECC. Using an openMSP430 at the core, we present (i) an area
and speed-optimized software solution, (ii) a dedicated hardware module, and
most importantly (iii) a novel ECC ‘drop-in’ architecture. For the drop-in archi-
tecture, a lightweight ECC accelerator is placed right between the CPU and its
data memory. It requires less chip area than a dedicated hardware module, while
being similarly fast. Compared to the optimized software solution, the energy
consumption is reduced by a factor of 28, which certainly will make a major
impact on the lifetime of a wireless sensor node. The drop-in concept is also
most interesting for micro-chip manufacturers as only 4 kGE of dedicated chip
area need to be committed for the drop-in accelerator.

The paper is structured as follows. Section 2 gives a short introduction on how
to securely implement ECC and Section 3 discusses different architectures for
ECC. The most promising architectures are then implemented within Sections 4–
6 and compared within Section 7. Conclusions are drawn within Section 8.

2 A Short Introduction to ECC

Elliptic curves, used for cryptography, are built on top of finite fields. As finite
field, one can either choose a prime field or a binary extension field. Prime fields
are fast in software as they are based on integers and integer multipliers are
available in nearly all (embedded) microprocessors. Binary-extension fields on
the other hand are built on polynomials, which when implemented in hardware
do not have the drawback of carry propagation. However, in software a multipli-
cation of two polynomials has to be realized using branches, which are vulnerable
to side-channel attacks.

The for us most interesting standardized elliptic curves [1, 2, 23] are all based
on the Weierstrass equation: y2 +a1xy+a3y = x3 +a2x

2 +a4x+a6. Depending
on whether prime or binary-extension fields are used, this equation is simplified

A SHORT INTRODUCTION TO ECC 75

Table 1. ECC formulas used within this paper.

Finite-field operations per key bit
Formula Field Registers Add/Subtract Square Multiply

Hutter et al. [15] Fp 7 + 3 = 10 17 4 12
López and Dahab [22] F2m 5 + 3 = 8 3 5 6

to y2 = x3 + ax + b or y2 + xy = x3 + ax2 + b, respectively. Also the formulas
used to perform point additions and doublings depend on the used finite field.
For further information, the reader is referred to standard literature on elliptic
curves [3, 13].

For the following comparison, it is important that all implementations are
based on a common methodology. For the constant-runtime software implemen-
tations, the integer and polynomial arithmetic has been separated from the re-
duction operation. The reduction is performed using only simple shift and addi-
tion operations. Thereby advantage was taken of the used prime and irreducible
polynomial. To perform an inversion in constant time, an exponentiation, based
on Fermat’s little theorem (aq−2 ≡ a−1 mod (q)) is used. For binary-extension
fields an optimized inversion algorithm based on Itoh and Tsujii [17] is used.

More important than the used finite field is that ECC implementations are
vulnerable to side-channel attacks [7]. Attackers can use runtime information,
power consumption profiles, or induce faults to recover the secret key. This is
a significant problem for the easily accessible wireless sensor nodes that usually
are deployed within unsafe environments. Thus, a methodology must be utilized
that minimizes the potential threats.

In this paper we take advantage of differential addition formulas optimized
for Montgomery ladders. Table 1 gives a short summary of the used formulas. By
using a Montgomery ladder, the underlying finite-field operations are indepen-
dently performed from the used private scalar. Thus a key-independent constant
runtime is achievable under the assumption that all finite-field operations are
performed in constant time (which they are). The formulas are also lightweight.
Only 7/5 registers are required during the point double-and-add operations. For
the recovery of the y-coordinate another two registers are needed which store
the original base point. Another register that stores the private scalar is also
included in all comparisons within this paper.

To further increase the resistance against power-analysis attacks one would
use Randomized Projective Coordinates [5] and to resist fault attacks, perform
point verifications before and after each point multiplication. In practice the
resistance against those attacks is verified by performing real-world evaluations.
As those evaluations would go beyond the scope of this paper, they have not
(yet) been done. However, the algorithms and methodologies used for our im-
plementations are applicable to build real-world secure hardware.

76 ARCHITECTURES

(d)

(a)
CPUROM RAM

CPUROM
ECC
drop

in
RAM

(b)

CPUROM

ECC
Slave

RAM

(c)

CPUROM

ECC
Master

RAMArbiter
RAM

Fig. 1. Microprocessor-based architectures.

3 Architectures

The decision regarding the best architecture is most important for a final design
as it greatly influences area, runtime, power, and energy characteristics. Only
by considering all requirements and the system as a whole, a global optimum
can be found. By optimizing a single (e.g., ECC) component it is probable to
reach a local optimum only. Figure 1 shows four different architectures which
are based on microprocessors, as microprocessors are the central component in
all currently available sensor nodes. The ECC-independent components, such as
the wireless interface and the actual sensor, are considered to be constants and
therefore independent from the used architecture.

(a) The most straight-forward solution is to perform and optimize ECC in soft-
ware1. The hardware designer only has to make sure that the data memory is
sufficiently large and the assembly-optimized ECC code is placed within the pro-
gram memory. The microprocessor (CPU) is then used to execute the code. In
Figure 1, the program memory is simplified as ROM and the data memory as
RAM. As ECC is very resource demanding and a software-only solution is in most
cases insufficiently slow, one could add a memory-mapped ECC co-processor.

(b) Co-processors have already been extensively studied and optimized in related
work [19, 20]. However, comparing area and power results of designs that use
different technologies and tools is inaccurate. Therefore, Section 5 presents an
ECC co-processor on-par with related work.

The drawback of so-called ECC slaves is that they waste chip area by having
their own memory. A solution in which the global RAM is reused is preferable.
Even when area-efficient RAM macros are used, practical evaluations show that
one RAM macro with more entries is smaller than two RAM macros with fewer
entries (c.f. 128×8-bit: 2,073 GE vs. 256×8-bit: 2,897 GE). An ECC accelerator
without RAM, which only performs finite-field operations would be a solution.
Unfortunately, for this solution the CPU has to manually move operands from
the RAM to the ECC slave and vice versa, thus wasting potential performance.

1 Section 4 discusses this solution.

ECC ON OPENMSP430 77

Table 2. HW synthesis of openMSP430 [24].

Functional Blocks Chip-Area [GE]

openMSP430 7,801
Execution unit 5,536

Register file 2,709
ALU 693

Multiplier 1,826

openMSP430 w/o Multiplier 5,958

Algorithm 1 Accessing the 16-
bit memory-mapped multiplier.
1: MOV R4, &MPY

2: MOV R5, &OP2

3: NOP

4: MOV @RESLO, R6

5: MOV @RESHI, R7

(c) An ECC circuit which, like the CPU, is capable of accessing the global data
memory by itself solves that problem: an ECC bus master. This assumes that
the used microprocessor must support a multi-master scenario, which embedded
light-weight microprocessors usually do not. Also, the required arbiter can have
a significant impact on the total chip area.

(d) A more sophisticated concept is to unite the ECC master with the arbiter.
This within the context of ECC novel concept “drops” an ECC accelerator right
between the CPU and the data memory. From the viewpoint of the CPU it
behaves as simple ECC slave and does not hinder any access to the data memory.
From the viewpoint of the drop-in module, direct access to the data memory is
possible. Advantageous is also that neither the CPU (compared to instruction-
set extensions) nor the data-memory need to be modified. Section 6 discusses
this solution in more detail.

Tools. For this paper we use the 130 nm low-leakage ASIC technology by UMC
with the Faraday design libraries in combination with area-efficient single-port
register-based RAM macros. For hardware synthesis Cadence RTL Compiler
v08.10, for place-and-route and power simulation Cadence First Encounter v08.10,
and for simulation Cadence NCSim v08.20 are used. In this technology, one gate
equivalent is equal to 5.12 µm2. All evaluations are performed at 1 MHz and can
easily be synthesized to exceed an operating frequency of 50–100 MHz.

4 ECC on openMSP430

At the core of all previously discussed hardware designs is a microprocessor.
The selection of an appropriate microprocessor crucially influences the final run-
time, chip area, power, and energy results. The MSP430 [27] developed by Texas
Instruments, is considered to be a role model when it comes to low-cost and low-
power applications. It is currently already used for the sensor-node platforms
BEAN, COOKIES, EPIC mode, PowWow, Shimmer, TelosB, T-Mote Sky, and
XM1000, just to name a few. The MSP430 is a 16-bit RISC processor with a
Von Neumann architecture. This is important for saving data memory, as con-
stants do not have to be loaded to the expensive RAM before they are used. The

78 ECC ON OPENMSP430

Algorithm 2 ACC ← ACC + (A[0]×B[2]) + (A[1]×B[1]) + (A[2]×B[0]).

1: ADD #4 , OPB

2: MOV @OPA+, &MPY

3: MOV @OPB , &OP2

4: DECD OPB

5: MOV @OPA+, &MAC

6: MOV @OPB , &OP2

7: DECD OPB

8: ADD @SUMEXT, ACC2

9: MOV @OPA , &MAC

10: MOV @OPB , &OP2

11: SUB #4 , OPA

12: ADD @RESLO , ACC0

13: ADDC @RESHI , ACC1

14: ADDC @SUMEXT, ACC2

15: MOV ACC0 , 4(DEST)

16: CLR ACC0

MSP430 comes with 16 16-bit registers, where R0 is the program counter, R1 is
the stack pointer, R2 is the status register, and R3 is the constant-generator reg-
ister. So only 12 registers (R4–R15) are useable as general-purpose registers. The
MSP430 comes with only 27 instructions, from which none is a multiplication
instruction. To perform a 16-bit integer multiplication, the MSP430 optionally
has a memory-mapped multiplier. This will be discussed in detail later.

4.1 openMSP430

As our desired goal is a microprocessor-based hardware design, we need a hard-
ware model of the MSP430. Olivier Girard programmed a synthesizable Verilog
clone of the MSP430, called openMSP430 [24]. This clone fully supports the in-
struction set of the original MSP430 (with nearly identical timings), interrupts,
and power-saving modes. It optionally comes with a 16× 16-bit hardware mul-
tiplier, watchdog, timer, and GPIOs. A first evaluation of this core is depicted
in Table 2. An openMSP430 without data or program memory (which will be
chosen appropriately) requires 7,801 GE. Most of this chip area is spent on the
execution unit (71 %), and the hardware multiplier (23 %). Without the multi-
plier, which is not necessary for binary-field based ECC, the openMSP430 only
requires 5,958 GE.

4.2 Integer Arithmetic

In order to perform a 16-bit integer multiplication, four memory accesses are
necessary. Algorithm 1 shows the assembly code necessary to multiply R4 with
R5 and to store the product in R6 and R7. The code shown in Algorithm 1 needs
4 + 4 + 1 + 2 + 2 = 13 cycles to complete.

As multiple words are needed to represent integers within the used finite
field, the multi-precision product-scanning multiplication technique of Comba [4]
is used. Algorithm 2 sketches the used methodology. Three registers are used
to hold pointers to the operands (OPA and OPB) and the result (DEST), three
registers for the accumulator (ACC0-2) and three registers to hold addresses of
the memory-mapped multiplier (RESLO, RESHI, and SUMEXT). In order to avoid
loading the product after each multiplication, multiply-accumulate operations

ECC ON OPENMSP430 79

Algorithm 3 64 × 1-bit polyno-
mial multiplication.

1: RLA B0

2: JNC +10

3: XOR A0, C0

4: XOR A1, C1

5: XOR A2, C2

6: XOR A3, C3

7: JMP +12

8: XOR #0, C0

9: XOR #0, C1

10: XOR #0, C2

11: XOR #0, C3

12: NOP

13: NOP

Table 3. Comparison with related work.

Curve Type ROM RAM Runtime
[Bytes] [Bytes] [kCycles]

Gouvêa et al. [9] and Szczechowiak et al. [26]

secp160r1 [9] Fp 23,300 2,800 2,528
sect163k1 [9] F2m 27,800 3,600 2,032

Custom [26] Fp 31,300 2,900 5,898
sect163k1 [26] F2m 32,100 2,800 8,519

ours on MSP430

secp160r1 Fp 4,230 282 5,721
sect163r2 F2m 4,126 294 7,447

are performed directly within the memory-mapped multiplier. The overflowing
bit stored within the SUMEXT register needs to be loaded within line 8. After line
14, the accumulated product resides within the registers ACC0-2. This technique
has already been presented by Gouvêa and López [8].

4.3 Polynomial Arithmetic

As the MSP430 lacks a carry-less multiplier, a polynomial multiplication has
been implemented using branch operations. Algorithm 3 shows a 64×1-bit poly-
nomial multiplication which was used to build a 64× 32-bit multiplication. The
64 × 32-bit multiplication can be performed without the use of a single, costly
memory load or store operation. Using the methodology of Karatsuba and Ofman
a three-way split of a single 192-bit multiplication to 6 64-bit multiplications has
been performed. On the MSP430 a 64× 32-bit polynomial multiplication takes
383 cycles and a 192-bit polynomial multiplication takes 6,089 cycles. For con-
stant runtime, lines 8-13 in Algorithm 3 perform dummy operations. Without the
dummy operations, a speedup of 23 % is possible on average. For comparison, a
192-bit integer multiplication takes 2,254 cycles and therefore is 2.7 times faster.
Gouvêa et al. [9] report an assembly optimized implementation for sect163k1

which only needs 3,907 cycles, but their implementation is not safe from timing
attacks.

4.4 Software Results

Four standardized elliptic curves providing security-levels of 80–96 bits have been
implemented. secp192r1 and sect163r2 are chosen because they are the small-
est elliptic curves within the NIST standard [2, 23], still providing a sufficient
level of security. secp160r1 has been chosen because it is popularly used within
related work. As c2tnb191v1 [1] provides a similar security level as secp192r1

(95 vs 96 bits) it can be used for comparison.
Note that Table 3 shows the runtimes of our software implementation, simu-

lated on a cycle-accurate model of the MSP430, while Table 4 shows the slightly

80 STAND-ALONE ECC HARDWARE

Table 4. Synthesized software implementations of ECC on the openMSP430.

Curve Type Security ROM RAM ROM RAM Area Runtime Power Energy
[Bits] [Bytes] [Bytes] [GE] [GE] [GE] [kCycles] [µW] [µJ]

secp160r1 Fp 80 4,230 282 5,907 3,175 16,638 5,445 55.9 304.3
secp192r1 Fp 96 4,846 322 6,173 3,400 17,128 8,650 53.9 466.7

sect163r2 F2m 81 4,126 294 5,737 3,275 14,167 7,217 49.1 354.3
c2tnb191v1 F2m 95 3,994 310 5,735 3,375 14,014 8,376 55.4 463.8

better runtimes for an openMSP430. In Appendix A a detailed comparison of
all software implementations is depicted.

In literature many speed-optimized ECC implementations for the MSP430
have been reported [9, 21, 26, 28] (cf. Table 3). Because of the extentsively per-
formed assembler optimization, our software implementation outperforms the
related work of Szczechowiak et al. [26] that also requires larger memories. The
fastest (ECDSA) implementation was done by Gouvêa et al. [9] in 2012. Com-
pared to our implementations, they report twofold faster runtimes at the expense
of 7 times larger program and 12 times larger data memories. As we synthesize
the program memory and choose appropriately large RAM macros, their imple-
mentation would result in a significantly larger hardware design, compared to
ours.

Table 4 shows the measured chip area, runtime, power, and energy results
for the four implemented elliptic curves. The biggest impact of up to 60 % on
the total chip area is due to the size of the program memory and data memory.
For the elliptic curves over F2m the integer multiplier has been removed. The
binary-field-based ECC implementations are about 16 % smaller and similarly
fast, compared to the prime-field-based ECC implementations. For sect163r2

the used 176-bit polynomial multiplier which is based on the 192-bit multiplica-
tion algorithm discussed before, renders the runtime results inferior compared
to secp160r1.

The elliptic curve requiring the least amount of energy is secp160r1 (303.3 µJ).
However, the biggest potential for hardware optimizations (cf. [29]) lies within
binary-field based elliptic curves (354.3 µJ). Therefore sect163r2 alias NIST
B-163 has been selected for the following hardware implementations.

5 Stand-alone ECC Hardware

The dedicated hardware design used for this paper (cf. Figure 2) is strongly
related to the works of Kumar and Paar [19] and Lee et al. [20], but uses a
different memory architecture. As register-based memory is most expensive, it
is replaced by latches, which are 27 % smaller in the used 130 nm technology. As
latches are not synchronous, the depicted circuit only works because a common
Work register is placed before the latches. At the positive clock level, activated
via the clock gate (CG), the latch inherits the contents stored within the Work

register. A single multiplexer is used to select the content of a latch which is

STAND-ALONE ECC HARDWARE 81

Memory

DataIn

DataOut

Datapath

Work

CG

Override

O
pB

Multiplier Squarer

0

Work

Adder

W

W
CG

W

d

Latch

Latch

Constants

Fig. 2. Dedicated ECC hardware.

then used as operand OpA for the datapath. The datapath consists of an MSB-
first digit-serial multiplier, an adder, and optionally a squaring unit. For the
multiplication, an operand is split into W -bit sized parts which are stored in
OpB. d of the W bits are then concurrently handled within the multiplication
circuit. Dependent on the desired speed grade, it is possible to increase the size
of d, or to use a dedicated squaring circuit. For interfacing the module with
an external W -bit wide bus, the existing multiplexers are reused. For memory
storing operations, W of the N -bit wide bus are overridden by the externally
driven bus signal.

5.1 Stand-alone ECC Hardware Results

A complete ECC coprocessor including datapath, controlpath, memory, private
scalar, modifiable base point, and resulting point with recovered y-coordinate
needs at least 11,778 GE and up to 341,835 cycles. Table 5 summarizes our results
for different d parameters. Adding a dedicated 1-cycle squaring unit only costs
884 GE (7.5 %) of additional hardware, but improves the runtime by a factor of
approximately two. The most energy-efficient circuit is using d = 2. The circuit
with the best scaled area-runtime product (SARP) is using d = 4.

Compared to related work [14, 19, 20, 25, 30], our designs are smaller or faster
and therefore provide a better area-time product. In terms of power and energy,
which are highly dependent on the used technology, our results are similar to
related work.

The chip area shown in Table 5 does not include the area needed by the
MSP430 (5,958 GE), its data memory (8×16-bit RAM – 1,443 GE), and its pro-
gram memory (354 bytes – 801 GE). So all our dedicated ECC hardware designs

82 DROP-IN CONCEPT

Table 5. Synthesis results of the dedicated ECC hardware design without MSP430.

Design Technology Area Runtime Power Energy SARP
[nm] [GE] [kCycles] [µW] [µJ]

d = 1 w/o squ. 130 11,778 341,835 63.3 21.6 5.2
d = 1 w/ squ. 130 12,662 174,025 71.5 12.4 2.8
d = 2 w/ squ. 130 13,307 93,997 78.4 7.4 1.6
d = 4 w/ squ. 130 14,552 53,489 140.1 7.5 1.0

Kumar and Paar [19] d = 1 350 15,094 376,864 788.0 297.0 7.3
Hein et al. [14] 180 11,904 296,299 101.9 30.2 4.5
Lee et al. [20] d = 1 130 12,506 302,457 32.4 9.8 4.9
Lee et al. [20] d = 5 130 20,316 83,375 48.9 4.1 2.2

need additional 8,202 GE of hardware in order to provide the full functionality
of an MSP430.

The major drawback of the ECC hardware module is the inefficient data
memory. Unfortunately, there are no efficient RAM macros with a 163-bit inter-
face. Even though latches are used, the memory requires 6,924 GE, or 59 % of the
total hardware area. A comparable register-based RAM macro with 8 × 163 =
1, 467 bits requires only 2,600 GE. That is 62 % less. For the drop-in concept
discussed in the next section, such an area-efficient RAM macro is used.

6 Drop-in Concept

The drop-in concept has some similarities with instruction-set extensions. The
drawback of ISE is that the HW designer needs to be able to modify both the
controlpath and the datapath of the used processor, as well as the corresponding
software toolchain. A different solution, based on a memory mapped carry-less
multiply-accumulate unit has similarly large access times as the already existing
integer multiply-accumulate unit of the MSP430. Therefore, it would only make
a minor impact on the ECC runtime.

The drop-in concept provides full advantage even when the hardware designer
is not able to modify the used microprocessor. Performance similar to dedicated
ECC hardware is achievable and the verification and validation process regarding
the used microprocessor does not have to be redone. The drop-in concept is
also flexible: A hardware designer can shift control logic between the program
memory and the dedicated hardware module. In this paper the drop-in module
is designed to efficiently perform finite-field arithmetic (addition, squaring, and
multiplication) only. The finite-field inverse as well as the point-multiplication
algorithm are implemented in software.

As interface, the drop-in module provides three address, a command, and a
status register. Before each operation, the address registers are written with two
source and a destination memory address, and the operation is started by writing
the command register. The status register is then polled to check whether the
operation has been finished. Actually, experiments showed that waiting at the

DROP-IN CONCEPT 83

Drop-in Module

M
U

X
M

U
X

CPU RAMArbiter

Controlpath

Datapath

Fig. 3. Drop-in module for Elliptic Curve Cryptography.

beginning of the finite-field operations for the previous operations to finish is
more performant. In this way the CPU and the drop-in module can partly work
in parallel.

6.1 Drop-in Architecture

Figure 3 shows the architecture of the drop-in module. The data-bus is depicted
in red and orange, the address bus in blue. The drop-in module consists of a
lightweight arbiter, controlpath, and datapath. If both the CPU and the drop-in
module want to access the data memory, the currently pending operation within
the drop-in module is put on hold and the CPU is given access to the data
memory. Therefore the drop-in module needs to be specially prepared for the
case in which it is put on hold. For our ECC design, only 7 1-bit registers are
necessary to provide this functionality. As a side note, the openMSP430 does
not support to have delayed memory access.

The datapath within the drop-in module is very similar to the datapath of the
dedicated ECC hardware module. Figure 4 shows that only two N -bit registers
and a W -bit register are necessary for an MSB-first digit-serial multiplier. In
each cycle, the N bits of OpA are multiplied with d bits of OpB, which are added
to a d-bit shifted intermediate product, stored within the N -bit Work register.
The (N+d)-bit sum is then reduced and used to update the Work register. At the
beginning of the algorithm, Work is initialized with zero and OpA is initialized
with the value stored within the data memory. The W -bit chunks of OpB are
loaded on-demand, as it is shown within Figure 5 (d). When the multiplication
is finished, the result within Work is stored back to the data memory.

Optionally, a dedicated squaring unit can be used. In our implementation
(Figure 5 (a)), OpA is loaded from the data memory, the squaring is performed
within a single cycle, and the result is stored back to the data memory. The

84 DROP-IN CONCEPT

OpBOpA

<< d

Reduction Squarer

0

W

d

N

N+d-1

N

N

Work

N+d

Work

N

Fig. 4. Datapath of the ECC drop-in.

(a)

(b)

(c)

(d)

Fig. 5. Bus access during squaring (a), ad-
dition (b), addition with stall (c), and mul-
tiplication (d) operations. Memory opera-
tions regarding OpA, OpB, and Dest are col-
ored in blue, green, and red, respectively.

datapath of the addition is not shown in Figure 4 as it only is a simple XOR-
gate. For the finite-field addition (Figure 5 (b)) three times dN/W e memory
operations are necessary.

If at any moment, the CPU needs to do some (real-time) interrupt handling
and needs access to the data memory, the operation in progress within the drop-
in module is simply halted and continued when the data memory bus is free to
use (Figure 5 (c)).

6.2 Drop-in Concept Hardware Results

Similar to before, the drop-in module was evaluated for different configurations
(cf. Table 6). Independent of the size of the digit-serial multiplier and the avail-
ability of a squaring unit, the size of the CPU (5,715 GE), the program memory
(1,426 bytes – 2,635 GE), and the data memory (222 bytes – 2,875 GE) are con-
stant. The drop-in module only needs between 4,114 GE and 6,760 GE in chip
area.

This is the most interesting number for microchip manufacturers. As not
every customer actually needs ECC, they want to leave out unnecessary com-
ponents, as they produce unnecessary costs. On the other hand, customers that
require performant ECC can take advantage of the drop-in ECC module. Com-
pared to a dedicated ECC hardware module, which requires 12–15 kGE, the
drop-in module requires only a fraction of it: 35 %.

6.3 Related Work

In 2009, Guo and Schaumont [11] identified the data bus as potential bottleneck
for ECC designs. Cause of that, they add the necessary data memory to the
dedicated ECC accelerator to keep the number of necessary bus accesses at a

COMPARISON OF IMPLEMENTED ARCHITECTURES 85

Table 6. Synthesis results of all ECC hardware architectures at 1 MHz for sect163r2.

Design Module Chiparea Runtime Power Energy
[GE] [GE] [Cycles] [µW] [µJ]

Architecture (a) – Software-only implementation

openMSP430 w/o mult. - 14,167 7,216,905 49.1 354.3

Architecture (b) – Dedicated ECC Hardware Accelerator

d = 1 w/o squ. 11,778 19,980 342,724 93.8 32.1
d = 1 w/ squ. 12,662 20,864 174,910 112.9 19.7
d = 2 w/ squ. 13,307 21,509 94,882 152.4 14.5
d = 4 w/ squ. 14,552 22,754 54,376 181.7 9.9

Architecture (d) – Drop-in Module Based

d = 1 w/o squ. 4,114 15,282 467,370 66.1 30.9
d = 1 w/ squ. 4,895 16,121 303,202 77.6 23.5
d = 2 w/ squ. 5,512 16,738 224,222 73.6 16.5
d = 4 w/ squ. 6,760 17,986 182,130 70.0 12.8

minimum. Thus their ECC accelerator becomes more like a dedicated hardware
module. As it is an FPGA design, a comparison with our work is impracticable.

Most comparable to our drop-in concept is the work of Koschuch et al. [18].
They implemented a memory-less ECC accelerator and used a DMA controller
for efficiently accessing the data memory. Their architecture is best comparable
with the previously discussed architecture (c). Their DMA controller is 1,029 GE
large, their ECC accelerator is 11,618 GE large, and their total design for F2191

requires 29,491 GE. For a scalar multiplication, they require 1,416 kCycles. Thus
their design is slower and larger than our drop-in designs.

7 Comparison of Implemented Architectures

In the previous sections, architectures (a) - a plain software implementation,
(b) - a dedicated ECC hardware module, and (d) - a drop-in module - have
been presented and discussed in connection with the appropriate related work.
Thereby all implementations are on-par with related work or outperform related
work. Most important however is the comparison of the three implemented ar-
chitectures (a,b,d) with each other.

Table 6 shows the area, runtime, power, and energy values of all architec-
tures. The column ‘Module’ gives the area for the dedicated ECC hardware
blocks, while ‘Chiparea’ accumulates the program memory, the data memory,
the microprocessor, and the special hardware module. The runtimes of architec-
ture (b) now include the calling overhead needed to trigger and poll the dedicated
hardware module. In comparison to Table 5, the area and power values now also
include the RAM, ROM, and CPU.

The smallest of all implementations is the plain software implementation (a)
needing only 14,167 GE. Both the drop-in solution (d) (15,282 GE) and the ded-
icated hardware solution (b) (19,980 GE) are larger. However, those solutions

86 CONCLUSION

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·105

1.4

1.6

1.8

2

2.2

2.4
·104

(b) HW d = 1 w/o squ

(b) HW d = 1

(b) HW d = 2

(b) HW d = 4

(d) drop-in d = 1 w/o squ

(d) drop-in d = 1
(d) drop-in d = 2

(d) drop-in d = 4

Faster

More Efficient

Smaller

Runtime [Cycles]

A
re

a
[G

E
]

Fig. 6. Area-runtime-characteristics of the various ECC architectures.

are up to 132 times faster and up to 36 times more energy efficient. Thus ar-
chitecture (a) can be considered as fall-back solution, but is practically to slow
for most relevant applications. The runtime is nearly one second at a common
sensors-node frequency of 8 Mhz.

Thus the question is whether architecture (b) or (d) is better. The drop-in
concept (d) is 22 % smaller and requires 50 % less power. On the other hand,
architecture (b) is faster. The comparison is visualized in Figure 6, which prints
the chiparea values versus the runtimes. The dashed lines indicate constant area-
runtime products. After investigating the results in detail, our conclusion is that
both architectures (b) and (d) have the very right of existence. However, if the
application requires that a point multiplication is finished within, e.g., 30 ms
(@ 8 MHz), architecture (d) based on the drop-in concept with d = 2 is the
smallest and therefore best solution.

8 Conclusion

This work proofs that the drop-in concept is a viable alternative to previously
existing plain software and dedicated hardware solutions. Both the presented
software-only and the presented dedicated hardware solution enable a fair com-
parison using a common side-channel aware methodology and identical tools.
The software implementation is (supposed to be) side-channel secure and needs
7–12 times less memory compared to latest related work. The hardware imple-
mentation is more area-efficient compared to related work, because a specially

CONCLUSION 87

designed data memory is used. However, a plain hardware implementation is
not aware of the versatile MSP430, which is usually available in wireless sensor
nodes. Hereby the drop-in concept provides a novel solution which actually is
smaller than the hardware module based architecture, while being similarly fast,
and requiring 36 times less energy than the dedicated software solution. This
makes the newly presented drop-in concept a great solution for microchip and
sensor-node manufacturers.

Acknowledgments

The research described in this paper has been supported, in part, by the Euro-
pean Commission through the ICT Program under contract ICT-SEC-2009-5-
258754 TAMPRES.

References

1. American National Standards Institute (ANSI). AMERICAN NATIONAL STAN-
DARD X9.62-2005. Public Key Cryptography for the Financial Services Industry,
The Elliptic Curve Digital Signature Algorithm (ECDSA), 2005.

