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Abstract

In this thesis we consider the application of boundary integral equation methods to the
solution of boundary control problems governed by boundary value problems of linear
second order elliptic and parabolic partial differential equations. A difficulty when dealing
with Dirichlet control problems is the choice of the control space. In the literature almost
all contributions consider L2(Γ) as the control space. But these approaches require to con-
sider the state equation within an ultra-weak variational formulation, and an adjoint state
variable to be sufficiently regular. Hence the considered domain has to be either polygonal
or polyhedral but convex, or sufficiently smooth. In this work the controls are considered
in the related energy spaces. This approach allows to consider a standard variational for-
mulation. Moreover, it shows the proper mapping properties which link the Dirichlet and
Neumann data in the optimality condition by using some appropriate operators. In the case
of box constraints the optimality condition is a variational inequality in H1/2(Γ) which can
be written as a Signorini boundary value problem with bilateral constraints.

Since the unknown function in boundary control problems is to be found on the boundary
of the computational domain, the use of boundary element methods seems to be a natu-
ral choice. To the best of our knowledge, there are only few results known on the use of
boundary integral equations to solve optimal boundary control problems. The most popu-
lar approaches are based on the use of finite element methods which require a discretization
of the computational domain. In contrast, the use of boundary element methods requires
only a discretization of the boundary. In principle, the use of boundary integral equations
is based on an explicit knowledge of fundamental solutions of the considered partial differ-
ential equations. Then, the solutions of both the state and adjoint boundary value problems
are represented by surface and volume potentials. Since the state enters the adjoint prob-
lem as volume density, we apply integration by parts to replace these volume potentials
by surface potentials. This results in a system of boundary integral equations which in-
volve the standard Laplace and Bi-Laplace boundary integral operators. In the case of
parabolic boundary control problems we first transfer the adjoint state equations to the
heat equations and then use an auxiliary function which relates to the fundamental solu-
tion of the heat equation, to get rid of volume potentials. The obtained system of boundary
integral equations is similar to the system in the elliptic case. We prove the unique solv-
ability and study the boundary element discretizations of the optimality system. Piecewise
linear boundary elements are used to approximate the Dirichlet control and piecewise con-
stant approximations for Neumann control. We prove stability and related error estimates.
While the non-symmetric boundary integral formulation needs an additional condition on
the discretization to ensure stability, we can prove the stability of the symmetric bound-
ary element approach without any condition on the discretization. We consider only the
symmetric formulation in the case of parabolic boundary control problems. Note that the
primal-dual active set strategy is employed to solve related variational inequalities. Some
numerical examples are tested to confirm the theoretical results.



Zusammenfassung

In dieser Arbeit betrachten wir die Anwendung von Randintegralmethoden zur Lösung
von Randkontrollproblemen, wobei die Nebenbedingungen durch lineare partielle ellipti-
sche und parabolische Differentialgleichungen zweiter Ordnung beschrieben werden. Eine
Schwierigkeit besteht dabei in der Wahl des Funktionenraumes für die Kontrolle. Fast alle
Beiträge in der Literatur verwenden L2(Γ) als Kontrollraum. Diese Ansätze benötigen
aber eine ultraschwache Formulierung der Zustandsgleichung und genügend Regularität
der adjungierten Zustandsvariablen. Dementsprechend muss das betrachtete Gebiet ent-
weder polygonal oder polyhedral und konvex, oder glatt genug sein. In dieser Arbeit wird
die Kontrolle im entsprechenden Energieraum betrachtet. Dieser Ansatz erlaubt es, die
übliche Variationsformulierung zu verwenden. Weiters enthält die Optimalitätsbedingung
eine Dirichlet zu Neumann Abbildung welche die korrekten Abbildungseigenschaften wi-
derspiegelt.

Für die Lösung von Randkontrollproblemen erscheint die Randelementmethode als ein
geeignetes Diskretisierungsverfahren. Im Gegensatz zu Finiten Element Methoden ver-
langt die Randelementmethode nur eine Diskretisierung des Randes. Bei Kenntnis einer
Fundamentallösung können die Lösungen der Zustandsgleichung und der adjungierten Zu-
standsgleichung durch Oberflächenpotentiale und Volumenpotentiale beschrieben werden.
Da die Zustandsvariable jedoch in der adjungierten Gleichung als Volumenpotential zu
berücksichtigen ist, erfolgt durch partielle Integration eine Rückführung auf Oberflächen-
potentiale. Dies resultiert in einem System von Randintegralgleichungen mit Laplace und
Bi-Laplace Randintegraloperatoren. Im Falle eines parabolischen Randkontrollproblems
wird die adjungierte Zustandsgleichung zunächst in eine Wärmeleitgleichung transfor-
miert. Um das Volumenpotential zu vermeiden, wird im Anschluss eine auf der Funda-
mentallösung der Wärmeleitgleichung basierende Hilfsfunktion verwendet. Das resultie-
rende System entspricht dem System für den elliptischen Fall. Wir beweisen die eindeutige
Lösbarkeit und studieren die Randelementdiskretisierung des Optimalitätssystems. Die
Dirichletkontrolle wird mittels linearer Formfunktionen approximiert und die Neumann-
kontrolle wird durch stückweise konstante Formfunktionen. Wir beweisen Stabilität und
zugehörige Fehlerabschätzungen. Während für die Stabilität der nicht-symmetrischen For-
mulierung zusätzliche Anforderungen an die Diskretisierung gestellt werden müssen, kann
die Stabilität der symmetrischen Formulierung ohne zusätzliche Anforderungen bewiesen
werden. Für parabolische Probleme beschränken wir uns auf die symmetrische Formu-
lierung. Für die Lösung der auftretenden Variationsungleichungen verwenden wir die
primal-dual aktive Mengen-Strategie. Numerische Beispiele bestätigen die theoretischen
Ergebnisse.
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1 INTRODUCTION

Optimal control problems subject to partial differential equations (PDEs) with additional
constraints on the controls play an important role in many practical applications, see [28,
38, 66] and references given therein. In particular, for Dirichlet boundary control problems
in fluid mechanics, consult [22, 25]. Here, let us consider some examples of optimal
heating problems, [66].

Optimal stationary heating. Consider the equilibrium distribution of the absolute tem-
perature u : Ω → R+ inside a body Ω ⊂ R3 which is determined by the stationary heat
equation

−div(κ∇u) = f , (1.1)

where κ is the body’s thermal conductivity, and f represents possible heat sources. In the
simplest case, κ is a positive constant. We can apply a heat source f = z (the control) in the
domain Ω. The goal is to find the control z in such a way that the temperature distribution
u in Ω (the state) is the best possible approximation to a desired temperature distribution
u in Ω. Problems of this kind arise if the body Ω is heated by electromagnetic induction
or by microwaves. Assuming that the boundary temperature vanishes, we can model an
optimal control problem as follows:

Minimize J(u,z) =
1
2

∫
Ω

[u(x)−u(x)]2 dx+
α
2

∫
Ω

[z(x)]2 dx (1.2)

subject to the PDE constraints, for κ = 1,

−∆u(x) = z(x) in Ω, (1.3)
u(x) = 0 on Γ = ∂Ω, (1.4)

and the pointwise control constraints

z1(x) ≤ z(x) ≤ z2(x) in Ω. (1.5)

The constant α ≥ 0 can be seen as a regularization parameter. It has the effect that possible
optimal controls show improved regularity properties. The cost functional J(u,z) to be
minimized is called the objective functional. Observe that the control acts in the volume
domain Ω. Hence we have a distributed control problem.

1



2 1 Introduction

In a similar way, the control can act at each point of the boundary Γ. The control is no
longer distributed in the domain Ω, we have now a boundary control problem. The problem
leads to the minimization of the objective functional

J(u,z) =
1
2

∫
Ω

[u(x)−u(x)]2 dx+
α
2
‖z‖2

V (1.6)

subject to the PDE constraints

−∆u(x) = f (x) in Ω, (1.7)
u(x) = z(x) on Γ, (1.8)

and
z1(x) ≤ z(x) ≤ z2(x) on Γ. (1.9)

Here f (x) is a given function. The second term in (1.6), ‖z‖2
V describes either the costs

of the control or represents some regularization, where V is an appropriate Hilbert space
to be specified. In a slightly more realistic application, one might only be able to control
the temperature on some part Γc of Γ with Γc ( Γ. In this case, we need an additional
boundary condition on the remaining part Γ \Γc of the boundary, e.g., a homogeneous
Neumann boundary condition which describes an isolation.

Optimal nonstationary heating. The temperature is now changing with the time t. Then
the temperature distribution is modeled by the transient heat equation

∂tu−div(κ∇u) = f , (1.10)

where the heat sources f and the temperature u, in general, depend on time as well as on
the space coordinates. They are defined in the space-time cylinder Q := Ω× (0,T ), where
T > 0 represents a final time. We know the temperature distribution at the initial time t = 0,
u(·,0) = u0, and we want to reach a temperature u at the final time t = T . The problem
then reads as follows:

Minimize J(u,z) =
1
2

∫
Ω

[u(x,T )−u(x)]2 dx+
α
2
‖z‖2

V , (1.11)

subject to

∂tu−∆u = 0 in Q, (1.12)
u = z on Σ := Γ× (0,T ), (1.13)

u(·,0) = u0 in Ω, (1.14)

and
z1(x, t) ≤ z(x, t) ≤ z2(x, t) on Σ. (1.15)
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Here the control z is considered in an appropriate Hilbert space V , e.g., V = L2(Σ). The
temperature distribution u fulfills a parabolic partial differential equation, where z controls
the temperature on the boundary. We thus have to deal with a linear-quadratic parabolic
boundary control problem.

The numerical analysis of the distributed control problems (1.2)-(1.5) by finite element
methods (FEMs) was considered in [46, 47, 55]. In particular, Meyer and Rösch derived
error estimates of order h2 for the controls in the L2 norm by using piecewise constant
controls, and of linear convergence in the L∞ norm by using piecewise linear controls.
For the approximation of the discretization for semilinear elliptic optimal control prob-
lems, see, e.g., [2, 9]. We refer to [13, 27, 54] for general linear-quadratic optimal control
problems.

For the Dirichlet boundary control problem, the choice of the function space for the control
is crucial. In [25], the Dirichlet boundary condition is considered in V ⊂ H1/2(Γ), where
the objective functional is the domain integral over the strain tensor of the velocity field u
satisfying the steady Navier-Stokes equations. To obtain smoother optimal solutions one
may consider H2(Γ) as a control space, see [30]. Note that such an approach requires a
sufficient regularity of the domain Ω which is assumed to be of the class C2,1. In [36],
several variational formulations of Dirichlet control problems are discussed. The most
popular choice is to consider L2 as control space. However, the associated partial differen-
tial equation of the state has to be considered within an ultra-weak variational formulation.
To include a Dirichlet boundary condition in L2(Γ) in a standard variational formulation,
one may approximate Dirichlet boundary control problems by a regularization which is
based on Robin boundary controls, see [7, 10, 29]. For the problem (1.6)-(1.9), a finite
element approach is considered in [51], where the energy norm is realized by using the
Steklov-Poincaré operator which links the Dirichlet control with the normal derivative of
the adjoint variable.

Numerical solutions of L2(Γ) Dirichlet boundary control problems by finite element ap-
proximations are considered in [11, 19, 42]. Casas and Raymond [11] present a finite
element analysis for piecewise linear approximations of the Dirichlet controls governed
by semilinear elliptic equations on two-dimensional convex polygonal domains Ω. They
prove an error estimate of the optimal control of order O(h1−1/p) for some p > 2 in the
L2(Γ) norm. In [42] May, Rannacher and Vexler consider the Dirichlet boundary control
without control constraints (1.6)-(1.8) in a L2 setting. They present error estimates for
the state and adjoint state and derive optimal error estimates in H−1/2(Γ) for the Dirichlet
control. For two- and three-dimensional smooth domains, an O(h

√
| logh|) bound for the

L2 error of the optimal control and state is proved in [19], which can be improved to O(h
3
2 )

under additional conditions in two space dimensions. In the case of a finite dimensional
Dirichlet control [67], Vexler derives an error estimate of the optimal control of quadratic
order for two-dimensional bounded polygonal domains.
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In a recent contribution [12], the Dirichlet and Neumann boundary control problems gov-
erned by a semilinear elliptic equation on a curved convex domain Ω ⊂ R2 are analyzed.
Casas and Sokolowski approximate the curved domain Ω by a polygonal domain Ωh and
consider the corresponding infinite dimensional control problems in Ωh. Some error esti-
mates for the related controls are derived. While for the Neumann control the order of the
approximation is O(h

5
3 ), a linear order is proved in the case of Dirichlet control only.

Let us briefly recall some publications of parabolic optimal control problems. Such opti-
mal control problems with observations in the domain Ω or on the boundary Γ are con-
sidered in [38] from an analytic point of view. In [44, 45], distributed parabolic optimal
control problems without and with control constraints were considered. The authors es-
tablished several a priori error estimates which correspond to various types of control dis-
cretizations. For the analysis of the parabolic Dirichlet boundary control problems, we
cite [3, 4], see also [36, 38]. In [68, 69], a numerical Galerkin method was proposed to
solve a parabolic Neumann control problem. This approximation was based on a backward
discretization with respect to time, and for every time level t = nht , the author proved the
order O((log T

ht
)2(ht +h2

x)) of the error of the control in L∞(Γ). For the control and/or state
constrained case of the parabolic Neumann control problems, see [53, 56].

This thesis is concerned with the application of boundary integral equation methods to
optimal boundary control problems. The controls are considered in the related energy
spaces. This approach allows to consider the standard variational formulation. There are
several papers to deal with optimal boundary control problems by FEMs, see the discussion
above. But to our knowledge there are only few results on the use of boundary integral
equations to solve optimal boundary control problems, see, e.g., [70] for the problem with
point observations. While the finite element approaches require a discretization of the
computational domain, the use of boundary integral formulations and boundary element
methods (BEMs) requires only a discretization of the boundary. Hence, BEMs can be
easier to deal with a complicated domain. Moreover, the boundary element solution exactly
fulfills the considered partial differential equation inside the domain. Since the unknown
function in the optimal boundary control problems is to be sought on the boundary of the
computational domain, the use of boundary element methods seems to be a natural choice.
However, this approach can only be employed if a fundamental solution of the underlying
partial differential equation is available.

Then, by using the potential theory, the solutions of the related state and adjoint partial
differential equations can be represented by surface and volume potentials. Applying
the proper limiting processes, a system of boundary integral equations is obtained. The
first approach is based on the first boundary integral equations of the state and the ad-
joint partial differential equations. The system of boundary integral equations results in a
non-symmetric variational formulation. We prove unique solvability of the related elliptic
variational inequality of the first kind. Note that the cost term of the control in the en-
ergy space H1/2(Γ) is characterized by using the Steklov-Poincasé operator S which links
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the Dirichlet with the Neumann data. For Galerkin boundary element methods, we use a
non-symmetric representation of the operator S. This results in a non-symmetric Galerkin
boundary element approximation which requires the use of appropriate boundary element
spaces to ensure stability. As a second approach, we consider the second boundary integral
equation of the adjoint problem. The obtained system of boundary integral equations re-
sults in a symmetric variational formulation which is stable for standard boundary element
discretization. Moreover, we use the symmetric Galerkin boundary element approxima-
tion of the Steklov-Poincasé S. We then derive error estimates which are confirmed by
numerical examples. For the mixed boundary control problems where the control acts on
a part Γ0 ⊂ Γ of the boundary Γ, we consider the symmetric variational formulation by
using the so-called Dirichlet to Neumann map S. For an overview on boundary integral
equations and boundary element methods, see, e.g., [31, 43, 57, 59, 64].

For parabolic boundary control problems, similarly, the related state and the adjoint state
can be represented by some layer heat potentials, and Newton heat potentials. Since the
final state appears in a representation of the adjoint boundary value problem, we modify
the representation by using an auxiliary function which relates to the fundamental solution
of the heat equation. This results in a system of boundary integral equations. We consider
only the Galerkin boundary element approximation of the symmetric formulation which is
stable for standard boundary trial spaces. In particular, we choose an approximation for the
Dirichlet control which is piecewise linear and continuous in space and piecewise constant
in time, and for the Neumann control an approximation which is piecewise constant both
in space and in time, see [15]. We derive related error estimates and test some numerical
examples.

Outline

In Chapter 2 we present some mathematical preliminaries. We recall the concept of
Sobolev spaces which are used for boundary and finite element methods. Then we in-
troduce some finite dimensional trial spaces and discuss their approximation properties.

In Chapter 3 we consider a Dirichlet boundary control problem associated to the Poisson
equation with box control constraints. The Dirichlet control is considered in the energy
space H1/2(Γ), where the energy norm is realized by using the Steklov-Poincaré operator.
The primal and adjoint equations are written as boundary integral equations. The optimal-
ity condition results in a variational inequality which is studied in a non-symmetric or a
symmetric formulation. We also discuss related Galerkin boundary element methods.

In Chapter 4 an elliptic mixed boundary control problem is considered with control con-
straints. The Dirichlet control acts on a part ΓD of the boundary Γ where the Neumann
boundary condition is given on the remaining part ΓN := Γ\ΓD. In order to avoid volume
potentials, the idea of integration by parts as in Chapter 3 is used. We investigate a system
of boundary integral equations which is related to the Steklov-Poincaré operator.



6 1 Introduction

Chapter 5 is devoted to the analysis of a parabolic Dirichlet boundary control problem
with control constraints. We setup a system of boundary integral equations in a symmet-
ric formulation which is similar to the elliptic version as discussed in Chapter 3. The
unique solvability of the related variational inequality and a related error analysis of the
Galerkin discretization are based on the mapping properties of the standard heat potentials
and new “bi-heat” potentials. In addition, the boundary element approach can be applied to
a parabolic Neumann boundary control problem as well. Then we give some main results
for this problem.

Finally, in Chapter 6 we give some conclusions and discussions.



2 MATHEMATICAL PRELIMINARIES

2.1 Sobolev spaces and trace theory

In this section we recall some relevant Sobolev spaces as used for the analysis of boundary
and finite element methods. A brief summary of the basic definitions and results of Sobolev
spaces are presented which suffice for our purposes. The main references of this section
are the standard books [1, 31, 39, 40, 43].

2.1.1 Isotropic Sobolev spaces

Definition 2.1. Let Ω be an open subset of Rd . For k ∈ N0 the Sobolev space W k
2 (Ω) is

defined by

W k
2 (Ω) := {u ∈ L2(Ω) : Dαu ∈ L2(Ω) for all multi-indices α ∈ Nd

0 with |α| ≤ k}.

The Sobolev space W k
2 (Ω) is equipped with the norm

‖u‖W k
2 (Ω) :=

 ∑
|α|≤k

∫
Ω

|Dαu(x)|2 dx

1/2

(2.1)

and it is a Hilbert space with respect to the inner product

〈u,v〉W k
2 (Ω) := ∑

|α |≤k

∫
Ω

Dαu(x)Dαv(x)dx.

For the case of a fractional order s = k + µ with k ∈ N0 and µ ∈ (0,1), the Sobolev space
W s

2 (Ω) is defined by

W s
2 (Ω) := {u ∈W k

2 (Ω) : ‖u‖W s
2 (Ω) < ∞}

where

‖u‖W s
2 (Ω) :=

‖u‖2
W k

2 (Ω) + ∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|2

|x− y|d+2µ dxdy

1/2

(2.2)

7



8 2 Mathematical preliminaries

is the Sobolev-Slobodetskii norm. Again, W s
2 (Ω) is a Hilbert space with respect to the inner

product

〈u,v〉W s
2 (Ω) := 〈u,v〉W k

2 (Ω) + ∑
|α|=k

∫
Ω

∫
Ω

(Dαu(x)−Dαu(y))(Dαv(x)−Dαv(y))
|x− y|d+2µ dxdy.

Clearly, for k = 0 we have W 0
2 (Ω) = L2(Ω).

In what follows we introduce Sobolev spaces Hs(Ω) which may be equivalent to the
Sobolev spaces W s

2 (Ω) when some regularity assumptions on Ω are satisfied. The defi-
nition of the Sobolev spaces Hs(Ω) is based on the Fourier transform

û(ξ ) := (Fu)(ξ ) = (2π)−d/2
∫
Rd

e−i〈x,ξ 〉u(x)dx, ξ ∈ Rd,

for u ∈ L1(Rd). Now let S(Rd) be the Schwartz space of rapidly decreasing functions in
C∞(Rd),

S(Rd) := {ϕ ∈C∞(Rd) : sup
x∈Rd

|xαDβ ϕ(x)| < ∞ for all multi-indices α and β},

and let S ′(Rd) be its dual space. The Sobolev space Hs(Rd) is defined by

Hs(Rd) := {u ∈ S ′(Rd) : J su ∈ L2(Rd)},

where J s : S(Rd) →S(Rd) is the Bessel potential operator

J su(x) := (2π)d/2
∫
Rd

(1+ |ξ |2)s/2û(ξ )ei〈x,ξ 〉 dξ , x ∈ Rd.

The Sobolev space Hs(Rd) is equipped with the norm

‖u‖Hs(Rd) := ‖J su‖L2(Rd) =

 ∫
Rd

(1+ |ξ |2)s|û(ξ )|2 dξ

1/2

. (2.3)

For all 0 ≤ s ∈ R, the Sobolev spaces Hs(Rd) and W s
2 (Rd) coincide, see for example [43,

Theorem 3.16].

For a domain Ω ⊂ Rd we introduce the following definitions of Sobolev spaces.

Definition 2.2. Let Ω be an open subset of Rd . We define the Sobolev space Hs(Ω) for
s ∈ R by restriction,

Hs(Ω) := {u = ũ|Ω : ũ ∈ Hs(Rd)},
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with the norm
‖u‖Hs(Ω) := inf

ũ∈Hs(Rd),ũ|Ω=u
‖ũ‖Hs(Rd).

Further,
H̃s(Ω) := C∞

0 (Ω)
‖·‖Hs(Rd ), Hs

0(Ω) := C∞
0 (Ω)

‖·‖Hs(Ω) .

To see the connection of the above definitions of Sobolev spaces, we need to make some
regularity assumptions on the domain Ω. Let us recall the definition of the classes Ck,κ ,
k ∈ N0, κ ∈ [0,1] as in [31, Section 3.3]. Given a point y = (y1, ...,yd) ∈ Rd , we shall
write

y = (y′,yd)

where
y′ = (y1, ...,yd−1) ∈ Rd−1.

Definition 2.3. A bounded domain Ω in Rd is said to be of class Ck,κ (in short Ω ∈Ck,κ )
if the following properties are satisfied:

i. There exists a finite number p of orthogonal linear transformations T(r) (i.e. d × d
orthogonal matrices) and the same number of points x(r) ∈ Γ and functions a(r)(y′),
r = 1, ..., p, defined on the closures of the (d −1)-dimensional ball,

Q = {y′ ∈ Rd−1 : |y′| < δ} (2.4)

where δ > 0 is a fixed constant. For each x ∈ Γ there is at least one r ∈ {1, ..., p}
such that

x = x(r) +T(r)(y
′,a(r)(y

′)). (2.5)

ii. The functions a(r) belong to Ck,κ(Q).

iii. There exists a positive number ε such that for any r ∈ {1, ..., p} the open set

B(r) := {x(r) +T(r)y : y = (y′,yd),y′ ∈ Q and |yd| < ε}

is the union of the sets

U−
(r) = B(r)∩Ω

= {x = x(r) +T(r)y : y = (y′,yd),y′ ∈ Q and a(r)(y
′)− ε < yd < a(r)(y

′)},
U+

(r) = B(r)∩ (Rd \Ω)

= {x = x(r) +T(r)y : y = (y′,yd),y′ ∈ Q and a(r)(y
′) < yd < a(r)(y

′)+ ε},

and

Γ(r) = B(r)∩∂Ω = {x = x(r) +T(r)(y
′,a(r)(y

′)) : y′ ∈ Q}.
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The boundary surface Γ = ∂Ω is said to be in the class Ck,κ if Ω ∈ Ck,κ , and in short
we write Γ ∈ Ck,κ . In the special case, when Γ ∈ C0,1, the boundary is called a Lipschitz
boundary and Ω is called a Lipschitz domain. Note that a Lipschitz domain may be un-
bounded. For example, if Ω is a Lipschitz domain, then its complement Rd \Ω is also a
Lipschitz domain.

The relations among the above Sobolev spaces can be seen from the following theorem,
see for example [43, Section 3].

Theorem 2.1. Let Ω be a Lipschitz domain. For s ≥ 0 we have

i. W s
2 (Ω) = Hs(Ω).

ii. H̃s(Ω) ⊂ Hs
0(Ω).

iii. H̃s(Ω) = Hs
0(Ω) for s /∈

{1
2 , 3

2 , 5
2 , ...

}
.

Moreover, for all s ∈ R

H̃s(Ω) = [H−s(Ω)]′, Hs(Ω) = [H̃−s(Ω)]′.

Sobolev spaces on the boundary

In what follows, we assume that Ω is a Lipschitz domain, unless stated otherwise.

Let L2(Γ), s = 0, be the completion of C0(Γ), the space of all continuous functions on Γ,
with respect to the norm

‖u‖L2(Γ) :=

∫
Γ

|u(x)|2 dsx

1/2

. (2.6)

This is a Hilbert space with the inner product

〈u,v〉L2(Γ) :=
∫
Γ

u(x)v(x)dsx.

For 0 < s < 1 we define Hs(Γ) to be the completion of C0(Γ) with respect to the Sobolev-
Slobodetskii norm

‖u‖Hs(Γ) :=

‖u‖2
L2(Γ) +

∫
Γ

∫
Γ

|u(x)−u(y)|2

|x− y|d−1+2s dsx dsy

1/2

. (2.7)

Again, Hs(Γ) is a Hilbert space equipped with the inner product

〈u,v〉Hs(Γ) := 〈u,v〉L2(Γ) +
∫
Γ

∫
Γ

(u(x)−u(y))(v(x)− v(y))
|x− y|d−1+2s dsx dsy.
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For general s ∈ R, a regularity assumption for the boundary Ω ∈ Ck,κ is required. Let us
recall the parametric representation (2.5)

x = x(r) +T(r)(y
′,a(r)(y

′)) for y′ ∈ Q,r = 1, ..., p.

Then, for s ∈ R with 0 ≤ s < k +κ for noninteger k +κ or 0 ≤ s ≤ k +κ for integer k +κ
we define the Sobolev space Hs(Γ) by

Hs(Γ) := {u ∈ L2(Γ) : u(x(r) +T(r)(y
′,a(r)(y

′))) ∈ Hs(Q),r = 1, ..., p}

equipped with the norm

‖u‖Hs(Γ) :=

(
p

∑
r=1

‖u(x(r) +T(r)(y
′,a(r)(y

′)))‖2
Hs(Q)

)1/2

. (2.8)

This space is a Hilbert space with the inner product

〈u,v〉Hs(Γ) :=
p

∑
r=1

〈u(x(r) +T(r)(y
′,a(r)(y

′))),v(x(r) +T(r)(y
′,a(r)(y

′)))〉Hs(Q),

see [31, Section 4.2].

Note that, for 0 < s < 1, the Sobolev norms as defined in (2.7) and (2.8) are equivalent.

For negative order, the Sobolev space Hs(Γ) for s < 0 is defined as the dual space of
H−s(Γ),

Hs(Γ) := [H−s(Γ)]′

with respect to the L2(Γ) inner product, i.e., the completion of L2(Γ) with respect to the
associated norm

‖u‖Hs(Γ) := sup
06=v∈H−s(Γ)

〈u,v〉L2(Γ)

‖v‖H−s(Γ)
, (2.9)

and to the duality pairing

〈u,v〉Γ := 〈u,v〉L2(Γ) =
∫
Γ

u(x)v(x)dsx. (2.10)

For the study of the mixed boundary control problems we further need to define some
Sobolev spaces on an open part of the boundary Γ, see [64, p.37]. Let Γ0 ⊂ Γ be some
open part of a sufficient smooth boundary Γ = ∂Ω. For s ≥ 0 we define the Sobolev
spaces

Hs(Γ0) := {v = ṽ|Γ0 : ṽ ∈ Hs(Γ)},
H̃s(Γ0) := {v = ṽ|Γ0 : ṽ ∈ Hs(Γ), suppṽ ⊂ Γ0}
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with the norm
‖v‖Hs(Γ0) := inf

ṽ∈Hs(Γ):ṽ|Γ0
=v

‖ṽ‖Hs(Γ).

For s < 0 we define the appropriate Sobolev spaces by duality with respect to the L2(Γ0)
inner product,

Hs(Γ0) := [H̃−s(Γ0)]′, H̃s(Γ0) := [H−s(Γ0)]′.

Remark 2.1. For a Lipschitz domain Ω, we have to assume |s| ≤ 1 to ensure the above
definitions and statements concerning the Sobolev spaces defined on subsets of the bound-
ary Γ = ∂Ω. For the case |s| > 1 stronger regularity conditions of the boundary need to
be assumed, i.e., Γ ∈Ck,1, k ∈ N0 for |s| ≤ k +1, see [31, Section 4.3].

Moreover, let Γ be a closed boundary which is piecewise smooth,

Γ =
J∪

i=1

Γi, Γi ∩Γ j = /0 for i 6= j.

We define for s > 0 the space Hs
pw(Γ) as the space of piecewise smooth functions

Hs
pw(Γ) := {v ∈ L2(Γ) : v|Γi ∈ Hs(Γi), i = 1, ...,J}

with the norm

‖v‖Hs
pw(Γ) :=

{
J

∑
i=1

‖v|Γi‖
2
Hs(Γi)

}1/2

while for s < 0 we have

Hs
pw(Γ) :=

J

∏
j=1

H̃s(Γ j)

with the norm

‖w‖Hs
pw(Γ) :=

J

∑
j=1

‖w|Γ j‖H̃s(Γ j)
.

Lemma 2.1. For w ∈ Hs
pw(Γ) and s < 0 we have

‖w‖Hs(Γ) ≤ ‖w‖Hs
pw(Γ).

Proof. See [64, Lemma 2.20].
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2.1.2 Anisotropic Sobolev spaces

In this subsection, we briefly recall some definitions and properties of anisotropic Sobolev
spaces for studying parabolic boundary control problems, see [15, 40].

Let Ω ⊂ Rd be a bounded Lipschitz domain with boundary Γ = ∂Ω. For a fixed real
number T > 0, we write

I := (0,T ), Q := Ω× I, Σ := Γ× I.

Let X be a Banach space with the norm ‖ · ‖X . We define L2(I;X) as the space of all
measurable functions u : [0,T ] → X with

‖u‖L2(I;X) :=

 T∫
0

‖u(·, t)‖2
X dt

1/2

< ∞.

Let
û(x,τ) :=

1√
2π

∫
R

e−itτu(x, t)dt

be the Fourier transform of u with respect to the time variable, we have

u ∈ Hs(R;L2(Ω)) ⇔ (1+ |τ|2)s/2û ∈ L2(R;L2(Ω)) = L2(Ω×R).

The Sobolev space Hr,s(Rd ×R) for r,s ≥ 0, is defined by

Hr,s(Rd ×R) := L2(R;Hr(Rd))∩Hs(R;L2(Rd)),

see [15], with the natural norms defined in these spaces of Hilbert space valued distribu-
tions. We have

‖u‖2
Hr,s(Ω×R) :=

∫
R

(
‖û(·,τ)‖2

Hr(Ω) +(1+ |τ|2)s‖û(·,τ)‖2
L2(Ω)

)
dτ.

With r ≥ 0 and s ∈ (0,1), an equivalent norm is given by

‖u‖2
Hr,s(Ω×R) =

∫
R

‖u(·, t)‖2
Hr(Ω) dt +

∫
R

∫
R

‖u(·, t)−u(·,τ)‖2
L2(Ω)

|t − τ|1+2s dt dτ.

For r,s ≤ 0 we define by duality Hr,s(Rd ×R) := [H−r,−s(Rd ×R)]′. By Hr,s(Q) we denote
the space of restrictions of elements of Hr,s(Rd ×R) to Q, equipped with the obvious
quotient norm.
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Moreover, we define the following subspaces:

H̃r,s(Q) := {u ∈ Hr,s(Ω× (−∞,T )) : u(x, t) = 0 for t < 0} ⊂ Hr,s(Ω× (−∞,T )),
(T )
H r,s(Q) := {u ∈ Hr,s(Ω× (0,∞)) : u(x, t) = 0 for t > T},

and

Hr,s
0, (Q) := L2(I;Hr

0(Ω))∩Hs(I;L2(Ω)) ⊂ Hr,s(Q).

It can be verified that the space Hr,s
0, (Q) coincides with the closure in Hr,s(Q) of the sub-

space of functions which vanish in a (spatial variable) neighbourhood of Σ;

Hr,s
,0 (Q) := L2(I;Hr(Ω))∩Hs

0(I;L2(Ω)) ⊂ Hr,s(Q),

which is the closure in Hr,s(Q) of the subspace of functions which vanish in the neighbour-
hood of t = 0 and of t = T ; and

Hr,s
0,0(Q) := Hr,s

0, (Q)∩Hr,s
,0 (Q),

which is the closure of D(Q) in Hr,s(Q). Similarly, H̃r,s
0 (Q) or

(T )
H r,s

0 (Q) are defined as
the closure in Hr,s(Q) of the subspace of functions which vanish in the (spatial variable)
neighbourhood of Σ and the neighbourhood of t = 0 or t = T , respectively.

The negative indexed Sobolev spaces are defined as the dual spaces with respect to the
L2(Σ) inner product as following, see [40, p.41], [15]:

H−r,−s(Q) := [Hr,s
0,0(Q)]′ for r,s ≥ 0,

and

H̃−r,−s(Q) := [
(T )
H r,s

0 (Q)]′ for all r,s with r− 1
2

/∈ Z.

Another important space is

V(Q) := L2(I;H1(Ω))∩H1(I;H−1(Ω)) = {u ∈ L2(I;H1(Ω)) : ∂tu ∈ L2(I;H−1(Ω))}.

