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Abstract

Location awareness is a key enabler for a multitude of indoor applications, such as logistics,
intelligent warehouses, or flexible production. The robust provision of accurate position infor-
mation requires a careful fusion of location-dependent parameters acquired by various sensors,
including range measurements from radio signals. The latter are the basis for successful outdoor
localization systems like the Global Positioning System (GPS). However, indoor environments
are often characterized by dense multipath channels. These originate from the superposition of
many physical propagation mechanisms, which are caused by many spatially close interacting
objects. Especially for indoor localization systems, this is still the main source of errors. Ho-
wever, deterministic reflections of the radio signal on surfaces such as walls can be modeled
geometrically, leading to defined relationships of their path parameters with the position of an
agent that is receiving such a signal and thus additional position-related information.

The position-related information inherent in these signal paths is the main focus of this thesis.
A geometric-stochastic channel model allows for the proper decomposition of signals into useful
information and non-resolvable, interfering components. The concept of virtual anchors (VAs)
is employed for the geometric modeling of deterministic multipath components (MPCs) using
a known floor plan as prior knowledge. It is shown by experiments that these MPCs carry
a significant part of the energy of a received radio signal. Statistical performance bounds are
derived for multipath-assisted positioning, defining the position-related information of each MPC
as a function of signal and channel parameters. Most importantly, a Signal-to-Interference-and-
Noise Ratio (SINR) is introduced that quantifies the amount of this information for each MPC.
Estimation methods are presented for the SINR, which allow to characterize the position-related
information of an environment.

Based on the position-related information, the results presented in this thesis allow (i) to gain
an understanding of the physically relevant propagation phenomena using measured data, (ii)
to find statistical models to characterize their influence on the position-related parameters in
the signals, and (iii) to show the excellent accuracy and robustness that can be achieved by
exploiting multipath. Tracking algorithms are proposed that can be made aware of the position-
relevant propagation phenomena and their respective uncertainty. Using experimental data from
various scenarios, this is shown to be the key factor enabling the constructive use of MPCs for
positioning, consistently leading to position errors below 5 cm for 90 % of the estimates.

The work in this thesis is in contrast to most existing literature on radio-based indoor positio-
ning, in which methods are presented to counteract the performance impairments of multipath.
One outcome is a real-time demonstration system that allows for fast and flexible testing of
existing and new algorithms and serves as a proof-of-concept for multipath-assisted tracking.
The experimental results in this thesis are valuable for the design and evaluation of future indoor
wireless applications. This is especially true for the presented results on channel analysis, which
give guidelines for the design and parametrization of spatially consistent geometric-stochastic
channel models.





Kurzfassung

Die Möglichkeit zur Positionsbestimmung erlaubt eine Vielzahl von Innenraum-Anwendungen,
wie etwa in der Logistik, in intelligenten Kaufhäusern sowie in der flexiblen Produktion. Robus-
te und akkurate Positionierung erfordert eine sorgfältige Kombination von positionsabhängigen
Parametern, welche aus den Messwerten verschiedener Sensoren geschätzt werden. Distanzmes-
sungen mittels Funksignalen sind hierbei populär und bilden die Basis für beispielsweise das
Global Positioning System (GPS). Dieses und ähnliche Systeme sind hauptsächlich für Außen-
bereiche konzipiert. Ausbreitungskanäle in Innenräumen weisen oft eine große Anzahl und Dich-
te von Mehrwegekomponenten auf, was der Hauptgrund für die mangelnde Robustheit und die
typischerweise größeren Fehler von Innenraum-Lokalisierungssystemen ist. Ein Teil der Mehrwe-
gekomponenten trägt jedoch positionsrelevante geometrische Information in sich, welche durch
geeignete Modellierung zur Positionierung genutzt werden kann.

Diese in den Funksignalen eingebettete positionsrelevante Information bildet den Schwerpunkt
dieser Arbeit. Ein geometrisch-stochastisches Kanalmodell erlaubt die Zerlegung der Signale in
nützliche Information und nicht auflösbare, interferierende Komponenten. Das Konzept der Spie-
gelquellen wird mit Hilfe eines Bauplans für die geometrische Modellierung der deterministischen
Mehrwegekomponenten genutzt. Experimente mit gemessenen Signalen zeigen, dass ein signifi-
kanter Teil der Energie eines empfangenen Funksignals auf diese Komponenten zurückzuführen
ist. Statistische Schranken für den Positionierungsfehler von Mehrwege-unterstützter Positionie-
rung führen zur formalen Definition der positionsrelevanten Information dieser Komponenten.
Diese kann als Funktion von Signal- und Kanalparametern dargestellt werden und wird durch den
Signal-zu-Interferenz-und-Rausch-Abstand der jeweiligen Mehrwegekomponente quantifiziert. In
dieser Dissertation werden Schätzmethoden vorgeschlagen, die eine Charakterisierung dieser In-
formation in einer Umgebung erlauben.

Die in dieser Arbeit präsentierten Resultate erlauben es, (i) ein Verständnis der physikalisch
relevanten Ausbreitungsphänomene mit Hilfe gemessener Daten zu gewinnen, (ii) statistische
Modelle zu finden, welche den Einfluss dieser Phänomene auf die positionsabhängigen Parame-
ter in den Signalen charakterisieren und (iii) die exzellente Genauigkeit und Robustheit, wel-
che durch die Ausnutzung von Mehrwegeausbreitung ermöglicht werden, zu zeigen. Es werden
Tracking Algorithmen vorgeschlagen, die auf die positionsrelevanten Ausbreitungseigenschaften
sowie deren Unsicherheiten eingestellt sind. Damit ist eine optimale Gewichtung der Information
von Mehrwegekomponenten möglich. In verschiedenen Umgebungen können unter Verwendung
gemessener Signale in 90 % der Fälle Schätzfehler unter 5 cm erreicht werden. Dies zeigt die
Robustheit und Genauigkeit des vorgeschlagenen Ansatzes.

Die vorliegende Arbeit steht im Gegensatz zur existierenden Literatur zu funkbasierter Loka-
lisierung, in welcher Mehrwegeausbreitung nur als Fehler- und nicht wie hier als Informations-
quelle angesehen wird. Ein wichtiges Ergebnis ist ein Echtzeit-Demonstrationssystem, welches
schnelle und flexible Tests von existierenden und neuen Algorithmen erlaubt, und gleichzeitig
als Machbarkeitsnachweis von Mehrwege-unterstützter Positionierung dient. Die experimentel-
len Resultate sind wertvoll für zukünftige drahtlose Anwendungen. Dies gilt vor allem für die
Resultate zur Kanalanalyse, welche als Basis für die Entwicklung und Parametrisierung von
örtlich konsistenten, geometrisch-stochastischen Kanalmodellen dienen.
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Round here,
something radiates

– Counting Crows, “Round Here” [1]

She knows there’s no success like failure,
and that failure’s no success at all

– Bob Dylan, “Love Minus Zero/No Limit” [2]

The echo of a distant time
Comes willowing across the sand
And everything is green and submarine

– Pink Floyd, “Echoes” [3]
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1
Introduction

Remark on the bibliography: This thesis is a collection of publications with an extended intro-
duction an overview over the main results, and additional discussions and results. The included
papers are referenced in the text using labels in the form [T#], to distinguish them from con-
ventional references to work of others.

This chapter provides an introduction to the work in this thesis. Section 1.1 summarizes
technologies, algorithms and performance considerations for indoor positioning systems1. The
research question and the relation to other work is discussed in Section 1.2. The contributions
that have been made are lined out and are put in relation to related work in Section 1.3. Also,
this chapter contains a list and a discussion of the papers that are included in Part III.

1.1 Indoor Positioning Systems

Outdoors, whether we are driving by car, hiking, or walking in a city, we are used to be able
to determine our position all the time. This is enabled by systems like the global positioning
system (GPS), whose use have become ubiquitous. While current research still tries to improve
e.g. the sensitivity of the receivers or to reduce the impact of multipath propagation, the system
already provides an acceptable level of positioning performance.

Inside buildings, the situation changes dramatically. GPS receivers are no longer able to
demodulate satellite signals due to insufficient signal strength. Hence, dedicated indoor systems
are needed, but as of today, no single such system is in widespread use. Instead, numerous
competing enabling technologies exist and lead to a variety of different solutions [4–8]. This
section summarizes technologies, algorithmic approaches and performance considerations.

1 The term “positioning” describes the determination of the coordinates of an object in a defined coordinate
system, while “localization” refers to the position of an object relative to topological relations [23]. These
terms are often used interchangeably in the literature, despite the fact that in most cases positioning is the
more correct term. In this thesis, coordinates w.r.t. a floor plan are estimated, in principle allowing for both
terms.

– 17 –



1 Introduction

1.1.1 Technologies used for Positioning

Throughout this thesis, we restrict the attention to systems that use so-called anchors, which
are signal transmitters or receivers2 at known locations. The position of an agent is estimated
based on observations of signals transmitted between the anchors and the agent, and position-
dependent parameters embedded in these signals. Outdoors, the choice of satellites3 is natural
as anchors for providing position-dependent signals for a sufficiently large area. Indoors, anchors
can be employed using different signaling technologies.

In most systems, either the angle or the distance between anchor and agent is estimated.
Since estimation of the angle requires multi-antenna systems and we focus on low-complexity
devices, we restrict the attention to estimating the distance, or the time-of-arrival (ToA)4. Fig.
1.1 illustrates the basic principle using three anchors. With perfect distances as in Fig. 1.1a,
all corresponding circles around the anchors intersect in a common point. Since in practice only
noisy observations of these distances will be available, this uniqueness will be lost as in Fig. 1.1b,
requiring to pose a criterion on the most suitable position, i.e. an estimation algorithm. In this
thesis, multiple range estimates are obtained from one signal, each of which can associated to the
surrounding geometry. However, this association is not given a-priori, resulting in a situation as
indicated in Fig. 1.1c. I.e. another level of ambiguity is introduced which needs to be resolved.

A1

A2

A3d3p

(a) True distances

A1

A2

A3d3p

(b) Noisy distances

A1

A2

A3
p

(c) Missing data association

Figure 1.1: Error sources in range-based positioning: All three distance circles around the anchors intersect
in one point (a). Erroneous range estimates result in ambiguities as shown in (b). This problem
is much more severe if the association of ranges to the anchors is not given (c).

Positioning systems differ in the physical mechanisms that are used to estimate the distance
to the anchors. The resulting uncertainty of the distance estimate must then be coped with by
the data fusion, i.e. the estimation algorithm. In the following, we provide a brief overview over
the principles used. An excellent and detailed survey of available systems can be found in [5].

Optical Techniques

Optical signals such as infrared signals, have the benefit that relatively cheap hardware imple-
mentations are available. Due to the employed wavelength, in principle a range accuracy in
the millimeter range is possible. However, the most important drawback is that a strict optical
line-of-sight connection between anchor and agent is needed.

Time-of-flight cameras are a relatively new development. They measure not only the light
intensity on each sensor pixel, but also the corresponding time-of-flight of a light signal from the
camera to the agent and back. Despite the fact that also here a line-of-sight (LOS) connection
is needed, this is an interesting concept for future applications, since, given ever increasing
computational power, a whole scene can be analyzed with a large update rate.

2 The first case corresponds to a navigation scenario, while the second case resembles tracking of an actively
transmitting object.

3 Or stars in classical celestial techniques. In local positioning systems, anchors are also called pseudolites [4,5].
4 Another possibility is to estimate the time-difference-of-arrival (TDoA) w.r.t. some anchor, if agent and anchors

are not synchronized [9, 10].

– 18 –



1.1 Indoor Positioning Systems

Acoustic Methods

The strict LOS requirement can be relaxed using acoustic signals including audible as well as
ultrasonic sound. With wavelengths comparable to the microwave case, basically the same spatial
resolutions on centimeter level are possible. Acoustic devices may often be cheaper as high-
frequency radio equipment, which also motivates their use in research. However, the acoustic
propagation channel shows a strongly reverberant nature, with a large level of diffuse multipath
(DM) [11]. The approach followed in this thesis has also been implemented in the audible
acoustic domain in [12]. The results using electromagnetic signals could not be reproduced due
to the difficulty of detecting reflected components in audio signals. Another difficulty is the long
reverberation time of acoustic channels, that does not allow for assuming quasi-stationarity of
the channel during tracking using realistic update rates.

Radio-based Methods

Some of these drawbacks are remedied using radio signals. They do not require an unblocked
optical path between anchor and agent, which makes them usable in e.g. smoke. Also, current
radio transceiver technology allows for small form factors and low power consumption, enabling
their integration in other devices, such as smartphones. However, it is well known that a
narrowband and also conventional wideband systems do not provide sufficient time resolution to
separate the LOS path from the indirectly transmitted paths [13, 14]. One of the most popular
radio-based techniques is wireless local area networks (WLAN) based positioning, since it makes
use of hardware that is available nearly everywhere. The distance is estimated most often based
on the received signal strength [15], which has a much larger variance than a direct estimation
of the ToA using a wideband signal. Section 7.1 in Part II of this thesis gives an overview over
the position-relevance of different propagation mechanisms.

In this thesis, we restrict our attention to ultra-wideband (UWB) systems [16,17] that posses
the advantage of the resolvability of the LOS path from the rest of the channel. UWB systems
can be divided into two subclasses depending on their actual bandwidth [18]: UWB-ABS systems
have an absolute bandwidth larger than 500 MHz, regardless of the center frequency of the band.
UWB-REL systems have a relative bandwidth (bandwidth divided by the center frequency)
larger than 20 %. This distinction is important when channel parameters are estimated from
measurements (see Section 7.2).

Inertial Measurement Units

Measurements of the acceleration of the agent w.r.t. the coordinates are different to the systems
discussed above, since no range estimation w.r.t. anchors is performed. Current research takes
into account the high level of maturity of these sensors and the availability in e.g. smartphones.
Here, the unknown orientation of the device w.r.t. the user provides additional difficulties [19].
Acceleration sensors can also be foot mounted, enabling relative positioning based on step length
estimation [20,21].

A basic principle followed is dead reckoning, i.e. based on a previous position estimate and
current observations of acceleration and heading, the new position is calculated by integration.
This explains why this technique is susceptible to accumulated errors and therefore drifts in the
position estimation. We include this method here, since it is a useful complementary technique
for anchor-based systems. The estimated acceleration can drive the state-space model (see
Section 5.1.1) and therefore substantially help in the prediction step that is needed for a proper
fusion of the range measurements.
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1.1.2 Algorithmic Approaches

Once distance estimates to anchors have been obtained, they have to be transformed to a
position estimate. As shown in Fig. 1.1, this is most often not possible unambiguously, hence
an estimation algorithm is necessary [22]. A fundamental distinction of position estimation
algorithms is whether they work on isolated range measurements or if they also exploit previously
estimated positions (together with a model of the agent’s motion) to infer the new position.
Algorithms belonging to the latter class are usually called tracking algorithms.

In the example in Fig. 1.1a, subsets of circles will intersect in points other than the true
position, also with perfect measurements. In a statistical model of the position as a function
of these range estimates, this can lead to multimodality, i.e. local minima of a cost function.
Hence, a suitable global optimization algorithm is needed, which often has large computational
complexity, or a good guess of the initial position must be available for an iterative optimization
procedure.

The latter case naturally leads to tracking algorithms. In a sequential positioning problem,
the position estimate from the last time step may be used as prior knowledge for the estimation.
A dynamic motion model allows to find the most likely new position of the agent before taking
into account the current distance estimates. This predicted position can also be used in the
fusion of the current measurements.

1.1.3 Performance Considerations for Positioning Systems

Accuracy will often be the first figure of merit that is reported for a positioning system. It is
defined as an average quantity describing the position error (the Euclidean distance between
true and estimated position), e.g. its root-mean-square value [9, 23]5. This includes effects
from systematic deviations, i.e. a bias, as well as the variance of the error. Due to harsh
propagation conditions for signals used in different sensing technologies, reported accuracy levels
often represent lower bounds on the position error. As such they may represent the general
sensitivity of the measurements with respect to the position. To actually achieve them, defined
environmental conditions have to be satisfied, such as line-of-sight situations for wireless systems.

For a realistic evaluation of the performance of a positioning systems, both accuracy and
robustness are needed. Robustness can be defined as the percentage of cases in which a given
system can actually reach the potential accuracy. In statistical signal processing, robustness is
often understood as the ability of an estimator to deal with unusual circumstances, such as large
measurement outliers or missing data, e.g. a ranging outage w.r.t. an anchor [7]. Here, these
effects are encompassed by the definition of robustness on the position error level, and not on
the measurement error level. This raises the question of how robustness can be evaluated for
a given system. In this thesis, an experimental approach is followed, where measurements in a
number of environments are used, which of course can only give an indication of the expected
robustness in these or comparable environments.

1.1.4 Requirements for Positioning Systems

One of the big challenges concerning indoor positioning is the problem of heterogeneous require-
ments. Based on the application scenario, different scales of accuracy may be desired. Whereas
for guidance of a customer in a mall, room-level accuracy may be enough, for tracking tools or
parts in a production environment, sub-meter accuracy is needed for the system to be considered
helpful. Also, the required level of robustness will be different in these cases.

5 The positioning literature also contains the term precision, which denotes the deviation from the mean position,
i.e. the variance of the position error. For unbiased estimates, precision and accuracy are equivalent [9].
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Scalability and required infrastructure are other issues. While private users may be willing
to pay a significant price for their individual device such as a smartphone [24], low costs are
imperative in industrial or logistics environments, where many goods must be tracked continu-
ously. This of course contradicts the above mentioned requirements on accuracy for these cases,
highlighting the difficulties.

The user experience w.r.t. position errors or even outage will be different compared to outdoor
systems. For GPS, users may accept a performance deterioration in e.g. dense woods or urban
canyons. Indoors, the cause for a sudden decrease of position accuracy is often not intuitive
for the user, due to the complicated physical propagation phenomena. The requirement on a
positioning system in this regard is the proper presentation of the current uncertainty to the
user, who in general is only interested in the position estimate itself. All in all, this again boils
down to robustness and its presentation to the user.

While not popular in the technical literature, ethical issues must be considered. Especially
a technology enabling the knowledge of the position of an individual at a given time carries
large risks of abuse. While [25] states that “. . . the employer’s business interests may outweigh
an employee’s privacy interest.”, the author of this thesis fears that the latter is often not
especially pronounced in the general public nowadays. Therefore, the implications and intricacies
of ubiquitous location awareness need to be addressed in the context of today’s vast amount of
personal data.

1.2 Motivation and Related Work

Based on the above discussion, the motivation behind the research done within this thesis is to
use the most suitable radio technology together with an optimal estimation procedure to obtain
an accurate and robust indoor positioning system. Therefore, ultra-wideband radio signals are
selected as a basis to obtain measurements. Tracking algorithms are chosen for the position
estimation, since they allow for an efficient mapping of propagation effects to the local geometry
as explained in Chapters 2 and 5.

1.2.1 Research Challenges for UWB Systems for Indoor Positioning

Even given the favorable properties of UWB signals, the following key research challenges are
identified:

Multipath Propagation – Robustness Issues: In indoor environments, especially in industrial
scenarios [26], dense multipath propagation occurs, which means that the signal energy
between anchors and the agent is divided in many different multipath components (MPCs)
that can bias the range estimation. This is still the main source of estimation errors
for range-based indoor localization approaches. It has been shown that available prior
knowledge on deterministic multipath components can be beneficial for localization [27],
which is a main motivation for the work in this thesis. Also, [28] shows that localization
performance can be improved, integrating more information based on received signals than
just the estimated direct path.

Non-Line-of-Sight (NLOS) Situations between Anchor and Agent: The problems caused by
multipath propagation get even more severe in NLOS situations, i.e. when the direct path
between an anchor and the agent is blocked. Indoors, this situation easily arises, as already
a human body absorbs a large part of a radio signal’s energy. The estimation of the direct
path is then even more difficult and ranging errors on meter level can be the result.
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Need for Additional Infrastructure for Robustness: In conventional indoor localization meth-
ods, often the amount of infrastructure is increased to enhance the robustness of the
system. For example, having more physical anchors in an environment leads to a higher
probability of having sufficiently many reliable range estimates. Also, floor plans of the
environment may be used to constrain the possible location of the agent to positions within
the floor plan [29]. This requirement can be understood as additional infrastructure.

Complexity Considerations: Advanced algorithms for indoor localization make use of e.g. coop-
eration of multiple agents [30] to overcome NLOS situations. Also, location fingerprinting
[31] can be used in harsh environments. It makes use of a-priori training signals in multiple
regions of the environment to train a classification algorithm. In the localization phase,
signals are compared with the training signals using suitable metrics. These methods have
been demonstrated to be beneficial in dense multipath environments. The downside is
the large effort that is required. In cooperative algorithms, computationally expensive
statistical algorithms have to be used, which may not allow real-time implementation.
In fingerprinting, a tedious training phase is needed, even if advanced methods [32] are
employed.

These considerations lead to the formulation of the research question and the main approach
followed in this thesis.

1.2.2 Research Question of this Thesis

UWB signals provide the possibility of separating the LOS path from reflected signal paths. This
allows for more robust ranging than using conventional wideband signals [13]. Furthermore, also
signal paths arriving later can in principle be isolated. Some of these paths are strongly related
to the surrounding geometry, such as specular reflections of the radio signal on e.g. room
walls. Based on the assumption of a known floor plan6 of the environment, these paths can be
extracted from the radio signal and matched to the geometry. As Chapter 2 shows, this can be
done by assigning virtual anchors (VAs) to each known potential reflector in the environment.
In this way, one physically existing anchor can be turned into a set of VAs providing position
information.

This potentially solves three of the four above mentioned key problems: (i) multipath propaga-
tion can be turned into an advantage instead of treating it as a problem; (ii) in NLOS situations,
only one signal path out of several is lost, leading to a less severe impairment, and (iii) infras-
tructure can be used efficiently, i.e. a lower number of physical anchors can be deployed. Of
course in this approach also the floor plan must be considered required infrastructure. As the
results of Chapter 5 will show, also the fourth research challenge is addressed since the presented
solution of the problem can be implemented using low-complexity algorithms that even allow
for real-time operation.

However, for this idea to succeed, the relevance and the accessibility of potential geometric
information of multipath components must be clarified. This leads to the statement of the
principal research questions addressed in this thesis:

Assuming prior knowledge of a floor plan, can the geometric information embedded in
multipath components be exploited for positioning? If so, how can this information be
modeled, quantified, and used for robust position estimation?

6 Since for most applications, a floor plan is anyways needed for a visualization of the estimated position to the
user, this requirement may be met in many cases. Depending on the positioning approach, the required level
of detail for this information may of course be larger for positioning than for visualization.
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1.2.3 Overview of Related Work

Conventional systems, i.e. systems like [33] that estimate the direct path from signals show
the potential of UWB for indoor localization with accuracies on centimeter level. However,
NLOS situations and impairments caused by multipath are not directly addressed [34]. In [35],
the achievable operating distance for standard-compliant UWB ranging is evaluated, showing
surprisingly large values up to several hundred meters also for non-coherent detection.

If multipath is taken into account, it is most often in the form of an error source. In [13], error
bounds for UWB ranging are derived, highlighting the importance of a large bandwidth. State
of the art approaches in dealing with multipath either try to detect these situations statistically
based on the received signals [36, 37], or to directly mitigate the corresponding errors with
statistical techniques [38, 39]. These methods partly show impressive results, but nevertheless,
they discard the geometric information of MPCs. This information was discussed in [27], but
used in a cooperative scenario, only allowing for relative accuracy gains.

Statistical performance bounds for the position estimation give valuable insight in the role of
different system and signal parameters. In [40, 41], the Cramér-Rao lower bound (CRLB) for
LOS and NLOS ranges is derived, also considering the case of known statistics of the latter.
However, the NLOS errors are modeled on the range level, giving no insight on the propagation
channel influence. A framework for systematic evaluation of CRLBs has been formulated in
[42,43]. This framework is also used in this thesis, but extended with a geometric model for the
deterministic MPCs as well as a stochastic model for the diffuse multipath. Similar methodology
has been used in e.g. [44] to evaluate performance gains of MIMO radar systems. Ref. [29]
presents analytical performance bounds for positioning using floor plan information. However,
the latter is only used to generate prior distributions for the agent’s position, and not in the
processing of measurements. In [45], performance bounds are derived for joint RFID and radar
sensor networks. The flow of position information through a network of navigating agents is
presented in [46].

In [47], reflections of an audio signal are used to help in the estimation of position-dependent
parameters, employing microphone arrays. Single-antenna anchor-free positioning is presented in
[48], but with the requirement for many closely-spaced received signals to solve an optimization
problem in localizing the virtual signal sources and the agent. Recently, a concept very similar
to the one developed in this thesis using virtual sources and data association has been applied
in the acoustic domain [49]. Using arrays, information from reflected components is also used in
[50, 51]. A set of known antenna locations can be used to enable beamforming e.g. in imaging
[52]. In an inverse problem, the room geometry can be inferred from the multipath and known
measurement locations [53].

References [54, 55] present techniques to benefit from signal reflections from known indoor
features such as walls. However, the important assumption of LOS conditions is made, which
implies that no NLOS robustness can be obtained. Also, the reflections used must be detected,
which means that they can not be used opportunistically as in this thesis. In [56], a method
for the use of single-bounce components is derived. The method requires movement of the
agent since the Doppler shift is included in the estimation procedure. Only simulation results
are presented. In [57], multiple sub-groups of range measurements are used to obtain position
estimates. A multi-hypothesis framework is employed for NLOS detection on the position level.
The obtained probabilities are then used in a Kalman filter as weights. The work in [58–60] uses
multipath for joint localization and room dimension estimation. However, the room geometry
is fixed to be simple rectangular and a certain reflection order is assumed, sacrificing scalability
of the method. In [61], TDoAs between MPCs are used without the need of a floor plan.
Nevertheless, rather restrictive assumptions such as an antenna array with known orientation
at the agent are made and the results are not conclusive.

In [31,32,62], a UWB fingerprinting approach is presented and evaluated. This can be accurate
and robust in especially challenging environments. However, the required training phase as well
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as the missing flexibility w.r.t. changes in the environment may limit its application. Ref. [32]
makes use of virtual sources to aid in the training phase. [63] uses a bat-type UWB radar with
one TX and two RXs, which employs reflections as features for localization. A particle filter with
data association is used, but only coarse results for the reconstruction of the room dimensions are
given, and not for localization. Cooperative approaches to localization are discussed in e.g. [30],
demonstrating large benefits of using relative measurements between nodes. Our approaches
using multipath have recently been extended to include cooperation [64–67].

This thesis follows an experimental approach to the topic since the constructive use of mul-
tipath heavily depends on properties of the propagation channel that need to be understood.
Experimentation is a vital tool for designing positioning systems that need to fuse information
from uncertain sources [68–70]. Competitions and evaluation projects such as [71,72] show that
indoor localization systems need to be evaluated in realistic environments as their performance
is difficult to compare using e.g. simulation results.

The method presented in this thesis makes efficient use of multipath propagation based on
the prior knowledge of the floor plan of the environment. It does so by weighting the location
dependent information contained in deterministic multipath components optimally. The weights
correspond to the actual path length uncertainties. This kind of weighting is often proposed in
the literature, but previously implemented using heuristic measures as weights only, e.g. in [37].
The physical relevance of the MPC weights used in this thesis stems from the fact the DM is
explicitly considered. Especially in indoor environments, this effect can be pronounced, leading
to the necessity of its proper modeling [26,73–77].

1.3 Outline and Contributions of this Thesis

In the light of the related work discussed above, the main contribution of the work presented
in this thesis is the constructive use of multipath propagation. This is enabled by a proper
geometric-stochastic channel model which is the basis for the quantification of the position
information of deterministic MPCs.

1.3.1 Outline of this Thesis

This thesis is structured in four main parts: The first part contains this introduction as well as
a summary of the main topics and results. In the second part, additional results and discussions
relevant to the presented topics are found. The third part is a collection of the most relevant
papers published in the time period of the research, and the fourth part contains appendices.

In Part I, Chapter 2 contains an extended discussion of the geometric model of the deter-
ministic MPCs. It also discusses the used geometric-stochastic channel model. Hence, it is
the basis for all following chapters and included papers. Chapter 3 deals with the derivation
of performance bounds for multipath-assisted positioning, while Chapter 4 discusses the actual
estimation of parameters of deterministic MPCs as well as their respective position-related in-
formation from measurement data. Tracking algorithms and the statistical models that are used
are presented in Chapter 5. Chapter 6 provides conclusions and an outlook to ongoing and
future research.

In Part II, Chapter 7 contains additional discussions about the propagation effects relevant for
positioning, the estimation of power delay profiles and related channel models in the literature.
Chapter 8 is a collection of additional results for the proposed channel analysis methods as
well as for the estimation of the performance bounds using measured signals, highlighting the
usefulness of these methods for understanding relevant propagation effects in an environment.

After Part III containing the included papers, Appendix A in Part IV presents the mea-
surement campaigns [78] conducted. Appendix B presents a first treatment of the geometric
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uncertainty of the positions of the VAs, which has not been used in publications so far.

1.3.2 Contributions per Topic

The main overall contributions of this thesis are:

• The relevance of deterministic MPCs is shown in terms of energetic [T2] as well as
information-theoretic measures [T3,T4,T7]. Numerous experiments are used to highlight
the importance of a proper geometric-stochastic model of these MPCs in a channel
model that also has to reflect the impairing effects of diffuse multipath.

• Based on statistical performance bounds for the position error, position-related infor-
mation of MPCs can be quantified [T3]. This information can be estimated from mea-
surements and can be used to evaluate the localization capabilities in a given environment
[T4,T7].

• The estimated position-related information can be used as model for the uncertainties
of the ranges of the reflected MPCs. In this way, an optimal weighting of the available
information can be performed, demonstrated by results approaching the corresponding
CRLB for measured signals [T8,T9].

• We demonstrate the feasibility of single-anchor-tracking with the presented methods,
allowing for a minimum of required infrastructure besides the known floor plan [T1, T5].
Using multiple anchors, these methods are shown to outperform conventional methods in
terms of accuracy and robustness to NLOS situations [T6].

• A proof-of-concept has been implemented in form of a real-time demonstration system.
This allows for rapid and flexible performance assessment of the approach in different
environments [T8].

• The numerous measurements campaigns obtained during the work on this thesis have
been made publicly available to the research community to allow for performance evalua-
tion of positioning and tracking algorithms [78].

In [T3], the term multipath-assisted indoor navigation and tracking (MINT) has been coined
for the presented general approach. As we will not explicitly deal with navigation aspects, we do
not directly use this term throughout this thesis. However, the presented algorithms allowing for
the exploitation of multipath can be considered implementations of the general MINT approach.

1.3.3 Contributions in the Included Papers

The contributions in the individual papers comprising Part III are:

[T1] contains the application of several Bayesian state-space estimation algorithms to the sta-
tistical model of estimated and unassociated multipath delays first proposed in [79]. The
missing data association and geometric symmetries cause multimodality. Tracking is in-
troduced as a possible remedy.

[T2] discusses channel analysis results in an exemplary scenario. An analysis of the energy
capture of the VA-modeled deterministic MPCs shows their relevance as channel features.
These MPCs carry a significant fraction of the energy of the received signal, which has
been confirmed in other environments later.

[T3] contains the derivation of the CRLB for multipath-assisted positioning as it is used in
this thesis. It is authored by the supervisor of this thesis, the author contributed the
computational framework for the numerical evaluation. This paper also introduces the
channel model that is used in the following papers.
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[T4] contains the derivation of an estimator for the signal-to-interference-and-noise ratio (SINR)
of VA-modeled deterministic MPCs from signals. As this allows for an estimation of CRLBs
using measurements, it shows how the localization capabilities of an environment can be
characterized using a few signals at known positions.

[T5] introduces the tracking and data association algorithm that were the first implementation
of the multipath-assisted indoor tracking approach using only a single anchor. It also
contains results for the particle filter in [T1] for measurements.

[T6] extends [T5] with a detailed comparison of the MINT implementation to conventional
tracking algorithms, highlighting the improved robustness in NLOS conditions also at
comparably low bandwidths.

[T7] discusses the use of a ray-tracing tool [80] for performance prediction of multipath-assisted
positioning by estimating CRLBs using ray-tracing signals and measurements from the
same environment.

[T8] introduces the live-demonstration system for MINT using an M-sequence radar channel
sounder. The MPC-SINR estimation techniques from [T4] are used to characterize two
example environments in terms of the position error bounds. The presented tracking
results match these bounds closely.

[T9] shows how to use the position-related information estimated using an extension of the
technique in [T4] as measurement noise model in a tracking algorithm. The uncertainties
of the range estimates w.r.t. a set of relevant MPCs are determined, providing awareness
to the uncertainty of the information. Results show that this is the key enabler for robust
indoor tracking.

In addition to these papers, [79] was the first paper of the author on the topic. It describes
the use of a statistical model of unassociated delay estimates to VAs and its use for maximum
likelihood positioning. It was not included in this thesis since during the work it quickly became
clear that the multipath-assisted localization approach needs to be evaluated on the signal level,
as it is strongly tied to propagation effects. The numerous channel measurement campaigns for
performance evaluation are collected in [78] and have been made publicly available. The first
public demonstration of MINT was performed at IPIN 2013 in Montbéliard, France [81].

The author has co-authored a number of papers that are related to the topic of this thesis. In
terms of channel estimation, [82] describes the extension of [83,84] to the geometric VA model,
while probability hypothesis density (PHD) filters are applied to UWB channels in [85]. An
application of the SAGE algorithm [86] to UWB signals has been discussed in [87].

Channel modeling has been addressed in [80], which introduces a ray tracing method for
ultra-wide bandwidths and is capable of modeling diffuse scattering, as analyzed in [T7]. To
enhance the degree of realism of the signals, material parameter optimization has been done in
[88]. A preliminary investigation on a combined modeling technique consisting of ray tracing
and propagation graphs is presented in [89] and subject of current research.

Localization and tracking algorithms for cooperating agents have been investigated in [66]
and [67]. The performance bounds in [T3] have been extended to a discrete time formulation
and more setups in [64], backscatter channels have been considered in [90]. A first concept of a
cognitive radar system using incorporating multipath has been introduced in [91]. Maximum-
likelihood positioning using the statistical model of [T3] is presented in [92]. A system-level
simulation tool for UWB positioning and tracking considering NLOS measurements has been
introduced in [93].

Furthermore, the author has supervised a number of master theses which deal with topics
related to this thesis. In [94], tracking of deterministic MPCs using PHD filters was addressed,
leading to [85]. Some of the tracking algorithms presented in this thesis have been used with
audio signals in the audible frequency range in [12]. The work in [65] presents extensions of
the performance bounds for multipath-assisted localization to a cooperative scenario also using
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monostatic measurements. The impact of a clock offset on the localization performance was
analyzed in [10], while first results on the detection of new features in the floor plan based on
measurements can be found in [95].
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2
Geometric/Stochastic Environment and Signal

Modeling

This chapter gives an overview of the geometric and stochastic signal and environment models
that are used throughout this thesis and all the included papers. Because of space limitations
in the papers, the related discussions there were kept rather brief and an extended version
of the corresponding concepts is presented here. Virtual anchors7 (VAs) are the key concept
that is used. VAs are well established in the literature to model specular reflections in wireless
transmissions, be it acoustic [12, 53, 97–99] or electromagnetic [14, 32, 96]. In this thesis, their
use is extended to model position-related information [T3,T4],[27, 42] from radio signals.

This chapter is organized as follows: First, Section 2.1 introduces the geometric-stochastic
channel model and its characterization, which is the basis for all following chapters. Then,
Section 2.2 contains a detailed treatment of the representation of floor plan information using
VAs, including their construction and visibility regions. Chapter 7 in Part II contains additional
discussions of related topics. Appendix B contains the discussion of the modeling of uncertainties
in the floor plan.

2.1 Hybrid Geometric/Stochastic Signal Model

2.1.1 Geometric/Stochastic Channel Model

The most fundamental quantity describing the influence of a linear propagation channel on a
radio system operating in it is the channel impulse response (CIR). As the application in this
work is positioning and the propagation effects are functions of the surrounding geometry8,

we use a position-dependent model for the channel between a fixed anchor at a position a
(j)
1

and an agent at a position p` [14]. Throughout the thesis, the anchors are indexed with j,
while the index ` is used in the spatial domain for positions. The index k will be used as for
deterministic multipath components (MPCs), where k = 1 for the respective anchor itself, i.e.

7 In the literature, the terms virtual source [96], virtual transmitter [14], virtual node [27] or image point
(source) [32, 53, 97] can be found, which all basically denote the same concept. As the intended application
here is localization with anchors as infrastructure, we stick to the notion of virtual anchors.

8 For simplicity, we assume a static environment and hence a time-invariant impulse response. Motion is mapped
to position by the velocity vector of the moving agent.
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its LOS component. The CIR is written as [T3]

h
(j)
` (t) =

K
(j)

∑̀

k=1

α
(j)
k,`δ(t− τ

(j)
k,` ) + ν

(j)
` (t). (2.1)

The α
(j)
k,` and τ

(j)
k,` are the complex amplitudes and delays of the k-th deterministic MPC, respec-

tively. Depending on the position, their number is denoted as K
(j)
` . These are the MPCs for

which a convenient mathematical model exists for the relation of the parameters to the positions

of anchor and agent. In this thesis, the {τ (j)
k,` } are the delays of the specular reflections of the

signal occurring on surfaces within the indoor environment (see Section 2.2).

The noise term ν
(j)
` (t) basically models “everything else” in the channel, i.e. all propagation

effects not modeled by the deterministic MPCs. Most importantly, this is a model for the diffuse

multipath (DM), but the general role of ν
(j)
` (t) as model mismatch term throughout the thesis

should be noted. To be specific, the DM term models all multipath phenomena that are not or
can not be modeled deterministically, in our case by the use of floor plan knowledge. This is
in line with other work like [100], which in the context of ray-tracing channel predictions states
that “... roughness thus describes all (physically present) objects that are not included in the
used maps and building plans.” We model DM as a zero-mean Gaussian process, which can be
completely described by its auto-covariance function

E
{
ν

(j)
` (τ)[ν

(j)
` (u)]∗

}
= S

(j)
ν,` (τ)δ(τ − u) (2.2)

that makes use of the uncorrelated scatterer (US) assumption [100, 101], i.e. contributions to

the DM at different delays are uncorrelated. S
(j)
ν,` (τ) is called the power delay profile (see also

Section 7.2 for a detailed discussion of PDPs) of the DM. It reflects the non-stationarity of the
DM process, as it represents the delay-variant variance of the DM.

The channel in (2.1) is observed by an anchor or agent receiving a signal with a certain
bandwidth. We model this as the convolution of the CIR with a transmit pulse s(t) with
effective pulse duration Tp as [T2,T3]

r
(j)
` (t) =

K
(j)

∑̀

k=1

α
(j)
k,`s(t− τ

(j)
k,` ) + s(t) ∗ ν(j)

` (t) + w(t), (2.3)

where the signal w(t) denotes white Gaussian measurement noise with double-sided power spec-
tral density (PSD) of N0/2. In this thesis, we generally assume a unit-energy pulse s(t), such

that the energy of the k-th MPC is given as |α(j)
k,`|2. It is obvious that the process ν

(j)
` (t) rep-

resents interference to the deterministic MPCs in addition to the AWGN. The energy that the
deterministic MPCs carry can be large in indoor environments. This is shown in [T2] and also
pointed out in [73] as: “. . . the amount of specular . . . propagation paths in a scenario is rela-
tively small but their contribution to the total power transferred from the transmit antenna to
the receive antenna is usually dominating the transmission.”. This provides a motivation for
using these MPCs for localization.

Nevertheless, energy-based considerations give no insight about the proper characterization
of interference of the DM and the corresponding uncertainties in estimating position-related
parameters from the signal in (2.3), which is paramount for multipath-assisted localization.
These issues will be discussed in Chapters 3 and 4.
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2.1.2 Channel Characterization by Channel Parameters

The channel can be characterized by defining deterministic or statistic models for any of its
parameters. A fundamental model goes back to the work in [102, 103], where the multipath
channel results in a number of scaled and shifted, but undistorted copies of the transmit signal
at the receiver. Since we will in practice always observe a band-limited version of the CIR with a
bandwidth of B (c.f. (2.3)), MPCs within one delay bin of size 1/B can not be resolved and thus
add up to an effective MPC. This causes small scale fading, i.e. fluctuations of the path gains
αk,`

9 when moving within a small distance in the order of the wavelength, because the different
unresolvable MPCs change their phases rapidly. The αk,` are usually modeled statistically using
e.g. Rayleigh (for their amplitude) or other distributions [100].

Channel Parameters

The complex behavior of multipath channels is often broken down in single number parameters
to allow for general discussions and comparisons. Two of the most widely used parameters are
the root mean square (RMS) delay spread τRMS and the K-factor w.r.t. the LOS component10

KLOS. The root mean square (RMS) delay spread is the second central moment of the normalized
PDP [14,105]

τRMS =

√∫∞
−∞(τ − τavg)2Sh(τ)dτ∫∞

−∞ Sh(τ)dτ
using τavg =

∫∞
−∞ τSh(τ)dτ∫∞
−∞ Sh(τ)dτ

(2.4)

where the latter expression is the average delay of the channel. Note that (2.4) is derived from
the PDP (see also (7.2)) and as such is an average quantity. If necessary, also instantaneous
delay spreads τRMS,` can be computed using instantaneous PDPs |h`(τ)|2.

The K-factor w.r.t. the LOS component is the ratio between the energy of the LOS component
and the energy in the rest of the channel. Using (2.3), this can be written as

KLOS,` =
|αLOS,`|2∫∞

−∞ |r`(t)− αLOS,`s(t− τLOS,`)|2dt
. (2.5)

The significance of these channel parameters stems from the fact that MPCs arriving after the
LOS but with a large energy result in an increased τRMS and a decreased KLOS. For range-based
positioning, such MPCs can easily result in large range and position errors: In the narrowband
case, only the (average) group delay of the channel is observed, which is heavily influenced
by strong MPCs that cannot be resolved [106]. In the (ultra-)wideband case, where the LOS
component can be resolved, MPCs arriving later may be stronger than a possibly obstructed
LOS component and thus bias the range estimate [13], [T6].

Nevertheless, τRMS and KLOS are global average parameters w.r.t. the delay domain and do
not allow for conclusive statements about individual MPCs. In Chapters 3 and 4, measures
that quantify the position-related information of certain MPCs and that can be estimated from
signals will be introduced.

9 The anchor index j is dropped for brevity when not explicitly needed. Signals involving different anchors are
always assumed to be separable by a suitable multiple access scheme.

10 The original Ricean K-factor [104] is defined w.r.t the dominant component, which need not be the LOS.
However, when ranging and localization are considered, the LOS component is important, hence we specifically
discuss KLOS.
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2.2 Representation of Floor Plan Information

To answer the research question whether floor plan information can be used beneficially for
localization, this information needs to be represented in a suitable way. In this thesis, a floor
plan is understood as a list of wall segments11 of an indoor scenario. The positions of the anchors
within this floor plan can be mirrored with respect to the wall segments to obtain virtual anchors
(VAs). This section describes how these VAs are used as models for the propagation delays of
the corresponding MPCs.

2.2.1 Representation of Reflectors using Virtual Anchors

Fig. 2.1 shows a a part of an example indoor scenario. The floor plan is given as a list of Nseg

line segments12. In general, a number of J physically existing anchors are present within the
scenario. The area shown is for the scenario presented in Section A.4, around Anchor 3.
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Figure 2.1: Example for computation of a VA in an indoor scenario. The position of the j-th physically
existing anchor a

(j)
1 is mirrored w.r.t. the i-th wall segment to obtain a first-order VA a

(1,j)
k . It

models the delay and AoA for any point within its visibility region.

Using the position of the j-th anchor a
(j)
1 = [x

(j)
1 , y

(j)
1 ]T , the position of the first-order VA

a
(1,j)
k = [x

(j)
k , y

(j)
k ]T corresponding to the i-th wall13 can be computed14 using [32,53,99]

a
(1,j)
k = a

(j)
1 + 2nTi

(
pi − a

(j)
1

)
ni (2.6)

= 2pm − a
(j)
1 (2.7)

where pi is an arbitrary point on the i-th wall segment, e.g. one of its end points given in the
floor plan. The vector ni is the segment’s unit normal vector, defined as pointing away from
the anchor, i.e. to the outside of the corresponding wall. Using the orthogonal projection of the

11 The term wall segment is used here as a generalization of all types of floor plan elements representable with
lines (in 2D), such as windows, flat pillars, etc. Hence, all wall segments act as potential specular reflectors.

12 Throughout this thesis, the restriction to a 2D geometry is applied to simplify computations and visualizations.
Note that an extension of the techniques to 3D is straightforward. W.r.t. the geometric model, line segments
just have to be replaced by plane segments.

13 The different indices k for the VA and i for the wall are chosen deliberately. As shown in this section, one VA
can model more than one wall which will be accounted for using (2.9). Also, the index k is used for the MPCs
comprising a CIR and as such, the choice of the index is arbitrary.

14 See [65] for a different mathematical formalization of the VA computation and [99] for a treatment of similar
computational techniques to obtain VAs.
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anchor onto the wall segment, the mirror point pm, gives the simpler relation (2.7). Fig. 2.1
shows an example for a first-order VA of the j-th anchor.

To obtain higher-order VAs, lower-order VAs are mirrored again using (2.6), such that a set

A(j) =
{

a
(q,j)
i , i = 1, . . . , N

(j)
VA, q = 1, . . . , Q

}
(2.8)

of VAs is obtained for the j-th anchor, where Q is the maximum interaction order taken into
account. Fig. 2.2 shows an example for a second-order VA modeling the reflections w.r.t. wall
segments i and i′. It should be noted that for this special case of a so-called corner VA, where
the angle between the two walls is 90 ◦, the order of these wall segments does not matter for the
position of the VA.
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Figure 2.2: Example for the computation of a second-order VA. Its position a
(2,j)
k is obtained by mirroring

a
(1,j)
l w.r.t. the i′-th wall. Alternatively, a

(1,j)
m can be mirrored w.r.t. the i-th wall to obtain a

VA at the identical location.

This is an example for the case that one VA models multiple signal paths. Another example
for this rather common case is the lower-left horizontal wall segment in Fig. 2.1. It is divided
into one gray segment and two black segments, indicating different materials (c.f. Sec. A.4).
First-order VAs of these segments would be at exactly the same position, but model different
interactions.

This is represented by assigning a set of paths Gk to each VA:

a
(q,j)
k → Gk = {. . . ,wk,i, . . . } , with |Gk| = Npaths and wk,i ∈ Nq (2.9)

The individual paths wk,i are vectors containing the corresponding wall segment indices. Hence,

a path15 identifies the sequence of interactions. For the example of the second-order VA a
(2,j)
k

in Fig. 2.2, the set of paths would be

Gk =

{[
i

i′

]
,

[
i′

i

]}
. (2.10)

A total number of NVA =
∑Q

q=1N
(q)
VA potential VAs are generated using (2.6) for all J anchors

15 This concept is also known as ray signature in [107].
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and Nseg wall segments. The number of q-th order VAs is given as N
(q)
VA = JNseg(Nseg − 1)q−1.

Strictly speaking, N
(q)
VA is the number of q-th order reflection paths, which is usually larger than

the number of VAs. This is due to the above mentioned fact that one VA may model multiple
signal paths. Also, NVA is a loose upper bound for the number of paths, since there exist
conditions under which two wall segments cannot have a specular reflection occurring between
them:

• Visibility : If all lines connecting arbitrary points on two wall segments intersect another
feature in the floor plan, this part of the reflection is blocked. For a first-order VA, this
means that the anchor has to “see” at least a part of the wall segment to make the reflection
path possible.

• Segment properties: Some segments may not qualify for specular interactions, e.g. the
spatial extent of a wall segment might be too small or the material may be unsuitable for
the segment to be taken into account as a specular reflector.

• Colinearity : Some wall segments are simply continuations of each other, such as a door in
a wall. A direct specular interaction between two such segments l and m is not possible,
i.e. there can be no wk,i where l and m directly follow each other.

The key property of VAs is that the delay of any specular reflection w.r.t. the i-th wall
segment can be modeled by the respective VA. At a position p` = [x`, y`]

T , this delay is given
as

τ
(j)
k,` =

1

c
d(a

(q,j)
k ,p`) =

1

c
‖a(q,j)

k − p`‖ (2.11)

where c denotes the speed of light. The AoA φ
(j)
k,`, i.e. the angle between the k-th VA and p`, is

defined by

tan
(
φ

(j)
k,`

)
=
y` − y(j)

k

x` − x(j)
k

, cos
(
φ

(j)
k,`

)
=

x` − x(j)
k∥∥∥p` − a

(q,j)
k

∥∥∥
, sin

(
φ

(j)
k,`

)
=

y` − y(j)
k∥∥∥p` − a
(q,j)
k

∥∥∥
. (2.12)

These relations are true for any position p` at which the corresponding reflection is possible. As
Fig. 2.1 shows, although the specific reflection point on the wall, pr,i, changes for the reflections
from p1 and p2, the geometric properties of both interaction are modeled by the same VA.

