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Kurzfassung

Java Karten sind kleine elektronische Geräte mit stark eingeschränkten Ressourcen. Ihre
Hauptaufgabe ist es sicherheitskritische Daten zu verarbeiten und zu speichern. Heutzu-
tage werden diese Karten in verschiedenen Kontexten eingesetzt wie elektronisches Geld,
Zugangskontrollen oder elektronische Reisepässe. Die Anzahl dieser Karten wird sich in
naher Zukunft, wegen der wachsenden Zahl von Smartphones und mobilen drahtlos verbun-
denen Geräten, immer weiter erhöhen. Java Karten werden in verschiedenen sicherheitskri-
tischen Systemen eingesetzt wie bei Nahfeldkommunikation (Near Field Communication,
Abkürzung NFC) und bei Fingerabdrucksensoren. Java Karten unterstützen verschiede-
ne kryptographische Funktionen wie Checksummenberechnung, Entschlüsselung und Ver-
schlüsselung von Daten mithilfe von geheimen Schlüsseln. Diese Schlüssel werden sicher
in der Karte gespeichert und verwaltet. Die Sicherheit der Java Karten Anwendungen
werden durch das Java Karten Sandbox Modell gewährleistet. Dieses Modell gewährlei-
stet, dass keine Java Karten Anwendung, die auf der Karte ausgeführt wird, in der Lage
ist illegale Operationen auszuführen. Das Modell basiert auf der Tatsache, dass vor der
Anwendungsinstallation ein einmaliger Verifikationsprozess ausgeführt wird. Diese Verifi-
kation stellt sicher, dass die Anwendung die Java Karten Spezifikation erfüllt und keine
illegalen Operationen oder Speicherzugriffe enthält. Unglücklicherweise ist es mithilfe ei-
ner Laufzeitattacke möglich das Sandbox Modell zu umgehen. Eine Laufzeitattacke ist
zum Beispiel ein Beschuss mit einem Laser oder ein kurzzeitiger Spannungsabfall in der
Stromversorgung.

In dieser Arbeit werden neuartige Gegenmaßnahmen gegen verschiedene Attacken vor-
gestellt um eine zukünftig sichere Java Karte zu ermöglichen. Diese Gegenmaßnahmen
werden entweder rein in Software oder mit Hardwareunterstützung ausgeführt. Neuar-
tige digitale Schutzeinheiten werden in die Karte integriert um Speichergrenzen, Java
Datentypen, Kontrollfluss und Datenintegrität während der Laufzeit zu überprüfen. Die
Schutzeinheiten werden durch das Einfügen von neuen sicherheitsrelevanten Instruktio-
nen in den Befehlssatz von zwei Java Karten Modellen angesprochen. Das erste Modell
ist ein schnell ausführbares und leicht modifizierbares Systemmodell in der Hardwarebe-
schreibungssprache SystemC. Das zweite Modell ist ein taktgenaues Modell von Orega-
no Systems welches in VHDL programmiert ist. Der Prozessor der beiden Modelle ist
ein 8-Bit 8051 kompatibler Prozessor. Beide Modelle werden während dieser Arbeit zur
Erforschung von verschiedenen Software und Hardware Gegenmaßnahmen von Attacken
eingesetzt. Die Verschiebung der Sicherheitsfunktionen von Software zur Hardware erhöht
die Ausführungsgeschwindigkeit von Anwendungen auf der Karte. Die zusätzlich erfor-
derliche digitale Logik für die neuen digitalen Schutzeinheiten bleibt relativ gering. Solch
eine erhöhte Sicherheit für Java Karten wird benötigt, um zum Beispiel die sichere Instal-
lation und Ausführung von Anwendungen zu ermöglichen die durch den Kartenbenutzer
installiert werden. Eine solche, vom Kartenbesitzer kontrollierte Karte, könnte ein nächstes
profitables Geschäfts- und Anwendungsfeld für Java Karten sein.
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Abstract

Java Cards are small resource constrained electronic devices which are able to process
and store security-critical data. Nowadays, these cards are used in various contexts such
as electronic banking, access control or electronic passports. The quantity of these cards
will even increase in the near future because of the growing number of smart phones and
mobile wireless connected devices. These devices have various built-in security-critical
chips like subscriber identification module (SIM) cards, near field communication (NFC)
chips, and fingerprint sensors. The Java Cards provide different functionality like hashing,
decryption and encryption of data by secret keys. These keys are securely stored on the
card. The security of the Java Card applets is ensured by the Java Card sandbox model.
This model guarantees that no Java Card applet, which is executed on the card, is able
to perform illegal code or data accesses. The model relies on the fact that a static applet
verification process is performed. This process ensures that the applet fulfills the Java
Card specification and contains no illegal operations or memory accesses. Unfortunately,
a fault attack is able to change the Java Virtual Machine code and data which results in
a circumvention of the sandbox model.

In this work novel attack countermeasures are explored to enable a secure future Java
Card. To increase the overall Java Card security an on-card verified applet is protected
by run-time security checks. These checks are either performed purely in software or with
hardware support. Novel run-time protection units are integrated into the card to per-
form memory bound checks, Java data type checks, control flow checks, and data integrity
checks. The protection units are addressed by inserting new security-sensitive instruc-
tions into the instruction set of two prototype smart card models. The first model is a
fast executing and quickly modifiable system level model programmed in the hardware
description language SystemC. The second one is a highly accurate register transfer level
model from Oregano Systems programmed in the hardware description language VHDL.
The processor of both models is an 8-bit 8051 processor. Both models are used for the
design space exploration of various software and hardware security hardening techniques
for a prototype Java Card. Moving the run-time security checks from software to hardware
significantly increases the execution performance of the prototype. The additional digital
logic required for the hardware protection units remains relatively small. Such increased
security for Java Cards is needed, for example, to enable the secure installation and exe-
cution of any applet by the card user. Such a so called user centric ownership model could
enable new profitable business fields and applications for Java Cards.
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Extended Abstract

A Java Card is a standardized virtual machine running on a resource constrained smart
card. The cards are used in a wide range of applications such as banking, transport, access
control, and passports. All these applications rely on the security and reliability provided
by these cards. To ensure Java Card security, today’s card users are not allowed to install
their own applets on the card. In future, it is expected that users will be allowed to
perform post-issuance installation of their own applets. This post-issuance installation
of user applets will enable new business fields and use cases like, for example, an applet
store for Java Cards. On the other hand, new security issues and threats will emerge.
Therefore, the next major challenge for Java Card platform design is to cover security
concerns related to post-issuance installation of user applets on the card.

Current Java Card security is provided by a sandbox security model. This sandbox
separates applets from each other and protects their security-critical code and data. There-
fore, the sandbox thwarts all illegal access to fields and objects which are not part of the
current applet context. The whole sandbox concept relies on the fact that the applet and
its corresponding bytecodes are well formed and do not violate the Java Card specification.
An applet which does not fulfill the specification is called a malicious applet and is able
to perform logical attacks against the virtual machine. Logical attacks are, for example,
an overflow of different memory buffers to illegally overwrite the current Java method
return address. Such threats of logical attacks are currently thwarted by performing a
static off-card applet verification in a secure environment. After a successful verification
a signature is calculated over the applet by a secret key. This secret key is only known by
authorized companies and authorities.

Unfortunately, attackers are able to mutate a successfully verified and installed applet
into a malicious one. This mutation is done by performing a run-time fault attack (e.g.,
laser beam, clock/power supply glitch) to change the standard control and data flow of
an applet to the advantage of an attacker. Such fault attacks can be counteracted by
dynamic checks during the run-time of an applet.

Therefore, to enable the next generation of Java Cards with their high security re-
quirements, new static and dynamic security features are needed. The CoCoon project1,
which included and financed this work, aims at enabling the post-issuance installation of
applets by the card user. This so called user-centric ownership model has to counteract
two main security threats.

1. Logical attacks are performed by an attacker who manipulated a Java Card applet

1 CoCoon: Codesign for Countermeasures against Malicious Applications on Java Cards, collaborative
research project of the Graz University of Technology, NXP Semiconductors Austria GmbH. Funded by
the Austrian Federal Ministry for Transport, Innovation, and Technology under the FIT-IT contract FFG
830601.
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before its installation. Such a manipulated applet can be thwarted by an on-card
verification during the install process.

2. Fault attacks can change the data and control flow of an applet during run-time.
Such fault attacks are thwarted by new run-time security checks which enable a
defensive virtual machine.

Both security concepts, on-card verification and run-time security checks, are illustrated
in Figure 1. The on-card verification and the run-time security checks must be designed
in respect to the constrained available resources on a Java Card. In particular for the
run-time security checks, a tradeoff must be found between the performance/memory
consumption and the required level of security. By moving security checks from software
to hardware it is possible to improve the execution speed of the run-time checks. This
security-related hardware/software codesign approach enables a significant performance
improve against an approach where all checks are only performed in software.

Secure Multi-
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Java Card

  Defensive Java Card        

     Virtual Machine

Verified 

Applet
On-Card 

Verification

  Unsecure 
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Bound 
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Checks
Data Integrity 
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verification
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Figure 1: To enable the user-centric ownership model each applet must be verified during the
install process. A successfully verified applet is protected by a defensive Java Card virtual machine.
This defensive virtual machine performs run-time checks to counteract fault attacks.

This thesis presents security mechanisms to enable the user-centric ownership model
for future Java Cards. Based on a hardware/software codesign process, selected secu-
rity mechanisms are accelerated by dedicated microarchitectural hardware support. The
starting point of this work is the research on current state of the art attacks and security
threats in the context of Java Cards and the user centric ownership model. The next
step is the creation of countermeasure concepts and the assignment of the counteracted
threats. Logical attacks are counteracted by an on-card applet verifier2. Fault attacks
are counteracted by additional run-time checks. The most promising countermeasures
are selected and evaluated in a countermeasure exploration phase. The countermeasures
are evaluated in terms of their performance impact, memory consumption, detection rate
and detection latency. For example, to counteract type confusion attacks three different
countermeasure concepts were found: storing3 the type information for each value during
run-time, separating3 the values to different memory areas depending on the data type,

2Memory-Efficient On-Card Byte Code Verification for Java Cards, 1st Workshop on Cryptography
and Security in Computing Systems (CS2’14), Vienna, Austria, 2014

3Towards the Hardware Accelerated Defensive Virtual Machine - Type and Bound Protection, 11th
Smart Card Research and Advanced Applications (CARDIS’12), Graz, Austria, 2012
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and obfuscating4 the values with different keys depending on the data type.
The next research topic is the effective integration of the selected countermeasures

into the virtual machine. For the integration, an additional security layer5 is added into
the virtual machine. This security layer handles all accesses to security-critical memory
regions of the virtual machine. The security layer provides a defined security application
programming interface.

On the resource constrained Java Cards the impact of run-time countermeasures on
the performance is very critical. Executing a lot of software countermeasures slows down
the execution performance too much. Such a slow down could make the card useless for
industrial use cases which have very strict execution time requirements. Therefore, this
work shifts the above described run-time countermeasures from software to hardware dur-
ing a hardware/software codesign phase. This is done by adding new defensive hardware
protection units6 into the smart card. These protection units are responsible for protect-
ing memory bounds, data types, control flow, and data integrity of the virtual machine.
This hardware acceleration shows an impressive increase in speed to the execution time for
different Java bytecodes. Also the additional logic area needed on an FPGA development
board is quite low.

For a fast evaluation of future software and hardware countermeasures against fault
attacks a fault emulation environment7 is needed. This environment is especially designed
to test the security of Java Virtual Machines against run-time attacks on the security-
critical memory regions of the virtual machine. During a case study a simplified Java
wallet applet has been attacked to gain access to money transfer functionality without
knowing the valid PIN.

To summarize, this dissertation presents selected countermeasures against current state
of the art security threats and attacks against the Java Card virtual machine. These
threats are counteracted by countermeasures during a hardware/software codesign process.
Selected countermeasures are accelerated by microarchitectural support of the Java Card.
Furthermore, a fault emulation environment is proposed to evaluate the Java Card security
against fault attacks. The additionally integrated countermeasures are needed to enable
the user-centric ownership model for future Java Cards.

4Countering Type Confusion and Buffer Overflow Attacks on Java Smart Cards by Data Type Sensi-
tive Obfuscation, 1st Workshop on Cryptography and Security in Computing Systems (CS2’14), Vienna,
Austria, 2014

5A Defensive Virtual Machine Layer to Counteract Fault Attacks on Java Cards, 7th Workshop in
Information Security Theory and Practice (WISTP’13), Heraklion, Greece, 2013

6A Defensive Java Card Virtual Machine to Thwart Fault Attacks by Microarchitectural Support, 8th
International Conference on Risks and Security of Internet and Systems (CRiSIS’13), La Rochelle, France,
2013

7A Fault Attack Emulation Environment to Evaluate Java Card Virtual-Machine Security, 17th Eu-
romicro Conference on Digital Systems Design (DSD’14), Verona, Italy, 2014)
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Glossary

Hardware/Software Codesign
”Hardware/software codesign investigates the concurrent design of hardware and software com-
ponents of complex electronic systems. It tries to exploit the synergy of hardware and software
with the goal to optimize and/or satisfy design constraints such as cost, performance, and power of
the final product. At the same time, it targets to reduce the time-to- market frame considerably.”[1]

Security
”The term security especially addresses system properties that need to be attained in the presence
of malicious threats. Usually, security is either defined in terms of these threats and the objectives
to achieve or as a composite of other characteristics. The latter is often called the CIA approach,
because secruity is considered as being composed of the attributes confidentiality, integrity, and
availability.”[2]

Fault Attack
A fault attack is performed during run-time when the system performs security-critical operations.
As described in [3] there are several ways to induce a fault like a glitch attack, temperature attack,
light attack, and magnetic attack. The aim of a fault attack is to change the normal execution of
the system to gain access to security-critical information.

Integrity
”Integrity means that assets can be modified only by authorized parties. In this context, modifi-
cation includes writing, changing, changing status, deleting, and creating.”[4]

Defensive Java Card Virtual Machine
Currently each applet is verified by an off-card verification process. Therefore, no additional
run-time security checks are needed to ensure that the applet contains no illegal operations. Un-
fortunately, the data and program flow of such a verified applet can be manipulated by a fault
attack. Therefore, to increase the overall security of a Java Card against fault attacks a so called
defensive Java Card Virtual Machine is needed. This defensive Java Card Virtual Machine per-
forms additional security checks during the run-time of a Java Card applet.

xii



Chapter 1

Introduction

1.1 Motivation

By around the end of 2014, the number of mobile phones on the planet will exceed the num-
ber of people (currently 7.1 billion). Every mobile phone has a subscriber identity mod-
ule (SIM) or universal SIM (USIM) that is authenticated by the mobile service provider.
These cards perform different cryptographic operations to enable this authentication. The
high demand of specialized secure devices will most probably continue in the near future.
Their high levels of security will be needed for different use cases such as automotive (e.g.,
connected/self-driving vehicles), government (e.g., electronic health record) or military
(e.g., drones, autonomous robotic vehicles).

The number of mobile subscriptions, shown in Figure 1.1, is due to increase contin-
uously from the year 2014 and will be over 9,000 million in the year 2019. In this time
period the number of smart phones will have doubled. The increase in smart phone owner-
ship is an important fact as specialized secure devices are used much more often in smart
phones (e.g., fingerprint sensor, near field communication (NFC) chip) than in cheap basic
phones. This means that one smart phone can contain several secure chips.
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Figure 1.1: Number of worldwide mobile subscriptions for different devices like mobile personal
computer, smart phone, and basic phone (obtained with modifications from [5]).

A very successful variant of these secure devices are the so called Java Cards. On
these cards runs a Java Card Virtual Machine (VM) which executes different applications.

1
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These applications are, for example, deployed in the context of electronic passports, credit
cards, customer loyalty cards, transport, and access control. A famous use case of the
Java Cards is in the field of contactless communication. The exponential growth of this
business market is shown in Figure 1.2 with quantities of around 650 million units.

Figure 1.2: Forecasts for the shipment number of contactless smart secure devices (obtained with
modifications from [6]).

1.2 Security Threats on Java Cards

The Java Card consists of the software VM which is executed on a smart card. This smart
card consists of different digital parts (e.g., processor, volatile/non-volatile memory, bus).
During the execution of the Java Card VM various data is transmitted between these
digital parts. Data is represented on the electronic circuits by electrical charges. By firing
a high-energy optical pulse (laser attack) onto the digital parts it is possible to change the
electrical charges and therefore the data which is processed by the VM. This means that
it is possible to change the behavior of the VM during run-time using such a laser attack.
Besides a laser attack, other security threats for Java Cards also exist which are shown in
Figure 1.3.

• Observation Attack: By an observation of the power consumption, electromag-
netic radiation, or execution time it is possible to draw conclusions on the internal
behaviour of the chip.

• Invasive Attack: The chip is reverse engineered by optical analysis and a removal
of the chip layer.

• Fault Attack: The normal chip execution is disturbed by abnormal high/low clock
frequency, supply voltage, temperature, or a laser attack. By using a fault attack an
adversary is, for example, able to overjump instructions or change data in memories.

• Logical Attack: An attacker uploads and installs a malicious applet. This mali-
cious applet performs illegal operations like buffer overflows or type confusion attacks
to illegally receive or manipulate security-critical data.
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Figure 1.3: The security of the data and code stored on Java Cards is threatened by different
security threats and attack scenarios (obtained with modifications from [7] [8]).

All these different security threats must be considered during the design and implementa-
tion phases of a secure future Java Card. This work shows countermeasures that can be
used against the threat of run-time fault attacks and logical attacks.

The Java VM runs on a resource constrained smart card. These cards have to with-
stand logical attacks and physical attacks. To counteract these attacks it is necessary
to integrate countermeasures into the hardware (HW) and software (SW). Unfortunately
these countermeasures, particularly in SW, decrease the execution performance of the card
or need a lot of memory for intermediate calculations. These cards are used in mass pro-
duction which means that millions or billions of such cards are produced. Even a small
amount of money saved per device results in a large overall saving. Therefore, this work
shows various run-time countermeasures which have a low impact on the execution per-
formance and HW overhead and are able counteract different proposed attack scenarios.

1.2.1 Java Card Virtual Machine Security Concept

The Java Card security is ensured by a sandbox concept. This sandbox ensures that each
applet is somehow trapped in its own memory regions. Therefore, applets are not able to
illegally access code or data of other applets installed on the card. This sandbox concept
relies on the fact that each applet fulfills the Java Card VM specification [9, 10]. This
specification defines, for example, that bytecodes are not allowed to access data outside of
reserved memory regions by a buffer overflow attack. The compliance of an applet with the
specification is currently checked by an off-card verification step in a secure environment.
This means that, for example, such buffer overflows are currently checked by the static
byte code verification process but not during run-time.

These run-time attacks are performed by firing a laser onto the card, dropping the
supply voltage, applying an illegally high or low clock frequency or a strong electro mag-
netic field. With such attacks it is possible to overjump or change the execution behaviour
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of Java bytecodes. Therefore, an adversary is able to change the control and data flow
of a Java applet to his will. By such a manipulation it is possible to bypass security
checks during run-time. Such checks protect, for example, money transfer functions from
users who do not know the secret personal identification number (PIN) of a credit card.
An adversary which removes the PIN check functionality is able to withdraw or transfer
money to the bank account of an adversary.

1.3 Hardware/Software Codesign for a Secure Future Java
Card

This chapter provides an overview of the research project in which this thesis is established.
Furthermore, this chapter explains the problem statements and the contributions and
significance of this work.

1.3.1 The CoCoon Project

This thesis is part of the ”Codesign for Countermeasures against Malicious Applications
on Java Cards” (CoCoon) collaborative research project, shared between the Institute
for Technical Informatics at the Graz University of Technology and NXP Semiconductors
Austria GmbH. This combined effort targets the HW/SW codesign of a secure future Java
Card. These future cards should support the user centric ownership model (UCOM). With
the UCOM every user is able to upload any applet onto the card without any security
problems. Therefore, with the help of the UCOM only one card is needed for different
applications as shown in Figure 1.4.

payment digital TV healtcare identiy comunication

install and execute

any applet SECURITY!

transport

Multi-

Application 

Java Card

Figure 1.4: In the UCOM every user is able to upload applications for different contexts. There-
fore, the overall security of such future multi-application cards must be increased to counteract
different security threats (obtained with modifications from [11]).

The main goal of the project is to increase the security of Java Cards as much as
possible with the least amount of expense possible. A great benefit of the CoCoon project
is the fact that NXP Semiconductors Austria GmbH is the developer of the Java Card
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SW and the smart card HW. Other Java Card manufacturers only produce the SW but
without the HW and vice versa. This holistic view of the Java Card in the CoCoon project
enables a HW/SW codesign process which particularly focuses on security.

An overview of the complex field of HW/SW codesign is presented in [12]. Another
overview is given in the lecture notes from the ETH Zürich [13]. In general, as described
in [13], the HW/SW codesign process can be seen as the integrated design of HW and SW
components. During this process different alternative designs are planned, compared and
evaluated during a design space exploration phase.

An overview of the different security topics inside the CoCoon project is shown in
Figure 1.5. The CoCoon approach covers security checks at the Java layer, the Java Card
firewall mechanism, run-time (defensive) VM mechanisms, static bytecode verification,
and HW support of these security features. This work will concentrate on the last three
topics. This thesis performs HW/SW codesign to enable a secure future Java Card for the
UCOM.

Figure 1.5: Overview of the different security topics inside the CoCoon project (obtained with
modifications from [14]).

1.3.2 Problem Statements

A Java VM runs on a Java Card which can be seen as a SW processor running on the
real smart card processor. This abstraction adds an additional execution time overhead.
This overhead is very critical especially for Java Cards which are used as a mass prod-
uct. Therefore, appropriate run-time countermeasures must be designed to consume as
few additional resources (computational power and memory) as possible. Furthermore,
these countermeasures should counteract as many attacks as possible. State-of-the-art
countermeasures on Java Cards are only implemented in SW and not accelerated by spe-
cial HW mechanisms as proposed in this work. This means that we shift functionality
from SW into HW during a HW/SW codesign phase shown in this work. Compared to
currently proposed SW countermeasures against fault attacks, the following deficiencies
can be identified:

• Currently proposed countermeasures are executed in SW which slows down the ex-
ecution performance.

• Synergy effects from designing HW and SW in parallel for Java Cards is less re-
searched especially from a security point of view.
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• Countermeasure designs are quite well known by industrial Java Card manufacturers
but not published in the scientific community.

• Lack of knowledge of how and which countermeasures are needed during run-time
leads to a long countermeasure design space exploration phase or inefficient coun-
termeasures.

• Missing knowledge about appropriate countermeasure designs creates insecure sys-
tems which can lead to economic, material, and human losses.

These limitations have been addressed by the creation and evaluation of different coun-
termeasure proposals. Early evaluations are based on memory consumption, run-time
overhead, detection latency, and the general security increase. To reduce the computa-
tional overhead the countermeasures are accelerated by HW support. The HW accelera-
tion mechanisms are developed during a HW/SW codesign process. For this acceleration
a smart card prototype was used which is implemented at different abstraction levels. For
a fast design space exploration a high-abstracted transaction level model is used. For
a finer computational and HW overhead analysis a low-abstracted register transfer level
model is used. The countermeasures are seamlessly integrated into the VM by adding a
new security related SW layer into the Java Card architecture.

1.3.3 Contributions of this Thesis

In summary, this thesis provides contributions to the following fields:

1. Identify Security Threats on Future Java Cards and Create New Concepts
of Countermeasures: Logical attacks are counteracted in this work by a statically
performed bytecode verification process during the install time of an applet. During
run-time additional checks were added to counteract fault attacks. Different security
holes were identified and thwarted by additional checks. Only selected checks are
performed during run-time to counteract as many attacks as possible with as little
memory and performance overhead as needed. The new run-time checks are based
on memory bound checks, data type checks, control flow checks, and data integrity
checks. Different countermeasure designs are explored based on a design space explo-
ration phase. For example to counteract type confusion attacks we proposed three
general ideas: type storing, type separating, and type obfuscating.

2. Hardware Support for Countermeasures: SW checks add an additional mem-
ory and performance overhead. Therefore, in this work we shifted different run-time
checks from SW to specially designed HW units. The units are namely the memory
bound protection, data type protection, control flow protection, and data integrity
protection units. An execution speedup is reached by performing the checks of the
HW units in parallel to the normal processor operations. To communicate with the
HW units new specially designed processor instructions were added. These new in-
structions are used to access the security-critical memory regions of the VM. This
novel approach enables a significant improvement in the execution speed of the run-
time checks compared to a full SW implementation. The performance and HW
overhead of the additional protection units were evaluated on a Java Card prototype
implementation running on an FPGA board.
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3. Seamless Integration of Countermeasures into Java Card: A novel security
abstraction layer was added into the Java Card. This layer is used to access the
security-critical memory regions of the VM. All run-time security checks of this work
are added into this layer and can be easily enabled, disabled, or modified. The main
benefits of the new layer are: high flexibility by partitioning security features from
SW to HW or from one SW implementation to another; increased maintainability
of security checks; accelerating further development of new security features for the
VM.

1.3.4 Thesis Structure

Section 2 describes the related work in the field of Java Card security. Various attack
scenarios against the Java Card sandbox model are presented such as memory overflow or
Java data type confusion. Furthermore, an overview of state-of-the-art countermeasures
and the drawbacks of these countermeasures are discussed. This section finishes with a
summary of the main improvements to the countermeasures that have been developed in
this thesis compared to state-of-the-art countermeasures.

Section 3 presents an evaluation of the design of a secure future Java Card. The
run-time security policy of such a future card is discussed. Furthermore, various general
countermeasure designs are introduced which fulfill the proposed run-time security policy.
Also the integration of the countermeasures into the Java Card architecture and static
on-card applet verification is discussed. Furthermore, the fault emulation environment of
this work is presented.

Section 4 shows the results of HW, performance, and memory measurements on two
evaluation platforms. The evaluation platforms are first described with their changes for
the new run-time security checks. Followed by a case study on different type confusion
countermeasure implementation variants. The acceleration of the run-time security checks
by newly added HW protection units which are integrated into an 8051 processor is de-
scribed. Followed by a discussion and presentation of the static on-card applet verification
algorithm. Furthermore, the fault emulation environment is discussed in more detail fol-
lowed by a case study of an attacked Java wallet applet.

Section 5 draws conclusions and future works from this thesis. Directions for future
work are presented which could focus in the direction of HW/SW codesigned countermea-
sures against side channel attacks. Furthermore, the integration of countermeasures into
deeper Java Card layers like the operating system or directly into the HW are suggested.

Section 6 presents the collection of publications which were published during this thesis.



Chapter 2

Related Work

This section first presents an overview of the Java Card technology with a particular
focus on security. Furthermore, an overview of attacks on Java Cards is given followed by
countermeasures against these attacks. Finally, a summary of this section is shown with
the main differences of this thesis compared to related work.

2.1 Java Card Security Overview

Security requirements of embedded systems like Java Card are continuously increasing.
These security requirements also have to be considered during the design phase of a Java
Card [15]. Java Cards have to withstand various attacks (e.g., microprobing, SW attacks,
eavesdropping, fault generation) to protect the security-critical data stored on them [16].

The current Java Card security concept relies on the fact that every Java Card applet
is verified. This verification counteracts logical attacks against the Java Card sand-box
model. Nowadays, this verification is performed off-card in a secure environment. On
commercially available Java Cards like banking cards, the card user is not able to install
new applets. To install new applets the card user would need to know a secret key which
is only known by authorized companies and authorities. With this secret key it is possible
to create a valid signature which is checked during the install process of an applet on the
card.

The next big shift in the Java Card market will be the user centric ownership model. In
this model the card user is able to install any applet he wants onto the card. Such a shift
also increases the security requirements for Java Cards to counteract logical attacks by an
on-card verification process. Furthermore, the Java Card must persist in an environment
where attackers perform different attacks on the card. These attacks are, for example,
side channel analysis, glitch attacks, and laser attacks.

2.2 Java Card Attack Overview

The Java Card has various contact or contactless physical interfaces to communicate with
other electronic devices. Furthermore, over the chip surface physical quantities can be
measured or the internal processing of the chip can be disturbed by fault attacks shown in
Figure 2.1. By the electrical measurement and analysis of the power consumption of the

8
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chip an attacker can gain knowledge of internal processes [17]. Over the communication
interface SW viruses can be uploaded onto the Java Card [18]. By electrical stimulation
(e.g., digital clock or power supply glitch) an adversary is able to change the data which is
read out or written into volatile and non-volatile memories [19]. Over electrical stimulation
or energy and particle exposure an attacker can manipulate internal calculations. Such
manipulations during cryptographic operations can lead to the loss of secret cryptographic
keys [17]. Furthermore, there is a threat of reverse-engineering and physical manipulation
of the silicon chip [8]. Also so called side channel attacks, performed by electro-magnetic
radiation analysis [20, 21, 22], are a serious security threat and a very active field of
research.

Figure 2.1: A Java Card has several attack points such as physical interfaces or the measurement
or manipulation by physical quantities (obtained with modifications from [7]).

2.2.1 Attacks on the Java Card Sandbox

An attacker is able to break the sandbox model of the Java VM using a malicious applet
which does not fulfill the Java Card specification [9, 10]. Such a malicious applet can
be created by an applet manipulation before the upload onto the card [23] or by a fault
attack during run-time. In literature four general sorts of attack are described which are
memory overflow attacks, control flow attacks, type confusion attacks, and data integrity
attacks.

Memory Overflow Attacks

For every invoked Java method a new so called Java Frame is created. When a Java
method returns then the execution flow returns to the previous frame. This frame data
generally consists of three fixed sized memory regions:
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• Operand Stack (OS): The OS is used by the VM for most logical and arithmetic
operations. Values are pushed and popped onto the top element of the OS.

• Local Variables (LVs): The LVs are freely accessible like standard registers in a
processor.

• Frame Data: The frame data consists of internal data of the VM like the return
address to the previous frame. Note that the specific internal frame data is imple-
mentation dependent and not specified inside the VM specification.

An attacker is able to provoke an overflow of the OS or LVs in order to illegally access
data outside the reserved memory regions. An overview of such overflow attacks is shown
in Figure 2.2. The authors in [24] show an attack, which is called EMAN2, where they
provoke an overflow of the LVs and illegally gain access to the frame data to overwrite the
return address. Therefore, they are able to change the control flow of an applet. In 2013
an OS underflow attack was proposed in [25]. By the help of illegal swap bytecodes they
were able to illegally access the return address of a Java Frame.

Undefined Data Undefined DataLocal Variables Operand Stack

Frame Data   

return 

address

internal 

data

Bytecodes Underflow OS Bytecodes Overflow OS

Bytecodes use Invalid LV Index (EMAN2)

                       Actual Java Frame

Change return 

address to any value

Figure 2.2: On the Java Frame different attacks are proposed like an OS underflow attack [25]
or an overflow attack on the LVs [24] memory (obtained with modifications from [26]).