The subspaces Ṽ(Q) ⊂ V(Ω× (−∞,0)) and V0(Q) ⊂ V(Q) are defined analogously. It is
true that, see [15, 39],

V(Q) is a dense subspace of H1, 1
2 (Q).
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Sobolev spaces on the boundary

Analogously we may first define the spaces Hr,s(Γ×R) and then Hr,s(Σ) by restriction to
Σ, see [40, Section 13.3].

The Sobolev space Hr,s(Γ×R) for r,s ≥ 0, is defined by

Hr,s(Γ×R) = {u : u ∈ L2(R;Hr(Γ)), |τ|sû ∈ L2(R;H0(Γ))}, (2.11)

equipped with the norm

‖u‖Hr,s(Γ×R) :=
(
‖u‖2

L2(R;Hr(Γ)) +‖|τ|sû‖2
L2(R;H0(Γ))

)1/2
.

We define Hr,s(Σ) as the restriction of Hr,s(Γ×R) to Σ, equipped with the corresponding
quotient norm. This definition is equivalent to

Hr,s(Σ) = L2(I;Hr(Γ))∩Hs(I;L2(Γ)).

For 0 < r,s < 1, an equivalent norm in Hr,s(Σ) is given by

‖u‖2
Hr,s(Σ) = ‖u‖2

L2(Σ) +
T∫

0

∫
Γ

∫
Γ

|u(x, t)−u(y, t)|2

|x− y|d−1+2r dt dsx dsy

+
T∫

0

T∫
0

‖u(·, t)−u(·,τ)‖2
L2(Γ)

|t − τ|1+2s dt dτ.

Since Hr
0(Γ) = Hr(Γ), there is no distinction between Hr,s

0, (Σ) and Hr,s(Σ), but we may
set

Hr,s
,0 (Σ) = L2(I;Hr(Γ))∩Hs

0(I;H0(Γ)).

The space H̃r,s(Σ) is defined analogously. By duality, for r,s ≥ 0,

H−r,−s(Σ) = [Hr,s
,0 (Σ)]′.

Remark 2.2. As discussed in Remark 2.1, for Lipschitz boundary Γ we have to assume
|r| ≤ 1 (s ∈ R arbitrary) to define the above anisotropic Sobolev spaces on the boundary.
For |r| > 1 stronger regularity assumptions on the boundary need to be assumed, first to
formulate Hr(Γ), then to define Hr,s(Γ×R) as in (2.11).
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Trace theorem

Theorem 2.2. For u ∈ Hr,s(Q) with r > 1
2 ,s ≥ 0, we may define:

∂ j

∂n j u on Σ if j < r− 1
2

(integer j ≥ 0),
∂ j

∂n j u ∈ Hµ j,ν j(Σ),

where
µ j

r
=

ν j

s
=

r− j− 1
2

r
(ν j = 0 if s = 0).

The linear map u → ∂ j

∂n j u is continuous,

Hr,s(Q) → Hµ j,ν j(Σ).

Here
∂
∂n

is the normal derivative on Σ, oriented toward the interior of Q.

We may also define, for s > 1
2 ,r ≥ 0,

∂ k

∂ tk u(x,0) on Ω if k < s− 1
2

(integer k ≥ 0),
∂ k

∂ tk u(x,0) ∈ H pk(Ω),

where

pk =
r
s

(
s− k− 1

2

)
.

The linear map u → ∂ k

∂ tk u(x,0) is continuous,

Hr,s(Q) → H pk(Ω).

Proof. See [40, Theorem 2.1].

Next we consider the trace of H̃1, 1
2 (Q) on the boundary Σ, see [15, Lemma 2.4].

Lemma 2.2. The trace map γ0 : u 7→ u|Σ is continuous and surjective from H̃1, 1
2 (Q) to

H
1
2 , 1

4 (Σ).

Remark 2.3. The traces on Σ have to be understood in a distributional sense, i.e., they are
defined by continuous extensions of the traces defined in the pointwise sense for smooth
functions.



2.2 Boundary elements 17

2.2 Boundary elements

For the approximate solution of boundary integral equations let us summarize some appro-
priate finite dimensional trial spaces. We recall some approximation properties in various
Sobolev spaces. We refer to [48, 64] for more details.

Let Γ = ∂Ω be a piecewise smooth Lipschitz boundary with Γ =∪J
j=1Γ j where any bound-

ary part Γ j can be smoothly mapped in a 1 to 1 fashion onto some parameter domain
Q ⊂ Rd−1: Γ j = χ j(Q). The domain Q can be (0,1) in the two dimensional case or a
unit square in the three dimensional case. We consider a decomposition of the parameter
domain Q into finite elements q j

` which correspond to an admissible decomposition of the
boundary part Γ j into boundary elements τ` = χ j(q

j
`). We denote by

∆` :=
∫
τ`

dsx, h` := ∆1/(d−1)
`

the volume and the local mesh size of the boundary element τ`, respectively. The (global)
mesh size is defined by

h := max
`

h`.

The boundary decomposition is called globally quasi-uniform if

h
min

`
h`

≤ cG

is satisfied with a global constant cG ≥ 1. Note, in the three dimensional case, the boundary
decomposition is called admissible if two neighboring boundary elements share either a
node or an edge, and it is called shape regular if there exists a constant cB such that

d` ≤ cB h` for all boundary elements τ`,

where d` := supx,y∈τ`
|x− y|.

Trial spaces
Let us recall some trial spaces Sdx

h (Γ) of local polynomials of degree dx. In particular we
will consider the trial space S0

h(Γ) of piecewise constant functions and the trial space S1
h(Γ)

of piecewise linear continuous functions:

S0
h(Γ) := span{ϕ0

k }
N
k=1, S1

h(Γ) := span{ϕ1
i }M

i=1,

where the basis functions ϕ0
k (x) are given by

ϕ0
k (x) =

{
1 for x ∈ τk,

0 otherwise.
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Moreover, a function vh ∈ S1
h(Γ) is determined by the nodal values which are described at

the M nodes xk, i.e., a basis of S1
h(Γ) is given by

ϕ1
i (x) =


1 for x = xi,

0 for x = x j 6= xi,

linear otherwise.

If u ∈ L2(Γ) is a given function, the L2 projection P0
h u ∈ S0

h(Γ) is defined as the unique
solution of the variational problem

〈P0
h u,vh〉L2(Γ) = 〈u,vh〉L2(Γ) for all vh ∈ S0

h(Γ).

In addition, we define the L2 projection P1
h u ∈ S1

h(Γ) as the unique solution of the varia-
tional problem

〈P1
h u,vh〉L2(Γ) = 〈u,vh〉L2(Γ) for all vh ∈ S1

h(Γ).

The following error estimates for the projection operator Pdx
h , when assuming sufficient

smoothness on Γ, can be found in, e.g., [48, 64].

Lemma 2.3. Let u ∈ Hs(Γ) be given for some s ∈ [0,1]. For σ ∈ [−1,0] there holds the
error estimate

‖u−P0
h u‖Hσ (Γ) ≤ chs−σ |u|Hs(Γ). (2.12)

Lemma 2.4. Let u ∈ Hs(Γ) be given for some s ∈ [0,2]. For σ ∈ [−1,0] there holds the
error estimate

‖u−P1
h u‖Hσ (Γ) ≤ chs−σ |u|Hs(Γ). (2.13)

Moreover, the following approximation properties of the trial spaces are available as shown
in [64, Section 10.2].

Theorem 2.3. Let σ ∈ [−1,0]. For u ∈ Hs(Γ) with some s ∈ [0,1] there holds the approx-
imation property of S0

h(Γ),

inf
vh∈S0

h(Γ)
‖u− vh‖Hσ (Γ) ≤ chs−σ |u|Hs(Γ). (2.14)

Theorem 2.4. Let Γ = ∂Ω be sufficiently smooth. For σ ∈ [0,1] and for some s ∈ [σ ,2]
we assume u ∈ Hs(Γ). Then there holds the approximation property of S1

h(Γ),

inf
vh∈S1

h(Γ)
‖u− vh‖Hσ (Γ) ≤ chs−σ |u|Hs(Γ). (2.15)
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To construct the trial spaces for parabolic boundary control problems, we use a uniform
partition of the interval [0,T ] with a time stepsize ht . We define T dt

ht
as the space of locally

polynomials of degree dt in time. For example, T 0
ht

is the space of piecewise constant func-
tions. This space is conveniently described as the span of the following basis functions,
see [48],

ψ0
k (t) =

{
1 if kht < t < (k +1)ht ,

0 otherwise,
, k = 0,1, ...,N −1. (2.16)

We describe a standard class of tensor product spaces Qdx,dt
h (Σ) = Sdx

hx
(Γ)⊗T dt

ht
. We would

like to estimate
inf{‖u− vh‖H p,q(Σ) : vh ∈ Qdx,dt

h (Σ)}

for u ∈ Hr,s(Σ) with 0 ≤ r, 0 ≤ s and p ≤ r, q ≤ s. The following approximation properties
are recalled from [15, 48].

Theorem 2.5. Let

−dx ≤ p ≤ 0 ≤ r ≤ dx +1, 0 ≤ s ≤ dt +1.

Then there is a constant C > 0 which depends on (p,r,s) such that

inf{‖u− vh‖H p,
p
2 (Σ)

: vh ∈ Qdx,dt
h (Σ)} ≤C(h−p

x +h
− p

2
t )(hr

x +hs
t )‖u‖Hr,s(Σ) (2.17)

for all u ∈ Hr,s(Σ).

Theorem 2.6. Let

0 ≤ p ≤ r ≤ dx +1, p < dx +1/2,

0 ≤ q ≤ s ≤ dt +1, q < dt +1/2,

and r
s

=
p
q
.

Then there is a constant C(r,s) > 0 such that

inf{‖u− vh‖H p,q(Σ) : vh ∈ Qdx,dt
h (Σ)} ≤C(r,s)(hr−p

x +hs−q
t )‖u‖Hr,s(Σ) (2.18)

for all u ∈ Hr,s(Σ).

In the simplest finite element approximations compatible with the energy norm, i.e., p = 1
2

(p = −1
2 ), q = p

2 , we choose the approximations of piecewise linear and continuous (or
piecewise constant) in space and piecewise constant in time. It results in the following
corollary.
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Corollary 2.1. Assume that there are constants c1,c2 > 0 such that

c1h2
x ≤ ht ≤ c2h2

x .

Then, for 0 ≤ r ≤ 1, 1
2 ≤ s ≤ 2, we have

inf{‖u− vh‖
H− 1

2 ,− 1
4 (Σ)

: vh ∈ Q0,0
h (Σ)} ≤Ch

r+ 1
2

x ‖u‖
Hr, r

2 (Σ)
, (2.19)

inf{‖u− vh‖
H

1
2 , 1

4 (Σ)
: vh ∈ Q1,0

h (Σ)} ≤Ch
s− 1

2
x ‖u‖

Hs, s
2 (Σ)

. (2.20)



3 ELLIPTIC DIRICHLET BOUNDARY CONTROL PROBLEMS

This chapter is devoted to study Dirichlet boundary control problems subject to elliptic
partial differential equations. The Karush-Kuhn-Tucker (KKT) system [28], which com-
prises the state equation, the adjoint equation, and the optimality condition is rewritten
as either a system of boundary integral equations in a non-symmetric or in a symmetric
formulation. The unique solvability of these systems can be derived from the properties of
the standard boundary integral operators of the Laplace and of the Bi-Laplace equations.
We discuss stability and error estimates of the related Galerkin boundary element meth-
ods. While the non-symmetric formulation leads to a non-symmetric matrix representation
of a self-adjoint operator in which we need an additional condition on the discretization
to guarantee the stability, we can prove the stability of the symmetric boundary element
approach by using the hypersingular Bi-Laplace boundary integral operator. In the case
of box constraints on the Dirichlet control, we obtain an elliptic variational inequality of
the first kind to be solved. It will be treated by using semi-smooth Newton methods which
give superlinear convergence.

This chapter is based on our paper [52]. It is organized as follows. In the first section, the
model problem is described where we also discuss the adjoint problem which characterizes
the solution of the reduced minimization problem. In Section 3.2 we present the represen-
tation formulae to describe the solutions of both the primal and adjoint Dirichlet boundary
value problems. We formulate the weakly singular boundary integral equations. Since the
state enters the adjoint boundary value problem as a volume density, an additional volume
integral has to be considered. By using integration by parts, this Newton potential can be
reformulated by using boundary potentials of the Bi-Laplace operator. Some properties
of boundary integral operators for the Bi-Laplace operator are presented. We analyze a
non-symmetric formulation of boundary integral equations to solve the Dirichlet bound-
ary control problem, and we discuss stability and error estimates of the related Galerkin
boundary element method in Section 3.4. By using the so-called hypersingular boundary
integral equation in the optimality condition, we get a symmetric formulation. This is pre-
sented in Section 3.5, again we discuss a related stability and error analysis. In Section
3.6, we use a semi-smooth Newton method as in [18, 24, 33, 35] to solve the variational
inequality. Finally, in Section 3.7 we describe some numerical examples.

21
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3.1 Dirichlet boundary control problems

Let Ω ⊂ Rd , d = 2,3 be a bounded Lipschitz domain with boundary Γ = ∂Ω. As a model
problem, we consider the Dirichlet boundary control problem to minimize

J(u,z) =
1
2

∫
Ω

[u(x)−u(x)]2 dx+
1
2

α〈Sz,z〉Γ for (u,z) ∈ H1(Ω)×H1/2(Γ) (3.1)

subject to
−∆u(x) = f (x) for x ∈ Ω, u(x) = z(x) for x ∈ Γ (3.2)

with box constraints
z1(x) ≤ z(x) ≤ z2(x) for x ∈ Γ, (3.3)

where u ∈ L2(Ω) is a given target; z1,z2 ∈ H1/2(Γ) are given functions satisfying z1 ≤ z2
on Γ; f ∈ L2(Ω) is a given volume density; α ∈ R+ is a fixed parameter. Moreover, we
use the Steklov-Poincaré operator S : H1/2(Γ) → H−1/2(Γ) to describe the cost, or some
regularization term, via a semi-norm in H1/2(Γ), see [51, 63]. Note that 〈·, ·〉Γ denotes the
related duality pairing, see (2.10).

To rewrite the Dirichlet boundary control problem (3.1), (3.2) and (3.3) by using a re-
duced cost functional we introduce a linear solution operator describing the application of
the constraint (3.2). Let u f be a particular weak solution of the homogeneous Dirichlet
boundary value problem

−∆u f (x) = f (x) for x ∈ Ω, u f (x) = 0 for x ∈ Γ.

The solution of the Dirichlet boundary value problem (3.2) is then given by u = uz + u f ,
where uz ∈ H1(Ω) is the unique solution of the Dirichlet boundary value problem

−∆uz(x) = 0 for x ∈ Ω, uz(x) = z(x) for x ∈ Γ. (3.4)

In particular, by using Green’s first formula, we have∫
Ω

|∇uz(x)|2 dx =
∫
Γ

∂
∂nx

uz(x)uz(x)dsx = 〈Sz,z〉Γ =: |z|2H1/2(Γ),

where the Steklov-Poincaré operator S : H1/2(Γ) → H−1/2(Γ),

(Sz)(x) :=
∂

∂nx
uz(x) for x ∈ Γ,

characterizes the Dirichlet to Neumann map related to the Dirichlet boundary value prob-
lem (3.4). This motivates the use of the Steklov-Poincaré operator S to describe the cost
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term in (3.1). In addition, one may think of using the hypersingular operator D in (3.1) to
realize a semi-norm in H1/2(Γ), see [64].

Note that the solution of the Dirichlet boundary value problem (3.4) defines a linear map
uz = Hz. Then, by using u = Hz + u f , instead of (3.1) we now consider the problem to
find the minimizer z ∈ Uad of the reduced cost functional

J̃(z) =
1
2

∫
Ω

[(Hz)(x)+u f (x)−u(x)]2 dx+
α
2
〈Sz,z〉Γ

=
1
2
〈Hz+u f −u,Hz+u f −u〉Ω +

α
2
〈Sz,z〉Γ

=
1
2
〈H∗Hz,z〉Γ + 〈H∗(u f −u),z〉Γ +

1
2
‖u f −u‖2

L2(Ω) +
α
2
〈Sz,z〉Γ,

where
Uad := {w ∈ H1/2(Γ) : z1(x) ≤ w(x) ≤ z2(x) for x ∈ Γ} (3.5)

is the admissible set, and H∗ : L2(Ω)→ H−1/2(Γ) is the adjoint operator of H : H1/2(Γ)→
L2(Ω), i.e.,

〈H∗ψ ,ϕ〉Γ = 〈ψ ,Hϕ〉Ω for all ϕ ∈ H1/2(Γ),ψ ∈ L2(Ω).

Since the reduced cost functional J̃(·) is convex, the minimizer z ∈ Uad can be found from
the variational inequality

〈αSz+H∗Hz−g,w− z〉Γ ≥ 0 for all w ∈ Uad, (3.6)

where we define
g := H∗(u−u f ) ∈ H−1/2(Γ). (3.7)

Note that the operator

Tα := αS +H∗H : H1/2(Γ) → H−1/2(Γ) (3.8)

is bounded and H1/2(Γ)-elliptic, see [51, 50]. Hence, the elliptic variational inequality of
the first kind (3.6) admits a unique solution z ∈ H1/2(Γ), see, e.g., [23, 38, 41].

The application of the adjoint operator τ = H∗(u− u) is characterized by the Neumann
datum

τ(x) = − ∂
∂nx

p(x) for almost all x ∈ Γ,

where p is the unique solution of the adjoint Dirichlet boundary value problem

−∆p(x) = u(x)−u(x) for x ∈ Ω, p(x) = 0 for x ∈ Γ. (3.9)

Hence the variational inequality (3.6) is rewritten as

〈αSz− ∂
∂n

p,w− z〉Γ ≥ 0 for all w ∈ Uad. (3.10)
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Proposition 3.1 ([51]). Let Ω be either a convex two-dimensional polygonal bounded do-
main or a bounded domain with a smooth boundary. Let z be the unique solution of the
variational inequality (3.10). For u, f ∈ L2(Ω), z1,z2 ∈ H3/2(Γ), we have the regularity
z ∈ H3/2(Γ).

Proof. Let us consider the variational inequality (3.10). We introduce

λ := Tαz−g = αSz− ∂
∂n

p = α
∂

∂n
uz −

∂
∂n

p ∈ H−1/2(Γ),

where p is the unique solution of the homogeneous Dirichlet boundary value problem
(3.9), and where uz is the harmonic extension of z, see (3.4). Then we can rewrite the
variational inequality (3.10) as

〈λ ,w− z〉Γ ≥ 0 for all w ∈ Uad.

Let
I := {x ∈ Γ : z1(x) < z(x) < z2(x)}

be the inactive set. We can choose φ ∈ H1/2(Γ) arbitrarily, with φ(x) ≥ 0 for x ∈ Γ,
φ(x) > 0 for x ∈ I and

w1 = z−φ ∈ Uad, w2 = z+φ ∈ Uad.

Then we find
〈λ ,φ〉Γ = 0,

i.e., λ = 0 on I. Hence we have

λ (z− z1)(z2 − z) = 0 on Γ. (3.11)

Moreover,
λ ≤ 0 for z = z2 and λ ≥ 0 for z = z1 (3.12)

in the sense of H−1/2(Γ). Therefore we conclude that uz ∈ H1(Ω) is the unique solution
of the Signorini boundary value problem

−∆uz = 0 in Ω (3.13)

with the bilateral constraints on Γ

z1 ≤ z ≤ z2, α
∂
∂n

uz ≤
∂
∂n

p for uz = z2, α
∂
∂n

uz ≥
∂

∂n
p for uz = z1, (3.14)

and [
α

∂
∂n

uz −
∂

∂n
p
]
[uz − z1][z2 −uz] = 0 on Γ. (3.15)
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For u ∈ L2(Ω) and u = Hz + u f ∈ L2(Ω) we have p ∈ H2(Ω) for the solution of the ad-
joint problem (3.9), see e.g., [20]. Let z1,z2 ∈ H3/2(Γ), for the solution of the bilateral
Signorini problem (3.13)-(3.15) we then have uz ∈ H2(Ω), and therefore z ∈ H3/2(Γ), see
e.g., [5, Theorem 1] in the case of a bounded domain Ω with a smooth boundary. For a
two-dimensional polygonal bounded domain it remains to consider the behaviour of the
solution at a corner point when it coincides with a boundary point of the active zones, i.e.,
where uz = z1 or uz = z2 is satisfied. In particular, by using local polar coordinates

x1 = x1(r,ϕ) = r cosϕ, x2 = x2(r,ϕ) = r sinϕ, uz(x1,x2) = uz(r cosϕ,r sinϕ) = ũ(r,ϕ),

we have

∂
∂x1

uz(x1,x2) = cosϕ
∂
∂ r

ũ(r,ϕ)− 1
r

sinϕ
∂

∂ϕ
ũ(r,ϕ),

∂
∂x2

uz(x1,x2) = sinϕ
∂
∂ r

ũ(r,ϕ)+
1
r

cosϕ
∂

∂ϕ
ũ(r,ϕ).

The Laplace equation in polar coordinates reads

∆uz(x1,x2) =
∂ 2

∂x2
1

uz(x1,x2)+
∂ 2

∂x2
2

uz(x1,x2) =
1
r

∂
∂ r

[
r

∂
∂ r

ũ(r,ϕ)
]
+

1
r2

∂ 2

∂ϕ2 ũ(r,ϕ) = 0.

Let ũ(r,ϕ) = U(r)V (ϕ). We then obtain

r
U(r)

∂
∂ r

[
r

∂
∂ r

U(r)
]
+

1
V (ϕ)

∂ 2

∂ϕ2V (ϕ) = 0.

This implies
r

U(r)
∂
∂ r

[
r

∂
∂ r

U(r)
]

= c,
1

V (ϕ)
∂ 2

∂ϕ2V (ϕ) = −c

for some constant c. The second ordinary differential equation of the last expression can
be solved for c = α2 > 0,

V (ϕ) = Acos(αϕ)+Bsin(αϕ).

For the first ordinary differential equation

r
∂
∂ r

[
r

∂
∂ r

U(r)
]

= α2U(r),

we use the ansatz U(r) = rγ . Then it follows that γ = ±α . Due to the boundedness of the
solution for r → 0 we finally obtain

ũ(r,ϕ) = rα(Acos(αϕ)+Bsin(αϕ)).



26 3 Elliptic Dirichlet boundary control problems

Now we consider the Signorini boundary conditions

∂
∂n

uz(x1,x2) = 0, uz(x1,x2) ≥ 0 for ϕ = 0

and

uz(x1,x2) = 0,
∂

∂n
uz(x1,x2) ≥ 0 for ϕ = ϕ0,

where ϕ0 is angle at the considered corner point.
For ϕ = 0 and the normal vector n = (0,−1)>, we have

∂
∂n

uz(x1,x2) = n ·∇uz(x1,x2) = − ∂
∂x2

uz(x1,x2)

= −sinϕ
∂
∂ r

ũ(r,ϕ)− 1
r

cosϕ
∂

∂ϕ
ũ(r,ϕ)

= −sinϕ
∂
∂ r

[rα(Acos(αϕ)+Bsin(αϕ))]

−1
r

cosϕ
∂

∂ϕ
[rα(Acos(αϕ)+Bsin(αϕ))]

= −sinϕ[αrα−1(Acos(αϕ)+Bsin(αϕ))]
−cosϕ[αrα−1(−Asin(αϕ)+Bcos(αϕ))]

= αrα−1[Asin((α −1)ϕ)−Bcos((α −1)ϕ)].

The Neumann boundary condition for ϕ = 0 reads then

∂
∂n

uz(x1,x2)|ϕ=0 = −Bαrα−1 = 0 ⇒ B = 0.

Hence,
ũ(r,ϕ) = Arα cos(αϕ).

For the Dirichlet boundary condition for ϕ = ϕ0, we further obtain

ũ(r,ϕ0) = Arα cos(αϕ0) = 0 ⇒ αϕ0 =
π
2

⇒ α0 =
π

2ϕ0
.

Moreover, the complementary Dirichlet boundary condition for ϕ = 0 results in

ũ(r,0) = Arα0 ≥ 0 ⇒ A ≥ 0.

We now consider the normal derivative
∂

∂n
uz(x1,x2) for ϕ = ϕ0 with the normal vector
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n = (−sinϕ0, cosϕ0)>,

∂
∂n

uz(x1,x2) = −sinϕ0
∂

∂x1
uz(x1,x2)+ cosϕ0

∂
∂x2

uz(x1,x2)

= −sinϕ0

[
cosϕ

∂
∂ r

(Arα0 cos(α0ϕ))− 1
r

sinϕ
∂

∂ϕ
(Arα0 cos(α0ϕ))

]
+cosϕ0

[
sinϕ

∂
∂ r

(Arα0 cos(α0ϕ))+
1
r

cosϕ
∂

∂ϕ
(Arα0 cos(α0ϕ))

]
= −sinϕ0

[
cosϕ(Aα0rα0−1 cos(α0ϕ))− 1

r
sinϕ(−Arα0α0 sin(α0ϕ))

]
+cosϕ0

[
sinϕ(Aα0rα0−1 cos(α0ϕ))+

1
r

cosϕ(−Arα0α0 sin(α0ϕ))
]

= −Aα0rα0−1 sinϕ0 cos((α0 −1)ϕ)−Aα0rα0−1 cosϕ0 sin((α0 −1)ϕ)
= −Aα0rα0−1 sin[(α0 −1)ϕ +ϕ0].

The complementary Neumann boundary condition for ϕ = ϕ0 now reads

∂
∂n

uz(x1,x2)|ϕ=ϕ0 = −Aα0rα0−1 sin(α0ϕ0) = −Aα0rα0−1 ≥ 0 ⇒ A ≤ 0.

Therefore we conclude A = 0. It turns out that no singularity functions appear in the case
of Signorini boundary conditions. This implies uz ∈ H2(Ω) also for a two-dimensional
convex polygonal domain.

3.2 Boundary integral equations

To find the control z ∈ H1/2(Γ) on the boundary, we discuss in this section the use of
boundary integral equations for the solution of the state equation and of the adjoint equa-
tion. Some properties of boundary integral operators are included.

Firstly, for the solution of the state equation (3.2)

−∆u(x) = f (x) for x ∈ Ω, u(x) = z(x) for x ∈ Γ,

we obtain a representation formula for x̃ ∈ Ω,

u(x̃) =
∫
Γ

U∗(x̃,y)
∂

∂ny
u(y)dsy −

∫
Γ

∂
∂ny

U∗(x̃,y)z(y)dsy +
∫
Ω

U∗(x̃,y) f (y)dy, (3.16)

where U∗(x,y) is the fundamental solution of the Laplace operator, see [64],

U∗(x,y) =


− 1

2π
log |x− y| for d = 2,

1
4π

1
|x− y|

for d = 3.
(3.17)
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For a given Dirichlet datum z∈H1/2(Γ), the related Neumann datum ω :=
∂
∂n

u∈H−1/2(Γ)
can be found by considering the representation formula (3.16) for Ω 3 x̃ → x ∈ Γ. Due to
the jump relation of the double layer potential, we obtain the boundary integral equation

z(x) = u(x) =
∫
Γ

U∗(x,y)ω(y)dsy +
1
2

z(x)−
∫
Γ

∂
∂ny

U∗(x,y)z(y)dsy +
∫
Ω

U∗(x,y) f (y)dy

for almost all x ∈ Γ, which can be written as

(V ω)(x) = (
1
2

I +K)z(x)− (N0 f )(x) for almost all x ∈ Γ. (3.18)

Here,
(V ω)(x) =

∫
Γ

U∗(x,y)ω(y)dsy for x ∈ Γ

is the Laplace single layer potential V : H−1/2(Γ) → H1/2(Γ) satisfying

‖V ω‖H1/2(Γ) ≤ cV
2 ‖ω‖H−1/2(Γ) for all ω ∈ H−1/2(Γ),

and

(Kz)(x) =
∫
Γ

∂
∂ny

U∗(x,y)z(y)dsy for x ∈ Γ

is the Laplace double layer potential K : H1/2(Γ) → H1/2(Γ) satisfying

‖(1
2

I +K)z‖H1/2(Γ) ≤ cK
2 ‖z‖H1/2(Γ) for all z ∈ H1/2(Γ).

Moreover,
(N0 f )(x) =

∫
Ω

U∗(x,y) f (y)dy for x ∈ Γ

is the related Newton potential N0 : H̃−1(Ω) → H1/2(Γ). For the properties of these oper-
ators, see, e.g., [14, 31, 64].

Note that the single layer potential V is H−1/2(Γ)-elliptic, see [64], where for d = 2 we
assume the scaling condition diamΩ < 1 to ensure this:

〈V ω ,ω〉Γ ≥ cV
1 ‖ω‖2

H−1/2(Γ) for all ω ∈ H−1/2(Γ).

Hence, we can solve the boundary integral equation (3.18) to obtain

ω = V−1(
1
2

I +K)z−V−1N0 f . (3.19)
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Secondly, the solution of the adjoint Dirichlet boundary value problem (3.9),

−∆p(x) = u(x)−u(x) for x ∈ Ω, p(x) = 0 for x ∈ Γ,

is given correspondingly by the representation formula for x̃ ∈ Ω,

p(x̃) =
∫
Γ

U∗(x̃,y)
∂

∂ny
p(y)dsy +

∫
Ω

U∗(x̃,y)[u(y)−u(y)]dy. (3.20)

As in (3.18) we obtain the boundary integral equation

(V q)(x) = (N0u)(x)− (N0u)(x) for x ∈ Γ (3.21)

to determine the unknown Neumann datum q :=
∂

∂n
p ∈ H−1/2(Γ).

Hence we conclude a system of boundary integral equations (3.18), (3.21) and the opti-
mality condition (3.10) to be solved. However, since the solution u of the primal Dirichlet
boundary value problem (3.2) enters the volume potential N0u in the boundary integral
equation (3.21), we also need to include the representation formula (3.16). Hence we have
to solve a coupled system of boundary and domain integral equations. Instead, we will
describe a system of only boundary integral equations to solve the adjoint boundary value
problem (3.9).

In doing so, instead of (3.20), we introduce a modified representation formula for the
adjoint state p as follows. First we note that

V ∗(x,y) =


− 1

8π
|x− y|2(log |x− y|−1) for d = 2,

1
8π

|x− y| for d = 3
(3.22)

is a solution of the Poisson equation

∆yV ∗(x,y) = U∗(x,y) for x 6= y, (3.23)

i.e., V ∗(x,y) is the fundamental solution of the Bi-Laplacian. Hence, by using Green’s
second formula, we can rewrite the volume integral for u in (3.20), as follows∫

Ω

U∗(x̃,y)u(y)dy =
∫
Ω

[∆yV ∗(x̃,y)]u(y)dy

=
∫
Γ

∂
∂ny

V ∗(x̃,y)u(y)dsy −
∫
Γ

V ∗(x̃,y)
∂

∂ny
u(y)dsy

+
∫
Ω

V ∗(x̃,y)[∆u(y)]dy

=
∫
Γ

∂
∂ny

V ∗(x̃,y)z(y)dsy −
∫
Γ

V ∗(x̃,y)ω(y)dsy −
∫
Ω

V ∗(x̃,y) f (y)dy.
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Therefore, from (3.20) we now obtain the modified representation formula for x̃ ∈ Ω,

p(x̃) =
∫
Γ

U∗(x̃,y)q(y)dsy +
∫
Γ

∂
∂ny

V ∗(x̃,y)z(y)dsy −
∫
Γ

V ∗(x̃,y)ω(y)dsy

−
∫
Ω

U∗(x̃,y)u(y)dy−
∫
Ω

V ∗(x̃,y) f (y)dy,
(3.24)

where the volume potentials involve given data only.
Due to the regularity of the fundamental solution of the Bi-Laplacian V ∗(x,y), there is no
jump relation occuring across the boundary Γ, see, e.g., [59]. Hence, when taking the
limit Ω 3 x̃ → x ∈ Γ, the representation formula (3.24) results in the boundary integral
equation

0 = p(x) =
∫
Γ

U∗(x,y)q(y)dsy +
∫
Γ

∂
∂ny

V ∗(x,y)z(y)dsy −
∫
Γ

V ∗(x,y)ω(y)dsy

−
∫
Ω

U∗(x,y)u(y)dy−
∫
Ω

V ∗(x,y) f (y)dy

for almost all x ∈ Γ, which can be written as

(V q)(x) = (V1ω)(x)− (K1z)(x)+(N0u)(x)+(M0 f )(x) for x ∈ Γ. (3.25)

Note that
(V1ω)(x) =

∫
Γ

V ∗(x,y)ω(y)dsy

is the Bi-Laplace single layer potential V1 : H−3/2(Γ) → H3/2(Γ) satisfying, see, e.g., [31,
Theorem 5.7.3],

‖V1ω‖H3/2(Γ) ≤ cV1
2 ‖ω‖H−3/2(Γ) for all ω ∈ H−3/2(Γ), (3.26)

and

(K1z)(x) =
∫
Γ

∂
∂ny

V ∗(x,y)z(y)dsy for x ∈ Γ

is the Bi-Laplace double layer potential K1 : H−1/2(Γ) → H3/2(Γ) satisfying

‖K1z‖H3/2(Γ) ≤ cK1
2 ‖z‖H−1/2(Γ) for all z ∈ H−1/2(Γ). (3.27)

In addition, we have introduced a second Newton potential which is related to the funda-
mental solution of the Bi-Laplace operator,

(M0 f )(x) =
∫
Ω

V ∗(x,y) f (y)dy for x ∈ Γ.
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By inserting (3.19) into the boundary integral equation (3.25), this gives

V q = V1V−1(
1
2

I +K)z−K1z+N0u+M0 f −V1V−1N0 f ,

and therefore

q = V−1V1V−1(
1
2

I +K)z−V−1K1z+V−1N0u+V−1M0 f −V−1V1V−1N0 f . (3.28)

Now we are in a position to rewrite the variational inequality (3.10) to find z ∈ Uad such
that

〈Tαz−g,w− z〉Γ ≥ 0 for all w ∈ Uad, (3.29)

where
Tα := αS +V−1K1 −V−1V1V−1(

1
2

I +K) (3.30)

is a boundary integral representation of the operator Tα as defined in (3.8), and

g := V−1N0u+V−1M0 f −V−1V1V−1N0 f (3.31)

is the related right hand side as defined in (3.7).

