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Abstract

The digital devices that have become part of our daily lives constantly evolve,
and with them the tasks we use them for. Today, devices such as smartphones
and tablets boast a processing power that was until recently only available on a
desktop PC. Furthermore, these new devices connect to the internet via inexpen-
sive wireless data connections, and perform countless everyday tasks—sometimes
even with the support of remote server services in the cloud. In this thesis, we
study an assortment of security and privacy challenges connected with this dis-
tributed data processing scenario.

First, we study the challenge of determining and reporting a platform’s state.
This query is motivated by the assumption that if a platform is in a certain known
state, it may be trusted to behave in a certain known way. We develop prototype
platforms that integrate two Trusted Computing techniques, namely the Trusted
Platform Module (TPM) and Intel’s Trusted Execution Technology (TXT). On
our Linux-based platform the platform administrator can stipulate that applica-
tions run only in a certain platform state, otherwise they remain inaccessible in
an encrypted form. Furthermore, using Android as a base platform, we proceed
to construct a more lightweight platform. This Android-based platform may
join a cloud network as a processing node, however only if the platform is in a
certain state. For this purpose, we develop a custom join protocol anchored in
Trusted Computing.

Secondly, we explore the challenge of reducing the complexity of a platform
and service. We design as prototype and implement a compact PrivacyCA, a
service that issues certificates for Trusted Computing keys. These keys sign
platform state reports in Trusted Computing.

Thirdly, we ensure that a client using a remote cloud service is able to pay
for it in a privacy-preserving way. To this end, we adopt a scheme which enables
privacy in an anonymous and unlinkable way, and evaluate its performance on
smartphone class platforms. Our results show that such a scheme runs suffi-
ciently fast on existing hardware platforms.

Fourthly, the v2 generation of TPM chips is now becoming more widely avail-
able, and it would be helpful to have a TPM v2 simulator for this new generation
available. We demonstrate semi-automatic processing of the TPM v2 specifica-
tion with the aim of extracting and generation of a full TPM v2 simulator that
may run just as software, or become, ported to an FPGA platform, a basis for
simulating a hardware TPM chip.

v





Acknowledgements

I’m deeply grateful to IAIK for providing the research environment and resources
that enabled me to perform the work presented in this thesis. A heartwarming
“Thank you!” to all collaborators over the years. This especially applies to
all my colleagues in the Secure and Correct Systems (SCoS) research group at
IAIK, but also to all partners and collaborators in all the individual research
projects.

I also want to thank my PhD supervisor, Roderick Bloem. His feedback,
patience, expertise and insights were an invalueable contribution to my academic
growth and this thesis. Also, I want to thank Allan Tomlinson for being the
external assessor of this thesis, and for every insightful discussion every time we
met at a Trusted Computing event, somewhere in Europe.

Martin Pirker
Graz, January 2015

vii





Table of Contents

Abstract v

Acknowledgements vii

List of Tables xiii

List of Figures xv

Glossary xvii

1 Introduction 1
1.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . 1
1.2 Obstacles and Challenges . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 11
2.1 Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 TCG’s Trusted Computing . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Trusted Platform Module . . . . . . . . . . . . . . . . . . 15
2.2.3 TCG Software Stack . . . . . . . . . . . . . . . . . . . . . 17

2.3 Platform State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 The PC Platform . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Chain of Trust . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Measurements and Complexity . . . . . . . . . . . . . . . 20
2.3.5 Virtualization for Measurements Reduction . . . . . . . . 22

2.4 Dynamic Root of Trust . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Intel’s Trusted Execution Technology . . . . . . . . . . . 23
2.4.2 Intel’s tboot . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 A Support PKI for Trusted Computing . . . . . . . . . . . . . . 26
2.5.1 Credentials . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Attestation Identity Keys (AIK) and PrivacyCAs . . . . . 27

2.6 Aspects of Trusted Platforms . . . . . . . . . . . . . . . . . . . . 30
2.6.1 Security of Trusted Computing Technology . . . . . . . . 30
2.6.2 Input/Output as Attack Surface . . . . . . . . . . . . . . 32

ix



x Table of Contents

2.6.3 Practical Chain of Trust . . . . . . . . . . . . . . . . . . . 32
2.6.4 Integrity of Code and Data . . . . . . . . . . . . . . . . . 32
2.6.5 Open Source . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.6 Boundary of Security Breaches . . . . . . . . . . . . . . . 33
2.6.7 Software Management Usability . . . . . . . . . . . . . . . 34

2.7 Linux Platform Technology . . . . . . . . . . . . . . . . . . . . . 34
2.7.1 Logical Volume Manager . . . . . . . . . . . . . . . . . . . 34
2.7.2 Linux Unified Key Setup Encryption . . . . . . . . . . . . 35

2.8 ARM Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.9 An Anonymous Accounting Scheme . . . . . . . . . . . . . . . . 37
2.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 A Platform with Enforcement of Application Integrity 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Secure Boot . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Base System . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Trusted Virtual Application Manager . . . . . . . . . . . 48
3.2.4 Virtualization Partitions . . . . . . . . . . . . . . . . . . . 49

3.3 Operating the Platform . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Update and Application Mode . . . . . . . . . . . . . . . 50
3.3.3 Base System Rebuild and Resealing . . . . . . . . . . . . 50
3.3.4 Small Updates . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.5 Application Management . . . . . . . . . . . . . . . . . . 51
3.3.6 External Reboot . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2 Disk Storage Management . . . . . . . . . . . . . . . . . . 53
3.4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.4 Shared TPM Access . . . . . . . . . . . . . . . . . . . . . 57

3.5 Platform Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 Attacker Model . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Lightweight Distributed Attested Clouds 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Cloud Node Properties . . . . . . . . . . . . . . . . . . . . 62
4.2.2 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Node Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.1 Cloud Node Joining Cloud Control . . . . . . . . . . . . . 64
4.3.2 Node Update / Cloud Rejoin . . . . . . . . . . . . . . . . 67
4.3.3 Node Local Storage . . . . . . . . . . . . . . . . . . . . . 67

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



Table of Contents xi

4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 x86 PC Platform . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3 ARM Platform . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Aspects of Platform Security . . . . . . . . . . . . . . . . . . . . 74

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 A PrivacyCA for Anonymity and Trust 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Building a Trustworthy Service . . . . . . . . . . . . . . . . . . . 78

5.3 First Iteration and Building Blocks . . . . . . . . . . . . . . . . . 79

5.4 Second Iteration: A Compact PrivacyCA Protocol and Service . 82

5.4.1 Communication Protocol . . . . . . . . . . . . . . . . . . 82

5.4.2 Reduced Software Image . . . . . . . . . . . . . . . . . . . 84

5.5 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Privacy-Preserving Payment for Constrained Clients 89

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Scenario and High Level Description . . . . . . . . . . . . . . . . 91

6.2.1 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.3 High Level Description of Operations . . . . . . . . . . . . 94

6.2.4 Privacy Considerations . . . . . . . . . . . . . . . . . . . . 95

6.3 Practical Anonymous Payment . . . . . . . . . . . . . . . . . . . 97

6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.3 Implementation Discussion . . . . . . . . . . . . . . . . . 102

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Semi-Automated Prototyping of a TPM v2 107

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 From TPM Specification to Implementation . . . . . . . . . . . . 108

7.3 Assembly of a TPM v2 Software Simulator . . . . . . . . . . . . 110

7.3.1 Input Data Transformation . . . . . . . . . . . . . . . . . 110

7.3.2 Information Extraction . . . . . . . . . . . . . . . . . . . 111

7.3.3 Advanced Code Generation and Additional Steps . . . . . 113

7.4 Hardware TPM v2 Simulation Platform . . . . . . . . . . . . . . 114

7.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 116

7.4.3 Prototyping Results . . . . . . . . . . . . . . . . . . . . . 117

7.5 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . 118



xii Table of Contents

8 Conclusion and Outlook 119
8.1 Review of Challenges and Achievements . . . . . . . . . . . . . . 119
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A Publications and Cooperations 123

Bibliography 129



List of Tables

5.1 PrivacyCA prototype component sizes . . . . . . . . . . . . . . . 87

6.1 Execution time of Activate and Spend . . . . . . . . . . . . . . . 101

xiii





List of Figures

2.1 PC chain of Trust . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Stored measurements log . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Booting Linux with tboot. . . . . . . . . . . . . . . . . . . . . . 25
2.4 AIK certificates, PrivacyCA and requester interaction . . . . . . 29

3.1 Overview of major platform blocks and execution flow . . . . . 48
3.2 Platform prototype runtime architecture . . . . . . . . . . . . . 53
3.3 TVAM commands overview . . . . . . . . . . . . . . . . . . . . 54
3.4 Detailed platform disk layout . . . . . . . . . . . . . . . . . . . 55
3.5 Concept of main platform file system . . . . . . . . . . . . . . . 55

4.1 Node-to-Cloud join protocol . . . . . . . . . . . . . . . . . . . . 65
4.2 Experimental hardware setup . . . . . . . . . . . . . . . . . . . 72
4.3 Block diagram of TPM attachment. . . . . . . . . . . . . . . . . 72

5.1 XKMS-based certificate query . . . . . . . . . . . . . . . . . . . 81
5.2 Formal specification example of PrivacyCA command . . . . . . 83
5.3 PrivacyCA client commands list . . . . . . . . . . . . . . . . . . 84
5.4 PrivacyCA implementation software layers . . . . . . . . . . . . 85

6.1 Cloud credits accounting flow overview . . . . . . . . . . . . . . 92
6.2 Scenario overview . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3 High-level operations of credit flows . . . . . . . . . . . . . . . . 94
6.4 Spend execution time . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1 FODG intermediate format . . . . . . . . . . . . . . . . . . . . . 112
7.2 YAML intermediate format . . . . . . . . . . . . . . . . . . . . . 112
7.3 Development setup with TPM hardware simulator. . . . . . . . 115
7.4 Prototype hardware setup . . . . . . . . . . . . . . . . . . . . . 117

xv





Glossary

ACM Authenticated Code Module (Chapter 2.4.1), 24, 25, 52, 54, 58, 59, 70

AIK Attestation Identity Key (Chapter 2.5.2). 8, 27–30, 41, 64, 66, 68, 69, 77,
80–83, 86, 88, 126

DRTM Dynamic Root of Trust for Measurement (Chapter 2.4). 23, 24, 36, 39

EK Endorsement Key (Chapter 2.5.1). 26–28, 31, 64, 66, 69, 77, 80, 83, 88, 126

FPGA Field Programmable Gate Array. 71, 108, 115–117, 121, 126

LCP Launch Control Policy (Chapter 2.4.1). 24, 25, 50, 53

LPC Low-Pin-Count bus. 71, 72, 114–117

LUKS Linux Unified Key Setup (Chapter 2.7.2). 35, 54

LV Logical Volume. See LVM. 34, 54

LVM Logical Volume Manager (Chapter 2.7.1). 34, 54

MLE Measured Launch Environment (Chapter 2.4.1). 24, 25, 48, 50, 52, 53,
58

PCR Platform Configuration Register (Chapter 2.3). 16, 17, 19, 21, 22, 26, 27,
29, 32, 39, 50, 52, 53, 64, 66, 70, 73, 114

PKI Public Key Infrastructure (Chapter 2.5). 26, 80, 82

SINIT SINIT is the name of the ACM provided by Intel. 52–54, 70

SRTM Static Root of Trust for Measurement (Chapter 2.3.2). 23, 73

TCG Trusted Computing Group (Chapter 2.2). 2, 4, 8, 9, 15–18, 22, 26–28,
35, 41, 43, 57, 64, 78, 80, 107–110

TEE Trusted Execution Environment (Chapter 2.8). 36, 37, 121

xvii



xviii Glossary

TPM Trusted Platform Module (Chapter 2.2.2). v, 2, 4, 5, 7–10, 15–17, 19,
21–23, 25–28, 30–33, 35, 36, 38–41, 43, 45–47, 50, 52, 54, 57–59, 64–71,
73–75, 77, 81, 83–87, 107–118, 120–122, 125, 126

TSS TCG Software Stack (Chapter 2.2.3). 17, 18, 64, 69, 74, 85, 109, 114, 115,
122

TVAM Trusted Virtual Application Manager (Chapter 3.4.1). 39, 48–54, 56,
59, 124

TXT Intel Trusted Execution Technology (Chapter 2.4.1). v, 2, 5, 7, 19, 23–25,
31, 36, 38–40, 45–48, 50–52, 57–59, 69–71, 73, 74, 93, 103, 120

VLP Verified Launch Policy (Chapter 2.4.2). 25, 50, 53



1
Introduction

1.1 Introduction and Motivation

Digital devices such as smartphones and tablets are now a part of our daily
life, and we have come to rely on their ability to use online internet services.
Proportional to the upgrading of the underlying technology the capabilities of
these devices are becoming ever more powerful. These enhancements also impact
the tasks we use these devices for in our daily life. As an extension of this, we
tend to entrust them increasingly with our personal data, which gives rise to
the question of security and privacy of (private) data in the global internet of
devices—covering client devices as well as servers.

Looking back a few years, the concept of a computer in every home at first
appeared ridiculous at the time, but then it started to become affordable, and
then in a very short time the personal home computer became both widely spread
and well accepted. Sustained advances in microprocessor technology mean that
today’s mobile phones are rightly known as “smartphones”, and these now boast
the processing power of a desktop PC not many years ago. The result is that
nowadays a smartphone is quite capable of performing many of the everyday
tasks confronting end-users that previously required a full-blown desktop PC.
If users wish to look something up on the internet, use an electronic messaging
platform, or participate in social networks, all these tasks can nowadays be
accomplished on any smartphone.

Due to size constraints a smartphone’s capabilities are limited by nature in
terms of battery life and storage size, and consequently not all tasks can be
achieved on such a device alone. If a task is too demanding for a smartphone,
parts of it or even the whole task need to be executed on a more powerful

1



2 Chapter 1. Introduction

platform. One approach suiting itself to remote data processing is the cloud
computing option, which involves large data centres taking advantage of the
economics of scale and leasing computing power and storage capacity to clients
on demand. This combination of limited client devices (such as smartphones and
tablets) and the availability of cheap wireless network connections and remote
processing power readily available via cloud computing gives rise to a distributed
processing scenario: Relatively minor tasks are executed directly on limited
client devices, however extensive, more complex and resource consuming task are
delegated to powerful remote cloud computing services. The data is externally
processed, the results are sent back to the client and the computing resources
consumed are billed to the client.

Since the use of this distributed data processing scenario is on the rise, the
question of data security and privacy on local and remote platforms is of concern
to all users. Increasingly, users own a smartphone, tablet, or similar device to
access all kinds of internet services, and more and more businesses are leveraging
the cloud for data processing by off-loading tasks to a remote cloud service. Spe-
cific security solutions1 may be applicable in limited business scenarios, however
solutions providing enhanced security for mass-market platforms and scenarios
tend to have immediate appeal, as more platforms and users are positioned to
take advantage of them.

One approach in improvement of security for mass-market platforms is Trusted
Computing, which was developed and specified by the Trusted Computing Group
(TCG) [128] industry consortium. At the core of Trusted Computing is the
Trusted Platform Module (TPM) [140, 144], which is a dedicated hardware chip
providing a set of functions for cryptography and cryptographic key manage-
ment and additional primitives that support the implementation of higher-level
security functions such as the reporting of a platform’s state, so-called (remote)
platform state attestation. The TPM chip has already sold in the hundreds of
millions2, however the application areas where a TPM is used are still limited.
Furthermore, there are even newer technologies like Intel’s Trusted Execution
Technology (TXT) [46] that promise to improve the assessment of a platform’s
security state with dedicated cooperation from the platform CPU, chipset and
integrated TPM.

The mass-market availability of such recent advances in security technology,
as they are now being integrated into platforms and devices, inspires a closer
look, which includes prototypical applications and experimentation therewith in
the distributed processing scenario—small and mobile clients and remote (cloud)
data processing.

1For example expensive, dedicated high-security modules (HSMs) on servers.
2The last official statement on the TCG homepage dates from as early as 2011 [135]. In

private conversations with TCG members the estimate is that now over one billion TPMs have
been shipped and integrated into a variety of platforms.
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1.2 Obstacles and Challenges

There are numerous obstacles and challenges to be overcome in the distributed
processing scenario. The work presented in this thesis does not, and indeed is
not intended to, tackle all of them. Instead, we focus on a selection of platform
security and user data privacy challenges posed by the distributed processing
scenario:

• As computation tasks are delegated to remote cloud nodes and servers, is
it possible to determine what is being executed on the remote platform? It
would be good to ensure, by running some form of attestation process and
protocol—that the intended software version also set up with the correct
configuration is working with the data. This question concerns both oper-
ating system software layer and higher-level application software (image,
possibly provided by a client).

Furthermore, on the assumption there is a working attestation process to
analyse the software installed on a platform (see above), how complex is the
reporting in this process? Is the state report so complex that this process
requires expert knowledge and special tools, or can this be simplified to
the comparison of a value operation or question whether this state is good,
and all others are bad—that an administator or common end-users can act
upon or manage?

• The internet is a network connected across the world, so while on one
side of the world capacity is being used, on the other, where it is night,
processing capacity is idle. Given, then, that certain platforms are idle for
a number of hours every day, it would surely be a beneficial idea to put
idle capacity to good use. To quote a practical example, in the case of
an idle internet-connected PC, what effort is necessary to turn it into a
temporary, attestable (meaning “known”) platform state processing node
in a data processing network?

• Remote network services do not necessarily have to be complex, but should
be reliable and attestable as to their state and functions provided. A
network service required by entities interacting on a network may only
be performing a simple processing operation, however the most important
property of the service may be that it can also perform an attestation
protocol on its own state. This protocol produces a proof that the service
provided is exactly as expected by the clients. What is a prototype example
of such a minimal, but sorely-needed security service?

• Although costs of cloud data processing continue to fall, services consumed
in the cloud do still attract charges. The simplest approach to performing
the accounting is through a processing cost account with a cloud provider,
which lies within a client account and is in turn tied to the client’s credit-
card, to which all costs for resources consumed are billed. This basic setup
leads to the natural assumption that, whenever costs need to be paid, a
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real person or company (in effect the credit-card holder) must form part
of this accounting process. As a result of this, paid cloud services cannot
be bought anonymously.

It is interesting to reflect on this accounting problem and ask whether the
default “no anonymous clients” scenario is really the only practical one. A
cloud provider does not and cannot provide services free of charge, but if
there is a way to pay anonymously for these services, this feature becomes
the enabler for cases where the actual identity of the client does not matter.
This leads to the conclusion that, if a practical, anonymous accounting and
payment scheme for cloud resource consumption existed, this would expand
the potential uses of cloud services to scenarios where client anonymity
is important—which translates to increased business opportunities for a
cloud provider.

• As the “v1.2” TPM chip generation currently available on the market
has not enjoyed widespread adoption, a new “v2” TPM generation has
been prepared by the Trusted Computing Group for mass-market release.
Learning from the previous generation, the TCG implemented a set of
new primitives to support new functions and deployment scenarios3, which
are impossible or very hard to implement with the current generation.
Unfortunately, there currently exists only a TPM v2 specification, but so
far no official public TPM v2 emulator package or programming language
(e.g., C or Java) bindings.

A software TPM v2 emulator would be a great aid to exploration of the
new functions and experimentation. This need applies to practical use
cases on the client and server side of the distributed processing scenario.
Furthermore, actual practical use and application of the specification prob-
ably identifies weaknesses and defects early and thus promises to produce
significant feedback for the TPM v2 specification process.

1.3 Contribution

The obstacles and challenges outlined in Section 1.2 are a high-level introduc-
tion to and reflection on several specific challenges. We tackle each of these
challenges in a separate chapter of this thesis, by drawing on and utilising tech-
nological advances and approaches from various areas. This results in novel
insights and several experimental proof-of-concept prototypes. As a whole, the
advances described in this thesis for these individual challenges contribute to
the implementation and practical deployment of the distributed processing sce-
nario4.

3For example, the TPM v2 supports the need for distinct cryptographic key hierarchies for
platform, operating system and application use. The current TPM generation (v1.2) has only
one key hierarchy, in which all keys are anchored.

4Naturally, the stream of problems never stops as the distributed processing scenario and
internet devices continue to develop rapidly—more thesis challenges...
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This thesis is the culmination of several years of research work, the main interim
results of which have previously been presented in papers at peer-reviewed inter-
national conferences and workshop meetings and published in those proceedings.
A full, detailed list referencing the previous works this thesis is based on can
be found in Appendix A of this thesis, and indeed some passages are included
verbatim.

The challenges, solutions, approaches and prototypes presented in the chapters
of this thesis are as follows:

• The work presented in Chapter 3 explores the problem of defined plat-
form state in the scenario of a modern, general-purpose operating system
on a PC platform. More specifically, this comprises the problem of deter-
mination of the current state of a platform, how it reached that state, and
reporting of the state to external parties (in a so-called remote attestation
process) wishing to form an opinion of the state of the platform or remote
cloud server.

We study this problem with a full-size off-the-shelf operating system called
Debian Linux. We run it on a mass-market PC platform with integrated
Trusted Platform Module (TPM) [140] and Intel Trusted Execution Tech-
nology (Intel TXT) [46] support. These two technologies provide the nec-
essary hardware support functions to allow us to integrate platform state
measurement, code execution logging and reporting into the Debian Linux
operating system and runtime environment.

Also, we modify5 Debian such that an administrator defines the boot pro-
cess and platform start-up state. The platform administrator is able to
require that the main Linux system becomes accessible only when a cer-
tain configuration boots on a specific hardware platform. Furthermore, the
administrator can still install any Linux (Debian) software package and li-
braries desired onto the platform. With the help of automated scripts
the platform can rebuild itself and the new configuration defined by the
administrator becomes the new one upon next reboot.

The core contribution of the prototype developed in Chapter 3 is the com-
bination of state-of-the-art advances in mass-market PC platform security
technology (TPM, TXT) with a common general-purpose desktop OS in
the form of Debian Linux.

The challenges are, first, enabling a system administrator to lock down
the platform, so that only when a specific configuration boots does the
platform and its data become accessible. Secondly, with the integration
of Trusted Computing ensuring a remote query and reporting of the plat-
form state can be performed—remote platform state attestation6. Thirdly,

5As Debian Linux is fully open-source, it is a perfect choice for experimental modifications
of any component.

6See Sections 2.2.2 and 2.3 for more details.
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the prototype platform presented still allows to install any Linux software
package without restrictions, pending approval from the administrator.
Fourthly, the platform can rebuild itself at runtime for a new administra-
tor defined state that becomes the new default state at next reboot. To
our knowledge, this combination of features has not been demonstrated in
such a full-size integrated prototype before7.

The work of Chapter 3 produces a working prototype, however at significant
effort. As a general purpose operating system Linux is quite complex, and as a
result a large number of components are involved in the boot process or part of
the runtime environment. Consequently, this results in numerous modifications
to Debian Linux and requires the development of custom code or scripts to
achieve the working prototype of Chapter 3.

Building on the above-mentioned effort invested in Chapter 3, we focus the
work of the following two chapters on the reduction of this effort, and conse-
quently of prototype complexity, although naturally this implies less functions
and features are either implemented or available.

The underlying insight is simple: Some problems and services profit from
a platform that can report its current state, but do not necessarily require a
general purpose platform. Reduction of platform features, service functions and
consequently implementation complexity, however, provides benefits in multi-
ple ways: First, there is a smaller amount of implementation effort. Secondly,
fewer components and less complexity ease understanding of the platform, as
the working memory capacity of the human brain is limited. This contributes
to the third benefit: detection and location of bugs and reflection on security
features and limitations of the platform become more efficient.

• The work of Chapter 4 builds on the challenge of Chapter 3 to construct
a platform which starts in a defined platform state, which can then be
reported to a third party. However, the work of Chapter 4 is based in
place of Linux on the Android operating system platform and runtime
environment.

Android’s origin is in the smartphone and tablet market where platform
resources are scare. In the case of a typical Android devices mass stor-
age is provided through flash memory, which is constricted by a limit on
read/write cycles, before it burns out. Consequently, Android separates
read-only storage (code) and temporary storage (application data), in or-
der to manage storage wear according to expected usage patterns8. This
separation makes implementation of required support for platform state
measuring and reporting to Android easier. Overall, the result is fewer

7Feedback on a live demonstration of the prototype platform to representatives of major
commercial platform vendors in 2011 reinforces our belief.

8This does not mean system code can never be changed. Of course the Android core
platform components can be upgraded to a newer version, but the fact that this is done rarely
motivates explicit separation from frequently changing data.
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modifications on Android compared to the number of modifications re-
quired for a full-size Linux—as in Chapter 3.

The first contribution of Chapter 4 is the proof-of-concept modification of
Android x86 [3]. The Android prototype with Trusted Computing modifi-
cations starts in a certain state and is then able to produce a report on the
state it has booted into through use of the same TPM and TXT technol-
ogy as used for the platform in Chapter 3. Our Android-based prototype
is a stand-alone software image, which is capable of booting from a simple
USB stick and does not depend on main platform mass storage.

In contrast to Chapter 3 there is no installation process onto a specific
hardware, the USB stick can boot on any TXT-enabled PC platform9.
Consequently, this property allows very fast (re)boot of any unused PC
(plug-in USB stick and reboot) into this Android-based platform. Thus,
as a second contribution we develop a concept on how such an attested
processing node can become part of something bigger, part of a cloud of
processing nodes.

We implement the attestation and reporting components in the platforms of
Chapters 3 and 4 by taking advantage of platform support for Trusted Comput-
ing technology. More specifically, the Trusted Platform Module (TPM) (Sec-
tion 2.2.2) uses standard RSA keys for cryptography, for signatures on data
blocks etc. Nowadays the cryptography of RSA keys is a well-known domain.
However, the RSA keys of a TPM possess additional descriptive attributes10

that describe their specific properties and intended usage in Trusted Computing
scenarios. One of these attributes specifies that a key is capable of performing
a signature for a platform’s state report (Section 2.5.2). Naturally, to preserve
and document this specific attribute of a key, certificates provide a way to bind
the key to its supplemental attributes. This demands a specific certification
process, so that the key’s signature on a platform’s state report can be verified
and reconstructed at a later time to have been done with the correct key with
the correct attributes.

Unfortunately, traditional certification authorities (CAs) do not know about
TPM keys and their special attributes, but in order to issue certificates for TPM
keys a CA needs to be able to understand TPM key attributes and data struc-
tures and supplemental certificate types as they exist in a Trusted Computing
environment.

• The work of Chapter 5 addresses the lack of public11 certification au-
thorities for keys originating in a TPM. In this chapter we outline the
design considerations and implementation trade-offs in our effort to con-
struct a so-called PrivacyCA third-party certification service. In a Trusted

9Naturally, the respective hardware drivers for chipset generation and hardware devices
must be supported by the software image.

10For example, whether a key is “migratable” or “not migratable”, or whether it is to be
used only for “signing” or “data encryption” operations—or is useable for both operations.

11Proprietary in-house setups are not known to us but probably exist in major companies.
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Computing scenario as envisioned by the TCG a PrivacyCA service is re-
sponsible for the certification and validation of attestation identity keys
(AIKs), which are the specific type of TPM keys designated to sign a
platform state report data structure as produced by the TPM (for more
information on AIKs see Section 2.5.2).

The prototype implementation developed and presented in Chapter 5 is a
minimalistic service providing a basic set of commands. However, these
commands are sufficient to produce and manage the necessary certificates
for TPMs and their keys, which are at the core of the process of remote
platform state reporting (attestation) in Trusted Computing.

The infrastructure specifications by the TCG suggest an XML-based pro-
tocol as one way of offering a certification authority interaction interface
for clients connecting on the Internet. First we try the XML-based ap-
proach, however after some experience therewith we discard it in favour of
a self-developed, custom protocol. The second revision of our PrivacyCA
service implements our own custom protocol. This approach provides two
important properties: First, a very compact implementation with only
very few dependencies into the runtime environment. Secondly, the formal
specification of the protocol enables the use of automation tools for robust
generation of the protocol parser code for the security-critical, network
input side.

Overall, in chapters 3 to 5 we present our work on how to build robust, compact,
attestable services and processing platforms. Any external party can request
from them proof that they are running the software expected to run on them,
thanks to the integration of Trusted Computing.

When a client wants to use a (hopefully attestable) remote data processing
resource, this leads to the question whether he can do this in a privacy-preserving
way.

• The work of Chapter 6 explores the challenge of privacy-preserving re-
source accounting in a distributed processing scenario: In our scenario a
client possesses a smartphone and consumes cloud computing resources.
He does not want to reveal his identity to the cloud provider and demands
to pay anonymously for resources consumed.

The approach we present in this chapter eschews the complexities of a
general purpose e-payment architecture. Rather, our approach takes ad-
vantage of the limits of our scenario: The client wishes or is required to
pay for the resources consumed from one specific provider.

Consequently, our accounting scenario builds on a recent proposal of an
anonymous payment scheme that ideally fits our scenario, since the scheme
ensures the privacy of the client. This comprises two main properties:
First, client anonymity and secondly, the unlinkability of each of the client’s
individual actions.



1.3. Contribution 9

We map the scheme to our scenario and as a proof-of-concept evaluation
we implement the most processing-intensive operations. Practical mea-
surements of the scheme’s execution speed on a set of hardware platforms
suggest the scheme is fast enough for practical deployment in mass-market
smartphone hardware.

The TPM v1.2 is a core technology used by the prototypes in Chapters 3 and 4 to
support platform state reporting. Naturally, aside from this specific application
the TPM can be used by application software in other cryptographic operations.
Unfortunately, the features of the TPM v1.2 are already a bit dated, as it was
introduced by the TCG in 2003. Consequently, TPM v1.2 features are not in
line with the demands of current platforms and software12.

In order to update the TPM feature set to better meet current demands the
Trusted Computing Group has developed and released a specification of a new
TPM v2 generation. First sample chips from vendors are available, however
integration of TPMs v2 into mass-market platforms is a slow process. Naturally,
support software is also still under development, which creates a chicken-and-egg
situation surrounding the TPM v2, as with all new technology.

The TPM v2 specification advertises one prominent improvement over the
v1.2 specification: The v2 specification is intentionally written in a specific for-
mat so that the specification is suited for automated tool consumption. This
feature should allow automatic generation of code for the new TPM v2. Further-
more, once the specification is available as a parsed data structure, this enables
the development of custom programs searching for errors and inconsistencies in
the specification13.

• The work of Chapter 7 explores the specification of the new TPM v2
generation. We test the TCG promise on the suitability of the specification
for automated tool consumption.

We develop a semi-automated toolchain, which is a scripted process, and
this accepts the published PDF format TPM v2 specification as input. As
a result, first the textual content is extracted from the PDFs. Secondly, in-
teresting portions are automatically identified, e.g. tables describing data
structures. These tables are then parsed and their content interpreted to
generate implementation code from them. Thirdly, the TPM v2 specifica-
tion is more than 1400 pages in size, since it embeds code in the program-
ming language C, so we extract it. This code illustrates the inner workings
of a TPM v2 chip and its runtime environment. As a whole, extraction
of the code along with the automated code generation produces a working
TPM v2 emulator prototype.

12For example, while TPM v1.2 supports SHA-1 hashes, today SHA256 is preferred, as
SHA-1 is no longer considered safe for a long time. Also, TPM v1.2 provides RSA cryptography,
while today ecliptic curves are preferred over RSA due to their smaller key size.

