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Abstract

Boundary element methods offer advantages for the simulation of problems involving a
large or infinite domain. Only the surface needs to be meshed and the radiation condition
is fulfilled by the fundamental solutions. Unfortunately, the method leads to fully popula-
ted system matrices resulting in a quadratic numerical complexity in terms of storage and
numerical effort. To overcome this drawback, fast summation methods have been deve-
loped, reducing the complexity to almost linear or even linear behavior. This is achieved
mainly by splitting the domain into a near- and a far-field, where contributions of the latter
are subject to numerical approximation. This thesis covers the application of the concept of
Hierarchical Matrices to elastostatic and elasto-plastic problems with a collocation-based
boundary element method. The application of the Adaptive Cross Approximation as well
as kernel interpolation techniques are presented. The main objective is to efficiently solve
inhomogeneous and non-linear problems. In this context, the focus is on the evaluation of
internal results with body forces and the special treatment of discrete volume potentials.
The successful implementation into a multi-purpose code and the application to various
real-world problems with adequate accuracy of the results is demonstrated.

Kurzfassung

Einer der groBten Vorteile der Randelementmethode ist unendliche Gebiete oder den Halb-
raum exakt beschreiben zu kénnen. Da nur die Oberfliche des Problems modelliert wer-
den muss wird im Vergleich zu anderen numerischen Methoden die Anzahl der benétigten
Freiheitsgrade zwar verringert, die resultierenden Systemmatrizen sind jedoch unsymme-
trisch und voll besetzt. Die daraus folgende quadratische Komplexitit fiir Rechenspeicher
und Rechenzeit macht die Methode fiir groBere Aufgabenstellungen unattraktiv. Schnel-
le Summationsmethoden teilen das diskretisierte Gebiet iiblicherweise in ein Nah- und
Fernfeld. Dabei wird der Einfluss des Fernfelds auf die Losung approximiert und somit
der numerische Aufwand reduziert. Der Inhalt der vorliegenden Arbeit ist die Anwen-
dung von Hierarchischen Matrizen mit annihernd linearer Komplexitét auf die Randele-
mentmethode fiir elastische und elasto-plastische Probleme. Zur Approximation der, auf
der Kollokationsmethode basierenden Gleichungssysteme werden zwei Ansitze, ndmlich
die Konstruktion von Niedrigrangmatrizen mittels adaptiver Kreuzapproximation und mit-
tels Kerninterpolation behandelt. Das Hauptaugenmerk richtet sich auf die Berechnung
von Feldgroen im Gebiet und auf die Approximation von diskreten Volumenpotentia-
len, mit dem Ziel schnell und effektiv inhomogene und nichtlineare Aufgabenstellungen
mit der Randelementmethode behandeln zu kdnnen. Die beschriebene Methode wurde in
ein Computerprogramm implementiert und anhand von praxisnahen Aufgabenstellungen
verifiziert.
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1 Introduction

The boundary element method (BEM) is well suited for solving problems involving an un-
bounded domain or problems with high stress concentration. This is because the radiation
condition is exactly fulfilled so no mesh truncation is necessary. In general, the meshing
procedure is greatly simplified because, for homogeneous problems, only the boundary of
the domain has to be considered. For problems in continuum mechanics, the BEM is ex-
pedient if the considered body has inclusions or distributions of initial strains or stresses.
Formulations have been developed for inhomogeneous problems with body forces induced
by gravity, thermal effects and, like in this work, plasticity. However, today only few com-
mercial software packages are available which utilize the BEM.

In contrary, the finite element method (FEM) is applied to a wide field of engineer-
ing applications and can deal with many, even anisotropic, inhomogeneuous and highly-
nonlinear physical models. The method takes advantage of its sparse system matrices and
is easy to parallelize. Thus, the solving of problems with many degrees of freedom is
possible.

There has been a progressive development of computer hardware over the last decades.
In this context, one of the problems with the BEM is its computational efficiency. For
large scale problems, i.e. problems which are about to be solved with the highest possible
number of degrees of freedom, it is a requirement for the method to show only linear or
almost linear increase of computational effort. To achieve this, fast solution algorithms,
which can reduce complexity to the optimal linear behaviour, have been developed. Their
application to different BEM formulations has been in focus of many researchers in recent
years.

The aim of the thesis is to address problems in elastostatics and for elasto-plasticity by
introducing hierarchical matrices (H-matrices) and their adaption to software solutions in
this context.

1.1 Motivation and Objective

In this work, the choice for a pure boundary element method formulation is motivated by
problems arising in soil and rock engineering which involve infinite and semi-infinite do-
mains like tunneling as shown in Figure 1.1 or other actions in underground construction
[62]. Today in contrast to the FEM there are no commercial BEM programs available
that can be used to simulate underground excavations efficiently and accurately. For the
last decade the computer software BEFE++ has been developed', with the aim of closing

Information on the software package can be found at www.ifb.tugraz.at
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Figure 1.1: Semi-infinite (a) and infinite (b) domain for problems in underground
construction

this gap. With the enhancements described in [13] nonlinear material behavior, support
systems like rock bolts and steel arches as well as small inclusions in the rock material
are simulated by the BEM. Since the method can easily deal with evolving boundaries,
its application to sequential excavation problems is was within reach. Deep tunnels, for
instance, are modeled as an exterior problem and the surrounding rock-material is only
locally subject to elasto-plastic behavior. Instead of modeling the whole domain, the BEM
just needs a discrete model of the tunnel boundary and possibly earth’s surface as a semi-
infinite domain. Although the main focus is on underground construction, the application
of the considered approach is not restrictive and can be applied to any small strain elasto-
static or elasto-plastic problem.

The main objective of the thesis at hand has been the development of a fast simulation
method for problems in elastostatics and elasto-plasticity to overcome the described draw-
backs. This is achieved by using the technique of H-matrices applied to an elasto-plastic
BEM solution procedure. By doing this, near optimal complexity in terms of storage and
computational effort can be reached. In the context of H-matrices, two approaches are
followed for the approximation of system matrices: First, the adaptive cross approxima-
tion (ACA) algorithm, usually applied to scalar problems, is adapted to work with the
emerging vector valued problems. Second, a matrix approximation technique for elasto-
static and elasto-plastic boundary element methods by means of kernel interpolation in the
context of H-matrices is developed.

Furthermore, fast solution procedures are established, allowing nonlinear system of
equations to be solved rapidly and with desired accuracy. This is achieved by using fast
matrix-matrix or matrix-vector operations provided by H-matrices algebra. The solution
procedure is carried out iteratively and the matrix format is taken to calculate approximate
inverse matrices for the preconditioning in reasonable time.

Finally, the algorithms are implemented into a computational framework. Particular
attention is paid to the effective use of multiple core computer environments and to a
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realization in such a way that it also allows the solution of other physical models.

1.2 State of the Art

Two major fields of research are touched on by this work. In particular, the BEM and its
application to elastostatic and elasto-plastic problems, as well as fast summation methods
and their adaptation. The following overview does not claim to be complete. For a detailed
background on historical developments or approaches beyond the scope of this work, the
reader is referred to the overview papers [28] and [110] as well as to the textbooks of
Bonnet [17], Gaul et al. [41], Sauter and Schwab [95] and Steinbach [101]. The textbook
of Chen and Zhou [27] covers nonlinear applications to the BEM and provides a deeper
mathematical inside.

Elasticity and Plasticity The first BEM for elastostatic problems has been developed
by Rizzo [88], for elasto-plastic ones by Swedlow and Cruse [103] and there have been
several to follow enhancing this technique. One of the most important developments, not
only for engineers, has been the adoption of isoparametric elements developed by Lachat
and Watson [65]. In [105] a complete and correct formulation for three-dimensional elasto-
plastic problems has been published.

Telles and Carrer [106] were among the first to successfully implement a BEM formula-
tion in an implicit manner and presented a solution for transient problems [26] too. Bonnet
and Mukherjee [19] proposed an initial strain formulation in which the consistent tangen-
tial operator [97], delivered by many material laws used in FEM, can be used to obtain
convergence of quadratic order for the iterative solution procedure. Gao and Davies [39]
achieved the same by using a plastic multiplier. The latter approach reduces the unknowns
for the iterative solution technique but prohibits the application of arbitrary material laws
as a black box. A good overview of the method in elastostatic and plastic applications
can be found in [18]. The book of Beer et al. [12] describes many principles used in this
particular work.

The collocation method, in which the boundary integral equation (BIE) is solved at
carefully chosen points, has been used in the papers mentioned above. Generally, sys-
tem matrices are unsymmetrical in this case. The symmetric Galerkin boundary element
method (SGBEM) overcomes that by using weighted residuals as well as a hypersingular
BIE. The resulting system of equation is block skew symmetric and can be solved by iter-
ative solvers in a robust way. Maier and Polizzotto [67] applied this to static; Frangi and
Maier [36] to transient elasto-plastic problems.

A major drawback of treating elasto-plastic problems by the BEM is the need for a
domain discretization in order to deal with the inhomogeneous and nonlinear part of the
domain. Although the domain triangulation is only used to carry out integrals and there-
fore does not introduce additional degrees of freedom, the computational effort for the
originating system matrices is remarkable, hence allowing only small regions of plasticity.
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Moreover, the boundary only nature of the method is lost. Much effort has been given
in recent years to avoid the usage of such domain cells for inhomogeneous or nonlinear
problems. An overview of methods for volume integration is given in [58]. One possible
approach for the calculation of such Newton or volume potentials is to use particular solu-
tions derived by means of the FEM [99] or by globally defined interpolation functions as
by the dual reciprocity method (DRM) initially proposed by Nardini and Brebbia [75]. The
latter has been extended to elasto-plasticity in [3]. The radial integration method (RIM) for
the elasto-plastic BEM, presented by Gao [37], uses radial basis functions to transfer the
domain integral into radial and boundary integrals. However, a comparison of the DRM to
the direct approach found in [59] recommends the direct method for accuracy. For infinite
and semi-infinite domains the RIM is not directly applicable since it requires a finite do-
main. Because of the sensitivity to the location of the interpolation points the use of radial
basis functions could lead to unstable results and to an ill-conditioned system of equations.
That’s why the direct, cell based approach has been taken in that work.

Fast Methods For large scale computing, the BEM suffers from fully populated sys-
tem matrices, which result in a quadratic complexity in terms of storage and computational
effort. To overcome this, fast summation methods for non local problems been developed
and applied successfully to the BEM. The most important ones are the fast multipole
method (FMM) [90] and H-matrices [50]. Different and in contrast to those agglomer-
ating methods are the wavelet method [16] and fast Fourier transformation (FFT) based
approaches [85]. For the latter methods, there are hardly any reports of applications to
elasticity or even elasto-plasticity. The FMM has been taken to solve elastic problems for
instance by Of et al. [78], for plastic problems by Wang and Yao [109] in two dimensions
only.

As previously mentioned, volume potentials are needed for the elasto-plastic analysis by
the BEM. The first publication on fast evaluation of Newton potentials goes back to a paper
by Ewald [35] in 1921. For elasticity and SGBEM Of et al. [79] proposed an approach to
the FMM. Fast, cell based approaches by means of FFT can be found for instance in [31]
and [60], however, for Poisson’s equation only.

Hierarchical Matrices The technique of #-matrices for multidimensional problems
originates from the panel cluster method developed by Hackbusch and Nowak [55] which
has also been applied to elastic problems [57]. Initially, truncated Taylor expansions [51]
were used to approximate system matrices until the interpolation of the kernel function was
proposed in [53] and rigorously analyzed in [47]. Unfortunately, and up to a certain level,
these schemes depend on the fundamental solution of the underlying problem. That might
be the reason why there are no reports of the application to elastic or plastic problems in the
literature. Bebendorf [6] introduced the ACA technique to find low rank representations in
the context of H-matrices, first for the Nystrom method and then for collocation BEM [10].
The algorithm uses only a few entries of the original matrix. Thus, it is a black box method
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and obviously easy to implement in existing codes. To combine the advantages of kernel
interpolation and ACA, Borm and Grasedyck [23] proposed the hybrid cross approxima-
tion (HCA) algorithm. For elastostatics ACA has been applied together with the SGBEM
in [9], for elastodynamics in [71] and [72]. In [4] nonlinear elliptic problems are treated
efficiently by H-matrices. Benedetti et al. [14] applied the approximation technique to
solve crack problems. H-matrices have been used for the evaluation of stresses at internal
points in terms of a post-processing procedure in [66]. Both papers do not consider body
forces or a nonlinear algorithm and it is not perfectly clear how the scalar based ACA is
applied to vector valued problems. The computational complexity achieved by H-matrices
is almost linear up to a logarithmic factor. To get the optimal linear complexity, hierarchi-
cal matrices with linear complexity (’Hz—matrices) have been presented in [53] and [54] as
an algebraic counterpart to FMM and applied to boundary integral operators in [25]. In [5]
an ACA based approach to construct matrix approximations with linear complexity was
introduced.

1.3 Introductory Example

This section introduces the concepts touched on in this work explained in a simple one-
dimensional example. For that purpose, the boundary value problem of an elastic bar with
axial loading is taken and solved by applying the concepts of boundary element methods.
A short introduction to one dimension elasto-plasticity is given and finally, the concept of
matrix approximation in that context is described.

Boundary Value Problem Consider a column Q = {x|0 < x < ¢}, fixed at x =0
and subject to axial loading F at x = ¢ and n(x) acting along the column as shown in

14

n(x)
> — —> — — — — — — — — —> F

N— x, u(x)
Figure 1.2: Elastic column under axial loading

Figure 1.2. The displacement u(x) is the primal variable. The problem is described by
the inhomogeneous, ordinary second order differential equation and the given boundary

conditions
—E(x)A(x)u"(x) =n(x) VxeQ=/{0,...,0}

u(0) =0 (1.1)
N() =F
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with Young’s modulus E(x) and the cross-section A(x). Keeping EA = E(x)A(x) constant
and by taking a linear load n(x) = ng (1 —x/1) the analytic solution for the displacement
u(x) and the strain €(x) = u’(x) reads

2
u(x) = = xq 10 x(x—— EMZ)

_F o m 1l 2
8<x)—EA+2EA€(X 2x0+ ()

The axial force N(x) = EAu’(x) and the axial stress o(x) = Eu/(x) are then directly calcu-
lated.

Now, the problem is solved by using the concepts of the BEM following the explanations
of Antes [2], Hartmann [56] and Gaul et al. [41]. As a fact, the boundary of this problem
reduces to only two points. The fundamental solutions for the displacement and the axial
force of the homogeneous part of (1.1) for a unit load at a point y are given by

0 1
|x y’ and N*(x,y):EA—u*(x,y):—sgn(x—y).

ox 2
Generally, (1.1) can be solved by multiplying a test function v and integration by parts
over the problem domain. In the BEM the test function v is the corresponding fundamental
solution. This leads to the representation of the solution

u*(x7y) 2EA

* L
)= [ - S0 Fa a3
o

at any point y € Q. By inserting the limits for x, shifting y to the boundary points and
rearranging with respect to the boundary conditions (1.3) gives

(6O @) (o 0o

The domain integral on the right hand side represents the influence of the body forces n(x).
By solving equation (1.4) all boundary values are known and can be inserted in (1.3) to
get the displacements u(y) at any point in the domain Q. The displacement field yields the
exact solution given in (1.2). The strain £(y) is calculated by taking the derivation of (1.3)
with respect to the spatial coordinate

() = IN@e" ()i + [ nx)e’(x.y)dx. (1.5
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Calculating stresses is straight forward by applying the material law 6 (x) = E€(x) to (1.5).
The derived strain fundamental solution can be written as

, 1
€ (x,y) = 5sgn(x—y).

The integrals in (1.3) and (1.5) need to be separated at point y so that the integrant is a
smooth.

Elasto-Plastic Material In the book of Simo and Hughes [96] the basic concepts of
computational plasticity are explained on a simple Coulomb friction device illustrated in
Figure 1.3. The device expands linear elastically due to a stress 6. E denotes the Young’s

E
o - MWW -0

Oy
Figure 1.3: Coulomb friction-device representing 1-D plastic behavior

Modulus as elastic constant. The change of the length is described by the total strain €.
The total strain is split into an elastic part, associated with the spring, and a plastic part
which is related to the friction element.

E=¢+¢,
For the spring-element it follows directly that
oc=Ee,=E(e—¢,).

The process in the friction element is described within a time increment Az. If the stress
exceeds the yield stress ¢ > oy the friction device starts slipping. In that case, the plastic

strain-rate is defined as
g

& =
P ot
where the over-dot () = % denotes the time derivative. To describe the behavior of the
complete Coulomb friction device one needs to introduce a yield condition such as

F(o):=|o|—0,<0 (1.6)

for perfect plasticity. All stresses ¢ fulfilling condition (1.6) are admissible stresses. In
multidimensional plasticity, the surface of these stresses is called the yield surface. 1If
F (o) < 0 the element exhibits purely elastic behavior with ¢, =0and 6 =E¢. If F(0) =0
slip occurs with a constant rate ¥ > 0 in the direction of ©. Y is called consistency parameter
or plastic multiplier. Since Y =0 for F (o) < 0, the condition yF (o) = 0 holds. These
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conditions are known as the Kuhn-Tucker conditions.

To describe the complete non-linear behavior numerically, the problem is linearized and
solved incrementally in every n-th time step At, = t,+1 —t,. From this linearization one
gets an incremental change of the strain state £. This induces a trial state of stress Gy =
o, +E&,. as an elastic predictor which needs to be checked by condition (1.6). If fulfilled,
the incremental step &, is purely elastic. If not, the trial state needs to be corrected
onto the yield surface to become admissible. This is usually done by the radial return
algorithm (RRA) and is described by the function &

On+1 :6(6n78n»én+1)- (1-7)

The function & now returns the admissible stress state 0,1 1. Hence, a plastic residuum
Gp = Otrial — On+1 18 left. The complete state after the RRA can be described by

On+1 = Otrial — Sgn(otrial)’}'/E
Enr1 =& + énJrl
Epntl =Eppn+ Sgn(ctrial)y

with the plastic stress- and strain-rates

Gp = Otrial — On+1

& = Epnt1 — Epp-
The described behavior of the Coulomb friction element is shown in Figure 1.4 for positive
tensile stress. This is the simplest form of plasticity. In practical experiments with metals
a hardening effect is observed. It is shown in Figure 1.5 that the admissible stress space
expands with increasing plastic strain €, or strain rate £,. This effect is described by the
plastic modulus K and the hardening variable &. The yield condition then changes to

flo,a):=|c|— (o0 +Ka) <0 (1.8)

for ¢ > 0. A simple definition for the hardening variable & would be

n
a:/|ép|dt.
0

Taking the aforementioned modifications into account, the RRA returns

F(Gtriala an)

Opt1 =0+ 7Y with V= E+K
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Q Otrial
’1
ll' :
/ 1RRA
’ 1
’ 1
v 1
/! ¥
Gy [ e I ~ e
/! / (gn—Ha On+1

1 NI NI |
I T T |

1 NI |
r

R

Figure 1.4: Elastic- perfectly-plastic material behavior RRA

Finally, a tangential modulus

EK

H— E, Y=0 (elastic)
£ r>0 (plastic)

can be defined, with K = 0O for a perfectly plastic material law.