Mapping properties

The operator Tα as defined in (3.30) is composed of the standard Laplace and Bi-Laplace
boundary integral operators. To investigate the unique solvability of the variational in-
equality (3.29), we next recall some mapping properties of these boundary integral opera-
tors. We first start with the related Bi-Laplace partial differential equation.

Consider the Bi-Laplace equation

∆2u(x) = 0 for x ∈ Ω. (3.32)

This equation can be written as a system

∆w(x) = 0, ∆u(x) = w(x) for x ∈ Ω.

For the Laplace equation we obtain two boundary integral equations of the associated

Cauchy data on Γ: {w,τ :=
∂

∂n
w}, see [64, section 6](

w
τ

)
=
(1

2 I −K V
D 1

2 I +K′

)(
w
τ

)
, (3.33)

where

(K′τ)(x) =
∫
Γ

∂
∂nx

U∗(x,y)τ(y)dsy for x ∈ Γ
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is the adjoint Laplace double layer potential K′ : H−1/2(Γ) → H−1/2(Γ), and

(Dw)(x) = − ∂
∂nx

∫
Γ

∂
∂ny

U∗(x,y)w(y)dsy for x ∈ Γ

is the related hypersingular boundary integral operator D : H1/2(Γ) → H−1/2(Γ).

To obtain a representation formula for the solution u of the Bi-Laplace equation (3.32), we
first consider Green’s first formula∫

Ω

∆u(y)∆v(y)dy =
∫
Γ

∂
∂ny

u(y)∆v(y)dsy −
∫
Γ

∂
∂ny

∆v(y)u(y)dsy +
∫
Ω

[∆2v(y)]u(y)dy,

(3.34)
and in the sequel Green’s second formula,∫

Γ

∂
∂ny

u(y)∆v(y)dsy −
∫
Γ

∂
∂ny

∆v(y)u(y)dsy +
∫
Ω

[∆2v(y)]u(y)dy

=
∫
Γ

∂
∂ny

v(y)∆u(y)dsy −
∫
Γ

∂
∂ny

∆u(y)v(y)dsy +
∫
Ω

[∆2u(y)]v(y)dy.

When choosing v(y) = V ∗(x̃,y) for x̃ ∈ Ω as the Bi-Laplace fundamental solution (3.22),
the solution of the Bi-Laplace partial differential equation (3.32) is given by the represen-
tation formula for x̃ ∈ Ω,

u(x̃) =
∫
Γ

∂
∂ny

u(y)∆yV ∗(x̃,y)dsy −
∫
Γ

∂
∂ny

∆yV ∗(x̃,y)u(y)dsy

−
∫
Γ

∂
∂ny

V ∗(x̃,y)∆u(y)dsy +
∫
Γ

∂
∂ny

∆u(y)V ∗(x̃,y)dsy.

By using (3.23) this can be written as

u(x̃) =
∫
Γ

U∗(x̃,y)ω(y)dsy −
∫
Γ

∂
∂ny

U∗(x̃,y)u(y)dsy

−
∫
Γ

∂
∂ny

V ∗(x̃,y)w(y)dsy +
∫
Γ

V ∗(x̃,y)τ(y)dsy.

(3.35)

Hence, by taking the trace and the normal derivative of the representation formula (3.35),
we get two additional boundary integral equations for almost all x ∈ Γ,

u(x) = (V ω)(x)+
1
2

u(x)− (Ku)(x)− (K1w)(x)+(V1τ)(x), (3.36)

ω(x) =
1
2

ω(x)+(K′ω)(x)+(Du)(x)+(D1w)(x)+(K′τ)(x), (3.37)
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where

(K′
1τ)(x) =

∫
Γ

∂
∂nx

V ∗(x,y)τ(y)dsy for x ∈ Γ

is the adjoint Bi-Laplace double layer potential, and

(D1w)(x) = − ∂
∂nx

∫
Γ

∂
∂ny

V ∗(x,y)w(y)dsy for x ∈ Γ

is the Bi-Laplace hypersingular boundary integral operator.

Altogether, we obtain a system of boundary integral equations for the Bi-Laplace equation
(3.32), including the so-called Calderon projection C,

u
ω
w
τ

=


1
2 I −K V −K1 V1

D 1
2 I +K′ D1 K′

1
1
2 I −K V

D 1
2 I +K′




u
ω
w
τ

 . (3.38)

Lemma 3.1. The Calderon projection C as defined in (3.38) is a projection, i.e., C2 = C.

Proof. Let ω,ψ ∈ H−1/2(Γ), ϕ ,φ ∈ H1/2(Γ) be arbitrary but fixed. The function

u(x̃) := (Ṽ ω)(x̃)− (Wϕ)(x̃)+(Ṽ1ψ)(x̃)− (W1φ)(x̃) for x̃ ∈ Ω (3.39)

solves the Bi-Laplace partial differential equation (3.32). Note that

(Ṽ ω)(x̃) :=
∫
Γ

U∗(x̃,y)ω(y)dsy, (Ṽ1ψ)(x̃) :=
∫
Γ

V ∗(x̃,y)ψ(y)dsy for x̃ ∈ Ω (3.40)

are the Laplace and Bi-Laplace single layer potentials, respectively, and for x̃ ∈ Ω,

(Wϕ)(x̃) :=
∫
Γ

∂
∂ny

U∗(x̃,y)ϕ(y)dsy, (W1φ)(x̃) :=
∫
Γ

∂
∂ny

V ∗(x̃,y)φ(y)dsy (3.41)

define the Laplace and Bi-Laplace double layer potentials, respectively. The assertion now
follows from the system of boundary integral equations (3.38) of u, and the jump relation of
the standard single and double layer potentials as in [64, Lemma 6.18], see also [59].

From the projection property C2 = C we can immediately conclude some well-known re-
lations of all boundary integral operators which were introduced for both the Laplace and
the Bi-Laplace equations, see [59, 64].
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Corollary 3.1. For all boundary integral operators there hold the relations

KV = V K′, DK = K′D, V D =
1
4

I −K2, DV =
1
4

I −K′2 (3.42)

and

K1V −V K′
1 = V1K′−KV1, (3.43)

K′
1D−DK1 = D1K −K′D1, (3.44)

V D1 +V1D+KK1 +K1K = 0, (3.45)
DV1 +D1V +K′K′

1 +K′
1K′ = 0. (3.46)

To prove the ellipticity of the Schur complement boundary integral operator as defined in
(3.30) we need the following result.

Lemma 3.2. For any ω,ψ ∈ H−1/2(Γ) there holds the equality

〈Ṽ ω,Ṽ ψ〉L2(Ω) = 〈K1V ω,ψ〉Γ −〈V1(
1
2

I +K′)ω,ψ〉Γ. (3.47)

In particular,

‖Ṽ ψ‖2
L2(Ω) = 〈K1V ψ ,ψ〉Γ −〈V1(

1
2

I +K′)ψ ,ψ〉Γ (3.48)

where the single layer potential Ṽ is defined in (3.40), and 〈·, ·〉L2(Ω) is the standard inner
product in L2(Ω).

Proof. For ω,ψ ∈ H−1/2(Γ) the application of the Bi-Laplace single layer potential u =
Ṽ1ω and v = Ṽ1ψ as defined in (3.40) are solutions of the Bi-Laplace equation (3.32) whose
related Cauchy data are given by

u(x) = (V1ω)(x),
∂

∂nx
u(x) = (K′

1ω)(x) for x ∈ Γ.

On the other hand, for x ∈ Ω

∆xu(x) = ∆x

∫
Γ

V ∗(x,y)ω(y)dsy =
∫
Γ

U∗(x,y)ω(y)dsy = (Ṽ ω)(x),

w(x) = ∆xv(x) = ∆x

∫
Γ

V ∗(x,y)ψ(y)dsy =
∫
Γ

U∗(x,y)ψ(y)dsy = (Ṽ ψ)(x)

are solutions of the Laplace equation. The related Cauchy data are given by

w(x) = (V ψ)(x),
∂

∂nx
w(x) =

1
2

ψ(x)+(K′ψ)(x) for almost all x ∈ Γ.
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Now, Green’s first formula (3.34) reads

〈Ṽ ω,Ṽ ψ〉L2(Ω) =
∫
Γ

(K′
1ω)(y)(V ψ)(y)dsy −

∫
Γ

[
1
2

ψ(y)+(K′ψ)(y)](V1ω)(y)dsy,

and then the assertion follows.

Remark 3.1. For the representation of the Steklov-Poincaré operator S via boundary in-
tegral operators, we may use either the non-symmetric representation

S = V−1(
1
2

I +K), (3.49)

or the symmetric representation

S = D+(
1
2

I +K′)V−1(
1
2

I +K), (3.50)

see, e.g., [62, 63, 64].

3.3 Discretization of variational inequalities

Boundary element approximations

Let
S1

H(Γ) = span{ϕ1
i }M

i=1 ⊂ H1/2(Γ)

be a boundary element space of, e.g., piecewise linear and continuous basis functions
ϕ1

i , which is defined with respect to a globally quasi-uniform and shape regular boundary
element mesh of mesh size H. For continuous functions z1 and z2, define the discrete
convex set

UH := {wH ∈ S1
H(Γ) : z1(xi) ≤ wH(xi) ≤ z2(xi) for all nodes xi ∈ Γ}.

Then the Galerkin discretization of the variational inequality (3.6), see also (3.29), is to
find zH ∈ UH such that

〈TαzH ,wH − zH〉Γ ≥ 〈g,wH − zH〉Γ for all wH ∈ UH . (3.51)

Theorem 3.1. Let z ∈ Uad and zH ∈ UH be the unique solutions of the variational inequal-
ities (3.6) and (3.51), respectively. Then there hold the error estimates

‖z− zH‖H1/2(Γ) ≤ cHs− 1
2‖z‖Hs(Γ) (3.52)

and
‖z− zH‖L2(Γ) ≤ cHs‖z‖Hs(Γ), (3.53)

when assuming z,z1,z2 ∈ Hs(Γ) for some s ∈ [1
2 ,2], and Tαz−g ∈ L∞(Γ)∩Hs−1(Γ).
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Proof. From the H1/2(Γ)-ellipticity of Tα , we obtain for all wH ∈ UH , by using the varia-
tional inequality (3.51) and λ := Tαz−g ∈ H−1/2(Γ),

cTα
1 ‖z− zH‖2

H1/2(Γ) ≤ 〈Tα(z− zH),z− zH〉Γ

= 〈Tα(z− zH),z−wH〉Γ + 〈Tα(z− zH),wH − zH〉Γ

= 〈Tα(z− zH),z−wH〉Γ + 〈λ ,wH − zH〉Γ + 〈g−TαzH ,wH − zH〉Γ

≤ cTα
2 ‖z− zH‖H1/2(Γ)‖z−wH‖H1/2(Γ) + 〈λ ,wH − zH〉Γ.

In particular for the piecewise linear interpolation wH = IHz we conclude, by using the
interpolation error estimate,

cTα
1 ‖z− zH‖2

H1/2(Γ) ≤ cTα
2 ‖z− zH‖H1/2(Γ)‖z− IHz‖H1/2(Γ) + 〈λ , IHz− zH〉Γ

≤ cTα
2 cI Hs− 1

2‖z− zH‖H1/2(Γ)‖z‖Hs(Γ) + 〈λ , IHz− zH〉Γ.

Let
z1,H := IHz1 ∈ S1

H(Γ), z2,H := IHz2 ∈ S1
H(Γ)

be the piecewise linear interpolations of the constraints z1 and z2, respectively. Then, for
all wH ∈ UH we have

z1,H(xi) ≤ wH(xi) ≤ z2,H(xi) for all nodes xi,

and therefore, for the solution zH ∈ UH of (3.51),

z1,H(x) ≤ zH(x) ≤ z2,H(x) for all x ∈ Γ.

Let
A1 := {x ∈ Γ : z(x) = z1(x)}, A2 := {x ∈ Γ : z(x) = z2(x)}

be the active sets. Due to λ ≥ 0 on A1 and λ ≤ 0 on A2 in the sense of H−1/2(Γ), see
(3.12), we conclude∫

A1

λ (x)[z1,H(x)− zH(x)]dsx ≤ 0,
∫
A2

λ (x)[z2,H(x)− zH(x)]dsx ≤ 0,

and therefore, by using λ (x) = 0 on I := Γ\ (A1 ∪A2),

〈λ , IHz− zH〉Γ =
∫
A1

λ (x)[IHz(x)− zH(x)]dsx +
∫
A2

λ (x)[IHz(x)− zH(x)]dsx

≤
∫
A1

λ (x)[IHz(x)− z1,H(x)]dsx +
∫
A2

λ (x)[IHz(x)− z2,H(x)]dsx.
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Since λ (x) = 0 on I, it remains to consider only those boundary elements τ` which include
both the active and the inactive set. By using some estimates for the piecewise linear
interpolation on τ`, we can conclude

〈λ , IHz− zH〉Γ ≤ c‖λ‖L∞(Γ)H
3.

Hence,

cTα
1 ‖z− zH‖2

H1/2(Γ) ≤ cTα
2 cI Hs− 1

2‖z− zH‖H1/2(Γ)‖z‖Hs(Γ) + c‖λ‖L∞(Γ)H
3,

and the inequality (3.52) follows. The error estimate (3.53) follows from the Aubin-
Nitsche trick for variational inequalities, see [65].

Approximate variational inequality

The error estimates (3.52) and (3.53) seem to be optimal. However, the composed bound-
ary integral operator Tα and the right hand side g as defined in (3.30), (3.31) do not allow
a direct boundary element discretization in general. Hence, instead of (3.51) we need to
consider a perturbed variational inequality to find z̃H ∈ UH such that

〈T̃α z̃H ,wH − z̃H〉Γ ≥ 〈g̃,wH − z̃H〉Γ for all wH ∈ UH , (3.54)

where T̃α and g̃ are appropriate approximations of Tα and g, respectively. The follow-
ing theorem, see [51], presents an abstract consistency result, which will later be used to
analyse the boundary element approximations.

Theorem 3.2. Let z be the unique solution of the variational inequality (3.6) and T̃α :
H1/2(Γ) → H−1/2(Γ) be a bounded and S1

H(Γ)-elliptic approximation of Tα satisfying

〈T̃αzH ,zH〉Γ ≥ cT̃α
1 ‖zH‖2

H1/2(Γ) for all zH ∈ S1
H(Γ)

and
‖T̃αz‖H−1/2(Γ) ≤ cT̃α

2 ‖z‖H1/2(Γ) for all z ∈ H1/2(Γ).

Let g̃ ∈ H−1/2(Γ) be some approximation of g. For the unique solution, z̃H ∈ UH , of the
perturbed variational inequality (3.54) there holds the error estimate

‖z− z̃H‖H1/2(Γ) ≤ c1‖z−zH‖H1/2(Γ) +c2‖(Tα − T̃α)z‖H−1/2(Γ) +c3‖g− g̃‖H−1/2(Γ), (3.55)

where zH ∈ UH is the unique solution of the discrete variational inequality (3.51).
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Proof. The unique solvability of the discrete variational inequality (3.54) follows from the
S1

H(Γ)-ellipticity of T̃α . From this we further obtain

cT̃α
1 ‖zH − z̃H‖2

H1/2(Γ) ≤ 〈T̃α(zH − z̃H),zH − z̃H〉Γ

≤ 〈T̃αzH ,zH − z̃H〉Γ + 〈g̃−g, z̃H − zH〉Γ + 〈TαzH , z̃H − zH〉Γ

≤
(
‖(T̃α −Tα)zH‖H−1/2(Γ) +‖g− g̃‖H−1/2(Γ)

)
‖zH − z̃H‖H1/2(Γ).

Therefore

‖zH − z̃H‖H1/2(Γ) ≤
1

cT̃α
1

(
‖(T̃α −Tα)zH‖H−1/2(Γ) +‖g− g̃‖H−1/2(Γ)

)
.

Moreover, by using the triangle inequality and the boundedness of Tα and T̃α we have

‖(T̃α −Tα)zH‖H−1/2(Γ) ≤ ‖(Tα − T̃α)z‖H−1/2(Γ) +‖(T̃α −Tα)(z− zH)‖H−1/2(Γ)

≤ ‖(Tα − T̃α)z‖H−1/2(Γ) +(cT̃α
2 + cTα

2 )‖z− zH‖H1/2(Γ).

The assertion now follows from the triangle inequality.

3.4 Non-symmetric boundary integral formulation

Based on the mapping properties of the standard Laplace and Bi-Laplace boundary integral
operators as given in the previous section, we are now able to state the mapping properties
of the boundary integral operator Tα as defined in (3.30), see also the properties of Tα as
introduced in (3.8). Then we discuss the Galerkin discretization of (3.29). The stability
and error estimates are given with an additional condition on the mesh size.

Theorem 3.3. The composed boundary integral operator

Tα = αS +V−1K1 −V−1V1V−1(
1
2

I +K) : H1/2(Γ) → H−1/2(Γ)

is self-adjoint, bounded and H1/2(Γ)-elliptic, i.e.,

〈Tαz,z〉Γ ≥ cTα
1 ‖z‖2

H1/2(Γ) for all z ∈ H1/2(Γ).

Proof. The mapping properties of Tα : H1/2(Γ)→ H−1/2(Γ) follow from the boundedness
of all used boundary integral operators [31, 43, 64]. In addition, we also used the compact
embedding of H3/2(Γ) in H1/2(Γ).
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For the self-adjointness of Tα , we consider for z,w ∈ H1/2(Γ)

〈Tαz,w〉Γ = 〈αSz,w〉Γ + 〈V−1K1z,w〉Γ −
1
2
〈V−1V1V−1z,w〉Γ −〈V−1V1V−1Kz,w〉Γ

= 〈z,αSw〉Γ + 〈z,K′
1V−1w〉Γ −

1
2
〈z,V−1V1V−1w〉Γ −〈z,K′V−1V1V−1w〉Γ

= 〈z,αSw〉Γ −
1
2
〈z,V−1V1V−1w〉Γ + 〈z, [K′

1V−1 −K′V−1V1V−1]w〉Γ.

By using (3.42) and (3.43) we have

K′
1V−1 −K′V−1V1V−1 = K′

1V−1 −V−1KV1V−1 = V−1[V K′
1 −KV1]V−1

= V−1[K1V −V1K′]V−1 = V−1K1 −V−1V1K′V−1

= V−1K1 −V−1V1V−1K.

Hence we get

〈Tαz,w〉Γ = 〈z,αSw〉Γ −
1
2
〈z,V−1V1V−1w〉Γ + 〈z, [V−1K1 −V−1V1V−1K]w〉Γ

= 〈z, [αS +V−1K1 −V−1V1V−1(
1
2

I +K)]w〉Γ = 〈z,Tαw〉Γ,

i.e., Tα is self-adjoint.

Moreover, for z ∈ H1/2(Γ), by using (3.42) and by Lemma 3.2, ψ = V−1z, we have

〈Tαz,z〉Γ = α〈Sz,z〉Γ + 〈V−1K1z,z〉Γ −〈V−1V1V−1(
1
2

I +K)z,z〉Γ

= α〈Sz,z〉Γ + 〈K1VV−1z,V−1z〉Γ −〈V1(
1
2

I +K′)V−1z,V−1z〉Γ

= α〈Sz,z〉Γ + 〈K1V ψ ,ψ〉Γ −〈V1(
1
2

I +K′)ψ ,ψ〉Γ

= α〈Sz,z〉Γ +‖Ṽ ψ‖2
L2(Ω).

The Steklov-Poincaré operator S defines a semi-norm in H1/2(Γ). However, for z ≡ 1 we
obtain

〈Tα1,1〉Γ = ‖Ṽ ψ‖2
L2(Ω) = ‖Ṽ (V−11)‖2

L2(Ω) > 0.

Therefore, the operator Tα defines an equivalent norm in H1/2(Γ), the H1/2(Γ)-ellipticity
of Tα follows.

In what follows we introduce computable boundary element approximations T̃α and g̃ of Tα
and g as defined in (3.30), (3.31), respectively. We use also an appropriate approximation
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of the non-symmetric representation (3.49) for S as well, see [62].
For an arbitrary but fixed z ∈ H1/2(Γ), the application of Tαz reads

Tαz = αSz+V−1K1z−V−1V1V−1(
1
2

I +K)z = αωz −qz,

where qz,ωz ∈ H−1/2(Γ) are the unique solutions of the boundary integral equations

V qz = V1ωz −K1z, V ωz = (
1
2

I +K)z.

For a Galerkin approximation of the above boundary integral equations, let

S0
h(Γ) = span{ϕ0

k }
N
k=1 ⊂ H−1/2(Γ)

be another boundary element space of, e.g., piecewise constant basis functions ϕ0
k , which

is defined with respect to a second globally quasi-uniform and shape regular boundary
element mesh of mesh size h. We define q̃z,h ∈ S0

h(Γ) as the unique solution of the Galerkin
formulation

〈V q̃z,h,θh〉Γ = 〈V1ωz,h −K1z,θh〉Γ for all θh ∈ S0
h(Γ), (3.56)

where ωz,h ∈ S0
h(Γ) solves

〈V ωz,h,θh〉Γ = 〈(1
2

I +K)z,θh〉Γ for all θh ∈ S0
h(Γ). (3.57)

Hence we can define an approximation T̃α of the operator Tα by

T̃αz := αωz,h − q̃z,h. (3.58)

Lemma 3.3. The approximate operator T̃α : H1/2(Γ) → H−1/2(Γ) as defined in (3.58) is
bounded, i.e.,

‖T̃αz‖H−1/2(Γ) ≤ cT̃α
2 ‖z‖H1/2(Γ) for all z ∈ H1/2(Γ),

and there holds the error estimate

‖Tαz− T̃αz‖H−1/2(Γ) ≤
cV

2
cV

1
inf

θh∈S0
h(Γ)

‖qz −θh‖H−1/2(Γ)

+
cV1

2
cV

1
‖ωz −ωz,h‖H−3/2(Γ) +α‖ωz −ωz,h‖H−1/2(Γ). (3.59)

Proof. The boundedness of the operator T̃α follows from the mapping properties of all
boundary integral operators involved. Indeed, by choosing a test function θh = ωz,h in
(3.57), we obtain, by H−1/2(Γ)-ellipticity of V and the boundedness of K,

cV
1 ‖ωz,h‖2

H−1/2(Γ) ≤ 〈V ωz,h,ωz,h〉Γ = 〈(1
2

I +K)z,ωz,h〉Γ

≤ ‖(1
2

I +K)z‖H1/2(Γ)‖ωz,h‖H−1/2(Γ) ≤ cK
2 ‖z‖H1/2(Γ)‖ωz,h‖H−1/2(Γ).
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This implies

‖ωz,h‖H−1/2(Γ) ≤
cK

2
cV

1
‖z‖H1/2(Γ).

Similarly, from (3.56) we have

‖q̃z,h‖H−1/2(Γ) ≤
cV1

2
cV

1
‖ωz,h‖H−1/2(Γ) +

cK1
2

cV
1
‖z‖H1/2(Γ) ≤ c‖z‖H1/2(Γ).

Hence, by the triangle inequality we conclude from (3.58),

‖T̃αz‖H−1/2(Γ) ≤ cT̃α
2 ‖z‖H1/2(Γ).

Moreover, for an arbitrary chosen but fixed z ∈ H1/2(Γ) we have, by definition,

Tαz = αωz −qz, qz = V−1[V1ωz −K1z], ωz = V−1(
1
2

I +K)z,

and therefore, by using (3.58),

Tαz− T̃αz = α(ωz −ωz,h)− (qz − q̃z,h).

Let us further define qz,h ∈ S0
h(Γ) as the unique solution of the variational problem

〈V qz,h,θh〉Γ = 〈V1ωz −K1z,θh〉Γ for all θh ∈ S0
h(Γ).

We then obtain the perturbed Galerkin orthogonality

〈V (qz,h − q̃z,h),θh〉Γ = 〈V1(ωz −ωz,h),θh〉Γ for all θh ∈ S0
h(Γ).

From this we conclude

‖qz,h − q̃z,h‖H−1/2(Γ) ≤
1

cV
1
‖V1(ωz −ωz,h)‖H1/2(Γ) ≤

cV1
2

cV
1
‖ωz −ωz,h‖H−3/2(Γ).

The error estimate (3.59) now follows from the triangle inequality, and by applying Cea’s
lemma.

By using the approximation property of the trial space S0
h(Γ) and the Aubin-Nitsche trick,

it results in a corollary when assuming some regularity of qz and ωz, respectively. For the
approximation properties of the trial space S0

h(Γ) (and S1
H(Γ) hereinafter), see e.g., [64,

Section 10].

Corollary 3.2. Assume qz,ωz ∈ Hs
pw(Γ) for some s ∈ [0,1]. Then there holds the error

estimate
‖Tαz− T̃αz‖H−1/2(Γ) ≤ chs+ 1

2

(
‖qz‖Hs

pw(Γ) +‖ωz‖Hs
pw(Γ)

)
. (3.60)
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Analogously we may define a boundary element approximation of the right hand side g as
defined in (3.31)

g = V−1N0u+V−1M0 f −V−1V1V−1N0 f .

In particular, g ∈ H−1/2(Γ) is the unique solution of the variational problem

〈V g,θ〉Γ = 〈N0u+M0 f ,θ〉Γ −〈V1ω f ,θ〉Γ for all θ ∈ H−1/2(Γ),

where ω f = V−1N0 f solves the variational problem

〈V ω f ,θ〉Γ = 〈N0 f ,θ〉Γ for all θ ∈ H−1/2(Γ).

Hence we can define a boundary element approximation g̃h ∈ S0
h(Γ) as the unique solution

of the Galerkin variational problem

〈V g̃h,θh〉Γ = 〈N0u+M0 f ,θh〉Γ −〈V1ω f ,h,θh〉Γ for all θh ∈ S0
h(Γ), (3.61)

where ω f ,h ∈ S0
h(Γ) solves the variational problem

〈V ω f ,h,θh〉Γ = 〈N0 f ,θh〉Γ for all θh ∈ S0
h(Γ). (3.62)

Lemma 3.4. Let g̃h be the boundary element approximation as defined in (3.61) of the
right hand side g. Then there holds the error estimate

‖g− g̃h‖H−1/2(Γ) ≤
cV

2
cV

1
inf

θh∈S0
h(Γ)

‖g−θh‖H−1/2(Γ) +
cV1

2
cV

1
‖ω f −ω f ,h‖H−3/2(Γ). (3.63)

Proof. Let gh ∈ S0
h(Γ) be the unique solution of the variational problem

〈V gh,θh〉Γ = 〈N0u+M0 f ,θh〉Γ −〈V1ω f ,θh〉Γ for all θh ∈ S0
h(Γ).

By applying Cea’s lemma, we first obtain

‖g−gh‖H−1/2(Γ) ≤
cV

2
cV

1
inf

θh∈S0
h(Γ)

‖g−θh‖H−1/2(Γ).

Moreover, the perturbed Galerkin orthogonality

〈V (gh − g̃h),θh〉Γ = 〈V1(ω f ,h −ω f ),θh〉Γ for all θh ∈ S0
h(Γ)

follows. From this we further conclude

‖gh − g̃h‖H−1/2(Γ) ≤
1

cV
1
‖V1(ω f −ω f ,h)‖H1/2(Γ) ≤

cV1
2

cV
1
‖ω f −ω f ,h‖H−3/2(Γ).

The assertion now follows from the triangle inequality.
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By using the approximation property of the trial space S0
h(Γ) and the Aubin-Nitsche trick,

from (3.63) we can conclude an error estimate when assuming some regularity of g and
ω f , respectively.

Corollary 3.3. Assume g,ω f ∈ Hs
pw(Γ) for some s ∈ [0,1]. Then there holds the error

estimate
‖g− g̃h‖H−1/2(Γ) ≤ c1 hs+ 1

2‖g‖Hs
pw(Γ) + c2 hs+ 3

2‖ω f ‖Hs
pw(Γ). (3.64)

Approximate variational inequality

By using the approximations (3.58) and (3.61), the Galerkin boundary element approxi-
mation of the variational inequality (3.29) now reads to find z̃H ∈ UH such that

〈T̃α z̃H − g̃h,wH − z̃H〉Γ = 〈αω z̃H ,h − q̃ z̃H ,h − g̃h,wH − z̃H〉Γ ≥ 0 for all wH ∈ UH , (3.65)

where qh := αω z̃H ,h − q̃ z̃H ,h − g̃h ∈ S0
h(Γ) is the unique solution of the Galerkin formula-

tion

〈V qh,θh〉Γ = α〈(1
2

I +K)z̃H ,θh〉Γ + 〈K1z̃H −V1ω z̃H ,h,θh〉Γ −〈N0u+M0 f ,θh〉Γ, (3.66)

for all θh ∈ S0
h(Γ), and ω z̃H ,h ∈ S0

h(Γ) solves

〈V ω z̃H ,h,θh〉Γ = 〈(1
2

I +K)z̃H ,θh〉Γ −〈N0 f ,θh〉Γ for all θh ∈ S0
h(Γ). (3.67)

The Galerkin formulation (3.66) is equivalent to a linear system

Vhq = α(
1
2

Mh +Kh)z̃+K1,hz̃−V1,hω − f 1, (3.68)

and (3.67) is equivalent to

Vhω = (
1
2

Mh +Kh)z̃− f 2, (3.69)

where

Vh[`,k] = 〈V ϕ0
k ,ϕ0

` 〉Γ, Kh[`, i] = 〈Kϕ1
i ,ϕ0

` 〉Γ,

V1,h[`,k] = 〈V1ϕ0
k ,ϕ0

` 〉Γ, K1,h[`, i] = 〈K1ϕ1
i ,ϕ0

` 〉Γ,

Mh[`, i] = 〈ϕ1
i ,ϕ0

` 〉Γ,

and
f1[`] = 〈N0u+M0 f ,ϕ0

` 〉Γ, f2[`] = 〈N0 f ,ϕ0
` 〉Γ

for k, ` = 1, ...,N and i = 1, ...,M.
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Since the Laplace single layer potential V is H−1/2(Γ)-elliptic and self-adjoint, the Galerkin
matrix Vh is symmetric and positive definite and therefore invertible. Hence we can solve
ω and q from (3.69) and (3.68) to obtain

ω = V−1
h (

1
2

Mh +Kh)z̃−V−1
h f 2

and

q = αV−1
h (

1
2

Mh +Kh)z̃+V−1
h K1,hz̃−V−1

h V1,hV−1
h (

1
2

Mh +Kh)z̃+V−1
h V1,hV−1

h f 2−V−1
h f 1.

Therefore, the matrix representation of the variational inequality (3.65) is given by a dis-
crete variational inequality

(M>
h q,w− z̃) ≥ 0 for all w ∈ RM ↔ wH ∈ UH ,

or equivalent to

(T̃α,H z̃− g̃,w− z̃) ≥ 0 for all w ∈ RM ↔ wH ∈ UH , (3.70)

where

T̃α,H := αM>
h V−1

h (
1
2

Mh +Kh)+M>
h V−1

h K1,h −M>
h V−1

h V1,hV−1
h (

1
2

Mh +Kh) (3.71)

defines a non-symmetric Galerkin boundary element approximation of the self-adjoint
boundary integral operator Tα as defined in (3.30). Moreover,

g̃ := M>
h V−1

h

(
f 1 −V1,hV−1

h f 2

)
is the boundary element approximation of g as defined in (3.31).

Theorem 3.4 (see [52]). The approximate Schur complement T̃α,H as defined in (3.71) is
positive definite, i.e.,

(T̃α,Hz,z) ≥ 1
2

cTα
1 ‖zH‖2

H1/2(Γ) for all z ∈ RM ↔ zH ∈ S1
H(Γ),

if h ≤ c0H is sufficiently small.

Proof. For an arbitrary chosen but fixed z ∈RM let zH ∈ S1
H(Γ) be the associated boundary

element function. Then we have

(T̃α,Hz,z) = 〈T̃αzH ,zH〉Γ = 〈TαzH ,zH〉Γ −〈(Tα − T̃α)zH ,zH〉Γ

≥ cTα
1 ‖zH‖2

H1/2(Γ)−‖(Tα − T̃α)zH‖H−1/2(Γ)‖zH‖H1/2(Γ).
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Since zH ∈ S1
H(Γ) is a continuous function, we have zH ∈ H1(Γ). Hence we find, see [14]

ωzH = V−1(
1
2

I +K)zH ∈ L2(Γ), qzH = V−1[V1ωzH −K1zH ] ∈ L2(Γ).

Therefore we can apply the error estimate (3.60) for s = 0 to obtain

‖TαzH − T̃αzH‖H−1/2(Γ) ≤ ch
1
2
(
‖qzH‖L2(Γ) +‖ωzH‖L2(Γ)

)
≤ c1 h

1
2‖zH‖H1(Γ).

Now, by applying the inverse inequality for S1
H(Γ),

‖zH‖H1(Γ) ≤ cI H− 1
2‖zH‖H1/2(Γ),

we obtain

‖(Tα − T̃α)zH‖H−1/2(Γ) ≤ c1cI

(
h
H

) 1
2

‖zH‖H1/2(Γ).

Hence we get

(T̃α,Hz,z) ≥

[
cTα

1 − c1cI

(
h
H

) 1
2
]
‖zH‖2

H1/2(Γ) ≥
1
2

cTα
1 ‖zH‖2

H1/2(Γ),

if

c1cI

(
h
H

) 1
2

≤ 1
2

cTα
1

is satisfied.