13As a simple example inconsistencies or typos: if an identifier exits only once in the speci-
fication and is never referenced, there is the possibility of a mistyped identifier.
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The resulting prototype allows anyone to develop for the TPM v2, while the
hardware chip is still elusive in mass-market platforms. Furthermore, the inter-
mediate data structures produced in our process are well suited as input for code
generators producing TPM v2 interface code for various programing languages.

1.4 Overview

The chapters of this thesis are structured into the following major sections:
Chapter 2 presents a succinct introduction to security and privacy/trust theory
as well as to the technology and platforms used to develop the practical proto-
types in the following chapters. Following this, Chapters 3 to 7 are outlined in
Section 1.3 above. After that, Section 8 reflects on the work accomplished and
speculates where the future might lead. Appendix A provides an overview of
interim results and publications forming the basis of this thesis.



2
Background

This chapter provides a compact introduction to and overview of the technology,
concepts, industry standards and related approaches in the problem domains
touched on by this thesis. They provide the foundation for the contributions in
this thesis—or more figuratively, they are the giant’s shoulders those contribu-
tions stand on. The material in this chapter is naturally not exhaustive due to
limited space. Rather, it provides a level of insight and understanding into the
relevant problem domains, as most probably no one is well-versed in all of them.
References to related works, publications and supplemental works are embedded
in the text and so are pointers to additional material on specific topics when
appropriate.

2.1 Trust

The term “trust” is for many an instinctive, natural concept. There is seldom
an active, conscious thought expended on what it actually means. However,
without a reasonable working concept of trust in daily social interactions our
society would probably cease to function as it should:

“Society runs on trust. We all need to trust that the random peo-
ple we interact with will cooperate. Not trust completely, not trust
blindly, but be reasonably sure (whatever that means) that our trust
is well-founded and they will be trustworthy in return (whatever that
means).” [111]

There are various social pressures, dilemmas, interests and moral norms which
together enable this trust in our day-to-day social life. Discussion of the com-

11
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plexities of social trust processes easily fill a book—[111] provides an extensive
reflection.

Now that computers, computer networks and network services increasingly
form part of our daily life, this raises the challenge of how concepts underlying
our social experience of trust can be transferred and adapted for interaction with
novel computing devices and services1. Why should someone trust all those new
computers to do exactly what is claimed? Why should anyone trust a personal
digital device, networked server or service to keep the user’s data safe and do as
expected in line with the user’s preferences?

Comparison of the human/social aspect of trust to the technical/implementation
side of trust in computing platforms crystallises into three problems [99], which
are:

• The problem of unambiguous identification of a person or device.

• The problem of assessment whether a person or platform operates unhin-
dered.

• The problem of expected/trusted reference behaviour of a person or plat-
form.

In the following we explore each of these problems in more detail.

Unambiguous Identification

Humans beings are, by nature, very good at remembering other humans beings.
One remembers a person’s specific look and gait, for example. Similarly, almost
every “thing” in our daily life is somehow unique, nothing is exactly the same.
Also, as things are used, wear and tear makes them unique and thus makes re-
identification of the same thing easier from a human perspective. A personal
device like a smartphone may be very reliably identified as one’s own because
there is perhaps a known scratch on its outer case. Once it was dropped on
ground by accident, but the scratch on the outside now makes it uniquely, easily
re-identifiable.

From a technical perspective unambiguous identification of certain computer
platforms and services is a challenge. For example, while it is easy to command
a computer program to set up a connection to a certain server or service on the
internet, it is then difficult to assess whether the job was executed correctly by
the network components2—how can the correctness of the established connection
be assessed?

1If users are not able to re-use and re-apply familiar concepts and have to learn everything
from scratch when a new technology is released, the acceptance and adoption by users would
be much more difficult.

2This is the optimistic view that the network is complex, causing occasional malfunction.
The pessimistic view is that someone on the network is deliberately tampering with the con-
nection, a man-in-the-middle attack.
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Cryptography provides the means, algorithms and protocols to tackle this
assessment problem. If it is known that a platform hosts a unique private cryp-
tographic key, only this platform is able to perform an operation with this key.
So one technical solution for unambiguous identification of a specific platform is
challenging the platform to perform a certain key operation. If the operation is
performed correctly, then at the other end of the connection is really the correct
platform as expected3.

Unhindered Operation

A human being most probably does not behave in a trustworthy way, if he or she
is under certain influences. He or she might be suffering from a high fever, and
consequently not everything said matches normal behaviour in a known, trusted,
healthy state. Or as another example, if someone points a gun to a person’s head,
this external influence probably affects this person’s further actions. External
circumstances encourage modified behaviour.

Similarly, performance of a computer platform depends on unhindered op-
eration. For example, the correct working of a standalone laptop is not easily
influenced, and thus more trustworthy, compared to when there are one or more
external devices attached to it. A single device or port connection is sufficient
to maliciously take over complete control of a laptop (see also Section 2.6.2).

From the perspective of software operating on a platform the isolation of
processes from one another is an important feature. It is undecidable whether a
certain process or program operates as intended in the future or not. If, however,
one process misbehaves at runtime, it immediately becomes untrusted4. It is
important to ensure that all other running processes continue unhindered in
their operation so that they and their data may remain trusted.

References

Social trust grows with the accumulation of positive experiences and references.
A stranger may over time become a personal friend because of his history of
consistent, good, cooperative behaviour in social situations. In the absence of
personal experience it is natural to rely on recommendations and opinions from
friends we trust, who can give references to good shops, quality craftsmen and
quality services. If a good friend trusts someone, then it is reasonable to follow
his perception of trust.

A similar accumulation of references applies in computing. For example, a
user buys a laptop and installs his preferred software environment. From this
point on forward the laptop is used every single day, and to the satisfaction of

3We admit that the practical implementation of this problem—see, e.g., the TLS proto-
col [29] and its infrastructure—is more complex than it initially appears, but this is not our
focus here. We want to show the “unique cryptographic key for unambiguous identification”
is one possible technical solution.

4For example, a process tries to access memory with data which is off-limits for it. Con-
sequently the underlying operating system or hypervisor detects the memory segment access
violation.
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the user it performs as expected every day. Consequently, the user trusts his
laptop more and more, it is a daily companion that so far has never let him
down. If personal experience is lacking, for example with a new software pro-
gram5, the user depends on authorities he trusts, for example the local system
administration staff, to help him choose and decide. Local system administra-
tion can help users with reference recommendations on device brands, software
companies, software applications, network services, etc., which are trustworthy
in their experience.

Technical Implementation of Trust

The previous three sections illustrate the connection between the social/human
side of trust with the technical challenges of trust. Naturally, a program code
does not care about social concepts and human reality when a trust decision is
quite fuzzy and grows slowly over time. With networked computers a program
needs a clear approach for a decision to trust6.

Ideally, a trust decision can be reduced to a simple Boolean decision, or
a numerical figure and a value range which allows a clear decision whether a
value falls on either the trusted or untrusted side. If the result is “trusted”, the
program continues, if not, the program stops with an error and forwards the
decision to a user.

The large problem domain of integrating components of trust into modern
computers is extensively considered in [83]. In the following section we focus on
one specific approach to provide base technology for the prototypes in this thesis,
namely the implementation of “Trusted Computing” on industry standard PC
platforms.

2.2 TCG’s Trusted Computing

2.2.1 Introduction

The creation of platforms with enhanced security features is a continual challenge
in computer science—[118] provides a historical overview and background. With
the rise of industry standard PC platforms the problem of providing robust
security functions and an increased resistance against certain attacks became
the focus of PC hardware and software vendors. In the search for a solution an
industry consortium formed to tackle this problem in PC mass-markets. The
Trusted Computing Platform Alliance (TCPA) was founded in 1999 by leading
industry vendors:

5It is impossible to possess personal in-depth knowledge about all programs. Even with
open-source programs, whose code can be inspected in detail by everyone for correct imple-
mentation, this is impossible due to the effort needed.

6For example, a question to be decided is “whether the network connection was established
to the correct computer running the correct software on the other side of the network.”
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“[...] to encourage industry participation in the development and
adoption of an open specification for an improved computing plat-
form. The goal of this effort is to build a solid foundation for im-
proved trust in the PC over time.” [121]

The collaborative work of an increasing number of platform, software and tech-
nology vendors resulted in a trusted platform concept, the main component being
the Trusted Platform Module (TPM) first published in 2000 [10]. Following these
early efforts the TCPA was disbanded, and in 2003 it reformed into the Trusted
Computing Group (TCG) initiative [128]. The TCG continues the work of the
TCPA and still exists today as the core entity for specification and development
of their Trusted Computing concept.

The TCG architecture specification defines “trust” as

“...the expectation that a device will behave in a particular manner
for a specific purpose. A trusted platform should provide at least
three basic features: protected capabilities, integrity measurement
and integrity reporting.” [132]

From this definition it follows that trust is consequently not necessarily some
kind of “good” behaviour, but rather trust is expected behaviour. For a plat-
form which implements the three basic features mentioned in the above quote it
becomes possible to assess whether the platform is in a certain state. If the plat-
form is known to be in a certain state, the Trusted Computing concept assumes
the platform will behave in the expected way.

The core building block in TCG’s Trusted Computing architecture is the
Trusted Platform Module (TPM). Integrated into a platform it provides the
three basic capabilities demanded in the TCG architecture specification (see
above), which are then the foundation on which further high-level features build.

2.2.2 Trusted Platform Module

History

Specification and development of the Trusted Platform Module (TPM) has been
running for more than a decade. First major specification milestone was TCPA
Main Specification Version 1.1a7. Soon afterwards, the consortium was reorgan-
ised into the Trusted Computing Group (TCG) of today and released Version
1.1b [140] in February 2002. This v1.1b release of TPM chips attained main-
stream distribution and TPMs v1.1 started to appear on mass-market desktop
PCs and laptops.

Based on experience with version 1.1b, the TCG continued to improve the
TPM as the core building block of Trusted Computing platforms, leading to the
release of version 1.2 revision 62 of the TPM specification in October 2003 [140].
This TPM generation has been continuously maintained over the years up un-
til the current revision 116, published March 2011. The TPM v1.2 is widely

7Which is no longer available for public download from TCG.
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distributed on a variety of platforms: the TCG estimated in 2011 [135] that
worldwide more than 500 million TPMs have been shipped8.

Parallel with maintainance of the v1.2 TPM generation work on a “next-
generation” TPM progressed. The TCG is a member-only consortium requiring
members to sign a non-disclosure agreement. The development of the TPM v2
was a multi-year process taking place within the TCG working groups, and the
first publicly visible results in the form of a public draft specification were even-
tually published in October 2012 [142]. The copyright notice on the published
documents suggests the TPM v2 effort had been running internally since at least
since 2006. At time of this writing the current public TPM v2 revision is num-
bered revision 107 dated March 2014, and is still labelled as a “draft”. First
batches of TPM v2 chips were released from chip vendors into the market in
2014.

Features

A TPM is a stand-alone chip on a platform mainboard. It is a passive component,
meaning it only answer to commands received from the platform and never
initiates any action itself. It features cryptographic primitives similar to those
of a smartcard, but in contrast thereto it is typically9 physically bound to its host
platform. The tamper-resilient chip hosts functional engines for asymmetric-key
cryptography (RSA [101]), cryptographic hashing (SHA1 [77]), true hardware
random-number generation (which feeds key generation functions), a keyed-hash
message authentication code engine (HMAC), some volatile memory (working
memory), a very limited amount of non-volatile memory and other features.

With these dedicated hardware cryptography support functions the TPM
provides security functions for the platform and the software running on it (see
Section 2.2.3). With the TPM chip operating independently from other plat-
form components, the TPM embodies a hardware-based trust concept. More
specifically the TPM was developed to support and provide three different roots
of trust:

Root of Trust for Measurement (RTM)

A core feature of a trusted platform is measurement, logging and reporting of
platform state. Upon platform hardware reset a special set of so-called platform
configuration registers (PCRs) in the TPM are reset to a well-defined initial
value. There are 24 PCR in a TPM v1.2, and all are of the size 160 bits10.
PCRs cannot be directly written to. Rather, a PCR with index i, where i ≥ 0 in
state t is extended with input x (representing a single measurement) by setting
PCRt+1

i = SHA-1(PCRt
i||x). This enables the construction of a chain of trust.

8In private conversations with TCG members the estimate is now that over a billion TPMs
have been shipped.

9In specific environments such as business server scenarios TPMs are also provided as plug-
in modules due to backup and recovery requirements in case of mainboard failure.

10Equal to the size of a SHA-1 hash.
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A platform’s execution trail is documented in a chain of standalone measure-
ments, which are continuously aggregated into the PCRs—for more details on
this chain of trust concept see Section 2.3.2.

Root of Trust for Reporting (RTR)

With the RTR feature the TPM represents an entity trusted to report informa-
tion in an unforgeable way. It can sign the current values in its PCRs with a
cryptographic RSA key. This produces a cryptographically unforgeable report
on current PCRs content, which can then be forwarded to an external entity
as proof. This operation is called a TPM Quote operation. An enquiry from a
(remote) third party into platform state and subsequent production of a signed
PCRs report by the TPM is called a (Remote) Attestation process.

Root of Trust for Storage (RTS)

Naturally, the cryptographic keys used for quotes and attestation (see above)
deserve special protection. To this end, the TPM provides non-migratable keys,
which means these keys are bound to a specific TPM and that they can only
be used within this TPM, and it is impossible to export them in the clear.
If an application encrypts data to the public part of a non-migrateable key,
this is called binding, as such data can only be decrypted with a corresponding
private TPM key on a specific platform. An extension of this is sealing, where
additionally a key may only be used by an application when the current PCRs
are in a specific state. Consequently, decryption of sealed data is restricted to a
specific platform state—which is expected to happen at some future time.

2.2.3 TCG Software Stack

Use of the TPM hardware chip security functions requires a support package of
software and application libraries. The main component in the trusted software
platform design is the TCG Software Stack (TSS). The initial v1.1 TSS speci-
fication was released in August 2003, with a v1.2 update following in January
2006. The current revision is “Errata A” dated March 2007 [131].

The TSS comprises a stack of layers with clearly defined interfaces in-between.
The raw TPM chip data stream is handled by the operating system’s kernel-level
device driver. This raw device is managed by the Trusted Device Driver Layer
Library (TDDL), representing to user-level code the singleton interface to ex-
change command byte streams with the TPM.

The two major components of the TSS design are the Trusted Core Services
(TCS) and Trusted Service Provider (TSP). The low-level TCS is the system-
wide singleton daemon service, which manages the TPM resources for all TPM
clients. The TCS manages the TPM key slots, performs key handle and password
management, PCR extend operations, event logging and enforcement of mutual
exclusion for applications wanting TPM access. The higher-level layer TSP is the
library component for applications, and typically a shared library applications



18 Chapter 2. Background

link to. The TSP API is specified in the programming language C. Normative
C language .h header files are provided by the TCG. This ensures compatibility
between TSS implementations from different vendors. Consequently, applica-
tions using the standard API, as defined by the TCG, should be able to execute
with any TSS.

All modern operating systems recognize when a TPM is a component in the
PC platform, and automatically load the kernel support driver and export a
TPM device. A TSS’s TCS daemon then claims exclusive access to the TPM
device provided by the kernel.

The TSS specification was implemented by two major open-source11 pack-
ages: First the C language-based TrouSerS implementation [155], the first source
code revisions of which date back as far as 2004. Furthermore there is jTSS [127],
a TSS implemented fully in the Java language. jTSS started as a TrouSerS wrap-
per in 2006 and soon evolved in 2007 to a 100% stand-alone Java library and
service daemon, with the ability to directly access an operating system kernel
TPM bytestream driver. Both TSS packages are still actively maintained.

2.3 Platform State

2.3.1 Introduction

The core challenges for assessment and robust reporting (attestation) of platform
state are

1. the components contributing to or forming part of a platform’s state

2. measuring and reporting these in an efficient way.

The first is actually the problem of separation of what must be measured, what
is not to be measured and keeping them separate. A Trusted Computing Base
(TCB) [25] comprises all components of a platform critical for security, integrity
and reliability—whether hardware, firmware or software. Consequently, in or-
der to assess platform state, the state of the TCB components state is crucial.
Unfortunately, what components are part of a TCB depends also on the specific
scenario.

The second problem is not only the measurement operation itself, but also
the mapping of meaning for concrete measurement values, management of the
measurement values database and drawing a conclusion from a measurement
report.

In this section (Section 2.3) we discuss the above challenges from the per-
spective of current mass-market available PC platforms with integrated TPMs
(Section 2.2.2).

11The specific history of commercial TSS implementations lies beyond the scope of this work.



2.3. Platform State 19

2.3.2 The PC Platform

A platform power-on process (or hardware reboot) puts the platform into a well-
defined initial state. This state is defined by the platform hardware manufacturer
and could, for example, mean all memory is initialised to zero. Furthermore the
low-level component initialisation code always sets platform components into an
initial state. The specific steps performed should be described in the platform’s
documentation. The important insight is that power-up or hardware reboot
should always put the platform into the same “fresh” initialised state.

When platform initialisation is finished, software executes, changing platform
state. Consequently, in order to retrace platform execution history, the best way
is to start from the defined initial state and retrace the intermediate steps that
happened on the platform up to the current state.

On the common standard PC platform12 the first code to execute is the
BIOS13 initialisation code, which brings the platform to a working state, then
it subsequently initiates the hardware devices. When all hardware components
are ready, the boot sector of the first device in the boot order is loaded, and the
execution chain continues, first to operating system bootloader, then operating
system, etc.

2.3.3 Chain of Trust

On a PC the integration of a TPM provides the functions for implementation of
a so-called chain of trust rooted in the defined initial platform state. The BIOS
is the first entity to execute, and is the anchor all following components implic-
itly trust, thus, it forms the Core Root of Trust for Measurement (CRTM). It
is trusted to properly measure into TPM PCRs the first software or firmware
executing14. For each subsequent block of code after the BIOS a so-called tran-
sitive chain of trust is constructed, meaning that in order to pass execution to
the next block of code it is required that

1. the next block of code is measured and the measurement is extended into
the TPM PCRs

2. execution control is transferred to the measured block of code.

Figure 2.1 provides a graphical overview of the PC chain of trust. If the chain of
measurements is properly implemented, current values in the TPM PCRs are the

12With the meaning of a “Microsoft Windows”-compatible x86 platform based on Intel or
AMD CPUs. The Mac platform is also based on x86 platform components and technology,
however sometimes tends to implement things in its own “special ways”.

13On recent PC platforms the traditional BIOS platform boot code is gradually being re-
placed by the more modern UEFI approach. However, the basic boot-up concept remains
unchanged, so we do not differentiate BIOS vs. UEFI in this thesis. Also, the platform boot-
up phase is no longer important when Intel TXT is used (Section 2.4.1), as we do in the
prototypes developed in Chapters 3 and 4.

14The initial BIOS component measurements are defined in the respective PC platform
specification [141].
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result of all individual measurement events in the chain from platform reboot,
up to the current platform state.

Figure 2.1: Overview of approximate chain of trust as implemented on the PC plat-
form. Numbers indicate the order of steps. Each block is first measured
(red) and the result extended into a PCR in the TPM, then execution
control passes to the next block (blue).

2.3.4 Measurements and Complexity

As illustrated in Figure 2.1, the chain of trust is anchored in the BIOS and con-
tinues via a measurement-enabled boot loader15 into the operating system kernel
and the kernel drivers, and then further into high-level applications. However,
though the early boot phase is usually deterministic and linear the modular de-
sign of the PC architecture and environment means the execution path is not
always identical. With a general-purpose operating system implementing a chain
of trust, on Windows [33] or Linux (see Figure 2.2), hundreds of measurements
are performed in the chain of trust, in a non-deterministic order16 until a simple
basic desktop appears. Thus, though it is technically possible to implement a
chain of trust, several practical challenges must be considered:

15For example, a modified version of GRUB [66].
16For example, at one point the DHCP client obtains a network address. However, a re-

sponse from the network requires a random amount of time, consequently all further network
initialisation happens a little earlier or later during boot-up.
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Figure 2.2: Example of a stored measurement log for the early boot-up phase of a
Linux platform as produced by the Integrity Measurement Architecture
(IMA) [106] feature of the Linux kernel.

• As TPM PCR extend operations are not commutative (i.e. measuring A
then B does not result in the same PCR value as measuring B then A),
the final PCR value is different after every boot-up, if measurements are
not performed in a deterministic order. Consequently, the TPM operation
of sealing data to a specific PCR state (see Section 2.2.2) has only limited
applications in well-defined scenarios17.

• In order to verify the current values in the PCRs, a stored measurement log
(SML) must be maintained—for an implemented example see Figure 2.2.
A SML logs every measurement, in order, with a description what was
measured. A measurement by measurement replay or recalculation of the
individual hashing operations can then be compared to the expected final
PCRs state.

• A chain is only as strong as its weakest link. Consequently all components
measured must be assessed for trustworthiness. An unknown measurement
is not trustworthy. If a measurement is known, then it is “whitelisted”
(known as trustworthy) or “blacklisted” (known as untrustworthy). As ar-
gued by [46], the approach of trustworthiness for all components as default
and the creation of blacklists over time, as components are found to be un-
trustworthy, is futile. Instead, a better approach is to define a platform as
trustworthy if all components in the chain are whitelisted.

If one measurement or link in the chain of trust is not whitelisted, this
means an untrusted component has been executed18. Consequently, after

17This property is a core challenge for the use of sealing in the prototype platforms presented
in Chapters 3 and 4.

18In emphasis, a chain of trust documents platform execution state with the idea that the
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this the platform is to be considered compromised, and all measurements
accrued subsequently may have been tampered with, meaning the final
PCR values cannot be trusted either.

• A database for collecting measurement fingerprints may become huge. For
assessment of a platform’s trustworthiness every measurement must be
known. There are a lot of programs in the world and furthermore a cer-
tain version of a given program may appear as multiple measurements19.
Consequently, the binary measurement matching approach leads to a mea-
surements database complexity problem. This approach is practically fea-
sible only when scenario complexity and involved components are strictly
limited20.

There have been several efforts to move from binary matching to a more
abstract level for measuring certain features21, but so far no alternative
proposal has replaced the binary fingerprint comparison of programs ap-
proach which is still the core principle in the new TPM v2 generation.

2.3.5 Virtualization for Measurements Reduction

The previous sections introduced the chain of trust and the component by com-
ponent measurement process. The TPM PCR concept by the TCG provides a
robust measurement and aggregation solution, but still the complexity problem
of the potentially large number of measurements persists. Intuitively, it seems
the larger a block of program code is, the harder it is to understand, review, and
assess interaction with other programs for security, reliability and integrity.

In order to lower overall complexity, one approach is to measure fewer com-
ponents, to break a large problem into smaller elements and to identify and
isolate critical program pieces. To this end, a domain separation mechanism is
the core component [103] partitioning the platform into isolated domains and
ensuring there are only well-defined data exchange interfaces between them.

Isolation by Hardware Virtualization

The industry standard PC architecture has seen a constant evolution of fea-
tures. In 2005 the two dominant CPU providers in the PC market, Intel and
AMD, improved instruction sets and capabilities of their CPUs with support for
full hardware virtualization22, meaning any operating system could be run in a
virtual machine without binary modification.

assessment of the individual components enables assessment of the platform security state [98].
19For example, every Linux distribution usually is compiled from scratch. Thus, while

popular distributions may carry the identical program, due to slight differences in compiler or
library versions program measurement fingerprints differ from one distribution to another.

20See, e.g., [67] and our platforms in the following chapters.
21For example, property-based attestation [104] [97] and semantic program features [49].
22See [1] for an overview of x86 architecture virtualization approaches.



2.4. Dynamic Root of Trust 23

The core management component with hardware virtualization is a small,
single instance of a hypervisor. A hypervisor takes exclusive control of platform
hardware and provides functions for creation, execution and hibernation of iso-
lated virtualization partitions, each of which is capable of being host to a guest
operating system. The hypervisor runs on the processor with special elevated
”Ring -1“ privileges, which isolates it from the standard operating system and
applications code running with the traditional ”Ring 0 to 3“ CPU privileges.

With a scenario of hardware isolation the hypervisor is part of the chain of
trust, as it is a lowest-level component. Depending on the scenario, multiple
virtual machines are then started to run on top of the hypervisor. Some per-
form sensitive calculations, while others do not. Consequently, it is the job of
the hypervisor to measure sensitive virtual machines before they start, so they
become part of the chain of trust. However, measurement of the other virtual
machines may be omitted (depending on the scenario), thus there is an overall
reduction in measurements.

2.4 Dynamic Root of Trust

Section 2.3.2 introduced the root of trust for measurements, which on the PC
platform sees the BIOS performing initial measurements after platform reset.
The static root of trust for measurements (SRTM) is the chain of platform state
measurements that begin at platform reboot [141]. State-of-the-art platforms
from AMD [2] and Intel [46] improve upon this static approach, enabling a dy-
namic switch to a well-defined, measured system state at any point of platform
execution, even long after a platform has been (re-)booted. This is called a
dynamic root of trust for measurement (DRTM) [141].

As a consequence of this late initialisation this capability reduces the number
of measurements necessary to document platform state changes because of the
exclusion of early BIOS, firmware and boot measurements. Example open-source
OS bootloaders, which implement this dynamic switch after the BIOS but before
OS start, are available for AMD [61] and Intel [54] platforms.

2.4.1 Intel’s Trusted Execution Technology

This section outlines Intel’s specific implementation23 of DRTM capability in
their so-called Intel Trusted Execution Technology (TXT)-enabled platforms.

The so-called late-launch TXT process is initiated by execution of special
Intel CPU instruction GETSEC[SENTER]. With this opcode the CPU and chipset
stop all CPU cores except one. The platform chipset protects all memory from
outside modification by DMA capable devices. Furthermore, TPM PCRs 17
to 22 reset from their default 0xff content to 0x00. CPU, chipset and TPM

23A comparable set of capabilities is available on AMD platforms, but discussion and feature
comparison of the two platforms is beyond the scope of this thesis as we use solely Intel TXT
in the prototypes of Chapters 3 and 4.
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are hardwired to cooperate in this process, only a DRTM startup sequence is
capable of (re-)initialising these PCR registers.

The first code to execute is a special Intel-provided and cryptographically
signed Authenticated Code Module (ACM) [57]. The ACM code authenticity
and integrity are guaranteed by a private Intel key, the public part of which is
hardwired into the chipset. An ACM must be signed by Intel to allow execution.
The ACM initialises the platform into a defined state and is anchor of a fresh
chain of trust, this process providing a DRTM.

Subsequently execution continues with the Measured Launch Environment
(MLE) [56]. Naturally, this code is first measured by the ACM and then ex-
ecuted. The MLE unlocks and re-awakens platform resources component by
component and thus step by step it restores normal platform operation. The
platform chipset remembers a TXT start-up process was performed. In order
to protect potential memory secrets, it automatically enforces memory content
erasure upon next system (re)boot, if a special TXT mode shutdown sequence
is not executed first.

The ACM code is capable of enforcing a Launch Control Policy (LCP). The
TPM administrator may store a LCP in the TPM non-volatile memory. A LCP
specifies which MLE code binaries are permitted to execute after a successful
TXT launch. This capability enables the system administrator to specify which
code is allowed to run, as the ACM measures the MLE and ensures that the LCP
value stored in non-volatile memory matches the expected MLE. If an unknown
software configuration is detected, the ACM reboots the platform.

By default, all TXT platforms are shipped with a preloaded ANY policy loaded
into the TPM and there is no restriction on which code can be executed after
DRTM initialisation24 is finished, because the ACM does not perform a check
whether the code for next execution matches an LCP, indeed as the name sug-
gests, ANY code is allowed.

2.4.2 Intel’s tboot

The description of the execution flow with Intel’s TXT in the previous section is
rather abstract. In order to encourage TXT adoption, Intel provides a reference
software implementation of an MLE called tboot [54], which implements the
TXT late-launch in combination with an ACM, and is designed to be executed
after early platform boot is complete but before an operating system starts.
When tboot is used to implement a measured boot into Linux, a chain of trust
where every component is measured, the execution flow looks like Figure 2.3.

After power-on or hardware reset the platform performs a standard start-up
with the BIOS. Then the BIOS starts the OS boot loader, which in the case
of Linux is usually GRUB [45]. In a normal Linux boot sequence GRUB loads
the Linux kernel and its supporting initramfs into memory, and execution is
transferred to the kernel. The boot process with tboot is different: GRUB loads

24Depending on the platform vendor, sometimes TXT support also has to be specifically
enabled first in the BIOS.
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Figure 2.3: Overview of execution flow with Intel’s tboot. Unmeasured components
are red and measured components are shaded green.

the following files into memory: 1) tboot, 2) Linux kernel, 3) initramfs, 4) ACM,
5) tboot policy file.

Tboot is started by GRUB as the first component and performs two functions:
First, the required set-up of memory layout and platform configuration before
the TXT launch process is initiated, and second, after the TXT launch process
is complete, a part of tboot is the MLE.

So first, tboot prepares the platform for the TXT start-up process. Secondly
tboot executes the CPU opcode for the TXT late-launch. The hardware ini-
tialises itself and execution continues with the ACM module provided by Intel.
The ACM configures the system further (see Section 2.4.1) and measures the
MLE which is a part of tboot. If the TPM non-volatile memory contains a LCP,
the ACM checks whether the tboot MLE is allowed to execute, and if not, the
platform reboots. The ACM executes tboot as MLE, and tboot again checks
with its own policy for restrictions on what code allowed for execution. If the
loaded Linux kernel and initramfs are allowed as described in the tboot policy
file, both are measured and executed. From this point on a normal Linux kernel
boot process executes. The chain of trust is rooted in the TXT late-launch and
continues into the Linux kernel.

To summarize, we see that the precise, desired software configuration can be
specified by the platform administrator in the form of two separate policies: The
Launch Control Policy (LCP) is evaluated by the ACM and specifies which MLE
is allowed for execution. The MLE in the form of tboot interprets an additional
policy called Verified Launch Policy (VLP). This two stage policy process is mo-
tivated by the practical restriction of non-volatile memory available in the TPM
and deployment flexibility. The LCP is rather simple, as it essentially needs to
contain a list of hashes of allowed MLE binaries. By contrast, tboot aims to be
more flexible, and the VLP allows specification of multiple kernels, initramfs,
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additional modules, module parameters, etc., in multiple configurations25. Con-
sequently, tboot depends also on an externally supplied policy file, which would
not fit into the TPM’s very small non-volatile memory.

2.5 A Support PKI for Trusted Computing

The previous sections provided an introduction to the chain of trust (Section 2.3.2),
where from a defined state a series of component measurements is aggregated
into TPM PCRs (Section 2.2.2). Furthermore, the TPM can sign the current
PCRs content with a cryptographic key. Thus, this signature marks an unforge-
able cryptographic report of a platform’s state (=the current PCRs content),
which can then be presented to third parties as proof of platform state.

A verification process of a TPM signed report of a platform state requires
a supporting infrastructure. There must be verifiable evidence that some data
presented as TPM output was really produced from a genuine hardware TPM,
not a TPM software emulator26. Consequently, this problem requires a TPM
certification concept, and the binding of a platform report to a platform’s TPM.
Also, there is a potential privacy problem, as there is the possibility for unique
identification of a platform in TPM signed state reports and during report veri-
fication.

The following sections outline the TCG-specified components and procedures
involved in the creation of a support public key infrastructure (PKI) service for
Trusted Computing-enabled platforms. Such an infrastructure comprises specific
TPM keys, certificates, data formats and exchange protocols. This presentation
is not exhaustive, rather it focuses on core elements and processes playing a role
in remote attestation of platform state.