2. Certicom Research. Standards for Efficient Cryptography, SEC 2: Recommended
Elliptic Curve Domain Parameters, Version 1.0, September 2000.

3. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren,
editors. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman &
Hall/CRC, Boca Raton, FL, 2006.

4. P. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems Journal,
pages 526–538, 1990.

5. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In Ç. K. Koç and C. Paar, editors, CHES 1999, Proceedings,
volume 1717 of LNCS, pages 292–302. Springer, 1999.

6. H. Eberle, A. Wander, N. Gura, S. Chang-Shantz, and V. Gupta. Architectural
Extensions for Elliptic Curve Cryptography over GF(2m) on 8-bit Microprocessors.
In IEEE International Conference on Application-specific Systems, Architectures
and Processors, pages 343–349. IEEE Computer Society, 2005.

7. J. Fan and I. Verbauwhede. An Updated Survey on Secure ECC Implementations:
Attacks, Countermeasures and Cost. In Cryptography and Security: From Theory
to Applications, LNCS, pages 265–282. Springer, 2012.

8. C. P. L. Gouvêa and J. López. Software Implementation of Pairing-Based Cryptog-
raphy on Sensor Networks Using the MSP430 Microcontroller. In INDOCRYPT,
LNCS, pages 248–262, 2009.

9. C. P. L. Gouvêa, L. Oliveira, and J. López. Efficient Software Implementation
of Public-Key Cryptography on Sensor Networks Using the MSP430X Microcon-
troller. Journal of Cryptographic Engineering, 2:19–29, 2012.

10. J. Großschädl and E. Savaş. Instruction Set Extensions for Fast Arithmetic in
Finite Fields GF(p) and GF(2m). In CHES, pages 133–147, 2004.

11. X. Guo and P. Schaumont. Optimizing the HW/SW boundary of an ECC SoC
design using control hierarchy and distributed storage. In DATE, pages 454–459,
2009.

88 CONCLUSION

12. N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing Elliptic
Curve Cryptography and RSA on 8-Bit CPUs. In CHES, pages 119–132, 2004.

13. D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptog-
raphy. Springer, 2004.

14. D. Hein, J. Wolkerstorfer, and N. Felber. ECC is Ready for RFID - A Proof in
Silicon. In SAC, LNCS, pages 401–413, 2008.

15. M. Hutter, M. Joye, and Y. Sierra. Memory-Constrained Implementations of Ellip-
tic Curve Cryptography in Co-Z Coordinate Representation. In AFRICACRYPT,
pages 170–187, 2011.

16. IEEE. IEEE Standard 802.15.4-2003: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs), May 2003.

17. T. Itoh and S. Tsujii. Effective recursive algorithm for computing multiplicative
inverses in GF (2m). Electronic Letters, pages 334–335, 1988.

18. M. Koschuch, J. Großschädl, D. Page, P. Grabher, M. Hudler, and M. Krüger.
Hardware/Software Co-Design of Public-Key Cryptography for SSL Protocol Exe-
cution in Embedded Systems. In Workshop on Embedded Systems Security, pages
63–79, 2009.

19. S. S. Kumar and C. Paar. Are standards compliant Elliptic Curve Cryptosystems
feasible on RFID? In Workshop on RFID Security – RFIDSec 2006, 2006.

20. Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede. Elliptic-Curve-Based
Security Processor for RFID. IEEE Transactions on Computers, 57(11):1514–1527,
November 2008.

21. A. Liu and P. Ning. TinyECC: A Configurable Library for Elliptic Curve Cryptog-
raphy in Wireless Sensor Networks. In International Conference on Information
Processing in Sensor Networks, pages 245–256, 2008.

22. J. López and R. Dahab. Fast Multiplication on Elliptic Curves over GF(2m) with-
out Precomputation. In Ç. K. Koç and C. Paar, editors, CHES 1999, Proceedings,
volume 1717 of LNCS, pages 316–327. Springer, 1999.

23. National Institute of Standards and Technology (NIST). FIPS-186-3: Digital Sig-
nature Standard (DSS), 2009.

24. Olivier Girard. openMSP430, 2013. Available online at
http://opencores.org/project,openmsp430.

25. E. Öztürk, B. Sunar, and E. Savas. Low-Power Elliptic Curve Cryptography Using
Scaled Modular Arithmetic. In M. Joye and J.-J. Quisquater, editors, CHES 2004,
Proceedings, volume 3156 of LNCS, pages 92–106. Springer, August 2004.

26. P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab. NanoECC:
Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. In Wireless
Sensor Networks 5th European Conference, LNCS, pages 305–320, 2008.

27. Texas Instruments. MSP430C11x1 - Mixed Signal Microcontroller. Available online
at http://focus.ti.com, 2008.

28. H. Wang, B. Sheng, and Q. Li. Elliptic Curve Cryptography-based Access Control
in Sensor Networks. International Journal of Security and Networks, pages 127–
137, 2006.

29. E. Wenger and M. Hutter. Exploring the design space of prime field vs. binary
field ecc-hardware implementations. In Information Security Technology for Ap-
plications, LNCS, pages 256–271. Springer, 2012.

30. J. Wolkerstorfer. Is Elliptic-Curve Cryptography Suitable for Small Devices? In
Workshop on RFID and Lightweight Crypto, pages 78–91, 2005.

31. ZigBee Alliance. The ZigBee Alliance Website. http://www.zigbee.org/.

IMPLEMENTATION RUNTIMES 89

A Implementation Runtimes

Table 7 lists the constant key-independent runtimes of all implementations done
for this paper. Architectures (b) and (d) implemented the elliptic curve sect163r2.

We distinguish between runtimes for the original MSP430 and the open-
MSP430. The runtimes of the openMSP430 are better, because several instruc-
tions of the openMSP430 perform the same operation in less cycles than the
original MSP430. In average, the openMSP430 is 5 % faster for the prime field
based elliptic curves (secp160r1, secp192r1) and 3 % faster for the binary field
based elliptic curves (sect163r2, c2tnb191v1).

Table 7. Runtimes for finite-field addition/subtraction (ADD), squaring (SQU), mul-
tiplication (MUL), inversion (INV), and point-multiplication (P-MUL) operations.

Implementation ADD SQU MUL INV P-MUL
[Cycles] [Cycles] [Cycles] [Cycles] [Cycles]

(a) MSP430 secp160r1 163 1,905 1,905 327,366 5,721,420
(a) MSP430 secp192r1 191 2,559 2,559 526568 9,100,128
(a) MSP430 sect163r2 109 852 6,604 199,815 7,446,677
(a) MSP430 c2tnb191v1 118 778 6,566 229,297 8,610,906

(a) openMSP430 secp160r1 161 1,808 1,808 310,812 5,445,010
(a) openMSP430 secp192r1 189 2,426 2,426 499,331 8,650,455
(a) openMSP430 sect163r2 107 781 6,446 186,653 7,216,905
(a) openMSP430 c2tnb191v1 116 725 6,420 217,209 8,376,138

(b) HW d = 1 w/o squ 2 174 174 29,754 341,835
(b) HW d = 1 2 1 174 1,728 174,025
(b) HW d = 2 2 1 93 999 93,997
(b) HW d = 4 2 1 52 630 53,489

(d) drop-in d = 1 w/o squ 40 208 208 36,419 467,370
(d) drop-in d = 1 40 38 208 9,963 303,202
(d) drop-in d = 2 40 38 128 9,227 224,222
(d) drop-in d = 4 40 38 80 8,843 182,130

Chapter 7

A Lightweight ATmega-based
Application-Specific Instruction-Set
Processor for Elliptic Curve
Cryptography

Publication Data

Erich Wenger. A Lightweight ATmega-based Application-Specific Instruction-Set
Processor for Elliptic Curve Cryptography. In Gildas Avoine and Orhun Kara,
editors, Second International Workshop on Lightweight Cryptography for Security
and Privacy - LightSec 2013, volume 8162 of Lecture Notes in Computer Science,
pages 1–15, Springer, 2013.

Contributions

Main author.

91

A Lightweight ATmega-based
Application-Specific Instruction-Set Processor

for Elliptic Curve Cryptography

Erich Wenger

Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, 8010 Graz, Austria
erich.wenger@iaik.tugraz.at

Abstract. It is inevitable that future Radio-Frequency Identification
(RFID) technology must support complex protocols and public-key cryp-
tography. In this paper, we present an Application-Specific Instruction-
Set Processor (ASIP) based on a clone of the ATmega128 microprocessor.
A leakage-resilient, constant-runtime, and assembly-optimized software
implementation of an elliptic curve point multiplication, which outper-
forms related work, requires 9,230–34,928 kCycles or 681–2,576 ms for
standard conform elliptic curves (secp160r1, secp192r1, secp224r1, and
secp256r1). Because this is too slow for most applications, the micro-
processor has been equipped with a multiply-accumulate and a bit-serial
instruction-set extension. Therefore, the runtime has been reduced to
practically usable 96–248 ms, while keeping the power below 1.1 mW,
and the area consumption between 19–27 kGE.

Keywords: ATmega, Elliptic Curve Cryptography, Instruction Set Ex-
tension, Application Specific Instruction-set Processor, Constant Run-
time.

1 Introduction

The future Internet of things will consist of embedded smart cards, wireless sen-
sor networks, and Radio-Frequency Identification (RFID) tags. Those devices
must be capable to communicate with other entities over an air interface and
must provide privacy and security capabilities. At Asiacrypt 2007, Serge Vau-
denay [20] showed that “...an RFID scheme that achieves narrow-strong privacy
... essentially needs public-key cryptography techniques.”

Among the three most popular public-key cryptographic systems (RSA, El-
Gamal, and ECC), Elliptic Curve Cryptography (ECC) is the least resource
demanding and most suitable for embedded systems. In the past ECC has been
well studied and standardized by SECG [2] and NIST [17]. One could also in-
vestigate non-standardized curves (e.g., by Gallant, Lambert, and Vanstone [7]
or Bernstein et al. [1]), but for open-loop systems one should stick to the given
standards. In this work we focus on the four prime-field based Weierstrass curves
G. Avoine and O. Kara (Eds.): LightSec 2013, LNCS 8162, pp. 1–15, 2013.
The original publication is available at http://link.springer.com/chapter/10.1007/978-3-642-40392-7_1
© Springer-Verlag Berlin Heidelberg 2013

94 INTRODUCTION

CPU Arithmetic Boolean
Logic

Interrupt
Logic

bit-serial
Multiplier

GPR

MULACC

Branch
Logic

8-bit
Multiplier

Data
Memory

Program
Memory

RS232

Dedicated
Modem

Timer/
Counter

External
Interrupts

I/O Bus

General
Purpose IO

Fig. 1. Schematic diagram of the used processing architecture.

secp160-256r1 as those are already used for mainstream applications such as
TLS, IPSec, and SSH.

While public-key systems are very resource demanding, RFID tags must con-
sume little power, be cheap (have a small chip area) and support real-time ap-
plications (respond within a given time). The traditional approach, which will
pretty soon exceed its realms of possibility, is to equip the state machine of an
RFID tag with a dedicated hardware block doing public-key cryptography. A
more sophisticated solution is to base the design on a microprocessor, in par-
ticular on an Application-Specific Instruction-Set Processor (ASIP). An ASIP
unites the advantages of programmable microprocessors (flexibility, extendabil-
ity) with the advantages of dedicated hardware blocks (high-performance, low-
power). Therefore, dedicated hardware units can be avoided and the overall
hardware footprint decreases. In this paper, we transform a commercially avail-
able microprocessor into an ASIP targeting RFID and public-key cryptography.

For this paper, we base our design on the popular 8-bit Atmel ATmega128
AVR processor. This processor comes with an extensive instruction set and a
dedicated hardware multiplier (important for prime-field arithmetic). The AT-
mega128 is used for a magnitude of applications and is supported by many
toolchains (e.g., avr-gcc, IAR, Crossworks). In Wenger et al. [21], we presented
‘Just Another AVR’ (JAAVR, see Figure 1), a feature-complete clone of the pop-
ular ATmega128 which is written in VHDL and only requires 6,140 GE, making
it perfectly suitable for area-sensitive embedded designs. In [21], we equipped an
earlier version of JAAVR with a dedicated RFID modem, and evaluated ECC,
AES, and Grøstl. As expected, those results show that ECC is the dominating
component.

BASIC REASONING 95

Our Contribution. In this paper we present an JAAVR-based ASIP opti-
mized for ECC. First, we present new assembly optimized ATmega-compatible
runtime results in which we outperform related software implementations (in-
cluding our own in [21]). Second, we optimize the cycles-per-instruction (CPI) of
all load, store, and multiply instructions of JAAVR in order to achieve speedups
of 25–27 %. Third, we are the first to actually build an ATmega128-compatible
processor with multiply-accumulate instruction-set extensions as ASIC. Previous
work was either simulated or only performed on FPGAs. Fourth, we are also the
first to build a tightly-coupled bit-serial multiplier as instruction-set extension
of JAAVR for prime-field based ECC. Utilizing all those techniques, we present
a 19 kGE small design suitable for RFID and other real-time applications.

This paper is structured as follows: Section 2 elaborates some basic design
decisions. Section 3 discusses efficient software implementation techniques for
ECC. Sections 4-6 deal with the improvement of the CPI of JAAVR, the uti-
lization of a multiply-accumulate instruction, and the integration of a bit-serial
multiplier, respectively. Section 7 discusses the results in connection with related
work. Section 8 concludes the work. The most important results are gathered in
Table 2. They are discussed throughout the paper.

2 Basic Reasoning

For RFID applications, the runtime of an algorithm is important in two respects.
First, it must be sufficiently fast to support real-time applications. Second, by
having a fast implementation, one can reduce the clock frequency and therefore
reduce the power consumption. For a passively powered RFID tag, the power
consumption is of upmost importance. For a typical ISO-14443-compatible [13]
tag, we assume the following requirements. The clock should be an integer frac-
tion of 13.56 MHz, the maximum power consumption below 2 mW, and the max-
imum runtime for an ECC point multiplication is 100-500 ms. It should be noted
that all our hardware designs easily exceed this minimum clock frequency of
13.56 MHz.

Tools. For all of our implementations, we performed hardware synthesis
(Cadence RTL Compiler v08.10), power simulations (Cadence First Encounter
v08.10), and cycle-accurate post-synthesis and post-layout hardware simulations
(using NCSim v08.20). As process technology the UMC 130 nm low-leakage
CMOS technology with Faraday design libraries in combination with area-efficient
single-port register-based RAM macros and Via-1 ROM macros is used. Previ-
ous experiments showed that synthesizing the program memory as standard logic
cells results in smaller (post synthesis) but less routable designs (post place-and-
route). A decreased cell density increases the size of the synthesized program
memory to a point where the available Via-1 ROM macro is effectively smaller.

Practical Security. When implementing cryptography, the designer must con-
sider practical attack scenarios such as timing, side-channel and fault attacks.
Regarding timing attacks, all assembly-optimized implementations perform the
point multiplication in constant runtime. Further, all implementations provide

96 THE BASELINE: EFFICIENT SOFTWARE IMPLEMENTATION

Table 1. secp160r1 point multiplication results using different multi-precision integer
multiplication methods: operand-scanning (OS), product-scanning (PS), hybrid, and
operand-caching (OC).

Impl. Point- Integer- Program-Memory Chip
Multiplication Multiplication Size Integer Mul. Area

[kCycles] [Cycles] [Bytes] [%] [GE]

OS in C 37,168 9,807 4,188 3 17,738
OS 17,607 5,505 12,110 62 23,540
PS looped 17,226 5,367 4,636 4 17,638
PS 13,546 4,035 9,860 54 21,701a

Hybrid 10,609 2,972 9,050 49 21,701a

OC 9,230 2,473 8,218 46 21,701a

a Identical, because only certain discrete ROM macros are available.

a basic resistance against power-analysis attacks. The Montgomery ladder for-
mula by Hutter et al. [11] performs key-independent double-and-add operations.
With its requirement of 16 field multiplications and 17 field additions per key
bit, it is reasonably fast. The finite-field multiplication is used for multiplications
as well as for squarings. At the end of the Montgomery ladder, a y-coordinate-
recovery and a constant-runtime inversion based on exponentiation (Fermat’s
little theorem) are performed. For side channel and fault security we also per-
form projective point randomization [4] before (against side-channel attacks)
and point verification before and after (against fault attacks) the point multi-
plication. Because we did not perform practical power analysis attacks or fault
simulations, we do not claim to be side channel or fault secure, but we use al-
gorithms that improve resistance against those attacks. Thus all our results are
practically relevant.

3 The Baseline: Efficient Software Implementation

By choosing an 8-bit processor we start with a rather small but “arithmetically
speaking” slow processor. Our first not constant-time, plain-C implementation
showed excruciatingly-slow runtimes of 37–131 million cycles, 2.7–9.6 seconds
(@ 13.56 MHz). Thus optimizing the existing code in assembly is mandatory.
For all following comparisons we consider our C implementations as baseline. In
hardware it requires 16.9–19.5 kGE and 561–656µW.

The first (and most laborious) optimization we have performed is the re-
placement of all field operations with constant-runtime assembly functions. This
not only improves the runtime but also makes all timing attacks infeasible. The
field addition and subtraction operations have been unrolled and perform the
reduction without branches. For the field multiplications, we have taken advan-
tage of the standardized Mersenne-like primes to get branch-free code using only
addition and shift operations.

IMPROVING THE CPU 97

The most time-consuming algorithm is the multi-precision integer multipli-
cation. Hutter and Wenger [12] did a thorough comparison between the School-
book’s operand-scanning (OS), Comba’s [3] product-scanning (PS), Gura et
al.’s [9] hybrid and their own operand-caching (OC) multiplication methods.
We implemented unrolled and looped versions of those algorithms in assembly.
Table 1 shows that by doing so the runtimes of integer and point multiplica-
tions for secp160r1 were improved by factors of 3.97 and 4.03, respectively. Our
fastest implementation, based on the operand-caching method, achieved a run-
time of 9,230 kCycles for a point multiplication. For comparison: Gura et al. [9],
Szczechowiak et al. [19], Wenger et al. [21], and Liu et al. [16] achieved runtimes
of 6,480 kCycles, 9,376 kCycles, 13,027 kCycles and 16,939 kCycles, respectively.
However, most of those implementations do not consider side-channel attacks.
For instance, Gura et al. used a Jacobian-based NAF point-multiplication for-
mula. For reference, we applied the same technique as Gura et al. and improved
their fastest implementation by 50 kCycles to 6,430 kCycles.

Apart from the expected runtime differences (OS > PS > Hybrid > OC),
unrolling the integer multiplication has a huge impact on the size of the program
code. Up to 62 % of the entries in the program memory are due to the unrolled
integer multiplication. Compared to the C implementation, the chip size of the
program memory increased by up to 76 %. Despite of that, assembly optimization
and ‘unrolling’ improved the area-time-product by a factor of up to 3.3, thus
establishing themselves as one of the most important optimization techniques.

The focus of this section was to perform software optimizations both appli-
cable to the ATmega128 and JAAVR. In the next sections, we present hardware
optimization techniques that improve both the execution time as well as the
total hardware footprint.

4 Improving the CPU

Already during the design of JAAVR, we realized several avenues for optimiza-
tion potentials. It was necessary to artificially introduce NOP operations in order
to achieve identical cycles-per-instruction (CPI) counts compared to the original
ATmega128. The most significant difference is that the ATmega128 uses a two-
stage pipeline and JAAVR does not. So all we needed to improve the performance
of store and multiply operations was to deactivate the NOP operations.

Unlike our previous paper [21], we also optimized memory load operations.
For the cycle-accurate (CA) design, two cycles are needed to load data from
the synchronous data memory. During the first cycle the address is applied to
memory and during the second cycle the obtained data word is stored to a
general purpose registers (GPR).

In order to reduce the latency of all load operations, we decided to introduce
a pipelining structure. While the first cycle of the operation stays identical, the
second cycle is performed as part of the subsequent operation. As Figure 2 shows,
multiplexers before and after each general purpose register were added. MUX2
is used to update the next value stored within the GPR. MUX1 overrides the

98 THE POWER OF THE MULACC COMMAND

 R0 … R31

 R0 ... R31

Arithmetic and
Logic Unit

RAM
Data

Previous

Next

MUX1

MUX2

Fig. 2. The multiplexers were added to reduce the necessary cycles per load instruction.

current contents within the GPR. Thus the ALU is working on an updated set
of GPR. The impact of the multiplexers on the critical path is hardly noticeable.

By switching JAAVR from the CA to the FAST mode, the following instruc-
tions improve: MUL*, ST, STD, PUSH, LD, LDD, POP, IJMP, RJMP, CBI, SBI (2→ 1),
RCALL, ICALL, LPM, ELPM (3→ 2), CALL, RET, and RETI (4→ 3). This increased
the size of JAAVR form 6,140 GE to 6,791 GE (by 10 %), while the runtime of the
fastest point multiplication improved by 26 %. Thus, the area-runtime product
improved by a factor of 1.31.

After enabling those optimizations, JAAVR is still instruction-set compatible
with the original ATmega128. So any (cryptographic) algorithm would benefit
from the improved instruction-timing. The next two sections are dedicated on
optimizing JAAVR for ECC using instruction-set extensions, transforming our
design into an ASIP.

5 The Power of the MULACC Command

When investigating the instructions used for the unrolled product-scanning multi-
precision multiplication, one can observe that there are four instructions, always
used in consecutive order: MUL, ADD, ADC, and ADC. The idea behind the multiply-
accumulate instruction-set extension is to combine those instructions into a sin-
gle MULACC command, as it has been done in related work.

Already in 2004, Großschädl and Savaş [8] used five custom instructions to
accelerate prime fields and binary extension fields on a MIPS32 core and gained
a speedup of about six for binary extension fields. In 2005, Eberle et al. [5]
presented multiply-accumulate instruction-set extensions for binary-extension
fields on an ATmega128. They improved sect223r1 by a factor of 13.6, but did
not use ISE for prime fields as we do it in this paper.

THE POWER OF THE MULACC COMMAND 99

In fact, we used the MULACC instruction to improve the fastest multi-precision
multiplication formula: the operand-caching method. We are the first to com-
bine the operand caching method with an instruction-set extension. Like the
product-scanning method, this method uses the same sequence of instructions
as mentioned above. So, by combining the operand-caching multiplication, which
reduces the number of load and store operations, and the multiply-accumulate
instruction, which reduces the number of additions, we achieved a new speed
record: 631 cycles for a 160-bit integer multiplication.

There are two main challenges concerning the introduction of new instruc-
tions: First, most of the 216 possibilities of the 16-bit instruction words are al-
ready assigned to existing instructions. Thus, the introduction of a new instruc-
tion would mean to modify existing instructions and being no longer compatible
with the original ATmega128. Second, adapting the source code of avr-gcc,
avr-as, and avr-ld to add new instructions does not seem to be straightfor-
ward.

Our solution is to introduce a new, within the I/O memory mapped, register
that can switch the processor to a special operating mode. In this special op-
erating mode, certain existing instructions are reinterpreted. For this solution,
none of the avr-gcc tools had to be modified.

In order to improve the performance of the operand-caching multiplication,
we introduced two instructions: MULACC and ST SHIFTACC. MULACC multiplies two
registers Rd and Rr and adds the result to the accumulator stored in R0-R2:
(R2, R1, R0) ← (R2, R1, R0) + Rd × Rr. This operation can be performed 28

times without the risk of an overflowing accumulator. This is more than the
required e = 10 accumulations performed within the operand-caching multi-
plication algorithm (e is a parameter to adjust the operand caching method,
see [12]). After e MULACC operations, ST SHIFTACC is used to store the lowest
byte of the accumulator (ST R0,Z+) and shifts the accumulator by 8 bits to the
right (R0 ← R1, R1 ← R2, R2 ← 0). Because of those optimizations, we freed
up two registers that were used as temporary storage of the product. In order
not to waste them, we increased e from 10 to 11, which further decreased the
number of necessary load and store instructions.

By using those instruction-set extensions, a 160× 160-bit multiplication can
be performed three times faster. It takes 631 cycles compared to 1,896 cycles.
A detailed decomposition of the used instructions can be found in Appendix A.
Further, the ISE had hardly any impact on the size of JAAVR. Only 257 GE
or 3.8 % of additional logic had to be added. At the same time, the size of the
program memory decreased: from 11,807 GE to 8,202 GE (-31 %). Adding all
those improvements together, the area-time product improved by a factor of 2.4.

A point multiplication in secp160r1 takes 3,268 kCycles. A profiling analysis
showed that 83.2 % of the total runtime are spent on the field multiplications.
The optimized reduction algorithm for the secp160r1 prime 2160−231−1 utilizes
26.1 % of the total runtime or a third of the field multiplication. Thus, any
further optimizations must not only consider the integer multiplication, but the
field multiplication as a whole. This is done in the following section.

100 USING A DEDICATED DIGIT-SERIAL MULTIPLIER

n-bit

 R29

<<

 ExtensionR0-R28

Operand a Operand b

Adder Reduce

n-bit wide Work Register

<<

mux

Data Memory

mux

Zero

MSB(R29)

1-bit
multiplication

n-bit

Fig. 3. The bit-serial multiplier is merged with the CPU.

6 Using a Dedicated digit-serial Multiplier

When investigating related work on ECC, one can either find ECC designs based
on an word-level multiplier (cf. [10, 22]), as we used in the previous sections,
or designs based on a digit-serial multiplier (cf. [6]). A digit-serial multiplier
simultaneously operates on all digits of the multiplicand a, but only a single
digit bi of the multiplicand b.

In this section we want to introduce the concept of a ‘tightly-coupled’ bit-
serial multiplier, which merges a bit-serial multiplier with the CPU. By reusing
existing registers, we were able to keep the impact on the total chip area to a
minimum and avoid unnecessary data transfers.

A block diagram of our bit-serial multiplier is depicted in Figure 3. Algo-
rithm 1 shows the pseudo-code to control it. An MSB-first multiplier is used
which accesses all bi starting with the most significant bit. The Z-register (R30,
R31) is used to address the memory, and R29 is used to store the byte containing
bi. During each cycle, R29 is shifted to the left using the LSL (Logic Shift Left)
instruction of JAAVR. At the same time the Work register is updated in the

RESULTS 101

Algorithm 1 Pseudocode for the bit-serial multiplication.

1: PUSH all call-saved registers.
2: LD operand a to R0-R28 and Extension.
3: Switch to ISE mode. (memory mapped config register)
4: Clear Work register.
5: for i from dn

8
e − 1 to 0 do

6: LD R29, -Z (load bi, pre-decrement pointer register Z)
7: 8 times: LSL R29 (triggers bit-serial multiplier)
8: end for
9: Store Work register.

10: Switch back to normal mode.
11: POP all call-saved registers.

following manner: Work ← (a × bi + Work � |bi|) (mod p). In each cycle the
most significant bit of R29 (bi) is multiplied with a, the product is added to a
shifted version of the n-bit1 Work register, and the Work register is updated with
the reduced sum. After the last computation cycle, the product a × b (mod p)
is stored in the Work register. A modified store instruction (ST) is used to write
the Work register to memory, one byte at a time.

To reuse existing registers, a is stored in register R0 to R28 and the Extension
register. For secp256r1, three IO-memory-mapped 8-bit Extension registers are
necessary. So for secp160-224r1 it was only necessary to add the Work register
and the combinatoric logic.

A field multiplication for secp160r1 takes 271 cycles. 9×20 = 180 cycles are
used by the digit-serial multiplication, 2×20 = 40 cycles are necessary for loading
operand a and storing the result, and 51 cycles are necessary to comply with the
C-calling convention (PUSH, POP, CALL, RET) and to switch between the normal
ATmega128 compatible operation mode and the instruction-set-extension mode.

Compared to the original software implementations in C, a speedup between
30 (secp160r1) and 44 (secp256r1) was achieved. The bit-serial approach is
also 2.3–3.7 times faster than the MULACC instruction-set extension. The size of
the program memory decreased significantly by 25 %–41 %. However, the size of
the CPU core increased by 61 %–107 %. 4,551 GE are required for the bit-serial
multiplier for secp160r1 and 7,792 GE have to be added for secp256r1. The
question now is whether adding the bit-serial multiplier improves or worsens the
area-runtime product. In fact, it improves by a factor of 2.1–3.1, which makes
the tightly-coupled digit-serial multiplier (by far) the fastest, even though not
the smallest hardware implementation presented in this paper.

7 Results

The most important results of our implementations are summarized in Table 2
and have already been discussed in the previous sections. It contains figures that

1 n relates to the number of bits needed to represent any value in Fp.

102 RESULTS

Table 2. Summary of all experiments. SARP stands for ‘scaled area-runtime product’.