The above Theorem 3.4 ensures the unique solvability of the discrete variational inequality
(3.70) as well as of the perturbed variational inequality (3.65). Moreover, we can apply
Theorem 3.2 to derive an error estimate for the approximate solution z̃H of the perturbed
variational inequality (3.65), as follows.

When combining the error estimate (3.55) with the error estimates (3.52), (3.60) and (3.64),
we obtain the error estimate

‖z− z̃H‖H1/2(Γ) ≤ c1 Hs+ 1
2‖z‖Hs+1(Γ)+c2 hs+ 1

2

(
‖qz‖Hs

pw(Γ) +‖ωz‖Hs
pw(Γ)

)
+c3 hs+ 1

2‖g‖Hs
pw(Γ) + c4 hs+ 3

2‖ω f ‖Hs
pw(Γ)

when assuming z ∈ Hs+1(Γ) and qz,ωz,g,ω f ∈ Hs
pw(Γ) for some s ∈ [0,1]. For h ≤ c0H

sufficiently small, we finally obtain the error in the energy norm

‖z− z̃H‖H1/2(Γ) ≤ c(z,u, f )Hs+ 1
2 . (3.72)
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Moreover, by applying the Aubin-Nitsche trick [64] we are also able to derive an error
estimate in L2(Γ), i.e.,

‖z− z̃H‖L2(Γ) ≤ c(z,u, f )Hs+1. (3.73)

In the case of a non-constrained minimization problem, instead of the discrete variational
inequality (3.70) we have to solve the linear system

T̃α,H z̃ = g̃,

which can be written as−V1,h Vh K1,h
Vh −(1

2Mh +Kh)
αM>

h −M>
h

w
q̃
z̃

=

 f 1 −V1,hV−1
h f 2

0
0

 . (3.74)

Remark 3.2. For the approximation ωh of the flux ω of the primal Dirichlet boundary
value problem, the same order of an error estimate in H−1/2(Γ)-norm can be obtained as
in (3.72), see [64], i.e.,

‖ω −ωh‖H−1/2(Γ) ≤ c(z,ω ,u, f )Hs+ 1
2 . (3.75)

By applying standard arguments, we get also an error estimate in L2(Γ),

‖ω −ωh‖L2(Γ) ≤ c(z,ω,u, f )Hs. (3.76)

Remark 3.3. The error estimates (3.72) and (3.73) provide optimal convergence rates
when approximating the control z by using piecewise linear basis functions. However,
we have to assume h ≤ c0H to ensure the unique solvability of the perturbed variational
inequality (3.65), where the constant c0 is in general unknown. Moreover, the matrix T̃α,H
as given in (3.71) defines a non-symmetric approximation of the self-adjoint operator Tα .
Hence we are interested in deriving a symmetric boundary element method which is stable
without any additional constraints in the choice of the boundary element trial spaces.

3.5 Symmetric boundary integral formulation

As in the previous section, to determine the unknown Neumann datum q∈H−1/2(Γ) of the
adjoint Dirichlet boundary value problem (3.9), we used the first boundary integral equa-
tion (3.25). In what follows, we will use in addition a second boundary integral equation,
the so-called hypersingular boundary integral equation for the adjoint problem to obtain
an alternative representation for q. In particular, when computing the normal derivative of
the representation formula (3.24), this gives

q(x) = (
1
2

I +K′)q(x)− (D1z)(x)− (K′
1ω)(x)− (N1u)(x)− (M1 f )(x) for x ∈ Γ, (3.77)
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where we introduce the Newton potentials for x ∈ Γ

(N1u)(x) = lim
Ω3x̃→x∈Γ

nx.∇x̃

∫
Ω

U∗(x̃,y)u(y)dy

and

(M1 f )(x) = lim
Ω3x̃→x∈Γ

nx.∇x̃

∫
Ω

V ∗(x̃,y) f (y)dy.

Furthermore, by using (3.19), (3.28) we obtain

q = (
1
2

I +K′)V−1V1V−1(
1
2

I +K)z− (
1
2

I +K′)V−1K1z−K′
1V−1(

1
2

I +K)z−D1z

+(
1
2

I +K′)V−1N0u−N1u+(
1
2

I +K′)V−1[M0 −V1V−1N0] f +K′
1V−1N0 f −M1 f .

(3.78)

Therefore, instead of (3.10), we have to solve the variational inequality

〈Tαz−g,w− z〉Γ ≥ 0, (3.79)

where we obtain an alternative representations of Tα as defined in (3.30),

Tα = αS +D1 +K′
1V−1(

1
2

I +K)+(
1
2

I +K′)V−1K1 − (
1
2

I +K′)V−1V1V−1(
1
2

I +K)
(3.80)

and of g as defined in (3.31),

g = (
1
2

I +K′)V−1N0u−N1u+(
1
2

I +K′)V−1[M0 −V1V−1N0] f +K′
1V−1N0 f −M1 f .

(3.81)

Theorem 3.5. The composed boundary integral operator Tα as defined in (3.80) is self-
adjoint, bounded, i.e., Tα : H1/2(Γ) → H−1/2(Γ), and H1/2(Γ)-elliptic, i.e.,

〈Tαz,z〉Γ ≥ cTα
1 ‖z‖2

H1/2(Γ) for all z ∈ H1/2(Γ).

Proof. While the self-adjointness of Tα in the symmetric representation (3.80) is obvious,
the boundedness and ellipticity estimates follow as in the proof of Theorem 3.3. In par-
ticular, the operators Tα in the symmetric representation (3.80) and in the non-symmetric
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representation (3.30) coincide. Indeed, by using (3.42) and (3.43) we obtain

Tα = αS +D1 +K′
1V−1(

1
2

I +K)+(
1
2

I +K′)V−1K1 − (
1
2

I +K′)V−1V1V−1(
1
2

I +K)

= αS +D1 +
[

K′
1 − (

1
2

I +K′)V−1V1

]
V−1(

1
2

I +K)+(
1
2

I +K′)V−1K1

= αS +D1 +V−1
[
V K′

1 −KV1 −
1
2

V1

]
V−1(

1
2

I +K)+(
1
2

I +K′)V−1K1

= αS +D1 +V−1
[

K1V −V1K′− 1
2

V1

]
V−1(

1
2

I +K)+(
1
2

I +K′)V−1K1

= αS +D1 +V−1K1(
1
2

I +K)−V−1V1(
1
2

I +K′)V−1(
1
2

I +K)+(
1
2

I +K′)V−1K1.

Due to the representation of the Laplace Steklov-Poincaré operator, see, e.g., [64],

S = V−1(
1
2

I +K) = D+(
1
2

I +K′)V−1(
1
2

I +K),

we have by using (3.42) and (3.45),

Tα = αS +D1 +V−1K1(
1
2

I +K)−V−1V1

[
V−1(

1
2

I +K)−D
]
+V−1(

1
2

I +K)K1

= αS +V−1
[
V D1 +V1D+K1(

1
2

I +K)−V1V−1(
1
2

I +K)+(
1
2

I +K)K1

]
= αS +V−1

[
K1 −V1V−1(

1
2

I +K)
]
,

and we finally obtain the non-symmetric representation (3.30).

Again we conclude the unique solvability of the variational inequality (3.79). By com-
paring the representation of the right hand side g as in (3.31) with (3.81), it results in the
following corollary.

Corollary 3.4. For any u, f ∈ L2(Ω) there hold the equalities

N1u = (−1
2

I +K′)V−1N0u (3.82)

and

M1 f = (−1
2

I +K′)V−1M0 f − (−1
2

I +K′)V−1V1V−1N0 f +K′
1V−1N0 f . (3.83)

Remark 3.4. To obtain a symmetric discretization of the operator Tα , in what follows, we
shall use the symmetric representation of the Steklov-Poincaré S as given in (3.50).
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Galerkin boundary element formulation

For the Galerkin discretization of the variational inequality (3.79) we now define appro-
priate approximations of the symmetric representation Tα and of the right hand side g
in (3.81) as well, see [52]. First, let us recall the boundary element spaces of piecewise
constant and piecewise linear basis functions

S0
h(Γ) = span{ϕ0

k }
N
k=1 ⊂ H−1/2(Γ), S1

H(Γ) = span{ϕ1
i }M

i=1 ⊂ H1/2(Γ),

which are defined with respect to some admissible boundary element meshes of mesh size
h and H, respectively. For the symmetric representations of Tα , S and for z ∈ H1/2(Γ), the
application of Tαz reads

Tαz = αDz+α(
1
2

I +K′)ωz +D1z+K′
1ωz − (

1
2

I +K′)qz,

where qz,ωz ∈ H−1/2(Γ) are the unique solutions of the boundary integral equations

V qz = V1ωz −K1z, V ωz = (
1
2

I +K)z.

As for the non-symmetric representation of Tα we can define approximate Galerkin solu-
tions ωz,h, q̃z,h ∈ S0

h(Γ) and then we can define the approximation

T̂αz := αDz+α(
1
2

I +K′)ωz,h +D1z+K′
1ωz,h − (

1
2

I +K′)q̃z,h. (3.84)

Lemma 3.5. The approximate operator T̂α : H1/2(Γ) → H−1/2(Γ) as defined in (3.84) is
bounded, i.e.,

‖T̂αz‖H−1/2(Γ) ≤ cT̂α
2 ‖z‖H1/2(Γ) for all z ∈ H1/2(Γ),

and there holds the error estimate

‖Tαz− T̂αz‖H−1/2(Γ) ≤ c1 inf
θh∈S0

h(Γ)
‖qz −θh‖H−1/2(Γ) + c2‖ωz −ωz,h‖H−1/2(Γ). (3.85)

Proof. The proof follows as for the boundary element approximation of the non-symmetric
formulation, see Lemma 3.3.

By using the approximation property of the trial space S0
h(Γ) and the Aubin-Nitsche trick,

we conclude an error estimate from (3.85) when assuming some regularity of qz and ωz.

Corollary 3.5. Assume qz,ωz ∈ Hs
pw(Γ) for some s ∈ [0,1]. Then there holds the error

estimate
‖Tαz− T̂αz‖H−1/2(Γ) ≤ chs+ 1

2

(
‖qz‖Hs

pw(Γ) +‖ωz‖Hs
pw(Γ)

)
. (3.86)
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Similarly, we can rewrite g which was defined in (3.81), as

g = K′
1ω f +(

1
2

I +K′)qu, f −N1u−M1 f ,

where qu, f ∈ H−1/2(Γ) is the unique solution of the boundary integral equation

(V qu, f )(x) = (N0u)(x)+(M0 f )(x)− (V1ω f )(x) for x ∈ Γ,

and ω f ∈ H−1/2(Γ) solves

(V ω f )(x) = (N0 f )(x) for x ∈ Γ.

We then can define approximate Galerkin solutions q̂h,ω f ,h ∈ S0
h(Γ), and therefore, we can

introduce the approximation

ĝ := K′
1ω f ,h +(

1
2

I +K′)q̂h −N1u−M1 f . (3.87)

As in (3.64) we obtain the error estimate

‖g− ĝ‖H−1/2(Γ) ≤ c1hs+ 1
2‖qu, f ‖Hs

pw(Γ) + c2hs+ 3
2‖ω f ‖Hs

pw(Γ) (3.88)

when assuming qu, f ,ω f ∈ Hs
pw(Γ) for some s ∈ [0,1].

Approximate variational inequality

By using the approximations (3.84) and (3.87) we now have to solve the approximate
variational inequality to find ẑ ∈ Uad such that

〈T̂α ẑ− ĝ,w− ẑ〉Γ ≥ 0 for all w ∈ Uad, (3.89)

which corresponds to a discrete version

(T̂α,H ẑ− ĝ,w− ẑ) ≥ 0 for all w ∈ RM ↔ wH ∈ UH . (3.90)

Here,

T̂α,H := αSH +D1,H − (
1
2

M>
h +K>

h )V−1
h V1,hV−1

h (
1
2

Mh +Kh)

+K>
1,hV−1

h (
1
2

Mh +Kh)+(
1
2

M>
h +K>

h )V−1
h K1,h (3.91)

and
SH = DH +(

1
2

M>
h +K>

h )V−1
h (

1
2

Mh +Kh) (3.92)



3.5 Symmetric boundary integral formulation 51

are the symmetric Galerkin boundary element approximations of the self-adjoint operators
Tα and S, respectively. Moreover,

ĝ = K>
1,hV−1

h f 2 +(
1
2

M>
h +K>

h )V−1
h [ f 1 −V1,hV−1

h f 2]− f 3 (3.93)

is the related boundary element approximation of g as defined in (3.81). Note that, in
addition to those entries of the linear system (3.74) we use

DH [i, j] = 〈Dϕ1
j ,ϕ1

i 〉Γ, D1,H [ j, i] = 〈D1ϕ1
i ,ϕ1

j 〉Γ, f3[ j] = 〈N1u+M1 f ,ϕ1
j 〉Γ,

for i, j = 1, ...,M.

The computation of the Galerkin matrix D1,H of the Bi-Laplace hypersingular boundary
integral operator D1 can be reduced to the computation of the Galerkin matrices of the
Bi-Laplace and Laplace singular layer potentials V1 and V . In particular, we can derive the
following lemma in the two dimensional case.

Lemma 3.6. Let ∂τ denote the derivative with respect to the arc length on Γ. Let n denote
the exterior normal vector. Then

〈D1z,w〉Γ = −〈V1(∂τz),∂τw〉Γ +
2

∑
i=1

〈V (zni),wni〉Γ for all z,w ∈ H1/2(Γ). (3.94)

Proof. We adopt the proof from the paper by Costabel [15, Theorem 6.1].
Let x,y ∈ Γ, x 6= y. Let nx, ny and τx, τy denote the normal and tangent vectors at x and
y, respectively. Here τ can be obtained from n by a counterclockwise rotation by a right
angle. For any 2×2 matrix M with trace tr(M) we have

n>x Mny + τ>y Mτx = tr(M)(nxny).

Taking for M the second derivatives of the Bi-Laplacian fundamental solution V ∗(x,y),

M =


∂ 2

∂x1∂y1
V ∗(x,y)

∂ 2

∂x1∂y1
V ∗(x,y)

∂ 2

∂x1∂y1
V ∗(x,y)

∂ 2

∂x1∂y1
V ∗(x,y)

 ,

we obtain

∂nx∂nyV
∗(x,y) = −∂τx∂τyV

∗(x,y)+ tr(M)(nxny)

= −∂τx∂τyV
∗(x,y)−U∗(x,y)(nxny).

(3.95)

We now multiply (3.95) by w(x)z(y), integrate over Γ×Γ and observe that on Γ we may
use integration by parts for ∂τ ,

〈z,∂τw〉Γ = −〈∂τz,w〉Γ for all z,w ∈ H1/2(Γ),

and then the assertion follows.
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Remark 3.5. To implement the right hand side f 3 we may approximate the Newton po-
tentials N1u and M1 f by using the representation formulae (3.82), (3.83) as we did for the
right hand side g in the non-symmetric formulation. In particular, we can define

f̂ 3 = (−1
2

M>
h +K>

h )V−1
h f 1 − (−1

2
M>

h +K>
h )V−1

h V1,hV−1
h f 2 +K>

1,hV−1
h f 2,

i.e.,
ĝ ≈ M>

h V−1
h

(
f 1 −V1,hV−1

h f 2

)
= g̃.

Lemma 3.7. The symmetric matrix

T̂H := T̂α,H −αSH −D1,H = K>
1,hV−1

h (
1
2

Mh +Kh)+(
1
2

M>
h +K>

h )V−1
h K1,h

− (
1
2

M>
h +K>

h )V−1
h V1,hV−1

h (
1
2

Mh +Kh)

is positive semi-definite, i.e.,

(T̂Hz,z) ≥ 0 for all z ∈ RM.

Proof. We consider the generalized eigenvalue problem

T̂Hz = λ
[

S̃H +(
1
2

M>
h +K>

h )V−1
h (

1
2

Mh +Kh)
]

z, (3.96)

where the stabilized discrete Steklov-Poincaré operator

S̃H = DH +a a> +(
1
2

M>
h +K>

h )V−1
h (

1
2

Mh +Kh)

is symmetric and positive definite. Note that the vector a is given by

a[i] =
∫
Γ

ϕ1
i (x)dsx for i = 1, ...,M.

Since the eigenvalue problem (3.96) can be written as

(
(1

2M>
h +K>

h )V−1
h I

)(−V1,h K1,h
K>

1,h

)(
V−1

h (1
2Mh +Kh)

I

)
z

= λ
(
(1

2M>
h +K>

h )V−1
h I

)(Vh

S̃H

)(
V−1

h (1
2Mh +Kh)

I

)
z,

it is sufficient to consider the generalized eigenvalue problem(
−V1,h K1,h
K>

1,h

)(
θ
z

)
= λ

(
Vhθ
S̃Hz

)
, (3.97)
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where
θ = V−1

h (
1
2

Mh +Kh)z.

From (3.97) we conclude

(K1,hz,θ)− (V1,hθ ,θ) = λ (Vhθ ,θ),

(K>
1,hθ ,z) = λ (S̃Hz,z),

and by taking the difference we obtain

(V1,hθ ,θ) = λ
[
(S̃Hz,z)− (Vhθ ,θ)

]
= λ

(
(DH +a a>)z,z

)
.

Since the Galerkin matrix V1,h is positive semi-definite, it follows that λ ≥ 0, which implies
the assertion.

As a corollary of Lemma 3.7, we find the positive definiteness of the symmetric Schur
complement matrix T̂α,H as defined in (3.91).

Corollary 3.6. The Schur complement matrix T̂α,H as defined in (3.91) is positive definite,
i.e.,

(T̂α,Hz,z) ≥ α(SHz,z)+(D1,Hz,z) ≥ 〈(αD+D1)zH ,zH〉Γ ≥ c‖zH‖2
H1/2(Γ)

for all z ∈ RM ↔ zH ∈ S1
H(Γ), since αD+D1 implies an equivalent norm in H1/2(Γ).

Remark 3.6. The symmetric Schur complement matrix T̂α,H is positive definite for any
choice of conformal boundary element spaces S1

H(Γ) ⊂ H1/2(Γ) and S0
h(Γ) ⊂ H−1/2(Γ).

In particular we may use the same boundary element mesh with mesh size h = H. From
a theoretical point of view, this is not possible in general when using the non-symmetric
approximation T̃α,H .

Hence we can ensure the unique solvability of the discrete variational inequality (3.90).
As in (3.55), when combining the approximation property of the ansatz space S1

H(Γ) with
the error estimates (3.86) and (3.88), we can derive an error estimate for the approximate
solution ẑH of the variational inequality (3.89), see also [52].

Theorem 3.6. Let z and ẑH be the unique solutions of the variational inequalities (3.79)
and (3.90), respectively. Then there holds the error estimate

‖z− ẑH‖H1/2(Γ) ≤ c1Hs+ 1
2‖z‖Hs+1(Γ) + c2hs+ 1

2

(
‖qz‖Hs

pw(Γ) +‖ωz‖Hs
pw(Γ)

)
+ c3hs+ 1

2‖qu, f ‖Hs
pw(Γ) + c4hs+ 3

2‖ω f ‖Hs
pw(Γ) (3.98)
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when assuming z∈Hs+1(Γ) and qz,ωz,qu, f ,ω f ∈Hs
pw(Γ) for some s∈ [0,1]. In particular,

for h = H we have the error estimate

‖z− ẑH‖H1/2(Γ) ≤ c(z,u, f )Hs+ 1
2 .

Moreover, we are also able to derive the error estimate in L2(Γ), i.e.,

‖z− ẑH‖L2(Γ) ≤ c(z,u, f )Hs+1, (3.99)

when applying the Aubin-Nitsche trick.

In the case of a non-constrained minimization problem, instead of the discrete variational
inequality (3.90) we have to solve the linear system

T̂α,H ẑ = ĝ,

which can be written as−V1,h Vh K1,h
Vh −(1

2Mh +Kh)
K>

1,h −(1
2M>

h +K>
h ) αSH +D1,H

ω
q
ẑ

=

 f 1
− f 2
− f 3

 . (3.100)

Moreover, by using w = αV−1
h (1

2Mh + Kh)̂z as given in (3.74), we obtain the linear sys-
tem

−V1,h Vh K1,h
Vh −(1

2Mh +Kh)
K>

1,h −(1
2M>

h +K>
h ) αDH +D1,H (1

2M>
h +K>

h )
(1

2Mh +Kh) − 1
α Vh




ω
q
ẑ
w

=


f 1

− f 2
− f 3

0

 . (3.101)

3.6 Semi-smooth Newton methods

In this section, we study semi-smooth Newton methods to solve the discrete variational
inequalities (3.70), (3.90). For the ease of presentation we consider the symmetric formu-
lation only, i.e., we have to seek z ∈ RM ↔ zH ∈ UH such that

(T̂α,H z,w− z) ≥ (ĝ,w− z) for all w ∈ RM ↔ wH ∈ UH , (3.102)

where we use the Galerkin boundary element approximations of the operator Tα and the
right hand side g as in (3.91), (3.93). For more details on semi-smooth Newton methods,
see, e.g., [24, 32, 33, 35, 61].
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Semi-smooth Newton methods and regularization

By setting λ := T̂α,H z− ĝ we arrive at{
〈T̂αzH ,wH〉Γ −〈λH ,wH〉Γ = 〈ĝ,wH〉Γ for all wH ∈ S1

H(Γ),
〈λH ,wH − zH〉Γ ≥ 0 for all wH ∈ UH .

(3.103)

Semi-smooth Newton algorithm with regularization

(i). Choose λ , σ > 0, z0
H and set k = 0.

(ii). Set

A1
k+1 = {i ∈ N : 1 ≤ i ≤ M, (λ +σ(zk

H − z1))(xi) < 0},
A2

k+1 = {i ∈ N : 1 ≤ i ≤ M, (λ +σ(zk
H − z2))(xi) > 0}.

(iii). If k ≥ 1, A1
k+1 = A1

k and A2
k+1 = A2

k stop, else

(iv). Solve for zk+1
H ∈ S1

H(Γ):

〈T̂αzk+1
H ,wH〉Γ + 〈(λ +σ(zk+1

H − z2))χA2
k+1

,wH〉Γ

+ 〈(λ +σ(zk+1
H − z1))χA1

k+1
,wH〉Γ = 〈ĝ,wH〉Γ (3.104)

for all wH ∈ S1
H(Γ). Set k := k +1 and go to Step (ii).

Note that in step (iv) we obtain the associated linear system of (3.104)

T̂α ,Hzk+1 +σ(M1
H +M2

H)zk+1 = ĝ+ f 0 (3.105)

where

M1
H [ j, i] = 〈ϕ1

i χA1
k+1

,ϕ1
j 〉Γ, M2

H [ j, i] = 〈ϕ1
i χA2

k+1
,ϕ1

j 〉Γ for i, j = 1, ...,M,

and

f0[ j] = 〈(σz1 −λ )χA1
k+1

,ϕ1
j 〉Γ + 〈(σz2 −λ )χA2

k+1
,ϕ1

j 〉Γ for j = 1, ...,M.

Remark 3.7. The mass matrices M1
H and M2

H are symmetric and positive semi-definite.
Hence the conjugate gradient method can be applied to solve the linear system (3.105).
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3.7 Numerical experiments

We present in this section some numerical results for the Dirichlet boundary control prob-
lems in two-dimension d = 2. We test some numerical examples as given in the papers
[11, 19, 42]. For the boundary element discretization we introduce a uniform triangula-
tion of the boundary Γ = ∂Ω on several levels L by 2L+2 nodes. The boundary element
discretization is done by using the trial space S0

h(Γ) of piecewise constant basis functions
and S1

H(Γ) of piecewise linear and continuous functions. We use the same boundary el-
ement mesh in the symmetric formulation to approximate the control z by a piecewise
linear approximation, and piecewise constant approximations for the fluxes ω and q. In
the case of the non-symmetric formulation, we consider one additional level of refinement
to define the trial space S0

h(Γ), i.e., h/H = 1/2. Note that in this case we can not ensure
the S1

H(Γ)-ellipticity of the non-symmetric boundary element approximation. However,
the numerical examples show stability. It is not stable if we use the same mesh as in the
symmetric formulation.

Since the analytic solutions are unknown in these examples, we use the approximate solu-
tions on the finest level (L = 9) as reference solutions. For the following examples, we use
the norm as defined in (2.7) to compute the errors in H1/2(Γ) norm.

Numerical example 1
In our first numerical example we consider the Dirichlet boundary control problem (3.1)
for circle Ω = B0.4(0) with regular data as given in [19]. We set α = 1,

u(r,φ) =
125
8

r3 max(0,cos3 φ),

u(r,φ) =
25
8

(35r2 cos2 φ +30r2 −12r)cosφ +u(r,φ) and

f (r,φ) = −375
4

r max(0,cosφ).

For a L2(Γ)-control, i.e., instead of the Steklov-Poincaré operator S we choose an identity
operator in (3.1), it is easy to check that z(0.4,φ) = u|Γ = max(0,cos3 φ) is the solution
of the minimization problem where [z1,z2] = [0,1] and the associated adjoint variable is
given by p(r,φ) = 25

8 r3(5r−2)cos3 φ .

We present the errors in the L2(Γ) norm of the boundary element approximations for the
non-constrained minimization problem and the estimated order of convergence (eoc) of
the non-symmetric formulation and of the symmmetric formulation in Table 3.1.

In this example, the data are smooth. Hence we can expect an optimal order of conver-
gence, i.e., second order convergence for the control z, and linear convergence for the flux
ω , see the error estimates (3.73), (3.76) for the non-symmetric boundary element approx-
imation and the error estimate (3.99) for the symmetric boundary element approximation
(s = 1).
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Non-symmetric BEM (3.74) Symmetric BEM (3.100)
L ‖z̃hL − z̃h9‖L2(Γ) ‖ωhL −ωh10‖L2(Γ) ‖ẑhL − ẑh9‖L2(Γ) ‖ωhL −ωh9‖L2(Γ)

error eoc error eoc error eoc error eoc
2 3.0938e-3 - 4.2361e-1 - 3.4359e-3 - 3.9355e-1 -
3 7.1975e-4 2.104 2.0095e-1 1.076 8.1293e-4 2.079 1.9543e-1 1.009
4 1.7553e-4 2.036 9.8235e-2 1.032 2.0464e-4 1.990 9.7464e-2 1.004
5 4.3428e-5 2.015 4.8796e-2 1.009 5.4279e-5 1.915 4.8632e-2 1.003
6 1.0834e-5 2.003 2.4324e-2 1.004 1.5316e-5 1.825 2.4169e-2 1.009
7 2.7031e-6 2.003 1.2085e-2 1.009 4.1463e-6 1.889 1.1793e-2 1.035
8 6.5553e-7 2.044 5.8965e-3 1.035 1.1821e-6 1.810 5.2738e-3 1.161
expected 2.000 1.000 2.000 1.000

Table 3.1: Comparison of non-symmetric and symmetric BEM.

For the box-constrained minimization problem we use semi-smooth Newton method with
regularization to solve the variational inequality. We present here the symmetric formula-
tion only. The obtained results are given in Table 3.2 where [z1,z2] = [0,1]. The data in the
semi-smooth Newton algorithm are chosen as

λ = 0, σ = 104, z0 = 0. (3.106)

With these data, the algorithm stops after less than 20 steps, see the last column in Table
3.2. Note that at level L = 9 to compute the reference solutions, we need k = 17 itera-
tions.

L ‖ẑhL − ẑh9‖L2(Γ) eoc ‖ẑhL − ẑh9‖H1/2(Γ) eoc ‖ωhL −ωh9‖L2(Γ) eoc #it(k)
2 8.4004e-3 - 6.6399e-2 - 0.3970350 - 10
3 1.5959e-3 2.396 2.0421e-2 1.701 0.1960640 1.018 12
4 3.4967e-4 2.190 7.7228e-3 1.403 0.0982184 0.997 13
5 8.0322e-5 2.122 2.8896e-3 1.418 0.0496215 0.985 16
6 1.6539e-5 2.279 7.9336e-4 1.865 0.0248726 0.996 14
7 4.9567e-6 1.738 3.2703e-4 1.279 0.0122548 1.021 15
8 1.9666e-6 1.334 1.4044e-4 1.219 0.0054306 1.174 15
expected 2.000 1.500 1.000

Table 3.2: The results of semi-smooth Newton algorithm of the symmetric formulation.

Note that the parameter σ plays the role of a penalty parameter and it should be chosen
large enough. As stated in [35], for some choice of σ , the semi-smooth Newton method
may lead to cycling of the iterates unless the initialization is already close to the solution.
For σ = 1, the method converges for all initializations.
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Figure 3.1 shows the optimal solutions of the unconstrained (left) and of the constrained
(right) problems. In Figure 3.2 we also plot the optimal states of the Dirichlet boundary
control problem when using the hypersingular boundary integral operator D to realize an
equivalent norm in H1/2(Γ) and when using L2(Γ) setting where [z1,z2] = [0,1], see [19].

Figure 3.1: Comparison of the unconstrained (left) and of the constrained (right) optimal
solutions.

Figure 3.2: Optimal solution uh when using the operator D and using L2 setting.
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Numerical example 2
We now consider the example as in [11], see also [52] with less regularity on the data for
the domain Ω = (0, 1

2)2 ⊂ R2. The data are chosen as

u(x) = (x2
1 + x2

2)
− 1

3 , f (x) = 0, α = 1.

For these data, we have u ∈ Hs(Ω) for s < 2
3 which implies p ∈ H2+s(Ω), and

∂
∂n

p ∈

H1/2+s(Γ). Hence, for the non-constrained problem we have z ∈ H3/2+s(Γ). The obtained
results without control constraints are given in Table 3.3 and Table 3.4 which are in rea-
sonable agreement with the theoretical results. For comparison, we also give the error of
the related finite element solution, see [51]. From the numerical results we conclude that
all three different approaches behave almost similar.

Non-symmetric BEM Symmetric BEM FEML ‖z̃hL − z̃h9‖L2(Γ) eoc ‖ẑhL − ẑh9‖L2(Γ) eoc ‖zhL − zh9‖L2(Γ) eoc
2 5.9100e-4 - 7.6323e-3 - 1.23e-3 -
3 1.6410e-4 1.848 1.8559e-3 2.040 3.47e-4 1.83
4 4.9258e-5 1.736 4.3695e-4 2.086 9.48e-5 1.87
5 1.4683e-5 1.746 1.0229e-4 2.095 2.57e-5 1.88
6 4.2760e-6 1.780 2.4016e-5 2.091 6.96e-6 1.88
7 1.2134e-6 1.817 5.4261e-6 2.146 1.87e-6 1.89
8 3.3324e-7 1.864 9.7897e-7 2.471 4.54e-7 2.04

Table 3.3: Comparison of BEM/FEM errors of the Dirichlet control.

Non-symmetric BEM Symmetric BEM
L ‖z̃hL − z̃h9‖H1/2(Γ) ‖ωhL −ωh10‖L2(Γ) ‖ẑhL − ẑh9‖H1/2(Γ) ‖ωhL −ωh9‖L2(Γ)

error eoc error eoc error eoc error eoc
2 1.0219e-2 - 5.3718e-2 - 3.1105e-2 - 3.0001e-2 -
3 4.0384e-3 1.339 2.4044e-2 1.159 1.0776e-2 1.529 1.8082e-2 0.730
4 1.6773e-3 1.268 1.2363e-2 0.959 4.1282e-3 1.384 1.1066e-2 0.708
5 7.0266e-4 1.255 7.4291e-3 0.735 1.6163e-3 1.353 7.1354e-3 0.633
6 2.9118e-4 1.271 4.7058e-3 0.659 6.3445e-4 1.349 4.5821e-3 0.639
7 1.1788e-4 1.305 2.9591e-3 0.669 2.4108e-4 1.396 2.8209e-3 0.699
8 4.5061e-5 1.387 1.7928e-3 0.723 8.1265e-5 1.569 1.4952e-3 0.916

Table 3.4: Comparison of non-symmetric and symmetric BEM.
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In Table 3.5 we also present numerical results for the constraint z ≤ 2.23. Then, in Figure
3.3 we give a comparison of the unconstrained and constrained solutions.

L ‖ẑhL − ẑh9‖L2(Γ) eoc ‖ẑhL − ẑh9‖H1/2(Γ) eoc ‖ωhL −ωh9‖L2(Γ) eoc #it(k)
2 1.0951e-2 - 4.0474e-2 - 5.1150e-2 - 5
3 2.5157e-3 2.122 1.3748e-2 1.558 3.2851e-2 0.639 8
4 3.4465e-4 2.868 3.4424e-3 1.998 2.2249e-2 0.562 11
5 1.4260e-4 1.273 1.6853e-3 1.031 1.0105e-2 1.138 11
6 3.0029e-5 2.247 5.0309e-4 1.744 5.8395e-3 0.791 13
7 6.3171e-6 2.249 1.5802e-4 1.671 2.5087e-3 1.219 14
8 1.1518e-6 2.455 7.4408e-5 1.087 1.2581e-3 0.996 12

Table 3.5: The results of semi-smooth Newton algorithm of the symmetric formulation.

Figure 3.3: Comparison of unconstrained (left) and constrained (right) optimal solutions.

Instead of the Steklov-Poincaré operator S, one may use the so-called hypersingular bound-
ary integral operator D to realize an equivalent norm in H1/2(Γ) as in [52]. The use of the
hypersingular boundary integral operator D does not require an inversion as in (3.49),
(3.50). However, it may result in a lower regularity of the control z, and therefore in a
lower order of convergence. For comparison we present in Table 3.6 the numerical results
for both cases and the case when considering the control in L2(Γ) with the same parameter
α = 1. Note, in the L2(Γ) control, the optimality condition reads

z = PUξ , αξ − ∂ p
∂n

= 0, (3.107)
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where PU denotes the pointwise projection onto U . This approach also results in a lower
regularity of the control z. In particular, for the data in example 2, we have z ∈ H2/3(Γ)
only, see [11, 42]. Note that we can prove z ∈ H3/2(Γ) when considering the control
in H1/2(Γ), see Proposition 3.1. Moreover, from the optimality conditions (3.107), we
conclude that z is zero in all corner points due to the zero Dirichlet boundary condition of
the adjoint state p. This behaviour is independent of the target function u. For illustration,
we plot in Figure 3.4 the states u for the H1/2(Γ) setting when using the operator D and
for the L2(Γ) setting (without control constraint).