Control Flow Attack

During the execution of an applet the VM fetches the bytecodes from the fixed sized
bytecode area (BA). In 2011 a run-time attack, called EMAN4, was found by the authors
in [24] which is shown in Figure 2.3. By a laser attack during run-time they were able to
change the control flow of an applet to illegally jump outside the BA by a manipulated
goto bytecode. The jump destination can then be, for example, a data array filled with
malicious code. This leads to the security threat of executing data instead of code. Such
a manipulation of the control flow can lead to serious security attacks like the memory
dump of security-critical code and data on the card as described by the authors in [27].

Data Type Confusion Attack

By the Java Card specification [9, 10] it is exactly specified which data types are expected
on the OS or LVs and which data types are written back. The data types can be divided
into two main data types integralData (boolean, byte, short) and reference (object refer-
ences). Type confusion between these two data types is often performed and mentioned
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Figure 2.3: An attacker is able to change the bytecode operands to 0x00 or 0xff by a fault attack.
By applying a fault attack on the goto w bytecode Barbu [24] was able to illegally change the
control flow of an applet to execute malicious data (obtained with modifications from [28]).

in related works [29, 30, 31, 32, 33, 27, 24, 34] and is therefore a serious security threat.
Such type confusion attacks are often the starting point for more advanced attacks like
executing a data array instead of code as shown in [33, 24], the access to forbidden ob-
jects [34], and to characterize the Java Card API [30]. This thesis shows in Section 3.2.2
three different countermeasure designs which counteract type confusion attacks on the OS
and LVs. Furthermore, these type checks have been shifted from SW into HW which is
explained in more detail in Section 6.3.

Data Integrity Attack

The Java Card VM security and the Java Card sandbox model relies on the integrity
of the data in the memory. This is especially true for the integrity of the OS and LVs
because almost every bytecode reads or writes data into these memory regions. In 2011
the authors in [35] proposed a run-time data integrity attack on the OS using a laser beam.
They abuse the fact that most conditional jump bytecodes (e.g., ifeq, ifne, iflt, ifge) rely
their jump conditions on data on the OS. Therefore, by manipulating the OS data they
were able to change the jump destination to their will. Therefore, this integrity attack
enables the bypass of security checks (e.g., pin checks, control flow checks).

2.3 Overview of Java Card Countermeasures

Today various countermeasures are used to counteract attacks on Java Cards. These coun-
termeasures start from additional physical sensors (e.g., light, high/low clock frequency
or supply voltage), bus scrambling, additional protection layer in silicon or glue logic
[8]. Various researcher proposed countermeasures against optical fault attacks [36], power
analysis attacks [37, 38], and electromagnetic analysis attacks [20].

2.3.1 Countermeasures to Harden the Java Card Sandbox

In 2010 Barbu [29] showed the first practical attack where the Java sandbox model was
skipped by a fault attack. Theoretical works on such attacks were earlier described [32, 31].
After Barbu’s attack, researchers worked on the question of how to harden the sandbox
against fault attacks on resource constrained Java Cards. Countermeasures in Java Cards
should consume as little additional performance, memory and power as possible. To
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reach these requirements various techniques are proposed which can be split into counter-
measures where a Java Card applet is pre-processed and enriched with security relevant
information and countermeasures which work on every Java Card applet without a pre-
processing step.

Sere proposes in [39] that the value of the nop (no operation) bytecode be changed from
0x00 to another value. Such a modification prevents from the threat of skipping bytecodes
by injecting 0x00 during a fetch operation of the VM. To protect against such skipping
attacks Sere also proposes [39, 40] the calculation of a bit field over the bytecode. In this
bit field is stored whether the actual fetched data is an opcode or an operand. Therefore,
a confusion between opcodes and operands can be detected during run-time. Another
countermeasure to detect skipped bytecodes is the off-card calculation of checksums over
basic blocks (BBs) of the bytecode [41]. This is done by checking the pre-calculated check-
sum against the checksum calculated during run-time. Furthermore, by pre-calculating
the control flow between BBs anomalies in the run-time control flow are detected. Such
anomalies are illegal jumps from a BB to another BB which is not reachable. All of Seres
countermeasures increase the size of the applet by additional security related data to store
bit fields, checksums, and control flows. A more memory friendly countermeasure is pro-
posed in [42] which is based on an off-card encryption of the bytecode. During run-time
the bytecodes are then encrypted with a secret key. Such a bytecode encryption prevents
from the threat of jumping outside the BA and executing attacker defined data. An at-
tacker has to know the secret key to fill an array with valid code. Another countermeasure
proposed in [43, 44] prevents the threat of type confusion between the two main data
types integralData and reference on the OS. The countermeasure is based on splitting the
OS into two memory regions. Depending on the expected main data type (integralData,
reference) data is read or written into one of these memory regions. This countermeasure
requires an off-card step to remove incompatible bytecodes (e.g., swap, pop, dup). In [45] a
so called fingerprint is calculated off-card over the bytecodes of an applet. During run-time
it is checked whether the actual applet execution is compliant with the fingerprint. In [46]
an automation array is calculated during the linking time for every method. Based on this
automation information the control flow of the applet is checked during run-time. In 2011
Barbu [35] proposed three countermeasure types against data integrity attacks on the OS.
The first approach is based on an additional memory read and comparison operation after
every read or write operation in the OS. Barbus second approach is performing a data
integrity evaluation when the Java Card firewall checks are performed. By this approach
the number of checks is reduced and therefore the overall execution performance of an
applet increases. The third approach is based on calculating checksums for every written
or read element into the OS. These checksums are evaluated at security-critical points in
time during the execution of a Java applet.

2.3.2 Drawbacks of Current Countermeasures and Discussion

The currently proposed countermeasures against run-time attacks are implemented in
SW and have two main drawbacks which are additional execution time overhead and
memory consumption. The additional memory consumption comes from the fact that
various countermeasures rely on a pre-processing step where checksums and control flow
graphs are additionally added into the Java Card applet [39, 40, 45]. During run-time the
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calculation and comparison of the checksums and control flow graphs requires additional
execution time. Another drawback is that these SW checks can be skipped by a double
fault injection [47]. Such a double fault injection gets easier when the time between the
two faults is relatively long. To skip our new proposed HW checks in Section 6.3 an
attacker has to inject faults very quickly which increases the difficulty of a successfully
performed double fault injection [48]. Furthermore, the overall success rate of the attack
decreases if more than one fault injection is needed. For example if one fault injection has
a success rate of 10% than the overall success of an attack decreases to 10% ∗ 10% = 1%
if two attacks are needed [49]. Therefore, the required number of attack runs for one
sucessfully performed attack increases from 10 to 100. For an attacker this means that
the card will most probably be unusable because the attack trigger will in all likelihood
reach its maximum tolerable number which results in a card lock.

2.4 Summary and Difference to State-of-the-Art Counter-
measures

This thesis aims at introducing the following main improvements to the state-of-the-art,
with respect to the goals defined in Section 1.3.3:

• Run-time attacks are used by attackers to break out of the Java sandbox model to
access security-critical data. In related work all proposed countermeasures which
harden the VM against run-time attacks are performed in SW. In this work counter-
measures to counteract, for example, type confusion attacks are accelerated by HW
mechanisms during a HW/SW codesign process. This shift of functionality from SW
to HW decreases the execution time overhead of the countermeasures.

• This thesis shows countermeasures which do not rely on an off-card pre-processing
step to harden the Java Card sandbox. In related works pre-processing is needed to
calculate, for example, checksums over the bytecode to counteract integrity attacks.
Such integrity attacks are counteracted in this thesis by double checking the values
which are read from or written into the memory.

• Related work does not answer the question of how countermeasures can be smoothly
integrated into the VM to attain easy maintainability. Therefore, this work proposes
to add an additional security layer into the VM architecture. In this security layer
all run-time checks from this work are integrated.

Furthermore, this work shows the following additional advancements:

• Exploration of various countermeasure designs and implementation variants (e.g.,
type confusion and memory overflow countermeasures).

• Countermeasures are explored in terms of execution time, memory, and hardware
overhead on a Java Card prototype.

• To counteract fault attacks this work moves checks which are statically performed
at install time to the run-time.



Chapter 3

Design Evaluation for a Secure
Future Java Card

This section provides an overview of publications concerning a HW/SW codesigned secure
future Java Card. Various run-time security policies are shown which are fulfilled by this
card. Run-time countermeasure designs are discussed which counteract, for example, type
confusion or memory overflow attacks. Furthermore, this section shows the acceleration
of the run-time security checks by specific HW support and the integration of the security
mechanisms into the Java Card architecture.

3.1 Overview

Different attacks exist which threaten Java Card security. To counteract these threats new
security mechanisms must be integrated into the Java Card VM. The proposed mecha-
nisms of this work aim at increasing security against fault attacks and logical attacks. The
increased security of the card is reached by a static on-card verification step performed on
every newly installed applet. Furthermore, run-time checks are executed which counter-
act various fault attacks during run-time. These run-time checks are accelerated in this
work by microarchitectural HW mechanisms on the card. An overview of the individual
contributions of this work and their mapping to scientific publications are illustrated in
Figure 3.1.

The basis of such a secure future multi-application Java Card is that an attacker is not
able to install a malicious applet onto the card. In case a malicious applet can be installed
onto the Java Card, then an attacker is able to illegally access security-critical code or
data by a logical attack. To prevent this security threat, a static on-card verification step
is needed. Such a memory efficient on-card bytecode verification process is described in
detail in Publication 1.

A verified applet cannot break the Java Card sandbox model and gain illegal memory
accesses. Unfortunately, the sandbox model can be circumvented by fault attacks during
the applet execution. Therefore, new countermeasures must be integrated into the Java
Card VM. To counteract, for example, memory overflow attacks and type confusion attacks
on Java Cards two different approaches are presented in Publication 2. These approaches
counteract type confusion attacks between integralData (e.g., short, byte, boolean) and
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Figure 3.1: Publication overview concerning a secure future Java Card with new HW and SW
security features.

object references (e.g., short[], byte[], class A). The first countermeasure approach is called
type storing and stores the data type information during run-time. Based on this stored
information additional checks are performed during run-time to detect type confusion. The
second approach is called type separating and separates the data into different memory
regions depending on the data type. By this type separation it is no more possible to
perform type confusion between integralData and reference during run-time. Furthermore,
both approaches perform memory bound checks to counteract run-time buffer overflow
attacks.

In Publication 3 it is shown how type confusion and buffer overflow attacks can be
counteracted by data type sensitive obfuscation. The values inside the VM are obfuscated
by different secret keys depending on the data type. For integralData the key KintegralData
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is used and for references the key Kreference. By this countermeasure an attacker will
create unpredictable values with a type confusion attack. Furthermore, buffer overflow
attacks are counteracted because the data which is read/written outside the buffer is also
unpredictable for an attacker. The type obfuscation approach is more memory efficient
and consumes less additional computational performance than the type storing and type
separating approach.

All these run-time countermeasures have to be seamlessly integrated into the Java
Card architecture. Therefore, Publication 4 shows an additional SW security layer inside
the Java Card architecture. All memory accesses to security-critical memory regions are
processed over this novel layer. This security layer contains all the run-time security
operations. Therefore, security operations can be easily added, disabled or modified inside
the layer.

The execution of the run-time security operations in SW slows down the overall exe-
cution performance of the card. Therefore, Publication 5 adds new HW protection units
into the card to shift the run-time security operations from SW to HW. These units are
the type protection unit, memory bound protection unit, control flow protection unit,
and the data integrity protection unit. With the help of these additional HW units the
performance overhead due to the run-time checks is dramatically reduced compared to a
SW implementation.

A fault emulation environment is presented in Publication 6 to test different HW and
SW countermeasures. By this environment different fault attacks can be recreated by a
HW bus saboteur unit. This environment enables the design space exploration of new
countermeasures. Furthermore, the effects of various fault attacks on the behavior of the
VM can be analyzed.

3.2 Run-time Checks

The possible security threats for a future multi-application Java Card have been analyzed
based on related work described in Section 2.2.1, the Java Card protection profile [50], and
the Java Card specification [9, 10]. Based on these documents a run-time security policy
has been created which counteracts the most dangerous threats. A detailed description of
the policy and the countermeasures to fulfill this policy are shown in Section 6.3.

3.2.1 Run-time Security Policy

The goal of the run-time security policy is to counteract different run-time security threats
on the security-critical data of the VM. Figure 3.2 depicts a schematic overview of the
policy and the security-critical memory regions involved. The run-time security policy is
based on four different sub-policies: (i) memory bound policy, (ii) data type policy, (iii)
control flow policy, and (iv) data integrity policy.

• Memory Bound Policy: The memory bound policy counteracts buffer overflow
attacks on the OS and LVs which is described in Section 6.1 [26]. The security of the
bound policy is then improved in Section 6.3 by taking into account the fact that
the OS can be seen as a FIFO (first in, first out) buffer [51]. Therefore, it is only
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Figure 3.2: Overview of the run-time security policies for a future multi-application Java Card
(obtained with modifications from [51]).

allowed to write data onto the top element of the OS. A read or write operation in
the middle of the OS is not allowed.

• Control Flow Policy: The control flow policy checks that attacks are not able
to illegally change the control flow of an applet by jumping outside the bytecode
area of the applet. This control flow policy counteracts, for example, the threat of
executing data instead of code and is described in more detail in Section 6.2 [28] and
Section 6.3 [51].

• Data Integrity Policy: The data integrity policy counteracts the illegal manipula-
tion of data which is read or written into the run-time data of the VM (OS and LVs)
by a fault attack. The integrity policy is described in more details in Section 6.3
[51].

• Data Type Policy: The data type policy counteracts run-time type confusion
attacks between the main data types integralData and reference. The counteracted
threats and a more detailed description of the policy are shown in Section 6.1 [26].

3.2.2 Type Confusion Countermeasure Designs

Based on the previously defined run-time security policies different implementations of
countermeasures are designed and evaluated to fulfill the policies. For example to fulfill
the type policy three different general countermeasure designs have been found. Type
confusion can be counteracted by (i) storing the type information for every element, (ii)
separating the data based on the data type or (iii) obfuscating the data dependent on
the data type. A schematic overview of the three general type confusion countermeasure
designs is illustrated in Figure 3.3.

• Type Storing: For every element on the OS and LVs the type information is stored.
Due to the fact that it is statically defined which bytecodes work on which types, it
is possible to perform type checks during run-time. An evaluation of two different
type storing designs is described in more detail in Section 6.2 [28] which are namely
the word storing and bit storing approach. The difference between them is that the
type information is either stored into a memory area with the same data size as
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Figure 3.3: To fulfill the type policy of this work three different general countermeasure designs
have been evaluated which are type storing, type separating, and type obfuscating.

the processor or into a type bit-map where every bit represents one entry of the OS
or LVs. The two different designs vary in the memory consumption and execution
speed.

• Type Separating: This countermeasure stores the OS and LV values into different
separated memory areas depending on the data type. For example there is one OS
for all elements of type integralData and one OS for all elements of the data type
reference. Type confusion is now avoided from an architectural point of view because
every bytecode takes and stores its values to the right OS or LVs. Therefore, run-time
type checks are no longer needed in comparison to the type storing approach, where
they are. A disadvantage of the type separating approach is that so called untyped
bytecodes (pop, swap, dup) must be replaced by typed ones during a pre-processing
step. The type separating countermeasure is described with its advantages and
disadvantages in Section 6.1 [26].

• Type Obfuscating: Depending on the data type the values on the OS and LVs are
obfuscated with a secret key. An adversary is no longer able to perform useful type
confusion attacks without knowing the secret key. Type confusion attacks are not
detected by this countermeasure as they are with the type storing approach but the
data which is created by a type confusion is useless for an attacker without knowing
the secret key. A description of the key creation and more details of the design are
presented in Section 6.4 [52].

The different type confusion countermeasure designs have been evaluated during a
countermeasure design space exploration phase. The five attributes which are used for
the evaluation are: Is a pre-processing of the Java Card applet necessary (pre-processing
required)?; What is the expected execution time increase of the VM (time overhead)?;
What is the expected memory overhead of the countermeasure (memory overhead)?; Is the
attack immediately detected by the countermeasure or later during its execution (detection
latency)?; Is an attack really detected or does an attacker still receive data (detection
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rate)?. For example the detection rate for the type obfuscation countermeasure is low
because an attacker is still able to perform the type confusion attack. Nevertheless, the
received obfuscated data is useless for the attacker. An overview of the different type
confusion countermeasures and their evaluation is shown in Table 3.1. The table input is
evaluated based on the type confusion countermeasure designs in the Sections 6.1 6.2 6.4
[26, 28, 52].

Table 3.1: The SW type confusion countermeasures of this work have different properties. This
table compares the type storing approach (word storing, bit storing) with type obfuscating and
type separating.

Type Confusion Pre-Processing Time Memory Detection Detection
Countermeasure Required Overhead Overhead Latency Rate

Type (Word) Storing No Middle High Low High
Type (Bit) Storing No High Middle Low High
Type Obfuscating No Low Low Middle Low
Type Separating Yes Middle Middle Middle Middle

3.2.3 Memory Overflow Countermeasure Designs

The memory bound policy says that the fixed sized OS and LVs memory should never
overflow. To fulfill this policy it is possible to perform run-time checks if the accessed
memory is inside the higher and lower memory bound address. This bound checking
approach is described in Section 6.1 [26]. Another approach is the obfuscation of the
values inside the OS and LVs. When the values are obfuscated with a secret key then
every read or write outside the memory bounds will create useless data for an attacker.
The obfuscation approach is presented in Section 6.4 with a countered attack example
[52].

3.3 Countermeasure Integration into Java Card Architec-
ture

The proposed run-time countermeasures must be seamlessly integrated into the Java Card
architecture. Therefore, a new layer is proposed in this thesis as shown in Figure 3.4(a).
During the execution of a bytecode the access to the security-critical data of the VM is
performed over this new layer. A more detailed description of the layer and its usage to
enable dynamic countermeasures is shown in Section 6.2 [28]. A schematic overview of
the dynamic countermeasure approach is shown in Figure 3.4(b). Based on the required
security level an appropriate security layer implementation is chosen. If the security needs
are very high, an implementation with a lot of checks is used. If the security needs are
low, a layer implementation which consumes less memory and run-time performance can
be chosen as described in Section 6.2 [28].
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Figure 3.4: The overall security of the Java Card VM against fault attacks is increased by
adding an additional security related SW layer (defensive VM (D-VM) layer) into the Java Card
architecture. This new layer contains the security checks and provides the VM access to security-
critical memory regions.

3.4 Static On-Card Applet Verification

One of the most important use cases for a secure future multi-application card is that
everybody can install any applet on this Java Card. Therefore, a static check during the
install time must be performed to confirm that the applet contains no illegal operations.
Currently, the applet verification process is performed off-card in a secure environment
as shown in Figure 3.5(a). This work shifts the on-card verification onto the card as
shown in Figure 3.5(b). The difficulty in enabling the off-card verification relies on the
constrained available memory resources of a Java Card. Therefore, the new on-card applet
verification of this thesis relies on a generation of BBs and a control flow analysis with the
goal of reducing the memory requirements. Using this verification process the bytecodes of
every Java method is split into BBs. Based on the BBs a control flow graph is calculated
which connects the BBs together. Subsequently, every BB is verified by analyzing all
its containing bytecodes and marking them verified if the verification was successful. A
more detailed description and memory analysis of the new on-card verification process is
discussed in Section 6.5 [53].

3.5 Hardware Support for Run-time Security Checks

Performing the different run-time security checks in SW adds an additional overhead to the
execution performance of the VM. Java Cards are very resource limited devices which have
strict timing requirements for industrial applets. A Java Card, even if it is more secure
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Figure 3.5: Every newly uploaded applet must be analyzed before installation. The new on-
card verification process performs this analysis to detect applets which could break the Java Card
sandbox model by invalid operations.

than another, cannot be sold if it does not meet these strict execution time requirements.
Therefore, this thesis shifts the computationally expensive run-time checks from SW to
HW as shown in Figure 3.6. Based on the security policy of this work from Section 3.2.1
the instruction set of the Java Card processor has been split into two different classes. The
first class are security-critical memory access instructions (defensive instructions) which
are enhanced with different HW mechanisms to fulfill the security policy. The second class
are standard processor instructions which are not related to the run-time security policy
of Section 3.2.1.
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o Data Type 
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Figure 3.6: Additional processor instructions are inserted into the Java Card to support HW
accelerated security checks during run-time to fulfill the security policy of this work (obtained with
modifications from [54]).

This work adds a protection unit, control flow protection unit, data type protection
unit, and data integrity protection unit into the Java Card architecture as shown in Figure
3.7. These different protection units are responsible for fulfilling the security policy from
Section 3.2.1. The VM communicates with the protection units over newly added so called
defensive processor instructions. Different Java related information is decoded into these
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new instructions. The new HW protection units are able to validate the memory accesses
based on the decoded information.
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Figure 3.7: To overcome the execution slow down of run-time security checks, this work shifts
the run-time checks from SW to HW (obtained with modifications from [51]).

3.6 Evaluate Java Card Security by Fault Emulation

To evaluate new countermeasures either implemented in HW or SW a fault emulation envi-
ronment is proposed in this thesis. Furthermore, this environment can be used to find new
attack paths using automatically performed fault attacks. The fault emulation environ-
ment is able to inject faults into the security-critical memory regions during the execution
of the Java Card VM. An overview of the environment is outlined in Figure 3.8. The
environment user is able to inject faults at specific bytecodes into specific security-critical
memory regions. The appropriate fault is automatically injected by the environment based
on the actual state of the VM and the system bus. The emulation approach on an FPGA
is much faster compared to a simulation of the faults on a personal computer. A more
detailed description of the fault emulation environment is given in Section 6.6 [55].
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Figure 3.8: With the help of the fault emulation environment SW/HW countermeasures can be
evaluated. Furthermore, the behaviour of the VM can be studied by automatically injecting and
evaluating the faults (obtained from [55]).



Chapter 4

Results and Case Studies

This section first gives an overview of the HW models which are used in different case
studies. During these case studies various countermeasures were evaluated. The coun-
termeasures are either implemented in SW or HW and evaluated in terms of run-time
performance, memory overhead, and HW overhead. Furthermore, this section shows the
modifications needed to the processor architecture to enable the newly added HW protec-
tion units. These protection units secure the VM in terms of memory bound checks, Java
data type checks, control flow checks and data integrity checks.

4.1 Evaluation Platforms

The SW and HW countermeasures to counteract run-time fault attacks on the Java Card
sandbox model are evaluated in this section. The evaluation is done on two different smart
card models using an 8-bit 8051 [56] architecture. Derivates of this architecture are still
used in current industrial Java Cards. The two models of this work are implemented at
two different HW abstraction levels. The first model is implemented at the system level
in SystemC [57] and is used for a fast design space exploration [58]. The second model
is implemented at the register transfer level in the very high speed integrated circuit HW
description language (VHDL) [59]. The VHDL model enables exact measurements of the
timing overhead due to the additionally added functionality of the HW protection units.
This VHDL model has been synthesized on a Xilinx Virtex-5 field programmable gate
array (FPGA) development board.

4.1.1 Tool Chain

The whole development flow used to evaluate our prototype is shown in Figure 4.1. The
prototype Java Card VM is implemented in C code and in 8051 assembly language. As-
sembly is needed to integrate the newly added defensive CPU instructions into the VM.
As a compiler and linker the Keil 8051 development tools1 are used to generate a hex
file for both HW models. The VHDL HW model is then executed in ModelSim2 or on a
Virtex-6 FPGA development board. The obtained performance and HW results are used

1http://www.keil.com/
2http://www.model.com/
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to enhance the SystemC model. The SystemC HW model is executed in Microsoft Visual
Studio using the programming language C++. The SystemC extension for transaction
level modeling (TLM) 2.0 is used for modeling the data transactions in the processor bus.
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Figure 4.1: The Java Card VM prototype is implemented in the programming languages C and
assembly. A hex file of the VM is created by the Keil C51 development tool chain. This hex file is
either executed on a register transfer level model programmed in VHDL or a system level model
programmed in SystemC.

4.1.2 System Level Model

An overview of the main parts of the SystemC model is shown in Figure 4.2. To enable
the HW accelerated run-time checks different protection units (bound, type, control flow,
data integrity) are integrated into the controller unit of the model. Furthermore, new
defensive instructions are added into the instruction set of the processor model. The
external memory (XRAM) has been extended with an additional type bit which holds the
data type information for the type protection unit. This fast executing high-level model
was used for the proof of concept implementation and the case studies which are presented
in the Sections 6.1 6.2 6.4.

4.1.3 Register Transfer Level Model

The main parts of the VHDL model are shown in Figure 4.3. The parameterizable and
synthesizeable 8051 processor core model is freely available3 even for commercial purposes.

3www.oreganosystems.at/?page_id=96

www.oreganosystems.at/?page_id=96
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Figure 4.2: The high level SystemC model of an 8051 processor consists of different main parts
such as the controller unit, memories or timers which are connected over a bus. During this work
different HW protection units are integrated into the model (obtained with modifications from
[58]).

The model is developed from Oregano systems in cooperation with the Vienna University
of Technology. In this processor model our new HW security features have been incorpo-
rated4. The bound, type, and control flow protection units were integrated into the 8051
core component. Furthermore, the new defensive instructions are added into the instruc-
tion fetch, decode, execute, and write back logic. The data integrity protection unit was
integrated as a separate component into the top level architecture of the 8051 and has
its own interface to the external memory. The external memory was extended with an
additional type bit for the type protection unit. When a violation of the security policy
is detected then a newly added security interrupt occurs. This very accurate model was
used for the implementation of the secure future Java Card of Section 6.3.

4.2 Case Study on Type Confusion Countermeasures

In this work different innovative techniques are presented and evaluated to counteract run-
time type confusion attacks between the main data types integralData and reference. As
presented in Section 3.2.2 this thesis shows three type confusion countermeasure designs
which are (i) type storing, (ii) type separating, and (iii) type obfuscating. In this work
different implementations for the three designs were evaluated in different publications as
shown in Figure 4.4.

4.2.1 Type Storing

During the design space exploration phase three different implementation techniques for
type storing were found and evaluated, as shown in Figure 4.5. These three implementa-

4Michael Hraschan, ”Hardware Based Security Features for a Defending Java Card Virtual Machine”,
Telematic It-Project, Graz University of Technology, 2013
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tions are compared and evaluated between each other based on their additional HW, main
memory, and run-time performance overhead shown in Section 6.2.

• Bit Storing: The bit storing countermeasure holds the type information in a spe-
cially designed bit-map structure. In this structure each bit represents one entry
of the OS or LVs. The bit value 0 represents the Java data type integralData and
the bit value 1 represents a reference. Read or write operations into the bit-map
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Figure 4.5: Type confusion attacks can be counteracted by storing the type information during
run-time for every value on the OS and LVs. Note that this figure shows an abstract implementation
overview for the 8-bit 8051 architecture (obtained with modifications from [28]).

structure are relatively costly and time-consuming. The overhead comes from the
fact that each access needs some shift and modulo operation to find the right bit for
the searched entry [28]. The bit storing approach increases the memory needs of the
OS and LVs by 6,25% because 1 type bit is needed to represent 16 data bits.

• Word Storing: The word storing countermeasure significantly increases the run-
time performance compared to the bit storing approach. Unfortunately, the memory
needs also increase because each type entry of the OS or LVs is added to this entry in
the word size of the processor. Values stored in the standard word size can be quickly
accessed by the processor and needs no additional shift or modulo operations. The
word size of the 8051 processor is 8-bit [28]. Therefore, the memory needs of the OS
and LVs increase the word storing approach by 50% because 8 type bits are needed
to represent 16 data bits.

• HW Supported: The HW supported type storing approach moves the time costly
type comparing and type storing operations from SW to HW. This means that the
run-time overhead dramatically decreases compared to the previously explained SW
countermeasures bit storing and word storing. The type information is directly stored
as an additional bit into the memory. Therefore, on an 8051 architecture the main
memory increases by 12,5% because 1 type bit is added to 8 data bits. The newly
added HW type protection unit is able to validate whether the accessed memory has
the expected data type. If the type is not valid then a HW exception is thrown by
the type protection unit [26, 28].

Performance Overhead - Type Storing Countermeasures

The performance overhead for the three type storing countermeasures is presented in Ta-
ble 4.1 for different bytecode groups. The bit storing approach significantly decreases the
overall performance by adding 210% of overhead. The word storing approach exchanges
speed with more memory consumption and has an overhead of 140%. The HW supported
countermeasure has an overhead of only 6% [28].
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Table 4.1: Performance overhead overview of the three type storing countermeasure approaches.
Note that the performance overhead measurements are normalized to a VM implementation which
does not perform these type checks during run-time (obtained with modifications from [28]).

Bytecode Groups Bit Storing Word Storing HW Supported

Arithmetic/Logic +240% +150% +7%
LV Access +240% +190% +5%
OS Manipulation +230% +150% +5%
Control Transfer +170% +110% +7%
Array Access +170% +130% +5%

Overall +210% +140% +6%

4.2.2 Type Separating

By separating the values on the OS and LVs by their types it is no longer necessary to
perform type checks. Unfortunately some bytecodes are not compatible with the type sep-
arating approach. These incompatible bytecodes need information about which data type
they operate on. Therefore, an off-card preprocessing step is necessary which exchanges
these so called untyped bytecodes (pop x, dup x, swap x ) to newly added typed bytecodes
as explained in Section 6.1 [26] and shown in Figure 4.6(b). To perform this preprocessing
step the type information of the values on the OS are needed. This type information
can be extracted during the static on-card bytecode verification process described in Sec-
tion 6.5 [53]. The off-card tool5 which performs the replacement of the untyped bytecodes
to typed ones is outlined in Figure 4.6(a). Also besides this replacement additional secu-
rity information can be added to the applet like CRC checksums. Run-time performance
overhead measurements of a type separating approach implemented in SW and in HW are
explained in more detail in Section 6.1 [26].

4.2.3 Type Obfuscating

An execution time and memory efficient countermeasure against type confusion attacks
between integralData and reference is type obfuscating. Type obfuscating obfuscates the
values on the OS and LVs with a secret key depending on their main data type. Therefore,
the secret key KintegralData is used for integraldData values.

integralDatahidden = integralData⊕KintegralData

All elements of type reference are obfuscated with the key Kreference.

referencehidden = reference⊕Kreference

This obfuscating technique has quite low performance and memory requirements which
makes this countermeasure especially usable in an industrial context. This comes from
the fact that no types must be stored and no type checks are needed during run-time.
Furthermore, the applet must not be pre-processed as it is for the type separating coun-
termeasure. Note that also bound checks of the OS and LVs are no longer necessarily

5Stephan Oberauer, ”CAP File Enhancement to Enable a Defensive Virtual Machine”, Telematic It-
Project, Graz University of Technology, 2013
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Figure 4.6: The type separating countermeasure against type confusion attacks is enabled by a
pre-processing step on the CAP file to replace untyped bytecodes with newly added typed ones.

needed. An attacker which performs a memory overflow attack will write unpredictable
data outside the OS and LVs. A SW implementation of type obfuscating adds an over-
head of around 16% measured over different bytecode groups. A more detailed analysis,
description and performance measurement is shown in Section 6.4 [52].