In the remainder of this thesis, the notation used for a certain VA of the j-th anchor is a
(j)
k ,

where the index k is understood as the index of the corresponding modeled MPC in the signal
model. Hence, the order of the VA and the association of the VA to its wall segments will usually
not be indicated, since they are not important in the signal models.

2.2.2 Visibility Regions of Reflections

Once a set of VAs is obtained for a given scenario, their visibility regions, i.e. the regions
within the environment in which the corresponding reflections are geometrically possible, can
be calculated [99]. Within this thesis, this is done merely for illustrative purposes, such as
Fig. 2.3 which shows the visibility region for the second-order VA explained in Fig. 2.2. For
the tracking algorithms discussed in Chapter 5, precomputed visibility regions can be used for
a certain spatial resolution for a fast look-up of the VAs that are expected to be visible at a
certain position.

The visibility of a VA a
(j)
k belonging to the j-th anchor can be formulated with the Boolean
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function

fvis(a
(j)
k ,p) =

{
1, if VA a

(j)
k is visible at p

0, else.
(2.13)

Algorithm 1 contains the recursive ray-tracing algorithm implementing (2.13) that determines

the visibility of the q-th order VA a
(j)
k at the point p`. The VA has to be visible through one,

say the m-th, of its associated q-th-order wall segments, i.e. the segments that form the q-th
entry of the paths wk,i in (2.9). This means that no other element of the floor plan obstructs the
line from p` to the corresponding reflection point on the m-th segment pr,m. If this condition
is met, the corresponding VA of order q − 1 is determined from the stored associations and the
ray is recursively launched to it from the reflection point. This procedure is repeated until the
anchor j is reached.

Algorithm 1 Recursive ray-tracing for visibility calculation

1: procedure fvis(a
(j)
k , p`)

2: q ← Order of VA a
(j)
k

3: if q == 0 then . a
(j)
k is an anchor

4: for wall segments iseg = 1→ Nseg do

5: p← Intersect wall segment iseg and line from p` to a
(j)
k

6: if p 6= [] then return 0 . Break as soon as obstruction found
7: end if
8: end for
9: if p == [] then . No obstructions found, a

(j)
k is visible at p`

10: return 1
11: end if
12: else . a

(j)
k is a VA of order q ≥ 1

13: for ipath = 1→ Npaths do . All paths wk,i, i = 1, . . . , Npaths modeled by a
(j)
k

14: pr ← Intersect assoc. segment wk,ipath [q] and line from p` to a
(j)
k

15: end for
16: if pr == [] then . a

(j)
k not visible through an associated segment

17: return 0
18: else . Check if anything obstructs the line from pr to p`
19: for wall segments iseg = 1→ Nseg do
20: p← Intersect wall segment iseg and line from pr to p`
21: end for
22: if p 6= [] then . Path to reflection point pr obstructed
23: return 0
24: end if
25: end if
26: Look-up a

(j)
k′ using segment containing pr . Find VA modeling interaction of order q − 1

27: fvis(a
(j)
k′ ,pr) . Launch ray to corresponding (q − 1)-th-order VA

28: end if
29: end procedure

Fig. 2.3 illustrates this procedure for the second-order VA a
(j)
k . A ray launched from p1

successfully reaches the anchor at a
(j)
1 , while the last path of the ray from p2 to the anchor is

blocked by a pillar on the upper side of the scenario. Fig. 2.4 shows the number of visible VAs
for Anchor 3 over the example scenario discussed in A.4 for VAs up to order three. It highlights
that despite the simple looking geometry, the visibility regions can assume complicated patterns.

Using (2.13) for all VAs in the set A(j) (c.f. (2.8)) at a position p` yields the set of expected
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Figure 2.3: The expected visibility region of a second-order VA computed by ray-tracing described in Algo-
rithm 1, indicated in blue. The reflection is possible at point p1, but not at p2.
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Figure 2.4: The expected number of visible VAs over the floor plan when considering VAs up to order three
using Algorithm 1 for Anchor 3.

VAs at p`

A(j)
` =

{
a

(j)
`,1 , . . . ,a

(j)

`,K
(j)
`

}
=
{

a
(j)
k : fvis(a

(j)
k ,p`) = 1

}
(2.14)

which can easily be transformed into the set of expected MPC delays D(j)
` using (2.11)

D(j)
` =

{
d(a

(j)
`,k,p`) : fvis(a

(j)
`,k,p`) = 1

}
. (2.15)

Fig. 2.5 shows the expected delay tracks of VAs up to order three, i.e. the entries of the sets

D(j)
` for all positions p` in the seminar room scenario (c.f. Section A.5.1) overlaid over measured

signals at bandwidths of 2 GHz and 0.5 GHz, respectively. Especially for the larger bandwidth,
many of the expected specular components are present in the signal. Also, the visibility regions
seem reasonable, e.g. the NLOS region created by the pillar between positions 77 and 99, is
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Figure 2.5: Expected delay tracks of VAs up to order three in the seminar room scenario (c.f. Section A.5.1)
for measurement trajectory 2 and Anchor 1. Top and bottom plots show the measured signals in
dB relative to the maximum LOS component, over all 220 positions using bandwidths of 2 GHz
and 0.5 GHz, respectively.

represented well. However, there is still signal energy in this region, which most probably is
explained by diffraction, which is not modeled in this framework. This effect is also visible for
other MPCs outsider their visibility regions.

Observing the lower bandwidth gives a foretaste of the importance of path overlap. As the
deterministic MPCs now cover broader regions in the delay domain, the probability of overlap
is much larger than for the larger bandwidth. Also, the increased influence of DM at the lower
bandwidth is observable.
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3
Performance Bounds for Multipath-Assisted
Localization – Position-Related Information

This chapter summarizes the main results and findings concerning Cramér-Rao Lower Bounds
(CRLBs) on multipath-assisted indoor positioning as derived in [T3], building on the work in
[42, 44]. These results have been extended to a discrete-time formulation and multiple setups
(e.g. cooperative positioning and monostatic measurements) in [64] using results of [10,65].

This chapter is organized as follows: Section 3.1 introduces performance metrics for positioning
used in this thesis and in the papers comprising it. Also the CRLB as a performance metric is
discussed in general. Section 3.2 contains the main results of [T3], i.e. of the derivation of the
CRLB for multipath-assisted positioning. Sections 3.3 and 3.4 contain example results and the
chapter conclusions, respectively.

3.1 Performance Metrics for Positioning

To evaluate the performance of a positioning system, statistical measures and fundamental
bounds of the position error ε = ‖p̂ − p‖, i.e. the Euclidean distance between the true position
p and its estimate p̂, are needed. The measures that are used in the papers comprising this
thesis are discussed here.

3.1.1 Cramér-Rao Lower Bound

Based on the model (2.3) of the signals transmitted between J anchors at known positions

a
(j)
1 , j = 1, . . . , J and an agent at position p, we aim at finding a lower bound on the position

error. The CRLB is the lower bound on the variance of an unbiased estimator of a given
parameter. For a parameter vector θ, the CRLB states that the covariance matrix of such an
estimator θ̂ is bounded by

Er|θ
{

(θ̂ − θ)(θ̂ − θ)H
}
� J−1

θ (3.1)

where Jθ is called the Fisher Information Matrix (FIM) of the vector θ. For the moment, we
consider a single anchor, as the FIMs for independent data are additive. The FIM is defined
as the expectation of the second derivative w.r.t. the parameter vector θ of the log-likelihood
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function of the signal r(t) conditioned on θ [108]

Jθ = Er|θ

{[
∂

∂θ
ln f(r|θ)

] [
∂

∂θ
ln f(r|θ)

]T
}
. (3.2)

The received signal is denoted by the vector r, which can be obtained using the Karhunen-
Loéve Expansion [42, 109, 110]. In the present case, the parameter vector of interest contains
the position of the agent and the real and imaginary parts of the complex MPC amplitudes
as nuisance parameters, i.e. θ = [pT (αR)T (αI)T]T ∈ R2+2K . Since the signal model and
therefore the likelihood function depend on the position p through the vector of multipath
delays τ = [τ1, . . . , τK ]T, it is convenient to derive the CRLB for the channel parameter vector
ψ = [τT (αR)T (αI)T]T ∈ R3K and then use the chain rule [108] to find the FIM for θ as

Jθ = TJψTT. (3.3)

The Jacobian matrix T contains the transformation as

T =
∂ψ

∂θ
=

[
H2×K 02×2K

02K×K I2K×2K

]
(3.4)

where the geometry is included in the subblock H, which is defined as

H =
1

c

[
cos (φ1) . . . cos (φK)

sin (φ1) . . . sin (φK)

]
. (3.5)

The φk are the angles from the k-th VA to the point p as in (2.12). Once the FIM Jθ is obtained,
the position error bound (PEB) [42] is defined as

P(p) =
√

tr
{

[Jθ]2×2

}
(3.6)

i.e. the square root of the trace of the upper left 2 × 2 submatrix of the FIM, which contains
the entries for the position p. As derived in [T3], Jψ obtained using (3.2) has a block structure
as

Jψ =

[
ΛA ΛB

ΛT
B ΛC

]
. (3.7)

We can then use block-wise inversion [27, 42, 44] to obtain the desired subblock of the FIM Jθ
incorporating the transformation (3.3) as

Jp = [Jθ]2×2 = H
(
ΛA −ΛBΛ−1

C ΛT
B

)
HT. (3.8)

Since this only requires an explicit inversion of ΛC, this often allows for closed-form solutions
for the FIM of the position Jp , e.g. if the MPCs are orthogonal. The FIM Jp obtained using
(3.8) is referred to as equivalent FIM (EFIM) [42].

3.1.2 Geometric Dilution of Precision (GDOP)

GDOP is a popular measure for the performance of positioning systems [111, 112]. Depending
on the parameters included in the position vector, different versions of the GDOP are used.
Since we deal with two-dimensional positioning, we use the horizontal DOP (HDOP). For an
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unbiased range-based estimator of the position, it is defined as [16,23]

HDOP =

√
E {‖p̂ − p‖2}

σd
=

√
σ2
x + σ2

y

σd
(3.9)

where σ2
x and σ2

y are the variance of the position estimation in x- and y-direction, and σd is
the standard deviation of the range measurements. An HDOP � 1 indicates a bad geometric
constellation of the anchors that are used.

3.1.3 Distribution of the Position Error

The distribution of the position error over a geometric area can give important insights on e.g.
the measurement model. Throughout the papers included in this thesis, cumulative distribution
functions (CDFs) of the position error have been used for performance evaluation, since they
can present a complete quantification of the errors. Also the distribution of the error across the
room is helpful in analyzing geometric considerations. In this light, CDFs of the position error
(or also of the PEB) evaluated over a whole scenario are reasonable, especially when different
setups need to be compared. A popular performance figure especially in the GNSS community
is circular error probable (CEP) [111], which defined as the radius of a circle in which 50 % of
the position errors lie. It is obvious that a CDF includes this measure and provides a much
more complete picture of the performance, e.g. the amount of outliers can be inferred easily.

3.1.4 Comments on the CRLB and other performance metrics

One of the reasons for the popularity of the CRLB in the literature is the fact that it is often
possible to obtain closed-form results. When used as performance benchmark for an estimator,
there are important theoretical implications that one should keep in mind.

• The CRLB (3.1) is defined as the average curvature of the log-likelihood function at the
true value of the parameter. Hence, it locally evaluates the sensitivity of the measurement
model with respect to the parameters. Given a specific estimator, this is related to its
potential accuracy (see Sec. 1.1.3), but not to its robustness.

• The CRLB is a lower bound of the variance of any unbiased estimator. Mismatches in
the channel models can lead to a bias in the position estimation, which renders the CRLB
useless.

• It is generally known that the CRLB is tight only for medium to high SNRs [113]. In the
present case, this means that the detectability of the MPCs is not addressed, which could
lead to an overly optimistic PEB when the power of the DM is large. In such cases, other
bounds like the Zik-Zakai bound [13] may produce more realistic results.

The CRLB can give good predictions of the expected performance of multipath-assisted po-
sitioning in an environment when its parameters are estimated from a few training signals, as
shown in Chapter 4 and [T4,T8,T9].

The HDOP is used in [T6] mainly to show the advantage of multipath-assisted tracking to
conventional range-based tracking. The improved constellations are due to the large set of VAs
that can be used. However, evaluating the EFIM using channel estimation can provide similar
information in terms of the covariance matrix of the position error as used in [T8, T9] with
more insight on the channel parameters. Since DOP requires variances of position and range
measurements, its usefulness is more in the design phase of a localization system, facilitating
considerations such as anchor placement.
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3.2 Cramér-Rao Lower Bound for Multipath-assisted Positioning

The EFIM for the signal parameters Jψ has been derived in [T3] using a likelihood function
corresponding to the signal model in (2.3)

ln f(r|ψ) ∝ 2

N0

∫ T

0
<
{
r(t)

K∑

k=1

w2
kα
∗
ks(t− τk)

}
dt (3.10)

− 1

N0

∫ T

0

K∑

k′=1

wk′αk′s(t− τk′)
K∑

k=1

wkαks(t− τk)dt.

The factors wk account for the non-stationary statistics of the DM (2.2), which make a whiten-
ing operation necessary to obtain a tractable likelihood function [109]. The derivation of this
likelihood function builds on the assumptions that the signal s(t) has a block spectrum and that
the individual deterministic MPCs do not overlap, i.e. they are orthogonal.

3.2.1 Without Path Overlap – Orthogonal Multipath Components

For orthogonal deterministic MPCs, i.e. no path overlap [114], a canonical form can be found
for the EFIM for the position estimation using J anchors [T3]

Jp =
8π2β2

c2

J∑

j=1

K(j)∑

k=1

SINR
(j)
k Jr(φ

(j)
k ). (3.11)

where β is the effective bandwidth [13] of s(t). The matrix

Jr(φ
(j)
k ) =


 cos2

(
φ

(j)
k

)
cos
(
φ

(j)
k

)
sin
(
φ

(j)
k

)

cos
(
φ

(j)
k

)
sin
(
φ

(j)
k

)
sin2

(
φ

(j)
k

)


 (3.12)

is called the ranging direction matrix [42]. It is a rank-one matrix with one eigenvector pointing
from the k-th VA to the agent at p. The Signal-to-Noise-and-Interference ratio (SINR) of the
k-th MPC is defined as

SINR
(j)
k =

|α(j)
k |2

N0 + TpS
(j)
ν (τ

(j)
k )

(3.13)

where again Tp is an effective pulse duration of s(t) [T3], [64]. The SINR indicates the ratio
of the energy of the deterministic MPCs to the combined effect of AWGN and DM. The latter

is quantified by its PDP S
(j)
ν (τ

(j)
k ), evaluated for the ToA of the respective MPC and is scaled

by the pulse duration. The EFIM (3.11) gives an intuitive decomposition of the position-related
information of each MPC. The ranging direction matrix indicates the direction of the potential
information, while the SINR quantifies how much of this information is actually available.

Using (3.3), the SINR can be directly related to the CRLB on the ranging to the k-th MPC
[T9]

J−1
r (d

(j)
k ) =

(
8π2β2

c2
SINR

(j)
k

)−1

≤ var
{
d̂

(j)
k

}
(3.14)

where Jr(d
(j)
k ) denotes the Fisher information about the distance d

(j)
k to the k-th VA.
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3.2.2 Influence of Path Overlap on Localization

Despite the fact that the likelihood function (3.10) assumes orthogonal MPCs, evaluating (3.8)
without this assumption still gives an EFIM that accounts for path overlap. A formulation of
the problem using discrete-time signals as in [64] allows for exact results for the CRLB.

An approximation of the influence of path overlap that will already indicate the regions where
performance impairments are to be expected can be obtained by restricting the sum in (3.11)
to the orthogonal MPCs. For this, we re-introduce the position index `, since path overlap is a
local phenomenon, and define the set of MPC delays at p` as {τk,`}K`

k=1. The set of all VAs that
are subject to path overlap at this position is defined as

C` =
{
ak,` ∈ A` : |τk,` − τk′,`| < Tp with k′ 6= k, and ak′ ∈ A`

}
. (3.15)

This set can be split in the contiguous clusters of MPCs [42], i.e. the different, disjoint sets
of overlapping MPCs. As (3.11) may be too optimistic by summing over all MPCs (also those
within a cluster), the EFIM can be modified to

Jp`
=

8π2β2

c2

J∑

j=1

∑

k:ak,`∈A`\C`
SINR

(j)
k,`Jr(φ

(j)
k,`). (3.16)

i.e. considering only those MPCs which are not subject to path overlap. According to (3.15),
this imposes a hard limit as to whether an MPC is considered or not. In [42, 114] a path
overlap coefficient is derived that allows for a more gradual evaluation of the information loss
due to decreasing MPC spacing. The usefulness of (3.16) lies in the fact that the SINRs can be
estimated from signals (see Chapter 4), with which an estimate of the CRLB can be obtained.
Appendix 8.3 contains results for this definition of the CRLB.

3.3 Example Results

Fig. 3.1 shows computational results for the PEB P(p) evaluated over a room. These results
are adapted from [T3]. We use a free-space pathloss model for the distance dependence of the
path amplitudes of the deterministic MPCs for a center frequency of 7 GHz, adding 3 dB of
attenuation per reflection order. A double exponential PDP is used for the DM as in [26]. For
the transmit pulse s(t), a raised-cosine pulse with roll-off factor βR = 0.6 and a pulse duration
of Tp = 1 ns is used. Subplot (a) shows the set of first- and second-order VAs that have been
taken into account.

Subplots (b), (c) and (d) illustrate the PEB P(p) using the complete EFIM (3.8), the EFIM
neglecting PO in (3.11), and the EFIM with the simplified consideration of PO MPCs as in
(3.16), respectively. Range-based localization is possible throughout the whole room with just
one physical anchor. Uncertainty ellipses are clearly oriented towards the anchors, reflecting the
fact that usually the LOS component is the one with the largest SINR. This is the fact because
it is least impaired by DM, an effect that could be verified using measurements [T4,T7,T8].

Subplot (b) shows the adverse effect of symmetries, i.e. regions affected by path overlap and
the corresponding loss of information. This is neglected in (c), nevertheless the main regions
of different expected localization accuracy are still visible. This reflects the different visibility
regions of the VAs as well as the distance dependence of their amplitudes. For subplot (d), the
influence of path overlap is approximated as in (3.16), i.e. excluding all MPCs whose arrival times
are spaced by less than Tp as defined in (3.15). Completely black regions in (d) indicate regions
where less than two VAs are usable. Here the EFIM Jp is rank-deficient and no localization is
possible. Compared to (b), this approximates the influenced regions reasonably well, but may
be overly pessimistic, due to the fact that all potential information contained in a contiguous
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(b) PEB using the EFIM in (3.8)
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(c) PEB using the EFIM in (3.11)
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(d) PEB using the EFIM in (3.16)

Figure 3.1: Computational results for the logarithmic PEB over a room, adapted from [T3]. (a) shows the

used scenario with the floor plan, the anchor at a1, and the first- and second-order VAs a
(1)
k and

a
(2)
k . (b) illustrates the PEB P(p) considering PO as in (3.8), while PO is neglected in (c). The

PEB only considering MPCs which do not overlap as in (3.16) is shown in (d). Blue ellipses
denote the 10-fold standard deviation at selected points.

cluster is completely discarded. The more complete formulation in (3.8) predicts a more gradual
decrease of performance up to the point of complete path overlap, as indicated in subplot (b).

3.4 Chapter Conclusions and Results in Included Papers

The CRLB derivation in [T3] reveals important insights on multipath-assisted positioning that
have been the basis for following work. The following conclusions concerning the use of multipath
for positioning can be made.

• A large bandwidth influences the performance in multiple ways: (i) It of course influences
the ranging accuracy beneficially due to the finer delay resolution. (ii) Due to the same
reason, path overlap gets less probable. (iii) The adverse influence of DM diminishes with
increasing bandwidth as seen in (3.13).

• The impact of diffuse multipath is accounted for through (3.13). This is also seen in
the MPC ranging bound in (3.14) that extends existing bounds for the LOS component
in e.g. [13] in terms of the influence of the DM in the SINR.
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• The geometric information available in a multipath channel [27] is made explicit by
the geometry of the VAs. This is in contrast to e.g. [42], where the signal as a whole is
modeled to come from the direction of the corresponding anchor.

• The position-related information of an MPC can be quantified using the ranging di-
rection matrix (3.12) and the SINR (3.13). The latter is an important measure of the
reliability of the respective MPC.

Computational results in [T3] show the conclusions that can be drawn from the derived CRLB
in an example environment. A single anchor can provide position information, even in NLOS
regions. The EFIM in (3.8) gives insights in the adverse effects of room symmetries and the
path overlap phenomenon.

The CRLB presented has been used in numerous papers following [T3]. In [T4], an estimator
for the MPC SINR has been derived based on training signals obtained on short trajectory
segments. Together with the given geometry, this is the basis for evaluating an estimated
CRLB (as in (3.11) neglecting path overlap) over a scenario. This method is used in [T7, T8]
for performance predictions. The MPC ranging bounds in (3.14) have been used in [T9] as a
noise model for the range estimates in a tracking filter, resulting in excellent results in terms
of robustness and accuracy. This confirms the validity and the usefulness of the derived CRLB
also in practical scenarios.
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4
Channel Analysis – Estimation of

Position-Related Information

This chapter summarizes the main findings concerning channel analysis for multipath-assisted
positioning as presented in [T2,T4,T7]. The main aim is to characterize the relevance of certain
deterministic MPCs, especially w.r.t. positioning. Chapter 8 contains additional results for the
presented concepts. The channel measurement campaigns that have been performed have been
made publicly available [78]. Appendix A describes these measurements in detail.

This chapter is organized as follows: Section 4.1 introduces the maximum-likelihood estimation
procedure for the deterministic MPCs and the analysis of their energy capture. The estimation
of the signal-to-interference-and-noise-ration of the deterministic MPCs is discussed in Section
4.2. Example results and conclusions are presented in Sections 4.3 and 4.4, respectively.

4.1 Estimation of Deterministic Multipath Components

For all further analysis methods that are presented in this chapter, an estimation procedure

for the channel parameters from a signal r
(j)
` (t) transmitted between an anchor at a

(j)
1 and an

agent at p` is necessary. As we are restricted to single-antenna agents and anchors, the channel

parameters of interest are the path delays {τ (j)
k,` } and complex amplitudes {α(j)

k,`}.

4.1.1 Approximate Maximum-Likelihood Estimation

The arrival time estimation at position p` is realized without prior knowledge on the channel
parameters as an iterative least-squares approximation of the signal received from the j-th anchor
(2.3) [T9]

τ̂
(j)
k,` = arg min

τ

∫ T

0

∣∣∣r(j)
` (t)− r̂(j)

`,k−1(t)− α̂(τ)s(t− τ)
∣∣∣
2
dt, k = 1, . . . , K̂

(j)
` (4.1)

using a template signal r̂
(j)
`,k(t) =

∑k
k′=1 α̂

(j)
k′,`s(t − τ̂

(j)
k′,`) for all MPCs up to the k-th. The path

amplitudes are nuisance parameters, estimated using a projection of r
(j)
` (t) onto a unit energy
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pulse s(t) as

α̂(τ) =

∫ T

0
[r

(j)
` (t)]∗s(t− τ)dt; α̂

(j)
k,` = α̂(τ̂

(j)
k,` ). (4.2)

The number of estimated MPCs K̂
(j)
` should be chosen according to the number of expected

specular paths in an environment. With the assumptions of separable MPCs and white noise,
(4.1) and (4.2) correspond to a maximum-likelihood (ML) estimation of the deterministic MPCs.

Prior knowledge on the channel parameters is introduced by the known agent position p`, as
in channel analysis scenarios. In this case, a hypothesis for the delay of the k-th deterministic

MPC is available using the distance between the corresponding k-th VA at ã
(j)
k and p` (2.11)

τ̃
(j)
k,` =

1

c
‖ã(j)

k − p`‖. (4.3)

The tilde denotes the fact that the hypothesis computed using the floorplan may be uncertain.
The hypothesis can be used to restrict the search space for τ in (4.1), as in the energy capture
analysis in [T2] and in Section 4.1.2. Another method is to find a suitable point estimate for

τ
(j)
k,` based on (4.3) and directly evaluate the path amplitude in (4.2) with it, as for the SINR

estimation technique used in [T4,T9] and in Section 4.2.

The choice of the number of estimated MPCs K̂
(j)
` = |{τ (j)

k,` }| also depends on the fact if p`

is known or not. If it is known, K̂
(j)
` = K

(j)
` = |A`|, i.e. the cardinality of the expected set of

visible VAs (2.14). If p` is unknown, a maximum number of MPCs has to be selected, which we

denote as K̂
(j)
` = Kmax, i.e. independent of position and anchor. After K̂

(j)
` MPCs have been

estimated from r
(j)
` (t), also an estimate of the filtered DM is available as16

s(t) ∗ ν(j)
` (t) ≈ r(j)

` (t)− r̂(j)

`,K̂
(j)
`

(t). (4.4)

4.1.2 Energy Capture Analysis of VA-modeled MPCs

Inspired by [115], we have performed an analysis of the energy capture (EC) of the VA-modeled

deterministic MPCs in [T2]. The energy capture of an MPC in the signal r
(j)
` (t) transmitted

between an anchor at a(j) and an agent at p` is estimated as

EC` = 1−

∫ T
0 |r

(j)
` (t)− r̂(j)

`,K̂
(j)
`

(t)|2dt
∫ T

0 |r
(j)
` (t)|2dt

. (4.5)

In the estimation of the deterministic part of the received signal using (4.1) and (4.2), the search

space for τ has been restricted for the k-th MPC using the constraint that τ ∈ [τ̃
(j)
k,`−Tp/2, τ̃

(j)
k,` +

Tp/2].
Appendix 8.1 shows additional results for the EC analysis in different measurement scenarios

discussed in Appendix A. Figure 8.1 contains the EC results for a part of the trajectory analyzed
in [T2]. The comparison with [T2] is done because in the paper, no projection operation as in
(4.2) was performed for the MPC amplitudes, only the amplitude at the estimated delay was
chosen from the signal. The differences that are observed are mainly quantitative, the qualitative
trends are similar.

16 As the received signal is used instead of the channel, this also includes observation noise as in (2.3). However,

its effect is negligible in all our measurements. A more interesting consequence of using r
(j)
` (t) is that it includes

the effects of the bandwidth limitation due to s(t).

– 48 –



4.2 SINR Estimation for Deterministic Multipath Components

4.2 SINR Estimation for Deterministic Multipath Components

The EC analysis showed that VA-modeled MPCs carry a large fraction of the signal energy.
However, to estimate the position-related information as defined in Chapter 3, the estimation
of the SINR of the MPCs (3.13) is necessary. With these, the MPC range uncertainties can be
estimated using (3.14).

4.2.1 SINR Estimation along a Motion Trajectory

To avoid the explicit estimation of the PDP of the DM, we have derived an estimator for the
average SINR of an MPC in [T4]. It requires only a short segment of training signals at known
positions p`, ` = L1, . . . , L2, such as along a trajectory. This makes it also suitable for online
SINR estimation, i.e. during the tracking, for which first results are presented in [95].

The signals on the segment of the trajectory used for SINR estimation are stacked in the
vector

r(j)(t) = [r
(j)
L1

(t), . . . , r
(j)
L2

(t)]T . (4.6)

For the estimation of the MPC amplitudes along the segment, (4.2) is used with the delay
hypotheses from the floor plan (4.3). As these are subject to uncertainties, the VA positions

are corrected using a prior distribution p(ã
(j)
k ) for the position of the k-th VA. This leads to the

MAP estimate

â
(j)
k = arg max

ã
(j)
k

ln p(r(j)(t)|ã(j)
k ) + ln p(ã

(j)
k ) (4.7)

with a likelihood function that evaluates the contribution of the k-th VA to all estimation signals
r(j)(t) (c.f. [T3] but neglecting the whitening to account for the DM)

ln p(r(j)(t)|ã(j)
k ) ∝ 2

N0

∑

`∈P(j)
k

∫ T

0
<
{

[r
(j)
` (t)]∗s̃(j)

k,`(t)
}
dt− 1

N0

∫ T

0
|s̃(j)
k,`(t)|2dt.

Here, s̃
(j)
k,`(t) = α̃

(j)
k,`s(t − τ̃

(j)
k,` ) is a template signal where τ̃

(j)
k,` = 1

c‖ã
(j)
k − p`‖ and the MPC

amplitudes are again nuisance parameters and estimated using (4.2). The sets P(j)
k contain the

indices of those points p`, on which the k-th VA is observable, i.e. where it is visible (2.13) and
there is no path overlap with any other deterministic VA [T9].

In the next step, estimates of the first and second moments of the energy samples |αk,`|2 are
computed, denoted as m̂1,k and m̂2,k. For these, the optimized VA positions (4.2) with (4.7) are
used. As detailed in [T4,T9], an estimate of the average SINR of the k-th MPC is found based
on a Ricean model of |αk,`| as

ŜINR
(j)

k =


 m̂

(j)
1,k√

m̂
(j)2

1,k − m̂
(j)
2,k

− 1



−1

. (4.8)

This moment-based estimator is similar to a classical method for the estimation of the Ricean
K-factor of narrowband channels [116,117]. The method is extended here to local (in the delay
domain) K-factors of deterministic MPCs. In [118, 119], asymptotic variance analysis of these
types of estimators has shown satisfying performance in general. This is especially interesting as
moment-based estimates of the K-factor are computationally much less demanding than other
methods like expectation-maximization approximations of maximum likelihood estimation as in
[120].
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The SINR estimates can be related to ranging uncertainties w.r.t. the VAs using (3.14). This
is used in Section 5.2.2 to tune the measurement noise model of a tracking filter.

Choice of segment location: On the respective trajectory segment, only a subset of all
potential VAs are observable (see visibility regions in Fig. 2.4). Hence, we have extended
the method to multiple disjoint segments of points. The detailed description is found in [T9].
Generally, estimation segments should be chosen based on the number of visible deterministic
MPCs (see e.g. Fig. 2.4). Within such a region, propagation conditions are assumed to be
stationary17.

4.2.2 SINR Estimation using Local Grid Measurements

SINR estimation can be done by evaluating (3.13) [T7]. This requires the PDP of the DM to be
known, which in most cases may not be the case due to a lack of suitably spaced measurements
as discussed in Section 7.2. Using ray-tracing, e.g. using the method in [80], allows for signals
decomposed in deterministic reflections and diffuse scattering. With this, results in [T7] confirm
the SINR estimation method in (4.8).

4.3 Example Results

Fig. 4.1 shows example signals as well as estimated SINRs and the EC of selected deterministic
MPCs in the demonstration room in Graz (see Appendix A.5.2) using Anchor 1 and trajectory
1. A pulse duration of Tp = 0.5 ns is used for two different center frequencies of fc = 7 GHz
(a) and fc = 8 GHz (b). The SINRs are estimated using 60 points, divided into 20 points at
the beginning, in the middle and at the end of the trajectory. For this, the method explained
in Section 4.2.1 is employed together with its extension to multiple segments proposed in [T9].
The mean and standard deviation of the EC are estimated using the same set of points.

The results show the relevance of different, VA-modeled MPCs. For the Anchor, i.e. the LOS
component, the influence of DM is less than for all later-arriving MPCs. Therefore and due to
the LOS situation, it shows the largest SINR as well as the the largest EC. The influence of
the center frequency can be observed best for the left wall, which is made of plasterboard (see
Appendix A.5.2). At fc = 7 GHz, the amplitude of the corresponding MPC is rather low and
shows large variations, leading to a moderate SINR of 6.7 dB. At fc = 8 GHz, the amplitude
track is more constant, which leads to a considerably larger SINR of 10.8 dB. Since the left wall
is a large potential reflector, it is important for multipath-assisted localization. The SINRs of the
window on the upper side of the room18 show an even larger influence of the center frequency.
Despite the slightly larger EC of the corresponding MPC at fc = 7 GHz, the SINR rises from
2.2 dB to 6.5 dB at fc = 8 GHz.

Such results can be used for a detailed analysis of relevant propagation effects in an envi-
ronment. In the present example, the advantage of using a larger center frequency can be
observed. In [T8], this analysis has been applied for the setup of a demonstration system for
multipath-assisted tracking.

17 As explained in [T4], deterministic variations of αk,` should be corrected, such as the dependence on the
distance.

18 To be specific, the two right-most windows, which are modeled by the same VA.
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Figure 4.1: Set of 11 signals (i.e. a subset of the 60 signals used for the SINR and EC estimation) measured
in the Demonstration room in Graz (see Appendix A.5.2) using Anchor 1 and trajectory 1 and
two different center frequencies. The legend shows the SINRs as well as the mean and standard
deviation of the EC of selected deterministic MPCs estimated on 60 positions on the trajectory.
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4.4 Chapter Conclusions and Results in Included Papers

This chapter and results in [T2] provide insights on the energy capture of VA-modeled, deter-
ministic MPCs in UWB signals. Chapter 8 provides additional results for other scenarios. The
following conclusion is made as the basis for following work.

• Deterministic MPCs resulting from specular reflections carry a large part of the energy
of the received signal. This motivates their use for positioning and justifies the use of local-
maxima-based MPC estimation algorithms.

More importantly, this chapter and the according results in [T4, T7, T9] provide a link be-
tween the theoretical definition of position-related information in Chapter 3 and in [T3] and the
multipath-assisted tracking algorithms in Chapter 5 and [T5,T8,T9]. Further exemplary values
for SINRs can be found in [T4] for the scenario explained in Appendix A.4. For the scenarios
in Appendix A.5.2 and A.5.3, SINR estimation results are included in [T8], showing that the
estimation of the SINRs and the corresponding evaluation of the PEB (3.6) with (3.11) can be
used to find e.g. the optimal frequency range for positioning in a given environment. Chapter
8 contains additional results.

• MPC SINRs as the signal-dependent part of position-related information can be
estimated from a small set of training signals. Together with the known geometry, these
values characterize the localization capabilities of an environment.

• The estimation method avoids the need to estimate the PDP of the DM, which
would require closely-spaced measurements. At ultra-wide bandwidths, additional delay
dispersion due to averaging over a larger region would possibly impair the estimation.

• The estimated SINRs can be used to analyze and optimize the performance of
multipath-assisted positioning in a given environment. One possibility for optimization
is the selection of a frequency band where the environment exhibits good reflection prop-
erties.

In other work related to the presented topics, the ray-tracing tool analyzed in [T7] has been
presented in [80] and optimized in [88]. A geometric scatterer detection method from [83,84] has
been applied using the VA model in [82]. Probability hypothesis density filters have been applied
to the tracking of MPCs in [85]. Preliminary investigations on the combination of ray-tracing
and stochastic propagation graphs have been presented in [89].
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5
Algorithms for Multipath-Assisted Tracking

This chapter summarizes the multipath-assisted tracking algorithms that have been presented
and analyzed in [T5, T6, T8, T9]. The focus is on the statistical models used for the motion
dynamics and most importantly, the measurements, i.e. the MPC delays modeled by VAs.

This chapter is organized as follows: Section 5.1 introduces a general formulation of the
problem in terms of motion- and measurement models. Tracking algorithms implementing these
models as well as a possible data association approach are discussed in Section 5.2. Example
results and conclusions are presented in Sections 5.3 and 5.4, respectively.

5.1 General Problem Formulation

As first work in [79],[T1] has shown, statistical measurement models, i.e. the likelihood func-
tion19, for multipath-assisted positioning are subject to multimodality. First of all this is due
to the non-linear transformation of the range measurements to the position domain. Here, sub-
sets of the circles according to the ranges w.r.t. multiple anchors may intersect in more than
one point. Secondly, the DM considered in the signals acts as additional noise that allows the
log-likelihood (3.10) to add up at wrong position hypotheses. Furthermore, for the approach
followed in this thesis, the association of the range measurements to the VAs is not assumed to
be known, causing an additional source of uncertainty.

Despite the fact that multiple modes may be present in the measurement model, for a suffi-
ciently large observation time of a moving agent in the scenario, only the correct mode should
stay persistent. This has been the main motivation to consider tracking algorithms in this thesis.
Such algorithms operate on a sequence of measurements in alternating prediction and update
phases [121–123]. In the former, the most likely prediction of the next state of the agent is cal-
culated based on a physical model of the motion. In the latter, the current set of measurements
is used to correct the prediction.

Probabilistic tracking (i.e. state-space-estimation) algorithms aim at computing the posterior
probability density function (PDF) p(x`|Z`) of the state using all previous measurement vectors
Z` = {zi : i = 1, . . . , `} [123]. We define the state of the agent at the `-th position of its motion

19 See also [92] for a detailed discussion of the likelihood function.
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trajectory20 as

x` = [x`, y`, vx,`, vy,`]
T (5.1)

i.e. containing the x- and y-coordinates and the velocity vector. Furthermore, we denote the
predicted state space estimate as x̂−` and the updated (posterior) estimate as x̂+

`
21.

Formally, the prediction step is expressed with the Chapman-Kolmogorov equation as

p(x`|Z`−1) =

∫
p(x`|x`−1)p(x`−1|Z`−1)dx`−1 (5.2)

With the current measurement z`, the posterior PDF can be calculated using Bayes’ theorem

p(x`|Z`) =
p(z`|x`)p(x`|Z`−1)∫
p(z`|x`)p(x`|Z`−1)dx`

. (5.3)

A Bayesian tracking algorithm is an implementation of (5.2) and (5.3). The components that
are required are: (i) The motion model p(x`|x`−1) describing the statistical evolution of the
agent’s state. (ii) The measurement model (likelihood) p(z`|x`) describing the probability of the
current measurement given the state. (iii) Update rules that either solve or approximate the
integrals.

5.1.1 Motion Model

The motion model describes the state dynamics and is needed in (5.2). Any knowledge of the
agent’s typical motion patterns can help to keep a state space estimation algorithm on track,
even if unreliable measurements are available in the update step. There are numerous dynamic
models that allow to integrate prior knowledge of the motion (or deviations from it, usually called
maneuvers) into the tracking algorithm [124]. However, in this work we focus at the influence
of the measurements, i.e. the range estimates to the VAs, on the tracking performance. Hence,
we choose a simple linear Gaussian constant-velocity motion model

x`+1 =Fx` + Gna,` (5.4)

=




1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1


x` +




∆T 2

2 0

0 ∆T 2

2
∆T 0
0 ∆T


na,`,

where ∆T denotes the update time. The driving acceleration noise term na,` is zero-mean and
has a covariance matrix σ2

aI. It models motion changes that deviate from the constant-velocity
assumption. As in [T6], the process noise variance σ2

a is chosen based on selecting a maximum
velocity in e.g. the x-direction vx,max. This defines the 3σ point of the noise in velocity domain.
The corresponding variance in the acceleration domain is then σ2

a = (vx,max/(3∆T ))2.

5.1.2 Measurement Models

The measurement model describes the dependence of the current measurement on the state
vector. In this thesis, measurements are estimates of the distances between the agent position

20 As in [T6, T9] we use the general position index ` for tracking instead of a dedicated time index, as position
can be mapped to time using the velocity.

21 To be specific, these are the point estimates computed from either the prior p(x`|Z`−1) or the posterior p(x`|Z`).
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p` and the visible VAs. These distances can be estimated e.g. using (4.1) and are modeled as

z` =h(x`) + nz,` (5.5)

= [. . . , ‖ak − p`‖, . . . ]T + nz,`, ak ∈ A`. (5.6)

The second line states the specific model for range estimates to the VAs in the current set of
visible VAs A`. The measurement noise nz,` describes the inaccuracy [125] of the range estimates
and is modeled as zero-mean Gaussian with a covariance matrix R`.

However, since the entries of z` are extracted from the signal r`(t) at the agent as in (4.1),
there is no association of the range estimates to the VA positions as required in (5.5). This
causes an additional uncertainty22 [125] in the mapping of the measurements to the features
from the prior knowledge, requiring data association [126,127].

In the first papers [79] and [T1] on this topic, we proposed a probabilistic model for the vector
of range estimates that does not require data association. In this case, z` = [z`,1, . . . , z`,N`

]T

with N` ≥ |A`|, i.e. it may have more entries than available VAs23. The model reads

p(z`|x`) =

N∏̀

i=1

p(z`,i|x`)

=

N∏̀

i=1

PVA
∑|A

`
|

k PV,k

|A
`
|∑

k=1

PV,kN (z`,i|‖p` − ak‖, σ2
k) + (1− PVA)pVA(z`,i|x`). (5.7)

Hence, the range measurements are treated as independent, and each one follows a mixture
distribution modeling its possible sources. PVA denotes the probability that z`,i corresponds to
a VA at all. If it does, its distribution is Gaussian with a certain range variance σ2

k. If it is a
spurious measurement, i.e. not caused by a VA, its distribution is pVA(z`,i|x`). In [T1], this has
been chosen as uniform between zero and a maximum range value. The visibility probability
PV,k for the k-th VA accounts for the fact that a certain VA-modeled MPC might or might not
be detected.

Plots of (5.7) are shown in [79] and [T1], illustrating the large degree of multimodality. A
straightforward maximization w.r.t. p thus results in a large percentage of outliers.

5.2 Tracking Algorithms

5.2.1 Tracking Algorithms without Data Association

The multimodality of (5.7) over p as well as the fact that no deterministic measurement model
h(x`) exists, renders the application of standard tracking algorithms such as a Kalman filter
(KF) impossible when directly using the range estimates as measurement inputs.

Position Estimate as Measurement Input

In [T1], two tracking filters have been proposed that work with a position estimate as the
measurements input. This position estimate is the maximum-likelihood estimate according to
(5.7) which has been shown to follow a heavy-tailed distribution, such as a Cauchy distribution,
truncated at the room boundaries.

22 As we do not aim at quantifying this effect, we use the term uncertainty also for measurement inaccuracies.
23 Note that only rectangular rooms have been used in [79] and [T1], making all VAs visible throughout the entire

room, i.e. A` = A.
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• KF with measurement refinement : Assuming that the previous posterior state estimate
was close to the true position, we modify the ML position estimate to a maximum a-
posteriori (MAP) estimate. This is done by multiplying (5.7) with a Gaussian distribution
centered at the predicted position of the KF before maximization. Then, the standard KF
update equations are performed.

• Gaussian Sum Filter – Initialization: For initialization of the above mentioned filter, a
Gaussian Sum Filter (GSF) [128] has been presented. It represents the posterior distri-
bution of the position as a Gaussian mixture model (GMM) and contains update rules
for the weights of the components. With this, multiple Gaussian position hypotheses can
be placed inside the room (e.g. at the room doors). Gaussian components whose weights
drop below a certain threshold are pruned from the model.

• Particle filter (PF) with Cauchy error model : To find out the performance limits that
tracking using the ML position estimates from (5.7) can yield, we employed a sampling-
importance-resampling (SIR) PF [122, 123] using a truncated isotropic bivariate Cauchy
distribution [129–131] centered at the ML estimate as particle weights.

Range Estimates as Measurement Input

The range estimates can be used directly as measurement inputs in a SIR-PF by calculating the
particle weights according to (5.7). As for the PF using the ML position estimate, the median
of the particles in x- and y-dimension is chosen as the final estimate of p`.

5.2.2 Tracking Algorithms with Data Association

In Chapter 2, a hybrid geometric-stochastic channel model (GSCM) has been discussed as the
basis for multipath-assisted positioning. In [T1], this has not been considered. Performance
evaluations have been performed based on simulated delays generated according to the model
in (5.7). However, in order to take into account the effects responsible for these estimated
delay tracks and to work with measured signals, a tracking algorithm has to include the channel
estimation step and work directly with the signal r`(t) at the agent.

rℓ(t) Zℓ (estimated delays) p̂
+
ℓ

{σ2
d,k}

Aℓ,ass,Dℓ,ass
(assoc. VAs and delays)

p̂
+
ℓ−1

p̂
−

ℓ

Aℓ,Dℓ
(expected)

Aℓ,Dℓ
(filtered)

Ã
(relevant)

b b

b

b
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−
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Figure 5.1: Block diagram of tracking and data association scheme using MPC range estimates.

Fig. 5.1 shows an overview of the multipath-assisted tracking concept, of which a first version
was presented in [T5]. A performance analysis was performed in [T6] and the full concept
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shown in Fig. 5.1 has been developed in [T9]. The tracking algorithm is an Extended Kalman
Filter (EKF) that uses a linearization of (5.6) as measurement equation. At the `-th position,
the set24 of MPC delays Z` is estimated using (4.1). The expected sets of visible VAs A` and
the corresponding expected delays D` are computed25 using (2.14) and (2.15) at the predicted
position p̂−` that is obtained with (5.4). The expected VAs are matched to the estimated delays
from the signal using data association, as discussed in the next subsection. If information
about relevant VAs in a scenario is available, the VAs can be filtered accordingly. The tracking
algorithm can further benefit from channel information, i.e. it can weight the measurements
according to their uncertainties. These can be obtained using the SINR estimation described in
Section 4.2 and (3.14).

Data Association

As D` and Z` are sets of usually different cardinalities, i.e. |Z`| = K̂` 6= |D`| = K`, no
conventional distance measure is defined and therefore there is no straightforward way of an
association. Inspired by our work on multi-target tracking in [85, 94], we employ a well-known
multi-target miss-distance, the optimal sub-pattern assignment (OSPA) metric [132]. For K̂` ≥
K`, which can be ensured by filling up Z` with dummy clutter, it is defined as

dOSPA(D`,Z`) =

[
1

K̂`

(
min
π∈ΠK̂`

K∑̀

i=1

[
d(dc)(d`,i, z`,πi

)
]p

+ dpc(K̂` −K`)

)]1/p

(5.8)

where ΠN is defined as the set of permutations of positive integers up to N . The function
d(dc)(x, y) = min(dc, d(x, y)), i.e. an arbitrary distance metric d(·) that is cut off at a dc > 0, the
so-called cut-off distance, which is a design parameter. The metric order is denoted as p. The
first sum in the metric is the cumulative distance over the optimal sub-pattern assignment of Z`
to D`, i.e. where K` entries of Z` are assigned optimally to the entries of D`. The Hungarian
or Munkres algorithm can be used for this assignment [132, 133]. For the remaining K̂` − K`

entries of Z`, dc is assigned as penalty distance.
With the OSPA distance, the quality of extracted MPC parameters can be evaluated [T5].

For performing the DA, we introduce a set C` of correspondence variables [134], whose i-th entry
c`,i is defined as

c`,i =

{
k, if z`,i corresponds to VA ak

0, if z`,i corresponds to clutter.
(5.9)

The optimal sub-pattern assignment between D` and Z` is reflected by the first part of (5.8)

πopt = arg min
π∈ΠK̂`

K∑̀

i=1

d(dc)(d`,i, z`,πi
)p. (5.10)

The first K` entries of πopt contain the indices of those entries of Z` that have been optimally
assigned to D`. For some entries of D`, we will probably have d(dc)(d`,i, z`,πopt,i

) = dc, i.e.
this expected distance has an assigned measurement, but the difference between measurement
and expected distance is larger or equal than the cutoff distance. We expect that by using
UWB signals, the estimated path delays will be quite accurate, provided that they are detected.
Hence, we select a certain dc that may depend on the bandwidth and reject the corresponding

24 Sets are used as the MPC estimation results in unordered and unassociated delays, of which the number can
be different for each `.

25 Note that sets Z(j)
` ,A(j)

` ,D(j)
` exist for each of the J anchors that are used. Nevertheless, we drop the anchor

index here, since signals r
(j)
` (t) from different anchors are independent and the DA can be done separately.
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assignments as outliers26. Formally, the DA is expressed by setting the correspondence variables
as

c`,i =

{
k, if [πopt]k = i and d(dc)(d`,k, z`,i) < dc

0, else,
(5.11)

where [πopt]k denotes the k-th entry of the optimal sub-pattern assignment. Due to its origin
in the OPSA distance metric, we refer to this DA approach as constrained optimal sub-pattern
assignment.