Impl. Runtime Program Data Area Requirement Power Energy Runtime SARP
Memory JAAVR ROM RAM Total @13.56 MHz @13.56 MHz

[kCycles] [Bytes] [Bytes] [kGE] [kGE] [kGE] [kGE] [µW] [µJ] [ms]

secp160r1

CA in C 37,168 4,188 418 6,140 7,744 3,855 17,738 561 1,539 2,741 22.5
CA 9,230 8,218 402 6,140 11,807 3,754 21,701 662 450 681 6.8
FAST 6,764 8,218 402 6,791 11,807 3,754 22,352 824 411 499 5.2
MULACC 3,268 5,688 402 7,048 8,202 3,754 19,004 850 205 241 2.1
bit-serial 1,298 4,286 350 11,341 7,744 3,452 22,537 1,013 97 96 1.0

secp192r1, NIST P-192

CA in C 55,365 3,916 483 6,140 6,505 4,233 16,877 640 2,615 4,083 21.6
CA 15,093 10,070 462 6,140 11,807 4,107 22,054 677 753 1,113 7.7
FAST 11,101 10,070 462 6,791 11,807 4,107 22,705 832 681 819 5.8
MULACC 5,022 6,396 462 7,048 10,040 4,107 21,195 864 320 370 2.5
bit-serial 1,813 4,490 406 12,302 7,744 3,779 23,825 1,084 145 134 1.0

secp224r1, NIST P-224

CA in C 86,058 3,926 569 6,140 6,363 4,712 17,215 663 4,208 6,346 23.9
CA 23,213 12,374 526 6,140 15,484 4,485 26,109 689 1,179 1,712 9.8
FAST 17,114 12,374 526 6,791 15,484 4,485 26,760 843 1,063 1,262 7.4
MULACC 7,537 7,404 526 7,048 10,040 4,485 21,573 848 472 556 2.6
bit-serial 2,469 4,808 466 13,237 7,744 4,132 25,113 1,032 188 182 1.0

secp256r1, NIST P-256

CA in C 130,695 5,604 645 6,140 8,202 5,165 19,506 656 6,320 9,638 27.8
CA 34,928 15,888 590 6,140 17,029 4,838 28,006 663 1,707 2,576 10.7
FAST 26,290 15,888 590 6,791 17,029 4,838 28,657 811 1,572 1,939 8.2
MULACC 11,900 9,372 590 7,048 11,807 4,838 23,693 836 733 878 3.1
bit-serial 3,367 5,532 522 14,583 8,202 4,460 27,244 1,031 256 248 1.0

are characteristic for software and hardware implementations. Every row labeled
with cycle accuracy (CA) is applicable for an ATmega128 as well as JAAVR.
Using a TCL-based simulation script, we measured the data-memory require-
ments (including stack) of all implementations. The bit-serial designs needs the
least data memory, because the memory for a temporary 2n-bit product was
saved. The RAM and ROM macros are chosen according to the data and pro-
gram memory requirements. Because those macros are only available in certain
sizes, not every difference measured in Bytes is reflected in the actual area of
the ROM macro (in gate equivalents).

7.1 Reached Goals

All targeted goals (< 2 mW,< 500 ms @ 13.56 MHz) have been met. An exception
are the larger 224-bit and 256-bit elliptic curves which render the MULACC based
approach as too slow. The runtimes of 100–200 ms show that the clock frequency
can be decreased by factors of 2–4, which in turn would decrease the power
consumptions by a factor of 2–4.

7.2 Related Work

For a fair comparison with related work, it is important to not only consider
plain numbers (chip area, runtime, power), but also the provided features. We
distinguish whether a design is microprocessor-based (MCU), comes with a C-
compiler, considers side-channel attacks, or performs binary- or prime-field based

RESULTS 103

Table 3. Comparison with related work.

Reference Runtime Area Characteristics
[kCycles] [GE]

ISE - secp160r1

Gura [9] 4,720 - ATmega-based
OC + MULACC 3,268 19,004 ATmega-based

Dedicated Hardware - secp160r1

bit-serial 1,298 22,537 ATmega-based
OC + MULACC 3,268 19,004 ATmega-based
Fürbass [6] 362 19,000 ECDSA-like

Dedicated Hardware - secp192r1

Satoh [18] 4,165 29,655 ECC
bit-serial 1,813 23,825 ATmega-based
Fürbass [6] 502 23,600 ECDSA-like
OC + MULACC 5,022 21,195 ATmega-based
Hutter [10] 859 19,115 ECDSA, MCU
Wenger [22] 1,377 11,686 ECDSA, MCU

ECC. One must also consider the used manufacturing technology, but this would
go beyond the scope of this paper.

A fair comparison with dedicated hardware designs is tough. While they
are optimized to the limit, they lack the rich set of features our ASIP pro-
vides. The ASIP is easily extendable and provides a compiler toolchain. Also our
microprocessor-based approach has not yet reached its limits (c.f. Appendix C),
but applying those ideas would make our design incompatible with a standard
ATmega128. Table 3 summarizes the comparison with related work.

Fürbass et al. [6], Hutter et al. [10], Satoh et al. [18], and Wenger et al. [22]
worked on dedicated prime-field based elliptic curve hardware designs. They
require 12–30 kGE of hardware and 362–4,165 kCycles of runtime. Although most
of their solutions are faster, it is important to notice that our solutions provide
sufficiently fast response times. Hutter et al. and Wenger et al. implemented
the full ECDSA signature algorithm and Fürbass et al. implemented ECDSA
without a hash algorithm. The designs by Hutter et al. and Wenger et al. is micro
controller based, but does not provide a C-compiler. The designs by Fürbass et
al. and Satoh et al. are not micro controller based, so it probably is easier to
adapt our designs for real-world scenarios.

Most comparable to this paper are the works of Gura et al. [9], Kumar
and Paar [15], and Koschuch et al. [14]. Gura et al. added simulated ISE to
an AVR processor, but achieved slower runtimes results. Kumar and Paar used
the ATSTK94 FPSLIC demonstration board to extend an AVR processor with
a bit-serial multiplier extension for binary extension fields. They however have
not applied their methodology to prime fields and do not provide results for
an ASIC. Koschuch et al. synthesized an 8051-compatible microprocessor and
equipped it with a hardware accelerator for binary extension fields. In total, they

104 CONCLUSION

needed 29 kGE and 1.2 MCycles. Even though we use prime fields, our results
are smaller and approximately of similar speed.

8 Conclusion

After our thorough analysis of instruction-set extensions for ECC, the following
conclusions can be drawn: First, if the area footprint is most important (e.g., for
RFID) our MULACC-based ASIP is the best choice. The chip area is on par with
related work and reasonable response times of less than 370 ms are achievable.
Second, for applications such as wireless sensor networks or embedded smart
cards, the tightly-coupled bit-serial ASIP approach is most suitable. It provides
the best energy efficiency and the best area-time product. Third, the design
space for ECC implementations is huge: the ratios between the best and the
worst implementation across all tested elliptic curves in the categories of area-
runtime product, runtime, and energy are 87:1, 101:1, and 65:1, respectively. Our
results show that the figures vary by up to two orders of magnitude across the
hardware/software design space, which gives a designer a multitude of options
to fine-tune a design for a given set of requirements.

Acknowledgements

The author wants to thank Thomas Plos for the support during the creation of
this paper. This work has been supported by the Austrian Science Fund (FWF)
under grant number TRP 251-N23 (Realizing a Secure Internet of Things -
ReSIT).

References

1. D. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards
Curves. In AFRICACRYPT, volume 5023 of LNCS, pages 389–405, 2008.

2. Certicom Research. Standards for Efficient Cryptography, SEC 2: Recommended
Elliptic Curve Domain Parameters, Version 1.0, 2000.

3. P. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems Journal,
29(4):526–538, October 1990.

4. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In Ç. K. Koç and C. Paar, editors, CHES, volume 1717 of LNCS,
pages 292–302. Springer, 1999.

5. H. Eberle, A. Wander, N. Gura, S. Chang-Shantz, and V. Gupta. Architectural
Extensions for Elliptic Curve Cryptography over GF(2m) on 8-bit Microproces-
sors. In International Conference on Application-specific Systems, Architectures
and Processors, pages 343–349. IEEE Computer Society, July 2005.

6. F. Fürbass and J. Wolkerstorfer. ECC Processor with Low Die Size for RFID
Applications. In Proceedings of 2007 IEEE International Symposium on Circuits
and Systems. IEEE, IEEE, May 2007.

CONCLUSION 105

7. R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster Point Multiplication on
Elliptic Curves with Efficient Endomorphisms. In CRYPTO, LNCS, pages 190–
200, 2001.

8. J. Großschädl and E. Savaş. Instruction Set Extensions for Fast Arithmetic in
Finite Fields GF(p) and GF(2m). In CHES, pages 133–147, 2004.

9. N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing Elliptic
Curve Cryptography and RSA on 8-Bit CPUs. In M. Joye and J.-J. Quisquater,
editors, CHES, volume 3156 of LNCS, pages 119–132. Springer, 2004.

10. M. Hutter, M. Feldhofer, and T. Plos. An ECDSA Processor for RFID Authenti-
cation. In RFIDSec, pages 189–202, 2010.

11. M. Hutter, M. Joye, and Y. Sierra. Memory-Constrained Implementations of Ellip-
tic Curve Cryptography in Co-Z Coordinate Representation. In AFRICACRYPT,
volume 6737 of LNCS, pages 170–187, 2011.

12. M. Hutter and E. Wenger. Fast Multi-Precision Multiplication for Public-Key
Cryptography on Embedded Microprocessors. In B. P. und Tsuyoshi Takagi, editor,
CHES, volume 6917 of LNCS, pages 459–474. Springer, 2011.

13. International Organization for Standardization (ISO). ISO/IEC 14443-3: Identifi-
cation Cards - Contactless Integrated Circuit(s) Cards - Proximity Cards - Part3:
Initialization and Anticollision, 2001.

14. M. Koschuch, J. Lechner, A. Weitzer, J. Großschädl, A. Szekely, S. Tillich, and
J. Wolkerstorfer. Hardware/Software Co-design of Elliptic Curve Cryptography
on an 8051 Microcontroller. In CHES, 2006.

15. S. Kumar and C. Paar. Reconfigurable Instruction Set Extension for Enabling
ECC on an 8-Bit Processor. In Field Programmable Logic and Application, volume
3203 of LNCS, pages 586–595, 2004.

16. A. Liu and P. Ning. TinyECC: A Configurable Library for Elliptic Curve Cryptog-
raphy in Wireless Sensor Networks. In International Conference on Information
Processing in Sensor Networks, pages 245–256, 2008.

17. National Institute of Standards and Technology (NIST). FIPS-186-3: Digital Sig-
nature Standard (DSS), 2009.

18. A. Satoh and K. Takano. A Scalable Dual-Field Elliptic Curve Cryptographic
Processor. IEEE Transactions on Computers, 52:449–460, 2003.

19. P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab. NanoECC:
Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. In Wireless
Sensor Networks, LNCS, pages 305–320. Springer, 2008.

20. S. Vaudenay. On Privacy Models for RFID. In ASIACRYPT, LNCS, pages 68–87,
2007.

21. E. Wenger, T. Baier, and J. Feichtner. JAAVR: Introducing the Next Generation
of Security-Enabled RFID Tags. In DSD, pages 640–647, 2012.

22. E. Wenger, M. Feldhofer, and N. Felber. Low-Resource Hardware Design of an
Elliptic Curve Processor for Contactless Devices. In WISA, pages 92–106, 2010.

106 DECOMPOSITION OF INSTRUCTIONS

A Decomposition of Instructions

Table 4 shows the decomposition of used instructions for performing a 160×160-
bit multiplication with and without instruction-set extension. Using the ISE, the
necessary additions were nearly eliminated.

Table 4. Decomposition of the number of cycles per type of instruction necessary for
a 160× 160-bit multiplication.

Instruction CA FAST ISE

MUL 800 400 0
MULACC 0 0 400
LD 160 80 76
ST 120 60 0
ST SHIFTACC 0 0 58
ADC 820 820 18
ADD 420 420 18
CLR 63 63 4
PUSH 36 18 18
POP 36 18 18
Others 18 17 21

Total 2,473 1,896 631

B Runtimes of Finite-Field Operations

The runtimes of all finite-field operations for secp160r1 are presented in Table 5.
Especially the comparable slow finite-field multiplication greatly profited from
the performed optimizations. Because the inversion is based on an exponenti-
ation, the speedup of the inversion is a direct reflection of the speedup of the
multiplication. Using the bit-serial multiplier, the ratio between additions and
multiplications is only 1.5. This needs to be taken in concern when a method or
formula for the point multiplication is chosen.

Table 5. Runtimes of finite-field operations for secp160r1.

Operation CA FAST ISE bit-serial

Addition 291 176 176 176
Subtraction 291 176 176 176
Multiplication 3,024 2,249 984 271
Inversion 519,217 386,368 170,053 48,130

THE LIMITS 107

C The Limits

In this paper we concentrated on delivering sufficiently fast and power-aware
ASIPs for future RFID technology. We sticked to modifying the processing core
and only optimized the finite-field operations in assembly language. However, if
you want to make our design into an actual product, further optimizations need
to be considered.

Constants consume space within the program and data memory. At startup
they are loaded from the program memory and stored to the data memory.
If one would add a memory-mapped table within the data memory bus, one
could significantly reduce the size of the necessary RAM macro. The RAM
macro could be shrunken by at least seven times 160-bit = 140 bytes.

Memory Management is currently performed by the compiler by reserving
memory on the stack. If the whole source code would be written in assembly,
unnecessary and redundant data memory entries could be avoided.

Processor Features that are not needed for ECC could be removed. E.g. the
I/O bus is mapped within the data memory, or MOVW instructions are not
needed for the finite-field operations. Removing those feature would decrease
the size of JAAVR by 420 GE.

Processor Instructions that are not needed for ECC could be removed. For
instance the FMUL* and MULS* multiplier instructions are not needed for an
ECC point multiplication.

Program Memory is currently synthesized as Via-1 ROM macros. Using smaller
ROM macros would significantly decrease the size of the program memory.
Because the program memory is the largest part of the presented design,
decreasing its size has a significant impact on the total chip area.

Chapter 8

Fast Multi-Precision Multiplication
for Public-Key Cryptography on
Embedded Microprocessors

Publication Data

Michael Hutter and Erich Wenger. Fast Multi-Precision Multiplication for Public-
Key Cryptography on Embedded Microprocessors. In Bart Preneel and Tsuyoshi
Takagi, editors, Cryptographic Hardware and Embedded Systems, CHES 2011,
volume 6917 of Lecture Notes in Computer Science, pages 459–474, 2011.

Contributions

Generalization of the idea. Figures. All implementation results except of the
160-bit implementations. Proofreading of the text.

109

Fast Multi-Precision Multiplication for
Public-Key Cryptography on Embedded

Microprocessors

Michael Hutter and Erich Wenger

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{Michael.Hutter,Erich.Wenger}@iaik.tugraz.at

Abstract. Multi-precision multiplication is one of the most fundamen-
tal operations on microprocessors to allow public-key cryptography such
as RSA and Elliptic Curve Cryptography (ECC). In this paper, we
present a novel multiplication technique that increases the performance
of multiplication by sophisticated caching of operands. Our method sig-
nificantly reduces the number of needed load instructions which is usually
one of the most expensive operation on modern processors. We evaluate
our new technique on an 8-bit ATmega128 microcontroller and compare
the result with existing solutions. Our implementation needs only 2, 395
clock cycles for a 160-bit multiplication which outperforms related work
by a factor of 10 % to 23 %. The number of required load instructions is
reduced from 167 (needed for the best known hybrid multiplication) to
only 80. Our implementation scales very well even for larger Integer sizes
(required for RSA) and limited register sets. It further fully complies to
existing multiply-accumulate instructions that are integrated in most of
the available processors.

Keywords: Multi-Precision Arithmetic, Microprocessors, Elliptic Curve
Cryptography, RSA, Embedded Devices.

1 Introduction

Multiplication is one of the most important arithmetic operation in public-key
cryptography. It engross most of the resources and execution time of modern
microprocessors (up to 80 % for Elliptic Curve Cryptography (ECC) and RSA
implementations [6]). In order to increase the performance of multiplication, most
effort has been put by researchers and developers to reduce the number of in-
structions or minimize the amount of memory-access operations.

Common multiplication methods are the schoolbook or Comba [4] technique
which are widely used in practice. They require at least 2n2 load instructions
to process all operands and to calculate the necessary partial products. In 2004,
Gura et al. [6] presented a new method that combines the advantages of these
methods (hybrid multiplication). They reduced the number of load instructions
to only 2dn2/de where the parameter d depends on the number of available
B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 459-474, 2011.
The original publication is available at http://link.springer.com/chapter/10.1007/978-3-642-23951-9_30
© International Association for Cryptologic Research 2011

112 RELATED WORK

registers of the underlying architecture. They reported a performance gain of
about 25 % compared to the classical Comba multiplication. Their 160-bit im-
plementation needs 3,106 clock cycles on an 8-bit ATmega128 microcontroller.
Since then, several authors applied this method [7, 12, 14, 15, 17] and proposed
various enhancements to further improve the performance. Most of the related
work reported between 2,593 and 2,881 clock cycles on the same platform.

In this paper, we present a novel multiplication technique that reduces the
number of needed load instructions to only 2n2/e where e > d. We propose a
new way to process the operands which allows efficiently caching of required
operands. In order to evaluate the performance, we use the ATmega128 micro-
controller and compare the results with related work. For a 160-bit multiplica-
tion, 2,395 clock cycles are necessary which is an improvement by a factor of 10 %
compared to the best reported implementation of Scott et al. [14] (which need
2,651 clock cycles) and by a factor of about 23 % compared to the work of Gura
et al. [6]. We further compare our solution with different Integer sizes (160, 192,
256, 512, 1,024, and 2,048) and register sizes (e = 2, 4, 8, 10, and 20). It shows
that our solution needs about 15 % less clock cycles for any chosen Integer size.
Our solution also scales very well for different register sizes without significant
loss of performance. Besides this, the method fully complies with common ar-
chitectures that support multiply-accumulate instructions using a (Comba-like)
triple-register accumulator.

The paper is organized as follows. In Section 2, we describe related work on
that topic and give performance numbers for different multiplication techniques.
Section 3 describes different multi-precision multiplication techniques used in
practice. We describe the operand scanning, product scanning, and the hybrid
method and compare them with our solution. In Section 4, we present the results
of our evaluations. We describe the ATmega128 architecture and give details
about the implementation. Summary and conclusions are given in Section 5.

2 Related Work

In this section, we describe related work on multi-precision multiplication over
prime fields. Most of the work given in literature make use of the hybrid-
multiplication technique [6] which provides best performance on most micro-
processors. This technique was first presented at CHES 2004 where the authors
reported a speed improvement of up to 25 % compared to the classical Comba-
multiplication technique [4] on 8-bit platforms. Their implementation requires
3,106 clock cycles for a 160-bit multiplication on an ATmega128 [1]. Several
authors adopted the idea and applied the method for different devices and en-
vironments, e.g. sensor nodes. Wang et al. [18] and Ugus et al. [16] made use
of this technique and implemented it on the MICAz motes which feature an
ATmega128 microcontroller. Results for the same platform have been also re-
ported by Liu et al. [11] and Szczechowiak et al. [15] in 2008 who provide software
libraries (TinyECC and NanoECC) for various sensor-mote platforms. One of
the first who improved the implementation of Gura has been due to Uhsadel et

MULTI-PRECISION MULTIPLICATION TECHNIQUES 113

al. [17]. They have been able to reduce the number of needed clock cycles to only
2,881. Further improvements have been also reported by Scott et al. [14]. They
introduced additional registers (so-called carry catchers) and could increase the
performance to 2,651 clock cycles. Note that they fully unrolled the execution
sequence to avoid additional clock cycles for loop instructions. Similar results
have been also obtained by Kargl et al. [7] in 2008 which reported 2,593 clock
cycles for an un-rolled 160-bit multiplication on the ATmega128.

In 2009, Lederer et al. [9] showed that the needed number of addition and
move instructions can be reduced by simply rearranging the instructions during
execution of the hybrid-multiplication method. Similar findings have been also
reported recently by Liu et al. [12] who reported the fastest looped version of the
hybrid multiplication needing 2,865 clock cycles in total.

3 Multi-Precision Multiplication Techniques

In the following subsections, we describe common multiplication techniques that
are often used in practice. We describe the operand scanning, product scanning,
and hybrid multiplication method1. The methods differ in several ways how to
process the operands and how many load and store instructions are necessary to
perform the calculation. Most of these methods lack in the fact that they load
the same operands not only once but several times throughout the algorithm
which results in additional and unnecessary clock cycles. We present a new mul-
tiplication technique that improves existing solutions by efficiently reducing the
load instructions through sophisticated caching of operands.

Throughout the paper, we use the following notation. Let a and b be two
m-bit large Integers that can be written as multiple-word array structures A =
(A[n−1], . . . , A[2], A[1], A[0]) and B = (B[n−1], . . . , B[2], B[1], B[0]). Further let
W be the word size of the processor (e.g. 8, 16, 32, or 64 bits) and n = dm/W e
the number of needed words to represent the Integers a or b. We denote the
result of the multiplication by c = ab and represent it in a double-size word
array C = (C[2n− 1], . . . , C[2], C[1], C[0]).

3.1 Operand-Scanning Method

Among the most simplest way to perform large Integer multiplication is the
operand-scanning method (or often referred as schoolbook or row-wise multipli-
cation method). The multiplication can be implemented using two nested loop
operations. The outer loop loads the operand A[i] at index i = 0 . . . n − 1 and
keeps the value constant inside the inner loop of the algorithm. Within the in-
ner loop, the multiplicand B[j] is loaded word by word and multiplied with the
operand A[i]. The partial product is then added to the intermediate result of the
same column which is usually buffered in a register or stored in data memory.

1 Note that we do not consider multiplications methods such as Karatsuba-Ofman or
FFT in this paper since they are considered to require more resources and memory
accesses on common microcontrollers than the given methods [8].

114 MULTI-PRECISION MULTIPLICATION TECHNIQUES

A[7]B[7]

A[0]B[7]

A[7]B[0]

A[0]B[0]

C[0]C[7]C[14]

Fig. 1: Operand-scanning multiplication of 8-word large Integers a and b.

Figure 1 shows the structure of the algorithm on the left side. The individual
row levels can be clearly discerned. On the right side of the figure, all n2 partial
products are displayed in form of a rhombus. Each point in the rhombus repre-
sents a multiplication A[i] × B[j]. The most right-sided corner of the rhombus
starts with the lowest indices i, j = 0 and the most left-sided corner ends with
the highest indices i, j = n − 1. By following all multiplications from the right
to the lower-mid corner of the rhombus, it can be observed that the operand
A[i] keeps constant for any index i ∈ [0, n). The same holds true for the operand
B[j] and j ∈ [0, n) by following all multiplications from right to the upper-mid
corner of the rhombus. Note that this is also valid for the left-handed side of the
rhombus.

For the operand-scanning method, it can be seen that the partial products
are calculated from the upper-right side to the lower-left side of the rhombus (we
marked the processing of the partial products with a black arrow). In each row,
n multiplications have to be performed. Furthermore, 2n load operations and n
store operations are required to load the multiplicand and the intermediate result
C[i+ j] and to store the result C[i+ j]← C[i+ j] +A[i]×B[j]. Thus, 3n2 + 2n
memory operations are necessary for the entire multi-precision multiplication.
Note that this number decreases to n2 + 3n for architectures that can maintain
the intermediate result in available working registers.

3.2 Product-Scanning Method

Another way to perform a multi-precision multiplication is the product-scanning
method (also referred as Comba [4] or column-wise multiplication method). There,
each partial product is processed in a column-wise approach. This has several
advantages. First, since all operands of each column are multiplied and added
consecutively (within a multiply-accumulate approach), a final word of the result
is obtained for each column. Thus, no intermediate results have to be stored or
loaded throughout the algorithm. In addition, the handling of carry propagation

MULTI-PRECISION MULTIPLICATION TECHNIQUES 115

A[7]B[7]

A[0]B[7]

A[7]B[0]

A[0]B[0]

C[0]C[7]C[14]

Fig. 2: Product-scanning multiplication of 8-word large Integers a and b.

is very easy because the carry can be simply added to the result of the next
column using a simple register-copy operation. Second, only five working regis-
ters are needed to perform the multiplication: two registers for the operand and
multiplicand and three registers for accumulation2. This makes the method very
suitable for low-resource devices with limited registers.

Figure 2 shows the structure of the product-scanning method. By having
a look at the rhombus, it shows that by processing the partial products in a
column-wise instead of a row-wise approach, only one store operation is needed
to store the final word of the result. For the entire multi-precision operation, 2n2

load operations are necessary to load the operands A[i] and B[j] and 2n store
operations are needed to store the result. Therefore, 2n2+2n memory operations
are needed.

3.3 Hybrid Method

The hybrid multiplication method [6] combines the advantages of the operand-
scanning and product-scanning method. It can be implemented using two nested
loop structures where the outer loop follows a product-scanning approach and the
inner loop performs a multiplication according to the operand-scanning method.

The main idea is to minimize the number of load instructions within the
inner loop. For this, the accumulator has to be increased to a size of 2d + 1
registers. The parameter d defines the number of rows within a processed block.
Note that the hybrid multiplication is equals to the product-scanning method if
parameter d is chosen as d = 1 and it is equal to the operand-scanning method
if d = n.

Figure 3 shows the structure of the hybrid multiplication for d = 4. It shows
that the partial products are processed in form of individual blocks (we marked

2 We assume the allocation of three registers for the accumulator register whereas 2 +
dlog2(n)/W e registers are actually needed to maintain the sum of partial products.

116 MULTI-PRECISION MULTIPLICATION TECHNIQUES

A[7]B[7]

A[0]B[7]

A[7]B[0]

A[0]B[0]

C[0]C[7]C[14]

1

2

3

4

Fig. 3: Hybrid multiplication of 8-word large Integers a and b (d = 4).

the processing sequence of the blocks from 1 to 4). Within one block, all operands
are processed row by row according to the operand-scanning approach. Note that
these blocks use operands with a very limited range of indices. Thus, several load
instructions can be saved in cases where enough working registers are available.
However, the outer loop of the hybrid method processes the blocks in a column-
wise approach. So between two consecutive blocks no operands can be shared
and all operands have to be loaded from memory again. This becomes clear by
having a look at the processing of Block 1-3. Block 2 and 3 do not share any
operands that possess the same indices. Therefore, all operands that have already
been loaded for Block 1 and that can be reused in Block 3 have to be loaded
again after processing of Block 2 which requires additional and unnecessary load
instructions. However, in total, the hybrid method needs 2dn2/de+ 2n memory-
access instructions which provides good performances on devices that feature a
large register set.

3.4 Operand-Caching Method

We present a new method to perform multi-precision multiplication. The main
idea is to reduce the number of memory accesses to a minimum by efficiently
caching of operands. We show that by spending a certain amount of store opera-
tions, a significant amount of load instructions can be saved by reusing operands
that have been already loaded in working registers.

The method basically follows the product-scanning approach but divides the
calculation into several rows. In fact, the product-scanning method provides best
performance if all needed operands can be maintained in working registers. In
such a case, only 2n load instructions and 2n store instructions would be nec-
essary. However, the product-scanning method becomes inefficient if not enough
registers are available or if the Integer size is too large to cache a significant
amount of operands. Hence, several load instructions are necessary to reload
and overwrite the operands in registers.

MULTI-PRECISION MULTIPLICATION TECHNIQUES 117

binit

1

2

3

4

1

2

3

4

r0

r1

A[7]B[7]

A[0]B[7]

A[7]B[0]

A[0]B[0]

C[0]C[7]C[14]

1

23

4

1

2

3
4

r0

r1

binit

Fig. 4: Operand-caching multiplication of 8-word large Integers a and b (e = 3).

In the light of this fact, we propose to separate the product-scanning method
into individual rows r = bn/ec. The size e of each row is chosen in a way that all
needed words of one operand can be cached in the available working registers.
Figure 4 shows the structure of the proposed method for parameter e = 3. That
means, 3 registers are reserved to store 3 words of operand a and 3 registers
are reserved to store 3 words of operand b. Thus, we assume f = 2e + 3 = 9
available registers including a triple-word accumulator. The calculation is now
separated into r = b8/3c = 2 rows, i.e. r0 and r1, and consists of one remaining
block which we further denote as initialization block binit. This block calculates
the partial products which are not processed by the rows.

All rows are further separated into four parts. Part 1 and 4 use the clas-
sical product-scanning approach. Part 2 and 3 perform an efficient multiply-
accumulate operation of already cached operands.

The algorithm starts with the calculation of binit and processes the individual
rows afterwards (starting from the the smallest to the largest row, i.e. from
the top to the bottom of the rhombus). Furthermore, all partial products are
generated from right to left. In the following, we describe the algorithm in a
more detail.

Initialization Block binit. This block (located in the upper-mid of the rhom-
bus) performs the multiplication according to the classical product-scanning
method. The Integer size of the binit multiplication is (n− re), i.e. 8− 6 = 2
in our example, which is by definition smaller than e. Because of that, all
operands can be loaded and maintained within the available registers result-
ing in only 4(n − re) memory-access operations. Note that the calculation
of binit is only required if there exist remaining partial products, i.e. n mod
e 6= 0. If n mod e = 0, the calculation of binit is skipped. Furthermore,
consider the special case when n < e where only binit has to be performed
skipping the processing of rows (trivial case).

Processing of Rows. In the following, we describe the processing of each row
p = r − 1 . . . 0. Each row consists of four parts.

118 MULTI-PRECISION MULTIPLICATION TECHNIQUES

A[2] x B[1]

A[0] x B[3]

… …

C[3]+
A[2] x B[2]

A[0] x B[4]

… …

C[4]+

A[2] x B[5]

A[0] x B[7]

… …

C[7]+

ACC0ACC1ACC2

C[3]

A[3] x B[5]

A[1] x B[7]

… …

C[8]+
A[4] x B[5]

A[2] x B[7]

… …

C[9]+

A[7] x B[5]

A[5] x B[7]

… …

C[12]+

+

23

Fig. 5: Processing of Part 2 and 3 of the row r1.

Part 1. This part starts with a product-scanning multiplication. All operands
for that row are first loaded into registers, i.e. A[i] with i = pe . . . e(p + 1)− 1
and B[j] with j = 0 . . . e− 1. The sum of all partial products A[i]× B[j] is
then stored as intermediate result to the memory location C[i] (same index
range as A[i]). Therefore, 2e load instructions and e store instructions are
needed.

