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Abstract
This thesis focuses on frequency with which words of a certain length occur in texts,
of a particular language, individual author or text type, i.e. “word length frequen-
cies”. However, there are many other boundary conditions that have to be taken
into account when modeling the word length, such as the choice of an appropriate
word definition and the relevant measuring unit for its length. Here, word length
is measured in the number of syllables where zero-syllable words, characteristic for
the Slavic languages, are considered to be a part of the subsequent word and hence
as a separate word class excluded from the analysis.

This study answers the question whether the word length frequency distributions
can be theoretically described and if so, is one discrete probability model sufficient to
describe them or is more than one model needed. Starting from the Poisson distribu-
tion, being a benchmark model for count data, we look for two-parametric Poisson
generalizations that allow for over-, equi- and underdispersion. Additionally, we
require the 1-displaced and the size-biased versions of the obtained distributions to
enable modeling when the zero frequency class is omitted. Furthermore, we show
that the parameters of theoretical discrete probability models fitted to the observed
data play an important role in the attribution of the text types considered.

Three different estimation techniques are compared and the performance of the
procedures is evaluated by Monte Carlo simulation studies. Finally, relevant models
are applied to real data (120 texts from both Slovenian and Russian languages).

Kurzfassung
Diese Arbeit konzentriert sich auf die Häufigkeit mit der Worte einer bestimmten
Länge in Texten einer bestimmten Sprache, eines individuellen Autors oder Texttyps
auftreten, d.h. wir diskutieren Wortlängenhäufigkeiten. Es gibt aber zusätzliche
Randbedingungen, die zu beachten sind, wenn man die Wortlänge modelliert, wie
die geeignete Wahl einer Wortlängendefinition und die relevante Masseinheit für die
Bestimmung der Länge. Hier messen wir die Wortlänge durch die Anzahl der Silben,
wobei null-silbige Wörter, die charakteristisch für slawische Sprachen sind, als Teil
des folgenden Wortes aufgefasst und daher als separate Wortklasse von der Analyse
ausgeschlossen werden.
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xiv ABSTRACT

Diese Studie beantwortet die Frage, ob empirische Häufigkeitsverteilungen von
Wortlängen theoretisch beschrieben werden können, und falls dies möglich ist, ob nur
ein diskretes Wahrscheinlichkeitsmodell ausreicht oder ob mehrere Modelle notwendig
sind. Ausgehend von der Poissonverteilung als Referenzmodell für Zähldaten, be-
trachten wir zweiparametrige Verallgemeinerungen der Poissonverteilung, die neben
dem Referenzfall auch Überdispersion und Unterdispersion abbilden können. Weit-
ers brauchen wir für die Modellierung der Wortlängenverteilung die 1-displaced
und size-biased Versionen der Verteilungen, da die Wortlänge zumindest 1 beträgt.
Zusätzlich zeigen wir, dass die Parameter der theoretischen diskreten Wahrschein-
lichkeitsmodelle, welche an beobachtete Daten angepasst werden, eine wichtige Rolle
bei der Zuordnung von Texttypen spielen.

Es werden drei verschiedene Schätzverfahren miteinander verglichen und die
Eigenschaften der Methoden durch Monte Carlo Simulationen evaluiert. Schließlich
werden relevante Modelle auf reale Daten (jeweils 120 slowenische und russische
Texte) angewandt.
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Foreword

The study of word length can be traced back to more than a hundred years long
tradition. Irrespective of the fact that the word, just like the sentence, has a central
role for any process of text construction, its length, as a separate theoretical category,
has been long neglected in linguistics and literature. Only recent studies dedicated
more attention to the question of the frequency with which words of a given length
occur in a text, i.e.“word length frequencies”. The theory of word length distributions
has been developed, providing the systematic evidence that the word length is not a
chaotic category, but follows certain regularities. These regularities result from the
interaction of diverse extratextual factors, such as the concrete language under study,
individual authorship, or text type, influencing both word length and word length
frequencies. Such external influences should thus be considered when searching for
an adequate probability model to describe the observed word length frequencies. The
choice of the appropriate model depends, however, also on theory-driven factors, in
particular the definition of the word and the choice of a measuring unit for its length.
Yet, there are no uniquely defined categories in language, and thus all linguistic units
have to be defined according to the objective of the research.

In Chapter 1, giving briefly the historical development of the word length studies,
we discuss some possible operational definitions of the term word, favoring, however,
different linguistic aspects. The ultimately chosen definition is of relevance for auto-
matic text processing and quantitative text analysis, but also adequate for dealing
with questions we are interested in. Moreover, we will show that the choice of a
syllable as an appropriate measurement unit for word length leads, especially in
Slavic languages, with particular accent on the Slovenian and Russian, to the prob-
lem of so-called zero-syllable words. Therefore, it is of utmost importance to make
the decision whether to consider or neglect these words as a separate word class,
since the resulting probability model depends on this fact. Subsequently, we discuss
important steps needed for a systematic and automatic analysis of the word length
frequencies for the Slovenian and Russian texts sampled. Lastly, some mathematical
notations are introduced.