2.5.1 Credentials

Security credentials can be represented in varying formats. The TCG Credential
Profiles Specification [130] specifies credentials in concrete instantiation of either
X.509 certificates [50] and attribute certificates [34]. Additionally, some TPM
functions produce binary blocks of data, the internal structures of which do not
conform to any standard certificate field format. Consequently, the standard
certificates were amended by the TCG with custom extension fields which can
host this Trusted Computing specific data.

Endorsement Key and EK Certificate

Every TPM hosts a unique Endorsement Key (EK). This RSA key pair is stored
in non-volatile memory inside the TPM. It is impossible to retrieve the private

25One might think of this as similar to a standard GRUB boot menu which also allows
multiple configuration entries to start a Linux distribution in different configurations.

26For example [119] as a pure software solution has different security properties compared
with a hardware TPM.
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part of the key from the TPM—the specification of the TPM explicitly disallows
extraction. A corresponding TPM Endorsement certificate hosts a copy of the
public part of the key pair. This certificate represents the assertion that a given
TPM identifiable by the unique public key embedded in the certificate conforms
to TCG specifications and that the private Endorsement Key is protected by
the TPM. The Endorsement certificate is signed by the entity that created and
inserted the EK into the TPM27.

As the Endorsement Key uniquely identifies a TPM and hence a specific
platform (TPM), the privacy of a platform and its users is at risk if the EK is
used to sign platform state reports, as all reports would be signed by the same
key. As a consequence, the TCG rigorously restricted the operations that can
be performed with the EK28. The EK cannot be used to sign the current state
of the PCRs or arbitrary data.

Other Certificates

A platform manufacturer vouches for the platform components by means of
a Platform Endorsement (PE) credential. This asserts the specific platform
incorporates a properly certified TPM and the platform architecture conforms
to TCG specifications. A reference to the specific TPM model and version
integrated on the platform is included, which allows a PE certificate evaluator
to form an opinion on trustworthiness of the platform.

A platform Conformance Credential (CC) attests that overall platform design
satisfies TCG specifications. It asserts proper design of the Trusted Computing
subsystem and its correct integration into the platform. The CC is described in
[145], but has not been updated in newer credential profile specifications [130].

To the best of our knowledge neither platform or conformance certificates
have been officially provided by platform vendors so far. With broader market
deployment of the new TPM v2 the TCG will also update the certificate profiles
and probably introduce new certificate types and profiles.

2.5.2 Attestation Identity Keys (AIK) and PrivacyCAs

The TCG remote attestation concept, which involves signature of TPM PCRs
content with a TPM hosted key, implicitly produces a very detailed platform
state description. This raises the question of privacy protection, as a platform
report is evidence of what software has been executed since chain of trust ini-
tialisation. However, in some scenarios the exact declaration of software used
should perhaps not be made available.

For one thing this information might be used to facilitate targeted attacks
if, for example, it is known that a specific software version is vulnerable to a

27For example, TPM vendor Infineon provides an EK certificate with all of its TPMs. Veri-
fication of an Infineon hardware TPM thus requires verification of the certificates chain up to
the Infineon TPM root certificate. Most TPM vendors do not provide TPM certificates due
to cost and missing market demand (so far).

28There are only three: 1) For initial take ownership of the TPM, 2) for AIK certification
with a PrivacyCA and 3) for Direct Anonymous Attestation (DAA).
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specific attack. Another problem is that reusing the same key for all reporting
operations allows tracing of a TPM (and thus the platform and the activities
of its users) when reports are shared between third party entities. Although
in some scenarios that might be a desirable feature, privacy protection should
always be considered a primary feature29 and may be relaxed at a later time by
deliberate user choice.

Attestation Identity Keys

To address concerns of privacy the TCG specifications define Attestation Iden-
tity Keys (AIKs) and accompanying AIK certificates issued by a trusted Pri-
vacyCA [129] service. An AIK is a TPM-created RSA key-pair which is non-
migratable (see also RTS in Section 2.2.2) and which has the capability of pro-
ducing a signature on the PCR state reports in the remote attestation process
(TPM Quote operation). AIK certificates do not contain any information linking
the certificates to the specific AIK hosting platform TPM. However, AIK cer-
tificates provide sufficient proof that the identity keys originate from a specific
TPM series, giving vendor name and model. By creating and using more than
one AIK per TPM, it becomes possible to mask the individual user/platform
identity.

AIK Certification

Figure 2.4 gives a general overview of the AIK life-cycle and its practical appli-
cation in a remote attestation scenario.

1. The first step is generation of a new RSA key within the protection of the
TPM. In order to obtain an AIK certificate, the TPM-enabled platform
and the PrivacyCA execute a cryptographically secured protocol.

2. The platform sends a request package containing the public AIK and the
EK certificate of the TPM to the PrivacyCA30.

3. The PrivacyCA checks the information received to see if the presented EK
certificate (=TPM) is acceptable under the PrivacyCA certification policy.

4. On successful check, the PrivacyCA issues an AIK certificate and returns
it. The returned data package is encrypted, so that only the TPM indicated
in the request can decrypt it. Now the AIK key can be used for platform
state attestation.

29See section on data protection in [35], especially: “If anonymous identities (AIK) are used
which are made available by the security module (TPM), weakening of such anonymity by
indirect linking of data from the TPM must be prevented (for example, by linking the AIKs
via the TPM endorsement credential in a CA). Suitable technical or organizational measures
must be implemented in order to ensure this.”

30The request package contains additional information, such as additional platform cer-
tificates (Chapter 2.5.1)—the full details are omitted here as we focus on the EK and AIK
properties. See TCG specifications for more details.
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Figure 2.4: AIK creation and interaction with a PrivacyCA service provider for AIK
certificate creation (steps 1 to 4). Requester queries platform state and
checks back with PrivacyCA for AIK certificate validation (steps 5 to 9).

5. Later, an external third party known as requester interested in a platform’s
state queries the current state.

6. The platform software uses the TPM to sign the current PCRs content
with the private part of the AIK and returns this report to the requester
along with the AIK certificate.

7. The requester checks with the PrivacyCA the validity of the AIK certificate
presented.

8. The PrivacyCA reports the AIK certificate status.

9. Finally, the requester checks correctness of the AIK signature on the PCR
report. If everything is deemed in order, it is then up to the requester to
decide whether the PCRs are in an acceptable state (e.g., a given software
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version is running) or platform state is unacceptable (not trustworthy) to
him.

PrivacyCAs and their Policy of Operation

A PrivacyCA assumes the role of a trusted third party and must be trusted by
both parties in a remote attestation process. The platform (owner/user) must be
assured that his privacy is protected in accordance with a specific policy, whereas
an attestation requester must be assured that a remote attestation report is
indeed signed by a proper TPM.

The mode of operation of a specific PrivacyCA service is documented by
its certification and operation policy, which should be publicly available. The
policy defines two important properties: First, who is allowed to acquire an
AIK certificate. Secondly, whether any information on the requests received and
certificates issued is retained, and for how long by the PrivacyCA.

In a restricted deployment scenario, for example, the PrivacyCA issues and
validates AIK certificates only for well-known clients, which requires an initial
registration step. In this case it might make sense to store all information ac-
quired during an AIK cycle, but in more open scenarios, where the PrivacyCA
issues certificates to a large set of customers that are not necessarily known
beforehand, a more liberal policy might be appropriate. The policy options
for a PrivacyCA range from record nothing, over know enough for the specific
operation, forget details after completion to store and log everything.

The choice of PrivacyCA and privacy policy, and consequently the intended
level of privacy, should be a free choice left to the end-user. If there are multiple
PrivacyCA services with different policies to choose from, a user should be able
to choose which PrivacyCA he trusts.

2.6 Aspects of Trusted Platforms

The construction of a platform to integrate Trusted Computing technology in-
volves hardware and software components, each with their specific security issues
and considerations. When several components are integrated and interact, fur-
ther problems arise. Furthermore, Trusted Platforms need practical usability
and easy deployability for adoption by users.

The following sections enumerate aspects for consideration in construction of
a Trusted Computing platform, however not all aspects need to be considered
for every platform, since this depends on the specific scenario.

2.6.1 Security of Trusted Computing Technology

Trust in something is established, when one can inspect it and attain an informed
opinion of its inner working. Unfortunately, it is impossible to make a personal
inspection of everything. Consequently, it is often necessary that one trusts the
opinion, certification or competence of some third party (see Section 2.1). With
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Trusted Computing one has to trust the TPM engineers and the engineers of
Intel TXT as follows:

TPM

The only proof that a TPM is a real hardware TPM is embodied in the EK
certificate (Section 2.5.1) for the TPM. Only very few TPM vendors (e.g., Infi-
neon) include an EK certificate with their TPM chip. An end-user has to trust
that during TPM manufacture the EK (certificate) creation process is secure
and no-one has the opportunity of copying the private part of the EK, when it
is injected into the TPM.

On the PC platform the TPM v1.2 has constituted the Trusted Computing
basic building block for more than a decade. The v1.2 generation of TPM chips
has been demonstrated to be compromisable through brute-force chip opening
[120] or attacks on the local bus connecting the TPM and platform [161].

Intel TXT

The Intel TXT initialisation of a PC platform into a well-defined state relies
on a binary platform initialisation code blob called authenticated code module
(Chapter 2.4.1) supplied by Intel. While it is possible to disassemble and reverse-
engineer its function, the code license forbids this. Some people nevertheless
explore Intel TXT in detail and identify problems [164, 166, 165]. Furthermore,
obviously only Intel engineers know in detail how their chipsets implement the
TXT startup process internally, and how robust it really is.

Attack Resistance

The TPM chip is a mass-market device intended for integration into common
PC platforms. The cost of adding an additional chip to the PC platform is
significant31. Consequently, the TPM is by design a cheap, low-performance
chip, but naturally such a chip is not a high-security module.

The TPM aims to increase trust in a platform by being a separate component.
The TPM aims to resists software attacks (such as password guessing attacks).
A TPM provides only very limited protection against hardware attacks, once a
person has physical access to the platform (see above). The goal of Intel TXT
is:

”...to force attackers to use hardware mechanisms to attack the plat-
form. The Intel TXT design protects from attacks accessing memory,
changing drivers, or changing the application. The attacker needs to
use hardware access to gain access to the protected memory.“ [46]

For a book-length discussion of the security aspects of Intel TXT platforms
see [46].

31The retail cost of a PC mainboard is as low as about 40 EUR. Private conversations with
manufacturers give an estimate of TPM chip cost at about 1 EUR. Naturally, given these costs
nobody integrates a TPM into PC mainboards, unless there is a good reason to do so.
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2.6.2 Input/Output as Attack Surface

On the assumption the physical platform is safe, this leaves software attacks as
primary attack surface. Runtime operating system bugs probably exist, since no
software is completely bug-free. If, for instance, the TCP/IP stack of the Linux
kernel contains a serious bug, it may as a result be possible to obtain platform
control via remote access.

Furthermore, the primary platform exposure to the internet is the network
card. Modern server network interface cards are no longer just “dumb” network
packet transfer devices. Instead, they contain a small processor with firmware,
which allows to perform remote management functions. For these functions to
work, the network card needs main memory access through DMA and other
powerful platform primitives. Consequently, if card firmware can be exploited,
then platform security may be remotely compromised. A proof-of-concept work
on this problem was demonstrated in [31], and the problem of attesting a network
card firmware discussed in [32]. Thus, a network card exposed to the internet
should be as dumb as possible to provide a minimal attack surface.

The same security argument applies to all other “intelligent” devices and
interfaces on a computing platform, for example USB connections [112].

2.6.3 Practical Chain of Trust

In order to document platform configuration, the platform must be able to report
its current state and provide a log of individual steps leading to that state
(Section 2.3.3).

A platform’s TPM provides a set of PCRs to guarantee the integrity and
authenticity of individual measurements, but special care is needed to achieve
expressive aggregated PCR values: Considering the complexity of a measure-
ment chain, less is more. A shorter length of the chain of trust and fewer mea-
surements facilitate subsequent verification. Mapping the intricacies of platform
configuration into just a few PCRs is also a difficult task, since there are only
24 PCR on a TPM v1.2. Some of them are already reserved for the BIOS and
some for a dynamic root of trust.

In order to be able to calculate expected PCR values deductively and seal
data and code to a (future) platform configuration, measurements must be sta-
ble, individual measurement steps must be known, and their order needs to be
constant. Only then can the benefit of sealing data blocks to the TPM PCRs
be realised.

2.6.4 Integrity of Code and Data

The storage of sensitive data in unencrypted form is naturally a security risk, as
this practice leaves the data (“data at rest”) vulnerable to off-line manipulation
attacks, so one solution is to encrypt the data. A more generic solution is to
encrypt a whole file system on a platform, which provides a protection to all
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applications and data on the file system. This poses the problem of where to
store and how to protect the key to decrypt the data.

With a Trusted Computing integrated platform the obvious approach is to
seal (Section 2.2.2) the decryption key to the TPM. Only when the platform at-
tains a trustworthy runtime configuration defined by the system administrator
do access and file system modifications become possible. Thus, this feature pre-
vents off-line attacks and limits data modification to software currently running.

2.6.5 Open Source

A Trusted Computing platform that implements a chain of trust can attest the
specific software that has been executed on it, but the questions is, who testifies
the software is of good quality?

With proprietary software the vendor vouches for his software with his good
name. With open-source software Linus’s Law applies: “Given enough eyeballs,
all bugs are shallow” [100]. This quote suggests that with open-source and a large
enough spread of users and developers all bugs can/will be identified and fixed.
Consequently, if the software of a platform is assembled from well-known, public
sources, for example a major Linux distribution, this a) ensures the possibility of
thorough inspection and b) raises confidence that the software is not maliciously
manipulated, because it is hard to hide when a lot of eyeballs are looking.

Similarly, obscuring implementation details does not aid in the evaluation of
security concepts. If platform blueprints, trade-offs and design considerations are
available to interested parties, there is the opportunity to evaluate and eventually
agree to the advertised security features of an architecture.

2.6.6 Boundary of Security Breaches

It is impossible to prove mathematically that a specific section of code does not
contain fatal programming errors32. The pessimistic conclusion is that there are
bugs in every code and sooner or later a security breach happens.

The common time-of-check-time-of-use [16] problem is a follows: Even when
a chain of trust documents that a specific “known good” software version was
executed earlier, and the platform state attested to an external party, after some
time the platform may still be unsafe due to a later runtime security breach.
There is always a gap between time of attestation and the present.

In order to assess the potential damage caused by a runtime security problem,
it should be clear from the platform architecture which additional components
are to be considered tainted, if a security breach in one component occurs. For
example, a file system is only decrypt- and mountable in a specific platform
state (Section 2.6.4). If a security incident happens, all currently mounted file
systems are at risk of modification. If there are other file systems on the storage
media that are only mountable in other platform states, these are safe from

32See also the “halting problem” in computability theory.
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modification. The delimiting of the effect of security breaches is the “which
filesystem is currently mounted” boundary.

2.6.7 Software Management Usability

A platform can be considered trusted when the software running on it can be
attested to be trustworthy, meaning one can discover what is running on the
platform and form an opinion on whether or not to trust it. This leads to the
question of appropriate usability for software management in a trusted platform.

For wide platform acceptance it should not matter what kind of software is
to be executed on the platform. The platform should allow installation of any
common application and empower an administrator to define it as trusted. It is
important that the overheads to maintain the components of a trusted platform
and to perform updates of software packages should be reasonable, indeed not
much more involved than on a platform without integrated Trusted Computing.
Appropriate usability is needed for practical deployment, but trained system
administrators are entrusted with sensitive platform maintenance operations.

2.7 Linux Platform Technology

We use the following Linux technologies in our prototypes:

2.7.1 Logical Volume Manager

Under Unix-like operating systems storage space can be abstracted as a collection
of data blocks of fixed size sequentially numbered from 0 to the last block. For
example, a typical harddisk has a block size of 512 bytes or 4096 bytes, and the
sectors on the disk are numbered from 0 to the last one. Partitioning of a large
storage device, e.g., a hard disk /dev/sda, results in several smaller partitions
/dev/sda1, /dev/sda2, /dev/sda3, etc. Applications that work with storage
do not normally care where the storage actually comes from. The kernel is
responsible for mapping access to “block 0” of any storage space to the “real”
physical storage subsystem block number.

LVM is a Logical Volume Manager [151] for Linux. Basically, LVM takes as
input a large chunk of storage and divides it into smaller pieces called logical
volumes (LV). The advantage of LVM is that it facilitates dynamic management
of logical volumes. They can be created, resized, combined, deleted, etc. at will
during runtime. Each logical volume is identified by a unique name tag, which
applications use to access specific logical volumes. Consequently, it is transparent
to an application where the actual storage originates, the LVM layer maps in the
background all access to actual storage spaces. A common application of LVM
is in management of a single large harddisk partition in smaller logical volumes.
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2.7.2 Linux Unified Key Setup Encryption

Linux Unified Key Setup (LUKS) [39] defines a platform-independent standard
disk format for use with disk encryption. Any block device in Linux may be
transparently encrypted33 with Linux kernel’s dm-crypt subsystem. dm-crypt

encrypts block devices with symmetric AES keys, called masterkeys. A LUKS
header is responsible for management of keys used to encrypt a device. LUKS
provides 8 slots with keys that encrypt one master key with different access
secrets (e.g., a password). If a client knows one correct secret for one of the
8 key slots, he can decrypt the partition’s master key and can then access the
data. This LUKS key management and encryption abstraction delivers several
advantages:

• The AES master key for disk encryption can be generated with high en-
tropy independent of user input or password memorization.

• When one key slot secret changes, this does not necessitate the re-encryption
of the whole storage.

• Key slots may also be assigned to maintenance processes such as backup. In
the event of hardware platform failure this allows recovery of an encrypted
storage.

2.8 ARM Platforms

New devices fulfil user needs and gain market share, as a PC is no longer the
only option (see Section 1.1) and today small devices like smartphones, tablets
and similar devices are popular. These devices are almost always powered by
processors of the ARM architecture, not like PCs with processors from the x86
family. The ARM architecture offers a good performance vs. power consumption
profile for mobile and embedded scenarios.

The TCG approach (Section 2.2) of Trusted Computing, implemented via a
separate TPM hardware chip, has become standard in mass-market PC desktops
and laptops. In order to enable the same concepts of Trusted Computing for
these new classes of small devices, the TCG specified a TPM variant, a Mobile
Trusted Module (MTM) [134]. However, this design never achieved mass-market
deployment. The significant constraints on mobile devices, for example available
PCB area, cost, power consumption and heat dissipation, do not favour a stand-
alone security chip type approach or MTM-style deployment [48] [110].

The ARM platform allows for a security conscious environment: First, Trust-
Zone as a hardware technology to support isolation of certain critical compo-
nents from the rest of the platform. Secondly, the Trusted Execution Environ-
ment (TEE) standard defines how applets can be managed and executed in a
TrustZone-like isolated environment.

33An application accessing data on such a device does not know whether data blocks are
encrypted or not.
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TrustZone

The ARM architecture follows a building block approach, where the main CPU
core and instructions are centrally developed and licensed by one company34.
Also, additional specialized extension blocks are possible. Individual CPU ven-
dors elect and integrate the main ARM core and custom extension blocks as
needed, so final chip capabilities fit their designated implementation scenario(s)
and market very well.

One ARM CPU extension is TrustZone[7], which is an instruction-set exten-
sion that supports security critical scenarios. With these instructions the CPU
can partition all platform software and hardware resources, thereby creating
two virtual domains, namely a so-called secure world (SW) and normal world
(NW) [6]. The idea that all resources exist in one of the two worlds, the security
subsystem in the secure world, and everything else in the normal world, is an
improvement on the basic concept of privileged/unprivileged mode-split which
is found in many conventional architectures, including earlier ARM cores.

The TrustZone domain separation mechanisms prohibit normal world appli-
cations direct access to the secure world. Instead, the data flow between the
worlds is controlled by a secure monitor, which is under exclusive control of the
secure world. The total memory available for software in TrustZone is vendor-
dependent, ranging from 64 kB to 256 kB on typical systems. This size enables
running of a small, hopefully evaluated and certified, core in the secure world
along with trusted executables.

Trusted Execution Environment

The TrustZone capability of ARM CPUs enables the construction of a Trusted
Execution Environment (TEE) in the secure world. The purpose of a TEE
is that it guarantees code and data loaded inside the TEE is protected with
respect to isolated execution, confidentiality and integrity. By comparison, on
a PC platform there is the solution of a chain of trust, which measures code
integrity, and a hypervisor, which partitions the platform into virtual machines
(see Section 2.3.5).

As there many ARM platform vendors35 there is no standardized way of
reporting the authenticity of the TrustZone implementation with a certain ven-
dor and to attest the TEE running in it. A certification-based approach as
in the TPM concept (see Section 2.5) does not exist (yet). However, typically
TrustZone implementers provide platform capabilities for device identification
and bootloader binary enforcement. These features facilitate implementation of
capabilities similar to a measured boot chain of trust and signed reporting of
the measurements. Unfortunately, the actual capabilities and details of these

34ARM Limited, UK
35The x86 platform is dominated by Intel CPUs and Intel chipsets, thus it is to easy to

promote a standard like Intel TXT, as there are few compatibility problems between vendors
and the core components are always from Intel. CPU, chipset and TPM are guaranteed to
cooperate in initialisation of a dynamic root of trust (DRTM).
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custom security features vary between platforms from different vendors and the
manufacturers consider them confidential information.

The GlobalPlatform consortium drives the standardization effort for TEE im-
plementations for TrustZone-enabled platforms and similar environments. TEE
application programming interfaces (API) specify the communication interfaces
between untrusted and trusted zones, as well as design and access of trusted
applications in a secure execution environment [43, 44].

2.9 An Anonymous Accounting Scheme

At the core of the scenario presented in Chapter 6 is an “anonymous yet au-
thorized and bounded cloud resource scheme”. This scheme was developed by
Slamanig [117]. In Chapter 6 we employ the scheme to implement a privacy-
preserving method for cloud resource accounting. In the following we give an
overview of the operations in the scheme, while for the mathematical details we
refer to the original work in [117].

The main idea behind the scheme is that clients (C) can purchase from a
cloud provider (CP) a contingent of cloud credits (CC) for resources, such as
virtual machine instance hours. While clients spend their CC on resources from
the CP, the latter does not learn anything about the clients resource consumption
behaviour. More precisely, clients can consume an arbitrary number of their CC,
as long as there are still enough credits available from their purchased amount.
In any interaction with a client the CP is sure the client is allowed to consume
resources, but cannot identify the specific client nor link any of the client’s
individual actions.

A token t is of the form t = (CO(id), CO(s), L), where CO(x) denotes an
unconditionally hiding commitment36 to value x. The value id represents a
unique identifier of the token (chosen by the client at random), s represents the
number of CC consumed up to now (essentially a counter) and L represents the
credit limit.

The scheme of [117] is based on a pairing-based Camenisch-Lysyanskaya
(CALY) [21] signature scheme. The CALY signature scheme supports not only
the signature on data tuples (vectors), but also allows that individual data el-
ements either to be signed in plain or commitments made to them. In our
above example of token t there are 3 elements, where the first two elements are
commitments and the third element is in plain.

We focus on three operations:

• ProviderSetup. The cloud provider generates a key-pair (sk, pk) for the
CALY signature scheme. The CP publishes the public key pk and ini-
tializes an empty blacklist BL. This blacklist is later required for double-
spending detection, it keeps a record of ids of tokens already shown to the
CP.

36A cryptographic commitment to some value x is CO(x). The value x remains secret
(hidden) until opening information is provided by the committer. Then it can be verified that
CO(x) contains the value x.
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• ObtainCredits. In this operation a client C wants to obtain a token t
for L credits (the credit limit) from the CP. The client obtains a CALY
signature σt for a token t = (CO(id), CO(s), L) from the CP. id is a random
token identifier generated by C. id and s are signed by the CP in the form
of commitments for the unlinkability property in the following Consume

step(s). However, the client C proves to the CP in zero-knowledge37 that
the commitment to s contains the correct default starting value, e.g. 0.
Initially no credits s have been spent.

• Consume. The client holds a token t = (CO(id), CO(s), L) and correspond-
ing signature σt for it from the CP. The client wants to consume n CCs
from his token, so the client a) randomizes the signature σt to σ′

t (σt and
σ′
t are then unlinkable by the CP). The client b) proves in zero-knowledge

to the CP that σ′
t is a valid signature for id and L, this includes showing

the values id and L to the CP. Also, c) the client proves that the token t
includes an unknown value s, which satisfies (s + n) ∈ [0, L]. This proof
convinces the CP that at least n CCs are available in this token. The CP
checks whether he has been offered this token id before (id is not contained
in BL), and if all proofs succeed, then the client is eligible to consume n
CCs.

Then, in an interactive protocol between the C and the CP the signature
is updated to a new signature for the new token t′ = (CO(id+id′), CO(s+
n), L), where id′ is randomly chosen by the user38 and CP is assured that
the correct value n is added to s. Also, the CP adds id to BL.

If any of the computations or range proofs during the Consume operation
fail, the CP rejects the client’s request to consume n resources.

The drawback of this scheme variant is that the limit L is included in plain in
the token and thus is always visible to the CP. In the worst case, L is issued
to exactly one client and the cloud provider can subsequently link the actions
of this client. However, if the set of clients associated with the same value L
is reasonably large, unlinkability is no longer a problem. A practical solution
would be for cloud credits to be sold only in specific well-known amounts, similar
to prepaid mobile phone cards, e.g., 5$, 10$, etc.

2.10 Related Work

Trusted Platforms and Technologies

The platforms of Chapters 3 and 4 integrate a measuring boot process, the
TPM, Intel TXT, whole file system measurement, KVM+QEMU as virtualiza-
tion technology and Linux or Android as host OS. Some of this technology as

37A zero-knowledge proof is an interactive proof in which a verifier is convinced of the validity
of a statement but learns nothing beyond the validity.

38So id + id′ is again a new random identifier unlinkable to id for the CP.
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well as their predecessor technology have been used in earlier works to construct
“trusted” platforms or features thereof.

Before the TPM, the approach of providing trust functions via a dedicated,
separate secure hardware coprocessor was studied by Dyad [146]. The AEGIS [5]
project modified a PC BIOS to provide a root of trust (and a chain of trust),
and an integrity-enforcing boot process for a FreeBSD operating system. We do
not want to modify the BIOS, and fortunately today we have a TPM.

The Enforcer platform [68] and IBM’s Integrity Measurement Architecture [106]
implement Linux kernel modules to perform file-level integrity measurements
(“measure before first use”) into a TPM PCR. For our platforms we rely on
whole file system measurement to omit the complexity of per-file measurements.

Entire file system images as a solution to move applications and data are
used by SoulPads [19] and Secure Virtual Disk Images in grid services [41]. They
propose the use of encrypted images of virtual machines and the use of TPMs to
enforce their integrity and boot-up only on “trusted” platforms. Our platforms
assume the concept of encrypted/sealed virtual machine images.

Early demonstration systems making use of virtualization for component
isolation are PERSEUS [84] where a Fiasco kernel is the hypervisor and L4-
Linux a guest, and Terra [40]’s Trusted Virtual Machine Monitor, which is based
on VMware. The Nizza virtualization architecture [115] uses a L4 microkernel
to isolate security critical modules with a small TCB. We use KVM on Linux as
the low-level hardware management and isolation hypervisor instead.

The Open TC [78] project demonstrates a platform based on a static chain
of trust from BIOS to bootloader via Trusted Grub [66] to Xen [11] or L4 as hy-
pervisors and into application partitions measured and loaded from CD images.
Open TC with Trusted Grub depends on BIOS measurements, so we use Intel
TXT to avoid this. Also, Open TC does not provide any advanced at-runtime
platform rebuilding features like our TVAM component in Chapter 3 does.

The challenges for a x86 hypervisor are discussed by Vasudevan et al. [158].
As a result, we chose KVM as hypervisor, as KVM uses hardware features
(“Intel-VT”). Furthermore, as KVM is part of the Linux kernel KVM is actively
(security) maintained.

There are several approaches to executing small pieces of code in an isolated
context: BIND [114] uses AMD’s Secure Virtual Machine (SVM) [2] protection
features to collect fine-grained measurements on both input and the code mod-
ules that operate on it, so that computation results can be attested. Flicker [70]
isolates sensitive code by halting the main OS, switching into AMD SVM and
executing with a minimal TCB small, short-lived pieces of application logic
(PALs). PALs may use the TPM to document their execution and handle re-
sults. TrustVisor [69] is a small hypervisor initiated via the Intel TXT DRTM
process. It assumes full control and allows to manage, run and attest multiple
PALs in its protection mode, however without the repeated DRTM mode switch
costs incurred by the Flicker approach. We do not aim to run only short pieces of
code. Also, our platforms aim to boot only once via a DRTM for establishment
of a chain of trust and then continue into a normal (Linux) operating system.
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OSLO [61] is an OS loader module which implements a dynamic switch to a
measured state in the OS bootchain on AMD SVM systems. OSLO is a proof
of concept and does not boot policies. We use Intel platforms and tboot [54]
instead.

Trusted Platforms and the Cloud

The TPM promises the possibility of strongly identifing a single platform in
the cloud, measuring and reporting the software configuration and protecting
the integrity of data and code stored in the cloud. In our platform presented
in Chapter 4 we explicitly take advantage of the TPM to construct a chain of
trust. Furthermore, we use the up-to-date Android platform as base. We also
prototype a cloud join protocol which is based on remote attestation. However,
we do not move beyond these relatively low-level constructs.

There are several other efforts that aim for trusted, attestable cloud nodes
or services running on them. By contrast, none of these use Android as a base
as we do. Furthermore, they study a higher-level management of trust in the
cloud while we focus on the low-level platform boot and integration, or they do
not integrate the TPM and TXT as we do.

Santos et al. [107] propose a trusted cloud computing platform (TCCP) ap-
proach to verify trust in virtual machines rented from a cloud provider. No
practical implementation is reported.

Also Krautheim et al. propose in [64] the Trusted Virtual Environment Mod-
ule (TVEM), a software module that serves as virtual security module for IaaS
cloud applications on virtualization platforms. The TVEM aims to offer features
beyond the TPM, allowing platform owner and cloud user to share responsibility
and control over data in the cloud.

Brown and Chase [18] propose using remote attestation, so that users can
gain insight and trust into service applications by leveraging trust in a neutral
third party. They assume cloud platform and provider to be trustworthy, without
actually relying on hardware security mechanisms.

SICE [9] is a framework providing hardware-level isolation and protection
for sensitive workloads running on x86 platforms in compute clouds. It is not
based on a traditional hypervisor, but utilizes the System Management Mode
(SMM) of x86 CPUs to isolate CPU cores. The presented prototype therefore
requires customized platform firmware and currently does not integrate further
trust mechanisms such as the TPM.

The IBM Trusted Virtual Data centre (TVDc) [15] is designed to offer se-
curity guarantees in hosted data centres. It provides containment and trust
guarantees based on virtualization. Isolation and TPM-based integrity are man-
aged. It builds upon a hypervisor derived from Xen and performs TPM-based
software measurements.

The myTrustedCloud [160] project studies integration of an existing IaaS
cloud platform with KVM-based virtualization and hypervisor trust mechanisms
built upon IBM IMA. Different levels of attestation are provided for the different
layers in the software architecture.
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In [109] Schiffman et al. propose a centralised cloud verifier (CV) service
which aids customers in verifying the integrity of a cloud platform running cus-
tomer VMs in IaaS clouds.