Elasto-Plastic Column Since plasticity is a local phenomenon, such kind of problems
are usually non-linear and not solvable directly in a closed form. Instead, the problem is
linearized and solved iteratively applying Newton’s method [81]. As mentioned in the
previous paragraph, &, > 0 introduces unbalanced internal forces in the linearized trial
step. These forces need to be re-applied to the initial problem in terms of body forces,
initial strains or initial stresses since (1.4) holds for elastic material behavior only.

For the bar in Figure 1.2, consider an elasto-plastic material law with isotropic hardening
shown in Figure 1.5. The problem domain € is now discretized by finite cell elements as
shown in Figure 1.6. One cell describes a Coulomb friction device. Additionally, the body
forces n(x) are interpolated

n(x) ~ ;n(xj)%‘(X)

J
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1% Otrial
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Figure 1.5: Elastic-plastic material behavior with strain hardening effect and RRA

along the bar. The interpolation-functions @;(x) are chosen to be piecewise constant

(-1
(Pj(X):{l v Sx<

2|l

0 else

along the cells. After solving (1.4) the strain and stress for every finite cell is calculated

Figure 1.6: Cell-discretization of the elastic column

by (1.5). Now the stress in the element is checked against the yield criterion (1.8). If
the condition is fulfilled for all cells, the load results in a purely elastic reaction. Cells
where the condition doesn’t hold are subject to plastic strain. The initial plastic strains &,
or the corresponding initial stresses &, need to be applied as artificial body forces in the
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following step. This is done by adding a domain-term
L
---+/Gp(x)8*(x,y) dx
0
to the right hand side of (1.3) and

Y4
...+/Gp(x)£*/(x,y)dx,
0

to (1.5). The procedure shown in Algorithm 1 is repeated until the residual stresses 6, are

Z€10.

Algorithm 1 Algorithm for the numeric solution of the elasto-plastic column

1: procedure SOLVE ELASTO-PLASTIC COLUMN
2: compute elastic column

3 for all internal cells do
4 determine initial elastic stress O;,;q/.0
5 RRA(G}ja1,0,A&) — valid stress oy
6: calculate residual stress o),
7 end for
8 while norm of residual ||&,|| > €5 do
9: update incremental unknown boundary values i and N
10: for all internal cells do
11: calculate trial stress Oy g1 »
12: RRA(Gtrial,naAgn) — Op+1
13: calculate 6,
14: end for
15: end while
16: determine final boundary values and stress state

17: end procedure

Matrix Approximation The internal point evaluation of stresses 6, resulting for every

cell-midpoint of the discretized column can be written in matrix-vector notation

6 =b+Es, EcRVN

(1.9
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where b represents the linear, purely elastic part of the solution. The second term involves
the residual plastic stresses. The coefficients of E are

Eli.j] = [ &)@y (1.10)
Q;

The indices i and j indicate the point of evaluation and cell to be integrated. Since £*' is
a globally defined function, the matrix E is fully populated. Therefore the matrix-vector
product needs O(N?) operations. The required storage scales with O(N?) as well. That
means if the number of cells is doubled, the computational effort increases by the factor
22 = 4. That could become unacceptable for a high amount of cells. To overcome this,
fast summation methods have been introduced, which provides linear O(N) or near linear
O(Nlog*N) complexity instead. It is important to note that for i = j the function to be
integrated is not smooth and the integral needs to be treated separately. To achieve the
reduced complexity, the main objective is to find a data sparse representation of the system
matrix. At this point low rank matrices (R -matrices) are introduced [52]. A Rj-matrix
can be represented by the factorization

R, =A-B” AcR™ BecR>,

Here, k denotes the rank of Ry, r and ¢ the rows and columns respectively. The rank
of a matrix is determined by the number of linear independent columns or rows. If k <
min{r,c} the storage St = k(r+ c¢) can be significantly smaller than for full matrices where
Str = rc. The computational complexity for a matrix-vector product Op = O(2k(r +¢))
instead of Opyp = O(rc) for the full representation.

In this example one would like to approximate the full system matrix E by a R;-matrix
in such a way that a certain accuracy ||E — R¢|| < ¢y measured in a matrix norm could
be reached. Investigating the matrix-entries (1.10), this could eventually be achieved by
separation of the variables x and y. A separation is only possible if x # y. This motivates
a clustering of the whole matrix with respect to its geometry. In that special example this
also corresponds to a clustering with respect to the indices. First, the discretized column
is divided into two parts holding the index sets I} = {1,...,N/2— 1} and I, = {N/2,...,N}.
In relation to that, the system matrix E is divided into 4 block-matrices as depicted in Fig-
ure 1.7. Now, the blocks E;; represent matrix entries for the index sets /; x I;. Clearly, the
off-diagonal matrix blocks E{, and E;| are candidates for a data-sparse representation by
separation of variables, while the diagonal matrix-blocks are not. To generate more admis-
sible matrix-blocks, the same concept is applied to the sub-matrices E{; and E;;. Again,
resulting in a block-wise representation. This approach could be repeated recursively up
to a certain level. Matrices of this form are called 7 -matrices [52].

In the following section we consider the matrix block Ej; as an approximation in the
Ry-matrix format. The observation points x; lie in the interval [0,¢/2] and the correlated
cells in [¢/2,£]. The idea is to introduce a degenerated kernel which allows the treatment
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Ey | Ex

Figure 1.7: Different levels of clustering for the system matrix E

of x and y separately. This can be achieved by means of truncated Taylor-expansion or, in
that case, by polynomial interpolation

" (xy)~ ), ¥ Lv(x)e"™ (B, %)Ly (). (1.11)
v=1u=1
using Lagrange polynomials
k

Lx)= T] X (1.12)

u=0,uzv v~ Xu

where all X denote the support points to be chosen. For the matrix entries of E{, this leads
to the matrix-form

E,=V-S-W’ Ve Rk S e Rk W e RO

with the entries

Vi, v] = Ly (x) ie{l,...,N/2}

Siv,u] = & (%y,¥u) v,ue{l,... k}

Wijit) = [Lu0)@;0)dy € (N/2+1,....N)
Q.

J

Evaluations of the original kernel £*' are only carried out for S at the supports points &
and y of the interpolation polynomials Ly and Ly,. The /%;-matrix representation is easily
calculated by A = V and B = SW’. The error of that approximation is specified by the
order of interpolation, more specifically the rank k of E5.

Remark: Since in case of this example, the integral kernel ¢ (x,y) = €*/(x,y) is constant
for the admissible matrix blocks, a constant interpolation using one support point per index
set is exact. Usually, the kernels are of no polynomial type and involve singularities like
In |x — y| or |x — y|~¢ and no exact representation with interpolants is possible.

The described procedure is repeated for every admissible sub-matrix in Figure 1.7. The
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entries of inadmissible blocks, in that example the matrix diagonal, are evaluated by direct
integration of (1.10). With the H-matrix at hand, the numerical solution of the described
procedure is carried out with almost linear complexity with respect to the size of the prob-
lem.

1.4 Outline

The outline for the remainder of the thesis at hand is as follows. Chapter 2 introduces the
model problem and gives an introduction to the solution by means of boundary integral
equations.

For the approximative numerical solution of such integral equations a BEM formulation
for linear elastostatics and the extension to nonlinear elasto-plastic analysis is described in
chapter 3. Generally, three-dimensional problems are treated but the theory is presented in
two for sake of simplicity.

In chapter 4, the basic concepts of matrix approximation by means of Rj-matrices are
introduced. The format of H-matrices, their generation and some operations is presented.
Since this work aims for practical applications of H-matrices to known BEM techniques,
chapter 5 is dedicated to the fast solution of elastostatic and alasto-plastic systems of equa-
tions as well as details and special techniques used for the implementation into a program
code.

Chapter 6 1s devoted to numerical results. Some benchmark examples are shown to vali-
date the implementation. Furthermore, several real word examples give an idea of the per-
formance of the implemented alorithm. Parameter studies related to the H-matrix structure
and the quality of far-field approximations are given.

Finally, chapter 7 recapitulates the work at hand. Drawbacks and weaknesses are pointed
out and an outlook for possible further developments is given.



2 Boundary Integral Equations

This chapter is dedicated to linear elasticity and the representation by means of BIEs. In
that context, all necessary operators are introduced which allow a compact notation of
the mathematical statements. The explanations are extended to nonlinearities induced by
elasto-plastic behavior of the material. Many textbooks on BIEs and boundary element
methods for different fields of application have been written. Therefore, the explanations
in this work are kept quite short and mainly introduce the used notation. L.e. the books of
Beer et al. [12], Gaul et al. [41] and Telles [104] give a good introduction to the method
for engineers and present some special applications. A mathematical point of view provide
Steinbach [101], Sauter and Schwab [95] as well as Bonnet [17]. From the latter books,
the operator notation is taken and introduced in the following.

2.1 Elastic Continuum

The deformations of the material to be considered are assumed to be small enough such
that all resulting equations are linear. In this case, a Cartesian coordinate system spanned
by the orthonormal unit vectors (ey,...,e;) with d being the spatial dimension is sufficient
and only the reference position & € R? of a material-point is needed in order to describe
all necessary relations. The domain is solid, isotropic and linearly elastic. Therefore, the
kinematic relation between the Cauchy strain tensor € and the displacement u is

Bu(z) = e(x) = 5 (Vu(®))T + Vu(z))

1
2
with B defining the strain operator. The constitutive relationship between stress ¢ and
strain follows Hooke’s law defining the stress operator S

Su(x)=0o(x)=C(A,u): e(x) (2.1)

with C denoting the fourth order stiffness tensor. From a physical point of view the Lamé
constants A and u can be replaced by the more meaningful Young’s modulus E and Pois-

son’s ratio v
A E-v J E
= an = —
1—2v)(1+v) =30+
with u > 0 and A > —2u/3 respectively. u is also known as shear modulus G. Note that
the tensors € = €T, 0 = 0T and C are symmetric. Moreover, C is considered to be constant
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and independent of . With the equations of equilibrium
V.o(x)+ f(x)=0 (2.2)
the partial differential equation (PDE) for linear elastostatics in terms of displacements
Lu(x)=—A+2u)V-Vu(x)—uV x(Vxu(x)) = f(x) (2.3)

with body forces f is formulated. £ denotes the Lamé-Navier operator. For two-dimensional
problems, two different basic assumptions can be made. For plane strain the displacements
in the x3-direction are not considered in the above equations or operators. The stress com-
ponent 033 # 0 exists, albeit all other components containing the index 3 are zero. In
case of plane stress problems, the stress-state is considered to be two-dimensional. Hence
0;3 = 03; = 0.

Boundary Value Problem Let us consider a Lipschitz domain Q € R? and its bound-
ary I' = dQ, subject to prescribed boundary conditions. The part of I" over which dis-
placement u(y) is given is the Dirichlet boundary I'p. On the Neumann boundary I'y the
surface tractions #(y) are given and are related to the stresses by the unit outward normal
vector n. The boundary values u and ¢ are called Cauchy data. In the following discussion
the boundary trace

Tru(x) =limu(x) =u(y) z€Q,yel

X—y

and the conormal derivative or traction operator

Tu(x) = liin oclx)n(y)=t(y) z€Q,yel
x—y
are introduced [19, 101]. 7T involves surface derivatives and the relationship between
stresses and strains. The operator is represented by

Tu(z) =AV-u(y)n(y)+2uVu(y) -n(y) +un(y) x (V xu(y)) (2.4)

and maps displacements to surface tractions. The boundary splits into a Neumann and a
Dirichlet part such thatI' =I'y UI'p and I'y N I'p = 0. Thus, the following problem is well
posed. Let Q, C Q be a part of the domain which is subjected to body forces f. A typical
domain is shown in Figure 2.1. This leads to the following inhomogeneous boundary value
problem: Find a displacement field u(x) so that

o

=

8
I

flz) VxeQ,VzeQ,
y) VyeTly (2.5)
y) Vyelp.

=
<
~—
I
oQ
>
—~
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I'p

Figure 2.1: Fixed elastic body subject to external and body force loading

Here, gy is the prescribed Neumann data in terms of surface tractions and gp represents
the prescribed Dirichlet data in terms of displacements. For application to problems in
underground construction, infinite or semi-infinite domains are considered as depicted in
Figure 2.2. During the construction of deep tunnels or caverns the surface settlements are
negligible, and therefore an infinite region is analyzed. For all other types of tunneling
the settlements are of interest and the influence on buildings can be evaluated by taking a
semi-infinite region. Since there is usually no prescribed displacement on such surfaces,
the boundary condition

u(y) =ug Vy € I'p = dBg
y)=2gn(y) Vyeln

~
—~

needs to be solved. The Dirichlet boundary lies on the surface dBg of a sphere Bg with
radius R — oo tending to infinity. In practical examples ug usually equals zero. It will
be seen later that for the BEM such problems are treated on I'y only, thus as an exterior
Neumann problem.
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Figure 2.2: Semi-infinite (a) and infinite (b) exterior domains

2.2 Linear Elastic Problems

Boundary Integrals For linear elasticity, the boundary value problem can be solved
by means of boundary integrals. The starting point is the weak form

/(V-G(az))-v(m)dm+/f(z)-v(z)dz:O 2.6)
QP

of equation (2.3). Using the divergence theorem

/Vc da:—/TrG y)dsy V&eQ

with y € I" and the identity for the divergence of

V-(ocT(x) -v(x)) =0(x): Vv(x)+ Vo(x) v(x), 2.7
Green’s first identity for the linear elastic problem
/Vo(:c) )z = /TrG (y)dsy — /G(m) V@) dz  (28)
Q Q

is obtained. Since the Lamé operator L relates the displacement field # with Vo and T
maps u to surface tractions ¢ € I', identity (2.8) could be written in a more compact way

/ﬁu(w /Tu y)dsy —a(u,v)
Q
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with

a(u,v) = / Gu(@) : £, (x)dQ
Q

being a bilinear form. Since o, is symmetric, the gradient of the test function Vv in (2.8)
equals the symmetric €,. The introduced subscripts denote the field the quantities are
related to. Usually, above equation is the starting point for the FEM. For the BEM formu-
lation the next steps are crucial: the above described procedure is repeated exchanging u
and v. Using the reciprocal work principle [41] as a generalization of Betti’s reciprocity
theorem [12], the bilinear form is realized to be symmetric a(u,v) = a(v,u). With Lu = f
equation (2.9) is derived.

/u(m)ﬁv(az)daz:/ (y)Tv(x)dsy — /Tu dsy+/f z)dz (2.9)

Q r Q,

Considering for the moment that there are no body forces f = 0, the next step is to get rid
of the last remaining domain-integral. This is done by finding a function ™ which satisfies

Lu*(z,y) = 6(y—x)

with the Dirac-delta 6 and its properties

5(x):{+c>c> x=0 and u(X) /5x X)u

0 else

u* is called a fundamental solution of the underlying problem. In case of elasto-static prob-
lems this is Kelvin’s fundamental solution u*(x,y) = U(x,y) for displacements [12, 41],
which is symmetric. It represents the displacements at a point & induced by a unit point
force in point y of an unbounded domain. Actually, the fundamental solution does not
directly depend on the variables @ and y but on their distance | — y| and is therefore
translationally invariant. Finally, the test function v in (2.9) is chosen to be U(x,y). Eval-
uating the traction fundamental solution by

T(z,y) = TyU(z,y) (2.10)

results in the representation formula or Somigliana’s identity for the displacement of a
point x € Q

:/U(a:,y)t(y)dsy—/T(:I;,y)u(y)dsy—l—/U(a:,z)f(z)dz Vyel,zeQ,
r

Q)

(2.11)
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expressed by boundary integrals and a domain integral for the contribution of body forces.
It is common for all fundamental solutions used in this work to have a singularity of order

O(lk) or (’)(lnl> with r= |z —y| (2.12)
r r

when the distance r between « and y goes to zero. For boundary integrals in three dimen-
sions a kernel with k = 1 is called weakly-, strongly- with k = 2 and hyper-singular with
k = 3. In two dimensions the weakly singular term is Inr, the strongly singular yields k =1
and the hyper singular kernel k = 2.

Unbounded Domains One of the major advantages of the BEM is the analysis of infi-
nite and semi-infinite (exterior) domains. This is because of the peculiar characteristics of
the fundamental solutions in context of the integral equation. They fulfill the Sommerfeld
radiation condition [32]. As shown in Figure 2.2, an artificial circular or spherical bound-
ary dBg with radius R is considered to enclose I" and the region with body forces €,,. The
representation formula can be written as

u(:z:):/U(cc,y)t(y)dsy—/T(w,y)u(y)dsy+/U(:c,z)f(z)dz
T QI’

r
+/U(fv,y)t(y)dsy—/T(‘”’y)”(y)dsy
dBRr 0Bg

(2.13)

Because of the above mentioned singular behavior, it can be seen that the last two integrals

R—o0
0BR dBg

lim [ U piw)ds,— [ T(@yu)ds, | =0 (2.14)

vanish and the representation formula (2.11) is valid for exterior problems too.

Boundary Integral Operators The representation formula (2.11) and therefore the
displacements u € Q can be evaluated if the full Cauchy data u and ¢ on the boundary
y € I is given. Initially this is not the case and a solution of the underlying problem is
not possible in this form. To achieve this, the point x gets shifted to the boundary by the
limiting process > Q — x € I'. This is understood as application of the boundary trace
operator Tr to the whole formula [101] and yields the BIE of first order

u(x) :Tr/U(a:,y)t(y)dsy—Tr/T(w,y)u(y)dsy+Tr/U(w,z)f(z)dz xel.
r r Q,
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Remark: To achieve a symmetric formulation, the trace operator Tr and the traction oper-
ator 7 are applied to (2.11). With the boundary integral equation of second order and with
the concept of weighted residuals [41], a skew symmetric formulation can be formulated.
For further insight and the application of the SGBEM the reader is referred to [102] and
[95, 101].