Part 2. The second part, processes n − e(p + 1) columns using a multiply-
accumulate approach. Since all operands of A[i] were already loaded and
used in Part 1, only one word B[j] has to be loaded from one column to
the next. The operands A[i] are kept constant throughout the processing of
Part 2. Next to the needed load instructions for B[j], we have to load and
update the intermediate result of Part 1 with the result obtained in Part 2.
Thus, 2(n − e(p + 1)) load and n − e(p + 1) store instructions are required
for that part.

Part 3. The third part performs the same operation as described in Part 2
except that the already loaded operands B[j] are kept constant and that
one word A[i] is loaded for each column. Figure 5 shows the processing of
Part 2 and 3 of row r1 (p = 0). For each column, two load instructions are
necessary (marked in grey). All other operands have been loaded and cached
in previous parts. Operands which are not required for further processing
are overwritten by new operands, e.g. B[1] . . . B[4] in Part 2 of our example.

Part 4. The last part calculates the remaining partial products. In contrast to
Part 1, no load instructions are required since all operands have been already
loaded in Part 3. Hence, only e memory-access operations are needed to store
the remaining words of the (intermediate) result c.

Table 1 summaries the memory-access complexity of the initialization block
and the individual parts of a row p. By summing up all load instructions, we get

2(n− re) +
r−1∑

p=0

(4n− 4pe− 2e) = 2n + 4rn− 2er2 − 2er ≤ 2n2

e
. (1)

MULTI-PRECISION MULTIPLICATION TECHNIQUES 119

Table 1: Memory-access complexity of binit and each part of row p = 0 . . . r − 1.

Component Load Instr. Store Instr. Total

binit 2(n− re) 2(n− re) 4(n− re)
Part 1 2e e 3e
Part 2 2(n− e(p + 1)) n− e(p + 1) 3(n− e(p + 1))
Part 3 2(n− e(p + 1)) n− e(p + 1) 3(n− e(p + 1))
Part 4 0 e e

The total number of store operations can be evaluated by

2(n− re) +
r−1∑

p=0

(2n− 2pe) = 2n + 2rn− er2 − er ≤ n2

e
+ n. (2)

Table 2 lists the complexity of different multi-precision multiplication tech-

niques. It shows that the hybrid method needs 2dn2

d e load instructions whereas

the operand-caching technique needs about 2n2

e . Since the total number of avail-
able registers f equals to 2e + 3 for the operand-caching technique (2e registers
for the operand registers and three registers for the accumulator) and 3d+ 2 for
the hybrid method (d + 1 registers for the operands and 2d + 1 registers for the
accumulator), we obtain

2e + 3 = 3d + 2 =⇒ e =
3d− 1

2
and e > d. (3)

If we compare the total number of memory-access instructions for the hybrid
and the operand-caching method and express both runtimes using f , we get

2

⌈
3n2

f − 2

⌉
+ 2n >

6n2

f − 3
+ n (4)

Note that there are more parameters to consider. The number of additions
of the operand-caching method is 3n2 and the number of additions of the hybrid
method is n2(2 + d/2) (upper bound). Also the pseudocode of Gura et al. [6] for
the hybrid multiplication method is inefficient in the special case of n mod d 6= 0.

Table 2: Memory-access complexity of different multiplication techniques.

Method Load Store Memory
Instructions Instructions Instructions

Operand Scanning 2n2 + n n2 + n 3n2 + 2n
Product Scanning [4] 2n2 2n 2n2 + 2n
Hybrid [6] 2dn2/de 2n 2dn2/de+ 2n
Operand Caching 2n2/e n2/e + n 3n2/e + n

120 RESULTS

Table 3: Unrolled instruction counts for a 160-bit multiplication on the ATmega128.

Method Instruction Clock
LD ST MUL ADD MOVW Others Cycles

Operand Scanning 820 440 400 1,600 2 464 5,427
Product Scanning 800 40 400 1,200 2 159 3,957
Hybrid (d=4) 200 40 400 1,250 202 109 2,904
Operand Caching (e=10) 80 60 400 1,240 2 68 2,395

4 Results

We used the 8-bit ATmega128 microcontroller for evaluating the new multiplica-
tion technique. The ATmega128 is part of the megaAVR family from Atmel [1].
It has been widely used in embedded systems, automotive environments, and
sensor-node applications. The ATmega128 is based on a RISC architecture and
provides 133 instructions [2]. The maximum operating frequency is 16 MHz. The
device features 128 kB of flash memory and 4 kB of internal SRAM. There ex-
ist 32 8-bit general-purpose registers (R0 to R31). Three 16-bit registers can
be used for memory addressing, i.e. R26:R27, R28:R29, and R30:R31 which
are denoted as X, Y, and Z. Note that the processor also allows pre-decrement
and post-increment functionalities that can be used for efficient addressing of
operands. The ATmega128 further provides an hardware multiplier that per-
forms an 8 × 8-bit multiplication within two clock cycles. The 16-bit result is
stored in the registers R0 (lower word) and R1 (higher word).

We used register R22 to store a zero value. Furthermore, we reserved R23,
R24, and R25 as accumulator register. Thus, 20 registers, i.e. R2...R21, can be
used to store and cache the words of the operands (e = 10 registers for each
operand a and b). All implementations have been done by using a self-written
code generator that allows the generation of (looped & unrolled) assembly code.

In order to demonstrate the performance of our method, we implemented
all multiplication techniques described in Section 3. For comparison reasons, we
decided to implement a 160 × 160-bit multiplication as it has been done by
most of the related work. Note that for RSA and ECC, larger Integer sizes
are recommended in practice [10, 13]. The Standards for Efficient Cryptography
(SEC) already removed the recommended secp160r1 elliptic curve from their
standard since SEC version 2 of 2010 [3].

Table 3 summarizes the instruction counts for the operand scanning, product
scanning, hybrid, and operand-caching implementation. The operand-scanning
and product-scanning methods have been implemented without using all the
available registers (as it usually would be implemented). For hybrid multiplica-
tion, we applied d = 4 because it allows a better optimization regarding necessary
addition operations compared to a multiplication with d = 5. The carry propa-
gation problem has been solved by implementing a similar approach as proposed
by Liu et al. [12]. Thus, 200 MOVW instructions have been necessary to handle
the carry propagation accordingly. For a fair comparison, all methods have been

RESULTS 121

Table 4: Comparison of multiplication methods
for different Integer sizes.

Size Op. Prod. Hybrid Operand
[bit] Scan. Scan. Method Caching

160 5,427 3,957 2,904 2,395
192 7,759 5,613 4,144 3,469
256 13,671 9,789 7,284 6,123
512 53,959 38,013 28,644 24,317
1,024 214,407 149,757 113,604 96,933
2,048 854,791 594,429 452,484 387,195

160 256 512 1024 2048
103

104

105

106

Integer size

C
lo

ck
 c

yc
le

s

Op. Scan.
Prod. Scan.
Hybrid
Op. Caching

Fig. 6: Comparison chart.

optimized for speed and provide unrolled instruction sequences. Furthermore,
we implemented all accumulators as ring buffers to reduce necessary MOV in-
structions. After each partial-product generation, the indices of the accumulator
registers are shifted so that no MOV instructions are necessary to copy the carry.

Best results have been obtained for the operand-caching technique. By trad-
ing additional 20 store instructions, up to 120 load instructions could be saved
when we compare the result with the best reference values (hybrid implemen-
tation). Note that load, store, and multiply instructions on the ATmega128 are
more expensive than other instructions since they require two clock cycles in-
stead of only one. For operand-caching multiplication, almost the same amount
of load and store instructions are required. In total 2,395 clock cycles are needed
to perform the multiplication. Compared to the hybrid implementation, a speed
improvement of about 18 % could be achieved.

We also compare the performance of the implemented multi-precision meth-
ods for different Integer sizes. Table 4 shows the result for Integer sizes from 160
up to 2,048 bits3. The operand-caching technique provides the best performance
for any Integer size. It is therefore well suited for large Integer sizes such as it
is in the case of RSA. In average, a speed improvement of about 15 % could
be achieved compared to the hybrid method. Figure 6 shows the appropriate
performance chart in a double logarithmic scale.

3 Note that due to a fully unrolled implementation such large Integer multiplications
might be impractical due to the huge amount of code.

Table 5: Performance of operand-caching multi-
plication for different Integer sizes and available
registers.

Size e=2 e=4 e=8 e=10 e=20

160 3,915 2,965 2,513 2,395 2,205
192 5,611 4,255 3,577 3,469 3,207
256 9,915 7,531 6,339 6,123 5,671
512 39,291 29,915 25,227 24,317 22,451
1,024 156,411 119,227 100,635 96,933 89,529
2,048 624,123 476,027 401,979 387,195 357,581

2 4 8 10 20
103

104

105

106

Available registers e

C
lo

ck
 c

yc
le

s

2048
1024
512
256
192
160

Fig. 7: Performance chart.

122 CONCLUSIONS

Table 6: Comparison with related work.

Method Instruction Clock
LD ST MUL ADD MOVW Others Cycles

Hybrid
Gura et al. [6] (d=5) 167 40 400 1,360 355 197 3,106
Uhsadel et al. [17] (d=5) 238 40 400 986 355 184 2,881
Scott et al. [14] (d=4)a 200 40 400 1,263 70 38 2,651
Liu et al. [12] (d=4) 200 40 400 1,194 212 179 2,865

Operand Caching
with loopinga,c (e=9) 92 66 400 1,252 41 276 2,685

unrolledb,c (e=10) 80 60 400 1,240 2 68 2,395

a binit, Part 1, and Part 4 unrolled. Part 2 and Part 3 looped.
b Fully unrolled implementation without overhead of loop instructions.
c w/o PUSH/POP/CALL/RET.

Table 5 and Figure 7 show the performance for different Integer sizes in re-
lation to parameter e. The parameter e is defined by the number of available
registers to store words of one operand, i.e. e = f−3

2 , where f = 2e + 3 denotes
the number of available registers in total (including the triple-size register for
the accumulator). It shows that for e > 10 no significant improvement in speed
is obtained. The performance decrease for smaller e and higher Integer sizes.
However, if we compare our solution (160-bit multiplication with smallest pa-
rameter e = 2 → f = 7 registers) with the product-scanning method (needing
f = 5 registers), we obtain 3,915 clock cycles for the operand-caching method
and 3,957 clock cycles for the product scanning method. It therefore provides
a good performance even for a smaller set of available registers. For the special
case e = 20, where all 20 words of one 160-bit operand can be maintained in reg-
isters (ideal case for product scanning), it shows that the number of clock cycles
reaches nearly the optimum of 2,160 clock cycles, i.e. 4n = 80 memory-access
instructions, n2 = 400 multiplications, and 3n2 = 1, 200 additions.

We compare our result with related work in Table 6. For a fair comparison, we
also implemented a operand-caching version that does not unroll the algorithm
but includes additional loop instructions. It shows that the operand-caching
method provides best performance. Compared to Gura et al. [6] 23 % less clock
cycles are needed for a 160-bit multiplication. A 10 % improvement could be
achieved compared to the best solution reported in literature [14]. Note that
most of the related work need between 167 to 238 load instructions which mostly
explains the higher amount of needed clock cycles.

5 Conclusions

We presented a novel multiplication technique for embedded microprocessors.
The multiplication method reduces the number of necessary load instructions

CONCLUSIONS 123

through sophisticated caching of operands. Our solution follows the product-
scanning approach but divides the processing into several parts. This allows
the scanning of sub-products where most of the operands are kept within the
register-set throughout the algorithm.

In order to evaluate our solution, we implemented several multiplication tech-
niques using different Integer sizes on the ATmega128 microcontroller. Using
operand-caching multiplication, we require 2,395 clock cycles for a 160-bit multi-
plication. This result improves the best reported solution by a factor of 10 % [14].
Compared to the hybrid multiplication of Gura et al. [6], we achieved a speed
up of 23 %. Our evaluation further showed that our solution scales very well for
different Integer sizes used for ECC and RSA. We obtained an improvement of
about 15 % for bit sizes between 256 and 2,048 bits compared to a reference
implementation of the hybrid multiplication.

It is also worth to note that our multiplication method is perfectly suitable for
processors that support multiply-accumulate (MULACC) instructions such as ARM
or the dsPIC family of microcontrollers. It also fully complies to architectures
which support instruction-set extensions for MULACC operations such as proposed
by Großschädl and Savaş [5].

Acknowledgements. The work has been supported by the European Com-
mission through the ICT program under contract ICT-2007-216646 (European
Network of Excellence in Cryptology - ECRYPT II) and under contract ICT-
SEC-2009-5-258754 (Tamper Resistant Sensor Node - TAMPRES).

References

1. Atmel Corporation. 8-bit AVR Microcontroller with 128K Bytes In-System Pro-
grammable Flash. Available online at http://www.atmel.com/dyn/resources/

prod_documents/doc2467.pdf, August 2007.
2. Atmel Corporation. 8-bit AVR Instruction Set. Available online at http://www.

atmel.com/dyn/resources/prod_documents/doc0856.pdf, May 2008.
3. Certicom Research. Standards for Efficient Cryptography, SEC 2: Recommended

Elliptic Curve Domain Parameters, Version 2.0. Available online at http://www.

secg.org/, January 2010.
4. P. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems Journal,

29(4):526–538, October 1990.
5. J. Großschädl and E. Savaş. Instruction Set Extensions for Fast Arithmetic in

Finite Fields GF(p) and GF(2m). In CHES 2004, 6th International Workshop,
Cambridge, MA, USA, August 11-13, 2004., volume 3156 of LNCS, pages 133–
147. Springer, August 2004.

6. N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing Elliptic
Curve Cryptography and RSA on 8-Bit CPUs. In CHES 2004, 6th International
Workshop, Cambridge, USA, August 11-13, 2004., pages 119–132. Springer, 2004.

7. A. Kargl, S. Pyka, and H. Seuschek. Fast Arithmetic on ATmega128 for Elliptic
Curve Cryptography. Cryptology ePrint Archive (http://eprint.iacr.org/),
Report 2008/442, October 2008.

124 ALGORITHM FOR OPERAND-CACHING MULTIPLICATION

8. Ç. K. Koç. High Speed RSA Implementation. Technical report, RSA Laboratories,
RSA Data Security, Inc. 100 Marine Parkway, Suite 500 Redwood City, 1994.

9. C. Lederer, R. Mader, M. Koschuch, J. Großschädl, A. Szekely, and S. Tillich.
Energy-Efficient Implementation of ECDH Key Exchange for Wireless Sensor Net-
works. In 3rd International Workshop in Information Security Theory and Prac-
tices – WISTP 2009, Brussels, Belgium, September 1-4, 2009., volume 5746 of
LNCS, pages 112–127. Springer, 2009.

10. A. Lenstra and E. Verheul. Selecting Cryptographic Key Sizes. Journal of Cryp-
tology, 14(4):255–293, 2001.

11. A. Liu and P. Ning. TinyECC: A Configurable Library for Elliptic Curve Cryptog-
raphy in Wireless Sensor Networks. In International Conference on Information
Processing in Sensor Networks - IPSN 2008, April 22-24, 2008, St. Louis, Mis-
souri, USA., pages 245–256, St. Louis, MO, April 2008.

12. Z. Liu, J. Großschädl, and I. Kizhvatov. Efficient and Side-Channel Resistant RSA
Implementation for 8-bit AVR Microcontrollers. In Workshop on the Security of
the Internet of Things - SOCIOT 2010, 1st International Workshop, November 29,
2010, Tokyo, Japan. IEEE Computer Society, 2010.

13. National Institute of Standards and Technology (NIST). SP800-57 Part 1: DRAFT
Recommendation for Key Management: Part 1: General. Available online at http:
//csrc.nist.gov/publications/drafts/800-57/Draft_SP800-57-Part1-Rev3_

May2011.pdf, May 2011.
14. M. Scott and P. Szczechowiak. Optimizing Multiprecision Multiplication for Pub-

lic Key Cryptography. Cryptology ePrint Archive (http://eprint.iacr.org/),
Report 2007/299, 2007.

15. P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab. NanoECC:
Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. In R. Ver-
done, editor, Wireless Sensor Networks 5th European Conference, EWSN 2008,
Bologna, Italy, January 30-February 1, 2008., volume 4913 of LNCS, pages 305–
320. Springer, 2008.

16. O. Ugus, A. Hessler, and D. Westhoff. Performance of Additive Homomorphic
EC-ElGamal Encryption for TinyPEDS. In GI/ITG KuVS Fachgesprch Drahtlose
Sensornetze, RWTH Aachen, 2007. UbiSec, July 2007.

17. L. Uhsadel, A. Poschmann, and C. Paar. Enabling Full-Size Public-Key Algorithms
on 8-bit Sensor Nodes. In Security and Privacy in Ad-hoc and Sensor Networks
4th European Workshop, ESAS 2007, Cambridge, UK, July 2-3, 2007., 2007.

18. H. Wang and Q. Li. Efficient Implementation of Public Key Cryptosystems on
Mote Sensors. In Information and Communications Security 8th International
Conference, ICICS 2006, Raleigh, NC, USA, December 4-7, 2006., volume 4307 of
LNCS, pages 519–528. Springer, 2006.

A Algorithm for Operand-Caching Multiplication

The following pseudo code shows the algorithm for multi-precision multipli-
cation using the operand-caching method. Variables that are located in data
memory are denoted by Mx where x represents the name of the Integer a or
b. The parameter e describes the number of locally usable registers Ra[e −
1, . . . , 0] and Rb[e−1, . . . , 0]. The triple-word accumulator is denoted by ACC =
(ACC2, ACC1, ACC0).

ALGORITHM FOR OPERAND-CACHING MULTIPLICATION 125

Require: word size n, parameter e, n ≥ e, Integers a, b ∈
[0, n), c ∈ [0, 2n).

Ensure: c = ab.
r = bn/ec.
RA[e− 1, . . . , 0]←MA[n− 1, . . . , re].
RB [e− 1, . . . , 0]←MB [n− re− 1, . . . , 0].
ACC ← 0.
for i = 0 to n− re− 1 do

for j = 0 to i do
ACC ← ACC + RA[j] ∗RB [i− j].

end for
MC [re + i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for
for i = 0 to n− re− 2 do

for j = i + 1 to n− re− 1 do
ACC ← ACC + RA[j] ∗RB [n− re− j + i].

end for
MC [n + i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for
MC [2n− re− 1]← ACC0.
ACC0 ← 0.





binit

for p = r − 1 to 0 do } Row Loop:

RA[e− 1, . . . , 0]←MA[(p + 1)e− 1, . . . , pe].
RB [e− 1, . . . , 0]←MB [e− 1, . . . , 0].
for i = 0 to e− 1 do
for j = 0 to i do
ACC ← ACC + RA[j] ∗RB [i− j].

end for
MC [pe + i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for





Part 1

for i = 0 to n− (p + 1)e− 1 do
RB [e− 1, . . . , 0]←MB [e + i], RB [e− 2, . . . , 1].
for j = 0 to e− 1 do
ACC ← ACC + RA[j] ∗RB [e− 1− j].

end for
ACC ← ACC + MC [(p + 1)e + i].
MC [(p + 1)e + i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for





Part 2

126 EXAMPLE: 160-BIT OPERAND-CACHING MULTIPLICATION

for i = 0 to n− (p + 1)e− 1 do
RA[e− 1, . . . , 0]←MA[(p + 1)e + i], RA[e− 2, . . . , 1].
for j = 0 to e− 1 do
ACC ← ACC + RA[j] ∗RB [e− 1− j].

end for
ACC ← ACC + MC [(n + i].
MC [n + i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for





Part 3

for i = 0 to e− 2 do
for j = i + 1 to e− 1 do
ACC ← ACC + RA[j] ∗RB [e− j + i].

end for
MC [2n− (p + 1)e + i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for
MC [2n− 1− pe]← ACC0.
ACC0 ← 0.

end for
Return c.





Part 4

B Example: 160-Bit Operand-Caching Multiplication

A[19]B[19]

A[0]B[19]

A[19]B[0]

A[0]B[0]

C[0]C[19]C[38]

1

23

4 1

2
3

4

r0

r1

binit

Fig. 8: Operand-caching multiplication for n = 20 and e = 7.

Chapter 9

A Hardware Processor Supporting
Elliptic Curve Cryptography for Less
Than 9 kGEs

Publication Data

Erich Wenger and Michael Hutter. A Hardware Processor Supporting Elliptic
Curve Cryptography for Less Than 9 kGEs. In Emmanuel Prouff, editor, Smart
Card Research and Advanced Applications, volume 7079 of Lecture Notes in
Computer Science, pages 182–198. Springer, 2011.

Contributions

Main author. Idea. Implementations. Figures. Tables. Algorithms. 50% of
Text.

127

A Hardware Processor Supporting Elliptic
Curve Cryptography for Less Than 9 kGEs

Erich Wenger and Michael Hutter

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{Erich.Wenger,Michael.Hutter}@iaik.tugraz.at

Abstract. Elliptic Curve Cryptography (ECC) based processors have
gained large attention in the context of embedded-system design due to
their ability of efficient implementation. In this paper, we present a low-
resource processor that supports ECC operations for less than 9 kGEs.
We base our design on an optimized 16-bit microcontroller that provides
high flexibility and scalability for various applications. The design allows
the use of an optimized RAM-macro block and reduces the complexity by
sharing various resources of the controller and the datapath. Our results
improves the state of the art in low-resource F2163 ECC implementations
(14 % less area needed compared to the best solution reported). The to-
tal size of the processor is 8,958 GEs for a 0.13µm CMOS technology
and needs 285 kcycles for a point multiplication. It shows that the pro-
posed solution is well suitable for low-power designs by providing a power
consumption of only 3.2µW at 100 kHz.

Keywords: Low-Resource Hardware Implementation, Elliptic Curve Cryp-
tography, Binary Extension Field, Embedded Systems.

1 Introduction

With the rapid development of more powerful and energy-saving devices, we
unwittingly move towards the vision of the Internet of things. The required
security services within this vision can be particularly achieved using Elliptic
Curve Cryptography (ECC). This paper focuses on a low-resource hardware
processor that provides ECC capabilities while meeting the low-area and low-
power requirements of embedded systems.

There exist many proposals for low-resource ECC processors. Most of the
processors operate on binary-field elliptic curves and use full-precision arithmetic
to increase the performance of point multiplication [4, 13, 25, 35]. One of the most
efficient solutions in terms of low-resource requirements has been reported by Lee
et al. [26].

They presented a processor supporting a small elliptic curve over F2163 which
makes use of a tiny 8-bit microcontroller to handle higher-level protocol imple-
mentations. The ECC operation of k · P is performed by a separated Modular
Arithmetic Logic Unit (MALU). The processor needs 12,506 GEs and 276 kcycles
E. Prouff (Ed.): CARDIS 2011, LNCS 7079, pp. 182–198, 2011.
The original publication is available at http://link.springer.com/chapter/10.1007/978-3-642-27257-8_12
© IFIP International Federation for Information Processing 2011

128 ELLIPTIC CURVE CRYPTOGRAPHY

to perform a point multiplication. However, the area estimations do not including
program ROM and RAM to store intermediate results and the necessary secret
scalar k. Similar datapath architectures have been reported by Batina et al. [2]
and Sakiyama et al. [32]. Hein et al. [17] reported a very efficient co-processor
(without microcontroller) for the same elliptic curve supporting multi-precision
arithmetics. They applied a finite-state machine based control-engine needing
11,904 GEs including a standard-cell based RAM memory.

In this paper, we present a low-resource hardware processor that is based on
a 16-bit multi-precision architecture and an area-optimized custom microcon-
troller. This combination allows several optimizations. First, it allows the use of
an efficient RAM-macro block that reduces the area requirements for short-term
memory significantly. Second, since both the microcontroller and the datapath
use a 16-bit architecture, all resources are shared to minimize the area foot-
print of the processor. As an outcome, we present a complete solution including
memory for short-term (RAM) as well as long-term storage (program ROM),
controller, and datapath using a polynomial multiply-accumulate (MAC) unit.
In addition, we present results of higher-level protocol implementations of the
Elliptic Curve Digital Signature Algorithm (ECDSA) [30] and give results for
digital signature generation as well as verification. For a point multiplication,
our NIST B-163 based processor needs only 8,958 GEs in total and performs a
point multiplication within 285 kcycles. We demonstrate that the proposed so-
lution is also well suitable for low-resource embedded systems by providing a
power consumption of only 3.2µW at 100 kHz.

The rest of the article is structured as follows. In Section 2, a brief introduc-
tion into elliptic curve cryptography is given. In Section 3, we face the challenge
of low-resource ECC hardware implementations and explore various design pos-
sibilities. We evaluate appropriate word sizes of a processor and analyze different
memory types. Section 4 presents details about the hardware architecture of our
processor. Details about the implementation are given in Section 5. In Section 6,
the results are presented. Conclusions are drawn in Section 7.

2 Elliptic Curve Cryptography

Within Elliptic Curve Cryptography (ECC), not only a single number or poly-
nomial is used, but a pair of those. Each pair (x, y) of such numbers that satisfy
the general Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

is called a point on an elliptic curve. When a certain type of number is used,
in our case binary polynomials within GF (2m), the Weierstrass equation can be
reduced to

y2 + xy = x3 + ax2 + b. (2)

Among the most critical operation in terms of speed and security is the ECC
point multiplication. The implementation of this multiplication has to be secure

DESIGN-SPACE EXPLORATION 129

against various implementation attacks such as side-channel and fault-analysis
attacks. The Montgomery ladder [28, 21] provides very beneficial properties in
this context. We therefore decided to use it for our design and applied the very
fast group-operation formulas of López and Dahab [27]. The formulas are based
on projective coordinates (which avoid expensive field inversions) that can be
nicely combined with proposed countermeasures (see also the work of Junfeng
Fan et al. [11]) such as randomized projective coordinates (RPC) [6] or point-
validity checks [8].

We use the following notations throughout the paper (similar to [16]). Let
f(z) = zm + r(z) denote an irreducible binary polynomial of degree m. The
elements of F2m are binary polynomials of degree at most m − 1. An addition
of field elements is the usual addition of binary polynomials. Multiplication is
performed modulo f(z). A field element a(z) = am−1z

m−1 + · · ·+ a2z
2 + a1z +

a0 is associated with the binary vector a = (am−1, . . . , a2, a1, a0) of length m.
Furthermore, let N = dm/W e be the number of words with width W needed to
store a(z). A = (A[N − 1], . . . , A[2], A[1], A[0]), where the rightmost bit of A[0]
is a0, and the leftmost (WN −m) bits of A[N − 1] are unused (always set to
zero).

For further readings on ECC we refer to several books [1, 3, 16, 23] that discuss
the topic extensively.

3 Design-Space Exploration

In this section, we will explore different hardware-design options to obtain best
results for a low-resource ECC processor. The design goals have been to meet all
requirements of embedded systems which are low area (due to the production
costs), low power (due to a possible contactless operation), appropriate speed
(required for certain applications), security and flexibility. Due to the latter
requirement, we decided to base our design on a customized microcontroller.
This has the advantage of being modular in terms of protocol implementations
and modifications of already implemented solutions.

By following the principles of hardware/software co-design, it showed that the
dominant factors of ECC processors are the finite-field hardware multiplier and
the type and size of the applied data memory. In the following, we discuss these
factors and explore the design space to find the best solution for our objectives.

3.1 The Hardware Multiplier

One of the most area consuming parts within the ALU of an ECC-hardware de-
sign is the finite-field multiplier. The size, speed, and power consumption of such
a multiplier largely depends on the word size of the processor and the under-
lying finite field. Figure 1 shows the hardware architecture of a 4-bit multiplier
for binary-field (carry-less multiplier), prime-field (integer multiplier), and dual-
field arithmetic. The basic structure of all three types of multiplier is the same.
Only the adder structure needs to be adopted.

130 DESIGN-SPACE EXPLORATION

a1 b0

a0 b1

a0 b2

c0c1c2c3c4c5c6c7

a0 b0a2 b0

a1 b1

a3 b0

a2 b1a3 b1

a1 b2a2 b2a3 b2

a0 b3a1 b3a2 b3a3 b3

0

FAFAFAFA
EnEnEnEn

FAFAFAFA

0

Carry-Less Adder

Integer Adder

Dual-Field Adder

Fig. 1. General 4-bit multiplier structure to the left. Carry-less, integer, and dual-field
adder (from top to bottom) on the right.

Table 1 shows the area evaluation of different hardware-multiplier types. We
evaluated multipliers for prime-field, binary-field, and dual-field arithmetic for
word sizes of 8, 16, 32, and 64 bits (on register-transfer level). For the evaluation
we used the UMC-L130 CMOS technology where an AND gate needs 1.25 GEs,
a XOR gate needs 2.75 GEs, and a full-adder cell needs 5.5 GEs.

Obviously the area requirement scales quadratically with the given word size
and carry-less multipliers provide the lowest area footprint and lowest increase
in area for all given word sizes. Runtime approximations for an ECC point
multiplication showed that the word size of the carry-less multiplier must be at
least 16 bits in order to achieve a sensible runtime.

Next to a carry-less multiplier, an integer multiplier is necessary to provide
operations for higher-level protocols (e.g. ECDSA). Note that this multiplier is
needed only very few times for most protocols (only four prime field multiplica-
tions are required for ECDSA signature generation, for instance). Thus, lower
word sizes are acceptable since no significant reduction in speed is expected.
We therefore decided to implement a 16-bit carry-less multiplier (to provide an
appropriate speed for a point multiplication) and an 8-bit integer multiplier in-
stead of a dual-field 16-bit multiplier (which needs 1,946 GEs). This would sum
up to 1,226 GEs which is 720 GEs less than for a dual-field multiplier.

Table 1. Area evaluation of different hardware-multiplier types.

Finite Required adder 8 bit 16 bit 32 bit 64 bit
Field cells per bit [GE] [GE] [GE] [GE]

GF (2m) XOR 211 850 3,389 13,508
GF (p) FA 376 1,616 6,688 26,336
Dual field AND + FA 458 1,946 8,018 31,514

DESIGN-SPACE EXPLORATION 131

Table 2. Area evaluation of different 16× 128-bit RAM architectures.