Podesser and Toegl study the use of the platform presented in Section 3 in a
cloud scenario [96]. They demonstrate seamless integration of remote attestation
in a SaaS cloud for Java applications. Their architecture enables developers to
annotate code with security requirements to be automatically enforced through-
out the attested cloud.

PrivacyCAs and Trusted Third Parties

In Chapter 5 we develop a PrivacyCA service to issue and manage certificates
for Trusted Computing platforms. To the best of our knowledge our PricacyCA
service responder was the first of its kind to provide a public service.

We launched the first XML based prototype into operation in 2007 at http://
opentc.iaik.tugraz.at/, as this work was sponsored by the OpenTC project [78].
The second iteration of our PrivacyCA followed a year later at http://privacyca.
iaik.tugraz.at/. Over the years it was only rarely used by external parties.
However, it was part of the local annual university “Trusted Computing” lecture
in the practical exercises. The website and certificates of our service have now
expired and remain unmaintained39, consequently all certificate validations fail.

The website http://privacyca.com/ was started in 2008 by a private individ-
ual. Its function was to issue only AIK certificates with a basic HTTP-based
interface. This service did not develop any further and is now off-line, as the
private operator died in 2014.

The 2012 announced Open Attestation Project [157] is an Intel-initiated
open-source project to develop infrastructure for host integrity verification us-
ing TCG-defined remote attestation. The project aims at cloud and enterprise
deployment. Naturally, it includes a PrivacyCA component.

As an alternative to the trusted third party concept of a PrivacyCA service,
Brickel et al. propose Direct Anonymous Attestation (DAA) [17]. The RSA vari-
ant of DAA has been implemented in the TPM v1.2 generation, while TPM v2.0
provides the commands for a ECC variant of DAA [167]. However, the general-
use software and service infrastructure required for practical DAA deployment
is missing up to now.

A Bare JVM And a Stripped Down OS

The PrivacyCA service developed in Chapter 5 can execute on a OpenJDK [80]-
based minimized Java Virtual Machine (JVM) with a reduced Linux operating
system as base. Neither of the following efforts provided a small profile and
sufficient functions to be selected as a base for our PrivacyCA.

There are, e.g., a small-sized JVM [79], a JVM which can run on a small OS
[153] or a JVM which also assumes the services of an OS and runs directly on
the bare hardware (or in a virtualization compartment) [150].

39As the research projects sponsoring this effort have also ended.

http://opentc.iaik.tugraz.at/
http://opentc.iaik.tugraz.at/
http://privacyca.iaik.tugraz.at/
http://privacyca.iaik.tugraz.at/
http://privacyca.com/
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The latest official release of Java from Oracle is Java 8, which was released for
mass-market adoption in March 2014 [81]. Project Jigsaw [82] aims to implement
a module system for the Java runtime environment. A modular runtime provides
the possibility of excluding unnecessary runtime parts, which consequently leads
to a small base footprint of the Java runtime environment. However, the Jigsaw
effort has been pushed back for integration into the future Java 9 release.

Privacy-Preserving Accounting and Payment

In Chapter 6 we develop a scenario where a resource constraint client takes
advantage of remote cloud services. The cloud services must be paid for, however
the client wants to make payment in a privacy-preserving way. To the best of
our knowledge an integrated approach, privacy-preserving algorithm, a cloud
scenario and security-enhanced hardware platforms as presented in Chapter 6
has not been considered before. There are three lines of related work whose
combination leads to our work presented in Chapter 6.

Privacy and trustworthy mobile platforms: The work of [159] implements a
variant of direct anonymous attestation (DAA) [17] for mobile devices and ex-
tend TLS [29] with it. They split the computation into a TrustZone isolated
normal world and secure world part to prevent copying and sharing of private
data/credentials. They also provide anonymity and unlinkability for the mobile
client against a verifier. Similar to this idea in Chapter 6 we also split our com-
putations and aim for anonymity and unlinkability of client actions. However,
we focus on the problem domain of anonymous resource accounting.

Privacy and cloud computing : The following works recognize the problem of
hiding client identity and actions from other clients and the cloud provider. The
problem of anonymous cloud storage access and manipulation is in addition to
the payment problem we focus on in Chapter 6, however both problems need to
be solved to protect client/user privacy.

Sharing of resources among different users may potentially lead to construc-
tion of covert or side channels facilitating inference of activity patterns of other
users [23]. Consequently, user’s access patterns represent privacy-sensitive infor-
mation that should be hidden from the cloud.

Others works focus on storing and sharing data in the cloud. [37] present
an oblivious RAM (ORAM)-based approach, which allows users to outsource
a set of data items to the cloud. No other users or even the cloud provider
observing access can infer which user is accessing which data items how often.
Another approach based on dynamic accumulators is proposed in [116]. The
cloud and other users may learn which data items are accessed, but each access
is anonymous and unlinkable to another. Hence user usage patterns can also not
be inferred.

Privacy and payments: Concepts for anonymous and untraceable electronic
payments have been around for quite a long time [22]. While these first schemes
were based on blind signatures and the cut-and-choose paradigm40, over the

40For example if there are n claims and n − 1 of them are checked to be correct, it is



2.10. Related Work 43

years several improvements, especially for off-line e-cash, e.g., compact e-cash
[20] and divisible e-cash [8], allowing to spend 2n coins from a “single coin” ac-
cumulating all coins, have been proposed. Also, the use of anonymous payments
for overlay networks like Tor [4, 24], which use lightweight payment protocols
for micropayments, have been proposed.

Unlike all aforementioned schemes, which assume a bank, a set of payees
and a set of payers, in our scenario in Chapter 6 we have just one bank and one
payee represented as the same entity, the cloud provider. Thus, we do not need to
employ offline schemes, but use a kind of online payment scheme. Since we do not
need the properties of e-cash schemes which aim to replace real money and all its
features, such as clients spending arbitrary amounts with arbitrary payees, which
adds a non-trivial computational overhead, we can employ a scheme tailored to
payment for cloud resources in our work. The reduced scheme complexity and
reduced set of transactions in Chapter 6 allow us an implementation which is
just fast enough to run on a very resource-limited device, namely a smartphone.

Autogeneration of a TPM and Software Bindings

In Chapter 7 we semi-automatically generate a TPM v2 simulator solely from
the official PDF specification. To our knowledge a tool parsing the TPM v2
specification and generating something from it exists and is used during the
development of the specification. As hinted in part 4 chapter 4 “Automation”
of the specification: “The automated processor is not provided to the TCG. It
was used to generate the Microsoft Visual Studio TPM simulator files.”[144].
We know the tool is not public and can only speculate that even not all TCG
members have access to it. More information on this is probably available under
a non-disclosure agreement from the Trusted Computing Group.

A somewhat similar effort at auto-generation, but in the reverse direction,
was implemented by [60]. In this study a TPM v1.2, its data structures and
commands is specified in a custom domain specific language. This specification is
then the input for an automation toolchain which generates a) a human readable
specification in PDF and b) an implementation skeleton of a TPM in C. As
during this work the TPM v2 was published, this work on the TPM v1.2 is only
a proof-of-concept with a limited selection of examples.

reasonable for large n to believe the last one also to be correct, but without explicit checking.





3
A Platform with Enforcement of

Application Integrity

3.1 Introduction

Assessment of remote platform state is a problem which Trusted Computing
solves through its chain of trust approach (Section 2.3.2). Intel TXT builds
on the foundation provided by the TPM and explicitly gives a platform ad-
ministrator the power to restrict which code is allowed for execution via TXT
(Section 2.4). The ability of ensuring that only specific, administrator-blessed
software can TXT boot on a platform supports additional data protection: a
block of data is sealed (Section 2.2.2) to the TPM, so that it can only be de-
crypted in a certain platform state as defined by the administrator. While above
features might appear to be simple, practical implementation and integration
into a full-size operating system are not.

In this chapter we explore considerations and trade-offs in construction of a
platform prototype to integrate Intel TXT for code and data protection. More
precisely, the platform constructed in this chapter aims to combine the following
properties into an integrated platform prototype:

• Use of up-to-date standard Intel TXT enabled PC hardware that is mass-
market available as a platform base. Selection of mass-market hardware
lowers costs and enhances availability and adoption.

• To take advantage of TXT hardware platform security features with a dy-
namic root of trust (Section 2.4) for measurements based on Intel TXT
along with a TPM as central component. Hardware virtualization features

45
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of TXT platforms (CPU and chipset) provide for separation of software
blocks into virtual partitions. In addition, TXT features also enable an
administrator to restrict execution of software partitions to trustworthy,
integrity-enforced configurations. Furthermore, these technologies enable
platform state reporting to other hosts. Also, data sealing and remote at-
testation become practical due to deterministic measurement of individual
code block/partitions into the chain of trust. The use of sealing protects
platform data at rest.

• A set of administrative procedures and mechanisms to help retain adminis-
trator ease of use and administrative flexibility in the face of configuration
changes, guaranteeing defined transition from one trusted state to another.

• Almost all platform building blocks originate in open-source components,
and this supports individual inspection of each component and fosters open
discussion about platform security properties.

The resulting prototype implementation described in this chapter was published
under the name acTvSM 1 platform and is available for public download and
experimentation at [92]. Furthermore, the interim results of this effort have
been previously reported in several publications—see Appendix A for a detailed
listing.

The text of this chapter quotes from these publications, verbatim if appropriate.

3.2 Architecture

This section presents our practical design for an architecture designed to be run
on mass-market Intel TXT-enabled PC class hardware. The major components
can be broken down into the following major building blocks:

• Secure Boot:
This building block implements the platform boot process into a state
defined by the platform administrator. The platform boots via Intel TXT,
and if the resulting state is good, the TPM releases the keys for decryption
of the main Base System.

• Base System:
The Base System comprises the basic components an operating system
needs to run and manage hardware platform resources, and naturally, it
comprises also all support components for Trusted Computing technology.
Furthermore, the Base System contains all components for management of

1acTvSM is the abbreviation for “Advanced Cryptographic Trusted Virtual Security Mod-
ule”. See also Appendix A for the relationship of the platform described in this chapter to the
TvSM demonstration application partition.
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user applications. A platform administrator may install any software pack-
age and integrate it into the Base System. The Base System is encrypted
on platform storage media.

• Trust Management:
From a file system point of view the Trust Management block is part of
the Base System. Logically, the Base System contains “normal” operating
system components, while the Trust Management components represent
the trusted “extras” added. The Trusted Management block comprises
all scripts and libraries required to manage platform Trusted Computing
features and operations. Also, in evidence are the scripts to (re-)build the
platform to a new trusted state (as defined by the platform administrator).

• Virtualization Partitions:
The Base System can instantiate virtualization partitions for user software
to execute. This is for two reasons: a) Isolation of user (application) code
from the Base System. b) Measurement of a user application as one (or
more) virtualization blocks, thus resulting in a short chain of trust length.

Figure 3.1 gives an overview of these major blocks and the execution flow be-
tween blocks. The following sections describe each block in greater detail. Sub-
sequently, Section 3.3 focuses on platform operational and management aspects.
The practical prototype implementation details follow in Section 3.4.

3.2.1 Secure Boot

The Secure Boot block is responsible for platform initialisation into a defined
state and the deterministic platform early boot process, which are accomplished
with Intel TXT features. From now on we assume knowledge, vocabulary and
boot process of Intel TXT to be known—see Section 2.4.1.

The platform administrator defines a certain platform configuration state as
trusted. Only when the platform boots component by component as expected
does the Base System become accessible. The practical steps are as follows:
TXT establishes a chain of trust (Section 2.3.3) and all components up to the
Linux kernel and its accompanying initramfs2 become part thereof. Then, the
temporary in-memory file system initramfs contains additional code to unseal
the key to decrypt the next block, which is the Base System: If the chain of
trust up to this point is as expected, the TPM can unseal the key for decryption
of the Base System. The Base System is measured into the chain of trust and
mounted—and a normal Linux boot process continues. Otherwise, execution
stops, as there is no alternative way to obtain the key to decrypt the Base
System. For more implementation details see Section 3.4.

2The initramfs normally contains all code necessary for early boot of Linux. Device driver
modules, file system mounting tools, etc.
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Figure 3.1: Overview of the execution flow of main platform blocks. Blocks earlier
than the MLE of TXT are omitted—see Figure 2.3 for TXT details.
Components which are measured before execution are shaded green, un-
measured are red.

3.2.2 Base System

The Base System includes the standard operating system basic components.
Furthermore, it assumes the role of a hypervisor (Section 2.3.5) and manager
of the platform’s resources. It manages the hardware devices at the lowest-level
and provides virtualization support services to run user applications in virtual
partitions (Section 3.2.4). As a base component of the platform software in
the Base System must be mature and actively maintained with regular security
updates.

In order to enable a deterministic Base System image measurement into the
chain of trust (so the encryption key for the Base System can be sealed to a
certain platform state) the Base System is a read-only file system image. This
conflicts with the requirement of a read-write file system for operation of a Linux-
based platform. As a solution, an ephemeral file system merges at runtime with
the read-only base file system (Section 3.4.2). Consequently, changes to the Base
System do not survive platform reboot, except by explicit patching or system
update (Section 3.3). This approach ensures the resistance of the Base System
image to (malicious) modification.

3.2.3 Trusted Virtual Application Manager

The platform can run custom applications provided by users, which run in vir-
tualization partitions (Section 2.3.5), so as not to interfere with other platform
components. The management of the user-provided custom virtual applications
is performed by a component called TVAM, which stands for Trusted Virtual
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Application Manager. TVAM is the central component to manage user appli-
cations import, initialization, start-up, clean-up, etc., of virtual applications
images. TVAM is a script that runs as part of the Base System and provides
also a command line interface to the platform administrator.

Similar to execution transition from initramfs to the Base System, application
images only exist in encrypted form on storage media. The process of running
a virtual application is the same: If the platform is in a suitable state for the
application, TVAM can unseal the key required to decrypt, measure, mount and
run a virtual application.

Another core task of TVAM is the platform update process: If the platform
administrator changes the Base System configuration and initiates platform re-
build, TVAM calculates the new future trusted state, prepares necessary boot
policies and re-seals the Base System, applications, their data and associated
image encryption key to the new state (for details see Section 3.3).

3.2.4 Virtualization Partitions

User applications which are not part of the basic operating system run in iso-
lated partitions. The Base System (Section 3.2.2) operating system manages
platform resources and provides a hypervisor (Section 2.3.5) to instantiate these
partitions. TVAM (Section 3.4.1) manages the file system image and application
start and stop.

An application image is essentially a full virtual machine, which may be an
unmodified Linux or Windows or a special-purpose system. TVAM can start
multiple applications in parallel, and it can extend, if configured to do so, the
chain of trust to an application by the measurement of a virtual partition image,
before it is started. Naturally, if stable PCR measurements are required, the
image must be read-only.

3.3 Operating the Platform

This section now identifies and describes basic platform operations implementing
platform installation, configuration and long-term maintenance.

3.3.1 Installation

The installation process constitutes initial transfer from installation media to
platform storage media. Already at first boot of a freshly-installed platform the
full chain of trust is operational and the platform Base System is only accessible
if the boot process runs exactly as set up by the installation routine, which means
no (malicious) platform modification has taken place between installation and
first boot.

In order to start from an initial trusted state, the software needs to be dis-
tributed on a trusted medium. A root of trust for installation can be ensured by
read-only media such as a CD-ROM. Once booted from the installation media,
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the installation routine first wipes platform storage media and then installs a
default basic platform configuration. Immediately, the measurement values for
the MLE, the platform Base System image file, kernel and initramfs image are
calculated by the installation routine, and required TXT boot process policies
with these expected values are generated and stored in the TPM. After instal-
lation is complete the platform is ready to perform first reboot straight into a
defined, trusted state.

3.3.2 Update and Application Mode

After the platform boots successfully into the Base System, it runs in Update
Mode, where it waits for platform administrator maintenance commands. The
administrator may connect from the network via secure shell (SSH). The update
of policies in TPM non-volatile memory requires the TPM owner password. Con-
sequently, before providing this TPM password, an administrator must confirm
a) connection to the right platform and b) that the platform is in the correct
Update Mode configuration. The first constraint demands that the SSH client
verifies that the platform always presents the same SSH public key. The second
is satisfied when the SSH server daemon private key is sealed to Update Mode.

If no external log-in attempt is effected within a defined timeout period,
the platform automatically switches to Application Mode. TVAM performs the
following: The SSH daemon is stopped and its private key is removed from
memory. A PCR is extended to document the state transition and consequently
prevent further access to the TPM sealed SSH key. Finally, in Application Mode
installed applications are started by TVAM as configured.

3.3.3 Base System Rebuild and Resealing

At first installation the platform is in default configuration. A new configuration
takes as basis the current one plus whatever updates an administrator performs
during platform Update Mode.

After all updates or modifications are undertaken by the administrator, he
initiates the platform re-build and re-sealing process. TVAM assembles a new
Base System image and creates a new entry in the bootloader menu. If a compo-
nent in the boot process has been modified, the VLP (kernel or initramfs change)
and LCP (MLE change) are also updated. As all data blobs holding decryption
keys for application partitions are sealed to the current (old) platform state,
TVAM must re-seal all of them to the new one.

3.3.4 Small Updates

The full update procedure outlined above may be cumbersome for minor con-
figuration changes such as a change of a static IP address in some configuration
file. One possible solution is a “patch” facility, which allows the platform ad-
ministrator to provide one or more patch file(s) at a specific file system location.
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Upon boot they are automatically applied by the Base System. The authen-
ticity of a patch is guaranteed by a cryptographic signature by the platform
administrator—naturally, the validation key must be part of the Base System.
Upon next full system update (and re-sealing) patches are automatically inte-
grated into the system. This approach allows for small bug fixes and easy distri-
bution of pre-configured system platform images, for instance in homogeneous
data-centres, where machines only vary in small configuration details3.

3.3.5 Application Management

TVAM provides a comprehensive set of commands for application image man-
agement. These enable a platform administrator to import, backup and delete
virtual application images. The simplest way to install an application image is
to import a raw disk image. Upon import TVAM creates an encrypted storage
space and copies the raw data to it. The encryption key is sealed by TVAM to
the Base System Application Mode state.

3.3.6 External Reboot

A method of forcing a reboot of the platform is an important feature of ad-
ministration. Intel TXT capable platforms are usually equipped with a set of
features called Intel Active Management Technology (AMT) [53], which amongst
others allows externally triggered reboot as well as serial console redirection via
a network connection. An externally-triggered reboot thus causes the platform
to reboot into a state trusted by the administrator (Update Mode), regardless
of the runtime state it was in before. Consequently, a reboot forcibly stops all
user applications and provides the administrator platform access.

3.4 Implementation

As proof of concept of the architecture outlined in the previous sections we as-
sembled a platform prototype and required management operations. The follow-
ing subsections give an in-depth description of prototype implementation details
and implemented storage management concept.

3.4.1 Components

In theory, any Linux distribution can be customized for our platform architec-
ture, but in practice, a substantial number of patches and changes are needed,
to multiple software packages, in order to assemble a proof of concept prototype.

3For example, identical hardware, though every machine gets a different static IP
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Platform Boot Process

Secure boot is accomplished with standard bootloader GRUB [45] along with
SINIT and tboot [54]. SINIT is Intel’s implementation of an ACM, while tboot

is Intel’s public [57] open-source prototype implementation of an MLE. For a
description of the tboot boot process before the Linux kernel assumes control
see Section 2.4.2.

The Linux kernel passes execution to the initramfs code. We added to the
initramfs a customized 64-bit port of the tools from IBM’s TPM-utils [105, 52].
These tools provide the PCR extend and unsealing capabilities in the initial
ramdisk (initramfs) environment.

The Base System software packages are from the x86 64 Debian Linux lenny
release [27]. This is a pragmatic choice for a robust base system, as Debian is
known for its emphasis on stable code base, frequent security releases and con-
servative approach to adding immature features. To support Trusted Comput-
ing and virtualization hardware we complemented Lenny with selected packages
from the newer Debian testing tree. For example, only Linux kernels 2.6.32 or
newer integrate Intel TXT support and drivers for chipsets that implement it.
We customized installation, initial ramdisk management and rebuilding of the
Base System image from Debian to our needs. The system bootstrap scripts to
create distributable and bootable initial installation CDs originate from GRML
Linux [47].

Runtime Architecture

For an overview of the platform runtime architecture see Figure 3.2. A cus-
tomized Linux kernel with the Kernel-based Virtual Machine (KVM) [63] module
enabled provides the lowest-layer hypervisor functions. KVM isolates multiple
virtual machines on x86 CPUs equipped with hardware virtualization support.
The Base System with TVAM is a minimal Debian Linux. While KVM man-
ages the low-level hardware, input/output devices for the virtual machines are
from QEMU [12]. QEMU can emulate all standard hardware devices of a x86
platform for a virtual machine (=a chunk of memory isolated by KVM). QEMU
itself runs in the Base System. The Base Systen can host/support multiple vir-
tual machines with their own operating system and applications. QEMU may
provide a TPM device to one virtual machine and forward the commands to the
real hardware TPM.

Trusted Virtual Application Manager

The implementation of TVAM in the Base System is scripted in the Ruby lan-
guage [152]. TVAM implements the operations to create new trusted platform
states and re-seal the Base System and applications to them. Also, TVAM adds
and removes platform states from the list of trusted states in TXT boot pro-
cess launch policies. Furthermore, TVAM enables the platform administrator
to import an application image into the platform, start, stop, list and remove
virtual applications. See Figure 3.3 for a list of commands in TVAM v0.3. For
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Figure 3.2: Platform prototype runtime architecture. KVM manages low-level re-
sources for the kernel and provides virtualization and isolation. QEMU
emulates devices for VMs, while running in the Base System. TVAM
is the manager for base system configuration, start-up and tear-down
of VMs, and manager of hard disk space. The hardware TPM can be
forwarded to only one VM by QEMU.

more complex operations, such as trusted platform state calculation, sealing,
unsealing, policy creation and storage in TPM non-volatile ram TVAM depends
on sub-calls to jTpmTools and jTSS [92].

After boot, PCR 17 holds the LCP and details on the MLE [56]. PCR 18
contains the measurements (hashes) of the MLE, the kernel module and the
respective command lines. PCR 19-22 contain the elements described in the
VLP, the modules defined in the bootloader configuration (kernel, SINIT module,
tboot binary and initramfs). The read-only image of the Base System is
extended during boot to PCR 14. PCR 13 is used to measure virtual applications
by TVAM. PCR 15 indicates the transition from Update to Application Mode.
All these PCR states are used to seal data, especially file system encryption
keys, to the expected platform states in the different platform execution phases.

3.4.2 Disk Storage Management

For a practical chain of trust the number of measurements should be small and
the measured components few. Thus, for our prototype we use a sophisticated
disk layout with different types of file systems to achieve a practical implemen-
tation.
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# tvam

TVAM - Trusted Virtual Application Manager

import - import an application

remove - remove an application

remove_state - remove a system state

resetvlp - reset VLP in TPM nvram (DANGEROUS!)

seal - seal basesystem to a new state

show - show informations about installed applications

start - start applications

stop - stop a running application

tmp_create - create a crypted temporary storage

tmp_remove - remove a crypted temporary storage

version - show version information

Figure 3.3: All Trusted Virtual Application Manager (TVAM) commands.

The on-disk structures are created and maintained by TVAM. On assumption
of hard disk installation Figure 3.4 depicts an overview of hard disk partitions,
logical volumes, file systems used and their encryption status. Since this figure
may at first appear complex, we now describe each of these pieces in detail:

Partitions

System hard disk /dev/sda contains two partitions:

• The first partition (/dev/sda1) is a standard Linux read-write ext3 file
system. On this small partition are all components necessary for plat-
form boot. These are: GRUB bootloader, Intel’s tboot, Intel’s ACM
(SINIT) and the Linux kernel image plus initramfs image. This parti-
tion is mounted as /boot.

• The second partition is /dev/sda2. All available space is dynamically
managed by the Logical Volume Manager (LVM) [151] of Linux as a number
of logical volumes (LVs).

Logical Volumes

Storage space of the second partition /dev/sda2 is managed with logical volumes
(LVs) (Section 2.7.1). Some LVs are in plaintext and some are encrypted via
LUKS (Section 2.7.2). Our prototyp uses the following volumes:

• Storage logical volume – STORELV:
Logical volume STORELV contains TPM sealed data blobs constituting
the access secrets for encrypted logical volumes. Furthermore, STORELV
contains the files for patching (Section 3.3.4). STORELV is mounted as
/store on the platform. This logical volume is unencrypted.
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Figure 3.4: Detailed platform disk layout. The two hard disk partitions are blue,
while logical volumes are violet. One application (orange) typically con-
sists of two logical volumes. Logical volumes are host to different file
systems (FS) and may be encrypted.

Figure 3.5: The platform (middle) writeable main root file system is assembled at
boot time from read-only Base System image (left) and an in-memory
temporary file system (right). A patch (top) may also be integrated.
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• Base System logical volume – BSLV:
BSLV contains the compressed Base System read-only image of the root
(”/“) file system (binaries and configuration files). The file system is
squashfs, which is a file system specially optimized for such read-only ap-
plications. In the platform boot process this is the Base System image
measured by the initramfs.

• Application Specific logical volumes – AS(C)LV:
One application virtualization image is stored in one Application Specific
Logical Volume ASLV. The associated configuration is stored in an Appli-
cation Specific Configuration Logical Volume ASCLV. Both are managed
by TVAM and are required by TVAM to run one application.

In the scenario of a service that encompasses multiple applications running
in parallel, e.g. a webservice front-end, a database partition and a firewall
virtual partition, configuration files for such an application group may be
linked, so TVAM starts them together.

• Logging logical volume – LOGLV:
LOGLV stores platform activity logs. Naturally, as this logical volume
is unencrypted, an administrator must consider what logging activities
should be enabled. During platform development and debugging it is of
course very useful to log as much as possible for subsequent later analysis.

Runtime Root File System

At runtime a Linux platform requires a writable file system, and root ”/“ Base
System from the read-only BSLV is not enough. Our solution for this is that the
actual runtime root file system of the platform is assembled from three sources:

• Base is the read-only root file system as available from the Base System
logical volume.

• Patches found on the StorageLV (STORELV) are overlaid on the Base Sys-
tem once during platform boot.

• Finally, a read-write temporary file system (tmpfs) is instantiated in sys-
tem memory. Modern PCs have sufficient main memory for an in-memory
temporary file system.

The three layers are merged at platform boot with help of the advanced multi-
layered unification file system (aufs) [59]. Figure 3.5 illustrates this process. All
writes go to the in-memory file system and are lost upon next reboot, unless the
platform administrator initiates a re-build and re-sealing of the current platform
state (see Section 3.3.3)
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3.4.3 Performance

Prototype implementation and testing were done on a HP dc7900 machine with
an Intel Core 2 Duo E8400 CPU clocked at 3GHz, 4GB RAM, Intel Q45 Express
Chipset and Infineon TPM 1.2 as reference platform.

Prototype Base System installation image implementation size (.iso file)
is approximately 400 MB. Installation and setup of the encrypted file systems
on such a machine complete in just under 15 minutes. Prototype platform
measurement and integrity-enforcing mechanisms are only performed upon boot,
which takes 57 seconds from power-on to display of the login-prompt. The delay
added by the TXT late-launch at boot time is about 5 seconds.

Other than that, Base System runtime performance does not vary from that
expected from a normal Linux platform with similar configuration.

3.4.4 Shared TPM Access

The Base System needs the hardware TPM only at start-up. Afterwards it can
be assigned to one VM application partition via QEMU. This required a modifi-
cation4 of QEMU to allow TPM command byte stream forwarding from/to the
/dev/tpm device in the Base System in a non-blocking manner. Consequently,
one virtualized partition can run Trusted Computing applications at a time.

More general approaches have been proposed to provide access to the hard-
ware TPM device to multiple virtual machines at the same time via multiplexing,
for example virtualized TPMs [14, 108, 136].

3.5 Platform Security

The previous sections gave an overview of platform working. In this section we
reflect on platform security features and limitations.

3.5.1 Attacker Model

As our platform is based on TCG’s TPM and Intel’s TXT technology, the famil-
iar limits of their security, benefits and possible attacks apply (see Section 2.6.1).
In the case of our specific platform attackers may attempt

1. To manipulate the boot process, so the platform does not reach the in-
tended administrator-defined state

2. To manipulate applications at runtime to obtain elevated runtime privi-
leges

3. To manipulate the Base System and from there applications

4Which meanwhile has also been integrated as a standard selectable feature in QEMU, and
it is now available in the official stable QEMU version.
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...in order to gain access to applications and their data (=assets) executing on
top of the base platform. We place full trust in the system administrator to
be careful with secrets, backup secrets and key material of the platform and of
applications, thus he is not the weak link compromising sensitive data.

3.5.2 Discussion

• Attack 1: Manipulation of the TXT-based chain of trust requires malicious
manipulation of the ACM, tboot as MLE or Linux kernel and initramfs.
Only if measurements of all these components are correct, does the TPM
unseal the Base System key. Thus, a maliciously-modified boot process
fails at the unseal operating via the TPM. Therefore, our platform archi-
tecture ensures that a defined Base System is reached after boot, as defined
by the platform administrator.

• Attack 2: In each virtualization partition a normal operating system typ-
ically runs, with a kernel and user application permission model. Security
history suggests that any application can be exploited and controlled. Ma-
licious elevation of application privileges to system privileges (root) may
follow, since a manipulated network connection may obtain root privi-
leges in a virtual machine. Horizontally in the software stack virtual par-
titions are contained by the Intel hardware virtualization features that
isolate memory areas. Vertically QEMU provides device emulations for
input/output data exchange. An attack may use a bug in a QEMU device
emulation to break out from a virtual machine into the Base System, where
QEMU runs as normal user application. Naturally, the more devices are
emulated by QEMU, the higher is the possibility of a bug.

• Attack 3: If an attacker succeeds in obtaining Base System root privileges,
access and modification of the encrypted application (data) partitions cur-
rently mounted at that time are possible, as the required key material is
available in kernel memory. However, such a security breach cannot per-
manently modify the Base System. The update process of the Base System
to a new configuration requires a rewrite of the policies in the TPM, which
can only be performed with TPM owner’s permission. However, the TPM
owner password is not stored on the system. The next reboot discards
all Base System changes and restores a trusted state (or fails, if the boot
process was modified).

3.6 Summary

The prototype platform described in this chapter demonstrates a practical archi-
tecture suitable for mass-market off-the-shelf PC hardware. We have used TPM
and TXT features to provide a general-purpose platform that offers integrity
guarantees for the base operating system layer and applications and services
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running on top. More precisely, our platform has achieved the following proper-
ties:

• The use of Intel TXT and its TPM stored policies enables a platform
administrator to enforce what configuration is allowed to boot via TXT.

• The change of platform configuration requires changing the policies stored
in the TPM. Only the platform (=TPM) administrator can change these
and the TPM provides protection against brute-force password guessing.

• The Base System and user data and applications running on top are pro-
tected via encryption at rest. Only if the platform attains the platform
administrator defined state, do they become accessible.

• Furthermore, Intel TXT shortens the chain of trust by omitting early BIOS
and boot process measurements. There are only a few components in the
boot process up to the Base System, thus the chain of trust is so short
that it can be practically audited in a remote attestation scenario.