Tracking and Measurement Noise Model

Re-introducing the anchor index, the DA procedure results in sets of associated VAs and corre-
sponding delays. These sets are passed to the EKF after joining information from each anchor
as

A`,ass =
J⋃

j=1

A(j)
`,ass and D`,ass =

J⋃

j=1

D(j)
`,ass. (5.12)

The tracking scheme using an EKF and the DA (abbreviated as EKF-DA) as described above
has been evaluated in [T5]. For performance evaluation, a version with genie-aided DA (EKF-
GADA) has also been proposed, where the DA makes use of the true instead of the predicted
position. The EKF requires choosing a value for the cutoff distance dc, which can be based on the
bandwidth [T6]. As for every tracking filter, also the measurement noise has to be characterized,
in this case the covariance matrix R` for the noise vector nz,` in (5.5). In [T5,T6], this has also
been done based on the bandwidth and the expected ranging uncertainty, i.e. R` = σ2

dI|A`,ass|.
While this works [T6], it is not optimal, as it does not perform a weighting of the MPC according
to their individual uncertainties (3.14)27 and it requires manual tuning of σ2

d. Weighting the
ranges according to their variance is often proposed [34,136], but in implementations, heuristic
weights are used instead of the unknown, true variances.

Using the channel estimation methods discussed in [T4] and Chapter 4, we applied a weighting
w.r.t the estimated ranging variances in [T9]. This is done by using the a-priori estimates of the
range estimation uncertainties as the measurement covariance matrix

R` = diag
{

var
{
d̂

(j)
k,`

}}
∀ k, j : a

(j)
k ∈ A`,ass. (5.13)

These uncertainties can be obtained using the SINR estimates (4.8) and (3.14). In Fig.
5.1, this is indicated by the topmost block that links the channel estimation and the tracking
algorithm. The dashed line can be understood in two ways: First, this step of acquiring channel
information for the tracking is optional (it was not used in [T5, T6]). Second, in the current
implementation of this tracking scheme, it is not implemented based on the received signal
during the tracking, but on multiple pre-measured training signals28.

It is important to note that by selecting the range uncertainties using equality in (3.14), we
imply that the MPC delays are estimated efficiently, i.e. using an estimator that actually attains
the CRLB. The ML estimator is known to be asymptotically efficient [108]. Due to the fact that
DM is neglected, (4.1) is only an approximation of the ML estimator (see e.g. [73,74]), thus we

26 This can be compared to validation gating [135], in which measurements are subject to a statistical test.
27 See also Fig. 5 in [T4] for a comparison of covariance ellipses of the EKF compared to the estimated CRLB

that accounts for the weighting.
28 In current work, we extend the EKF-DA tracking to include the VA positions as well as the range uncertainties.

This allows to account for changes in the environment and does not require training measurements. First results
were presented in [95].
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expect a performance penalty.

Fig. 5.1 also shows a block ffilt(A`). This accounts for the fact that additional prior knowledge
in terms of the relevant VAs Ã may be available, resulting in ffilt(A`) = A` ∩ Ã. In [T9], Ã
has been chosen as the set of VAs for which range estimation uncertainties are available. This
provides two main advantages: First, while many potential VAs may be computed from a given
building layout (see Section 2.2), only a small subset of them might provide reliable position-
related information, which is accounted for by filtering the VAs. Second, it helps in the DA
procedure, as less candidate VAs will be associated to clutter delay estimates. Of course it will
also make the DA procedure considerably faster.

5.3 Example Results
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Figure 5.2: CDFs of the position error for different multipath-assisted tracking algorithms presented in this
chapter. Results in (a) are from [T5] and use the corridor scenario explained in Appendix
A.4. Only a single anchor is used, employing different bandwidths and the EKF-based and PF
tracking methods. For (b), the results in [T9] are used, which were obtained in the seminarroom
scenario explained in Appendix A.5.1 using two anchors and the EKF-DA method with and
without estimated range uncertainties.

In Fig. 5.2a, tracking results from [T5] are presented. In the large-scale corridor scenario
explained in Appendix A.4, the EKF-DA (black lines) and the EKF-GADA (red lines) discussed
in Section 5.2.2 are applied for different pulse durations Tp ∈ {0.2 ns, 0.5 ns, 1 ns}. Also, results
for the PF with unassociated range estimates (blue lines) as discussed in Section 5.2.1 are

included. Only the single anchor at a
(3)
1 is used with VAs up to order 2, and the first 220

positions of the trajectory. This approximately corresponds to the right half of Fig. A.4. For
the range uncertainties, a constant value is used for all VAs as in [T5, T6]. At Tp = 0.5 ns,
the EKF-DA approaches the performance of the EKF-GADA with 90 % of the estimates within
22 cm. While the EKF-GADA shows the potential advantage of a large signal bandwidth, the
EKF-DA cannot reach this performance. For the largest bandwidth (Tp = 0.2 ns), the DA
procedure is tricky, since often the diffuse tails of deterministic MPCs are resolved, leading to
erroneous range estimates close to the true ones. This can easily lead to wrong associations. At
the lowest bandwidth (Tp = 1 ns), path overlap makes more and more MPCs unusable with this
method. Results in [T6] in this scenario show that if more anchors are used, robust tracking
using the EKF-DA is still possible even at Tp = 4 ns. The PF shows the same general trend
with the bandwidth. Here, MPCs corresponding to diffuse tails lead to erroneous modes in the
multimodal likelihood function (5.7), which are in the vicinity of the true mode and thus can
lead to tracking errors.
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Fig. 5.2b shows tracking results from [T9]. Here, the seminarroom scenario explained in
Appendix A.5.1 is used with two anchors, trajectory 2, VAs up to order two and the time-domain
measurements with Tp = 0.5 ns. As Fig. A.6 shows, this allows for 25 parallel trajectories of
220 points each that are used for tracking. The gray dashed lines show the performance of the
EKF-DA for the 25 individual runs if the range uncertainties are selected as constant for all VAs,
i.e. such as for Fig. 5.2a. In this case, 10 of 25 runs diverge, mostly in the NLOS region w.r.t.

a
(1)
1 behind the concrete pillar. For the 15 non-diverging runs, on average 90 % of the estimates

have an error of less than 7 cm, indicated by the bold black dashed line with circle markers. The
red dashed lines indicate the performance if the measurement covariance matrix of the EKF is
chosen according to (5.13), i.e. with range uncertainties estimated according to Section 4.2.1
and (3.14). Here, all 25 runs achieve similar, excellent performance, i.e. 90 % of the estimates
have an error of less than 4 cm. The blue dashed line with square markers shows the overall
performance with estimated range uncertainties, but without the optimized VA positions using
(4.7). It can be observed that the awareness to the range uncertainties provides the robustness
while the optimized VA positions further improve the accuracy.

5.4 Chapter Conclusions and Results in Included Papers

The algorithms and results in our first papers [79] and [T1] give rise to the following conclusions.

• Tracking exploiting range information from MPCs is possible, even using algorithms
that do not require data association or work with intermediate position estimates that
show a large percentage of outliers.

• However, the validity of the models that have been used for the MPC delays is unclear,
as they are not related to realistic channel models.

In [T5], the tracking scheme with OSPA-based DA and an EKF are presented, showing results
for single-anchor tracking and measured signals. Besides being a proof-of-concept for multipath-
assisted tracking, it also includes results for the PF presented in [T1] that does not require
DA. It is shown that especially the distribution of the DM in the delay domain is problematic
for the PF, as it assumes a uniform distribution. Clutter delay estimates from diffuse tails of
deterministic MPCs lead to estimation errors that are due to spurious modes of the likelihood
function in the vicinity of the correct mode. The tracking algorithms presented in [T5, T6, T9]
work with the signal at the agent and include the channel estimation.

In [T6], the presented tracking scheme using EKF and DA has been compared to conventional
EKF tracking schemes that only make use of the LOS component. An NLOS situation has been
generated using the same measurements as in [T5], by artificially placing an obstruction in
the environment and modifying the signals in a spatially consistent way, i.e. decreasing the
SINR of the LOS component by 10 dB, but also all SINRs of reflected MPCs influenced by the
obstruction.

The above mentioned investigations allow for important conclusions based on propagation
conditions in real environments, which is vital for the use of multipath in positioning.

• Using suitable data association, single anchor tracking is possible at centimeter level
accuracy [T5]. The only tuning parameter introduced in addition to conventional tracking
algorithms is the cut-off distance. It can be selected intuitively based on the expected
maximum range uncertainty of the MPCs and allows to reject outliers.

• Data association based on constrained optimal sub-pattern assignment [T5] works
well using the geometric VA model introduced in Chapter 2 as long as the tracking filter
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is approximately on track. Suitable divergence detection and initialization schemes are
subject of current research.

• The performance evaluation in [T6] has shown the robustness benefit compared to con-
ventional tracking. In an artificial NLOS situation based on measurements, VA-modeled
MPCs provide significant position information in NLOS regions.

• With awareness to the uncertainty of the range estimates to the VAs as described in
Chapter 4 and [T4, T9], an accuracy of a few centimeters can be achieved with almost
no outliers, i.e. at a high level of robustness. These results can be reproduced with the
developed live demonstration system [T8] in different environments.

• The estimation of the range uncertainties for the tracking measurement noise model allows
to prune the large set of potential VAs to the relevant ones. Also, a considerably
smaller cutoff distance can be chosen. This leads to a reduced number of erroneous data
associations.

• Interestingly, a single value is enough for the uncertainty of the range information of
each MPC for the whole environment to reach performance results close to the according
CRLB. This gives rise to the conclusion that the relative importance of deterministic MPCs
may be modeled globally. As this conclusion is based on specific measurement results in
example environments29, its validity needs to be addressed using properly derived, general
channel models.

29 However, consistent results are obtained in all of the investigated environments.
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6
Conclusions and Outlook

6.1 Conclusions

The chapter conclusions have stated the more specific research findings of the individual papers
included in this thesis. This final section of the thesis overview provides general conclusions that
help to put these findings in a more global context.

This thesis provides a proof-of-concept of multipath-assisted positioning and tracking. At the
starting point of the performed research, it was not clear if the known geometric structure of
the multipath channel can be exploited for positioning. By the use of floor plan knowledge and
ultra-wideband signals, it has been shown that this is indeed possible and provides excellent
robustness and accuracy, if an awareness to propagation conditions of the deterministic MPCs is
available. Using a geometric-stochastic framework for a proper modeling of relevant propagation
phenomena, the principal research question stated in Sec. 1.2.2 has been answered:

The geometric information embedded in reflected multipath components can be exploited
for positioning. Statistical bounds on the position error allow for the quantification of the
relevance of the position-related information of a multipath component. This relevance can
be estimated from signals and used as a reliability metric for the range information of the
respective component, allowing for an optimal weighting of its contribution.

The characterization of the position-relevance of MPCs in a wireless signal is at the heart of
this thesis. For this, a signal-to-interference-and-noise-ratio (SINR) for deterministic MPCs has
been defined as the ratio of its energy to the combined power of measurement noise and diffuse
multipath. This SINR is not only important for the presented application of multipath-assisted
positioning. but also for proper indoor channel models in general. A channel model can be
made both spatially consistent using the simple geometric modeling and realistic in terms of a
proper representation of non-resolvable, statistically modeled components.

The presented algorithms for multipath-assisted tracking allow for robust position estimation
at low complexity if uncertainty information of the MPCs is taken into account. Our observations
with the live-demonstration system in different environments consistently led to similar results.
Based on this, we conclude that accurate measurement noise models are the key component of
robust positioning and tracking systems. The results especially highlight the importance of a
proper model for diffuse, not deterministically modeled multipath.
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6.2 Ongoing and Future Work

The proof-of-concept implementation still operates under controlled conditions. While it shows
the general applicability, still important research questions are open. Considering the practi-
cal use of the system, it is not clear how different antenna orientations or carrying the agent
device on or near to the body will influence the performance. This needs to be approached in
controlled conditions considering individual MPCs as well as considering the overall positioning
performance.

The MPC SINRs, which are the key enabler for the accurate and robust performance, have
been estimated using pre-recorded measurements. While performing this procedure is possible
when installing such a system in an environment, it is of course more convenient to let the
tracking system learn the MPC parameters during the tracking phase. For such an online
scheme, first results are available, showing that the performance of the offline approach can be
reproduced. The online estimation has the additional benefit of being able to adapt to changes
in the environment, since also the VA positions themselves can be added to the state vector.
Also, the detection of new features in the environment such as in simultaneous localization and
mapping are important possible extensions of the concept. In this regard, it is important to
answer the question of the required level of accuracy of the floor plan information.

After first results have been obtained using simulated MPC parameters, this thesis followed
an experimental approach, since the question that the author was most often asked in the
beginning was: “Do you think this works with real signals?” Since any positioning system needs
to estimate location-dependent features from observations of physical processes, evaluating the
performance with realistic signals is vital. Further research is needed on channel models that can
reproduce the geometric structure of MPCs as well as the important role of DM. The vision is a
channel model allowing for realistic signals for performance evaluation that can be calibrated to
an environment using only a few, ideally only coarsely localized measurements. Due to our work
on channel modeling tools such as ray-tracing or stochastic propagation graphs (not contained
in this thesis), we believe that properly parametrized geometric-stochastic models are the most
promising approach.

The positioning problem itself needs to be addressed, i.e. the global solution for multipath-
assisted localization without prior information on the position, such as in tracking. Results are
already published for Bayesian estimation algorithms based on the likelihood function used to
derive the CRLB. But also in this regard, low complexity schemes are of interest that allow for
a considerations of uncertainty models for the MPCs. Such methods can be used to rapidly
initialize the tracking algorithms e.g. when divergence from the true trajectory occurs. The de-
tection of such situations is also important. Standard tools for consistency or convergence checks
for Kalman filters did not perform well in our experiments, which may be due to symmetries
and ambiguities that allow for many positions to match to a given pattern of non associated
multipath delays.

Finally, a relatively simple energy-based channel estimation algorithm has been used to esti-
mate MPC delays and amplitudes in this thesis. The responsibility of taking into account the
DM properly has been shifted to the data association and the noise model of the tracking filter.
In this regard, we think that considerable gains are possible by Bayesian channel estimation
strategies that also allow for a tracking of the channel model parameters themselves. Cognitive
processing may be a key factor here, as it explicitly considers an information flow and an in-
terplay of the measurement and the estimation procedures. Above this, global models can be
updated to reflect the current state of knowledge of the environment.
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7
Additional Discussions

This chapter contains additional discussions about the radio channel that are important for this
thesis. Section 7.1 deals with propagation effects that are relevant for positioning. Section 7.2
contains a discussion of power delay profiles for channel characterization. Section 7.3 gives an
overview of related channel models from the literature, while Section 7.4 briefly concludes the
chapter.

7.1 Overview over Propagation Mechanisms

As discussed in Section 1.1.1, localization methods infer the position of an agent by the use of
position-related parameters in the respective signals [16,23]. Hence, we briefly review the most
prominent propagation effects in a radio channel and their position dependence.

Reflection, Transmission and Diffraction

A homogeneous plane wave incident on a sufficiently smooth and large (compared to the wave-
length) surface results in a specular reflection [100]. This is the electromagnetic interaction whose
resulting deterministic propagation path carries the most easily accessible position-related in-
formation, i.e. the AoA and, most importantly, the ToA of the corresponding MPC. Besides
the reflection, a part of the signal energy is also transmitted through the medium via refraction,
quantified by the respective reflection- and transmission coefficients. As the reflecting surfaces
have a finite extent, also diffraction will occur at the surface boundaries, which can be described
by a diffraction coefficient.

For broadband signals, specifically any signal that is used in this thesis, the complication arises
that electrical properties like the dielectric constant and the conductivity change significantly
over the bandwidth of interest [137,138]. This frequency dependence of the interaction causes a
dispersion of the signal in the delay domain, i.e. a deviation from the pure specular reflection,
which has to be accounted for in the respective channel model (see Section 2.1).

Ray-tracing is a popular method for the simulation of wireless propagation channels. Geomet-
ric optical principles are used to find possible propagation paths in some environment, whose
propagation-relevant features have to be known a-priori. Once those paths are determined,
Maxwell’s equations (or suitable approximations) can be solved to determine the electromag-
netic field for specific positions. The frequency dependence makes the simulation difficult if
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ultra-wideband signals are desired. This can be accounted for by sub-band divided ray tracing
methods [80], in which the electrical properties of the interacting objects have to be known
over the desired frequency band. Another option is to calibrate these properties using measure-
ment data in some environment [88]. The latter method can lead to more realistic signals than
conventional methods [T7], but no insight is given on the obtained signal parameters.

Due to these considerations, we chose to use only the geometric quantities describing specular
reflections in this work, i.e. AoA and ToA. These can be conveniently computed using optical
ray-tracing as explained in Section 2.2. Diffraction would in principle lead to larger areas of
visibility for MPCs (e.g. diffraction of the LOS component around a corner), but since this is
extremely site-specific and difficult to describe, we omit to model this effect. Transmission and
other losses in terms of signal power due to interactions are accounted for indirectly. This means
that path amplitudes are not computed directly, but their statistics are estimated to account
for the reliability of different reflections (see Chapter 4 and [T4,T9]).

Diffuse Scattering

Most surfaces are not perfectly smooth w.r.t. their reflection characteristics. The resulting
phenomenon is generally called diffuse scattering. Using geometric optics terms again, a ray in-
cident on a surface causes multiple emerging rays. Only one of these rays represents the specular
reflection, where incident and emergent angles are equal. The “newly generated” rays are scat-
tered in different directions. Actually computing all scattered components is impossible, since,
this would require accurate knowledge of the surface including possibly sub-surface structures
at every point, not to mention complexity. A possible simulation method based on ray-tracing
is dividing the surface in tiles, whose sizes depend on the wavelength. For each tile, a number
of scattered paths are generated with random phases, weighted by a scattering pattern [80].
In a completely different method, propagation graphs are used to model interactions between
scatterers [139]. Loops in these graphs lead to recursive structures that can nicely model diffuse
contributions.

Both of these methods to generate diffuse components result in large numbers of often un-
resolvable MPCs30. Hence, diffuse scattering is also known as dense multipath [73] or diffuse
multipath (DM) [T3] and modeled using a power delay profile (PDP), which describes the dis-
tribution of the DM power in the delay domain (see Section 2.1.2 and Fig. 2 in [T3]). In the
ray-tracing literature, the specular paths are often called the coherent, and the diffuse scattered
paths the incoherent part of the channel [140]. This terminology nicely suggests to consider the
diffuse scattered components as unresolvable, interfering31 part of the channel.

Pathloss and Received Power

The received power at a distance d from the transmitter can be written as a function of the
transmitted power PTX [100]

PRX(d) = PTXGRXGTX

(
λ

4πd

)n
(7.1)

where GRX and GTX are the average antenna gains of receiver and transmitter in the corre-
sponding directions and the last term is usually called the path loss. The form of (7.1) with
n = 2 is generally known as the Friis’ equation, describing the received power in free space. In
the presence of multipath, the path loss exponent n may be considerably greater but also less
than two, strongly depending on the specific environment. For positioning, the relation (7.1) can

30 Resolvability of course depends on the measurement bandwidth. Nevertheless, we assume that diffuse compo-
nents are not resolvable even at ultra-wide bandwidths.

31 “Interfering” in terms of representing additional noise to the deterministic MPCs caused by specular reflections.
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be used in two ways. The first option is to use a suitable approximation of (7.1) for ranging, e.g.
neglecting the antenna gains [15]. This approach suffers from the fact that the received power is
a function of many propagation effects and as such it is highly dynamic, which in general leads
to position errors on meter level with a large variance [141].

The second option is fingerprinting. The received signal strength (RSS) values w.r.t. to mul-
tiple transmitters are measured and compared with a prerecorded database using probabilistic
methods. This requires a training phase and still suffers from low accuracy. Also, it shares the
common drawback of fingerprinting methods, i.e. changes in the environment lead to a potential
loss of the usefulness of the recorded fingerprints.

In this work, path loss is only used in [T4,T9] to correct relatively small deterministic distance
dependencies of path amplitudes and in computational evaluations of performance bounds like
in [T3, T8] for the generation of path amplitudes. In the latter case, the Friis equation is used
for the LOS component. An additional loss factor of e.g. 3 dB per interaction order has been
assigned to deterministic MPCs as a simple model that does not account for wall materials.

7.2 Discussion of Power Delay Profiles

To evaluate the average behavior of the channel in an area around a center position p¯̀, averaged
over the small scale fading, the PDP is defined using the local CIRs h`(τ) as [14,100,105,142]

Sh,¯̀(τe,`) = Ep`
{h`(τ + τ1,`)h

∗
` (τ + τ1,`)} (7.2)

≈ 1

L

∑

`∈P¯̀

h`(τ + τ1,`)h
∗
` (τ + τ1,`), (7.3)

i.e. an ensemble average over the CIR. Note that the PDP is defined over the excess delay
τe,` = τ + τ1,`, i.e. the delay w.r.t. the LOS component at p`, whose delay is denoted as τ1,`.
An important consideration is the region over which averaging is performed in practice. This
region is defined as the set of position indices P¯̀ around a center point p¯̀ in (7.3). As discussed
in [143], the spatial separation ∆d = ‖p` − p`′‖ with `, `′ ∈ P¯̀ between points should be larger
than the wavelength c/fc to allow for uncorrelated samples, but smaller than c/B to prevent
MPCs from changing delay bins. For UWB-REL signals (see Section 1.1.1), these two conditions
get close to each other. A meaningful PDP can only be obtained in a very limited spatial region.
If ∆d > c/B, additional delay dispersion will result from the averaging, since energy of a certain
MPC is spread over multiple delay bins.

Channel models and their characterizations differ in the deterministic or random definition
of their parameters. This has consequences on the PDP estimation in terms of the averaging
process in (7.2). In this thesis, floor plan knowledge is used to model the parameters of the
specular reflections of the signal as deterministic. Therefore, the relevant part of the channel
for averaging to obtain a PDP is the DM as in (2.2). The corresponding PDP Sν,¯̀(τe,`) can be
estimated by removing all deterministic MPCs from signals in a spatial region and average the
obtained signals as in (7.3). This procedure is explained in Section 4.1.1.

Fig. 7.1 shows PDPs of signals at different bandwidths (2 GHz and 500 MHz32 at a center
frequency of fc = 7 GHz) at three positions in an indoor scenario together with several PDP
estimates (see Section 4.1.1). The blue lines show the PDP according to (7.3), i.e. using the
filtered CIRs. For the black lines, the VA-modeled MPCs have been removed, while for the gray
dashed lines, the 20 strongest MPCs are taken into account, i.e. black and gray lines correspond
to different estimates of the PDP of the DM.

At the center frequency of fc = 7 GHz, the larger bandwidth corresponds to the UWB-REL
case while the lower bandwidth can only be classified as UWB-ABS. While the carrier wavelength

32 Obtained using filtering with a raised-cosine pulse with Tp = 0.5 ns and Tp = 2 ns, see Appendix A.3.
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Figure 7.1: PDPs of the received signals (blue lines) and estimates of the diffuse multipath (for the black lines,
the VA is used to model the deterministic MPCs, for the gray dashed lines, the 20 strongest MPCs
are taken into account). Different bandwidths around fc = 7 GHz are used in the seminar-room
scenario (c.f. Section A.5.1 and Fig. A.6). Anchor 1 and three center positions ¯̀∈ {6, 85, 185}
of trajectory 2 are used. For (a) and (b), the 25 local grid points around ` have been used for
averaging, for (c) and (d), the region was extended to 5 center points before and after each ¯̀

together with their local grids, giving 275 points for each PDP.

is roughly 4 cm, the spatial extent of a delay bin c/B is 14 cm and 60 cm, respectively. For the
top plots, 25 1-cm-spaced local grid points33 around the center points p¯̀ have been used for
averaging, resulting in a maximum spatial separation of ∆d = 5.6 cm. For the lower plots, ten
additional trajectory center points and their 1-cm-spaced local grid points have been used for
averaging, resulting in 275 points per PDP and a maximum spatial separation of ∆d = 54 cm.
In the light of the channel model (2.1), averaging considerations should also account for the
expected visibility regions of deterministic MPCs34 as these will also govern spatial regions of
stationary channel behavior.

The PDPs using the large bandwidth show a large amount of local details as long as the
averaging conditions are fulfilled. If this is not the case, like in Fig. 7.1c, local variations
are clearly averaged out. However, the PDP of the estimated DM, obtained by removing the
deterministic MPCs, still seems comparable to Fig. 7.1a. This indicates that the prominent
differences stem from additional delay dispersion of the deterministic MPCs. If the bandwidth

33 See Section A.5.1 for a description of the measurements.
34 See Figs. 2.3 and 2.4 for an example in a different environment.
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is reduced to UWB-ABS as for the two right figures, the spatial averaging conditions are fulfilled
in both cases. This leads to comparable results also for the PDPs including the deterministic
MPCs.

For bandwidths lower than UWB, [142] points out that the PDP shows exponentially decaying
behavior with a similar slope within a room due to reverberation effects that can not be resolved.
Here, the significantly larger bandwidths do not allow for such simple models, as the large time
resolution enables to resolve many contributions to the signal. This is shown in Fig. 7.1 by the
local variations in the PDPs. However, in numerical computations of performance bounds such
as in [T3], a double exponential model such as in [26] is used. This model accounts for “soft
onset” effects for components after the LOS components, which to some extend can be observed
in our measurements, e.g. in Fig. 7.1.

7.3 Overview of Related Channel Models

One of the most widely cited models for UWB channels is given in [18] as (extended with the
position index)

h`(τ) =

K∑̀

k=1

αk,`χk(τ) ∗ δ(τ − τk,`) (7.4)

where the impulse response h`(τ) is modeled as a sum of K` MPCs with amplitudes αk,` and
delays τk,`. The function χk(τ) represents pulse distortion, i.e. a frequency dependence in the
interaction process that generated the respective MPC. Though this is an effect that will most
certainly occur in UWB systems due to the fact that an MPC experiences different propagation
properties in different frequency bands, χk(τ) is not considered in most channel models. This is
due to the fact that the proper characterization of χk(τ) is site- and material-specific and would
require large databases of measurement results as well as implementations of channel models
capable of using those.

Taking into account the above discussion on propagation effects, the pulse distortion χk(τ)
in (7.4) can be understood as DM associated with the k-th MPC, i.e. the MPC’s respective
non-specular part. UWB channel models such as in [96] propose so-called diffuse tails of deter-
ministic MPCs. These are different from the classical clusters of MPCs in the Saleh-Valenzuela
(SV) Model [143, 144] that may be understood as stemming from groups of spatially extended
scatterers. The definition and parametrization of clusters will be different depending on the
bandwidth and the application area of the channel model.

Models like [26,75] allow for the reproduction of channel behavior that has been parametrized
using measurements in some environment. While [26] uses the SV model (with the extension of
also considering a power-law instead of an exponential per-cluster power decay), [75] also includes
geometric effects such as visibility regions of clusters that can be estimated from measurements
[82, 84]. Such visibility regions are also used in [145], allowing for spatially consistent channel
simulations in a defined environment.

The arrival times of MPCs are accounted for implicitly by random or deterministic placement
of the scatterers. In classical models such as [102, 103], the inter-arrival times of MPCs are
treated as Poisson distributed, which can be related to uniformly distributed scatterers in the
spatial domain. This notion has been extended to clusters in [144], where the arrival times of
the clusters as well as those of the constituent MPCs are described by homogeneous Poisson
processes. A novel modeling aspect in this regard is done in [146], where spatial point processes
are used to model the birth and death dynamics of MPCs in time-varying channels.

Although some of the above models include the effect of DM, it is modeled once that deter-
ministic MPCs have been taken into account, i.e. to model the remaining energy of the channel
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that can not be explained. An explicit estimation of DM is done in [76] and [73], relying on
models of the PDP shape. This allows for a structured decomposition and estimation of the
parts of the channel. Another different approach to the modeling of dense channels is the use
of propagation graphs [139]. Graph theory is used to model the interplay of scatterers in a
recursive way, allowing for closed-form expressions of channel transfer functions.

The model (2.1) used in this thesis clearly separates the description of deterministic and diffuse
multipath. By a suitable choice of the PDP of the DM in (2.2), different power distributions can
be achieved in the delay domain. Clustering can either be modeled using groups of deterministic
MPCs (which would be given by the geometry) or by a mixture model representation of Sν,`(τ)
that could also depend on the deterministic MPCs to model diffuse tails. In this thesis, we restrict
Sν,`(τ) to global models w.r.t. the delay domain when explicitly using it [T3]. However, when
estimating position-related information [T4, T8, T9] from signals, the local interplay between
deterministic MPCs and the DM can be accounted for without explicitly estimating Sν,`(τ).

7.4 Chapter Conclusions

This chapter discussed several issues concerning radio propagation effects and their characteri-
zation that are relevant for this thesis. In terms of position dependence, the propagation delay
of the radio signal (and its specular reflected MPCs) provides the most useful physical phe-
nomenon to exploit. PDPs are very useful for the average characterization of radio channel in
the delay domain. In this thesis, the PDP of the diffuse multipath represents the main source
of uncertainty in the estimated path delays of deterministic MPCs. The estimation of PDPs
exhibits some intricacies, especially at ultra-wide bandwidths. Finally, the relation of the used
channel model has been discussed with respect to the literature.
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8
Additional Results

This chapter contains additional results using the measurements discussed in Appendix A. Sec-
tion 8.1 presents results for the energy capture (EC) analysis discussed in Section 4.1.2 for
different scenarios. For the same scenarios, Section 8.2 contains estimation results for the K-
factor w.r.t. the LOS component and the RMS delay spread as discussed in Section 2.1.2. In
Section 8.3, the SINR estimation technique from Section 4.2 is applied for different scenarios to
predict the performance using the PEB. Comparisons are done with the tracking performance
that can be achieved. Section 8.4 briefly concludes the chapter.

8.1 Energy Capture Analysis for Different Scenarios

This section provides additional results for Section 4.1.2. For all plots, the black lines denote
the EC of all VA-modeled MPCs up to order three. For the EC denoted by the blue lines, the
respective same number of strongest components are taken into account, i.e. (4.1) and (4.2) with

K̂
(j)
` = |A`|. The grey dashed lines correspond to the black lines, but with the LOS component

removed from A
`

to show the EC of only the reflected components. A general conclusion from
Figs. 8.1-8.6 is that the EC of VA-modeled deterministic MPCs is also significant in scenarios
other than the one used in [T2]. Much of the energy is contained in reflected MPCs.

Fig. 8.1 shows the EC for the first 220 trajectory positions (the rightmost part in Fig. A.4)
of the corridor scenario, using Anchor 3 and two different pulse durations of Tp = 0.2 ns (using
fc = 7 GHz) and Tp = 0.5 ns (using fc = 6.85 GHz). The trend in the EC over the trajectory is
similar for both pulse durations. Nevertheless, a shorter pulse corresponds to a lower EC, since
a narrower pulse contains less contributions of the DM. These results correspond to those in
[T2] (e.g. Fig. 6), where a slightly different methodology was followed as explained in Section
4.1.2. In [T2], the maximum amplitude of the received signal was taken as the MPC amplitude
within an uncertainty window corresponding to the pulse duration. In general, this leads a
slightly larger EC than presented here. Also, a different pulse shape was used in [T2] to filter
out the band of interest (a Parzen window in frequency domain). Despite these differences in
methodology, the results match well qualitatively.

Fig. 8.2 shows the EC for the seminarroom scenario (see Section A.5) using Anchor 1 and agent
2 and a pulse duration of Tp = 0.5 ns at a center frequency of fc = 7 GHz. The measurements
obtained with the M-sequence channel sounder and the vector network analyzer are compared.
In terms of EC, both agree quite well, especially for the NLOS MPCs. Differences come from the
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different, unknown antenna orientations in both campaigns, which most prominently influence
the LOS component. Between ` = 80 and ` = 100, the NLOS region caused by the pillar can
be observed. Here, much of the energy in the strongest components (blue line) still comes from
the diffracted LOS component.

Figs. 8.3 and 8.4 compare the two demonstration rooms in Graz (see Section A.5.2) and
Montbéliard (see Section A.5.3), respectively. For the first, the two different anchors are shown,
leading to comparable levels of EC. For the second, two center frequencies fc = 7 GHz and
fc = 8 GHz are analyzed at a pulse duration of Tp = 0.5 ns. This was done as the larger fc

shows considerably better performance with the real-time demonstration system, as explained
in [T8]. In the EC, this advantage is only seen slightly.

Figs. 8.5 and 8.6 compare measurements in the laboratory room (see Section A.6), at pulse
durations Tp = 0.5 ns and Tp = 0.2 ns, respectively. For both figures, the empty and full rooms
are compared. Interestingly, the difference in room configurations can not be distinguished
clearly using the EC, even using the shorter pulse duration.
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Figure 8.1: Energy capture as defined in (4.5) for positions ` = 1, . . . , 220 of the corridor scenario (see
Section A.4). Anchor 3 is used for two pulse durations Tp = 0.2 ns and Tp = 0.5 ns.
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(a) Channel Sounder
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(b) Vector Network Analyzer

Figure 8.2: Energy capture as defined in (4.5) for the seminarroom scenario (see Section A.5). Anchor
1 and agent 2 have been used with a pulse duration of Tp = 0.5 ns at a center frequency of
fc = 7 GHz. Left plot shows measurements obtained with the M-sequence channel sounder (see
Section A.2.2), right plot for the Vector Network Analyzer (see Section A.2.1).
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Figure 8.3: Energy capture as defined in (4.5) for the demonstration room scenario in Graz (see Section
A.5.2). Anchor 1 and 2 are used on trajectory 2 with a pulse duration of Tp = 0.5 ns at a center
frequency of fc = 7 GHz.
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Figure 8.4: Energy capture as defined in (4.5) for the demonstration room scenario in Montbéliard (see
Section A.5.3). Anchor 1 and agent 1 have been used with a pulse duration of Tp = 0.2 ns at a
center frequencies of fc = 7 GHz and fc = 8 GHz.
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Figure 8.5: Energy capture as defined in (4.5) for the laboratory room scenario (see Section A.6). Anchor
1 has been used with a pulse duration of Tp = 0.5 ns at a center frequency of fc = 7 GHz. The
left plot uses the measurements in the empty room, for the right plot, a lot of measurement
equipment was inside.
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Figure 8.6: Energy capture as defined in (4.5) for the laboratory room scenario (see Section A.6). Anchor
1 has been used with a pulse duration of Tp = 0.2 ns at a center frequency of fc = 7 GHz. The
left plot uses the measurements in the empty room, for the right plot, a lot of measurement
equipment was inside.
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8.2 Channel Parameter Estimation

This section provides additional results for the estimation of the channel parameters rms delay
spread τRMS (2.4) and K-factor w.r.t. the LOS component KLOS (2.5), as explained in Section
2.1.2. As in [T2], the instantaneous values τRMS,` and KLOS,` are shown over the trajectories.
The same scenarios as in the previous Section 8.1 are used. Fig. 8.7 shows the scenario used
in [T2]. The results agree well with the paper, despite the slightly different methodology as
explained in Section 8.1. There are almost no differences between the two bandwidths. Fig. 8.8
shows the comparison of the estimated channel parameters for the M-sequence channel sounder
and the VNA data. Quantitatively, there are considerable local differences, although the overall
trend is similar. This goes in line with the EC analysis in Fig. 8.2.

The comparisons of the two demonstration rooms in Graz and Montbéliard is shown in Figs.
8.9 and 8.10. The general trend of the channel parameters w.r.t. the distance to the anchors
can be observed. No significant differences can be seen for the two different center frequencies.

For the laboratory room, only the results for the pulse duration Tp = 0.5 ns are shown in Fig.
8.11, as there are no significant differences to the shorter pulse duration. The K-factor shows
a small dependence on the distance to the anchor. Other than this, the channel parameters do
not vary much over this short trajectory which is due to the small room dimensions.

20 40 60 80 100 120 140 160 180 200 220

−15

−10

−5

0

5

 

 

20 40 60 80 100 120 140 160 180 200 220

15

20

25

30

35

40

K
LOS,l

τ
rms,l

K
L
O
S
, ℓ
[d
B
]

τ
R
M

S
, ℓ
[n
s]

ℓ

(a) Tp = 0.2 ns
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Figure 8.7: Instantaneous channel parameters τRMS,` and KLOS,` as defined in (2.4) and (2.5) for positions
` = 1, . . . , 220 of the corridor scenario (see Section A.4). Anchor 3 is used for two pulse
durations Tp = 0.2 ns and Tp = 0.5 ns.
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(a) Channel Sounder
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Figure 8.8: Instantaneous channel parameters τRMS,` and KLOS,` as defined in (2.4) and (2.5) for the sem-
inarroom (see Section A.5). Anchor 1 and agent 2 have been used with a pulse duration of
Tp = 0.5 ns at a center frequency fc = 7 GHz. Left plot shows M-sequence channel sounder mea-
surements (see Section A.2.2), right plot for the Vector Network Analyzer (see Section A.2.1).
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Figure 8.9: Instantaneous channel parameters τRMS,` and KLOS,` as defined in (2.4) and (2.5) for the demon-
stration room scenario in Graz (see Section A.5.2). Anchor 1 and 2 are used on trajectory 2
with a pulse duration of Tp = 0.5 ns at a center frequency of fc = 7 GHz.
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(a) fc = 7 GHz
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Figure 8.10: Instantaneous channel parameters τRMS,` and KLOS,` as defined in (2.4) and (2.5) for the
demonstration room scenario in Montbéliard (see Section A.5.3). Anchor 1 and agent 1 have
been used with a pulse duration of Tp = 0.2 ns at center frequencies of fc = 7 GHz (left plot)
and fc = 8 GHz (right plot).
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Figure 8.11: Instantaneous channel parameters τRMS,` and KLOS,` as defined in (2.4) and (2.5) for the
laboratory room scenario (see Section A.6). Anchor 1 has been used with a pulse duration of
Tp = 0.5 ns at a center frequency of fc = 7 GHz. The left plot uses the measurements in the
empty room, for the right plot, a lot of measurement equipment was inside.
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8.3 SINR and CRLB Estimation and Performance Results

8.3.1 PEB and Performance in Demonstration Room

Fig 8.12 contains a comparison of the PEB estimated using 60 points on trajectory 1 in the
demonstration room in Graz (see Appendix A.5.2). Also the tracking performance using the
EKF-DA presented in Section 5.2.2 is shown. A pulse duration of Tp = 1 ns is used at a center
frequency of fc = 8 GHz. Fig. 8.12a shows the PEB according to (3.11), for Fig. 8.12b, (3.16)
is used, i.e. the EFIM just considering the MPCs that are not in contiguous clusters. Fig. 8.12c
shows the quantitative difference of these two PEBs using CDFs over the whole room. Regions
in which contiguous clusters exist are observable in 8.12b. However, along the trajectory, such a

region is visited only at the end, in the vicinity of a
(2)
1 , shown as a close-up in Fig. 8.12d. Here,

the ellipse according to (3.16) can better predict the performance of the EKF-DA.
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Figure 8.12: PEB for demonstration room scenario using Tp = 1 ns, fc = 8 GHz and VAs up to order 2. The
grey crosses are the 60 estimation points for the SINR. The black ellipse denotes the CRLB
at some points of trajectory 2, for the blue ellipse, the CRLB in (3.16) is used, excluding
MPC clusters. The grey ellipses denote the covariance matrix of the EKF-DA using estimated
measurements noise model (5.13). All ellipses are enlarged by a factor of 20.
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8.3.2 PEB, Performance and SINR Analysis in Seminar Room

Figs. 8.13-8.16 show different estimated PEBs and tracking results for the seminar room scenario
explained in Appendix A.5. A pulse duration of Tp = 1 ns is used at a center frequency of
fc = 7 GHz, except for the single anchor scenario in Fig. 8.16, where Tp = 0.5 ns. VAs up to
order three have been considered.

In general, a larger PEB can be observed in the region between the anchors, which is typical
for a two anchor scenario [T8]. It is caused by the bad geometric constellation between the
anchors. This effect gets more pronounced by the fact that the LOS components usually have
the largest SINR of all MPCs (see e.g. Fig. 8.17 and [T8]). Interestingly, a simple model of
the SINRs (without estimating them) can not reproduce this behavior realistically, as shown in
[T8].

In terms of the tracking performance, the EKF is in general very close to the according CRLB,
as confirmed by a comparison of its estimation error covariance matrix to the uncertainty ellipse
provided by the EFIM, e.g. in Fig. 8.13. In the region between the anchors, the EKF-DA cannot
reach the CRLB. This is due to the bad geometry as explained above. However, a conventional
measure like HDOP cannot predict this35, an awareness of the MPC SINRs is required.

In Fig. 8.14, the PEB according to (3.16) is shown, i.e. excluding MPCs that are in contiguous
clusters. A peculiarity of this result is that the SINR estimation is done for points on the same
trajectory as on which the performance evaluation of the EKF-DA is performed. On the upper
right side of the trajectory there is a region where (3.16) predicts a significant impairment
due to path overlap. The EKF-DA however is not impaired by the occurrence of path overlap
since it can still associate one estimated MPC within the cluster to its set of expected VAs
at the respective positions. Hence, the CRLB is overly pessimistic36 here, as it considers all
information from the cluster to be unusable. Information metrics for MPCs within clusters and
their estimation hence remain an important topic for further research.

Fig. 8.15 shows the PEB neglecting path overlap estimated on 60 points of trajectory 1. Also
here, the EKF-DA performance on trajectory 2 is very close to the CRLB, and the impairments
in the NLOS region with respect to Anchor 1 behind the pillar on the left side are visible. In
general, the bounds estimated using trajectories 1 or 2 agree well qualitatively. Quantitative
differences are due to differences in the estimated SINRs in different regions of the room.

Fig. 8.16 shows the PEB neglecting path overlap for a single anchor scenario using only An-
chor 2. Here, the pulse duration is decreased to Tp = 0.5 ns to allow for more usable MPCs.
Estimation is done for 60 points on trajectory 1, results are shown on both trajectories. Ge-
ometry plays a larger role in this case, as the whole configuration of VAs is determined by just
one anchor and the floor plan. It should be noted that there are a few situations where the
covariance ellipse of the EKF-DA is smaller than the CRLB. This only happens when the EKF
is slightly off track, i.e. biased. In such cases, the CRLB is not a valid lower bound. However,
the plotted EKF error ellipse is always centered on the true position, to facilitate a comparison
with the CRLB.

Some of the individual MPCs that contribute to the PEBs shown in Fig. 8.16 are analyzed in
terms of their SINRs and EC in Fig. 8.17. Fig. 8.17a shows the MPCs for Anchor 1, Fig. 8.17b
the ones for Anchor 2, where the latter are the basis for the PEB in Fig. 8.16. A subset of the
60 signals used for the SINR estimation is shown together with the estimated amplitude tracks.
The EC value that is shown is the mean per-VA-EC over these 60 points. It is clearly visible that
the LOS component provides the most significant position-related information, leading to the
main orientation of the uncertainty ellipses in the PEB. Important reflectors are the windows
(which are metal-coated) and the blackboard. An interesting observation, which is valid also in
other scenarios, is that later arriving reflections, such as double and triple reflections between
the windows, can have large SINRs. This is not indicated by their mean EC. However, at

35 These results are not shown, the HDOP for this case is always less than 2, indicating excellent geometry.
36 It should be stressed that this is due to a model mismatch between the CRLB and the estimator in this case.
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comparably large delays also the power density of the DM is already decreased, allowing for
large SINRs.

Fig. 8.17a shows similar information for Anchor 1 and some of the occurring reflections. Here,
also an MPC which is heavily impaired by DM is shown, the double reflection between lower
wall and blackboard. The DM influence leads to large fluctuations in the amplitude track and
thus to a low SINR. An awareness to this can significantly improve positioning performance as
such a measurement can be weighted accordingly.
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Figure 8.13: PEB using estimated SINRs and (3.11) (neglecting path overlap) over the seminar room sce-
nario explained in Appendix A.5 with the VNA measurements, Tp = 1 ns and fc = 7 GHz. The
grey crosses are the 60 estimation points for the SINR. The black ellipse denotes the CRLB at
some points of trajectory 1, for the blue ellipse, the CRLB in (3.16) is used, excluding MPC
clusters. The grey ellipses denote the estimation error covariance matrix of the EKF-DA using
estimated measurements noise model (5.13). All ellipses are enlarged by a factor of 20 for
better perceptibility.
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Figure 8.14: PEB using estimated SINRs and (3.16) (excluding MPC clusters) over the seminar room sce-
nario explained in Appendix A.5 with the VNA measurements, Tp = 1 ns and fc = 7 GHz. The
grey crosses are the 60 estimation points for the SINR. The black ellipse denotes the CRLB at
some points of trajectory 1, for the blue ellipse, the CRLB in (3.16) is used, excluding MPC
clusters. The grey ellipses denote the estimation error covariance matrix of the EKF-DA using
estimated measurements noise model (5.13). Compared to the previous Fig. 8.13, the estima-
tion is done using 60 points on trajectory 1. All ellipses are enlarged by a factor of 20 for better
perceptibility.
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Figure 8.15: PEB using estimated SINRs and (3.11) (neglecting path overlap) over the seminar room sce-
nario explained in Appendix A.5 with the VNA measurements, Tp = 1 ns and fc = 7 GHz. The
grey crosses are the 60 estimation points for the SINR. The black ellipse denotes the CRLB at
some points of trajectory 2, for the blue ellipse, the CRLB in (3.16) is used, excluding MPC
clusters. The grey ellipses denote the estimation error covariance matrix of the EKF-DA using
estimated measurements noise model (5.13). All ellipses are enlarged by a factor of 20 for
better perceptibility.
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Figure 8.16: PEB using estimated SINRs and (3.11) (neglecting path overlap) over the seminar room sce-
nario explained in Appendix A.5 with the VNA measurements, Tp = 0.5 ns and fc = 7 GHz,
only Anchor 2 is used. The grey crosses are the 60 estimation points for the SINR. The black
ellipse denotes the CRLB at some points of trajectory 2. The grey ellipses denote the estimation
error covariance matrix of the EKF-DA using estimated measurements noise model (5.13). All
ellipses are enlarged by a factor of 20 for better perceptibility.
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Figure 8.17: Estimated SINRs over the estimation points on trajectory 1 indicated in Fig. 8.15 in the
seminar room scenario explained in Appendix A.5 with the VNA measurements. Anchor 1 is
used for the top plot, Anchor 2 for the lower one, with Tp = 0.5 ns and fc = 7 GHz. Amplitude
tracks are shown for a subset of the estimation points. Besides the SINR, also the mean EC
and its standard deviation over all estimation points is indicated.
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8.3.3 PEB and SINR Analysis in the Laboratory Room

As another exemplary case study of using the SINR estimates to predict the tracking per-
formance, we use the Laboratory room measurements explained in Appendix A.6. We show
single-anchor performances for both anchors and compare this with the estimated PEBs. To get
an insight on propagation phenomena that lead to the performance results, we present SINR
estimation results for anchors using the full and empty room. Due to the small room, we use a
short pulse duration of Tp = 0.2 ns at a center frequency of fc = 6.85 GHz to reduce PO. VAs up
to order three are considered. All uncertainty ellipses are enlarged by a factor of 50 for better
visibility.

In Fig. 8.18, the PEB neglecting PO is compared for the four configurations using (3.11).
The energy capture analysis of the full and empty room in Fig. 8.6 did not show significant
differences. In terms of the PEB, differences are observable due to the SINRs of the MPCs. By
only looking at the PEB, it is not immediately clear where they come from. Comparing the two
anchors, some change originates from the visibility of some important reflections. An example
is the the whiteboard at the lower right side of the room (see floor plan in Fig. A.10), which is
visible as a first-order reflection for Anchor 2, but not for Anchor 1 .

To investigate which reflections are prominent in an environment, the SINRs can be used
estimated using (4.8). Figs. 8.19-8.22 show some of the signals used for estimation (i.e. a subset
of the 21 points indicated in Fig. 8.18) together with amplitude tracks of important reflections.

For Anchor 1 (Figs. 8.19 and 8.20) we observe a very large SINR of the LOS component,
stemming from its very stable amplitude evolution over the estimation points. This is the main
reason for the orientation of the uncertainty ellipses. An important difference is the SINR of the
door, which interestingly is larger for the full room. This may be explained by different local
behavior of the DM, caused by the presence of the laboratory equipment. Despite the fact that
the equipment is mostly made of metal, it seems to attenuate certain parts of the DM. It also
partly blocks the right wall, leading to a large difference of the amplitude of the corresponding
MPC. The SINR for the right wall in the full room scenario is still reasonable, as this path is well
separated from others at the shown points. An interesting observation is that also higher-order
reflections like the second-order reflection on window and door (from the agent’s perspective)
and also the third-order reflection on window, right wall and whiteboard are significant and
carry much position-related information.

For Anchor 2 (Figs. 8.21 and 8.22), the SINR of the LOS component is significantly lower
than for Anchor 1. Especially for the empty room, a large variation in its amplitude is observed,
which is not solely due to the distance. Although this point is not entirely clear for us, we
assume an influence of the antenna pattern which is not completely isotropic. This causes a
less pronounced orientation of the uncertainty ellipses. For Anchor 2, a first-order reflection on
the whiteboard, which is metallic and rather smooth, is possible, leading to the most significant
reflection. The most important difference comparing the empty and full room is that many
reflections that occur on the right side of the room have no SINR estimates for the full room
scenario. This is due to the fact that the laboratory equipment (see floor plan in Fig. A.10)
strongly influences their paths, leading to unusable SINR estimates37. These MPCs are then
not used for the PEB computation. For the EKF-DA, they are not part of the set of VAs, and
can thus not be used (see Fig. 5.1).