Type Port Storage Logic Total
[GEs] [GEs] [GEs]

Std. cells (registers) Single 10,281 3,645 13,926
Std. cells (latches) Single 8,388 3,833 12,221
Macro S-RAM Dual - - 6,737
Macro S-RAMa Single - - 6,000
Macro register-file Single - - 2,955

a Approximated based on UMC 180 nm technology.

3.2 The Memory Type and Architecture

One of the most area expensive chip components of ECC processors is the Ran-
dom Access Memory (RAM). RAM is necessary to store intermediate values
(e.g. point coordinates during point multiplication k · P) and the secret scalar
k. The size of the memory varies depending on the requirements of the ECC
formulas (the formulas of López Dahab [27] need at least 5 registers of memory
for full-precision architectures and 6 registers for multi-precision architectures
due to the need of intermediate storage of in-place operations).

In Table 2, we compare different 16 × 128-bit RAM types concerning their
area requirements. We compare standard-cell based implementations with ded-
icated RAM macro blocks synthesized in CMOS UMC-L130 technology. The
standard-cell based RAM implementations (register and latch based) have been
designed on RTL-level and synthesized using Cadence RTL compiler [5]. The
RAM-macro blocks have been generated using the Standard Memory Compiler
FSA0A Memaker 200901.1.1 by the Faraday Technology Corporation [12]. All
except of one type of RAM provide a single read-port and a single write-port.
There is one S-RAM macro that features a dual-port read/write interface.

It shows that the latch-based RAM is about 12 % smaller than the register-
based RAM. This is because the size of a flip-flop is 5 GE and the size of a
latch is 4 GE. This 25 % difference in area is debilitated because some additional
registers and control logic is required so that the latch-based RAM works the
same way as the register-based RAM. Adding a second read port to those RAMs
would be relatively cheap in terms of chip area (it would require about 3,000 GEs
in addition by introducing a second multiplexer at the output). Note that a dual-
port memory would increase the performance of a multi-precision multiplication
by a factor of about two.

From the two available single-port RAM macros, the register-file macro is
about 50 % smaller than the S-RAM macro. The dual-port S-RAM macro, in
contrast, is only 12 % larger than the single-port S-RAM macro, however, it is
about 2.3 times larger than the register-file based RAM macro.

The register-file RAM macro provides best performance in our evaluation
scenario. We performed several power simulations using Cadence Encounter and
obtained similar results for the register-file RAM macro and the standard-cell

132 HARDWARE ARCHITECTURE

Data Memory

CPU

Register File ALU

Work

Accumulator

Base

PC

SP

 Data RAM

Constant

ROM

Input Output

Arithmetic Logic Branching

Integer Multiply-

Accumulate

Carryless Multiply-

Accumulate
Program

Memory

(ROM)

Fig. 2. High-level block diagram of the processor. Components for higher-level proto-
cols are drawn with slashed lines (i.e. integer multiplier, program and data memory).

based RAM architectures. The main disadvantages of the register-file macro
are the lack of a second read port (speed) and the limit of clock-synchronous
read operations. The lack of a second read port can be compensated by using
temporary working registers. The lack of an asynchronous read functionality can
be balanced with a more difficult control logic.

4 Hardware Architecture

In this section, we introduce the hardware architecture of our processor. It is
based on the microprocessor design called Neptun [34], which uses a Harvard
architecture. This allows to fetch, decode, execute, and store data within the
same clock cycle and allows low-area optimizations due to the choice of different
memory types and sizes. Figure 2 shows the block diagram of the architecture.
It is mainly composed of a Central Processing Unit (CPU) including register file
and Arithmetic Logic Unit (ALU), and memories for program code, constants,
and data.

4.1 Central Processing Unit (CPU)

The heart of the processor is the 16-bit CPU. It is composed of several internal
registers and an ECC optimized ALU. The register file consists of a program
counter (PC), a stack pointer (SP), three base registers, four working regis-
ters, and an accumulator register: The program counter is used as index for the
program memory. The stack pointer (SP) is needed to store registers on the
data memory. The stack is also used to store program-return addresses that are
needed for function calls. In order to address certain base addresses within the
data memory, three base registers are used. We integrated two source registers
and one destination register. They are used together with a 4-bit offset to ad-
dress data in the memory. The offset address is stored within a program word. We

HARDWARE ARCHITECTURE 133

Reduction

+ Adder

Carry-Less

Multiplier

Integer

Multiplier

Arithmetic

Unit

Logic Unit

>>
<<

Accumulator Operand A Operand B

16 1648

1648

Carry-Less
Adder

Integer
Adder

Accumulator Result

Fig. 3. High-level diagram of the arithmetic logic unit.

implemented four 16-bit working registers that can be used as general-purpose
registers. The registers are needed for almost any ECC operation and are used to
reduce the number of memory-read cycles within the finite-field multiplication.
The accumulator register (ACC) is needed for the multiply-accumulate operation
of the 163-bit multi-precision multiplication.

We integrated several optimizations to increase the performance of ECC
operations. First, the ALU accesses data directly without loading it first into
CPU registers (as it is in the case of conventional microcontrollers). In the first
clock cycle, the data is addressed in the memory. In the second cycle, the data
is processed by the ALU and the result is stored back in memory within the
same clock cycle. This increases the performance of memory-access operations
significantly. Second, loading and processing of data is done simultaneously by
the processor. This avoids unnecessary idle cycles and improves the efficiency
of multi-precision arithmetic operations. Those optimizations are described in
more detail in [34].

Arithmetic Logic Unit (ALU). The arithmetic logic unit (ALU) mainly
consists of a reduction-logic unit, a carry-less multiplier, an arithmetic unit (ad-
dition/subtraction), and a logic unit (supporting OR, AND, XOR, and shift
operations). For higher-level protocols, an integer multiplier is needed in addi-
tion (drawn with dashed lines). Figure 3 shows a high-level diagram of the ALU.
We also integrated an operand isolation technique for each submodule which
reduces the power-consumption significantly.

4.2 Memory for Program, Data, and Constants

Our processor provides a long-term storage memory that mainly stores the pro-
gram for ECC point multiplication. The memory provides 72 control signals
and contains up to 1,800 entries depending on the implemented algorithms and
higher-level protocols. Most of the control signals are used to control the dataflow

134 IMPLEMENTATION DETAILS

within the CPU. Best area results have been achieved by directly synthesizing
the memory table as Read Only Memory (ROM) using standard cells. Experi-
ments in which a 16-bit instruction set or a ROM macro have been introduced
resulted in a larger area requirement.

For short-term data storage, we used a 16-bit RAM macro (register-file based)
as discussed in Section 3. Note that in contrast to most processors reported in
literature [4, 25, 26, 31], we include the number for the required storage of the
secret scalar k. For an ECC point multiplication, 1,296 bits (81 entries) are
necessary (we used a 16 × 84 macro in that case). For higher-level protocols,
additional memory is needed (e.g. 1,536 bits for ECDSA signature generation
(16 × 96 macro) and 2,384 bits for ECDSA signature verification (16 × 152
macro)).

ECC constants have been stored in a ROM. The ROM has been implemented
as a look-up table and stores between 880 and 2,564 bits such as the x and y
coordinate of the base point P , the ECC parameters a and b (see Equation (2)),
and the irreducible polynomial f(z).

The input/output of data has been realized via memory mapped I/O. Data
can be written and read using a 16-bit parallel interface.

5 Implementation Details

In the following, we give details about the implemented carryless multiply-
accumulate unit and the modular arithmetics in order to perform ECC oper-
ations.

5.1 Carry-Less Multiply-Accumulate Unit

The multi-precision multiplication over F2163 has been realized following a
multiply-accumulate (MAC) approach. There exist several publications that
make use of MAC units to increase the performance of modular multiplication
(see e.g. the work of [9, 14, 15, 17, 33]). We implemented the multiplication by
a product-scanning form (often referred as Comba multiplication), where each
partial product of A[i] ·B[j] gets accumulated to a common sum (ACC1, ACC0),
i.e. (ACC1, ACC0)← (ACC1, ACC0) +A[i] ·B[j].

Note that for the polynomial MAC unit the handling of carry propagation is
not needed. Thus, the accumulator register needs a size of only (2W − 1) bits.

We implemented several improvements to increase the performance. First,
the entire multiplication algorithm has been unrolled so that no extra cycles are
wasted for loop operations. Second, we reused the working registers as a memory
cache to reduce the number of necessary load operations. With each working reg-
ister used, the total number of read operations has been reduced by about 2N .
Third, we added a third word to the accumulator register (ACC2, ACC1, ACC0)
in order to allow efficient reduction of the accumulated sum. Thus, the MAC op-
eration is performed on the words (ACC2, ACC1) instead of (ACC1, ACC0) and

IMPLEMENTATION DETAILS 135

Algorithm 1 Polynomial multiplication with interleaved reduction.

Require: Binary polynomials a(z) and b(z) of degree at most m− 1.
Ensure: c(z) = a(z) · b(z) mod f(z).
1: ACC ← 0
2: for i from 0 to N − 1 do
3: for each element of {(i, j)|i+ j = k, 0 ≤ i, j ≤ N − 1} do
4: (ACC2, ACC1)← (ACC2, ACC1) +A[i] ·B[j].
5: end for
6: C[k]← ACC1.
7: ACC ← ACC �W .
8: end for
9: ACC ← higher(ACC).

10: for k from t to 2N − 2 do
11: for each element of {(i, j)|i+ j = k, 0 ≤ i, j ≤ t− 1} do
12: (ACC2, ACC1)← (ACC2, ACC1) +A[i] ·B[j].
13: end for
14: C[k −N − 1]← C[k −N − 1] + reduce(ACC).
15: ACC ← ACC �W .
16: end for
17: C[N − 1]← lower(C[N − 1]) + reduce(ACC).
18: ACC ← ACC �W .
19: C[0]← C[0] + reduce(ACC + higher(C[N − 1]))�W .
20: C[N − 1]← lower(C[N − 1])�W .
21: Return(c).

ACC0 is used to store the previous intermediate result. A detailed description
of the reduction method is given in the following subsection.

Algorithm 1 shows the algorithm of the implemented polynomial multipli-
cation. The polynomials a(z) and b(z) get multiplied and the reduced result is
stored in c(z). In the lines 1 to 8, the lower N words of the result c(z) are calcu-
lated. Note that in this phase the ACC0 register is not used. In line 9, the lower
(m−W (N−1)) bits of the accumulator need to be cleared. Those are the bits of
the results that do not need to be reduced. The lines 10-16 calculate the higher
N words of c(z) and reduce them immediately. According to the recommended
NIST irreducible polynomial B-163 f(z) = z163 + z7 + z6 + z3 + 1, the reduction
function (line 14) can be written as

reduce(ACC) =
(
ACC � (W + 3) +ACC �W + (3)

ACC � (W − 3) +ACC � (W − 4)
)
∧ (2W − 1).

Finally, in lines 17-20 the rest of the accumulator and the higher bits of
C[N − 1] get reduced.

Polynomial NIST B-163 Reduction Logic. We make use of the recom-
mended NIST irreducible polynomial B-163 to perform a very efficient modular

136 IMPLEMENTATION DETAILS

Reduction

+Adder

Carry-Less

Multiplier

Integer

Multiplier

Arithmetic

Unit

Logic Unit

>>
<<

Carry-Less
Adder

Integer
Adder

<< 3 >> 3 >> 4

Accumulator C[i]

1648

C‘[i]

Fig. 4. Using the dedicated reduction logic, the content of the accumulator is reduced
and stored in C′[i] (hold in data memory) with index i.

reduction for modular multiplication and squaring. The reduction logic is shown
in Figure 4. We hard-wired the output of the appropriate accumulator register
according to Equation (3). The reduction logic takes the output of the 48-bit
accumulator register, performs 4 × 16 XOR operations and the result is added
with the intermediate result C[i] = C[k − N − 1] (see line 14 in Algorithm 1).
After the addition (XOR), the variable C[i] is updated with C ′[i] in the data
memory. Only one clock cycle is needed to reduce the intermediate result of
the accumulator and sum of partial products, respectively. Figure 4 shows the
dedicated reduction logic.

It should be noted that although the reduction logic has been specially op-
timized for NIST B-163, the CPU is capable of handling arbitrary irreducible
polynomials. Thus requirements such as flexibility and extendability are ensured.

5.2 Modular Arithmetic

Modular Addition. The simplest operation is the modular addition. It is a
simple XOR operation. Neither a carry flag nor a finite-field reduction need
to be considered. Modular addition over F2163 needs 35 clock cycles on our
processor.

Modular Multiplication. Modular multiplication has been realized using the
carryless multiply-accumulate unit described in Section 5.1. Our processor
needs 222 clock cycles for a 163-bit multiplication.

Modular Squaring. Modular squaring can be performed very efficiently. The
binary representation of the polynomial can be easily squared by inserting a 0
between each consecutive bit of the polynomial, e.g. a(z) = am−1z

m−1+· · ·+
a2z

2 +a1z+a0 would results in a(z)2 = am−1z
2m−2 + · · ·+a2z

4 +a1z
2 +a0.

This can be realized with only a few additional hardware components. The
polynomial-reduction logic can be reused for squaring. One modular squaring
needs 41 clock cycles on our processor and thus is 5.4 times faster than a
modular multiplication.

Modular Inversion. Modular inversion is required to transform the projective
coordinates back into affine. For this operation, we made use of Fermat’s

RESULTS 137

Table 3. Size and power estimations of our processor for different CMOS technologies
using Latch-based RAMs.

Technology Area NAND Gate Total Area Power Leakage
[µm2] [µm2] [GE] [µW@1MHz] [µW]

AMS c35b4 693,948 54.600 12,710 696.3 0.63
UMC f180GII 139,469 9.374 14,878 107.1 0.53
UMC f130SP 71,745 5.120 14,013 31.4 1.37
UMC f090SP 39,550 3.136 12,612 70.1 54.32

little theorem [20] that states that a = a2m

mod f(z)∀a ∈ F2m . As a result,
a−1 ≡ a2m−2 mod f(z). This exponentiation can be performed using 162
squaring and only 9 multiplications for the NIST B-163 binary field. As a
result 11,031 cycles are needed for an inversion.

6 Results

We synthesized our processor using different CMOS technologies from vari-
ous manufacturers. For synthesis, we used the Cadence RTL compiler [5] Ver-
sion v08.10. Table 3 shows the total area and power-consumption estimation of
the processor using latch-based RAMs1 (described in Section 3.2). The power-
consumption estimations were made using Cadence Encounter Version v08.10.
All obtained area results are within a 20 % margin. In view of power consump-
tion, best performance had been obtained for the UMC-L130 technology. For all
following approximations we used register-based RAM macros.

In Table 4, the area and power requirements for individual chip components
are listed. The memory needs most of the area which is 5,399 GEs. The CPU
needs 3,556 GEs in total where only 849 GEs are used for the carry-less multiplier.
The total size of the processor sums up to 8,958 GEs.

In Table 5, we compare our results with related work. There exist many pub-
lications of ECC processors over F2163 . Most of those processors use full-precision
arithmetic to perform the point multiplication. For a fair comparison, we listed
the results of the authors for different digit sizes (d=1...8). All implementations
need between 10,392 GEs and 16,247 GEs of chip area and between 47 and 430
kcycles for the computation of k ·P . Our implementation needs 8,958 GEs of area
which is 1,434 GEs less area than the best reported solution. This is an area im-
provement by about 14 %. The number of needed clock cycles can be compared
with the full-precision solutions with d=1. The power and energy consumption
is very low and fulfills most requirements of embedded-system designs.

6.1 Results for Higher-Level Protocol Implementations

As a higher-level protocol, we implemented the Elliptic Curve Digital Signature
Algorithm (ECDSA) [30]. In addition to a point multiplication over the binary

1 We did not have access to RAM macros for all those technologies.

138 RESULTS

Table 4. Size and power consumption of individual chip components.

Component Area Area Power Power
[GE] [%] [µW@1MHz] [%]

Memory 5,399 60.27 11.57 35.77
Program memory 2,471 27.58 4.24 13.10
Data RAM 2,528 28.22 4.66 14.41
Constant ROM 256 2.56 1.62 5.01

CPU 3,556 39.70 18.93 58.54
ALU 1,837 20.51 11.05 34.16

Carry-less multiplier 849 9.48 2.30 7.12
Logic unit 348 3.88 2.15 6.65
Arithmetic unit 93 1.04 0.37 1.15

Register Set 875 9.77 1.48 4.58

Total Area 8,958 100.00 32.34 100.00

field F2163 , ECDSA needs a hash function and several prime-field arithmetic
operations to generate and verify a digital signature. As a hash function, we im-
plemented the 160-bit SHA-1 algorithm according to ISO/IEC FIPS-180-3 [29].
Replacing the SHA-1 algorithm with one of the current SHA-3 candidates [19]
would be easily possible. For prime-field multiplications and inversion, we de-
cided to implemented Montgomery-arithmetic operations. We implemented the
Finely Integrated Product Scanning Form (FIPS) according to Koç et al. [24].
The algorithm is used only four times, so we optimized the code for low area (no

Table 5. Comparison with related work.

Related Area Cycles Power Energy CMOS
Work [GE] [kCycles] [µW@1MHz] [µJ] Technology

Kumar06 d=1 [25] 15,094 430 - - AMI C35
Batina06a d=4 [2] 14,816 95 27.00 2.57 130 nm
Batina06a d=3 [2] 14,258 125 27.00 3.38 130 nm
Batina06a d=2 [2] 13,681 182 27.00 4.91 130 nm
Batina06a d=1 [2] 13,104 354 27.00 9.56 130 nm
Bock08 d=8 [4] 16,247 47 148.76 6.99 INF SRF55V01P
Bock08 d=4 [4] 12,876 80 93.27 7.46 INF SRF55V01P
Bock08 d=1 [4] 10,392 280 54.31 15.21 INF SRF55V01P
Lee08 d=4 [26] 15,356 79 37.39 2.95 UMC L130
Lee08 d=3 [26] 14,729 101 38.32 3.87 UMC L130
Lee08 d=2 [26] 14,064 145 36.52 5.30 UMC L130
Lee08 d=1 [26] 12,506 276 32.42 8.95 UMC L130
Hein08 16-bit [17] 11,904 296 101.87 30.15 UMC L180
This work 16-bit 8,958 286 32.34 9.25 UMC L130

a For a fair comparison a RAM approximated with 4,890 GE was added. The power
values lack the power consumption of this RAM.

CONCLUSIONS 139

Table 6. Area and power estimations of our processor supporting ECDSA.

Program Area Cycles Lines of Power Energy
[GE] [kCycles] Code [µW@1MHz] [µJ]

ECC Only 8,958 294 637 32.09 9.43
ECC Protecteda 9,728 298 828 32.48 9.68

ECDSA Signa,b 15,387 378 1771 41.11 15.54

ECDSA Verifyb 16,005 605 1784 40.76 24.66

a The numbers include y-recovery, randomized projective coordinates (RPC) side-
channel countermeasure [6], and ECC point-validity check [8].

b Includes the SHA-1 hash function [29], Random Number Generation (RNG) [30], and
prime-field arithmetics.

loop unrolling etc.). Furthermore, we implemented the Montgomery-inversion
algorithm according to Kalinski et al. [22].

For signature verification, we applied Shamir’s trick [7, 10] to improve the per-
formance of multiple-point multiplication. All described operations for ECDSA
have been implemented as Assembler functions for our processor and have been
stored in program memory. Table 6 shows the results after synthesizing the pro-
cessor. For ECDSA signature generation, our processor needs 15,387 GEs which
outperforms existing solutions in terms of area, power, and speed [13, 18, 34, 35].
Signature verification can be realized using a chip area of 16,005 GEs.

7 Conclusions

In this paper, we presented a low-resource implementation of an ECC hardware
processor. The processor needs 8,958 GEs and performs a point multiplication
within 285 kcycles. The power consumption is about 3.2µW at 100 kHz. We met
the low-resource constraints of embedded systems by applying a very modular
microcontroller architecture that allows the execution of higher-level protocols
like ECDSA. The elliptic-curve operations have been performed over the NIST
F2163 elliptic curve using multi-precision arithmetic. The outcome improves the
state of the art in low area ECC hardware designs and provides even a smaller
area footprint than most of the proposed SHA-3 candidates [19].

Acknowledgements

We would like to thank Mario Kirschbaum and Martin Feldhofer for several
fruitful discussions.

This work has been supported by the Austrian Government through the
research program FIT-IT Trust in IT Systems under the project number 825743
(project PIT).

140 CONCLUSIONS

References

1. R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Ver-
cauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman
& Hall/CRC, 2005.

2. L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede. Low-Cost El-
liptic Curve Cryptography for Wireless Sensor Networks. In L. Buttyán, V. Gligor,
and D. Westhoff, editors, Security and Privacy in Ad-Hoc and Sensor Networks
– ESAS 2006, Third European Workshop, Hamburg, Germany, September 20-21,
2006, Revised Selected Papers, volume 4357, pages 6–17, Berlin Heidelberg, 2006.
Springer-Verlag.

3. I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves in Cryptography, volume
265 of London Mathematical Society Lecture Notes Series. Cambridge University
Press, Cambridge, UK, 1999.

4. H. Bock, M. Braun, M. Dichtl, E. Hess, J. Heyszl, W. Kargl, H. Koroschetz,
B. Meyer, and H. Seuschek. A Milestone Towards RFID Products Offering Asym-
metric Authentication Based on Elliptic Curve Cryptography. Invited talk at
RFIDsec 2008, July 2008.

5. Cadence Design Systems. The Cadence Design Systems Website. http://www.

cadence.com/.
6. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve

Cryptosystems. In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and
Embedded Systems – CHES’99, First International Workshop, Worcester, MA,
USA, August 12-13, 1999, Proceedings, volume 1717 of Lecture Notes in Computer
Science, pages 292–302. Springer, 1999.

7. P. de Rooij. Efficient Exponentiation using Procomputation and Vector Addition
Chains. In A. D. Santis, editor, Advances in Cryptology EUROCRYPT, volume 950
of Lecture Notes in Computer Science, pages 389–399. Springer Berlin / Heidelberg,
1994.

8. N. Ebeid and R. Lambert. Securing the Elliptic Curve Montgomery Ladder Against
Fault Attacks. In Workshop on Fault Diagnosis and Tolerance in Cryptography -
FDTC 2009, Lausanne, Switzerland, 2009, Proceedings, pages 46–50, September
2009.

9. H. Eberle, N. Gura, S. C. Shantz, V. Gupta, and L. Rarick. A Public-key Crypto-
graphic Processor for RSA and ECC. In Proceedings of the 15th IEEE International
Conference on Application-specific Systems, Architectures and Processors (ASAP
2004), pages 98–110. IEEE Computer Society, September 2004.

10. T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. In Advances in Cryptology - CRYPTO ’84, Santa Barbara,
California, USA, August 19-22, 1984, Proceedings, volume 196 of Lecture Notes in
Computer Science, pages 10–18. Springer, 1984.

11. J. Fan, X. Guo, E. D. Mulder, P. Schaumont, B. Preneel, and I. Verbauwhede.
State-of-the-Art of Secure ECC Implementations: A Survey on known Side-
Channel Attacks and Countermeasures. In Hardware-Oriented Security and Trust -
HOST 2010, In 3rd IEEE International Symposium, California, USA, June 13-14,
2010, Proceedings., pages 76–87. IEEE, 2010.

12. Faraday Technology Corporation. Faraday FSA0A C 0.18µm ASIC Standard Cell
Library, 2004. Details available online at http://www.faraday-tech.com.

13. F. Fürbass and J. Wolkerstorfer. ECC Processor with Low Die Size for RFID
Applications. In Proceedings of 2007 IEEE International Symposium on Circuits
and Systems. IEEE, IEEE, May 2007.

CONCLUSIONS 141

14. J. Großschädl. Full-Custom VLSI Design of a Unified Multiplier for Elliptic Curve
Cryptography on RFID Tags. In F. Bao, M. Yung, D. Lin, and J. Jing, editors,
Information Security and Cryptology - 5th Internationa Conference, Inscrypt 2009,
Beijing, China, December 12-15, 2009. Revised Selected Papers, volume 6151 of
Lecture Notes in Computer Science, pages 366–382. Springer, 2011.

15. J. Großschädl and G.-A. Kamendje. Optimized RISC Architecture for Multiple-
Precision Modular Arithmetic. In D. Hutte, G. Müller, W. Stephan, and M. Ull-
mann, editors, Security in Pervasive Computing - SPC 2003, volume 2802 of Lec-
ture Notes in Computer Science, pages 253–270. Springer, 2003.

16. D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptog-
raphy. Springer, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
2004.

17. D. Hein, J. Wolkerstorfer, and N. Felber. ECC is Ready for RFID - A Proof in
Silicon. In Selected Areas in Cryptography, 15th International Workshop, SAC
2008, Sackville, Canada, August 14-15, 2008, Revised Selected Papers, Lecture
Notes in Computer Science (LNCS), September 2008.

18. M. Hutter, M. Feldhofer, and T. Plos. An ECDSA Processor for RFID Authentica-
tion. In S. B. O. Yalcin, editor, Workshop on RFID Security – RFIDsec 2010, 6th
Workshop, Istanbul, Turkey, June 7-9, 2010, Proceedings, volume 6370 of Lecture
Notes in Computer Science, pages 189–202. Springer, 2010.

19. IAIK. Hash Function Zoo. http://ehash.iaik.tugraz.at/index.php/

HashFunctionZoo.

20. T. Itoh and S. Tsujii. Effective recursive algorithm for computing multiplicative
inverses in GF (2m). Electronic Letters, 24(6):334–335, March 1988.

21. M. Joye and S.-M. Yen. The Montgomery Powering Ladder. In G. Goos, J. Hartma-
nis, and J. van Leeuwen, editors, Cryptographic Hardware and Embedded Systems
– CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August
13-15, 2002, Revised Papers, volume 2523 of Lecture Notes in Computer Science,
pages 291–302. Springer, 2003.

22. B. Kaliski. The Montgomery Inverse and its Applications. IEEE Transactions on
Computers, 44(8):1064–1065, August 1995.

23. N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1994. ISBN
0-387-94293-9.

24. Ç. K. Koç, T. Acar, and B. S. K. Jr. Analyzing and Comparing Montgomery
Multiplication Algorithms. IEEE Micro, 16(3):26–33, June 1996.

25. S. S. Kumar and C. Paar. Are standards compliant Elliptic Curve Cryptosystems
feasible on RFID? In Workshop on RFID Security 2006 (RFIDSec06), July 12-14,
Graz, Austria, 2006.

26. Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede. Elliptic-Curve-Based
Security Processor for RFID. IEEE Transactions on Computers, 57(11):1514–1527,
November 2008.

27. J. López and R. Dahab. Fast Multiplication on Elliptic Curves over GF(2m) with-
out Precomputation. In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware
and Embedded Systems – CHES’99, First International Workshop, Worcester, MA,
USA, August 12-13, 1999, Proceedings, volume 1717 of Lecture Notes in Computer
Science, pages 316–327. Springer, 1999.

28. P. L. Montgomery. Speeding the Pollard and Elliptic Curve Methods of Fac-
torization. Mathematics of Computation, 48(177):243–264, January 1987. ISSN
0025-5718.

142 CONCLUSIONS

29. National Institute of Standards and Technology (NIST). FIPS-180-3: Secure
Hash Standard, October 2008. Available online at http://www.itl.nist.gov/

fipspubs/.
30. National Institute of Standards and Technology (NIST). FIPS-186-3: Digital Sig-

nature Standard (DSS), 2009. Available online at http://www.itl.nist.gov/

fipspubs/.
31. E. Öztürk, B. Sunar, and E. Savas. Low-Power Elliptic Curve Cryptography Using

Scaled Modular Arithmetic. In M. Joye and J.-J. Quisquater, editors, Crypto-
graphic Hardware and Embedded Systems – CHES 2004, 6th International Work-
shop, Cambridge, MA, USA, August 11-13, 2004, Proceedings, volume 3156 of
Lecture Notes in Computer Science, pages 92–106. Springer, August 2004.

32. K. Sakiyama, L. Batina, N. Mentens, B. Preneel, and I. Verbauwhede. Small-
footprint ALU for public-key processors for pervasive security. In Workshop on
RFID Security 2006 (RFIDSec06), July 12-14, Graz, Austria, 2006.

33. S. Tillich and J. Großschädl. VLSI Implementation of a Functional Unit to Ac-
celerate ECC and AES on 32-bit Processors. In C. Carlet and B. Sunar, editors,
Arithmetic of Finite Fields, First International Workshop, WAIFI 2007, Madrid,
Spain, June 2007, Proceedings, volume 4547 of Lecture Notes in Computer Science,
pages 40–54. Springer, June 2007.

34. E. Wenger, M. Feldhofer, and N. Felber. Low-Resource Hardware Design of an
Elliptic Curve Processor for Contactless Devices. In Y. Chung and M. Yung,
editors, WISA, volume 6513, pages 92–106. Springer, 2010.

35. J. Wolkerstorfer. Is Elliptic-Curve Cryptography Suitable for Small Devices? In
Workshop on RFID and Lightweight Crypto, July 13-15, 2005, Graz, Austria, pages
78–91, 2005.

STATISTICS FOR ECC MULTIPLICATION 143

A Statistics for ECC multiplication

During the development of the ECC and ECDSA functions we used a statistics
feature of our tool-chain to investigate the code-line and cycle consumption of
each function. Table 7 shows the number of times each function is called, the
size of each function in code lines and the total runtime of each function. Even
though the multiplication algorithm is optimized down to 222 cycles it still covers
74 % of the total runtime.