Using the operator S Using the operator D L2 setting, see [42]L ‖ẑhL − ẑh9‖L2(Γ) eoc ‖ẑhL − ẑh9‖L2(Γ) eoc ‖zhL − zh9‖L2(Γ) eoc
2 7.6323e-3 - 7.7726e-3 - 4.2246e-2 -
3 1.8559e-3 2.040 1.9498e-3 1.995 2.1492e-2 0.975
4 4.3695e-4 2.086 4.8349e-4 2.012 1.1664e-2 0.882
5 1.0229e-4 2.095 1.2745e-4 1.923 6.4101e-3 0.864
6 2.4016e-5 2.091 3.8231e-5 1.737 3.5152e-3 0.867
7 5.4261e-6 2.146 1.3206e-5 1.533 1.8655e-3 0.914
8 9.7897e-7 2.471 4.6051e-6 1.520 8.9452e-4 1.060

Table 3.6: BEM for Dirichlet boundary control problems in H1/2(Γ) and L2(Γ).

Figure 3.4: The states u for the H1/2(Γ) setting when using the opeartor D (left) and for
the L2(Γ) setting (right).

To see the behaviour of the states u at the origin of cooridinates for smaller α , we plot
in Figure 3.5 the states u of the boundary control problem (3.1)-(3.2) for α = 10−2 and
α = 10−4.
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Figure 3.5: The states u for the H1/2(Γ) setting with α = 10−2 (left) and α = 10−4 (right).

The state u shows a good behaviour at the origin, whereas we obtain the zero control at
all corner points when considering the control in L2(Γ). More precise, we present the
states u for the H1/2(Γ) setting and for the L2(Γ) setting in Figure 3.6. Note that for
this example we use different values of α to ensure comparable values for the tracking
functional ‖u− u‖L2(Ω). The related controls for x1 ∈ (0,0.5),x2 = 0 are given in Figure
3.7. Moreover, the behaviour of the controls near the origin is also shown in Figure 3.8.

Figure 3.6: The states u for the H1/2(Γ) setting with α = 1.18× 10−3 (left) and for the
L2(Γ) setting with α = 10−2 (right).
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Figure 3.7: Comparison of the H1/2(Γ) setting (left) and of L2(Γ) setting (right) optimal
controls, x2 = 0.
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Figure 3.8: The behaviour of the optimal controls near the origin.
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4 MIXED BOUNDARY CONTROL PROBLEMS

In this chapter we study a mixed boundary control problem where the control is considered
in the space H1/2(ΓD), ΓD ⊂ Γ. One possible approach to solve mixed boundary value
problems is to use the Dirichlet to Neumann map, so-called the Steklov-Poincaré operator,
see [58, 62]. Then we can formulate and analyse a system of boundary integral equations
for the mixed boundary control problem which is based on the idea of integration by parts
as given in Chapter 3. We derive stability and error estimates of the Galerkin discretization.
Some numerical examples are presented which correspond to the theoretical results.

This chapter is organized as follows. We state the model problem in Section 4.1. We
also present the well-known KKT system. In Section 4.2, boundary integral equations are
considered which are based on the ideas as given in Chapter 3. We formulate a system of
boundary integral equations for the coupled optimality system. The Galerkin variational
formulation is presented in Section 4.3. We discuss a related stability and error analysis.
For illustration, we give some numerical results in Section 4.4.

4.1 Statement of the problem

Let Ω ⊂ Rd,(d = 2,3) be a bounded Lipschitz domain. The boundary Γ = ∂Ω is parti-
tioned into two nonintersecting parts Γ = ΓD ∪ΓN , ΓD ∩ΓN = /0. As a model problem, we
consider the mixed boundary control problem to minimize

J(u,z) =
1
2

∫
Ω

[u(x)−u(x)]2 dx+
α
2
〈Sz,z〉ΓD for (u,z) ∈ H1(Ω)×H1/2(ΓD) (4.1)

subject to

−∆u(x) = f (x) for x ∈ Ω, u(x) = z(x) for x ∈ ΓD,
∂

∂nx
u(x) = ψ(x) for x ∈ ΓN

(4.2)
and to pointwise control constraints

z ∈ Uad := {w ∈ H1/2(ΓD) : z1(x) ≤ w(x) ≤ z2(x) for x ∈ ΓD}. (4.3)

Here u ∈ L2(Ω) is a given target; f ∈ L2(Ω),ψ ∈ H−1/2(ΓN), z1,z2 ∈ H1/2(ΓD) are given,
α ∈ R+ is a fixed parameter. We describe the cost by using a H1/2(ΓD) semi-elliptic
operator S : H1/2(ΓD) → H̃−1/2(ΓD) which is specified later.

65
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To reduce the cost functional J(u,z) we introduce a linear solution operator describing the
application of the constraint (4.2). Let up ∈ H1(Ω) be a particular weak solution of the
mixed boundary value problem

−∆up(x) = f (x) for x ∈ Ω, up(x) = 0 for x ∈ ΓD,
∂

∂nx
up(x) = ψ(x) for x ∈ ΓN .

Let uz ∈ H1(Ω) be a weak solution of the homogeneous mixed boundary value problem

−∆uz(x) = 0 for x∈Ω, uz(x) = z(x) for x∈ΓD,
∂

∂nx
uz(x) = 0 for x∈ΓN . (4.4)

The solution of the mixed boundary value problem (4.2) is then given by u = uz + up.
Moreover, by using Green’s first formula, we have, for z,w ∈ H1/2(ΓD),∫

Ω

∇uz(x)∇uw(x)dx =
∫
Γ

∂
∂nx

uz(x)uw(x)dsx =
∫

ΓD

∂
∂nx

uz(x)w(x)dsx =: 〈Sz,w〉ΓD.

This is the motivation to define an operator S : H1/2(ΓD) → H̃−1/2(ΓD) which maps the
Dirichlet control z to the related Neumann datum on ΓD. The operator S is self-adjoint and
H1/2(ΓD)-semi elliptic. In particular, we have S1 = 0.

The solution of the mixed boundary value problem (4.4) defines a linear map uz = Hz,
where H : H1/2(ΓD)→ H1(Ω)⊂ L2(Ω). Then, by using u =Hz+up we now consider the
problem to find the minimizer z ∈ Uad of the reduced cost functional

J̃(z) =
1
2

∫
Ω

[(Hz)(x)+up(x)−u(x)]2 dx+
α
2
〈Sz,z〉ΓD

=
1
2
〈Hz+up −u,Hz+up −u〉Ω +

α
2
〈Sz,z〉ΓD

=
1
2
〈H∗Hz,z〉ΓD + 〈H∗(up −u),z〉ΓD +

1
2
‖up −u‖2

L2(Ω) +
α
2
〈Sz,z〉ΓD

where H∗ : L2(Ω) → H̃−1/2(ΓD) is the adjoint operator of H : H1/2(ΓD) → L2(Ω), i.e.,

〈H∗ω,ϕ〉ΓD = 〈ω ,Hϕ〉Ω for all ϕ ∈ H1/2(ΓD),ω ∈ L2(Ω).

Since the reduced cost functional J̃(·) is convex, the minimizer z ∈ Uad can be found from
the variational inequality

〈αSz+H∗Hz−g,w− z〉ΓD ≥ 0 for all w ∈ Uad, (4.5)

where we define
g := H∗(u−up) ∈ H̃−1/2(ΓD). (4.6)
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The operator
Tα := αS +H∗H : H1/2(ΓD) → H̃−1/2(ΓD) (4.7)

is bounded, self-adjoint and H1/2(ΓD)-elliptic. In particular, for z ∈ H1/2(ΓD), we have

〈Tαz,z〉ΓD = α〈Sz,z〉ΓD +〈H∗Hz,z〉ΓD = α‖∇uz‖2
L2(Ω) +‖uz‖2

L2(Ω) ≥ min{α,1}‖uz‖2
H1(Ω)

and the assertion follows from the trace theorem. Hence, the elliptic variational inequality
of the first kind (4.5) admits a unique solution z ∈ H1/2(ΓD), see, e.g., [23, 38, 41].

The variational inequality (4.5) can be written as

〈αSz+H∗(u−u),w− z〉ΓD ≥ 0 for all w ∈ Uad.

The application of the adjoint operator τ := H∗(u− u) is characterized by the Neumann
datum

τ(x) = − ∂
∂nx

p(x) for x ∈ ΓD,

where p is the unique solution of the adjoint mixed boundary value problem

−∆p(x) = u(x)−u(x) for x ∈Ω, p(x) = 0 for x ∈ ΓD,
∂

∂nx
p(x) = 0 for x ∈ ΓN . (4.8)

Hence the variational inequality (4.5) is written as

〈αSz− ∂
∂n

p,w− z〉ΓD ≥ 0 for all w ∈ Uad. (4.9)

The primal and the adjoint mixed boundary value problems (4.2) and (4.8) can be solved,
e.g., by using the standard boundary integral equations or the Dirichlet to Neumann oper-
ator S, see e.g, [17, 58, 62, 63]. This will be discussed in the next section.

4.2 Boundary integral equations

To find the control z ∈ H1/2(ΓD) we have to solve a coupled problem of the primal and the
adjoint mixed boundary value problems (4.2), (4.8) and of the optimality condition (4.9).
In what follows, the coupled optimality system is written in a form of boundary integral
equations of the Steklov-Poincaré operator S and of some composed operator T . The well-
known properties of the Dirichlet to Neumann map and of the operator T similar to the
results as described in Chapter 3 induce the unique solvability of the boundary integral
equation system as well as the stability of the Galerkin discretization which is presented in
Section 4.3.
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For the sake of convenience, let γ0·, γ1· be the Dirichlet and the Neumann trace maps,
respectively. For the primal problem, the Dirichlet to Neumann map can be written as

γ1u(x) = (Sγ0u)(x)− (V−1N0 f )(x) for x ∈ Γ, (4.10)

see (3.19), also [63], where the boundary integral representation of the Steklov-Poincaré
operator S is

S = V−1(
1
2

I +K) = D+(
1
2

I +K′)V−1(
1
2

I +K). (4.11)

We now consider the adjoint mixed boundary value problem

−∆p(x) = u(x)−u(x) for x ∈ Ω, γ0 p(x) = 0 for x ∈ ΓD, γ1 p(x) = 0 for x ∈ ΓN .

We first obtain the representation formula for x̃ ∈ Ω,

p(x̃) =
∫
Γ

U∗(x̃,y)γ1 p(y)dsy −
∫
Γ

∂
∂ny

U∗(x̃,y)γ0 p(y)dsy +
∫
Γ

∂
∂ny

V ∗(x̃,y)γ0u(y)dsy

−
∫
Γ

V ∗(x̃,y)γ1u(y)dsy −
∫
Ω

U∗(x̃,y)u(y)dy−
∫
Ω

V ∗(x̃,y) f (y)dy, (4.12)

where in addition to (3.24) we have the double layer potential of the non-zero Dirichlet
data γ0 p(x). When taking the Dirichlet and the Neumann traces, the representation formula
(4.12) results in two boundary integral equations{

γ0 p = V γ1 p− (−1
2 I +K)γ0 p+K1γ0u−V1γ1u−N0u−M0 f ,

γ1 p = (1
2 I +K′)γ1 p+Dγ0 p−D1γ0u−K′

1γ1u−N1u−M1 f .
(4.13)

Solving γ1 p from the first equation of (4.13), and by inserting γ1u from (4.10), (see also
(3.19)), we obtain

γ1 p = V−1V1V−1(
1
2

I +K)γ0u−V−1K1γ0u+V−1(
1
2

I +K)γ0 p

+V−1N0u−V−1V1V−1N0 f +V−1M0 f . (4.14)

When substituting γ1u, γ1 p from (4.10), (4.14) to the second equation of (4.13), this
gives

γ1 p(x) = (Sγ0 p)(x)− (T γ0u)(x)+ g̃(x) for x ∈ Γ, (4.15)

where the operator T is in the symmetric representation, see (3.80),

T = D1 +K′
1V−1(

1
2

I +K)+(
1
2

I +K′)V−1K1 − (
1
2

I +K′)V−1V1V−1(
1
2

I +K), (4.16)
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and

g̃ = (
1
2

I +K′)V−1N0u−N1u+K′
1V−1N0 f +(

1
2

I +K′)V−1[M0 −V1V−1N0] f −M1 f
(4.17)

as in (3.81). Moreover, we use the alternative symmetric representation of S as in (4.11).

Hence, the application of the operator S to the Dirichlet datum of the adjoint variable and
of the operator T to the Dirichlet datum of the state give the Neumann datum of the adjoint
variable p. Note that

γ0u = γ0uz + γ0up, γ0 p ∈ H̃1/2(ΓN), γ1 p ∈ H̃−1/2(ΓD).

Let z̃ ∈ H1/2(Γ) be a fixed extension of z ∈ H1/2(ΓD). Let

s(x) := γ0uz(x)− z̃(x) ∈ H̃1/2(ΓN). (4.18)

Then the Dirichlet to Neumann map of the mixed boundary value problem (4.4) reads

γ1uz(x) = (Sγ0uz)(x) = (Ss)(x)+(S z̃)(x) for x ∈ Γ.

This gives a boundary integral equation

(Ss)(x) = −(S z̃)(x) for x ∈ ΓN . (4.19)

Note that in the last equation we use the same notation for the operator S : H̃1/2(ΓN) →
H−1/2(ΓN). In particular, for s ∈ H̃1/2(ΓN) we identify s with its zero extension s̃ ∈
H1/2(Γ). To be more precise, we later use a subscript to indicate the pre-image and the
image of the operator S.
Since the operator S : H̃1/2(ΓN) → H−1/2(ΓN) is bounded and H̃1/2(ΓN)-elliptic, the
boundary integral equation (4.19) admits a unique solution s ∈ H̃1/2(ΓN), see [63, 64].
Hence we can define an operator P : H1/2(ΓD) → H1/2(Γ) by

Pz := γ0uz = s+ z̃, (4.20)

where s ∈ H̃1/2(ΓN) is the unique solution of the operator equation (4.19). The function
s depends on the extension z̃ of z, of course. However, the sum s + z̃ is independent of
choosing the extension z̃. Indeed, let z ∈ H1/2(Γ) be another extension of z ∈ H1/2(ΓD)
and let s ∈ H̃1/2(ΓN) be the unique solution of the variational problem

〈S s,φ〉ΓN = −〈Sz,φ〉ΓN for all φ ∈ H̃1/2(ΓN).

Then the function
v := (s+ z̃)− (s+ z) ∈ H̃1/2(ΓN).

We obtain, by the definition of s and s,

〈Ss,v〉ΓN = −〈S z̃,v〉ΓN , 〈S s,v〉ΓN = −〈Sz,v〉ΓN .
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This implies
〈Sv,v〉ΓN = 0.

Hence the assertion follows from the H̃1/2(ΓN)-ellipticity of the operator S.

Moreover, we have
‖Pz‖H1/2(Γ) ≤ cP2 ‖z‖H1/2(ΓD). (4.21)

We now rewrite the boundary integral equation (4.15) in a form of a system of boundary
integral equations{

(Sγ0 p)(x) = T (Pz+ γ0up)(x)− g̃(x) for x ∈ ΓN ,

γ1 p(x) = (Sγ0 p)(x)−T (Pz+ γ0up)(x)+ g̃(x) for x ∈ ΓD.
(4.22)

Again the operator S : H̃1/2(ΓN) → H−1/2(ΓN) is bounded and H̃1/2(ΓN)-elliptic, we can
solve γ0 p ∈ H̃1/2(ΓN) from the first equation of (4.22)

γ0 p = S−1
NNTNPz+S−1

NNTNγ0up −S−1
NN g̃N , (4.23)

where the subscript in SAB means integration over ΓB and evaluation on ΓA and the sub-
scripts in TA, etc., mean evaluation on ΓA with ΓA,ΓB ⊂ Γ. By substituting (4.23) in the
second equation of (4.22), we obtain

γ1 p =
(
SDNS−1

NNTN −TD
)
Pz+

(
SDNS−1

NNTN −TD
)

γ0up −SDNS−1
NN g̃N + g̃D. (4.24)

Therefore, the variational inequality (4.9) can be written as

〈Tαz,w− z〉ΓD ≥ 〈g,w− z〉ΓD, (4.25)

where we obtain the alternative representation of Tα as defined in (4.7),

Tα = αS −
(
SDNS−1

NNTN −TD
)
P (4.26)

and of g as defined in (4.6),

g =
(
SDNS−1

NNTN −TD
)

γ0up −SDNS−1
NN g̃N + g̃D. (4.27)

Theorem 4.1. The composed boundary integral operator Tα : H1/2(ΓD) → H̃−1/2(ΓD) as
defined in (4.26) is self-adjoint, bounded and H1/2(ΓD)-elliptic.

Proof. The boundedness of Tα follows from the boundedness of all boundary integral
operators involved. Moreover, let pz ∈ H1(Ω) be a particular solution of the adjoint mixed
boundary value problem, i.e.,

−∆pz(x) = uz(x) for x ∈ Ω, γ0 pz(x) = 0 for x ∈ ΓD, γ1 pz(x) = 0 for x ∈ ΓN ,
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where uz ∈H1(Ω) is the solution of the mixed boundary value problem (4.4). Analogously,
the boundary integral equation (4.15) reads

γ1 pz(x) = (Sγ0 pz)(x)− (T γ0uz)(x) = (Sγ0 pz)(x)− (TPz)(x). (4.28)

Therefore, {
(Sγ0 pz)(x)− (TPz)(x) = 0 for x ∈ ΓN ,

(Sγ0 pz)(x)− (TPz)(x) = γ1 pz(x) for x ∈ ΓD.
(4.29)

Since the operator S : H̃1/2(ΓN)→ H−1/2(ΓN) is invertible, we can solve γ0 pz ∈ H̃1/2(ΓN)
of the first boundary integral equation of (4.29). Hence, from the second boundary integral
equation of (4.29), we can conclude

Tαz = αSz− γ1 pz ∈ H̃−1/2(ΓD). (4.30)

Therefore, for z,w ∈ H1/2(ΓD) we have, by using Green’s second formula

〈Tαz,w〉ΓD = α〈Sz,w〉ΓD −
∫

ΓD

γ1 pz(x)w(x)dsx

= α〈Sz,w〉ΓD −
∫
Γ

γ1 pz(x)γ0uw(x)dsx

= α
∫
Ω

∇uz(x)∇uw(x)dx+
∫
Ω

uz(x)uw(x)dx,

and the assertion follows.

Hence we conclude the unique solvability of the variational inequality (4.25). In what fol-
lows, we consider a Galerkin boundary element discretization of the variational inequality
(4.25).

4.3 Symmetric Galerkin approximation formulation

Let
S1

h(ΓD) := S1
h(Γ)∩H1/2(ΓD) = span{ϕ1D

i }M1
i=1

be a boundary element space of piecewise linear and continuous basis functions ϕ1D
i on

ΓD, which is defined with respect to a globally quasi-uniform and shape regular boundary
element mesh of mesh size h. For continuous functions z1 and z2, we define the discrete
convex set

Uh := {wh ∈ S1
h(ΓD) : z1(xi) ≤ wh(xi) ≤ z2(xi) for all nodes xi ∈ ΓD} ⊂ H1/2(ΓD).
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Then the Galerkin discretization of the variational inequality (4.25) reads to find zh ∈ Uh
such that

〈Tαzh,wh − zh〉ΓD ≥ 〈g,wh − zh〉ΓD for all wh ∈ Uh. (4.31)

The operator Tα as defined in (4.26) is bounded and H1/2(ΓD)-elliptic. The discrete vari-
ational inequality (4.31) admits a unique solution zh ∈ Uh. Moreover, we can derive the
following error estimate.

Theorem 4.2. Let z ∈ Uad and zh ∈ Uh be the unique solutions of the variational in-
equalities (4.25) and (4.31), respectively. If we assume z,z1,z2 ∈ Hs(ΓD) and Tαz− g ∈
H̃s−1(ΓD) for some s ∈ [1

2 ,2], then there holds the error estimate

‖z− zh‖H1/2(ΓD) ≤ chs− 1
2‖z‖Hs(ΓD). (4.32)

Proof. The proof is similar to the proof of Theorem 3.1 where we use the approximation
property of the trial space S1

h(ΓD). We skip the details.

The error estimate (4.32) seems to be optimal. However, the composed operator Tα as
considered in the variational inequality (4.31) does not allow a practical implementation,
since the inverse single layer potential V−1 as in the composed operators S,T is in general
not given in an explicit form. Hence, instead of (4.31) we need to consider a perturbed
variational inequality to seek ẑh ∈ Uh such that

〈T̂α ẑh,wh − ẑh〉ΓD ≥ 〈ĝ,wh − ẑh〉ΓD for all wh ∈ Uh, (4.33)

where T̂α and ĝ are appropriate approximations of Tα and g, respectively. The following
theorem presents an abstract consistency result, see [51]. We used a similar result as given
in Theorem 3.2.

Theorem 4.3. Let T̂α : H1/2(ΓD)→ H̃−1/2(ΓD) be a bounded and S1
h(ΓD)-elliptic approx-

imation of Tα satisfying

‖T̂αz‖H̃−1/2(ΓD) ≤ cT̂α
2 ‖z‖H1/2(ΓD) for all z ∈ H1/2(ΓD) (4.34)

and
〈T̂αzh,zh〉ΓD ≥ cT̂α

1 ‖zh‖2
H1/2(ΓD) for all zh ∈ S1

h(ΓD).

Let ĝ ∈ H̃−1/2(ΓD) be some approximation of g. For the unique solution ẑh ∈ Uh of the
perturbed variational inequality (4.33) there holds the error estimate

‖z− ẑh‖H1/2(ΓD) ≤ c1‖z− zh‖H1/2(ΓD) + c2‖(Tα −T̂α)z‖H̃−1/2(ΓD) + c3‖g− ĝ‖H̃−1/2(ΓD),

(4.35)
where zh ∈ Uh is the unique solution of the discrete variational inequality (4.31).
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It remains to define approximations T̂α and ĝ of the operator Tα and of the right hand side
g, respectively.

Boundary element approximations of S and T
Let w ∈ H1/2(Γ) be a given function. By using the symmetric representations of S and T ,
see (4.11) and (4.16), we obtain

Sw = Dw+(
1
2

I +K′)V−1(
1
2

I +K)w = Dw+(
1
2

I +K′)ωw,

Tw = D1w+K′
1ωw − (

1
2

I +K′)θw,

where
ωw = V−1(

1
2

I +K)w, θw = V−1(V1ωw −K1w),

i.e., ωw,θw are the unique solutions of the variational problems

〈V ωw,τ〉Γ = 〈(1
2

I +K)w,τ〉Γ for all τ ∈ H−1/2(Γ),

〈V θw,τ〉Γ = 〈(V1ωw −K1w),τ〉Γ for all τ ∈ H−1/2(Γ).

Let S0
h(Γ) = span{ϕ0

k }
N
k=1 be the boundary element space of piecewise constant basis func-

tions on Γ, which is defined with respect to a globally quasi-uniform and shape regular
boundary element mesh of mesh size h. Then the associated Galerkin variational formula-
tions read to find ωw,h,θw,h ∈ S0

h(Γ) such that

〈V ωw,h,τh〉Γ = 〈(1
2

I +K)w,τh〉Γ for all τh ∈ S0
h(Γ),

〈V θw,h,τh〉Γ = 〈(V1ωw,h −K1w),τh〉Γ for all τh ∈ S0
h(Γ).

Now we are in a position to define the approximate operators Ŝ and T̂ by

Ŝw = Dw+(
1
2

I +K′)ωw,h, (4.36)

T̂ w = D1w+K′
1ωw,h − (

1
2

I +K′)θw,h. (4.37)

Lemma 4.1. The approximate Steklov-Poincaré operator Ŝ as defined in (4.36) is bounded,
i.e., Ŝ : H1/2(Γ) → H−1/2(Γ) satisfying

‖Ŝw‖H−1/2(Γ) ≤ cŜ
2‖w‖H1/2(Γ) for all w ∈ H1/2(Γ). (4.38)

Moreover, Ŝ is H̃1/2(ΓN)-elliptic,

〈Ŝw,w〉Γ ≥ cD
1 ‖w‖2

H1/2(Γ) for all w ∈ H̃1/2(ΓN), (4.39)
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and satisfies the error estimate

‖(S− Ŝ)w‖H−1/2(Γ) ≤ c inf
τh∈S0

h(Γ)
‖Sw− τh‖H−1/2(Γ). (4.40)

Proof. The proof is similar to the proof of Lemma 3.3. In particular, the H̃1/2(ΓN)-
ellipticity of Ŝ follows due to, see [64, Lemma 12.11],

〈Ŝw,w〉Γ = 〈Dw,w〉Γ + 〈(1
2

I +K′)ωw,h,w〉Γ

= 〈Dw,w〉Γ + 〈ωw,h,(
1
2

I +K)w〉Γ

= 〈Dw,w〉Γ + 〈V ωw,h,ωw,h〉Γ ≥ cD
1 ‖w‖2

H1/2(Γ).

Lemma 4.2. The approximate operator T̂ : H1/2(Γ) → H−1/2(Γ) is bounded, i.e.,

‖T̂ w‖H−1/2(Γ) ≤ cT̂
2 ‖w‖H1/2(Γ) for all w ∈ H1/2(Γ). (4.41)

Moreover, there holds the error estimate

‖(T − T̂ )w‖H−1/2(Γ) ≤ c1 inf
τh∈S0

h(Γ)
‖θw − τh‖H−1/2(Γ) + c2‖ωw −ωw,h‖H−3/2(Γ). (4.42)

Proof. The proof follows as for the boundary element approximation of the Dirichlet
boundary control problems, see Lemma 3.3, [52].

Boundary element approximations of the operators S and P
Let z∈H1/2(ΓD) be a given function. Let z̃∈H1/2(Γ) be a fixed extension of z satisfying

‖z̃‖H1/2(Γ) ≤ c‖z‖H1/2(ΓD) for some constant c > 1. (4.43)

By definition we have
(Sz)(x) = γ1uz(x) for x ∈ ΓD,

and
(Pz)(x) = γ0uz(x) = s(x)+ z̃(x) for x ∈ Γ, s ∈ H̃1/2(ΓN),

where uz ∈ H1(Ω) is the unique solution of the mixed boundary value problem

−∆uz(x) = 0 for x ∈ Ω, γ0uz(x) = z(x) for x ∈ ΓD, γ1uz(x) = 0 for x ∈ ΓN .

The application of the Steklov-Poincaré operator S reads

(Sγ0uz)(x) = γ1uz(x) for x ∈ Γ.
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This implies {
(Ss)(x) = −(S z̃)(x) for x ∈ ΓN ,

γ1uz(x) = (Ss)(x)+(S z̃)(x) for x ∈ ΓD.
(4.44)

Let
S̃1

h (ΓN) := S1
h(Γ)∩ H̃1/2(ΓN) = span{ϕ1N

i }M2
i=1

be a boundary element space of piecewise linear and continuous basis functions ϕ1N
i on

ΓN , which is defined with respect to a globally quasi-uniform and shape regular boundary
element mesh of mesh size h. Let sh ∈ S̃1

h (ΓN) be the unique solution of the Galerkin
variational problem

〈Ŝsh,φh〉ΓN = −〈Ŝ z̃,φh〉ΓN for all φh ∈ S̃1
h (ΓN),

where Ŝ is defined as in (4.36). Hence we can define approximations Ŝ and P̂ of the
operators S and P , respectively, by

(Ŝz)(x) := (Ŝsh)(x)+(Ŝ z̃)(x) for x ∈ ΓD, (4.45)

(P̂z)(x) := sh(x)+ z̃(x) for x ∈ Γ. (4.46)

Lemma 4.3. The approximate operators

Ŝ : H1/2(ΓD) → H̃−1/2(ΓD), P̂ : H1/2(ΓD) → H1/2(Γ)

are bounded, i.e.,

‖Ŝz‖H̃−1/2(ΓD) ≤ cŜ2 ‖z‖H1/2(ΓD), ‖P̂z‖H1/2(Γ) ≤ cP̂2 ‖z‖H1/2(ΓD) for all z ∈ H1/2(ΓD).
(4.47)

Moreover, there hold the error estimates

‖(S −Ŝ)z‖H̃−1/2(ΓD) ≤ c1 inf
φh∈S̃1

h (ΓN)
‖s−φh‖H̃1/2(ΓN) + c2‖(S− Ŝ)Pz‖H−1/2(ΓD)

+ c3‖(S− Ŝ)s‖H−1/2(ΓN) + c4‖(S− Ŝ)z̃‖H−1/2(ΓN) (4.48)

and

‖(P−P̂)z‖H1/2(Γ) ≤ c1 inf
φh∈S̃1

h (ΓN)
‖s−φh‖H̃1/2(ΓN) + c2‖(S− Ŝ)s‖H−1/2(ΓN)

+ c3‖(S− Ŝ)z̃‖H−1/2(ΓN). (4.49)

Proof. The boundedness of the operators Ŝ and P̂ follows from the mapping properties of
all boundary integral operators involved. For an arbitrary chosen but fixed z ∈ H1/2(ΓD)
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we have, by definition,

(S −Ŝ)z = Ss− Ŝsh +(S− Ŝ)z̃

= (S− Ŝ)s+ Ŝ(s− sh)+(S− Ŝ)z̃

= (S− Ŝ)Pz+ Ŝ(s− sh),

and

(P−P̂)z = s− sh.

By the Strang lemma, see, e.g., [64], we obtain

‖s− sh‖H̃1/2(ΓN) ≤ c1 inf
φh∈S̃1

h (ΓN)
‖s−φh‖H̃1/2(ΓN) + c2‖(S− Ŝ)s‖H−1/2(ΓN)

+ c3‖(S− Ŝ)z̃‖H−1/2(ΓN).

The assertion now follows from the triangle inequality.

By using the estimates (4.21), (4.40), (4.43) and the approximation properties of the trial
spaces S̃1

h (ΓN) and S0
h(Γ), we conclude the error estimates from (4.48), (4.49) when as-

suming some regularity of z.

Corollary 4.1. Assume z ∈ Hs(ΓD) for some s ∈ [1
2 ,2]. Then there hold the error estimates

‖(S −Ŝ)z‖H̃−1/2(ΓD) ≤ c1 hs− 1
2‖z‖Hs(ΓD), (4.50)

‖(P−P̂)z‖H1/2(Γ) ≤ c2 hs− 1
2‖z‖Hs(ΓD). (4.51)

Boundary element approximation of the operator Tα
For an arbitrary but fixed z ∈ H1/2(ΓD), the application of Tαz reads as

(Tαz)(x) = α(Sz)(x)− (Swz)(x)+(TPz)(x) for x ∈ ΓD,

where wz ∈ H̃1/2(ΓN) is the unique solution of the boundary integral equation

(Swz)(x) = (TPz)(x) for x ∈ ΓN .

Let wz,h ∈ S̃1
h (ΓN) be the unique solution of the Galerkin variational problem

〈Ŝwz,h,φh〉ΓN = 〈T̂ P̂z,φh〉ΓN for all φh ∈ S̃1
h (ΓN). (4.52)

Hence we can define an approximation T̂α of the operator Tα by

(T̂αz)(x) := α(Ŝz)(x)− (Ŝwz,h)(x)+(T̂ P̂z)(x) for x ∈ ΓD. (4.53)
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Lemma 4.4. The approximate operator T̂α as defined in (4.53) is bounded, i.e.,

‖T̂αz‖H̃−1/2(ΓD) ≤ cT̂α
2 ‖z‖H1/2(ΓD).

Moreover, there holds the error estimate

‖(Tα −T̂α)z‖H̃−1/2(ΓD) ≤ c1 inf
φh∈S̃1

h (ΓN)
‖wz −φh‖H̃1/2(ΓN) +α‖(S −Ŝ)z‖H̃−1/2(ΓD)

+ c2‖(S− Ŝ)wz‖H−1/2(Γ) + c3‖(T − T̂ )Pz‖H−1/2(Γ) + c4‖(P−P̂)z‖H−1/2(Γ).

(4.54)

Proof. The boundedness of the operator T̂α follows from the mapping properties of all
boundary integral operators involved, see Lemma 4.1, 4.2 and 4.3.
For the error estimate (4.54), let z ∈ H1/2(ΓD) be an arbitrary function but fixed. By
definition, we have

(Tαz)(x) = α(Sz)(x)− (Swz)(x)+(TPz)(x) for x ∈ ΓD,

and by using (4.53),

(T̂αz)(x) = α(Ŝz)(x)− (Ŝwz,h)(x)+(T̂ P̂z)(x) for x ∈ ΓD.

Therefore, we obtain for x ∈ ΓD

(Tα −T̂α)z(x) = α(S −Ŝ)z(x)+(Ŝwz,h)(x)− (Swz)(x)+(TPz)(x)− (T̂ P̂z)(x)

= α(S −Ŝ)z(x)+(Ŝ−S)wz(x)+ Ŝ(wz,h −wz)(x)

+(T − T̂ )Pz(x)+ T̂ (P−P̂)z(x).

By using the Strang lemma and the triangle inequality, we can conclude

‖wz −wz,h‖H̃1/2(ΓN) ≤ c1 inf
φh∈S̃1

h (ΓN)
‖wz −φh‖H̃1/2(ΓN) + c2‖(S− Ŝ)wz‖H−1/2(ΓN)

+ c3‖(TP− T̂ P̂)z‖H−1/2(ΓN)

≤ c1 inf
φh∈S̃1

h (ΓN)
‖wz −φh‖H̃1/2(ΓN) + c2‖(S− Ŝ)wz‖H−1/2(ΓN)

+ c3‖(T − T̂ )Pz‖H−1/2(ΓN) + c3‖T̂ (P−P̂)z‖H−1/2(ΓN).