It has to be noted that despite the large bandwidth used, some possibly important reflec-
tion could not be estimated in this room. This is due to the rather small room dimensions,
leading to many path overlap situation. In these, the SINRs can not be estimated using the
presented method, as the SINR is not defined in path overlap cases. The investigation of an
MPC performance metric for path overlap situations is an important topic for further research.

37 In cases where large amplitude variations occur on the estimation segments, the SINR estimate in (4.8) can
become complex and thus is discarded, see [T4].
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Figure 8.18: PEB for full and empty laboratory room scenario using Tp = 0.2 ns, fc = 6.85 GHz, Anchor
1 (top row) or Anchor 2 (bottom row) and VAs up to order 3. The grey crosses are the 21
estimation points for the SINR. The black ellipse denotes the 50-fold CRLB at some points of
the trajectory. The grey ellipses denote the 50-fold covariance matrix of the EKF-DA using
estimated measurements noise model (5.13).
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Figure 8.19: SINR estimation in the Laboratory Room (empty using Anchor 1, according to PEB in Fig.
8.18a) explained in Appendix A.6. Seven of the 21 used estimation signals are shown as exam-
ples. The gray amplitude tracks indicate the basis for the SINR estimation. The legend shows
estimated SINRs together with the mean EC (over all 21 estimation points, respectively).
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Figure 8.20: SINR estimation in the Laboratory Room (full using Anchor 1, according to PEB in Fig. 8.18b)
explained in Appendix A.6. Seven of the 21 used estimation signals are shown as examples. The
gray amplitude tracks indicate the basis for the SINR estimation. The legend shows estimated
SINRs together with the mean EC (over all 21 estimation points, respectively).
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Figure 8.21: SINR estimation in the Laboratory Room (empty using Anchor 2, according to PEB in Fig.
8.18c) explained in Appendix A.6. Seven of the 21 used estimation signals are shown as exam-
ples. The gray amplitude tracks indicate the basis for the SINR estimation. The legend shows
estimated SINRs together with the mean EC (over all 21 estimation points, respectively).
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Figure 8.22: SINR estimation in the Laboratory Room (full using Anchor 2, according to PEB in Fig. 8.18d)
explained in Appendix A.6. Seven of the 21 used estimation signals are shown as examples. The
gray amplitude tracks indicate the basis for the SINR estimation. The legend shows estimated
SINRs together with the mean EC (over all 21 estimation points, respectively).
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8.4 Chapter Conclusions

This chapter presented additional measurement-based results for concepts in this thesis. Using
different measurement scenarios explained in Appendix A, results are discussed for the EC and
SINRs of deterministic MPCs. Furthermore, the PEB is evaluated for these SINRs and com-
pared with the tracking performance of the EKF-DA. The conclusions in the papers comprising
this thesis can be reproduced and confirmed in other scenarios. It has been shown that the
channel analysis methods developed are useful to evaluate the relevant propagation effects in an
environment. In all considered scenarios, the reflected MPCs carry a relatively large fraction of
the signal energy. The average behavior of deterministic MPCs in terms of their energy ratio
to the diffuse multipath is analyzed and used to compute performance bounds for multipath-
assisted positioning. In this way, the performance of corresponding tracking algorithms can be
understood in detail.
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UWB Sequential Monte Carlo Positioning using
Virtual Anchors
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Abstract—We present a novel UWB indoor localization concept
that performs the position estimation with a set of virtual anchor
nodes, generated from a single physical anchor and floor plan
information. Using range estimates to the virtual anchors, we
perform multilateration to estimate the position of an agent.
Previous work has shown the general applicability of this concept.
In this contribution, we use a moving agent to exploit the
correlation in successive positions using state-space concepts. A
motion model for the agent and the measurement likelihood
function allow for the use of the powerful framework of Bayesian
state estimation. With this concept, we can propagate prior
information on the agent position from one time step to the
next. The statistical model for the ranging to the virtual anchors
accounts for several imperfections, which lead to multimodal and
heavy-tailed measurement distributions. We show how modified
versions of the Kalman filter as well as a particle filter can
account for these imperfections and yield accurate and robust
position estimates. In a typical indoor pedestrian motion scenario,
we can achieve an accuracy of about 45 cm for 90% of the
estimates.

I. INTRODUCTION

In previous work [1], we have shown how an agent can

be localized using ultra-wideband (UWB) radio signals trans-

mitted between the agent and a single anchor node at a

known location. Our approach exploits the multipath compo-

nents (MPCs) of the UWB signal, which result from signal

reflections at e.g. the room walls. Using given floor plan

information, these MPCs can be mapped to virtual anchors

(VAs), which are mirror images of the anchor with respect to

the room walls, or other reflecting surfaces. Fig. 1 shows a

scenario with VAs corresponding to single and double wall

reflections. The locations of the VAs can be easily computed

with the help of the floor plan. From the UWB channel impulse

response (CIR), range estimates to the VAs can be obtained.

The position of the agent can then be computed from these

range estimates using statistical techniques.

As we have shown in [1], the availability of prior in-

formation about the agents position results in a potentially

accurate and robust position estimator. In this contribution, we

consider a moving agent, like the one shown in Fig. 1. The

sequence of its positions will be correlated in time. Using

appropriate techniques like state-space motion models and

the corresponding estimation techniques, we can propagate

This work was partly supported by the Austrian Science Fund (FWF) within
the National Research Network SISE project S10604-N13 and by the Austrian
Research Promotion Agency (FFG) under grant number 814560 (COMAR).
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Fig. 1. Indoor positioning scenario with example room geometry and
movement trajectory. There is only one physically existing anchor node, VA
locations can be computed from the floor plan. Single- and double-reflection
VAs are shown. The length of the single-reflection path from the anchor to
the agent along the left wall equals the agents distance to the respective VA.

position knowledge from one time step to the next. In this

manner, previous position estimates can be used as prior

knowledge.

We show that the ubiquitous standard Kalman filter [2] is not

useful for our approach, as our statistical models can either be

multimodal or show heavy tails. There are numerous variants

of the Kalman filter that account for such scenarios, e.g. [3],

[4]. We will use a modified version of the Kalman filter that

allows to alleviate measurement outliers. This filter needs a

good and robust initialization, for which we propose a variant

of the Gaussian sum filter [3]. To make full use of our specified

statistical models, we use Bayesian filtering techniques [5]–

[7]. Such techniques have often been successfully applied for

localization, e.g. in [8] for tracking in UWB radar sensor

networks.

We make explicit use of signal reflections together with floor

plan information. The latter is often used only to truncate the

search area, while e.g. in [9] such information is also used to

discard invalid particle paths in a Bayesian filtering context.

Reflected signal paths are often only seen as impairments

that can lead to biased range estimates in non-line-of-sight

(NLOS) scenarios. There is few work that actually exploits this

information: [10] uses NLOS paths, with the need to estimate978-1-4244-5864-6/10$26.00 c© IEEE
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not only range-, but also angular information of these paths,

which leads to a potentially complex receiver. Single-bounce

paths are also used in [11], where in addition to the angular

parameters, also the Doppler shift is estimated. For an UWB

link with single antennas on both link ends, [12] proposes an

algorithm for anchor-less localization, but with an assumed

LOS situation and a fixed number of multipaths. The concept

of virtual anchors is also used in [13], where the reflections

result in new nodes at unknown locations that contribute in the

location estimation through cooperation. In [14], reflections

from an UWB signal are used for imaging purposes, which

corresponds to the well-known simultaneous localization and

mapping problem.

The extraction of multipath components is a key step of

our approach and is as such still ongoing work [15]. However,

for MPC extraction, a wealth of publications exists, e.g. [16],

[17]. Our approach combines the knowledge of the floor plan

with the information embedded in the structure of the CIR

to turn one anchor node into a set of VAs that provides rich

localization information.

This paper is organized as follows: Section II introduces the

mathematical and statistical models that are used, Section III

discusses in detail the state-space estimation algorithms that

were adapted to our problem. Finally, Section IV presents

performance results and Section V draws conclusions and

mentions important future and ongoing work.

Throughout the paper, column vectors are boldface and

lowercase, matrices are boldface and uppercase, xT denotes

the transposition of the vector x and x̂k indicates an estimate

of xk at the discrete time step k. A multivariate normal

distribution for the random vector x with mean vector m and

covariance matrix Σ is denoted by N (x|m,Σ)

II. LOCALIZATION USING VIRTUAL ANCHORS

Using UWB signals, many of the reflected signal paths

within a room are resolvable. For example, Fig. 2 shows an

UWB CIR measured in a very recent campaign. It is well-

known that such a CIR consists of a sum of delayed and scaled

(and possibly distorted) copies of a transmitted pulse [18],

which is well visible. A key step of our approach is to extract

the delays of the MPCs, that correspond to the VAs from such

a CIR. Using these delays, we can perform multilateration to

estimate the agents position.

A. Static location estimation using VAs

The result of the MPC extraction step is a vector z con-

taining range estimates to the VAs. As discussed in detail in

[1], we have to take several possible imperfections of this step

into account: First, z can contain entries that are not caused

by an MPC (false positive detections), second, some reflected

paths could be missed by the detection and third, we do not

assume that the entries are mapped to the corresponding VAs.

Because of these imperfections, we call z a pseudodistance

vector.

We have shown that a probabilistic model for one entry zi
of the pseudodistance vector z can be given as a likelihood
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Fig. 2. Example for an UWB impulse response from a recent measurement
campaign. Reflected paths are well visible as peaks over the noise floor.

function parameterized with the position p

pzi|p(zi|p) = PVA
1

∑NVA

n=1 vn

NVA∑

n=1

vnN (zi | ||p− pn||, σ2
n)

+ (1− PVA)pzi,VA|p(zi|p) (1)

where PVA is the probability that a zi corresponds to a VA and

vn is the probability that the n-th VA at position pn is visible.

NVA is the number of VAs that are taken into account. Here,

we use the direct signal path as well as single and double

reflections, hence NVA = 9. The PDF pzi,VA|p(zi|p) is the

distribution of a zi that resulted from a false detection. We

select this PDF as a uniform distribution between zero and a

maximum range value that is larger than the possible domain

of VA-matched zi. The distance estimates to the VAs follow

a normal distribution around their true values ||p− pn|| with
a variance σ2

n.
Assuming statistical independence of theN pseudodistances

zi, the joint likelihood function of z can be expressed as

pz|p(z|p) =
N∏

i=1

pzi|p(zi|p) (2)

An example for the log-likelihood ln
(
pz|p(z|p)

)
is shown in

Fig. 3. We can observe that this functions shows a multimodal

behavior, which is a result of the imperfections that it accounts

for. A maximum-likelihood (ML) location estimate is given by

p̂ML =

[
p̂x
p̂y

]

ML

= argmax
p

pz|p(z|p) (3)

Performance results in [1] have shown that using this ML

technique results in a potentially accurate, but not very robust

estimator, as it contains large outliers. This is confirmed by

Fig. 4, which shows a histogram of the ML position estimation

error in the x-direction, Errp̂,x,ML = px,RX − p̂x,ML. We can

observe that the estimator is unbiased but follows a heavy-

tailed distribution. Assuming availability of prior information

on the agents position substantially increased the robustness.

The next subsection explains how to actually obtain this prior

information.
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)
for one specific

realization of z containing 5 VA-matched zi and 5 false detections. In this
case, the likelihood function is multimodal and the ML estimation chooses
the wrong mode near p = [0.5, 2.5]T .

B. Localization of a moving agent

Let us assume we want to track the position of a moving

agent in a room with known geometry. For the mathematical

description, we will use a standard state-space model of the

movement. We will consider a two-dimensional discrete-time

model with time index k and a sampling time of ∆T . The
state vector of the mobile agent at time k is defined as xk =
[px, py, vx, vy]

T
k ; it contains position and velocity in x and y

directions. In general, a state-space model is defined by the

two equations

xk+1 = fk(xk,ωk) (4)

yk = hk(xk,νk) (5)

where (4) is called the system- or state-propagation equation.

It maps a state vector from one time step to the next, where ωk

denotes the the process noise [2]. The state vector itself is only

accessible via the function hk(xk), which is therefore called

the measurement equation. The vector νk is the measurement

noise.

A possible scenario is shown in Fig. 1. A movement like this

can be described with a well-known linear dynamical motion

model [19], [20]

xk+1 =




1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
F

xk +




∆T 2

2 0

0 ∆T 2

2
∆T 0
0 ∆T


ak

︸ ︷︷ ︸
Gak=ωk

(6)

where the function fk(xk) = f(xk) is linear and time-

invariant. The vector ak contains acceleration noise in x and

y directions and is transformed in position and velocity noise

components via multiplication with the matrix G. This can be

interpreted as process noise in the linear system. It can also
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Fig. 4. Normalized histogram of position error in the x coordinate of the
ML-estimate. The histogram indicates that this error follows a heavy-tail
distribution. The grey dashed line is a fit of a Cauchy distribution to the
ML error in the x-direction. The y-direction is distributed analogously.

be used as a deterministic driving input to the system, e.g. we

used it to generate several different motion trajectories.

Concerning the measurement equation, we use two different

types of measurements in this paper: First, we can take

the ML position estimate at time step k, p̂k,ML from (3)

as an input to a state-space filter. Second, we can directly

take the pseudodistances in z. Both possibilities require some

discussion, which follows next.

1) Maximum likelihood estimates as measurements: In this

case we define the measurements as yk = p̂k,ML. Then we

can write (5) as

yk =

[
1 0 0 0
0 1 0 0

]

︸ ︷︷ ︸
H

xk + νk (7)

which, together with (6) is a linear state-space model, for

which a standard Kalman filter would be applicable.

A Kalman filter is the optimal estimator in the minimum

mean squared error sense for such a linear model if the noise

terms are Gaussian. But a look at Fig. 4 suggests that this

is not the case. A probabilistic model of the measurement

error could be a sharply peaked unimodal, but heavy-tailed

distribution. Approximating νk as a zero-mean Gaussian noise

term facilitates computations but fails to capture the large

outliers. More appropriate heavy-tailed distributions can be

obtained using the family of α-stable distributions [21], for

which the Cauchy distribution is a special case that has

a closed-form PDF. Dropping the time index, a bivariate

isotropic Cauchy distribution over the vector ν with location

parameter vector m = [mx,my]
T and width parameter β is

denoted as C(ν|m, β) and has the PDF [22]

p(ν) =
β

2π

[
(νx −mx)

2 + (νy −my)
2 + β2

]−3/2
. (8)

Here, the width parameter β is linked to the interquartile range

[23] and the location parametersmx and my are medians in x-
and y-direction. Fig. 4 contains a fit of a Cauchy distribution
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to Errp̂,x,ML where mx = 0 and β is chosen as half the

interquartile range of the error samples. We can also extend

our noise model with the knowledge of the room dimensions.

In this case, the distribution is a truncated bivariate isotropic

Cauchy distribution which is defined as

C̄(ν|m, β) =

{
Z · C(ν|m, β) |νx| ≤ dx and |νy| ≤ dy

0 otherwise.
(9)

where dx and dy are the dimensions of the rectangular room.

The normalization constant Z ensures that C̄(·) is a proper

PDF. As this is not important for the cases where we will

actually use this distribution, we will drop the factor Z .
2) Pseudodistance vector as measurement: If we define the

measurements as the pseudodistance vector, i.e. yk = zk, we
do not end up at a deterministic closed-form measurement

equation such as (7). This is due to the possible imperfections

of the MPC-extraction discussed in Section II-A. If we have an

estimate of the state vector x̂k available, then we can rate the

plausibility of its position entries p̂k = Hx̂k = [p̂x, p̂y]
T
k via

the likelihood function given in (2) and (1). Hence, a likelihood

for the measurements, given a position estimate x̂k can be

given as

p(yk|x̂k) = pz|p(zk|p = Hx̂k) (10)

We observe that in this case there is no deterministic

measurement equation hk(·). This is the consequence of a lack
of a mapping of the zi to the VAs, and makes the application

of Kalman-filter-like schemes impossible. Instead, we resort to

Bayesian state-space estimation concepts and implement them

using Particle filters. Those can deal with a purely probabilistic

description of the measurements. Also, it is well-known that

particle filters perform better than Kalman filters if the PDF

of the measurements is multimodal in the domain of the state

vector. As confirmed by Fig. 3, we have to deal with such a

scenario.

A third possible choice concerning the measurements is to

again take the pseudodistances and perform a mapping of its

entries to the VAs. Then an extended Kalman filter using the

range measurements would be applicable. Such a mapping

scheme is subject of ongoing research.

III. STATE SPACE ESTIMATORS

In the previous section we have shown that the virtual-

anchor-based localization problem can be formulated as a

standard state-space estimation problem. A block diagram of

the overall system is shown in Fig. 5. The MPC extraction

estimates a vector of distances to the VAs from the received

UWB signal rk(t). This vector is processed by the static VA-

based position estimation block, that computes the measure-

ment likelihood function for zk and an ML estimate. Both

are passed to the state-space estimator that either uses the

ML-estimate or zk directly as its measurements. The different

algorithms that can be used in the latter block are the subject

of this subsection.
The state-space estimation problem can be solved using

recursive Bayesian state estimation. Our aim is to estimate

rk(t)

zk,1

zk,N

Multipath-

extraction

Static VA

position

Floor plan

State-space

estimation
estimation

Motion and
measurement model

p̂k

p(yk|p)

p̂k,ML

Fig. 5. Conceptual localization scheme at time k using multipath extraction
from the received signal rk(t), subsequent computation of the likelihood as
a function of the position, followed by a state-space estimator. The latter can
use either the ML-estimate or the likelihood function plus the pseudodistances
as measurements.

the posterior distribution of the state vector xk, given all

measurements up to and including time k. Denoting the latter

set of measurements as Yk, this posterior PDF is written as

p(xk|Yk). It is well-known [2], [6], [7], that this problem can

be solved using a sequence of prediction/update calculations.

In the prediction step, we calculate the a-priori estimate of

the PDF of xk

p(xk|Yk−1) =

∫
p(xk|xk−1)p(xk−1|Yk−1)dxk−1 (11)

which is the PDF of the state vector before taking the current

measurement yk into account. Equation (11) is known as

the Chapman-Kolmogorov equation. In principle, it forms the

new a-priori PDF of the state by using the transition density

p(xk|xk−1) together with the posterior PDF from the previous

time step p(xk−1|Yk−1) and marginalizing out the previous

state vector.

At the time k, the new measurement is available and we

can calculate the posterior PDF in the update step

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)∫
p(yk|xk)p(xk|Yk−1)dxk

. (12)

Here, we need to evaluate the measurement likelihood

p(yk|xk) as well as the a-priori PDF from the prediction step.

Both the transition density in the prediction step and the mea-

surement likelihood in the update step can be obtained using

probabilistic descriptions of (4) and (5) using the PDFs of the

respective noise terms. To start the recursion, we need to select

an initial guess of the state vector PDF p(x0|Y0) = p(x0).

In theory, (11) and (12) give access to the full posterior

PDF of the state vector. In practice, both equations can be

solved analytically only for special cases, e.g. if the model and

the measurement equation are linear and the noise terms are

Gaussian. Then, the Kalman-filter is the optimal state-space

estimator. In many other cases, we need to calculate approx-

imations of the posterior PDF of the state. One possibility is

to use a set of Np candidate state vectors, called particles, at

which (11) and (12) are evaluated. The state-space estimators

that we use in our localization scheme are the subject of the

next section.
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A. Kalman filter with measurement refinement

Using a standard Kalman filter with the motion model in

(6) and the ML-estimates of the position as measurements,

i.e. (7), does not give satisfying results. Although both state-

propagation and measurement equations are linear, the mea-

surement noise is non-Gaussian as it contains large outliers.

We propose a modification of the standard Kalman filter

that exploits the correlation of successive agent positions on

a trajectory like shown in Fig. 1. For prediction and update

phases, we use the standard Kalman filter equations [2]. The

KF assumes that the PDF of the state vector is Gaussian and

recursively estimates mean and covariance. We denote a-priori

estimates with a minus and a-posteriori estimates with a plus in

the superscript. The matrix Pk = E
{
(xk − x̂k)(xk − x̂k)

T
}

is the estimation error covariance matrix and Qk and Rk are

the covariance matrices of process and measurement noise,

respectively. Then, the KF equations are

x̂−
k = Fx̂+

k−1 (13)

P−
k = FP+

k−1F
T +Qk−1 (14)

for the prediction phase of the Kalman filter, and

Kk = P−
k H

T (HP−
k H

T +Rk)
−1 (15)

P+
k = (I−KkH)P−

k (I−KkH)T +KkRkK
T
k (16)

x̂+
k = x̂−

k +Kk(yk −Hx̂−
k ) (17)

for the update phase.

Our variant of the Kalman filter modifies the measurement

yk given in (7) to reduce the outliers. Under the assumption

that x+
k−1 represents a relatively ”good” estimate of the state

vector, we can expect that xk will be in the vicinity of it,

bounded by the finite velocity of the agent. Hence we define

a Gaussian position prior centered at the predicted position

p̂−
k = Hx̂−

k as

pk(p) = N (p | [p̂−x,k, p̂−y,k]T , σ2
p). (18)

The prior variance σ2
p is a design parameter that should be

chosen such that it allows for a movement with the expected

maximum of the velocity. The actual measurement used in

the update phase of the KF is then obtained by replacing the

ML-position estimate with a MAP-estimate

yk = argmax
p

pk(p)pz|p(z|p) (19)

where the prior attenuates incorrect maxima of the multimodal

measurement likelihood function of the pseudodistance vector.

The assumption of a reasonably good estimate from the

previous time step boils down to a careful initialization of the

algorithm with proper x̂+
0 and P+

0 . An outline of the algorithm

is described in Table I.

B. Initialization – Gaussian sum filter

In the KF with measurement refinement, a correct initial-

ization of the algorithm is crucial, as the prediction using

the initial state vector defines the mean of the first position

prior. In practice, the initialization using this algorithm can be

TABLE I
KALMAN FILTER WITH MEASUREMENT REFINEMENT

@k = 0 do: Choose initial estimates x̂+
0 and P+

0
for all k > 0 do

procedure KALMANREF(x+
k−1

,P+
k−1

)

Predict x̂−
k

and P−
k

using (13) and (14)

Set up position prior N (p | [p̂−
x,k

, p̂−
y,k

]T , σ2
p)

Select refined measurement yk according to (19)
Calculate x̂+

k
and P+

k
as in (15), (16) and (17)

return p̂k = Hx̂+
k

end procedure
end for

done in the following way: Instead of following just one state

trajectory hypothesis, we use multiple weighted hypotheses.

This can be done using the concept of a Gaussian sum filter

(GSF) [3], where the state vector posterior PDF is represented

by a Gaussian mixture of the form

p(x̂+
k ) =

M∑

i=1

ak,iN (xk | x̂+
k,i,P

+
k,i). (20)

In principle, this is equivalent to a bank of M parallel

Kalman filters, where we will use our modified KF from the

previous section. To choose the weights ak,i, we look at the

innovation process of each KF. It is defined as the term in the

brackets on the right hand side of (17)

rk,i = yk,i −Hx̂−
k,i (21)

According to theory [2], this should be a zero-mean Gaussian

white noise process with covariance matrix HP−
k,iH

T +Rk,i.

Hence, a relative confidence measure of the estimate of each

KF can be computed as

βk,i = N (rk,i | 0,HP−
k,iH

T +Rk,i). (22)

Subsequently the weights ak,i are obtained as in [3]

ak,i =
ak−1,iβk,i∑M

j=1 ak−1,jβk,j

. (23)

The original motivation of the GSF was to represent a non-

Gaussian state vector PDF by a combination of all M KFs

using (20). Our intention is to just represent M state vector

hypotheses and find the one closest to the true trajectory with

the help of the ak,i. Simulations showed that the KFs that are

initialized rather far away from the true trajectory have quickly

decaying weights and could in principle also be discarded

after the initialization phase. To draw our state vector estimate,

we do not combine the KFs, we just take the x̂+
k,i with the

maximum corresponding weight.

The algorithm is outlined in Table II. It can handle the

initialization problem as follows: At k = 0, the M initial

state vectors are chosen. We identify two scenarios, depending

on our prior knowledge. The first case corresponds to a

scenario where we do not know anything about the initial

agent position, so we choose the initial positions randomly,

according to a uniform distribution bounded by the room

dimensions. The initial velocities are set to zero. In the second
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TABLE II
GAUSSIAN SUM FILTER

@k = 0 do
for all i = 1..M do

Set a0,i = 1/M
Choose initial estimates x̂+

0,i and P+
0,i

end for

for all k > 0 do

procedure GSF({x+
k−1,i

,P+
k−1,i

, ak−1,i}Mi=1,M )

for all i = 1..M do

Perform KALMANREF(x+
k−1,i

,P+
k−1,i

)

end for

Update weights {ak,i}Mi=1 using (23)
Select imax = argmaxi {ak,i}
return p̂k = Hx̂+

k,imax
end procedure

end for

case, we assume that we are monitoring movement within

a room and we set the initial positions equal to the known

locations of the room doors, where M equals the number of

doors. The initial velocities can be selected such that they point

in a direction orthogonal to the corresponding wall and inside

the room, to represent the entry through this door.

C. Particle filter

Both the KF with refined measurements and the GSF are

variants of the Kalman filter, that treat the measurement noise

as Gaussian. Although the measurement refinement procedure

should decrease the influence of large outliers of the ML-

estimate, it does not model the measurement noise term

correctly as we have seen in Section II-A. Also, we still want

to obtain a state-space estimator that uses the pseudodistance

vector zk and the associated likelihood function (2) directly.

Both objectives can be handled using particle filters, which are

an implementation of the recursive Bayesian state estimator in

(11) and (12) using Monte Carlo techniques. Therefore, they

belong to the family of sequential Monte Carlo algorithms [6],

[7].

A PF uses a set of Np particles (candidate state vectors) and

corresponding weights. Our chosen PF variant corresponds to a

sampling-importance-resampling (SIR) PF, where resampling

is performed at every time step. After the update phase at each

time step k the particles are distributed according to the state

posterior PDF p(xk|Yk). The set of a-priori particles, obtained

by using (4) at time k, is denoted as {x̂−
k,i}

Np

i=1 and the set of

weights as {wk,i}Np

i=1. In the update phase, the measurement

yk is taken into account. This is done by evaluating the

likelihood of the measurement, given each particle. These

likelihoods are the weights of the particles, which are then

normalized such that they sum up to one. The last step is

the resampling of the particles, which results in the posterior

particles, which are denoted by a plus in the superscript. The

resampling is done by drawing the particles with replacement

from the multinomial distribution over the a-priori particles,

with probabilities given by the weights. After resampling, the

weights are reset to a value of 1/Np.

The advantage of using a PF is, that it allows for a more ap-

propriate statistical modeling of noise PDF and measurement

likelihood function. These statistical descriptions have been

outlined in Section II-B. We now briefly discuss the different

phases of our PF, an algorithm outline is found in Table III.

1) Initialization phase: The initialization of the PF can

be done similar to the GSF in the previous subsection: One

possibility is to select the position entries of the initial particles

uniformly distributed within the room, with the velocities at

zero. Another possibility is to sample the positions of the

initial particles from a mixture of M (equal to the number

of doors) truncated bivariate Gaussians, each one centered at

the position of one of the room doors. In simulations, choosing

the door initialization did not lead to a considerable gain in

performance. The PF was able to rapidly lock on the trajectory

also with the complete random initialization.

2) Prediction phase of the PF: At each time step k, a set

of new a-priori particles {x̂−
k,i}

Np

i=1 is obtained by passing the

posterior particles from k − 1 through the state propagation

equation (4). Here, the linear motion model (6) is used and

the noise term ak is a zero-mean Gaussian with covariance

Iσ2
a. Hence, the a-priori particles are distributed as

x̂−
k,i ∼ N (x−

k,i | Fx̂+
k−1,i, σ

2
aGGT ), i ∈ {1 . . .Np} (24)

i.e. they follow a Gaussian distribution, from which they can

be sampled conveniently. The variance σ2
a has to be chosen

large enough such that a change in movement with the highest

expected acceleration is possible.

3) Update phase: ML measurements and Cauchy likeli-

hood: As we have seen in Fig. 4, the measurement noise term

can be modeled using a truncated bivariate isotropic Cauchy

distribution C̄(·) for yk = p̂k,ML. Using the PF, we can easily

model this behavior. The weights of the particles are computed

as the value of C̄(·) centered at the ML-estimate evaluated at

the position coordinates of the particles

wk,i = C̄(Hx−
k,i | p̂,k,ML, β). (25)

This distribution differs from the definition in (9) in the

truncation: Here, C̄(·) is only non-zero if both x and y coordi-

nates of the particle are within the room. With this definition,

particles outside the room are automatically discarded as their

weight will be zero and therefore also the probability of

resampling. The width β is a design parameter that can be

chosen as outlined in section II-B1.

4) Update phase: Pseudodistance measurements and like-

lihood model: Here, yk = zk and the likelihood function for

the particles is given in (2) and (1)

wk,i = pz|p(zk|Hx̂−
k,i). (26)

Also this function is zero for a position coordinate outside

the room.

5) Location estimation using the posterior particles: The

next step is to resample the particles according to their weights.

The step results in the posterior particles, that are distributed

according to the state vector posterior PDF. Hence, any desired

Multipath-Assisted Indoor Positioning

– 99 –



TABLE III
PARTICLE FILTER WITH ML-POSITION- OR

PSEUDODISTANCE-MEASUREMENTS

@k = 0 do Select initial set of particles {x̂+
0,i}

Np

i=1
for all k > 0 do

procedure PF({x+
k−1,i

}Np

i=1, p̂,k,ML, zk)
for all i = 1 ≤ Np do

Sample a-priori particle x̂−
k,i

according to (24)

if yk = p̂k,ML then ⊲ ML-estimates
Evaluate weight wk,i as in (25)

else if yk = zk then ⊲ pseudodistances
Evaluate weight wk,i as in (26)

end if

end for
Normalize weights

Resample particles to get {x̂+
k,i

}Np

i=1

return p̂k = median({Hx̂+
k,i

}Np

i=1)
end procedure

end for

estimate can be approximated. In performance simulations, we

observed that the median of each component yields satisfying

results. This is due to the fact that the median is more robust to

clouds of particles that correspond to outliers than the mean.

Such outliers can be the result of particles that are resampled

at wrong modes of the multimodal range likelihood function.

Choosing the median of the posterior distribution corresponds

to a minimization of the absolute error [24].

IV. PERFORMANCE RESULTS

For performance simulations, we selected typical indoor

localization scenarios. A scenario consists of a trajectory, that

is a sequence of agent positions and velocities, as well as a

given room geometry and the position of the single anchor

node. One is the trajectory shown in Fig. 1, the other one

is shown in Fig. 6. The scenarios represent indoor pedestrian

movement at varying velocity. In these simulations, the anchor

node is used and denoted as the transmitter (TX), but the roles

of TX and and receiver (RX) can of course also be reversed.

The parameters of the statistical model for the pseudodis-

tance vector in (1) have been set as follows: We chose

PVA = 0.5, which means that we expect half of the zi in one

MPC-extraction process to be false detections. The visibilities

of the VAs vn are chosen such that the LOS path, the single

reflection VAs and the double reflection VAs are visible with

probabilities of 0.8, 0.5 and 0.3, respectively. It should be

noted, that the actual visibilities are drawn independently for

each position of the RX, which could correspond to a scenario

with lots of additional scatterers like furniture or moving

people. Correlation of the visibilities over time are subject

of current research. The standard deviation of the distance

estimates to the VAs, σn has been selected as 10 cm.

Fig. 7 shows the CDF of the position estimation error

Errp̂ = ||pRX − p̂|| for 50 simulated runs over the trajectory

shown in Fig. 6. On average, the PF with the pseudodistance

measurements shows the best performance. About 90% of the

estimates are within 43 cm. Also its error floor is small and

is just due to the random initialization. The other estimators
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Fig. 6. Indoor pedestrian motion scenario. Top plot shows the sequence of
245 positions in the room and the lower plot shows the velocity components
for k ≤ 100. A pedestrian enters the room through the door in the south-west
and then walks along the walls with varying velocity, including some stops.
This could model a maintenance worker or a visitor in a museum gallery.
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Fig. 7. CDF of the position errors for 50 runs over the trajectory in Fig. 6.
The average behaviour of the estimators can be observed.

show a substantially better performance than the ML-estimate,

on which all of them are based. Their error floor is caused

by occasional divergence of the KF and the GSF. It is well-

known that Kalman filters can diverge if model assumptions do

not hold, which in our case corresponds to the non-Gaussian

measurement noise. In this scenario, five of the 50 runs showed

diverging results. In case of the PF with ML-measurements,

the error floor is caused by the fact that this estimator is

still influenced by the ML-outliers, though much less than a

standard KF. Taking the pseudodistances as measurements is

seemingly the best way to deal with the multimodality of the

likelihood function (2). This is due to the fact that the decision

for the correct mode is here in the responsibility of the tracking

algorithm, and not the ML-estimation based on just the current

time step.
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Fig. 8. Performance results for the four state-space filters over the trajectory from Fig. 1, starting point is in the north-west. Magenta circles are outliers
of the ML-estimates (Errp̂ML > 1m). The dotted lines connect the ML-estimates to their respective true positions. (a) Kalman filter with measurement
refinement and perfect initialization. (b) Gaussian sum filter with M = 10 uniformly random selected components. (c) Particle filter with ML-estimates and
Cauchy error model and Np = 2000 particles. (d) Particle filter with pseudodistances and Np = 2000 particles.

A comparison of all four estimators for the scenario in Fig.

1 can be found in Fig. 8 and 9 . This scenario supports the

previous results from e.g. Fig. 7, i.e., KF with measurement

refinement and GSF show similar performance. The KF is

initialized here with the true initial state vector, while the

GSF draws M = 5 random initial state vectors. It converges

quickly to the correct trajectory. The PF with the ML-estimates

as measurements is again more influenced by their outliers

than the one using pseudodistances. Both PFs use Np = 2000
particles. Increasing this number leads to better robustness.

Concerning the initialization, both PFs use particles that are

randomly drawn according to a uniform distribution within

the room. Both converge to the true trajectory, the PF using

pseudodistances is considerably faster. Looking at the error

CDFs in Fig. 9 confirms the ability of the state-space methods

to enhance both accuracy and also to a large extent the

reliability in terms of avoiding the error floor.
An additional comparison of the proposed estimators can

be found in Fig. 10 and Fig. 11. This trajectory consists

of movement with longer stop phases. It can also illustrate

the initialization phases of the different filters. In Fig. 10,

the performance of the GSF is shown. The door positions

are known via the floor plan. Therefore, M = 3 and the

corresponding initial Gaussian position hypotheses are placed

at the door positions. This leads to a very quick convergence.
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Fig. 9. CDF of the position error for the scenario shown in Fig. 8.
All estimators show accurate and robust performance, even though the
ML estimation shows a large percentage of outliers. For the PF using the
pseudodistances, 80% of the estimators are within 15 cm. For the other
estimators, this value is at about 25 cm.
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Fig. 10. Localization scenario with three doors and the Gaussian sum filter,
starting point is the door at the south. The bottom plot shows the velocities
for this scenario. Inbetween rather fast movements, there are also longer stop
phases.

It should be mentioned, that in a case where the first few ML-

estimates are outliers that come to lie in the vicinity of an

incorrect initialization point, the GSF will be impaired and

the convergence will take severely longer. Fig. 11 illustrates

the excellent initialization capabilities of the PF, here the

one with pseudodistance measurements. The comparison is

between an initialization of all particles uniformly across the

room and the initialization with truncated Gaussians at the

doors. Both converge fast to the correct trajectory, the latter

is a bit faster taking about 3 time steps while the uniformly

initialized PF takes 7 time steps. A further advantage of the

PF is its robustness to dynamic movement. It is difficult to

optimize the fixed state noise variance parameter for KF and
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Fig. 11. Localization scenario like in Fig 10. The solid blue line shows the
performance of the PF with pseudodistance measurements andNp = 2000 for
a random initialization of the particles uniformly across the room. The dashed
line denotes the same PF where Np/3 particles are initialized corresponding
to a truncated bivariate Gaussian centered at each door, respectively.

GSF, because a trade-off between fast movement and stop

phases has to be found. For the PF, this is not a problem

due to the median operation on the posterior particles, which

makes the PF also robust in stop phases.

V. CONCLUSIONS AND FUTURE WORK

We have demonstrated an indoor positioning concept ex-

ploiting the reflections of UWB radio signals with virtual

anchors. Using several tracking algorithms, we have shown by

simulations that this approach can deliver both accurate and

robust location estimation, taking into account several possible

measurement impairments. We have introduced specialized

variants of popular state-space estimators to account for the

impairments in our statistical models. Most importantly, we

address multimodality or heavy-tail behavior in our measure-

ment likelihood functions, which both are known to substan-

tially impair standard state-space methods. The performance

has been demonstrated by simulations for indoor pedestrian

movement trajectories. Also the problem of initialization of

the state-space approaches has been treated by discussing

possibilities to initialize the estimators at user-chosen points

of interest, e.g. room doors.

Future work will deal with the validation and extension

of our statistical measurement model through the analysis of

recently measured UWB channels along reference trajectories.

Also, we will extend our statistical models to include the

virtual anchors, their locations and their visibility in the

tracking process.
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Abstract—We present a detailed analysis of an indoor UWB
channel measurement campaign. The focus is on the modeling
of the deterministic part of the multipath channel using a-priori
known relevant reflections and scatterers, found from an available
floor plan. Our approach uses virtual signal sources, whose
locations and visibilities can be calculated using simple ray-
launching techniques. The channel analysis steps exploit these
results, using an effective multipath cancellation method that
introduces virtually no artifacts. We show that the corresponding
multipath-components can explain up to 90% of the UWB
channel impulse responses in terms of energy capture. This is
important for multipath-aided indoor localization, which pro-
vides robust position fixes using a single base station only.

I. INTRODUCTION

For indoor localization, time-of-arrival (ToA) based systems

using (ultra)-wideband (UWB) signals are favorable, due to

their fine delay resolution. In indoor scenarios, the large

number of interacting objects like walls or furniture usually

results in dense multipath channels, i.e. the channel impulse

response (CIR) at a specific position consists of many specular

reflections as well as diffuse scattered components [1]. If a

floor plan is available, signal paths reflected of the room walls

can be mapped to virtual signal sources [2], which are mirror

images of the base station with respect to the corresponding

reflecting surface, so-called virtual anchors (VAs). Using

statistical models for range estimates to these virtual nodes,

we have achieved robust algorithms for indoor localization and

tracking in [3].

This contribution presents the results of a recently per-

formed indoor UWB channel measurement campaign. Our

localization algorithms are based on the fact that the UWB

channel gives access to the specular reflections associated to

the geometry of virtual sources [4]. It is important to know if

these, usually few, expected multipath-components (MPCs) are

important features of the channel and if they can be identified.

We answer the former question by cancelling these expected

MPCs from the CIRs obtained in our measurements with a

time-domain method, i.e. a search-and-subtract approach [5].

A multipath template signal is generated at a position within

a room with the help of the known distances to the virtual

sources [2]. In the method presented in this paper, an additional

pulse-shaping step is proposed that reduces artifacts of the

MPC-cancellation. The amount of energy contained in the

cancelled MPCs can be quantified by energy capture, which is

also an important measure for the design of Rake receivers [6].

This work was partly supported by the Austrian Science Fund (FWF) within
the National Research Network SISE project S10604-N13.

We show that using the few expected reflections allows for a

large fraction of the energy to be accounted for. In comparison

to other results in the literature, e.g. [7], we achieve high

energy capture values for relatively low numbers of considered

MPCs. This shows that geometry and position-related prior

information can make search-and-subtract approaches very

effective.

The approach presented here involves ray-tracing-steps.

Ray-tracing is a valuable, but computationally demanding tool

in both localization and channel analysis [8]. Our aim is a

complexity tradeoff: We do not use ray-tracing techniques to

accurately predict amplitudes and delays of possible signal

paths at a specific location, but rather use it beforehand to

compute and investigate potential reflectors and scatterers.

The rest of this paper is organized as follows: Section

II describes the measurement campaign and the geometric

computations that are needed. In Section III we describe the

channel analysis and MPC cancellation method. Results are

discussed in Section IV and Section V draws conclusions.

II. MEASUREMENT AND GEOMETRIC MODELING

Our measurement campaign was motivated by the intended

application of indoor localization and tracking of a moving

agent, as described in [3]. To this end, we measured the UWB

channel along an example trajectory as can be seen in Fig.

1. This route consists of 381 points with a spacing of 10 cm,

covering a total distance of 38m. The measurements were

performed in the frequency domain using a Rhode & Schwarz

ZVA-24 vector network analyzer. At each position pk, the

complex channel transfer function Hk(f) is measured at 7501

frequency points over the frequency range from 3.1 to 10.6

GHz. This results in a maximum resolvable delay of approx.

1µs (or approx. 300m path delay), and a delay resolution of

0.133 ns (or 4 cm path resolution). In performance evaluations,

we will also restrict the bandwidth to 2GHz (the range

from 6− 8GHz), resulting in a delay resolution of 0.5 ns (or
15 cm path resolution). Transmitter and receiver antennas were

placed at a height of 1.5m.

The measurement location is the ground floor of our lab.

This is an atrium style hallway of an office building, whose

outer walls, marked with black lines in the floor plan, are made

of concrete. Concerning geometry and building materials, the

environment could be classified as semi-industrial. As can be

seen in the floor plan, there are large reflective windows in

the area of the initial part of the trajectory, shown as grey

lines in the floor plan. Inbetween these windows are narrow

Multipath-Assisted Indoor Positioning

– 104 –



−20 −15 −10 −5 0 5 10 15 20

−10

−5

0

5

10

15

x [m]

y
 [

m
]

−6 −4 −2 0 2 4 6 8 10 12 14

−8

−6

−4

−2

0

2

4

6

x [m]

y
 [

m
]

10305070

90

110

130

150170190

 

 
Agent traj.

Base station

1st−order VAs

2nd−order VAs

Scatterer Points

 associated 2nd−order reflector

1st−order VA

associated 1st−
order reflector

pn

p

pref

Fig. 1. Left plot shows floor plan, agent trajectory and considered VAs for the measurement scenario. The right plot shows an example for the calculated
expected visibility region (in blue) of a specific second-order VA together with its associated reflecting surfaces (marked in red). Also shown is an example
signal path (dashed black line, dash-dotted lines indicate “virtual paths” to the VAs) from point p to the BS. Indices of some trajectory points are given for
orientation, as they are occasionally used in the text.

metal pillars, which we expect to be visible as point scatterers

(see also the zoom in Fig. 1). Doors are made of metal and

also shown as grey line segments. The building consists of

three floors, which are not separated by ceilings. Nevertheless,

there are bridges connecting the two sides on the upper floors,

which consist of both concrete and metal. The dashed lines at

the right and left side of the floor plan are just delimiting the

area we take into account for analysis. The building extends

several meters to the right and several tens of meters to the

left. Stationary channel conditions were ensured during the

measurements.

TABLE I
MEASUREMENT PARAMETERS

Parameter Value Comment

Frequency range 3.1− 10.6GHz full measurement BW

6− 8GHz offline bandlimitation

Trajectory parameters 381 points

10 cm spacing

Frequency points 7501 over full bandwidth

For the moving agent, we used a Skycross SMT-3TO10M

UWB antenna mounted on a tripod, at a height of 1.5m. At the

base station, which was at the same height, we used a custom-

made coin antenna, made of 2 5 Euro-cent coins [9]. Both

antennas have approximately uniform horizontal gain patterns.

Floor plan, as well as agent and base station positions, were

measured manually using a laser distance meter.

Having the floor plan and the position of the base station

available, we can compute the possible positions of VAs. For

first-order wall reflections, the VAs are simply mirror images

of the BS at the corresponding reflective surface, which we call

the associated reflector. Second-order VAs can be obtained by

mirroring the first-order VAs at the associated second-order
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Fig. 2. Number of geometrically visible VAs Nk over the trajectory (blue
line). The other lines show the number of significant MPCs from VAs,
according to the threshold decision discussed in Section III-B, with γ = 0.1.
For the black line, the threshold is computed using the full CIR, for the red
line, the LOS component has been removed.

reflectors. Although this procedure can be repeated for higher

orders, we restrict ourselves to second-order VAs and some

additional scatterers in this work. Another model restriction is

given by the 2D-modeling. Although the environment contains

potential scatterers and reflectors at different heights than

the antennas as mentioned previously, we want to show the

suitability of a 2D-model, which is computationally much less

demanding. The only exception is the inclusion of the floor

reflection, which can be incorporated easily.

Naturally, the building geometry restricts the region, in

which a certain reflection is possible. This is taken into account

by computing visibility regions of VAs, which is discussed

here. As an example, the geometric visibility of a second-

order VA at a position pn from an agent position p can be

computed as follows (see also right plot in Fig. 1): First, we

test if the line from p to pn intersects the associated second-

Multipath-Assisted Indoor Positioning

– 105 –



50 100 150 200 250 300 350
−50

−40

−30

−20

−10

0

10

K
L
O

S
 [
d
B

]

k

 

 

50 100 150 200 250 300 350
10

20

30

40

50

60

τ
rm

s
 [
n
s
]

K
LOS

(k) τ
rms

(k)
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delay spread τrms over the trajectory.

order reflecting surface in a point pref . We also have to make

sure, that out of all intersection points of this line with any

objects known from the floor plan, pref is the one closest to p,
such that the path from the point to the surface is not blocked.

If these conditions do not hold, p is not a valid “target” for

this reflection and the VA is not visible. Otherwise, we have to

test whether pref is a valid “target” for a first-order reflection

at the associated first-order segment of the second-order VA,

which can be done using the corresponding first-order VA.

This recursive ray-launching could be generalized to higher-

order VAs as well and is repeated until the base station is

reached.
For each VA that is taken into account, the visibility can

be precomputed for a sufficiently dense grid of points within

the floor plan. Fig.1 contains an example for the computed

visibility region of the second-order VA associated to the large

window and the adjacent wall. At each step k of the trajectory,

the set of expected visible virtual anchors, denoted by Vk, can

then simply be looked up in the computed visibilities. The

number of expected visible VAs at time-step k is then denoted

as |Vk| = Nk. The blue line in Fig. 2 shows Nk over all 381

measured trajectory positions.

III. CHANNEL ANALYSIS METHOD DESCRIPTION

A. Channel model and parameters

In the following, we use the channel model

hk(τ) =

L∑

l=1

αk,lδ(τ − τk,l) + νk(τ) + nk(τ) (1)

for the UWB-CIR at time step k, corresponding to position pk.

This model decomposes the channel in three major parts. The

first one is a sum over L deterministic, specular reflections,

modeled with complex-valued amplitudes αk,l and time delays

τk,l. The signals νk(τ) and nk(τ) model the diffuse scattered

parts and the measurement noise, respectively. We expect that

at a position pk, the set of visible VAs Vk can be used to

model a part of the deterministic reflections.
The measurements are the position-variant channel transfer

functions (CTF) Hk(f) along the trajectory. An inverse dis-

crete Fourier transform (IDFT) is used for the transformation

to time domain. To reduce the leakage effect, and to support

the MPC cancellation process, which will be described in the

next section, we use a Parzen window function in frequency

domain prior to the IDFT, hence

hk(τ) =
1

Nf

fmax∑

f=fmin

Hk(f)W (f)ej2πfτ . (2)

Note that both f and τ are defined as equally spaced discrete

values. In time domain, the ideal CIR in (1) is convolved with

the impulse response of the window function w(τ), which can

be understood as a pulse shaping step. In (2), fmin and fmax

denote upper and lower band edge and Nf is the number of

frequency points. The values for τ are selected at a higher

resolution as given by the measurement bandwidth, similar to

the work in [5]. The upper part of Fig. 5 contains the 381

obtained CIRs hk(τ) from our measurements.

Due to the geometric separation of successive agent posi-

tions, which is relatively large compared to the wavelength

at the upper band edge, no spatial averaging was performed.

Hence, we can not use an average power delay profile to

compute channel parameters like the RMS-delay spread τrms

and the K-factor with respect to the line-of-sight (LOS)-

component [10]. But as these parameters are valuable for the

analysis of an UWB channel, we evaluate the instantaneous

values of these parameters along the trajectory, as shown in

Fig. 3. We note that despite the clear LOS scenario, the K-

factor is positive only on the points closest to the base station.