Table 7. Functions used during ECC point multiplication with y-recovery and point-
validity check.

Function Calls Code Lines Cycles

B163.Multiplication 990 222 219,780
B163.Square 969 41 39,729
B163.Add 490 35 17,150
PointOperation.Multiplication 1 148 16,636
B163.FermatInverseHelp 7 31 2,041
Utilities.Copy 16 24 384
PointOperation.yRecovery 1 90 90
B163.FermatInverse 1 88 88
PointOperation.isValidPoint 1 44 44
Utilities.CMP 1 35 35
Utilities.Clear 2 13 26

TOTAL 2,479 771 296,003
TOTAL including test functions 2,480 828 296,547

Table 8 shows how often each and every type of instruction is used. The
parallelized commands are a combination of other commands. They cover 71 % of
the total runtime. Note that only 4.4 % of the total runtime is used for program-
flow instructions such as RET, CALL, BRA, and JMP. This overhead would not
exist if a dedicated state machine instead of a CPU with instruction set would
be used.

144 STATISTICS FOR ECC MULTIPLICATION

Table 8. Instructions used during an ECC point multiplication with y-recovery and
point-validity check.

Mnemonic Description CPI Cycles Used

PAR: BMULACC | LD 1 109,869 111
PAR: MOVNF | LD 1 65,707 83
LD Load from memory 1 35,410 65
PAR: BREDUCE ADD ST | BRSACC 1 13,818 14
PAR: BMULACC | ST | BRSACC 1 11,859 12
PAR: BREDUCE ADDBYTE ST | BRSACC 1 9,690 10
CALL Call a function 3 7,440 70
LDI Load Immediate 1 6,900 105
AND Logic AND 1 6,038 7
PAR: XOR | ST 1 5,390 11
MOVNF Copy register to register without flag update 1 5,269 47
RET Return from function 2 4,960 13
BMULACC Binary multiply-accumulate 1 3,876 4
STR Store a register to memory 1 2,725 32
XOR Logic XOR 1 2,120 3
LDR Load from memory and store to register 2 1,942 10
ADDI Add with carry 1 573 11
BRA Branch if flag is set/cleared 1 488 6
PUSH Push a value to the stack 2 338 5
POP Pop a value from the stack 2 336 4
LSI Left shift by immediate 1 326 4
SUBI Subtract with carry 1 324 6
ADD Add 1 163 2
RS Right shift 1 163 2
RSI Right shift immediate 1 163 2
SUB Subtract 1 163 2
ASRI Arithmetic shift right 1 161 1
JMP Jump to address 1 160 1
CMP Compare 1 84 2
MOV Copy register to register 1 82 1
CMPC Compare with carry 1 10 10

TOTAL 296,547 656

Chapter 10

Exploring the Design Space of
Prime Field vs. Binary Field
ECC-Hardware Implementations

Publication Data

Erich Wenger and Michael Hutter. Exploring the Design Space of Prime Field
vs. Binary Field ECC-Hardware Implementations. In Peeter Laud, editor,
Information Security Technology for Applications, volume 7161 of Lecture Notes
in Computer Science, pages 256–271, 2012.

Contributions

Main author. Idea. Implementations. Figures. Tables. Algorithms. 50% of
Text.

147

Exploring the Design Space of Prime Field vs.
Binary Field ECC-Hardware Implementations

Erich Wenger and Michael Hutter

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{Erich.Wenger,Michael.Hutter}@iaik.tugraz.at

Abstract. In this paper, we answer the question whether binary exten-
sion field or prime-field based processors doing multi-precision arithmetic
are better in the terms of area, speed, power, and energy. This is done
by implementing and optimizing two distinct custom-made 16-bit proces-
sor designs and comparing our solutions on different abstraction levels:
finite-field arithmetic, elliptic-curve operations, and on protocol level by
implementing the Elliptic Curve Digital Signature Algorithm (ECDSA).
On the one hand, our F2m based processor outperforms the Fp based pro-
cessor by 19.7 % in area, 69.6 % in runtime, 15.9 % in power, and 74.4 %
in energy when performing a point multiplication. On the other hand,
our Fp based processor (11.6 kGE, 41.4µW, 1,313 kCycles, and 54.3µJ)
improves the state-of-the-art in Fp192 ECC hardware implementations
regarding area, power, and energy results. After extending the designs
for ECDSA (signature generation and verification), the area and power-
consumption advantages of the F2m based processor vanish, but it still
is 1.5-2.8 times better in terms of energy and runtime.

Keywords: Hardware Implementation, Elliptic Curve Cryptography,
ECC, ECDSA, Binary-Extension Field, Prime Field.

1 Introduction

Elliptic Curve Cryptography (ECC) has been introduced in the 1980s and is used
nowadays in a variety of different applications. Every application has its own de-
sign criteria and raises special requirements for hardware designs. While contact-
less powered devices have to meet low-power constraints, battery-powered de-
vices need energy-aware implementations that consume as little energy as pos-
sible to increase the life-time of the battery.

The most fundamental decision concerning future hardware designs is whether
to use a binary-extension field or a prime field as basis of the used elliptic curve.
Most related work in dedicated hardware designs has been done in implement-
ing ECC over binary fields using full-precision arithmetic. Only a few papers
compared binary and prime fields in hardware. Wolkerstorfer [36] and Satoh [32]
used full-precision dual-field hardware with bit-serial multipliers. We however
are interested in multi-precision designs, where the big integers are split and
P. Laud (Ed.): NordSec 2011, LNCS 7161, pp. 256–271, 2012.
The original publication is available at http://link.springer.com/chapter/10.1007/978-3-642-29615-4_18
© Springer-Verlag Berlin Heidelberg 2012

150 RELATED WORK ON ECC-HARDWARE IMPLEMENTATIONS

processed in small words. This design methodology has the advantage that the
Central Processing Unit (CPU) can be reused to perform other work (e.g. pro-
tocol handling). In this paper we want to answer the following questions:

– What are the advantages and disadvantages of prime and binary-field pro-
cessors in custom multi-precision hardware?

– How big are the differences when identical design methodologies and elliptic
curves with similar security level are used?

– How does the performance of prime and binary-field processors scale in
higher-level protocols?

– Does the speed advantage of carry-less operations makes up the additional
need of prime-field arithmetics?

In this paper, we answer these questions by presenting two distinct custom
16-bit processors that leverage binary-field operations and prime-field operations
and are based on [35] and [34]. Using a metric consisting of area, speed, power,
and energy, we not only compare both designs in terms of finite-field operation
and ECC point-multiplication performance, we also investigate a higher-level
protocol. When performing an ECC-point-multiplication, the F2m based proces-
sor (9.3 kGE, 34.8µW, 400 kCycles, and 13.9µJ) is 3.3 times faster, 20 % smaller,
uses 16 % less power, and needs 3.9 times less energy compared to the Fp based
processor (11.6 kGE, 41.4µW, 1,313 kCycles, and 54.3µJ). Nevertheless our Fp

based processor improves the state-of-the-art in area, power, and energy results
for prime-field based ECC (doing point multiplication).

We further present two full hardware implementations of the Elliptic Curve
Digital Signature Algorithm (ECDSA). It shows that the F2m based processor
does not outperform the Fp based processor in every category of the metric. The
F2m based processor is 4.4-5.5 % larger, needs up to 6.3 % more power, but still
is 2.8 times faster and needs 2.8 times less energy when calculating a signature.
The runtime and energy advantage drops down to a factor of 1.5 when the
verification is done.

The paper is organized as follows. Section 2 discusses related work on ECC
implementations. Section 3 gives an introduction to elliptic curve cryptography
and introduces a metric. Whereas Section 4 gives a comparison, Section 5 thor-
oughly discusses all implementation results. Conclusions are given in Section 6.

2 Related Work on ECC-Hardware Implementations

There exist many hardware implementations of elliptic-curve cryptography. In
the following, we consider only lightweight implementations that address embed-
ded systems, wireless sensors, and contactless-powered applications. Most of the
given implementations are based on either binary field, prime field, or dual-field
arithmetic. A very tiny ECC processor over binary fields has been proposed by
Y. K. Lee et al. [25] in 2008. They based their design on a compact architecture
of a Modular Arithmetic Logic Unit (MALU) that has been first presented by
the work of L. Batina et al. [4] in 2006. The processor performs (full-precision)

RELATED WORK ON ECC-HARDWARE IMPLEMENTATIONS 151

operations in F2163 and calculates a scalar multiplication between about 80 000
and 300 000 clock cycles (depending on the digit size of the hardware multi-
plier). The final architecture needs about 12-20 kGEs of area. Similar results
have been also reported by S. Kumar and C. Paar [24] who presented a generic
binary-field processor over F2113−193 . The run-time and area requirements of the
proposed processor is similar, needing between 170 000 and 560 000 clock cy-
cles and 10-19 kGEs. D. Hein et al. [15] reported a low-resource co-processor for
passive Radio Frequency Identification (RFID) applications. In contrast to the
previous work, they applied multi-precision arithmetic over F2163 . Their ECC de-
sign needs about 300 000 clock cycles for one scalar multiplication and consumes
about 11 kGEs of chip area. In view of power consumption, all described designs
need between 8 and 30µWs of power at 100 kHz and are thus well applicable to
the targeted applications.

Prime-field based processors have been reported by, for example, E. Öztürk
et al. [31] in 2004. They presented an ECC architecture over the prime field
F2(167+1)/3. Their design needs 545 440 clock cycles for one scalar multiplication
and requires about 30 kGEs of area. Similar results have also been reported by
F. Fürbass and J. Wolkerstorfer [11] in 2007. Their Fp192 processor needs 502 000
clock cycles and about 23 kGEs of area. Recently, M. Hutter et al. [16] presented
an ECC processor over the same prime field needing about 750 000 clock cycles
for a scalar multiplication and about 19 kGEs of area. E. Wenger et al. [34] re-
duced the area requirements even further to only about 12 kGEs but their design
needs about 1.4 million clock cycles. The power consumption of most of the re-
ported prime-field processors is about 20 to several hundred µWs of power at
100 kHz.

By the given related work, it seems that binary-field processors benefit from
a more efficient computation for application-specific hardware implementations.
However, it is impossible to make a fair comparison since the authors used differ-
ent design techniques, synthesis tools, bit/word sizes, and EC parameters. This
renders a comparison largely unfeasible. Nevertheless, there exist only a few
publications that reported dual-field processors for ECC that give detailed com-
parison results. A. Satoh and K. Takano [32] presented a processor over F2m and
Fp supporting 160 to 256 bits. They show that the binary-field operations can
be performed about six times faster than their prime-field opponents (1.21 ms
vs. 0.19 ms for a 160-bit scalar multiplication). Furthermore, the area require-
ments for the prime-field controller is 1.47 times larger than the binary-field
controller (6 606 GEs vs. 4 490 GEs for 8-bit word size and a 160-bit scalar).
J. Wolkerstorfer [36] also presented a dual-field processor that supports 190 to
256 bits. One of his outcomes has been that binary-field operations can be per-
formed about 1.58, 1.42, and 1.27 times faster than prime-field operations for
191/192, 233/224, and 283/256 bits respectively. However, he did not compare
the hardware requirements of both types of supported fields and reported only
the total area requirements of his processor which is between 24-31 kGEs.

In the following, we design both a binary and prime-field based ECC pro-
cessor in order to compare them in a fair environment. In contrast to existing

152 IMPLEMENTATIONS OF ELLIPTIC-CURVE CRYPTOGRAPHY

work, we consider not only scalar multiplication but evaluate and compare the
performance also for higher-level protocols such as ECDSA. First of all, we give
a brief introduction into ECC and define a metric to compare different criteria
which is done in the next section.

3 Implementations of Elliptic-Curve Cryptography

Elliptic curves have been introduced by Koblitz [22] and Miller [28] in the 1980s
and they have been thoroughly analyzed by the community throughout the last
decades. They are based on the Weierstrass equation which can be written as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

with ai=1,2,3,4,6, x, y ∈ K. K defines the finite field. A point P = (x, y) is a
valid point on the elliptic curve if it fulfills the Weierstrass equation, i.e. Equa-
tion (1). The basic operations performed on the elliptic curve are point addition
and point doubling. Using those operations, a point multiplication (often re-
ferred as scalar multiplication) Q = k×P can be calculated. The Elliptic Curve
Discrete Logarithm Problem (ECDLP) states that finding k is a mathematical
hard problem if the points P and Q are given. For a more detailed introduction
into elliptic curves and its properties we refer the reader to [3, 5, 13, 23].

Protocols

Elliptic-Curve

Operations

Finite-Field

Arithmetic

Fig. 1. Hierarchy of ECC imple-
mentations.

Figure 1 shows the hierarchy of ECC im-
plementations. All ECC operations are based
on finite-field arithmetics. Higher-level proto-
cols make use of the underlying ECC opera-
tions to provide various cryptographic services
such as authentication, data integrity, non-
repudiation, or confidentiality. Note that most
of these protocols (such as ECDSA) require
different operations over finite fields such as
prime-field addition or multiplication.

Among the most commonly used types of
finite fields are prime fields Fp and binary-
extension fields F2m . These types have dif-
ferent characteristics so that the Weierstrass
equation can be simplified and different for-
mulas for point addition and point doubling
can be derived. Due to the differences of those
fields, the performance of both software and hardware implementations can vary
significantly.

In this paper, we compare two ECC implementations that are based on F2191

and on Fp192
. Both implementations use multi-precision arithmetic that means

that all finite-field elements are split into smaller bit vectors of size W . Note
that the one-bit difference does not have an impact in a relative comparison
of ECC implementations since we use the same metric for both implementa-
tions. As elliptic curves, we decided to use the recommended NIST prime-field

COMPARING ECC-HARDWARE DESIGNS OVER F2M AND FP 153

curve P-192 [30] and the ANSI X9.62 compliant binary-field curve B-191 [1], i.e.
c2tnb191v1. This is because we would like to compare curves with nearly iden-
tical bit sizes (191 vs. 192 bits). The one-bit difference between those two fields
can be considered as negligible.

Throughout the paper, we used the following notation. For prime fields with
modulo p, n = dlog2(p)e bits are required to represent a number. For binary
fields with f(z) = zm +r(z) denoting an irreducible binary polynomial of degree
m, a bit-vector with m entries can be used to represent any binary polynomial.
Consequently the number of needed words to represent a Fp number is N =
dn/W e and number of needed words to represent a F2m polynomial is M =
dm/W e.

3.1 Comparison Metric and Criteria

The efficiency of ECC-hardware implementations depends on different criteria.
In order to make a fair comparison, we introduce the following metric consisting
of four main attributes:

– The area requirement of a chip is important for any cost-sensitive applica-
tion. This is because the area largely determines the chip costs at fabrication.

– Embedded systems require low-power and
– low-energy designs. This is an important issue especially in battery-powered

environments.
– Speed of computation is important for many applications to be applicable

in practice. The most neutral unit for measurement is the number of cycles
it takes to perform a certain operation.

The maximum frequency that can be used to clock a design has a direct im-
pact on the resulting execution time (speed) of any algorithm. But the previously
mentioned applications heavily constrain the maximum frequency anyways, so
we do not include the frequency measure into our metric.

Because the energy W = Pt is defined as product of the electrical power P
and time t, its properties are not handled explicitly within Section 4.

4 Comparing ECC-Hardware Designs over F2m and Fp

In this section, we compare ECC hardware designs and the respective algorithms
over F2m and over Fp. We describe the differences of the finite-field operations,
the respective elliptic-curve group operations, and compare the hardware designs
of both types of fields regarding cryptographic protocols like ECDSA.

4.1 Finite-Field Arithmetics

Modular Addition and Subtraction. The most basic finite-field algorithms
are addition and subtraction. Algorithm 1 and Algorithm 2 show modular-addition

154 COMPARING ECC-HARDWARE DESIGNS OVER F2M AND FP

Algorithm 1 Prime-field addition.

Require: Two integers a, b ∈ [0, p−1] and
modulus p.

Ensure: c = (a+ b) (mod p).
1: (ε, C[0])← A[0] +B[0].
2: for i from 1 to N − 1 do
3: (ε, C[i])← A[i] +B[i] + ε.
4: end for
5: if ε = 1 or c ≥ p then
6: (ε, C[0])← C[0]− P [0].
7: for i from 1 to N − 1 do
8: (ε, C[i])← C[i]− P [i]− ε.
9: end for

10: end if
11: Return(c).

Algorithm 2 Binary-field addition.

Require: Binary polynomials a(z), b(z)
with maximum degree m-1.

Ensure: c(z) = a(z) + b(z).
1: for i from 0 to M − 1 do
2: C[i]← A[i]⊕B[i].
3: end for
4: Return(c).

algorithms over Fp and F2m . The major difference of those algorithms is the carry
propagation ε. The polynomial addition is a simple XOR operation that does
not incorporate a carry. A Fp addition, in contrast, needs up to three times more
operations: the actual addition, a comparison of the result c with the prime p,
and a modular reduction afterwards. By extending the range of the integers
a, b, c form [0, p − 1] to [0, 2N∗W − 1], the comparison operation (c ≥ p) can be
avoided, which reduces the total number of arithmetic operations by about a
third. Notice that for this partial reduction, all other operations handling a, b, c
must be prepared for their extended range. A modular subtraction works similar
as the modular addition.

Modular Multiplication. Modular multi-precision multiplications are usually
realized by following an operand-scanning or product-scanning multiplication

HA FA FA HA

A3 B1 A2 B1 A1 B1 A0 B1

A0 B0A3 B0 A2 B0 A1 B0

FA FA FA HA

A3 B2 A2 B2 A1 B2 A0 B2

FA FA FA HA

A3 B3 A2 B3 A1 B3 A0 B3

R0R1R2R3R4R5R6R7

Fig. 2. 4-bit integer multiplier for Fp.

A3 B1 A2 B1 A1 B1 A0 B1

A0 B0A3 B0 A2 B0 A1 B0

A3 B2 A2 B2 A1 B2 A0 B2

A3 B3 A2 B3 A1 B3 A0 B3

R0R1R2R3R4R5R6R7

0

Fig. 3. 4-bit carry-less multiplier for F2m .

COMPARING ECC-HARDWARE DESIGNS OVER F2M AND FP 155

D[5]

C[3]C[4]C[5]

C[3]C[4]C[5]

C[0]C[1]C[2]

D[5]

D[3]D[4]

D[5] D[4] D[3]

D[0]D[1]D[2]

D[5]

C[2]

C[2]

C[5]

C[5] c2
tn

b
1

9
1

v
1

N
IS

T
 P

-1
9

2

20232264296212821602192

Fig. 4. Reduction using p = 2192 − 264 − 1 on the top. Reduction using f(z) = z191 +
z9 + 1 on the bottom. In both cases, the product must be shifted and summed up.

approach. A multiply-accumulate unit (cf. [12, 15, 16]) can be used to increase
the efficiency of the product-scanning method. Such a multiply-accumulate unit
can be designed for Fp and F2m . Figures 2 and 3 show the internal structure
of 4-bit multipliers for integers and polynomials. The biggest advantage of the
carry-less multiplier for F2m are the shorter critical path and the smaller area
requirement (logical XOR cells are used instead of full-adder standard cells).
Thus, the difference between a F2m and a Fp multiplication module can be up to
40 % in terms of area requirement. Also the power consumption for a multiplier
designed out of XORs instead of full-adders is lower. However the execution
times (in cycles) for an integer or binary-polynomial multiplication using the
product-scanning method are equivalent.

A finite-field multiplication always needs a reduction. There exist many ways
to realize modular reduction in hardware. One efficient way is to apply a (fast)
reduction method using special primes, so called Mersenne-like primes, which
are often used for recommended and standardized elliptic curves (e.g. the NIST
recommended curves [30]). Figure 4 shows how intermediate multiplication re-
sults can be reduced using this fast reduction method for primes and polynomials
over the curves NIST P-192: p = 2192 − 264 − 1 and ANSI X9.62 c2tnb191v1:
f(z) = z191 + z9 + 1. The reduction can be performed with only shifts and ad-
ditions. The for NIST P-192 necessary shift operations fit very well within the
addressing scheme of 8-bit, 16-bit, or 32-bit architectures. The shift operations
required by c2tnb191v1 do not fulfill this property. However, in cases where the
shift operations are smaller than W , an additional hardcoded reduction logic
can be used. In terms of area, this reduction logic is very cheap (about the size
of a F2m addition).

Modular Squaring. Modular squaring is equivalent to a modular multiplica-
tion with two identical operands. Thus, an explicit implementation is often not
necessary, especially in implementations where low area is a stringent require-

156 COMPARING ECC-HARDWARE DESIGNS OVER F2M AND FP

A
[5

]

A
[4

]

A
[3

]

A
[2

]

A
[1

]

A
[0

]

A[5]

A[4]

A[3]

A[2]

A[1]

A[0]

Fig. 5. Prime-field squaring operation.
The necessary intermediate multiplica-
tions are shaded.

A
[5

]

A
[4

]

A
[3

]

A
[2

]

A
[1

]

A
[0

]

A[5]

A[4]

A[3]

A[2]

A[1]

A[0]

Fig. 6. Binary-field squaring operation.
The necessary intermediate multiplica-
tions are shaded.

ment. However, if implemented it improves the performance since it is typically
faster than modular multiplications [13].

During a prime-field squaring operation, the two intermediate products A[i]×
A[j] and A[j] × A[i], ∀i 6= j ∈ [0, N − 1], are identical. Figure 5 shows the
operands of a 6-word squaring operation where only the necessary operations
(multiplications) are shaded. Thus, the squaring operation can be up to two
times faster than a multiplication.

Squarings over binary fields, as opposed, have the nice property that ai×aj +
aj×ai = 0, ∀i 6= j ∈ [0,m−1]. If a(z) = am−1z

m−1 + · · ·+a2z
2 +a1z+a0, then

a(z)2 = am−1z
2m−2+· · ·+a2z4+a1z

2+a0. Thus, zero values are simply inserted
between two consecutive bits ai. Utilizing the binary multiplier from Figure 3,
only M multiplications A[i]×A[i] are required to perform a binary-field squaring
operation. As it can also be seen in Figure 6, the squaring operation is M times
faster than a binary field multiplication. It can be performed with a similar
runtime complexity as a modular addition.

In terms of runtime and lines-of-code, a F2m squaring can be up to N2

2M times
faster than a Fp squaring.

Modular Inversion. What the inversion operations for prime and binary fields
have in common is the very slow execution time. There are two common inver-
sion methods. One is based on the extended Euclidean algorithm and one is
based on Fermat’s little theorem (a = a2

m

mod f(z) ∀a ∈ F2m). For this paper
the Montgomery inversion technique by Kalinski et al. [20] has been used for
prime field inversion operations. Using Fermat’s little theorem [18] for binary
field inversions, with a−1 ≡ a2m−2 mod f(z), a field inversion can be performed
by using m−1 squarings and several multiplications. In the case of c2tnb191v1,
190 squarings and 12 multiplications are necessary. Because of the fast squar-
ing operations within binary fields, the runtime of this method exceeds any
Euclidean-based algorithm. [14] gives a comparison of different algorithms for
an inversion within the NIST B-163 field.

COMPARISON RESULTS 157

4.2 Elliptic-Curve Operations

The performance of EC-group operations over F2m and Fp differ significantly. We
used formulae that reflect the state of the art in efficient ECC implementations.
For binary-field arithmetic, we applied the formulae proposed by J. López and
R. Dahab [27]. Their formulae need six finite-field multiplications, five squarings,
and three additions per key bit. For prime-field arithmetic, we applied the for-
mulae of M. Hutter et al. [17] needing 12 multiplications, four squarings, and 16
additions (incl. subtractions). Both formulae have been applied within the Mont-
gomery powering ladder scalar multiplication [19]. By comparing the formulae,
it clearly shows that the binary formulae need 50 % less multiplications than
the formulae over prime-field arithmetic. This is one of the most advantageous
properties that encourages the use of F2m operations in ECC-hardware imple-
mentations. Note that both formulae use projective coordinates that means that
no modular inversion is needed throughout the scalar multiplication1.

4.3 Cryptographic Protocols

After the basic elliptic-curve operation of a scalar multiplication, we compare
the performance of F2m and Fp processors in terms of higher-level protocols. In
particular, we implemented ECDSA [30] on both types of (binary and prime-field
based) processors. The main additional operations needed to support ECDSA is
the SHA-1 [29] algorithm2 to calculate the message digest of the message m and
some prime-field operations, i.e. modular addition, multiplication, and inversion
to calculate the digital signature (r, s) = (k× P, k−1(SHA-1(m) + rd)), where d
represents the used private key.

For a more efficient ECDSA-verify algorithm, we additionally implemented
a different methodology for calculating point multiplications. First, we applied
Shamir’s trick [8, 9] to improve the performance of multiple point multiplication.
Second, we used different formulae to perform the verification using Jacobian-
projective coordinates [13] for the prime-field processor and López-Dahab coor-
dinates [13, 26] for the binary-field processor.

5 Comparison Results

For a fair comparison of binary field and prime-field ECC implementations, it
is important to select a common controlling engine, common development tools,
the same process technology, and elliptic curves of nearly the same bit size.

As a controller, we decided to use our own 16-bit microcontroller called Nep-
tun [33–35] that is especially optimized for elliptic-curve cryptography. The pro-
cessor comes with twelve special-purpose registers and uses a Harvard architec-
ture with separated program and data memory. The usually area consuming

1 Inversion is only needed after the calculation of k × P to convert the projective
coordinates back to affine coordinates.

2 Included in the design. 16-bit CPU is used to calculate the hash.

158 COMPARISON RESULTS

Table 1. Prime-field vs. binary-field operations of our ECC-hardware architecture.

Cycles Lines of Code Operations/key-bit
Fp192 F2191 Fp192 F2191 Fp192 [17] F2191 [27]

Addition/Subtraction 64 38 64 38 16 3
Multiplication 329 265 329 265 12 6
Squaring 190 45 190 45 4 5
Inversion 46,560 14,611 397 117 - -

data memory is made from a very area-efficient single-port RAM macro3. The
program memory is a synthesized lookup table stored as Read-Only Memory
(ROM). In fact, the area requirements of this lookup table is proportional to the
number of lines-of-code (LOC) stored within the program memory. The central
processing unit (CPU) is capable of the most basic arithmetic operations such as
addition/subtraction, logic operations (AND, OR, XOR), and shift operations.

As target technology, we selected a 130nm low-leakage CMOS technology
by UMC. This technology needs fewer power compared to larger 180 nm and
350 nm technologies and has a lower power leakage than smaller (e.g. 90 nm)
technologies. The standard-cell library has been provided by Faraday Technol-
ogy. The RAM-macro blocks have been generated using the Standard Mem-
ory Compiler FSA0A Memaker 200901.1.1 by the Faraday Technology Corpo-
ration [10]. For synthesis we used the Cadence RTL compiler [7] Version v08.10.
For power-simulations we used Cadence First Encounter Version v08.10.

5.1 Finite-Field Arithmetic

The finite-field algorithms have been implemented as described in Section 4.1. All
algorithms (except the algorithms for modular inverses) have been unrolled and
optimized for our custom microcontroller instruction set (Assembler language).
All results are summarized in Table 1.

It shows that our processor performs the binary-field addition about 40.6 %
faster than the prime-field addition (the same holds for modular subtraction).
Binary-field multiplication is 19.5 % faster than its prime-field counterpart be-
cause of the extra reduction logic provided to take advantage of the Mersenne-
like irreducible polynomial. However, it shows that even when multi-precision
arithmetic is used, the biggest advantage of binary-field operations is within the
squaring operation. Its runtime is 4.2 times faster than the prime-field squar-
ing operation. Finally, the two very distinct inversion techniques, discussed in
Section 4.1, result in very different runtime and LOC results. The binary-field
inversion implementation is 3.19 times faster and needs only 29.5 % LOC. It
reuses the squaring and multiplication methods and subsequently only works for
a single irreducible polynomial. The prime-field inversion, in contrast, works for
any prime. The main reason for the higher code size are actually the additional

3 All following area-related results would be different if latch or register-based RAM’s
are used.

COMPARISON RESULTS 159

Table 2. Comparison of prime field vs. binary-field ECC implementations.

Algorithm Q = k×P ECDSA Sign ECDSA Verify
Fp192 F2191 Fp192 F2191 Fp192 F2191

Integer multiplier required – required required required required
Carry-less multiplier – required – required – required

Cycles 1,312,616 399,635 1,393,523 494,983 1,417,422 892,124

RAM entries 100 90 112 103 174 162
Program entries 1,207 699 1,662 1,689 1,519 1,875
Constants 61 60 100 129 100 141

Area requirements [GE]

CPU 4,041 3,653 4,049 4,393 4,066 4,422
Program memory 4,494 2,683 7,203 7,432 7,589 8,031
Data memory 3,040 2,963 3,390 3,412 4,088 4,160

Total area 11,579 9,301 14,644 15,293 15,747 16,618

Power consumption @ 1MHz [µW]

CPU 20.40 19.99 18.36 18.48 17.93 20.38
Program memory 8.95 4.01 7.89 8.22 8.89 8.16
Data memory 10.59 8.92 11.91 10.86 11.80 12.52

Total power 41.37 34.78 39.54 39.47 40.55 43.12

Energy consumption [µJ]

Energy 54.30 13.90 55.10 19.53 57.48 38.47

utility functions (addition, subtraction, multiplication with 2, division by 2) that
had to be implemented.

5.2 Elliptic-Curve Operations

Table 2 compares the absolute values and Table 3 compares the relative differ-
ences of the implemented prime-field and binary-field ECC implementations.
The relative differences shown in Table 3 have been calculated using the For-

mula Param(F2m)
Param(Fp)

− 1. In the following, we separately consider point multiplica-

tion as well as signature generation and verification of the higher-level protocol
of ECDSA.