Starting from the common Poisson model, be the benchmark model for the statis-
tical analysis of the count data, Chapter 2 highlights practical situations where the
requirement of the equality of mean and variance is not fulfilled. As a crucial value
to detect divergences from the Poisson model the index of dispersion δ (variance to
mean ratio) is introduced. According to whether δ > 1, δ ≈ 1 or δ < 1, one speaks
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xviii FOREWORD

of Poisson overdispersion, equidispersion and underdispersion, respectively. In order
to find a general model for word length frequency distributions, applicable to all
three dispersion situations, various approaches for constructing new distributions
are considered here. Moreover, two further possibilities for dealing with distribu-
tions when the zero frequency class is omitted are given. With a model chosen in
this way the next consequence is the estimation of the unknown model parameters.
We introduce three common estimation techniques, one of them especially benefi-
cial when the frequency of the lowest class is much higher than the other frequency
classes. The algorithm for generating random variables of the discrete distributions
considered in the forthcoming chapters is presented, and it is explained how to check
whether a certain model may be adequate or not.

Chapter 3 is devoted to Fucks’ generalized Poisson distribution and its further
generalizations and modifications. Our re-analysis of Fucks’ linguistic data provides
convincible arguments, that neither the Fucks–Gačečiladze distribution, nor the gen-
eralized Poisson model of Fucks, as its special case, can be accepted as an overall
theoretical model for word length frequencies, not even for those languages that form
their words from syllables, as Fucks himself claimed. Thus, based on this findings
we search for other generalizations of the Poisson model.

Since we primarily want to find the simplest model possible, that is both statisti-
cally interpretable but also meaningful for linguists, we restrict our further attention
to two-parametric Poisson generalizations only. In Chapter 4 the focus is on the main
properties of the Singh-Poisson (SP) distribution, whereas Chapter 5 describes in
detail the Hyper-Poisson model, frequently used for word length distributions but
also as a model of the distribution of the sentence length. Difficulties including the
computation and derivation of the confluent hypergeometric function are discussed
and problem-solving approaches are presented. The performance of the estimation
procedures is evaluated for both models by Monte Carlo simulation studies.

The generalized Poisson (GP) model, discussed in Chapter 6, approximates both
the negative binomial and binomial model, being thus suitable for over- and under-
dispersed count data. However, it allows also for modeling equidispersed data. One
of its two parameters measures dispersion, hence tunes the type of the distribution.
Based on simulation studies we evaluate whether the GP model or the SP model
perform better under the three dispersion situations. Because both distributions are
two-parametric we fix the first two moments to obtain meaningful comparison.

Chapter 7 provides evidence, that the Cohen-Poisson distribution, belonging to
the class of misrecorded Poisson distributions, is not a reasonable theoretical model
for the texts studied. The arguments are based on the index of dispersion.

The thesis ends with Chapter 8 applying the relevant models to 120 Slovenian
as well as Russian texts selected and presenting the main conclusions of the study
for both Slavic languages.

Graz, March 2012 Gordana Djuraš



Chapter 1

Introduction

1.1 Statistics Meets Linguistics

This study is an attempt to bridge the gap between humanities and natural sciences.
The starting point is linguistics, a science dealing with all aspects of describing and
explaining the nature of human language. It basically focuses on the analysis of lan-
guage structure, grammar, formation and/or modification of words and phrases, and
composition of grammatical sentences from these words. Other fields of linguistics
explore e.g. the meaning of words, language change over time, its history and the
use of language in texts. Quantitative linguistics in particular endeavors to detect,
describe and explain the underlying linguistics rules.

There are more than 5500 spoken languages in the world. Many languages use
words as their basic elements. Words are joined together in sentences that can be
long or short, simple or complex. Sentences put together create a text. Hence, at
the first sight, a text looks like a picture drawn by words. It may seem that these
words appear in a text chaotically, without any systematical order, but empirical
results show that these words follow a certain regularity.

We cross the borders of linguistics and turn our attention to statistics, looking
for the laws responsible for text generation. The question of frequency with which
words of a certain length occur in texts of a given language, of a given author or
of a given genre has raised interest among linguists. A new theory of word length
distributions has been developed. The word length and its frequency, as explanatory
variables, and the frequency distribution are in the center of our attention. This
study provides theoretical insight into the structural rules of text construction and
processing, trying to answer what is actually happening in the language and text.