This indicates the presence of strong MPCs that can easily

bias a localization system whenever the LOS path is blocked.

For positions around k = 300, the agent is in an occluded

corridor, hence the CIRs in that region show an extremely

low SNR (see Figs. 1 and 5). Therefore, the corresponding

channel parameter estimates are highly unreliable.

B. MPC estimation and cancellation

In order to evaluate the relevance of the MPCs that can be

attributed to the VAs, we need to detect them in the CIRs and

afterwards remove their influence. To this end, we calculate

the vector of expected MPC delays at position pk as

τ̃ k = [τ̃k,1, . . . , τ̃k,Nk
] =

1

c
[d(p1,pk), . . . , d(pNk

,pk)] (3)

where the function d(·) denotes the Euclidean distance. We

expect that due to uncertainties in the floor plan and/or the

placement of the MS, these distances are imperfect. In Fig.

4, the entries of τ̃ k are shown as vertical dashed black lines,

illustrating some minor geometric errors.

In the sequential cancellation procedure, a cleaned CIR

h̃k,l(τ) is computed for each MPC, where l is the MPC

index with l ∈ {1, . . . , Nk}. The initial cleaned CIR is the

measured one, h̃k,0(τ) = hk(τ). To cancel the l-th MPC, we

first calculate an estimate of the true delay of the respective

expected MPC τ̂k,l, starting from the corresponding τ̃k,l. We

use a narrow uncertainty window of width T = 0.5 ns,
or approx. 15 cm, around the expected delays. Within this
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window, we search for the maximum amplitude of the CIR.

The corresponding delay is our estimate τ̂k,l

τ̂k,l = argmaxτ∈[τ̃k,l−T/2, τ̃k,l+T/2]|hk(τ)|. (4)

With the estimated τ̂k,l, we generate a template signal for

the l-th MPC at position pk

ck,l(τ) =
h̃k,l(τ̂k,l)

Nf

fmax∑

f=fmin

W (f)ej2πf(τ−τ̂k,l). (5)

The template consists of the impulse response of the window

W (f), shifted to the estimated delay of the l-th MPC and

scaled by the complex amplitude of the current cleaned CIR

at the estimated delay. This signal is then used to calculate the

CIR cleaned from all expected MPCs up to the l-th

h̃k,l(τ) = h̃k,l−1(τ) − ck,l(τ). (6)

The overall cleaned CIR is then h̃k(τ) = h̃k,Nk
(τ), and the

overall template signal at pk consisting of the contributions

from expected reflections is the sum

ck(τ) =

Nk∑

l=1

ck,l(τ). (7)

Fig. 4 contains an example for this procedure at k = 92
for both bandwidths. One can see that the MPCs are can-

celled without introducing noticeable distortions elsewhere.

The higher the bandwidth, the more “local” the cancellation

is, i.e. at a lower bandwidth, the estimated MPC (the template

signal) also contains other parts of the CIR that happen to be

within the window impulse response.

In addition to the geometric mismatch, we also take possible

impairments of the visibilities of the VAs into account. For

example, at a position pk, an expected MPC might not be

visible (i.e. its amplitude is very low) due to fading or other

effects. Hence, we want to determine which of the expected

VAs Vk are actually significant. This is done using a threshold

Aγ,k, which is defined as a value inbetween the maximum of

|hk(τ)| and the noise floor

Aγ,k = γ · (max{|hk(τ)|} − 〈|nk(τ)|〉) + 〈|nk(τ)|〉. (8)

The noise floor is computed as the time average of the noise

part, 〈nk(τ)〉, where nk(τ) is obtained as the part of the CIR

before the LOS component. An MPC at τ = τ̂k,l is then

defined as significant, if |hk(τ̂k,l)| ≥ Aγ,k. In strong LOS

situations this threshold can be relatively high and restrictive,

i.e. it will exclude reflections that are clearly distinguishable

from the noisefloor. Therefore we also use an alternative

threshold that is computed in the same way as in (8), but

where the maximum amplitude is taken from the CIR with

the LOS component removed.

IV. PERFORMANCE RESULTS

We performed the described method over the whole trajec-

tory in order to evaluate the relevance of the part of the UWB

channel that can be attributed to the known VAs. Measured

CIRs and obtained template signals ck(τ) can be seen in

Fig. 5. It can be observed that the paths along the trajectory

corresponding to VA-caused reflections are matched well.

To obtain a quantitative analysis of the results, we use

the concept of energy capture [6]. The energy of the CIR at

position pk is defined as

Ek =

∫
|hk(τ)|2dτ (9)

where the integration is performed over the whole measured

CIR. With a similar definition for the energy of the cleaned

CIR Ẽk, the energy capture at position pk is then defined as

ECk = 1− Ẽk

Ek
. (10)

Fig. 6 shows ECk for both bandwidths over the trajectory.

We can see that the MPCs caused by the expected VAs carry a

large amount of the energy contained in the CIRs. In general,

the energy capture is higher for the lower bandwidth. This is

explained with the fact that the template of, say, the l-th MPC,

ck,l(τ), contains not only the corresponding deterministic re-

flection, but also diffuse parts at that delay as well as possibly

other deterministic reflections. As also confirmed qualitatively

by Fig. 4, this effect is more pronounced at lower bandwidths,

where the duration of the window impulse response w(τ) is

longer. The high bandwidth shows an average energy capture

of 47% for the entire trajectory, while at the lower bandwidth

we achieve 52%. In roughly the first 180 positions, which

according to Fig. 1 might be the operating area for this base

station, the average energy capture is almost 70% for the high

bandwidth, and 76% for the lower one. We also emphasize

the model restriction to second-order reflections as well as

to the 2D plane, which does not seem to play a major role,

considering the high amount of energy capture that is obtained.
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Fig. 2 shows the number of expected and significant VAs

over the trajectory, using the threshold decision in (8) and

the large bandwidth. The threshold Aγ,k is computed with

γ = 0.1. If the full CIR is used, many VAs are considered

insignificant, especially in the region of high expected VA

density. A look at Fig. 3 reveals that this effect is most

pronounced in strong LOS situations. Therefore, and because

we focus on the deterministic reflections, the use of the

alternative threshold that is computed with the LOS-removed

CIR is well suited for this analysis. Results show that the

number of expected and significant VAs match well. For

multipath-aided localization, it is important to note that the

mean number of significant VAs in the operating area of

the BS (again the first 180 positions) using Aγ,k with the

LOS-removed CIR is 6.82. This is clearly sufficient for 2D

localization.

The influence of the insignificant VAs on the energy capture

is negligible. For Fig. 6, all expected VAs have been taken into

account. If ECk is calculated with just the significant MPCs

and Aγ,k using the full CIR, the maximum penalty in energy

capture is only 1.8% for the high bandwidth, and 1.9% for
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Fig. 6. Energy capture ECk over the trajectory for the full (blue) and the
reduced bandwidth. Horizontal dashed lines are corresponding averages.

the low one. This emphasizes again that the MPCs caused by

the significant VAs are reliable channel features.

V. CONCLUSION AND OUTLOOK

We have presented an analysis of a measurement campaign

of an indoor UWB channel. A floor plan was used to calculate

a set of virtual signal sources plus their expected visibilities.

The obtained geometric information was the basis of the

channel analysis. We also presented an MPC cancellation

method that introduces virtually no artifacts. This work acts as

feasibility study for our previously proposed multipath-aided

indoor localization algorithms, as it shows that the specular

reflections caused by walls and scatter points are relevant

features of the channel. Ongoing work includes the refinement

of the estimation of the arrival times of the expected MPCs

and of course the localization algorithms based on this data.
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Abstract—The MINT (multipath-assisted indoor navigation
and tracking) problem exploits the geometry of deterministic
multipath components (MPCs) for robust indoor positioning in
line-of-sight (LOS) and non-LOS situations. It assumes a known
room layout and can thus easily make use of signals reflected
by the walls, for instance. In this paper, the Cramér-Rao lower
bound of the positioning error is derived for this problem.
This requires a novel channel model, where diffuse multipath
is modeled as a colored Gaussian process that influences the
effective SNR of deterministic MPCs. The adverse effect of path
overlap is demonstrated and discussed. Computational results
show the three-fold importance of a large signal bandwidth.
The bandwidth reciprocal (i.e. the pulse duration) multiplies the
error standard deviation—a fundamental result well-known from
AWGN channels. But it also multiplies the effective power of the
interfering diffuse multipath and gives rise to additional path
overlap. A minimum bandwidth of 1 GHz seems appropriate
and sufficient.

I. INTRODUCTION

Indoor positioning based on ultra-wideband (UWB) radio

signals remains a challenging problem, in particular due to

error induced by non-line-of-sight (NLOS) propagation con-

ditions. This problem has received growing attention in recent

years. Suggested solutions include the detection of NLOS,

advanced tracking algorithms, cooperation between agents,

and exploiting reflected multipath components (MPCs).

The latter also has the potential advantage of reducing

the required infrastructure. For example, in [1], [2], a single

physical anchor node has been assumed. Considering a known

floorplan, a set of virtual anchors (VAs) is obtained by

mirroring the anchor in the walls, thus allowing for a solution

of the positioning problem (cf. Fig 1 below). Unfortunately,

the unknown association of MPCs to VAs results in a rather

large error floor. Tracking and cooperation have been shown

to greatly improve the robustness [2], [3].

The above outlined problem has been termed multipath-

assisted indoor navigation and tracking (MINT). Its solution

requires novel tracking algorithms accounting for the geometry

at hand, online channel analysis for extracting deterministic

MPCs, and data association for mapping MPCs to hypothe-

sized signal sources. It bears similarity to the simultaneous

localization and mapping (SLAM) problem [4]–[6]. However,

we have to deal with a signal source that typically has no angle

resolution1 and is heavily affected by diffuse multipath, which

makes the feature detection and data association much more

challenging. On the other hand, our assumption of a known

1Assuming—for simplicity—single-antenna terminals.

floorplan is a very reasonable one when considering scenarios

with fixed anchor nodes.

In this paper, we derive the Cramér-Rao lower bound

(CRLB) for the MINT problem. Our derivations partly follow

those found in [7], [8] but also go back to the classic

text by van Trees [9]. In particular, we propose a novel

stochastic approach for modeling diffuse multipath, in contrast

to previous work on this topic in [7], [10]–[12]. In [12],

a multipath-aided positioning scenario has been analyzed as

well. However, the authors assume no prior knowledge of the

room layout. For this reason, cooperation was needed to make

use of deterministic multipath.

This paper is organized as follows. Section II introduces

the signal and channel model. The derivation of the CRLB

and a discussion on path overlap is found in Section III.

Computational results are presented in Section IV, followed

by conclusions and recommendations for future work.

II. SIGNAL AND CHANNEL MODEL

A baseband signal s(t) is transmitted from a fixed anchor

node2 at position p1. It gets reflected and scattered by the

environment. In particular, we assume K − 1 deterministic

reflections at flat surfaces that can be mapped to virtual

transmitter nodes located at fixed positions {pk = [xk, yk]
T},

k = 2, ...,K .

The mobile agent at position p = [x, y]T receives the

complex-valued baseband signal

r(t) =

K∑

k=1

αks(t− τk) +

∫ ∞

−∞
s(λ)ν(t − λ)dλ + w(t) (1)

which comprises K deterministic MPCs with amplitudes

{αk} ∈ C and propagation delays τk = 1
c‖p − pk‖, where

c is the propagation velocity. We assume the energy of s(t)
is normalized to one; hence the path amplitudes define the

energy received from each deterministic MPCs. Furthermore,

s(t) ∈ R, i.e. the transmitted signal has a symmetric spec-

trum. The second term of (1) models diffuse multipath. We

assume uncorrelated scattering, and hence model this part by

a stochastic process ν(t) with ACF

Kν(τ, u) = E{ν(τ)ν∗(u)} = Sν(τ)δ(τ − u) (2)

where Sν(τ) is the delay power spectrum [13] of the diffuse

multipath. This model implies that the diffuse part is quasi

2Note that the anchor can as well be the receiver node, turning a navigation-
type scenario into an object-tracking-type scenario.
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stationary because it neglects spatial variations of Sν(τ).
Hence these derivations will apply within a suitably defined

“local area” with a diameter of several wavelenghts. Finally,

w(t) denotes AWGN with double-sided PSD of N0/2.

III. CRAMÉR RAO LOWER BOUND ON POSITION ERROR

The goal of MINT is estimating the agent’s position p from

the received waveform (1), exploiting knowledge of the VA

positions {pk}, in presence of diffuse multipath and AWGN.

The propagation delays {τk} relate to geometric information,

while the path-amplitudes {αk} are nuisance parameters. We

will apply the chain rule to derive the CRLB of the position

error (cf. [7], [8]). I.e., the Fisher information matrix (FIM) Jθ
of the parameter vector θ = [pT (αR)T (αI)T]T is computed

from the FIM of a parameter vector ψ = [τT (αR)T (αI)T]T,
where vectors αR and αI are the real and imaginary compo-

nents of the MPC amplitudes {αk} respectively, and τ stacks

the delays {τk}. We get

Jθ = TJψT
T (3)

with the Jacobian

T =
∂ψ

∂θ
. (4)

Finally, the FIM can be computed from the likelihood function

f(r|ψ) of the received signal r(t) (denoted as r) conditioned
on parameter vector ψ,

Jψ = Er|ψ

{[
∂

∂ψ
ln f(r|ψ)

] [
∂

∂ψ
ln f(r|ψ)

]T}
. (5)

A. Likelihood Function of Received Signal

According to (1), the stochastic process ν(t) representing

diffuse multipath is convolved by the TX signal s(t), written
as wc(t) = s(t)∗ν(t). Hence it is present as a colored additive
noise process. Let’s assume a Gaussian model is suitable for

the diffuse multipath—a usual assumption for narrowband and

conventional wideband channels, but not necessarily for UWB.

Then a whitening operation can be applied to r(t) to arrive at

a tractable likelihood function.

We first need the correlation function Kn(t, u) of the

additive noise, which can be decomposed into the discrete

component

Kw(t, u) = E{w(t)w∗(u)} = N0δ(t− u) (6)

and the continuous component

Kc(t, u) = E{wc(t)w
∗
c (u)} (7)

=

∫ ∞

−∞
Sν(τ)s(t − τ)s(u − τ)dτ, (8)

resulting in Kn(t, u) = Kw(t, u) +Kc(t, u). Then the likeli-

hood function is [9, eq. (4.153)]

f(r|ψ) ∝

exp

{
2

N0

∫∫ T0

0

ℜ
[
r(t)Qn(t, u)

K∑

k=1

α∗
ks(u− τk)

]
dtdu

− 1

N0

∫∫ T0

0

K∑

k′=1

αk′s(t− τk′ )

×Qn(t, u)

K∑

k=1

α∗
ks(u − τk)dtdu

}
(9)

where [0, T0] is the observation interval and Qn(t, u) is the

inverse kernel for Kn(t, u) satisfying

N0δ(z − v) =

∫ T0

0

Kn(x, z)Qn(v, x)dx. (10)

We proceed with the reasonable assumption that the TX signal

has perfect autocorrelation properties for integer multiples

of the bandwidth reciprocal Ts. We can then approximate3

the received signal by using the Karhunen-Loève expansion

with the orthonormal basis functions ϕi(t) = s(t − iTs),
i = 0, 1, ..., N . Next, we write (8) as

Kc(t, u) ≈ Ts

N∑

i=0

Sν(iTs)s(t− iTs)s(u − iTs) (11)

and find

Qn(t, u) = δ(t− u) (12)

−
N∑

i=0

TsSν(iTs)

TsSν(iTs) +N0
s(t− iTs)s(u− iTs).

Due to the autocorrelation properties of s(t), we obtain for∫
s(t− iTs)s(t− τ)dt samples of a fractionally delayed pulse

at time iTs = τ . We hence get for the
∫
(·)du in (9)

∫ T0

0

Qn(t, u)
K∑

k=1

α∗
ks(u− τk)du ≈

K∑

k=1

w2
kα

∗
ks(t− τk) (13)

where w2
k = N0/(N0 +TsSν(τk)) is a weight factor account-

ing for the influence of diffuse multipath.4 With this equation,

we arrive at a standard likelihood function (cf. e.g. [7]), but

with path amplitudes reduced by the weights wk,

f(r|ψ) ∝ exp

{
2

N0

∫ T0

0

ℜ
[
r(t)

K∑

k=1

w2
kα

∗
ks(t− τk)

]
dt

− 1

N0

∫ T0

0

K∑

k′=1

αk′s(t− τk′)w2
k

K∑

k=1

α∗
ks(t− τk)dt

}
.

(14)

B. Equivalent FIM and Position Error Bound

With (14) in (5), we get the FIM of ψ. The appendix shows

the elements of this matrix. Matrix T is composed of four

submatrices,

T =

[
H2×K 02×2K

02K×K I2K×2K

]
(15)

3This expansion is exact for signal with a block spectrum, where Ts is the
sampling interval for critical sampling. For practical pulses some bandwidth
extension is needed, which results in a violation of the sampling theorem.

4Again equality holds for signals having a block spectrum.

Multipath-Assisted Indoor Positioning

– 110 –



whose size is indicated by the subscripts. Its first subblock

H accounts for the geometry; its k-th column is found to be
1
c [cosφk, sinφk]

T (cf. [7], [8]), where angle φk is the angle

from the k-th VA to the agent, i.e. φk = tan−1 y−yk

x−xk
.

To compute the position error bound (PEB) we need the

upper left 2 × 2 submatrix of the inverse of Jθ . This can be

obtained from blockwise inversion as

[J−1
θ ]2×2 = J−1

p =
(
HΛAH

T −HΛBΛ
−1
C ΛT

BH
T
)−1

(16)

where ΛA, ΛB, and ΛC are subblocks of Jψ defined in the

appendix. Matrix Jp is called equivalent FIM (EFIM) [7]. The

PEB is defined as the square root of the trace of J−1
p .

Expression (16) simplifies when we assume no path overlap

(i.e. orthogonality) between signals from different VAs. In this

case, ΛB = 0 and ΛA will be diagonal and we can write

Jp = HΛAH
T =

8π2β2

c2

K∑

k=1

SINRkJr(φk) (17)

where β2 is the effective (mean square) bandwidth of s(t),

SINRk := w2
k

|αk|2
N0

=
|αk|2

N0 + TsSν(τk)
(18)

is the signal-to-interference-plus-noise ratio (SINR) of the k-th
MPC, and

Jr(φ) =

[
cos2(φ) cosφ sinφ
cosφ sinφ sin2 φ

]

is called ranging direction matrix (cf. [7]), a rank-one matrix

with an eigenvector in direction of φ.
Valuable insight is gained from (17) and (18). In particular,

• Each VA (i.e. each deterministic MPC) adds some pos-

itive term to the EFIM in direction of φk and hence

reduces the PEB in direction of φk.

• The SINRk determines the intensity of this contribution

(cf. ranging intensity information (RII) in [7]). It is

limited by diffuse multipath as quantified by coefficient

wk; an effect that scales with pulse duration Ts (cf. (18)).

• The effective bandwidth β2 scales the EFIM. Any in-

crease corresponds to a decreased PEB.

C. Effect of Path Overlap

In presence of path overlap—a particularly important sit-

uation for the problem at hand, as deterministic MPCs cor-

responding to VAs may of course arrive at (nearly) equal

delays—the subtractive part of (16) has to be considered and

ΛA is no longer diagonal. This problem was extensively stud-

ied in [7]. It has been shown that the RII is reduced towards

zero and—surprisingly—that this effect is independent of the

path amplitudes.5 Assuming prior knowledge about the path

delays and gains, the effect of path overlap can be reduced

[7]. The model (1) introduced in this paper does not show

an equally severe impact of path overlap in case of diffuse

multipath. Only an SNR-loss is evident, cf. (18).

5In [7], a real-valued baseband model has been used for the received signal,
in contrast to the complex baseband model (1) employed here. Therefore the
influence of the phase angle of the path amplitudes has not been investigated,
an issue that has to be explored in future work.
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IV. COMPUTATIONAL RESULTS

Computational results are shown for the simple test scenario

illustrated in Fig. 1. One physical anchor is present, which

yields five possible first-order reflections (denoted as “SR: sin-

gle reflection”) and four second-order reflections (“DR: double

reflection”). The corresponding channel model is shown in

Fig. 2 for agent position p = [1, 5]T at the very left of the

trajectory.6 Deterministic MPCs correspond to the physical

anchor, first-order VAs number 3, 4, and 5, and double reflec-

tions number 2, 3, and 4. The system parameters were chosen

for the purpose of supporting the analysis rather than based

upon actual physical propagation models or measurements.7

We use the free-space pathloss model for a carrier frequency

of 7 GHz to account for the distance dependence of the

path amplitudes and add 3 dB for first-order and 6 dB for

second-order reflections. The diffuse part is modeled by a fixed

6The trajectory was actually shifted 2 mm to the right and 1 mm up to
avoid numeric instabilities due to exactly equal path delays.

7Recent experimental work reported in [14] gives related computational
results based on an extensive channel measurement campaign.
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Fig. 3. Position error bound along the trajectory for various system
parameters. (b): Ten-fold SNR w.r.t (a); (c): Double bandwidth w.r.t. (a); (d):
Half bandwidth w.r.t. (a).

double-exponential function, cf. [15, eq. (9)], which accounts

for lower path arrival rates at small excess delay. Its parameters

are Ω1 = 1.16×10−6, γ1 = 20 ns, γrise = 5 ns, and χ = 0.98,
where Ω1 denotes the total power of the diffuse multipath.

The power ratio of deterministic to diffuse MPCs is at −4 dB

at position p = [1, 5]T. The SNR for the diffuse multipath

is at a constant 21 dB throughout the room. The SINR1 of

the LOS component is at 13 dB while the total SINR of all

reflected, deterministic MPCs is at just 8.1 dB due to the

strong interference by diffuse multipath. (Both values apply

at p = [1, 5]T). The transmitted signal was modeled as having

a raised-cosine ACF Rs(τ) with roll-off factor R = 0.6 and

pulse duration Ts of 0.5, 1, or 2 ns.
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Fig. 4. Logarithm (base 10) of the position error bound across the floorplan.

Fig. 1 shows error ellipses computed from (16) for several

positions along the trajectory. The ellipses denote the ten-

fold PEB decomposed geometrically, i.e. the ten-fold error

standard deviation. Fig. 3(a) gives quantitative results for the

same parameter settings. It compares the PEB computed from

the complete EFIM (16) and from (17) which neglects path

overlap. It also shows the error components in direction of the

major (PC0) and minor (PC1) semi-axes of the error ellipses.

The error is clearly lower in direction of the physical anchor

node, because signals from virtual anchors are heavily affected

by diffuse multipath. A significant reduction of the error is

seen when approaching the anchor. This expected behavior

is not monotonous, however. At Position 6, for example, we

observe a steep increase of the error that can be attributed

to path overlap. The distances to SR#3 and SR#5 are equal

at this position, as well as the distances to DR#2 and DR#3.

From position 17, DR#1 becomes visible at equal distance to

DR#2, leading again to a deviation between the two results due

to path overlap. The deviation increases further from position

23, where SR#2 gets visible at equal distance to SR#4.

Figs. 3(b)–(d) analyze the error bound for various parameter

settings. In Fig. 3(b), the SNR was increased by 10 dB, which

clearly reduces the variance in direction of PC1. However

the variance in direction of PC0 is influenced only slightly,

because the system operates at a working point where diffuse

multipath causes an error floor for signals from (reflected)

VAs. The positive effect of an increased bandwidth is seen

from Fig. 3(c) w.r.t. Fig. 3(a). Doubling the bandwidth, the

overall error bound is reduced by a factor greater than two.

This is due to a two-fold effect: An overall scaling of the

CRLB with the effective bandwidth (cf. (17)), and a reduction

of the limiting impact of diffuse multipath, as seen from (18).

Finally, for Fig. 3(d) the bandwidth was reduced by a factor of

two w.r.t. Fig. 3(a). Here also the increased influence of path

overlap is evident. From this result, a minimum bandwidth of

1 GHz seems desireable for the MINT approach.

In Fig. 4, the position error bound is shown across the
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floorplan. For most of the area, the CRLB is below 10 cm. The

complete room can be served by a single physical anchor, even

though the anchor is not visible from all locations. Again, the

adverse effect of symmetries is clearly seen. Note that their

position can be moved in some cases by shifting the physical

anchor. Other symmetries, for instance along the walls, cannot

be avoided.

V. CONCLUSIONS

The CRLB on the position error has been derived for

the “MINT” problem, a multipath-assisted indoor positioning

approach using UWB signals. For this purpose, a novel,

stochastic channel model has been formulated to account for

diffuse multipath interfering with deterministic reflections that

are to be exploited.

Analysis and computational results demonstrate the poten-

tial advantage of exploiting deterministic multipath and point

at the key parameters influencing the performance. Path over-

lap diminishes the ranging information by the corresponding

(virtual) anchors, since orthogonality of their signals can only

be achieved through different propagation delays. Therefore,

the geometry of the (virtual) anchor nodes has a two-fold

importance in this scenario. It effects the geometric dilution

of precision and it determines the amount of path overlap.

Similarly, the impact of signal bandwidth is a multiple one.

As in conventional positioning schemes, it directly scales the

error bound of the ranging estimates. But it also scales the

power of the interfering diffuse multipath and the amount of

path overlap.

There remains a great need for experimental verification

of this work, however. Firstly the novel channel model has

to be parameterized and validated using measurement results.

Secondly, the applicability and usefulness of the CRLB has

to be analyzed. A significant impact of diffuse multipath is

mostly observed at low to medium path SINRs. The CRLB is

known to be a loose bound under such working conditions. The

presented models may also lead towards new and improved

position estimators for MINT.
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APPENDIX

Computation of the Fisher information matrix (FIM)

We compute the FIM Jψ of the auxiliary parameter vector

ψ = [τT (αR)T (αI)T]T using (5) and (14). We closely

follow the notation of [7]. The FIM is decomposed according

to the subvectors of ψ into

Jψ =




ΛA ΛR
B ΛI

B

(ΛR
B)

T Λ′
C 0

(ΛI
B)

T 0 Λ′
C


 =

[
ΛA ΛB

ΛT
B ΛC

]
. (19)

Its elements are defined as

[ΛA]k,k′ = Er|ψ

{
−∂2 ln f(r|ψ)

∂τk∂τk′

}

=
2

N0
ℜ{αkα

∗
k′}w2

k

∂2Rs(τk − τk′ )

∂τk∂τk′

[ΛR
B]k,k′ = Er|ψ

{
−∂2 ln f(r|ψ)

∂τk∂αR
k′

}

=
2

N0
αR
k w

2
k

∂Rs(τk − τk′)

∂τk

[ΛI
B]k,k′ = Er|ψ

{
−∂2 ln f(r|ψ)

∂τk∂αI
k′

}

=
2

N0
αI
kw

2
k

∂Rs(τk − τk′)

∂τk

[Λ′
C]k,k′ = Er|ψ

{
−∂2 ln f(r|ψ)

∂αR
k ∂α

R
k′

}
= Er|ψ

{
−∂2 ln f(r|ψ)

∂αI
k∂α

I
k′

}

=
2

N0
w2

kRs(τk − τk′ )

where Rs(τ) =
∫∞
−∞ s(t)s(t− τ)dt.
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in Measured UWB Indoor Channels
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Abstract—Conventional radio-based indoor localization sys-
tems often only make use of the direct signal path between
an agent and the anchor nodes. Therefore, performance can
deteriorate in non-line-of-sight situations, even though reflected
multipath-components carry useful location-dependent informa-
tion. Using ultra-wideband signals, these components become
resolvable. Bringing together previously obtained results on the
Cramér-Rao bound on the position error and measurement
data along a reference trajectory, we present a methodology
for quantifying the position-related information contained in
UWB indoor channels. An explicit model for the diffuse part
of the channel enables to evaluate its importance realistically.
Experimental results verify prior theoretical work. Important
parameters and their influence on the system performance are
discussed.

I. INTRODUCTION

For multilateration-based indoor localization, ultra-

wideband (UWB) signals are the method of choice, especially

due to the fact that the line-of-sight component can be

separated from the reflected multipath components (MPCs).

In non-line-of-sight (NLOS) situations however, these

systems can still show large errors due to biased range

estimates. Proposed solutions try to e.g. identify and discard

NLOS measurements, which implies loosing all geometric

information that is embedded in the reflected components.

In prior work (see [1] and references therein), we proposed

an indoor localization method that explicitly makes use of

multipath propagation by mapping MPCs to virtual anchors

(VAs) that are positioned according to a known floor plan.

Recently, we have derived the Cramér-Rao lower bound

(CRLB) for this multipath-assisted indoor navigation and

tracking (MINT) scenario [2]. In contrast to other work on this

topic, like [3] and [4], we explicitly model diffuse multipath

(DM) using a stochastic process. With this, we are able to

evaluate the influence of DM on the localization performance,

which is important as the density of diffuse components can be

high in indoor scenarios. The often-used model for the UWB

channel as a sum of reflected copies of the transmit signal plus

noise seems to be inappropriate for this purpose. This paper

aims at a verification of these theoretical results using data

from an extensive indoor measurement campaign [5].

This work was partly supported by the Austrian Science Fund (FWF) within
the National Research Network SISE project S10604-N13, and by the Austria
Research Promotion Agency (FFG) within KIRAS PL3, grant nb. 832335
“LOBSTER”
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Fig. 1. Scenario used in this paper (upper plot). Black lines represent concrete
walls, gray lines depict large windows and metal doors. Only the VAs marked
in red are visible from the trajectory. On the right side, a close-up of the
anchor area is shown. The lower plot shows the CIRs over the trajectory at a
bandwidth of 2GHz.

We present a framework for the quantification of position-

related information in UWB channel measurements. The re-

sults are used to verify the theoretical work in [2]. Also, they

provide important performance considerations for localization

schemes making use of multipath propagation, like [6] or [7],

for example.

II. SCENARIO AND SIGNAL MODEL

Fig. 1 shows the scenario that is analyzed in this paper

and where the measurement campaign was performed [5]. The

position of the single anchor node p1 is mirrored with respect

to the reflecting surfaces using the known floor plan. This

results in VA nodes at positions pk = [xk, yk]
T , k = 2, . . . ,K

[8]. These can be exploited for multipath-assisted indoor

navigation and tracking (MINT) [2].

The UWB channel was measured at 381 points, spaced

by 10 cm with a Rhode & Schwarz ZVA-24 vector network

analyzer over a frequency range of 3.1-10.6GHz. Using pulse
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Fig. 2. Decomposition of measured CIRs as in [5] into deterministic MPCs
(black lines) and diffuse multipath (colored lines) at certain points of the
trajectory and a bandwidth of 2GHz. The bold line marks the MPC from VA
10, whose tail was used to extract the data for Fig. 3.

shaping with a “transmit signal” s(t), the signal at position pl
is modeled as [2]

rl(t) =

Kl∑

k=1

αk,ls(t− τk,l) + nl(t) (1)

which consists of Kl deterministic MPCs with amplitudes

{αk,l} ∈ C and propagation delays τk,l =
1
c‖pl−pk‖, where

c is the propagation velocity. We assume that these MPCs are

caused by specular reflections at flat surfaces, i.e. they are

modeled by the VAs. The noise term nl(t) consists of both

measurement noise, wl(t), and the convolution of the transmit

signal with the DM, which is modeled by a random process

νl(t), i.e.

nl(t) =

∫ ∞

−∞
s(λ)νl(t− λ)dλ+ wl(t). (2)

Here, wl(t) denotes additive white Gaussian noise with two-

sided power spectral density N0/2. The lower part of Fig. 1

shows the measured channel impulse responses (CIRs) along

the trajectory. We can observe the structure of the deterministic

components, that bears information for localization [9].

The aim of this paper is a verification of the results on

the performance bounds for MINT [2] using the measured

CIRs along the trajectory. One major challenge in this re-

gard is the lack of sufficiently many (and densely spaced)

measurement points to reliably estimate channel statistics.

E.g., in [2], uncorrelated scattering is assumed, which means

that the process νl(t) is modeled by an ACF Kνl(τ, u) =
E{νl(τ)ν∗l (u)} = Sν(τ)δ(τ−u). According to this model, the

power delay profile Sν(τ) does not consider spatial variations
as it does not depend on the position l. However, it is clear

that in the scenario in Fig. 1, visibility regions of the VAs

and hence propagation characteristics change severely, even

over a distance of just a few meters [5]. Hence, we restrict

our analysis to only L = 21 measurement postions pl for

l = L1, . . . ,L2 (see Fig. 1, for comparison with [5], L1 = 60
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Fig. 3. Histogram of the real part of rl(t) for a bandwidth of 2GHz. Here,
t is restriced to a region of 2 ns after the deterministic signal part caused by
VA 10, i.e. its diffuse tail (c.f. Fig. 2). The black line shows a Gaussian fit.

and L2 = 80), and stack the corresponding measurements in

the vector

rL1:L2(t) = [rL1(t), . . . , rL2 (t)]
T
. (3)

III. BOUNDS ON THE POSITION ERROR

In [2], the Cramér-Rao lower bound on the position error for

multipath-assisted localization has been derived by blockwise

inversion of the Fisher information matrix (FIM) Jθ [3] for

the parameter vector θl = [pT (αR)T (αI)T ]Tl that contains

the position and the real and imaginary components of the

MPC amplitudes αk,l. The equivalent FIM (EFIM) [3] for the

position p has been derived as

Jpl
=

8π2β2

c2

Kl∑

k=1

SINRk,lJr(φk,l) (4)

where no path overlap, i.e. orthogonality of the signals from

different VAs, is assumed. Ref. [2] also derives Jpl
for path

overlap situations. As we will discuss below, this situation

leads to considerable practical difficulties, and is not consid-

ered here. In (4), β2 is the effective bandwidth of s(t) and

Jr(φ) is the ranging direction matrix [3], with one eigenvector

in the direction φk,l, which is the angle from pk to pl. The
signal-to-interference-plus-noise ratio (SINR) of the k-th MPC

at position pl is

SINRk,l := w2
k,l

|αk,l|2
N0

=
|αk,l|2

N0 + TsSν(τk,l)
. (5)

In (5), the influence of the individual terms of the CIR (c.f.

(1)) is shown: The weights wk account for the influence of DM
via its power delay profile Sν(τ). We observe that the DM is

scaled by Ts, the bandwidth inverse. Again we note that with

limited measurement points, Sν(τ) or a reliable estimate of it

will not be available, and due to the 10 cm spacing of the pl,
the spatial variation can not be neglected. Hence, instead of

estimating SINRk,l for each pl, we will estimate an average

SINRk for each VA, restricted to our measurement set in

rL1:L2(t).
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IV. ESTIMATION OF POSITION-RELATED PARAMETERS

For the contribution of one deterministic MPC at the posi-

tion pl, the log-likelihood function that results in the EFIM

in (4) can be expressed as [2]

ln f(rl(t)|θk,l) ∝
2

N0

∫ T

0

ℜ
[
rl(t)αk,lw

2
k,ls(t− τk,l)

]
dt

− 1

N0

∫ T

0

[αk,lwk,ls(t− τk,l)]
2 dt (6)

where θk,l = [pTk αRk αIk]
T
l , T is the observation interval and

the delay τk,l depends on the respective VA position pk as

τk,l(pk) =
1

c
||pl − pk||. (7)

Equation (6) is the log of the likelihood ratio of a signal s(t),
parameterized by θk,l, in Gaussian noise [10]. The scaling

factors wk,l result from a whitening operation used to account

for the colored noise in νl(t) [2].

To evaluate the suitability of a Gaussian model for the noise

term nl(t) given in (2), we use the channel analysis method

in [5]. We subtract the influence of the deterministic MPCs

caused by the VAs from rl(t). The remaining signal is an

estimate for the combined noise term n̂l(t) [11]. Fig. 2 shows

the procedure for several trajectory positions and a bandwidth

of 2GHz. We observe that the DM is often especially pro-

nounced after deterministic MPCs, i.e. those show a “diffuse

tail” associated to them [12]. These components seem to carry

significant energy which severely influences multipath-assisted

localization schemes [1].

Although elaborate statistical modeling is out of the scope

of this paper, we exemplarily analyze n̂l(t) for a certain

part of the channel. For this purpose, we extract n̂l(t) for

a range of 2 ns after the MPC from VA 10 (marked in Fig.

2). A histogram of its real part, together with an ML-fit of

a Gaussian distribution, is shown in Fig. 3. Although both

a slight concentration of values in the vicinity of zero and

outliers with quite large values can be observed, a zero-mean

Gaussian model might be a reasonable assumption.

A. Maximum-Likelihood Localization of VAs

We assume that in a realistic scenario, the floorplan is not

known exactly and therefore, the VA positions pk are subject

to uncertainty. Hence, as a first step in the data extraction

process, we re-estimate the locations of the VAs according to

the model in (6). In a small region around the geometrically

expected VA position pk, we search for the VA position that

provides a best fit to the received signal. For each candidate

point p̃k within this region, we construct a template signal

s̃k,l(t) = ãks(t− τ̃k,l(p̃k)) with ||s(t)|| = 1 (8)

where ||s(t)|| denotes the norm of s(t). The complex am-

plitude of the template, ãk, is kept constant with respect to

l, as it is a nuisance parameter in this estimation. Assuming

noncoherent processing, we choose ãk as the mean of the

absolute value of rl(τ̃k,l) over the trajectory, i.e.

ãk =
1

L

L2∑

l=L1

|rl(τ̃k,l)| (9)

where τ̃k,l is the expected delay according to the floorplan.

Assuming independent measurements at different trajectory

positions, the log-likelihood function is given as

ln f(rL1:L2(t)|pk) ∝
2

N0

L2∑

l=L1

∫ T

0

|rl(t)s̃k,l(t)|dt

− 1

N0

∫ T

0

|s̃k,l(t)|2dt. (10)

It is important to restrict the computation of (10) to those

measurement positions pl where the k-th VA is expected to be

visible, and where additionally no path overlap with any other

VA occurs. The latter is important because this processing

allows no “distribution” of MPC energy to different sources at

the same delay. However, in the selected part of the trajectory,

path overlap only occurs for some positions between VAs 15

and 24, if a bandwidth of 2GHz or below is used. The ML

estimate of the position of the k-th VA is then computed as

p̂k = argmax
p̃k

ln f(rL1:L2(t)|p̃k) where ||p̃k − pk|| ≤ d̃

(11)

where d̃ is the radius of the uncertainty region around the

expected pk and is chosen as 20 cm.

B. Estimation of Path Amplitudes and SINR for VAs

In this step, the complex amplitudes of the MPCs are

estimated. To this end, we project the received signal onto

the energy-normalized transmit signal, shifted to the ML

estimate τ̂k,l = τk,l(p̂k) of its respective path delay, i.e.

ŝk,l(t) = s(t− τ̂k,l). The projection is then

âk,l =

∫ T

0

rl(t)ŝ
∗
k,l(t)dt. (12)

With the assumptions that s(t) ≈ 0 for |t| > Ts, no path

overlap, and that the ML estimate of the delay is exact, i.e.

τ̂k,l = τk,l, this reduces to

âk,l = αk,l +

∫ T

0

[s(t) ∗ νl(t) + wl(t)]ŝ
∗
k,l(t)dt

= αk,l + νk,l + wk,l (13)

where ∗ denotes convolution. Hence, the estimated amplitude

âk,l is a sum of the true amplitude αk,l and the projections of

the DM and the noise on the estimated template for the k-th
MPC. As there is no way of finding these components individ-

ually based on observing âk,l without additional knowledge,
we proceed by directly estimating the corresponding average

SINRk for the k-th VA.

For this, we assume that the deterministic amplitude αk,l =
αk, i.e. it is constant over the L measurement points. This

implies that all variations in âk,l are caused by DM and noise.
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To allow this assumption, we correct the deterministic distance

dependence of the âk,l by multiplying them with a factor

fcorr,k =
√

Fk(l0)/Fk(l), where Fk(l) is the Friis equation

for the free space loss between the VA at pk and the position

pl. The position pl0 is the one closest to the average distance

between pk and all pl.
As âk,l consists of the deterministic complex amplitude αk,

which is superimposed by Gaussian noise, it is reasonable to

model its absolute value as |âk,l| ∼ Rice(s = |αk|, σ2), where
σ2 denotes the variance of the noise. We observe that the

Ricean K-factor, s/2σ2, is a reasonable estimate for SINRk.

The estimated complex amplitudes âk,l can be written as

âk,l = αke
jψk,l +Nl where Nl ∼ CN (0, 2σ2) (14)

where the random variable Nl denotes contributions from DM

and noise. Multiplying (14) with e−jψk,l yields

âk,le
−jψk,l = αk +Nle

−jψk,l = X1 + jX2 (15)

where

X1 ∼ N (ℜ{αk}, σ2) and X2 ∼ N (ℑ{αk}, σ2). (16)

Hence, the random variable Y = |âk,l|2 will follow a non-

central χ2-distribution with n = 2 degrees of freedom [13],

whose parameter s2 is the sum of the means of the underlying

Gaussians, i.e. s2 = E{X1}2 + E{X2}2 = |αk|2. Mean and

variance of Y are given as

E{Y } = nσ2 + s2 (17)

var{Y } = 2nσ4 + 4σ2s2 (18)

which means that s2 and σ2 and hence the desired estimate for

the SINRk can be computed from moment estimates of (17)

and (18), which we denote with m1,Y and m2,Y , respectively.

We obtain

SINRk ≈ 1
m1,Y√

m2
1,Y −m2,Y

− 1
(19)

where we observe that the estimate of SINRk can be complex

if the variance of the observed |âk,l|2 is high. As in these cases

the true SINR would be very low, we set it to zero.

V. RESULTS

We performed the steps described in the previous sections

over the L = 21 trajectory points shown in Fig. 1. The

analysis is performed at three different bandwidths, the full

FCC bandwidth of W = 7.5GHz between 3.1 and 10.6GHz,
W = 2GHz and W = 1GHz. The latter two both start

at 6GHz. It should be noted that the estimates for e.g.

(19) are based on at most L = 21 samples, which is due

to the previously discussed limitations of the measurement

campaign. However, the presented methodology can be used as

a framework for future campaigns, as the results below show

its validity in principle.

Table I shows the estimated SINRk for the individual VAs.

SINRrefl indicates the total SINR of all reflected (i.e. all but the

LOS) MPCs. As expected from the geometry, we observe a

high SINR1, which corresponds to the LOS anchor. For W =

TABLE I
SINRk FOR DIFFERENT BANDWIDTHS

VA SINRk [dB]

Index W = 7.5GHz W = 2GHz W = 1GHz

1 24.56 24.27 23.42

4 13.05 7.85 2.31

10 19.03 15.48 1.93

11 14.61 5.8 5.94

14 5.24 2.47 0.51

15 2.7 3.24 −∞
17 6.0 4.04 3.83

18 14.38 7.27 4.95

19 6.37 −∞ −∞
24 9.03 −∞ 3.99

tot. SINRrefl 26.09 17.9 12.27

7.5GHz, the SINRk is high for most VAs, which is due to the

fact that their contributions are well resolvable in the received

signals. This mostly carries over to W = 2GHz (observe the

bandwidth dependence in (5)), but only to a lesser extent to

W = 1GHz. Although we exclude path overlap situations in

this work, some interference from closely spaced pulses s(t) is
visible for e.g. VAs 1 and 10. SINR10 is significantly lower for

this bandwidth, as the corresponding pulse is already distorted

by the LOS component which causes the re-localization of the

respective VA to be erroneous. Hence, path overlap situations

are identified as an especially important issue for future work.

Fig. 4 shows the position error bound (PEB), i.e. the square

root of the trace of J−1
pl

over the measurement points. The

beneficial influence of bandwidth is clearly visible. As in [2],

the CRLB is decomposed into orthogonal (principal) compo-

nents (PC). We see that most of the expected position error

can be attributed to one direction (PC0), while in direction of

PC1, low errors are expected (c.f. Fig. 5). Over the analyzed

part of the trajectory, the PEB is seen to be roughly constant.

For W = 2GHz, we observe an increase at p72, where VA

15 becomes invisible, increasing the PEB in the corresponding

direction.

Fig. 5 finally shows the ten-fold position error standard devi-

ation ellipses for some points on the trajectory. The results are

extrapolated for positions pl with l > 80, i.e. the previously

estimated SINRk is used. The geometry dependence is clearly

shown, as the bound in direction to the physical anchor is

very low. At position p95, VA 11 is no longer visible, and the

remaining VAs are all located on a vertical line through the

anchor. The resulting geometric dilution of precision is well

predicted by the CRLB. An additional comparison is done

with an Extended Kalman Filter (EKF) algorithm presented

in [1]. This EKF can rely on perfect data association (DA)

of MPCs to VAs. Analysis of its estimation error covariance

matrix reveals a good match with the CRLB, which further

verifies its usefulness for performance analysis and prediction

of multipath-assisted indoor localization.
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Fig. 4. CRLB over the trajectory for different bandwidths

VI. CONCLUSION AND OUTLOOK

We have presented a framework to quantify position-related

information in measured UWB channels. As multipath prop-

agation can be used to enhance accuracy and robustness of

localization systems, we have shown how to evaluate the

usefulness of different multipath components resulting from

specular reflections. Results verify previous theoretical work

on the Cramér-Rao bound for multipath-aided localization

and provide important performance considerations for cor-

responding localization schemes. The beneficial influence of

a high bandwidth has been shown and the influence of the

geometry was emphasized. The presented methodology is

potentially valuable in planning both localization systems and

measurement campaigns. It is furthermore suitable to compare

localization capability in different environments and frequency

bands.

Future work most importantly has to address the path over-
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Fig. 5. Ten-fold error standard deviation ellipses for the CRLB (blue) and an
EKF with perfect data association (DA) [1] for certain trajectory points and
a bandwidth of 2GHz. After about p90, only VAs on a vertical line through
the anchor are visible, which increases the error in x-direction.

lap problem, which was not considered here. Path overlap as

one of the major issues for practical system requires additional

algorithms to evaluate contributions and interference from

multiple (virtual) anchors. Also, further parameterization and

validation of the channel model has to be done, as the limited

amount of closely spaced measurements did not allow for this

here. Furthermore, coherent processing potentially provides

additional gains in performance and has to be investigated.
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Abstract—Multipath propagation is one of the key problems
for indoor localization systems. Strong multipath components
can cause range estimates to anchor nodes to be severely biased.
If a floor plan is available, reflected signal paths can be used
effectively by mapping them to virtual anchors. We show how to
make use of the rich localization information provided by just one
anchor node. Using tracking algorithms both with and without
data association, we achieve accurate and robust localization,
which is verified in an indoor environment using measured data
at ultra-wide bandwidths. With an extended Kalman filter and
data association, a position error of 22 cm is obtained for 90%
of the estimates at a bandwidth of 2GHz.

I. INTRODUCTION

In prior work [1], we have introduced a multipath-assisted

indoor localization and tracking scheme. Using a known floor

plan, a single physical anchor node can be turned into a

set of virtual anchors (VAs). Using ultra-wideband (UWB)

signals, reflected signal paths are resolvable and provide rich

localization information [2], [3]. In this contribution, we verify

the performance of the scheme using measured data in an

indoor environment. The results confirm the excellent accuracy

observed in simulations previously and help to identify major

influences on the system performance.

Signal reflections are also exploited in [4], but with the

restriction to rectangular rooms and single reflections. In [5],

VAs are used whose locations are unknown and exploited via

cooperation. If reflected signal paths are used as measurement

inputs for tracking algorithms like extended Kalman filters

(EKFs) [6], the association of range estimates to features in the

environment may be unknown. In this case, data association

(DA) is necessary [7]. In [8], this is done by finding the

nearest neighbor and most probable DAs. In our contribution,

we show how the DA can be solved using optimal sub-pattern

assignment [9], i.e. finding the subset of measurements that

optimally fits to the expected environmental features. The

associated measurements can be used as input for an EKF.

As a direct comparison with our prior work in [1], a particle

filter that can deal with complete lack of DA is also evaluated.

This paper is organized as follows: Section II introduces

the scenario, the measurements and the geometric modeling,

Section III deals with the extraction of multipath components

(MPCs). Tracking algorithms are introduced in Section IV,

This work was partly supported by the Austrian Science Fund (FWF) within
the National Research Network SISE project S10604-N13, and by the Austria
Research Promotion Agency (FFG) within KIRAS PL3, grant nb. 832335
“LOBSTER”
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Fig. 1. Scenario with trajectory of a moving agent and physical as well as
some of the virtual anchor nodes, with the number of expected virtual anchors
Nk in color. The upper-left corner shows a close-up of the base station area.

their performance is discussed in Section V and Section VI

draws conclusions.