Because of the singular fundamental solutions, the mentioned limiting process has to be
done carefully. Again, the author would like to refer to the textbooks [95, 101] for detailed
analysis of that process and to [12] and the references therein for the practical treatment of
the singular integrals. For convenience, boundary integral operators are introduced [95].
The single layer operator

Vt)(x) = /U(w,y)t(y)dsy Ve,yel
r

is weakly singular and causes no implications with the trace operation. More challenging
is the derivation of the double layer operator

(Ru) () :/T(w,y)u(y)dsy Va,y €T\ Be(w).
I

The integral only exists as a Cauchy principal value, where the radius € of a sphere Be
around x is treated in a limiting process € — 0. The remainder of that process is an
integral free term which is

Cu(x)=cu(x) Vel (2.15)

with ¢ = 1/2 for smooth surfaces. For non-smooth surfaces the value of ¢ depends on the
angle of the kink at  and on Poisson’s ratio v in elasticity [69]. For sake of simplicity we
substitute

(Ku)(x) = CZu(x) + Ku(x) VYxcT

with Z being the identity. Finally, with the Newton operator

(Nf) () :/U(zc,z)f(z)dz Ve eT\Vz € Q
Q

taking the body forces f into account, the boundary integral equation yields

(Ku)(z) = (Vi)(x) + (N f)(). (2.16)

A comprehensive and detailed analysis of the properties of these operators can be found in
[95] or [101] among other, rather mathematical, textbooks.
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Strains and Stresses For many engineering problems, interior point evaluations are
of interest. Displacements are directly calculated with the representation formula (2.11).
Moreover, for the elasto-plastic analysis described in section 2.3 stresses are significant. It
is now assumed that all evaluations are carried out at points & € Q inside the domain.

The expression for the strain evaluation stems from the utilization of the strain operator
B to the representation formula (2.11). The resulting operators are marked by the prime
symbol (). Since the original integral-kernels are smooth for & # y, the differentiation
and the integration is interchanged and the following integral operators

(Vin)(@) = [ BU@,y)(y)ds, Vyer
r

and

(Kut)(@) = [ BT(@y)u(y)ds, VyeT
r

are defined. Here, the derivatives implied by B are carried out with respect to &. If |Z —
y| — 0, the volume operator [27]

(NF) () :j[BU(m,z)f(z)dszf(z) VzeQ
Q

is strongly singular and exists only as a Cauchy principal value. The necessary limiting
process is symbolically denoted by the integral symbol §. Again, C is an integral free term
depending on Poisson’s ration v only. Using this notation, Somigliana’s identity for strain
is written as

e(&) = (Vi) (&) — (Keu) (&) + (NLf)(E) VE € Q. (2.17)

Multiplying (2.17) with C or, in other words, applying the stress operator S to (2.11) yields
the formula for the evaluation of internal stress

o (&) = (Vo) (&) — (Kbu) (&) + (N5f)(3) V& € Q. (2.18)

The subscripts ¢ and € stand for stresses or strains in question.

The evaluation of stresses of points > & — x € I need special treatment since, Tr
is applied. Due to the aforementioned application of B, the singularity-order k of the
integral kernels has been increased. Thus, the kernel of X’ is hyper-singular. Moreover,
the strain and stress field can be discontinuous, i.e at corners and edges. The mentioned
integral operator in the BIE of the second kind exists as a Hadamard finite part [95], whose
evaluation is possible with different approaches. Furthermore, formulations which involve
only strongly singular integral kernels by shifting derivatives to the displacement field
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exist [17]. A short, but not complete comparison of different approaches working out
hypersingular integrals for the stress evaluation on the boundary can be found in [111].
To overcome the rather cumbersome treatment with this problem, a simple stress recovery
procedure based on derivatives of surface displacements u and the direct use of surface
tractions ¢ can be used carefully [12].

As seen in this section, it is possible with boundary integral equations to deal with
homogeneous boundary value problems with f = 0 in an elegant way. If the considered
domain is subject to body forces f # 0, an inhomogeneous boundary value problem needs
to be worked out. In special cases, i.e. if f is a harmonic or constant function, it is possible
to convert the domain integrals into boundary integrals [17]. If the domain Q, subject
to body forces is limited and f possibly non-smooth as well, one needs to find particular
solutions to do so. This can be achieved with finite elements [99] or with globally defined
interpolation functions such as radial basis functions. In relation the DRM has been a
topic of many publications (see [83] and references therein). The RIM follows a similar
approach. Unfortunately, both methods are not directly applicable to infinite or semi-
infinite domain problems.

2.3 Elasto-Plastic Problems

The basic concept of small strain plasticity has been introduced in section 1.3. The remain-
der of this chapter is devoted to going through the noteworthy points for two and three-
dimensional problems while keeping the notation consistent. As noted in section 1.2, there
are many different approaches with the BEM treating elasto-plastic problems. Most of
them rely on internal point evaluations as described in section 2.2 and the corresponding
incorporation of the “plastic term” in the integral equations by body force terms. In this
work, a direct method with integration over the plastic region is employed.

Due to the nonlinearity, a solution for arbitrary domains is not possible in closed form.
Therefore, the problem is solved incrementally in terms of linearized pseudo-time steps n €
{0,...,N} with i = 1,1 | — 1, as described for the one-dimensional problem in section 1.3.
Here, the over-dot (') denotes the derivative with respect to pseudo-time, therefore the
difference of a quantity between the steps n and n+ 1 is called rate. The rate of plastic
strain is usually discontinuous at the boundary of the plastic, inhomogeneous domain.
Here, the domain subject to plasticity is considered to be ,, C Q. The elastic relationship
between incremental strains and stresses (2.1) only holds for the linear elastic case. Thus,
the strain rate is composed of an elastic and plastic part £ = &, + &,. As a result, the stress
increment is expressed in terms of elastic and plastic contributions

6(x)=C(A,u): (é(x)—&y(x)) = 6.(x) — Gp(x). (2.19)

The relations

C(A, ) : é(z)

S
&
I
2
8
+
=
&
I

6p(x) = C(A, 1) : €p() (2.20)
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are considered using Betti’s reciprocity theorem (2.9), which gives an additional integral
over £, in the representation formula (2.11). This yields to the incremental form

:/U(:I:,y)t'(y)dsy—/T(w,y)u(y)dsy+/E(w,z)dp(z)dz reQ zeQ,
QP
2.21)

with the initial plastic stresses 6, and the fundamental solution for strain E(x,y) = BU(x, y).
To improve legibility, the body forces f are neglected from now on. However, f # 0 can
be easily considered by the formulation derived in the following. Also, initial stains €,
(2.21) could be used instead by taking

_ /U(m,y)i(y)dF—/T(m,y)u(y)df+/S(m,z)ép(z)dQ zeQ,zeQ,
QP

with S(x,y) = SU(x,y). Now the Newton operators

(Ngo)(x /Eccz z)dz Ve el

/S:cz z)dz VYxel

and the corresponding volume operators for the strain and stress evaluation

(Neo)(z) =BNo)(z) VrxeQ,
(No)(x) =SNo)(x) VreQ,

are defined. By setting NV = N for better readability it follows the incremental BIE with
initial stress

(Ki)(z) = (Vi)(z) + (N6,)(x) VoeT (2.22)
and the formula for the incremental internal strains
£(&) = (Vi)(@) — (K (&) + (M6,)(&@) V& € O (2.23)
and stresses
5(&) = (Voi) (&) — (KChi) (&) + (NL6,) () Vi € Q. (2.24)

The equations for initial strains can be derived in a similar way.
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Linearization In the following paragraph, the solution strategy for the non-linear sys-
tem of equations is described. Due to the history dependencies the given Cauchy data

S S
8= ng = Z ;8
s=0 s=0

can be subdivided into load steps s such that they are weighted by a factor w,. As a result
the problem is linearized and the field quantities are accumulated after every load step.
Exemplarily, we consider an exterior Neumann problem I' = I'y (2.13) with a domain
subject to plastic behavior €,. Figure 2.3 shows a sketch of such a problem in tunneling.

Figure 2.3: Exterior Neumann problem with a potentially plastic region Q,, for a tunnel
excavation

For excavation, the given Neumann data gy are derived from the known virgin stress state
0p and the unit outward normal to the boundary. With the unknown displacements on the
left hand side and the given tractions on the right, the boundary integral equation is

(Ki)(z) = (Ven)(x) + (N6,)(z) Ve €Ty. (2.25)

The subscript denoting the load steps are omitted with gy := gy and u := u,. Since K
is invertible for exterior problems [95], the uniquely solvable boundary integral equation
(2.25) is reformulated in a way such that the unknowns u are inserted in the incremental
form of (2.18) resulting in

6(Z) = (Voin)(x) — Ko (K™'Vgn) (@) + (KT'NG,)(E)) + (NVG6,)(Z).  (2.26)
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Separating boundary and domain terms and with the substitutions

bo = (Vs —KzK V) gy and
WG - K_1N+Né

equation (2.26) yields to .

6(&) = bo(@) + (Wao)) (&) (2.27)
for the stress rate in & € ). At this point the spatial variables x,  and z are omitted. For
equilibrium (2.27) needs to be fulfilled. The nonlinearity is induced by the RRA which

maps from an possibly inadmissible trial state to an admissible state on the yield surface
between steps n and n+ 1. This mapping is expressed in terms of the function

G(Gmgn»en»hn) = (O-n+17hn+1) . (228)

Here, h denotes the set of parameters needed for the RRA, i.e. hardening and history
parameters as well as the Lamé constants u and A. The values 6, €,,&,,h, at step n are
known. With the relations (2.20) and &, denoting the elastic trial state, the residual plastic
stress is 6, = 6, — ¢ where & is determined by (2.28). Using these relations, a residuum

R(6,) :=Ws (6 —6,) —bs+6 (2.29)

is specified [17, 106]. Now, equilibrium is found iteratively by updating the elastic trial
stress until R(&,) = 0. This is done using Newton’s method

R(6.) +DR(6,)AG, =0 (2.30)

where the differential operator D contains the partial derivative of the components of &
and results to the Jacobi-matrix J;(6,) = DR(6,) with

IR(5,),

Ji(de)[r7 C] = a(de)c

and the Newton iteration step i. In this work, the solution is sought using a (simplified)
modified Newton’s method [81] with a constant, non-updated Jy. Since the original method
for problems of this type exhibits quadratic convergence, the modified version is less pow-
erful. Nevertheless, the modified method converges to the right solution in that case.

To address the convergence rate, enhanced solution procedures have been published. L.e.
equation (2.27) is the foundation for implicit solution procedures as explained in [106]. In
[3] and [39] a better convergence is reached solving for the plastic multiplier (see sec-
tion 1.3). However, this implies a incorporation of the yield criterion into the algorithm.
This is not acceptable for the intended application of this work. Finally, the approach of
Bonnet and Mukherjee [19] which incorporates the consistant tangential operator (CTO)
provided by many yield criteria, can be applied at this place with the following implica-
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tions. As a result, optimal quadratic complexity can be achieved. Therefore, (2.29) is
rewritten to provide residual strains

R(£) := We (6(0n, &n, &n,hn) — 0 — C(U,A) 1 €) —be + & (2.31)
using the relations (2.20) and the substitutions
6 =0,4+1—0, and Oy = 6(0n, &, &, hy). (2.32)
By applying D to equation (2.31), J(&) becomes
(&) = We (Copt — C(1,A)) +T (2.33)

with the local CTO 25/ . )
o GFH 8"7 8117 n
Chy1 = . 2.34
Merging the continuously updated equations (2.33) and (2.30) together, the additive cor-
rection A€ is calculated with

—J(&)Aé =R(¢) (2.35)

until equilibrium R(&¢) = 0 is reached. It is remarkable that for this approach a rate-
formulation is not necessary any more since the iterative process is carried out within
(2.35). As seen in (2.31) and (2.34), the RRA can be used as a black box providing valid
strain-stress states and the CTO. Hence, this formulation works with many different mate-
rial models without any modification.



3 Boundary Element Method

The only impreciseness introduced so far is based on the underlying model description of
the PDE, which may be wrong, i.e. for materials subject to large deformations, and the
linearization of the nonlinear system of equations for problems in plasticity. It is clear
that the integral equations presented in chapter 2 are not analytically solvable for arbitrary
domains. Hence, the geometry as well as the field values are subject to approximations.
Therefore, the boundary of the domain is subdivided into boundary elements. They give
rise to the name of the numerical method described in this chapter: the boundary element
method. At this point, the discretization of the underlying equations is introduced as well
as the strategy for the solution of mixed boundary value problem in elasticity and elasto-
plasticity.

3.1 Discretization

The parametrization of the boundary I" as well as the zone subject to body forces Q,, is
based on a mesh. This is a geometrical partition of the treated boundary or domain. Even
though methods exist with mesh refinement based on estimated approximation errors, the
mesh is kept constant during the analysis in the present work.

Spatial Discretization The approximations I';, and Q,, 5 of boundary and region with
body forces are given by triangulation creating disjoint sets of boundary elements T and
finite cell elements @

E C
F'~Iy=[J% and Q~Q,=]®a..

e=1 c=1

Each element is occupied by two or more, globally defined nodes p; € R?. The set of /
corresponding global node numbers P, = {py,...,p;,...pr} is called element incidences
where the subscript i denotes the corresponding local node number of element e. Since
the boundary elements are two-dimensional surface patches in three dimensions or line
patches in two, the function

X1y 8at) iR R (3.1)

is a coordinate transformation mapping local coordinates &; of the reference element 7 =
(—1,1)4! to the global coordinates of T = (a,b)¢"!. In the following, & stands for all
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intrinsic local element coordinates. The simplest element shape in three dimensions is a
triangle and is considered to be completely flat. Hence, the outward normal n is constant
all over the element and A’; is linear. A four-point quadrilateral element is described by a
bilinear X; and is flat along the edges but can have curved diagonals. For quadratic descrip-
tion of the geometry in three dimensions, six-node triangular or eight-node quadrilateral
elements are used. In two dimensions the linear and quadratic description is provided by a
two- or three-node line elements respectively.
For the domain discretization with finite cell elements, the mapping function

X@(él,...,gd)ZRdHRd

is used. Generally, the geometry and therefore any point  on elements T or @ are de-
scribed by

1
x=X(&) =) @&)pi (3.2)
i=1

with the shape functions ¢; depending on the local coordinates £. In the context of the
BEM, cells are only used for integration over a volume. Hence, points of cells @ touching
the boundary do not necessarily need to coincide with points of elements 7 for the bound-
ary approximation. The concept of boundary approximation can be found in [41] and other
related textbooks. Details on the straight forward domain discretization in context with the
BEM are pointed out in [12].

Field Variables Still to be completed is the approximation of the Cauchy data or other
field values on the reference elements % and @ in terms of the local coordinates £. With
(3.1) in hand, every function on in the parameter space of £ and @ can be transformed
to the Cartesian coordinate system. For the approximation of displacements and tractions
the idea of Riiberg and Schanz [93] is adopted. Subsequently, the displacements u are
approximated by locally and piecewise defined C°-continuous trial functions

M
w (€)=Y ¢(&ui(&) @eS, (3.3)
i=1

for M support points &; and @;(&;) = 1. The space of continuous and discontinuous trial
functions on the discretized boundary is denoted by

Su(T) = span{@}E, and S, () = span { e},

For the surface tractions ¢ trial functions ¥ need to have a continuity of class C~! since
¢t can have jumps across element-corners and edges or at points where known values are
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discontinuous. Independent of the displacement discretization

N
t(&) =Y wi(ot(&) ves,. (3.4)
i=1

To evaluate displacements or surface tractions in Cartesian coordinates, the only thing left
to do is use (3.2), which results in u,(z) = u.(X(£)) and t.(x) = t.(X(£)). The same
concept is applied to the other field variables f, € and 0, i.e.

L

o.(€) =Y 6:/(&)oi(&), 3.5)

i=1

again with trial functions in §;, and S, chosen with respect to the type of data. If the trial
functions for the geometry and the field values are chosen to be the same, the elements are
called isoparametric [65].

Remark: In the implementation used for this work, the user can choose to have an isopara-
metric ansatz. However, for mixed boundary conditions or Dirichlet problems this will
distract the application of the fast solution technique described in chapter 4. Additionally
and with no restriction, the interpolation of all field values can be discontinuous. This is
possible even for displacements.

Infinite Elements As mentioned in section 2.1 the representation of an infinite or semi-
infinite domain is crucial for problems in tunneling or geotechnics. Infinite domains are
covered by the radiation condition (2.14) and are inherent in the formulation. For the mod-
eling of earth’s surface or a tunnel of infinite extent as well as the description of a fault
zone, infinite elements with nodes pointing to infinity and suitable decay functions can
be used. For tunnels, the displacements and tractions are constant towards infinity. For
half-spaces the displacements decay with O(R~') and the tractions with O(R2). Origi-
nating from the work of Bettess [15] for the FEM, Beer and Watson [11] developed infinite
elements for the BEM solving semi-infinite problems in tunneling and geomechanics. El-
ements based on that as well as on [74] have been used in this work. Similar and yet
improved techniques are found in [29] and [38]. Alternatively, Telles and Brebbia [107]
formulated a fundamental solution for traction free half-space problems without the need
of elements on the surface. However, since the simulation of structures and buildings
should be possible, elements on the surface are needed anyway for a coupled formulation.

3.2 System of Equations

The triangulation allows the approximation of any boundary or volume integral containing
an arbitrary kernel ®(x,y) and field variable b by a finite sum of integrals over boundary
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elements

E
[o@pp@ds,~ Y. [e@ybw)ds, g wel, G
r e=1 3

or cell elements
c
/Cb(a:,i)b(z)dz ~ Z /CD(:c,z)b(z)dz VZeQ, Vz2e€Q,, (3.7)
O c=1

Since only the first BIE is used, a collocation scheme is applied for the discretization of
(2.16). This means that the residual of the approximation is minimized pointwise [41].
In order to solve a system of equations, as many collocation points x € ', as unknowns
are needed. This is determined by the mesh size and supports of trial functions ¢ and
v for the unknown Cauchy data. Hence, the sums in (3.6) and (3.7) can be expressed in
terms of a matrix-vector product. For the evaluation of internal results & € Q,, , relate to
strain or stress points depending on the value to be calculated. On account of the elasto-
plastic problem, only stresses need to be determined at internal points from now on. The
procedure for the evaluation of internal displacements and strains is easily derived in the
following statements.