Case Study - Counteract Type Confusion Attack by Type Obfuscating

A type confusion example is shown in Figure 4.7. Java code is first compiled to bytecodes
which are uploaded onto the Java Card. An attacker now changes the bytecodes by a
fault attack changing the values 0x10 0x19 to 0x00 0x19. This attack results in a type
confusion attack on the OS between integralData and reference. Fortunately, in this case
study the type obfuscating countermeasure is used which obfuscates the OS with the
secret key KintegralData and Kreference. Based on this obfuscating the attacker receives an
obfuscated reference of an array object.

reference 6= (reference⊕Kreference)⊕KintegralData

A more detailed description of this case study and how type obfuscating counteracts
type confusion attacks is shown in Section 6.4 [52].

4.2.4 Hardware Support for Run-time Security Checks on 8051 CPU

An overview of the HW security checks integration into the Java Card architecture, of
an 8-bit 8051 processor, is shown in Figure 4.8. The VM and its operating system use
new defensive processor instructions to access security-critical memory regions. Specific
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00: 19    aload_1

01: 03    sconst_0

02: 04    sconst_1

03: 38    bastore

04: 10 19 bspush

06: 78    sreturn

00: 19    aload_1

01: 03    sconst_0

02: 04    sconst_1

03: 38    bastore

04: 00    NOP

05: 19    aload_1

06: 78    sreturn

short dummy{byte[] array}

{

   array[0] = 0x01;

   return 0x19;

}

Obfuscated Operand Stack

BytecodeJava Code

Malicious Bytecode

OS impact

compile

int...integralData

ref...reference

Abbreviations
Type Confusion Attack Thwarted!

Attacker receives obfuscated reference 

which is worthless to him.

00:

01:

02:

03:

04:

05:

06: 

{          }

{                   }

{                          }

{ }

{ }

{          }

ref hidden

int hiddenref hidden

int hiddenref hidden int hidden

ref hidden

Äref ≠ hiddenref

Fault Attack

K int

Figure 4.7: Type confusion is counteracted by type obfuscating. Every element in the OS and
LVs is obfuscated with a data type depending secret key (obtained from [52]).

security relevant information is decoded into the new defensive instructions which are the
access direction (read or write), the accessed memory area (OS, LVs, BA), and the Java
data type (integralData, reference, and untyped). This information is used to allow the
newly added HW protection units to perform different run-time checks.

• Memory Bound Protection Unit (BPU): The BPU protects the bounds of the
OS and LVs against buffer overflow attacks. When a new defensive CPU instruction
is used with the information that the memory destination is the OS or LVs then the
BPU checks if the accessed address is inside the upper and lower OS or LV bounds.

• Data Type Protection Unit (TPU): The TPU uses the decoded type information
of the defensive instructions and the additional type bit in the memory word to
perform type checks during run-time.

• Control Flow Protection Unit (FPU): The FPU is responsible for checking if
the currently fetched bytecode is inside the bytecode area to counteract the threat
of executing data instead of code.

• Data Integrity Protection Unit (IPU): The IPU protects the integrity of the OS
and LV entries by performing an automatically performed double read. This double
read is triggered at every read or write access into the OS or LVs. After reading or
writing the value v the IPU automatically reads the inverted value vinverted from the
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Figure 4.8: Overview of the integration of the protection units into the Java Card architecture.
The instruction set of the 8051 processor is extended with new so called defensive instructions.
These instructions decode different Java security related information which are used by the HW
protection units to perform various high-performance run-time checks (obtained with modifications
from [51]).

same accessed memory address to calculate ψ = v ⊕ vinverted. The IPU triggers a
security interrupt when ψ 6= 0xff .

The standard processor instructions are used to configure the standard HW units or
standard memory regions on the card. A more detailed description of the case study
of integrating the BPU, TPU, FPU, and IPU into an 8051 processor is presented in
Section 6.3 [51].

4.2.5 Hardware and Performance Overhead

This section presents the HW and performance overhead measurements of the HW accel-
erated run-time security checks.

Hardware Overhead

The HW overhead of the newly added HW protection units (BPU, TPU, FPU, IPU) were
evaluated on an VHDL 8051 processor model. To enable the new HW protection units
additional processor instructions, new special function registers (SFRs), and additional
interrupt lines were integrated into the model. Furthermore, the data width of the main
memory interface has been increased. The digital HW overhead was received by emulat-
ing the system on a Virtex-6 FPGA development board. The HW overhead is listed in
Table 4.2. The total HW overhead of the additional security features is 11%. Note that
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the processor model does not contain any crypto-coprocessor or any other specific security
techniques.

Table 4.2: This table shows the digital HW resources needed to add the HW protection units
into the processor (obtained from [51]).

Hardware Components Area Overhead
Bound Protection Unit +5%
Type Protection Unit +1%
Control Flow Protection Unit +1%
Data Integrity Protection Unit +1%
Defensive Instructions +3%
Total +11%

The type protection unit is responsible for checking if the VM executes the bytecodes
with valid types on the OS and LVs. To store the type information, an additional type
bit was added into the main memory word. This means that the main memory increases
from 8 bit to 9 bit (8 data bit + 1 type bit). This main memory increase of 12,5% and
the additional HW overhead of 11% are discussed in more detail in Section 6.3 [51].

Performance Overhead

The newly added HW protection units benefit from the fact that they can work in parallel
to the normal processor instructions. The shifting of security operations from SW to HW
significantly decreases the execution performance as shown in Table 4.3. Overall the HW
checks increase the run-time by 4% which is very low compared to 160% if all checks are
performed in SW. A more detailed analysis of the overhead for selected bytecode examples
is presented in Figure 4.9. A more detailed discussion of the performance overhead is given
in Section 6.3 [51].

Table 4.3: Performance overhead overview of the HW accelerated run-time checks. Note that
the performance overhead measurements are normalized to a VM implementation which does not
perform run-time checks (obtained with modifications from [51]).

Bytecode Groups HW Accelerated Checks SW Checks
Arithmetic/Logic +6% +180%
LV Access +3% +200%
OS Manipulation +4% +150%
Control Transfer +4% +120%
Array Access +4% +160%
Overall +4% +160%

4.3 Memory Efficient On-Card Verification

For a secure future Java Card every applet which is to be installed must be verified during
the install process. Basic checks6 can be quite easily performed during the installation of

6Michael Irauschek, ”Java Card Attacks and Countermeasures against Malicious Applications in a User
Centric Ownership Model”, Master Thesis, Graz University of Technology, 2013
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Figure 4.9: Performance overhead overview of the HW accelerated run-time checks. Note that
the performance overhead measurements are normalized to a VM implementation which do not
perform these type checks during run-time (obtained from [51]).

an applet on the card. These simple checks are for example: check that the applet contains
no illegal opcodes; jump targets of bytecodes are inside the bytecode area; LV indexes of
various bytecodes (e.g., sstore, astore) are inside the maximum number of allowed LVs.

A more sophisticated problem is the Java data type checking during install time.
Therefore, this thesis presents a memory efficient on-card verification algorithm pro-
grammed in SW. A conceptual overview of the steps needed to verify a Java method
is illustrated in Figure 4.10(a) and in more detail in Figure 4.10(b). The whole algorithm
and its use case for future Java Cards is explained in more detail in Section 6.5 [53].

Split into BB
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More BBs?

Normalise BB

Start

Y

N

Verify BB

(a) Basic blocks are calculated
over the bytecode of every method
(obtained with modifications from
[53]).

Execute iOK? StartError i=first of BB

Changed?

i=next instr.End?

Mark not 
verified

Empty? normalise

Mark 
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N

N

N

Y
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End

(b) Every bytecode instruction inside a basic block is checked dur-
ing the statically performed verification (obtained with modifications
from [53]).

Figure 4.10: Concept of the statically performed on-card verification process.
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Figure 4.11: Detailed overview of the main parts of the fault emulation environment. Faults can
be injected into the security-critical VM data of the memory. These faults are configured over the
fault injection tool which configures the fault injection controller (obtained from [55]).

4.4 Fault Emulation Case Study

The prototype fault emulation environment7 of this work is implemented on a Leon3
processor from Aeroflex Gaisler8. On this processor runs the freely available Java VM
SimpleRTJ9. An overview of the main parts of the environment are shown in Figure 4.11.
Specific faults or fault campaigns are configured over a fault injection tool running on
a host computer. This tool automatically configures the fault injection controller which
runs on the emulated Leon3 processor. The controller gets the actual state of the Java
VM from the data provider and automatically configures the bus saboteur units for the
appropriate faults. The bus saboteur unit is able to inject faults at different precisions
like bit-precise, set-all-one, set-all-zero, indetermination, and inverting.

During a case study a Java wallet applet was attacked. The attack was based on
manipulating the PIN verification by a fault injection into the operand stack memory
region of the VM. Using this attack the money transfer functions of the wallet applet can
be used without knowing the valid PIN. By the emulation approach a speedup of 6,600 is
reached compared to a simulation shown in Table 4.4.

Table 4.5 shows the additional HW needed to enable the fault injection into the Leon3
processor. For example the wallet applet case study runs on the smallest possible config-

7Michael Hraschan, ”Design and Implementation of a Fault Emulation Environment for a Java Virtual
Machine”, Master Thesis, Graz University of Technology, 2014

8www.gaisler.com/index.php/products/processors/leon3
9web.archive.org/web/20130803012237/www.rtjcom.com

www.gaisler.com/index.php/products/processors/leon3
web.archive.org/web/20130803012237/www.rtjcom.com
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Table 4.4: By the emulation approach a high acceleration of the fault injection is reached com-
pared to a simulation (obtained from [55]).

Fault Injection Simulation Emulation Achieved
Scenario Time Time Speedup

Manipulate PIN Check 1 hrs 50 min <1 s 6,600
Fault Campaign (500 Runs) 2 hrs 6.5 s 1,100

uration with an HW overhead of +14.5% FPGA look-up-tables and +13% FPGA slices.
The HW overhead nearly linearly increases based on the number of configurable faults
needed per executed bytecode. A more detailed description of the whole environment, the
attacked wallet applet and the resources needed are described in Section 6.6 [55].

Table 4.5: The HW overhead of the fault emulation environment is listed based on the number
of possible fault injections per bytecode (obtained from [55]).

Monitored Fault Configurations FPGA FPGA
Memory Regions per Memory Region Look-Up-Tables Slices

1 2 +14.5% +13%
1 4 +28.3% +24.7%
2 2 +28.4% +27.1%
3 2 +46.8% +41.7%
2 4 +64.2% +57.7%
3 4 +85.5% +68.9%



Chapter 5

Conclusions and Future Work

This section provides conclusions of this work for a HW/SW codesigned secure future Java
Card. Furthermore, the directions for future work are presented with examples of recent
publications.

5.1 Conclusions

Java Cards are increasingly used in different applications like mobile payment over NFC,
specialized security-critical electronic chips like fingerprint sensors or as USIM cards in
mobile phones. Java Cards are responsible for the confidentiality, integrity, and authentic-
ity of the code and data stored and processed on these cards. The security needs of these
cards will rise again in the future because of new use cases where everybody is allowed to
install any applet on the card or the appearance of more advanced and precise attacks.
Therefore, new countermeasure concepts are needed for these future Java Cards. These
countermeasures must be carefully designed because of the resource constrained nature of
these cards. Executing all countermeasures in SW would slow down the execution per-
formance too much. Therefore, a security related HW/SW codesign must be performed
to move countermeasures from SW to HW and evaluate different countermeasure design
possibilities in a design space exploration phase.

This work shows this HW/SW codesign process for different security threats which
threaten the security concept of the Java Card. These threats are memory overflow at-
tacks, Java data type confusion attacks, control flow attacks, and data integrity attacks.
First, different countermeasure concepts were conceptually proposed and evaluated based
on their resource consumption. The evaluation takes into account the effectiveness of
the countermeasures, and their run-time performance and memory consumption. Unfor-
tunately, SW countermeasures add a significant execution time overhead on the applet
execution. Therefore, this work proposes the shift of SW countermeasures to microar-
chitectural supported HW countermeasures. By moving functionality into silicon it is
possible to significantly speed up the run-time memory bound checks, data type checks,
control flow checks, and data integrity checks. The new HW checks are addressed over
newly added processor instructions. These new instructions are used to perform read and
write accesses to security-critical VM memory regions. Therefore, this work presents an
application specific processor to increase the security against attacks on the Java VM

36



5. Conclusions and Future Work 37

security model.
The new HW and SW countermeasures were integrated into a Java Card prototype

running on two different smart card models. The first model is fast executing at a highly
abstracted system level and used for fast design space exploration of countermeasures
designs. The second model is running at a highly accurate register transfer level and was
synthesized on a FPGA development board. The prototype VM was enhanced with an
innovative so called defensive abstraction layer. This layer is used by the VM to integrate
our newly proposed countermeasures and to access the security-critical memory regions of
the card. The layer enables increased maintainability and flexibility of the countermeasures
by their concentration into this layer. The run-time countermeasures of this work, either
in SW or HW, are integrated into the Java Card prototype and evaluated based on their
HW overhead, memory overhead, and performance overhead.

5.2 Directions for Future Work

The research directions for future work to increase the security of a Java Card against
other security attacks is shown in Figure 5.1. Next research could concentrate on the
operating system and HW layer of the Java Card to find new countermeasures using a
HW/SW codesign approach. Furthermore, side channel attacks [62, 63, 64, 22] must be
taken into account so that the card does not leak security-critical information to a possible
attacker during execution. For example stabilizing or adding noise to the power supply
of the card will hamper an attacker from creating a successful side-channel attack on the
power supply.

Hardware

Operating System

Virtual Machine

e.g.,  light sensors, stable power 
source, memory encryption

e.g., control flow checks, integrity 
checks

This Work

Java Card Layers Fault Attack Countermeasures

Side Channel 

Power Supply

Execution Time 

Electro-Magnetic 
Radiation

Heat

Side Channel  Countermeasures

Future Research 
Directions

Hardware/Software Codesign

Figure 5.1: Future research could concentrate on adding countermeasures into deeper Java Card
layers than this work. Furthermore, side-channel attacks must be taken into account during the
design and implementation of countermeasures by novel design techniques, tools, or work flows.

5.2.1 Fault Attack Countermeasures on Lower Java Card Layers

HW glitch detection sensors (e.g., power supply glitch, digital clock glitch) could counter-
act the threat of manipulating security-critical data or operations on a smart card. Such
a glitch detection sensor at a low Java Card layer as proposed in [65] would counteract
attacks which manifest themselves on higher abstraction levels. A comprehensive analysis
of various current SW countermeasures is shown in [66]. This countermeasure analysis
could be used as a starting point for countermeasure design space explorations at the
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operating system layer. The effectiveness of such SW countermeasures could be proved
by formal verification as proposed by the authors in [67].

5.2.2 Side Channel Leakage Countermeasures

During the HW/SW codesign of different countermeasures the threat side channel attacks
must be taken into account. The countermeasures must be designed keeping the threats of
side-channel attacks in mind. A newly added countermeasure which creates a new security
hole into the system using a side-channel attack could decrease the overall security more
than the new countermeasure adds. Therefore, a direction for future research is novel
side-channel countermeasures, exploring side channel threats using novel tools, and the
automatic integration of side-channel countermeasures either in SW or HW into the card.
In 2013 Hutter showed in his work [63] that heat can be used as a side channel and also a
source of fault attacks. In 2014 Rodriguez shows a toolbox for differential power analysis
attacks to smart cards [62]. These attacks must be counteracted by a novel side-channel
related HW/SW codesign process. A possible side-channel countermeasure is published
in 2014 by Gunman to counteract such attacks on cryptographic operations [64].



Chapter 6

Publications

This chapter presents the collection of publications which were created during this thesis.
The publications explain the related work, methodology, results, and contributions of this
thesis in a more detail.

Publication 1: Towards the Hardware Accelerated Defensive Virtual Machine - Type and Bound
Protection, 11th Smart Card Research and Advanced Applications Conference (CARDIS), Springer
Berlin Heidelberg, Lecture Notes in Computer Science, pages 1-15, Graz, Austria, 2012.

Publication 2: A Defensive Virtual Machine Layer to Counteract Fault Attacks on Java Cards,
7th Workshop in Information Security Theory and Practice (WISTP), Springer Berlin Heidelberg,
Lecture Notes in Computer Science, pages 82-97, Heraklion, Greece, 2013.

Publication 3: A Defensive Java Card Virtual Machine to Thwart Fault Attacks by Microar-
chitectural Support, 8th International Conference on Risks and Security of Internet and Systems
(CRiSIS), IEEE, pages 1-8, La Rochelle, France, 2013.

Publication 4: Countering Type Confusion and Buffer Overflow Attacks on Java Smart Cards
by Data Type Sensitive Obfuscation, 1st Workshop on Cryptography and Security in Computing
Systems (CS2), ACM, pages 19 - 24, Vienna, Austria, 2014.

Publication 5: Memory-Efficient On-Card Byte Code Verification for Java Cards, 1st Workshop
on Cryptography and Security in Computing Systems (CS2), ACM, pages 37 - 40, Vienna, Austria,
2014.

Publication 6: A Fault Attack Emulation Environment to Evaluate Java Card Virtual-Machine
Security, 17th Euromicro Conference on Digital Systems Design (DSD), Verona, Italy, 2014, in
press.

39



6. Publications 40

The publications in this chapter discuss various HW/SW codesign aspects for a future
secure Java Card. This secure Java Card enables the secure installation and execution of
different applications. Various checks and countermeasures against attacks are proposed
in this thesis. The checks and countermeasures are either implemented in SW or HW.

Secure Future 

Java Card

On-Card 

Verification

Bound 

Checks

Control Flow 

Checks
Data Integrity 

Checks

Data Type 

Checks

 Run-time Security Checks

Static Security Checks

Integrate Security Mechanisms into 

Java Card

Additional Defensive 

Security Layer

HW Protection 

Units

 Low HW 

Overhead

Low 

Performance 

Overhead

New Processor 

Instructions

Hardware (HW) Support for 

Runt-ime Security Checks

Publication in Section 6.1: Towards the 

Hardware Accelerated Defensive Virtual 

Machine - Type and Bound Protection, 11th 

Smart Card Research and Advanced 

Applications Conference (CARDIS),  Austria, 

2012.

Publication in Section 6.2: A Defensive 

Virtual Machine Layer to Counteract Fault 

Attacks on Java Cards, 7th Workshop in 

Information Security Theory and Practice 

(WISTP), 2013.

Publication in Section 6.3: A Defensive 

Java Card Virtual Machine to Thwart Fault 

Attacks by Microarchitectural Support, 8th 

International Conference on Risks and 

Security of Internet and Systems (CRiSIS),  

2013.

Publication in Section 6.4: Countering 

Type Confusion and Buffer Overflow Attacks 

on Java Smart Cards by Data Type Sensitive 

Obfuscation, 1st Workshop on Cryptography 

and Security in Computing Systems (CS2),  

2014.

Publication in Section 6.5: Memory-

Efficient On-Card Byte Code Verification for 

Java Cards, 1st Workshop on Cryptography 

and Security in Computing Systems (CS2), 

2014.

Publication in Section 6.6: A Fault Attack 

Emulation Environment to Evaluate Java 

Card Virtual-Machine Security, 17th 

Euromicro Conference on Digital Systems 

Design (DSD), 2014.

HW Saboteur 

Units
Fault Emulation

Evaluate Security Mechanisms

Figure 6.1: Enable a secure future Java Card by various security mechanisms.

The publication in Section 6.5 shows a memory efficient approach for a static applet
verification process. When a verified applet is executed various run-time checks are per-
formed to counteract run-time attacks. Different concepts of such run-time checks are
proposed in Sections 6.1, 6.4, and 6.2. To integrate these security checks into a Java
Card a new security layer is proposed in Section 6.2. To speed up the run-time checks we
moved the checks from SW to HW which is shown in Section 6.3. To evaluate and test
the security mechanisms in SW and HW we created a fault attack emulation environment
which is presented in Section 6.6.
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Abstract. Currently, security checks on Java Card applets are per-
formed by a static verification process before executing an applet. A
verified and later unmodified applet is not able to break the Java Card
sand-box model. Unfortunately, this static verification process is not a
countermeasure against physical run-time attacks corrupting the con-
trol or data flow of an applet. In this piece of work, designs for Java
Card Virtual Machines are investigated in relation to their ability to
perform run-time security checks. These security checks are accelerated
by hardware units and performed in parallel to CPU instructions that
are executing concurrently. Attacks on the Java operand stack and lo-
cal variables, which are elementary components for the Virtual Machine,
are thwarted by type and bound protection. To enable these hardware
checks, different designs of a defensive Java Card Virtual Machine are
compared to their overheads on a prototype platform.

Keywords: Java Card, Defensive Virtual Machine, Hardware Counter-
measure, Fault Attack, Logical Attack.

1 Introduction

Current applied static verification of Java Card applets provides insufficient se-
curity protection against run-time Fault Attacks. This is especially a problem in
the field of multi-application Java Cards. In this field, cards are used in a wide
range of applications (e.g., passport, e-money) and have the ability to perform
post-issuance loading of new applets. An adversary provoking a Logical Attack
by changing the bytecode or internal representation of an uploaded Java applet
can get access to security related data from other applets or the Java Card Vir-
tual Machine (JCVM) [12]. To thwart Logical Attacks, verification of applets is
performed either off-card or on-card. This verification procedure is currently a
static process performed once before an applet is executed. One of the most time
and memory consuming checks performed is the bytecode verification [9,15].

Java Card applets are stored into non-volatile memories such as EEPROM.
With the help of physical Fault Attacks it is possible for a JCVM to read out

S. Mangard (Ed.): CARDIS 2012, LNCS 7771, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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incorrect values from these memories or skip CPU instructions. Therefore, it
is possible to change the bytecode of stored applets to execute ill-formed Java
instructions. Knowledge about these attack possibilities is used in [3] to create
a new class of attacks called Combined Attacks. To perform Combined Attacks,
applets which pass the verification process are used and become malicious in
combination with a Fault Attack. Combined Attacks are used to bypass the Java
Card sand-box, mounted by the static verification process, JCVM and Java Card
Runtime Environment [11].

To guard the Java Card against run-time attacks, a so called defensive JCVM
is needed [4]. This defensive JCVM can be reached by performing all checks done
by the static verification process during run-time. However, this is currently not
achievable because of the constrained hardware resources of today’s Java Cards.
In this work specific security checks, extracted from the Java Card specification
[12], are performed on the executing bytecode during run-time. In this specifi-
cation the data flow is exactly defined for every bytecode with some additional
constraints which must be fulfilled.

To speed up bytecode checking during run-time, new hardware protection
units are introduced in this work to speed up the checks performed on every
bytecode. These hardware checks can be performed in parallel while the CPU
performs its operations. Therefore hardware checks are a good solution for run-
time checks that are performed very often, in contrast to software checks. Soft-
ware checks slow down the whole system if they are performed on the same
CPU that the standard operations are performed on. Beside this benefit, hard-
ware checks also have the advantage of being more immune against additional
fault injects onto the Java Card. This is due to the fact that software checks
[13,5,2] are vulnerable to skipping them by additional Fault Attacks. This threat
of skipping software security operations leads Vertanen in [16] to the conclusion
that hardware assisted run-time checks are mandatory for enhancing run-time
security for Java Cards.

This work introduces a hardware accelerated defensive JCVM which performs
selected security checks on the executing bytecodes by hardware with a low
computational overhead. These checks are also part of the verification process
which is done statically before executing a Java applet. As far as we know, such
a hardware accelerated defensive JCVM has not been introduced in literature
before.

The contribution of this work is the definition of a run-time security policy
extracted from the Java Card specification [12] to ensure that the executing
bytecode performs valid operations. This run-time policy prevents type confu-
sion and overflow/underflow attacks on the operand stack (OS) and local variable
(LV) memory inside the JCVM. With this policy it is not possible for an adver-
sary to perform type confusion between values of type integralData and object
references on the OS and LV. Furthermore, two hardware accelerated defensive
JCVM designs are presented with their main parts, such as additional hard-
ware protection units and new CPU instructions. The new CPU instructions are
used inside the JCVM to process bytecodes and communicate directly with the
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hardware protection units leading to a very low computational overhead. This
communication is depicted in Figure 1.

Section 2 gives an overview of attacks on Java Cards, bytecodes violating the
Java frame bounds and how to enable a defensive JCVM. Section 3 describes the
security policy and the design of all defensive JCVMs introduced in this work.
Section 4 presents the prototype implementation of these designs on a SystemC
8051 derivate. Section 5 analyses the run-time costs on execution speed and
hardware changes needed to activate our JCVM designs. Finally, conclusions
and future work are drawn in Section 6.

Java Card VM

Local
Variables

Operand
Stack

Bytecode

execute

Hardware
Security Checksaccess

Type + Bound Protection
Memory

Fig. 1. In this work the operand stack and the local variables are protected during
run-time by hardware accelerated security checks

2 Related Work

In this section an overview of possible attacks on the Java Card is given with
focus on run-time fault attacks. Following this, previous work on run-time coun-
termeasures and an overview of defensive JCVMs are presented.

2.1 Attack Overview

Attack scenarios on Java Cards are manifold [18,19]. Side Channel Attacks are
used to draw conclusions of internal operations by studying physical phenomena
of the chip. Invasive Attacks are used for optical or measurement analysis of
internal components. Fault Attacks (FA) change the physical environment of the
chip under attack [1]. These are for example, temperature changes, additional
light of a laser or spikes in the power supply or clock source. These FA lead to
an undefined behavior of the chip by skipping instructions or read/write errors
to memory like the EEPROM. This is especially a problem for post-issuance
loaded applets due to the fact that they are mostly installed in non-volatile
memory. Therefore, a FA during the fetch process of a JCVM can lead to ill-
formed applets even if a static verification was performed. This ill-formed code
enables an adversary to circumvent the Java Card security model and enables an
applet to have access to unauthorized resources. This security problem of FA to
verified applets is well known in literature and is used to enable different attack
paths [10,3,17,14].
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2.2 Frame Bound Violation Attacks

Generally, inside every Java Frame, specific memory areas are reserved for OS,
LV and internal frame data. Every time a new Java method is invoked, the JCVM
creates a new frame and pushes it onto the Java stack. Specific implementation
details for the Java Frame are not provided by Java Card specification. Therefore,
the specific frame data depends on the particular implementation. In general the
frame data contains a return address so that it is possible to return to the code
of the old frame. The size needed for a frame and all its containing elements
(e.g., OS, LV) is ascertained when the method is invoked and is not changing
during method execution.

Ill formed bytecode can now access illegal memory regions by performing an
OS or LV out of bound access as illustrated in Figure 2. In [5] an attack called
EMAN2 was performed. There an invalid LV index was used by an ill formed
bytecode sstore to access the memory region of the frame data where the return
address of the current frame is stored. With the help of this ill formed bytecode,
an adversary can set the return address to any value. In their attack the return
address was set to the address of an array which leads to the security threat
of executing adversary definable data. This illegal execution of data opens new
security issues not treated here in detail. The threats of OS overflow/underflow
and bytecodes using invalid LV index are thwarted by the run-time policy of
this work.

Undefined Data Undefined DataLocal Variables Operand Stack
Frame Data

return
address

internal
data

Bytecodes Overflow OS Bytecodes Underflow OS

Bytecodes use Invalid LV index (EMAN2)

Actual Java Frame

Change return
address to any value

Fig. 2. OS overflow and underflow leads to illegal memory access outside the reserved
OS memory space. An adversary who uses bytecode with invalid LV index can overwrite
the return address of the current active frame [5].

2.3 Enabling a Defensive Virtual Machine

Currently the Java Card research community concentrates on finding attack
paths to bypass the Java Card security model by FAs and Combined Attacks.
[3,10,17,14]. Also a lot of effort is invested in exploiting and thwarting Side
Channel Attacks [8]. In contrast to these big research topics, the question of
how to enable a defensive JCVM is a research topic with little public attention.
However, in the Java Card industry the know-how to enable defensive JCVM
designs is of course available. This fact is proven by different works bringing
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the defensive nature of current available industrial Java Card products to light
[10,7]. Techniques and knowledge that provide such a defensive design are of
course not freely available. Currently research related to FA countermeasures is
focussed on static verification of an applet and checking that the exact verified
code is executed. This can be done by code integrity and control flow checks
in software (SW) during run-time [13,5]. The annotations that enable these
checks are stored in an additional component of a verified CAP-file. Research was
also done to check the OS integrity against FA by performing double reads by
SW [2].

This work focuses on a hardware accelerated defensive JCVM performing
security checks during run-time. Based on a policy it checks if the executing
bytecode is behaving correctly. Compared to current countermeasures in litera-
ture the approach in this work does not just check the integrity of the bytecode
or OS, it performs checks based on a policy. This approach stops either manip-
ulated applets loaded onto the card or run-time FA from violating this policy.
Furthermore, performing these checks in hardware makes it more resistant to
additional FA which are also able to skip additional software checks.

3 Design of the Defensive Virtual Machine

In this section the run-time security policies for all defensive JCVM designs in
this work are shown. This is followed by our method of reducing all Java data
types to two main types.

3.1 Defensive Run-Time Policy

The OS and LV, located in the Java Frame, are main parts of the JCVM. The
JCVM is a stack machine and performs most operations on the OS. Therefore,
securing these parts of the JCVM are the first steps to hampering or stopping
Fault Attacks during run-time. The following two main policies for the OS and
LV are retained by our defensive designs during run-time:

– Frame Type Policy: All bytecodes which access the OS or LV must use
the right main data type (integralData or reference) which is expected by
the bytecode during its execution. In this work all numerical types are com-
bined (boolean, byte, short) to the main data type integralData. All object
references (e.g., short array, byte array, Class A) are combined to the main
data type reference.

– Frame Bound Policy: Bytecodes operating on the OS or LV are not al-
lowed to access data outside the frame bounds. This means that bytecodes
are not allowed to overflow or underflow the OS. Furthermore, all bytecodes
accessing the LV must be inside the borders of the reserved LV memory area.

Policy Creation: The two policies above were extracted from the JCVM spec-
ification [12] where for every bytecode a textual description of the operation is
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given. In this specification it is for every bytecode defined from which JCVM
component needed operands are taken and results are written back. Also the
type information is specified for every operand and result value. Such a byte-
code specification for the sstore instruction is listed below. This bytecode consists
of two bytes, the opcode (0x29) and an index referencing to an item of the LV.