• The chain of trust for our platform is so short that TVAM can precalculate
the new future platform state at next reboot. This capability of TVAM
allows our platform to transition from the current state to the new one.
TPM sealed data blocks are resealed by TVAM to a correctly predicted
future state.

• The choice of Linux as basis for our prototype essentially allows installation
of any Linux application. We show a common general purpose operating
system can be adapted for Trusted Computing.

• The choice of KVM+QEMU as virtualization technology allows a free
choice of guest operating systems and at the same time isolates memory
areas of virtual partitions by hardware mechanisms.

• The central administrative tool TVAM empowers platform administrators
to manage user applications (images) easily.

• From a software perspective, all components (except the ACM provided
by Intel) are open-source. This ensures accessibility to security inspection
and the ability to customize the platform according to specific needs.

• Necessary components for implementation of this architecture are avail-
able, and this includes mainboards capable of Intel TXT and Intel AMT,
as well as processors capable of hardware virtualization. These solutions
are off-the-shelf hardware not carrying a price premium.





4
Lightweight Distributed Attested Clouds

4.1 Introduction

Chapter 3 explored modification of a general-purpose off-the-shelf Linux op-
erating system in order to achieve multiple security and usability goals. The
implementation prototype achieved these goals, however at significant cost. Im-
plementation was long and tedious1, and overall the platform came to involve a
significant degree of complexity: The goals were, amongst others, enforcement
of a platform boot process into an administrator-defined platform state, creating
a practical short chain of trust ensuring platform user data is only accessible in
defined states, and administrative processes to manage platform transition from
one trusted state to another.

By contrast, this chapter eschews the scenario of a full-size Linux system
on which any user program may be deployed, but we still strive to achieve a
security-enhanced, attestable platform. We explore a more focused scenario of
lightweight attestable networked “cloud” processing nodes:

• First, the basic scenario assumption is a generic network-connected archi-
tecture. The processing nodes are distributed widely, possibly covering
diverse physical sites, operators and hardware platforms. The idea is that
“anyone” should be able to become part of the processing network, the
cloud.

• Secondly, individual cloud nodes actively use Trusted Computing technol-
ogy in the cloud formation phase. This provides remote assessment and

1Which one may also deduce from the number of publications reporting interim results of
this effort.
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reporting support for platform state. Platform state is interesting for se-
curity reasons: The ability to determine platform state is a requirement
for newly-connecting nodes to proof that they are in an acceptable state
and for existing nodes for later verification. The cloud aims to force all
participating nodes to be in a given acceptable platform configuration.

• Thirdly, while commercial off-the-shelf x86-based platforms with Trusted
Computing enhancements are mass-market available nowadays, in the near
future there may be other options. One alternative is ARM architecture-
based server designs, prototypes of which are already being evaluated by
early adopters and friendly purchasers2. Consequently, consideration of an
implementation prototype covering future ARM platforms as processing
nodes provides feedback on practicability of the approach taken.

The prototype described in this chapter has never been released to the public,
however architecture, protocol, experience and lessons learned have been previ-
ously published. See Appendix A for detailed references.

The text of this chapter quotes from these publications, verbatim if appropriate.

4.2 Scenario

In this section, we first enumerate core assumptions and properties to be pursued,
then we describe interacting entities and their role.

4.2.1 Cloud Node Properties

In our architecture design and implementation prototype we aim for the following
core properties:

Distributed Individual cloud nodes may be distributed geographically and
organizationally. Nodes may be placed in different countries and continents,
and may be owned and operated by a diverse sets of operators.

Attested It should not be possible to join the cloud of processing nodes at
whim. The cloud network should be able to assess a new applicant node through
the use of Trusted Computing. Upon joining the network every node has to
proof what state the platform is in through remote attestation. The result of
this attestation process is the decision whether a node is in a trusted state and
therefore allowed to become part of the cloud.

2The motivation is that the architectural differences between ARM vs. x86 promise to
allow more CPU/space density and efficient power use for the ARM platforms.
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Protection of data at rest When a cloud node uses a local data cache in
order to perform tasks, data in this cache should be protected at rest. The data
is encrypted with a key only available in the identical runtime state the platform
was last in when it was processing data.

Lightweight In order to enable a diverse set of stakeholders to participate
in the cloud network, setup, joining and maintenance processes for individual
nodes should be simple and not involve significant organisational overheads.

Heterogeneous Many nodes should be able to join the cloud. Consequently,
the cloud node software should build on a base and primitives easily portable to
different platforms. The larger the cloud network, the more resources may be
shared among participants. Consequently, this allows processing of larger tasks
and improves economics of scale, which reduces costs.

4.2.2 Entities

A cloud infrastructure connects individual computing nodes, providing coordi-
nation among nodes. We propose a central controlling entity for commissioning
nodes, to perform accounting and oversight tasks. We identify two different
kinds of entities in our scenario:

Cloud Control

Cloud Control (CC) is the central entity responsible. It provides information
services on available cloud nodes and service capacity. Furthermore, it manages
cloud client profiles and is responsible for resource consumption accounting,
authentication and authorization. As Cloud Control is central to the operation
of the cloud, core services/servers may probably be best run in a professionally
managed datacentre available 24x7.

Cloud Nodes

Our scenario is not restricted to the few processing nodes operated locally by
the Cloud Control provider. Instead, we expect the vast majority of nodes
to be distributed remotely, with their operators not necessarily under direct
supervision.

The assumption is that essentially anyone can offer nodes to join the cloud
and thus provide computing capacity3. However, to do so they must first ev-
idence a certain level of security in their cloud-joining platform. Trust in a
platform is not established by reputation or contracts, but instead cloud nodes
must apply and run platform system software that is well known to and trusted
by central Cloud Control. This hurdle protects against fraud and abuse, and the
use of Trusted Computing security features enforces this requirement.

3And then may be compensated for doing so under a service contract.
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In practice, this means that a cloud node software image must be downloaded
from central Cloud Control and then booted at a node. If a newly joining
node’s platform state is successfully attested to Cloud Control, the node becomes
available to the cloud. If a node wants to run custom or modified platform
software, it is blocked from joining by Cloud Control.

4.3 Node Operation

This section examines core node operations, states and management flows. Of
special interest is the security of the cloud formation process when distributed re-
mote nodes join the cloud network via central Cloud Control on the requirement
that every node hosts a TPM as specified by the TCG (see Section 2.2.2).

4.3.1 Cloud Node Joining Cloud Control

A new cloud node wants to join the cloud network. The cloud node software
image boots via a measured boot process: measurements of platform state and
components are documented in the TPM PCRs, starting from a known initial
platform state. Furthermore, the image contains the unique asymmetric RSA
public key CCpub and the network address of Cloud Control (CC). As the first
operation immediately after boot, the node attempts to join the cloud.

The following steps 1 and 2 in our joining protocol are a modification of the
original TCG-specified AIK-PrivacyCA exchange4. For space reasons we cannot
explain every detail of the original protocol5, so we concentrate only on the
data fields we use here. After steps 1 and 2 conclude, we add steps 3 and 4 for
exchange of platform state.

Figure 4.1 provides an overview of the joining protocol. Four messages are
exchanged between joining node and central Cloud Control:

1. The first objective is to establish a secure connection to Cloud Control.
The first data blob sent to CC is symmetrically encrypted with a fresh
random symmetric key K, while K itself is encrypted asymmetrically with
CCpub. The request data blob contains the EK certificate (EK cert) of
the TPM, along with the public key AIK pub of a newly created AIK key-
pair in the client’s platform TPM. We also sent a data field “platinfo”6,
whose purpose is to provide supplemental information about the platform
to Cloud Control, if needed. This information may be whether the plat-
form is x86- or ARM-based, or authentication information, but this is
scenario-dependent.

4See Section 2.5.2 for a description of the original TCG-specified AIK creation and deploy-
ment flow.

5Which is rather complex and requires understanding of TPM commands, data structures
and TSS API.

6In practice, we (ab)use the data field that normally carries the name for the AIK certificate
to be issued for the PrivacyCA.
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Node Cloud Control

request := (1)
(EK cert,AIK pub, platinfo)

encrypt request with K,
encrypt K with CCpub → decrypt K with CCpriv,

decrypt request with K

validate EK cert

(2) response :=
(nonce, suppl.data)

encrypt response with K2,
TPM decrypts response ← encrypt K2 with EK pub

with EK priv,
decrypt request with K2

run TPM quote with nonce

encrypted channel
established

quote result, (3)
local info → verify platform state

(4)
← “ok”/“denied”

Figure 4.1: Node-to-Cloud join protocol
(notation simplified for clarity)
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Cloud Control receives the blob and decrypts the payload with its secret
CCpriv, thus obtains K and can then decrypt the request. A certificate
validation process runs for the received EK cert to determine whether the
TPM is a valid hardware TPM.

2. On successful validation, Cloud Control generates a fresh nonce and further
supplemental data necessary for requesting a quote of the remote node
platform state. For example, the bitmask of PCRs to quote depends on the
hardware platform reported in “platinfo” of the request in step 1. Again,
this is scenario-dependent. The response data blob is encrypted with a
new random symmetric key K2 and K2 is asymmetrically encrypted with
EK pub (contained in the certificate received in step 1).

When the client platform receives the response, it uses the TPM to decrypt
the response to obtain K2 and then with K2 to decrypt the payload. The
client runs a quote of the platform’s state with the fresh nonce received, and
the TPM uses the previously generated AIK to sign the current platform
state.

From now on we assume the symmetric key K2 created by Cloud Control is used
for the encryption of all further exchanges with Cloud Control7.

3. The TPM signed platform state along with additional node or platform
specifications (e.g., available storage or processing power) is sent back to
Cloud Control.

Cloud Control now validates the presented TPM signed platform state.
The quote must be signed with the AIK presented in step 1, and the nonce
must be identical to the one sent back in step 2. The node platform state
reported must be well-known to Cloud Control, i.e., a trusted cloud node
software image must have been booted on the platform.

4. Cloud Control now either welcomes the node to the cloud or denies access.

Discussion

The first two steps in this protocol follow the standard exchange for AIK certi-
fication with a PrivacyCA to establish a secure point-to-point connection from
Cloud Control to the platform (hardware TPM) without a man-in-the-middle.
Cloud Control does the same as a PrivacyCA would, it checks whether the TPM
is really a hardware TPM, according to the EK certificate presented. Using the
public EK to encrypt the response ensures that only a specific TPM can decrypt
the response, consequently there is no man-in-the-middle. Furthermore, Cloud
Control remembers the non-migratable AIK presented as the runtime identity
of the platform.

The following steps 3 and 4 run remote platform attestation. The fresh nonce
of Cloud Control ensures that the response is up-to-date and the AIK on the

7Or, alternatively, TLS [29] is another option.
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platform quote must be identical. Consequently, to Cloud Control this is proof
the remote platform is in a trusted state and is welcome to join the cloud.

After this initial joining protocol any higher-level cloud software platform
can run, and jobs are assigned to this processing node. Depending on the actual
scenario and applications Cloud Control may enforce additional restrictions. For
example, security sensitive applications may require node operators and their
platforms to register as a first step and to perform an additional authentication
step when a platform joins the cloud.

4.3.2 Node Update / Cloud Rejoin

The joining process for a new node represents the basic construction of a cloud
network, from individual nodes as outlined in the previous section. Yet, there
are two more basic operations to consider:

Update

Eventually, the cloud’s requirements for the node software image may change.
Consequently, Cloud Control refuses an obsolete version, now untrusted, in step 4
of the join protocol. The cloud node operator must obtain an updated software
image and retry.

Rejoin

If a cloud node reboots (for whatever reason) and wants to rejoin the cloud
network with the identical cloud node software image, this raises the question
of persistent node data. If the working dataset is very large, perhaps gigabytes
of data, then it is probably inefficient to re-synchronize all data with the cloud
over the internet again. Rejoin is faster, if there is a node local storage for the
working data persisting over a platform reboot.

4.3.3 Node Local Storage

Temporary storage on node-local mass media (e.g., on a hard disk) must be
encrypted to protect data at rest (Section 4.2.1). One solution for fast bulk
encryption of data is a symmetric approach, e.g., encryption based on AES.
In order to re-access the local storage after interruption (e.g., platform reboot)
the key for local storage must be accessible only to the identical cloud node
software image running at the identical cloud node. This problem can be solved
by encrypting the symmetric storage key with an asymmetric TPM key sealed
to a specific cloud node software image state8.

We identify three data items enabling an automatically (re-)bootable, rejoin-
ing cloud node with persistent, secure, local cloud node data storage:

Storage—image file or partition
The local encrypted storage on mass media.

8This is basically the same approach as the file system protection in Chapter 3.
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Bulk storage encryption/key
If a cloud node boots for the first time local storage does not yet exist.
Upon successful completion of the cloud join protocol, local encrypted
storage is created and initialised. A new, random encryption key protects
the data, and the key is TPM-sealed to current platform state.

If the identical cloud node software image boots on the identical platform,
in step 3 of the join process the node looks for local storage. If a storage is
found, the access key can be unsealed, as the platform is in the same state
again. Local information discovered is reported as supplemental “local
info” to Cloud Control (in step 3) and is proof of the previous state of work
performed on this node. Consequently, a local storage can significantly
speed up rejoining of the cloud.

TPM ownership password
In order to boot a new software image version on a cloud node, the TPM
ownership password must be entered at least once. This requirement stems
from creation and activation of the AIK keypair in steps 1 and 2 of the
cloud join protocol requiring consent of the TPM owner9. It is a sensible
policy that the owner should consent to software to be run on his machine.

Consequently, in order to automate the reboot/rejoining of a platform to
the cloud, one solution is that during first boot the ownership password is
hashed and also TPM-sealed to the specific software image booted. The
sealed blob with the ownership password is then only accessible to the
same (trusted) software image during joining when it is needed. Storage of
the ownership password on the platform goes against the idea of Trusted
Computing that a platform owner is thought to explicity consent every time
to certain sensitive TPM operations, however, it enables the automation of
platform operation, after the owner has once consented to a new platform
software image version.

In our proposed solution for local storage three pieces of data together enable
a local, persistent, encrypted data storage over (automated) node reboots. As
the three pieces of data belong together, we propose to integrate them into one
image (file or partition) for easy maintenance.

4.4 Implementation

4.4.1 Overview

As proof of concept of the architecture presented in previous sections, we proto-
typed the core chain of trust in our architecture.

9See, e.g., TPM v1.2 specification, Part 3, command TPM ActivateIdentity: “Only the
Owner of the TPM has the privilege of activating a TPM identity. The Owner is required to
authorize the TPM ActivateIdentity command”[139].
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In order to provide a chain of trust and platform attestation support, every
platform needs a TPM. Our prototype implementations use Infineon TPMs,
which come with an on-chip EK certificate issued by the manufacturer. We
chose as operating system Android, as it is by design split into a read-only
base system image and separate read/write areas for runtime data. This greatly
simplifies the modifications needed for adding the required measurement hooks
for a chain of trust into the Android start-up process10.

There are two test platforms, one x86-based and one ARM-based. Android
runs on both with a Linux kernel, which provides a standard char device as
interface to the Infineon TPM. The software environment on top is the Java
programming language, a natural fit in the Android environment. jTSS [92] pro-
vides the Trusted Computing library support to access TPM functions, which is
a modified version of the initial Android port performed in [163]. The prototype
cloud join protocol is a modification and extension of the original AIK cycle code
implemented in jTpmTools [92].

The following two sections describe implementation details and differences,
x86 vs. ARM, for each cloud node platform prototype. The Cloud Control
server side simulation runs on a generic PC.

4.4.2 x86 PC Platform

The x86 development platform is an HP Elitebook 8440p, which is Intel QM57
chipset-based and fully supports Intel TXT. The on-board TPM is an Infineon
TPM v1.2, firmware rev 3.17.

On the PC platform the BIOS controls the master switch to enable or disable
Trusted Computing features on the platform. So setup requires going into the
BIOS and enabling the TPM and TXT. The default “ANY” TXT launch policy
preloaded into every TPM by PC platform vendors suffices and does not need
modification. A boot process performing the chain of trust measurements is
sufficient, and the enforcement of specific boot/launch policies is not needed, as
implemented with the platform presented in Chapter 3.

The platform owner needs to take TPM ownership once to create the storage
root key (SRK) in the TPM. The SRK password is the common well-known
secret, namely all zeros. The take-ownership function may be performed with
the installed OS or can be provided as a separate utility function on the cloud
node software image.

Storage and Boot Process

In terms of proof of concept prototype we use USB-connected flash memory as
medium for mass storage, as it is very simple to handle and cheap and allows
for experimentation with various software images and configurations at little
cost. Most importantly, with this approach the main platform hard disk is

10Compared to the full-size Linux solution of Chapter 3 with its significantly higher imple-
mentation complexity.
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not modified in any way, fulfilling our goal of lightweight deployment, so no
installation is needed and there is no worry about data on the system.

The content of the drive is a single partition and the file system structure
is quite simple. As bootloader we use Syslinux [154], which sits in the bootsec-
tor and requires ldlinux.sys and syslinux.cfg as support files. mboot.c32 and
menu.c32 display a menu and perform multiboot kernel chainbooting. A TXT
boot requires tboot.gz, the trusted boot reference implementation provided by
Intel [54], and a set of SINIT ACM modules [57], the chipset specific initialisation
code, also provided by Intel. The Android base OS software is a modified im-
age of Android-x8611 of the Android x86 porting effort [3]. The Android system
consists only of the kernel, initrd.img, ramdisk.img and system.sfs.

The syslinux.cfg configuration file connects all pieces together. Menu.c32
specifies as primary kernel mboot.c32, which runs tboot, which starts up TXT
with the proper SINIT ACM module. Control reverts to tboot, which executes
the Android Linux kernel, who with help of the initrd and ramdisk starts the
full system from the system.sfs.

In summary, the chain of trust is: The SINIT ACM measures tboot, which
measures kernel, initrd and ramdisk, while the script in the initrd measures the
system.sfs image.

Android OS

Modifications to the Android base system to implement a trusted boot process on
a x86 PC are as follows: We replace the default kernel with a more generic kernel
to support all common x86 hardware, including the TPM and TXT drivers.
This increases the systems.sfs from 79 MB to 97 MB. Furthermore, we modify
the init script of the initrd to load the TPM tpm tis kernel driver and measure
the system.sfs Android base system into a PCR. This measurement operation
needs to load the full system image once, however, due to small size (see above)
and the fact that modern USB flash drives perform at read speeds of more
than 20 MB/s12, and this delays the boot process by only a few seconds. Then,
initrd mounts the system partition and the file system root moves to it. The
TPM extend utility binaries for measurements increase the initrd size by about
700 kb. Consequently, the impact on boot process performance and binaries sizes
is negligible.

Application

Android package cloud node.apk contains our test code. Immediately after An-
droid boot-up finishes, we install this package with the help of the Android
Debug Bridge (adb)13 and execute our test code. The Java-based test client

11Release 2.3 RC1 eeepc (Test build 20110828)
12Newer platforms have USB 3.0 capable ports and flash drives already perform at over

100 MB/s read speed, so we expect the delay in reading the full file image into main memory
to become less.

13Android Debug Bridge (adb) is a standard tool in the Android SDK.
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accesses the TPM under Android and runs the cloud join protocol with our
Cloud Control server simulation—client and server are connected by a standard
ethernet network.

4.4.3 ARM Platform

Primary hardware reference platform for ARM implementation of our proof of
concept prototyping is a Freescale iMX51 evaluation kit [38]. Figure 4.2 is a
photo of our setup.

The Freescale MX515D application processor found on this board is based
on ARM’s Cortex-A8 core and would offer advanced security features, which
include ARM’s TrustZone security extensions and a set of secure boot facilities.
Unfortunately, most parts of the documentation describing the processor are
only available under NDA from Freescale. For this reason, we do not and cannot
use these advanced hardware security features in our prototype implementation,
because focus is to implement a TPM-based chain of trust.

As operating system software we use Android, in comparable configuration
to the x86 platform. We use the open-source U-Boot [28] bootloader to load and
boot the Android kernel, initial ramdisk and file system images from a removable
SD card. With the iMX51 board the built-in SD card boot facilities of the
processor’s integrated boot ROM starts the U-Boot bootloader. Consequently,
this does not require a modification of any of the board’s flash memory chips.

TPM Support on ARM Platforms

The ARM platform we use as a prototyping platform does not include a Trusted
Platform Module. Moreover, this platform does not provide a Low-Pin-Count
(LPC) bus, to connect a standard TPM intended for integration on desktop x86
platforms.

Consequently, for the purpose of this prototype a simple LPC bus adapter
is needed to attach a TPM to the ARM platform. We use an adapter based on
a common off-the-shelf FPGA development board. The FPGA board we use as
an interface adapter contains a Cypress-FX2 microcontroller with USB interface
as well as a small Xilinx Spartan 3E FPGA. The block diagram in Figure 4.3
gives a high-level overview of the hardware setup.

The FPGA can be set-up with an an LPC bus controller block and exposes
a serial peripheral interface (SPI) bus interface. This allows the FPGA-based
LPC bus controller, and consequently any TPM attached to it, to be connected
to virtually any microcontroller or microprocessor system. The FX2 microcon-
troller hides the low-level details of the LPC bus protocol and offers a convenient
USB interface instead.

TPM-based Chain-of-Trust on the ARM Platform

On PC platforms, Intel TXT depends on a series of modifications to platform
hardware, firmware and CPU microcode to implement a fully measured, well-
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Figure 4.2: Experimental hardware setup.

Figure 4.3: Attachment of a LPC bus-based TPM to Freescale ARM platform
through an intermediary board for bus conversion.
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defined system state. Common ARM platforms do not provide a direct functional
equivalent to Intel’s Trusted Execution Technology out of the box. However, they
do provide the required building blocks to construct a system with comparable
security capability.

The PC version of our node uses TXT to construct a trusted boot chain
for the base system loaded from a removable USB thumb drive. The ARM
implementation of the cloud node software boots from a removable SD card.
This SD card contains the actual bootloader (U-Boot), the Android Linux kernel,
an initial RAM-disk and the actual Android root file system, similar to the x86
platform. The mechanism used to load the boot-loader from the removable SD
card depends on the hardware platform being used. Here, the iMX51 evaluation
kit on-chip boot ROM performs a direct boot from the SD card. Once the U-
boot boot-loader has been loaded from the SD card, the remaining platform
boot process can be customized.

The modifications to realize a TXT-style measuring boot process on the
ARM platform are as follows: The initial RAM-disk of the Android boot image
includes a system-level service for interfacing with the USB-to-TPM adapter
discussed above. This “Android TPM access service” is a native application, to
allow its inclusion at a very early stage of the platform startup phase, before the
standard Android runtime environment has been fully initialised. The service
takes care of initialising the TPM interface hardware. Moreover, it is responsible
to perform the initial PCR extend operations for the construction of a chain of
trust.

The approach outlined for bootstrapping a chain of trust on an ARM plat-
form suffers from one obvious problem: From a Trusted Computing perspective
the TPM access service is the first component to communicate with the TPM,
taking the role of the core root of trust for measurement (CRTM). Without
additional support from underlying hardware and on-chip boot ROM there is,
however, no (hardware) guarantee that initial measurements were actually per-
formed by the intended CRTM. In order to fix the deficiencies in the bootstrap-
ping process of the simple chain of trust some support from the boot-ROM of
the platform is required.

Emulation of Trusted Execution on an ARM platform

The last section focused on construction of a chain of trust on an ARM platform
in the same way as a static root of trust (SRTM) works on a PC platform. In
case of the relatively simple and deterministic software configuration of the cloud
node client presented here, this is sufficient for practical testing.

Application

Once the Android base system successfully starts, we install cloud node.apk as on
the x86 platform and it runs the same as described with the x86 based prototype.
The cloud join process is successful.
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4.4.4 Summary

In summary, our prototyping work focused on three achitecture challenges:

• Demonstration of a chain of trust for Android. We modify Android x86 to
integrate a TXT-based chain of trust.

• Implementation of a chain of trust for an ARM platform. We show how to
attach an external TPM to an ARM platform and modify the boot process
as early as possible to implement a chain of trust similar to x86 platforms.
We do not achieve a root of trust based on a hardware feature like TXT.

• Implementation of the join protocol in Java+jTSS to run on Android.
We implement our protocol in Java and use jTSS to communicate to the
TPM (device) on each platform, x86 and ARM. The high-level Java code
is identical on each client platform and it matters little on which platform
it runs.

We did not try advanced features such as persistent storage and the automatic
start of a cloud middle-ware software package after our protocol completes.
Which specific package is best suited to run a cloud infrastructure on our An-
droid cloud nodes needs to be evaluated and selected separately, in accordance
with requirements of a specific scenario. The selection of the cloud software pro-
vides the necessary feedback to flesh out the “platform information” data fields
in our protocol in more detail, depending on the practical needs of the scenario
and hardware platforms.

4.5 Aspects of Platform Security

We discussed the security properties of the cloud join protocol immediately fol-
lowing the protocol’s presentation in Section 4.3.1. Naturally, for our prototype
platforms the general considerations for the security of (Trusted Computing)
platforms also apply—see Section 2.6. Now we discuss additional aspects spe-
cific to the scenario of this chapter.

Distributed Nodes

The distribution of cloud nodes to geographically distributed operators provides
two potential benefits:

First, distribution of responsibility over additional operators. If all nodes
were centralized, a single operator might be able to tamper with all of them. If
nodes are widely distributed, the chance that one node operator turns malicious
may be considered higher, however, the potential damage is reduced, as he has
access to fewer nodes.

Secondly, the increased effort required to gain physical access to all nodes.
The designers of Trusted Computing aim to raise the barrier for manipulation,
so that physical access to a platform is required for malicious manipulation (see
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Section 2.6.1). Consequently the effort to visit all physical sites and obtain
physical access to all nodes is higher, the more geographically distributed they
are.

Obviously, a distributed data processing cloud with a potential share of com-
promised nodes is not the best solution for all data processing scenarios. Some
sensitive computations do not tolerate a loss of nodes containing sensitive code
and data at all.

Node Diversity

The distribution of cloud nodes to a diverse range of parties assists the hetero-
geneity of the cloud node hardware population. A monoculture of cloud node
hardware platforms makes maintenance easy, however, if a serious issue is found,
all machines and the whole cloud would be affected. Instead, a diverse set of
platform vendors encourages resilience and raises robustness of the cloud.

Future Trusted Platforms

Our ARM prototype effort attaches a dedicated hardware TPM to the platform.
However, any additional component increases the cost of a platform. An alter-
native approach would be to take advantage of ARM TrustZone [7] technology.
The idea is to place a software TPM emulation into the secure world domain
of TrustZone, which is strictly isolated from the rest of the system running in
the normal world. The TPM functions are available to applications via a stan-
dard /dev/tpm0 device and the applications would not notice a difference to a
hardware TPM. A prototype of such an approach was demonstrated in [163].
This alternative approach provides the functions of a TPM, but the security
implications, advantages and disadvantages need to be studied carefully for each
scenario, as the platform boot process is obviously different.

4.6 Summary

The prototype presented in this chapter shows an approach to assemble cloud
nodes in a specific, known state into a cloud computing network. We have pro-
vided a protocol that uses Trusted Computing features for the platform state
attestation of nodes wanting to join the cloud. The implementation prototype
targets a lightweight setup and update procedure, which is easily deployable.
Overcoming the limits of available hardware, our ARM based prototype of a po-
tential near-future TPM enhanced ARM platform suggests that security qualities
similar to x86-based systems are possible, and this supports the vision of future
heterogeneous networked cloud nodes. The use of Android as an open-source
base platform provides the common software ground between the x86 and ARM
platform and maintains the link to the dynamic developments in this area.
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A PrivacyCA for Anonymity and Trust

5.1 Introduction

The platforms presented in Chapters 3 and 4 take advantage of Trusted Comput-
ing technology and protocols. Platform state attestation requires cryptographic
keys that a) uniquely identify a platform’s hardware TPM and b) to sign plat-
form state reports. Naturally, this poses the problem of how to determine and
trust the correct keys are used by the correct entities. What is the certification
process for these Trusted Computing keys and what service authority implements
this process?

In this chapter we explore considerations and design trade-offs in construction
of a prototype PrivacyCA (Section 2.5.2) service responder. While the primary
focus of the service functions is on AIK certificates, our prototype also provides
basic functions for EK certificate management, as not all TPMs come with an
EK certificate included by default (Section 2.5.1).

Our implementation prototype strives for the following properties:

• A compact, minimalistic and attestable service.

This requirement stems from the experience of chapters 3 and 4, whereby
if only a small number of components is involved, this produces a short,
practical chain of trust1. A short chain of trust enables a) attestation,
which is a desired property for a certification service. Furthermore, a
small number of components encourages b) inspection and discussion of
security and robustness of components.

1We note that a service with low (runtime library) dependency on other components nat-
urally also needs only a small system to run on.
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• A compact, auto-generated network protocol.

A network protocol open to any client connecting from the Internet repre-
sents a constant path of attack. A compact network protocol in combina-
tion with an auto-generated input parser reduces the possibility of human
implementation (security) issues.

The PrivacyCA prototype implementation described in this chapter (the respon-
der itself and the minimalistic virtual compartment) was publicly released for
download and experimentation at [92]. During actual development an experi-
mental public responder was operational for use at [85]. Furthermore, interim
results of this effort were reported in several publications—see Appendix A for
a detailed listing.

The text of this chapter quotes from these publications, verbatim if appropriate.

5.2 Building a Trustworthy Service

In the Trusted Computing scenario as envisioned by the TCG [129] services like
a PrivacyCA play the role of a trusted third party. Ideally, such a service should
be demonstrably secure. Of course, trustworthiness does not depend solely on
design, but also on practical implementation. This includes trustworthiness of
the platform it is executed on.

Regrettably, software engineering techniques so far do not allow formal veri-
fication of practical large programs or services. Still, a certification service is a
security critical service and should not be implemented with simply successful
achievement of service functions in mind. Rather, several qualities should be
considered in order to trust an implementation.

Restriction of Code Base

Today’s platforms are versatile, but from the viewpoint of assessing platform
trustworthiness this is a drawback. Every service with an external interface
provides a potential path of attack. It is therefore sensible to deactivate every
service and component not strictly necessary for service execution. Indeed, an
even stricter approach is to remove every superfluous component. The ratio-
nale is that every component can even passively represent a path of attack2

and certainly makes security analysis and inspection of the overall system more
complex.

2For example return-oriented programming attacks [102], where reachable code fragments
may be chained together by an attacker to act as a new program.
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Formal Service Interface

Formal verification of complete platform security is desirable, however, the level
of complexity of today’s software packages is formidable. Yet, the main path of
attack for a service is its network protocol interface, which limits scope. Conse-
quently, a formal notation and automated mechanisms for interface specification
and implementation code generation are goals to strive for, and this is a good
basis that may later be used in formal verification [72] efforts.

A Safe Programming Language

The programming language in which a service is implemented has an influence on
service security properties. A language allowing direct memory access through
the use of pointers, or which does not automatically perform range checks is
inherently more unsafe than a language that does [36]. While it is possible to
create correct programs in a wide variety of languages, it is wise to choose a
language that implicitly makes it hard for programmers to generate common
security issues3.

Open-Source Components

Kerckhoff stated [62] that the security of a cryptographic system should solely
rely on key secrecy, while the rest of the system should be open for inspection.
A similar principle can be applied to components selection. Publicly available
source code not only increases the trust in a service, but in addition adds to
the development all the other advantages of public review and criticism. For
the same reason a trusted service should be deployed on a platform composed
of other mature open source components.