Block System of Matrices As described in section 2.1 the discrete boundary is split
into a Dirichlet and a Neumann part I', = I'y , UI'py. On 'y, the collocation points
are chosen to be at the support points of the displacement trial functions ¢. In case of
interpolation with trial functions in §j, these points coincide at least with edge nodes of
the geometry description. On I'p j, the collocation points are located inside the elements
on the corresponding support points of trial functions in §, . This prevents redundancies
and a rank deficient system of equations. The body forces, e.g. initial strains and stresses
inside the domain are usually chosen to be discontinuous. Thus, the corresponding points
are inside the cells and located at the support points of 6. In Figure 3.1, an example for
linear displacement, constant tractions and constant stresses is given. Squared points mark
the collocation and stress points; circular nodes represent geometry nodes. With respect to
the location of the collocation points the known Cauchy data and body forces are moved
to the right hand side of the equation. Putting the unknown Cauchy data to the left hand
side, the discretization of (2.16) leads to the block system of equations

<VDD _KDN) <tD) _ <KDD —VDN) <gD) n <NDP> o (3.8)
Vap  —Kyn /) \uy Kyvp  —Van) \8wn Nnp) 7 '
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I'p

O collocation point
O geometry point

Figure 3.1: Discretized part of a boundary and collocation points with linear ansatz for u
and constant ansatz for t and o

where the entries of sub-matrices are

Vielr,c] =V (x,) Vre{l,... . #(x, €Tgp)}
KRC[I’,C] :K(PC(mT) VCE {17"'7#(11167 (pCEFC,h)} (39)
NRC[r,m] :/\/'(pc(a:r) Vme{l,...,#(eceﬂpﬁ)}

at position (R,C) and denote the discretized single layer, double layer and Newton potential
[91]. The first subscript of a sub-matrix denotes the location of the collocation point,
and the second that of the element to be integrated over. This means Vyp is the single
layer potential for collocation points x, € I'y , and trial functions Y, € I'p j,. Therefore,
collocation points in the first equation in (3.8) are located on I'p j,, on I'y ;, in the second.
The entries of vectors for Cauchy data and the stresses are

tplc] =t(y.) Vye€lpu

gnvlcl=t(y.) Vyelyu

uyfc] =u(y:) VyeTny (3.10)
gplc]=u(y.) Vyelp,
oplml =o0,(zn) V2€Q,)

with ¢ =1, ;C, where C is the number of support points of trial functions on the correspond-
ing boundary. Because of the tensor type of the fundamental solutions, matrix entries in
(3.9) are understood to be matrix valued by itself. Entries in (3.10) are vector valued i.e.
ua(r] = [u(ye)i]L, or op[m] = [6,(2m)i]5_, With the number of pseudo stresses s.
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No distinction with respect to its location is made for points & € Q,, ,. Thus, the discrete
equation for internal stresses (2.18) reads

o=V't—Ku+Nog, (3.11)

also with discrete operators V', K’ and N’ corresponding to (2.18). The entries of sub-
matrices and vectors are defined similar to (3.9) and (3.10).

The condition number of the sub-matrices in the first row of (3.8) depends on the inter-
element location of x. It is suggested in [91] that neighboring points should be located as
far away as possible from each other and the optimal points for line elements and triangles
are given therein. In [68] and [82], surveys on discontinuous and continuous elements have
been done. In the present work the support points for discontinuous shape functions are
chosen to be element midpoints and at & = 0.8 for line elements. For quadrilaterals, the
locations result from the tensor product of that coordinates.

Evaluation of Matrix Entries Even though analytic expressions for integrals over
boundary elements 7 [89] and cells @ exist, taking Gaussian quadrature [17] for regular
integrals and special analytic procedures for singular integrals has become state of the art.
For integration resulting in entries of (3.9), the integral over 7 is transformed to an integral
over 7. For example entries of the single layer potential are calculated by means of

Vind = [Uery)wely)ds, = [V, @) w(@Ve@de 612

involving the coordinate transformation (3.2) and Gram’s determinant [95]

gz(&) = det (JT(£)J2(€)) -

The Jacobi matrix is determined by

J(&) = DX (£) where J(ﬁ)[i,j]zg—g; vi,je{l,....d—1}.

Now the integral is ready for the Gaussian quadrature

Gt
Vir,c] ~ Ztl U(wraxf(fg))llfc@g)\/ gr(&g)wy
g—

with the coordinates of integration points &, and the corresponding weights w,. The total
number of Gauss points G* = G¢~!, with respect to predefined accuracy, is determined by
an empiric integration rule [34], which yields the number of integration points G in every
local direction. The same procedure is done for all surface integrals. If G is too high, the
element to be integrated over is hierarchically subdivided into smaller elements and again
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treated by the criterion. If trial functions involved in K and K’ are in ), matrix valued
entries are collected from all neighboring elements of the support point and assembled to-
gether. For domain integrals involved in N and N/, the procedure is almost the same except
that their intrinsic dimension is equal to d. This has impact on the Gaussian quadrature
G* = G% and on Gram’s determinant.

Special care has to be taken if the collocation point x is located on the element to be
integrated over, since the involved kernels are singular when the distance r between  and
integration point y in (2.12) tends to zero. Hence, the integrant diverges to infinity. Inte-
grals of weakly singular kernels, i.e. diagonal entries of V are called improper, and their
values are finite. Thus, special techniques are necessary to tackle this problem and the
proposal of Lachat and Watson [65] is implemented. More complex is the integration of
strongly singular kernels such as in the diagonals in K. They exist as a Cauchy princi-
pal value. Several evaluation techniques exist, i.e. the general strategy of Guiggiani and
Gigante [49], which has been taken for this work. Note that the integral free jump term
(2.15) is already included in the diagonal entries of K on the left hand side of (3.8). Due to
intended collocation points on I'p 5 and the fact that trial functions for the approximation
of gp are in Sy, the jump term on the right hand side is distributed to continuous nodes for
entries in Kpp.

For details on numerical treatment of any integral, the reader is referred to [64]. A good
introduction of the integration technique for collocation BEM in elastostatics is given in
[91], in [12] for elasto-plastic problems. The treatment of singular domain integrals in this
context has been presented in [39].

3.3 Equation Solver

The system matrices presented in (3.8) are fully populated and not symmetric. That’s
why the application of solvers to the system of equations is more complex. Two different
approaches are usually found in applications with BEM: direct solvers by means of fac-
torizations and iterative solvers, basically Krylov subspace methods [100]. In the present
formulation, these solvers can be applied to the whole system of equations or treated by
means of a Schur complement. However, if I'p or 'y compared to I" are small, the former
approach has been applied in this work.

LU Factorization In section 2.3 the non-linear system of equation for elasto-plastic
problems and its linearization has been introduced. Since the involved system matrices for
the applied explicit approach never change, a one-off block LU factorization [44] might be
affordable. This depends on the size n of the problem and on the iterative procedure for
the plastic algorithm. In that case, the number of changes of the right hand side is defined
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by the number of iterations for the algorithm to converge. The block factorization is

Vop —Kpy Ly 0 Ui Ui
M — —LU= 3.13
(VND —KNN) (L21 Lzz) ( 0 Uzz) .13

with
Vpp =L11Uy1,
“Kpy =L 1 U,
pn =L11Up2 (3.14)
Vnp =L Uy and

—Knynv =L21Ujp + Lo Up.

The calculations are carried out in a three step procedure where first a classical LU factor-
ization of Vpp is carried out. Second, with the resulting factors the matrices U, and Ly
are determined by means of forward- and backward substitutions. Finally, to obtain Ly;U;;
the matrix —Kyy — Ly Uj; is subject to a LU factorization again. With this representation
the system of equations Mx = g is solved for any given right hand side g = (gD gN) by
means of block-wise forward and backward substitutions

Lz=g and Ux=z

with the result x = (tp uy).

This factorization is a O(n®) process and hence not affordable for rather large system
matrices. It will be seen in chapter 4, that with the there described matrix format the
computational effort is reduced significantly.

Iterative Solvers However, most often iterative solvers are used since it decreases
computational complexity by the order of one. That’s because only matrix-vector products
with the system matrix M are needed. For the fully populated and not symmetric matri-
ces of (3.8) the generalized minimal residual (GMRES) [94] method or the biconjugate
gradiend stabilized (BiCGSTAB) method [108] are suitable. Both are Krylov subspace
methods. Usually, such kind of solvers try to minimize the residual in iteration step i

ri=Mx;—g
by predicting the new approximate solution

Xj+1 = X; + 0GP;
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in step i + 1 with a calculated search direction p and a relaxation parameter . The con-
vergence of these iterative solution procedures depends heavily on the condition number

}Lmax,M
)Lmin.,M

-1
K(M) == =Mz M2
of the system matrix. The condition of sub matrices in (3.8) mainly depend on » and the
location of collocation points [93]. Most often, Kk — oo for n — oo and therefore the number
of iterations for GMRES and BiCGSTAB will increase with the matrix size. To avoid this,

the system of equations needs to be preconditioned by a matrix P spectrally equivalent to
M [100] so that

P 'Mx=P g with P"'M~I (3.15)

in case of a left preconditioner. Finding proper preconditioners can be a cumbersome task.
The most simple approach is taking P = diag(M) so that the application of P~! corre-
lates to a scaling of M by its diagonal entries. The interested reader is referred to [100]
and [101] for different approaches in order to find reasonable preconditioners. In a nut-
shell, the objective is to find a preconditioner so that k(P~1M) can be bound by a constant
term independently of n. Figure 3.2(a) shows the convergence of an exterior Neumann
problem in three dimensions by means of GMRES and BiCGSTAB solver and their di-
agonal preconditioned versions P-BICGSTAB and P-GMRES .exemplarily. Generally, the

(a) (b)

ol ---- BiCGSTAB || o ---- BiCGSTAB ||

10 — GMRES 10 — GMRES

----P-BiCGSTAB ----P-BiCGSTAB

10-2 b, — P-GMRES 102 — P-GMRES
T — : 1074} .
1076 | . 1076 | 1
0 2 4 6 8 10 12 14 0 20 40 60 80

# of iterations # of iterations

Figure 3.2: Convergence of iterative solvers for an exterior Neumann problem (a) and
mixed boundary conditions (b)

double layer potential is better conditioned [30, 101] and a solution within a tolerance of
exs = 1077 is found in several steps for n ~ 12000 degrees of freedom. Therefore, pre-
conditioning is not necessary in this case. In Figure 3.2(b) the convergence of a problem
with mixed boundary conditions is shown. Without taking a preconditioner, convergence
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is possibly never achieved. By taking the previously described, rather simple diagonal
preconditioner the behavior has been improved significantly.

However, the BICGSTAB method converges faster in all examples, but shows disturbing
oscillations due to its bivalent search directions. Without a preconditioner, the oscillations
are rather disturbing. In contrary, GMRES does not show this behavior. Generally, the
latter method is more robust and should at least converge in n iteration steps. A drawback
is that GMRES needs to store its search directions temporarily and it might also reach a
plateau in the convergence graph. The latter has been avoided by restarting the algorithm
after several iteration steps. All in all, GMRES solver are considered to be robust for
solving non-symmetric systems of equations, and is primarily used for most numerical
examples in chapter 6.

Schur Complement The Schur complement of (3.8),
S = VapVp Koy — Ky (3.16)

is found by substituting the first row into the second. It represents a Dirichlet-to-Neumann
map which transforms surface displacements uy on I'y , to tractions. From this substitu-
tion, the corresponding right hand side is

gs = (Kyp— VNDVB]DKDN) gp+ (VNDVB]DVDN —Vn)gn+ (Ny— VNDVB]DND) Op.

The resulting system of equations
SuN =gs (3.17)

can be solved by direct solvers or by means of a two-step iterative procedure [101] where
first the inner solution for the representation of (3.16) is sought and then the outer solution
for the unknown displacements in (3.17). The unknown traction tp is found by backward
calculation after resolving up. The Schur complement in terms of a Dirichlet-to-Neumann
map is an important representation for coupling procedures (c.f. [92]). Regarding to that,
coupled problems are solved without specifying the solution schemes taken for the sub-
regions.



4 Hierarchical Matrices

As shown in section 3.2, the system matrices are fully populated and, in case of a collo-
cation method, non-symmetric. Latter property influences the solution procedures to be
chosen which will be described in chapter 5. However, major implications are self-evident
from the fact that the required storage for full matrices scales quadratic with the problem
size n. For a matrix M € R™" with asymptotically n — oo the required storage and the
number of elementary! operations for a matrix vector product are

St(n) = O (n*) and Op(n) =0 (n?). 4.1)

O(-) denotes the Landau symbol describing the complexity by dropping lower order terms
if an upper or lower bound is investigated. Naturally, the user of an algorithm wants to per-
form simulations with maximum number of unknowns n,,,, in acceptable time. Assuming
for the moment that maximum available storage and maximum possible operations double
in a time period At, then

Stirgt) =2.5th), and Oplar) =2-Opithe.
Logically, it is desired to double the problem size
Nimax(t + A1) = 2140, (2)

in the same period as well. But with the complexities of (4.1) the required storage at time
t+Aris

St(mae(t + At)) = St 2man(t)) 2" 4 - St(mman(t)).

Normalized to the available storage 2St,(,24x, that implies an increase of 4/2 = 2. In fact
the same holds for the number of operations. Hence, the calculation time is also doubled
at r + At. To conclude, algorithms showing quadratic or generally polynomial complexity
O(n?) with p > 2 are problematic for future applications in terms of large scale computing.
In contrary, the computational effort for algorithms with linear complexity stays constant
in the sense of the example above. As a consequence for the previously described BEM
formulation, rather large problems will cause shortage of storage and the calculation time
might become incceptable. This is immediately recognizable in Figure 4.1. To overcome

!'Usually, floating point operations like multiplication or division are considered as elementary in this con-
text
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Figure 4.1: Required storage and computational effort for algorithms with different
complexities

the quadratic complexity of many different numerical procedures, fast summation methods
have been developed. A brief overview of those methods is given in section 1.2. In this
chapter the hierarchical matrix (H-matrix) technique is described, which is subsequently
applied to the BEM for elasto-plastic problems presented in chapter 3. This matrix format
provides almost linear complexity? O(nlog®n) in terms of storage and matrix operations.
For problems within a not too distant observation period the logarithmic term is acceptable.

In terms of the the described BEM formulation, different approximation errors have been
introduced. First, the approximations introduced by discretization of the BIE, where the
residual is minimized in a finite number of collocation points, and the errors by carrying
out integrals numerically. Secondly, approximation of the geometry, Cauchy data and field
values. The material model is an approximation too, and its parameters are determined by
experiments or even predictions in case of underground construction. Finally, the residual
of the nonlinear solution procedure €4 is allowed to have a certain tolerance. Consequently,
it is reasonable to approximate the system of equations itself with a similar magnitude of
eITor €.

Among the essential journal papers, several textbooks exist concerning H-matrices. A
detailed description including proofs and complexity analysis of the matrix operations is
read in the book of Hackbusch [52] written in German. Extended details on 2-matrices
in English can be read in the book of Borm [21]. In the lecture notes of Bebendorf [7]
emphasis is given to elliptic boundary value problems and the ACA. For a more practical
point of view and many numerical results for different problem types carried out by the
boundary element methods the reader is referred to Rjasanow and Steinbach [89].

?Linear complexity up to a logarithmic factor
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4.1 Low Rank Approximation

The near linear complexity of the matrix format described in this chapter stems from the
data-sparse representation of low rank matrices (Ry-matrices). The rank k = rank(M) of a
matrix is the number of linear independent column or row vectors. It holds that

rank(M) < min{r,c}, M e R™. 4.2)

A Rj-matrix is constructed by different methods and factorized to a data-sparse storage
format.

To simplify the explanation of the procedure, we consider a circular geometry. The
problem is shown in Figure 4.2 and the entries of the fully populated matrix M origin from

Figure 4.2: Circular tunnel geometry, partly discretized with well separated domains €2,
and €,

the discretization of the scalar valued single layer potential

) 1
(Vep)(x /U,_z x,y)p(y)dsy with Uy(z,y) = —ﬁlog\w—yl 4.3)



4.1 Low Rank Approximation 41

and double layer potential

. 1
(Keq)(x /Tﬁ ©,y)q(y)dsy with Tg(:c,y):—m(m—y)m(y) (4.4)

from the Laplace equation in two dimensions [101] evaluated for some collocation points
a and a part of the discretized boundary y € I';,. The field values are discretized by piece
wise linear trial functions. The points « and y are located in two disjoint domains €, and
Q, where the desired kernel function ®(«, y) is non-singular. The separation is determined
by the admissibility condition

min(diam(Qy),diam(Qy)) < ndist(Qy,Qy), n > 0. 4.5)

The lower the admissibility parameter 1 is set, the larger the distance and better the ap-
proximation will be. However, one would find less regions which are admissible. Since
the computational costs are too high for an exact evaluation of distance and diameter, con-
dition (4.5) is defined as an estimation

min(diam(By),diam(By)) < ndist(By,By) (4.6)
on axis parallel bounding boxes B where
diam(Q) < diam(B) and dist(Q,,Q,) < dist(By,By).

With these boxes the calculation of the diameter and the distance

diam(B) =

Zd:
b; — a;) 2 and
\ ~

d

diSl‘(Bx,By> = Z dist([a,}x,b,;x]x, [ai,y,bijy])
i=1

is done quickly. Now the evaluation of condition (4.6) is straightforward but may intro-
duce non optimal results. This is illustrated in Figure 4.2, where the distance between
the bounding boxes is much smaller than that of the original domains. For admissibility
criterion different to (4.6), the reader is referred to [21] and [52].

4.1.1 Singular Value Decomposition

Let the matrix M € R"™¢ with n = rank(M) = min{r,c} be the discrete single or double
layer potential with r collocation points and ¢ supports of trial functions in I'j, of Figure 4.2.
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With a singular value decomposition (SVD) [43] the matrix is factorized in the form
M=U-X-VI, UeR™ X eR" VecR" 4.7)

where the column vectors of U and V form an orthonormal basis and X is a diagonal
matrix. The diagonal entries 0; = X;; denote the singular values of M and are considered
to be sorted such that o7 > 6> > --- > 0,,. Hence, the factorization can be written as a sum

n
M= Z G,-uivl-T
i=1

with the basis vectors u and v. Figure 4.3 shows the distribution of singular values o; of
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Figure 4.3: Distribution of the first 18 singular values of single layer (SLP) and double
layer potential (DLP) for Laplace equation

the discrete single and double layer potential of Laplace equation for the given problem .
It can be seen that they decay exponentially and the behavior is only slightly influenced by
the full size n of the matrix. Higher singular values do not have much influence on matrix
entries and it is considered to simply neglect them. What follows is an approximation of
M by a truncated, compressed SVD

k
M~R;=) ocuv] =U0-3.VT, (4.8)
i=1

The Ri-matrix Ry now has reduced rank k < n. To check the desired accuracy of the
Ri-matrix approximation, the error is determined in matrix norms. A convenient measure
is the Frobenius norm [52]

c min{r,c}

MIF=Y Y mi= Y o 4.9)
=1

i=1j=1
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which is easy to implement in this context. A measure in the spectral norm ||M||, = oy is
also possible. Hence, to achieve the desired accuracy eg, the relative error bound i.e. by
means of the Frobenius norm

IM—=R|lr <er, ||[M]F (4.10)
needs to be fulfilled. The required rank for a certain approximation accuracy is shown in

My sep M pLp
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=~ 2
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ka 673,(

Figure 4.4: Rank distribution for the desired approximation accuracy

Figure 4.4. It can be seen that a rank of k = 2 for the single layer and k = 1 for the double
layer potential is sufficient for a relative error eg, = 1073, and for that particular example,
independently of n.The storage requirements and operations for a matrix-vector product

StSVD<Rk) = k(l’—i— c+ 1)
P/ (Re) = 2k(r+¢) —r+k
for the truncated SVD are significantly lower than for the full representation
Stru (M) = Op}fl’l’””l(M) =rc

if k < n. For example, with the circular geometry shown in Figure 4.2 with n = 400
and e, = 10> the storage requirement is reduced by a factor of 100. Although SVD
is the best possible rank revealing method, its application to matrix compression is not
affordable, since the original and fully populated matrix needs to be computed in advance
and the SVD procedure itself requires (’)(n3) operations.