”The index is an unsigned byte that must be a valid index into the local
variables of the current frame (Section 3.5, ”Frames”). The value on top
of the operand stack must be of type short. It is popped from the operand
stack, and the value of the local variable at index is set to value.” [12]

The requirement that bytecodes perform no OS stack overflow/underflow, access
the right LV index and operate with the right types on the OS and LV is crucial
for the security concept of the Java Card and therefore checked by all defensive
JCVM designs of this work.

3.2 Design of the Defensive JCVMs

In this section we introduce two designs for a defensive JCVM which fulfill
the security policies defined in the previous section. A general overview of the
defensive JCVM designs is shown in Figure 3 and described how they are used
in more detail below. Note that our defensive JCVM designs are not able to
thwart all sort of attacks on a Java Card. Examples of such undetected attacks
are control flow changes (skipping a branch instruction) or data corruption (read
corrupted values from the RAM).

Standard Java Card VM

Type Storing Java Card VM Type Separating Java Card VM

Operand 
Stack Types

Local 
Variables Types

Operand 
Stack 

Type 1

Operand 
Stack 

Type N

….

Local 
Variables

Type 1

Local 
Variables

Type N

Operand 
Stack 

Local 
Variables

….
Type 

Security Checks

Security Checks

Bound

Defensive Designs of 
this Work!

Bound

Fig. 3. In this work two designs are used to fulfill the run-time security policy
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– Type Storing: Every entry on the OS or LV is extended with type infor-
mation in order to distinguish between integralData and reference during
run-time. During run-time it is now possible to check if the expected type
for the bytecode is on the OS or LV which is the obvious defensive approach
to enable a Defensive JCVM. A disadvantage of this approach is the addi-
tional memory needed for type storing and the computational overhead to
perform type checking.

– Type Separating: Every Java main data type (integralData and reference)
operates on its own OS and LV memory area. No general OS and LV area
where all data types occur exists. Type confusion between the two main data
types is therefore no longer possible during run-time because every bytecode
always receives the right type. A disadvantage of the Type Separating design
is that an attack is only detected by its security related side effects on the
current frame. Such a side effect is for example an OS underflow for a specific
type.

3.3 Two Types for Type Storing and Type Separating

In this section we introduce our approach for separating the Java Card types into
two main data types to enable the Type Storing and Type Separating JCVM
that was presented in the previous chapter. Java bytecodes are highly typed. This
means that based on the data type different opcodes exist for the same operation
[12, Table 3-1]. For example, only the sstore bytecode is allowed to push integral
data types (boolean, byte, short) into the LV. Another Java bytecode is used
to store an element of type reference, pointing to an object, into the LV. It is
therefore possible to differentiate between two main data types and distinguish
them just by looking at the bytecode. In this work they are called integralData
and reference:

– integralData. These are the primitive constant data types that represent
the numerical values of the JCVM: boolean, byte, short. Elements of this data
type can be deliberately created by executing the bytecode sconst 1. This
bytecode pushes an integral value 1 with type short on the OS.

– reference. These are all kinds of references to objects and the returnAddress
type to enable sub-routines. An applet programmer can only indirectly create
elements of type reference. For example the bytecode new array pushes the
reference of a newly created array object onto the OS. This address can have
any logical structure and does not have to correlate with physical addresses
of objects stored on the card. For example the JCVM can create a random
number and a look up table maps this number to a real memory address.

By separating these two main data types it is no longer possible for an adversary
to create object references with a defined value by confusing integralData and
reference. It is also not possible for an adversary to get deeper insight into
how the JCVM represents references. For this insight an adversary would have
to perform type confusion between reference and integralData by sending the
reference out of the card from the APDU buffer. The APDU class is responsible
for receiving and sending data to off-card applications.
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Thwarted Threats in Literature. This sort of type confusion between inte-
gral data and object references is well known and often used as the first step of
an attack path [16,10,7,5,17]. This attack path can enable an adversary creating
self mutable code by executing data from a Java array [7,5] or even gain access
to forbidden methods of objects [17].

Note that type confusion between different objects such as short array and
Class A object is not detected by the defensive JCVM designs in this work. This
is because all object references are assigned to the reference main data type and
cannot be distinguished. This determination also applies to the main data type
integralData where it is not possible to detect type confusion between byte and
short.

4 Prototype Implementation

In this work five different prototype JCVMs were implemented in C and assem-
bly language. The JCVMs are based on the Classic Edition of the Java Card
specification [12]. The hardware (HW) platform on which they run is an 8-bit
Smart Card model written in SystemC [6]. This model is memory and instruction
cycle accurate. Into this HW platform new typed CPU instructions were imple-
mented. Furthermore, additional HW protection units were added to enable HW
accelerated security checks for bytecodes accessing the OS and LV memory area.

4.1 Additional CPU Instructions

The information decoded into the new CPU instructions is illustrated in Figure 4.
New typed CPU instructions are used by our JCVMs to process the bytecodes
and perform access to the OS and LV memory regions. These decoded pieces of
information are the access type (Read, Write), the destination of the accessing
memory (OS, LV) and the type which should be written/read (integralData,
reference, untyped). With the help of these pieces of information the protection
units are able to check if the new CPU instruction doesn’t perform a security
policy violation during run-time. Such a violation is for example a LV element
address which is outside the actual LV memory bounds.

Two examples of how to use these new instructions inside the JCVM pro-
gram code in order to process the Java bytecodes is outlined in Figure 5. The
sadd bytecode first reads two values from the OS by the new CPU instruction
Read OS integralData. The result of the addition of these values is then written
back by the instruction Write OS integralData. Another example is the byte-
code astore 0. This bytecode uses the CPU instruction Read OS reference to
read a reference value from the OS and stores it into the LV by the instruction
Write LV reference. The big advantage in the sense of computational overhead
of the new typed CPU instructions is that the JCVM can communicate very
effectively with the HW protection units by using the new CPU instructions.
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Java Card Virtual
Machine

new CPU
instructions CPU

Access      to          Memory Area       with      Data Type

Read
Write

Protection
Units

Operand Stack 
Local Variables

integralData
reference
untyped

Main Memory

Operand Stack

Local Variables

Fig. 4. The prototype JCVMs proposed in this work uses new assembly instructions
to access the run-time protected OS and LV memory regions

sadd:                            //Add two short values on the OS
   short VAR1, VAR2, SUM;        //Create variables for sadd
   VAR1 = Read_OS_integralData;  //Read first operand from OS
   VAR2 = Read_OS_integralData;  //Read second operand from OS
   SUM  = VAR1 + VAR2;           //Sum the two operands
   Write_OS_integralData = SUM;  //Write the sum back onto the OS
 
astore_0:                        //Store reference from OS to LV
   short REF1;                   //Create variables for astore_0
   REF1 = Read_OS_reference;     //Read reference from OS
   Write_LV_reference(0) = REF1; //Write reference into LV element 0

Fig. 5. Pseudocode example of the two bytecodes sadd and astore, processed by the
JCVM. The JCVM uses our new CPU instructions to access the OS and LV memory.

4.2 Additional Hardware Protection Units

An overview of the new CPU instructions and the protection units needed to
activate the Type Storing and Type Separating JCVM is presented in Figure 6.
Based on the new CPU instructions introduced in the previous section, our HW
protection units restrict the access to the security critical memory regions of the
OS and LV. The Type Storing JCVM needs a type protection unit to check if
the type expected by the bytecode is also available on the OS or LV.

– Bound Protection Unit (BPU): This unit is responsible for thwarting
attacks performing an OS overflow or underflow. Furthermore, all bytecodes
accessing the LV using a wrong index are detected. The BPU is used by the
Type Storing and Type Separating JCVM prototype.

– Type Protection Unit (TPU): The TPU is responsible for checking that
the bytecodes that are accessing the OS and LV are operating with the right
data type. The TPU is only needed to enable the Type Storing JCVM.
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4.3 Type Storing JCVM Implementation Details

To enable a Type Storing JCVM, the TPU must store additional type informa-
tion for every element held by the OS and LV. Due to the fact that these two
parts are located in RAM, one additional type bit was added to every 8-bit word.
This bit enables the distinction between the two main data types integralData
and reference.

Read

Write

Operand
Stack
Local

Variables

to with
Access Memory Area Data Type

Bound
Protection

Bound
Protection

Type
Protection

OS

LV

OS integralData

LV reference

OS reference

LV integralData

Type Storing JCVM Type Separating JCVM

Hardware Protection Unit

used by defensive JCVM designs
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VM
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use

store and
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M
em
or
y
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integralData

untyped
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Fig. 6. Implementation overview of the two JCVM prototypes. Hardware protection
units perform run-time checks on the OS and LV.

4.4 Type Separating JCVM Implementation Details

In this section we give insight into the detail of how the Type Separating JCVM
was implemented and describe a tool chain to enable it. The Type Separating
JCVM performs all bytecode operations on the right typed OS and LV. This
Type Separating approach avoids type confusion. The type checking problem is
reduced to a bound checking problem.

Most bytecodes work well with our run-time type separating approach to two
main data types (integalData, reference). An exception are the bytecodes oper-
ating with undefined types on the OS: pop, pop2, dup, dup2, dup x and swap x.
In this paper we call them untyped bytecodes. For these untyped bytecodes the
JCVM does not know on which of the two separated OS, specific operations are
performed during run-time.

As a solution for this problem the missing type information was added di-
rectly into the bytecode by using unused bytecodes which are not defined in
the Java Card specification. For example, the pop instruction is either convert
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to pop reference or pop integralData. The JCVM now knows right after fetching
a new bytecode, which typed OS it must operate on. Therefore, no execution
speed is wasted searching for the type information in additional components up-
loaded on the card. In the JCVM specification [12] only 185 (0x00 to 0xb8) of
all available 8-bit bytecodes are specified. The unused bytecodes from 0xb9 to
0xfd can be used to decode the operand stack type information that is needed
directly into the instruction.

To perform the exchange of untyped bytecodes with new typed bytecodes we
propose a static replacement process performed once for every method. To speed
up this process, type information obtained during the bytecode verification pro-
cess can be used to exchange the untyped bytecodes with typed ones. However,
in this work the replacement process for the untyped bytecodes is not looked at
in detail.

5 Prototype Results and Discussion

In this section we show the computational overhead coming from full software
(SW) implementations compared to running our HW accelerated prototypes.
The SW implementations perform the same security checks that are performed
by the HW protection units. Furthermore, the additional hardware overhead is
compared between all prototypes.

5.1 Computational Overhead

Performing all security checks in SW increases the computational overhead sig-
nificantly for frequently executed bytecodes, as illustrated in Figure 7. For ex-
ample the sload bytecode executed by a Type Storing prototype in SW has a
computational overhead of around 107% caused by the following run-time SW
operations:

– Check if the index parameter to the LV is valid.
– Check if the element at the LV index is of type integralData.
– Check if pushing a value from the LV index to the OS provokes an overflow.
– Store the fact that the new value on the OS is of type integralData.

If the sload bytecode is executed on a HW accelerated prototype the overhead
decreases to 5%. In Table 1 different groups of bytecodes are compared to their
computational overhead. As expected, the HW accelerated prototypes consume
much less computational overhead compared to prototypes which implement the
checks in SW.

5.2 Hardware Overhead

In this section we give an overview of the HW modifications used to activate
our HW accelerated prototypes, as depicted in Table 2. The instruction set of
a standard 8051 microcontroller consists of 255 opcodes. Adding our new CPU
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Type Separating HW
Type Separating SW
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Fig. 7. Run-time measurement for specific bytecodes and the overall time of all imple-
mented bytecodes for different JCVM implementations. Measurements are normalized
to a JCVM without any run-time security checks.

Table 1. Computational overhead for all prototypes, normalized to a JCVM without
performing run-time security checks

Type Storing Type Separating

Bytecode Groups HW SW HW SW

1: Arithmetic/Logic +7% +123% +7% +47%
2: Local Variable Access +5% +152% +9% +52%
3: Operand Stack Manipulation +5% +119% +3% +54%
4: Control Transfer +8% +77% +9% +23%
5: Array Creation/Manipulation +6% +111% +9% +59%

Overall +6% +107% +8% +38%

Table 2. HW modifications needed to activate the HW accelerated run-time security
checks of the prototypes

Additional Hardware Type Storing Type Separating

New 8051 CPU Instructions 9 (+3,5%) 8 (+3,1%)
New 8-bit Control Registers (SFRs) 11 (+52,4%) 15 (+71,4%)
New Bound Protection Unit (BPU) Yes Yes
New Type Protection Unit (TPU) Yes No
Extend RAM word with type bit Yes No

instructions means an overall CPU instruction increase of around only 3,5%.
Another important hardware modification is that the RAM module of the HW
accelerated Type Storing JCVM was extended with an additional type bit for
every memory word in order to differ between the main data types integralData
und reference. Therefore, overall RAM memory size increases to 12,5%.

5.3 Type Confusion Attack Example

An example of a run-time attack on the Java Card prototypes in order to per-
form type confusion between integralData and reference is illustrated in Figure 8.
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There, a run-time attack changes the bspush code 0x10 0x19 to 0x00 0x19. The
JCVM interprets 0x00 as NOP instruction and performs no action. The following
byte 0x19 is interpreted as the bytecode aload 1 which pushes an array reference
onto the OS. The sreturn instruction would now take the array reference and
push it back to the calling function. An adversary is now able to use the array
reference as an integralData which enables different attack paths such as exe-
cuting the data inside the array [16,10,7,5,17]. Both defensive JCVMs designs
from this work are able to thwart this type confusion attack on the OS between
integralData and reference.

00: 19    aload_1
01: 03    sconst_0
02: 04    sconst_1
03: 38    bastore
04: 10 19 bspush
06: 78    sreturn

00: 19    aload_1
01: 03    sconst_0
02: 04    sconst_1
03: 38    bastore
04: 00    NOP
05: 19    aload_1
06: 78    sreturn

{ref}
{ref,int}
{ref,int,int}
{}
{}
{ref}

{ref}
{ref}
{ref}
{}
{}
{ref}
{ref}

{}
{int}
{int,int}
{}
{}
{}

integralData reference

public short dummy{byte[] array}
{
   array[0] = 0x01;
   return 0x19;
}

Type Storing JCVM Type Separating JCVM
Run-time Attack

bytecode: Java code:

malicious bytecode:

Type Confusion Attack Thwarted by
Type Storing and Type Separating JCVM!

Underflow!Wrong Type!

OS impact

compile

int...integralData
ref...reference

Fig. 8. Run-time type confusion attack on the OS to receive the address of an array.
All defensive JCVM implementations of this work are able to thwart this attack.

Type Storing: By using the new typed CPU instructions, it is decoded inside
the JCVM code that the sreturn instruction expects a value of type integralData
on the OS. The previously executed instruction aload 1 pushed the reference of
an array with type reference on the OS. Therefore, the TPU hardware module
finds the wrong type for the sreturn bytecode on the OS and throws a security
exception.

Type Separating: Both main data types have their own OS and LV mem-
ory areas during run-time. Therefore, the malicious instruction aload 1 pushes
an array reference onto the reference OS containing all values from type refer-
ence. The sreturn bytecode tries to pop data from the integralData OS which is
empty. The return operation is now aborted by a security exception because an
underflow on the integralData OS is detected by the BPU hardware module.
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6 Conclusion and Future Work

This work presents Java Card Virtual Machine (JCVM) designs to counter dif-
ferent Fault Attacks. This is done by performing run-time security checks based
on a security policy for each bytecode. These policies ensure that each bytecode
which operates on the operand stack or the local variables memory area uses
the right data type (integralData or reference). Furthermore bytecodes which
overflow or underflow the OS or LV are detected. These run-time checks are
accelerated by hardware protection units to make it harder to skip these checks
with additional Fault Attacks. Furthermore, the defensive JCVM designs are
profiting from the parallel execution of the hardware checks by having very low
computational overhead.

In this work the design of a Type Storing and Type Separating JCVM were
shown. Both designs were implemented on a Java Card prototype platform with
several additional hardware changes. The requirements of the hardware to enable
run-time checking by hardware protection units were listed for both defensive
JCVM designs. We measured that these hardware accelerated prototypes con-
sume 6% and 8% more execution time overall compared to a JCVM without
any additional run-time security checks. This overhead is very low compared
to prototypes which perform all run-time security checks in software and con-
sume around 107% and 38% more execution time. Therefore, we have shown
that our approach of performing additional security checks during run-time by
using hardware units is feasible especially in the case of resource constrained
Java Cards.

For future work we will focus on the bytecode replacement process of untyped
bytecodes required by the defensive Type Separating approach. This transfor-
mation is needed to give the JCVM type information needed during run-time to
process untyped bytecodes like pop. Furthermore, we are working on increasing
the number of separated main types so that it is also possible to detect type
confusion between integralData like short and byte.
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Abstract. The objective of Java Cards is to protect security-critical
code and data against a hostile environment. Adversaries perform fault
attacks on these cards to change the control and data flow of the Java
Card Virtual Machine. These attacks confuse the Java type system, jump
to forbidden code or remove run-time security checks. This work intro-
duces a novel security layer for a defensive Java Card Virtual Machine
to counteract fault attacks. The advantages of this layer from the secu-
rity and design perspectives of the virtual machine are demonstrated.
In a case study, we demonstrate three implementations of the abstrac-
tion layer running on a Java Card prototype. Two implementations use
software checks that are optimized for either memory consumption or
execution speed. The third implementation accelerates the run-time ver-
ification process by using the dedicated hardware protection units of the
Java Card.

Keywords: Java Card, Defensive Virtual Machine, Countermeasure,
Fault Attack.

1 Introduction

A Java Card enables Java applets to run on a smart card. The primary purpose of
using a Java Card is the write-once, run-everywhere approach and the ability of
post-issuance installation of applets [21]. These cards are used in a wide range of
applications (e.g., digital wallets and transport tickets) to store security-critical
code, data and cryptographic keys. Currently, these cards are still very resource-
constrained devices that include an 8- or 16-bit processor, 4kB of volatile memory
and 128kB of non-volatile memory. To make a Java Card Virtual Machine run
on such a constrained device, a subset of Java is used [19]. Furthermore, special
Java Card security concepts, such as the Java Card firewall [18] and a verification
process for every applet [15], were added. The Java Card firewall is a run-time
security feature that protects an applet against illegal access from other applets.
For every access to a field or method of an object, this check is performed.
Unfortunately, the firewall security mechanism can be circumvented by applets
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that do not comply with the Java Card specification. Such applets are called
malicious applets.

To counteract malicious applets, a bytecode verification process is performed.
This verification is performed either on-card or off-card for every applet [15].
Note that this bytecode verification is a static process and not performed during
applet execution. The reasons for this static approach are the high resource needs
of the verification process and the hardware constraints of the Java Card. This
behavior is now abused by adversaries. They upload a valid applet onto the card
and perform a fault attack (FA) during applet execution. Adversaries are now
able to create a malicious applet out of a valid one [5].

A favorite time for performing a FA is during the fetching process. At this
time, the virtual machine (VM) reads the next Java bytecode values from the
memory. An adversary that performs an FA at this time can change the readout
values. The VM then decodes the malicious bytecodes and executes them, which
leads to a change in the control and data flow of the applet. A valid applet is
mutated by such an FA to a malicious applet [5,17,11] and gains unauthorized
access to secret code and data [16,2].

To counteract an FA, a VM must perform run-time security checks to de-
termine if the bytecode behaves correctly. In the literature, different counter-
measures, such as control-flow checks [23], double checks [4], integrity checks [8]
and method encryption [20], have been proposed. Barbu [3] proposed a dynamic
attack countermeasure in which the VM executes either standard bytecodes or
bytecodes with additional security checks.

All these works do not concentrate on the question of how these security mech-
anisms can be smoothly integrated into a Java Card VM. For this integration,
we propose adding an additional security layer into the VM. This layer abstracts
the access to internal VM resources and performs run-time security checks to
counteract FAs. The primary contributions of this paper are the following:

– Introduction of a novel defensive VM (D-VM) layer to counteract FAs during
run-time. Access to security-critical resources of the VM, such as the operand
stack (OS), local variables (LV) and bytecode area (BA), is handled using
this layer.

– Usage of the D-VM layer as a dynamic countermeasure. Based on the actual
security level of the card, different implementations of the D-VM layer are
used. For a low-security level, the D-VM implementation uses fewer checks
than for a high-security level. The security level depends on the credibility of
the currently executed applet and run-time information received by hardware
or software modules.

– A case study of a defensive VM using three different D-VM layer implemen-
tations. The API of the D-VM layer is used by the Java Card VM to perform
run-time checks on the currently executing bytecode.

– The defensive VMs are executed on a smart card prototype with specific HW
security features to speed up the run-time verification process. The resulting
run-time and main memory consumption of all implemented D-VM layers
are presented.
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Section 2 provides an overview of attacks on Java Cards and the current coun-
termeasures against them. Section 3 describes the novel D-VM layer presented
in this work and its integration into the Java Card design. Furthermore, the
method by which the D-VM layer enables the concept of dynamic countermea-
sures is presented. Section 4 presents implementation details regarding how the
three D-VM implementations are inserted into the smart card prototype. Sec-
tion 5 analyzes the additional costs for the D-VM implementations based on the
execution and main memory overhead. Finally, the conclusions and future work
are discussed in Section 6.

2 Related Work

In this section, the basics of the Java Card VM and work related to FA on Java
Cards are presented. Then, an analysis of work regarding methods of counteract-
ing FAs and securing the VM are presented. Finally, an FA example is presented
to demonstrate the danger posed by such run-time attacks for the security of
Java Cards.

2.1 Java Card Virtual Machine

A Java Card VM is software that is executed on a microprocessor. The VM
itself can be considered a virtual computer that executes Java applets stored
in the data area of the physical microprocessor. To be able to execute Java
applets, the VM uses internal data structures, such as the OS or the LV, to store
interim results of logical and combinatorial operations. All of these internal data
structures are general objects for adversaries that attack the Java Card [4,20,24].

For every method invocation performed by the VM, a new Java frame [19]
is created. This frame is pushed to the Java stack and removed from it when
the method returns. In most VM implementations, this frame internally consists
of three primary parts. These parts have static sizes during the execution of
a method. The first frame part is the OS on which most Java operations are
performed. The OS is the source and destination for most of the Java bytecodes.
The second part is the LV memory region. The LV are used in the same manner
as the registers on a standard CPU. The third part is the frame data, which
holds all additional information needed by the VM and Java Card Runtime
Environment (JCRE) [18]. This additional information includes, for example,
return addresses and pointers to internal VM-related data structures.

2.2 Attacks on Java Cards

Loading an applet that does not conform to the specification defined in [19]
onto a Java Card is a well-known problem called a logical attack (LA). After
an LA, different applets on the card are no longer protected by the so-called Java
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sandbox model. Through this sandbox, an applet is protected from illegal write
and read operations of other applets. To perform an LA, an adversary must
know the secret key to install applets. This key is known for development cards,
but it is highly protected for industrial cards and only known by authorized
companies and authorities. In conclusion, LAs are no longer security threats for
current Java Cards.

Side-channel analyses are used to gather information about the currently ex-
ecuting method or instructions by measuring how the card changes environment
parameters (e.g., power consumption and electromagnetic emission) during run-
time. Integrated circuits influence the environment around them but can also
be influenced by the environment. This influence is abused by an FA to change
the normal control and data flow of the integrated circuit. Such FAs include
glitch attacks on the power supply and laser attacks on the cards [2,24]. By
performing side-channel analyses and FAs in combination, it is possible to break
cryptographic algorithms to receive secret data or keys [16].

In 2010, a new group of attacks called combined attacks (CA) was introduced.
These CAs combine LAs and FAs to enable the execution of ill-formed code
during run-time [5]. An example of a CA is the removal of the checkcast bytecode
to cause type confusion during run-time. Then, an adversary is able to break
the Java sandbox model and obtain access to secret data and code stored on
the card [5,17]. In this work work, we concentrate on countering FAs during the
execution of an applet using our D-VM layer.

2.3 Countermeasures against Java Card Attacks

Since approximately 2010, an increasing number of researchers have started con-
centrating on the question of what tasks must be performed to make a VM more
robust against FAs and CAs. Several authors [22,8] suggest adding an additional
security component to the Java Card applet. In this component, they store check-
sums calculated over basic blocks of bytecodes. These checksums are calculated
off-card in a static process and added to a new component of the applet. During
run-time, the checksum of executed bytecodes is calculated using software and
compared with the stored checksums. If these checksums are not the same, a
security exception is thrown.

Another FA countermeasure is the use of control-flow graph information [23].
To enable this approach, a control-flow graph over basic blocks is calculated off-
card and stored in an additional applet component. During run-time, the current
control-flow graph is calculated and compared with the stored control graph.

In [20], the authors propose storing a countermeasure flag in a new applet
component to indicate whether the method is encrypted. They perform this
encryption using a secret key and the Java program counter for the bytecode
of every method. Through this encryption, they are able to counteract attacks
that change the control-flow of an applet to execute illegal code or data.
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Another countermeasure against FAs that target the data stored on the OS
is presented in [4]. In this work, integrity checks are performed when data are
pushed or popped onto the OS. Through this approach, the OS is protected
against FAs that corrupt the OS data.

Another run-time check against FAs is proposed in [10,14], in which they
create separate OSes for each of the two data types, integralValue and reference.
With this approach of splitting the OS, it is possible to counteract type-confusion
attacks. A drawback is that in both works, the applet must be preprocessed.

In [3], the authors propose a dynamic countermeasure to counteract FAs.
Bytecodes are implemented in different versions inside the VM, a standard ver-
sion and an advanced version that performs additional security checks. The VM
is now able to switch during run-time from the standard to the advanced version.
By using unused Java bytecodes, an applet programmer can explicitly call the
advanced bytecode versions.

The drawbacks of current FA countermeasures are that most of them add an
additional security component to the applet or rely on preprocessing of the ap-
plet. This has different drawbacks, such as increased applet size or compatibility
problems for VMs that do not support these new applet components. In this
work, we propose a D-VM layer that performs checks on the currently executing
bytecode. These checks are performed based on a run-time policy and do not
require an off-card preprocessing step or an additional applet component.

2.4 EMAN4 Attack: Jump Outside the Bytecode Area

In 2011, the run-time attack EMAN4 was found [6]. In this work a laser was
used to manipulate the read out values from the EEPROM to 0x00. By this
laser attack an adversary is able to change the Java bytecode of post-issuance
installed applets during their execution.

The target time of the attack is when the VM fetches the operands of the
goto w bytecode from the EEPROM. Generally the goto w bytecode is used to
perform a jump operation inside a method. The goto w bytecode consists of the
operand byte 0xa8 and two offset bytes for the branch destination [19]. This
branch offset is added to the actual Java program counter to determine the next
executing bytecode. An adversary which changes this offset is able to manipulate
the control flow of the applet.

With the help of the EMAN4 attack it is possible to jump with the Java
program counter outside the applet bytecode area (BA), as illustrated in Fig-
ure 1. This is done by changing the offset parameters of the goto w bytecode
from 0xFF20 to 0x0020 during the fetch process of the VM. The jump destina-
tion address of the EMAN4 attack is a data array outside the bytecode area.
This data array was previously filled with adversary defined data. After the laser
attack the VM executes the values of the data array. This execution of adver-
sary definable data leads to considerably more critical security problems, such as
memory dumps [7]. In this work we counteract the EMAN4 attack by our con-
trol flow policy. This policy only allows to fetch bytecodes which are inside the
bytecode area.
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Fig. 1. The EMAN4 run-time attack changes the jump address 0xFF20 to 0x0020,
which leads to the security threat of executing bytecode outside the defined BA of the
current applet [6]

3 Defensive VM Layer

In this work, we propose adding a novel security layer to the Java Card. Through
this layer, access to internal structures (e.g., OS, LV and BA) of the VM is
handled. In reference to its defensive nature and its primary use for enabling a
defensive VM, we name this layer the defensive VM (D-VM) layer. An overview
of the D-VM layer and the D-VM API, which is used by the VM, is depicted in
Figure 2 and is explained in detail below.

Functionalities offered by the D-VM API include, for example, pushing and
popping data onto the OS, writing and reading from the LV and fetching Java
bytecodes. It is possible for the VM to implement all Java bytecodes by using
these API functions. The pseudo-code example in Listing 1.1 shows the process
of fetching a bytecode and the implementation of the sadd bytecode using our
D-VM API approach. The sadd bytecode pops two values of integral data type
from the OS and pops the sum as an integral data type back onto the OS.

Listing 1.1. Pseudo-code of the VM using the API functions of the newly introduced
D-VM layer.

//use the D−VM API to f e t c h the next by tecode from the BA
switch ( dvm fetch bytecode ( ) )
{

. . .
case sadd : // implementat ion o f the sadd by tecode .
{

//use the D−VM API to ob ta in the two va l u e s from the OS
r e s u l t = dvm pop integralData ( ) + dvm pop integralData ( ) ;
//use the D−VM API to wr i t e the sum back onto the OS

dvm push integralData ( r e s u l t ) ;
}
. . .

}
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Fig. 2. The VM executes Java Card applets and uses the newly introduced D-VM layer
to secure the Java Card against FAs

The security mechanisms within the security layer intended to protect the VM
from FAs are hidden from the VM programmer. A security architect, specialized
for VM security, is able to implement and choose the appropriate countermeasures
within theD-VMlayer.These countermeasures arebasedonstate-of-the-art knowl-
edge and the hardware constraints of the smart card architecture. Programmers
implementing the VM do not need to know these security techniques in detail but
rather just use the D-VM API functions.

If HW features are used, the D-VM layer communicates with these units
and configures them through specific instructions. Through this approach, it is
also very easy to alter the SW implementations by changing the D-VM layer
implementation without changing specific Java bytecode implementations. It is
possible to fulfill the same security policy on different smart card platforms where
specific HW features are available.

On a code size-constrained smart card platform, an implementation that has
a small code size but requires more main memory or execution time is used. The
appropriate implementations of security features within the D-VM API are used
without the need to change the entire VM.
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Dynamic Countermeasures: The D-VM layer is also a further step to enable
dynamic fault attack countermeasures such as that proposed by Barbu in [3].
In this work, he proposes a VM that uses different bytecode implementations
depending on the actual security level of the smart card. If an attack or malicious
behavior is detected, the security level is decreased. This decreased security leads
to an exchange of the implemented bytecodes with more secure versions. In these
more secure bytecodes, different additional checks, such as double reads, are
implemented, which leads to decreased run-time performance.

Our D-VM layer further advances this dynamic countermeasure concept. De-
pending on the actual security level, an appropriate D-VM layer implementation
is used. Therefore, the entire bytecode implementation remains unchanged, but
it is possible to dynamically add and change security checks during run-time.
An overview of this dynamic approach is outlined in Figure 3.