II. SCENARIO, MEASUREMENTS AND MODELING

The indoor scenario is shown in Fig. 1. It is the ground floor

of a multi-storey office building, in which our laboratory is

situated. Black lines represent concrete walls, the gray ones are

large windows and metal doors. The building further extends

several tens of meters to the left. We performed channel

measurements over the shown trajectory consisting of 220

points spaced by 10 cm. At each point, the UWB channel

was measured with a Rhode & Schwarz ZVA-24 vector

network analyzer over a frequency range of 3.1− 10.6GHz.
The obtained channel transfer functions are transformed to

time domain via an inverse discrete Fourier transform. An

outline of this procedure and a more detailed description and

analysis of the measurement campaign can be found in [2].
Our aim is to localize and track a moving agent node with

the help of just a single base station together with the signal

reflections in the building walls [1]. Assuming that these MPCs

are resolvable in the channel impulse response (CIR), they can

be mapped to VAs, which are mirror images of the anchor node

with respect to the corresponding reflecting surface. Hence, if

the floor plan is known, one physically existing anchor can be

turned into a set of VAs usable for localization. The set of all

VAs over the whole floor plan is denoted as

A = {ai : i = 1, . . . , NVA}. (1)
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Fig. 2. Overview of localization and tracking scheme.

The geometric visibility region of the i-th VA, which is at

position ai, can be pre-computed using ray-tracing, as outlined

in [2]. In this contribution, this is denoted with a function

fvis(ai,p) =

{
1, if VA ai is visible at p

0, else.
(2)

Evaluating this function for all VAs at the k-th position pk

yields the set of expected visible VAs at this position, which

is denoted as

Ak = {ak,1, . . . ,ak,Nk
} = {ai : fvis(ai,pk) = 1}. (3)

Hence, Ak is only a subset of A with cardinality |Ak| = Nk.

Fig. 1 shows Nk over the floor plan, where single- and

double-reflections are taken into account in the construction

of A. We observe a potential challenge for multipath-assisted

localization: The set of anchors that can be used for position

estimation rapidly changes over the area. Hence, an agent

moving through the scenario needs some awareness of the

currently valid set of VAs to perform location estimation.

III. MULTIPATH EXTRACTION AND LOCALIZATION

Fig. 2 shows the conceptual layout of our proposed

multipath-assisted localization scheme. Localization and track-

ing algorithms use range estimates to the VAs, which are

delivered by an MPC-extraction step. As this step is performed

without any location information, it extracts the arrival times

of the Mk largest local maxima from the CIR.

The UWB CIR hk(τ) is modeled as

hk(τ) =

Lk∑

l=1

αk,lδ(τ − τk,l) + νk(τ) + nk(τ). (4)

It consists of Lk MPCs caused by deterministic reflections,

with corresponding amplitudes αk,l and delays τk,l. The signal
νk(τ) models diffuse scattered components and nk(τ) is the

measurement noise. We expect that at position pk, the VAs in

Ak are responsible for a part of the deterministic reflections,

i.e. Nk ≤ Lk. Results in [2] show that these MPCs carry a

significant part of the energy of the CIR, which justifies our

choice to extract the arrival times of the local maxima.

The set of Mk estimated path delays is denoted as Zk =
{zk,1, . . . , zk,Mk

}, where zk,i = cτk,i and c is the propagation
velocity. Of course Zk does not only contain range estimates

to the VAs in Ak, but also entries that are due to noise or

diffuse scattered components, i.e. clutter. The quality of Zk is

determined by its distance to the ground truth Dk, which is

the set of distances to the expected VAs at pk, i.e.

Dk = {dk,1, . . . , dk,Nk
} = {d(ai,pk) : ai ∈ Ak} (5)

where d(ai,pk) is simply the Euclidean distance between

the VA ai and the point pk. However, as both Zk and Dk

are sets of usually different cardinality, no straightforward

distance measure is available. Instead, we resort to a popular

multi-target miss-distance, the optimal sub-pattern assignment

(OSPA) metric [9]. For Mk ≥ Nk, which can be ensured by

filling up Zk with dummy clutter, it is defined as

dOSPA(Dk,Zk) =
[

1

Mk

(
min

π∈ΠMk

Nk∑

i=1

d(dc)(dk,i, zk,πi)
p + dpc(Mk −Nk)

)]1/p

(6)

where ΠMk
is the set of permutations of positive integers up

to Mk. The function d(dc)(x, y) = min(dc, d(x, y)), i.e. an
arbitrary distance metric d(·) that is cut off at a dc > 0,
which is a design parameter. The first part of the metric,

the sum, is the cumulative distance over the optimal sub-

pattern assignment of Zk to Dk, i.e. where Nk entries of Zk

are assigned optimally to the entries of Dk. The Hungarian

algorithm is used for this assignment [10]. For the remaining

Mk −Nk entries of Zk, dc is assigned as penalty distance.

IV. TRACKING AND DATA ASSOCIATION

The motion of the agent is modeled with a standard discrete-

time linear state-space model as in [1]

xk+1 =




1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1


xk +




∆T 2

2 0

0 ∆T 2

2
∆T 0
0 ∆T


na,k (7)

where the state vector xk = [px, py, vx, vy]
T
k contains position

and velocity components in x− and y−direction, ∆T is the

update interval and na,k is acceleration noise. For range-based

tracking using the VAs, we use Zk as measurement input for

the tracking algorithm at time-step k. However, the association
of the entries of Zk to the VAs is unknown [7]. Therefore, we

introduce a set Ck of correspondence variables [6], whose i-th
entry ck,i is defined as

ck,i =

{
j, if zk,i corresponds to VA aj (j = 1, . . . , NVA)

0, if zk,i corresponds to clutter.
(8)

A. Extended Kalman filter with data association (EKF-DA)

If Ck is available, state-space estimation can be performed

by e.g. an EKF using the linear motion model and a linearized

observation model [6] based on the associated entries of

Zk and the corresponding VAs. As the well-known EKF

equations are used, we concentrate on the description of

the DA here. Fig. 2 depicts the general scheme: Assuming
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Fig. 3. Example for the DA for a bandwidth of 2GHz at k = 141, zoomed
view on x-axis. Upper part shows the genie-aided DA, lower part the DA
based on the estimated position. Due to the position error, the EKF expects a
different set Dk . For the VA at a4, a clutter measurement is associated, for
a14, the wrong measurement is associated.

the EKF is already on track at time step k, the predicted

position p−
k is computed using the motion model (7) and the

previous posterior estimate p+
k−1. Using fvis(ai,p

−
k ), the set

of expected VAs Ak, and subsequently the expected delays

Dk are estimated.

Inspired by the definition of the OSPA metric, the DA is

done using optimal sub-pattern assignment between Dk and

Zk, which is reflected in the first part of (6)

πopt = arg min
π∈ΠMk

Nk∑

i=1

d(dc)(dk,i, zk,πi)
p. (9)

The first Nk entries of πopt contain the indices of those entries

of Zk that have been optimally assigned to Dk. For some

entries of Dk, we will probably have d(dc)(dk,i, zk,πopt,i) =
dc, i.e. this expected distance has an assigned measurement,

but the difference between measurement and expected distance

is larger or equal to the cutoff distance. We expect that by

using UWB signals, the estimated path delays will be quite

accurate, provided that they are detected. Hence, we select a

certain dc that may depend on the bandwidth and reject the

corresponding assignments as outliers. Formally, the DA is

expressed by setting the correspondence variables as

ck,i =

{
j, if πj = i and d(dc)(dk,j , zk,i) < dc

0, else
(10)

B. Extended Kalman filter with genie-aided data association

(EKF-GADA)

It is well-known that erroneous DA can lead to catastrophic

failures of Kalman filters. Hence we propose a genie-aided DA

procedure that can act as a benchmark for other trackers. The

only difference to the DA procedure explained in Sec. IV-A

is that here the set of expected path delays Dk is calculated

based on the true position pk.

C. Particle filter without data association

We compare the performance of the EKF with a particle

filter-based tracker (PF) that was introduced in [1]. This

filter has the advantage of not requiring DA. Np particles

are initially selected randomly over the floor plan. In each

time-step, they are propagated through the motion model (7)

and subsequently weighted and resampled according to their
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Fig. 4. OSPA metric over the trajectory for different bandwidths as well as
mean distance of associated path delays.

likelihood with respect to the current measurement. For a

particle at pk and a range estimate zk,i, the likelihood is

p(zk,i|pk) = PVA

NVA∑

n=1

Pv,nfvis(an,pk)p(zk,i|pk, ck,i = n)

+ (1− PVA)p(zk,i|pk, ck,i = 0)
(11)

where Pv,n is the visibility probability of the n-th VA and PVA

is the probability that zk,i is caused by any of the VAs. The

likelihood is a sum over all possible causes of zk,i, i.e. over all
VAs visible at pk and also the possibility that zk,i is clutter.

The corresponding conditional densities of zk,i are selected

as Gaussian with mean equal to the true distance in the first

case, and as uniform over the range from zero to a maximum

range value in the latter case. Treating Zk as a random vector,

the joint likelihood of all measurements is calculated as the

product of the individual likelihoods (11). This assumes that

the zk,i are independent, which is a simplification resulting in

severe multimodality, as discussed in [1].

V. PERFORMANCE RESULTS

The performance of the proposed tracking algorithms is

evaluated over the scenario in Fig. 1. We selected the full

bandwidth of B = 7.5GHz as well as bandwidths of 2GHz
and 1GHz, where the frequency range of the reduced band-

widths starts at 6GHz. For the MPC-extraction, the Mk = 20
largest local maxima are extracted from |hk(τ)|, using the

subtraction method discussed in [2]. The EKFs are provided

with a perfect initialization. In practice, initialization can be

handled using a Gaussian sum filter, as described in [1].

Fig. 3 shows an example for the DA procedure for B =
2GHz at a point on the trajectory. The cutoff distance has

been chosen as dc = 0.4m. Although the true position pk

and the EKFs estimate of it are just 14 cm apart, the set of

expected VAs differ. This leads to an erroneous detection of

the VA at a4, where a clutter measurement is within the cutoff

distance. Also the association for VA a14 is wrong due to the
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slight postion error. This erroneous example has been chosen

on purpose to highlight potential error sources, in general the

DA based on optimal sub-pattern assignment works stable with

a sensitivity tunable via the choice of dc.

Fig. 4 shows the OSPA metric defined in (6) over the

trajectory for all bandwidths and dc = 0.4m. It can be

observed that for B = 7.5GHz and B = 2GHz, the OSPA

distance qualitatively shows similar behavior. For B = 1GHz,
the distance is larger, which is partly because of the higher

probability of path overlap [3]. Using the optimal sub-pattern

assignment, a measurement can only be assigned to one VA,

whereas it might be caused by multiple ones. Due to the fact

the MPC extraction returns the 20 largest local maxima and

the mean Nk is around 5.6, the cardinality error dominates the

metric. Therefore, also the mean distance over the trajectory

of the associated sub-pattern is shown, as this also corresponds

to the objective function for the DA in (9). Here, the beneficial

influence of a high bandwidth is clearly visible.

The performance of the tracking algorithms is compared in

Fig. 5, which shows CDFs of the position error. The influence

of bandwidth is interesting: The EKF-GADA does not suffer

from erroneous associations and can thus make use of the large

bandwidth that also results in low probability of path overlap.

The latter is problematic for the EKF-DA at B = 1GHz,
as every measurement can only be associated once, causing

increased sensitivity to miss-associations. For the EKF-DA at

B = 2GHz, a promising 90% of the estimates are within

22 cm. For the higher bandwidth, the DA gets trickier: The

MPC extraction returns more clutter around the true MPCs, as

at this bandwidth, diffuse tails of some MPCs can be resolved.

For the PF at this bandwidth, this clutter leads to pronounced

maxima of the multimodal likelihood function in the vicinity

of the true position. This can draw the PF estimate away from

the true trajectory. For the lower bandwidths, this effect is less

pronounced and the PF offers reasonable performance.

Qualitatively, the performance is shown in Fig. 6 for B =
2GHz. For this case, the EKF-DA approaches the EKF with

genie-aided DA. Near the end of the trajectory, all filters are
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Fig. 6. Performance of proposed algorithms over scenario for BW=2GHz.

drawn away from the trajectory, as in this region, only two

VAs are visible. All the filters can again lock on the trajectory

once the double reflection between the corridor walls becomes

visible. Also the influence of geometric dilution of precision

is visible at the second bend of the trajectory. Both EKFs tend

to the wrong direction initially and the variance in x-direction
increases. This is due to the fact that in this region, only VAs

on a vertical line through the anchor are visible, providing

little information in x-direction [3].

VI. CONCLUSION AND OUTLOOK

We have presented an indoor localization scheme with only

a single base station that effectively makes use of multipath

propagation. Using a known floor plan and the concept of

virtual anchors, excellent performance can be achieved with

tracking algorithms, also in the absence of data association

information. Data association based on optimal sub-pattern

assignment can further improve the accuracy, even if the

clutter rate is high. In future work, tracking of the multipath

components themselves will be used to significantly reduce

clutter and to help in resolving path overlap problems.
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Abstract—Indoor localization systems that are accurate
and robust with respect to propagation channel conditions
are still a technical challenge today. In particular, for
systems based on range measurements from radio signals,
non-line-of-sight (NLOS) situations can result in large po-
sition errors. In this paper, we address these issues using
measurements in a representative indoor environment.
Results show that conventional tracking schemes using
high- and a low-complexity ranging algorithms are strongly
impaired by NLOS conditions unless a very large signal
bandwidth is used. Furthermore, we discuss and evaluate
the performance of multipath-assisted indoor navigation
and tracking (MINT), that can overcome these impairments
by making use of multipath propagation. Across a wide
range of bandwidths, MINT shows superior performance
compared to conventional schemes, and virtually no degra-
dation in its robustness due to NLOS conditions.
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I. INTRODUCTION

Indoor localization systems face many difficulties
when they are to be deployed in practice [1]. Optical
systems might become unusable in emergency situ-
ations due to fire and smoke; signal strength based
systems are sensitive to fading effects; fingerprinting
systems need dedicated training phases; etc. Range-
measurement-based systems using radio signals, which
are in the focus of this paper, offer advantages like the
capability of being integrated in existing radio devices
such as smartphones, the potential of low-power im-
plementations and moderate infrastructure requirements.
However, they face challenging performance impairments
caused by propagation effects like strong reflections or
diffuse scattering.

To counter these impairments, a large signal band-
width is beneficial for two main reasons: First, the tem-
poral resolution and therefore the attainable accuracy is
increased. Second, the line-of-sight (LOS) path can be
separated from other signal parts easier, which improves
the robustness, i.e. the percentage of cases in which
the attainable accuracy can be achieved. For these rea-
sons, systems using ultra-wideband (UWB) signals are
promising candidates for both accurate and robust indoor
localization [2].

In this paper, we examine the performance of a
conventional range-based UWB indoor localization and
tracking system in a representative indoor environment
with several anchor nodes. Using channel measurements
along a reference trajectory, mimicking the walking path
of a pedestrian user, we show the dependence of the
robustness and accuracy of the localization on chang-
ing propagation conditions. The LOS path is estimated
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Figure 1: Indoor tracking scenario considered in this paper. The black dotted line illustrates the user’s trajectory in the scenario, selected position
indices are given to allow easier interpretation of later results. Blue circled crosses are the base stations, while black and grey squares with crosses
denote some few illustrative VAs for BSs 3 and 4. The area shaded in light gray denotes the geometric visibility region of the LOS path of BS 4,
illustrating the NLOS region caused by the hypothetical obstruction in the center that is used for performance evaluations. Additionally, the thin and
bold blue lines show two example propagation paths that can be modeled by VAs and that are potentially visible in the NLOS region.

using the maximum-likelihood method as well as using
a low-complexity ranging algorithm. These estimates are
provided as inputs to an extended Kalman filter (EKF),
which tracks the user’s position. The presence of strong
reflections in the measurement signal can lead to a large
bias in the estimate of the propagation delay of the direct
path between user and anchor. This is especially true
in non-LOS (NLOS) situations, where the direct path is
blocked. Overall, a degradation of the robustness of the
system is the result.

Usual countermeasures are to detect such situations
based on signal statistics and discard the corresponding
measurements [3], [4]. In advanced schemes like [5],
[6], machine learning techniques are used to mitigate
the range bias in NLOS situations. However, these ap-
proaches discard position-related information that is in-
herent in the geometric structure of reflected MPCs. The
usefulness of this information has been shown in [7]–[10].

We have shown in previous work [9]–[11] that by using
additional floor plan information, these reflected signal
paths can be used for localization. Extracting these paths
from the channel measurements and associating them to
the floor plan, signal reflections can be seen as direct
signals coming from virtual anchor (VA) nodes. In this
way, one physically existing anchor node is turned into
a set of virtual anchors, and NLOS situations no longer
render this anchor useless for localization. This scheme,
which we call multipath-assisted indoor navigation and
tracking (MINT), can thus deliver the desired robustness
with respect to the propagation conditions. However, the
effect of diffuse scattering is especially pronounced in

indoor environments due to the presence of objects like,
e.g., furniture. This makes the extraction of the reflected
components from the measurements and the required
data association challenging. To highlight these issues in
a practical setting, this paper extends our previous work
in [11] with the use of multiple base stations, a detailed
performance analysis of the proposed algorithms and a
comparison to standard tracking schemes employed in
indoor localization.

The key contributions of this work are:

• We show the performance and the robustness
issues of a conventional, EKF based tracking
system with respect to channel conditions. This is
done in a representative indoor environment using
measured signals.

• Making explicit use of multipath, robustness and
accuracy can be increased. We discuss an imple-
mentation of the proposed MINT approach and
examine its performance. Results show the ex-
cellent robustness of MINT with respect to NLOS
situations.

• The results obtained highlight general practical
considerations for indoor localization systems, i.e.
the importance of a large bandwidth and propa-
gation channel conditions is shown.

This paper is organized as follows: Section II explains
the scenario, the measurement campaign and the geo-
metrical modeling of the environment. A short overview
over performance bounds for MINT is given in Section
III, while Section IV discusses channel estimation and
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ranging algorithms. Tracking is explained in Section V and
a detailed discussion of results is given in Section VI.

II. SCENARIO, MEASUREMENTS, AND GEOMETRIC

MODELING

Fig. 1 shows the scenario used in this paper. It is the
ground floor of a large three-storey building with open
ceilings in the corridor areas in all but the uppermost
floors. Walls are made of reinforced concrete (shown as
black outer lines) and doors (shown in grey) are made
of metal. The long grey outer lines on the upper and
lower side are large windows with some metal pillars in-
between. We placed four base stations (BSs) at known
locations and measured the UWB channel between them
and a moving agent. The latter was moved along a
trajectory consisting of 220 points spaced by 10 cm. The
obstruction shown near the center of the corridor has
not been present in the measurements. It is introduced
artificially in the performance evaluations to show the
influence of NLOS scenarios on the localization, c.f.
Section VI.

A. Geometric Modeling of the Environment

If a floor plan of the building is available, the BS
positions ai, i = 1, . . . , 4, can be mirrored with respect
to reflecting surfaces like walls to obtain so-called first-
order virtual anchors (VAs) at positions a′i. Using these,
the procedure can be repeated to obtain second-order
VAs a′′i, and so on. The visibility regions of these VAs,
i.e. the regions where the corresponding reflections are
possible, can be computed by ray tracing as explained
in [12]. If the corresponding MPCs are detectable at the
moving agent, they can be associated to the VAs and
used for localization. Fig. 1 shows a subset of VAs for
BSs 3 and 4 together with two example signal paths.

In an analogous manner to [11], the overall set of VAs
for the i-th BS is denoted as

A(i) = {aj : j = 1, . . . , N
(i)
VA}. (1)

Here, the superscript indicating the VA order has been
dropped as it is not important in the upcoming discussion.
A function fvis(aj ,p) determines the visibility of the j-th
VA at a position p, i.e.

fvis(aj ,p) =

{
1, if VA aj is visible at p

0, else.
(2)

The set of expected visible VAs at a specific position pℓ

can then be computed evaluating (2) for all VAs in (1)

A(i)
ℓ = {aℓ,1, . . . ,aℓ,K(i)

ℓ

} = {aj : fvis(aj ,pℓ) = 1}. (3)

In the following, we omit the BS index i wherever it should
be clear from the context that the respective quantity
exists for all BSs.

It can be seen from (3) that a set of anchor nodes
significantly larger than the set of BSs can potentially
used for localization. We call this approach multipath-
assisted indoor navigation and tracking (MINT). However,
the challenges are as manifold as the potential gains:
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Figure 2: Received signals rℓ(t) in logarithmic scaling over the trajec-
tory for BS 3. The white dashed lines indicate expected delay paths of
MPCs modeled by VAs up to order two, computed by geometric ray-
tracing. Indices of some of the VAs shown in Fig. 1 are given.

First, the MPCs corresponding to the VAs need to be
detected in the signal received at the agent, which de-
pends on influences such as e.g. material parameters
or reflection angles. Second, together with deterministic
MPCs, also some scattered, non-specular components
will cause a certain level of clutter in the measurements.
Third, the detected MPCs need to be associated to the
VAs to make their position-related information accessible.
Summarizing, a moving agent needs to perform detection
of MPCs in the presence of possibly strong diffuse mul-
tipath and noise as well as subsequently a robust data
association procedure to infer its location.

B. Channel Measurements

Measurements were performed in the frequency do-
main with a vector network analyzer (VNA) over the full
FCC bandwidth from 3.1 to 10.6GHz. These measure-
ments have also been used in [10]–[12]. The discrete
frequency representation of the channel’s transfer func-
tion at position pℓ is denoted as Hℓ[k]. Using a frequency
spacing of ∆f , it corresponds to a Fourier series (FS) of a
time-domain channel impulse response (CIR) hℓ(τ). This
CIR is periodic with a period of τmax = 1/∆f , which is the
maximum resolvable delay. The FS representation allows
an arbitrarily fine time resolution ∆τ to be achieved. Using
an IFFT with size NFFT = ⌈(∆f∆τ)−1⌉, the time domain
equivalent baseband signal is obtained as

rℓ(t) = IFFTNFFT
{Hℓ[k]S[k]}e−j2π(fc−f0)t. (4)

In (4), S[k] is the discrete frequency domain representa-
tion of a raised-cosine pulse s(t) with pulse duration Tp

and roll-off factor βR [13]. It is used to cut out the desired
band of the signal as well as to filter it to facilitate an MPC
estimation algorithm. The frequencies fc and f0 are the
desired center frequency and the lower band edge of the
extracted band, respectively. This procedure is similar to
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[14]. Examples for rℓ(τ) obtained in this way are shown
in Fig. 2 for BS 3 over the trajectory.

III. CHANNEL INFLUENCE ON LOCALIZATION

The received signal at the ℓ-th trajectory position pℓ,
corresponding to the processing in (4), is modeled as [9]

rℓ(t) =

Kℓ∑

k=1

αk,ℓs(t− τk,ℓ) + s(t) ∗ νℓ(t) + wℓ(t). (5)

It consists of a sum of Kℓ deterministic MPCs, scaled and
shifted by the complex amplitudes αk,ℓ and propagation
delays τk,ℓ, respectively. The signal νℓ(t) is a stochastic
process modeling the diffuse multipath (DM), i.e. diffuse
scattering at rough surfaces and other propagation mech-
anisms that are not captured by the specular part of the
channel. It is observed at the agent as a convolution
with the transmit pulse s(t). Finally, wℓ(t) denotes addi-
tive white Gaussian noise (AWGN) with two-sided power
spectral density N0/2.

We expect that the deterministic part of rℓ(t) can be
modeled by the set of VAs Aℓ. In [9], we have derived
the Cramér-Rao lower bound (CRLB) on the position
error for the MINT scheme, based on the received signal
rℓ(t). It is given as the inverse of the equivalent Fisher
Information matrix (EFIM) [8]. If all Kℓ deterministic MPCs
are orthogonal at pℓ, i.e. there is no path overlap in the
delay domain, the EFIM can be decomposed as

Jpℓ
=

8π2β2

c2

Kℓ∑

k=1

SINRk,ℓJr(φk,ℓ) (6)

where β denotes the effective (RMS) bandwidth of s(t)
and c is the speed of light. The decomposition is instruc-
tive since it separates the channel’s influence from the
geometry of the VAs. The former is given by the signal-to-
interference-plus-noise-ratio (SINR) of the deterministic
MPCs. For the k-th MPC at position pℓ, it is defined as
[9]

SINRk,ℓ =
|αk,ℓ|2

N0 + TpSν,ℓ(τk,ℓ)
. (7)

Here, interference is understood as the contribution of
the DM, which is given by the power delay profile (PDP)
of the DM, Sν,ℓ at the delay τk,ℓ of the respective MPC,
scaled with the pulse duration. This PDP is defined as
the second central moment of the DM process νℓ(t).

The influence of the geometry is accounted for by the
ranging direction matrix Jr(φk,ℓ) [8], [9], which is defined
as

Jr(φk,ℓ) =

[
cos2(φk,ℓ) cos(φk,ℓ) sin(φk,ℓ)

cos(φk,ℓ) sin(φk,ℓ) sin2(φk,ℓ)

]
. (8)

This matrix has one eigenvector pointing in the direction
φk,ℓ, the angle from the VA at ak to position pℓ. The SINR
in (7) is used in the performance evaluations to emulate
changes of propagation conditions caused by the artificial
obstruction that is shown in Fig. 1.

IV. CHANNEL ESTIMATION AND RANGING

Conventional time-of-arrival (ToA) localization requires
an estimate of the time-of-flight of the signal from the
BS to the agent. This process is called ranging [15]. In
this work, we consider two different ranging algorithms,
maximum likelihood (ML) and jump-back search-forward
(JBSF). The former is computationally intensive since it
requires channel estimation, while the latter is a popular
low-complexity algorithm. The MINT approach requires
range estimates to all the MPCs that are modeled by VAs,
i.e., an estimation of the deterministic part of the UWB
channel as for ML ranging.

A. Channel Estimation and ML Ranging

It has been shown that the MPCs corresponding to
the VAs can carry a large fraction of the energy of the
received signal [12], hence we extract those K̂ℓ MPCs
that result in the minimum energy of the difference signal

{τ̂k,ℓ} = arg min
{τk,ℓ}

∫

T

∣∣∣∣∣∣
rℓ(t)−

K̂ℓ∑

k=1

α̂k,ℓs(t− τ̂k,ℓ)

∣∣∣∣∣∣

2

dt (9)

where T is the observation interval. Of course the pa-
rameter K̂ℓ should be related to Kℓ in (5). However,
without the knowledge of the position, a value has to be
chosen that allows for the extraction of the geometrically
relevant paths over the entire scenario. The choice of this
parameter will be discussed in Section VI-B.

For this work, we assume a separable channel, i.e.
there is no overlap between deterministic MPCs. In this
case, (9) can be performed path-per-path. The ampli-
tudes αk,ℓ are nuisance parameters to this estimation and
can be obtained by a projection of the unit-energy pulse
s(t), shifted to the estimated delay τ̂k,ℓ, onto the received
signal

α̂k,ℓ =

∫

T

r∗ℓ (t)s(t− τ̂k,ℓ)dt (10)

where ∗ denotes complex conjugation. With the separable
channel assumption, this procedure is similar to [16].

For MINT, the set of estimated arrival times in (9), con-
verted to distances, constitutes the measurement input to
the tracking algorithms. Additionally, a data association
(DA) scheme is necessary, which will be described in
Section V-A. For ML ranging, only the propagation delay
of the first arriving path, the LOS path, is interesting and
can be obtained from (9) as

τ̂
(ML)
LOS,ℓ = min{τ̂k,ℓ}. (11)

B. Jump-back Search-forward (JBSF) Ranging

If real-time localization is desired, a channel es-
timation like (9) might not be feasible. JBSF is a
threshold-based ranging algorithm that also works for low-
complexity receiver structures like energy detectors [15].
Backwards from the maximum of the received signal at
delay τmax, a search-back window of length τsb is defined.
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Figure 3: Exemplary ranging results for BS 4 and position l = 120
(c.f. Fig. 1), using Tp = 0.5 ns. The lower plot is a close-up. The
black line denotes the received signal, while the red signal illustrates
the reconstruction using the ML channel estimator. The latter also
provides estimates for the MPC arrival times τk,l (grey dashed lines),
where the ML range estimate (in red) is the minimum of these. Here,
JBSF (light grey) outperforms ML due to path overlap. The simplified
implementation of the ML channel estimator assumes a separable
channel and only detects the larger second component.

The JBSF range estimate is the minimum delay within this
window that exceeds a certain threshold

τ̂
(JBSF)
LOS,ℓ = min{τ̂ : τmax − τsb ≤ τ̂ ≤ τmax, |rℓ(τ̂ )| ≥ Aξ}.

(12)
The choice of the threshold Aξ is usually based on the
noise level.

An illustrative example for the channel estimation and
ranging algorithms is given in Fig. 3. In this case, the LOS
path is not separable from the rest of the channel. Since
the amplitude of the second arriving MPC is larger, it is
detected in an earlier iteration of the ML estimator. Due
to the separable channel assumption, the ML estimator
is constrained not to estimate any MPCs within one Tp

of already detected ones, hence the LOS path is not
detected. However, the LOS component is above the
threshold of JBSF and within its search-back window, so
JBSF can outperform the ML estimator in this case.

V. TRACKING AND DATA ASSOCIATION

The conventional tracking schemes based on ranging
and the MINT approach are both implemented in this
work using extended Kalman filters (EKFs) [17], [18] em-
ploying linearized observation equations for the estimated
path delays. As in [11], we use a simple constant-velocity
state-space model of the moving agent node. Stacking
the position p = [px, py]

T and velocity v = [vx, vy ]
T in the

state vector x = [pT ,vT ]T the model reads

xℓ+1 =Fxℓ +Gna,ℓ (13)

=



1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1


xℓ +




∆T 2

2 0

0 ∆T 2

2
∆T 0
0 ∆T


na,ℓ.

Here, ∆T is the update interval and na,ℓ denotes the
driving process noise, which allows for motion at non-
constant velocity. The measurement inputs for the con-
ventional tracking scheme using EKFs are either the ML
or JBSF ranging estimates. Using (11) or (12), ranging is
performed to each of the four BSs. The entries of the vec-

tor of distance estimates are obtained as z
(i)
ℓ = cτ̂

(ML,i)
LOS,ℓ

or z
(i)
ℓ = cτ̂

(JBSF,i)
LOS,ℓ , where i is the BS index.

A. MINT Using EKF with Data Association (DA)

For the MINT scheme implemented using an EKF,
the MPC estimation in (9) only results in an unordered

set of distance estimates, i.e. Z(i)
ℓ = c · {τ̂ (i)k,ℓ}, where

the cardinality of the set is |Z(i)
ℓ | = K̂

(i)
ℓ . To obtain a

suitable input for the observation equations of the EKF, a
DA scheme is necessary. As the association to the BS is
known, we only consider the DA for one BS and drop the
index i. After the DA, all associated distance estimates
are stacked into one measurement vector.

The employed DA approach is the same as used in
[11] and is just shortly re-sketched here. We introduce a
set Cℓ of correspondence variables [19], whose n-th entry
cℓ,n represents the association of the n-th entry of Zℓ and
is defined as

cℓ,n =

{
j, if zℓ,n corresponds to VA aj (j = 1, . . . , NVA)

0, if zℓ,n corresponds to clutter.
(14)

Using the predicted position of the EKF, p−
ℓ , the set of

expected visible VAs Aℓ can be computed using (2) and
(3). From this, the set of expected path lengths, denoted
as Dℓ, can be obtained by calculating the Euclidean
distances d(aj ,p

−
ℓ ) between all VAs aj ∈ Aℓ and the

position p−
ℓ . The task of the DA is now to match the two

sets Zℓ and Dℓ in an optimum way.

The approach used is optimal sub-pattern assignment
[20]. Noting that the cardinality of Dℓ is Kℓ (c.f. (3)) and
assuming that K̂ℓ ≥ Kℓ, which can always be ensured by
filling up Zℓ with dummy clutter, we search the sub-pattern
of Zℓ that fits best to the set Dℓ. Using a distance function
d(dc)(·), that simply saturates at the cut-off distance dc,
this is expressed as

πopt = arg min
π∈ΠK̂ℓ

Kℓ∑

i=1

d(dc)(dℓ,i, zℓ,πi). (15)

Here, ΠK̂ℓ
is the set of permutations of positive integers

up to K̂ℓ and the vector πopt holds the permutation with
the minimum cumulative distance in the sense of the
cutoff distance function d(dc)(·). Hence, the first Kℓ entries
of πopt contain the indices of those entries of Zℓ that have
been optimally assigned to Dℓ.

As a last step in the DA process, we reject those
measurements for which d(dc)(dℓ,i, zℓ,πopt,i) = dc, i.e.
those that have been assigned at a distance greater
or equal than the cutoff distance. This is done to have
a mechanism to tune the DA to the uncertainty in the
MPC delay estimates. As UWB signals are used, if an
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Figure 4: Instantaneous K-factor with respect to the LOS component
KLOS for all BSs over the trajectory using a pulse duration Tp = 0.5 ns.

MPC is detectable at all, its delay will have a relatively
small uncertainty that depends on the used pulse duration
Tp and the inaccuracies of the floor plan. Hence, the
correspondence variables in (14) are obtained as

cℓ,n =

{
j, if πj = n and d(dc)(dℓ,j , zℓ,πopt,n) < dc
0, else.

(16)

The optimal sub-pattern assignment can be efficiently
implemented using the Munkres algorithm [21].

B. Genie-aided Data Association (GADA) for Evaluation

The DA discussed above depends crucially on the
EKF’s predicted position p−

ℓ . To enable an evaluation of
the localization performance where the errors due to false
DA are mostly eliminated, we use a so-called genie-aided
version of the DA (GADA). The GADA relies on the true
position pℓ for performing the DA, i.e. in the calculation of
the set Dℓ. This can be used to benchmark the usefulness
of the MPC delay estimates for localization using MINT.

VI. RESULTS

This section illustrates the accuracy and robustness of
the proposed indoor tracking algorithms for the scenario
in Fig. 1. A first rough evaluation of the propagation
conditions can be obtained by evaluating the K-factor with
respect to the LOS component, i.e. the ratio of its energy
to the energy of the rest of the CIR. It is estimated using
(9) and (10), where only the LOS component is subtracted
from rℓ(t), i.e.

K̂LOS,ℓ =
|α̂LOS,ℓ|2∫

T |rℓ(t)− α̂LOS,ℓs(t− τ̂LOS,ℓ)|2dt
(17)

where we note that the pulse s(t) is energy-normalized.

Fig. 4 shows K̂LOS,ℓ for all BSs over the trajectory,
estimated using the original measurements (without the
obstruction) with Tp = 0.5 ns. Some geometric influences,
like the drop in KLOS in the NLOS regions of BSs 3
and 4 or the general distance dependence can be easily
observed. Other causes of large variations are not im-
mediately intuitive and require more careful inspection of
the local propagation conditions. For example, the drop

of KLOS for BS 1 around position 90 is due to strong
scattered components from metal pillars within the lower
windows, c.f. Fig. 1.

A. Evaluation Setup

The “obstruction” introduced in Fig. 1 is meant to
model a change in the propagation environment, e.g. a
group of people. As it causes NLOS regions for all BSs,
its influence on the tracking performance is interesting.
MINT is not aware of this obstruction in its floor plan
knowledge. The original channel measurements where
performed without this obstruction, hence they need to
be modified. For this, we calculate the positions which
are now in NLOS due to the changed conditions. At these
positions, we reduce KLOS by a factor of 10 dB, which is
done by subtracting the LOS component and adding it
again with a suitable amplitude and its original phase.
To enable a fair comparison with MINT, we also change
the amplitudes of all the MPCs affected by the change
in visibility conditions. We do so by reducing their SINR
(7) also by 10 dB. Note that this factor leaves the LOS
component still detectable in most cases, while for the
later arriving MPCs it causes an effective loss of the
respective component

B. Choice of Parameters

a) Measurement parameters: We perform the
performance evaluation for several exemplary signal
bandwidths, i.e. the pulse duration of the raised cosine
pulse is chosen as Tp ∈ {0.2 ns, 0.5 ns, 1 ns, 2 ns, 4 ns}.
The corresponding −3 dB bandwidths are
{5GHz, 2GHz, 1GHz, 0.5GHz, 0.25GHz}. Using a
roll-off factor of βR = 0.5, the center frequency is always
fc = 7GHz, except for Tp = 0.2 ns which corresponds
to the full measurement bandwidth, hence the overall
center frequency fc = 6.85GHz has to be used. Table 1
contains an overview of all relevant parameters for these
setups.

b) EKF parameters: The EKF’s measurement
noise covariance matrix is R = σ2

zI, where I is the
identity matrix. For the variance σ2

z , we choose values
based on the expected ranging uncertainty, i.e. it is
slightly increased with the pulse duration Tp. The same
consideration applies for the DA cutoff distance dc used in
(15) and (16). Table 1 lists the values used in the different
measurement parameter setups.

The choice of the process noise variance σ2
a depends

on the maximum velocity in e.g. the x-direction, denoted
as vx,max. The process noise, assumed to be Gaussian,
should allow movement at this velocity. Hence, we select
the 3σ point of the velocity noise as vx,max and obtain for
the corresponding process noise variance in the acceler-
ation domain

σ2
a =

(vx,max

3∆T

)2

. (18)

In this paper, we choose to model pedestrian motion and
set vx,max = 1.5m/s. The update interval is ∆T = 0.1 s,
resulting in a magnitude of the velocity in x- or y-direction
of 1m/s along straight segments of the trajectory. The

Multipath-Assisted Indoor Positioning

– 128 –



Table 1: Parameters and results for the performance evaluation. For the performance measures, a pair of values is given where the first one
indicates the scenario without the obstruction and the second one with the obstruction.

Tp = 0.2 ns Tp = 0.5 ns Tp = 1 ns Tp = 2 ns Tp = 4 ns

Process noise variance σ2
a [m2/s4] σ2

a = (
vx,max
3∆T )2, covariance matrix Q = σ2

aGGT , with vx,max = 1.5m/s

EKF measurement noise variance σ2
z [m2] 0.01 0.01 0.04 0.04 0.09

DA cutoff distance dc (MINT) [m] 0.3 0.3 0.5 0.5 0.6

JBSF SB-window [ns] 100

JBSF threshold ξ [1] 0.4 0.4 0.3 0.3 0.3

Mean number of assoc. MPCs (EKF-GADA) [1] 18.2 / 17.6 18.6 / 18.2 18.3 / 17.9 15.0 / 13.9 11.9 / 10.2

Mean number of assoc. MPCs (EKF-DA) [1] 18.1 / 17.5 18.5 / 18.2 18.2 / 17.7 15.1 / 14.0 11.8 / 10.1

RMS position error MINT (EKF-GADA) [m] 0.03 / 0.032 0.039 / 0.041 0.06 / 0.069 0.076 / 0.083 0.117 / 0.136

RMS position error MINT (EKF-DA) [m] 0.073 / 0.087 0.067 / 0.065 0.118 / 0.197 0.122 / 0.149 0.207 / 0.304

RMS position error EKF, ML ranging [m] 0.05 / 0.052 0.058 / 0.065 0.079 / 0.113 0.129 / 0.149 0.353 / 0.396

RMS position error EKF, JBSF ranging [m] 0.113 / 0.15 0.351 / 0.418 0.243 / 0.297 0.249 / 0.34 0.406 / 0.714

average HDOP MINT (EKF-GADA) [1] 0.41 / 0.39 0.41 / 0.38 0.39 / 0.39 0.43 / 0.43 0.47 / 0.51

average HDOP MINT (EKF-DA) [1] 0.67 / 0.73 0.56 / 0.53 0.56 / 0.65 0.58 / 0.61 0.68 / 0.76

average HDOP EKF, ML ranging [1] 1.19 / 1.21 1.23 / 1.2 1.35 / 1.23 1.09 / 0.96 1.04 / 0.8

average HDOP EKF, JBSF ranging [1] 1.23 / 1.28 1.27 / 1.52 1.56 / 1.49 1.28 / 1.24 1.03 / 1.14

conventional tracking schemes and MINT always use the
same σ2

z and σ2
a for every pulse duration considered.

c) Initialization: All EKFs are initialized with the
correct position and zero velocity. We note that this
is a more challenging problem for MINT than for the
conventional schemes, since the DA depends on the
estimated position. However, we have addressed this
problem for a different implementation of MINT in [22] us-
ing a Gaussian-sum filter [23]. In this approach, a bank of
parallel weighted Kalman filters (KFs) is used to represent
multiple initial position hypotheses. After convergence,
the KFs with small weights can be discarded. This can
also be applied for the MINT implementation in this paper.

d) Channel estimation and ranging: The choice
of K̂ℓ in (9), i.e. the number of extracted components,
is based on the average number of expected visible
VAs in the localization environment. For the performance
evaluations, we take into account VAs up to order two
and fix K̂ℓ = K̂ = 20. However, we define a threshold
between the noise floor and the maximum amplitude of
the received signal, below which no further MPCs are
extracted. The noise signal ŵℓ(t) is estimated from the
pre-LOS part of rℓ(t). Denoting the time average of a
signal with 〈·〉, the threshold is obtained as [12]

Aγ,ℓ = γ · (max{|rℓ(t)|} − 〈|ŵℓ(t)|〉) + 〈|ŵℓ(t)|〉. (19)

In this paper, γ = 0.1 is used.

The JBSF ranging threshold Aξ in (12) is also chosen
using a relative threshold ξ, in the same manner as γ
in (19). For every pulse duration used, we selected a
threshold at which ranging works well in the unobstructed
scenario, c.f. Table 1. The length of the search-back win-
dow τsb is chosen for each BS as the maximum distance
between the BS and any first-order VA, expressed in ns.
This corresponds to the maximum delay difference of
the LOS component and any first-order reflection. The
reasoning behind this is the assumption that if the LOS
component is not the maximum itself, then the maximum
will be among the first-order MPCs. A value of 100 ns
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Figure 5: CDFs of the ranging error for ML (red) and JBSF (black) with
and without the obstruction for all BSs and Tp = 1 ns.

is selected for the geometry in Fig. 1. It approximately
corresponds to the excess delay of the reflection path on
the far right end of the corridor.

C. Ranging Performance Results

A comparison of the performance of ML and JBSF
ranging algorithms in terms of the ranging error CDF
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is shown in Fig. 5 with and without the obstruction. A
pulse duration of Tp = 1 ns has been used for this. The
most striking result is that JBSF closely approaches ML
ranging for all cases, at a much lower computational
complexity. One reason for the good performance of JBSF
is the rather low noise level in the VNA measurements.
However, when looking at the instantaneous ranging
errors over the trajectory (not shown), some isolated
outliers of JBSF can be observed. The implications for
the localization performance will be discussed in the next
subsection.

D. Localization and Tracking Performance Results

Table 1 contains detailed performance results in terms
of RMS position error, the mean number of associated
MPCs for MINT and the average horizontal dilution of
precision (HDOP). The latter value is calculated as the
average of the instantaneous HDOP values over the
trajectory. These are the ratio of instantaneous position
error and RMS ranging error [15], hence they provide
snap-shots of the quality of the localization geometry. For
MINT, the RMS ranging error is computed from those
range estimates that have been associated to VAs by the
DA procedure.

Looking at the RMS position error in Table 1 obtained
using both ranging methods reveals that the EKF using
ML ranging still clearly outperforms the one using JBSF.
This behavior would not be suspected by looking at the
ranging CDFs alone. The few isolated outliers of JBSF
mentioned above cause the gap in localization perfor-
mance. As this subsection shows, MINT does not show
such robustness issues with respect to ranging outages.

Fig. 6 contains the position error CDFs for all con-
sidered pulse durations. MINT using EKF-GADA always
shows the best performance of all tracking algorithms.
Although this is just an upper bound for this implemen-
tation of MINT, it shows the potential gain of exploit-
ing multipath propagation. This is not only true for the
achieved accuracy, but also for the robustness with re-
spect to difficult propagation conditions, since MINT using
EKF-GADA shows almost no performance loss for the
obstructed scenario. Also with realistic DA, MINT is able
to overcome impairments caused by the obstruction bet-
ter than the conventional approaches. The conventional
approaches show significant performance impairments,
especially when the pulse duration is increased.

Only for pulse durations of Tp = 0.2 ns and Tp = 1 ns,
MINT with DA can not provide a performance gain. In the
first case, the channel estimation can resolve very closely
spaced MPCs that are challenging for the DA due to their
clustered structure. In the second case, interference by
pulse overlap situations causes the detection of several
MPCs to fail. Since neither the channel estimation (9)
nor the DA as proposed here can deal with path overlap
situations, this is identified as an important topic for future
research.

An unexpected result is obtained for Tp = 4 ns, which,
corresponding to a −3 dB bandwidth of 250MHz, is no
longer UWB by definition [24]. Although MINT generally
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Figure 6: CDFs of the position error over the trajectory for all considered
pulse durations Tp. The left column shows runs without the obstruction
(c.f. Fig. 1), in the right column, signals have been modified according
to the obstruction.

benefits from a large bandwidth, it can yield the largest
performance and robustness gain here. The conventional
tracking schemes show outliers due to very large ranging
biases, while MINT still exploits information from some
MPCs, although their number decreases significantly (c.f.
Table 1). The mentioned large ranging biases are also the
reason for the lower HDOP in the obstructed scenario
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Figure 7: Tracking results for the NLOS scenario and Tp = 0.5 ns. The
three plots show the estimated trajectories using MINT with the EKF and
data association, and EKFs using ML and JBSF ranging, respectively.

in these parameter setups. Furthermore, it should be
noted that in terms of the RMS position error, MINT using
the EKF-DA always outperforms the conventional EKF
approach using JBSF ranging.

An illustrative example for Tp = 0.5 ns and the NLOS
scenario is shown in Figs. 7 and 8. The estimated
trajectories of the agent node are displayed in Fig. 7.
While MINT and the EKF using ML range estimates can
both follow the trajectory well, the EKF employing JBSF
ranging is severely impaired by the NLOS regions of BSs
1 and 4 (at the start of the trajectory), BS 4 (around
position 120, c.f. Fig. 1) and BS 3 and 2 (near the end of
the trajectory). As Fig. 8 confirms, in the first two of these
NLOS regions, rather large values of the instantaneous
HDOP occur. This highlights the bad geometry for con-
ventional schemes when there are ranging outages. For
MINT, most of the HDOP values along the trajectory are
below one, indicating excellent geometry for localization.
This is due to the large set of virtual BSs spanned by the
VAs (c.f. (6) and (8)).

VII. CONCLUSION AND FUTURE WORK

We have presented a comparison of conventional
indoor UWB ranging and tracking schemes and an im-
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Figure 8: Tracking results for the NLOS scenario and Tp = 0.5 ns. The
plots illustrate the HDOP for the tracking algorithms used.

plementation of the proposed MINT approach using data
from a measurement campaign in a representative indoor
environment. The influence of NLOS situations on the
accuracy and robustness of these systems has been
investigated. Results confirm the potentials of MINT: Us-
ing floor plan information, multipath propagation can be
efficiently used to obtain position-relevant information in
situations where conventional approaches fail. Even at
comparably low bandwidths, MINT shows a clear gain in
localization performance.

Ongoing and future work includes the modeling of floor
plan uncertainties and the combination of localization and
channel estimation. The latter can be used to reduce the
amount of clutter in the extracted path delay estimates.
Also, other implementations of MINT, e.g. using soft
classification in the data association, are within the scope
of our work.
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Abstract—The most important factors impairing the perfor-
mance of radio-based indoor localization systems are propagation
effects like strong reflections or diffuse scattering. To the full
extent, these effects can be captured only by time-consuming
measurement campaigns. Ray tracing (RT) offers the possibility
to predict the radio channel for a certain environment, avoiding
the need for measurements. However, it is crucial to include
all relevant propagation mechanisms in the RT as well as to
validate the obtained results. In this paper, we analyze if sub-band
divided RT can yield realistic ultra-wideband channel impulse
responses. We use the RT results for performance analysis of
multipath-assisted localization, which depends directly upon the
above mentioned propagation effects. In particular, it has been
shown that the ratio of the signal energies of deterministically
reflected paths to interfering diffuse components quantifies the
amount of position-related information of deterministic multipath
components. Comparison of this ratio to measurement data is
thus useful to validate the sub-band divided RT. The results high-
light the need for proper modeling of the diffuse multipath, as
estimates of this energy ratio using RT are often overly optimistic.
However, the obtained localization performance predictions using
measurements and RT show general agreement.

I. INTRODUCTION

The performance of indoor localization systems based on

radio signals is strongly affected by the propagation channel.

Non line-of-sight (NLOS) situations between anchor nodes

and the user terminal can cause large biases in range or

angle estimation. Channel measurements can help to predict

the expectable accuracy in a certain environment, either by

using them for modeling the ranging error [1] or to evaluate

parametrized performance bounds [2], [3]. However, such

measurement campaigns are usually time-consuming and te-

dious to perform.