4.1.2 Interpolation

One approach to find a low rank approximation of a matrix a priori is to separate the
variables  and y in the kernel function ®(x,y). Therefore, ®(x,y) needs to be asymp-
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totically smooth [51]

d(x,y)

2570 (@,y)| < c(|au] .
v &yl

VyeRIN\x, ie{l,....d} (4.11)

by means of the a;-th derivation with respect to y; and a constant c. All fundamental
solutions used in the described BEM have this property. The approximation is done finding
a degenerated kernel by means of Taylor expansion, multipole expansion by spherical
harmonics or similar approaches. For elastostatic problems this has been shown in [57] for
the panel clustering method, from which the H-matrix technique originates, and in [78]
for the FMM. In the latter publication, the integral operators are reduced to the ones taken
for scalar Laplace problems and then expanded by taking spherical harmonics. Since these
methods eventually involve higher order derivatives, which may imply a kernel dependent
development of a recursive functions, a simpler choice is to take kernel interpolation by
means of polynomials. Hackbusch and Borm [53] presented the low rank approximation
by interpolation in the context of H-matrices. Basic fundamentals and proofs can be read
in the textbooks [52] and [21].

The integral kernel in (4.3) is now interpolated in d dimensions by means of Lagrange
polynomials

k k
Uz,y)~ Y Y Ly(z)Ug(Z0, §p) Ly (y) (4.12)
v=1u=1

with k support points defined on each of a d-dimensional box [a,b]? = [aj,b1] x --- X
laq,b,4) around x and y respectively. The interpolation functions Ly and Ly, are represented
by the tensor product of the Lagrange polynomials in one dimension Ly,

. d d ki X _f/.t,‘
v@) =) =] [I ——= (4.13)
i=1 i=1 pu=0,u#v; Xvi =Xy

with

In (4.13) the index i denotes the spatial direction. Hence, Xy, is the i-coordinate of the
v-th support point. To get the best approximation quality for the integral kernel, roots of
Chebyshev polynomials of the first kind are chosen. This avoids the Runge phenomenon,
which leads to diverging approximations, i.e. when taking equally distant interpolation
points [70]. Practically, these roots

&, = cos (M> Vv ed{l,... k}
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are defined in the interval [—1, 1] and need to be mapped to [a;, b;] by the function

_ a;+b; bi—a;:
xvi = XL(&‘/I) = 2 + l 2 lévi'

For practical reasons the interval for the Chebyshev interpolation (4.13) is set to fit the
bounding box B taken for the simplified measure of distance and diameter. In Figure 4.5 the

7 X~ X X
K X X X
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; X X 7<
/ By, \
! \
1 \
I \
: T
| v - |
: Yu ’,
' I
\ !
\ /
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\ X Lv(m) //
X X X ,
XX EX

Figure 4.5: Boxes and support points of the interpolating polynomials Ly and Ly,

bounding boxes B,, B, and support points of polynomial order k; = 3 are shown exemplary.

For the separation to work correctly, condition (4.6) is a prerequisite and specially tai-
lored for asymptotically smooth kernels [52]. Finally the interpolated kernel (4.12) is taken
for the representation of integral operator Vy in (4.3). Taking constant expressions out of
the integral, the approximation is

k k
Viplw) = Y Y Lul@)Ui@sGu) [ Luw)p(m)dsy,
v=1u=I T

It is seen that the kernel of the boundary integrals is replaced by the interpolation function
[53]. After discretization, the resulting low rank representation’ is given by

R, =V-S-W/' vVeR™> §ecR* WeR (4.14)

3Note that the symbol V is repeatedly used and is different to that of the factorization by SVD (4.7) and the
discrete single layer potential introduced in section 3.2.
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Again, k = kfi denotes the rank of the matrices of which the entries are given by

V[” V] = Lv(iL’i),
Siv,u] =U/(Zy,y,)and

Wil = [ Lu(w)os(w)ds,
L,

for all x € Q, and y € Q,. Since the integral kernel in entries of W are of polynomial
degree p, the integration can be carried out exactly by means of Gaussian quadrature with
order G =2p— 1. Contrary to the SVD, the rank needs to be chosen a priori and the relative
approximation error €, is known a posteriori only. The computational requirements for
this kind of approximation are

Str(Ry) = k(r+c+k)
Opyamul(Ry) = 2k(r+¢) — r+k*

Special care has to be taken if the integral kernel depends on normal derivatives like the
fundamental solution T(x,y) in (2.10). Naturally, such functions are not smooth every-
where and a naive interpolation is likely to produce unwanted errors. Therefore, the conor-
mal derivative is shifted to the polynomial and the interpolated double layer potential be-
comes

k k
Ko@) = Y Y. L(@)Uo(@n ) [ TiLa(y)ply)dsy,
v=1u=1 r

It is remarkable that for both, the discrete single layer and double layer potentials, the
kernel evaluations and evaluation of L, at the collocation points x; stay the same. So
do the matrices V and S. For the Laplace problem 7;L,(y) = VL, (y) -n holds. It can
be envisaged that the implementation of the conormal derivative for elastostatic problems
(2.4) is not straightforward task.

For the model case shown in Figure 4.5 the approximation quality €, is presented
in Figure 4.6. Starting from an interpolation order k; = 3 (k = 9) for the single layer
potential a good approximation with a relative error e, = 107> is reached and higher
order polynomials increase the rank without improving the approximation too much. For
the double layer potential, a higher order has to be chosen for the same accuracy because
of the application of the conormal derivative.

4.1.3 Adaptive Cross Approximation

Developed by Bebendorf [6], the ACA has become a popular approximation technique in
many fields of application by means of the boundary element methods. I.e. in [9, 61, 66]
it is applied to elastostatic, in [71] to elasto-dynamic problems. The implementation is
uncomplicated since the algorithm demands only some entries of the original matrix to
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Figure 4.6: Achieved accuracy depending on interpolation order k;

construct the low rank approximation. Contrary to interpolation, the construction of a
Ry-matrix is a pure black-box method. The application to collocation matrices has been
shown in [10] and is adopted to elasto-plastic problems in chapter 5.

For the low rank representation carried out by this procedure the outer product format

R, = ABT

with A € R”™*K and B € R¢** is taken. The idea is to find the R¢-matrix by minimizing the
reminder Fy of the approximation M = Ry 4 F;. With the accepted tolerance e the relation

€
F < ||F < —|R
IFellr < [Fepillr < 1+€H k|l F

leads to the recursive stopping criterion

k
lagsillz - [besillr < ex[Rillr with Rp= )" avby (4.15)

v=1

for the algorithm. In (4.15) the scaled vectors a; | and by, | generate columns of A and B
and denote the row and column of a matrix-cross in Ry which is determined by finding a
pivot entry therein. In order to compute the crosses a; and by only the corresponding row
and column of the original matrix M needs to be evaluated which reduces the computa-
tional time. Figure 4.7 and Algorithm 2 depict the construction of a low rank representation
by means of ACA. Only k original matrix rows and columns are calculated by the user-
provided methods FILLROW and FILLCOL. The corresponding pivot points (r,cy) are
marked as black spots in Figure 4.7. The choice of pivots is crucial for the accuracy of the
algorithm. In order to evaluate original matrix entries, the quadrature order G has to be
fixed per block. Moreover, the accuracy for the numerical integration needs to be higher
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Figure 4.7: Construction of a Ry-matrix by ACA

Algorithm 2 Adaptive cross approximation
1: procedure ACA

2: k=1

3 initial pivot row index ry (c.f. [7])

4 repeat

5: by <+ FILLROW(ry)

6: b :=b— Y5l a[r]by

7 pivot column index ¢, = argmax(|bg[r]|)

_ 1

8 by = by [cy] by

9: a; < FILLCOL(cy)
10: ap = ay— Zl\(,_:l] b[ck]av
11: pivot row index ry; = argmax(|ag[c]|), rks1 # 1k
12: k:=k+1
13: until criterion (4.15) = true

14: end procedure

than the desired approximation accuracy in order to avoid perturbations. A more detailed
description and different versions of the algorithm as well as strategies to find the right
pivot points can be read in [7].

The algorithm converges if the integral kernel is asymptotically smooth with respect to
at least one variable (4.11). In case of the collocation method, this is « since the outward
normal n(y) involved in the traction operator 7 does not have this property for non-smooth
surfaces. Hence, the discrete double layer potential of the model example K, does not im-
pose any problems or differences in the implementation of the algorithm when the right
pivoting strategy is chosen [7]. For the model case, Figure 4.8 shows that the rank revealed
by ACA is almost optimal compared to SVD in Figure 4.4. On that account, the computa-
tional costs O (n) for the algorithm are rather small. The effort in terms of storage and for
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Figure 4.8: Rank distribution for the desired approximation accuracy by ACA

the matrix-vector product are
Staca(Ry) = Opica™ (Re) = k(r+c).

It is essential to stress that ACA only works with scalar problems. Therefore the matrix
valued kernels for the system matrices in (3.8) and (3.11) have to be decomposed before-
hand. The implications on the algorithm are described in chapter 5.

4.1.4 Recompression

One of the main advantages of ACA is the variable rank of the Ri-matrix. For the ap-
proximation by degenerated kernels the rank is determined by the number of interpolation
points fixed by the user or mutable determined by a criterion [25]. Most often the chosen
rank is higher than needed. Developed by Borm and Grasedyck [23], the hybrid cross
approximation (HCA) takes advantage of both, interpolation and ACA and can avoid this
problem. Since the transformation matrix S in (4.14) consists of point wise evaluations of
the fundamental solution, ACA could be applied in order to get a low rank representation.
Then the resulting pivot points are taken to construct the interpolation, where the funda-
mental solution itself serves as interpolation function. Hence, the construction of W in
(4.14) is done by integrating the original kernel. Nevertheless, no original matrix entries
can be used like in ACA.

An important approach to further reduce the rank is the recompression of R-matrices.
The following procedure has been presented in [46] and is applied to both, approximation
by kernel interpolation and ACA. The basic concept is again based on SVD but now
applied to the outer product format of Ry. This is efficiently achieved by means of a two
OR decomposition and one SVD of a k x k-matrix [47]. In that case, both factors of the
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‘Ri-matrix are decomposed to

A=QuRy with Q4 eR™ Ry e R*F and

(4.16)
B=QsRz with QpeR™ R, e RF**

where Q4 and Qp are orthogonal, R4 and Rp upper triangular matrices. Finally, for a small
rank k a SVD of the product R4Rp is affordable and is done as described in section 4.1.1
resulting in Uap, Vap € RK*KOut of it the new factorization with usually lower rank k' is

Ry =A’"-B' =Q4Upp-QpVas. 4.17)

The recompressed matrix Ry is now the best approximation with respect to the norm used
for the truncated SVD. The overall complexity for this operation is Op,com, = 6k(2r +
c) +23k> and yet affordable for k < min(r,c).

To demonstrate the efficiency, the described technique is now applied to the low rank
approximation of M constructed by interpolation. By taking e = 10~ for the single layer
potential, which corresponds to an interpolation with order three or rank k = 9 respectively,
the final rank is reduced to k' = 3 for all tested discretization n = 100, 800,3200. In case
of the double layer potential, k = 25 is reduced to X’ = 1. Both values correspond to the
optimal rank revealed by SVD and ACA.

Remark: It is noteworthy to say that the double layer potential on a circular geometry has
a certain property which results to a rank one representation depending on how good the
circular geometry is approximated. The results in this section show that behavior.

4.2 Geometrical Bisection

The example shown in Figure 4.2 handles a separated region of the boundary and hence
just a part of the discretized operator. The system matrices in equations (3.8) and (3.11) as
a whole cannot be approximated by a single R;-matrix since no separation with respect to
both variables in the sense of (4.6) can be found. The ACA would probably lead to a full
rank representation and kernel interpolation to completely wrong results. Almost every
fundamental solution in boundary element methods behaves like ®(x,y) = ||z — y||7¢
with o € NT. Therefore, matrix entries need to get separated into a near field where the
distance between x and y is small, and a far field. Near field entries are evaluated straight-
forward, by working out entries like in every standard BEM, whereas far field entries are
subject to approximation techniques which have been described in section 4.1. Naturally,
the splitting is done block wise, as illustrated by the introductory example in section 1.3.
For general situations, this simple approach cannot be applied and the splitting of the sys-
tem matrix needs a more distinct strategy. To obtain well separated regions as displayed
in Figure 4.2, the matrix indices are collected in clusters [55] based on geometrical infor-
mation. Resting upon clusters of row- and column indices, a block cluster is constructed
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which defines the structure of the H-matrix with well separated blocks.

4.2.1 Cluster Tree

Almost every fast summation method deploys a tree to represent the partition of matrices
with general structure. The cluster tree in context of H-matrices is a binary tree and created
by splitting the geometry recursively. The construction is explained using the example of
the circular geometry in section 4.1, but now for the full set of equations on the whole
geometry. As shown in Figure 4.9, the indices i and j are assigned to characteristic points

supp{ ¢, }

Figure 4.9: Characteristic points with local bounding boxes Q

x; and y; with local axis parallel bounding boxes Q; and Q;. Row indices of the system
matrices in (3.8) and (3.11) correspond to collocation points. Therefor Q; reduces to the
characteristic point. In case of column indices, Q; defines a bounding box around the
support of the trial function. All indices are collected to the index sets / and J. A cluster is
the union of one or more indices of a set including additional information stored in a label.
For each set, a labeled binary cluster tree T is constructed. The nodes are clusters where
r =ty = root(T) denotes the root and is labeled by all indices i.e. I and their associated
positions x;. By splitting the geometry once, r gets exactly two children - the clusters tll
and tzl. The superscript denotes the level £ in T'. For r the level is set to / = 0. Algorithm 3 is
a general implementation of the cluster tree creation procedure. The splitting is continued
recursively until a stopping criterion

size(t) = #t < npin (4.18)

is fulfilled which is characterized by the minimum leaf size n,,;, which denotes the minimal
amount of indices in a cluster. In Figure 4.10 the general structure of a binary tree with
clusters is shown. If a cluster does not have any child, it is called a leaf. In that example
this is the case for t12 and t32.

For the considered fast method based on H-matrices different splitting strategies can be
taken. In the following paragraphs, strategies which replace the call to CLUSTERSTRATEGY
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Figure 4.10: General structure of a cluster tree up to level £ =3

Algorithm 3 Creation of a cluster tree
1: procedure CLUSTERTREE(Z, B)
2: if #t > n,;;, then

3: {t1,...,t;},{B1,...,Bi} + CLUSTERSTRATEGY(?,B)
4: for all (#;, B;) do
5: if number of children #; > O then
6: CLUSTERTREE(t;, B;)
7: end if
8: end for
9: end if
10: return ¢

11: end procedure

in Algorithm 3 are described and discussed on the example of a circle for arbitrarily dis-
tributed collocation points x;.

Geometrically Regular Cluster Tree The geometry is subdivided into axis parallel
bounding boxes Bﬁ = lam, bm]i:] with equal edge length b, — a,, = const. Here, n denotes
the number of the box in the /-th level of subdivision. Furthermore, an initial bounding
box B8 is constructed covering all local boxes Q. In this example Q; = x; and 88 = [a, b]d
for ¢ = 0 with

am =min{x;m|} and b, =max{x;m|} Vme{l,...,d} (4.19)

and for all indices i € {1,...,I} as depicted in Figure 4.11. In the next step, B) is halved
by a cut plane defined with respect to the bounding boxes’ direction of largest extend. The
result is now two boxes

B% = [al,a1+b1/2] X [az,bz] and B% = [a1+b1/2,a1] X [az,bz]
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Figure 4.11: Geometrically regular clustering

in level £ = 1. The point indices i covered by those boxes are collected in the index set
7 C I which is associated with #°. The procedure is repeated for each box until the minimal
leaf size (4.18) is reached. In the example depicted in Figure 4.11 the minimum leaf size
nmin = 3 and it can be seen, that there are empty sets f33 = f; = for Bg and B% in the
third level. Hence, they are also not represented in the corresponding cluster tree shown
in Figure 4.12. Moreover, B? and Bg are to be split again in level 4, which is indicated by
dashes.

This kind of clustering strategy produces equally sized bounding boxes for each level.
This is advantageous for interpolation schemes and if there should be only one cluster
structure for different geometries. The support points of the interpolation polynomial Ly
are located at the same local positions in the bounding boxes. Since the integral kernels
are translational invariant, the amount of kernel evaluations could be reduced. A drawback
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Figure 4.12: Clustertree for geometric clustering

is that a child cluster could be empty, like t33 and t73 and thus clusters t12 and tf have just one
child.

Remark: The FMM, which is also based on geometrical bisection, usually takes cubes as
bounding boxes. They are bisected by perpendicular planes in every direction of coordi-
nates per level. Thus, the tree structure becomes a quad tree in two dimensions or an octree
in three. Theoretically, the same subdivision could be used for H-matrices, too.

By taking a closer look on the clustering of level three it is visualized that the bounding
box Bg could be smaller while still covering all indices fg’. This is not optimal and has been
taken into account for the following clustering strategy.

Geometrically Balanced Cluster Trees In the admissibility criterion (4.6), the di-
ameter of the bounding box plays an important role. Hence, it is endeavored to minimize
the measure. The subdivision steps are almost the same for a geometrically regular 7',
but with the following differences: after every subdivision the bounding boxes of ¢ are
minimized so that their largest extend is determined by the characteristic points x; of their
indices i € L. This means that B, = [a,b]? is determined by (4.19) in every level which
is illustrated in Figure 4.13. It is realized that the diameters of B shrink quickly with in-
creasing level. In general, the structure of 7 is not the same as in geometrically regular
clustering and shown in Figure 4.15.

Geometrically balanced cluster trees are favored if the underlying grid is anisotropic.
Still, clusters of the same level can have diverging sizes #¢.

Cardinality Balanced Cluster Trees The latter two approaches are based purely on
geometry and neglect the cardinality #t of the clusters. Now the axis oriented cut plane is
sought by balancing the number of characteristic points in B, optimally such that the size
of children of
(+1 (+1
#y —H#, <1

After bisection, the minimal bounding box is determined again. For the model case this
has been illustrated in Figure 4.14. This splitting algorithm leads to a minimal depth of
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Figure 4.13: Geometrically balanced clustering

T with respect to n,,;,. A balanced cluster tree is shown in Figure 4.15, which coincides
with 7' geometrical balance for the considered example. However, in general this is not the
case. Keeping #t as high as possible is advantageous for ACA, thus taking a cardinality
balanced cluster tree is a good choice.

In [7], an alternative splitting strategy called principal component analysis (PCA) is
proposed. It produces cardinality balanced cluster trees T by splitting with arbitrary planes
determined by the principal direction of the set of characteristic points.