The assertion now follows from the boundedness of the operators Ŝ and T̂ .

By using the estimates (4.40), (4.42), (4.50), (4.51) and the approximation properties of the
trial spaces S̃1

h (ΓN) and S0
h(Γ), we conclude an error estimate from (4.54) when assuming

some regularity of z,wz,θPz,ωPz, respectively. Here, we recall the notations

ωPz = V−1(
1
2

I +K)Pz, θPz = V−1[V1ωPz −K1Pz].
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Corollary 4.2. There holds the error estimate

‖(Tα −T̂α)z‖H̃−1/2(ΓD) ≤ c1hs− 1
2‖wz‖Hs(ΓN) + c2hs− 1

2‖z‖Hs(ΓD)

+ c3hσ+ 1
2‖θPz‖Hσ

pw(Γ) + c4hσ+ 1
2‖ωPz‖Hσ

pw(Γ), (4.55)

when assuming z ∈ Hs(ΓD), wz ∈ Hs(ΓN) for some s ∈ [1
2 ,2] and θPz,ωPz ∈ Hσ

pw(Γ) for
some σ ∈ [0,1].

Boundary element approximations of the right hand sides
Analogously we may define a boundary element approximation of the right hand side g as
defined in (4.27)

g =
(
SDNS−1

NNTN −TD
)

γ0up −SDNS−1
NN g̃N + g̃D.

Let us first define boundary element approximations of g̃, see (4.17), and γ0up. By using
(3.82), (3.83), g̃ ∈ H−1/2(Γ) as in (4.17) can be read

g̃ = V−1N0u+V−1M0 f −V−1V1V−1N0 f = V−1N0u+V−1M0 f −V−1V1 f0,

where f0 := V−1N0 f . Hence we can define an approximation g̃h ∈ S0
h(Γ) of g̃ which is the

unique solution of the Galerkin variational problem

〈V g̃h,θh〉Γ = 〈N0u+M0 f −V1 f0,h,θh〉Γ for all θh ∈ S0
h(Γ), (4.56)

where f0,h ∈ S0
h(Γ) solves

〈V f0,h,θh〉Γ = 〈N0 f ,θh〉Γ for all θh ∈ S0
h(Γ). (4.57)

As in Corollary 3.3 we conclude the error estimates

‖ f0 − f0,h‖H−1/2(Γ) ≤ c1 hσ+ 1
2‖ f0‖Hσ

pw(Γ), (4.58)

‖g̃− g̃h‖H−1/2(Γ) ≤ c1 hσ+ 1
2‖g̃‖Hσ

pw(Γ) + c2 hσ+ 3
2‖ f0‖Hσ

pw(Γ), (4.59)

when assuming f0, g̃ ∈ Hσ
pw(Γ) for some σ ∈ [0,1]. Note that the factor σ + 3

2 in the last
term follows from the mapping property V1 : H−3/2(Γ) → H3/2(Γ) and the Aubin-Nitsche
trick.
We now define a boundary element approximation of γ0up, where up is the unique solution
of the mixed boundary value problem

−∆up(x) = f (x) for x ∈ Ω, γ0up(x) = 0 for x ∈ ΓD, γ1up(x) = ψ(x) for x ∈ ΓN .

The boundary integral equation (4.10) gives

(Sγ0up)(x) = γ1up(x)+(V−1N0 f )(x) = ψ(x)+ f0(x) for x ∈ ΓN .
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Hence we can define an approximation up,h ∈ S̃1
h (ΓN) of γ0up ∈ H̃1/2(ΓN) as the unique

solution of the Galerkin variational problem

〈Ŝup,h,φh〉ΓN = 〈ψ + f0,h,φh〉ΓN for all φh ∈ S̃1
h (ΓN). (4.60)

Moreover, we can derive the error estimate

‖γ0up −up,h‖H̃1/2(ΓN) ≤ c1 hs− 1
2‖γ0up‖Hs(ΓN) + c2 hσ+ 1

2‖ f0‖Hσ
pw(Γ), (4.61)

when assuming γ0up ∈ Hs(ΓN) for some s ∈ [1
2 ,2] and f0 ∈ Hσ

pw(Γ) for some σ ∈ [0,1].

Let us rewrite the right hand side g as follows

g(x) = (S f1)(x)− (T γ0up)(x)+ g̃(x) for x ∈ ΓD, (4.62)

where f1 ∈ H̃1/2(ΓN) solves

(S f1)(x) = (T γ0up)(x)− g̃(x) for x ∈ ΓN .

Then, we define f1,h ∈ S̃1
h (ΓN) as the unique solution of the Galerkin variational problem

〈Ŝ f1,h,φh〉ΓN = 〈T̂ up,h,φh〉ΓN −〈g̃h,φh〉ΓN for all φh ∈ S̃1
h (ΓN). (4.63)

By using the Strang lemma, we conclude the error estimate

‖ f1 − f1,h‖H̃1/2(ΓN) ≤ c1 inf
φh∈H̃ 1

h (ΓN)
‖ f1 −φh‖H̃1/2(ΓN) + c2‖(S− Ŝ) f1‖H−1/2(ΓN)

+ c3‖(T − T̂ )γ0up‖H−1/2(ΓN) + c4‖γ0up −up,h‖H̃1/2(ΓN) + c5‖g̃− g̃h‖H−1/2(ΓN).

(4.64)

We are now in a position to define an approximation ĝ ∈ H̃−1/2(ΓD) of g by

ĝ(x) = (Ŝ f1,h)(x)− (T̂ up,h)(x)+ g̃h(x) for x ∈ ΓD. (4.65)

Lemma 4.5. Let g and ĝ be defined as in (4.62) and (4.65), respectively. Then there holds
the error estimate

‖g− ĝ‖H̃−1/2(ΓD) ≤ c1 inf
φh∈H̃ 1

h (ΓN)
‖ f1 −φh‖H̃1/2(ΓN) + c2‖(S− Ŝ) f1‖H−1/2(Γ)

+ c3‖(T − T̂ )γ0up‖H−1/2(Γ) + c4‖γ0up −up,h‖H̃1/2(ΓN) + c5‖g̃− g̃h‖H−1/2(Γ).

(4.66)
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Proof. By the definition of g and by using (4.65) we obtain for x ∈ ΓD

g(x)− ĝ(x) = (S f1)(x)− (Ŝ f1,h)(x)− (T γ0up)(x)+(T̂ up,h)(x)+ g̃(x)− g̃h(x)

= (S− Ŝ) f1(x)+ Ŝ( f1 − f1,h)(x)− (T − T̂ )γ0up(x)

+ T̂ (up,h − γ0up)(x)+ g̃(x)− g̃h(x).

The assertion then follows from the triangle inequality and the error estimate (4.64).

When combining the error estimates (4.40), (4.42), (4.59) and (4.61) with the approxi-
mation properties of the trial spaces S̃1

h (ΓN) and S0
h(Γ), we conclude the following error

estimate

‖g− ĝ‖H̃−1/2(ΓD) ≤ c1 hs− 1
2‖ f1‖Hs(Γ) + c2 hσ+ 1

2‖θγ0up‖Hσ
pw(Γ) + c3 hσ+ 3

2‖ωγ0up‖Hσ
pw(Γ)

+ c4 hs− 1
2‖γ0up‖Hs(ΓN) + c5 hσ+ 1

2‖ f0‖Hσ
pw(Γ) + c6 hσ+ 1

2‖g̃‖Hσ
pw(Γ),

(4.67)

when assuming f1 ∈ Hs(Γ), γ0up ∈ Hs(ΓN) for some s ∈ [1
2 ,2] and θγ0up,ωγ0up, f0, g̃ ∈

Hσ
pw(Γ) for some σ ∈ [0,1].

Approximate variational inequality
By using the approximations (4.53) and (4.65) we now consider the approximate varia-
tional inequality, see (4.33), to find ẑh ∈ Uh such that

〈T̂α ẑh,wh − ẑh〉ΓD ≥ 〈ĝ,wh − ẑh〉ΓD for all wh ∈ Uh. (4.68)

Let z̃h, w̃h ∈ S1
h(Γ) be the extensions of ẑh and wh, respectively, satisfying

z̃h(xi) = 0, w̃h(xi) = 0 for all points xi /∈ ΓD.

Since T̃α ẑh − ĝ ∈ H̃−1/2(ΓD), the variational inequality (4.68) is equivalent to

〈T̂α ẑh, w̃h − z̃h〉Γ ≥ 〈ĝ, w̃h − z̃h〉Γ for all w̃h ↔ wh ∈ Uh. (4.69)

By using the extension z̃h for the approximations (4.45) and (4.46), we obtain

(Ŝ ẑh)(x) = Ŝ(sh + z̃h)(x) for x ∈ ΓD,

(P̂ ẑh)(x) = sh(x)+ z̃h(x) for x ∈ Γ,

where sh ∈ S̃1
h (ΓN) is the unique solution of the Galerkin variational problem

〈Ŝsh,φh〉ΓN = −〈Ŝ z̃h,φh〉ΓN for all φh ∈ S̃1
h (ΓN). (4.70)
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Hence we conclude from (4.53), for x ∈ ΓD,

(T̂α ẑh)(x) = α Ŝ(sh + z̃h)(x)− (Ŝw z̃h,h)(x)+ T̂ (sh + z̃h)(x), (4.71)

where w z̃h,h is the unique solution of the Galerkin variational problem

〈Ŝw z̃h,h,φh〉ΓN = 〈T̂ (sh + z̃h),φh〉ΓN for all φh ∈ S̃1
h (ΓN). (4.72)

The Galerkin formulation (4.70) is equivalent to the linear system

SNN
h s = −SND

h z, (4.73)

and (4.72) is equivalent to
SNN

h w = T NN
h s+T ND

h z, (4.74)

where the matrices SNN
h , etc., are generated by the approximate operators Ŝ and T̂ , for

example we have

SNN
h = DNN

h +(
1
2

MN
h +KN

h )>V−1
h (

1
2

MN
h +KN

h ),

and

T ND
h = DND

1,h +KN>
1,h V−1

h (
1
2

MD
h +KD

h )− (
1
2

MN
h +KN

h )>V−1
h V1,hV−1

h (
1
2

MD
h +KD

h )

+(
1
2

MN
h +KN

h )>V−1
h KD

1,h.

Here we introduce the matrix entries, for example

MD
h [k, i] = 〈ϕ1D

i ,ϕ0
k 〉Γ, KN

h [k,m] = 〈Kϕ1N
m ,ϕ0

k 〉Γ,

Vh[k, `] = 〈V ϕ0
` ,ϕ0

k 〉Γ, DDD
h [i, j] = 〈Dϕ1D

j ,ϕ1D
i 〉Γ,

DDN
h [i,m] = 〈Dϕ1N

m ,ϕ1D
i 〉Γ, DND

1,h [m, i] = 〈D1ϕ1D
i ,ϕ1N

m 〉Γ,

for i, j = 1, ...,M1; m = 1, ...,M2; k, ` = 1, ...,N.

By using (4.71), the matrix representation of the variational inequality (4.69) is then given
by the discrete variational inequality with the Euclidian inner product

(αSDN
h s+αSDD

h z−SDN
h w+T DN

h s+T DD
h z, w̃−z)≥ (ĝ, w̃−z) for all w̃ ∈RM1 ↔ wh ∈ Uh

or
(T̂α,hz, w̃− z) ≥ (ĝ, w̃− z) for all w̃ ∈ RM1 ↔ wh ∈ Uh (4.75)

where

T̂α,h = αSDD
h −αSDN

h S−NN
h SND

h +SDN
h S−NN

h T NN
h S−NN

h SND
h

−SDN
h S−NN

h T ND
h −T DN

h S−NN
h SND

h +T DD
h

(4.76)
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defines a Galerkin boundary element approximation of the boundary integral operator Tα
as defined in (4.26). Note that the matrix SNN

h is symmetric and positive definite. Hence it
is invertible. Here ĝ is the related vector right hand side which is specified as follows.

The Galerkin formulations (4.56) and (4.57) are equivalent to the linear systems

Vhg̃ = f 1 −V1,h f 0, Vh f 0 = f 2,

where
f 1[`] = 〈N0u+M0 f ,ϕ0

` 〉Γ, f 2[`] = 〈N0 f ,ϕ0
` 〉Γ for ` = 1, ...,N.

The associated linear systems of the Galerkin formulations (4.60) and (4.63) read

SNN
h u p = ψ +MNN

h f 0N ,

and
SNN

h f 1 = T NN
h u p −MNN

h g̃N ,

respectively, where

ψ[`] = 〈ψ,ϕ1N
` 〉Γ, MNN

h [`][i] = 〈ϕ0
i ,ϕ1N

` 〉Γ, f 0N = f 0|ΓN , g̃N = g̃ |ΓN

for ` = 1, ...,M2 and all indices i with respect to boundary elements τi ∈ ΓN .

Altogether we can compute the right hand side ĝ from (4.65) by

ĝ = SDN
h f 1 −T DN

h u p +MDD
h g̃D. (4.77)

Lemma 4.6. The symmetric matrix T̂α,h as defined in (4.76) is positive definite, i.e.,

(T̂α,hz,z) ≥ cT̂α
1 ‖zh‖2

H1/2(ΓD) for all z ∈ RM1 ↔ zh ∈ S1
h(ΓD). (4.78)

Proof. For z ∈ RM1 ↔ zh ∈ S1
h(ΓD), by using s = −S−NN

h SND
h z ∈ RM2 ↔ sh ∈ S̃1

h (ΓN) we
have from (4.76),

(T̂α,hz,z) = α(SDD
h z,z)−α(SDN

h S−NN
h SND

h z,z)+(T NN
h s,s)+(T ND

h z,s)

+(T DN
h s,z)+(T DD

h z,z)

= α
((

SDD
h SDN

h
SND

h SNN
h

)(
z
s

)
,

(
z
s

))
+
((

T DD
h T DN

h
T ND

h T NN
h

)(
z
s

)
,

(
z
s

))
= α(Shv,v)+(Thv,v),

where
Sh = Dh +(

1
2

M>
h +K>

h )V−1
h (

1
2

Mh +Kh)
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is the discrete form of the Steklov-Poincré operator and

Th = D1,h − (
1
2

M>
h +K>

h )V−1
h V1,hV−1

h (
1
2

Mh +Kh)

+K>
1,hV−1

h (
1
2

Mh +Kh)+(
1
2

M>
h +K>

h )V−1
h K1,h,

see (3.91) and (3.92). Moreover, the vector v corresponds to an ansatz function vh = z̃h +sh
where z̃h is the extension of zh as defined above.
Therefore, we conclude by using Lemma 3.7,

(T̂α,hz,z) = α(Shv,v)+(T̂hv,v)+(D1,hv,v)
≥ α(Dhv,v)+(D1,hv,v)

= α〈Dvh,vh〉Γ + 〈D1vh,vh〉Γ ≥ c‖vh‖2
H1/2(Γ) ≥ cT̂α

1 ‖zh‖2
H1/2(ΓD)

since αD+D1 implies an equivalent norm in H1/2(Γ), and vh ∈ S1
h(Γ) defines an extension

of zh ∈ S1
h(ΓD).

Hence we can ensure unique solvability of the discrete variational inequality (4.75) by
applying Theorem 4.3. Moreover, when combining the error estimate (4.35) with the error
estimates (4.32), (4.55) and (4.67), we finally obtain the following error estimate.

Lemma 4.7. Let z ∈Uad and ẑh ∈Uh be the unique solutions of the variational inequalities
(4.25) and (4.68). Then there holds the error estimate

‖z− ẑh‖H1/2(ΓD) ≤ c1 hs− 1
2‖z‖Hs(ΓD) + c2hs− 1

2‖wz‖Hs(ΓN) + c3hσ+ 1
2‖θPz‖Hσ

pw(Γ)

+ c4hσ+ 1
2‖ωPz‖Hσ

pw(Γ) + c5 hs− 1
2‖ f1‖Hs(Γ) + c6 hσ+ 1

2‖θγ0up‖Hσ
pw(Γ)

+ c7 hσ+ 3
2‖ωγ0up‖Hσ

pw(Γ) + c8 hs− 1
2‖γ0up‖Hs(ΓN)

+ c9 hσ+ 1
2‖ f0‖Hσ

pw(Γ) + c10 hσ+ 1
2‖g̃‖Hσ

pw(Γ),

when assuming z,z1,z2 ∈ Hs(ΓD), Tαz−g ∈ H̃s−1(ΓD), wz,γ0up ∈ Hs(ΓN), f1 ∈ Hs(Γ) for
some s ∈ [1

2 ,2] and θPz,ωPz,θγ0up,ωγ0up, f0, g̃ ∈ Hσ
pw(Γ) for some σ ∈ [0,1]. In particular

for s = σ +1, σ ∈ [0,1] we therefore obtain the error estimate

‖z− ẑh‖H1/2(ΓD) ≤ c(z,ψ, f ,u)hσ+ 1
2 . (4.79)

Moreover, by applying the Aubin-Nitsche trick we are able to derive an error estimate in
L2(ΓD), i.e.,

‖z− ẑh‖L2(ΓD) ≤ c(z,ψ, f ,u)hσ+1. (4.80)
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Remark 4.1. As in Proposition 3.1 we can conclude that uz as defined in (4.4) is the solu-
tion of the bilateral constraints Signorini boundary value problem with an additional Neu-
mann boundary condition. Then we may expect uz ∈ H2(Ω), and therefore z ∈ H3/2(ΓD)
for a smooth domain, see [5]. This results in a linear order of the error in H1/2(ΓD). In
the case of a polygonal or a polyhedral domain, we may have only a reduced regularity,
see, e.g., [34].

4.4 Numerical experiments

In our numerical example we consider the mixed boundary control problem (4.1) and (4.2)
for the domain Ω = (0, 1

2)2 ⊂ R2. The boundary Γ = ∂Ω consists of two parts ΓD and ΓN
where

ΓD = {(x1,0) : 0 < x1 < 0.5}∪{(0,x2) : 0 < x2 < 0.5} ⊂ Γ, ΓN = Γ\ΓD.

Let α = 0.1 and the data are chosen as

u(x) = (x2
1 + x2

2)
− 1

3 , f (x) = 0, ψ(x) =
∂

∂nx
u(x)|ΓN .

For the boundary element discretization we introduce a uniform triangulation of the bound-
ary Γ = ΓD ∪ΓN on several levels where the mesh size is hL = 2−(L+1). Note that the
minimizer of (4.1) is not known in this example, we use the boundary element solution ẑh
on the 9th level as reference solution.

In Table 4.1 we present the errors for the control z and the estimated order of convergence
(eoc). Moreover, we test the numerical results for the Dirichlet data on ΓN . These results
correspond to the error estimates (4.79) and (4.80).

L ‖ẑhL − ẑh9‖L2(ΓD) eoc ‖ẑhL − ẑh9‖H1/2(ΓD) eoc ‖ûhL − ûh9‖L2(ΓN) eoc
2 1.8041e-2 - 2.1236e-1 - 2.6788e-2 -
3 4.8635e-3 1.891 8.2073e-2 1.372 8.4929e-3 1.657
4 1.4322e-3 1.764 3.4331e-2 1.257 2.7877e-3 1.607
5 4.5382e-4 1.658 1.4228e-2 1.271 9.3811e-4 1.571
6 1.5562e-4 1.544 5.7832e-3 1.299 3.2225e-4 1.542
7 5.4047e-5 1.526 2.2475e-3 1.364 1.1217e-4 1.522
8 1.5723e-5 1.781 7.4669e-4 1.590 3.9334e-5 1.512

Table 4.1: The results of mixed boundary control problems without control constraints.
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In this example, we expect a linear order of convergence in H1/2(ΓD) norm and 1.5 as
order of convergence in L2(ΓD) norm as stated in Remark 4.1. Note that the target u has a
singularity at the origin.

As a second example, we consider an additional constraint z ≤ 2.6. In Figure 4.1 we give
a comparison of the unconstrained and constrained solutions, and in Figure 4.2 we plot the
related controls for x1 ∈ (0,0.5), x2 = 0.

Figure 4.1: Comparison of unconstrained (left) and constrained (right) optimal solutions.
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Figure 4.2: Optimal control of the unconstrained and constrained problems, x2 = 0.



86 4 Mixed boundary control problems

Moreover, we plot in Figure 4.3 the states u of the mixed boundary control problem (4.1)-
(4.2) for α = 10−2 and α = 10−4. The singularity of the state at the origin appears clearly
for small α , see also Figure 3.5 for the Dirichlet boundary control problem.

Figure 4.3: The states u with α = 10−2 (left) and α = 10−4 (right).
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For comparison we consider the mixed boundary control problem (4.1)-(4.2) where the
control z is in L2(ΓD) with α = 0.1. In Figure 4.4 we plot the state u for the L2(ΓD)
setting and the related control for x2 = 0, and in Figure 4.5 we plot the related controls
for x1 ∈ (0,0.05), x2 = 0 and for x1 ∈ (0.45,0.5), x2 = 0. As discussed in Section 3.7, the
control is zero at all corner points.
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Figure 4.4: The state u for the L2(ΓD) setting (left) and the related control for x2 = 0 (right).
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Figure 4.5: The related controls for x1 ∈ (0,0.05), x2 = 0 (left) and for x1 ∈ (0.45,0.5),
x2 = 0 (right).



88 4 Mixed boundary control problems



5 PARABOLIC BOUNDARY CONTROL PROBLEMS

The Dirichlet boundary optimal control problem governed by a linear heat equation is
analysed in this chapter where the observed temperature is considered at the end time T .
We propose boundary element approaches to solve the related coupled optimality system.
Similar formulations of boundary integral equations as in the case of stationary boundary
control problems are obtained. Again we ensure the unique solvability of the resulting
variational inequalities and we derive a priori error estimates of Galerkin boundary element
discretizations. This approach can be applied to the Neumann boundary control problem
as well. Some numerical results are given at the end of the chapter.

In the first section a model problem is described where the control is considered in the
energy space H

1
2 , 1

4 (Σ). We use an equivalent norm in H
1
2 , 1

4 (Σ) which is induced by the
hypersingular layer heat potential D, see [15] for instance. We also derive the optimality
condition, i.e., the variational inequality to be solved. In Section 5.2 we discuss the bound-
ary integral equations to solve the primal and the adjoint heat equations. For the boundary
integral equations of the heat equation, see, for example [6, 15, 16, 26, 48, 60].

Since the temperature of the state at the end time T appears in a representation formula of
the adjoint state as a volume density, an additional kernel which is based on the fundamen-
tal solution of the heat operator is considered. By Green’s second formula, we can express
the volume potential by some boundary potentials of the unknown data and some volume
potentials of given densities. We end up with boundary integral equations in a symmetric
formulation which is analyzed in Section 5.3. Again we discuss the stability and error esti-
mates of a related Galerkin boundary element method. In Section 5.4, we present the main
results of the application of the boundary element approach to the parabolic Neumann
boundary control problem. Finally, we give some numerical results.

5.1 Parabolic Dirichlet boundary control problems

Let Ω ⊂ Rd,d = 2,3 be a bounded Lipschitz domain with boundary Γ = ∂Ω. For a fixed
real number T > 0, we write

I := (0,T ), Q := Ω× I, Σ := Γ× I.

89
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To find a Dirichlet control z that minimizes the distance of the actual temperature u(·,T )
at the end time and the desired temperature u, we consider the cost functional

J(u,z) =
1
2

∫
Ω

[u(x,T )−u(x)]2 dx+
α
2
〈Dz,z〉Σ (5.1)

to be minimized subject to
∂tu(x, t)−∆u(x, t) = 0 for (x, t) ∈ Q,

u(x, t) = z(x, t) for (x, t) ∈ Σ,

u(x,0) = u0(x) for x ∈ Ω,

(5.2)

and to pointwise control constraints

z ∈ Uad := {w ∈ H
1
2 , 1

4 (Σ) : z1(x, t) ≤ w(x, t) ≤ z2(x, t) for (x, t) ∈ Σ}. (5.3)

Here u,u0 ∈ L2(Ω), α ∈ R+, z1,z2 ∈ H
1
2 , 1

4 (Σ), and the regularization term, via a norm in
H

1
2 , 1

4 (Σ), is defined by using the hypersingular heat boundary integral operator

D : H
1
2 , 1

4 (Σ) → H− 1
2 ,− 1

4 (Σ),

see [15]. For z ∈ H
1
2 , 1

4 (Σ) we have

(Dz)(x, t) := − ∂
∂nx

t∫
0

∫
Γ

∂
∂ny

E(x− y, t − τ)z(y,τ)dsy dτ for (x, t) ∈ Σ,

where

E(x, t) =


1

(4πt)d/2
e
−|x|2

4t for t > 0,

0 for t ≤ 0

(5.4)

is the fundamental solution of the heat equation. For the related Sobolev spaces, see Chap-
ter 2, also [1, 15, 40].

Let v be a given function defined on Ω×R+ (or Γ×R+) and t0 ∈ R+ be arbitrary. Define
the time reversal map κt0 by

κt0v(x, t) := v(x, t0 − t). (5.5)

The hypersingular heat boundary integral operator D is H
1
2 , 1

4 (Σ)-elliptic and self-adjoint
with respect to a “time-twisted” duality 〈·, ·〉 := 〈·,κT ·〉Σ, see [15], i.e.,

〈Dz,z〉Σ ≥ cD
1 ‖z‖2

H
1
2 , 1

4 (Σ)
, 〈Dz,κT w〉Σ = 〈Dw,κT z〉Σ for all z,w ∈ H

1
2 , 1

4 (Σ). (5.6)

In order to formulate the KKT system, we reduce the cost functional and obtain the opti-
mality condition as follows, see [28, 38].
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Theorem 5.1. Let (u,z) be an optimal solution. Then there exists p ∈ H
1, 1

2
0, (Q) such that

the following optimality system holds in the weak sense.
Primal heat boundary value problem

∂tu(x, t)−∆u(x, t) = 0 for (x, t) ∈ Q,

u(x, t) = z(x, t) for (x, t) ∈ Σ,

u(x,0) = u0(x) for x ∈ Ω.

Adjoint heat boundary value problem
−∂t p(x, t)−∆p(x, t) = 0 for (x, t) ∈ Q,

p(x, t) = 0 for (x, t) ∈ Σ,

p(x,T ) = u(x,T )−u(x) for x ∈ Ω.

(5.7)

Optimality condition

〈αD̃z− ∂
∂n

p,w− z〉Σ ≥ 0 for all w ∈ Uad, (5.8)

where

D̃ :=
1
2
(D+κT DκT ). (5.9)

Proof. For a given z ∈ H
1
2 , 1

4 (Σ) there exists a unique solution uz ∈ H1, 1
2 (Q) of the primal

problem, see [15, 40]. Then the cost functional J(u,z) can be rewritten as

J̃(z) =
1
2
‖uz(T )−u‖2

L2(Ω) +
α
2
〈Dz,z〉Σ.

Let h ∈ H
1
2 , 1

4 (Σ) be a given direction. We have

J̃(z+h)− J̃(z) =
1
2
‖uz+h(T )−u‖2

L2(Ω)−
1
2
‖uz(T )−u‖2

L2(Ω)

+
α
2
〈D(z+h),z+h〉Σ −

α
2
〈Dz,z〉Σ

= 〈uz(T )−u,v(T )〉L2(Ω) +
1
2
‖v(T )‖2

L2(Ω)

+
α
2
〈Dz,h〉Σ +

α
2
〈Dh,z〉Σ +

α
2
〈Dh,h〉Σ

where uz+h(x, t) = uz(x, t)+ v(x, t), and v(x, t) is the unique solution of the problem

∂tv(x, t)−∆v(x, t) = 0 in Q, v(x, t) = h(x, t) on Σ, v(x,0) = 0 on Ω.
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Applying Green’s second formula for the pair (v, p),

T∫
0

∫
Ω

[ p(∂t −∆)v+ v(∂t +∆)p] dxdt =
T∫

0

∫
Γ

(
∂

∂n
p(x, t)v(x, t)− ∂

∂n
v(x, t)p(x, t)

)
dsx dt

+
∫
Ω

[v(x,T )p(x,T )− v(x,0)p(x,0)]dx

we get

〈uz(T )−u,v(T )〉L2(Ω) + 〈 ∂
∂n

p,h〉Σ = 0.

Therefore, by using the self-adjointness of the operator D, see (5.6), we obtain

J̃(z+h)− J̃(z) =
α
2
〈Dz,h〉Σ +

α
2
〈κT DκT z,h〉Σ −〈 ∂

∂n
p,h〉Σ +

1
2
‖v(T )‖2

L2(Ω) +
α
2
〈Dh,h〉Σ

= 〈αD̃z− ∂
∂n

p,h〉Σ +o
(
‖h‖

H
1
2 , 1

4 (Σ)

)
,

since ‖v(T )‖L2(Ω) ≤ c‖h‖
H

1
2 , 1

4 (Σ)
and D : H

1
2 , 1

4 (Σ) → H− 1
2 ,− 1

4 (Σ) is a bounded operator.

This implies that the gradient of J̃(z) satisfies

〈∇J̃(z),h〉Σ = 〈αD̃z− ∂
∂n

p,h〉Σ.

The assertion follows, see also [28, 38].

In the following we will use a boundary element approach to solve the coupled problem of
the primal heat equation (5.2), the adjoint heat equation (5.7) and the optimality condition
(5.8).

5.2 Boundary integral equations

The boundary integral equations for the heat equation are first recalled. Some properties
of the standard boundary integral layer heat operators can be found in, e.g., [15]. For the
adjoint heat equation, instead of using the volume potential of the state u, we introduce
some boundary potentials with a regular kernel. We also discuss some properties of these
operators. The related anisotropic Sobolev spaces were introduced in Chapter 2.
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The primal heat equation
Let us first start with the primal heat equation. The solution of the primal heat equation
(5.2) can be written by the representation formula for (x̃, t) ∈ Q,

u(x̃, t) =
t∫

0

∫
Γ

E(x̃− y, t − τ)
∂

∂ny
u(y,τ)dsy dτ −

t∫
0

∫
Γ

∂
∂ny

E(x̃− y, t − τ)z(y,τ)dsy dτ

+
∫
Ω

E(x̃− y, t)u0(y)dy, (5.10)

where E(x, t) is the fundamental solution of the heat equation as given in (5.4). By taking
Ω 3 x̃ → x ∈ Γ, we obtain the first kind boundary integral equation to find ω(x, t) :=
∂
∂n

u(x, t),

(V ω)(x, t) = (
1
2

I +K)z(x, t)− (M0u0)(x, t) for (x, t) ∈ Σ, (5.11)

where

(V ω)(x, t) =
t∫

0

∫
Γ

E(x− y, t − τ)ω(y,τ)dsy dτ for (x, t) ∈ Σ

is the single layer heat potential V : H− 1
2 ,− 1

4 (Σ) → H
1
2 , 1

4 (Σ) and

(Kz)(x, t) =
t∫

0

∫
Γ

∂
∂ny

E(x− y, t − τ)z(y,τ)dsy dτ for (x, t) ∈ Σ

is the double layer heat potential K : H
1
2 , 1

4 (Σ) → H
1
2 , 1

4 (Σ), see [15]. Moreover, for (x, t) ∈
Σ,

(M0u0)(x, t) =
∫
Ω

E(x− y, t)u0(y)dy

is the related Newton potential. As stated in [15], the single layer heat potential V is
H− 1

2 ,− 1
4 (Σ)-elliptic, i.e.,

〈V ω,ω〉Σ ≥ cV
1 ‖ω‖2

H− 1
2 ,− 1

4 (Σ)
for all ω ∈ H− 1

2 ,− 1
4 (Σ).

Then the boundary integral equation (5.11) is solvable for a given Dirichlet datum z,

ω = V−1(
1
2

I +K)z−V−1M0u0. (5.12)
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The adjoint heat equation
We now consider the adjoint heat equation (5.7). The time reversal of the adjoint state
variable, κT p solves the heat equation, i.e.,

∂t(κT p)(x, t)−∆(κT p)(x, t) = 0 for (x, t) ∈ Q,

(κT p)(x, t) = 0 for (x, t) ∈ Σ,

(κT p)(x,0) = u(x,T )−u(x) for x ∈ Ω.

Then we have the representation formula for (x̃, t) ∈ Q,

(κT p)(x̃, t) =
t∫

0

∫
Γ

E(x̃− y, t − τ)
∂

∂ny
κT p(y,τ)dsy dτ +

∫
Ω

E(x̃− y, t)(κT p)(y,0)dy.

(5.13)
This gives the first kind boundary integral equation

(V (κT q))(x, t) = (M0u)(x, t)− (M0u(·,T ))(x, t) for (x, t) ∈ Σ (5.14)

to determine the unknown Neumann datum q(x, t) =
∂

∂nx
p(x, t) for (x, t) ∈ Σ.

In (5.14) the unknown state u(·,T ) at the end time T appears in the Newton potential. As
discussed in Chapter 3 we will modify the representation formula (5.13). The crucial idea
is to use an auxiliary function

G(x, t,τ) =
(

t
T + t − τ

)d/2

e
T−τ

T+t−τ
|x|2
4t for x ∈ Ω; t,τ ∈ (0,T ) (5.15)

which satisfies
E(x̃− y, t)G(x̃− y, t,τ) = E(x̃− y,T + t − τ).

We first write the Newton potential in the representation formula (5.13) as

(M̃0u(·,T ))(x̃, t) =
∫
Ω

E(x̃− y, t)u(y,T )dy for (x̃, t) ∈ Q. (5.16)

By lim
τ→T−

G(x̃− y, t,τ) = 1 for all t ∈ (0,T ), y ∈ Ω we have

u(y,T ) = u(y,T )G(x̃− y, t,T )−u(y,0)G(x̃− y, t,0)+u0(y)G(x̃− y, t,0)

=
T∫

0

∂τ [u(y,τ)G(x̃− y, t,τ)]dτ +u0(y)G(x̃− y, t,0)

=
T∫

0

∂τG(x̃− y, t,τ)u(y,τ)dτ +
T∫

0

G(x̃− y, t,τ)∂τu(y,τ)dτ +u0(y)G(x̃− y, t,0).
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Hence for ∂τu(y,τ) = ∆yu(y,τ) we can rewrite the Newton potential in (5.16)

(M̃0u(·,T ))(x̃, t) =
T∫

0

∫
Ω

E(x̃− y, t)∂τG(x̃− y, t,τ)u(y,τ)dydτ

+
T∫

0

∫
Ω

E(x̃− y, t)G(x̃− y, t,τ)∆yu(y,τ)dydτ +
∫
Ω

E(x̃− y, t)G(x̃− y, t,0)u0(y)dy.