D-VM Layer

ApplesJava
Applets

Java Card VM executes

choose D-VM layer implementation

High Security

ac
tu
al
se
cu
rit
y
le
ve
l

# security checks

Middle Security

Low Security

D-VM Layer
D-VM Layer

Fig. 3. Based on the current security level of the VM, an appropriate D-VM layer
implementation is chosen

The actual security level of the card is determined by HW sensors (e.g., bright-
ness and supply voltage) and the behavior of the executing applet. For example,
at a high security level, the D-VM layer can perform a read operation after
pushing a value into the OS memory to detect an FA. At a lower security level,
the D-VM layer performs additional bound, type and control-flow checks.

Security Context of an Applet: Another use case for the D-VM layer is the
post-issuance installation of applets on the card. We focus on the user-centric
ownership model (UCOM) [1] in which Java Card users are able to load their own
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applets onto the card. For the UCOM approach, each newly installed applet is
assigned a defined security level at installation time. The security level depends
on how trustworthy the applet is. For example, the security level for an applet
signed with a valid key from the service provider is quite high, which results in a
high execution speed. Such an applet should be contrasted with an applet that
has no valid signature and is loaded onto the card by the Java Card owner. This
applet will run at a low security level with many run-time checks but a slower
execution speed. Furthermore, access to internal resources and applets installed
on the card could be restricted by the low security level.

3.1 Security Policy

This chapter introduces the three security policies used in this work. With the
help of these policies, it is possible to counteract the most dangerous threats
that jeopardize security-critical data on the card. The type and bound policies
are taken from [14] and are augmented with a control-flow policy. The fulfillment
of the three policies on every bytecode is checked by three different D-VM layer
implementations using our D-VM API.

Control-Flow Policy: The VM is only allowed to fetch bytecodes that are
within the borders of the currently active method’s BA. Fetching of bytecodes
that are outside of this area is not allowed. The actual valid method BA changes
when a new method is invoked or a return statement is executed. Because of this
policy, it is no longer possible for control-flow changing bytecodes (e.g., goto w
and if scmp w) to jump outside of the reserved bytecode memory area. This
policy counters the EMAN4 attack [6] on the Java Card and all other attacks
that rely on the execution of a data array or code of an-other applet that is not
inside the current BA.

Type Policy: Java bytecodes are strongly typed in the VM specification [19].
This typing means that for every Java bytecode, the type of operand that the
bytecode expects and the type of the result stored in the OS or LV are clearly
defined. An example is the sastore bytecode, which stores a short value in an
element of a short array object. The sastore bytecode uses the top three elements
from the OS as operands. The first element is the address of the array object,
which is of type reference. The second element is the index operand of the array,
which must be of type short. The third element is the value, which is stored
within the array element and is of type short.

Type confusion between values of integral data (boolean, byte or short) and
object references (byte[], short[] or class A, for example) is a serious problem for
Java Cards [24,17,13,25,6,11]. To counter these attacks, we divide all data types
into the two main types, integralData and reference. Note that this policy does
not prevent type confusion inside the main type reference between array and
class types.
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Bound Policy: Most Java Card bytecodes push and pop data onto the OS or
read and write data into the LV, which can be considered similar to registers. The
OS is the main component for most Java bytecode operations. Similar to buffer
overflow attacks in C programs [9], it is possible to overflow the reserved memory
space for the OS and LV. An adversary is then able to set the return address of
a method to any value. Such an attack was first found in 2011 by Bouffard [6,7].
An overflow of the OS happens by pushing or popping too many values onto
the OS. An LV overflow happens when an incorrect LV index is accessed. This
index parameter is decoded as an operand for several LV-related bytecodes (e.g.,
sstore, sload and sinc). This operand is therefore stored permanently in the non-
volatile memory. Thus, changing this operand through an FA gives an attacker
access to memory regions outside the reserved LV memory region. These memory
regions are created for every method invoked and are not changed during the
method execution. Therefore in this work, we permit Java bytecodes to operate
only within the reserved OS and LV memory regions.

4 Java Card Prototype Implementation

In this work three implementations of the D-VM layer are proposed to perform
run-time security checks on the currently executing bytecode. Two implementa-
tions perform all checks in SW to ensure our security policies. One implementa-
tion uses dedicated HW protection units to accelerate the run-time verification
process. The implementations of the D-VM layer were added into a Java Card
VM and executed on a smart card prototype. This prototype is a cycle-accurate
SystemC [12] model of an 8051 instruction set-compatible processor. All software
components, such as the D-VM layer and the VM, are written in C and 8051
assembly language.

4.1 D-VM Layer Implementations

This section presents the implementation details for the three implemented
D-VM layers used to create a defensive VM. All three implemented D-VM layers
fulfill our security policy presented in Chapter 3 but differ from each other in
the detailed manner in which the policies are satisfied. The key characteristic of
the two SW D-VM implementations is that they use a different implementation
of the type-storing approach to counteract type confusion. The run-time type
information (integralData or reference) used to perform run-time checks can be
stored either in a type bit-map (memory optimization) or in the actual word size
of the microprocessor (speed optimization). The HW Accelerated D-VM uses a
third approach and stores the type information in an additional bit of the main
memory. Through this approach, the HW can easily store and check the type
information for every OS and LV entry. An overview of how the type-storing
policy is ensured by our D-VM implementations and a memory layout overview
are shown in Figure 4 and explained in detail in the next sections.
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Fig. 4. The Bit Storing D-VM stores the type information for every OS and LV entry
in a type bitmap. The Word Storing D-VM stores the type information below the
value in the reserved OS and LV spaces. The HW Accelerated D-VM holds the type
information as an additional type bit, which increases the memory size of a word from
8 bits to 9 bits.

Bit Storing D-VM: This D-VM layer implementation stores the type informa-
tion for every element on the OS and LV in a type bitmap. The type information
for every entry of the OS and LV is now represented by a one-bit entry. A problem
with this approach is that the run-time overhead is quite high because different
shift and modulo operations must be performed to store and read the type infor-
mation from the type bitmap. These operations (shift and modulo) are, for the
8051 architecture, computationally expensive operations and thus lead to longer
execution times. An advantage of the bit-storing approach is the low memory
overhead required to hold the type information in the type bitmap.

Word Storing D-VM: The run-time performance of the type storing and
reading process is increased by storing the type information using the natural
word size of the processor and data bus on which the memory for the OS and
LV is located. Every element in the OS and LV is extended with a type element
of a word size such that it can be processed very quickly by the architecture. By
choosing this implementation, the memory consumption of the type-storing pro-
cess increases compared with the previously introduced SW Bit Storing D-VM.
Pseudo-codes for writing to the top of the stack of the OS for the bit- and
word-storing approach are shown in Listings 1.2 and 1.3.

Listing 1.2. Operations needed to push an
element on the OS by the Bit Storing D-VM

dvm push integralData ( value )
{

//push va lue onto OS and
// increase OS s i z e

OS[ s i z e++] = value ;
// s t o r e type informat ion
// i n to type bitmap ,
//INT−>i n t e g ra lDa ta type

bitmap [ s i z e /8 ] = INT<<( s i z e %8);
}

Listing 1.3. Operations needed to
push an element on the OS by theWord
Storing D-VM

dvm push integralData ( value )
{

//push va lue onto OS
// increase OS s i z e

OS[ s i z e++] = value ;
// s t o r e type informat ion
// i n to next memory word ,
//INT−>i n t e g ra lDa ta type

OS[ s i z e++] = INT ;
}
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HW Accelerated D-VM: Performing type and bound checks in SW to ful-
fill our security policy consumes a lot of computational power. Types must be
loaded, checked and stored for almost every bytecode. The bounds of the OS
and LV must be checked such that no bytecode performs an overflow. The HW
Accelerated D-VM layer uses specific HW protection units of the smart card
to accelerate these security checks. New protection units (bound protection and
type protection) are able to check if the current memory move (MOV) operation
is operating in the correct memory bounds. The type information for the OS and
LV entries is stored as an additional type bit for every main memory word. The
information is decoded into new assembly instructions to specify which memory
region (OS, LV or BA) and with which data type (integralData or reference) the
MOV operation should write or read data. An overview of the HW Accelerated
D-VM is shown in Figure 5. Depending on the assembly instruction, the HW
protection units perform four security operations:

– Check if the Java opcode is fetched from the current active BA.
– Check if the destination address of the operation is within the memory area

of the OS or LV. If the operation is not within these two bounded areas, a
HW security exception is thrown.

– For every write operation write the type decoded in the CPU instruction
into the accessed memory word.

– For every read operation, check if the stored type is equal to the type decoded
in the CPU instruction. If they are not equal, throw a hardware security
exception.
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Fig. 5. Overview of the HW Accelerated D-VM implementation using new typed as-
sembly instructions to access VM resources (OS, LV and BA). Malicious Java bytecodes
violating our run-time policy will be detected by new introduced HW protection units.
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5 Prototype Results

In this section, we present the overall computational overhead of the three im-
plemented D-VM layers and their main memory consumption. All of them are
compared with a VM implementation without the D-VM layer. The speed com-
parison is performed for different groups of bytecodes by self written micro-
benchmarks where all bytecodes under test are measured. These test programs
first perform an initialization phase where the needed operands for the bytecode
under test are written into the OS or LV. After the execution of the bytecode
under test the effects on the OS or LV are removed. Note that our smart card
platform has no data or instruction cache. Therefore, no caching effects must be
taken into account for all test programs.

5.1 Computational Overhead

Speed comparisons for specific bytecodes are shown in Figure 6. For example, the
Java bytecode sload requires 148% more execution time for the Word Storing
D-VM. For the Bit Storing D-VM, the execution overhead is 212%. The in-
creased overhead is because of the expensive calculations used to store the type
information in a bitmap. For the HW Accelerated D-VM, the execution speed
decreases by only 4% because all type and bound checks are performed using
HW. Additional run-time statistics for groups of bytecodes are listed in Table 1.
As expected, the Bit Storing D-VM consumes the most overall run-time, with
an increase of 208%. The Word Storing D-VM needs 142% more run-time. The
HW Accelerated D-VM has only 6% more overhead.

HW Accelerated D-VM
Word Storing D-VM
Bit Storing D-VM

0%
50%

100%
150%
200%
250%

400%

300%
350%

sload sadd saload bspush ifeq overall

Fig. 6. Speed comparison of individual bytecodes for the different D-VM layer imple-
mentations proposed in this work. The results are compared with a VM without the
D-VM layer.

5.2 Main Memory Consumption

The HW Accelerated D-VM requires one type bit per 8 bits of data to store
the type information during run-time. This results in an overall main memory
increase of 12.5%. The Word Storing D-VM requires in the worst case 33% more
memoy because one type byte holds the type information for two data bytes.
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Table 1. Speed comparison for different groups of bytecodes compared with a VM
without the D-VM layer

Bytecode Groups HW Accelerated D-VM Word Storing D-VM Bit Storing D-VM

Arithmetic/Logic +7% +146% +240%
LV Access +5% +185% +243%
OS Manipulation +5% +151% +231%
Control Transfer +7% +113% +173%
Array Access +5% +130% +166%

Overall +6% +142% +208%

The Bit Storing D-VM requires approximately 6.25% more memory in the case
in which the entire memory is filled with OS and LV data. This is because the
Bit Storing D-VM requires one type bit per 16 bits of data.

6 Conclusions and Future Work

This work presents a novel security layer for the virtual machine (VM) on Java
Cards. Because it is intended to defend against fault attacks (FAs), it is called
the defensive VM (D-VM) layer. This layer provides access to security-critical
resources of the VM, such as the operand stack, local variables and the bytecode
area. Inside this layer, security checks, such as type checking, bound checking
and control-flow checks, are performed to protect the card against FAs. These
FAs are executed during run-time to change the control and data flow of the
currently executing bytecode.

By storing different implementations of the D-VM layer on the card, it is
possible to choose the appropriate security implementation based on the ac-
tual security level of the card. Through this approach, the number of security
checks can be increased during run-time by switching among different D-VM
implementations. Furthermore, it is possible to assign a trustworthy applet a
low security level, which results in high execution performance, and vice versa.
One D-VM layer implementation can be, for example, low security with high
execution speed or high security with low execution speed. Another advantage
is the concentration of the security checks inside the layer.

To demonstrate this novel security concept, we implemented three D-VM
layers on a smart card prototype. All three layers fulfill the same security policy
(control-flow, type and bound) for bytecodes but differ in their implementation
details. Two D-VM layer implementations are fully implemented in software but
differ in the manner in which the type information is stored. The Bit Storing
D-VM has the highest run-time overhead, 208%, but the lowest memory increase,
6.25%. The Word Storing D-VM decreases the run-time overhead to 142% but
consumes approximately 33% more memory. The HW Accelerated D-VM uses
dedicated Java Card HW to accelerate the run-time verification process and has
an execution overhead of only 6% and a memory increase of 12.5%.
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In future work, we will focus on the question of which sensor data should be
used to increase the internal security of the Java Card. Another question is how
many security states are required and how much they differ in their security
needs.
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Śl ↪ezak, D. (eds.) FGIT 2010. LNCS, vol. 6485, pp. 459–468. Springer, Heidelberg
(2010)
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Abstract-Java Cards, which are primarily used to store 
security-sensitive data, are employed in a wide range of appli
cations, such as authentication and banking. Because these data 
must be protected against logical and fault attacks, static and 
runtime verification must be performed to assure the security 
of Java applets. Currently, this verification is performed in the 
software. Runtime verification for counteracting fault attacks is 
costly due to additional execution time and memory consumption. 
To circumvent the drawbacks of software verification, we propose 
incorporating a microarchitectural support of runtime verifica
tion directly into smart card hardware. T hese new hardware 
features enable a defensive virtual machine to counteract buffer 
overflow attacks, type confusion attacks, control flow attacks, and 
data integrity attacks. To measure the additional overhead of 
hardware and performance, the new microarchitectural security 
features are integrated into a smart card prototype on a field 
programmable gate array board. 

I. INTRODUCTION 

When engineers initially considered installing a Java virtual 
machine onto a smart card in 1996, they did not predict the 
success of this concept. Today, more than 1 billion cards are 
produced each year and used in daily life. Transport systems, 
passport verification systems and banking systems rely on the 
security provided by applets, which are executed on these 
cards. The success story of Java Card can continue in the area 
of near field communication (NFC). In this NFC area, the 
vision of a multi-application Java Card that is controlled by 
the card user may constitute the next stage for these cards [1]. 
In this multi-application context, applications from different 
sources are installed and executed on the card. This multi
application function increases the security requirements of 
Java Cards, which protect against logical and fault attacks. 

Today, the security of Java Cards is reliant on a static 
verification process that is performed either on-card or off
card [2]. This verification, which requires a significant amount 
of memory and time, examines the Java applet for malicious 
behavior, such as overflow, type confusion or control flow 
attacks. During runtime, one of the last lines of defense is 
the Java Card firewall, which protects access permissions for 
methods and fields of different applets [3], [4]. 

Unfortunately, the security concepts of static verification 
and a runtime applet firewall can be circumvented by fault 
attacks during runtime (e.g., laser attack). These attacks enable 

an adversary to create a malicious applet and gain unautho
rized access to code and data from other applets or the virtual 

machine (VM) [5], [6], [7], [8], [9], [10]. 

In this study, we propose a defensive VM for Java Cards, 
which is accelerated by microarchitectural support of the 
platform. A bound protection unit, type protection unit, control 
flow protection unit, and data integrity protection unit are 
inserted into the smart card hardware (HW) to ensure the 
security of the VM. These new units protect the VM against 
fault attacks, as shown in Figure 1. These protection units are 
integrated into a smart card prototype on a field programmable 
gate array (FPGA) board and protect the security-critical 
memory regions of the VM. These regions are the operand 
stack (OS), local variables (LV) and the bytecode area (BA) 
which have increasingly become the targets of fault attacks 
[11], [12], [13]. 

In this work a Java Card VM was modified to facilitate the 
incorporation of these new protection units. To obtain precise 
results of the HW and runtime overheads of the additional 
HW security features, a smart card prototype is functionally 
emulated on a FPGA platform. Based on this implementation, 
the runtime and HW overhead are measured. Our approach, 
which involves a HW acceleration defensive VM, enables 
runtime security checks with low HW and execution over
heads. The combination of a high verification speed and low 
HW overhead is prevalent in the Java Card market, which 
incorporates the advantage of a large unit volume and high 
security requirements. 

Section II provides an overview of the Java Card VM 
and current attacks and countermeasures. Section III provides 
insight into general design concepts of a defensive VM. 
Section IV describes the five security policies that are satisfied 
by our defensive VM design. Section V presents insight 
into the integration of HW protection units within a smart 
card prototype to fulfill our security policies. Section VI 
analyzes the total cost of implementation of a smart card 
prototype, including runtime costs of execution speed, memory 
consumption and HW overhead. Last, conclusions and future 
studies are presented in Section VII. 

978-1-4799-3488-1113/$31.00 ©2013 IEEE 
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Fig. I. The Java Card YM uses HW security features to perform runtime 
security checks on Java bytecodes based on bound checks, type checks, control 
flow checks, and data integrity checks. 

II. RELATED WORK 

This section provides an overview of the Java Card VM and 
the manner in which Java bytecodes are executed in the VM. 
Previous studies of attacks on Java Cards are also presented. 
The contribution of our research to existing state-of-the-art 
countermeasures is discussed at the end of this section. 

A. Java Card Virtual Machine 

Running a Java VM on resource-constrained devices, such 
as a smart card, is a challenging task. Modern desktop 
computers contain multicore processors with approximately 
4 processing units, 8 GB of volatile memory and 2 TB of 
nonvolatile memory. Smart card HW contains a single 8/16 
bit processing unit, approximately 10 kB of volatile memory 
and 100 kb of non-volatile memory (e.g., EEPROM, flash 
memory). These HW constraints reduce the functionality of 
the Java Card VM. For example, memory and computational 
intensive data types, such as float, double or long, are not 
supported. Multidimensional arrays and the execution of con
current threads are also not supported. 

Conversely, new security features, such as special applica
tion programming interface (API) functions to access cryp
tographic operations for authentication and signature, have 
also been added to the Java Card. New runtime security 
mechanisms were also incorporated, such as the Java Card 
software firewall. This firewall determines whether objects are 
allowed to access the methods and fields of other objects. 

The behaviors of the Java Card VM for all bytecodes 
and the format of the applets that are loaded on the card 
are described in [3], [4]. The VM is a stack machine that 
retrieves the Java bytecode from the bytecode area (BA). 
For computational operations, two main memory regions are 
employed: the operand stack (OS) and the local variables (LV). 
Each method invocation creates a new fixed-sized OS and LV 
in the main memory. 

The OS is employed for all arithmetic and logical opera
tions. For example, to perform the calculation 3+3, the value 
3 is initially pushed onto the OS two times. The arithmetic 
bytecode sadd, which reads and removes both values from the 
OS and pushes the result 6, is performed. 

The LV, which is used to store the intermediate results of a 
variable, is the source of the method parameters when a new 
method is invoked. The LV is logically related to the registers 
of a physical processor. 

The OS and LV memory regions are used substantially 
during VM execution. As a result, they are a rewarding 
destination for attacks, such as type confusion attacks [13], [7], 
[8], memory overflow attacks [14] or data integrity attacks [6]. 
Therefore, the runtime checks in this study focus on restricting 
the memory accesses of the VM to these memory regions. 

B. Attacks on Java Cards 

Attacks on Java Cards are classified into three large groups: 
physical attacks, observation attacks and fault attacks. Our 
research focuses on countering fault attacks. Nevertheless, all 
three attack groups must be considered during the design and 
implementation phase of our new HW security features. 

Physical Attacks: An adversary removes different physical 
layers of a Java Card chip by etching and accessing different 
digital or analog HW blocks. By placing probes on buses 
or input/output units, it is possible to detect or recover 
internal functions of the chip or recover data messages, 
such as keys. By using a focused ion beam, an adversary 
is able to break or connect lines on the chip to inject a fault [9]. 

Observation Attacks: These non-invasive attacks exploit the 
notion that the computation of software (SW) is executed 
on a physical smart card. This smart card interacts with its 
surrounding environment and requires electrical energy for 
computation. This power consumption and electromagnetic 
radiation of the digital circuits vary based on the actual 
executed instructions. This means that an adversary can 
develop conclusions about the internal Java Card SW 
by observing these physical processes. Using advanced 
techniques, such as simple or differential power analyses, an 
adversary can break cryptographic algorithms and receive a 
secret key [15], [16]. 

Fault Attacks: Fault attacks are provoked by running a 
digital chip beyond its technical specifications, such as an 
excessive high/low supply voltage amplitude or high/low 
clock signal frequency. An attack on the supply voltage or 
clock signal during a short period of time is named a glitch 
attack [17]. The bombardment of the chip with high-energy 
optical pulses (laser attack) produces undefined chip behavior. 
An application of this type of fault attack is the disturbance of 
cryptographic operations. In this type of attack, an adversary 
can obtain the secret key of a cryptographic operation [18]. 

Currently, fault attacks are utilized to directly attack the 
execution and behavior of the Java Card VM. For example, by 
changing the supply voltage during a read access to the non
volatile memory, it is possible to modify the reference voltage 
to determine if the bits stored in memory are interpreted as 
zeros or ones. This modification causes the conversion of a 
valid applet to a malicious applet [13], [12]. 
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Other VM attacks change the control and data flow of a Java 
applet to obtain illegal access to secret codes or data stored 
in the memory of the card [7], [8]. Adversaries manipulate 
Java branch instructions by faults, which causes the Java VM 

to jump outside the current BA. The jump target can be an 
array filled with data by an adversary, which becomes capable 
of executing any code on the Java Card and performing, for 
example, a memory dump of the card [14]. 

Integrity attacks on as memory are also performed. The 
values on the as are used to perform comparison operations 
to determine which code path Java branch bytecodes prefer to 
execute. For example, the branch bytecode iLscmpeq com
pares the top two operands to determine whether they are 
equivalent; the branch ifeq compares the top as element with 
zero. An attacker that manipulates as data during runtime can 
manipulate the outcome of these conditional branches [6]. This 
action leads to the threat of entering branches in the applet, 
which are typically inaccessible without the knowledge of a 
secret key or data. 

C. Actual Java Card Security Concept 

The current security concept for Java Cards is dependent 
on a static verification of the uploaded application. Due to 
the high memory requirements of the type verification, this 
static verification is performed off-card [2]. For an on-card 
verification, more powerful and expensive cards are required. 
This static off-card verification verifies whether the application 
contains any security violations, such as type confusion, mem
ory overflows, and violations to the Java Card specification 
or Java application format [3], [4]. After the verification, the 
application is signed with a secret key and uploaded onto 
the card using a secure channel. The signature on the card 
is verified and the installation process commences. 

D. Fault Attack Countermeasures 

In 2009, researcher began to combine logical attacks with 
fault attacks to create combined attacks, which are capable 
of breaking the sandbox security model of the VM [8], [5]. 
Different new attacks that are based on OSILV overflow [14], 
Java type confusion [13], [8], control flow changes [19], or 
data integrity attacks [6] against the VM were discovered 

Simultaneously, research on ways to prevent a VM against 
this new class of combined attacks was initiated. Because 
combined attacks explicitly attack the computation of the VM, 

new additional SW security checks are directly added to the 
VM. To counteract attacks that change the values of elements 
on the as, data integrity checks are performed by [6]. In 
[12] and [14], the authors propose a calculation of off-card 
checksums over the bytecode of a Java applet. The granularity 
of these checksums is derived from basic blocks (BB). These 
BB are used in [19] to create a control flow graph. This pre
computed control flow graph is subsequently verified against 
the current program flow to detect illegal jumps or branches of 
the VM during runtime. An additional countermeasure, which 
is reliant on an off-card step, is the encryption of the Java 
bytecode with the Java program counter and a secret key [20]. 

Using this encryption, the threat of executing data instead of 
Java bytecode was countered. 

To counteract type confusion attacks between integralData 

(e.g., boolean, byte, and short) and references (e.g., byte[j, 

short[], and class A) a separation of the single as into two 
ass is proposed [10], [21]. This change enables all values of a 
specific type to be read and written on the as for integralData 

or on the as for references. With this separation approach, 
type confusion between the two main types is prevented by an 
architectural change of the VM and detection during runtime 
by an overflow or underflow of the two ass. An off-card 
pre-computation must be performed to exchange bytecodes, 
in which the VM does not know during runtime on which of 
the two ass the operation must be performed. 

In a previous work [21] we introduced the concept of a 
hardware accelerated defensive VM to fulfill a type policy 
(prevent type confusion) and bound policy (prevent as and 
LV overflow). To fulfill the type policy the concept of a type 
storing and type separating defensive VM are presented and 
accelerated by new hardware protection units. First run-time 
overhead measurements are shown based on a smart card 
simulation. Detailed hardware overhead measurements of the 
new protection units were outstanding. 

E. Drawbacks of Current Countermeasures 

SW checks to enable a defensive VM have considerable 
disadvantages, such as high computational overhead and ad
ditional memory requirements. Checksums and pre-computed 
control flow graphs are permanently stored in the memory. 
The verification of these data against the current state of the 
Java Card creates additional performance overhead. Another 
significant disadvantage is that SW checks, which should 
prevent a single fault attack, can be removed by a second 
fault attack. For example, an adversary injects one fault attack 
to create an overflow attack on the VM and injects a second 
fault when the overflow check happens. 

In this study HW-assisted runtime checks are used to 
circumvent the issues of SW checks. Our HW checks require 
no pre-computed data and are performed parallel to standard 
processor operations. Therefore, the performance and memory 
overhead remains low. Furthermore, our security approach is 
fully compatible with all standard Java Card bytecodes and is 
not dependent on off-card computed data. 

III. DEFENSIVE VIRTUAL MACHINE DESIGN 

A defensive Java Card VM performs specific security 
checks on the bytecode during runtime. The following critical 
points must be considered during the selection and design of 
these runtime checks: 

Security Iucrease: The selection of correct runtime 
countermeasures is an important prerequisite of our defensive 
approach. By selecting the correct runtime checks, our 
defensive VM is able to counteract the most dangerous 
attacks on Java Cards. By countering an attack, such as 
type confusion, an adversary is prevented from obtaining the 
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address of a data array, which is required for more advanced 
attacks [7], [13], [23], [8]. 

Smoothly Integration: The countermeasure should not 
rely on additional data that is calculated by off-card tools 
because industrial applet providers do not want their applets 
modified in any way. Another reason is the decreased 
interoperability that results when security related data are 
integrated into certain applets and is only supported by certain 
Java Cards. 

Low Overhead: The HW countermeasures should consume as 
little power, memory and performance overhead as possible. 
To prevent side channel attacks, the countermeasures must 
be evaluated to ensure that no information about the internal 
state of the chip is disclosed to the outside world. 

IV. DEFENSIVE POLICIES OF OUR WORK 

This section provides an overview of the security policies 
of our HW protection units during runtime. Furthermore, an 
overview and analysis of countered attacks are presented. 
The following bound policy, top of stack policy, type policy, 
and control flow policy are extracted from the Java Card 
specifications [3]. The data integrity policy is based on the 
security aspect of protecting Java Card VM related data 
against illegal data changes, as described in the Java Card 
protection profile [24]. 

Bound Policy: During the execution of an applet, the 
VM writes and reads data onto the OS and LV. The sizes 
of the OS and LV are known during the installation time of 
the applet. Therefore, the VM reserves the required memory 
size during runtime for the OS and LV in the main memory. 
An attacker who performs a fault attack can overflow the 
OS and/or LV by creating malicious bytecodes. Using an 
overflow, an adversary accesses undefined data regions. 
These data regions can contain security-critical data, such as 
the return address of the actual method. With an overflow 
attack, it is possible to return to any address mentioned by 
an adversary, as illustrated in the EMAN2 attack [14]. To 
counteract an overflow attack, our bound policy verifies all 
bytecodes during runtime, if the operation overflows the OS 
or LV. 

Top of Stack Policy: The OS is a fundamental memory 
region for the VM, which is accessed during the majority 
of Java bytecode executions. The OS is logically accessed 
similar to a stack. With the top of stack policy, all bytecodes 
are only allowed to pop their elements from the actual top 
element of the OS and push them on the top element of the 
OS. This policy encounters attacks on the VM in which the 
counter of the actual number of OS elements is not updated 
or a wrong counter value is read from memory. Using such 
an attack, it is possible to read values that are logically 
removed from the OS; however, the values are retained in 
memory. By the top of stack policy it is furthermore not 

possible to write to elements below the top element of the OS. 

Type Policy: Java data types are distinguished between 
the two main types integralData and reference. The 
integralData type contains boolean, byte, short, and integer, 

which are used to perform arithmetic/logic operations. 
The second main type represents all references to objects, 

such as arrays (e.g., boolean[], byte[], short[]). This reference 

type includes also general class objects that are for example 
defined by the applet programmer. All references are created 
by the VM when the bytecode newarray or the new bytecode is 
summoned to create objects from classes. A trustworthy applet 
is unable to create a reference by a cast out of integralData 

as in CIC++. 
Type confusion attacks between the two main types in

tegralData and reference are a critical problem in the Java 
Card world [13], [7], [8]. Type confusion attacks are used 
to initiate other attacks, including the EMAN2 attack [14] 
in which the address of a data array is extracted from the 
Java Card by a type confusion attack. This array address is 
subsequently used as the destination of a second control flow 
attack. After the control flow attack, the VM begins executing 
the data of the array. By filling the data array with values 
similar to bytecodes, an adversary is able to execute security
critical code. Further attacks, which are dependent on the type 
confusion of integralData and reference involve the execution 
of a data array [25], [14], the characterization of the Java Card 
API [7] or access to forbidden object methods [5]. 

Our type policy prohibits type confusion between 
integralData and reference on the OS and LV. Note that 
this policy does not counteract type confusion inside our 
two main data types, such as between a byte[] and short[] 

reference. Type confusion inside the reference main type 
must be detected by additional SW checks when an object is 
accessed. 

Control Flow Policy: Fault attacks are used to change 
the valid control flow of an applet. An example of a 
successful attack is the EMAN4 attack [26]. In this attack, 
an adversary is able to execute any bytecode on a Java 
Card. This action generates critical security threats, such as 
memory dumps of the entire memory. The EMAN4 attack 
is based on the notion that control-flow-changing bytecodes, 
such as goto, contain operands that indicate the relative jump 
destination address. By manipulating this address by a fault 
attack, the goto bytecode jumps outside the current BA and 
executes defined adversary code. 

Under the control flow policy, the VM is only allowed 
to retrieve bytecodes that are inside the BA. All bytecodes 
required for method execution are located in the BA. 
Dynamic data structures that are created or changed during 
execution are not located within this area. This security policy 
circumvents all attacks that aim to execute data instead of 
bytecodes. 