Summarized, the choice of the right clustering strategy depends on the approximation
technique for the Ri-matrices as well as on the underlying grid. If indices correlate to
a quasi-uniform discretization, geometric binary splittings are a good choice [95], for
anisotropic or graded meshes cardinality balanced trees [47].
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Figure 4.14: Cardinality balanced clustering

4.2.2 Block Cluster Tree

This subsection is devoted to the task of finding admissible pairs of clusters which define
a matrix block subject to approximation as described in section 4.1. Therefor the clusters ¢
related to collocation nodes «; and s related to the supports supp(¢;) of the trial functions
on boundary elements are considered. Their associated index sets are

itcr, 1={1,....r} and § CJ, J={1,...,c}.

The clusters are nodes of the column cluster tree 7; and the row cluster tree 7;. Since
testing all possible combinations ¢ x s needs Op'** = O(n?), only clusters of the same
level ¢t/ x s' in Ty and T; respectively are taken. By considering nodes ¢ € T; and s € Tj in
the same cluster tree level ¢, an admissible pair can be found by checking condition (4.6)
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Figure 4.15: Balanced clustertree

with their associated bonding boxes B; and B;. The results are stored in a level consistent
block cluster tree Ty ; whose nodes

b:txs7 bGTIXJ

form a partition P = T;.;. A level consistent bock cluster tree is a quad tree. Half of the
tree is shown in Figure 4.16. From now on, the distinction between cluster nodes, i.e. ¢ and
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Figure 4.16: Block cluster tree structure

their corresponding index sets 7 is neglected and thus b C I x J can be used. If the partition
¥ x s is admissible or if 7 and s are leafs then & is a leaf in Tjx,. In Figure 4.16 admissible
leafs are green and inadmissible leafs are red.

The procedure is depicted in Figure 4.17 by taking the example of geometrically bal-
anced cluster trees as shown in Figure 4.13 and by setting 7; = T; for simplicity. The ad-
missibility parameter 1 = 1 for condition (4.6). Starting from the root partition »° =% x s°
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Figure 4.17: Partition defined by the block cluster tree

it is envisaged that for level £ = 0 no admissible partitions are possible. For £ = 1 the dis-
tance between B and B, is small compared to their diameters, hence (4.6) does not hold.
Proceeding to ¢ = 2, the first admissible partition tlz X sﬁ is identified and depicted in Fig-
ure 4.17.

For the considered level consistent example, it can be envisaged that the number of
indices #f ~ #s. This is not always the case, especially if characteristic points of one
cluster are located in the domain so that #f < #s like for Newton potentials. In that case
it is expedient to violate the level consistency and proceed with the traverse of s until
#' ~ #s' with ¢, > ( resulting in an inhomogeneous block cluster tree.

All admissible pairs of clusters are taken together denoting the far field P C Ty, all
others denote the near field P~ = Tj; \ P*. If b € P* defines a matrix partition M|, in
the far field it can be represented by a R;-matrices. Blocks in P~, represented by full
matrices, are evaluated like in the classical method. The block cluster tree directly defines
the structure of the #-matrix which is treated in the next section.
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4.2.3 Clustering Volume Discretizations

Usually, when solving inhomogeneous boundary value problems, volume discretizations
are involved. In order to explain the concept, the circular example is extended by a volume
mesh as shown in Figure 4.18. The bounding boxes By and B, are related to a cluster

Zk ! i

Figure 4.18: Clustering of a domain discretization

containing stress points z and cell elements @ respectively. It is visualized that many boxes
B, containing collocation points x € I" will get admissible to Bg. Hence, P will dominate
the partition related to domain term in (3.8). The same holds for relations between boxes
By and B,.

Since the characteristic points are in the same domain £, relations By and Bg are trou-
blesome. These boxes form the partition for the domain term in (3.11). Therefore, the clus-
tering strategy for the characteristic points in £, are carefully chosen in order to enlarge
the related P*. The size of B, depends heavily on the chosen trial functions for the repre-
sentation of strains and stresses (3.5). If they are chosen to be continuous, supp(6;) will
usually cover four cells in two dimensions and lead to an unnecessary large B,. Moreover,
the discretization can get very coarse if the distance to the boundary increases. Keeping
supports local to @ will reduce bounding box sizes with the cost of a discontinuous strain
and stress interpolation. However, for elasto-plastic problem statements or problems with
inclusions, stresses and strains can be discontinuous anyway.
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4.3 Hierarchical Matrix Format

The set of H-matrices has been introduced by Hackbusch [50] as a general matrix format
and to the BEM community in [24]. It allows the storage of fully populated matrices with
O(nlogn) by means of a hierarchical structure and the approximation of admissible blocks
by Rj-matrices. Due to the structure, higher matrix operations like LU and QR factoriza-
tion are carried out with almost same complexity in a purely algebraic manner. Moreover,
information on the underlying physical problem is not needed after construction. By tak-
ing ACA for the low rank approximation even the underlying physics is not important.
Only the asymptotically smoothness of the fundamental solution has to be guaranteed (see
section 4.1).

In [53] H2?-matrices have been introduced and their construction analyzed in [53] and
[25]. The textbook of Borm [21] is dedicated to this format. By taking an additional
hierarchical structure of nested cluster bases, the computational complexity and storage is
reduced optimally. Due to the introduced multilevel transformations, this still algebraic
format is comparable to the FMM technique and can provide optimal O(n) complexity
for many operations too [20]. However, this work covers the application of H-matrices
and serves as a basis for the application of #?-matrices to elastostatic and elasto-plastic
problems.

In the previous section, row and column cluster trees 77, 77 as well as the block cluster
tree T7x;, determined by the admissibility condition (4.6) have been described using the
example of a circular geometry. By using the information stored in 77, the corresponding
data sparse FH-matrix is constructed and every leaf b =t x s forms a matrix block M|,. The
tree structure of 77, is recognizable by the indices of 7 -matrix rows and columns. The
larger the tree path from one node b to the other, the larger their distance with respect to the
row and column indices in the matrix will be. Since the clustering is based on geometric
information this holds for the spatial distance between their characteristic points too.

Intuitively, the sparsity of the matrix depends on the ratio of the number of full matrix
blocks #P" in near field and Ry-matrix blocks #P 7 in far field. For detailed definition of
the sparsity constant by means of H-matrices, the reader is referred to [52].

For the considered model case in this chapter, Figure 4.19 shows the structure of system
matrices in the H-matrix format. Uniform discretizations with n degrees of freedom are
considered. Again, red matrix blocks describe P, green blocks P* and the numbers the
rank of the matrix block. For the discrete single layer potential (a) as well as for the
double layer potential (b) the far field P™ increases with growing n. On close examination
for matrices with n = 3200, it can be seen that the largest admissible matrix block with a
size 800 x 800 is approximated by a single Ry-matrix of rank k =4 in V and, due to the
circular geometry, by k = 1 for K. The compression by means of R -matrices results in
storage requirements of 4% and 3% respectively compared to the original size.

As the name implies, block matrices defined by 77« and visualized in Figure 4.19 are
stored hierarchically. Thus all matrix operations are implemented recursively [47].
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Figure 4.19: ‘H-matrix format of V € R"*" (a) and K € R"*" (b)

4.3.1 Operations and Complexity

Compared to other fast methods like FMM or wavelet methods, H-matrices allow many
more matrix operations than just the matrix-vector multiplication. It is important to stress
that these operations show almost linear complexity, too [47]. Of course the accuracy of
results carried out by these operations is determined by the accuracy of the matrix approx-
imation. In Table 4.3.1 some operations and their complexity compared to full and sparse®
matrices with size n X n is shown. In case of the latter, m > n denotes the number of non-
zeros in the matrix. A complete overview of complexities and algorithms for 7 -matrices
is given in the book of Hackbusch [52].

4There exist many different sparse matrix formats which are applied to different optimized matrix and
matrix-vector operations. Therefore, the table should give just a rough idea of the performance of -
matrices.
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operation ‘H-matrix sparse  full
M-v dnlogn—n+2 =~ O(nlogn) O(m)) On?)
M-M 13nlog?n+65logn—51n+52 ~ O(nlog’n) O(mn) O(n*?)
LU 11/210g’n+25nlogn—57(n—1) ~ O(nlog’n) O(n?) O(n*>3¥)
M-! 13nlog?n+47nlogn— 1092+ 110 ~ O(nlog’n) — O(n?38)

Table 4.1: Complexity of operations in linear algebra compared between H-, full and
sparse matrices

As a fact, sparse and full matrices are a subset of the H-matrix format and thus can be
described with any loss of information. This motivated the construction of sparse precon-
ditioners for systems of equations arising from FEM formulations [48]. Among others,
clustering strategies have been developed which do not depend on any geometrical infor-
mation, but only on the matrix graph [8]. Therefor the H-matrix format is a flexible choice
for algorithms covering numerical methods with different requirements in linear algebra.

Hierarchical Factorizations As mentioned in section 3.3, the coefficient matrices in
(3.8) are ill-conditioned if the number of unknowns gets very large. For the considered
applications in terms of large scale computations this is clearly the case. Thus, special care
has to be taken for the solution procedure carried out by H-matrices. Table 4.3.1 shows
that the inverse and the LU factorization shows almost linear complexity and are computed
in reasonable time, especially when the tolerated approximation error is set to a relatively
high value, i.e. ey = 10!, For that reason these factorizations

P'=M' or P '=(LU) ' =U,'L;

can be used to as a spectrally equivalent preconditioner in (3.15). Of course, taking an
appropriate accuracy for the hierarchical LU factorization the system of equations could
be solved directly. This approach might especially be favored in solving multiple right
hand sides like for the iterative plastic algorithm represented by (2.31).

By taking a formulation utilizing the CTO, an update of the inverse Jacobi matrix in
(2.35) is necessary. As pointed out in [4], this could be achieved with minimal effort by
adding low rank terms to the inverse or LU factorization subsequently.

4.3.2 Coarsening

The complexity of H-matrix operations is also determined by depth of the underlying block
cluster tree. It has been shown by Grasedyck [46], that after construction the structure of
‘H-matrices can be coarsened. This is due to the fact that the admissibility parameter 1
could be larger than chosen and that condition (4.6) might be sufficient but not necessary.
Coarsening yields reduced complexity for matrix operations and less storage requirements
as well.
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If all children b; for all i € {1,...,4} of anode b =t x s € Ty are leafs or small’, then
the corresponding matrix block M|, is constructed based on the leaf matrix blocks M|,
Therefore, all leaf blocks are agglomerated [52] to a single R;-matrix

. M|, M|,,) (M|b o) <0 M|b> ( 0 0) (o 0 )
M — 1 2 — 1 + 2 + +
b (M|b3 M|, 0 0 0 0 M|, 0 0 M|,
of rank k = Z?:I rank(M|p,). By plugging this matrix into the recompression algorithm by

means of a QR factorization (4.16) as described in section 4.1.4, matrix M|, is attained for
a given accuracy, which is now a leaf in the H-matrix and represented by an R -matrix.

>Small enough in a sense that the representation of these blocks results in too much computational overhead
with respect to the hierarchical representation



5 Implementation

As aforementioned, the main application of the resulting numerical software is the simu-
lation of underground construction. In praxis of geotechnical engineering, software pack-
ages based on the FEM or finite difference method (FDM) are used. Although the BEM
offers many advantages, the method is mainly used by the scientific community. For the
last decade the computer software BEFE++ has been developed at the institution related
to the author!, with the aim of closing this gap. Simulation of two or three-dimensional
excavation problems [33], support measures like rock bolts and pipe roofs [87] or shotcrete
shells and steel arches [86] have been implemented. Hence, it is possible to simulate the
excavation process carried out in terms of the new Austrian tunneling method (NATM)
[13]. Moreover, the software is capable of treating dynamic problems in the field of soil-
structure and fluid-structure interaction [73, 84] by means of a coupled FEM-BEM solu-
tion. In BEFE++ these numerical methods are also coupled to the particle based discrete
element method (DEM). In addition, the BEM part of the software is capable to solve
anisotropic elastic and scalar, inhomogeneous potential problems.

The aim of this work is to address the complexity problem of the BEM in the field of
elastostatic and elasto-plastic analysis. This should be achieved by introducing an incorpo-
rated software solution in BEFE++ which is reliably running on multi-core computational
environments. The previous chapters gave an introduction to the numerical tools whose
application is described in the following.

In this chapter the implemented algorithm for the elasto-plastic iteration scheme is pre-
sented which is subject to the fast solution procedure based on H-matrices introduced in
chapter 4. The approximation schemes presented in section 4.1 are well suited for scalar
quantities. Thus the utilization of the numerical tools to elastostatic and elasto-plastic
problems with vector valued quantities is specified including matrix operations and the
solution procedure.

This chapter describes the implications on the implementation by means of H-matrices.
For the clustering, ACA, the matrix representation and for most operations of linear algebra
the HLib software library [22] has been taken and utilized to fulfill the needs of the method.
The setup for vector valued problems, the traverse of the matrix, the integration as well as
the low rank approximation by means of interpolation, the block system of equations and
its solution have been implemented in BEFE++and developed from scratch.

UInstitute for Structural Analysis, Graz University of Technology, Austria, www.ifb.tugraz.at
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5.1 Vector Valued Problems

Since ACA only works for scalar problems, the system matrices as well as their cor-
responding field variables need to get sorted with respect to their components and then
treated separately [9]. A compulsory exercise to provide matrix entries originating from
an asymptotically smooth kernel when using ACA. Consider a matrix block representing a
part of the discrete single layer potential V|, in two-dimensional elastostatics, assembled
like in a standard collocation method. As shown in Figure 5.1 the algorithm finds a pivot
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| | | | | | | | | | | | | | | |
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Figure 5.1: ACA and a matrix block with non-smooth (a) and smooth (b) kernel entries

entry related to Uy in the fourth row and 7th column. The entries of the row depend on
integrals of the 21- and 22-components of Kelvin’s fundamental solution U. Naturally,
these entries differ for same |x — y| and hence jump with respect to the row. The same
holds for the components in the column. For sure, ACA will not fail since the algorithm
still reveals the rank of the block or at least the full rank. But the singular values might not
decay exponentially, and thus the compression rate may be worse. Hence, system matrices

are split
V| _ Vxx‘txs Vyx’txs
1 Vyx|t><s Vyy|l><s

as proposed in the beginning of this section and depicted on the right in Figure 5.1. Now
ACA acts on R-matrix blocks in every sub-matrix M;; = V;; |:xs consisting of integrals of
one component U;; which is guaranteed to be asymptotically smooth (4.11). In this context,
the subscripts ij correspond to the components of the matrix valued kernels originating
from the fundamental solution tensors.
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For all system matrices in (3.8) this leads to a block-wise representation

Vxx ny sz Kxx ny sz
V=V, Vv, V.|, K=[K, K, K, (5.1)
Vi sz bé4 Ko« sz K.

and

Nyt Ni22 N3 Ny Naz N3
N=|Ny1 Ny Nyz Nyiz Ny Nyos | (5.2)
N1 Npoo Npz Nio Nis Neos

for the matrices in (3.11) to

/ / /
11x 11y 11z

/ \Y / / ! ... /
20x 22y 227 /11711 /11722 11,23
/ !/ !
22,11 N22,22
V=" v | ad N=| 77 (5.3)
12x 12y 12z
/ / / / y
V/l 3x /13y Vll 3z 23,11 2323
23x 23y 23z
This has to be done for all field variables too, resulting in system vectors
— N, N, N, \T
u:= ([ux7n]ni1 [ty sy [”z,n]ni1)
— N, N, Ny \T

g = ([Gll,n]gil [622,n]]:il [6337,1]2];1 [6127,1]2];1 [613,n]ilvil [623711];\]21)1-

in three dimensions. Here, N. denotes the number of points where these values exist corre-
sponding to the correlated system matrix. The structure of K’ is similar to V’ and therefore
omitted. Each block is represented by an H-matrix. Thus, the construction of cluster and
block cluster trees for the sub-matrices is an important issue. Since the clustering is based
on characteristic points (see section 4.2), the corresponding trees 77 and 7 as well as Ty«
are the same. This fact leads to an optimized integration procedure which is described
later on. However, if boundary conditions of an element differ with respect to the spatial
coordinates like for roller bearings or symmetry boundary conditions, the characteristic
points per direction are different for matrices M;; in (5.1) and so is the structure of 7j..
Such boundary conditions are preferably formulated in terms of a saddle point problem, a
byproduct of the proposed coupling strategy for H-matrices in section 5.3.



5.2 Matrix Construction 67

5.2 Matrix Construction

Frequently, the construction of the system matrices is the most time consuming part in the
analysis. For that matter, only parts of the matrices on the right hand side correlated to
non-zero boundary conditions of the integral equation (3.8) are assembled. Therefore, free
surfaces with zero tractions or regions of fixed support are not considered in the cluster
trees determining these matrices.

Traverse of Tree Structure Usually, the number of degrees of freedom nr determined
by the collocation points on the boundary differs from the number of stresses ng to be
evaluated at stress points. As a result, the matrices N € R"*"e V' ¢ R"*"r and K’ €
R are of rectangular shape. On that account, the number of indices in the same level
of the row and column clusters may differ widely and the resulting matrix partition reveals
rectangular matrix blocks too. Therefore, the approximation may be improved by checking
admissible blocks in different levels of 7; and 7 resulting to a block inhomogeneous 77;.
Naturally, the tree construction time is increased. For matrices carried out in the results of
chapter 6, the additional construction time is negligible compared to integration time.

Because of the separation of matrix entries in blocks, information is lost about their
geometrical association without any countermeasures. In order to reunite the trees, the
traversing of the matrix structure has been implemented in a particular way. For all as-
sociated sub-matrices M;; the block cluster tree 77« is the same and so are their leafs
by € Tjxy. Traversing the correlated trees Tj.; ;; simultaneously, they are linked together
and stored in a group of associated leafs by = {b, : by = b € TrxJ,ij}-

Coarsening and Recompression Related to the traverse of the block cluster trees
is the application of a three-stage recompression technique too. First, every admissible
matrix block M;j|,, € R™¢ is subject to a truncated SVD as described in section 4.1.4.
Second, every node b, € T;«; whose children are all admissible leafs, is a candidate for
the coarsening procedure described in section 4.3.2. Third, if the rank of the resulting
Ri-matrices is in the magnitude of the block size n = min{r,c} where k = n/2, then the
representation as a full matrix is more efficient and cheaper in terms of storage. Thus the
factorization is expanded. All these recompression techniques happen in place to avoid
storage overheads. As a consequence, the traverse algorithm collects all inadmissible leafs
b, nodes b, all nodes by whose fathers are not of type b, and connect them to b s Ec and
by. The corresponding implementation is illustrated in Algorithm 4.