In view of point multiplication, it shows that the binary-field based imple-
mentation is 3.28 times faster than the prime-field based opponent. The area
requirement is 19.7 % better and the power consumption is 15.9 % lower for the
binary-field processor. This results in an energy consumption which is 3.91 times

Table 3. Relative difference between Fp and F2m based implementations.

Algorithm Q = k×P ECDSA Sign ECDSA Verify

Runtime −69.6 % −64.5 % −37.1 %
Area −19.7 % +4.4 % +5.5 %
Power −15.9 % ±0.0 % +6.3 %
Energy −74.4 % −64.6 % −33.1 %

160 COMPARISON RESULTS

Table 4. Comparison of different ECC implementation with related work.

ECC Area Cycles Powera Energy VLSI
Curve [GE] [kCycles] µW µJ technology

Auer 2009 [2] Fp192 24,750 1,031 613.65 632.67 AMS C35
Fürbass 2007 [11] Fp192 23,656 500 1,692.11 846.06 AMS C35
Wolkerstorfer 2005 [36] Fp192 23,818 678 500.00 340.00 350nm
This work 2011 Fp192 11,579 1,313 41.37 54.30 UMC L130

Lee 2008 d=4 [25] F2163 15,356 79 37.39 2.95 UMC L130
Lee 2008 d=1 [25] F2163 12,506 276 32.42 8.95 UMC L130

Batinab 2006 d=4 [4] F2163 14,816 95 27.00 2.57 130nm

Batinab 2006 d=1 [4] F2163 13,104 354 27.00 9.56 130nm
Bock 2008 d=8 [6] F2163 16,247 47 148.76 6.99 INF SRF55V01P
Bock 2008 d=1 [6] F2163 10,392 280 54.31 15.21 INF SRF55V01P
Hein 2008 [15] F2163 11,904 296 101.87 30.15 UMC L180
Kumar 2006 [24] F2163 15,094 430 - - AMI C35
Kumar 2006 [24] F2193 17,723 565 - - AMI C35
Wolkerstorfer 2005 [36] F2191 23,818 426 500.00 213.00 350nm
This work 2011 F2191 9,301 399 34.78 13.90 UMC L130

a All reference values were scaled to 1 MHz.
b RAM approximated with 4,890 GE. Power-consumption values do not include RAM.

lower than the calculation over prime fields. Note that the area difference mostly
comes from the size of the program memory, the used multiplier within the CPU
and the size of the necessary RAM macro. Even note that in both designs, about
50 % of the total power is consumed within the CPU.

5.3 Cryptographic Protocols

For ECDSA, only 455 lines of code (38 %) have to be added to the prime-field
ECC processor to support all operations to sign data. This and the small in-
crease of necessary RAM entries increased the total area requirement by 26.5 %.
The execution time is increased by only 6.2 %. The differences in power and
energy consumption are hardly noticeable. The changes to the binary-field ECC
processor are much more significant. The CPU had to be extended with a small
8-bit integer multiply-accumulate unit, making it capable of prime and binary-
field operations, increasing the area requirements of the CPU by 20 %. Adding
all those algorithms increased the size of the program memory by 177 % and
the total area of the processor by 64 %. Also the power and energy consumption
increased by 13.5 % and 40.5 %. However, the runtime of the binary-field based
ECDSA processor is still 2.82 times faster than the runtime of the prime-field
based ECDSA processor. Even though the area and power consumption are ap-
proximately identical, the binary-field ECDSA processor needs 2.82 times less
energy than the prime-field ECDSA processor.

The ECDSA verification needs one additional point multiplication compared
to the ECDSA-signature generation algorithm which needs only one. Cause of

CONCLUSION 161

Table 5. Comparison of our ECDSA implementations with related work.

ECC Curve Area Cycles Powera Energy VLSI
[GE] [kCycles] µW µJ technology

Kern 2010 [21] Fp160 18,247 512 860.00 440.32 AMS C35
Hutter 2010 [16] Fp192 19,115 859 1,507.79 1,295.19 AMS C35

Wengerb 2010 [34] Fp192 11,686 1,377 113.86 156.79 UMC L180

This workb 2011 Fp192 14,644 1,394 39.54 55.10 UMC L130
This work 2011 F2191 15,293 495 39.47 19.53 UMC L130

a All reference values have been scaled to 1 MHz.
b Nearly identical designs were used. The differences in area and power come from the

different technologies and synthesizers used.

Shamir’s trick the runtime for the prime-field based algorithms differ by only 2 %.
The area differs by 7.5 % and the power and energy results are almost identical.
The ECDSA-signature verification algorithm over binary fields does not handle
the two point multiplications as well. Whereas the area increased by only 8.7 %,
the runtime increased by 80 %. This doubles the required energy needed for an
ECDSA-signature verification compared to an ECDSA-signature generation.

5.4 Comparison with Related Work

Table 4 gives a comparison with related work. All power results have been scaled
to 1 MHz. The first five rows give related work over prime fields. The remaining
rows contain related work over binary fields. Our Fp processor is 51 % smaller
than the best related design by Wolkerstorfer [36]. In terms of cycles this proces-
sor is above average. Only the energy requirement by Öztürk [31] design is lower,
but their design is not based on NIST P-192. The area results of the math pro-
cessor are 10.4 % smaller than the smallest related implementation. Our speed,
power, and energy results are larger than many other designs, but it should be
noted that those designs have an advantage cause of the smaller elliptic curve
used.

Table 5 summarizes related work regarding low-resource ECDSA-hardware
implementations. In terms of power and energy consumption, we outperform
existing solutions. The area requirements are lower than the work of Kern [21]
and Hutter [16] but are higher than the work of Wenger [34].

6 Conclusion

In this paper, we compared the performance of two distinct ECC-hardware
implementations that are based on prime-field (NIST P-192) and binary-field
(ANSI c2tnb191v1) arithmetic. The comparison of the finite-field algorithms
showed us the clear runtime advantage of the squaring (4.2 times) and addi-
tion (1.7 times) operations within the binary-extension field. When doing point
multiplications, the F2m based processor outperforms the Fp based processor by

162 CONCLUSION

19.7 % in area, 69.6 % in runtime, 15.9 % in power, and 74.4 % in energy. In addi-
tion to these outcomes, we analyzed the impact of higher-level protocols on the
finite-field processors. The implementation of both digital-signature generation
and verification using ECDSA had led us to interesting findings. It was shown
that the area and power advantages for the F2m based processor vanish while
it still is 1.5-2.8 times faster and consequently more energy efficient than the
Fp based processor.

These results can be applied to any future design of an ASIC ECC processor
that is integrated in an area, power, or energy constrained device.

Acknowledgements. The work has been supported by the European Commis-
sion through the ICT program under contract ICT-SEC-2009-5-258754 (Tamper
Resistant Sensor Node - TAMPRES) and by Austrian Science Fund (FWF) un-
der grant number P22241-N23.

References

1. American National Standards Institute (ANSI). AMERICAN NATIONAL STAN-
DARD X9.62-2005. Public Key Cryptography for the Financial Services Industry,
The Elliptic Curve Digital Signature Algorithm (ECDSA), 2005.

2. A. Auer. Scaling Hardware for Electronic Signatures to a Minimum. Master thesis,
University of Technology Graz, October 2008.

3. R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Ver-
cauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman
& Hall/CRC, 2005.

4. L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede. Low-Cost El-
liptic Curve Cryptography for Wireless Sensor Networks. In L. Buttyán, V. Gligor,
and D. Westhoff, editors, Security and Privacy in Ad-Hoc and Sensor Networks
– ESAS 2006, Third European Workshop, Hamburg, Germany, September 20-21,
2006, Revised Selected Papers, volume 4357, pages 6–17, Berlin Heidelberg, 2006.
Springer-Verlag.

5. I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves in Cryptography, volume
265 of London Mathematical Society Lecture Notes Series. Cambridge University
Press, Cambridge, UK, 1999.

6. H. Bock, M. Braun, M. Dichtl, E. Hess, J. Heyszl, W. Kargl, H. Koroschetz,
B. Meyer, and H. Seuschek. A Milestone Towards RFID Products Offering Asym-
metric Authentication Based on Elliptic Curve Cryptography. Invited talk at
RFIDsec 2008, July 2008.

7. Cadence Design Systems, Inc. The Cadence Design Systems Website. http://

www.cadence.com/, 2011. San Jose, California, United States.
8. P. de Rooij. Efficient Exponentiation using Procomputation and Vector Addition

Chains. In A. D. Santis, editor, Advances in Cryptology EUROCRYPT, volume 950
of Lecture Notes in Computer Science, pages 389–399. Springer Berlin / Heidelberg,
1994.

9. T. Elgamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. In Advances in Cryptology - CRYPTO ’84, Santa Barbara, California,
USA, August 19-22, 1984, Proceedings, volume 196 of Lecture Notes in Computer
Science, pages 10–18. Springer, 1984.

CONCLUSION 163

10. Faraday Technology Corporation. Faraday FSA0A C 0.13µm ASIC Standard Cell
Library, 2004. Details available online at http://www.faraday-tech.com.

11. F. Fürbass and J. Wolkerstorfer. ECC Processor with Low Die Size for RFID
Applications. In Proceedings of 2007 IEEE International Symposium on Circuits
and Systems. IEEE, IEEE, May 2007.

12. J. Großschädl and E. Savaş. Instruction Set Extensions for Fast Arithmetic in
Finite Fields GF(p) and GF(2m). In M. Joye and J.-J. Quisquater, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2004, 6th International Work-
shop, Cambridge, MA, USA, August 11-13, 2004, Proceedings, volume 3156 of Lec-
ture Notes in Computer Science, pages 133–147. Springer, August 2004.

13. D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptog-
raphy. Springer, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
2004.

14. D. Hein. Elliptic Curve Cryptography ASIC for Radio Frequency Authentication.
Master thesis, Technical University of Graz, April 2008.

15. D. Hein, J. Wolkerstorfer, and N. Felber. ECC is Ready for RFID - A Proof in
Silicon. In Selected Areas in Cryptography, 15th International Workshop, SAC
2008, Sackville, Canada, August 14-15, 2008, Revised Selected Papers, Lecture
Notes in Computer Science (LNCS), September 2008.

16. M. Hutter, M. Feldhofer, and T. Plos. An ECDSA Processor for RFID Authentica-
tion. In S. B. O. Yalcin, editor, Workshop on RFID Security – RFIDsec 2010, 6th
Workshop, Istanbul, Turkey, June 7-9, 2010, Proceedings, volume 6370 of Lecture
Notes in Computer Science, pages 189–202. Springer, 2010.

17. M. Hutter, M. Joye, and Y. Sierra. Memory-Constrained Implementations of El-
liptic Curve Cryptography in Co-Z Coordinate Representation. In A. Nitaj and
D. Pointcheval, editors, Progress in Cryptology - AFRICACRYPT 2011 Fourth In-
ternational Conference on Cryptology in Africa, Dakar, Senegal, July 5-7, 2011.
Proceedings, volume 6737 of Lecture Notes in Computer Science, pages 170–187.
Springer, 2011.

18. T. Itoh and S. Tsujii. Effective recursive algorithm for computing multiplicative
inverses in GF (2m). Electronic Letters, 24(6):334–335, March 1988.

19. M. Joye and S.-M. Yen. The Montgomery Powering Ladder. In G. Goos, J. Hartma-
nis, and J. van Leeuwen, editors, Cryptographic Hardware and Embedded Systems
– CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August
13-15, 2002, Revised Papers, volume 2523 of Lecture Notes in Computer Science,
pages 291–302. Springer, 2003.

20. B. Kaliski. The Montgomery Inverse and its Applications. IEEE Transactions on
Computers, 44(8):1064–1065, August 1995.

21. T. Kern and M. Feldhofer. Low-Resource ECDSA Implementation for Passive
RFID Tags. In 17th IEEE International Conference on Electronics, Circuits and
Systems (ICECS 2010), December 12-15th, 2010, Athens, Greece, Proceedings,
pages 1236–1239. IEEE, 2010.

22. N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, 48:203–
209, 1987.

23. N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1994. ISBN
0-387-94293-9.

24. S. S. Kumar and C. Paar. Are standards compliant Elliptic Curve Cryptosystems
feasible on RFID? In Workshop on RFID Security 2006 (RFIDSec06), July 12-14,
Graz, Austria, 2006.

164 CONCLUSION

25. Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede. Elliptic-Curve-Based
Security Processor for RFID. IEEE Transactions on Computers, 57(11):1514–1527,
November 2008.

26. J. López and R. Dahab. Improved Algorithms for Elliptic Curve Arithmetic in
GF(2n). In Selected Areas in Cryptography, volume 1556 of Lecture Notes in Com-
puter Science, pages 201–212. Springer, 1998.

27. J. López and R. Dahab. Fast Multiplication on Elliptic Curves over GF(2m) with-
out Precomputation. In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware
and Embedded Systems – CHES’99, First International Workshop, Worcester, MA,
USA, August 12-13, 1999, Proceedings, volume 1717 of Lecture Notes in Computer
Science, pages 316–327. Springer, 1999.

28. V. S. Miller. Use of Elliptic Curves in Cryptography. In H. C. Williams, editor,
Advances in Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August
18-22, 1985, Proceedings, volume 218 of Lecture Notes in Computer Science, pages
417–426. Springer, 1986.

29. National Institute of Standards and Technology (NIST). FIPS-180-3: Secure
Hash Standard, October 2008. Available online at http://www.itl.nist.gov/

fipspubs/.
30. National Institute of Standards and Technology (NIST). FIPS-186-3: Digital Sig-

nature Standard (DSS), 2009. Available online at http://www.itl.nist.gov/

fipspubs/.
31. E. Öztürk, B. Sunar, and E. Savaş. Low-Power Elliptic Curve Cryptography Using

Scaled Modular Arithmetic. In M. Joye and J.-J. Quisquater, editors, Crypto-
graphic Hardware and Embedded Systems – CHES 2004, 6th International Work-
shop, Cambridge, MA, USA, August 11-13, 2004, Proceedings, volume 3156 of
Lecture Notes in Computer Science, pages 92–106. Springer, August 2004.

32. A. Satoh and K. Takano. A Scalable Dual-Field Elliptic Curve Cryptographic
Processor. IEEE Transactions on Computers, 52(4):449–460, 2003.

33. E. Wenger, M. Feldhofer, and N. Felber. A 16-Bit Microprocessor Chip for Crypto-
graphic Operations on Low-Resource Devices. In Proceedings of Austrochip 2010,
October 6, 2010, Villach, Austria, pages 55–60, October 2010. ISBN 978-3-200-
01945-4.

34. E. Wenger, M. Feldhofer, and N. Felber. Low-Resource Hardware Design of an
Elliptic Curve Processor for Contactless Devices. In Y. Chung and M. Yung,
editors, WISA, volume 6513, pages 92–106. Springer, 2010.

35. E. Wenger and M. Hutter. A Hardware Processor Supporting Elliptic Curve Cryp-
tography for Less Than 9kGEs. In Proceedings of the Tenth Smart Card Research
and Advanced Application Conference, CARDIS 2011, September 15-16, 2011, Leu-
ven, Belgium, Proceedings, 2011.

36. J. Wolkerstorfer. Is Elliptic-Curve Cryptography Suitable for Small Devices? In
Workshop on RFID and Lightweight Crypto, July 13-15, 2005, Graz, Austria, pages
78–91, 2005.

Chapter 11

Analyzing Side-Channel Leakage of
RFID-Suitable Lightweight ECC
Hardware

Publication Data

Erich Wenger, Thomas Korak, and Mario Kirschbaum. Analyzing Side-Channel
Leakage of RFID-Suitable Lightweight ECC Hardware. Michael Hutter and Jörn-
Marc Schmidt, editors, RFIDSec, volume 8262 of Lecture Notes in Computer
Science, Springer, 2013. Note: in press.

Contributions

Hardware implementations. VCD simulations. Idea to analyze the leakage of
the digit-serial multiplier for SPA attacks. Text: major parts of abstract and
sections 1, 3, 6, 8, 9.

165

Analyzing Side-Channel Leakage of
RFID-Suitable Lightweight ECC Hardware

Erich Wenger, Thomas Korak, and Mario Kirschbaum

Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, 8010 Graz, Austria
{Erich.Wenger,Thomas.Korak,Mario.Kirschbaum}@iaik.tugraz.at

Abstract. Using RFID tags for security critical applications requires
the integration of cryptographic primitives, e.g., Elliptic Curve Cryptog-
raphy (ECC). It is specially important to consider that RFID tags are
easily accessible to perform practical side-channel attacks due to their
fields of applications. In this paper, we investigate a practical attack
scenario on a randomized ECC hardware implementation suitable for
RFID tags. This implementation uses a Montgomery Ladder, Random-
ized Projective Coordinates (RPC), and a digit-serial hardware multi-
plier. By using different analysis techniques, we are able to recover the
secret scalar while using only a single power trace. One attack corre-
lates two consecutive Montgomery ladder rounds, while another attack
directly recovers intermediate operands processed within the digit-serial
multiplier. All attacks are verified using a simulated ASIC model and an
FPGA implementation.

Keywords: Implementation Attack, Correlation Power Analysis, Sim-
ple Power Analysis, Digit-Serial Multiplier, Elliptic Curve Cryptography.

1 Introduction

When it comes to RFID security research, many research groups all around
the world investigate the viability of new protocols, new optimized algorithms,
and new hardware implementation for RFID tags. Those designs have to cope
with the restrictive area, power, and runtime challenges that are mandatory for
practically usable RFID tags. Additionally, also power-analysis attacks have to
be considered. Those attacks can be used to recover keys, even though the actual
protocol or algorithm is mathematically secure.

The most promising public-key protocols are based on Elliptic Curve Cryp-
tography (ECC) as ECC offers comparably small memory and practically useable
runtime properties. RSA and ElGamal based public key schemes simply need too
much memory or only provide inferior runtimes. Some of the most notable ECC
implementations are [5, 12, 22, 23, 33, 39]. Unfortunately, there have been too few
practical evaluations of those state-of-the-art hardware implementations. Espe-
cially the design of Lee et al [23] raised our interest. They use a digit-serial

M. Hutter and J-M. Schmidt (Eds.): RFIDSec 2013, LNCS 8262, in press, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

168 RELATED WORK

multiplier with a López and Dahab-like [24] Montgomery Ladder. Further we
assume that the design-under-attack performs in constant key-independent run-
time, utilizes Randomized Projective Coordinates [9] (RPC), and use the pri-
vate scalar only once (as it is done for ECDSA signatures and Diffie-Hellman
key exchanges). Therefore we have very strong assumptions regarding the ac-
tual implementation under investigation and many of the related power analysis
techniques [7, 10, 17, 20, 21, 26] simply cannot be mounted.

Our contribution. In this paper, we successfully perform simple and
correlation-based power analysis attacks on a protected ECC hardware imple-
mentation using only a single power trace. The investigated hardware design
utilizes a López and Dahab Montgomery ladder, RPC, ephemeral secret keys, a
digit-serial binary field multiplier, and performs in constant runtime. We show
the practicability of our attacks using simulated and FPGA-measured power
traces. The correlation based attack shows how the hamming distance of con-
secutive key bits can be used to recover the secret scalar. Additionally, we thor-
oughly analyze the power consumption of bit-serial and digit-serial binary field
multiplier. We are able to recover one of the processed operands and discuss how
to utilize this information to perform more advanced attacks.

The paper is structured as follows: Section 2 discusses related work. Sec-
tions 3–5 elaborate the design under attack, some attack-related prerequisites,
and the basic setup for conducting the attacks, respectively. In Section 6 we
assure that there is no key-dependent leakage. Section 7 discusses the correla-
tion of consecutive rounds and Section 8 discusses the recovery of intermediate
values. Section 9 concludes the paper.

2 Related Work

There exist many papers that describe hardware implementations of ECC. Most
of them make use of digit-serial multipliers over GF (2m), see for example [1, 4, 5,
11, 14, 23, 30]. The reason for that choice lies in several facts. First, binary-field
multipliers significantly improve the performance of ECC since they avoid carry-
propagation as opposed to prime-field based implementations. Second, since they
are based on binary polynomials, they can be efficiently implemented in hard-
ware which makes them especially attractive for embedded systems and low-area
designs. Therefore, they are commonly used and applied in real-world applica-
tions such as contactless smart cards, RFIDs, or Java Cards [1, 6, 29].

In view of side-channel attacks, there exist many papers that discuss attacks
and countermeasures on ECC, for example presented in [8, 9, 13, 18, 27, 31, 32,
36, 37]. Most of the work exploits the weakness of different scalar-multiplication
algorithms such as double-and-add which allows to perform SPA attacks in order
to distinguish between a single double or add operation.

Most notable is the work of Walter [36], who attacked RSA using only a
single trace. In a sliding-window RSA multiplication, he correlates the prepro-
cessing step with the per-bit multiplication. He notes that such an attack can
even work using a single power trace. The attack on the RSA modular exponen-

DESIGN UNDER ATTACK 169

tiation by Wittemann et al. [38] can be performed even in the presence of the
message blinding and the multiply always countermeasures. They take advan-
tage of the fact that multiplications followed by squarings share operands in a
key-dependent manner. In order to extract the bits of the secret exponent one
power measurement recorded during the exponentiation is sufficient. In 2010,
Clavier et al. [8] introduced the terms vertical and horizontal power analysis.
While a vertical power analysis attacks the same time sample on many curves,
a horizontal power analysis correlates parts of a single power trace. They per-
formed a horizontal correlation analysis on RSA and similar to Amiel et al. [3]
distinguished multiplication from squaring operations. Also in 2010, Homma et
al. [18] generated collisions between squaring operations by recording only two
power traces.

While those attacks work on the group structure of RSA and ECC, there
exist only a few papers that demonstrate the susceptibility of underlying finite-
field arithmetics. In 2006, Akishita et al. [2] demonstrated an attack on ECC by
measuring the difference of modular multiplication and squaring. Since they per-
formed attacks targeting ECC-field operations instead of ECC-group operations,
their attack is applicable to countermeasures such as unified-addition formulae or
SPA-resistant algorithms like the Montgomery-powering ladder. Recently, Pan
et al. [34] presented a correlation power-analysis (CPA) attack on a digit-serial
multiplier. They targeted the output register of the multiplier and successfully
extracted intermediate values from an FPGA implementation. However, since
they applied a CPA attack using 1,000 traces, their attack cannot be applied on
ECC implementations that use random scalars.

In the following, we present a power-analysis attack that extracts the secret
scalar from an ECC implementation consisting of a Montgomery ladder and RPC
using only one single power trace. The attack can therefore be even applied
to reveal ephemeral keys such as used in the Elliptic Curve Digital Signature
Algorithm (ECDSA) or in Elliptic Curve Diffie Hellman (ECDH) protocols.

3 Design Under Attack

In the following, the ECC implementation used for the conducted experiments is
presented. The objective of the implementation is to provide resistance against
side-channel attacks as well as being flexible in size and runtime. The SCA
resistance is achieved by using a constant-runtime Montgomery ladder with ran-
domized projective coordinates and the flexibility in size and runtime is achieved
by using a digit-serial multiplier.

3.1 Chosen Top-Level Algorithms

Under the consideration and investigation of related work on timing, power-
analysis, and fault attacks applicable on elliptic curve cryptography, we decided
to use a left-to-right Montgomery ladder for EC point multiplications Q ←
k×P . The key-independent structure of the Montgomery ladder provides a good

170 DESIGN UNDER ATTACK

foundation against many side-channel attacks. In order to be independent of the
most significant bits of the scalar k, the order of the elliptic curve is added to k.
Additionally by randomizing the projective coordinates of the base-point, most
attacks become infeasible. So a combination of a constant-runtime Montgomery
ladder with randomized projective coordinates provides strong resistance against
most side-channel attacks1.

3.2 Hardware Design

Similar to Lee et al. [23], our hardware is specially optimized for binary extension
fields using the NIST [28] standardized elliptic curve B-163. The hardware design
comes with a two-port 163-bit memory, a 163-bit adder, and an MSB-first digit-
serial multiplier. In order to save chip area, no dedicated hardware squaring unit
is used. For point multiplication we use the formulas by López and Dahab [24]
(see Appendix A).

3.3 Digit-Serial Multiplier

Most critical for the size of the hardware design, the runtime of the design and
the following attacks is the multiplier used in the design. In the following we
give a brief introduction to digit-serial multipliers, which are used in our design.

The term “digit serial” indicates that only a limited number of digits d of
operand OpB are processed in each clock cycle. In the special case of d = 1, the
multiplication approach is also known as bit-serial multiplication approach. A
useful property of the digit-serial multiplication approach is that it can be sped
up by increasing the digit size d. Thus, the designer can easily change the design
to meet the desired area and runtime constraints.

Digit-serial multipliers are used to calculate the product C ← OpA × OpB,
where N bits are required to represent OpA, OpB and C. In the remainder of
this paper, we use the notation OpBi to index a single digit with index i, with
0 ≤ i < dN/de and dN/de−1 indexing the most significant digit. Figure 1 shows
two approaches for bit-serial multiplications (d = 1) using a fixed reduction
polynomial (cf. [15]). Either the most significant bit (MSB) is processed first
(shown on the left) or the least significant bit (LSB) is processed first (shown
on the right). Since for the LSB-first multiplier, two registers (ai and ci) are
modified in each cycle, we concentrate on the MSB-first multiplier. The single
active (working) register C (respectively ci) is shifted by d digits to the left
and is implicitly reduced using a fixed reduction polynomial. Additionally, OpA
(resp. ai) is multiplied with OpBi using a simple AND gate. The product of
the multiplication is then added to the (by d bits) shifted and reduced work
register. After dN/de cycles, the product (C ← OpA × OpB) of the finite-field
multiplication is stored in register C.

1 Note that we are aware of fault attacks, but those type of attacks are not subject of
this paper.

ATTACK PREREQUISITES 171

OpBi

a4 a3 a2 a1 a0

c4 c3 c2 c1 c0

b3

b2

b1

b0

b4

a4 a3 a1 a0

b4

b3

b2

b1

b0

c4 c3 c2 c1 c0

a2

OpBi

Fig. 1. Finite-field multiplier with fixed reduction polynomial f(z) = z5 + z2 + 1.

This multiplication approach can be applied to binary-extension fields as
well as prime fields. For prime fields, the XOR-gates have to be replaced with
full adders. Thus digit-serial multipliers can be used for RSA as well as Elliptic
Curve Cryptography.

4 Attack Prerequisites

In order to perform the attacks presented in the following sections, the design
has to fulfill some prerequisites which are discussed here.

4.1 Constant Runtime Scalar Multiplication

After recording one power trace while the device under attack performs the
scalar multiplication a post-processing step is necessary. The trace T is split in
|k| traces after removing the initialization (tinit) and final y-recovery phases.
Here we take advantage of the fact that all round transformations have an equal
runtime. For simplification purposes we assume that |k| = N . Sub-traces Ri =
T (tinit+tround(N−1−i) . . . tinit+tround(N−i)) represent a López-Dahab double-
and-add round operation of the secret scalar ki, with i = [0, N − 1]. According
to our notation kN−1 represents the MSB and k0 the LSB of k. One method to
identify the length of one round (tround) is to perform a cross correlation on the
trace T . The result of the cross correlation shows significant, equidistant peaks.
The distance corresponds to tround. In the following Ri(o, o+w) denotes a part
of the trace of round i with an offset o from the beginning and a length of w
samples.

Figure 2 shows a comparison of the simulated and measured power consump-
tion with d = 1. For the figures the traces R0 . . . RN−1 are plotted overlayed.
Apparently both traces show identical characteristics. The left half of the traces
(cycles 995-1150) shows a multiplication of pseudo-random OpA with pseudo-
random OpB. In the right half (cycles 1150-1320) OpB has been kept unchanged
during the N round transformations. In fact a multiplication with the constant

172 SETUP FOR CONDUCTING THE ATTACKS

Fig. 2. Comparison of simulated traces (on the left) and traces recorded on the FPGA
(on the right).

c = b2
m−1

mod f(z) which is used within the López-Dahab formula [24] is
performed in this interval. This unchanged operand leads to a similar power
consumption in this interval for all round transformations.

4.2 Leakage of the Digit-Serial Multiplier

With the field multiplication being the most time-consuming part of an EC
point multiplication and the digit-serial multiplier being the most active part
of the circuit, the side-channel vulnerability is highly dependent on the power-
consumption of a digit-serial multiplier.

The main source of leakage within the digit-serial multiplier lies within the
multiplication of the full word OpA with a single digit OpBi. In a first model
(which was wrong) we theorized that there will be a higher power consumption
when OpBi = 1 (with d = 1) and a lower power consumption with OpBi = 0.
Such a power model may be true for a logic style such as Transistor-Transistor-
Logic (TTL), but for a CMOS process our power model had to be refined. In
CMOS, the power consumption does not depend on the current state of a signal,
but on the transition from the previous state to the next state. So the power con-
sumption is related to the Hamming distance of two consecutive values of OpBi.
Let w(·) denote the Hamming weight and hd(·, ·) denote the Hamming distance.
Experiments showed that the higher the Hamming distance hd(OpBi, OpBi+1),
the higher is the power consumption of the circuit. Let hd(OpB) be a vector
with all hd(OpBi) and hd(OpBi) be a short form for hd(OpBi, OpBi+1).

Before we discuss the impact of the digit-serial multiplier on the side-channel
leakage in Section 8 in detail, we must elaborate our basic side-channel analysis
approach and related assumptions.

5 Setup for Conducting the Attacks

Two approaches to record the required power trace for the performed attacks are
used. On the one hand the power traces are generated using a simulation of the
implementation. On the other hand the design was implemented on an FPGA
and the power consumption was measured using an oscilloscope. The achieved
results were compared and prove the correctness of the attack assumptions.