It is easy to check that

∆y[E(x̃− y, t)G(x̃− y, t,τ)] = ∆yE(x̃− y,T + t − τ) = −E(x̃− y, t)∂τG(x̃− y, t,τ),

and by definition, we have

E(x̃− y, t)G(x̃− y, t,τ) = E(x̃− y,T + t − τ).

Together with Green’s second formula we finally obtain

(M̃0u(·,T ))(x̃, t) =
T∫

0

∫
Ω

[E(x̃− y,T + t − τ)∆yu(y,τ)−u(y,τ)∆yE(x̃− y,T + t − τ)] dydτ

+
∫
Ω

E(x̃− y,T + t)u0(y)dy

=
T∫

0

∫
Γ

[
E(x̃− y,T + t − τ)

∂
∂ny

u(y,τ)−u(y,τ)
∂

∂ny
E(x̃− y,T + t − τ)

]
dsy dτ

+
∫
Ω

E(x̃− y,T + t)u0(y)dy

and this gives the modified representation formula for the adjoint variable for (x̃, t) ∈ Q,

κT p(x̃, t) =
t∫

0

∫
Γ

E(x̃− y, t − τ)
∂

∂ny
κT p(y,τ)dsy dτ −

∫
Ω

E(x̃− y, t)u(y)dy

+
T∫

0

∫
Γ

[
E(x̃− y,T + t − τ)

∂
∂ny

u(y,τ)−u(y,τ)
∂

∂ny
E(x̃− y,T + t − τ)

]
dsy dτ

+
∫
Ω

E(x̃− y,T + t)u0(y)dy. (5.17)
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Taking the limit Ω 3 x̃ → x ∈ Γ without jump relations, we obtain a boundary integral
equation

0 = (V (κT q))(x, t)+(V1ω)(x, t)− (K1z)(x, t)− (M0u)(x, t)+(M10u0)(x, t) (5.18)

for (x, t) ∈ Σ where

(V1ω)(x, t) =
T∫

0

∫
Γ

E(x− y,T + t − τ)ω(y,τ)dsy dτ for (x, t) ∈ Σ, (5.19)

(K1z)(x, t) =
T∫

0

∫
Γ

∂
∂ny

E(x− y,T + t − τ)z(y,τ)dsy dτ for (x, t) ∈ Σ (5.20)

are the bi-single and the bi-double layer heat potentials. Moreover, we introduce a new
volume potential

(M10u0)(x, t) =
∫
Ω

E(x− y,T + t)u0(y)dy for (x, t) ∈ Σ.

Inserting (5.12) into the boundary integral equation (5.18), this gives

V (κT q) = K1z−V1V−1(
1
2

I +K)z+V1V−1M0u0 +M0u−M10u0,

and hence

κT q =V−1K1z−V−1V1V−1(
1
2

I +K)z+V−1V1V−1M0u0 +V−1M0u−V−1M10u0. (5.21)

Now the optimality condition (5.8) can be rewritten as a variational inequality to find
z ∈ Uad , such that

〈Tαz−g,w− z〉Σ ≥ 0 for all w ∈ Uad, (5.22)

where
Tα := αD̃−κTV−1K1 +κTV−1V1V−1(

1
2

I +K) (5.23)

and
g := κTV−1M0u+κT

(
V−1V1V−1M0 −V−1M10

)
u0. (5.24)

Mapping properties
To investigate the properties of the composed boundary integral operator Tα as defined in
(5.23), let us summarize some properties of the bi-layer heat potentials V1,K1 which are
similar to the properties of the Bi-Laplace layer potentials as given in Chapter 3.

Once again, for t ∈ (0,T ) let γ0 · (·, t), γ1 · (·, t) be the Dirichlet and the Neumann trace
maps, respectively.



5.2 Boundary integral equations 97

Lemma 5.1. For ω ∈ H− 1
2 ,− 1

4 (Σ), there holds

〈(1
2

I +K′)ω ,κTV1ω〉Σ −〈κT K′
1ω,V ω〉Σ = ‖(Ṽ ω)(·,T )‖2

L2(Ω) (5.25)

where

(Ṽ ω)(x, t) =
t∫

0

∫
Γ

E(x− y, t − τ)ω(y,τ)dsy dτ for (x, t) ∈ Q,

and

(K′ω)(x, t) =
t∫

0

∫
Γ

∂
∂nx

E(x− y, t − τ)ω(y,τ)dsy dτ for (x, t) ∈ Σ, (5.26)

(K′
1ω)(x, t) =

T∫
0

∫
Γ

∂
∂nx

E(x− y,T + t − τ)ω(y,τ)dsy dτ for (x, t) ∈ Σ. (5.27)

The operators K′,K′
1 are the adjoint of the operators K,K1 with respect to the “time-

twisted” duality, respectively, i.e.,

〈κT ω ,Kz〉Σ = 〈κT z,K′ω〉Σ, 〈κT ω,K1z〉Σ = 〈κT z,K′
1ω〉Σ. (5.28)

Proof. Consider the following functions for (x, t) ∈ Q

u(x, t) = (Ṽ ω)(x, t) =
t∫

0

∫
Γ

E(x− y, t − τ)ω(y,τ)dsy dτ,

v(x, t) =
T∫

0

∫
Γ

E(x− y,2T − t − τ)ω(y,τ)dsy dτ.

The functions u and v solve the heat equation and the adjoint heat equation, respectively,

∂tu(x, t)−∆u(x, t) = 0, −∂tv(x, t)−∆v(x, t) = 0 for (x, t) ∈ Q,

and there hold
u(x,T ) = v(x,T ), u(x,0) = 0.

The application of the trace maps gives

γ0u(x, t) = (V ω)(x, t), γ1u(x, t) = (
1
2

I +K′)ω(x, t),

γ0v(x, t) = κT (V1ω)(x, t), γ1v(x, t) = κT (K′
1ω)(x, t).
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The assertion now follows from Green’s second formula
T∫

0

∫
Ω

[v(∂t −∆)u+u(∂t +∆)v]dxdt =
T∫

0

∫
Γ

[γ1v(x, t)γ0u(x, t)− γ1u(x, t)γ0v(x, t)]dsx dt

+
∫
Ω

[u(x,T )v(x,T )−u(x,0)v(x,0)]dx.

As in the case of the Bi-Laplace operator, see Corollary 3.1, we can state the following
properties.

Lemma 5.2. For the boundary integral operators, there hold

KV = V K′, DK = K′D, V D =
1
4

I −K2, DV =
1
4

I −K′2, (5.29)

V−1(
1
2

I +K) = D+(
1
2

I +K′)V−1(
1
2

I +K), (5.30)

and

V K′
1 +V1K′ = K1V +KV1, (5.31)

DK1 −D1K = K′
1D−K′D1, (5.32)

V1D−V D1 +KK1 +K1K = 0, (5.33)
DV1 −D1V +K′K′

1 +K′
1K′ = 0, (5.34)

where D1 is the normal derivative of the bi-double layer heat potential K1,

(D1z)(x, t) =
∂

∂nx

T∫
0

∫
Γ

∂
∂ny

E(x− y,T + t − τ)z(y,τ)dsy dτ, (x, t) ∈ Σ. (5.35)

Proof. The relations of (5.29) for the layer heat potentials are well known, see [15]. The
relation of (5.30) is an alternative representation of the so-called Dirichlet to Neumann op-
erator, see Corollary 3.1 for similar properties of the Laplace boundary integral operators.
Indeed, by (5.29) we have

D+(
1
2

I +K′)V−1(
1
2

I +K) = V−1(
1
4

I −K2)+(
1
2

I +K′)V−1(
1
2

I +K)

= V−1(
1
2

I −K)(
1
2

I +K)+(
1
2

I +K′)V−1(
1
2

I +K)

= (
1
2

V−1 −K′V−1)(
1
2

I +K)+(
1
2

I +K′)V−1(
1
2

I +K)

= V−1(
1
2

I +K).
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Moreover, for the relations (5.31)-(5.34) let ω ∈ H− 1
2 ,− 1

4 (Σ), ϕ ∈ H
1
2 , 1

4 (Σ) be arbitrary.
We then define functions for (x, t) ∈ Q,

u(x, t) =
T∫

0

∫
Γ

E(x− y,T + t − τ)ω(y,τ)dsy dτ +
T∫

0

∫
Γ

∂
∂ny

E(x− y,T + t − τ)ϕ(y,τ)dsy dτ,

v(x, t) =
t∫

0

∫
Γ

E(x− y, t − τ)ω(y,τ)dsy dτ +
t∫

0

∫
Γ

∂
∂ny

E(x− y, t − τ)ϕ(y,τ)dsy dτ.

These functions solve the heat equation. Their related boundary and initial conditions are
given by

γ0u = V1ω +K1ϕ, γ1u = K′
1ω +D1ϕ, u(x,0) = v(x,T ),

γ0v = V ω +(−1
2

I +K)ϕ, γ1v = (
1
2

I +K′)ω −Dϕ, v(x,0) = 0.

Moreover, by u(x,0) = v(x,T ) we can also represent the function u(x, t) for (x, t) ∈ Q, by

u(x, t) =
t∫

0

∫
Γ

E(x− y, t − τ)γ1u(y,τ)dsy dτ −
t∫

0

∫
Γ

∂
∂ny

E(x− y, t − τ)γ0u(y,τ)dsy dτ

+
∫
Ω

E(x− y, t)v(y,T )dy.

Again, we modify the volume potential as in (5.16) to obtain the representation formula

u(x, t) =
t∫

0

∫
Γ

E(x− y, t − τ)γ1u(y,τ)dsy dτ −
t∫

0

∫
Γ

∂
∂ny

E(x− y, t − τ)γ0u(y,τ)dsy dτ

+
T∫

0

∫
Γ

E(x− y,T + t − τ)γ1v(y,τ)dsy dτ −
T∫

0

∫
Γ

∂
∂ny

E(x− y,T + t − τ)γ0v(y,τ)dsy dτ.

This gives the following traces

(
γ0u
γ1u

)
=
(1

2 I −K V −K1 V1
D 1

2 I +K′ −D1 K′
1

)
γ0u
γ1u
γ0v
γ1v

 .

By inserting the traces of the functions u and v, we obtain

V1ω +K1ϕ = (
1
2

I −K)[V1ω +K1ϕ]+V [K′
1ω +D1ϕ]

−K1[V ω +(−1
2

I +K)ϕ]+V1[(
1
2

I +K′)ω −Dϕ],
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and

K′
1ω +D1ϕ = D[V1ω +K1ϕ]+ (

1
2

I +K′)[K′
1ω +D1ϕ]

−D1[V ω +(−1
2

I +K)ϕ]+K′
1[(

1
2

I +K′)ω −Dϕ],

for all ω ∈ H− 1
2 ,− 1

4 (Σ), ϕ ∈ H
1
2 , 1

4 (Σ) which imply

V1 = (
1
2

I −K)V1 +V K′
1 −K1V +V1(

1
2

I +K′),

K1 = (
1
2

I −K)K1 +V D1 +K1(
1
2

I −K)−V1D,

K′
1 = DV1 +(

1
2

I +K′)K′
1 −D1V +K′

1(
1
2

I +K′),

D1 = DK1 +(
1
2

I +K′)D1 +D1(
1
2

I −K)−K′
1D,

and the assertion follows.

Note that V , D, V1, D1 are self-adjoint operators with respect to the "time-twisted" duality,
see (5.6) for D, and hence the operator D̃ is self-adjoint with respect to the inner product
〈·, ·〉Σ, i.e.,

〈V ω ,κT θ〉Σ = 〈V θ ,κT ω〉Σ, 〈V1ω,κT θ〉Σ = 〈V1θ ,κT ω〉Σ, (5.36)

〈D1ϕ,κT w〉Σ = 〈D1w,κT ϕ〉Σ, 〈D̃ϕ,w〉Σ = 〈D̃w,ϕ〉Σ, (5.37)

for all ω,θ ∈ H− 1
2 ,− 1

4 (Σ), ϕ,w ∈ H
1
2 , 1

4 (Σ).

Lemma 5.3. For the operator

A :=
(

V1 −K1
−K′

1 D1

)
,

there holds for ω ∈ H− 1
2 ,− 1

4 (Σ), ϕ ∈ H
1
2 , 1

4 (Σ),

〈A
(

ω
ϕ

)
,κT

(
ω
ϕ

)
〉Σ = 〈V1ω ,κT ω〉Σ −〈K1ϕ,κT ω〉Σ −〈K′

1ω ,κT ϕ〉Σ + 〈D1ϕ,κT ϕ〉Σ ≥ 0.

Proof. For ω ∈ H− 1
2 ,− 1

4 (Σ), ϕ ∈ H
1
2 , 1

4 (Σ), we define functions in Q∪Qc
R

u(x, t) =
T∫

0

∫
Γ

E(x− y,T + t − τ)ω(y,τ)dsy dτ −
T∫

0

∫
Γ

∂
∂ny

E(x− y,T + t − τ)ϕ(y,τ)dsy dτ,

v(x, t) =
t∫

0

∫
Γ

E(x− y, t − τ)ω(y,τ)dsy dτ −
t∫

0

∫
Γ

∂
∂ny

E(x− y, t − τ)ϕ(y,τ)dsy dτ.
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Here, we define a complementary domain

Ωc
R := BR \Ω and Qc

R := Ωc
R × I,

where BR := {x ∈ Rd : |x| < R} is a sufficiently large ball containing Γ, see [15].
The functions u,v solve the heat equation in Q∪Qc

R. The related boundary traces of u are
given by

γ0u = V1ω −K1ϕ, γ1u = K′
1ω −D1ϕ.

For the function v, there hold the jump relations across Σ,

[γ0v] := γ0(v|Qc)− γ0(v|Q) = −ϕ, [γ1v] := γ1(v|Qc)− γ1(v|Q) = −ω.

The above equations allow us to write the bilinear form in terms of the traces of u and v,

〈A
(

ω
ϕ

)
,κT

(
ω
ϕ

)
〉Σ = 〈

(
γ0u
−γ1u

)
,κT

(
−[γ1v]
−[γ0v]

)
〉Σ

= 〈γ0u,κT γ1(v|Q)〉Σ −〈γ0u,κT γ1(v|Qc)〉Σ

+ 〈γ1u,κT γ0(v|Qc)〉Σ −〈γ1u,κT γ0(v|Q)〉Σ

= 〈γ0(u|Q),κT γ1(v|Q)〉Σ −〈γ1(u|Q),κT γ0(v|Q)〉Σ

+ 〈γ1(u|Qc),κT γ0(v|Qc)〉Σ −〈γ0(u|Qc),κT γ1(v|Qc)〉Σ.

The application of Green’s second formula to the solutions u,v of the heat equation in Q
and Qc

R gives

〈γ0(u|Q),κT γ1(v|Q)〉Σ −〈γ1(u|Q),κT γ0(v|Q)〉Σ =
∫
Ω

u(x,0)v(x,T )dx =
∫
Ω

[u(x,0)]2 dx,

〈γ1(u|Qc),κT γ0(v|Qc)〉Σ −〈γ0(u|Qc),κT γ1(v|Qc)〉Σ =
∫

Ωc
R

[u(x,0)]2 dx−〈γ1v,κT γ0u〉∂BR×I

+ 〈γ1u,κT γ0v〉∂BR×I.

Thus we obtain

〈A
(

ω
ϕ

)
,κT

(
ω
ϕ

)
〉Σ =

∫
Ω∪Ωc

R

[u(x,0)]2 dx−
∫

∂BR×I

κT u∂rvdsx dt +
∫

∂BR×I

κT v∂rudsx dt.

We will show that the last two terms tend to zero as R → ∞. To do this, let us consider
the function v first. Let us choose 0 < R0 < R such that Ω ⊂ BR0 . By the representation
formula for the solution v of the heat equation, it follows that outside Qc

R0
, in particular for

|x| > R0, the function v coincides with

v0(x, t) :=
t∫

0

∫
∂BR0

E(x− y, t − τ)ω0(y,τ)dsy dτ −
t∫

0

∫
∂BR0

∂
∂ny

E(x− y, t − τ)ϕ0(y,τ)dsy dτ,
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where the single and the double layer potentials are now defined for density functions on
ΣR0 := ∂BR0 × I,

ω0 := ∂rv|ΣR0
, ϕ0 := v|ΣR0

.

The densities ω0,ϕ0, as well as the new boundary ΣR0 , are smooth. We can now easily
estimate v, and ∂rv on the boundary ΣR for R > R0, using the behaviour of the fundamental
solution E(x, t). From the simple estimates

|E(x, t)| ≤ cµt−µ |x|2µ−d, |∇E(x, t)| ≤ cµt−µ |x|2µ−d−1

and

| ∂ 2

∂xi∂x j
E(x, t)| ≤ cµt−µ |x|2µ−d−2

for all µ ∈ R; i, j = 1,2, we obtain for finite T ,

κT v = O(R−d), ∂rv = O(R−d−1), as |x| = R → ∞.

Similarly, for (x, t) ∈ ∂BR × I, the kernel E(x− y,T + t − τ), (y,τ) ∈ Σ is smooth. Then
κT u and ∂ru are bounded as |x| = R → ∞. Hence

−
∫

∂ BR×I

κT u∂rvdsx dt +
∫

∂BR×I

κT v∂rudsx dt = O(R−1) → 0 as |x| = R → ∞.

Hence we finally conclude

〈A
(

ω
ϕ

)
,κT

(
ω
ϕ

)
〉Σ =

∫
Rd

[u(x,0)]2 dx ≥ 0.

Corollary 5.1. The operators V1 and D1 are positive semi-definite with respect to the
“time-twisted” duality 〈·, ·〉 = 〈·,κT ·〉Σ, i.e.,

〈V1ω ,κT ω〉Σ ≥ 0, 〈D1ϕ,κT ϕ〉Σ ≥ 0 for all ω ∈ H− 1
2 ,− 1

4 (Σ),ϕ ∈ H
1
2 , 1

4 (Σ).

To close this section, let us recall the mapping properties of the Newton potential M̃0 as
defined in (5.16), see [48, Lemma 7.10]. For the mapping property of M̃0 in a higher order
Sobolev space, see [37, chapter IV].

Lemma 5.4. Let Ω denote any bounded, open subset in Rd . For any f ∈ L2(Ω), let

(M̃0 f )(x, t) =
∫
Ω

E(x− y, t) f (y)dy, x ∈ Rd, t > 0.

Then there exists a positive constant C(Ω) such that

‖M̃0 f‖V(Q) ≤C(Ω)‖ f‖L2(Ω).
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The function M̃0 f solves the homogeneous heat equation. By [15, Lemma 2.15], the norms
of V(Q) and H1, 1

2 (Q) on the subspace of functions satisfying the homogeneous heat equa-
tion are equivalent. Thus we obtain

‖M̃0 f‖
H1, 1

2 (Q)
≤C(Ω)‖ f‖L2(Ω).

Therefore, the operator M0 : L2(Ω) → H
1
2 , 1

4 (Σ) is continuous by the trace theorem. Note
that, since E(x,T + t) ∈ C∞(Rd ×R+) for T > 0, the operator M10 is continuous on the
considered Sobolev spaces.

We are now in a position to prove the properties of the boundary integral operator Tα .

Theorem 5.2. The operator Tα : H
1
2 , 1

4 (Σ) → H− 1
2 ,− 1

4 (Σ) as defined in (5.23),

Tα = αD̃−κTV−1K1 +κTV−1V1V−1(
1
2

I +K)

is bounded, self-adjoint with respect to the inner product 〈·, ·〉Σ and H
1
2 , 1

4 (Σ)-elliptic, i.e.,
there exists a constant cTα

1 > 0 such that

〈Tαz,z〉Σ ≥ cTα
1 ‖z‖2

H
1
2 , 1

4 (Σ)
for all z ∈ H

1
2 , 1

4 (Σ).

Proof. The proof is similar to the proof of Theorem 3.3. We skip the details. Note that,
for the mapping properties of the layer heat potentials, see [15]. In particular, we have

V−1 : H
1
2 , 1

4 (Σ) → H− 1
2 ,− 1

4 (Σ), K : H
1
2 , 1

4 (Σ) → H
1
2 , 1

4 (Σ), D̃ : H
1
2 , 1

4 (Σ) → H− 1
2 ,− 1

4 (Σ).

Since the kernels of the bi-layer heat potentials are regular, we can also derive

V1 : H− 1
2 ,− 1

4 (Σ) → H
1
2 , 1

4 (Σ), K1 : H
1
2 , 1

4 (Σ) → H
1
2 , 1

4 (Σ).

Hence we conclude the unique solvability of the variational inequality (5.22). However,
as stated in Remark 3.3, we will obtain a non-symmetric approximation of the self-adjoint
operator Tα when using a Galerkin boundary element approximation. Moreover, we re-
quire an additional condition on the discretization to ensure the stability of the discrete
variational inequality. Hence we only consider the symmetric formulation in the next sec-
tion.
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5.3 Symmetric boundary integral formulation

In this section, we investigate a symmetric boundary integral formulation by using a second
boundary integral equation for the solution of the adjoint heat boundary value problem. We
ensure unique solvability and we derive a priori error estimates for a Galerkin boundary
element approximation.

In particular, when computing the normal derivative of the representation formula (5.17)
of the adjoint variable, this gives

κT q(x, t) = (
1
2

I +K′)κT q(x, t)+(K′
1ω)(x, t)− (D1z)(x, t)− (M1u)(x, t)+(M11u0)(x, t)

(5.38)
for all (x, t) ∈ Σ, where, in addition, we introduce the Newton potentials for (x, t) ∈ Σ

(M1u)(x, t) =
∂

∂nx

∫
Ω

E(x− y, t)u(y)dy, (M11u0)(x, t) =
∂

∂nx

∫
Ω

E(x− y,T + t)u0(y)dy.

By substituting (5.12) and (5.21) into the right hand side of (5.38) we obtain the alternative
representation

κT q =(
1
2

I +K′)V−1K1z− (
1
2

I +K′)V−1V1V−1(
1
2

I +K)z+(
1
2

I +K′)V−1V1V−1M0u0

+(
1
2

I +K′)V−1M0u− (
1
2

I +K′)V−1M10u0 +K′
1V−1(

1
2

I +K)z−K′
1V−1M0u0

−D1z−M1u+M11u0.

Hence we have to solve the variational inequality to find the control z ∈ Uad such that

〈Tαz−g,w− z〉Σ ≥ 0 for all w ∈ Uad (5.39)

where

Tα = αD̃+κT D1 −κT K′
1V−1(

1
2

I +K)−κT (
1
2

I +K′)V−1K1

+κT (
1
2

I +K′)V−1V1V−1(
1
2

I +K) (5.40)

is the alternative representation of Tα as defined in (5.23) and

κT g = (
1
2

I +K′)V−1M0u−M1u+(
1
2

I +K′)V−1V1V−1M0u0 − (
1
2

I +K′)V−1M10u0

−K′
1V−1M0u0 +M11u0 (5.41)

is the related right hand side.
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Theorem 5.3. The operator Tα as given in (5.40) coincides with the operator as defined
in (5.23). In particular, Tα is bounded, self-adjoint with respect to the inner product 〈·, ·〉Σ

and H
1
2 , 1

4 (Σ)-elliptic, i.e., there holds, for some cTα
1 > 0,

〈Tαz,z〉Σ ≥ cTα
1 ‖z‖2

H
1
2 , 1

4 (Σ)
for all z ∈ H

1
2 , 1

4 (Σ).

Proof. The proof is similar to the proof of Theorem 3.5. The self-adjointness of Tα is
obvious from the symmetric representation (5.40) and (5.28), (5.36), (5.37). In particular,
the operators Tα in the symmetric representation (5.40) and in the non-symmetric repre-
sentation (5.23) coincide. Indeed, by using (5.29) and (5.31) we have

Tα = αD̃+κT D1 −κT

(
K′

1 − (
1
2

I +K′)V−1V1

)
V−1(

1
2

I +K)−κT (
1
2

I +K′)V−1K1

= αD̃+κT D1 −κTV−1
(

V K′
1 −KV1 −

1
2

V1

)
V−1(

1
2

I +K)−κT (
1
2

I +K′)V−1K1

= αD̃+κT D1 −κTV−1
(

K1V −V1K′− 1
2

V1

)
V−1(

1
2

I +K)−κT (
1
2

I +K′)V−1K1

= αD̃+κT D1 −κTV−1K1(
1
2

I +K)+κTV−1V1(
1
2

I +K′)V−1(
1
2

I +K)

−κT (
1
2

I +K′)V−1K1.

By using (5.30), (5.29) and (5.33) we further conclude

Tα = αD̃+κT D1 −κTV−1K1(
1
2

I +K)+κTV−1V1

(
V−1(

1
2

I +K)−D
)

−κT (
1
2

I +K′)V−1K1

= αD̃+κTV−1
(

V D1 −K1(
1
2

I +K)+V1V−1(
1
2

I +K)−V1D− (
1
2

I +K)K1

)
= αD̃+κTV−1

(
V1V−1(

1
2

I +K)−K1

)
= αD̃−κTV−1K1 +κTV−1V1V−1(

1
2

I +K)

and we obtain the non-symmetric representation (5.23).
Moreover, the ellipticity estimate can be shown directly by using Lemma 5.3. Indeed, for
z ∈ H

1
2 , 1

4 (Σ) and ω = V−1(1
2 I +K)z ∈ H− 1

2 ,− 1
4 (Σ) we have

〈Tαz,z〉Σ = α〈D̃z,z〉Σ + 〈κT D1z,z〉Σ −〈κT K′
1ω,z〉Σ −〈κT (

1
2

I +K′)V−1K1z,z〉Σ

+〈κT (
1
2

I +K′)V−1V1ω ,z〉Σ

= α〈D̃z,z〉Σ + 〈κT D1z,z〉Σ −〈K′
1ω,κT z〉Σ −〈K1z,κT ω〉Σ + 〈V1ω ,κT ω〉Σ

≥ α〈D̃z,z〉Σ ≥ αcD
1 ‖z‖2

H
1
2 , 1

4 (Σ)
(see Lemma 5.3).
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Hence the variational inequality (5.39) admits a unique solution. Moreover, in conse-
quence of the alternative representation (5.41) of the right hand side g as defined in (5.24),
we obtain the following corollary.

Corollary 5.2. For any u0,u ∈ L2(Ω) there hold the identities

M1u = (−1
2

I +K′)V−1M0u, (5.42)

M11u0 = K′
1V−1M0u0 +(

1
2

I −K′)V−1V1V−1M0u0 − (
1
2

I −K′)V−1M10u0. (5.43)

Galerkin boundary element approximations
In what follows, we study the numerical solution of the variational inequality (5.39) by
a Galerkin boundary element method. The ellipticity of the Schur complement boundary
integral operator Tα will imply the quasi-optimality of Galerkin approximations. Let us
first introduce some finite dimensional trial spaces.

For the approximating subspaces of H− 1
2 ,− 1

4 (Σ) and H
1
2 , 1

4 (Σ) it is customary to use tensor
products of spaces of functions of the space variables and of spaces of functions of the time
variable. We introduce a standard class of tensor product spaces Qdx,dt

h (Σ) = Sdx
hx

(Γ)⊗T dt
ht

which are based on polynomials of degree dt in time and polynomials of degree dx in
space, see Section 2.2. We choose an approximation for the Neumann data ω,q which
is piecewise constant both in space and in time. For continuous functions z1 and z2, we
define the discrete convex set

Uh := {wh ∈ Q1,0
h (Σ) : z1(xi, t j) ≤ wh(xi, t j) ≤ z2(xi, t j) for all nodes (xi, t j) ∈ Σ},

where Q1,0
h (Σ) is a boundary element space of piecewise linear and continuous basis func-

tions in space and piecewise constant ones in time. Then the Galerkin discretization of the
variational inequality (5.39) is to seek zh ∈ Uh such that

〈Tαzh,wh − zh〉Σ ≥ 〈g,wh − zh〉Σ for all wh ∈ Uh. (5.44)

Theorem 5.4. Let z ∈ Uad and zh ∈ Uh be the unique solutions of the variational inequali-
ties (5.39) and (5.44), respectively. Then there holds the error estimate

‖z− zh‖
H

1
2 , 1

4 (Σ)
≤ c(hs− 1

2
x +h

1
2 (s− 1

2 )
t )‖z‖

Hs, s
2 (Σ)

, (5.45)

when assuming z,z1,z2 ∈ Hs, s
2 (Σ) and Tαz−g ∈ Hs−1, s−1

2 (Σ) for some s ∈ [1
2 ,2].

Proof. The proof is similar to the proof of Theorem 3.1, see [8, 21, 49] for the general
abstract theory.
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Indeed, similarly to the proof of Theorem 3.1, by the assumption Tαz− g ∈ Hs−1, s−1
2 (Σ)

we have

cTα
1 ‖z− zh‖2

H
1
2 , 1

4 (Σ)
≤ ‖Tαz−g‖

Hs−1, s−1
2 (Σ)

(
‖z−wh‖

H1−s, 1−s
2 (Σ)

+‖zh −w‖
H1−s, 1−s

2 (Σ)

)
+ cTα

2 ‖z− zh‖
H

1
2 , 1

4 (Σ)
‖z−wh‖

H
1
2 , 1

4 (Σ)

for all w ∈ Uad and wh ∈ Uh. By using the approximation properties of the trial space
Q1,0

h (Σ), see (2.17) and (2.18), see also [15, 48], we can conclude

cTα
1 ‖z− zh‖2

H
1
2 , 1

4 (Σ)
≤ c1

(
hs−1

x +h
s−1

2
t

)(
hs

x +h
s
2
t

)
‖z‖2

Hs, s
2 (Σ)

+ c2

(
h

s− 1
2

x +h
1
2 (s− 1

2 )
t

)
‖z− zh‖

H
1
2 , 1

4 (Σ)
‖z‖

Hs, s
2 (Σ)

.

The assertion follows.

Since the composed boundary integral operator Tα and the right hand g as defined in (5.40),
(5.41) do not allow a practical implementation in general, instead of (5.44) we consider a
perturbed variational inequality to find ẑh ∈ Uh such that

〈T̂α ẑh,wh − ẑh〉Σ ≥ 〈ĝ,wh − ẑh〉Σ for all wh ∈ Uh. (5.46)

Theorem 5.5. Let T̂α : H
1
2 , 1

4 (Σ) → H− 1
2 ,− 1

4 (Σ) be a bounded and Q1,0
h (Σ)-elliptic approx-

imation of Tα satisfying

〈T̂αzh,zh〉Σ ≥ cT̂α
1 ‖zh‖2

H
1
2 , 1

4 (Σ)
for all zh ∈ Q1,0

h (Σ)

and

‖T̂αz‖
H− 1

2 ,− 1
4 (Σ)

≤ cT̂α
2 ‖z‖

H
1
2 , 1

4 (Σ)
for all z ∈ H

1
2 , 1

4 (Σ).

Let ĝ ∈ H− 1
2 ,− 1

4 (Σ) be some approximation of g. For the unique solution ẑh ∈ Uh of the
perturbed variational inequality (5.46) there holds the error estimate

‖z− ẑh‖
H

1
2 , 1

4 (Σ)
≤ c1‖z− zh‖

H
1
2 , 1

4 (Σ)
+ c2

(
‖(Tα −T̂α)z‖

H− 1
2 ,− 1

4 (Σ)
+‖g− ĝ‖

H− 1
2 ,− 1

4 (Σ)

)
(5.47)

where zh ∈ Uh is the unique solution of the discrete variational inequality (5.44).
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Proof. Since the operator T̂α is bounded and Q1,0
h (Σ)-elliptic, the discrete variational in-

equality (5.46) admits a unique solution. From this we further obtain

cT̂α
1 ‖zh − ẑh‖2

H
1
2 , 1

4 (Σ)
≤ 〈T̂α(zh − ẑh),zh − ẑh〉Σ

≤ 〈T̂αzh,zh − ẑh〉Σ + 〈ĝ, ẑh − zh〉Σ + 〈Tαzh, ẑh − zh〉Σ −〈g, ẑh − zh〉Σ

= 〈T̂αzh,zh − ẑh〉Σ + 〈ĝ−g, ẑh − zh〉Σ + 〈Tαzh, ẑh − zh〉Σ

≤
(
‖(T̂α −Tα)zh‖

H− 1
2 ,− 1

4 (Σ)
+‖g− ĝ‖

H− 1
2 ,− 1

4 (Σ)

)
‖zh − ẑh‖

H
1
2 , 1

4 (Σ)
.

By using the triangle inequality and the boundedness of Tα and T̂α we have

‖(T̂α −Tα)zh‖
H− 1

2 ,− 1
4 (Σ)

≤ ‖(T̂α −Tα)z‖
H− 1

2 ,− 1
4 (Σ)

+‖(Tα −T̂α)(z− zh)‖
H− 1

2 ,− 1
4 (Σ)

≤ ‖(T̂α −Tα)z‖
H− 1

2 ,− 1
4 (Σ)

+(cTα
2 + cT̂α

2 )‖z− zh‖
H

1
2 , 1

4 (Σ)
.

The assertion now follows from the triangle inequality

‖z− ẑh‖
H

1
2 , 1

4 (Σ)
≤ ‖z− zh‖

H
1
2 , 1

4 (Σ)
+‖zh − ẑh‖

H
1
2 , 1

4 (Σ)
.

It remains to define the appropriate approximations T̂α , ĝ which are based on the use of
boundary element methods, see Section 3.5 for the case of an elliptic problem.