Data Integrity Policy: The OS and LV are elementary 
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memory regions of the VM. Attackers perform fault attacks 
into these memory regions by corrupting the data during a 
read/write access [17]. With this attack, adversaries are able 
to manipulate the outcome of conditional branch instructions 
because the branch destination is dependent on data of the 
OS [6]. For example, the outcome of the branch bytecode 
ifeq is dependent on the comparison of the top OS element 
with OxOO. By manipulating the read-out OS element to OxOO 
or OxFF, an adversary can manipulate the outcome of the 
branch. Under our integrity policy, we protect the values of 
the OS memory and LV memory against a fault injection 
during a read/write operation. 

V. JAVA CARD PROTOTYPE IMPLEMENTATION 

The five runtime security policies in this study are satisfied 
by new HW protection units that are integrated into a prototype 
smart card. This prototype consists of an 8051 instruction 
set-compatible 8 bit processor. To evaluate the effects of the 
changes on the VM and the effects of the smart card HW 
on the execution time and HW overhead, the smart card is 
functionally emulated on a Virtex-6 FPGA evaluation kit. 
The smart card HW is implemented in the HW description 
language VHDL . The VM is written in standard C and 
8051 assembly language using our new defensive assembly 
instructions. 

A. Modifications to the Smart Card Hardware 

An overview of the implementation of the Java Card in this 
study is shown in Figure 2. Java applets are executed on a Java 
Card VM using functionality provided by the operating system 
of the card. To accelerate communication with the protection 
units, security-related information is directly decoded into new 
defensive assembly instructions of the 8051 processor. The 
VM uses these new defensive instructions to communicate 
with the new bound, type, control flow, and data integrity 
protection units. These units perform the HW acceleration 
checks on the security-critical memory regions of the VM, 
which comprise the OS, LV, and BA. 

Into the defensive instructions are decoded the access 
direction, the accessible memory regions, and the Java 
data type information which are presented in Table I. This 
approach of decoding information into new instructions 
has the advantage of significantly lower communication 
and configuration overhead of the protection units. For 
example, to read an integralData value from the OS, 
the VM uses the new defensive assembly instruction 
MOV_READ_OPERAND_STACKjNTEGRAL_DATA. With 
the information decoded into this instruction, the bound 
protection unit is able to verify that the accessed memory 
address is inside the OS. Furthermore, the type protection unit 
verifies that the accessed OS value is of the type integralData. 

Parallel to this step, the data integrity protection unit performs 
an integrity check of the read OS value. Any security policy 
violations detected by the protection units results in a HW 
exception. This exception brings the card to a secure state 
and increases its attack counter. The card is deactivated when 

the attack counter reaches the maximum number of allowed 
attacks. 

AppletA Applet B 

Java CardVM 

Operating System 

Defensive Instructions � -" Standard Instructions 

Protection Units Standard Units r-------------

-.. ' f  
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Fig. 2. Implementation overview of the Java Card prototype. A Java Card VM 
uses new defensive assembly instructions to access data inside security-critical 
memory regions. Using the information decoded into these instructions, HW 
checks are performed to counter fault attacks. These checks include bound, 
type, control flow, and integrity checks on the current executing Java bytecode. 

TABLE I 
DECODED INFORMATION (ACCESS DIRECTION, MEMORY AREA AND JAVA 

DATA TYPE) INTO THE NEW ADDED DEFENSIVE ASSEMBLY 

INSTRUCTIONS. THIS INFORMATION IS USED BY THE HW PROTECTION 

UNITS TO PERFORM SECURITY CHECKS DURING RUNTIME. 

DEFENSIVE ASSEMBLY INSTRUCTIONS 
ACCESS DIRECTION MEMORY AREA JAVA DATA TYPE 

integralData 
operand stack reference 

read 
untyped 

local variables 
integralData 

reference 
bytecode area untyped 

operand stack 
integralData 

reference 
write 

local variables 
integralData 

reference 

B. Bound Protection Unit (BPU) 

The BPU verifies whether the current bytecode is malicious 
by overflowing the actual OS or LV memory region. To set 
the memory bounds of the OS and LV, new HW registers are 
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inserted into the BPU. These registers are updated for every 
Java method invocation to the actual bounds of the as and 
LV. 

The BPU also incorporates the top of stack policy in which 
data are read and written from the as memory, such as from 
a HW FIFO (first in, first out) buffer. Therefore, the BPU 
internally stores the actual address of the top element of the 
as (OStop). The BPU only allows write operations to the 
(OStop + 1) address and read operations to the OStop address. 
If a valid read operation is performed on the as, then the 
actual top element of the as is updated to OStop = (OStop-l). 

c. Type Protection Unit (TPU) 

The TPU counteracts type confusion attacks between in

tegralData and references on the as and LV memory. To 
store the Java type information, the main memory word size 
is increased by one additional type bit. By combining this 
type bit with the expected type information decoded into the 
new defensive instructions, it is possible for the TPU to verify 
whether the type is valid. 

D. Control Flow Protection Unit (CFPU) 

The CFPU unit contains the upper and lower bound ad
dresses of the BA memory region. The BA contains all byte
codes of the actual executing Java method. During runtime, the 
CFPU confirms whether the current fetched bytecode is inside 
the BA. The only assembly instruction that is allowed to read 
from the BA memory region is the new defensive assembly 
instruction MOV _READ _BYTECODE_AREA. 

E. Data Integrity Protection Unit (IPU) 

The IPU is implemented with its own data and control 
signals to the main memory. It is independent to the state 
machine of the processor and performs read operations to 
the main memory parallel to the execution of the processor 
instructions. The IPU has its own state machine and begins 
its integrity checks when data are read or written into the 
security-critical as and LV memory regions. 

• Read Operation: When data are read from the as or 
LV, the IPU initially performs a standard read operation 
to obtain the memory value. This standard read_value 
is stored into an internal IPU register and transmitted to 
the logic of the processor for additional computations. 
The IPU begins in parallel to the state machine of 
the processor to read the inverted value, which is the 
not(read_value) from the same memory address. The 
two values, which consist of the read_value and the 
not(read_value), are employed by the IPU to create IJ 

by the following operation: 

IJ = not(read_value) EEl read_value 

The IPU verifies if IJ = Oxff. When IJ -1= Oxff, an attack 
is detected and a HW security interrupt is emitted. 

• Write Operation: When a write operation is performed 
to the as or LV memory region, the IPU initially receives 
the write_value, which will be written into the memory. 

The write_value is stored in an internal IPU register 
and written into the memory. After the write operation 
is completed, the IPU reads the inverted value, which is 
the not(write_value), from the same memory address 
in which the previous write operation was performed. 
Subsequently, the following computational operation is 
performed to receive the value <;: 

<; = not( write_value) EEl write_value 

After this operation, the IPU verifies whether <; -1= Oxff 
and raises a security exception if an integrity violation is 
detected. 

V I. PROTOTYPE RESULTS AND DISCUSSION 

This section presents a comparison of our HW acceleration 
checks with the SW checks. The SW checks perform the 
same security checks and policies as the HW implementation 
with the exception of the top of stack policy. The additional 
overhead to enable the SW and HW acceleration checks are 
compared with an unmodified smart card prototype without 
any runtime checks. 

The computational overhead of the bytecodes is measured 
in two steps. First, the pre-conditions for the bytecodes under 
investigation are established inside the VM. The required data 
for the bytecode under investigation are written into the as or 
LV or specific objects are created. Second, the bytecodes are 
executed in the bench phase and the results of the operation 
are removed. Note that the benchmarks are not dependent on 
previously executed instructions and their data because the 
processor contains no instructions or data cache. 

A. Computational Overhead 

The execution overhead of the additional security checks 
for specific Java bytecodes are shown in Figure 3. The perfor
mance of runtime security checks in SW significantly increases 
the execution time overhead. For example, the overhead for the 
sload bytecode is 172% compared with a VM without these 
checks. The sload bytecode reads an LV element of type short 

and pushes this value onto the as. The SW overhead for the 
sload bytecode is derived from the following SW checks: 

1) Verify that the retrieved bytecode is inside the BA. 
2) Verify that the read LV element is inside the LV memory 

area. 
3) Verify the integrity of the read LV element (double read). 
4) Verify that the LV element is of the type integralData. 

5) Verify that a new element will not provoke an overflow 
of the as. 

6) Verify the integrity of the written as element (double 
read). 

7) Store that the new as element is of the type integral

Data. 

The relocation of these time-consuming computations to the 
HW decreases the overhead for the sload bytecode to 3%. 

These execution speed measurements are performed for 
different groups of bytecodes, as shown in Table II. The HW 
acceleration checks generate only 4% additional overhead for 
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Fig. 3. Computational overhead for specific bytecodes and the total time of 
all implemented bytecodes for the SW implementation and HW acceleration 
checks. The measurements are normalized to a Java Card VM, which performs 
no additional runtime security checks. 

all bytecodes. When the checks are performed in the SW, they 
generate an overall overhead of 159%. 

TABLE II 
MEASUREMENTS OF THE ADDITIONAL OVERHEAD FOR GROUPS OF 

BYTECODES BY PERFORMING THE RUNTIME CHECKS IN SW OR WITH HW 
SUPPORT. THE MEASUREMENTS ARE NORMALIZED TO A JAVA CARD VM 

WHICH PERFORMS NO ADDITIONAL RUNTIME SECURITY CHECKS. 

Bytecode Groups HW Acceleration Checks SW Checks 

Arithmetic/Logic +4% +147% 
LV Access +3% +196% 
OS Manipulation +6% +176% 
Control Transfer +4% +119% 
Array Access +4% +161% 
Overall +4% +159% 

B. Hardware Overhead 

This section demonstrates the HW overhead that is required 
to integrate the new defensive instructions and the protec
tion units within a smart card prototype. This smart card 
consists of the basic HW components like arithmetic logic 
unit, timer/counter, interrupt controller, memory controller and 
communication controller. This prototype is emulated on a 
Virtex-6 development board. The HW overhead for our new 
components and total overhead are listed in Table III. The total 
area overhead on the FPGA board is approximately 11 %. Note 
that these size measurements are calculated without a crypto 
coprocessor and the main memory. 

The word size of the main memory was increased by one 
bit to store the type information for every element on the OS 
and LV during runtime. With this additional type bit per 8-bit 
memory word, the total main memory increases to 12.5%. 

C. Countered Attacks and Limitations 

The HW security mechanism of this study performs runtime 
checks on the current executing bytecodes and the security
critical memory regions in which these operations are per
formed. 

• The BPU counteracts all types of malicious bytecodes, 
which overflow the OS and LV area during runtime. 
Furthermore, this unit only allows the pop and push of 

TABLE III 
HW OVERHEAD TO ENABLE THE RUNTIME PROTECTION UNITS IN THE 

SMART CARD PROTOTYPE ON A FPGA BOARD (VIRTEX-6). THE HW 
OVERHEAD IS COMPARED WITH AN IMPLEMENTATION WITHOUT ANY 

SECURITY CHECKS. 

Hardware Components 

Bound Protection Unit 
Type Protection Unit 
Control Flow Protection Unit 
Data Integrity Protection Unit 
Defensive Instructions 

Total 

Area Overhead 

+5% 
+1% 
+1% 
+1% 
+3% 

+11% 

data onto the actual top element of the OS. Note that 
overflow attacks on other memory regions like on the 
static field image [25] are still possible and must be 
counteracted by additional checks. 

• The TPU thwarts type violations between integralData 

and reference. Note that type violations inside the class 
of integralData or reference are not detected and must be 
thwarted in the SW. 

• The CFPU verifies if the current method execution occurs 
within the bounds of the current BA. Therefore, no 
execution of data, with the exception of code, is possible. 
Note that control flow attacks, which occur within the 
current BA, are not prevented. 

• The IPU checks each read and write access to the 
security-critical OS and LV areas. This is accomplished 
by an additional read operation of the inverted value from 
the same address. The inversion is performed internally 
by HW logic inside the main memory. By comparing 
the standard value with the inverted value, single fault 
injections are detected. These single faults corrupt the 
value, which is read or written into the OS memory and 
LV memory. Using this approach of reading the inverted 
value, 2nd order attacks with the same value are also 
thwarted. To circumvent this countermeasure, an attacker 
would have to perform an initial 2nd order attack with 
the value he wants to inject and a subsequent 2nd order 
attack with the inverted value. 

V II. CONCLUSIONS AND FUTURE WORK 

This study presents an approach to perform hardware (HW) 
acceleration runtime checks on Java bytecodes executed by a 
Virtual Machine (VM) on a smart card. Using this approach, 
it is possible to detect malicious behavior of bytecodes caused 
by a fault attack during runtime. These checks enable proper 
functioning of our bound policy, top of stack policy, control 
flow policy and data integrity policy, which are fulfilled during 
runtime. By implementing these checks in the HW instead of 
the software (SW), it is more challenging for an adversary to 
counter these checks by a second fault attack. Furthermore, 
acceleration of the verification speed is achieved by moving 
the expensive computational check operations into HW. 

To enable these HW checks, new HW protection units were 
inserted into a Java Card prototype. Based on this prototype, 
the additional resource requirements and modifications are 
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evaluated. This prototype consists of an 8051 compatible pro
cessor that is functionally emulated on a field programmable 
gate array (FPGA) board. New defensive assembly instructions 
are employed by the VM to communicate with the HW 
protection units. The protection units use information that is 
directly decoded into the defensive assembly instructions to 
perform runtime checks. The information comprise the access 
direction, accessed memory area and the Java data type. The 
protection units verify all accesses to security-critical memory 
regions of the VM, which comprise the bytecode area, operand 
stack or local variables. 

A complete SW implementation of all checks has an over
head of 159%. By performing the checks in HW the overall 
execution time overhead is only 4%. The integration of the 
protection units into the smart card prototype increases the 
digital area by approximately 11 %. To store the Java type 
information during runtime the main memory increases by 
12.5%. 

The relocation of the runtime security checks from the SW 
to the HW is a promising approach, especially for the high
security requirements of the Java Card market. This increased 
runtime security is required by new Java Card applications, 
such as near field communication (NFC) or multiple appli
cations on one card. It is possible to counteract the steps 
of a first attack that is executed by adversaries to perform 
more advanced attacks, such as memory dumps. This study 
demonstrates that minimal HW resources and computational 
overhead are required for our runtime checks. 

In future work, we will focus on the practical evaluation 
of our security mechanisms. Furthermore, the modified smart 
card must be evaluated to verify its capability of withstanding 
side channel attacks. These evaluations are required for the 
implementation of our HW features and their industrial usage. 
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ABSTRACT
Java enabled smart cards protect security-related code and
data by a sandbox concept. Unfortunately, this sandbox
can be bypassed by fault attacks. Therefore, there is a sub-
stantial need for transparent, effective, and low-overhead
countermeasures. This work demonstrates a new counter-
measure against type confusion and buffer overflow attacks.
This new countermeasure is based on obfuscating the secu-
rity critical calculation parts of a virtual machine by secret
keys. This countermeasure was integrated into a Java Card
virtual machine running on a smart card prototype. New
hardware features were added to this prototype to acceler-
ate the obfuscating operation. The execution time overhead
of the new countermeasure is demonstrated by performing
run-time measurements on the prototype.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Smartcards; D.4.6 [Operating Systems]: Security and Pro-
tection—e.g., viruses, worms, Trojan horses; C.0 [General]:
Instruction set design (e.g., RISC, CISC, VLIW)

General Terms
Security, Design

Keywords
Java Card, Smart Card, Defensive Virtual Machine, Embed-
ded Security, Hardware Countermeasure, Fault Attack
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1. INTRODUCTION
By approximately the end of 2014, the number of people

on the planet, currently 7.1 billion, will be smaller than the
number of mobile phones. In most of these mobile phones,
a secure subscriber identification module (SIM) card is used
to authenticate the phone to the mobile phone operator and
its network services. Another security component, especially
used in smart phones, is the so-called secure element. The
secure element enables technologies such as near field com-
munication (NFC) and applications such as digital wallets,
electronic passports, transport control, authentication, and
data encryption and decryption.

Most SIM cards and secure elements rely on the security
features provided by a Java Card. A Java Card consists of a
highly secure smart card that can run Java applets executed
by a software (SW) Java virtual machine (JVM) [16, 15].
The JVM can execute Java applets and protects the code
and data of these applets against illegal operations. These
illegal operations are thwarted by a SW firewall and the
security concept of the Java sandbox model. This sandbox
separates applets from each other so that it is not possible for
an applet to access the methods and fields of other applets
without explicit permission [15].

Currently, the sandbox concept relies on a static off-card
verification process [20]. The verification is performed off-
card due to high memory and performance needs. An applet
that passes the verification process cannot break the sand-
box model of the JVM or obtain illegal access to code or
data on the card. Unfortunately, after the verification pro-
cess, an adversary could change the control and data flow
of an applet with a run-time fault attack (FA). Such a FA
enables advanced attacks against the card, such as the ex-
ecution of self-defined code [6], memory dumps [9], manip-
ulation of authentication checks [1], type confusion [2], and
buffer overflow attacks [2].

A static applet verification does not counteract FAs. There-
fore, additional run-time checks must be integrated into the
JVM to obtain a so-called defensive JVM. The selection of
appropriate defensive mechanisms is a difficult step during
the design phase of a Java Card. Countermeasures should
prevent of as many FAs as possible but should not signif-
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icantly increase the execution overhead or chip costs. The
chip costs, as well as the security strength and time to mar-
ket, are very important success factors in the Java Card
market.

The contribution of this work is the design and implemen-
tation of a new run-time countermeasure to create a defen-
sive JVM. This new countermeasure is based on obfuscating
the two most important calculation parts of a JVM: the
memory region operand stack (OS) and the local variables
(LVs), which are accessed during the execution of almost ev-
ery bytecode. Based on the Java data type, we use different
keys to perform data obfuscation. Due to this obfuscation,
an adversary can no longer receive or create useful informa-
tion or data through a type confusion attack. Furthermore,
the obfuscating counteracts buffer overflow attacks on the
OS and LVs. With such overflow attacks, the return ad-
dress of the current Java method could be overwritten with
an adversary-defined address. To significantly increase the
difficulty encountered by an adversary in determining the
obfuscating keys, we propose newly created keys for every
invoked Java method.

Section 2 provides an overview of the JVM and state of
the art attacks and countermeasures against Java Cards.
Section 3 gives insight into the general design concept of the
new countermeasure and explains how attacks are thwarted.
Section 4 presents the implementation of the countermeasure
and its integration into the Java Card prototype. Section 5
analyzes the run-time overhead for our prototype. Finally,
conclusions and future studies are presented in Section 6.

2. RELATED WORK
A Java Card is a very resource-constrained embedded sys-

tem with a single 8/16 bit processor, 10 kB of volatile mem-
ory, and 100 kB of non-volatile memory. Due to these very
strict hardware (HW) constraints, different functional fea-
tures are not included such as large-value data types, multi
threading or multidimensional arrays. With the help of a
specific co-processor, complex cryptographic operations are
processed at a satisfactory rate.

During the execution of an applet, the JVM fetches byte-
codes from the bytecode area (BA). For every Java method,
a new so-called Java frame is created, which primarily con-
sists of the two logical memory parts: the OS and the LVs.
Most Java bytecodes push or pop elements from the OS. The
LVs are accessible by an index similar to processor registers.
The LVs hold, for example, intermediate results of variables
and method parameters. Due to heavy usage of the OS, LVs,
and BA during applet execution, different attacks on these
areas are known, such as type confusion [2, 8, 14], buffer
overflow [2], data integrity violations [1], and control flow
attacks [5].

The bytecode of a Java Card applet is strongly typed.
Based on the Java Card virtual machine specification [16],
the data types of operands and results are specified for ev-
ery bytecode. The first character of a bytecode helps to
identify which basic data type is operated by the bytecode.
For example, there exist the sstore and astore bytecodes.
Both store bytecodes move the top OS element into the in-
dexed LV. Sstore is used for all integralData type values
(e.g., Boolean, byte, short). Astore is used for all reference
type values (object references to arrays or classes).

In fact, FAs against Java Cards are performed by using a

laser light at a specific point in time against a specific region
on the card. A worthwhile destination for such a FA is the
memory. Memory attacks change the read out or written
values, for example, to 0x00 or 0xff [1]. By injecting a FA
during the JVM fetch phase of the bytecode, the behavior of
the bytecode of the executing applet is changed [21]. If an
adversary injects 0x00 during a fetch operation, the JVM
interprets this as the NOP bytecode. The NOP bytecode
performs no operation and skips the normal bytecode. By
using a laser beam against digital logic such as the CPU,
the control flow can be changed by bypassing instructions
[19]. Additionally, the manipulation of computational cal-
culations is a known issue, especially against cryptographic
algorithms [4]. By performing a FA during a cryptographic
computation, an adversary can receive secret keys [3].

The combination of a FA and a logical attack is called
a combined attack (CA). The first hypothetical scenario of
such a CA was presented in [21, 14]. CAs can manipulate
a previously verified applet in such a way that the now ma-
licious applet can break the sandbox model of the card. In
2010, Barbu [2] presented the first real-world CA with help
of a laser beam. In the next years, researchers concentrated
on finding different types of new CAs. These CAs can ma-
nipulate the run-time behavior of an applet to execute illegal
operations or to gain access to secret code or data regions
[6, 9, 1].

After concentrating on new FAs against the Java Card
platform, current research concentrates on the question of
how to secure the Java Card against CAs and FAs. These
countermeasures can be classified into two main groups. The
first group requires an off-card step to modify or include ad-
ditional security information into an applet. The additional
security information enables run-time verification of the ap-
plet. The second group includes countermeasures that do
not rely on an off-card step. Our new countermeasure be-
longs to the second category.

Applet Preprocessing Required: In [18, 5], basic block
(BB) checksums are calculated off-card over the bytecode.
The checksums are added into an additional applet compo-
nent. During run-time, the JVM calculates run-time check-
sums over the current fetched bytecode. A FA is detected
when the off-card checksums do not match the run-time
checksums. Using off-card calculations of the valid control
flow graph for the BBs, invalid jumps between BBs are coun-
teracted [19]. In [18], a more memory-friendly countermea-
sure is presented, called field of bit ; this countermeasure
verifies whether a FA leads the JVM to illegally interpret
bytecode operands as opcodes. An off-card encryption of the
method bytecode is proposed in [17]. This bytecode encryp-
tion counteracts the security threat of jumping out of the
actual method code and executing undefined data. Another
countermeasure proposed in [7, 11] counteracts the threat
of type confusion between the two main data types inte-
gralData and reference. All elements of one main data type
are pushed and popped onto their specific OS. Therefore,
type confusion is avoided by data type-based splitting of the
OS. This splitting approach requires an off-card step to re-
place the so-called untyped bytecodes pop x, dup x, swap x.
Another countermeasure [13] fingerprints an applet by stor-
ing the position at which a critical bytecode occurs in the
code. A critical bytecode is a branch, jump, subroutine call,
method return, or 0x00 or 0xFF value. During run-time,
when a critical bytecode is executed, it is evaluated to de-
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termine whether the critical bytecode is in a valid position
and whether the OS has the right number of elements.

No Applet Preprocessing Required: In [11, 12], a
defensive JVM that stores the used main data type inte-
gralData or reference during run-time for every OS and LV
element are proposed. A drawback of this type of storing ap-
proach is that it requires additional memory for type storing
and additional computational power for the type checks. In
[1], three approaches against integrity attacks on the OS are
presented. The first approach is a standard double check
of the pushed and popped OS value. The second approach
reduces the run-time overhead by performing an integrity
check only when a firewall check is also performed. In the
third approach, all values that are pushed and popped onto
the OS are summed by a logical XOR operation and are
verified when a firewall check or access to a static field is
performed.

3. COUNTERMEASURE DESIGN
This section starts with the requirements of our new coun-

termeasure. The requirements are based on the situation in
which the countermeasure is ready for industrial usage. Fur-
thermore, this section explains our countermeasure in detail
and shows two examples of thwarted FAs.

Transparency: An applet programmer should not worry
about how and when to perform FA countermeasures during
development. Therefore, JVM countermeasures should be
transparent to an applet and its programmer. Furthermore,
no off-card applet pre-processing should be needed to enable
the countermeasure because industrial applet providers do
not want to change their applets in any way; for example,
they are not willing to add additional data into an applet
as proposed in [13, 7, 19, 18]. Additional data in an applet
increase the risk of interoperability issues between different
applets and Java Cards. Furthermore, if security features
are optional, there is the risk of a downward harmonization
of security standards to support every applet on any plat-
form.

Effectiveness: Especially on resource-constrained cards,
a countermeasure should counteract as many attack paths as
possible. Type confusion between the two main data types
integralData and reference is a required step for different at-
tacks [21, 14, 9, 5, 22]. Therefore, a countermeasure against
type confusion is very effective because it counteracts one of
the first steps required for different attacks.

Low Overhead: Due to strong cost pressures on the Java
Card market, a countermeasure should have a small memory
footprint. Furthermore, the execution time overhead should
be low due to strict timing constraints for reading out a
digital passport or performing an e-banking transaction.

3.1 Data Type Sensitive Obfuscation
For the new countermeasure, we propose obfuscating the

values on the OS and LVs by performing a logical XOR op-
eration. Based on the Java data type, two different keys are
used for the obfuscating operation. For all OS or LV ele-
ments with the Java data type integralData the secret key
KintegralData is used.

integralDatahidden = integralData⊕KintegralData

All elements on the OS or LVs of the data type reference are
obfuscated with the key Kreference.

referencehidden = reference⊕Kreference

Every time values are read or written from the OS or LVs,
knowledge of the secret key is required. For an adversary, it
would be quite easy to find the secret key by a brute force
attack. For a 16-bit key, 65536 different key values are pos-
sible. To counter such a brute force attack, we propose a
dynamic generation of new keys during the run-time. The
two secret keys KintegralData and Kreference are newly gen-
erated every time the card is powered on or when a new
Java method is executed, which means that the obfuscated
values differ for every method on any attacked card. If an
adversary discovers the secret key, it will not help him for
the next method he invokes on the same card or on another
card.

3.2 Countered Attacks
This section demonstrates how type confusion and buffer

overflow attacks are countered by our new countermeasure
during run-time. The impact of the obfuscating mechanism
on the OS and LV values are shown, based on the countered
attack examples.

3.2.1 Type Confusion
Figure 1 illustrates a run-time type confusion attack be-

tween integralData and reference. Java code is compiled to
bytecode and loaded onto the card. During the fetch process
of the bspush bytecode, which has the opcode 0x10 and the
operand 0x19, the opcode 0x10 is changed to 0x00 (NOP).
The NOP instruction performs no operation and causes the
JVM to interpret the operand 0x19 as the opcode aload 1.
The aload 1 instruction loads the obfuscated array refer-
ence referencehidden = reference ⊕ Kreference from the
LVs and pushes it onto the OS. The next bytecode sreturn
causes a type confusion by interpreting the array reference
from the OS as an integralData type. Due to this type con-
fusion the array reference referencehidden is unobfuscated
with the wrong key KingetralData.

reference 6= (reference⊕Kreference)⊕KintegralData

For an adversary, the obfuscated array reference is worth-
less because when the actual method returns, two other se-
cret keys are used to obfuscate integralData and references.

3.2.2 Buffer Overflow
Every time a new Java method is invoked, a Java frame is

created. This frame is stored in the volatile memory of the
JVM. The frame has a fixed size and contains memory space
for the OS, LVs, and specific frame data such as the return
address for the former method. By changing the parame-
ters of the bytecodes with a FA, it is possible to perform
write operations outside the reserved memory. For example,
the EMAN2 attack [5] relies on overflow of the LVs by a
malicious sstore bytecode. This malicious sstore bytecode
has an invalid LV index that is higher than the reserved LV
memory. Therefore, the malicious sstore overflows the LVs
and overwrites the top OS element into the frame data, as
illustrated in Figure 2. Such overflow attacks on the OS and
LVs by malicious bytecodes are now countered by storing
obfuscated values into the OS and LVs. An adversary, can
no longer predict which value will be produced by an over-
flow attack of the OS or LV. Therefore, a malicious sstore
overwrites the return address with obfuscated data. The
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00: 19    aload_1

01: 03    sconst_0

02: 04    sconst_1

03: 38    bastore

04: 10 19 bspush

06: 78    sreturn

00: 19    aload_1

01: 03    sconst_0

02: 04    sconst_1

03: 38    bastore

04: 00    NOP

05: 19    aload_1

06: 78    sreturn

short dummy{byte[] array}

{

   array[0] = 0x01;

   return 0x19;

}

Obfuscated Operand Stack

BytecodeJava Code

Malicious Bytecode

OS impact

compile

int...integralData

ref...reference

Abbreviations
Type Confusion Attack Thwarted!

Attacker receives obfuscated reference 

which is worthless for him.

00:

01:

02:

03:

04:

05:

06: 

{          }

{                   }

{                          }

{ }

{ }

{          }

ref hidden

int hiddenref hidden

int hiddenref hidden int hidden

ref hidden

ref ≠ hiddenref

Fault Attack

K int

Figure 1: FA example to provoke type confusion
between integralData and reference on the OS. This
type confusion is used to illegally return an array ref-
erence as a return value. With our countermeasure,
an adversary receives an obfuscated and therefore
unusable array reference.

obfuscated data are, for an adversary, random data, which
will cause the JVM to return to a random address. This
random control flow change will most likely be detected and
indicated by other on-card security mechanisms.

3.3 Industrial Usability
Our new countermeasure fulfills all necessary requirements

for industrial use. The countermeasure needs no off-card
pre-processing of a Java applet, as required by other coun-
termeasures [18, 5, 19, 17, 7, 11, 13]. Furthermore, the
countermeasure consumes no additional run-time memory
for storing the Java type information during run-time as in
[11]. Therefore, no type checks are needed, which would re-
duce the JVM execution speed. The new countermeasure
generates low run-time overhead because it is based on a
simple logical XOR operation. Note that type confusion

Operand Stack (OS)

Obfuscated

Local Variables (LVs)

Obfuscated

Frame Data   

return 
address

internal 
data

Malicious sstore bytecode 
uses illegal LV index!

Overflow Attack Thwarted!
Attacker overwrites return address with obfuscated data.

Java Frame

Figure 2: A malicious sstore bytecode with an in-
valid LV index can overwrite the return address of
the current active frame. With our countermeasure,
the return address will be overwritten with unde-
fined obfuscated data.

inside the two main data types integralData and reference
must be counteracted by additional run-time checks. Such
internal type confusion could happen, for example, between
a short array object and a byte array object.