ASSURING SIDE-CHANNEL RESISTANCE 173

5.1 Simulator Toolchain

A simulator toolchain was used in order to enable an attack on the ECC imple-
mentation in a noise-free environment. This toolchain consists of four elements:
Cadence RTL Compiler v08.10 was used to synthesize the VHDL code to UMC
L-130 logic gates; Cadence First Encounter v08.10 was used to place and route
the design; NCSim v08.20 was used to simulate the routed design and generate
a value-change-dump (VCD) file; and a VCD analyzer was used to generate sim-
ulated power traces from the VCD file by applying a toggle-counting technique.
By accumulating all toggles within a clock cycle, the resulting trace contained
one data value per clock cycle. As shown in Kirschbaum et al. [19], simulated
power traces derived from toggle counts are well comparable to SPICE power
simulations as well as to real power measurements of an integrated circuit.

5.2 FPGA Measurement Setup

We furthermore synthesized the design (with d = 1) on an FPGA. This step
enables us to record the power consumption during the targeted point multipli-
cation performed on a real-world device. As FPGA a Virtex-II Pro xc2vp7 was
used which is part of the SASEBO [35] side-channel evaluation board. As the de-
velopment environment, Xilinx 10.1.03 was used. For recording the power traces
we have used a LeCroy WP725Zi oscilloscope with a sampling rate of 2.5 GS/s
and operate the device under test at a clock rate of 25 MHz. Our first measure-
ments showed that for the attacks an accurate clock frequency is beneficial in
order to avoid the introduction of noise due to clock jitter. Using an off-the-shelf
quartz increases the effort for the attack as additional postprocessing steps on the
recorded trace are required. In particular, a fixed number of samples per clock
period is required for the attack, that means the ratio between the sampling rate
and the clock rate must be integer. If this is not the case an upsampling of the
recorded trace is required in order to achieve this ratio. To circumvent this we
used an Agilent 33250A signal generator as external clock source. Further the
complete point multiplication must be finished before the used oscilloscope runs
out of “input buffer”. Our LeCroy WP725Zi oscilloscope is capable of storing 64
million samples per trace.

In order to decrease the calculation and memory effort we performed a down-
sampling step on the recorded trace. In this preprocessing step, all the sample
points within one clock period of the device were summed up. Once again, we
want to emphasize that the following attacks work using only a single power
trace of the scalar multiplication.

6 Assuring Side-Channel Resistance

In order to make sure that our implementation has no key dependent leakage, we
performed a basic difference-of-means analysis with a known scalar. By redesign-
ing the hardware, all sources of leakage were eliminated. The difference-of-means
trace in Figure 3 shows the leakage of a preliminary version of our hardware de-
sign under investigation.

174 CORRELATION OF CONSECUTIVE ROUNDS

Fig. 3. Difference-of-means of a simulated power trace.

Theory. To launch a difference-of-means attack (cf. [25]), all key-dependent
round traces are categorized according to ki. Next, the average avg(Ri|ki,∀i)
and the difference of the means in the respectable categories avg(Ri|ki=0,∀i) −
avg(Ri|ki=1,∀i) are calculated. By investigation of the resulting plot it is possible
to find key-dependent operations in the trace.

Practical Results. A difference-of-means calculation was performed using the
subtraces Ri extracted from a single measured power trace from an early FPGA
implementation and is depicted in Figure 3. The operations at clock cycles with
a high difference show some key-dependent behavior. The higher the difference
is, the easier it is for an attacker to find the key-dependent parts. This results
allow a designer to identify key-dependent operations and improve the design.
In our special case we found that at clock cycle 1160, the access to the data
memory was dependent on the key bit ki. For all subsequent experiments this
error was obviously fixed.

We redesigned our hardware implementation until the most significant peaks of
the difference-of-means analysis vanished. Therefore we covered the basics and
assured the significance of the following power analysis attacks.

7 Correlation of Consecutive Rounds

The assumption is that in consecutive rounds Ri and Ri−1 similarities dependent
on the processed bits ki and ki−1 can be found. This holds for our implementation
using the formulas of López and Dahab (cf. Appendix A) for point multiplication
but is also applicable to other algorithms.

CORRELATION OF CONSECUTIVE ROUNDS 175

Noise margin
Noise margin

Noise margin

Noise margin

Noise marginNoise margin

Fig. 4. Euclidean distance traces.

Theory. In this scenario we focus on finding similarities in the power traces
Ri and Ri−1 of two consecutive rounds. Once again it has to be mentioned that
these power traces are subtraces of equal length of one power trace recorded dur-
ing the point multiplication. The idea behind this approach is that the power
profile of a digit-serial multiplication is mostly dependent on OpB. If the same
operand OpB has been used in two consecutive rounds similarities can be found.
Witteman et al. [38] have used a similar assumption in their attack on the RSA
modular exponentiation. They take advantage of the fact that the square-and-
multiply-always algorithm reuses operands in a key-dependent manner. As sim-
ilarity measure we have tried the correlation coefficient as well as the Euclidean
distance. Both approaches lead to comparable results with runtime advantages
for the Euclidean distance. Equation 1 shows how to calculate the Euclidean
distance of two consecutive rounds with offset oi, oi−1 respectively and a win-
dow size w. In Equation 2, the formula to generate the distance matrix for the
rounds i and i− 1 with the given limits for j and l can be found.

d(Ri, Ri−1)|oi,oi−1
= ||Ri(oi, oi + w), Ri−1(oi−1, oi−1 + w)|| (1)

Distjl (Ri, Ri−1) = d(Ri, Ri−1)|j,l (2)

|k| ≥ i ≥ 1; 0 ≤ j ≤ tround − w; 0 ≤ l ≤ tround − w;

Practical Results. Figure 4 shows the results of a windowed correlation of two
consecutive rounds with a window size w = 163 using the traces recorded from
the FPGA. The length of the subtraces Ri is 1796 samples. Small Euclidean
distances are indicators for similar intermediate values. Those traces with small
Euclidean distances have been highlighted. Two cases are distinguishable in Fig-
ure 4. In the first case (e.g., between rounds 160 and 159) three locations with
a small Euclidean distance can be identified. In the second case (e.g., between

176 CORRELATION OF CONSECUTIVE ROUNDS

Fig. 5. Influence of noise on the noise margin.

rounds 161 and 160) only one location with a small Euclidean distance can be
identified. By investigating the formulas of López and Dahab [24], we identified

the peak around offset 1150 as OpB = c = b2
m−1

mod f(z). This single peak ap-
pears in all correlation figures at the same position. The other two peaks appear,
when the Hamming distance hd(ki, ki−1) = 1. In other words: the peaks appear,
when the key bit ki is different from ki−1. In such a case one operand OpB from
round i is used again (unchanged) in round i− 1. For a better understanding of
the underlying problem, we attached the used formulas in Appendix A.

We also performed the same attack on the simulated traces and achieved
comparable results. As the simulated traces do not contain measurement noise,
the minimum Euclidean distances are even smaller. The presented attack worked
for d = 1, d = 2, and d = 4 (used window sizes: w = 163, w = 82, and w = 41
respectively).

In order to visualize the influence of noise (e.g. introduced by the measure-
ment environment or active noise countermeasures), simulated gaussian noise
with different power levels has been added to the simulated as well as the mea-
sured trace. Figure 5 shows the normalized noise margin as a function of the
signal to noise ratio SNR. The SNR has been calculated according to Equa-
tion 3. The evolution of the noise margin for simulation and FPGA experiment
is similar, only the value of the SNR where the noise margin comes below zero
is different. For the FPGA experiment the noise margin comes below zero at
-24 dB and for the simulation at -43 dB. The difference can be explained by the
fact that the trace recorded with the FPGA already contains some noise. The
trace extracted using the simulation on the other hand can be seen as noise free.

SNR = 20 · log
Ueff,Signal

Ueff,Noise
(3)

REVEALING INTERMEDIATE OPERANDS 177

Fig. 6. Simulated power profiles for different d in the presence of glitches.

8 Revealing Intermediate Operands

In this section, we want to uniquely identify the intermediate finite-field polyno-
mials used as operand OpB and discuss some more advanced attack scenarios.
For a better understanding of the associated challenges, let us first investigate
practical simulations.

Assumptions & Transferability. For this scenario we need to assume that a
digit-serial multiplier is used. It is applicable to all designs based on digit-serial
multipliers.

Practical Results. Figure 6 shows simulated toggle counts for |k| overlayed
N -bit multiplications. Using reference simulations, we marked the different Ham-
ming distances hd(OpBi) with respective symbols. The following three charac-
teristics are eye-catching: The different Hamming distances are distinguishable.
The larger the digit size d is, the less distinguishable are the different levels of
power consumption. And the more glitches occur on OpBi, the less separable
are those power levels. In our hardware design, we used an N -bit wide 5:1 mul-
tiplexer and a N :d multiplexer to select OpBi. The resulting glitches are clearly
visible in the lower row of Figure 6. The upper row is the result of a d bit reg-
ister being added after the multiplexers to suppress those glitches2. Also if the
multiplexers are replaced by shift registers, there are virtually no glitches.

Interestingly, in the case of d = 1, glitches only occurred in a 1 → 1 tran-
sition. Obviously, the AOI-gates used in our design suppress glitches in 0 → 0
transitions.
2 For high-performance ECC implementations those registers are necessary in order

to achieve the desired timings.

178 REVEALING INTERMEDIATE OPERANDS

Table 1. Average number of solutions for OpB assuming hd(OpB) is given.

Parameter N = 163 N = 256

d = 1 21 = 21 21 = 21

d = 2 2220.5×81 = 242.5 2220.5×127 = 265.5

d = 3 2330.75×54 = 267.2 2330.75×85 = 2104

d = 4 2440.5×4060.375×40 = 282.8 2440.5×6360.375×63 = 2128.1

Identifying the Intermediates. At this point, the attacker wants to identify
the intermediate values processed during the field multiplications by using the
given power traces. The identification of the operand(s) OpBi has to be done in
two phases:

At first, the leaking Hamming distances in the power trace have to be classi-
fied. By overlaying all |k| rounds, as it has been done in Figure 6, it is possible
to distinguish clusters of different Hamming distances. This classification can
for instance be performed using a k-means algorithm [16]. We performed this
classification on our simulated power traces and were able to detect the correct
Hamming distances with the following error rates: 0.33% for d = 1 without and
with glitches, 4.13% for d = 2 without glitches, 9.31% for d = 2 with glitches,
4.96% for d = 4 without glitches and 9.04% for d = 4 with glitches.

During the second phase, we used the Hamming distances hd(OpB) to iter-
ate through all possible solutions. Several possible solutions for OpB result in
the same hd(OpB). Equation 4 gives an average number of possible solutions
Nsolutions in dependence of N and d, when hd(OpB) is given. #(hd = h) is the
number of possible solutions for a fixed Hamming distance h and p(hd = h) is the
probability of the Hamming distance h. Since it is necessary to guess OpBMSB ,
2d is a multiplicand factor within the equation. Table 1 gives exemplary numbers
for N = 163, N = 256, and d = 1...4.

Nsolutions = 2d ·
(

d∏

h=0

#(hd = h)p(hd=h)

)dNd e−1

(4)

The following short example should clarify the problematic: When d = 2,
hd(OpBi, OpBi+1) is either 0, 1, or 2. Whereas hd = 0 and hd = 2 uniquely map
OpBi to a single OpBi+1, hd = 1 does not. Let us assume OpBi = 00b. Then
there are two solutions hd(00b, 01b) = hd(00b, 10b) = 1. With our power model3,
those two solutions cannot be distinguished in the power trace. In average there
are 242.5 possible solutions (cf. Table 1) for d = 2 and N = 163. Using brute-
force, breaking 242.5 is practicable.

Other exemplary cases such as d > 2 orN = 256 are theoretically possible but
impractical. However Table 1 depicts an average case. In practice the number
of possibilities Nsolutions for a certain OpB depends on hw(OpB). Hence, it
is clever to only attack OpB with a small search space. An approximation of
the necessary runtime can be performed in constant time. Furthermore we are

3 Note that this might be possible using more advanced power models.

REVEALING INTERMEDIATE OPERANDS 179

confident that by investigating the different arrival times of single bits in OpBi

and by using more detailed timing information, our leakage model can be refined.
For many practical implementations without point randomization, finding

those intermediate values would be sufficient. However, in the context of this
paper (with point randomization) finding the intermediate values is only a prepa-
rational step for the following attack scenarios.

8.1 Correlate with an Arithmetic Combination of Intermediates.

In Section 7, a direct correlation of the power trace on two consecutive rounds
was performed. By changing the order of the operands of the multiplication this
attack can be prevented. In many cases there is still a link between consecu-
tive rounds when the result of an arithmetical combination of several operands
OpB1, OpB2, . . . in round i is used as operand in round i+ 1. If the arithmetical
combination f(·) as well as a set of operands OpB1, OpB2, . . . for round i is
known, a set of used operands F = f(OpB1, OpB2, . . .) for round i + 1 can be
calculated. Feeding f(·) with every possible combination of OpB1, OpB2, . . . and
performing the correlation d(hd(F), Ri−1) the size of the possible key candidates
can be decreased. The complexity of this attack highly depends on the number
of operands NOpB used as arguments for f(·) as well as on d. NOpB as well as d
have an influence on the number of possible results for F . If e.g. f(·) is a squaring
function (NOpB = 1) and d ≤ 2 the attack can be performed within acceptable
bounds. Furthermore it has to be considered that if some bits in F are wrong
there might still be a significant peak in the correlation plot, so there is no need
to find the exact value of F . This fact also decreases the attack complexity.

8.2 Attack Several Intermediates Simultaneously.

An enhancement of the previous scenario is to attack (OpB1, OpB2, . . .) as well
as F = f(OpB1, OpB2, . . .) simultaneously. Let us assume the Hamming dis-
tances of F and OpB1, OpB2, . . . are known, so only a limited number of combi-
nations for F and OpB1, OpB2, . . . fulfill the equation F = f(OpB1, OpB2, . . .).
Although we did not test it, we are confident that by attacking different inter-
mediates simultaneously the search space Nsolutions can be reduced by a certain
degree.

8.3 Find the x-Coordinate.

If an attacker can reveal the exact values for Xi (projective X coordinate in
round i) and Zi, she can calculate the x-coordinate of the currently processed
point. Even if Xi and Zi have been randomized and multiplied with a random
λ this attack works. In the case of Xr = Xi · λ and Zr = Zi · λ,

xi = Xr · Z−1
r = (λXi) · (λZi)

−1 = X · Z−1 (5)

can be recovered. Assuming a scalar multiplication Q = k × P is performed,
small multiples of P can be precalculated and compared with xi which is revealed

180 CONCLUSION

in each round. Thus step by step all bits of k can be revealed. Even if there is an
error in round i and xi cannot be matched, xi+1 can be used to identify more
key bits at once.

8.4 Undo the Projective Coordinate Randomization.

In order to perform a projective coordinate randomization, each coordinate is
multiplied with a random number λ. For that operation usually the same finite-
field multiplier is used as the finite-field multiplier used during a point multipli-
cation. So in the case of Xr = X · λ and λ is used as OpB, the randomization
factor can be found. By knowing λ many attack scenarios on a device doing a
point multiplication become feasible.

9 Conclusion

Nowadays the community knows that no implementation is believed to be secure
as long as it has not been attacked and investigated in sufficient detail. In this
paper, we attacked a protected ECC implementation by using only a single
power trace. So even the popularly used ECDSA and the Diffie-Hellman key
exchange algorithms are vulnerable. The corollary one should take away from
this paper is that a designer must not only consider a simple difference-of-means
attack but also be aware of more advanced and unexpected attack scenarios
such as the here shown custom correlation attack or the attack on all processed
intermediate values. But how should any designer be aware of future, currently
unknown attacks?

Acknowledgments

The research described in this paper has been supported, in parts, by the Eu-
ropean Commission through the ICT Program under contract ICT-SEC-2009-
5-258754 TAMPRES, and by the Austrian Research Promotion Agency (FFG)
and the Styrian Business Promotion Agency (SFG) under grant number 836628
(SeCoS).

References

1. H. Aigner, H. Bock, M. Hütter, and J. Wolkerstorfer. A Low-Cost ECC Coprocessor
for Smartcards. In M. Joye and J.-J. Quisquater, editors, CHES 2004, Proceedings,
volume 3156 of LNCS, pages 107–118. Springer, 2004.

2. T. Akishita and T. Takagi. Power Analysis to ECC Using Differential Power
Between Multiplication and Squaring. In CARDIS 2006, volume 3928 of LNCS,
pages 151–164, April 2006.

3. F. Amiel, B. Feix, M. Tunstall, C. Whelan, and W. Marnane. Distinguishing
Multiplications from Squaring Operations. In R. Avanzi, L. Keliher, and F. Sica,
editors, Selected Areas in Cryptography, volume 5381 of LNCS, pages 346–360.
Springer, 2009.

CONCLUSION 181

4. L. Batina, N. Mentens, S. B. Örs, and B. Preneel. Serial Multiplier Architectures
over GF(2n) for Elliptic Curve Cryptosystems. In IEEE Mediterranean Electronical
Conference – MELECON 2004, pages 779–782. IEEE, May 2004.

5. L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede. Low-Cost El-
liptic Curve Cryptography for Wireless Sensor Networks. In L. Buttyán, V. Gligor,
and D. Westhoff, editors, Security and Privacy in Ad-Hoc and Sensor Networks –
ESAS 2006, Revised Selected Papers, volume 4357, pages 6–17, Berlin Heidelberg,
2006. Springer-Verlag.

6. H. Bock, M. Braun, M. Dichtl, E. Hess, J. Heyszl, W. Kargl, H. Koroschetz,
B. Meyer, and H. Seuschek. A Milestone Towards RFID Products Offering Asym-
metric Authentication Based on Elliptic Curve Cryptography. Invited talk at
RFIDsec 2008, July 2008.

7. D. Brumley and D. Boneh. Remote timing attacks are practical. Computer Net-
works, 48(5):701–716, 2005.

8. C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil. Horizontal
Correlation Analysis on Exponentiation. In M. Soriano, S. Qing, and J. López,
editors, Information and Communications Security, volume 6476 of LNCS, pages
46–61. Springer, 2010.

9. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In Ç. K. Koç and C. Paar, editors, CHES 1999, Proceedings,
volume 1717 of LNCS, pages 292–302. Springer, 1999.

10. J.-F. Dhem, F. Kœune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-L.
Willems. A Practical Implementation of the Timing Attack. In J.-J. Quisquater
and B. Schneier, editors, CARDIS 1998, Proceedings, number 1820 in LNCS, pages
167–182. Springer, 1998.

11. H. Eberle, N. Gura, S. C. Shantz, and V. Gupta. A Cryptographic Processor
for Arbitrary Elliptic Curves over GF(2m). In E. Deprettere, S. Bhattacharyya,
J. Cavallaro, A. Darte, and L. Thiele, editors, Application-Specific Systems, Archi-
tectures, and Processors – ASAP 2003, pages 444–454, June 2003.

12. F. Fürbass and J. Wolkerstorfer. ECC Processor with Low Die Size for RFID
Applications. In Proceedings of 2007 IEEE International Symposium on Circuits
and Systems. IEEE, IEEE, May 2007.

13. C. H. Gebotys and R. J. Gebotys. Secure Elliptic Curve Implementations: An
Analysis of Resistance to Power-Attacks in a DSP Processor. In B. S. Kaliski
Jr., Ç. K. Koç, and C. Paar, editors, CHES 2002, Revised Papers, volume 2523 of
LNCS, pages 114–128. Springer, 2003.

14. J. Großschädl. A Bit-Serial Unified Multiplier Architecture for Finite Fields GF(p)
and GF(2m). In Ç. K. Koç, D. Naccache, and C. Paar, editors, CHES 2001,
Proceedings, volume 2162, pages 202–219. Springer Berlin / Heidelberg, May 2001.

15. D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptog-
raphy. Springer, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
2004.

16. J. A. Hartigan and M. A. Wong. Algorithm AS 136: A K-Means Clustering Al-
gorithm. volume 28, pages 100–108. Blackwell Publishing for the Royal Statistical
Society, 1979.

17. C. Herbst and M. Medwed. Using Templates to Attack Masked Montgomery Lad-
der Implementations of Modular Exponentiation. In K.-I. Chung, M. Yung, and
K. Sohn, editors, Workshop on Information Security Applications – WISA 2008,
Proceedings, volume 5379 of LNCS, pages 1–13. Springer, Februar 2008.

182 CONCLUSION

18. N. Homma, A. Miyamoto, T. Aoki, A. Satoh, and A. Shamir. Comparative Power
Analysis of Modular Exponentiation Algorithms. IEEE Transactions on Comput-
ers, 59(6):795–807, 2010.

19. M. Kirschbaum and T. Popp. Evaluation of Power Estimation Methods Based on
Logic Simulations. In K. C. Posch and J. Wolkerstorfer, editors, Proceedings of
Austrochip 2007, October 11, 2007, Graz, Austria, pages 45–51. Verlag der Tech-
nischen Universität Graz, October 2007. ISBN 978-3-902465-87-0.

20. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In N. Koblitz, editor, Advances in Cryptology - CRYPTO
1996, Proceedings, number 1109 in LNCS, pages 104–113. Springer, 1996.

21. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO,
pages 388–397, 1999.

22. S. S. Kumar and C. Paar. Are standards compliant Elliptic Curve Cryptosystems
feasible on RFID? In Workshop on RFID Security – RFIDSec 2006, 2006.

23. Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede. Elliptic-Curve-Based
Security Processor for RFID. IEEE Transactions on Computers, 57(11):1514–1527,
November 2008.

24. J. López and R. Dahab. Fast Multiplication on Elliptic Curves over GF(2m) with-
out Precomputation. In Ç. K. Koç and C. Paar, editors, CHES 1999, Proceedings,
volume 1717 of LNCS, pages 316–327. Springer, 1999.

25. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks – Revealing the
Secrets of Smart Cards. Springer, 2007. ISBN 978-0-387-30857-9.

26. M. Medwed and E. Oswald. Template Attacks on ECDSA. In K.-I. Chung,
M. Yung, and K. Sohn, editors, Workshop on Information Security Applications –
WISA 2008, Pre-Proceedings, pages 14–27, 2008.

27. B. Möller. Securing Elliptic Curve Point Multiplication against Side-Channel At-
tacks. In G. I. Davida and Y. Frankel, editors, Information Security Conference –
ISC 2001, Proceedings, volume 2200 of LNCS, pages 324–334. Springer, 2001.

28. National Institute of Standards and Technology (NIST). FIPS-186-3: Digital Sig-
nature Standard (DSS), 2009. Available online at http://www.itl.nist.gov/

fipspubs/.
29. NXP. Jcop 41 v2.3.1 java card, 2007.
30. G. Orlando and C. Paar. A High-Performance Reconfigurable Elliptic Curve Pro-

cessor for GF(2m). In Ç. K. Koç and C. Paar, editors, CHES 2000, Proceedings,
volume 1965 of 0302-9743, pages 41–56, London, UK, August 2000. Springer.

31. S. B. Örs, E. Oswald, and B. Preneel. Power-Analysis Attacks on FPGAs – First
Experimental Results. In C. D. Walter, Ç. K. Koç, and C. Paar, editors, CHES
2003, Proceedings, volume 2779 of LNCS, pages 35–50. Springer, 2003.

32. E. Oswald. Enhancing Simple Power-Analysis Attacks on Elliptic Curve Cryp-
tosystems. In B. S. Kaliski Jr., Ç. K. Koç, and C. Paar, editors, CHES 2002,
Revised Papers, volume 2523 of LNCS, pages 82–97. Springer, 2003.

33. E. Öztürk, B. Sunar, and E. Savas. Low-Power Elliptic Curve Cryptography Using
Scaled Modular Arithmetic. In M. Joye and J.-J. Quisquater, editors, CHES 2004,
Proceedings, volume 3156 of LNCS, pages 92–106. Springer, August 2004.

34. W. Pan and W. P. Marnane. A Correlation Power Analysis Attack against Tate
Pairing on FPGA. In Reconfigurable Computing: Architectures, Tools and Appli-
cations – ARC 2011, Proceedings, volume 6578 of LNCS, pages 340–349. Springer-
Verlag, 2011.

35. Side-channel attack standard evaluation board. The SASEBO Website. http:

//staff.aist.go.jp/akashi.satoh/SASEBO/en/index.html.

USED DOUBLE-AND-ADD FORMULA 183

36. C. D. Walter. Sliding Windows Succumbs to Big Mac Attack. In Ç. K. Koç,
D. Naccache, and C. Paar, editors, Cryptographic Hardware and Embedded Systems
CHES 2001, volume 2162 of LNCS, pages 286–299. Springer, 2001.

37. C. D. Walter. Simple Power Analysis of Unified Code for ECC Double and Add.
In M. Joye and J.-J. Quisquater, editors, CHES 2004, Proceedings, volume 3156 of
LNCS, pages 191–204. Springer, 2004.

38. M. F. Witteman, J. G. van Woudenberg, and F. Menarini. Defeating RSA Multiply-
Always and Message Blinding Countermeasures. In S. B. Heidelberg, editor, Topics
in Cryptology CT-RSA, pages 77–88, 2011.

39. J. Wolkerstorfer. Is Elliptic-Curve Cryptography Suitable for Small Devices? In
Workshop on RFID and Lightweight Crypto, July 13-15, 2005, Graz, Austria, pages
78–91, 2005.

A Used Double-And-Add Formula

In this paper we used a slight modification of the Montgomery Ladder by López
and Dahab. Algorithm 1 shows three iterations of the used double-and-add algo-
rithm for three consecutive key bits. The modification from the original formula
can be found in line 6. Here we swapped the order of x and Z1, which is allowed
according to the law of commutativity. During the first two iterations (left and
middle column), an identical key bit is handled. So there is only a correlation
when the constant c is used. During the second and third iteration, in which the
key bit differs, Z1 is used multiple times. Consequently in Figure 4 three easily
distinguishable peaks occur. A correlation of c and Z1 can be observed.

Algorithm 1 López and Dahab round operations with key bits (0-0-1).

Ensure: P ′1 ← P1 + P2.
Ensure: P ′2 ← 2 · P2.

Point Addition
1: X1 ← X1 · Z2

2: Z1 ← Z1 ·X2

3: T1 ← X1 · Z1

4: Z1 ← Z1 + X1

5: Z1 ← Z1 · Z1

6: X1 ← x · Z1

7: X1 ← X1 + T1

Point Doubling
8: X2 ← X2 ·X2

9: Z2 ← Z2 · Z2

10: T1 ← Z2 · c
11: Z2 ← Z2 ·X2

12: T1 ← T1 · T1

13: X2 ← X2 ·X2

14: X2 ← X2 + T1

Ensure: P ′1 ← P1 + P2.
Ensure: P ′2 ← 2 · P2.

Point Addition
1: X1 ← X1 · Z2

2: Z1 ← Z1 ·X2

3: T1 ← X1 · Z1

4: Z1 ← Z1 + X1

5: Z1 ← Z1 · Z1

6: X1 ← x · Z1

7: X1 ← X1 + T1

Point Doubling
8: X2 ← X2 ·X2

9: Z2 ← Z2 · Z2

10: T1 ← Z2 · c
11: Z2 ← Z2 ·X2

12: T1 ← T1 · T1

13: X2 ← X2 ·X2

14: X2 ← X2 + T1

Ensure: P ′2 ← P2 + P1.
Ensure: P ′1 ← 2 · P1.

Point Addition
1: X2 ← X2 · Z1

2: Z2 ← Z2 ·X1

3: T1 ← X2 · Z2

4: Z2 ← Z2 + X2

5: Z2 ← Z2 · Z2

6: X2 ← x · Z2

7: X2 ← X2 + T1

Point Doubling
8: X1 ← X1 ·X1

9: Z1 ← Z1 · Z1

10: T1 ← Z1 · c
11: Z1 ← Z1 ·X1

12: T1 ← T1 · T1

13: X1 ← X1 ·X1

14: X1 ← X1 + T1

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used
other than the declared sources / resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the used
sources.

(date) (signature)

185

	Abstract
	Acknowledgements
	Contents
	I ECC from a High-Level Perspective
	Introduction
	Main Contributions
	Key Distribution Problem
	Assumptions on Prior Knowledge
	ECC within the Bigger Picture
	RSA versus ECC versus AES
	The Premise for Using ECC
	Thesis Outline

	Requirements of Applications
	Embedded Systems
	Wireless Sensor Networks
	Radio Frequency Identification
	Conclusion

	Implementing Elliptic Curve Cryptography
	Notations
	Cryptographic Protocols to be Considered
	Elliptic Curve Discrete Signature Algorithm
	Elliptic Curve Diffie-Hellman Key Exchange

	Methods for Scalar Multiplication
	Methods for Insecure Scalar Multiplication
	Montgomery Ladder

	Side-Channel Hardened Point Arithmetic
	Vulnerability Analysis

	Conclusion

	Future Work
	Bibliography

	II Publications
	List of Publications
	8/16/32 Shades of Elliptic Curve Cryptography on Embedded Processors
	Hardware Architectures for MSP430-based Wireless Sensor Nodes Performing Elliptic Curve Cryptography
	A Lightweight ATmega-based Application-Specific Instruction-Set Processor for Elliptic Curve Cryptography
	Fast Multi-Precision Multiplication for Public-Key Cryptography on Embedded Microprocessors
	A Hardware Processor Supporting Elliptic Curve Cryptography for Less Than 9kGEs
	Exploring the Design Space of Prime Field vs. Binary Field ECC-Hardware Implementations
	Analyzing Side-Channel Leakage of RFID-Suitable Lightweight ECC Hardware