For z ∈ H
1
2 , 1

4 (Σ), the application of Tαz reads

Tαz = αD̃z+κT D1z−κT K′
1ωz −κT (

1
2

I +K′)qz,

where qz,ωz ∈ H− 1
2 ,− 1

4 (Σ) are the unique solutions of the boundary integral equations

V ωz = (
1
2

I +K)z, V qz = K1z−V1ωz.

Let Q0,0
h (Σ) be another boundary element space of piecewise constant basis functions both

in space and in time. Let qz,h ∈ Q0,0
h (Σ) be the unique solution of the Galerkin variational

problem
〈V qz,h,θh〉Σ = 〈K1z−V1ωz,h,θh〉Σ for all θh ∈ Q0,0

h (Σ),

where ωz,h ∈ Q0,0
h (Σ) solves

〈V ωz,h,θh〉Σ = 〈(1
2

I +K)z,θh〉Σ for all θh ∈ Q0,0
h (Σ).
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We are now in a position to define an approximation T̂α of the operator Tα by

T̂αz = αD̃z+κT D1z−κT K′
1ωz,h −κT (

1
2

I +K′)qz,h. (5.48)

Lemma 5.5. The approximate operator T̂α : H
1
2 , 1

4 (Σ) → H− 1
2 ,− 1

4 (Σ) as defined in (5.48)
is bounded, i.e.,

‖T̂αz‖
H− 1

2 ,− 1
4 (Σ)

≤ cT̂α
2 ‖z‖

H
1
2 , 1

4 (Σ)
for all z ∈ H

1
2 , 1

4 (Σ),

and there holds the error estimate

‖(Tα −T̂α)z‖
H− 1

2 ,− 1
4 (Σ)

≤ c1 inf
θh∈Q0,0

h (Σ)
‖qz −θh‖

H− 1
2 ,− 1

4 (Σ)
+ c2‖ωz −ωz,h‖

H− 1
2 ,− 1

4 (Σ)
,

(5.49)
where Tα was defined in (5.40).

Proof. The boundedness of the operator T̂α follows from the mapping properties of all
boundary integral operators involved. In particular, the Galerkin boundary element solu-
tions ωz,h, qz,h in (5.48) satisfy

‖ωz,h‖
H− 1

2 ,− 1
4 (Σ)

≤ c1‖z‖
H

1
2 , 1

4 (Σ)
, ‖qz,h‖

H− 1
2 ,− 1

4 (Σ)
≤ c2‖z‖

H
1
2 , 1

4 (Σ)
.

For the error estimate (5.49) let z ∈ H
1
2 , 1

4 (Σ) be arbitrary but fixed. By definition, we have

Tαz = αD̃z+κT D1z−κT K′
1ωz −κT (

1
2

I +K′)qz,

where
V ωz = (

1
2

I +K)z, V qz = K1z−V1ωz.

By using (5.48), we then obtain

Tαz−T̂αz = κT K′
1(ωz,h −ωz)+κT (

1
2

I +K′)(qz,h −qz),

where qz,h ∈ Q0,0
h (Σ) is the unique solution of the Galerkin variational problem

〈V qz,h,θh〉Σ = 〈K1z−V1ωz,h,θh〉Σ for all θh ∈ Q0,0
h (Σ),

and ωz,h ∈ Q0,0
h (Σ) solves

〈V ωz,h,θh〉Σ = 〈(1
2

I +K)z,θh〉Σ for all θh ∈ Q0,0
h (Σ).
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Moreover we define q̂z,h ∈ Q0,0
h (Σ) as the unique solution of the Galerkin variational prob-

lem
〈V q̂z,h,θh〉Σ = 〈K1z−V1ωz,θh〉Σ for all θh ∈ Q0,0

h (Σ).

Then the perturbed Galerkin orthogonality

〈V (qz,h − q̂z,h),θh〉Σ = 〈V1(ωz,h −ωz),θh〉Σ for all θh ∈ Q0,0
h (Σ)

follows. This implies the inequality

‖qz,h − q̂z,h‖
H− 1

2 ,− 1
4 (Σ)

≤ 1
cV

1
‖V1(ωz,h −ωz)‖

H
1
2 , 1

4 (Σ)
≤

cV1
2

cV
1
‖ωz,h −ωz‖

H− 1
2 ,− 1

4 (Σ)
.

Therefore, by the boundedness of the operators K′,K′
1 : H− 1

2 ,− 1
4 (Σ) → H− 1

2 ,− 1
4 (Σ) and by

the triangle inequality we conclude

‖(Tα −T̂α)z‖
H− 1

2 ,− 1
4 (Σ)

≤ cK′
1

2 ‖ωz,h −ωz‖
H− 1

2 ,− 1
4 (Σ)

+ cK′
2 ‖qz,h −qz‖

H− 1
2 ,− 1

4 (Σ)

≤ cK′
1

2 ‖ωz,h −ωz‖
H− 1

2 ,− 1
4 (Σ)

+ cK′
2 ‖qz,h − q̂z,h‖

H− 1
2 ,− 1

4 (Σ)
+ cK′

2 ‖q̂z,h −qz‖
H− 1

2 ,− 1
4 (Σ)

.

The assertion now follows by applying Cea’s lemma.

By using the approximation property of the trial space Q0,0
h (Σ), see (2.17), we conclude an

error estimate from (5.49) when assuming some regularity of qz and ωz, respectively.

Corollary 5.3. Assume qz,ωz ∈ Hs, s
2 (Σ) for some s ∈ [0,1]. Then there holds the error

estimate

‖(Tα −T̂α)z‖
H− 1

2 ,− 1
4 (Σ)

≤ c(h
1
2
x +h

1
4
t )(hs

x +h
s
2
t )(‖qz‖Hs, s

2 (Σ)
+‖ωz‖Hs, s

2 (Σ)
). (5.50)

The approximation of the right hand side g
Similarly, the right hand side in (5.41) can be rewritten as

g = κT (
1
2

I +K′)qu,u0 +κT K′
1ωu0 −κT M1u+κT M11u0,

where qu,u0 ∈ H− 1
2 ,− 1

4 (Σ) is the unique solution of the boundary integral equation

(V qu,u0)(x, t) = (M0u)(x, t)− (M10u0)(x, t)− (V1ωu0)(x, t) for (x, t) ∈ Σ,

and ωu0 ∈ H− 1
2 ,− 1

4 (Σ) solves

(V ωu0)(x, t) = −(M0u0)(x, t) for (x, t) ∈ Σ.
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Hence we define approximate Galerkin solutions q̃h, ω̃h ∈ Q0,0
h (Σ) of qu,u0 and ωu0 , and

then we can introduce the approximation

ĝ = κT (
1
2

I +K′)q̃h +κT K′
1ω̃h −κT M1u+κT M11u0 (5.51)

and we obtain the error estimate

‖g− ĝ‖
H− 1

2 ,− 1
4 (Σ)

≤ c(h
1
2
x +h

1
4
t )(hs

x +h
s
2
t )(‖qu,u0‖Hs, s

2 (Σ)
+‖ωu0‖Hs, s

2 (Σ)
), (5.52)

when assuming qu,u0,ωu0 ∈ Hs, s
2 (Σ) for some s ∈ [0,1].

Approximate variational inequality
By using the approximations (5.48) and (5.51), the perturbed variational inequality (5.46)
reads to find ẑh ∈ Uh such that

〈αD̃ẑh +κT D1ẑh −κT K′
1ωẑh,h −κT (

1
2

I +K′)qẑh,h,wh − ẑh〉Σ

≥ 〈κT (
1
2

I +K′)q̃h +κT K′
1ω̃h −κT M1u+κT M11u0,wh − ẑh〉Σ for all wh ∈ Uh

which can be written as

〈αD̃ẑh +κT D1ẑh −κT K′
1ωh −κT (

1
2

I +K′)qh,wh − ẑh〉Σ ≥ 〈κT M11u0 −κT M1u,wh − ẑh〉Σ

(5.53)
for all wh ∈ Uh, where we introduce qh := qẑh,h + q̃h ∈ Q0,0

h (Σ) which is the unique solution
of the Galerkin variational problem

〈V qh,θh〉Σ = 〈K1ẑh −V1ωh,θh〉Σ + 〈M0u−M10u0,θh〉Σ for all θh ∈ Q0,0
h (Σ), (5.54)

and ωh := ωẑh,h + ω̃h ∈ Q0,0
h (Σ) which solves

〈V ωh,θh〉Σ = 〈(1
2

I +K)ẑh −M0u0,θh〉Σ for all θh ∈ Q0,0
h (Σ), (5.55)

(see the corresponding boundary integral equations (5.18), (5.11)).

Let

ωh(x, t) =
N−1

∑
k=0

N0−1

∑̀
=0

ω`kϕ0
` (x)ψ0

k (t), qh(x, t) =
N−1

∑
k=0

N0−1

∑̀
=0

q`kϕ0
` (x)ψ0

k (t),

and

ẑh(x, t) =
N−1

∑
k=0

N1−1

∑
n=0

znkϕ1
n (x)ψ0

k (t), (x, t) ∈ Σ,
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where Ni denotes the dimension of Si
hx

(Γ), i = 0,1 and N is the number of time steps.
Substituting these expansions into (5.54) with the test functions θh(x, t) = ϕ0

i (x)κT ψ0
j (t)

for i = 0,1, ...,N0 −1; j = 0,1, ...,N −1, we get

N−1

∑
k=0

N0−1

∑̀
=0

(
ω`k〈V1[ϕ0

` (x)ψ0
k (t)],ϕ0

i (x)κT ψ0
j (t)〉Σ +q`k〈V [ϕ0

` (x)ψ0
k (t)],ϕ0

i (x)κT ψ0
j (t)〉Σ

)
−

N−1

∑
k=0

N1−1

∑
n=0

znk〈K1[ϕ1
n (x)ψ0

k (t)],ϕ0
i (x)κT ψ0

j (t)〉Σ = 〈M0u−M10u0,ϕ0
i (x)κT ψ0

j (t)〉Σ

for all i = 0,1, ...,N0 −1; j = 0,1, ...,N −1.

Since the last equation is indexed by four integers, it requires some ordering or partitioning
of the unknowns. For 0 ≤ k ≤ N −1 we define vectors ωk, qk ∈ RN0 and zk ∈ RN1 by

ωk[`] = ω`k, qk[`] = q`k, zk[n] = znk for ` = 0,1, ...,N0 −1;n = 0,1, ...,N1 −1.

Similarly, f 1
j denote vectors of length N0 whose components are given by

f 1
j [i] = 〈M0u−M10u0,ϕ0

i (x)κT ψ0
j (t)〉Σ, for i = 0,1, ...,N0 −1; j = 0,1, ...,N −1.

Finally, we define square matrices V 1
jk, V jk ∈ RN0×N0 and matrices K1

jk ∈ RN0×N1 for
0 ≤ k, j ≤ N −1 by

V 1
jk[i][`] = 〈V1[ϕ0

` (x)ψ0
k (t)],ϕ0

i (x)κT ψ0
j (t)〉Σ,

Vjk[i][`] = 〈V [ϕ0
` (x)ψ0

k (t)],ϕ0
i (x)κT ψ0

j (t)〉Σ,

K1
jk[i][n] = 〈K1[ϕ1

n (x)ψ0
k (t)],ϕ0

i (x)κT ψ0
j (t)〉Σ,

for i, ` = 0,1, ...,N0 −1; n = 0,1, ...,N1 −1.
With these notations, the system (5.54) can be written in the form

N−1

∑
k=0

(
V 1

jkωk +V jkqk −K1
jkzk

)
= f 1

j , for j = 0,1, ...,N −1. (5.56)

In the same way, the system (5.55) reads

N−1

∑
k=0

Vjkωk −
N−1

∑
k=0

(
1
2

M jk +K jk

)
zk = f 2

j , for j = 0,1, ...,N −1, (5.57)

where the matrices M jk,K jk ∈ RN0×N1 are defined by

M jk[i][n] = 〈ϕ1
n (x)ψ0

k (t),ϕ0
i (x)κT ψ0

j (t)〉Σ,

K jk[i][n] = 〈K[ϕ1
n (x)ψ0

k (t)],ϕ0
i (x)κT ψ0

j (t)〉Σ
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and
f 2

j [i] = −〈M0u0,ϕ0
i (x)κT ψ0

j (t)〉Σ.

Let us rewrite the linear systems (5.56) and (5.57) as follows. For the N2 matrices A jk,
j,k = 0,1, ...,N −1, which correspond to one of the layer heat potentials A, i.e.,

A jk[i][`] = 〈A[ϕ0
` (x)ψ0

k (t)],ϕ0
i (x)κT ψ0

j (t)〉Σ,

we denote a block matrix Ah by

Ah :=


A00 A01 · · · A0,N−1
A10 A11 · · · A1,N−1

...
...

...
...

AN−1,0 AN−1,1 · · · AN−1,N−1

 .

We define a vector a which is constructed from the N vectors ak by

a :=
(
a>0 a>1 · · · a>N−1

)>
.

With these notations, the inner-product of two vectors Aha and b can be expressed by the
“time-twisted” duality, i.e.,

(Aha,b) = 〈Aah,κT bh〉Σ,

where ah,bh are trial functions whose coefficients of the expansions in trial spaces cor-
respond to the vectors a,b. Here the operator A can be one of the layer heat potentials
V,K,V1, .... In case of the identity operator, we have a mass matrix Mh, as usual.

We now rewrite the linear systems (5.56) and (5.57) in the forms

V1,hω +Vhq−K1,hz = f 1 (5.58)

and

Vhω − (
1
2

Mh +Kh)z = f 2, (5.59)

respectively.

Discrete variational inequality
Analogously, we can reformulate the perturbed variational inequality (5.53) to find z ∈
RN1N ↔ ẑh ∈ Uh such that

(αD̃hz+D1,hz−K>
1,hω−(

1
2

M>
h +K>

h )q,w−z)≥ ( f 3,w−z) for all w∈RN1N ↔wh ∈Uh

(5.60)
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where ω,q ∈ RN0N are the unique solutions of the linear systems (5.59), (5.58), respec-
tively. Here, in addition, we define the square matrices D1

jk, D̃ jk ∈ RN1×N1 and the vectors
f 3

j ∈ RN1 by

D1
jk[m][n] = 〈D1[ϕ1

n (x)ψ0
k (t)],ϕ1

m(x)κT ψ0
j (t)〉Σ,

D̃ jk[m][n] =
1
2
〈D[ϕ1

n (x)ψ0
k (t)],ϕ1

m(x)ψ0
j (t)〉Σ +

1
2
〈D[ϕ1

n (x)κT ψ0
k (t)],ϕ1

m(x)κT ψ0
j (t)〉Σ,

f 3
j [m] = 〈M11u0 −M1u,ϕ1

m(x)κT ψ0
j (t)〉Σ

for j,k = 0,1, ...,N −1; m,n = 0,1, ...,N1 −1. Note that

(D̃ha,b) = 〈D̃ah,bh〉Σ for all a,b ∈ RN1N ↔ ah,bh ∈ Q1,0
h (Σ).

The Galerkin matrix Vh of the single layer heat potential V is symmetric and positive
definite, hence it is invertible. We can solve ω and q from (5.59), (5.58). Then the discrete
variational inequality (5.60) is equivalent to

(Tα,hz,w− z) ≥ (g,w− z) for all w ∈ RN1N ↔ wh ∈ Uh (5.61)

where

Tα,h = αD̃h +D1,h − (
1
2

M>
h +K>

h )V−1
h K1,h −K>

1,hV−1
h (

1
2

Mh +Kh)

+(
1
2

M>
h +K>

h )V−1
h V1,hV−1

h (
1
2

Mh +Kh) (5.62)

defines a symmetric Galerkin boundary element approximation of the self-adjoint operator
Tα and

g = f 3 +K>
1,hV−1

h f 2 +(
1
2

M>
h +K>

h )V−1
h ( f 1 −V1,hV−1

h f 2) (5.63)

is the related boundary element approximation of the right hand side g as defined in
(5.41).

Lemma 5.6. The symmetric matrix Tα,h as defined in (5.62) is positive definite, i.e.,

(Tα,hz,z) ≥ αcD
1 ‖zh‖2

H
1
2 , 1

4 (Σ)
for all z ∈ RN1N ↔ zh ∈ Q1,0

h (Σ).

Proof. While the symmetry of Tα ,h is obvious, the positive definiteness follows by using
Lemma 5.3. Indeed, by using the symmetry of Vh and with ω = V−1

h (1
2Mh +Kh)z, we have

(Tα,hz,z) = α(D̃hz,z)+(D1,hz,z)−2(K1,hz,ω)+(V1,hω,ω),

= α〈D̃zh,zh〉Σ + 〈D1zh,κT zh〉Σ −2〈K1zh,κT ωh〉Σ + 〈V1ωh,κT ωh〉Σ,

≥ α〈D̃zh,zh〉Σ ≥ αcD
1 ‖zh‖2

H
1
2 , 1

4 (Σ)
.
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Hence we conclude the unique solvability of the variational inequality (5.61) and (5.46) as
well. Moreover, we can derive an error estimate for the approximate control solution ẑh by
applying Theorem 5.5 and with the error estimates (5.45), (5.50) and (5.52).

Theorem 5.6. Let z and ẑh be the unique solutions of the variational inequalities (5.39)
and (5.46), respectively. Then there holds the error estimate

‖z− ẑh‖
H

1
2 , 1

4 (Σ)
≤ c1(h

s+ 1
2

x +h
1
2 (s+ 1

2 )
t )‖z‖

Hs+1, s+1
2 (Σ)

+c2(h
1
2
x +h

1
4
t )(hs

x +h
s
2
t )‖qz‖Hs, s

2 (Σ)

+ c3(h
1
2
x +h

1
4
t )(hs

x +h
s
2
t )
(
‖ωz‖Hs, s

2 (Σ)
+‖qu,u0‖Hs, s

2 (Σ)
+‖ωu0‖Hs, s

2 (Σ)

)
(5.64)

when assuming z ∈ Hs+1, s+1
2 (Σ) and qz,ωz,qu,u0,ωu0 ∈ Hs, s

2 (Σ) for some s ∈ [0,1].

In particular, if there are constants c1,c2 > 0 such that

c1h2
x ≤ ht ≤ c2h2

x ,

we obtain the estimate

‖z− ẑh‖
H

1
2 , 1

4 (Σ)
≤ c(z,u,u0)h

s+ 1
2

x for z ∈ Hs+1, s+1
2 (Σ),s ∈ [0,1]. (5.65)

In the case of a non-constrained minimization problem, instead of the discrete variational
inequality (5.61) we have to solve the linear system

Tα,hz = g,

which can be written as V1,h Vh −K1,h
Vh −(1

2Mh +Kh)
−K>

1,h −(1
2M>

h +K>
h ) D1,h +αD̃h

ω
q
z

=

 f 1

f 2

f 3

 . (5.66)

Implementation
In what follows, we discuss on the computation of the matrix entries for the Galerkin
scheme. For more details, we refer to [15, 48, 60].
We consider the Galerkin matrix of the single layer heat potential

V jk[i][`] = 〈V [ϕ0
` (x)ψ0

k (t)],ϕ0
i (x)κT ψ0

j (t)〉Σ =
T∫

0

∫
Γ

ϕ0
i (x)ψ0

j (T − t)V [ϕ0
` (x)ψ0

k (t)]dsx dt

=
T∫

0

∫
Γ

ϕ0
i (x)ψ0

j (T − t)
t∫

0

∫
Γ

E(x− y, t − τ)ϕ0
` (y)ψ0

k (τ)dsy dτ dsx dt.
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By interchanging the order of integration, the entries Vjk[i][`] can be written as follows

Vjk[i][`] =
∫
Γ

∫
Γ

ϕ0
i (x)a jk(x,y)ϕ0

` (y)dsy dsx,

where for x,y ∈ Rd , a jk(x,y) are denoted by

a jk(x,y) =
T∫

0

ψ0
j (T − t)

t∫
0

ψ0
k (τ)E(x− y, t − τ)dτ dt.

The basis functions ψ0
k (t) are given in (2.16) for k = 0,1, ...,N −1,

ψ0
k (t) =

{
1 if kht < t < (k +1)ht ,

0 otherwise.

Hence, with T = Nht , the time integrals

a jk(x,y) =

(N− j)ht∫
(N− j−1)ht

(k+1)ht∫
kht

E(x− y, t − τ)dτ dt = h2
t

1∫
0

1∫
0

E(x− y,ht(δ − t ′− τ ′))dτ ′ dt ′

can be computed explicitly for δ := N − j− k ≥ 1, see, e.g., [15] for d = 2 and [48] for
d = 3. Note that a jk(x,y) = 0 for δ < 1, so Vjk = 0 for δ < 1. Obviously,

V j1k1 = Vj2k2 if j1 + k1 = j2 + k2.

The symmetric matrix Vh is (block) left-upper triangular. Thus only N blocks of size
N0×N have to be computed and stored. In particular, only one block of size N0×N has to
be inverted in order to get V−1

h .

For the Galerkin matrix of the hypersingular integral operator we can reduce the computa-
tion to weakly singular integrals in the two dimensional case, see [15].

Lemma 5.7. For d = 2, let ∂γ and ∂t denote the derivative with respect to the arc length
on Γ and the time derivative, respectively. Let n denote the exterior normal vector. Then

〈Dz,w〉Σ = 〈V (∂γz),∂γw〉Σ +
2

∑
i=1

〈∂tV (zni),wni〉Σ,

〈D1z,w〉Σ = −〈V1(∂γz),∂γw〉Σ −
2

∑
i=1

〈∂tV1(zni),wni〉Σ,

for all z,w ∈ H
1
2 , 1

4 (Σ).
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Moreover, to implement the right hand side f 3 we can approximate the Newton potentials
M1u and M11u0 by using the identities (5.42) and (5.43) as we did for the right hand side
g. In particular, we can write

M11u0 −M1u = K′
1V−1M0u0 +(

1
2

I −K′)V−1V1V−1M0u0 +(
1
2

I −K′)V−1[M0u−M10u0]

= −K′
1ωu0 +(

1
2

I −K′)qu,u0

where ωu0 ∈ H− 1
2 ,− 1

4 (Σ) is the unique solution of the boundary integral equation

(V ωu0)(x, t) = −(M0u0)(x, t) for (x, t) ∈ Σ,

and qu,u0 solves

(V qu,u0)(x, t) = (M0u)(x, t)− (M10u0)(x, t)− (V1ωu0)(x, t) for (x, t) ∈ Σ.

Then we define an approximation f̂ 3 as in (5.51)

f̂ 3 = (
1
2

I −K′)q̃h −K′
1ω̃h

which implies

f̂
3
= (

1
2

M>
h −K>

h )V−1
h ( f 1 −V1,hV−1

h f 2)−K>
1,hV−1

h f 2.

Therefore, instead of the vector g as defined in (5.63) we use an approximation

ĝ = f̂
3
+K>

1,hV−1
h f 2 +(

1
2

M>
h +K>

h )V−1
h ( f 1 −V1,hV−1

h f 2)

= M>
h V−1

h

(
f 1 −V1,hV−1

h f 2) .
Remark 5.1. We have presented the use of a boundary element analysis for the solution of
parabolic Dirichlet boundary control problem. The error estimate (5.65) provides the best
possible order of convergence for boundary element approximation of the Dirichlet control
z when considering the lowest order trial spaces. The boundary element approach can be
applied to parabolic Neumann boundary control problem as well. This will be discussed
in the next section.
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5.4 Parabolic Neumann boundary control problems

In this section, we apply the boundary integral equation method to a parabolic Neumann
boundary control problem which is based on the idea as used for the parabolic Dirichlet
boundary control problem. This approach results in a similar formulation as those in the
case of a parabolic Dirichlet boundary control problem. Hence we give here the main
results only.

By using the setting as for the parabolic Dirichlet boundary control problem, we con-
sider the parabolic Neumann boundary control problem to find the control ω ∈ Uad ⊂
H− 1

2 ,− 1
4 (Σ) which minimizes the functional

J(u,ω) =
1
2

∫
Ω

[u(x,T )−u(x)]2 dx+
α
2
〈V ω ,ω〉Σ (5.67)

where the state u solves the initial boundary value problem
∂tu(x, t)−∆u(x, t) = 0 for (x, t) ∈ Q,
∂
∂n

u(x, t) = ω(x, t) for (x, t) ∈ Σ,

u(x,0) = u0(x) for x ∈ Ω,

(5.68)

and Uad is a closed and convex subset of H− 1
2 ,− 1

4 (Σ). Here u,u0 ∈ L2(Ω), α ∈ R+.

Analogously, we obtain a variational inequality to be solved

〈αṼ ω + p,w−ω〉Σ ≥ 0 for all w ∈ Uad, (5.69)

where
Ṽ :=

1
2
(V +κTV κT ),

and the adjoint state p(x, t) is the solution of the initial boundary value problem
−∂t p(x, t)−∆p(x, t) = 0 for (x, t) ∈ Q,
∂

∂n
p(x, t) = 0 for (x, t) ∈ Σ,

p(x,T ) = u(x,T )−u(x) for x ∈ Ω.

(5.70)

The variational inequality (5.69) can be written as

〈Tαω −g,w−ω〉Σ ≥ 0 for all w ∈ Uad, (5.71)

which admits a unique solution ω ∈ Uad . Here the operator Tα : H− 1
2 ,− 1

4 (Σ) → H
1
2 , 1

4 (Σ) is
bounded and H− 1

2 ,− 1
4 (Σ)-elliptic, and g ∈ H

1
2 , 1

4 (Σ). By applying the idea as used for the
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parabolic Dirichlet boundary control problem, we can derive a representation of Tα by the
boundary integral heat layer potentials as

Tα = αṼ +κTV1 −κT K1D−1(
1
2

I −K′)−κT (
1
2

I −K)D−1K′
1

+κT (
1
2

I −K)D−1D1D−1(
1
2

I −K′). (5.72)

Since the composed operator Tα as defined in (5.72) does not allow a practical implemen-
tation, instead of (5.71), we consider a perturbed variational inequality to find ω̂h ∈ Uh
such that

〈T̂α ω̂h − ĝ,wh − ω̂h〉Σ ≥ 0 for all wh ∈ Uh, (5.73)

where T̂α and ĝ are appropriate approximations of Tα and g, respectively. Moreover,
we introduce a boundary element space Uh of Uad which covers piecewise constant basis
functions both in space and in time.

In particular, the operator T̂α : H− 1
2 ,− 1

4 (Σ) → H
1
2 , 1

4 (Σ) is bounded and Q0,0
h (Σ)-elliptic.

Hence the perturbed variational inequality (5.73) admits a unique solution ω̂h ∈ Uh. More-
over, we can derive the following error estimate.

Theorem 5.7. Let ω ∈Uad and ω̂h ∈Uh be the unique solutions of the variational inequal-
ities (5.71) and (5.73), respectively. Then there holds the error estimate

‖ω − ω̂h‖
H− 1

2 ,− 1
4 (Σ)

≤ c(ω ,u0,u)h
s+ 1

2
x (5.74)

when assuming some regularity of u0,u for which ω ∈ Hs, s
2 (Σ) for some s ∈ [0,1] and

c1 h2
x ≤ ht ≤ c2 h2

x for some 0 < c1 < c2.

In particular, we can expect a linear convergence for the error in L2(Σ) norm in the case
of smooth data.

5.5 Numerical experiments

In this section we test some numerical examples where the domain Ω is a circle. For the
boundary element discretization we use a uniform triangulation of the boundary Γ = ∂Ω on
several levels by N0 = N1 = 2L+2 nodes and a uniform decomposition of the interval (0,T )
by N time steps. We choose the trial space Q1,0

h (Σ) of piecewise linear and continuous
basis functions in the space variable x, and piecewise constant ones in the time variable t
to approximate the Dirichlet control z. For the fluxes ω,q, we use the trial space Q0,0

h (Σ)
of piecewise constant basis functions both in space and in time.
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Numerical example 1: Parabolic Dirichlet boundary control problem
As first numerical example we consider the unconstrained parabolic Dirichlet boundary
control problem (5.1)-(5.2) for the domain Ω = B0.5(O) ⊂ R2 where

u(x) = (x2
1 + x2

2) log(x2
1 + x2

2)+4x1x2, u0(x) = 0, α = 0.1, T = 0.5.

In particular, we have to solve the linear system (5.66). Since the minimizer of (5.1) is not
known, we use the boundary element solutions zre f ,ωre f where N0 = N1 = 512, N = 512
as reference solutions.

In Table 5.1, we present the errors for the control z and the estimated order of convergence
(eoc). The errors of the flux ω in the L2(Σ) norm are also given. Since the data are smooth
in this case, we can expect the optimal order of convergence 1.5 for the control z in the
energy space H

1
2 , 1

4 (Σ) which agrees with the theoretical results, see (5.65).

M N ‖ẑh − zre f ‖L2(Σ) eoc ‖ẑh − zre f ‖
H

1
2 , 1

4 (Σ)
eoc ‖ωh −ωre f ‖L2(Σ) eoc

32 4 0.155637 - 1.061380 - 0.733535 -
64 16 0.054384 1.517 0.562186 0.917 0.322231 1.187

128 64 0.012916 2.074 0.213010 1.400 0.185283 0.798
256 256 0.003017 2.098 0.071749 1.570 0.063744 1.539
expected 2.000 1.500 1.000

Table 5.1: The results of the unconstrained parabolic Dirichlet boundary control problem.

In Figure 5.1 we compare the final optimal solution u(·,T ) with the target function u where
the relative error is

‖u(·,T )−u‖L2(Ω)

‖u‖L2(Ω)
=

0.034505
0.082929

= 0.416079.
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Figure 5.1: Comparison of final optimal solution (left) and target function (right).

For box constrained problem, we add the control constraint −1 ≤ z ≤ 0.11. The results are
given in Table 5.2.

M N ‖ẑh − zre f ‖L2(Σ) eoc ‖ẑh − zre f ‖
H

1
2 , 1

4 (Σ)
eoc ‖ωh −ωre f ‖L2(Σ) eoc

32 4 0.154249 - 1.050200 - 0.727606 -
64 16 0.054260 1.507 0.561425 0.903 0.321477 1.178

128 64 0.012887 2.074 0.212840 1.399 0.187099 0.781
256 256 0.003018 2.094 0.071736 1.569 0.064487 1.537
expected 2.000 1.500 1.000

Table 5.2: The results of the parabolic Dirichlet boundary control problem with the con-
straints −1 ≤ z ≤ 0.11.

Numerical example 2: Parabolic Neumann boundary control problem
In this example, we give numerical results for the unconstrained parabolic Neumann bound-
ary control problem (5.67)-(5.68) for the domain Ω = B0.5(O)⊂R2. The data are the same
as in numerical example 1,

u(x) = (x2
1 + x2

2) log(x2
1 + x2

2)+4x1x2, u0(x) = 0, α = 0.1, T = 0.5.

Here, we use the boundary element solutions ωre f ,zre f where N0 = N1 = 512, and N =
1024 as reference solutions.

In Table 5.3, we present the errors for the control ω . We present also the errors of the
Dirichlet data z in the L2(Σ) norm. These errors correspond to the estimate (5.74).
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M N ‖ω̂h −ωre f ‖L2(Σ) eoc ‖zh − zre f ‖L2(Σ) eoc
32 4 0.772516 - 0.169835 -
64 16 0.313851 1.299 0.057649 1.559

128 64 0.190589 0.720 0.015202 1.923
256 256 0.055004 1.793 0.003354 2.180
expected 1.000 2.000

Table 5.3: The results of the unconstrained parabolic Neumann boundary control problem.

In Figure 5.2 we compare the final optimal solution u(·,T ) with the target function u where
the relative error is

‖u(·,T )−u‖L2(Ω)

‖u‖L2(Ω)
=

0.032212
0.082929

= 0.388429.

Figure 5.2: Comparison of final optimal solution (left) and target function (right).



6 CONCLUSIONS

In this work, boundary control problems governed by boundary value problems of linear
second order elliptic/parabolic partial differential equations have been studied. The con-
trols are considered in the energy spaces. The difference to the more common approach
when considering L2(Γ) or L2(Σ) as control spaces is in the optimality condition. Espe-
cially, it shows the proper mapping properties which link the Dirichlet and Neumann data.
This results in a higher regularity of the controls. In particular, when considering L2 as
the control spaces, for polygonal or polyhedral domains, the controls are zero at all corner
points and along edges (d = 3).

In this thesis, we have applied the boundary element analysis for the solution of boundary
control problems. We have presented here the model problems for the Poisson equation
and for the heat equation. However, the approach can be applied for any linear elliptic par-
tial differential equation if a fundamental solution is known. For the nonhomogeneous heat
equations we need to compute additional related Newton potentials. The advantage of us-
ing boundary element methods is in the fact that only a boundary discretization is required.
This allows to deal with the boundary control problems subject to partial differential equa-
tions in unbounded exterior domains, analogously. While the non-symmetric variational
formulation which is based on the first boundary integral equation only requires to use the
appropriate boundary element spaces, the use of the hypersingular operator in a symmetric
formulation is stable for all standard boundary element spaces. Moreover, the Galerkin
approximation results in a symmetric system. Hence the symmetric formulation seems to
be the method of choice.

We have derived a priori error estimates of the Galerkin boundary element methods for
general Lipschitz domains Ω. In the case of smooth data, we can prove the order O(h2) of
the errors in L2(Γ) norm for the Dirichlet control and linear order for the Neumann control.
Whereas for the finite element approximation, a reduced order of O(h3/2) can be proved
only, see [51] and see [19] for the L2 setting.

This work is on the stability and error analysis of boundary element methods. Moreover,
boundary element methods result in densely populated system matrices. Further work can
be on studies of an efficient solution method to solve the discrete variational inequalities.
In particular, further research is on the construction of efficient preconditioners and the
use of fast boundary element methods as well. In addition, it is interesting to answer the
open questions which appear in the thesis, e.g., the regularity of the control in parabolic
boundary control problems.
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