4. PROTOTYPE IMPLEMENTATION
Our new countermeasure has been integrated into a proto-

type Java Card. The JVM was implemented in standard C
and assembly language running on a 8051 compatible smart
card model. The smart card is an instruction-cycle and
memory-accurate SystemC model. To speed up the data
obfuscating of the OS and LVs, we moved the XOR oper-
ation from SW to HW by implementing new defensive as-
sembly instructions into the smart card, as illustrated in
Figure 3. Into these defensive instructions are the access di-
rection (read, write) with the memory area (OS, LVs, or BA)
and the Java data type (integralData, reference, untyped) en-
coded. For example a value with the data type reference is
read from the security critical OS memory area using the
defensive instruction MOV READ OS REFERENCE. Ev-
ery time the defensive instructions access the OS or LVs, the
values are automatically obfuscated by the HW data obfus-
cation unit (DOU) with one of the secret keys KintegralData

or Kreference. The values of the two keys are set for every
method invocation/return by writing the values into newly
added hardware registers.

To increase the overall security against FAs, we integrated
two additional HW protection units: a data integrity pro-
tection unit (IPU) and a control flow protection unit (FPU).
The IPU and FPU are taken from a previous work of us [10].

FPU: The FPU determines whether the current fetched
bytecode is inside the Java BA. The lower and upper bound
address of the BA must be set inside the FPU. The FPU
counteracts attacks that let the applet jump outside the
current BA and start executing data instead of bytecodes
[6].

IPU: The IPU performs a double check on all values writ-
ten or read into the OS or LVs during run-time. After read-
ing or writing a value to the OS or LVs, the IPU auto-
matically reads the inverted valuecomplement from the same
address and creates ω = value ⊕ valuecomplement. When
ω 6= 0xff, an integrity attack is recognized by the IPU and
results in a security interrupt. The IPU counteracts known
integrity attacks on the OS and LVs [1].

Based on the executing bytecode the following operations
are performed by the HW protection units (FPU, DOU,
IPU) to counteract FAs:

• Verify whether the fetched bytecode is inside the actual
BA.

• Obfuscate or unobfuscate values that are written to or
read from the OS or LVs.

• Perform an integrity check on every value written to
or read from the OS or LVs.

5. RESULTS
This section presents the computational overhead of the

countermeasures, compared to an implementation that does
not perform these run-time security operations. All secu-
rity checks performed by the new HW units are, for ease of
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Figure 3: Implementation illustrations for the de-
fensive JVM on a prototype smart card. The
Java Card SW uses new defensive assembly instruc-
tions to access the security-critical memory regions
OS, LVs, and BA. In these critical memory re-
gions, newly added protection units perform HW-
accelerated data obfuscating, control flow protec-
tion, and data integrity protection.

comparison, also reproduced by the SW checks. The mea-
surements are performed for different groups of bytecodes
with micro benchmarks. These micro benchmarks start with
an initialization phase in which all needed OS and LV ele-
ments are created for the bytecode under test (BUT). Next,
the BUT is executed and measured. The following cleaning
step removes the outcome of the BUT and returns the card
to the baseline condition. The smart card model implements
no data or code cache functionality. Therefore, no influences
on execution speed caused by caching effects are considered.

The computational overhead caused by the run-time se-
curity operations for specific bytecodes is shown in Figure 4.
Executing the data obfuscating in the SW adds an execu-
tion time overhead of 13% to the sstore bytecode. The in-
clusion of additional SW computations, to perform control
flow checks and data integrity checks, results in an addi-
tional overall execution time overhead of 107%. When all
of these checks are performed by the FPU, DOU, and IPU,
the execution time overhead is only approximately 6%.

The overall measurements for the bytecode groups are
shown in Table 1. For SW data obfuscating, the overall ex-
ecution time overhead is approximately 16%. The inclusion
of all security operations in the SW increases the execution
overhead to 111% while performing all of these checks in the
HW decreases the execution time overhead to approximately
5%.

6. CONCLUSIONS AND FUTURE WORK
Our new countermeasure thwarts type confusion and buffer

overflow attacks by obfuscating each element on the oper-
and stack (OS) and the local variables (LVs) with a secret
key. The secret key depends on the data type of the ob-
fuscated element. For the data type integralData the key
KintegralData is used, and the key Kreference is used for
the reference data type. Both secret keys are generated ev-

3
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250%

sstore sadd saload dup sinc bspush ifeq overall

SW Data Obfuscating
HW All Defensive Mechanisms
SW All Defensive Mechanisms

Figure 4: Execution time overhead of specific byte-
codes enriched by run-time countermeasures either
performed in SW or by HW support.

Table 1: Execution time overhead of bytecode
groups enriched by different run-time countermea-
sures performed with either SW or HW support.

Data Type All Defensive
Sensitive Obfuscating Mechanisms

Bytecode Groups SW HW SW

Arithmetic/Logic +21% +8% +130%
LV Access +15% +5% +126%
OS Manipulation +16% +4% +108%
Control Transfer +14% +5% +105%
Array Access +15% +6% +100%

Overall +16% +5% +111%

ery time a new method is invoked or when the Java Card
powers up. If an adversary performs an overflow attack, ob-
fuscated data are written outside the OS and LV memory
area. Furthermore, an adversary performing type confusion
will receive or create unusable obfuscated values. The obfus-
cated values cannot be appropriately used by an adversary
for further attacks.

The new countermeasure was integrated into a Java Card
prototype and was either operated in SW or accelerated with
HW mechanisms. An important advantage of the new coun-
termeasure is that no off-card processing of the applet is
required. Furthermore, the run-time memory requirements
are quite low because there is no need to store data types
to thwart type confusion. Due to the low performance im-
pact of an additional 5% when performed with HW support,
the new countermeasure fulfills all requirements for a fault
attack (FA) countermeasure in industrial usage. New in-
dustrially usable FA countermeasures are necessary because
FAs cause a Java Card virtual machine to execute malicious
bytecodes that change the valid data and control flow of the
executing applet. Such increased Java Card applet security
is needed for new applications such as near field communi-
cation and to protect secure elements in smart phones.

Future work can focus on evaluating our new fault attack
countermeasures in terms of HW overhead. Such an evalu-
ation is necessary because the gate-size is very constrained
on smart cards. Furthermore, an evaluation of the counter-
measures is needed in terms of side channel attacks. The
newly added countermeasures should not open new security
breaches which can be abused by adversaries.
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ABSTRACT
Java enabled smart cards are widely used to store confiden-
tial information in a trusted and secure way in an untrusted
and insecure environment, for example the credit card in
your briefcase. In this environment the owner of the card
can install and run any applet on his card, such as the loy-
alty application of your favorite store. However, every ap-
plet that runs on a trusted card has to be verified. On-card
Bytecode Verification is a crucial step towards creating a
trusted environment on the smart cards. The innovative
verification method presented in this work comes without
any additional off-card component and uses nearly the same
amount of memory as the execution of the applet uses. The
usage of a Control Flow Graph and Basic Blocks and the
implementation of a temporary transformation of the meth-
ods reduces the complexity of this new verifier. We will
show a detailed analysis of the implemented algorithm and
preliminary tests of a prototype on a Java Card.

1. INTRODUCTION
Smart cards are used in a wide range of applications (e.g.

digital wallets, transport tickets, credit cards) to store security-
critical code, data and cryptographic keys. Today’s smart
cards are more than a simple plastic card. They are used
as a secure element in NFC enabled smart phones. With
the help of these secure elements the NFC-phone is able to
emulate a smart card.

Smart cards are resource-constrained devices that include
an 8- or 16-bit processor, up to 4kB of volatile memory and
hundreds of kB of persistent memory and sometimes a cryp-
tographic co-processor.

Java enabled smart cards (Java Cards for short) allow
small Java applications, called applets, to run on such a
smart card. The write-once, run-everywhere approach of
Java is the primary purpose of implementing a Java Virtual
Machine (JVM) on a smart card. Another advantage of the
JVM is the sandbox concept. This box separates the differ-
ent application that are on one card and protects sensitive
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data.
In the actual system the user gets a different smart card

for each application. So every one of us has a number of
different smart cards in our wallets. For example, a credit
card, bank card, several loyalty cards and maybe even a card
to access your workplace. This is called Issuer Centric Smart
Card Ownership Model (ICOM) [1]. In the ICOM the card
issuer controls the applets that are installed on the card.

Since NFC enabled smart phones are widely used today,
some users want to shift the functionality of their smart
cards to their smart phone. Java Card enables the users to
install as many applications on their ”smart cards” as they
want. The users are in complete control over which appli-
cations are installed on their cards. This is called the User
Centric Smart Card Ownership Model (UCOM). An illus-
tration of the UCOM we see in Figure 1. One of the major
issues of the UCOM is that applets from an untrusted source
are able to break the sandbox of the JVM. In the security
concept of the JVM, the Bytecode Verification (BCV) is a
crucial part. The BCV checks the correctness of the strong
typing used in the Java programing language.

Figure 2. Overview of User Centric Smart Card Ownership Model (UCOM)
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a smartFigure 1: Relationships in the User Centric Smart Card

Ownership Model [1] between card supplier, card user, ap-
plication issuer and the service point

The composition of this work is as follows: We present a
innovative on-card byte code verification method, we show
a proof-of-concept implementation that is able to run on
a smart card and we will give a analytical review of the
memory consumption of this algorithm.

The paper is organized as follows: Section 2 relates the
work regarding the on-card verifier. Section 3 focuses on the
concept and design of this method. In Section 4 we discuss
the analytical review, Section 5 shows the first results of the
implemented prototype and Section 6 discusses the results
and provides some potential for future work.
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Figure 2: Trusted environment with off-card and on-card BCV.

2. RELATED WORK
This section is split into related work about the security

model, the BCV algorithm and on-card BCV methods.

2.1 Java Card Security Model
Witteman [10] discussed the key characteristics of the se-

curity model in Java Cards. According to the specifica-
tion [7], Witteman identified four main aspects of the Java
Card security concept. These points are:

• Bytecode Verification

• Secure Loading

• Applet Isolation and Object Sharing

• Atomic Operations

The first two points and the last point are mandatory. Se-
cure loading is needed to implement the safe path between
the off-card BCV and the on-card installer, as seen in Fig-
ure 2a.

To implement this secure loading, today’s off-card loader
calculates a cryptographic signature for the verified applica-
tion and then transmits it to the card. There the signature
is verified and if it is correct, the application is installed. To
verify the signature on-card an exchange of keys is needed.
To prevent misuse a single source of trust has to be imple-
mented. In the ICOM [1] this is the card issuer.

However, the paradigm shift in the ownership model [1]
makes it impossible to implement a single source of trust.
Moving the BCV to the card renders this trusting source
obsolete.

2.2 Bytecode Verification
The original BCV was presented in 1995 by Goslin [4]

as a part of the low level security of the JVM. The BCV
has to check every non abstract method in all classes of an
application. Therefore, each Bytecode instruction will have
to be interpreted by an abstract JVM.

As an example the SADD instruction has to add two shorts.
The two shorts have to be at the Operand Stack (OS) and
they are taken from there and the result is pushed back to
the OS. Consequently, the abstract JVM has to check the
OS to see if there are two shorts; if so, it takes them from
the OS and pushes one short back to the OS.

As we see this abstract interpretation has to be done on
the Memory Frame (MF), which contains the OS and the Lo-
cal Variable (LV) Registers, and each Bytecode is ”executed”
regarding to the types of the instruction. The verification
fails when the OS does not contain the right types for an
instruction.

Branching instructions are of special interest. Here the
program flow forks. In such a fork the state of the MF in
the JVM has to be forwarded to each branch. Therefore
the Suns BCV [4] saves a ’dictionary’. Later, when they
are joined together each of the states of the MF from the
two branches has to be merged. The dictionary contains the
states and the offset of the instructions and has to be saved
until the method is verified.

This dictionary has to save the states of the MF for each
fork and for each join in a method. The saved MFs can be
changed very often during the verification. The size of such
a dictionary in the memory can be given by O(B× (S+L)),
where B is the number of branches and exception handlers
in the method, S the maximum height of the OS and L the
number of LV used. This will get for a moderate complex
method in an applet with 50 branches, 5 words maximal
on the stack and 15 words for LV about 3500 bytes for the
dictionary [3].

2.3 On-card Verifier
Soon after the initial presentation of Java Card the sci-

entific community began with the research for a possible
solution of an on-card BCV. The main problem with the
existing algorithm is the memory consumption. For a smart
card with only hundreds of byte of RAM or tenth of kilo-
bytes of EEPROM/Flash it is not possible to store the whole
dictionary. Even if it fits into the persistent memory, the
amount of write access to the memory will stress it. Several
authors proposed methods to overcome these problems. We
will discuss two of them in the following section.

2.3.1 Reducing the dictionary
The first idea was to minimize the memory usage of the

dictionary on the card. We will discuss two approaches
forthwith.

Naccache et al. [6] proposed the use of BBs in their work.
For each BB, Naccache et al. calculated the elements used in
LV and OS. In the dictionary they only saved the elements
used for each BB and so can save up to 90% of the size
of the dictionary. The major drawback of this algorithm
was the complex calculation of the elements used, and their
representation in the dictionary.

The second approach was brought by Bernardeschi et al. [2].
In a similar way to Naccache et al. [6], they used the BB, or
regions as they called them, to determine which entries in
the dictionary can be deleted. They deleted an entry in the
dictionary, if there was no path from the actual BB to the
BB corresponding to that entry. Therefore, this approach
only saved the reachable entries in the dictionary and re-
duced the memory usage of the dictionary by 75%.
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2.3.2 Adding off-card components
The second idea was to use some off-card components to

modify the applet so that it can be processed using an on-
card verification in a more efficient way.

Rose & Rose [9] used the off-card verifier to add Proof
Carrying Code (PCC) to the applet. The PCC enabled the
on-card verifier to verify the code in a single pass and the
memory usage was reduced to the same amount that the
execution of the method needed.

Leroy [5] used an off-card normalization for the applet to
reduce the memory consumption. This normalization en-
sured that at each jump in the code, the OS of the JVM
was empty. Overall he reported of additional 5% applet size
and 2% more RAM space needed for the applets.

These two approaches reduced the memory consumption
to O(S + L), but both needed an off-card component to do
their work.

3. CONCEPT OF THE NEW VERIFICATION
METHOD

For all applets the security of the card has to be ensured
in the UCOM. A crucial step therefore is to verify the cor-
rectness of the applet in respect to the types. At this point
we introduce requirements for the on-card BCV:

• The BCV shall fulfill the given specification from Sun [8]

• The BCV shall run with respect to the resource con-
straints of the card, e.g. small RAM (hundreds bytes),
usage of EEPROM (slow write access, tearing)

• The BCV shall run without any additional off-card
components

Using these requirements, we propose a method that will
verify an applet on the card. This method will be based
on the previous work of Naccache [6], Bernardeschi [2] and
Leroy [5].

Our proposed verifier will also use the abstract interpre-
tation as it was introduced by Goslin [4]. As proposed by
Naccache [6] and Bernardeschi [2] our algorithm splits each
non abstract method of the application into BBs. The next
step in our verification is the normalisation and the abstract
interpretation. The normalisation is used, as discussed at

Leroy [5], to make the process that verifies the method state-
less. This can be seen in Figure 3a

This stateless process is archived in a similar manner as
Leroy [5], but contrary to him we move the normalisation
onto the card. Therfore, our system will not change the
code that will be executed later on the card. Consequently
our BCV has to store the normalising function temporarily,
i.e. it stores the results of the normalisation in the transient
memory.

3.1 Normalization
The normalization process proposed by Leroy has to en-

sure that the OS is empty at the beginning and end of each of
these BBs. In our new verification method this precondition
of each BB will be met through the usage of a temporary
normalization. Temporary means that the normalized code
will not be executed later on the JVM. It only is needed for
the verification.

Each BB that has a non-empty OS at the end, has to be
normalized. A normalization can be seen as an transforma-
tion of the MF from the actual state to a predefined. In
our case this predefined state is a MF with an empty OS.
We call the predefined state of the MF MFdef . The state
at the end of a BB we call MFBB . Then we can define
NBB : MFBB 7→MF def , where NBB is the transformation
function of the BB. The differences between Leroy’s func-
tion and our proposed system can be seen in Figure 3c and
3d.

3.2 Verification
The verification of a BB starts with the abstract interpre-

tation of the instructions as it is shown in Figure 3b. This
works in the same way as the original BCV [4]. If an error
occurs while interpreting the instructions, the system goes
to an Error-state. When the last instruction from the BB
is correctly interpreted, the MF is checked to see if there
were any type changes in the LV. If an element of the LV
has changed, the verification of the BB starts again at the
beginning, and also all following BBs have to be marked as
not verified. If not, the status of the OS is checked. If
the stack is empty, the actual BB is marked as verified

and the next BB in the queue has to be verified. If the stack
is not empty after the last instruction from the BB, the BB
has to be normalized and reverified.
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4. IMPLEMENTATION
Our first prototype is implemented completely in Java and

runs on a Java Card. The required queue and BBs are im-
plemented as objects and therefore stored in the persistent
memory. Since the BBs are only written a few times in one
verification and the queue and its elements are mostly used
statically, this decision will not result in a tearing problem in
the persistent memory. Also runtime drawbacks only come
with the write-access of the EEPROM.

The MF is implemented as a static object. The LV and
OS are put into the RAM and can only be accessed through
methods of the MF. The MF is also responsible for calcu-
lating the function N and its inverse.

Normalized BB will hold the normalization function N , or
its inverse, in the transient memory. The inverse transform
function will be interpreted before the first Bytecode and the
function itself will be interpreted after the last Bytecode.
This normalization functions can be discharged, when the
verification of the method is finished.

A rather simple method is used in this proof-of-concept
implementation to save the normalizing function N . We
merely save the elements of the OS in a transient array.
Since in 95% of the normalizations only one element (most
of the time a short) is on the stack, this simple method does
not use to much of the valuable RAM.

5. RESULTS
From the work of Leroy [5] we have seen that only up to

5% of BBs have to be normalized. Also we have seen that
the normalization function N only needs less than 5 byte for
each BBs.

So when we take the moderate complex method from Sec-
tion 2.2 with a maximal stack size of 5 words, 15 words of
LV and 50 branches, we will get around 70 to 75 BBs. Four
of these BBs need normalization, which will use additional
5 bytes each. In this example the usage of RAM will be
about 80 bytes, 4 × 5 = 20 bytes for the transformation
functions and (5 + 15)× 3 = 60 bytes for the MF.

The verification of an applet from our industrial partner
shows that the BCV does not need more than 100 bytes of
RAM, when working on an industrial Java Card applet.

First tests with the implementation have shown that all
explained algorithms (Figure 3) are capable of running on a
commercial Java Card, which was provided by our industrial
partner.

6. CONCLUSION AND FUTURE WORK
In this work we have shown that it is possible to imple-

ment and use an on-card BCV on a low-cost Java Card.
This verification is a first crucial step forward to a trusted
environment that lies completely on the card.
The proposed BCV can verify an uploaded applet without
any off-card preprocessing. Also the BCV runs with less
memory consumption and a similar runtime behavior. The
proposed BCV will not extend the memory consumption of
the methods, when they are executed, as Leroy’s BCV does.
A further advantage of the shown algorithm is, that it won’t
revert the optimizations of the compiler or programmer.

For the moderate complex method (50 Branches, 5 words
OS and 15 words LV) our BCV uses 80 bytes of RAM. The
original BCV [4] uses, for the same method, 3500 bytes.
The verifier using the PCC will only use 60 bytes for the

MF. Leroy’s BCV [5] needs 66 bytes, because of the expan-
sion of the MF for the normalization. These two verifiers are
better than the proposed one but they need some off-card
components.
The verifiers that are not using an off-card component need
more than four times the memory than our BCV needs. In
the case of Naccache et al. [6] it is 10% of the memory con-
sumption of the original BCV, also 350 bytes. The verifier of
Bernardeschi et al. [2] needs 25% of memory as the original
BCV. This gives a memory consumption of 875 bytes. This
shows that our proposed BCV is capable of running even in
the most constrained environment like a smart card.

A possible field of further development could be the im-
plementation of transient objects in the Java Card Runtime
Environment. This could further optimize access to objects
that are only created for the verification, such as the BB or
the Control Flow Graph.
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Abstract—Java-enabled smart cards are used in different fields
of application, such as access control, electronic banking, and
passports. On these cards, a standardized virtual machine runs,
which protects the security-critical code and data using a sandbox
model. Unfortunately, this sandbox can be circumvented by fault
attacks, which corrupt the data on which the virtual machine
operates.

The fault emulation environment of this work enables the user
to configure faults at definable Java applet code locations. The
user specifies which Java code she wants to attack but does not
need to provide any information on where these data are placed
in the memory and when the memory is accessed. To enable this
approach, our environment monitors the virtual machine during
the applet execution to receive the information which Java code
is currently executed and which security-critical memory regions
are in use. Then, the faults are injected using a bus saboteur at the
correct clock cycle and memory location. This generic high-level
approach provides the environment user an abstraction of the
internal states of the virtual machine and the emulated hardware.
Therefore, our environment enables the recreation of currently
known attacks and allows us to study the effects of fault attacks
on the virtual-machine behavior. The concept was successfully
evaluated by a Java wallet case study. This case study shows a
speedup of 6,600 compared to a simulation.

I. INTRODUCTION

The current Java Card security relies on the concept of a
sandbox model, where no applet can perform illegal memory
access operations. This sandbox relies on the fact that every
applet and its bytecodes fulfill the Java Card specification [1],
[2]. The fulfillment of this specification is currently verified
by a static applet verification process, which is executed one
time either on-card or off-card [3]. Unfortunately, researchers
have found that this static verification does not protect against
fault attacks during run-time [4].

To counteract fault attacks against the virtual machine
(VM), new software (SW) checks [5], [6] and hardware (HW)
checks [7], [8] were added to the Java Card. For example,
HW-accelerated Java data-type checks [7] are integrated to
counteract type-confusion attacks among incompatible data
types. Testing and evaluating SW and HW security features
are challenging tasks during the design process of a card. To
support these tasks, a new tool is required at an early design
stage.

A main drawback of the currently proposed fault injection
environments for Java Cards is that the HW checks cannot be

verified in detail because of their high HW abstraction [9],
[10], [11]. Otherwise, waiting for the final silicon product, as
proposed in [12], significantly slows down the overall design
process. Another approach is to simulate the entire card and its
HW mechanisms at the register transfer level. Unfortunately, a
simulation of the entire Java VM at this notable low abstraction
level implies a significant increase in the simulation time. To
overcome these disadvantages, in this work, we emulate the
HW in a field-programmable gate array (FPGA) instead of
using the computationally expensive simulation.

Our proposed environment, which is shown in Figure 1,
helps the test engineers and security evaluators to perform
fault attacks on Java VMs to bypass the Java sandbox model.
To create such attacks, our environment parses the Java
applet (class and debug files) on a host personal computer
(PC), shows the corresponding bytecodes, and enables the test
engineer or security evaluator to inject faults into memory
regions that are affected by the bytecode. For example, to
create these malicious applets, a fault can be injected when the
VM fetches the bytecode of a Java applet. By manipulating
the fetched data, it is possible to change the control and data
flow of the applet.

Therefore, in this work, we propose a fault emulation
platform that can inject faults into the security-critical memory
regions of the VM. The user can select the bytecodes and
security-critical memory regions that she wants to attack.
Then, the environment automatically injects the appropriate
faults into the bus at the correct moment when the VM
accesses the memory to execute the bytecodes under attack.
The contributions of this paper to circumvent the drawbacks
of current fault injection environments for Java Cards are as
follows:

• The platform increases the environment execution speed
by emulating the system on an FPGA to inject faults at
a detailed hardware model with a high execution speed.

• The environment enables the evaluation of SW and HW
checks against fault attacks.

• The fault configuration and location are defined at a high
abstraction level and automatically injected during run-
time.

• A scalable framework design that supports a variable
number of faults per applet and per Java code location.
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Fig. 1. Schematic view of the main functionalities of the emulation-based
fault attack environment of this work. The user selects the faults from a high
abstraction level (bytecode of the applet), and the environment automatically
triggers the faults at the right moment during the applet execution. The fault
trigger depends on the state of the VM and the state of the bus.

Section II provides an overview of related work for Java
Card security, the currently proposed fault injection environ-
ments, and the fault emulation. Section III provides insight
into the design of the fault emulation environment of this
work and its main parts. Section IV describes the tools to
implement the prototype. Furthermore, a case study is shown
on how to use the environment to manipulate a personal
identification number (PIN) check of a Java wallet applet.
Then, measurements of the performance results and HW
overhead are provided based on an FPGA prototype. Finally,
conclusions and future studies are presented in Section V.

II. RELATED WORK

In this section, an overview of Java Card security is provided
with a focus on fault attacks. Furthermore, the memory regions
of the VM that can be attacked by our environment are
explained. Then, previous works on fault attack simulation
environments for Java Cards and smart cards are summarized,
and their drawbacks are discussed. Finally, an introduction to
fault emulation is provided.

A. Java Card Security

A Java Card can execute different applets, which are pro-
tected from each other by a sandbox concept. The sandbox
protects the security-critical code and the data of all installed
applets from illegal accesses. This sandbox is only effective
when every applet and its bytecode fulfill the Java Card
specification [1], [2]. The specification fulfillment is verified
by an applet verification process [3], which has high memory
and performance requirements. Therefore, among the current
Java Cards, this verification is performed off-card in a secure
environment. It is possible to perform the post-issuance instal-
lation of applets by signing the verified applet with a secret
key.

B. Fault Attacks

It is possible to change the execution behavior of a silicon
chip by operating it beyond its standard technical specification,
such as the allowed temperature range, the allowed supply
voltage amplitude, or the maximum/minimum clock frequency.

Another destination of fault attacks is the firing of high-
energy optical pulses (laser attack) or X-rays (electromagnetic
radiation) onto the security-critical HW components of the
chip. Such a fault attack during the execution of cryptographic
operations can extract the secret cryptographic key [13], [14].

Java Card Attacks: Further targets of fault attacks include
the memory chip and the system bus, which can change the
data that are read out of or written into the memory [15]. The
adversary that changes the data in the security-critical memory
regions of the VM can create a so-called malicious Java applet.
Such a malicious applet can break out of the sandbox model
and illegally access the code and data of other applets or the
Java Card environment [16], [17]. For Java VMs, the main
targets of such memory attacks are the following VM memory
regions:

• Bytecode Area (BA): The BA contains the Java byte-
codes of an installed applet. A bytecode consists of an
opcode and optional operand [1]. An attacker, which
changes the values that are fetched during the execution
of an applet from the BA, can change the control and
data flow of an applet. For example, it is possible to jump
outside the BA and illegally execute a data array that is
filled with malicious bytecodes by changing the operand
of a goto bytecode [17]. Another threat is the skipping
of bytecodes (e.g., PIN check, control flow check) to
circumvent security checks. Such security checks can be
skipped by manipulating the fetched bytecodes using a
fault attack to 0x00, which is interpreted by the VM as
the no operation (NOP) bytecode [16].

• Operand Stack (OS) and Local Variables (LVs): For
every invoked Java method, a new Java frame is created
which consists of the fixed-sized OS, LVs, and general
frame data. The OS can be viewed as a standard first-in-
first-out data structure, which pushes and pops data onto
the top element. The LVs are similar to the registers of
a processor and can be freely accessed. Most bytecodes
rely their operations on the data integrity of the OS and
LVs. For example, the bytecode ifeq performs a jump
operation when the top value on the OS is zero; otherwise,
no jump is performed. An adversary that manipulates
the data integrity of the OS can manipulate the outcome
of the ifeq execution [18] and can therefore change the
control flow of a Java applet to an illegal behavior.

• Java Heap (JH): The JH contains the object instances of
classes, which are created by the Java Card VM. In other
words, the JH contains the general object description and
the data of the object members. Therefore, the data on
the heap is another profitable memory region for a fault
attack.

• Java Program Counter (JPC): The JPC indicates which
bytecode is currently executed in the Java applet. The JPC
is updated after every executed bytecode to point to the
next bytecode to be executed. An adversary can repeat-
edly execute bytecodes by preventing the JPC updating
mechanism. Furthermore, an adversary can manipulate
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the control flow of the applet, by changing the JPC value.
This action can cause the threat of jumping out of the
BA and illegally executing a data array instead of a valid
bytecode, as shown by the authors in [17].

During its execution, almost every bytecode accesses the
security-critical memory regions of the VM (BA, OS, LVs, JH,
and JPC) and relies on the data integrity of these regions. A
fault attack on these regions can execute an adversary-defined
code [16], perform memory dumps of security-critical data
[19], jump over security checks [18], and attack the Java type
system [20]. In our environment, it is possible to recreate
and evaluate such fault attacks to perform a design space
exploration of the appropriate SW or HW countermeasures.

C. Fault Injection Environments

Most currently proposed fault injection environments for
Java Cards are based on SW fault injection. In [10]], the
bytecode inside the BA is manipulated to create a malicious
applet. Then, this malicious applet is uploaded into a simulator
and evaluated. In this environment, it is not possible to inject
faults during run-time into the main memory where the VM
contains the OS, LVs, JH, and JPC. In contrast to their work,
our environment can inject faults into these main memory
regions.

Another SW-based Java Card fault injection environment
was proposed by the authors in [9]. They used the freely
available binary file of the Java Card simulator cref, which
runs on a desktop computer, as a Java Card environment. They
wrote a plugin for cref to access and manipulate the data inside
the simulated non-volatile memory. The non-volatile memory
contains the BA. Therefore, this tool cannot inject faults into
the main memory that is used by the VM.

Another idea was to directly embed the fault injection unit
as an SW module into the final smart-card product [12]. No
SW simulator is required because the SW fault injection runs
directly on silicon. The big drawback is that they can use
this fault injection tool only when the first silicon prototype
remains available. At this late stage in the project, any design
change, particularly on the HW, is extremely expensive.

The authors in [11] proposed a high-level fault injection
environment for smart cards that are written at the system
level. The drawback here is that the HW is highly abstracted
from the real implementation. Furthermore, in their work,
there is no link between the Java VM and the fault injection
environment to automatically inject faults at this point in time
when a specific bytecode is executed.

Advantages of Our Fault Attack Environment: The
previously proposed Java Card and smart card fault injection
tools are based on SW fault injection. The drawbacks of
this technique include the high abstraction of the HW, the
impossibility of injecting faults into the main memory [10],
[9], [11] and the late usability in the design process [12].
To overcome these drawbacks, our environment emulates the
actual hardware at the register transfer level on an FPGA
board. This emulation indicates that our environment can be
used during the HW/SW design process and enables a high

execution performance of the VM. Furthermore, it is possible
to inject faults into the main memory where the security-
critical VM data are located. Therefore, in contrast to the
previous works, our environment can be used during the design
process of the chip to test and verify SW checks and, in
particular, HW-accelerated security checks of the Java VM
as proposed in [7], [8].