An available floor plan of the indoor environment offers

several benefits for indoor localization. First, it allows for

The work of P. Meissner, E. Leitinger and K. Witrisal was partly supported
by the Austrian Science Fund (FWF) within the National Research Network
SISE project S10610, and by the Austria Research Promotion Agency (FFG)
within KIRAS PL3, grant nb. 832335 “LOBSTER”.
The work of M. Gan and T. Zemen is supported by the Austrian Science Fund
(FWF) through grant NFN SISE (S10607) and by the Austrian Competence
Center FTW Forschungszentrum Telekommunikation Wien GmbH within
project I0. FTW is funded within the program COMET - Competence Centers
for Excellent Technologies by BMVIT, BMWFJ, and the City of Vienna. The
COMET program is managed by the FFG.
This collaboration was also part of the COST action IC1004 entitled “Coop-
erative Radio Communications for Green Smart Environments”.

multipath-assisted indoor navigation and tracking (MINT),

which maps reflected multipath-components (MPCs) to virtual

anchors, i.e. mirror images of the physical anchor nodes with

respect to flat surfaces like walls [2], [3]. In this way, it

makes use of the geometric structure of MPCs [4], exploiting

more information in the received signal than just the direct

path. Second, together with electric properties of the building

materials, the floor plan can be used for ray tracing (RT)

simulations. With RT, realistic channel impulse responses can

be obtained [5]. Some RT tools can also provide diffuse

multipath (DM) contributions, which model the non-coherent

part of the channel. This DM can be very pronounced in

indoor environments and can thus impair the localization

performance.

The evaluation of the usefulness of signals generated by

RT for localization is not trivial. In references like [5], power

delay profiles (PDPs) over some geometric areas are used.

The large density of specular paths and the averaging process

cause PDPs that nicely fit to measured ones. However, for

individual signals, the degree of realism in terms of the

different propagation mechanisms is unclear. By evaluating the

usefulness of a sub-band divided RT tool for the purpose of

performance prediction of the MINT approach, the following

contributions to this problem are made in this paper:

• The quantification of position-related information of

MPCs requires the estimation of the energy ratio of

deterministic MPCs and DM. This allows for detailed

local evaluation of propagation effects modeled by RT.

• It is shown that despite some limitations, RT can provide

reasonable predictions of the localization performance

without the need for tedious measurement campaigns.

• Insight is given on important future research directions

that allow RT tools to produce more realistic signals.

The paper is organized as follows: Section II introduces the

signal models and the measurement environment, in Section

III, the RT tool and its configuration are described. The

extraction of performance parameters is described in Section

IV and Section V discusses the results.

II. SCENARIO, MEASUREMENTS, AND SIGNAL MODEL

The scenario used for both RT and the measurement cam-

paign is illustrated in Fig. 1, while geometry and building

materials are described in Sec. III-C. Fig. 1b shows the
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Fig. 1. Pictorial view of the RT scenario considering one Rx position from the
grid. (a) 3-D view. (b) 2-D view, including a close-up view of the measurement
grid positions together with the positions where RT simulations are available.
Also shown are the locations ai of the VAs that are analyzed in Section V.

locations of transmitter (Tx) and receiver (Rx) antennas. The

latter form a grid of 22 x 22 points, spaced by 5 cm, covering

an area of roughly 1m2. In an indoor localization application,

the Tx is usually an anchor node at a known location. For the

ray tracing simulations, the middle horizontal line of the grid,

marked in blue in Fig. 1b, is used. The UWB channel has been

measured using a Rhode & Schwarz ZVA-24 vector network

analyzer (VNA) at 7501 frequency points over the frequency

range from 3.1 to 10.6GHz.
Using a transmitted pulse s(τ), the received signal at the

ℓ-th Rx position pℓ is modeled as [2], [3]

rℓ(τ) =

Kℓ∑

k=1

αk,ℓs(τ − τk,ℓ) + s(τ) ∗ νℓ(τ) + wℓ(τ). (1)

Here, αk,ℓ and τk,ℓ denote the complex amplitude and the

propagation delay of the k-th deterministic, i.e. specular re-

flected, MPC. The number Kℓ of deterministic MPCs varies

with the position. The noise term wℓ(τ) is white Gaussian

measurement noise with two-sided PSD N0/2, whereas νℓ(τ)
denotes a random process modeling the DM, filtered by the

transmit pulse. We assume that the delays can be modeled

geometrically using virtual transmitters (or anchors (VAs)),

which are mirror images of the anchor node with respect to

reflecting surfaces, given in a floor plan of the environment.

The positions of these VAs are denoted as ak, resulting in

τk,ℓ = 1
c ||pℓ − ak|| for the corresponding delay, where c is

the speed of light. Fig. 1b shows the positions of several VAs.

Both the RT and the measured signals are pulse-shaped

with s(τ), a raised-cosine pulse with pulse duration Tp and

roll-off factor βR. This is done to select a desired frequency

band for the analysis and to facilitate a search-and-substract

MPC estimation algorithm. At position pℓ, the set of expected

delays to the visible VAs can be computed using ray tracing.

Using an algorithm described in Section IV, estimates α̂k,ℓ

and τ̂k,ℓ of the corresponding complex amplitudes and delays

are obtained. Assuming negligible noise wℓ(τ), this yields an
estimate of the deterministic and the diffuse channel parts [6]

ν̂ℓ(τ) = rℓ(τ) − r̂ℓ,det(τ) = rℓ(τ) −
Kℓ∑

k=1

α̂k,ℓs(τ − τ̂k,ℓ). (2)

Evaluating (2) at all measurement positions, local power

delay profiles (PDPs) of the received signal and the diffuse

parts can be estimated. For a center point pℓ̄, the PDP is

defined as the expectation with respect to the position of

instantaneous PDPs around pℓ̄. Using the L spatially closest

points around pℓ̄, defined as the set Pℓ̄, an estimate of the

local PDP of the DM is obtained as

Sν,ℓ̄(τex) ≈
1

L

∑

ℓ∈Pℓ̄

|ν̂ℓ(τ + τ1,ℓ)|2. (3)

Note that the PDP is defined over the excess delay τex. Hence,
the LOS propagation delay, denoted as τ1,ℓ, has to be com-

pensated prior to the averaging to remove this deterministic

effect from the DM. For brevity, we drop the subscript in τex
where the distinction is clear from the context.

III. RT ANALYSIS

RT is a deterministic propagation prediction tool which has

been widely used to simulate indoor channel characteristics

for both narrowband and wideband systems. Due to the

frequency selective properties of the propagation channel, the

channel characteristics may vary significantly within the entire

bandwidth of an ultra-wideband (UWB) system. Therefore,

a conventional RT implementation at one discrete frequency

point, used for narrowband systems, is not sufficient to simu-

late UWB channels. The usual way to overcome this problem

is to use a sub-band divided RT algorithm [7], [8].

A. Conventional RT

The RT algorithm employed in the present work is three-

dimensional (3D) and requires the thorough geometrical and
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electromagnetic description of the indoor scenario, as well

as the radiation properties of the antennas. The propagation

mechanisms taken into account are: line-of-sight (LOS), re-

flection, penetration, diffraction and diffuse scattering. The

complex dyadic reflection and penetration coefficients are

calculated applying Fresnel formulas [9], while diffraction is

implemented using the uniform theory of diffraction (UTD)

[10]. The diffuse scattering components aim to model the non-

specular part of the channel. The diffuseness can be created

in RT by dividing the surfaces into multiple tiles, whose size

is determined by recursively dividing the surface until the far

field condition is satisfied [11]. A directive scattering pattern

model, which assumes that the scattering lobe is steered

towards the direction of the specular reflection [12], is used to

evaluate the amplitude of the diffuse scattering field. Moreover,

based on the assumption that the diffuse scattering rays are

incoherent, a uniformly distributed random phase is associated

with each diffuse scattering ray [13].

B. Sub-band Divided RT

Applying a sub-band divided RT algorithm to UWB radio

channels has already been proposed in [7], [8]. The basic

concept is simulating the propagation channels at multiple

frequency points, which are the center frequencies of the

corresponding sub-bands. It is evident that the accuracy of

the sub-band divided RT is related to the number of the sub-

bands: the larger this number the better the accuracy, but at

the cost of an higher computational effort. Sub-band divided

RT can be summarized with the following steps [7], [14]:

• The whole UWB bandwidth is divided into several sub-

bands. In each sub-band, constant frequency characteris-

tics can be assumed for all materials and mechanisms.

• Conventional RT is used to obtain the channel impulse

response (CIR) at each sub-band center frequency.

• The sub-band frequency responses are calculated by

Fourier transforms. Afterwards all frequency responses

over different sub-bands are combined into a complete

frequency response over the whole UWB bandwidth.

• Finally, the CIR over the entire UWB bandwidth can be

obtained by an inverse Fourier transform.

The complete frequency response can be expressed as:

H(f) =

N∑

i=1

F{hi(τ)} · Ri(f), (4)

where i is the sub-band index, N is the total number of sub-

bands, F{·} is the Fourier transform, hi(τ) is the CIR at the

i−th sub-band, and Ri(f) is the rectangular window function

associated with the i−th sub-band. The complete frequency

response H(f) can be compared to the raw measurement data

obtained from the VNA. In the following sections, we will use

either the complete frequency response H(f) or the measured

channel frequency response to do the subsequent analysis.

C. Simulation Configuration

According to the measurement environment, the simulated

scenario is built as shown in Fig. 1, where only one Rx

position is shown as an example. The size of the simulated

indoor scenario is about 29m × 7.1m × 10.5m. The blocks,

including doors, walls and pillars, are made of different

materials, such as concrete, metal and glass. A metallic block

is considered as a perfect electric conductor (PEC). The values

of relative permittivity εr and conductivity σ of other materials

are: εr = 6 and σ = 0.08 S/m for concrete blocks, and

εr = 5.5 and σ = 0 S/m for glass blocks. Since it is

difficult to distinguish how the dielectric properties vary with

the frequencies, we assume that the dielectric properties in

the present work are independent of the frequency within the

entire bandwidth of interest. In our simulation, the frequency

bandwidth of 7.5GHz is divided into N = 15 sub-bands with

500MHz each. The transmitting and receiving antennas are

assumed to be omnidirectional dipoles.

Fig. 1 also visualizes some of the predicted rays. In this

work, the propagation mechanisms taken into account are:

LOS, reflection (up to the third order), single diffraction,

single bounce scattering, scattering-reflection and reflection-

scattering cases. The penetration contribution has been em-

bedded into all other mechanisms. It has been previously

mentioned that the subdivision of surfaces in tiles for scattering

interaction is related to the wavelength. More obstacles would

look rougher at higher frequencies than at the lower frequen-

cies. Hence, the subdivision of one rough surface would be

different over different sub-bands. This impacts significantly

on the computational effort. Therefore, we assume, for a

specific Rx’s position, the subdivision of each surface at

6.85GHz to be valid for all sub-bands. This simplified method

leads to results comparable to the one where the subdivision

is changed according to the center frequency.

D. Comparison of measurement and RT signals

For comparison, the RT signals have been normalized such

that the mean amplitude of their LOS path over the positions

equals the corresponding mean of the measured signals. Fig.

2 shows several PDPs, averaged over the positions where RT

signals are available. The grey dashed lines indicate the mean

excess delays of some specular reflections modeled by the

VAs (see Fig. 1b for measurement and VA positions). One can

see that these deterministic MPCs are similarly present in the

measurements and in the RT signals. A detailed investigation

of these MPCs will be done in Section V.

The DM shown in Fig. 2 has been estimated using (2).

For the RT, Sν(τ) can also be calculated using the available

true rℓ,det(τ) and νℓ(τ). Sν(τ) without the position index

ℓ indicates that averaging has been performed over all 22

RT points, i.e. the locality has been eliminated. One can

see that the DM generated by RT follows the measured

one qualitatively up to an excess delay of about 30 ns. The
reason for the gap afterwards is that higher-order propagation

mechanisms are not considered by the RT algorithm. This

together with the rather large dimensions of the environment

make the PDP look rather sparse for an excess delay greater

than 30 ns.

Multipath-Assisted Indoor Positioning

– 135 –



0 20 40 60 80 100 120
−70

−60

−50

−40

−30

−20

−10

0

P
D

P
 [

d
B

]

 

 
a

2
a

229a
235

a
238

a
244

a
269

a
331

PDP of r
l, meas

(τ)

PDP of r
l, RT

(τ)

S
ν
(τ

ex
), meas.

S
ν
(τ

ex
), RT (r

l,det
(τ) known)

S
ν
(τ

ex
), RT (r

l,det
(τ) est.)

0 5 10 15 20 25 30 35
−60

−50

−40

−30

−20

−10

0

excess delay τ
ex

 [ns]

P
D

P
 [

d
B

]

a
2

a
229

a
235

a
244

a
269

a
331

Fig. 2. Comparison of several PDPs: Solid lines denote PDPs of the overall
received signal, dashed ones indicate PDPs of the DM. The lower figure
provides a close-up view on the excess delay axis. Dashed vertical lines
indicate the mean excess delay of the MPCs analyzed in Section V.

In Fig 3, a comparison of the K-factor with respect to the

LOS path KLOS and the RMS delay spread τRMS between

measurements and RT is shown. Due to the limited range

of delays for which RT provides significant DM, KLOS is

considerably higher than for the measurements, while τRMS is

lower. For Figs. 2 and 3, the minimum possible pulse duration

Tp = 0.2 ns, a roll-off factor of βR = 0.5, and fc = 6.85GHz
have been used. However, these observations still allow no

direct conclusions on the influence on the localization perfor-

mance, which is the focus of the next section.

IV. ESTIMATION OF POSITION-RELATED PARAMETERS

As derived in [3], the Cramér-Rao lower bound (CRLB) on

the position estimation for MINT is given as the inverse of

the equivalent Fisher information matrix (EFIM) [15]

Jpℓ
=

8π2β2

c2

Kℓ∑

k=1

SINRk,ℓJr(φk,ℓ). (5)

In (5), β denotes the effective (RMS) bandwidth of s(τ) and

it is assumed that no deterministic MPCs overlap in the delay

domain. The ranging direction matrix Jr(φk,ℓ) is defined as

Jr(φk,ℓ) =

[
cos2(φk,ℓ) cos(φk,ℓ) sin(φk,ℓ)

cos(φk,ℓ) sin(φk,ℓ) sin2(φk,ℓ)

]
. (6)

It indicates the geometric information of the k-th MPC, as it

has one eigenvector pointing in the direction φk,ℓ, the angle
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Fig. 3. K-factor with respect to the LOS component and RMS delay spread
of measured (red) and RT signals (black).

from the VA at ak to position pℓ. This information is weighted

by the SINRk,ℓ of the k-th MPC, defined as

SINRk,ℓ =
|αk,ℓ|2

N0 + TpSν,ℓ(τk,ℓ − τ1,ℓ)
. (7)

Eq. (7) quantifies local effects of the deterministic and dif-

fuse parts of the channel in the delay domain. We therefore use

it to evaluate the suitability of RT for performance prediction,

i.e. the computation of the CRLB for a geometrically defined

environment. We observe that the estimation of the SINRs

depends to a great extent on the level of channel knowledge,

i.e. the availability of the local PDP of the DM Sν,ℓ(τ).

A. Estimation of the instantaneous SINRk,ℓ – PDP available

The availability of grid measurements allows for a local

PDP estimation Ŝν,ℓ̄(τ) using (2) and (3). For RT, the provided
channel decomposition into deterministic MPCs and DM en-

ables the calculation of the “true” Sν(τ), which is used for

all RT positions. With this and estimated path amplitudes as

described in the previous section, a direct evaluation of (7)

is possible, yielding an estimate ŜINRk,ℓ. We expect that the

RT can provide good ground-truth values for this, while for

the measurements, ŜINRk,ℓ will depend crucially on the local

PDP estimate Ŝν,ℓ(τ).
The subtraction of MPCs in (2) can cause numerical inac-

curacies in the evaluation of the PDP of the DM. To prevent

this, the local mean value within one Tp of this PDP around

the excess delay of the respective path is chosen for the

computation of (7). The noise power N0 is estimated from

the pre-LOS portion of the measured signals. To allow for

a fair comparison, this quantity is then also used for the

SINR estimation of the RT signals, as these do not contain

measurement noise.

B. Estimation of the average SINRk – PDP not available

If densely spaced grid measurements are not available, the

local PDP of the DM can not be estimated reliably. For this

reason, measurements within some local area, e.g. at M points

along a route, have to be evaluated statistically. This renders

the estimation of the instantaneous SINRk,ℓ impossible, and

gives rise to an average SINRk. The estimation of this SINRk
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is described in detail in [2], and just shortly re-sketched here.

Using the delay τ̃k,ℓ calculated from geometry, the received

signal is projected onto a unit energy template pulse s(τ)

α̂k,ℓ =

∫ T

0

rℓ(τ)s
∗(τ − τ̃k,ℓ)dτ (8)

where T is the observation time. Under the assumptions that no

path overlap between the k-th and any other MPC occurs, that

τ̃k,ℓ = τk,ℓ, and s(τ) ≈ 0 for |τ | > Tp, this reduces to α̂k,ℓ =
αk,ℓ+ νk,ℓ+wk,ℓ. This is a superposition of the deterministic

MPC amplitude, DM, and noise. If both νℓ(τ) and wℓ(τ) are
Gaussian processes, |α̂k,ℓ| follows a Ricean distribution and

the energy samples |α̂k,ℓ|2 follow a non-central χ2-distribution

with two degrees of freedom. Based on the sample mean and

variance of |α̂k,ℓ|2, denoted as m1,k and m2,k and estimated

over the M considered positions, an estimator of SINRk is [2]

ŜINRk =


 m1,k√

m2
1,k −m2,k

− 1




−1

. (9)

For this, two additional steps need to be performed. First,

as the geometry is not known perfectly, the delays τ̃k,ℓ have

to be re-estimated. This is done using a maximum-likelihood

(ML) re-localization of the VAs using data of the M con-

sidered points. Second, any variations in α̂k,ℓ are inherently

attributed to the DM by this estimator. Hence, the estimated

amplitudes are corrected by a path-loss factor accounting for

the deterministic dependence on the varying distance to the

Tx. These procedures are described in detail in [2].

Finally, we note that if the true Sν,ℓ(τ) was used for

the estimation of the instantaneous SINRk,ℓ using (7), then

ŜINRk ≈ 1
M

∑
ℓ ŜINRk,ℓ, i.e. evaluated over the same posi-

tions, both averages should be equal. The right hand side of

this expression is used in performance results where it is called

average ŜINRk,ℓ, indicating the difference to (9).

V. RESULTS

For the validation and comparison of the SINR estimates,

we selected different exemplary bandwidths and frequency

bands from measurement and RT signals. This was done

using the pulse shaping approach described in Section II

with different pulse durations Tp of the raised-cosine pulse

and different center frequencies fc. The filtered signals were

converted to complex baseband. Because of the restriction of

the DM in the RT signals to excess delays smaller than 30 ns
explained in Section III-D, we restrict the analysis to those

deterministic MPCs within this range of delays, except for the

VA at a238, which is the reflection at the far right wall of the

corridor (cf. Fig. 1b). For the measurements, the local PDP of

the DM is estimated for every point pℓ using (3), where the

L = 15 spatially closest points are taken into account, while

for the RT, the available true Sν(τ) over all 22 points is used.

Fig. 4 shows a comparison of the obtained SINR estimates

for different pulse parameters. We note that ŜINRk and

ŜINRk,ℓ obtained by RT and therefore the exact Sν(τ) match
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Fig. 4. SINRs for measurements and RT, using different Tp and fc.
Estimates for the mean SINRk and the instantaneous SINRk,l are shown.
SR, DR, and TR denote single-, double-, triple-reflection, respectively. The
mean propagation delay over the 22 positions used is indicated.

very well, which validates (9) as estimator for the mean SINR

of an MPC.

Concerning the comparison of SINR values for RT and

measurements, we notice that although some match well, many

values show considerable differences. This has several reasons.

First, measurement data show much more variations than the

deterministically generated RT data. This can be caused by

e.g. physical propagation mechanisms not considered by RT

or a simplified representation of the environment geometry in

the floor plan. The most obvious discrepancy occurs for the

SINR of the LOS path. This is caused by the antenna pattern

of the Rx used in the measurements, which deviates by a few

dB from omnidirectionality. An unfortunate orientation of the

antennas caused the LOS amplitude to decrease when moving

towards the Tx along the grid. This additional variation is

considered as DM by the SINR estimation. Also, RT does

not consider any scattering in the immediate surroundings of
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CRLB using the SINR estimate (9), lower plot uses the instantaneous estimate

ŜINRk,ℓ for the corresponding position. Red dashed ellipses denote results
using measured data, for the black ellipses, ray tracing simulations were used.

the antenna, i.e. platform effects, which leads to an under-

estimation of DM around zero excess delay. The importance

of modeling the frequency dependence of material properties

is shown e.g. by VA 235 (the pillar above the Tx, cf. Fig

1b). At Tp = 0.5 ns, we observe a much higher SINR in the

measurements at fc = 7GHz than at fc = 9GHz, which is

not predicted by the RT.

Additional insights in the estimators can be obtained from

VA 238, modeling the reflection on the far right wall. For

this, the two SINR estimators differ significantly using the

measurements. The right wall is modeled as a single surface,

while in reality, it is a more complex structure causing a

cluster in the DM. Because this cluster has quite homogeneous

amplitude characteristics, ŜINRk according to (9) is large.

But as can be seen from Fig. 2, the diffuse cluster is very

significant in Sν(τ). This channel knowledge is used by

ŜINRk,ℓ, thus reflecting the MPC behavior more realistically.

Fig. 5 shows standard deviation ellipses given by the CRLB,

the inverse of the EFIM in (5), for Tp = 0.5 ns and a center

frequency of fc = 7GHz. The ellipses are enlarged by a factor

of 30 to allow for easier perceptibility. Despite the fact that

there are considerable differences in the numeric values of

the SINR between measurements and RT, the obtained error

ellipses, especially for the mean SINRk, seem reasonable for

performance prediction. The basic orientation of the ellipses

is given by the geometry and is the same for measurements

and RT. The different SINRs do not cause a change of this

orientation. The most obvious deviation is in the direction to

the physical anchor, as the LOS path shows the largest error

in terms of the SINR estimation.

VI. CONCLUSIONS AND OUTLOOK

In this paper, the use of RT for the analysis of indoor

localization has been discussed. We have highlighted the

importance of the diffuse multipath for the localization per-

formance and used a sub-band divided RT tool that is capable

of modeling scattered signal paths. The energy ratio of deter-

ministic MPCs and diffuse multipath has been introduced as

evaluation method for the degree of realism of the RT signals

in a dense indoor environment. At this stage of development,

there are still considerable differences in estimated localiza-

tion performance parameters between measurements and RT.

However, the obtained results for the CRLB on the position

accuracy show general agreement.

Future work includes a calibration technique for the RT

using some limited channel measurements. This could alleviate

the need for detailed knowledge of the electrical parameters

of the building materials over a large frequency range. Such

a calibrated RT tool would enable replacement of time-

consuming measurement campaigns by offline RT simulations

before installing an indoor localization system.
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Real-Time Demonstration of Multipath-Assisted
Indoor Navigation and Tracking (MINT)
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Abstract—This paper presents an evaluation of a demonstra-
tion system for multipath-assisted indoor navigation and track-
ing (MINT). MINT overcomes the non-line-of-sight problems
of range-based indoor localization systems by explicitly using
location information of reflected signal components. With the
real-time demonstration system, performance evaluations are
possible without the need to rely on pre-recorded measurement
trajectories or simulated radio channels. Hence, the robustness
and accuracy of MINT in different environments can be tested
easily and a proof-of-concept in close-to-practical conditions is
obtained. Exemplary results in two different rooms highlight the
following key findings: The excellent performance of MINT that
we reported previously based on pre-recorded measurements can
also be obtained with the real-time system, i.e. 5 cm accuracy for
90 % of the estimates at a bandwidth of 2GHz. Furthermore,
the covariance of the position error of the tracking filters matches
well with the corresponding Cramér-Rao lower bound (CRLB).

I. INTRODUCTION

Non-line-of-sight (NLOS) situations between anchors and
agents are the main reason for errors for radio based indoor
localization systems. Enclosed indoor scenarios cause strong
specular reflections and also a large level of diffuse (often
called dense) multipath (DM). Errors caused by multipath can
be dealt with by detecting NLOS situations and mitigating
the corresponding range errors [1], [2]. Using the previously
introduced multipath-assisted indoor navigation and tracking
(MINT) approach [3], [4], the specular reflections can be
turned into an advantage. Assuming that the floor plan of the
environment is known, the travel times of specular multipath-
components (MPCs) can be matched to the geometry by
introducing virtual anchors (VAs, see Fig. 1).

As such a scheme relies heavily on the propagation channel,
we have obtained numerous position-resolved channel mea-
surements [5] to evaluate its performance [4], [6]. However,
channel measurement campaigns are tedious to perform. A
real-time demonstration system, which is discussed in this
paper, allows for flexible and rapid evaluation of e.g. novel
algorithms for MINT in more realistic conditions. Issues like
fast motion changes and signal obstructions can be tested
realistically and easily. For indoor localization systems, exper-
imentation is an important way to understand the limitations
and implications of the often heterogeneous requirements and
environments. A method for precise anchor-free positioning
in a specific environment is presented in [7], requiring many

This work was partly supported by the Austrian Science Fund (FWF) within
the National Research Network SISE project S10610, and by the Austria
Research Promotion Agency (FFG) within KIRAS PL3, grant nb. 832335
“LOBSTER”.
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Fig. 1. Setup of the MINT demonstration system in Room 1. The tracking
algorithm described in Sec. II is used on a known test trajectory to allow for
error computation. Signal contributions from LOS-, first-order-, and second-
order reflections are illustrated in bold, thin solid, and thin dashed lines,
respectively. Color encodes the anchor number. On the right side, an example
for a first-order VA is depicted for Anchor 1.

closely spaced measurements. For the evaluation of coopera-
tive methods, large-scale campaigns are often more appropriate
[8], [9], but similarly tedious to perform.

For the MINT demonstration system, it is desirable to com-
pare the performance of different implementations in certain
environments. Also, the localization accuracy can be compared
to theoretical predictions given by performance bounds that
include effects such as path overlap [3] and the DM [6]. The
contributions of this paper are:

• We present a proof-of-concept for the MINT approach us-
ing a real-time demonstrator, showing excellent accuracy
and robustness.

• Using tracking results obtained in two example rooms,
we show how estimation of path parameters motivated
by theory can be used to predict the performance of
the system in an environment and also to improve the

Multipath-Assisted Indoor Positioning

– 139 –



2

performance.
In the remainder of this paper, Sec. II deals with the

scenario, the models and the tracking algorithms, which is
a recap from previous work. Section III briefly introduces
the hardware of the demo system, while Sec. IV presents the
prediction of the expected localization performance based on
sample measurements. Finally, detailed results are presented
and discussed in Sec. V.

II. SCENARIO, MODEL AND ALGORITHMS

The aim of this paper is to present a real-time demon-
stration system for the MINT approach [3]. We discussed
the specific implementation and its evaluation based on pre-
recorded channel measurements in [4] and [6] . In this paper,
we therefore restrict the presentation of models and algorithms
to a minimum and focus our attention on results obtained with
the demonstration system in two exemplary scenarios.

Fig. 1 shows one of the two rooms used in this paper and
illustrates the MINT approach itself, using a snapshot of the
graphical output of the demonstration system during tracking.
Up to J = 2 anchors at known positions are placed within a
room to track a moving agent. As discussed in detail in [4]
and references therein, we use the known floor plan to mirror
the anchor coordinates with respect to each reflective surface
to calculate the positions of the VAs [10]. The first-order VA
corresponding to Anchor 1 and the right wall is illustrated in
Fig. 1. The VA is a geometric model for the path delay of the
corresponding MPC. Given that the MPC is detectable in the
received signal, the VA can in principle be used as if it was a
physically existing anchor.

The signal between the j-th anchor and the agent at the ℓ-th
position pℓ, is written as [3]

r
(j)
ℓ (t) =

K
(j)
ℓ∑

k=1

α
(j)
k,ℓs(t− τ

(j)
k,ℓ ) + s(t) ∗ ν(j)ℓ (t) + w(t) (1)

where the α
(j)
k,ℓ and τ

(j)
k,ℓ are the complex amplitudes and

delays of the k-th deterministic MPCs, respectively. The signal
s(t) denotes the transmitted pulse. The signals ν

(j)
ℓ (t) and

w(t) denote DM and white Gaussian measurement noise,
respectively [3]. Especially in indoor environments, DM plays
a large role in the detectability of the deterministic MPCs,
which will be discussed in more detail later.

The estimation of the arrival times of the deterministic
MPCs is done as in [4] using an iterative search-and-subtract
implementation of a maximum-likelihood estimator based on
the assumption of separable paths, i.e.

{τ̂ (j)k,ℓ} = arg min
{τ (j)

k,ℓ}

∫

T

∣∣∣∣∣∣
r
(j)
ℓ (t)−

K̂
(j)
ℓ∑

k=1

α̂
(j)
k,ℓs(t− τ

(j)
k,ℓ )

∣∣∣∣∣∣

2

dt.

(2)
The path amplitudes are nuisance parameters and are estimated
using the projection of the received signal on a unit energy
pulse template shifted to the corresponding delay

α̂
(j)
k,ℓ =

∫ T

0

[r
(j)
ℓ (t)]∗s(t− τ̂

(j)
k,ℓ )dt. (3)

The number of estimated MPCs K̂
(j)
ℓ should be chosen

corresponding to the number of expected specular paths in
an environment.

We focus on the influence of the measurement on the
tracking and hence restrict the motion model of the agent to
a simple linear Gaussian constant-velocity model

xℓ+1 =Fxℓ +Gna,ℓ (4)

=




1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1


xℓ +




∆T 2

2 0

0 ∆T 2

2
∆T 0
0 ∆T


na,ℓ.

Here, ∆T denotes the sampling time1 and the state vector xℓ

of the agent contains x- and y-position and velocity. The driv-
ing acceleration noise term na,ℓ models motion changes that
deviate from this model. The tracking is done as in [4] using
an Extended Kalman Filter (EKF) with data association (DA),
since the estimated MPC arrival times in (2) are not associated
to the VAs. At the position predicted by the EKF, the expected
VAs and the corresponding delays (those whose reflection
paths are possible) are calculated using pre-computed ray-
tracing results. The estimated arrival times from (2) are then
matched to these such that the cumulative distance of estimated
and expected delays is minimized, using the optimal subpattern
assignment approach [11]. Associations at a distance higher
than a given maximum ranging uncertainty, the so-called cut-
off distance dc are discarded. The remaining associated delays
and corresponding VA positions are then passed to the EKF
for the update step, in which a trilateration w.r.t. the associated
VAs is performed. We refer the reader to [4] and references
therein for a much more detailed description.

III. HARDWARE SETUP AND SIGNAL PREPROCESSING

The receiving and transmitting device used for the real-
time system is an M-sequence based UWB channel sounder
developed by the German company Ilmsens. As there are
two RX and one TX channels, the moving agent in the
demonstration system is the TX and the anchors are the RXs,
but from the view of the algorithms, these roles could also
be reversed. The channel sounder is capable of sending and
receiving up to 13 signals per channel per second, hence the
lowest possible sampling time is ∆T = 0.077 s. On TX and
RX sides, self-made dipole-like antennas made of Euro-cent
coins are used. They have an approximately uniform radiation
pattern in azimuth domain and zeroes in the direction of floor
and ceiling. The antennas are connected to the measurement
device using cables, and are mounted on tripods. The tripod
for the moving TX is equipped with wheels.

The received signal is cross-correlated with the used
M-sequence to obtain an estimate of the bandpass chan-
nel impulse response h

(j)
ℓ (t). The channel sounder covers

approximately the whole FCC UWB frequency range of
3.1− 10.6GHz. To select any desired subband with center
frequency fc and bandwidth B within this range, we use
a raised cosine filter with impulse response s(t) with an

1The difference of time-steps at which measurements are performed.

Multipath-Assisted Indoor Positioning

– 140 –



3

0 10 20 30 40 50 60
35

40

45

0

0.5

1

1.5

2

2.5

3

pos. idx. l

whiteboard and
window: 4.2 dB

window: 2.2 dB
left wall: 6.7 dB

τ [ns]

lower and right wall: 4.4 dB

whiteboard: 12.0 dB

right wall: 7.1 dB

Anchor 1: 22.9 dB

|r
l(l

, 
τ
)|

Fig. 2. Received signal from Anchor 1 in Room 1 over a short measurement
trajectory (the corner part of the SINR estimation points shown in Fig. 4a)
for Tp = 0.5 ns and fc = 7 GHz. The estimated SINRs of selected VAs
(reflectors) are shown together with the evolution of their path amplitudes.

effective pulse duration Tp = 1/B and a fixed roll-off factor
βR = 0.5. By downconversion, a received complex baseband
signal according to (1) is obtained as

r
(j)
ℓ (t) =

[
h
(j)
ℓ (t) ∗ s(t)ej2πfct

]
e−j2πfct. (5)

All signal processing is done on a computer using Mat-
lab, which allows for maximum flexibility. Different levels
of graphical output are selectable by the user, such as the
visualization of currently used MPCs and their propagation
paths as shown in Fig. 1. After setting up the system in
an environment, transfer functions of connectors and cables
as well as the crosstalk between TX and RX channels are
removed with a calibration procedure similar to [12].

IV. PREDICTION OF LOCALIZATION PERFORMANCE

When setting up the demonstration system in an environ-
ment, it is beneficial to have a prediction of the expected
localization performance available. This can be achieved e.g.
using the Cramér-Rao lower bound (CRLB) on the position
estimation for MINT, which was derived in [3]. Under the
assumption of no path overlap (PO), i.e. the deterministic
MPCs in (1) are orthogonal, the equivalent Fisher information
matrix (EFIM) [13] on the position is given as

Jpℓ
=

8π2β2

c2

J∑

j=1

K
(j)
ℓ∑

k=1

SINR(j)
k,ℓJr(φ

(j)
k,ℓ), (6)

where β denotes the effective (RMS) bandwidth of s(t) and
SINR(j)

k,ℓ denotes the signal-to-interference-and-noise-ratio of
the k-th deterministic MPC at the ℓ-th position. The ranging
direction matrix Jr(φ

(j)
k,ℓ) [13] is defined as

Jr(φ
(j)
k,ℓ) =

[
cos2(φ

(j)
k,ℓ) cos(φ

(j)
k,ℓ) sin(φ

(j)
k,ℓ)

cos(φ
(j)
k,ℓ) sin(φ

(j)
k,ℓ) sin2(φ

(j)
k,ℓ)

]
. (7)

It indicates the geometric information of the k-th MPC, the
angle from the k-th VA to the position pℓ, as it has one
eigenvector pointing in the direction φ

(j)
k,ℓ. The SINR(j)

k,ℓ, which
weights this geometric information, is defined as

SINR(j)
k,ℓ =

|α(j)
k,ℓ|2

N0 + TpS
(j)
ν,ℓ (τ

(j)
k,ℓ )

. (8)

It is the ratio of the energy of the k-th MPC to the sum of the
noise PSD N0 and the effective power of the DM at the delay
τ
(j)
k,ℓ . The latter is characterized by the power delay profile
S
(j)
ν,ℓ (τ) of the DM [3].
We observe that the SINRs of deterministic MPCs require

knowledge of the PDP of the DM at position ℓ. This requires
many closely-spaced measurements around pℓ, which are
usually not available. An alternative estimator of the SINR
based on a Gaussian model for the DM was derived in [6]
and is also used here. In short, it uses a few position-resolved
measurements within a region, where the corresponding MPCs
are visible. On these, non-overlapping MPCs are estimated as
in (2) and corrected for deterministic effects such as path loss
and also random effects such as uncertainties in the floor plan.
Finally, the estimator is based on the ratio of the estimated
deterministic MPC energy to the variations that still remain in
the estimated amplitudes after the correction steps.

It is important to note that only position-averaged MPC
SINRs can be estimated by this method since statistical
moments of the estimated amplitudes need to be computed.
We account for this fact by estimating SINRk globally for
each VA, which describes the reliability of the localization
information of the respective MPC. Fig. 2 shows several
received signals from Anchor 1 in Room 1, using Tp = 0.5 ns
and fc = 7GHz. Also shown is the evolution of the estimated
amplitudes of selected deterministic MPCs and the estimated
SINR values. The trajectory part covers a distance of 45 cm
and is part of the SINR estimation points in Room 1 (see
Fig. 4a). It can be observed that MPCs with low variations in
their amplitudes, such as the LOS, whiteboard and right wall,
in general have a large SINR. If there are large variations
which cannot be attributed to deterministic effects, the SINR
is considerably lower, such as for the window.

The estimated SINRs can be used with (6) to get an EFIM
estimate Ĵpℓ

. Note that the only location-dependent effect
remaining is the geometry. The ranging direction matrices
account for the direction of the information, while the room
geometry defines which reflections are visible at pℓ and
contribute to the EFIM. The expected localization accuracy
for an environment can be quantified by the position error
bound (PEB)

E{‖pℓ − p̂ℓ‖} ≥ PEB(pℓ) =

√
Tr (J−1

pℓ ). (9)

V. EXAMPLE RESULTS

A. Evaluation Scenarios and Parameters

The two rooms used are shown together with indications
of the building materials in Figs. 1 and 5a, respectively. To
quantitatively evaluate robustness and accuracy of the MINT
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Fig. 3. Exemplary estimated SINRs of deterministic MPCs in Room 1 for
Anchor 1 (a) and in Room 2 for Anchor 2 (b). A pulse duration Tp = 0.5 ns
and two different center frequencies of fc = 7GHz and fc = 8GHz were
used. SR and DR denote single- and double reflection, respectively.

implementation, one sample trajectory is used in each room,
to enable calculation of a position error. The test trajectories
consist of 235 points spaced by ∆p = 5 cm in Room 1, and
of 154 points spaced by ∆p = 3 cm in Room 2. It should
be noted that although the evaluation is done only on those
trajectories, the results obtained are in close accordance with
other results in different environments. As will be shown by
the PEB results, they also cover challenging regions in these
rooms and the performance accurately reflects the expectations
provided by the bounds that are based on the estimated SINRs.

In the motion model, the process noise covariance ma-
trix Q = σ2

aGGT is chosen to allow for motion at a
given maximum velocity in x- or y-direction, say vx,max.
This is obtained by selecting the process noise variance in
the acceleration-domain as σ2

a = (
vx,max

3∆T )2. During real-time
operation, only vx,max has to be chosen. ∆T is measured for
every iteration and hence also σ2

a is updated, since depending
on the chosen level of graphical output, the sampling time is
not constant. For the quantitative performance evaluations, we
set vx,max = ∆p/∆T at e.g. ∆T = 1, to avoid errors that are
due to the motion model.

The measurement uncertainty in the EKF can be determined
using an approach discussed in [14]. Based on estimates of
SINRs as described in Sec. IV, the tracking can be tuned to
the reflection properties of the environment. The locations of
these measurement points are illustrated in Figs. 4a and 5a.
Of course MINT can be used without this information [4]. To
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Fig. 4. Logarithmic CRLB for the position error over Room 1 for Tp = 0.5 ns
and fc = 8GHz. (a) SINRs are used which have been estimated at the
points marked in blue. (b) No SINR knowledge is available, but the mean
SINR equals the mean of the estimated ones. Gray lines indicate MINT
tracking results (estimated tracks and 40-fold standard deviation ellipses) for
the respective scenario. It is evident that the SINRs can be used to obtain a
much more realistic performance prediction.
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enable a fair comparison, the SINRs for this case are selected
as the mean of the estimated ones. The cutoff distance has
been chosen as dc = 0.12m. Initialization of the EKF is done
with the true position and zero velocity, since the initialization
problem is out of scope of this paper. However, it can be solved
using maximization of the likelihood function that is also used
to derive the CRLB [15] or with a bank of parallel EKFs.

B. Estimation of the MPC SINRs and the PEB

In both rooms, SINRs of the LOS-component and potential
first- and second-order reflections are estimated using the
method described in Sec. IV and [6], [14] using 60 position-
resolved measurements per room, as indicated in Figs. 4a and
5a. A subset of the obtained SINR results is shown in Fig. 3
for a pulse duration of Tp = 0.5 ns and two different center
frequencies of 7 and 8GHz. It can be seen that especially
the plasterboard walls provide more information at the higher
frequencies. As they represent spatially extended reflectors
with large visibility regions, they are potentially important for
MINT. Hence, observing the SINRs can give important hints
on the optimal frequency range for a given scenario.

Using the geometry, (6), and (9), the CRLB on the position
error (neglecting path overlap) can be computed for a scenario.
The resulting PEB is illustrated in Figs. 4 and 5 for both
rooms, with and without estimated SINRs, but – to allow for a
fair comparison – for the same sets of MPCs. In the latter case,
a simple model for the SINR is used: For the sake of a fair
comparison, the SINRs of (8) are chosen such that their mean
equals the mean of the estimated ones. Also, each reflection
order decreases the SINR by an example value of 3 dB.

For Room 1, the PEB is shown using MPCs from both
anchors. Without knowledge of the MPC SINRs, the PEB
mostly encodes the expected visibility regions of the reflec-
tions and as such gives only a rough indication of the expected
performance. If estimated SINRs are used, we can clearly
observe a dilution of precision around the room diagonal,
where location information is mostly coming from similar
directions. This case is also illustrated in Fig. 1, where the
MPCs are shown that the EKF can use in this region. We
conclude that awareness of the SINRs gives a clearer picture
of the expected performance in a given scenario. It should be
noted again that the detrimental effect of path overlap [3] is
not reflected by this PEB.

In Room 2, we illustrate the PEB for using only a sin-
gle anchor (Anchor 2). Exploiting multipath, localization is
still possible with MINT. Also here, the SINRs give good
performance indications. For example, the visibility regions
corresponding to the middle right and the upper window (c.f.
Fig. 3b) are visible, which have rather large SINRs.

C. Tracking Results

Fig. 6 shows CDFs of the position error along the trajec-
tories for MINT in both rooms. The evaluations have again
been performed with a pulse duration of 0.5 ns and the two
center frequencies of 7 and 8GHz, with and without estimated
SINRs. A general advantage is visible in these two rooms at
the higher frequency range. According to our experience with
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Fig. 5. Logarithmic CRLB for the position error over Room 2 for Tp = 0.5 ns
and fc = 8GHz, if only Anchor 2 is used. (a) SINRs are used which have been
estimated at the points marked in blue. (b) No SINR knowledge is available,
but the mean SINR equals the mean of the estimated ones. Gray lines indicate
single-anchor MINT tracking results (estimated tracks and 30-fold standard
deviation ellipses).

the demonstration system, we attribute this effect mostly to
the higher SINRs of the large plasterboard walls. For the case
of no SINR knowledge, the MINT implementation achieves a
performance of 13 cm for 90% of the estimates in Room 1 and
21 cm for 90% of the estimates in Room 2. With estimated
SINRs, 90% of the position errors are within approximately
5 cm in both rooms, in Room 1 even with the lower center
frequency. In Room 2, using the SINRs allows for a similar
performance using only a single anchor.

Figs. 4 and 5 also contain the tracking results shown in
the CDFs in Fig. 6. Furthermore, the (significantly magnified)
estimation error standard deviation ellipses of the EKF are
indicated at some points. We observe an excellent tracking
performance together with a largely reduced variance when
estimated SINRs are used. In this case, the error ellipses follow
well the predicted PEB and indicate the geometric dilution
of precision, especially when the agent is between the two
anchors.
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higher center frequency is beneficial there. For Room 2, results are also shown
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Fig. 7. Exemplary tracking results in Room 1, using estimated SINRs and
Tp = 0.5 ns and fc = 7GHz. About 900 time steps were used to write the
funding project’s name “LOBSTER”. The letter height is roughly 0.5m, which
demonstrates that an accuracy well within 10 cm can be achieved robustly.

An exemplary tracking result using SINR estimates is shown
in Fig. 7, where the funding project’s name “LOBSTER” has
been written in letters with a height of approximately 0.5m.
The legibility again demonstrates the good performance.

VI. CONCLUSIONS AND OUTLOOK

We have presented a real-time implementation of the MINT
approach in the form of a demonstration system. This system
can be used to examine the localization performance and to
identify influences on it in different environments. The results

show that the excellent performance of MINT that we have
reported previously for measurement campaigns can be repro-
duced with the real-time implementation. Also, the CRLB on
the position error can be estimated using a few measurements.
This provides a detailed prediction of the achievable accuracy
in some specific environment. The tracking algorithm also
benefits from this additional channel awareness, as robustness
and accuracy are improved.

The form of the position error bound used in this work
is based on the simplifying assumption of no overlap in
the deterministic MPCs. The extension of the measurement-
based performance prediction to path overlap situations is a
crucial step in ongoing research, since path overlap is an
important and unavoidable performance impairment. In the
current system, the MPC SINRs are estimated from position-
resolved measurements that have been performed a-priori.
Current work covers online learning of these estimates based
on the results of the tracking algorithms.
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UWB for Robust Indoor Tracking: Weighting of
Multipath Components for Efficient Estimation

Paul Meissner, Erik Leitinger, and Klaus Witrisal

Abstract—In a radio propagation channel, deterministic re-
flections carry important position-related information. With the
help of prior knowledge such as a floor plan, this information
can be exploited for indoor localization. This letter presents
the improvement of a multipath-assisted tracking approach
using information about the relevance of deterministic multipath
components in an environment. This information is fed to a
tracking filter as observation noise model. It is estimated from
a few training signals between anchors and an agent at known
positions. Tracking results are presented for measurements in
a partial non-line-of-sight environment. At a bandwidth of
2 GHz, an accuracy of 4 cm can be achieved for over 90 %
of the positions if additional channel information is available.
Otherwise, this accuracy is only possible for about 45 % of the
positions. The covariance of the estimation matches closely to the
corresponding Cramèr-Rao Lower Bound.

I. INTRODUCTION

Robustness and accuracy are key requirements of indoor
localization systems. We define robustness as the percentage
of cases in which a system can achieve its given potential
accuracy. Due to their fine time resolution, range-based ultra-
wideband (UWB) systems provide accurate distance estimates
between anchors and the agent to be localized [1]. How-
ever, a non-line-of-sight (NLOS) situation can decrease the
robustness due to biased range estimates. We have proposed
an approach called multipath-assisted indoor navigation and
tracking (MINT) to enhance the robustness [2], [3]. It makes
use of the floor plan to associate multipath components
(MPCs) to the surrounding geometry.

In this paper, we show how position-related information can
be used efficiently as additional prior information. Channel
parameters describing the reliability of the reflected MPCs
[3], [4] are estimated from a few training signals with an
agent at known positions and used in the tracking filter as
measurement noise model. For a navigating agent, awareness
to the uncertainty of the available information is crucial for
the tracking performance both in theoretic [5] and in practical
settings [6]. Taking into account diffuse multipath (DM) allows
for much more realistic performance indications [7], especially
in dense multipath environments.

The main contributions of this letter are:
• We show that a multipath-assisted tracking approach can

be made aware of the relevance of specific deterministic
MPCs in an environment.

• Using measurements, we show that centimeter-level ac-
curacy can be achieved robustly also in NLOS conditions.

P. Meissner, E. Leitinger and K. Witrisal are with Graz University of
Technology, Graz, Austria, email: paul.meissner@tugraz.at.

The authors thank Manuel Lafer for his help in performing the measure-
ments.

Notation: The symbols ∗, (·)T , (·)∗, E {·}, ℜ{·}, and IN
denote convolution, transposition, conjugation, expectation,
real part, and an identity matrix of dimension N , respectively.

II. TRACKING AND CHANNEL ESTIMATION

A. Signal and Geometry Models

We aim at tracking a mobile agent in an environment with
J anchors at known positions. The signal between the j-th
anchor and the agent at the position pℓ is modeled as [3]

r
(j)
ℓ (t) =

K
(j)
ℓ∑

k=1

α
(j)
k,ℓs(t− τ

(j)
k,ℓ ) + s(t) ∗ ν(j)ℓ (t) + w(t). (1)

The sets {α(j)
k,ℓ} and {τ (j)k,ℓ} are the complex amplitudes and

delays of the k-th deterministic MPC, respectively. The sig-
nal s(t) denotes the transmitted pulse shape with effective
pulse duration Tp. The random process ν

(j)
ℓ (t) denotes DM

and is modeled as a Gaussian process with auto-covariance
E{ν(j)ℓ (τ)[ν

(j)
ℓ (u)]∗} = S

(j)
ν,ℓ (τ)δ(τ −u), where S

(j)
ν,ℓ (τ) is the

power delay profile (PDP) of the DM. The signal w(t) denotes
white Gaussian measurement noise with double-sided power
spectral density (PSD) of N0/2.