Service Attestation

Ensuring trustworthiness is a two-way process [113]. A client should be able to
trust a service and vice versa. Trusted Computing techniques help to achieve
this goal by measuring service state and reporting it through remote attestation.
A trustworthy service should use tools and TPM-backed capabilities available
on modern, trusted platforms.

5.3 First Iteration and Building Blocks

This section describes the initial prototyping effort for our PrivacyCA service.
The service facilitates creation and validation of EK and AIK certificates (Sec-
tion 2.5), and also provides a simple, yet sufficient API for certificate retrieval
and revocation. See discussion in the second iteration (Section 5.4) for a full
command list.

3For example, in some languages the compiler automatically generates checks to detect
array buffer overflows.



80 Chapter 5. A PrivacyCA for Anonymity and Trust

TCG Specific Certificates – TCcert

As mentioned in Section 2.5, the TCG specification of the EK, AIK, and other
Trusted Computing certificates requires new data structures in the extensions
for X.509 type certificates [50] and attribute certificates [34].

General purpose PKI tools do not support these extensions, and during de-
velopment of our prototype there was also no publicly available library that did.
Consequently, the first step towards a PrivacyCA service is implementation of a
Java library (now publicly released under the name TCcert [92]), which enables
creation and parsing of these new certificates and field structures. This library
is the core building block required for a Trusted Computing-supporting PKI
service.

The following credentials are implemented by TCcert for certificate creation
and validation:

• TPM Endorsement Key (EK)

• Platform Endorsement (PE)

• Attestation Identity Key (AIK)

A PrivacyCA Service Responder Interface in XML

The interaction of distinct entities connected by a network requires a common
protocol understood by all participants. Several protocols exist that are already
employed in PKI and for credential management. For Trusted Computing, a
protocol should be able to support common PKI services as well as specific
Trusted Computing attributes, queries and data structures.

The TCG considered this infrastructure problem in [129]. The two candi-
dates mentioned are the 1) CMC protocol [74] for X.509 certificates and 2) XKMS
protocol [75] for XML-based credentials. In a first prototype iteration an ap-
proach building on the XKMS option appeared more attractive because of its
ability to wrap legacy CA services designed for X.509 certificates and express
certificate management in XML (with XML promising readability for human
consumption).

Consequently, we developed a first PrivacyCA prototype implementation to
build on XKMS as protocol. This first implementation is proof it is possible to
use an unmodified XKMS schema to encode and transport the messages required
by a Trusted Computing-enabled PKI. For example, Figure 5.1 shows the query4

for a specific AIK certificate identified by the AIK certificate label name. This
operation maps well to XKMS and the binary certificate blob is returned, if
found.

However, our implementation experience was also that not all Trusted Com-
puting certificate operations map to XKMS operations in a straightforward way.
For example, the AIK certificate creation uses pure binary data blobs in request

4“Locate” a piece of data in XKMS terminology.
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Figure 5.1: Query on a specific AIK certificate mapped to the “Locate” request and
response of the XML-based XKMS protocol. The important request and
response parameter data fields are marked with purple circles.

and response messages, as they directly relate to low-level TPM/TSS data struc-
tures. This property conflicts with the intention of an XML-based protocol to
encode as much as possible with plain text XML structures. Furthermore, the
proof-of-possession signatures on data expected for certain PKI commands is
not always feasible with TC keys. For example, TPM data policy does not allow
TPM identity keys to sign arbitrary externally-supplied data, as this would per-
mit fabrication of fake statements5. Finally, the use of an XKMS/XML-based
solution is in conflict with our intended deployment scenario, where we prefer
a compact, minimalistic approach for easier security assessment and attesta-
tion. XML introduces an implementation overhead and several external library
dependencies that significantly increase service binary size.

Consequently, upon reflection of these issues and moving forward, we aban-
doned the XML based approach.

5See, e.g., TPM v1.2 specification, Part 3, command TPM Sign: “The TPM does not allow
TPM Sign with a TPM KEY IDENTITY (AIK) because TPM Sign can sign arbitrary data
and could be used to fake a quote.”[139].
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5.4 Second Iteration: A Compact PrivacyCA
Protocol and Minimalistic Service

A PrivacyCA that offers a high level of trustworthiness requires a communication
protocol that offers a set of PKI operations, at the same time allowing a small
implementation. Keeping the guidelines enumerated in Section 5.2 in mind, the
goal of the second iteration was to design and build such a PrivacyCA prototype.

This second effort builds on well-maintained off-the-shelf operating system
components and mature libraries. The implementation is performed in Java
running on Linux. This is a pragmatic approach that offers a good balance of
prototyping speed, maturity, features, invested effort and security. However, this
approach is versatile and sufficiently trustworthy for common usage.

Following up are implementation choices made for each of the components
and how they fit together in detail. Certificates support library TCcert was
adopted from the first prototype.

5.4.1 Communication Protocol

A simple ASCII-text-based solution is sufficient for a compact, robust communi-
cation protocol. In the following protocol the basic structure of most commands
is simply a command identifier followed by data. Data items are line-based, each
line terminating with a new line character. Data type identifier and actual data
are separated by a colon followed by a space. Binary data payload is transmitted
as Base64-encoded strings.

This is a very basic approach and thus not prone to implementation errors.
We use the Ragel state machine compiler [122] to auto-generate large parts of
the server-side parser code. Ragel generates executable finite state machines
from a regular-expression like, formal description of the expected valid input
data stream. Furthermore, Ragel allows generation of code for multiple target
languages, not only for Java, and thus encourages protocol implementation in
other programming languages, which means additional clients for the service.

The short example in Figure 5.2 illustrates the formal specification of a re-
quest and response in the aik create command. This specification input fed to
Ragel generates a code skeleton of the implementation.

Command Set

The small implemented set of commands is sufficient as a foundation for a
Trusted Computing PKI managing AIK certificates. This includes commands
for creation and validation of EK certificates, which are currently missing for
the majority of shipping TPMs. Also, commands facilitate basic tasks such as
creation and revocation of AIK certificates. Figure 5.3 gives an overview list of
all commands, as output by our prototype client implementation.

The prototype implementation supports the following operations to enable
the AIK certification and validation flow (Section 2.5.2):
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create_aik_request =

"CREATE_AIK_REQUEST" "\n"

"Blob: " base64 >clsbuf %save_blob "\n"

".\n"

@do_create_aik_request;

create_aik_response =

"CREATE_AIK_RESPONSE" "\n"

"Blob1: " base64 >clsbuf %save_blob1 "\n"

"Blob2: " base64 >clsbuf %save_blob2 "\n"

".\n"

@do_create_aik_response;

Figure 5.2: A request/response command specification example, which is the input
for parser code generation tool Ragel. The characters “>” “%” and “@”
mark custom subroutines to be called at that specific input processing
stage.

ekcert create This command creates a TPM endorsement key certificate for a
given public key. Only few vendors supply an EK and an EK certificate
for their TPMs. In order to support TPMs from all other vendors it is
necessary to equip these TPMs with EK certificates.

ekcert validate This function validates a TPM endorsement certificate. The
prototype recognizes certificates issued by Infineon and the ekcert create

command (see above).

aik create implements the AIK certificate creation cycle as specified by the
TCG (see Section 2.5.2). By default all AIK certificates issued are saved
in local storage by our PrivacyCA.

aik validate provides a function for any entity to validate an AIK certificate
later. The certificate to be checked is submitted by the client and the
PrivacyCA returns its assessment whether the certificate presented is valid.

aik locate offers a search function for retrieval of a specific AIK certificate
previously issued. The AIK certificate label serves as search key.

aik revoke facilitates revocation of individual certificates. The copy in local
PrivacyCA storage is removed. Thus, the certificate is no longer available
for aik locate.

tcb quote asks the PrivacyCA to quote itself. The PrivacyCA uses the TPM
to perform a quote of platform state and returns it to the requester.

Furthermore, a trusted third-party service like the PrivacyCA presented here
should use an end-to-end secure connection for communication with clients. The
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*** TC apki commandline demonstration client ***

available sub-commands:

version ... query library builds

read_pubek ... read public EK of TPM

ekcert_create ... read public EK and create EK certificate

ekcert_validate ... validate EK certificate

local_aik ... simulate local PCA cycle

aik_create ... create AIK certificate

aik_validate ... validate AIK certificate

aik_locate ... locate AIK certificate

aik_revoke ... revoke AIK certificate

tcb_quote ... request quote of server state

Figure 5.3: Experimental PrivacyCA commandline client commands

prototype implementation uses an unprotected communication channel, namely
a simple TCP connection. However, such a connection can be upgraded with, for
instance, Transport Layer Security (TLS) [29]. To establish an encrypted TLS-
session, one approach may be to derive a channel key from the known public
PrivacyCA key, which is already available on the client side6.

5.4.2 Reduced Software Image

To facilitate functional assessment and security analysis of the service, the code
base should be as small as possible. Therefore, it should only include components
crucial for its operation. This extends to even removing unnecessary parts of
said components. Intuitively, fewer lines of code generally provide less chance
for defects to hide. However, the number of defects is not strictly linear to code
size (but monotonic). Still, overall reduction of code base complexity aids the
goal of understanding and uncovering security issues and furthers the goal of a
trustworthy service, and it is thus worthy of exploration.

In the following we enumerate how to remove unused components from our
PrivacyCA service prototype implementation.

Software Layers – Overview

The code in the PrivacyCA prototype service, which we implemented in Java,
can be roughly grouped into the following layers: PrivacyCA service, JVM/JRE,
OS runtime support, OS kernel and the TPM—Figure 5.4 gives an overview of
these layers.

The top layer is the Java PrivacyCA implementation itself. In order for
the Java bytecode to execute, a Java Runtime Environment (JRE) with a Java
Virtual Machine (JVM) is the next lower layer. The JVM makes use of the

6For the encryption of the request to the PrivacyCA public key during aik create.
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Figure 5.4: The PrivacyCA service implementation consists of several software layers.

native environment to use system specific functions. The native environment
is a set of high-level application libraries, the C/C++ standard libraries and
operating system functions. The operating system kernel implements low-level
services.

The complete layered software stack can run directly on hardware as well as
in a virtualization compartment, unaware of the surrounding virtualization layer.
In order to achive a compact, minimalistic software image, the initial prototype
uses a default configuration of every component. Then, from every layer we
remove unused functions, which reduces each layer to the absolute minimum.
This process is possible due to the use of only open source components, which
can be easily customized and reassembled as required.

Java Environment

To provide the best possible Java compatibility and allow reuse of existing code,
we choose IcedTea [149], which is based on Sun’s official OpenJDK [80]. The
actual subset of the Java environment necessary for the PrivacyCA is small.
We use the class-loading profiling feature of Java to identify all classes in the
Java runtime environment the PrivacyCA depends on. Additional monitoring
of the system dynamic linker/loader ld.so produces a list of the required native
libraries. For error handling we manually add the required sets of Exceptions
and Errors.

Our dynamic identification and removal of unused components reduces the
Java runtime for our specific PrivacyCA application to a size in the range of
10 to 20 MB. Naturally, this approach requires manual support, and a sufficient
identification of the runtime components required is only possible for small appli-
cations where every function must be executed at least once, in order to identify
required dependencies.

Cryptographic functionality depends on IAIK JCE [51] and TPM support
comes from IAIK jTSS, a pure Java TSS [127].
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A Small OS Base and Kernel

The base layer OS needs to be only so powerful as to provide all necessary
functions for the stripped down JVM to run as sole application. GNU/Linux
is our choice, as it is widely used and actively maintained by a large global
community. It is a suitable environment to host the IcedTea JRE. In addition,
the build system allows a fine-grained selection of only those capabilities required
by the PrivacyCA service. The Linux kernel configuration enables only essential
kernel functionalities and a small set of drivers to enable execution directly on
hardware or in a virtualized compartment environment.

A Minimal Runtime

The standard Linux glibc system library uses about 20 to 25 MB disk space on
a typical installation. Additional system and shell tools required for the boot
process are about 3 MB.

The compact Busybox [147] toolkit provides a minimal userland program
environment for a lean boot process. A minimal set of configuration files for
startup and running a GNU/Linux system comes from the baselayout-lite

package, made available by the Embedded Gentoo project [148]. Furthermore,
uClibc [156] replaces glibc as an alternative C library with drastically reduced
footprint.

Reductions Result

The PrivacyCA service assembled from components and layers outlined in pre-
vious sections can be bundled into a single compartment image. The PrivacyCA
operational mode configuration (see Section 2.5.2) is an intrinsic part of the
image file. Thus, if the image is measured with trusted computing means at
compartment startup, the configuration is also implicitly measured.

Table 5.1 gives an overview of the sizes of reduced components in our pro-
totype implementation snapshot. The complete image has a total size of some
17 MB.

5.5 Use Cases

A small but functional PrivacyCA compartment may be deployed in various
scenarios. In this section we outline scenarios where we feel an implementation
approach like our prototype can provide added value.

Scalability for PrivacyCAs

When in the future internet platforms integrate a TPM and want to use Trusted
Computing, a PrivacyCA potentially has to serve millions of users. Furthermore,
natural pressure to create and employ numerous certificates exists as the use
of more AIKs per user increases user anonymity to service providers. This
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Layer Component Size [kB]

OS Kernel Linux Kernel 900

OS Runtime BusyBox 750

Baselayout-lite 61

C Libraries libstdc++ 3545

uClibc 1103

GCC Runtime 42

Java Core Stripped Icedtea JRE 8792

Java Application PrivacyCA Server Core 200

lib IAIK JCE 818

lib IAIK jTSS 312

lib TCcert 49

Table 5.1: Total component sizes in the PrivacyCA prototype

demand necessitates a powerful, scalable certification authority infrastructure
that is capable of issuing and validating a great number of certificates. One
way to achieve scalability of a service is through hosting many small PrivacyCA
compartments in parallel. This may be done through hardware virtualization
technology on a pool of server machines.

We believe our approach is well-suited to be the network facing component
as a) it is easy to replicate b) our auto-generated protocol parser (from a formal
specification) robustly distinguishes valid requests from invalid ones c) provides
attestation of the service itself7.

Naturally, our current prototype does not scale as the current implementation
does not use a real database—certificates are stored simply as files in a directory.
Obviously, the next challenge is a certificate storage and synchronisation protocol
among individual PrivacyCA instances.

Compact PrivacyCA Service for Restricted or Mobile Environments

The PrivacyCA prototype presented is compact and self-contained: once evalu-
ated it is easy to show through Trusted Computing attestation mechanisms that
a specific version started is the evaluated one. Also, self-contained services are
easy to deploy, especially for an in-house PrivacyCA service scenario for spe-
cific organizations. Local deployments of PrivacyCAs will most likely happen in

7We note, if every client demands a fresh TPM quote of service state, this may cause a
denial of service, as a TPM can only run a limited number of quote operations per second, and
requests from clients may come faster. One solution is a virtual software TPM which somehow
references attestation back to the hardware TPM.
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advance of Internet-wide services.
The compactness of our service in protocol and implementation encourages its

usage on resource restricted systems, such as trusted mobile phones or restricted
trusted execution environments.

5.6 Summary

In this chapter we have reported on development challenges and design trade-
offs of a PrivacyCA service. Our implementation prototype has achieved the
following service properties:

• Implementation of a certification service for Trusted Computing certifi-
cates. Our service issues and manages AIK and EK certificates. These
are the core certificates in Trusted Computing and used in the remote
attestation process of Trusted Computing platforms.

• A robust network interface/protocol. Development of our own custom
protocol provides for a) compact implementation and b) auto-generation
of protocol parsing code. This reduction in complexity reduces the chance
of human implementation mistakes and aids understanding and security
analysis.

• A compact execution image. Our software image removes components not
strictly needed by the service. Fewer components means less chance of
problems but simplifies security inspections.

• An attestable service. Our protocol has one command for remote service
attestation. This feature accords clients the possibility of assessing the
service before they use it.



6
Privacy-Preserving Payment for

Constrained Clients

6.1 Introduction

In the world of new digital devices (see Section 1.1) data processing is no longer
limited to one device. A small, lightweight task can be readily accomplished on
a smartphone, however, even this is implicitly limited in resources. One solution
is to outsource complex tasks to a remote cloud data processing service. In the
future it may be possible that a local mobile device user dynamically decides to
take advantage of external resources supplied by cloud providers.

Naturally, cloud providers do not and cannot provide resources free of charge.
They inevitably demand some form of payment in return for resources consumed
by a client. It seems a straightforward implementation would be for every client1

to open an account with a cloud provider first. Every account must be associated
with a payment system identity (e.g., credit card number). Thus, every time a
client consumes resources, he must identify his account first, with the result that
every resource consumption is billed to that account.

While an accounting/payment system like the simple one just described is
sufficient for many cloud services, some clients may deem it too intrusive. As
argued in [23], not only code and data need protection, but activity patterns
are also worthy of protection. Depending on the service, some clients may actu-
ally demand that a cloud provider is unable to build detailed dossiers of client
activities.

1We use “client” in a loose context here, as we focus on the accounting and payment
conundrum and not on whether the real-world client is actually a person or a company.

89
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Challenges

In this chapter we focus on privacy in the accounting process for cloud resource
consumption. More precisely, our scenario sees a smartphone as a client want-
ing to consume resources from a specific cloud provider anonymously. We aim
to achieve privacy in two properties: a) anonymity: the client can consume re-
sources from a cloud provider without being forced to reveal his identity and b)
unlinkability: no separate client action can be linked to his previous or future
actions or any action by other clients of the cloud provider. Furthermore, the
cloud provider receives payment for the resources consumed by clients, while
above privacy properties are intact.

We observe the following challenges in our scenario:

• An accounting scheme that fulfills our two privacy properties. The scheme
must run fast enough for practical use on a smartphone.

• Privacy in the payment process itself is not enough. There should be a
method of distributing payment credits to clients in a privacy-preserving
way, so the cloud provider cannot know which client owns how many cred-
its.

• The safety of credit storage on a client smartphone.

Contribution

In order for our scenario to become feasible, we develop a solution for each
challenge:

• We adopt as accounting scheme that from [117], since it fits our scenario
and ensures the two privacy properties we seek. However, the reported
implementation was done on a PC. Thus, we port the scheme’s imple-
mentation to smartphone class hardware to find out whether it performs
sufficiently well for practical application.

• We develop our scenario into one with three active entities. We identify
core operations and how credits flow between them. Also, we show how to
preserve privacy in each operation.

• For safety of the client credits store we study use of an isolated, secure
processing area and benefits this approach may provide.

Outline

Section 6.2 introduces our scenario and active entities in more detail. Then,
Section 6.3 maps individual operations in our scenario to practical accounting
scheme details. As a follow-up, Section 6.4 reports on implementation results
of porting of the scheme of [117] on a set of hardware platforms. Section 6.5
provides supplementary discussions on certain properties of our approach.
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The privacy-preserving cloud resource accounting scenario described in this
chapter was developed in theory, however, in practical implementation we fo-
cus only on assessing the core question of practical usability of the scheme’s
execution performance on various smartphone-class platforms. The scenario
and proposed solution were presented at an international privacy and security
conference, see Appendix A for detailed publication references.

The text of this chapter quotes from these publications, verbatim if appropriate.

6.2 Scenario and High Level Description

In the following we present the scenario for deployment of our privacy-preserving
accounting scheme. First, we identify core interacting participants and then we
describe the scenario. As a follow-up, we provide a high level description of
operations between the entities. Finally, we also discuss privacy perspectives
and considerations for all entities.

6.2.1 Entities

Figure 6.1 gives an overview of the three entities in our scenario. We assume a
small, resource-limited client (C) wishing to outsource computations to a pow-
erful cloud datacentre.

The cloud provider (CP) professionally runs a large datacentre. He rents
computing power to anyone who can pay for resources consumed. We make no
assumption of resources available, but we define them to be accounted for in
discrete units of cloud credits (CC). Naturally, the client and the cloud provider
must consent to a protocol, so that the client can prove to the CP that he
has sufficient credits to pay for consumption of a certain amount of resources.
Obviously, client and cloud provider must interact directly when the client uses
a CP service. However, before this step the client has to obtain a certain amount
of cloud credits.

As an additional feature we introduce a third entity, the credit reseller (CR).
He obtains cloud credit units from the cloud provider in bulk and subsequently
distributes and resells them to clients, possibly also through local outlets. The
addition of a reseller provides a variety of distribution options. Also, the time
between a reseller receiving credits and then distributing them is unknown. Con-
sequently, the cloud provider cannot infer any time-based correlation between
issuance of new credits and clients using his service.

6.2.2 Scenario

We assume the client to be a state-of-the-art smartphone with a small isolated
execution environment for performing sensitive data processing. In this environ-



92 Chapter 6. Privacy-Preserving Payment for Constrained Clients

Figure 6.1: Cloud credits accounting flow overview

Figure 6.2: Smartphone client connects via the internet to remote cloud provider
datacentre.
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ment cloud credits are stored and processed in isolation and protected from the
main operating system and common applications.

The smartphone is connected to the internet, and thereby to the cloud
provider servers. Figure 6.2 gives an overview of this scenario, and subsequently
we describe each major block.

Cloud provider

We assume server computing resources offered by the cloud provider are In-
tel TXT (Section 2.4.1) enabled. The TXT features permit a client to perform a
remote attestation protocol on a server/service, in order to obtain an assurance
that he will actually receive the service expected.

Network

In our scenario the client is a smartphone on a mobile/wireless network. The
network forwards network connections via internet to the cloud provider. There
are two potential privacy issues here: a) The wireless network provider knows
who the client is and where he is connecting. Furthermore, b) the cloud provider
sees the connecting client IP.

In order to mask network connection source and destination, we assume the
client uses an anonymization network such as Tor [30]. With network connection
anonymization technology the mobile/wireless provider cannot observe where the
smartphone is connecting, and the cloud provider does not know which IP the
client is connecting from2.

Smartphone

The client device software environment is split into two processing worlds: a) The
normal world hosts the mobile main operating system. Android is in common
use today. Also, end user applications run in this environment. Furthermore, b)
there is also a small isolated trusted execution environment, the secure world,
for sensitive data and operations. Data exchange between the two worlds is
restricted, and only a defined set of API calls are available3.

The secure world stores the cloud credits private data structures and performs
accounting operations. Once initial data structures are imported, they never
leave the secure world again. One exception is a special process to implement
transfer of all credits from one client to another. Applications in the normal
world use two API functions: 1) query how many credits are left and 2) request
n credits to be used at the specific cloud provider. We discuss the security value
of this approach later in Section 6.5.

2If one is able to globally monitor the Tor network, of course, then even Tor cannot hide
network connections. However, a discussion of the robustness of Tor is beyond our scope, so
we leave these discussions and continuous resistance of Tor to attacks on the Tor community.

3See for example [163] for a practical ARM TrustZone-based realization of these two worlds
architecture.
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Figure 6.3: High-level operations of credit flows

6.2.3 High Level Description of Operations

We model the flow of cloud credits in our scenario as essentially a circle connect-
ing the three entities. An initial overview of credit flows was given in Figure 6.1,
and now we describe the operations in more detail. Figure 6.3 gives a graphic
overview of individual high-level operations for the client, cloud provider, and
credit reseller.

The cloud provider is the central entity. It provides resources and requires
clients to pay for resources consumed with the proper amount of cloud credits.
Consequently, clients wishing to consume resources from the cloud service need
to acquire a certain number of cloud credits from a credit reseller in advance.
This transaction is carried out without involvement of the cloud provider and
thus can be offline. After acquisition of credits from the reseller, clients activate
them at the cloud provider, perhaps at some later point in time. Clients may
not only consume acquired credits themselves, but may also give or sell them to
others. Furthermore, if clients overpay credits at the cloud provider for a certain
task, e.g., because they do not know how in advance how many resources the
task actually requires, then the cloud provider can refund the unused credits.

Subsequently we enumerate these operations in more detail:

Issue: This transaction is an initial bulk transfer of cloud credits (CC) from
cloud provider (CP) to credit reseller (CR). It is a business relationship
operation that happens in a secure and reliable way (see Section 6.2.4 for
privacy considerations).

Acquire: This transaction is carried out between a client (C) and a CR. At
the end of this transaction the C holds an amount of CCs that cannot be
used before the activation procedure is run.

Activate: This transaction is carried out between the C and the CP. Essen-
tially, the C ends up holding an amount of activated CCs, in form of one
token. Furthermore, the token may possess limited validity.
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Spend: This transaction is carried out between a C and the CP, and the C pays
a certain number of CCs and consumes an equivalent amount of resources
from the CP. The client ends up with the result of the task performed at
the CP and the remaining number of activated CCs in an updated token.

SplitCredits: This is a transaction between the C and the CP, in which the
C ends up with at most two valid tokens. Let us assume that the C wishes
to split off n CCs from his store of m CCs (and m > n holds). The one
token of m CCs is split into two tokens. The first token contains m − n
CCs, and the second token is worth n CCs.

Refresh: This transaction is carried out between the C and the CP. It is re-
quired when CCs have limited validity. When the validity period ends, the
C must perform this transaction. The current token of the C is exchanged
by the CP for a new token which holds the same amount of activated
credits, but the token is valid for a new period.

Transfer (not shown in figure): This transaction is carried out between two
clients C1 and C2. C1 transfers a number of activated CCs to C2 and C1’s
CCs are deleted, i.e., we explicitly support transferability.

6.2.4 Privacy Considerations

Entities and operations having been outlined, and now we discuss privacy re-
quirements effective in our scenario. We assume two entities can always connect
with the technology of a private, secure channel4. This does not mean each
entity knows the real-life identity of his connection partner, but every partici-
pant is sure they are connected via a secure channel to the correct entity. The
practical implementation of these secure channels depends on the deployment
scenario.

As already mentioned in our introduction (Section 6.1), we aim for privacy
through anonymity and unlinkability of transactions conducted. On one side
clients enjoy these privacy guarantees, while at the same time the other entities
ensure only authorized actions are conducted. We now consider the privacy
perspective for each entity in more detail.

Cloud provider

From a privacy perspective the cloud provider is in the position to be honest
but also curious. If he claims he does not care about what the clients are doing
and is honest, there would be no requirement for the work of this chapter.

If we assume the provider to be curious, he has the means to sniff, log
and track all cloud activities and maybe subsequently be able to discern who
the clients are and what they do. Consequently, implementation of a privacy-
preserving accounting protocol demonstrates a certain level of privacy irrespec-
tive of whether the cloud provider is really curious or not. Without a privacy-

4For example with Transport Layer Security (TLS) [29] over a Tor [30] connection.
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preserving approach customers may refuse to do business with the provider as
they cannot be sure what is happening to them.

Credit reseller

The relationship between the cloud provider and the credit reseller is a business
one. The cloud provider desires a reliable and clearly identifiable reseller for
a good business reputation, and the reseller wishes to ensure he deals with the
proper provider contact at the cloud provider. From this follows the requirement
for secure communications and transactions between the two, when they trade
credits for money. Privacy towards each other is not important in this context.

The reseller is the entity coming into real-life contact with end-users. Conse-
quently, privacy of client identity depends on the method of payment for prepaid
cloud credits sold by the reseller and how actual credit handover is carried out
(for more discussion on this see also Section 6.5). Without external pressure the
reseller has no motivation to invest extra effort in identifying his clients.

Client

The client is the entity motivated to ensure that privacy is enforced at all stages
in the transactions. As a first step he has to obtain credits from the reseller. A
straightforward solution is to pay in cash at a local reseller. Payment in cash
seems privacy-preserving, as it does not leave the trace left by electronic forms
of payment5. By definition, the client already knows which cloud provider he
wants to use6, thus he must be able to verify the credits offered by the reseller
are genuine.

The accounting process for cloud credits for resources consumed represents
the core privacy challenge. Is it possible to consume credits at the cloud provider
without him being able to identify and track clients? A simple accounting process
does not provide privacy. Our two privacy goals, anonymity and unlinkability
(see Section 6.1), map to our operations in the following way:

Anonymity The cloud provider is unable to identify clients. On assumption
there is an anonymous channel between the client and the cloud provider,
none of the operations Activate, Spend, SplitCredits and Refresh must in-
volve any information that could be used by the cloud provider to identify
a client.

Unlinkability The cloud provider is unable to link individual, separate re-
source consumptions (=credit spending) or to discover how many credits
a client possesses. As in the case of anonymity, the operations Activate,
Spend, SplitCredits and Refresh must not provide any information that can
be used by the cloud provider to link individual, separate client actions.

5Unless we assume a conspiracy of government and central bank to track every paper note
by its serial number.

6Otherwise he would not be motivated to buy credits in the first place.
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6.3 Practical Anonymous Payment

In the following we map our scenario and the operations in it to the scheme of
[117]. An introduction to this scheme is found in Section 2.9, so from now on
we assume knowledge of it.

Data Structures

We abstract scheme details with the following high-level parameters and state
information in order:

• The CP has a set of data cpparamspub and cpparamspriv. The first are the
parameters for the CALY signatures used in the scheme and are public
knowledge, the second are respective private parameters only known to
the CP. Also, the blacklist BL and its content are kept secret by the CP.

• The C also has two states of data: cstatepub is the pair of token t =
(CO(id), CO(s), L) and the CP signature σt for it. Furthermore, cstatepriv
contains the token values id, s, L, as well as the randomizers for the
commitments and the randomization factors for the CALY signature of
the client’s token.

The states of the client are updated at every Consume operation, and only the
current values are required. The data in cpparamspub is not privacy sensitive,
because without concomitant knowledge of cstatepriv it is impossible to convince
the CP the signature σt is valid for token t.

Operations

The Acquire operation may be implemented by several means, and we now
present one possible implementation.

One privacy-friendly approach is for the CP to issue CCs in the form of
scratch cards to the CR. These scratch cards are of different CCs denominations.
The user buys such a card in cash at a local CR outlet. The user scratches off the
opaque covering, and a barcode is visible7 containing the following information:
a) denomination b) a unique serial number (so the CP can detect duplicates
during Activate) c) perhaps validity period information and d) a cloud provider
digital signature over all these values (so the user can check the card is genuine).

The end-user now scans the barcode with the built-in smartphone camera8

and obtains all information necessary to conduct an Activate operation with the
CP. Our scratch-card approach is advantageous from a privacy perspective, as
the CR does not learn the card serial number, which is only seen by the C.
Consequently, if CP and CR were motivated to collude and link the Acquire and
the releveant later Activate operation, they would be unable to do so.

7For example, a two-dimensional QR-Code [58] would be a suitable solution.
8For example, use of a mobile phone camera to provide a trusted import path for crypto-

graphic data was demonstrated in the Seeing-is-Believing effort [71].
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Now we present the remaining operations in a more formal manner. For
simplicity we assume the CP provides one type of resource and has already
conducted the ProviderSetup procedure, and the public parameters are known
to all entities.

Furthermore, we denote by NW the normal world and by SW the secure world
of the client platform. The split of the client data structures is motivated by
our goal that sensitive data structures are only available through a well-defined
API (see Section 6.2.2).

Activate: The NW sends the unique serial number (obtained from scratch
card) to the CP, who verifies whether the serial is valid. If yes, C imports
cpparamspub into the SW and C’s SW runs an ObtainCredits protocol
with CP. The client obtains a token and respective signature from the CP
and stores cstatepub in the NW and cstatepriv in the SW. If the CP does
not accept the serial number, the operation terminates.