Integration Another impact of subdivided system matrices is the fact that directional
data |« — y| needs to be calculated multiple times if implemented in a naive way. This
is optimized by putting all b s b. and b; to a stack, which can be treated in parallel by
assigning a group of associated leafs to one single processor. For every b the directional
data requested by ACA, hence the complete matrix based kernel, is stored temporarily in
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Algorithm 4 The traverse of block cluster tree Ty

1: procedure TRAVERSE(D)
2 if all children of all b; € b are leafs and (4.6) holds then
3 INTEGRATECOARSEN(D)
4 else
5: by=0,by=0,b;=0
6 for all children of b; € b do
7 if b; is a leaf then
8 if (4.6) holds for b; then
9: add b; to by
10: else
11: add b; to by
12: end if
13: else
14: add b; to b;
15: end if
16: end for
17: TRAVERSE(D;)
18: INTEGRATERECOMPRESsLowRANK(Eg)
19: INTEGRATEFULL(b )
20: end if

21: end procedure
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a container. If the ACA algorithm requests rows or columns corresponding to the same
characteristic points in different sub-blocks, they are instantly taken from that container.
In case of a pivoting strategy where the first pivot point is chosen to be the barycenter of
the bounding box B, this is the case at least once. It has been observed, that the pivots
overlap in many instances and therefore the procedure is accelerated significantly.

For the construction of Rj-matrices by kernel interpolation the application is straight-
forward. Since kernel evaluations are carried out only between the interpolation points
|@y — g | for matrix S in the low-rank representation VSWT (4.14), the entries are spread
to the corresponding M;; instantly. It is also interesting to see that for the discrete opera-
tors which do not involve the 7 (2.4), the entries of W are the same for all M;;. However,
pivots of S come into play if HCA is taken to construct R;-matrices and for the proposed
matrix structure the stack of b is needed again. Notably, if the low rank approximations
are set up by means of kernel interpolation alone, the proposed matrix partition would not
be necessary. For entries of WT, the integration of the interpolant is carried out exact with
the proper choice of Gauss rule.

As a consequence of the issues addressed in this section, the implemented approach
seems to be the most flexible one. Thus, the construction of R;-matrices with ACA or by
kernel interpolation is easily exchangeable with respect to the implemented structure of
‘H-matrices.

5.3 Matrix Operations

Due to the matrix representation presented in section 5.1, an additional stage of nesting is
introduced for the block solution procedures of section 3.3. The same holds for many other
operations in terms of linear algebra. In the realization of these operations, the flexibility of
the HLib is greatly exploited. An additional tree structure representing M;; is put over, thus
the block procedures already implemented in the software library are taken and adopted.

Kriemann [63] presented the parallelization of the most important H-matrix operations
for shared-memory systems. However, this implementation is only available in the com-
mercial version of the HLib. Thus, a parallel version of the matrix-vector product has been
utilized exploiting the sub-matrix structure of the described system matrices.

Remark: It has been observed that the performance of linear algebra operations with the
HLib might slow down if a parallel LAPACK [1] implementation is used. This is due to
the fact, that blocks M|, of an H-matrix are usually relatively small. Thus the compu-
tational overhead preparing threads undoes the benefit of using more central processing
units (CPUs).

Schur Complement In order to couple the presented methodology to other numeri-
cal methods, a coupling strategy by means of Lagrange multipliers [92] is suitable. The
proposed approach works well if boundary and finite element methods are used simulta-
neously. However, for a pure BEM coupling the all-floating boundary element tearing and
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interconnecting (BETI) method [77] is the method of choice. Especially unbounded do-
mains are problematic with domain decomposition approaches, thus a combination with
with the proposed fast formulation treating such domains suggests itself. In this formula-
tion non-linear behavior is only present in form of additional terms on the right hand side
of the system of equations. Thus, the application to BETT is straightforward. By using the
all-floating approach, the Schur complement (3.16) simply yields to

S=V 'K

since I'p = 0 for all sub-domains. Dirichlet boundary conditions like roller bearings are
treated like special sub-domains and taken into account by the global solver. There-
for, problems with mixed boundary conditions are treated without destructing the pro-
posed block structure of system matrices. The described method has been implemented in
BEFE++ and is current field of research of different authors.

5.4 Explicit Elasto-Plastic Algorithm

With the system matrices in H-matrix format in hand, the elasto-plastic analysis is started.
As described in section 2.3 different numerical approaches are possible to solve the non-
linear, inhomogeneous system of equations. However, an explicit initial stress iteration
technique with constant Jacobi matrix Jg is taken, accepting lower convergence rates. Im-
plementing (2.29) and (2.30) directly is not necessary and would imply elaborate opera-
tions with system matrices. Hence, the needed quantities are calculated in place using the
discrete system of equations and the RRA. The latter is used as a black box and for the
simulation of soil and rock, models described in [42, 86] are taken.

The step-wise solution of linearized problems is incorporated as follows. First, the total
external load g = (gD gN) is applied and a purely elastic solution is carried out (3.8) by
setting o, = 0. With (3.11) the resulting stresses are calculated at all stress points in the
domain or on the boundary by means of stress recovery. The stress state is compared with
the yield stress of the material, resulting in a load factor which determines the factorization
of the load increments g* per load step s [40]. Depending on the robustness of the taken
material law, the number of load increments S might be set individually or even to § = 1.
For all load steps s € {1,...,S} the following procedure is the same.

The algorithm is starting with the initialization denoted by the iteration step n = 0, which
occurs as a subscript in the involved quantities. While still o, o = 0, a linear solution tg
and ug is found initially. Using (3.11) again, the total stress state o for the current load
step is determined and checked against the yield criterion (2.28) returning an admissible
stress state. By using (2.19) and (2.32) the first initial stress state ¢, | at iteration step
n =1 is obtained.

What follows is an iterative process where (3.8) and (3.11) are used in their incremental
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form
Voo —Kpn\ (ton) _ (Nor) .
(VND —KNN) <1’1N7n) - <NNP) Opn (5.5)

o, =V't,—Ku,+No,,. (5.6)

and

In (5.5) the known Cauchy data is not present anymore since the equilibrating forces arise
from initial stresses only. With &, on the right hand side the full set of incremental
Cauchy data t,, and w,, is determined and used in (5.6) to find the stress increment &,.
Now the elastic trial stress (2.20) is calculated and with (2.28) the new correcting stress
increments &, ,11. The procedure is repeated until

llgpall o (5.7)

||d'p,l|

where €5 denotes the allowed tolerance for equilibrium. The initial stress iteration tech-
nique is summarized in Algorithm 5.
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Algorithm 5 Initial stress iteration

1: procedure PLASTICITERATION
2: determine S and wy Vs € {1,...,S}

3 o5 '=0,0'=0

4: foralls € {1,...,S} do

5: calculate g*

6: n:=0

7: t,,u, < (3.8) with o, g = 0";,

8: oo+ (3.11)

9: Op1 < RRA(o(,0?)

10: n:=1

11: while condition (5.7) = false do
12: t,, u, < (5.5)

13: o, + (5.6)

14: Oen +— (2.20)

15: pnt1 < RRA(G, 5, 00)

16 t,:=t,+t,,u,:=u,+0,, 0,:=0,+6,, 0
17: n:=n+1

18: end while

19: o’ = o,
20: end for

21: end procedure

s
p

R S -
=0, +0pn




6 Numerical Results

The following numerical results show the solution of elastic homogeneous and inhomoge-
neous as well as elasto-plastic problems taking the fast BEM by means of H-matrices as
described in the previous chapters. To test the efficiency, all calculations are carried out
with the software package BEFE++ and the implementation described in chapter 5. The
algorithm is crosschecked by two academic examples in two and three dimensions. Stati-
cally loaded by means of vertical and internal forces, a beam is analyzed and verified with
analytic solutions. The successful application to the initial stress iteration technique as
described in section 5.4 is demonstrated by means of a circular tunnel excavation. Finally,
the effectivity of the matrix approximation is studied with the examples of a tunnel cross
passage and a pile foundation in a half-space.

All tests are realized on a SunFire X4600 M2 computer with 8 AMD Opteron CPUs
running at 2.4 GHz core speed under Debian Linux. The LAPACK [1] implementation
has been taken from the AMD Core Math Library (ACML) [76]. Although most parts
of the code use shared memory parallelization implemented by means of the OpenMP
specification [80], the calculations are done in serial with one CPU if not otherwise noted.
This guarantees a better comparison related to speedup factors of matrix construction and
operations.

To measure the performance of the H-matrix algebra, the compression factor

St(Mf)
= 1
M= St(My,) (1
and the speedup factor
4 .
sw="" with 1 =1(0p(My)), tn=1(Op(My)). (6.2)

Iy

are introduced. The subscripts denote quantities originating from fully populated matri-
ces My and data sparse H-matrices My, respectively. For algorithms with optimal linear
complexity the factors should behave like O(n) if n — oo for the matrix-vector product
and the storage requirements. In this chapter, n denotes the size of the corresponding sys-
tem matrix M € R™*". For the purpose of better comparison between the different system
matrices, a factor

b= no / nr

is defined. The factor denotes the ratio of stress equations ng and the degrees of freedom
nr on the boundary mentioned in chapter 5. Therefore, the system matrices N € R"T %",



6.1 Beam 74

V' e R"e*"r and K’ € R"@*"T" have been treated by a fictitious size setting

n= \/bn% (6.3)

as if they would be in R"*",

6.1 Beam

To verify the accuracy of the constructed matrices as well as to compare different dis-
cretization schemes the academic example of a linear elastic beam is investigated in this
section. The beam is depicted in Figure 6.1. The geometry, material data as well as the
applied forces are given in Table 6.1. Young’s modulus E, cross section A and the geo-

L ¢ L

1 7
q(x)

A 4 A 4 A 4 A 4 A 4 Y
N

]
N x, u(x) Oyx
A,
z,w(x)

Figure 6.1: Beam subject to vertical loading and under constraint induced by initial stress

length £=10m

cross section A=1x1m?

area moment of inertia [=0.0833m*
Young’s modulus E=2.1-108kN/n
Poisson’s ratio v=0

vertical load qo = 10kN

initial stress Oyx = S0000kN/m?

Table 6.1: Geometry and material properties of the beam

metrical moment of inertia as well as the vertical loading ¢ = g and the initial stress Oy,
are considered to be constant along the beam. Since the ration of height length is 1/10,
the Euler-Bernoulli beam theory is applicable for comparison. Therefore, the problem is
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described by the boundary value problem: find the deflection w(x) so that

Y
(Elaa_ﬁ) (x) = q(x) Vxe Q=1{0,...,0}
ow ow
E(O) = g(f) =0
w(0)=w({) =0

The behavior in axial direction is decoupled from the beam theory and described by the
boundary value problem (1.1). Since the initial stresses are evenly distributed along the
beam, no axial displacements u occur and their influence is indicated by constant internal
normal forces N and reacting forces on I'p. The solution for the considered problem is

B (-5 6))

w(x)
u(x) =0,
N(x) = ACyy,
qol X
Vi) =5 (1—22),
14

where V is the shear force and M the bending moment.
The considered problem is modeled in three dimensions as shown in Figure 6.2. Due to

uy

Figure 6.2: Deflected beam by means of quadrilateral and hexahedral elements

the external load and the applied initial stress, all system matrices in (3.8) and (3.11) are
used and a mixed boundary value problem shall be solved. Again, attention is invited to the
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fact that only matrix parts on the right hand side related to non-zero boundary conditions
are assembled. The parameters for the construction of the H-matrix approximation are
constant throughout this study and given in Table 6.1. All rectangular shaped system
matrices M € R"*¢ with r # ¢ are based upon a inhomogeneous block cluster tree. Matrices
where r = ¢ are constructed by level consistent block cluster trees. The minimal leaf size
is set to ny,;,; = 50 for all examples.

approximation tolerance ey = 10~%

minimal leaf size Nyin = 50

solver accuracy €rs =107
admissibility factor n=2

clustering strategy geometrically balanced

Table 6.2: Parameters for H-matrix construction of the beam example

The beam is discretized by quadrilateral or triangular elements for the boundary ap-
proximation. In order to apply initial stresses, hexahedral or tetrahedral cells are taken
respectively. The deflected beam for both types of discretization is shown in Figure 6.2
and Figure 6.3. Naturally, the order of displacement interpolation is chosen to be linear or

VI
Fdeb
“8e-6
1265
-1.537e-5
N
4
o«

Figure 6.3: Deflected beam by means of triangular and tetrahedral elements

quadratic in Sj,. The piecewise interpolation functions for the traction and stress field are
always one order less and in S, .

In order to asses the numerical results, the beam deflection along the x-axis is shown
in Figure 6.4 for discretizations with quadrilaterals and triangles with linear and quadratic
trial functions for u respectively. Obviously, the simulations converge to the Euler-Bernoulli
solution with increasing degrees of freedom n. Interestingly, quadrilaterals with quadratic
trial functions for u and linear for 7, show larger deflections with less elements than the
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(a) linear quadrilaterals 105 (b) quadratic quadrilaterals

1072

—— Bernoulli

0 2 4 6 8 10 0 2 4 6 8 10
x(m) x(m)
10-5 (c) linear triangles 10-5 (d) quadratic triangles
0
—05F 2
£
2
-y n=114
e n=1524 || 1 N e n = 1098
----n= 18666 ----n=10098
—— Bernoulli | —15F —— Bernoulli [
0 2 4 6 8 10 0 2 4 6 8 10
x(m) x(m)

Figure 6.4: Beam deflection w(x) for different discretizations

converged solution as shown in Figure 6.4(b). Internal forces have been verified for con-
stant quadrilateral cells in Figure 6.5. Although constant trial functions for the stresses are
taken, the internal forces show good agreement with the Euler-Bernoulli beam. Therefore,
the matrix approximation does not affect the total results.

Now, matrix properties are investigated. First, the compression factors (6.1) of the ap-
proximated discrete single and double layer potentials by means of ACA are examined.
The results for different approximation schemes are shown in Figure 6.6. It is observed,
that there are almost no differences between triangular or quadrilateral discretization. Ex-
cept for linear triangles and the right hand side (RHS) matrix which corresponds to parts
of the discrete single layer potential V in this example. A remarkable better performance
is observed and can only be partially explained by the smaller support of their shape func-
tions. As expected due to the larger support, the left hand side (LHS) mainly consisting
of double layer potential matrices does not compress as well as the RHS for both, linear
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Figure 6.5: Beam internal forces for different numbers of cells along the cut line n,

and quadratic displacement interpolation respectively. The overall behavior for the smaller
matrices in Figure 6.6(a) is good and nearly linear for the larger matrices in Figure 6.6(b)
like expected.

The compression factors of system matrices related to the stress field or the stress equa-
tion (3.11) are investigated in Figure 6.7 for different element types and the previously
explained combination of linear and constant trial functions. The plot for the discrete
Newton potential N and volume potential N’ are shown in Figure 6.7(a). The former show
the expected compression rates. In comparison, the compression of the latter is reduced.
For the geometry of this example, the performance of V' and K’ are in between the Newton
and volume potential.

Summarizing the sparsity of the system matrices carried out by means of ACA, the
discrete boundary integral operators of the first equation show the expected performance
and so does the Newton potential. Since the collocation points are in the considered do-
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(a) linear u, constant ¢ (b) quadratic u, linear ¢
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Figure 6.6: Compression factors for system matrices with different discretization schemes
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Figure 6.7: Compression factors for domain matrices with different discretization schemes

main and one characteristic point is associated to 6 stress values, the compression of all
matrices in (3.11) is reduced whereas the volume potential N’ ends up with the weakest
performance.

The kernel interpolation technique is now applied to the same task. The numerical re-
sults are based on linear and constant interpolation for physical quantities. The order of
kernel interpolation is set to 3, resulting to a fixed rank k = 3° = 27 of the approximated
matrix blocks beforehand. The recompression and coarsening technique described in sec-
tion 4.3.2 and section 5.2 has been applied to both, ACA and kernel interpolation. The
outcome is shown in Figure 6.8 for comparison. Although both approaches show similar
capabilities for matrices related to the boundary only, kernel interpolation seems to per-
form better if domain terms are involved. The most significant differences are observed
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Figure 6.8: Comparison of compression factors between ACA and kernel interpolation

for V' and N’ respectively. A weakness of kernel interpolation is the rank which is fixed
beforehand. The results of a study on the influence of the interpolation order is shown in
Figure 6.9. The relative approximation error of the matrices compared to the full matrices
is measured in the Euclidean norm and calculated by equation (6.4).

My — My|
E= —— (6.4)
M|l

Although the tolerance of ACA is set to be e3; = 10~%, the approximation error is bet-
ter than that, at least for the considered model geometry. An interpolation order of 2 is
clearly insufficient to reach the desired accuracy for the system matrices in (3.8) but might
be acceptable for matrices of stress equation (3.11). For the volume potential where the
compression factors are better than for ACA, the kernel interpolation of order 2 performs
well also in terms of accuracy. Surprisingly, the desired accuracy for the approximation
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Figure 6.9: Approximation accuracy for ACA and kernel interpolation

of the Newton potential is achieved only by interpolation order 4. A better behavior is
expected if the order of interpolation might be variable per block. But clearly, the imple-
mentation lacks of a criterion for the interpolation order depending on the distance of the
cluster bounding boxes.
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6.2 Circular Tunnel

To verify the fast initial stress iteration technique, a circular two-dimensional plane strain
tunnel excavation in an infinite domain is simulated. Linear trial functions for u, t and o
are taken. The discretization of the interior, potentially plastic zone extends to r, as shown
in Figure 6.10. The input data for this example are given in Table 6.2. The traction loading

Waaday,
R
Sy,

%% i
LT
L

Figure 6.10: Circular tunnel excavation and its discretization

on the surface is derived from a chosen virgin stress state oy by multiplying the outward
normal to the boundary. A Hyperbolic Mohr-Coulomb Material model [42] has been used
in such a way that it represents the Drucker-Prager yield criterion.

inner radius ri=6m
outer radius 7. =18m
Young’s modulus E =28000MPa
Poisson’s ratio v=0.32
cohesion c=15.0MPa
friction angle ¢ =28.5°
virgin stress 00,yy = —34MPa
00, = —27MPa
00,z = —27MPa
00,ij = 0,Viz# jwithi,j € {x,y,z}

Table 6.3: Input data for the deep tunnel excavation

The calculations are compared with a coupled FEM-BEM reference solution where the
region of plasticity ; < r < r, is covered by FEM and the outer, purely elastic domain
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r > r, by BEM. In the first study the parameters for the H-matrices given in Table 6.2 are
kept constant and one load step is applied. For matrix approximation, ACA has been used.

approximation tolerance ey =104

minimal leaf size Mpin = 50

admissibility factor n=1

solver accuracy €rs =107

nonlinear residual tolerance €6 =103

clustering strategy geometrically balanced

Table 6.4: Parameters for simulation of circular tunnel

The results for the radial and tangential stress along a horizontal cut line are shown in
Figure 6.11(a) and Figure 6.11(b) respectively. The algorithm converges with increasing

() (b)

! —-50
--- m=2900
----m=4800
---------- m = 9240 —60
—— reference [
N < =70
L &
S =
9 ] g —80
--- m=2900
----m=4800
e E 7 I m=9240 | |
= N —— reference
| | | _100 | | | | |
12 14 16 18 6 8 10 12 14 16 18
r(m) r (m)