The delays of the K
(j)
ℓ deterministic MPCs are modeled

geometrically using mirror images of the j-th anchor with
respect to the corresponding walls, introducing so-called vir-
tual anchors (VAs) [2], [8]. Fig. 1 shows two examples of
such VAs. It can be seen that the distance from the agent’s
position pℓ to the k-th VA at a

(j)
k corresponds to the delay

τ
(j)
k,ℓ = 1

cd
(j)
k,ℓ = 1

c‖pℓ − a
(j)
k ‖ of the corresponding MPC,

where c denotes the speed of light. For the whole scenario,
a set A(j) of all potential VAs of the j-th anchor can be
constructed. Higher-order VAs are obtained by mirroring again
lower-order VAs with respect to reflectors. Using optical ray-
tracing, the set of visible VAs can be computed for position
pℓ as

A(j)
ℓ = {a(j)ℓ,1, . . . ,a

(j)

ℓ,K
(j)
ℓ

} = {a(j)k : fvis(a
(j)
k ,pℓ) = 1} (2)

where the ray-tracing is expressed by the function

fvis(a
(j)
k ,p) =

{
1, if VA a

(j)
k is visible at p

0, else.
(3)

B. Tracking Algorithm

In a first step, the location-dependent parameters, i.e. the
arrival times of the deterministic MPCs, are estimated from
the received signal modeled by (1). The arrival time estimation
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Fig. 1. Floor plan of the evaluation scenario, bold gray lines denote windows
and other lines illustrate walls made of different materials. Examples for true
and estimated agent trajectories are shown, the former is hidden beneath the
others. The bottom contains a close-up of the trajectories, illustrating the 1-
cm-spaced grid, out of which 25 5-cm-spaced trajectories are obtained. Two
physical anchors are indicated with examples for virtual anchors modeling
reflections from walls. Ellipses denote 20-fold standard deviations of the
trackers as well as the respective 20-fold CRLB, as described in the text.

at position ℓ is realized as an iterative least-squares approxi-
mation of the received signal

τ̂
(j)
k,ℓ = argmin

τ

∫ T

0

∣∣∣r(j)ℓ (t)− r̂
(j)
ℓ,k−1(t)− α̂(τ)s(t− τ)

∣∣∣
2

dt

(4)
using a template signal r̂(j)ℓ,k(t) =

∑k
k′=1 α̂

(j)
k′,ℓs(t − τ̂

(j)
k′,ℓ) for

all MPCs up to the k-th. The path amplitudes are nuisance
parameters, estimated using a projection of r(j)ℓ (t) onto a unit
energy pulse s(t) as

α̂(τ) =

∫ T

0

[r
(j)
ℓ (t)]∗s(t− τ)dt; α̂

(j)
k,ℓ = α̂(τ̂

(j)
k,ℓ ). (5)

The number of estimated MPCs K̂
(j)
ℓ should be chosen

according to the number of expected specular paths in an
environment. With the assumptions of separable MPCs and
white noise, (4) and (5) correspond to a maximum-likelihood
(ML) estimation of the deterministic MPCs.

The tracking is done as in [2] using an EKF with data
association (DA), which is necessary since the estimated MPC
arrival times in (4) are not associated to the VAs. We choose
a simple linear Gaussian constant-velocity motion model

xℓ+1 =Fxℓ +Gna,ℓ (6)

=




1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1


xℓ +




∆T 2

2 0

0 ∆T 2

2
∆T 0
0 ∆T


na,ℓ.

The state vector xℓ of the agent contains position pℓ and
the velocity vector, and ∆T is the update rate. The driving
acceleration noise term na,ℓ with zero mean and covariance
matrix Q = σ2

aGGT models motion changes that deviate from
the constant-velocity assumption.

For the measurement update of the EKF, the set of expected
VAs is calculated for the DA at the predicted position p−

ℓ

using (2) for each anchor, yielding sets Ā(j)
ℓ . At this time,

prior information such as a set Ã(j) defining relevant VAs
can be used to restrict the set of expected VAs, resulting
in Ā(j)

ℓ ∩ Ã(j). The corresponding expected path delays are
then matched to the estimated arrival times (4) such that
the cumulative distance of estimated and expected delays
is minimized, yielding sets of associated VAs A(j)

ℓ,ass. The
association is done using a constrained optimal subpattern
assignment approach [2], [9], where the constraint is that
associations at a distance larger than a given maximum ranging
uncertainty, the so-called cut-off distance dc, are discarded.

After joining information from all anchors, Aℓ,ass =⋃
j A

(j)
ℓ,ass, the corresponding distance estimates are stacked

in the EKF’s measurement input vector which is modeled as

zℓ =
[
. . . , ‖a(j)k − pℓ‖, . . .

]T
+ nz,ℓ, a

(j)
k ∈ Aℓ,ass. (7)

The measurement noise nz,ℓ is assumed to be zero-mean
multivariate Gaussian. The choice of the measurement noise
covariance matrix Rℓ depends on the amount of prior informa-
tion. If a-priori estimates of the range estimation uncertainties
var

{
d̂
(j)
k,ℓ

}
are available for a set of VAs, then

Rℓ = diag
{
var

{
d̂
(j)
k,ℓ

}}
∀ k, j : a

(j)
k ∈ Aℓ,ass. (8)

Otherwise, an overall uncertainty σ2
d is used, i.e.

Rℓ = σ2
dI|Aℓ,ass|. (9)

C. Position-Related Information and its Estimation

In [3], we have derived the Cramèr Rao Lower Bound
(CRLB) for positioning based on the signal model (1) and the
VAs. With the assumption of no path overlap, i.e. the MPCs are
orthogonal, the equivalent Fisher information matrix (EFIM)
for position pℓ [10] is given as

Jpℓ
=

J∑

j=1

K
(j)
ℓ∑

k=1

Jr(d
(j)
k,ℓ)Jr(φ

(j)
k,ℓ). (10)

where the ranging direction matrix Jr(φ
(j)
k,ℓ) determines the

direction φ
(j)
k,ℓ of the information of the k-th MPC, since it
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3

is spanned by the outer product of the unit vector pointing
from the k-th VA at a

(j)
k to the agent at pℓ with itself [3].

It is scaled by the Fisher information contained in the signal
r
(j)
ℓ (t) about the path length d

(j)
k,ℓ. Its inverse is the CRLB for

the variance of an unbiased range estimate d̂
(j)
k,ℓ

J−1
r (d

(j)
k,ℓ) =

(
8π2β2

c2
SINR

(j)
k,ℓ

)−1

≤ var
{
d̂
(j)
k,ℓ

}
. (11)

Here, β denotes the effective (root mean square) bandwidth
of s(t) and the signal-to-interference-and-noise-ratio (SINR)
of the k-th MPC at pℓ is defined as

SINR
(j)
k,ℓ =

|α(j)
k,ℓ|2

N0 + TpS
(j)
ν,ℓ (τ

(j)
k,ℓ )

. (12)

In [4], we have derived an estimator for the average SINR(j)
k ,

averaged over positions within a confined spatial region in
which propagation characteristics such as the PDP of the DM
are assumed to be stationary. However, there is only a limited
number of MPCs visible within such a region. To increase
this number, we use measurements at Ns sets of points {pℓ :
ℓ ∈ Pi}, where Pi, i = 1, . . . , Ns, collects the indices of the
points. Within each set, propagation characteristics are again

assumed to be stationary and an ŜINR
(j,i)

k can be estimated.
For this, we have to take into account the observability of the
corresponding VA. We define the subsets

P(j,i)
k ={ℓ ∈ Pi : fvis(pℓ, a

(j)
k ) = 1 ∧ (13)

|τ (j)k,ℓ − τ
(j)
k′,ℓ| > Tp ∀ k′ 6= k, a

(j)
k′ ∈ A(j)

ℓ }

with cardinality N
(j,i)
k . The conditions in (13) imply that the

k-th VA is visible at pℓ and there is no path overlap [3], [10]
with any other VA-modeled MPC.

The overall aim is to take into account the uncertainty of the
MPCs in an environment, both w.r.t. the path length estimation
and also w.r.t. the position of the VAs, as these are subject to
floor plan uncertainties. For the estimation of a global range
uncertainty of a specific MPC, which is necessary to be useful
as a location-independent noise model (8), we propose the
weighted mean of the local uncertainties

v̂ar
{
d̂
(j)
k

}
=

1
∑Ns

i=1 N
(j,i)
k

Ns∑

i=1

N
(j,i)
k v̂ar

{
d̂
(j)
k,ℓ : ℓ ∈ P(j,i)

k

}
.

(14)
The v̂ar

{
d̂
(j)
k,ℓ

}
is obtained from an SINR estimate and (11).

This and the use of (14) are motivated by assuming the range
estimates d̂(j)k,ℓ to be Gaussian distributed, which is justified by
the fact that (4) is an approximation for the according ML
estimator and as such is asymptotically efficient, i.e. d̂(j)k,ℓ ∼
N

(
d
(j)
k,ℓ; J

−1
r (d

(j)
k,ℓ)

)
.

The VA positions are corrected using a prior p(ã(j)k ) for the
k-th VA. This leads to the MAP estimate

â
(j)
k = argmax

ã
(j)
k

ln p(r(j)(t)|ã(j)k ) + ln p(ã
(j)
k ) (15)

with a likelihood function that evaluates the contribution of the
k-th VA to all estimation signals r(j)(t) (c.f. [3] but neglecting

the whitening to account for the DM)

ln p(r(j)(t)|ã(j)k ) ∝ 2

N0

Ns∑

i=1

∑

ℓ∈P(j,i)
k

∫ T

0

ℜ
{
[r

(j)
ℓ (t)]∗s̃(j)k,ℓ(t)

}
dt

− 1

N0

∫ T

0

|s̃(j)k,ℓ(t)|2dt. (16)

Here, s̃
(j)
k,ℓ(t) = α̃

(j)
k,ℓs(t − τ̃

(j)
k,ℓ ) is a template signal where

τ̃
(j)
k,ℓ = 1

c‖ã
(j)
k − pℓ‖ and the MPC amplitudes are again

nuisance parameters and estimated using (5). The vector of
received signals for the estimation is given as

r(j)(t) = [r
(j)
ℓ∈P1

(t), . . . , r
(j)
ℓ∈PNs

(t)]T . (17)

With the signal model in (1) and m̂
(j,i)
1,k and m̂

(j,i)
2,k denoting

estimates of the first and second central moments of the energy
samples |α̃(j)

k,ℓ|2 for ℓ ∈ P(j,i)
k , the corresponding average

SINRs are estimated as [4]

ŜINR
(j,i)

k =


 m̂

(j,i)
1,k√

m̂
(j,i)2

1,k − m̂
(j,i)
2,k

− 1




−1

. (18)

Those can be used together with (11) and (14) to obtain a
range uncertainty for the k-th VA for the given environment.

The SINR estimation described in [4] also performs a
correction of deterministic factors such as distance-dependent
path-loss. Overall, it leads to sets Ã(j) of VAs with lower
cardinality than A(j), consisting of re-estimated VA locations
obtained in (15).

III. MEASUREMENT SCENARIO

Measurements were obtained along a trajectory of 220
points, spaced by 5 cm, see Fig. 1. Around each point, 25
measurements were performed within a 5 x 5 cm grid, yielding
in fact 25 parallel trajectories for the performance analysis.

The channel between the agent on the trajectory and two
anchors (see Fig. 1) has been measured with an M-sequence
based UWB channel sounder developed by Ilmsens, as also
described in [11]. On anchor and agent sides, dipole-like
antennas made of Euro-cent coins have been used. They have
an approximately uniform radiation pattern in azimuth plane
and zeroes in the directions of floor and ceiling. Out of the
measured frequency range of 3.1− 10.6GHz, a subband with
center frequency fc and bandwidth B = 1/Tp has been
selected using filtering with a raised-cosine pulse s(t)ej2πfct

with pulse duration Tp, followed by a downconversion.

IV. RESULTS

For the tracking along the 25 trajectories, a frequency range
corresponding to fc = 7GHz and Tp = 0.5 ns has been
chosen, which results in a bandwidth of 2GHz. The process
noise variance in the motion model (6) is obtained as in
[2] based on selecting a maximum velocity in e.g. the x-
direction vx,max, which defines the 3σ point of the noise in
velocity domain. The corresponding process noise variance in
the acceleration domain is then σ2

a = (vx,max/(3∆T ))
2 with

vx,max = 1m/s and ∆T = 1 s in this paper. The DA cutoff
distance has been chosen as dc = 0.12m. VAs up to order two
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Fig. 2. Performance CDFs for Tp = 0.5 ns and fc = 7GHz. Thin lines
show the individual 25 runs over the trajectories in Fig. 1. Red and gray
indicate the EKFs with and without estimated SINRs. Bold lines denote the
total performance for all runs, the dashed black line indicates the performance
without SINRs on all non-diverging runs (15 out of 25).

have been used, and SINR estimation was done using Ns = 3
sets of 20 points (Fig. 1). The prior for the VA positions
in (15) has been chosen as a uniform distribution within a
circle of diameter 10 cm around the calculated VA position.
The performance of the EKF is compared for the cases
with estimated SINRs (8), and where no such information is
available (9). To allow for a fair comparison in the latter case,
the overall ranging uncertainty is selected as the mean of the
estimated uncertainties, which is σd = 0.042m.

An exemplary tracking result is illustrated in Fig. 1. In
this case, the EKF can track the agent with and without
estimated MPC SINRs, also in the NLOS region with respect
to Anchor 1 (caused by the concrete pillar on the left side
of the room). At every 12-th position, the 20-fold estimation
error standard deviation ellipse of the EKF is illustrated. The
comparison with the estimated CRLB, given as the inverse of
(10), shows a close match to the tracking performance when
using the SINRs, which confirms the efficient use of the MPCs.
It should be noted that the CRLB shown does not include the
motion model, i.e. it is not the posterior CRLB. However, for
the chosen process noise variance, which is deliberately larger
than the measurement uncertainties, the motion prior does not
add significant information, making (10) applicable.

Fig. 2 shows the position error CDFs. It is evident that
the channel characterization (red) yields excellent robustness,
as all 25 runs have similar performance with 90% of the
errors below 4 cm. Without SINR information (black/gray),
the robustness is affected, as 10 of 25 runs diverge, mostly in
the NLOS region discussed before. The overall CDF for the
15 non-diverging runs (black bold dashed line, circle markers)
shows the potential performance of MINT without channel
information, where 90% of the errors are within 7 cm. The
influence of the MAP-re-localization of the VA positions (15)
is illustrated by the CDF indicated by the blue dash-dotted
curve with square markers. All runs are included, SINRs used,
but without the re-localized VA positions. SINR awareness
provides robustness, while re-localization improves accuracy.

Fig. 3 illustrates the mean number of associated MPCs,
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Fig. 3. Mean and standard deviation of the number of associated MPCs used
for tracking. The 15 of 25 non-diverging runs are included for the case where
no SINRs are available.

E {|Aℓ,ass|}, over all runs using SINRs and the 15 non-
diverging runs without SINRs, together with the standard devi-
ation. The additional channel knowledge helps to substantially
prune the set of potential VAs to the relevant ones. This leads
to less erroneous associations of estimated MPCs to VAs and
also reduces the computational complexity.

The results presented here match results in [11], which
also includes quantitative results for the SINR estimation in
different environments.

V. CONCLUSIONS

We have shown that channel knowledge quantifying the
position-related information of deterministic MPCs is a key
factor for obtaining accurate and robust indoor localization. By
estimating the uncertainty of range estimates corresponding to
deterministic MPCs and making this information available to
a tracking filter, multipath propagation can be used efficiently.
Experimental results have confirmed the advantage, demon-
strating excellent performance.
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A
Descriptions of Channel Measurement

Campaigns

This section describes the various channel measurement campaigns that have been performed
during the work on this thesis. These measurements are also publicly available for research
purposes [78]. In the following, Section A.2 describes the different measurement setups, i.e.
frequency- and time-domain measurements. Section A.3 then discusses the possible options for
signal postprocessing, while Sections A.4, A.5, and A.6 contain the detailed descriptions of the
various scenarios.

A.1 Overview

The main aim of the measurements campaigns described here is to evaluate the performance of
indoor localization and tracking algorithms in realistic scenarios and to gather knowledge of the
relevant propagation phenomena. Therefore, measurements are performed along trajectories,
that model motion paths of moving agents. Such measurements are done in different represen-
tative environments. At each trajectory point, channel measurements with a certain number of
fixed anchors are performed.

Table A.1 contains an overview over all measurement campaigns. The different campaigns
are divided into frequency- and time-domain measurements. The distinction is based on the
measurement device that has been used. For all scenarios, the number of points on the measure-
ment trajectories and their spacing are given. Also, the number of anchors used is indicated,
which corresponds to the number of channels measured per trajectory point. For the frequency-
domain measurements obtained with a vector network analyzer, the frequency resolution ∆f
is given. For the case of the time-domain measurements, the number of averages resulting in
the measured signal at one trajectory position is given. A detailed discussion of measurement
parameters is given in the following Section A.2

Table A.2 shows an overview over published papers using the various measurements.
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Frequency domain measurement campaigns – Vector Network Analyzer

Scenario # Points Spacing Freq. res. ∆f #Anchors

[cm] [MHz]

Corridor (Fig. A.4) 381 10 1 6

Corridor, Grid (Fig. A.4) 484 5 1.5 2

Seminarroom, bistatic (Fig. A.6) 2x220 5 5 2

Seminarroom, monostatic (Fig. A.6) 2x220 5 5 0

Lab, equipped (Fig. A.10) 61 5 5 2
Lab, empty 61 5 5 2

Time domain measurement campaigns – M-sequence channel sounder

Scenario # Points Spacing # Avg. #Anchors

[cm]

Seminarroom, local grids (Fig. A.6) 2x220x25 1 1024 2

Demo room Graz (Fig. A.8) 101, 235 5 33 4

Demo room Montbeliard (Fig. A.9) 154, 161 3 33 2

Table A.1: Available Measurement Campaigns and Parameters

Scenario Publication Comments

Corridor (Fig. A.4) [T6] Tracking using measurements;
comparison with conventional algorithms

[T4] Experimental computation of bounds;
estimation of MPC SINRs

[T5] Tracking using measurements

[T2] Energy capture analysis of det. MPCs

[147] Same, extended results

[82] MPC estimation;

extension of [84] to VA model

[85] MPC tracking using PHD filters

Corridor, Grid (Fig. A.4) [T7] Validation of ray-tracing

Seminarroom (Fig. A.6) [T9] Tracking and channel estimation

[92] Tracking and channel estimation

Laboratory room (Fig. A.10) this thesis, Ch. 8 Experimental computation of bounds;
estimation of MPC SINRs

Demo room Graz (Fig. A.8) [T8] Description of demonstration system

Room Montbeliard(Fig. A.9) [81] Live demonstration

[T8] Description of demonstration system

Table A.2: Overview over publications using the measurement campaigns

A.2 General Measurement Setup

For both frequency- and time-domain measurements, Skycross SMT-3TO10M UWB antennas
as well as custom made antennas using Euro-cent coins [148] have been used. The coin antennas
have approximately uniform radiation patterns in azimuth domain and zeroes in ±90 ◦ elevation.
The antennas were mounted on tripods in a height of 1.5− 1.8 m, depending on the scenario.
The cables were Huber & Suhner Sucoflex or S-Series cables, which each have an attenuation of
approximately 1.1 dB per meter at a frequency of 10 GHz and 1.6 dB per meter at 18 GHz. We
follow the usual approach of regarding the antennas as part of the radio channel. The antennas
used show only very little distortion of the transmit signal, i.e. they have rather short impulse
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responses [149].

For all measurements, the UWB frequency range according to the FCC has been measured,
i.e. the range from 3.1 GHz to 10.6 GHz. This corresponds to a wavelength range of 9.67 cm
to 2.83 cm. The bandwidth of 7.5 GHz results in a delay resolution of 0.1333 ns and a spatial
resolution of 4 cm. For the frequency domain measurements, the frequency resolution ∆f has
been chosen as shown in Table A.1. It is related to the maximum delay that can be represented
unambiguously with these measurements, i.e. τmax = 1/∆f .

A static environment has been ensured in all scenarios, i.e. there have been no moving persons
or objects. All floor plans have been measured by hand using a laser distance meter and a tape
measure. The two-dimensional representation corresponds to the room dimensions in the height
at which the antennas have been mounted. This height was in the range of 1.8 m, but slightly
different for the different campaigns. In each campaign, all antennas were at the same height.

A.2.1 Frequency Domain Measurements – Vector Network Analyzer

Frequency-domain measurements have been obtained with a Rhode & Schwarz ZVA-24 VNA.
At the `-th trajectory position, a sampled version H`[k] of the CTF H`(f) is measured with a
frequency spacing of ∆f as indicated in Table A.1. The VNA has been calibrated up to (but
not including) the antennas with a through-open-short-match (TOSM) calibration. A resolution
bandwidth of 10 kHz has been used and the transmit power has been set to 15 dBm.

A.2.2 Time Domain Measurements – M-Sequence Radar

Time-domain measurements have been obtained with an Ilmsens Ultra-Wide Band M-Sequence
device [150]. The measurement principle is correlative channel sounding [100]. A binary code
sequence with suitable autocorrelation properties (a large peak-to-off-peak-ratio) is transmitted
over the channel. At the receiver, the channel impulse response is recovered using a correlation
with the known code sequence.

This M-sequence radar has one transmitter and two receiver ports. Hence, the mobile unit
that has been moved along the measuerement trajectories was the transmitter, and the two
receiver ports have been used as anchors. The transmit power of the M-sequence device in FCC
mode is 18 dBm. The employed 12-bit M-sequence has a length of 4095 samples. At the clock
rate of 6.95 GHz, this allows for a measurement window of τmax = 589.2 ns.

A.3 Measurement Post-Processing

A.3.1 Frequency Domain Measurements – Vector Network Analyzer

For the VNA measurements, the major system influences on the measured CTF H(f) have
already been removed by the previously mentioned TOSM calibration. This includes cables and
connectors, but not the antennas, which are considered as part of the radio channel. In the post-
processing, a desired frequency band is first filtered out of the measurement data. This is done
using the frequency domain representation of a suitable pulse shape s(t) that is upconverted to
the desired center frequency fc. The baseband signal is obtained by a downconversion.

These steps can be done conveniently using a Fast Fourier Transformation (FFT). The CTF is
measured at Nf discrete frequencies fk = k∆f+fmin, k = 0, . . . , Nf−1, where fmin is the lowest
measured frequency. This sampled CTF H[k] corresponds to a Fourier series representation of
the time-domain CIR h(τ) [T6], which is periodic with a period of τmax. With fmin and fc

denoting the lower band edge and the center frequency of the extracted band, respectively, and
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using an inverse FFT (IFFT) with size NFFT =
⌈
(∆f∆τ)−1

⌉
, where ∆τ is the desired delay

resolution, the time domain equivalent baseband signal is obtained as

r(t) = IFFTNFFT
{H[k]S[k]} e−j2π(fc−fmin)t. (A.1)

Here, S[k] is the discrete frequency domain representation of the pulse s(t), upconverted to the
desired frequency range. This procedure is similar to [84].

A.3.2 Time Domain Measurements – M-Sequence Radar
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M-sequence
device
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RX1

RX2

Hsys,1
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Figure A.1: Calibration setup for time domain measurements

Fig. A.1 shows a block diagramm of the measurement setup using the M-Sequence radar.
As in the VNA measurements, the measurement system should be calibrated up to (but not
including) the antennas. Hence, the influence of the device internal transfer functions and the
measurement cables and connectors, combined in the transfer function Hsys,i(f) for the i-th RX
channel, as well as the crosstalk between TX channel and i-th RX channel, Hcross,i(f), have to
be compensated. For the further description, we will drop the channel index.

To achieve this, two types of measurements are necessary. First, to determine the crosstalk,
the TX antenna is unmounted and the TX port is terminated with a 50 Ω match and the
crosstalk signals are measured. Second, also the RX antennas are unmounted and TX and RX
cables are connected back-to-back with an attenuator to avoid nonlinear effects. In this way,
Hsys(f) + Hcross(f) is measured to obtain Hsys(f). Using the measurement configuration with
all the antennas as depicted in Fig. A.1 yields Hmeas(f) = H(f)Hsys(f) + Hcross(f). Hence, a
calibrated version of the radio channel transfer function is obtained as

H(f) =
Hmeas(f)−Hcross(f)

Hsys(f)
. (A.2)

To avoid noise gain, the time-domain representation of the denominator in (A.2) is confined
to its significant values using a threshold together with a windowing. Finally, the time-domain
signal within the desired frequency range around the center frequency fc can be computed using
a suitable baseband pulse shape s(t) and h(t) as the inverse Fourier transform of H(f) as

r(t) =
[
h(t) ∗ s(t)ej2πfct

]
e−j2πfct ∗ δ(t− τshift). (A.3)
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Here, τshift is a time shift that accounts for the delays of connectors in the calibration measure-
ments and the antennas, which have not been removed by (A.2). For connectors, this value
can be measured using a VNA, for the antennas, it can be computed using the length of the
antennas and the propagation velocity in the materials, which is often given in data sheets. This
calibration procedure is similar to [151] and is also described in [95].

A.3.3 Pulse Shaping Example
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Figure A.2: Example for a pulse-shaping filter used with Tp = 0.2 ns and fc = 6.85 GHz.

The example in Fig. A.2 shows a raised-cosine filter with fc = 6.85 GHz, which is the center
frequency of the whole measurement bandwidth. The −3-dB bandwidth of this filter (in pass-
band) is given as BN = 1/Tp = 5 GHz. The overall (non-zero, excess) bandwidth is given as
B = (βR+1)/Tp which in this case (roll-off-factor βR = 0.5) is the total measurement bandwidth.

Denoting the lower band edge of the measurements as fmaes, min and the upper band edge as
fmeas, max (these are the band edges of the actually measured frequency range), we note that the
filter parameters have to be chosen such that

fc +
βR + 1

2Tp
≤ fmeas, max and fc −

βR + 1

2Tp
≥ fmeas, min. (A.4)

Assuming that we wish to use the band between fc − BN/2 and fc + BN/2, i.e., we select a

f

S(f)

1

0.5

fmeas, maxfmeas, min fc fmaxfmin

BN

B

Figure A.3: Pulse-shaping filter parameters.

center frequency fc and a pulse duration of Tp = 1/BN . Fig. A.3 illustrates this scenario. The
roll-off-factor βR then has to be chosen such that 0 ≤ βR ≤ 1 and (A.4) are not violated, as
the actual bandwidth B that the filter S(f) will select from the measurement data is of course
larger than the chosen BN . Fig. A.3 shows an illustration of the filter parameters.

– 155 –



A Descriptions of Channel Measurement Campaigns

A.4 Large-Scale Environment – Corridor

−20 −15 −10 −5 0 5 10 15 20 25

−6

−4

−2

0

2

4

6

8

10

0 1 2 3 4 5 6 7

−1

0

1

2

3

4

5

a
(1)

a
(2)

a
(2)

a
(3)

a
(3)

a
(4)

a
(5)

a
(6)

x [m]

x [m]

y
[m

]

y
[m

]

window

window

concrete walls

glass
doors

glass
doors

metal
doors

concrete
pillar metal

pillars
grid points

trajectory

Figure A.4: Large-scale measurement scenario in the corridor of the laboratory. In this scenario, six anchors
are available, enabling the use of conventional localization algorithms. Two different measure-
ment setups are used: 1) A trajectory with 381 points spaced by 10 cm, and 2) measurements
within a grid of 484 points with 5 cm spacing. For the grid setup, anchors 2 and 3 are available.

A.4.1 Trajectory Measurements

As shown in Figs. A.4 and A.5, these measurements have been obtained in a large corridor
in our university building. The mobile was moved over a distance of almost 40 m (381 points,
spaced by 10 cm) with measurements to six anchor nodes. Position 1 is at the right side. Mobile
and Anchors 1 and 4 were equipped with the Skycross antennas, the other anchors with the coin
antennas. All antennas were mounted at a height of 1.5 m.

Different LOS/NLOS conditions over this long distance allow for detailed performance eval-
uations of tracking algorithms. In this scenario, building walls are made of reinforced concrete
and the doors of metal. It is an open, three-storey building with some metal bridges connecting
the two sides of the corridor, as seen in Fig. A.5.

A.4.2 Grid Measurements

As shown in Figs. A.4, also grid measurements have been obtained in this scenario to allow for
local channel analysis. In an area of roughly 1 m2, 484 (22x22) points with a spacing of 5 cm
have been obtained to anchors 2 and 3. Position 1 is at the lower left side, position 22 at the
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lower right side and position 484 at the upper right side. For the grid measurements, all anchors
and the mobile were equipped with the coin antennas and mounted at a height of 1.5 m.

Figure A.5: Photo of corridor scenario, view approximately from the letter “y” in “trajectory” in Fig. A.4.

A.5 Medium-Scale Environments

A.5.1 Seminarroom at Graz University of Technology

Figs. A.6 and A.7 illustrate a seminarroom at our university. As shown, different wall materials
are present as well as a solid concrete pillar on the left side, which creates a short NLOS region
w.r.t. Anchor 1 and trajectory 2. Two trajectories are measured, also the measurements between
the two mobiles are available to evaluate cooperative algorithms. For all anchors and mobiles,
the coin antennas were used, mounted at a height of 1.23 m.

In a second measurement run, also monostatic measurements of both mobiles have been
obtained, i.e. measurements where TX and RX are at the same location. For this purpose, an
antenna setup as shown in the right plot of Fig. A.7 has been used to allow for a low direct
coupling between the TX and RX antennas.

Trajectory Measurements – VNA

The trajectory measurements have been performed with the VNA. 2x220 points with 5 cm
spacing are available. Also, the 220 measurements between the two mobiles at each trajectory
point are available. To obtain an additional set of measurements between the mobiles, the
direction of trajectory 2 has been reversed in the monostatic run.
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Figure A.6: Medium-scale measurement scenario in a seminarroom of the laboratory. In this scenario, two
anchors are available. Two different measurement setups are used: 1) Two trajectories with
220 points each, spaced by 5 cm, and 2) measurements within a local grids around each of the
points of the two trajectories with 1 cm spacing. As the zoom plot on the bottom shows, this e.g.
enables 25 parallel test trajectories or allows for spatial averaging for each trajectory point.

Local Grid Measurements – M-sequence Radar

To enable a detailed local channel analysis for the two trajectories, grid measurements have
been performed around them. Due to the large number of points, these have been obtained with
the M-sequence radar, since it allows for much faster measurement times. Around each of the
trajectory points, 5x5 points have been used with a spacing of 1 cm, hence in total, 11000 points
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(a) Seminaroom scenario (b) Monostatic setup

Figure A.7: Photo of Seminaroom scenario, view from the lower-left corner in Fig. A.6.

are available. As can be seen in the lower plot of Fig. A.6, this allows for e.g. 25 parallel test
trajectories for tracking algorithms or to have multiple measurements around one point. The
13-th point of each local grid, i.e. the center point, corresponds to the respective measurement
point in the trajectory measurements.
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A.5.2 Demonstration Room at Graz University of Technology

In this room of our university, shown in Fig. A.8, two trajectories have been measured with the
M-sequence radar. Trajectory 1 consists of 101 points, trajectory 2 of 235 points, each of them
is spaced by 5 cm. The coin antennas were used for all anchors and mobiles.
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Figure A.8: Medium-scale measurement scenario in a room (called the demonstration room) of the labora-
tory. In this scenario, two anchors are available and two trajectories with 101 and 235 points,
respectively, spaced by 5 cm.
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A.5.3 Demonstration Room at Montbeliard, France
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Figure A.9: Medium-scale measurement scenario in a room (called the IPIN room) of the university in
Monbeliard, France. In this scenario, two anchors are available and two trajectories with 154
and 161 points, respectively, spaced by 3 cm.

In this room of the university in Monbeliard, France, shown in Fig. A.9, two trajectories have
been measured with the M-sequence radar. Trajectory 1 consists of 154 points, trajectory 2 of
161 points, each of them is spaced by 3 cm. The coin antennas were used for all anchors and
mobiles.
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A.6 Small-Scale Environment – Laboratory Room
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Figure A.10: Small-scale measurement scenario in a laboratory room. In this scenario, two anchors are
available and one trajectory with 60 points, spaced by 5 cm. In this scenario, the measurements
have been done with the laboratory room rather empty, and once with all the measurement
equipment in the room (mostly on tables within the gray area).

In this laboratory room of our university, shown in Fig. A.10, test measurements were ob-
tained with the VNA on a short trajectory of 60 points spaced by 5 cm. We have performed
these measurements once with a rather empty room, and once with all the (mostly metallic)
measurement equipment in it, see Fig. A.11. This is useful for the analysis of DM.
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(a) Empty (b) Full

Figure A.11: Photo of Laboratory room scenario, view from the metal door at the lower side in Fig. A.10.
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B
Modeling of Floor Plan Uncertainties

The geometric prior information that is taken into account in this work contains the floor plan
and the positions of the anchor nodes. Both are subject to measurement uncertainties. The floor
plan consists of a list of end points of the wall segments. We take the simplifying assumption
that these end points and the anchor positions are independent random variables

pi = pi,true + ηi, ηi ∼ N (ηi; 0, σ
2
FPI) (B.1)

a
(j)
1 = a

(j)
1,true + ηa, ηa ∼ N (ηa; 0, σ

2
aI), (B.2)

where i is used as index for the wall end points. However, since we are interested in the

uncertainties of the coordinates of some VA a
(q,j)
k , a relationship to the uncertain floor plan

entries is necessary. Any point p on the i-th wall segment is defined by its end points pi and
pi′ as

p = pi + t(pi′ − pi), t ∈ [0, 1]. (B.3)

This also holds for the mirror point pm in (2.7), but without the restriction on t, since pm can
lie outside of the wall segment (see Fig. 2.2). The specific mirror point pm for the j-th anchor
w.r.t. the i-th wall in (2.7) can be found using

t
(j)
i =

(
a

(j)
1 − pi

)T
(pi′ − pi) . (B.4)

Hence, the distribution of t
(j)
i will be non-Gaussian and depends on all involved points. To

obtain a tractable, Gaussian model for a(q,j)
k

, we neglect this and treat t
(j)
i as deterministic and

constant. The covariance matrix of the coordinates of a first-order VA a(1,j)
k

can then be written
using (2.7) as

cov
{

a
(1,j)
k

}
= σ2

ak
I = 4 cov{pm}+ cov

{
a

(j)
1

}
. (B.5)
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Using (B.1), (B.3) and (B.4), the covariance matrix of the mirror point pm is given as

cov{pm} = cov
{

(t
(j)
i − 1)pi

}
+ cov

{
t
(j)
i pi′

}
(B.6)

= σ2
FPI(2t

(j)
i

2
− 2t

(j)
i + 1) (B.7)

= σ2
FPIγ

(j)
i (B.8)

where γ
(j)
i is a mirroring coefficient describing the mirroring of the j-th (virtual) anchor with

respect to the i-th wall. Fig. B.1 shows γ
(j)
i as a function of t

(j)
i . Together with (B.8) it can be

seen that if t
(j)
i = 1 or t

(j)
i = 0, the uncertainty reduces to the one of the respective wall segment

point. For |t(j)i | > 1 it takes into account that the uncertainty of the mirror point can be much
larger depending on the distance to the measured points.
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Figure B.1: Wall mirroring coefficient γ
(j)
i in dependence of the parameter t

(j)
i for mirroring anchor a

(j)
1

w.r.t. the i-th wall. The region where the anchor is inside the wall segment is indicated.

Using (B.5), (B.8) and (2.7) to obtain higher-order VAs, the covariance matrix of the coordi-
nates of a VA of arbitrary order q can be written as

cov
{

a
(q,j)
k

}
= I

[
4σ2

FP

q∑

i=1

γ
(j)
i + σ2

a

]
. (B.9)

To obtain a model for the corresponding uncertainty of the distance to the VA, we make the
observation that under the assumption of a circular symmetric Gaussian distribution for the VA
position, this distance follows a Ricean distribution. Under the additional assumption that this
distance is significantly larger than the standard deviation of the VA position38, the K-factor

of this Rice distribution will be large. Hence, the distribution of the distance d(a
(q,j)
k ,p`) can

be approximated with a Gaussian distribution with a mean equal to the true distance and a
variance according to (B.9).

Two examples for this model using Monte Carlo simulations with N = 105 samples are shown
in Fig. B.2 for VAs up to order 3 with σFP = 0.05 m and σa = 0.04 m. Two horizontal walls
a y-coordinates of 0 m and 2 m are used. Cyan point clouds indicate the Monte Carlo samples
obtained using the models (B.1) and (B.2) and the mirroring operation. The three-standard-
deviation circles of the model according to (B.9) are shown in black. For Fig. B.2a, the anchor

at a
(j)
1 is horizontally placed inside the wall segments, while for Fig. B.2b, it is horizontally

placed outside of the lower wall and at the edge of the upper wall.
Although it is clearly visible that the distribution of the VA positions is not circular symmetric

Gaussian, for low VA orders the approximation in (B.9) is suitable. The Gaussian approximation
for the distance to the VAs, indicated on the right side by the black dashed curve, also seems
reasonable compared to the cyan histograms.

For Fig. B.2a, the corresponding mirror coefficient is less than one. In this case, the models for

38 This assumption is justified by the fact that most VAs are at least outside of the room.
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position and distance are reasonable. In the second example shown in Fig. B.2b, the mirroring
causes a more severe deviation from the circular symmetry. The Gaussian approximation of the
corresponding distances is thus not accurate, especially for lower-order VAs. If the distance to
the VA is large enough, such as for the third-order VA indicated, the large distance seems to
outweigh this discrepancy and the model is reasonable again.

Despite its simplicity, this model gives an indication of the variance of VAs, caused by floor
plan uncertainties and the mirroring. It can be used e.g. in tracking schemes that also incorpo-
rate the VAs as initialization.
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B Modeling of Floor Plan Uncertainties
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i < 1.
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Figure B.2: Monte Carlo simulation of VA uncertainty model. The anchor at a
(j)
1 is between the inside

parts of two horizontal walls, such that the corresponding γ
(j)
i < 1. Left plot shows the floor

plan together with the samples for the VAs. The isotropic Gaussian model is illustrated with
a circle indicating three standard deviations. Right plot shows histograms, Gaussian fit and
Gaussian approximation for the corresponding distances.
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Montbéliard, France, 2013.

[82] M. Froehle, P. Meissner, T. Gigl, and K. Witrisal, “Scatterer and Virtual Source Detection for Indoor UWB
Channels,” in 2011 IEEE International Conference on Ultra-Wideband (ICUWB 2011), Bologna, Italy, 2011.

[83] T. Santos, J. Karedal, P. Almers, F. Tufvesson, and A. Molisch, “Scatterer detection by successive cancella-
tion for uwb - method and experimental verification,” in Vehicular Technology Conference, 2008. VTC Spring
2008. IEEE, may 2008, pp. 445 –449.

[84] ——, “Modeling the ultra-wideband outdoor channel: Measurements and parameter extraction method,”
IEEE Transactions on Wireless Communications, vol. 9, no. 1, pp. 282 –290, Jan. 2010.

[85] M. Froehle, P. Meissner, and K. Witrisal, “Tracking of UWB Multipath Components Using Probability
Hypothesis Density Filters,” in 2012 IEEE International Conference on Ultra-Wideband (ICUWB 2012),
Syracuse, USA, 2012.

[86] B. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. Ingeman Pedersen, “Channel parameter esti-
mation in mobile radio environments using the SAGE algorithm,” IEEE Journal on Selected Areas in Com-
munications, vol. 17, no. 3, pp. 434 –450, 1999.

[87] K. Hausmair, K. Witrisal, P. Meissner, C. Steiner, and G. Kail, “SAGE Algorithm for UWB Channel
Parameter Estimation,” in COST 2100 Management Committee Meeting, Athens, Greece, 2010.

[88] M. Gan, P. Meissner, F. Mani, E. Leitinger, M. Froehle, C. Oestges, K. Witrisal, and T. Zemen, “Calibra-
tion of Indoor UWB Sub-band Divided Ray Tracing Using Multiobjective Simulated Annealing,” in IEEE
International Conference on Communications (ICC), Sydney, Australia, 2014.

[89] G. Steinböck, T. Pedersen, M. Gan, T. Zemen, P. Meissner, E. Leitinger, and K. Witrisal, “Preliminary Hy-
brid Model For Reverberant Indoor Radio Channels,” in 10th MC Meeting of COST Action IC1004, Aalborg,
Denmark, 2014.

[90] E. Leitinger, P. Meissner, M. Froehle, and K. Witrisal, “Performance Bounds for Multipath-assisted Indoor
Localization on Backscatter Channels,” in IEEE Radar Conference, 2014.

[91] K. Witrisal, E. Leitinger, P. Meissner, and D. Arnitz, “Cognitive Radar for the Localization of RFID
Transponders in Dense Multipath Environments,” in IEEE Radar Conference, Ottawa, Canada, 2013.

[92] E. Leitinger, M. Froehle, P. Meissner, and K. Witrisal, “Multipath-Assisted Maximum-Likelihood Indoor
Positioning using UWB Signals,” in IEEE ICC Workshop on Advances in Network Localization and Navigation
(ANLN), 2014.

[93] T. Gigl, P. Meissner, J. Preishuber-Pfluegl, and K. Witrisal, “Ultra-Wideband System-Level Simulator for
Positioning and Tracking (U-SPOT),” in Proc. 2010 International Conference on Indoor Positioning and
Indoor Navigation, IPIN, Zurich, 2010.

[94] M. Froehle, “Multi-target Tracking for UWB Channels Using PHD Filters,” Master’s thesis, Graz University
of Technology, 2011.

– 172 –

http://www.evarilos.eu/index.php
www.spsc.tugraz.at/tools/UWBmeasurements


Bibliography

[95] M. Lafer, “Real-Time Multipath-Assisted Indoor Tracking and Feature Detection,” Master’s thesis, Graz
University of Technology, 2014.

[96] J. Kunisch and J. Pamp, “An ultra-wideband space-variant multipath indoor radio channel model,” in IEEE
Conference on Ultra Wideband Systems and Technologies, 2003.

[97] J. B. Allen and D. A. Berkley, “Image Method for efficiently simulating Small-Room Acoustics,” J. Acoust.
Soc. Am., 1979.

[98] B. M. Gibbs and D. K. Jones, “A Simple Image Method for Calculating the Distribution of Sound Pressure
Levels within an Enclosure,” Acta Acustica united with Acustica, vol. 26, no. 1, pp. 24–32, 1972.

[99] J. Borish, “Extension of the image model to arbitrary polyhedra,” The Journal of the Acoustical Society of
America, vol. 75, no. 6, pp. 1827–1836, 1984.

[100] A. Molisch, Wireless Communications. John Wiley & Sons, 2005.

[101] P. Bello, “Characterization of Randomly Time-Variant Linear Channels,” IEEE Transactions on Commu-
nications Systems, vol. 11, no. 4, pp. 360 –393, 1963.

[102] G. L. Turin, “Communication through noisy, random-multipath channels,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 1956.

[103] G. Turin, F. Clapp, T. Johnston, S. Fine, and D. Lavry, “A statistical model of urban multipath propaga-
tion,” IEEE Transactions on Vehicular Technology, vol. 21, no. 1, pp. 1–9, Feb 1972.

[104] S. O. Rice, “Statistical Properties of a Sine Wave Plus Random Noise,” Bell System Technical Journal,
vol. 27, pp. 109–157, 1948.

[105] “Multipath Propagation and Parameterization of its Characteristics,” Recommendation ITU-R P.1407,
2009.

[106] D. Arnitz, U. Muehlmann, and K. Witrisal, “Wideband Characterization and Modeling of UHF RFID
Channels for Ranging and Localization,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 5, pp.
2491–2501, May 2012.

[107] N. Amiot, M. Laaraiedh, and B. Uguen, “Pylayers: An open source dynamic simulator for indoor propaga-
tion and localization,” in 2013 IEEE International Conference on Communications Workshops (ICC), June
2013, pp. 84–88.

[108] S. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall Signal Processing
Series, 1993.

[109] H. Van Trees, Detection, Estimation, and Modulation Theory, Part I. John Wiley & Sons, 2001.

[110] H. V. Poor, An Introduction to Signal Detection and Estimation. Springer, 1994.

[111] F. van Diggelen, “Gnss Accuracy - Lies, Damn Lies and Statistics,” GPS World, vol. 18, no. 1, 2007.

[112] R. B. Langley, “Dilution of Precision,” GPS World, May 1999.

[113] F. Athley, “Threshold region performance of maximum likelihood direction of arrival estimators,” IEEE
Transactions on Signal Processing, vol. 53, no. 4, pp. 1359–1373, April 2005.

[114] Y. Shen and M. Win, “Effect of Path-Overlap on Localization Accuracy in Dense Multipath Environments,”
in IEEE International Conference on Communications (ICC), may 2008, pp. 4197 –4202.

[115] M. Win and R. Scholtz, “Characterization of ultra-wide bandwidth wireless indoor channels: A
communication-theoretic view,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 9, pp.
1613 – 1627, Dec. 2002.

[116] L. Greenstein, D. Michelson, and V. Erceg, “Moment-method estimation of the Ricean K-factor,” IEEE
Communications Letters, vol. 3, no. 6, pp. 175–176, June 1999.

[117] L. Greenstein, S. Ghassemzadeh, V. Erceg, and D. Michelson, “Ricean K -Factors in Narrow-Band Fixed
Wireless Channels: Theory, Experiments, and Statistical Models,” IEEE Transactions on Vehicular Technol-
ogy, vol. 58, no. 8, pp. 4000–4012, Oct 2009.

[118] C. Tepedelenlioglu, A. Abdi, G. Giannakis, and M. Kaveh, “Performance analysis of moment-based esti-
mators for the K parameter of the Rice fading distribution,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), vol. 4, 2001, pp. 2521–2524 vol.4.

[119] C. Tepedelenlioglu, A. Abdi, and G. Giannakis, “The Ricean K factor: estimation and performance analy-
sis,” IEEE Transactions on Wireless Communications, vol. 2, no. 4, pp. 799–810, 2003.

[120] T. Marzetta, “EM algorithm for estimating the parameters of a multivariate complex Rician density for
polarimetric SAR,” in International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5,
May 1995, pp. 3651–3654.

[121] D. Simon, Optimal State Estimation, 1st ed. Wiley, 2006.

– 173 –



Bibliography

[122] O. Cappe, S. Godsill, and E. Moulines, “An Overview of Existing Methods and Recent Advances in Se-
quential Monte Carlo,” Proceedings of the IEEE, vol. 95, no. 5, pp. 899 –924, may 2007.

[123] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2, pp.
174 –188, feb 2002.

[124] X. Rong Li and V. Jilkov, “Survey of maneuvering target tracking. Part I. Dynamic models,” IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1333 – 1364, 2003.

[125] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association. Academic Press, 1988.

[126] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (SLAM): part II,” Robotics
Automation Magazine, IEEE, vol. 13, no. 3, pp. 108 –117, sept. 2006.

[127] J. Leonard, R. Rikoski, P. Newman, and M. Bosse, “Mapping partially observable features from multiple
uncertain vantage points,” Intern. J. Robotics Research, 2002.

[128] D. Alspach and H. Sorenson, “Nonlinear Bayesian estimation using Gaussian sum approximations,” IEEE
Transactions on Automatic Control, vol. 17, no. 4, pp. 439 – 448, Aug. 1972.

[129] P. Georgiou, P. Tsakalides, and C. Kyriakakis, “Alpha-stable modeling of noise and robust time-delay
estimation in the presence of impulsive noise,” IEEE Transactions on Multimedia, vol. 1, no. 3, pp. 291 –301,
sep. 1999.

[130] G. Tsihrintzis and C. Nikias, “Incoherent receivers in alpha-stable impulsive noise,” IEEE Transactions on
Signal Processing, vol. 43, no. 9, pp. 2225 –2229, sep 1995.

[131] T. S. Ferguson, “A Representation of the Symmetric Bivariate Cauchy Distribution,” The Annals of Math-
ematical Statistics, vol. 33, no. 4, pp. 1256–1266, 1962.

[132] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A Consistent Metric for Performance Evaluation of Multi-Object
Filters,” IEEE Transactions on Signal Processing, 2008.

[133] J. Munkres, “Algorithms for the Assignment and Transportation Problems,” Journal of the Society for
Industrial and Applied Mathematics, vol. 5, no. 1, pp. pp. 32–38, 1957.

[134] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT, 2006.

[135] T. Bailey, B. Upcroft, and H. Durrant-Whyte, “Validation Gating for Non-Linear Non-Gaussian Target
Tracking,” in 9th International Conference on Information Fusion, 2006.
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