Spend: The application in the NW requests n CCs and provides cstatepub to
the SW. If there are enough CCs available on the token, the SW runs a
Consume protocol with the CP. During Consume the CP is assured that a)
cstatepub is a valid token+signature pair b) there are enough CCs available
in the token and c) the token id is not already contained in the blacklist
BL. If any check fails, the operation terminates. If all checks succeed,
the SW updates cstatepriv and obtains an updated token+signature pair
cstatepub, which is stored in the NW.

SplitCredits: The NW sends m (the amount of CCs to split off the current
token) along with cstatepub to the SW. Let us assume n > m, where n
is the number of remaining CCs in cstatepriv. Essentially, the SplitCredits
operation works identical to the Spend operation, but the m CCs are not
consumed at the CP. Instead, the C receives an additional token worth m
CCs (thus creating cstate′pub and cstate′priv at the C) from the CP.

Transfer: There are two clients, C1 and C2. The SW of C1 exports cstatepriv
and the public and private state information cstatepub,priv are transferred
to C2 who imports cstatepriv into his SW and cstatepub into his NW. The
SW of C1 deletes cstatepriv. Note that C1 transfers all n CCs represented
by cstatepriv to C2.

The CP is unaware of this transaction, as he cannot distinguish individual
clients during Spend. Consequently, C1 may Acquire and Activate a token
at the CP and later Transfer it to C2. However, a privacy problem occurs,
if C1 fails to delete the token and later wants to use it: the CP detects the
attempted double spending by C1 and C2 as he is offered the same token
id.

Refresh: The C’s NW sends cstatepub to the SW and the SW sends cstatepub
along with cstatepriv (representing n CCs) to the CP. The CP checks
whether cstatepub represents a valid token+signature pair for n CCs. If
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yes, the CP performs an ObtainCredits protocol with respect to the new
parameters cpparams′pub,priv (see below) with C and issues a new token for
n CCs.

Also, we observe the following:

SplitCredits: A client may have several motives for initiating a SplitCredits
operation. For instance, he may want to “split” off some CC’s from his
one token to obtain another token, in order to give one of the tokens to
someone else, e.g., as a gift. Another scenario is that a client pays n CCs
for some computation, but the computation actually only requires m < n
CCs. Then, after having conducted the computation, the CP issues a
voucher in form of a new token to C for n−m CCs.

Refresh: The Refresh operation version presented here is the simplest one.
Essentially, the client is issued fresh CCs with respect to new CALY signa-
ture parameters, every validity period is represented by distinct signature
parameters. Unlimited validity of tokens does not scale, as the CP needs
to maintain a blacklist BL of previously seen tokens to detect double-
spending.

Spend: For every Spend operation at least one CC is removed from circulation,
and at least one new entry in the blacklist BL is required to prevent double-
spending. Naturally, the number of CCs in circulation must be known to
the cloud provider, as he must be able to manage a blacklist of at least
this size. The cloud provider blacklisting capacity restricts the maximum
number of credits in circulation. Consequently, the CP service policy must
enforce a periodical Refresh operation for the client tokens, in effect ac-
counting periods, which results in periodical clearing of the blacklist (for
the expired period).

6.4 Implementation

For practical evaluation we prototyped the core anonymous accounting opera-
tions of our approach on multiple software and hardware platforms. We ported
the original implementation from [117], freely provided by the author, and modi-
fied the code to run on our test platforms and obtain performance measurements
for certain operations.

6.4.1 Setup

On the software side the scheme was implemented in the high-level language Java
and uses the jPBC 1.2.0 library [26], a library for pairing-based cryptography
(PBC) in Java. As an alternative to the pure Java implementation there is also
a C implementation PBC [13], which can be called from Java via a Java-to-C
wrapper. To achieve this wrapper, first we replaced the default JNA wrapper
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for the Java-to-C bridge with our own custom JNI coded wrapper to allow the C
code to be accessible on Android. Secondly, the ARM code was compiled to take
advantage of ARM processor Neon SIMD and ARMv7 instructions features9.

In the following we denote these two variants as pure Java “-J” and Java
with native C core accelerated “-C” variants. Our testing platforms run either
Linux (Li) or Android (An) as operating system. We use the following platforms
to measure execution speed:

Pc* Laptop HP 8440p Elitebook, Intel i7M620 @2,67 Ghz, running Android for
x86 2.3.5 (RC1 20110828) of the Android x86 porting effort [3], or Ubuntu
Linux 11.10 with IcedTea6 1.11pre (OpenJDK 64-Bit Server VM (build
20.0-b11)).

Ek* Freescale i.MX51 evaluation kit [38], Freescale MX515D @800Mhz, running
Android 2.3.4 (build R10.3.2 3), or Ubuntu Linux 10.04 LTS with IcedTea6
1.8.10 (OpenJDK Zero VM (build 14.0-b16)).

SpGs Smartphone Google Nexus S, Samsung Exynos 1 GHz (ARM Cortex-A8),
running Android 2.3.6.

SpS2 Smartphone Samsung Galaxy S2, Samsung Exynos 1.2 GHz dual-core
(ARM Cortex-A9), running Android 2.3.3.

6.4.2 Results

For performance evaluation we focused on the Activate and Spend operations
conducted by the client. This is due to the fact that the remaining operations
only require negligible computational resources or are based on one of the two
afore-mentioned operations, thus they should perform nearly identically.

Activate runs only once for token initialisation, while Spend runs every time
credits from the token are spent at the CP. Table 6.1 shows the results for the
Activate and Spend operations with our test implementation on the platforms
presented in Section 6.4.1. The token limit is encoded as string of bits in a range
from 4 to 16 bits, which results in a cloud credits limit of 24 = 16 to 216 = 65536
credits. We think a limit of 16 bits is sufficient for many practical scenarios. A
larger limit is always possible, if the resulting additional computation time is
acceptable to the client.

Figure 6.4 provides a more detailed bit-by-bit analysis of the Spend operation
execution time for tokens containing 2x CCs. As can be seen from the figure,
the time required running a Spend operation grows linearly10 in the number of
bits x of CCs in the activated token, which is due to the required zero-knowledge
range proofs per bit. We do not provide separate timings for computations by

9GCC CFLAGS=”-march=armv7-a -mfloat-abi=softfp -mfpu=neon“
10The non-linearities in the measurements are caused by common operating system services

still running in the background. It is impossible to completely stop the operating system and
dedicate the CPU solely to our test code.
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PcLi-C PcAn-C PcLi-J SpS2-C SpGs-C EkAn-C

Activate 0.06 0.15 0.35 0.64 0.86 1.12

Spend 4 bits 0.16 0.35 0.82 1.43 1.94 2.54
Spend 16 bits 0.34 0.77 1.72 2.99 4.11 5.32

EkLi-C PcAn-J SpS2-J SpGs-J EkAn-J EkLi-J

Activate 1.09 1.80 6.76 11.1 15.7 19.8

Spend 4 bits 2.53 3.60 13.3 20.9 29.6 39.7
Spend 16 bits 5.42 6.87 24.4 41.7 54.7 77.3

Table 6.1: Execution time of Activate and Spend, sorted by length of Activate,
for a token limit of 4 bits and 16 bits, in seconds.

the cloud provider, since in the scenario he uses state-of-the-art servers, and the
computations are very efficient11.

The results clearly show three of the PC* versions are fastest. Also, the C
accelerated variants take full advantage of the processor-close nature of C code.
We interpret the difference between PcLi-C and PcAn-C due to the first being
64 bit and the second a 32 bit platform and operating system differences12. They
are closely followed by PcLi-J, a pure Java version executed by a JVM optimized
for the PC platform over many years. The next 4 places are claimed by the
remaining C builds, as expected by their platform processor powers: 1.2GHz
SpS2-C before 1.0GHz SpGs-C and 800MHz Ek*-C. The EkLi-C build runs
almost identical to EkAn-C. The pure Java versions trail, again as expected
by their processor speed. For the last platform, EkLi-J, the ARM JVM port
appears to be quite un-optimised.

We should note that all Androids except PcAn-J and SpS2-J exhibit slight
process memory leakage during execution. Although the Java garbage collec-
tor runs continuously during execution, the memory usage of our process grew
steadily. We assume this issue adds to the runtime of the garbage collector as it
must consequently scan more and more memory. If memory use remains stable,
total execution time should be a little lower. We were unable to determine the
cause of this problem.

The main Java classes of our basic test code consume 25 kB in size. The sup-
porting Java libraries (jpbc-api.jar, jpbc-plaf.jar, jpbc-pbc-jni.jar) require 371 kB.
The size of native C support libs (libgmp.so, libjpbc-pbc.so, libpbc.so) varies de-
pending on the specific platform. For our platforms they are: Linux x86 64
772 kB, Android x86 32 688 kB, Linux Arm 588 kB, and Android Arm 800 kB.

11The most expensive operation of the CP, i.e. Consume for a limit of 230 CCs, reported in
[117], takes about 1 second.

12Unfortunately, a 64 bit version of Android was not available and also setting up a complete
32 bit Linux test environment was precluded by lack of time.
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Figure 6.4: Spend execution time; x-axis shows credits token limit L = 2x [bits]

6.4.3 Implementation Discussion

Measured results of our practical prototype support the feasibility of our scheme.
We think a delay of 1, 2 or 3 seconds, and this will become even faster with every
new hardware generation, is acceptable, as end-users already expect short delays
due to the network communication from the client device to a remote service.
Our payment scheme does not incur a large delay, consequently the time for one
anonymous Spend operation is acceptable in practice.

While the Java numbers may appear very high at first glance, the variants
that use a C core for faster computation are many times faster. An optimised,
C-core enhanced Android build runs fast enough to perform Spend operations
without long delay, see variant SpS2-C.

Our prototype implementation depends for cryptography on off-the-shelf li-
braries, which are not optimised at all. Our primary objective was experimen-
tal evaluation of whether the performance is acceptable on ARM based smart-
phones, as it is hard to estimate performance of an ARM platform from PC
platform results. As current unoptimised libraries perform well enough, opti-
mised ones can only reduce delay and improve user experience.

Our current test code plus support libraries and JavaVM are way too large to
fit into a TrustZone environment13. However, we are hopeful that a standalone
implementation of the scheme, without any of the generic library overhead and
with a small JavaVM, fits into a TrustZone environment.

13See Section 2.8, the secure world size is kilobytes in size.
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6.5 Discussion

In the following we reflect on supplemental aspects not discussed during presen-
tation of our scheme or our scenario.

Trusted Computing attestation

In Section 6.2.2 we use Trusted Execution Technology to attest cloud servers
providing resources or services to the client. Intel TXT technology is already
mass-market available and TXT integration has been demonstrated for Linux
based servers (see Chapter 3). Thus, if the software image to be rented to the
client is agreed upon, a remote client, for example a smartphone, can ask for
a remote attestation proof from the server or service to confirm what specific
software image has been booted on the server. Attacks on the TXT components
require physical intervention (see Section 2.6.1)14 and consequently raise the bar
for manipulation.

Identification at credit purchase

As already noted in Section 6.2.4, the process of how a client obtains cloud
credits from a reseller is critical to his privacy. An obvious privacy problem
would be a camera at the reseller’s outlet. The camera may a) collect a photo
of the user’s face and b) if the user decides to immediately uncover the barcode
of the scratch-card just bought, may also record the barcode. Then, the reseller
would be able to link a face to the unique serial number that is used later in the
Activate protocol with the cloud provider.

As mitigation a user a) should never uncover the scratch-card at the reseller’s
outlet or any other public “monitored” place and b) there is still the possibility
to Transfer credits further to trustworthy friends.

An isolated secure world

By design, computation in the SW is isolated from the rest of the platform and
only reachable via a well-defined, narrow API. This protects the data in the SW
from NW influences, so an attacker from the NW is restricted to the available
interface15.

Consequently, an obvious problem is to decide from inside the SW whether a
request from the NW is authorized. One solution would be to require a trusted
input and display path implementing a user-interaction (e.g., entry of a PIN) for
explicit authorization of a sensitive operation in the SW. We assume that users
are acting in their own best interests when using their own smartphones, which
is reasonable. Nevertheless, this still leaves the problem of potential malware
on the client platform that might be able to circumvent even this confirmation
feature.

14Or good old runtime software bugs that allow privilege escalation.
15Unless, of course, the interface or isolation contains a bug.
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Isolation security also impacts the privacy of our network connection, as the
Tor connection in our scenario is currently anchored in the NW. This leads to
the question of how the limited SW can verify whether an anonymous network
connection to the CP is properly established.

In summary, our explicit consideration to split the processing into a NW
and SW side makes it harder to get to secret data pieces in our scheme, which
protects client privacy, compared to the situation whereby the whole scheme just
executed in the NW.

Client honesty

If two clients exchange cloud credits by means of a Transfer operation, say C1

gives n CCs to C2, then C2 has no means of verifying whether C1 has properly
deleted the transferred credits. Essentially, if C1 is dishonest, the first-come-
first-served principle applies, and whoever is the first one to spend credits from
the token is also able to continue spending, while the other is blocked due to the
duplicate detection via the blacklist at the CP. We assume that only clients who
trust each other exchange CCs, in which case this is not a problem. Furthermore,
from the CP perspective, even if C1 does not delete his CCs, then this does not
mean any harm to the CP, since only n CCs can be consumed in total and clients
cannot create “extra” credits.

Forward secrecy

What happens when a smartphone is stolen, lost or seized? If the Spend op-
eration is not protected by additional secret information (see example above,
confirmation via PIN entry), then someone in possession of the smartphone
could spend all credits left on the currently activated token. Nevertheless, even
if an adversary could extract secret information from the secure world, he cannot
link the previous actions of the smartphone holder, since no “history data” of
the randomization processes of the underlying scheme is stored.

6.6 Summary

In this chapter we have presented a privacy-preserving resource accounting scheme
for resource constrained mobile devices such as smartphones. Our solutions for
the challenges (Section 6.1) in our scenario are as follows:

• We adopt a suitable accounting scheme that implements the two privacy
properties of client anonymity and client actions unlinkability. Our proto-
type port of the core operations of the scheme for a diverse set of platforms
suggests that a version with a C core is fast enough for practical deploy-
ment on smartphone platforms.

• We develop the scenario in more detail. We identify three main entities
and then enumerate the operations between them. Also, for each entity we
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describe privacy motivation and goals. Furthermore, we enumerate opera-
tions that affect credits and map them to the operations of the underlying
accounting scheme.

• We consider how security of the client’s credit store and processing can be
realised by use of an isolated, secure world on the client device.





7
Semi-Automated Prototyping of a

TPMv2

7.1 Introduction

The platforms and prototypes developed in chapters 3, 4 and 5 take advantage
of the functions provided by a Trusted Platform Module (Section 2.2.2) for plat-
form state attestation. The TPM v1.2 was introduced to the market about a
decade ago. In order to update the TPM to current hardware platforms, soft-
ware demands and advances in cryptography, the Trusted Computing Group
developed and released a public draft specification for a novel “v2” generation
of TPMs. This generation introduces new features and commands, however, also
the specification format has changed. The TCG claims1 that the TPM specifi-
cation documents are suited for automated parsing and subsequent automated
processing.

Contribution

In this chapter we follow up on the automation claim in the TPM v2 specification.
We report on our effort to construct a software simulator of TPM v2 by auto-
matically processing public TPM v2 specification documents (see Section 7.3).
We discuss how to extract code fragments, command and response parameters,
data structures and constants from the public specification documents. Based
on these extracts we assemble an all-but complete TPM v2 software simulator.

1For more details see Section 7.2.

107
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Only some manual tweaks and supplementary implementation pieces are needed
to run this software simulator on standard Linux desktop platforms.

Furthermore, we show how this TPM software simulator can be hosted on
an FPGA hardware platform (Section 7.4). With this setup we show the path
to a hardware TPM simulation for desktop and embedded systems.

Our prototyping work shows it is possible to explore, develop and experiment
with the new v2 TPM generation without further delay.

The TPM v2 specification parsing, analysis and code generation process in this
chapter resulted in an open-source full TPM v2 emulator. However, at time
of this writing it is not yet publicly released. Description of the specification
extraction and development process were presented as a paper at an international
conference. Please see Appendix A for detailed references.

This chapter text quotes from previous publications, verbatim when appropriate.

7.2 From TPM Specification to Implementation

For an introduction to TCG’s Trusted Computing, the Trusted Platform Module
and the TCG Software Stack we refer to Section 2.2. From now on we assume
knowledge of this background.

The TPM Specification Process

Specification of a component such as the TPM is a complex, tedious and precar-
ious process due to the complexity of the TPM itself—security functions are by
their very nature a challenging domain—and the writing process covering hun-
dreds of pages of specification text requires a certain level of coordination among
contributors. The current TPM v1.2 specification documents are more than 700
pages of English text. They describe architectural design decisions [137], im-
plementation recommendations and data structures [138] as well as command
details [139]. The text portions were written and edited by multiple contributors
and then merged with a text processing application by a central editor. Occa-
sionally official PDF specification files are released to the public by the TCG. As
for the TPM v1.2 specification, revisions 62, 85, 94, 103 and 116 are available
for download from the TCG homepage.

Humans are the primary consumers of PDFs, reading the specification, un-
derstanding and interpreting it and then implementing software for Trusted
Computing with a TPM. The result may be TPM firmware, a TPM emulator,
or support software, libraries and applications wishing to use the TPM functions
and features.

TCG software stacks TrouSerS [155] and jTSS [127] (see also Section 2.2.3)
painstakingly interface with every TPM command and data structure. Their
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publicly available source code history documents their efforts at turning a spec-
ification into a bug-free and compliant TSS implementation that interfaces to a
TPM v1.2.

There exists no official TCG provided reference emulator for TPM v1.2. How-
ever, a student implemented an open-source TPM emulator as project work [119],
and IBM also published an emulator [52]. In 2009 the TCG announced a certi-
fication program for TPMs [133]. In this program TPM chip vendors can volun-
tarily submit their implementation to a TCG-approved specification compliance
test-suite. TPM implementations successfully passing this compliance test are
then added to a reference list on the TCG homepage [143] as public documenta-
tion of their specification conformity.

From this history of human struggle in implementing open-source TPM em-
ulators and open-source TCG Software Stacks for the TPM v1.2 generation we
observe two properties:

• The specification should be consistent, accurate and unambiguous for easy
human comprehension.

• The specification format should allow the use of automated support tooling
to reduce the translation and implementation effort—and thus a natural
source of implementation issues.

Also, an ongoing feedback cycle between specification writers and implementers
is valuable for early detection and correction of shortcomings and defects. With-
out a feedback cycle it is more likely that problems pass unnoticed and end up in
millions of hardware chips. Compliance tests introduced years after mass-market
release cannot undo errors in chips already integrated in platforms.

The TPM v2 Specification

In comparison to version v1.2 the situation has improved significantly for TPM v2.
The TPM v2 specification consists of four major parts describing high-level ar-
chitecture, data-structures, TPM commands and supporting routines. All four
parts together comprise almost 1400 pages. To facilitate use of automation tools
with the TPM v2 specification, the TCG implemented several important im-
provements to TPM v1.2 specification. The v2 specification [144] prominently
states2 this intention:

“Notation: The information in this document is formatted so that
it may be converted to standard computer language formats by an
automated process. The purpose of this automated process is to min-
imize the transcription errors that often occur during the conversion
process. [...] In addition, the conventions and notations in this clause
describe the representation of various data so that it is both human
readable and amenable to automated processing. [...]”

2See Part 2, Chapter 4.1 Introduction
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Furthermore, v2 specification part 4 includes support source code to document
the inner workings of a TPM and its surrounding environment. This reveals for
v2 a reference software simulation was developed, in parallel to the specification
process. Consequently, in an ideal world, the public specification contains enough
information and source code to facilitate rapid construction of a TPM v2 software
simulator and supporting software libraries with the aid of automation tools.

7.3 Assembly of a TPM v2 Software Simulator

In this section we describe our process of extracting information from the TPM v2
specification and generating a TPM v2 simulator from it. As input we use the
publicly-published specification, in the form of the PDF documents (revision
01.03), available on the TCG homepage [144].

Our semi-automated process consists of the following major processing steps,
as explained in the following subsections:

• Input data transformation.

• Extraction of source code fragments from specification parts 3 and 4.

• Extraction of data-structures and constants from specification part 2.

• Generation of code from the parsed structures.

• Manual implementation of missing code fragments and integration into a
build process.

We use a Linux environment to implement our semi-automated extraction pro-
cess. It contains the LibreOffice suite, Ruby language, Nokogiri XML parsing
library, indent source code formatting tool and makeheaders tool for C function
prototype extraction3.

7.3.1 Input Data Transformation

As a first step towards the TPM simulator extraction process we transform the
PDF specification documents into a format easy to process with automation
tools. PDF is a document format which is ready for printing by design. PDF
files are not intended to be edited any further and do not retain the text struc-
tures (e.g., table delineation) from an original document as written with a word
processor.

Our initial idea was to convert the PDF documents to simple plaintext files
with a PDF-to-plaintext extractor. Unfortunately, this simple approach loses
all formatting meta-information. For example, in order to detect and recover a
table from the PDF the location coordinates of where text fragments are on a
page are crucial.

3LibreOffice 4.2.5.2, Ruby 2.1.1p76 with Nokogiri 1.6.1, indent 2.2.11 and makeheaders 0 p4.
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To overcome the limitations of PDF-to-plaintext converters we use the Li-
breOffice non-interactive PDF import function4. This import function converts
the PDF specification documents to OpenDocument FODG format (for an exam-
ple see Figure 7.1). The XML-based FODG document format preserves layout
and formatting information of the original input PDF file, which renders the
following extraction steps possible.

7.3.2 Information Extraction

In our process a Ruby script performs further extraction. The script loads
the XML-based FODG format documents with the Nokogiri XML parser and
extracts all text fragments along with their formatting. This process ignores
any additional markup, such as the solid horizontal and vertical lines that adorn
tables. Extracted text fragments are then stored in an intermediate YAML5

format file, see example in Figure 7.2.

Identification of Information

In order to find specific fragments in this YAML dump of extracted text, we
use regular expression search patterns. With a regular expression and the addi-
tional information of how a text fragment is styled6 it is easy to find locations
automatically in the extracted text, where interesting pieces of information are
located. Starting from every such position a more detailed analysis proceeds.
Detailed analysis of text fragments is performed by another processing step in
our script. Depending on the nature of specification part being processed, our
script performs different parsing strategies to extract information.

Basic Extraction and Code Generation

Part 2 of the TPM v2 specification defines data structures and constants. To
process this part, the script scans for all the tables defining TPM data structures
or constants. After all tables are parsed into working memory, it generates a
C header file with the appropriate C language #define directives for constant,
type and structure definitions for all TPM data types.

Part 3 specifies the 112 commands, essentially chip API, of the TPM v2.
Specification of a single TPM command always consists of input and output
data structures (in form of tables) and a C code fragment that illustrates the
actual command actions. Extraction of the C code fragments is straightforward,
so our script simply dumps the fragments into one C source file per command.
The input and output parameter structures of a command supply the informa-
tion needed for each command to generate a C header file with the C function
signature and input/output data structures for the command.

4libreoffice --headless --convert-to fodg <pdf-filename>
5 YAML is a human-readable data serialization format. Its easy readability and availability

in Ruby motivated our choice to use it as intermediate format.
6For example, a section heading always starts with a number and has a distinctive larger

font size than the main text.
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Figure 7.1: The fit-for-automation promise in the TPM v2 specification converted
from PDF to the XML-based OpenDocument FODG format.
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minimize the transcription ’
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---

Figure 7.2: The fit-for-automation promise as extracted text fragments in YAML
intermediate format. For every text fragment we keep 4 pieces of infor-
mation: x-coordinate and y-coordinate of text on page, text style and
text string.
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Finally, part 4 of the TPM v2 specification contains support algorithms and
methods as C code. The code in part 4 is called by the TPM command code in
part 3 and also implicitly documents a way to provide a runtime environment
for a TPM software simulator. Extraction of the C code fragments in part 4 is
straightforward.

In total, our script directly extracts 6792 lines of C code from part 3 and
25277 lines from part 4 of the TPM v2 specification. The extracted source code
is incomplete, as most of the header files referenced by C #include directives
in parts 3 and 4 are missing. We generate these header files with proper func-
tion prototypes with our script and/or simply use the makeheaders tool as a
subroutine to generate them.

7.3.3 Advanced Code Generation and Additional Steps

Sections 6.1, 6.27 and 9.11 of part 4 of the TPM v2 specification describe code
for command input/output data structure un-/marshalling and individual com-
mand dispatching within a TPM v2. However, this code is not included in the
specification, as it is repetitive and would significantly increase size of the spec-
ification documents. Our script generates this missing code from information
parsed in part 2 (basic data structures), part 3 (command input/output data
structures) and part 4 (command dispatching). However, at the time of this
writing the code is still incomplete—it runs, but still lacks sanity checks on the
data. For example, checks for array buffer overflows of pointers or a value being
in a certain range as specified are missing.

In summary, with direct source extraction, header files generation and repet-
itive code generation our script automatically generates about 360 source files
(.c and .h) in 63k lines of code8. This result is an all but complete TPM v2
simulator.

Manual Fixes

The target runtime environment for our TPM simulator is a Linux-like system
with GNU C compiler and support for the OpenSSL cryptography library. To
successfully compile the extracted code on our Linux build environment a few
patches and some additional code are required. In the following we enumerate
a selection of these manual improvements and modifications:

• A Makefile.

• Modifications for using the Linux platform’s OpenSSL library.

7Section 6.2 should really be called section 6.3, however, the 01.03 revision of the TPM v2
spec has a formatting problem.

8These are estimates, as the number of lines and files vary a little, depending on how much
source code pretty printing is applied with the indent code formatting tool and whether certain
code generation debug options are enabled or not.
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• The specification code was developed on a case-insensitive filesystem. How-
ever, Linux is case-sensitive, consequently some header references need to
be adjusted.

• Some code uses Microsoft C compiler/platform specific functions which
have to be replaced, e.g., fopen s.

• Due to certain defaults on Linux/GCC some standard C headers are miss-
ing, while others are superfluous.

• A new “main” where execution starts, with custom startup and initialisa-
tion code for a Linux environment.

• In revision 01.03 of the TPM v2 specification the C code from parts 3 and
4 contains stray “<K>” and “<Q>” markup markers—obviously these
are not valid C and need to be removed first.

• The network RPC9 routines in part 4 are specific to Microsoft Windows
platforms due to their use of Windows-specific system header files such as
winsock.h and windows.h. We discard the RPC interface originally in
the specification in favour of a simpler socket-based interface: Our Linux
TPM v2 software simulator exposes one TCP port accepting raw TPM
command and response data blobs, without adding any additional com-
munication protocol overhead10.

In summary, after application of several manual patches to the code, we obtain
a Linux executable of a TPM v2 software simulator. Our Linux software simu-
lator utilizes TCP/IP sockets for communication between the simulated Trusted
Platform Module v2 and its clients.

The simulator passes the “Hello world!” test of Trusted Computing: A client
writes to a PCR, extends a PCR, and reads from a PCR. Unfortunately, at the
current time we cannot perform a more comprehensive test, as software for the
TPM v2 generation—a TSS—is under development.

7.4 Hardware TPM v2 Simulation Platform

7.4.1 Introduction

Our success in semi-automatic construction of a Linux-based TPM v2 software
simulator leads to a question of the feasibility and complexity of building a
TPM v2 hardware simulator platform. Ideally, a TPM v2 hardware simulator
would seamlessly integrate with a desktop PC or embedded system and operate
as a replacement for a hardware TPM. For current desktop PCs and notebooks
this implies that a TPM v2 hardware simulator should be able to communicate
via the Low-Pin-Count (LPC) [55] bus, the standard type of bus connection for

9Remote Procedure Call.
10This approach is similar to the one in IBM’s TPM v1.2 software emulator [52].



7.4. Hardware TPM v2 Simulation Platform 115

Figure 7.3: Development setup with our TPM hardware simulator (middle). De-
veloper laptop (left) connects to the simulator and monitors the TPM
simulation. TPM platform (right) does not know its TPM has been re-
moved and the bus has been connected to the simulator.

a TPM chip on the PC platform. Alternatively, recent variants of version 1.2
TPMs use a Inter-IC (I2C) bus, which is suitable for use on mobile and embedded
devices like smartphones or even embedded microcontrollers. Consequently, a
general-purpose TPM v2 hardware simulator should also be able to communicate
over embedded bus systems like I2C.

Environment

In order to achieve flexibility to provide a TPM v2 to both desktop and mo-
bile/embedded platforms, we choose a system-on-chip (SoC) platform imple-
mented on an FPGA evaluation board as our target to port the software sim-
ulator from Section 7.3. This board then simulates a TPM to any connecting
platform via LPC or I2C bus. This approach provides for several important
properties for development and testing of TPM v2 software:

• The connecting platform “sees” a TPM on the bus, but there is no func-
tional difference between our TPM simulator and an actual hardware
TPM.

• The simulator is independent from a platform’s boot process, consequently
it can be used to test and develop any kind of TPM-enabled software—this
includes trusted boot firmware, trusted bootloaders and operating system
kernels without major software changes.

• A software simulation of a hardware TPM simplifies debugging of TPM-
enabled software, such as a TSS. At any time the internal state of the
TPM simulation can be inspected. A possible development setup is shown
in Figure 7.3. Configuration consists of the original TPM platform, the
TPM hardware simulator and an optional developer platform that can be
used to monitor the internal operation and state of the TPM hardware
simulator.
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7.4.2 Implementation

Hardware Platform

Base platform for our TPM hardware simulator is a “Xilinx Spartan 3AN Starter
Kit” board [168]. This FPGA evaluation board contains a Xilinx FPGA, 64 MiB
of DRAM, an ethernet port, two serial (RS232) ports and an on-board JTAG11

probe with USB interface, which can be used to debug the logic design running
on the FPGA.

The core of this SoC design is a synthesizable 32-bit Xilinx MicroBlaze mi-
croprocessor. The simulator platform external main system RAM (64 MiB) is
connected via a DDR RAM controller. A small 16KiB on-chip RAM is used to
store and execute an initial boot loader to load the firmware from non-volatile
storage into main system RAM. Also, the FPGA itself integrates a non-volatile
8 Mbit on-chip memory. We use this on-chip memory to hold the FPGA logic
design, initial boot loader, TPM simulator firmware, and non-volatile state of
the TPM.

The integrated JTAG probe of the FPGA evaluation board can be used to
(invasively) debug and single-step the TPM simulator software executing on the
Xilinx MicroBlaze processor. Additionally, an UART with external RS232 level-
shifters can be used to (non-invasively) trace execution of TPM commands and
corresponding TPM responses.

To enable network access to the TPM hardware simulator, the SoC incor-
porates an Ethernet peripheral block, which interfaces with the Ethernet PHY
found on the FPGA evaluation board. Furthermore, adding a I2C peripheral
block can provide a I2C interface for embedded platform connections and a LPC
peripheral block can provide a LPC bus to PC platforms.

Firmware

The firmware of our hardware TPM simulator prototype uses the Xilinx Xilkernel
(5.01a) microkernel and its basic operating system services. This kernel can be
configured for a small memory footprint and code size, while providing API inter-
faces compatible with a (subset) of the POSIX threads API and with SystemV-
style semaphores. Networking support for the TPM simulator firmware is real-
ized using the Xilinx port of the LwIP (lightweigth IP) embedded TCP/IP stack,
configured to expose a BSD style sockets interface. A cross-compiled OpenSSL
(1.0.1c) cryptography library completes the runtime environment, with all un-
used features disabled to conserve space.