Figure 6.11: Radial stress (a) and tangential stress (b) along a horizontal cut-line with dif-
ferent number of stress points m for the circular deep tunnel excavation

degrees of freedom on the boundary and stress points m in the interior. For this two-
dimensional example, the size of the stress vector in equation (3.8) is ng = 3m. The
stress distribution for two different discretizations is shown in Figure 6.12 exemplarily.
It is realized that the usage of the H-matrix algebra does not introduce any instabilities
or inaccuracies to the converged solution. In Table 6.2 the required storage per stress
equation, the compression rates and speedup factors for the discrete volume potential N’ €
R"e*"e are shown. Like for the beam example in section 6.1 the volume potential N’
appears to be the most problematic discrete operator for both benchmarks. Starting with
an approximate matrix size of ng = 20000 the used storage per stress value increases only
moderately. The speedup for the creation of the system matrix behaves almost linear.
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Figure 6.12: Stress distribution around the circular tunnel for (a) 504 and (b) 2900 cells

Finally, a discretization with ng = 24132 stress equations has been chosen to investigate
the influence of the approximated volume potential’s accuracy €3, y». The outer radius
is reduced to r, = 10m so that many matrix blocks correspond to the plastic zone. The
tolerated error for all other matrices is set to ey = 1075, In Table 6.2 the influence on
the important settlements of the tunnel as well as the compression rate and the matrix
construction time is shown. It can be seen that at least for that example the accuracy can
be set to a lower level while dealing with the displacements u,,,,. This is admissible as
long as (3.8) and the boundary integrals in (3.11) are accurate enough. There is a factor
1.7 gain in matrix-compression but only a slight speedup in construction time compared to

an accuracy of 1074,

The investigation is concluded with Table 6.2 where again ng denotes the number of
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no KB/ng ¢y S
1512 10.53 1.25  0.99
4200 14.58 241  1.14
8820  20.06 3.60 1.77
14400 24.08 483 255
19200 27.38 5.65 3.10
23760 27.05 7.07 494
27720 28.86 7773  5.12
31080 29.87 833 535
35100 30.82 9.12 6.80
38400 31.04 990 -
45000 32.51 11.03 -

Table 6.5: Storage requirement, compression rate ¢y and speedup sy for different sizes
nq of the approximated discrete volume potential N’ for the circular tunnel

excavation

EXN'  Umax (m) CH SH

10-1 0.020183702 21.46 8.39
1072 0.020345300 14.99 7.73
1073 0.020346800 11.34 7.33
107%  0.020346900 9.08 6.79
107> 0.020346900 7.42 6.33

Table 6.6: Influence of the approximation-accuracy of N’ on the surface settlements for the

circular tunnel excavation

stresses to be calculated in the interior, #iter the number of iterations needed for the algo-
rithm to converge. As seen in chapter 5 this includes the solution of (3.8), the evaluation
of (3.11), the valid stresses and the residual per step. The speedup for the iteration and
for the whole calculation is shown. It is interesting to see, that the number of initial stress
iterations stays almost constant for finer discretizations. This suggests, that in this example
the effect on the accuracy of the nonlinear algorithm is rather small at a certain level of

refinement.
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no #iter Sy iter SH total
1512 59 1.06  0.99
4200 66 143  1.12
8820 69 252 172
14400 71 342 2.46
19200 72 393 294
23760 73 5.61 474
27720 74 597 5353
31080 74 6.02 5091
35100 74 6.28 641

Table 6.7: Speedup of the nonlinear iteration and the complete algorithm for the circular
tunnel excavation
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6.3 Tunnel Cross Passage

To show the robustness of the implemented matrix approximation technique, tunnels with
a cross-passage in three dimensions by means of a real world example are tested. The
behavior of the H-matrix arithmetic is investigated. The discretized problem is shown
in Figure 6.13. The tunnel surface has been meshed with flat triangles (green) and is

Figure 6.13: Discretized tunnels with cross passage

surrounded by a box which is discretized with tetrahedral elements (blue). For such a
geometry it is nearly impossible to generate a cell mesh consisting of hexahedral elements.
Linear trial functions are chosen for the displacement interpolation, constant ones for the
tractions and stresses. The parameters for the simulation are found in Table 6.3. The
minimal leaf size n,,;, varies depending on the mesh size.

approximation tolerance ey = 1074

minimal leaf size Nmin = {40,...,100}
admissibility factor n=1

solver accuracy €rs =100

clustering strategy geometrically balanced

Table 6.8: H-matrix parameters for the simulation of a tunnel cross passage

The ‘H-matrix structure of V,, with a matrix size of 1598 (4794 degrees of freedom in
total) is shown in Figure 6.14.  Again, the numbers reveal the rank of the corresponding
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Figure 6.14: H-matrix structure of V,, (a) and Ky, (b) for the tunnel cross passage with
4795 degrees of freedom

matrix block. The rank of the blocks of the other sub-matrices V,y, V,, and V,, does not
show any significant differences. A geometrically balanced clustering scheme has been
taken. Although the structure of both matrices is similar, the double layer potential K
shows an increased rank in its blocks compared to the single layer potential V.

The construction time and the storage requirements of the system matrices have been in-
vestigated. In Figure 6.16 it is shown that for the discrete single and double layer potential
an almost linear behavior in terms of storage can be observed. The compression of N’ suf-
fers again from its 6 x 6 block structure. The weaker performance is realized by Figure 6.15
depicting the structure of the sub-matrix Nlll, 11- The near field P~ is much larger than ob-
served for other system matrices. Since the degrees of freedom on the boundary nr and
the number of stress points ng diverge, the matrices N, V' and K’ are of a stretched rectan-
gular shape. In that case the strategy for the block cluster tree influences the compression
rate and an inhomogeneous clustering scheme as described in section 4.2.3 provides the
best results. The admissibility between the row- and column-clusters is checked also on
different levels. The storage per degree of freedom, compression rate and the overall con-
struction time for the system matrices N, V/ and N’ is listed in Table 6.3, Table 6.3 and
Table 6.3 respectively. Although the ratio b increases, the compression rate stays almost
the same. The required storage per fictitious degree of freedom n (6.3) and the construction
time increase only moderately.
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Figure 6.15: H-matrix structure of the volume potential sub-matrix N/, |, € R("e/6)x(na/6)

for ng = 24030

no b

KB/n

CH

ty (s)

24030 14.8
40476 24.9
44292 239
52800 23.0
65166 28.4

27.65
35.58
37.99
45.13
49.69

1.76
1.78
1.86
1.90
1.88

238.9
454.5
573.3
797.7
1205.2

Table 6.9: Storage requirement and construction time of N for the tunnel cross passage

no b

KB/n

CH

ty (s)

24030 7.5

40476 12.7
44292 12.1
52800 11.7
65166 14.4

31.81
39.59
41.01
48.75
53.38

2.15
2.24
242
2.48
2.51

499.4

1138.5
1588.0
21404
2753.1

Table 6.10: Storage requirement and construction time of V' for the tunnel cross passage
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Figure 6.16: Sizes of V, K and N’ for different discretizations of the tunnel cross passage

ng

b

KB/n

H

ty (5)

24030
40476
44292
52800
65166

14.8
24.9
23.9
23.0
28.4

30.12
38.91
41.64
52.50
58.08

1.62
1.63
1.70
1.64
1.65

1488.9
3757.2
6425.9
7278.4
11416.8

Table 6.11: Storage requirement and construction time of K’ for the tunnel cross passage
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6.4 Pile Foundation

Pile foundations are a classical exercise for boundary element formulations since they are
usually embedded in a half-space. An example is shown in Figure 6.17. Forces from build-

u’z
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£-0,0001
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=-0.0003
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-0.000436

Figure 6.17: Settlements of a pile discretized by means of quadrilaterals

ings are transmitted through the foundation and imposed along the pile into the ground. To
avoid the need of the discrete pile, constant tractions are imposed as boundary conditions
along the pile surface for simplicity. In this section, different clustering strategies are tested
and their performance is compared. The results are only considered in terms of the result
vector u whose accuracy is measured in the Euclidean norm

Juy—uy| . 2 N2
=-———— with |[u|"=) (u[i])".
YAl ,Zi

As described in section 4.2, different clustering strategies are tested: geometrical reg-
ular, geometrical balanced, cardinality balanced as well as clustering by means of PCA
and regular boxes like in the FMM. The pile is discretized by 6257 quadrilateral bound-
ary elements. Linear trial functions are used to describe the displacement field, constant
ones for the traction interpolation. Hence, n = 18699 degrees of freedom are identified.
Table 6.4 shows the chosen parameters. The calculations are carried out by one CPU.
The Rj-matrices are constructed by both, ACA and kernel interpolation. First, compres-
sion rates are investigated and the results shown in Table 6.4. Like in the example with
the deflected beam in section 6.1, ACA seems not to find the best overall approximation.



6.4 Pile Foundation 92

approximation tolerance ey = 10~%

order of interpolation ki=3
minimal leaf size Nyin = 60
admissibility factor n=2
solver accuracy €rs = 1072

Table 6.12: Parameters for the simulation of a pile foundation

For the chosen parameters, the accuracy is better than expected and therefore the compu-
tational effort higher than needed. By taking kernel interpolation of fixed order k; = 3, the
approximation seems just fine. The compression factors are slightly better for almost all
chosen clustering strategies. Proposed in literature, cardinality balanced and PCA based
clustering is well suited for low rank approximations by means of ACA. In this study and
for the particular geometry, this is only partly reproduced. Geometrically balanced and
PCA trees perform best for both approximation techniques. Geometrical regular cluster-
ing is not suited for the H-matrix approximation by the described implementation. ~ As

cardinality — geometric pca regular  regularbox
ACA
1y 39-10°® 4.17-10°°® 4.73.10° 4.13-10°% 4.13-10°¢
CHY 7.91 8.2 9.0 1.89 1.89
€3 K 52-107%  5-100*  529-107* 1.32-107* 1.32-1077
CHK 6.41 6.91 7.40 2.63 2.63
kernel interpolation
€3V 1.94-107% 1.46-107* 1.66-107%* 1.26-107* 1.26-10~*
cny 8.06 8.48 9.13 1.88 1.88
€M K 1074 1074 1074 1074 1077
CHK 6.72 7.19 7.79 2.72 2.72

Table 6.13: Accuracy and compression rates for different clustering schemes

far as calculation times concern, ACA is supposed to perform better at least for boundary
integrals. This becomes clear in Table 6.4. The computation time of kernel interpolation
for all clustering techniques is significantly higher than for ACA. For the right hand side
which correlates to the single layer potential on the pile boundary with non-zero tractions,
geometrical balanced clustering is superior to all other schemes. On the other hand, PCA
performs best for the discrete double layer K on the whole boundary which correlates to
the left hand side.  To visualize different clustering strategies applied to the considered
geometry, Figure 6.19 shows the H-matrix structure of the LHS and Figure 6.18 of the
RHS carried out by ACA.
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cardinality geometric pca regular regularbox
setup 77, Trxy 0.87 0.78 0.76 2.23 2.29
ACA [s]
integration V [s] 527.3 5235 529.8 927.1 926.7
integration K 2452.4 2374.9 22557 3082.4 3117.1
solution 36.4 22.8 25.6 74.1 74.7
total 3038.3 2946.3 2825.7 4152.2 4187.9
kernel interpolation [s]
integration V [s] 790.5 699.1 753.4 1396.4 1402.5
integration K 13082.8 15151.9 11892.0 26771.4 26831.4
solution 353 22.4 253 73.6 74.9
total 13931.3 15899.8 12687.3 283179  28388.5

Table 6.14: Total running time and timings for setup, integration and solution
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Figure 6.18: H-matrix structure of V,, by means of geometrical balanced (a), cardinality
balanced (b), PCA (c) and geometric regular (d) clustering
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Figure 6.19: H-matrix structure of K,, by means of geometrical balanced (a), cardinality
balanced (b), PCA (c) and geometric regular (d) clustering



7 Conclusion

In the previous chapters, a fast boundary element method (BEM) to solve linear elas-
tic and elasto-plastic problems has been presented. By using domain discretizations, the
method allows the solution of inhomogeneous problems in terms of body forces or inter-
nal stresses. The implementation is tailored to solve tasks in underground construction,
where regions of plasticity are localized near the tunnel face or inclusions in situ. This fact
permits the usage of the BEM only instead of a coupled approach with the finite element
method (FEM). An initial stress iteration technique has been utilized in order to solve the
nonlinear plasticity problem. To achieve nearly linear complexity, the concept of hierar-
chical matrices (H-matrices) has been deployed to the formulation. The implementation is
to be seen as a step towards the aim to provide a fast and reliable, boundary based simula-
tion tool for the field of geotechnics. To obtain a robust formulation, the following features
have been super-induced to the simulation software BEFE++.

The trial functions on the discrete boundary for the primal and dual variable respec-
tively can be chosen individually and independent of the geometry description. In order
to employ a block system of equations, the collocation points are chosen carefully. To
allow discontinuous traction distribution the points are located inside the element on the
Dirichlet boundary. At the region subject to inhomogeneity, the discretization is chosen
completely independent of boundary elements. Moreover, domain variables may be in-
terpolated discontinuous or continuous, disregarding the geometry description, too. To
avoid hypersingular integral kernels, the stress points are located inside the domain. As a
consequence all system matrices consist of entries originating from the same fundamental
solution. This is a preliminary for the applied fast method in order to guarantee asymptot-
ically smooth kernels.

The sparsity of H-matrices is based on approximations of matrix blocks by the bias of
low rank matrices (/Ry-matrices). For the purpose of matrix separation, cluster trees which
are based on geometric information have been employed. The block partition of matrices
is carried out by means of different strategies which have been outlined. Furthermore, two
major strategies were shown in order to find an approximating Rj-matrix for admissible
matrix blocks. Namely, the adaptive cross approximation (ACA) algorithm as well as the
concept of kernel interpolation. Although ACA is considered to be less intrusive in terms
of software implementation, the application to vector valued problems like elasticity or
elasto-plasticity demands some special arrangements which have been established. Never-
theless, the algorithm produces a rather good approximation with adaptive rank. By taking
kernel interpolation the rank is fixed beforehand and usually too large. With the aid of
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appropriate recompression algorithms the rank is reduced significantly. In order to solve
the system of equations once and in case of elasto-plastic analysis even multiple times, an
iterative solver is implemented. To narrow down the number of iterations, a data sparse
preconditioner based on hierarchical LU factorization is taken which does not constrain
the overall complexity.

The implementation has been verified by several examples. The most important aspect
is the invariance of the results if the H-matrix arithmetic is applied. By taking an appropri-
ate tolerance for the matrix approximation, i.e. in the same magnitude as for the nonlinear
iteration technique, there is no significant change in boundary results, stress results in the
domain or the rate of convergence for the initial stress iteration. But with the addition
that solution times and storage requirements are remarkably reduced. The system matrices
representing boundary integrals show the expected almost linear behavior in terms of stor-
age and complexity of matrix operations for fairly small degrees of freedom. This applies
to the discrete Newton potential too. Problems associated with matrix compression have
been observed for the volume potential in the stress integral equation. This is partially
explained by properties of the corresponding trial functions and their support. Compared
to boundary elements, cells show larger diameters and so do the bounding boxes of cor-
related clusters. Additionally, stress points are not boundary concentrated anymore. As
a consequence, less clusters associated to stress points and clusters correlated to support
points become admissible. Into the bargain, the discrete volume potential is build upon
many sub-matrices. In case of three dimensions even 6 x 6 = 36. Hence, even if the sys-
tem matrix is rather large, the size of sub-matrices allocated for 7 -matrix construction is
reduced by a factor of 6. The results show, that the construction time of this system matrix
is remarkably slower than for the others. Promising is the expected overall behavior in
terms of complexity, starting from a larger problem size.

By taking the kernel interpolation technique instead of ACA, improvements are found
related to compression rates of almost all system matrices. However, the fixed rank results
to a computational overhead and construction time is higher than for ACA. The implemen-
tation needs a criterion for the order of interpolation. Moreover, since the bounding boxes
have different extensions for all spatial directions, an interpolation scheme with different
orders per direction would be optimal in order to reduce the produced rank. However,
the recompression and coarsening technique reduces the rank after creation and produces
approximations with the desired accuracy.

To address the problem concerning the volume potential, a formulation with plastic
multipliers as iterative quantities [39] could be used but would prevent a black box usage of
different material models in the implementation. Not only related to the described issue but
also in general, the application of kernel interpolation techniques must be topic for further
investigation. The implementation would benefit from the fact that kernel evaluations for
the far field are reduced significantly. This applies also to the evaluation and integration
of the corresponding interpolation functions. By taking hybrid approximation techniques
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[23] a further improvement in terms of construction time is predictable.

The presented thesis provides a number of starting points for future research work. Still,
the main focus is to avoid input data related to the domain. Adaptive generation of trian-
gulation as well as boundary only approaches have been proposed in literature. In context
of this work, a rigorous application of a Cartesian grid for the inhomogeneous domain is
proposed. There is no need of generating this grid by the user. If the grid is incorporated
in the clustering strategy and due to the translationally invariant fundamental solutions,
single matrix entries as well as whole matrix blocks are carried out once and may be used
multiple times in the whole matrix structure. This will speed up the construction of the
affected discrete integral operators. Since single matrix blocks could be set to zero without
memory consumption, a task would be to identify regions affected by plasticity and up-
date the corresponding matrix blocks on the fly. Hence, only parts of the system matrices
involved in stress calculations are not zero. This has to be embedded into the initial stress
iteration.

To further reduce the computational requirements, the application of hierarchical ma-
trices with linear complexity (#>-matrices) makes sense. A Cartesian grid in conjunction
with the kernel interpolation technique would greatly improve the method. 7{?-matrices
rest upon nested cluster bases which are readily constructed by means of the grid structure.
As mentioned before, the application to hybrid methods has not been done yet.

By taking a formulation which uses the consistant tangential operator (CTO) for the
iterative solution procedure, faster convergence is achieved. In order to update the resulting
Jacobi matrix, a quasi Newton method with low rank updates of the factorizations can be
used. This has been shown for the FEM [4] and is an open topic for the BEM. Related
to localization effects in plasticity, strain softening effects are successfully treated by the
BEM in [98]. Therefore, volume terms by means of non-singular kernels are needed,
which are appropriate to be treated by the H-matrix algebra, too and could be incorporated
in the method easily.

The sequential excavation process can be simulated by single region analysis with evolv-
ing boundaries [33]. In this context, the optimal structure and the mesh-related adaptive
update of the H-matrix are research questions to be answered. Adaptive updates of H-
matrices has been treated in a different context in [45].

Recapitulating the work in hand, a fast BEM formulation has been created which fulfills
the research objective stated in the beginning. The proposed approach shows its advan-
tages if the region of inhomogeneity is considerably small and the affected domain is
unbounded. On one hand, for many civil engineering works in underground construction
like deep tunnels, pile foundations or caverns this is clearly the case. On the other hand,
the implementation is not limited to such applications but also suitable for other problems
in elasticity with considered local plastic effects like i.e. contact or crack problems.
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