D. FPGA Fault Emulation Techniques

FPGA platforms are used to overcome the long time
required to simulate HW on a processor. The digital HW
components are described in an HW description language (e.g.,
VHDL, Verilog), synthesized to a netlist and uploaded onto the
FPGA. This simulation of the hardware on the FPGA is called
emulation. Then, the emulated HW can execute programs with
a high execution speed and clock frequency. Different concepts
of how a fault can be injected into the emulated HW on an
FPGA are as follows [21]:

• FPGA Reconfiguration: The netlist on the FPGA is
changed during the run-time to simulate fault attacks [22].
A drawback is that this reconfiguration feature is only
available for specific FPGAs.

• Mutant: An emulated HW module is exchanged during
the run-time with another module that simulates the attack
[23].

• Saboteur: It is possible to change the values of a series
of signals by placing saboteurs units in the series [24].
For our fault attack environment, we integrated saboteur
units into the data signals of the bus between the emulated
processor and memory. With this saboteur approach, we
achieve a higher flexibility and adaptability than the
FPGA reconfiguration or additional mutant units.

III. DESIGN OF THE FAULT EMULATION ENVIRONMENT

This section summarizes the main features and design
requirements of the fault emulation environment of this work.
An overview of the main components of our environment
is shown in Figure 2. The fault injection tool runs on the
host PC, which is controlled using a graphical user interface
(GUI). Using this tool, the fault attacks are configured for
different bytecode points in the Java applet. It is possible to
configure more faults during the execution of one bytecode.
Then, these fault configurations are loaded to the fault injection
controller. The controller runs on the emulated processor
on the FPGA board and is aware of the currently executed
bytecode and currently used memory regions of the VM. The
memory bounds of these regions are received from the data
provider unit, which is also added to the VM. When a bytecode
for an attack is reached, the bus saboteur unit is configured
immediately before this to-be-attacked bytecode is executed.
Based on this configuration, the bus saboteur changes the data
on the bus when the access to the security-critical VM data
occurs. The design of the entire environment and the main
components are based on the following requirements:
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Fig. 2. Detailed overview of the proposed fault emulation environment of
this work. The interface to the user is the fault injection tool, which runs
on a host PC. Using this tool, the user configures specific faults or the
automatically performed fault campaigns onto different bytecodes. The fault
injection controller hides the required low-level knowledge of the internal
state of the VM and configures the bus saboteur unit.

• Easy interchangeability of different environment com-
ponents to support different VMs or different commu-
nication interfaces from the FPGA to the host PC.

• Scalable design to inject multiple faults for several at-
tacked bytecodes.

• Online re-configurability of the saboteur units to re-use a
previously triggered saboteur to inject faults during other
bytecode executions.

• Support of fault campaign scripts, which enable an auto-
matic creation and evaluation of the fault attack runs.

• Faults can be injected into the BA, OS, LVs, JH, and JPC
memory regions of the VM.

Fault injections are only performed in specific security-
critical memory regions of the VM. Therefore, the fault injec-
tion controller, which runs in the SW on the same processor
as the VM, will never corrupt its own data in the memory.
Such self-injection would lead to unpredictable side effects.

A. Fault Injection Tool on the Host PC

The fault injection tool provides an easy-to-use user inter-
face to simplify the creation of fault attacks into Java applets
as much as possible. Injecting a fault must be as easy as
writing the Java applet itself. The fault injection tool runs on
a host PC and enables the user to inject faults from a high
level of abstraction into the security-critical memory regions
of the VM. To enable this high level of abstraction, the Java
class and debug files are parsed after the compilation of the
Java applet. Based on these parsed data, the Java code and
corresponding bytecode of the Java applet are shown to the
user. Then, the user can configure specific faults or create fault
campaigns. For the specific faults, the user uses a GUI to select
the bytecodes that should be attacked and configures different

faults that will be performed during the bytecode execution.
The fault campaigns are programmed with a script language.
Based on this script, different fault attacks are automatically
created with different variations based on when, where, and
what fault is injected.

Attackable Memory Accesses: In this section, we provide
examples of which memory regions are attackable during dif-
ferent bytecode executions. These information were extracted
from the Java Card VM specification [1] where for every
bytecode a textual description of the operation and the needed
memory accesses is given. Note that these memory accesses
can differ between different VM implementations.

For example, the sstore bytecode is used by the Java
compiler to store the result of an arithmetic operation into
a local variable. During the sstore execution, the top element
is read from the OS and subsequently written into the LV at
a specific index. The sstore bytecode consists of one opcode
byte (0x29) and one index byte that points into the LVs [1].
Both bytes are stored inside the BA. Therefore, a user who
selects the sstore bytecode can inject faults during the fetching
of two bytes from the BA, two reads from the OS, and two
writes into the LVs. In Figure 3, we present the vulnerable
memory regions for the sstore and further bytecodes. We did
not illustrate the updating of the Java program counter to point
to the next bytecode. For example, for the sstore bytecode, the
JPC is updated to JPC = JPC + 2.

sstore ifeq sastore sor

BytecodesAccessed 
Memory

OS

LV

BA

JPC

JH

execution 
time

read write

Fig. 3. Based on the Java Card VM specification [1], different bytecodes and
their required byte accesses to the VM memory are shown. Our fault attack
environment enables the injection of faults during the accesses into these
memory regions. The ifeq example illustrates a successful branch execution.

B. Fault Injection Controller

The fault injection controller, which is implemented in the
SW, is shown in Figure 4. This controller communicates with
the host PC, bus saboteur, and data provider. The controller
can send and receive data from the host PC to receive the fault
configurations and break points for the next test run.

After every executed bytecode, the fault attack controller is
called in the SW by the VM. The controller checks whether
the next executed bytecode should be attacked or whether a
break point is reached. If the current bytecode is a break point,
then the Java applet is halted, and the host PC is notified
by a message. The host PC can then send requests to obtain
internal information from the VM or applet. This information
can be the values of the method variables, object fields, or
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Java arrays. When the next bytecode should be attacked,
the controller configures the bus saboteur unit based on the
following mandatory points:

• Fault Mode: The transient fault mode provides the bus
saboteur with the information on how to manipulate the
data on the bus. Different supported fault modes are
shown in Table I. With the bit-precise mode, every data
bit on the bus can be independently manipulated to be ”0”
or ”1”. Current attackers cannot inject such bit-precise
faults, but this situation may change in the future. The
current realistic fault model is that an adversary can
change all data bits to either ”0” or ”1” [18], [5]. This
realistic model is represented by two fault modes: set-
all-one and set-all-zero. Further supported modes are the
indetermination, inverting, and delay-transfer of the bus
data.

• Fault Bit Mask: The fault bit mask defines exactly which
bits of the bus data signals are affected by the fault.
Only these bits are changed based on the configured fault
mode.

• Memory Region: For every fault configuration, the at-
tacked security-critical memory region of the VM must
be defined. The start and end addresses of these regions
partially change for every executed method and cannot
be statically calculated without deep insight into the VM.
Therefore, in our approach, the fault controller obtains the
memory range information over an SW interface from the
data provider unit that is added into the VM.

• Access Direction: The access direction specifies whether
the fault is triggered when data are read or written from
the memory.

• Access Counter: The access counter number is set by
the host PC program and determines how many accesses
to a specific memory region are required to trigger the
fault.

After handling the fault attack or break point, the controller
gives the control of the processor back to the VM, which
begins executing the next bytecode.

TABLE I
SUPPORTED TRANSIENT FAULT MODES OF THE BUS SABOTEUR UNIT.

BASED ON THESE FAULT MODES AND A FAULT BIT MASK, THE DATA ON
THE BUS ARE MANIPULATED DURING ONE BUS TRANSFER.

Fault Mode Description
Bit-Precise Data are overwritten at the bit level
Set-All-One All data are set to ”1”
Set-All-Zero All data are set to ”0”
Indetermination Data are set to a random value
Inverting Data change from ”1” → ”0” and ”0” → ”1”
Delay-Transfer Data of the previous bus transfer are used

C. Data Provider

Using the data provider, the fault injection controller has
a generic SW interface to obtain internal data from the VM.
This ability indicates that only the internal functionality of the
data provider must be adapted when another VM is used. The
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Fig. 4. Overview of the main parts of the fault injection controller, which
communicates with the host PC over the communication interface. The control
logic is informed by the VM for each executed bytecode and configures the
bus saboteur based on the corresponding fault configurations.

data provider provides the following listed SW interfaces and
must implement their functionality:

• getCurrentMemoryRegions: This interface returns the
upper and lower memory bound addresses (BA, OS, LVs,
JH, or JPC) of the currently used security-critical memory
regions of the VM.

• inspectVariable: This interface returns the value of a
local or static Java variable.

• inspectField: The values of a Java object field can be
inspected using this method.

• inspectArray: This method returns the values of a Java
array object.

The functionality to obtain the currently used memory re-
gions of the VM using the getCurrentMemoryRegions interface
is required because these memory regions change during the
run-time. Without this interface, the memory bounds must
be manually analyzed and updated for every VM or applet
change. Examples of memory regions that often change are
the OS and LVs, which must be updated for every Java method
invocation or return. When method1 invokes method2, the
virtual machine switches its operations from OS1 and LV1

to OS2 and LV2.
The functionality to inspect the values of variables, fields,

and arrays is particularly used during the evaluation of multiple
automatically performed faults during a fault campaign run.
The values are used to indicate whether a fault attack was
successful and could manipulate a value at the Java layer. Suc-
cessful attacks are logged and can be subsequently analyzed
in detail by a security or test engineer.

D. Bus Saboteur

The proposed bus saboteur unit is particularly described
and designed for the AMBA High-performance Bus (AHB).
We chose the AHB because of its wide usage in different
applications. Nevertheless, the general design concepts can be
transferred to other buses.

The bus saboteur unit is placed into the AHB between the
processor and the memory. All data that are sent from the
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processor to the memory and vice versa are routed through the
bus saboteur unit. The bus saboteur is more complex than the
classical saboteur units, which are described in [21], [24]. The
bus saboteur analyzes the data transfer based on the control
and address signals. The saboteur can count the number of
memory accesses at the byte level to the security-critical
memory regions of the VM. To enable this byte counting, the
bus saboteur understands advanced AHB data transfer features
(e.g., burst transfers and split transfers).

An overview of the bus saboteur unit is shown in Figure 5.
The bus saboteur consists of trigger evaluation units and
data saboteur units. Both units are configured using the fault
injection controller. The trigger evaluation units analyze the
AHB control and address signals and trigger the corresponding
data saboteurs. The data saboteur units manipulate the AHB
data signals depending on the configured fault model and
fault bit mask. To inject different faults during one bytecode
execution, the bus saboteur has a generic design to integrate
several trigger evaluation and data saboteur units. The trigger
evaluation units analyze the AHB control and address signals
in parallel. The data saboteurs are placed in series into
the AHB data signals. The evaluation and manipulation are
performed using a digital combinatorial logic with zero clock-
cycle delay. In our prototype implementation, even 12 data
saboteurs are feasible and obtain a valid system, which does
not violate any data path timing requirements of the AHB.
With these 12 data saboteurs, we are able to manipulate 12
memory accesses on the bus during one bytecode execution.

IV. PROTOTYPE RESULTS

In this section, first, we present the tools that we use for
our prototype implementation. Based on this implementation,
we present a case study of how a PIN check method can
be disturbed to accept any entered PIN. Furthermore, we
provide measurements of the HW and the execution time of
our prototype.

A. Used Tools

To implement the prototype, we use SimpleRTJ1 as a Java
VM. This VM is particularly designed to run on resource-
constrained embedded systems and is freely available for non-
commercial purpose. SimpleRTJ is written in C and can be
easily configured to run on a wide range of HW platforms.
As a target platform, we use an open-source Leon3 Sparc V8
processor implementation from Aeroflex Gaisler2. The basi-
cally configured Leon3 processor is synthesized on a Xilinx
Spartan-3 FPGA development board, as listed in Table II. The
FPGA board communicates with the host PC over a serial
communication interface. On the host PC, the fault injection
client was programmed with Eclipse 4 RCP.

B. Case Study - Manipulate PIN Check

For this case study, we use a self-programmed Java wallet
applet without special software security hardening. The wallet

1web.archive.org/web/20130803012237/www.rtjcom.com
2www.gaisler.com/index.php/products/processors/leon3

TABLE II
CONFIGURATION OF THE LEON3 PROCESSOR THAT WAS USED FOR THE
RUN-TIME PERFORMANCE OF ALL CASE STUDIES AND HW OVERHEAD

MEASUREMENTS.

Operating Frequency 40 Mhz
#Leon3 Cores 1 Core
Instruction Cache Deactivated
Data Cache Deactivated

applet is only an aid to demonstrate that our concepts are able
to recreate fault attacks on the OS as described in [18]. It is
not our aim to show a new attack against Java Cards.

Before performing the money transfer functions, the wallet
applet user must enter a PIN. In our wallet applet, the PIN
is validated by the method validatePin(), which is shown in
Listing 1. When a valid PIN is entered, validatePin() executes
return true; otherwise, it executes return false;. The goal of
our fault attack is that validatePin() also returns true when
the pin is invalid. To reach this goal, we analyze the applet
over the host tool on the PC and inspect the return false; code
segment. The tool, shown in Figure 6, indicates that return
true; is compiled to the bytecodes iconst 0 and ireturn. The
bytecode iconst 0 pushes 0x00 on the OS, and ireturn transfers
this OS element to the previous method. Using a set-all-one
fault attack during the execution of the iconst 0 bytecode, the
data that were written into the OS are manipulated from 0x00
to 0xff. Through this manipulation, the Java code return false
logically changed to return true. Then, the fault configuration
is uploaded to the fault injection controller on the FPGA board,
and the applet is started. As a result of our fault injection, we
can perform money transfer functions without knowing the
valid wallet PIN.

1 public boolean validatePin(int pin) {
2 if (pin == secret_pin)
3 return true;
4 return false;
5 }

Listing 1. This validatePin method is attacked by our environment
to also return true when the entered PIN is not valid. This simplified
wallet example is programmed without any special security hardening or
cryptographic support.

Background Information: During the Java bytecode ex-
ecution, the OS memory region is used to push the results
of comparison operations onto it. When the comparison was
successful, the value 0x00 is pushed onto the OS. When the
comparison was not successful, a value unequal to 0x00 is
pushed onto it. In [18], it was shown that it was possible
to inject a fault into the OS and change the value that was
written or read to an adversary defined value, such as 0x00 or
0xff. Therefore, an adversary can change the control flow of an
applet and, for example, change the PIN comparison operation
to her favor. In this case study, we demonstrate that our
environment can reproduce such fault attacks on the security-
critical memory regions of the VM, as shown in related works
[18], [16], [17].
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Fig. 6. To manipulate the PIN verification process, the return false; statement
in the validatePin method is selected for a fault attack. The return false; code
is performed when the entered PIN is not valid, and this Java code is equivalent
to the Java bytecodes iconst 0 and ireturn. During the iconst 0 execution, a
set-all-one fault is injected to manipulate the first byte, which is written into
the OS to 0xff. Through this attack, the validatePin method logically returns
true also when the entered PIN is not valid.

C. Hardware Overhead

The bus saboteur unit is highly generic and can be synthe-
sized to support several fault injections during one bytecode
execution. An overview of the HW overhead for different bus
saboteur configurations are shown in Table III and compared
to a Leon3 configuration without our additional HW units.
The smallest tested configuration with one monitored memory
region can inject two faults into this region. In other words,
1∗2 = 2 different faults can be injected during the execution of

one bytecode. This small configuration adds an HW overhead
of +14.5% look-up-tables and +13% slices. We used this
configuration for the previously shown PIN check case study.

The biggest tested configuration can inject four different
faults into three memory regions. In other words, 3 ∗ 4 = 12
different faults can be injected during one bytecode execution.
The HW overhead increases by +85.5% look-up-tables and
+68.9% slices. The additional HW overhead is only required
during the design phase of the product and will not increase
the chip costs of the final product in silicon.

TABLE III
OVERALL HW OVERHEAD ON THE FPGA COMPARED TO A SYNTHESIS

WITHOUT OUR ENVIRONMENT.

Monitored Fault Configurations FPGA FPGA
Memory Regions per Memory Region Look-Up-Tables Slices

1 2 +14.5% +13%
1 4 +28.3% +24.7%
2 2 +28.4% +27.1%
3 2 +46.8% +41.7%
2 4 +64.2% +57.7%
3 4 +85.5% +68.9%

D. Performance Results

In this chapter, we compare the speedup of our emulation
approach against ModelSim simulations. The simulations run
on a quad-core 3.4 GHz Intel i5 processor with 16 GB of RAM
and Win7 64-bit. The performance overhead for different
test cases is shown in Table IV. Before each test run, the
fault configurations are uploaded from the host PC onto the
FPGA board. In our current implementation, this upload is
particularly slow because it is performed over a serial cable.
This start-up phase adds a linear overhead for each test run on
the FPGA. By running the Java wallet case study on the FPGA,
a speedup of 6,600 is obtained compared to a simulation.
Furthermore, a fault campaign that was executed with 500
test runs achieves a speedup of 1,107. One different fault was
injected into each fault campaign run.
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TABLE IV
EXECUTION SPEEDUP ACHIEVED BY THE EMULATION APPROACH

COMPARED TO A SIMULATION.

Fault Injection Simulation Emulation Achieved
Scenario Time Time Speedup

Manipulate PIN Check 1 hrs 50 min <1 s 6,600
Fault Campaign (500 Runs) 2 hrs 6.5 s 1,107

V. CONCLUSIONS AND FUTURE WORK

This work presents an emulation environment to inject faults
into different security-critical memory regions that are used
by the Java virtual machine (VM). These regions are the
bytecode area (BA), operand stack (OS), local variables (LVs),
Java heap (JH), and Java program counter (JPC). A case
study illustrates how to use the environment to illegally access
the functionality of a Java wallet applet by a fault attack.
Furthermore, the hardware (HW) overhead and performance
results of our framework are presented. For the wallet example
our environment adds an HW overhead of +14.5% look-up-
tables and +13% slices. Furthermore, for the wallet example
we achieve a speedup of 6,600.

The sandbox concept of the Java VM can be circumvented
by fault attacks. Currently proposed fault injection frameworks
lack the possibility to inject faults into the run-time data of the
VM (OS, LVs, JH, JPC). Furthermore, they are programmed
at a high abstraction level. With our proposed emulation
framework, we circumvent these drawbacks by emulating the
hardware at a low abstraction level (register transfer level) and
can inject faults into different security-critical memory regions
of the VM. This framework enables the evaluation and testing
of security mechanisms that are programmed in the software
(SW) or HW by a security engineer or test engineer during the
design phase. All SW and HW components of our environment
can be easily removed from the final product.

In future work, to increase the overall speed of the system,
we will shift the fault injection controller from SW to HW or to
a dedicated processor. Additional speed improvements could
be reached by increasing the communication speed between
the host computer and field-programmable gate array board.
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[14] CoCoon - Codesign for Countermeasures against Malicious Applications on Java
Cards. FIT-IT Project Proposal Cooperative Research Projects, Graz University
of Technology, January 2012.

[15] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, “Security as a new dimension
in embedded system design,” in Proceedings of the 41st Annual Design Automation
Conference, DAC ’04, (New York, NY, USA), pp. 753–760, ACM, 2004. Moderator-
Ravi, Srivaths.

[16] O. Kömmerling and M. G. Kuhn, “Design principles for tamper-resistant smart-
card processors,” in Proceedings of the USENIX Workshop on Smartcard Technology
on USENIX Workshop on Smartcard Technology, WOST’99, (Berkeley, CA, USA),
pp. 2–2, USENIX Association, 1999.

[17] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Advances in Cryp-
tology—CRYPTO’99, pp. 388–397, Springer, 1999.

[18] S. Hamadouche and J.-L. Lanet, “Virus in a smart card: Myth or reality?,” Journal
of Information Security and Applications, vol. 18, no. 2–3, pp. 130 – 137, 2013. Smart
Card and {RFID} Security.

[19] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The Sorcerer’s
Apprentice Guide to Fault Attacks,” Proceedings of the IEEE, vol. 94, no. 2, pp. 370
–382, 2006.

[20] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema): Measures and
counter-measures for smart cards,” in Smart Card Programming and Security,
pp. 200–210, Springer, 2001.

[21] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The em side—channel (s),”
in Cryptographic Hardware and Embedded Systems-CHES 2002, pp. 29–45, Springer,
2003.

[22] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing the secrets
of smart cards. Springer Publishing Company, Incorporated, 2010.

[23] G. Bouffard, T. Khefif, J.-L. Lanet, I. Kane, and S. Casanova Salvia, “Accessing
secure information using export file fraudulence,” in Risks and Security of Internet
and Systems (CRiSIS), 2013 International Conference on, pp. 1–5, Oct 2013.

[24] G. Bouffard, J. Iguchi-Cartigny, and J.-L. Lanet, “Combined Software and Hardware
Attacks on the Java Card Control Flow,” in Smart Card Research and Advanced
Applications (E. Prouff, ed.), vol. 7079 of Lecture Notes in Computer Science, pp. 283–
296, Springer Berlin Heidelberg, 2011.

[25] E. Faugeron, “Manipulating the Frame Information with an Underflow Attack,” in
Smart Card Research and Advanced Applications (CARDIS), to be published, 2014.



Bibliography 100

[26] M. Lackner, R. Berlach, J. Loinig, R. Weiss, and C. Steger, “Towards the Hardware
Accelerated Defensive Virtual Machine - Type and Bound Protection,” in Smart
Card Research and Advanced Applications (CARDIS) (S. Mangard, ed.), vol. 7771 of
Lecture Notes in Computer Science, pp. 1–15, Springer Berlin Heidelberg, 2013.

[27] G. Bouffard and J.-L. Lanet, “The Next Smart Card Nightmare,” in Cryptography
and Security: From Theory to Applications (D. Naccache, ed.), vol. 6805 of Lecture
Notes in Computer Science, pp. 405–424, Springer Berlin / Heidelberg, 2012.

[28] M. Lackner, R. Berlach, W. Raschke, R. Weiss, and C. Steger, “A Defensive Virtual
Machine Layer to Counteract Fault Attacks on Java Cards,” in Information Secu-
rity Theory and Practice. Security of Mobile and Cyber-Physical Systems, pp. 82–97,
Springer, 2013.

[29] G. Barbu, H. Thiebeauld, and V. Guerin, “Attacks on Java Card 3.0 Combining Fault
and Logical Attacks,” in Smart Card Research and Advanced Application (D. Goll-
mann, J.-L. Lanet, and J. Iguchi-Cartigny, eds.), vol. 6035 of Lecture Notes in Com-
puter Science, pp. 148–163, Springer Berlin Heidelberg, 2010.

[30] S. Hamadouche, G. Bouffard, J.-L. Lanet, B. Dorsemaine, B. Nouhant, A. Magloire,
and A. Reygnaud, “Subverting Byte Code Linker service to characterize Java Card
API,” Proceedings of the 7th Conference on Network and Information Systems Secu-
rity (SAR-SSI), pp. 122–128, 2012.

[31] W. Mostowski and E. Poll, “Malicious Code on Java Card Smartcards: Attacks and
Countermeasures,” in Smart Card Research and Advanced Applications (G. Grimaud
and F.-X. Standaert, eds.), vol. 5189 of Lecture Notes in Computer Science, pp. 1–16,
Springer Berlin / Heidelberg, 2008.

[32] O. Vertanen, “Java Type Confusion and Fault Attacks,” in Fault Diagnosis and
Tolerance in Cryptography (L. Breveglieri, I. Koren, D. Naccache, and J.-P. Seifert,
eds.), vol. 4236 of Lecture Notes in Computer Science, pp. 237–251, Springer Berlin
/ Heidelberg, 2006.

[33] J. Iguchi-Cartigny and J.-L. Lanet, “Developing a Trojan applets in a smart card,”
Journal in Computer Virology, vol. 6, pp. 343–351, 2010.

[34] E. Vetillard and A. Ferrari, “Combined Attacks and Countermeasures,” in Smart
Card Research and Advanced Application (D. Gollmann, J.-L. Lanet, and J. Iguchi-
Cartigny, eds.), vol. 6035 of Lecture Notes in Computer Science, pp. 133–147, Springer
Berlin Heidelberg, 2010.

[35] G. Barbu, G. Duc, and P. Hoogvorst, “Java Card Operand Stack: Fault Attacks,
Combined Attacks and Countermeasures,” in Smart Card Research and Advanced
Applications (E. Prouff, ed.), vol. 7079 of Lecture Notes in Computer Science, pp. 297–
313, Springer Berlin Heidelberg, 2011.

[36] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,” in Cryp-
tographic Hardware and Embedded Systems-CHES 2002, pp. 2–12, Springer, 2003.



Bibliography 101

[37] A. Krieg, J. Grinschgl, C. Steger, R. Weiss, and J. Haid, “A Side Channel Attack
Countermeasure using System-On-Chip Power Profile Scrambling,” in On-Line Test-
ing Symposium (IOLTS), 2011 IEEE 17th International, pp. 222 –227, July 2011.

[38] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining smart-card security un-
der the threat of power analysis attacks,” Computers, IEEE Transactions on, vol. 51,
no. 5, pp. 541–552, 2002.

[39] A. Sere, J. Iguchi-Cartigny, and J.-L. Lanet, “Automatic detection of fault attack and
countermeasures,” in Proceedings of the 4th Workshop on Embedded Systems Security,
WESS ’09, (New York, NY, USA), pp. 7:1–7:7, ACM, 2009.

[40] A. Sere, J. Iguchi-Cartigny, and J.-L. Lanet, “Checking the Paths to Identify Mutant
Application on Embedded Systems,” in Future Generation Information Technology
(T.-h. Kim, Y.-h. Lee, B.-H. Kang, and D. Slezak, eds.), vol. 6485 of Lecture Notes
in Computer Science, pp. 459–468, Springer Berlin / Heidelberg, 2010.

[41] A. Sere, J. Iguchi-Cartigny, and J.-L. Lanet, “Evaluation of Countermeasures Against
Fault Attacks on Smart Cards,” International Journal of Security and Its Applica-
tions, Vol.5 No.2, pp. 49–61, April 2011.

[42] T. Razafindralambo, G. Bouffard, B. Thampi, and J.-L. Lanet, “A Dynamic Syntax
Interpretation for Java Based Smart Card to Mitigate Logical Attacks,” in Recent
Trends in Computer Networks and Distributed Systems Security, vol. 335 of Commu-
nications in Computer and Information Science, pp. 185–194, Springer Berlin Hei-
delberg, 2012.

[43] J. Dubreuil, G. Bouffard, J.-L. Lanet, and J. Cartigny, “Type Classification against
Fault Enabled Mutant in Java Based Smart Card,” in Availability, Reliability and
Security (ARES), 2012 Seventh International Conference on, pp. 551 –556, aug. 2012.

[44] J. Dubreuil, G. Bouffard, B. N. Thampi, and J.-L. Lanet, “Mitigating Type Confusion
on Java Card,” International Journal of Secure Software Engineering (IJSSE), vol. 4,
no. 2, pp. 19–39, 2013.

[45] G. Morana, E. Tramontana, and D. Zito, “Detecting Attacks on Java Cards by Finger-
printing Applets,” 2012 IEEE 21st International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, vol. 0, pp. 359–364, 2013.

[46] G. Bouffard, B. Thampi, and J.-L. Lanet, “Detecting laser fault injection for smart
cards using security automata,” in Security in Computing and Communications
(S. Thampi, P. Atrey, C.-I. Fan, and G. Perez, eds.), vol. 377 of Communications
in Computer and Information Science, pp. 18–29, Springer Berlin Heidelberg, 2013.

[47] D. Karaklajic, J.-M. Schmidt, and I. Verbauwhede, “Hardware designer’s guide to
fault attacks,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 21, pp. 2295–2306, Dec 2013.

[48] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and F. Regazzoni, “Low-cost software
countermeasures against fault attacks: Implementation and performances trade offs,”
2012.



Bibliography 102

[49] J. van Woudenberg, M. Witteman, and F. Menarini, “Practical optical fault injec-
tion on secure microcontrollers,” in Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2011 Workshop on, pp. 91–99, Sept 2011.

[50] Sun Microsystems, “Java Card System Protection Profile,” tech. rep., April 2010.
Version 2.6.

[51] M. Lackner, R. Berlach, M. Hraschan, R. Weiss, and C. Steger, “A defensive Java
Card virtual machine to thwart fault attacks by microarchitectural support,” in Inter-
national Conference on Risks and Security of Internet and Systems (CRiSIS), pp. 1–8,
Oct 2013.

[52] M. Lackner, R. Berlach, R. Weiss, and C. Steger, “Countering Type Confusion and
Buffer Overflow Attacks on Java Smart Cards by Data Type Sensitive Obfuscation,”
in Proceedings of the First Workshop on Cryptography and Security in Computing
Systems, pp. 19–24, ACM, 2014.

[53] R. Berlach, M. Lackner, C. Steger, J. Loinig, and E. Haselsteiner, “Memory-efficient
on-card byte code verification for java cards,” in Proceedings of the First Workshop on
Cryptography and Security in Computing Systems, CS2 ’14, (New York, NY, USA),
pp. 37–40, ACM, 2014.

[54] R. G. Ragel and S. Parameswaran, Microarchitectural Support for Security and Relia-
biliy - An Embedded Systems Perspective. VDM Verlag Dr. Mueller Aktiengesellschaft
Co. KG, Dudweiler Landstr. 125a, Saarbrücken, 2008.

[55] M. Lackner, R. Berlach, M. Hraschan, R. Weiss, and C. Steger, “A Fault Attack
Emulation Environment to Evaluate Java Card Virtual-Machine Security,” in 17th
Euromicro Conference on Digital System Design (DSD), 2014 - in press.

[56] Intel, MCS 51 Microcontroller Family User’s Manual. February 1994.

[57] IEEE, Open SystemC Language Reference Manual IEEE Std 1666-2005, IEEE.

[58] M. Lackner, M. Lang, and P. Randeu, “Architectural Design Document - 8051 Sys-
temC Project Team,” Institute for Technical Informatics, Graz University of Tech-
nology, May 2009.

[59] U. S. o. A. Department of Defense, MVery High Speed Integrated Circuits - VHSIC.
Final Program Report 1980 - 1990, September 1990.

[60] D. . C. G. Oregano Systems, MC8051 IP Core, Synthesizeable VHDL Microcontroller
IP-Core, User Guide. Version 1.1, June 2002.

[61] S. Oberauer, “CAP File Enhancement to Enable a Defensive Virtual Machine,” In-
stitut for Technical Informatics, Graz University of Technology, 2013.

[62] A. F. Rodriguez, L. H. Encinas, A. M. Munoz, and B. Alarcos, “A toolbox for
dpa attacks to smart cards,” in International Joint Conference SOCO’13-CISIS’13-
ICEUTE’13 (l. Herrero, B. Baruque, F. Klett, A. Abraham, V. SnÃ¡Å¡el, A. C.
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