The Linux version of the TPM simulator (Section 7.3) ported to the FPGA
platform with almost no changes. Naturally, the main start-up code and socket
interface required adaptations to suit the runtime environment.

11A standard mechanism for debugging embedded systems that may not have any other
debug-capable communications channel.
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Figure 7.4: Development setup for the TPM hardware simulator. Development lap-
top (left) connects to the FPGA board (right front). The TPM has been
desoldered from the laptop on the right and its LPC bus extended to the
FPGA board.

7.4.3 Prototyping Results

The uncompressed size of firmware code for the hardware TPM simulator is
currently between 950 KiB and 1 MiB. We anticipate this size can be reduced
further. With basic data compression the size of the firmware binary can al-
ready be reduced to approximately 600-650 KiB. This allows it to fit the FPGA
bitstream, a small bootloader and the compressed TPM simulator firmware into
the FPGA on-chip flash. Non-volatile storage is currently held in a small serial
EEPROM outside the FPGA, to reduce wear-out of the FPGA’s on-chip flash
memory.

Figure 7.4 shows the experimental setup we use to validate our TPM hard-
ware simulator prototype. The FPGA board with the TPM hardware simulator
is at right bottom of the photo. The laptop on the left side is the development
machine used to debug and monitor the simulator. It is connected to the USB
port of the on-board JTAG probe and to the serial trace port of the simulator
SoC design.

The tiny circuit board in the picture connects the development laptop to
the I2C interface of the FPGA board. The laptop on the right side has been
modified, we carefully desoldered its original v1.2 TPM and attached probe wires
to the relevant LPC bus pins. These probe wires connect the LPC bus of the
HP notebook’s motherboard to the FPGA board.

At time of this writing the prototype is fully usable via its network interface.
The same set of simple TPM v2 commands as with the pure Linux software
simulator (Section 7.3) run. The connection via the I2C and LPC-bus interface
are still work-in-progress.
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7.5 Conclusion and Outlook

In this chapter we have put the “fit for automation” claim in the TPM v2
specification to the test. We have successfully assembled a working TPM v2
simulator solely from the official PDF specifications.

The first achievement was the development of an extraction process and script
that almost fully automatically extracts a working TPM v2 software simulator
from the public specification. Only open source tools are used in our process.
We expect the public availability of an open-source simulator to contribute to
the development of software for the new TPM v2 generation. Furthermore, the
availability of an intermediate data format of the specification allows everyone
to generate TPM v2 code and data structures for any programming language.

Based on the results of a working software emulator, we have developed
a working proof-of-concept prototype of a hardware TPM v2 simulator. This
hardware simulator prototype complements our software simulator, by enabling
open development and validation of trusted platform software on actual target
hardware (once bus connections are fully implemented). A hardware TPM sim-
ulator allows the testing of trusted software and hardware corner case behaviour
without the risk of rendering parts of the test platforms permanently unusable
or locked.



8
Conclusion and Outlook

To conclude this thesis, we review the challenges we have faced and show how
we addressed these challenges and the results we obtained. Finally, we reflect
on future challenges that may arise in each problem domain.

8.1 Review of Challenges and Achievements

We have set out in Chapter 1 with the realization that our world is changing.
In fact our daily lives are changing due to novel digital devices and services we
use every day. Mobile devices now host a computing power and a constantly
online network connection only available in desktops computer not long ago.
These new devices bring new challenges. How can one trust a certain platform
or device to behave as expected? How can one trust a remote service at a cloud
provider to be what it claims to be? How is privacy implemented in a mobile
device plus remote cloud service scenario? Consequently, in this thesis we have
focused on a selection of challenges in this overall setting.

The first challenge was the challenge to attest platform state. More precisely,
the problem was discovering how complex it is to measure, report and enforce
a certain state of a common PC platform, running a general-purpose operating
system. In Chapter 3 we tackled this challenge. There, our prototype platform
integrates the use of Intel Trusted Execution Technology (and consequently a
Trusted Platform Module) into a Debian Linux platform. A throughout mea-
surement of the components during platform boot is enforced in our prototype.
User applications are only able to start, if the platform comes up in a state
defined by the platform administrator, otherwise they remain in an encrypted
state. The prototype we developed comes with management infrastructure and
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tools that simplify administrator installation of the platform and management
of platform states and applications

Building on the effort of Chapter 3, we then aimed for reduction in (im-
plementation) complexity in Chapter 4. The question was that if a permanent
software installation is not an option, how a single platform could be turned
into an attestable processing node to become part of a cloud network. In Chap-
ter 4 we took advantage of the Intel TXT knowledge and tools developed in
the previous chapter. However, the new target platform was Android. With
Android as basis, we show platform boot into a measured state is easier to im-
plement, compared to the effort required for the previous Linux-based platform.
Furthermore, in this chapter we presented a protocol enabling the platform to
join a cloud network—but only if the platform is in a state acceptable to the
central cloud control entity. As in the future ARM platforms may play a signif-
icant role, we prototyped this approach on x86 and ARM platforms. Onto the
ARM platform we had to integrate a Trusted Platform Module to the platform
ourselves.

As both prototypes in Chapters 3 and 4 build on Trusted Computing and the
Trusted Platform Module, there was a need for a service which issues certificates
for Trusted Computing keys. More precisely, the service developed in Chapter 5
is a PricacyCA service, to issue certificates for Attestation Identity Keys. These
keys are used by a Trusted Platform Module to cryptographically sign platform
state reports. In order to verify such a report, naturally the signing key must be
attested—with a certificate. The prototype service we implemented in Chapter 5
is robust and minimal. We achieved robustness through formal specification of
the service protocol and partly autogeneration of the network parser code. Fur-
thermore, we achieved reduction of the runtime size through deliberate removal
of components not absolutely required.

With the challenge of building an attestable platform explored, we then pro-
ceeded to the problem of privacy in Chapter 6. If a smartphone client wishes to
use (and pay) a remote, attestable cloud service, can this be done in a privacy
preserving way? In Chapter 6 we thus developed a scenario where a client pays
for resources consumed at a specific cloud provider. The payment is performed
in an anonymous and unlinkable way. Consequently, the cloud provider is always
paid, however, the privacy of his clients is protected. In our approach we adopted
a suitable accounting scheme and ported it to a variety of platforms to evaluate
its performance. Our proof-of-concept implementation showed the scheme is suf-
ficiently fast, even on resource-limited mobile platforms. Consequently, such a
scenario is basically feasible in practical use—someone just needs to implement
the whole infrastructure in all its details.

The Trusted Platform Module is a core component we used in the previ-
ous chapters. In Chapter 7 we continued with a study of the recent Trusted
Platform Module v2 specification. More precisely, we studied the specification
promise that it is written in a way suitable for automation tools. As TPMv2
chips are still rare, our goal was to construct a TPM v2 simulator solely from the
specification. We have achieved this. First, we showed how to extract informa-
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tion from the specification in an automated process. Secondly, we constructed
a TPM v2 software simulator on the Linux platform. Thirdly, we ported this
software simulator to an FPGA platform, which in the near future is destined
to completely simulate a hardware TPM on common bus connections.

8.2 Future Work

The challenges of computer security are constantly evolving. Still, starting from
the work we have accomplished in this thesis, we can identify nearby challenges
and even speculate what additional challenges the future may bring.

First, our work shows the complexity of integrating Trusted Computing tech-
nology into a common operating system. Our approach was measurement of
large chunks of code and data, and not individual, small components. It follows
from our experience that measurements complexity is still an unsolved problem.
Once there are too many components (=measurements), certain features like,
for example, sealing data to a certain platform state, may no longer be feasi-
ble. However, while the complexity on a general-purpose platform may be too
much, Trusted Computing may work for a more restricted runtime environment
in the cloud. For example, the OpenAttestation project [157] currently develops
Trusted Computing infrastructure components for OpenStack-based clouds—it
will be interesting to see what emerges from this combination.

Secondly, as the common desktop PC is replaced by new devices such as
smartphones and tablets, computer security problems also show up on these
platforms. One approach to isolating sensitive data processing from a (large)
operating system is Trusted Execution Environments (Section 2.8). In our work
on privacy-preserving payment (Chapter 6) we consider this technology. How-
ever, while there are standards for Trusted Execution Environments (TEEs)
from Global Platform [43, 44], this technology is still not widely spread. The
level of market adoption and future applications for TEEs are open questions.

Thirdly, privacy-preserving payment remains an active area of research. We
have shown in this thesis that in a restricted scenario a payment algorithm can
provide anonymity and unlinkability at a level of computation complexity that
allows the scheme to run fast enough on mobile platforms. However, a solution
for a much wider scenario, an Internet-wide scenario with many participants
and many cloud services is needed. The popularity of the Bitcoin [76] digital
currency protocol is a sign of demand, however it only provides pseudonymity1,
but not anonymity and unlinkability like with our scheme. There is research
done in this domain, for example the recent Zerocoin [73] proposes one way
to integrate anonymity into Bitcoin. The market for privacy-preserving digital
payment is still seeking a universal, customer-friendly solution.

Fourthly, the first TPM v2 chips are now available. Our TPM v2 simulator
(Chapter 7) allows everyone to experience this new generation, however soft-

1A pseudonym identifies a holder, that is, one or more entities who possess something but
do not disclose their true identity. Bitcoin’s transaction log is completely public, and user
identity is his pseudonym.
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ware support is not there yet. Design and implementation of an application
side library (TSS) to communicate with the TPM is still an open problem for
TPM v2. Also, for the TPM v2 to be adopted beyond mainly the PC platform,
support software should also be available to mobile and embedded platforms.
Furthermore, while in our work we have concentrated on EK and AIK certifi-
cates (Chapter 5), the certificates, their content and a service infrastructure
similar to a PrivacyCA must be updated for the TPM v2 generation.
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Publications and Cooperations

Contributions to this thesis were previously issued in a series of publications
at international conferences, workshops, summer/winter schools and as interim
results of ongoing research projects. Naturally, the written content of this the-
sis resembles the content of these publications—indeed some text passages are
quoted verbatim. At the beginning of each chapter prominent grey boxes provide
indication of this fact and reference to this chapter.

Assembly of the distinct original publications into one thesis provided an
opportunity to update, improve and augment the original texts. Consequently,
this thesis goes into more detail for better understanding. Also, it shows inter-
connectedness of individual challenges tackled in each chapter hereof.

In the following we enumerate original publications and collaborations with
other researchers and describe how the content of each publication maps (roughly)
to the content of this thesis.

Chapter 2

The background chapter draws on material from all publications (see below).
It provides an introduction to preliminaries in the respective problem domains.
A reader of this thesis may refer to the background in this chapter for better
understanding, or for additional references to resources on certain topics.

Chapter 3

The “acTvSM” platform—“A Dynamic Virtualization Platform for Enforcement
of Application Integrity”—was presented in a series of publications:
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• M. Pirker and R. Toegl.
Towards a virtual trusted platform.
Journal of Universal Computer Science, 16(4), 2010. [88]

• M. Pirker, R. Toegl, and M. Gissing.
Dynamic enforcement of platform integrity (a short paper).
In A. Acquisti, S. W. Smith, and A.-R. Sadeghi, editors, Trust and Trust-
worthy Computing (Proceedings of the Third International Conference
TRUST), volume 6101 of Lecture Notes in Computer Science (LNCS).
Springer Verlag, 2010. [89]

• R. Toegl, M. Pirker, and M. Gissing.
acTvSM: A dynamic virtualization platform for enforcement of application
integrity.
In L. Chen and M. Yung, editors, Trusted Systems (Proceedings of the
Second International Conference (INTRUST), Revised Selected Papers),
volume 6802 of Lecture Notes in Computer Science (LNCS). Springer Ver-
lag, 2010. [125]

• M. Gissing, R. Toegl, and M. Pirker.
Management of integrity-enforced virtual applications.
In C. Lee, J.-M. Seigneur, J. J. Park, and R. R. Wagner, editors, Secure
and Trust Computing, Data Management, and Applications, volume 187 of
Communications in Computer and Information Science. Springer Verlag,
2011. [42]

The work presented in Section 3 is the core Linux platform that integrates a
measuring boot process anchored in Intel’s Trusted Execution Technology. The
primary virtual application prototype payload for the platform is the “TvSM”,
co-designed and implemented by Ronald Toegl and Florian Reimair as docu-
mented in Ronald Toegl’s PhD thesis [123]. Andreas Niederl contributed to
the low-level scripting, testing and integration of the acTvSM platform while
Michael Gissing contributed to the TVAM script.

Chapter 4

The “Lightweight Distributed Heterogeneous Attested Android Clouds” effort
was presented in:

• M. Pirker, J. Winter, and R. Toegl.
Lightweight distributed attestation for the cloud.
In Proceedings of the 2nd International Conference on Cloud Computing
and Services Science (CLOSER), 2012. [94]

• M. Pirker, J. Winter, and R. Toegl.
Lightweight distributed heterogeneous attested android clouds.
In Trust and Trustworthy Computing (Proceedings of the 5th International
Conference TRUST), volume 7344 of Lecture Notes in Computer Science
(LNCS). Springer Verlag, 2012. [95]
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Ronald Toegl contributed his background on cloud security while Johannes
Winter contributed his extensive expertise in the low-level TPM bus interface
and ARM/FPGA development. Johannes continued his explorations of the TPM
bus interface in [162], which finally concluded in his master’s thesis [161].

Chapter 5

The challenges of “A PrivacyCA for Anonymity and Trust” were originally pre-
sented as:

• M. Pirker, R. Toegl, D. Hein, and P. Danner.
Advances on PrivacyCAs.
In Proceedings of the Workshop of Challenges for Trusted Computing, Eu-
ropean Trusted Infrastructure Summer School (ETISS) 2008. [90]

• M. Pirker, R. Toegl, D. Hein, and P. Danner.
A PrivacyCA for anonymity and trust.
In L. Chen, C. J. Mitchell, and M. Andrew, editors, Trusted Comput-
ing (Proceedings of the Second International Conference TRUST), volume
5471 of Lecture Notes in Computer Science (LNCS). Springer Verlag, 2009.
[91]

Ronald Toegl contributed his expertise with jTSS. Daniel Hein and Peter Danner
provided helpful feedback and suggestions on the service.

Chapter 6

The work of privacy-preserving payment “Practical Privacy-Preserving Cloud
Resource-Payment for Constrained Clients” was presented at:

• M. Pirker, D. Slamanig, and J. Winter.
Practical privacy-preserving cloud resource-payment for constrained clients.
In Privacy Enhancing Technologies (Proceedings of the 12th International
Symposium (PETS)), volume 7384 of Lecture Notes in Computer Science
(LNCS). Springer Verlag, 2012. [87]

Daniel Slamanig is the original inventor of the underlying privacy-preserving
scheme [117], he contributed his original code for adaptation and was a collabo-
rator on further development of the scenario. Johannes Winter contributed his
expertise in porting and low-level debugging on ARM platforms.

Chapter 7

The work of “Semi-Automated Prototyping of a TPM v2 Software and Hardware
Simulation Platform” was first presented at:
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• M. Pirker and J. Winter.
Semi-automated prototyping of a TPM v2 software and hardware simula-
tion platform.
In Trust and Trustworthy Computing (Proceedings ot the 6th International
Conference TRUST), volume 7904 of Lecture Notes in Computer Science
(LNCS). Springer Verlag, 2013. [93]

Johannes Winter contributed his expertise and prefab pieces on the FPGA plat-
form and is currently adding the missing TPM bus interfaces. At time of this
writing the resulting full simulator package is not yet publicy released.

Related Publications

Some topics of this thesis have also been explored in the following collaborations:

• M. Pirker and D. Slamanig.
A framework for privacy-preserving mobile payment on security enhanced
ARM TrustZone platforms.
In Proceedings of the 11th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom). IEEE Computer
Society, 2012. [86]

This paper also discusses privacy-preserving payment, however in contrast to
[87] of Chapter 6 the scenario is anonymous payment for public transportation
tickets.

• S. Kraxberger, R. Tögl, M. Pirker, E. P. Guijarro, and G. G. Millan.
Trusted identity management for overlay networks.
In R. Deng and T. Feng, editors, Information security practice and experi-
ence, volume 7863 of Lecture Notes in Computer Science (LNCS). Springer
Verlag, 2013. [65]

In this paper the EK+AIK cycle of Trusted Computing is also taken advantage
of like we did for our protocol in Chapter 4. However, here the focus is on robust
identities for overlay networks.

• J. Winter, P. Wiegele, M. Pirker, and R. Toegl.
A flexible software development and emulation framework for ARM Trust-
Zone.
In Proceedings of the Third international conference on Trusted Systems
(INTRUST’11), volume 7222 of Lecture Notes in Computer Science (LNCS).
Springer-Verlag, 2012. [163]

This paper describes the initial porting effort of jTSS to Android and the work
to make it run with a software emulated TPM on an ARM platform.
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• R. Toegl, F. Reimair, and M. Pirker.
Waltzing the Bear, or: A trusted virtual security module.
In S. Capitani di Vimercati and C. Mitchell, editors, Public Key Infras-
tructures, Services and Applications, 9th European Workshop, EuroPKI
2012, Pisa, Italy, September 2012, Revised Selected Papers, volume 7868
of Lecture Notes in Computer Science. Springer Verlag, 2013. [126]

This paper describes the “TvSM”, which was the original virtual application
demonstration payload for the acTvSM platform developed in Chapter 3.

• R. Toegl and M. Pirker.
An ongoing game of Tetris: Integrating trusted computing in Java, block-
by-block.
In D. Grawrock, H. Reimer, A.-R. Sadeghi, and C. Vishik, editors, Future
of Trust in Computing. Vieweg+Teubner, 2009. [124]

This paper describes the development of Java support for Trusted Computing.
All the Trusted Computing Java libraries and tools used throughout this thesis
depend on this base layer.
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[19] R. Cáceres, C. Carter, C. Narayanaswami, and M. Raghunath. Reincar-
nating PCs with portable soulpads. In Proceedings of the 3rd International
Conference on Mobile Systems, Applications, and Services, MobiSys ’05.
ACM, 2005.

[20] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In
Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture
Notes in Computer Science (LNCS). Springer, 2005.

[21] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In M. Franklin, editor, Advances in Cryptology

https://crypto.stanford.edu/
https://crypto.stanford.edu/


Bibliography 131

– CRYPTO 2004, 24th Annual International Cryptology Conference, vol-
ume 3152 of Lecture Notes in Computer Science (LNCS). Springer, 2004.

[22] D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. L.
Rivest, and A. T. Sherman, editors, Advances in Cryptology: Proceedings
of Crypto 82. Springer, 1983.

[23] Y. Chen, V. Paxson, and R. H. Katz. What’s new about cloud computing
security? Technical Report UCB/EECS-2010-5, University of California,
Berkeley, 2010.

[24] Y. Chen, R. Sion, and B. Carbunar. XPay: Practical anonymous payments
for Tor routing and other networked services. In WPES ’09: Proceedings
of the 8th ACM workshop on Privacy in the Electronic Society (WPES).
ACM, 2009.

[25] Computer Security Center. Trusted Computer System Evaluation Criteria.
Department of Defense, 1983. CSC-STD-00l-83.

[26] A. De Caro and V. Iovino. jPBC: Java pairing based cryptography.
In Computers and Communications (ISCC), 2011 IEEE Symposium on.
IEEE, June 2011.

[27] Debian Developers. Debien Lenny release. https://www.debian.org/

releases/lenny/, 2012.

[28] W. Denk et al. Das U-Boot – the universal boot loader. http://www.denx.

de/wiki/U-Boot, 2010.

[29] T. Dierks and E. Rescorla. The transport layer security (TLS) protocol
version 1.2. RFC 5246, IETF, 2008.

[30] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The second-
generation onion router. In USENIX Security Symposium, 2004.

[31] L. Duflot and Y.-A. Perez. Can you still trust your network card?
CanSecWest 2010, 2010.

[32] L. Duflot, Y.-A. Perez, and B. Morin. What if you can’t trust your network
card? In Proceedings of the 14th International Conference on Recent
Advances in Intrusion Detection, RAID’11. Springer-Verlag, 2011.

[33] P. England. Practical techniques for operating system attestation. In
P. Lipp, A.-R. Sadeghi, and K.-M. Koch, editors, Trusted Computing –
Challenges and Applications (Proceedings of the 1th International Con-
ference on Trusted Computing and Trust in Information Technologies
TRUST), volume 4968 of Lecture Notes in Computer Science (LNCS).
Springer Verlag, 2008.

[34] S. Farrell and R. Housley. An internet attribute certificate profile for
authorization. http://www.ietf.org/rfc/rfc3281.txt, 2002.

https://www.debian.org/releases/lenny/
https://www.debian.org/releases/lenny/
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.ietf.org/rfc/rfc3281.txt


132 Bibliography

[35] Federal Government of Germany. Federal government’s comments on the
tcg and ngscb in the field of trusted computing. Technical report, 2004.

[36] M. Felleisen and R. Cartwright. Safety as a metric. In Proceedings of the
12th Conference on Software Engineering Education and Training, CSEET
’99. IEEE Computer Society, 1999.

[37] M. Franz, P. Williams, B. Carbunar, S. Katzenbeisser, A. Peter, R. Sion,
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[48] J. Großschädl, T. Vejda, and D. Page. Reassessing the TCG specifications
for trusted computing in mobile and embedded systems. In M. Tehra-
nipoor and J. Plusquellic, editors, Proceedings of the 1st IEEE Workshop
on Hardware-Oriented Security and Trust, HOST 2008. IEEE Computer
Society, 2008.

[49] V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation – vir-
tual machine directed approach to trusted computing. In Virtual Machine
Research and Technology Symposium, 2004.

[50] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 public key
infrastructure certificate and certificate and CRL profile. http://www.ietf.
org/rfc/rfc3280.txt, 2002.

[51] IAIK. The IAIK provider for the Java cryptography extension (IAIK-JCE).
http://jce.iaik.tugraz.at/sic/Products/Core-Crypto-Toolkits/JCA_JCE.

[52] IBM. IBM’s software trusted platform module (TPM). http://ibmswtpm.

sourceforge.net/.

[53] Intel Corporation. Intel active management technology (AMT). http:

//www.intel.com/technology/platform-technology/intel-amt/index.htm.

[54] Intel Corporation. Trusted boot. http://sourceforge.net/projects/

tboot/.

[55] Intel Corporation. Intel Low Pin Count (LPC) interface specifica-
tion. http://www.intel.com/design/chipsets/industry/25128901.pdf, Au-
gust 2002. Revision 1.1.

[56] Intel Corporation. Intel Trusted Execution Technology software
development guide. http://www.intel.com/content/www/us/en/

software-developers/intel-txt-software-development-guide.html,
2009.

[57] Intel Corporation. Production SINIT ACM downloads. https://software.
intel.com/en-us/articles/intel-trusted-execution-technology, 2014.

[58] ISO. Information technology – automatic identification and data cap-
ture techniques – QR Code 2005 bar code symbology specification.
ISO ISO/IEC 18004:2006, International Organization for Standardization,
2006.

[59] Junjiro R. Okajima. Aufs – advanced multi-layered unification filesystem.
http://aufs.sourceforge.net/.

[60] M. Kapeundl. An integrated workflow for design and implementation of
security modules., 2013. Master’s thesis.

http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc3280.txt
http://jce.iaik.tugraz.at/sic/Products/Core-Crypto-Toolkits/JCA_JCE
http://ibmswtpm.sourceforge.net/
http://ibmswtpm.sourceforge.net/
http://www.intel.com/technology/platform-technology/intel-amt/index.htm
http://www.intel.com/technology/platform-technology/intel-amt/index.htm
http://sourceforge.net/projects/tboot/
http://sourceforge.net/projects/tboot/
http://www.intel.com/design/chipsets/industry/25128901.pdf
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
https://software.intel.com/en-us/articles/intel-trusted-execution-technology
https://software.intel.com/en-us/articles/intel-trusted-execution-technology
http://aufs.sourceforge.net/


134 Bibliography

[61] B. Kauer. OSLO: Improving the security of trusted computing. In SS’07:
Proceedings of 16th USENIX Security Symposium on USENIX Security
Symposium. USENIX Association, 2007.

[62] A. Kerckhoffs. La cryptographie militaire. In Journal des sciences mili-
taires, volume IX, 1883.

[63] A. Kivity, V. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the
Linux virtual machine monitor. In OLS2007: Proceedings of the Linux
Symposium, pages 225–230, 2007.

[64] F. J. Krautheim, D. S. Phatak, and A. T. Sherman. Introducing the
trusted virtual environment module: A new mechanism for rooting trust
in cloud computing. In Trust and Trustworthy Computing (Proceedings
of the Third International Conference TRUST), volume 6101 of Lecture
Notes in Computer Science (LNCS). Springer-Verlag, 2010.
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ter. Lightweight Anonymous Authentication with TLS and DAA for Em-
bedded Mobile Devices. In M. Burmester, G. Tsudik, S. Magliveras,
and I. Ilic, editors, Information Security, 13th International Conference
(ISC 2010), volume 6531 of Lecture Notes in Computer Science (LNCS).
Springer, 2010.

[160] D. Wallom, M. Turilli, G. Taylor, N. Hargreaves, A. Martin, A. Raun, and
A. McMoran. myTrustedCloud: Trusted cloud infrastructure for security-
critical computation and data managment. In IEEE 3rd International Con-
ference on Cloud Computing Technology and Science (CloudCom), 2011.

[161] J. Winter. Trusted computing and local hardware attacks. 2014. Master’s
thesis at IAIK, Graz University of Technology.

http://www.busybox.net/
http://www.gentoo.org/proj/en/base/embedded/
http://www.gentoo.org/proj/en/base/embedded/
http://icedtea.classpath.org/
http://jnode.org/
http://jnode.org/
https://sourceware.org/lvm2/
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/
http://www.jbox.dk/sanos/
http://www.jbox.dk/sanos/
http://www.syslinux.org
http://trousers.sourceforge.net/
http://trousers.sourceforge.net/
http://uclibc.org/
http://uclibc.org/
https://github.com/OpenAttestation
https://github.com/OpenAttestation


142 Bibliography

[162] J. Winter and K. Dietrich. A hijacker’s guide to communication interfaces
of the trusted platform module. Computers & Mathematics with Applica-
tions, 65(5), March 2013.

[163] J. Winter, P. Wiegele, M. Pirker, and R. Toegl. A flexible software develop-
ment and emulation framework for ARM TrustZone. In Proceedings of the
Third international conference on Trusted Systems (INTRUST’11), vol-
ume 7222 of Lecture Notes in Computer Science (LNCS). Springer-Verlag,
2012.

[164] R. Wojtczuk and J. Rutkowska. Attacking Intel Trusted Execution Tech-
nology. Technical report, Invisible Things Lab, 2009.

[165] R. Wojtczuk and J. Rutkowska. Attacking intel TXT via SINIT code
execution hijacking. Technical report, Invisible Things Lab, 2011.

[166] R. Wojtczuk, J. Rutkowska, and A. Tereshkin. Another way to circumvent
Intel Trusted Execution Technology. Technical report, Invisible Things
Lab, 2009.

[167] L. Xi, K. Yang, Z. Zhang, and D. Feng. DAA-Related APIs in TPM
2.0 revisited. In T. Holz and S. Ioannidis, editors, Proceedings of 7th
International Conference on Trust and Trustworthy Computing (TRUST),
volume 8564 of Lecture Notes in Computer Science (LNCS). Springer,
2014.

[168] Xilinx Inc. Spartan-3A/3AN FPGA starter kit board user guide. http:

//www.xilinx.com/support/documentation/boards_and_kits/ug334.pdf.

http://www.xilinx.com/support/documentation/boards_and_kits/ug334.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug334.pdf


  
Senat 

 
 
Deutsche Fassung: 
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008 
Genehmigung des Senates am 1.12.2008 
 
 
 
 
 
 

EIDESSTATTLICHE  ERKLÄRUNG 
 
 
 
Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die 
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich 
entnommene Stellen als solche kenntlich gemacht habe. 
 
 
 
 
 
 
Graz, am ……………………………    ……………………………………………….. 
         (Unterschrift) 
 
 
 
 
 
 
 
 
 
Englische Fassung: 
 
 

STATUTORY DECLARATION 
 

 

I declare that I have authored this thesis independently, that I have not used other than the declared 

sources / resources, and that I have explicitly marked all material which has been quoted either 

literally or by content from the used sources.  

 
 
 
 
 
……………………………    ……………………………………………….. 
 date        (signature) 
 
 


	Title Page
	Epigraph
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Introduction
	Introduction and Motivation
	Obstacles and Challenges
	Contribution
	Overview

	Background
	Trust
	TCG's Trusted Computing
	Introduction
	Trusted Platform Module
	TCG Software Stack

	Platform State
	Introduction
	The PC Platform
	Chain of Trust
	Measurements and Complexity
	Virtualization for Measurements Reduction

	Dynamic Root of Trust
	Intel's Trusted Execution Technology
	Intel's tboot

	A Support PKI for Trusted Computing
	Credentials
	Attestation Identity Keys (AIK) and PrivacyCAs

	Aspects of Trusted Platforms
	Security of Trusted Computing Technology
	Input/Output as Attack Surface
	Practical Chain of Trust
	Integrity of Code and Data
	Open Source
	Boundary of Security Breaches
	Software Management Usability

	Linux Platform Technology
	Logical Volume Manager
	Linux Unified Key Setup Encryption

	ARM Platforms
	An Anonymous Accounting Scheme
	Related Work

	A Platform with Enforcement of Application Integrity
	Introduction
	Architecture
	Secure Boot
	Base System
	Trusted Virtual Application Manager
	Virtualization Partitions

	Operating the Platform
	Installation
	Update and Application Mode
	Base System Rebuild and Resealing
	Small Updates
	Application Management
	External Reboot

	Implementation
	Components
	Disk Storage Management
	Performance
	Shared TPM Access

	Platform Security
	Attacker Model
	Discussion

	Summary

	Lightweight Distributed Attested Clouds
	Introduction
	Scenario
	Cloud Node Properties
	Entities

	Node Operation
	Cloud Node Joining Cloud Control
	Node Update / Cloud Rejoin
	Node Local Storage

	Implementation
	Overview
	x86 PC Platform
	ARM Platform
	Summary

	Aspects of Platform Security
	Summary

	A PrivacyCA for Anonymity and Trust
	Introduction
	Building a Trustworthy Service
	First Iteration and Building Blocks
	Second Iteration: A Compact PrivacyCA Protocol and Service
	Communication Protocol
	Reduced Software Image

	Use Cases
	Summary

	Privacy-Preserving Payment for Constrained Clients
	Introduction
	Scenario and High Level Description
	Entities
	Scenario
	High Level Description of Operations
	Privacy Considerations

	Practical Anonymous Payment
	Implementation
	Setup
	Results
	Implementation Discussion

	Discussion
	Summary

	Semi-Automated Prototyping of a TPMv2
	Introduction
	From TPM Specification to Implementation
	Assembly of a TPM v2 Software Simulator
	Input Data Transformation
	Information Extraction
	Advanced Code Generation and Additional Steps

	Hardware TPM v2 Simulation Platform
	Introduction
	Implementation
	Prototyping Results

	Conclusion and Outlook

	Conclusion and Outlook
	Review of Challenges and Achievements
	Future Work

	Publications and Cooperations
	Bibliography

		2015-02-04T23:44:04+0100
	DI Martin Pirker
	Signature verification at http://www.signature-verification.gv.at