Very early studies on word length frequency distribution assumed that there
might be a unique model for at least all those languages, which form their words
from syllables. This work has indeed an intention to show that a single model is not
sufficient to cover the wide spectrum of different texts from different languages. Even
more, texts from one single language but of different genres often show significant
differences in their word length distributions. Therefore, we are trying to distinguish

1



2 CHAPTER 1. INTRODUCTION

influences linked to the specific language and the ones beyond it. This thesis gives
answers to the following questions:

• Can the word length frequency distributions of our sampled texts be theo-
retically described, and if so, is one discrete probability model sufficient to
describe them, or is more than one model needed?

• If more than one model is necessary for the description of a particular text
sample, it may be beneficial to establish the connections between these models.
Even more, our interest is to find out whether models that come into question
can be derived as special cases (or sub-models) of one complex, unifying model.
Consequently, the differences that appear between models could be explained
through specific changes in parameter values.

• What is the influence of individual factors, such as text type or author on word
lengths and word length frequency distribution?

• Based on the answers to the questions above, it is further important to find
out whether one can discriminate texts by using the parameters of the given
model(s) as discriminant variables. In case of a positive answer, this would
give us the possibility to assign a certain text to a text group by classifying
the parameter values of the fitted model.

Looking for a suitable theoretical model to explain observed word length frequencies,
our aim is primarily to find the simplest model possible, i.e., a model with a minimal
number of parameters which is both statistically interpretable but also meaningful
for linguists and thus can be used for the characterization of texts and language(s).
In trying to find such a model we start from the Poisson distribution being the
simplest and most widely used one when modeling count data and searching for the
solution within the Poisson family. The statistical analysis is based on texts from
two particular Slavic languages, namely Slovenian and Russian.

1.2 Historical Background

Throughout history the problem of modeling the distribution of word length was
not only the interest of linguists, but also of scientists from other areas such as
physics, mathematics and statistics. In 1851 the English mathematician and logician
Augustus De Morgan was the first to point out the relevance of the length of a
linguistic unit. He mentioned word length as a possible style characteristic and a
useful indicator for identification and discrimination of authorship. In a letter to
a friend, he suggested to use the criterion of word length to find out who the real
author of the St. Paul’s Epistles is (cf. Lord, 1958). Moreover, concentrating on
the word length measured by the number of letters, De Morgan postulated that the
mean word lengths in two texts written by the same author, even though on two
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different subjects, are much closer to each other than in two texts written by two
different persons on the same topic.

Several other scientists have dealt with the same topic counting even the fre-
quency with which words of a given length occur in a text. The American physicist
and meteorologist T. C. Mendenhall (1887) tried to identify the author of a certain
composition through the frequency distribution of words of different length. Using
preferably graphical methods to represent results obtained, he assumed that “char-
acteristic curve” or “word spectrum” of any composition of the same author does
not differ essentially, indeed it distinguishes itself from the curve of another writer.
For that reason, he believed, his “word spectrum” method could be applied in cases
of disputed authorship. Comparing the word length frequency distribution of the
works of Shakespeare and Bacon, Mendenhall (1901, p. 104) found out that his re-
sult did not support long-standing claims that Bacon had been the true author of
the works usually attributed to Shakespeare. Being aware of the fact that varia-
tion can occur “between authors” but also “within authors” Williams (1940, 1956)
indicated the necessity to study many different works of the same author, written
in different styles, on different subjects and at different periods of his life, to find
out to what extent the author defines his characteristic distribution. Furthermore,
Williams (1975) showed that Mendenhall failed to consider “genre differences” that
could invalidate his conclusions. His numerous empirical investigations made one
incontrovertible fact very clear: the word length is not only influenced by the indi-
vidual style of an author, but may also dependent on diverse other factors, genre
being one of them (cf. Grzybek et al., 2005b; Kelih et al., 2005).

The first probability model concerning word length studies was constructed in
the 1940s. Observing the distribution of word length measured by the number of
syllables, S. G. Čebanov (1947), a Russian military doctor, found the Poisson dis-
tribution to be the most appropriate general model for texts of the Indo-European
group of languages (cf. also Best and Čebanov, 2001, p. 282; Best, 2005, p. 261;
Grzybek, 2006, p. 26). Independently, the German physicist Wilhelm Fucks (1955,
1956a, 1956b) came to a similar conclusion. He aimed at a mathematical description
of word formation through syllables by introducing a mixture of Poisson probabil-
ities, known as Fucks’ Generalized Poisson distribution (cf. Fucks, 1956a, 1956c).
The Poisson distribution is a special case of this general distribution model. Under
particular conditions also the Dacey-Poisson distribution can be derived as a two-
parameter special case of the proposal of Fucks (cf. Antić et al., 2005)1. Fucks’ work
was extremely influential on the studies done from the 1950s until the late 1970s
in the field of quantitative linguistic, in particular on word length. His theoretical
assumptions became a starting point for further generalizations, alternative parame-
ter estimation approaches and extensions to other languages. Just a few years later,
Cercvadze, Čikoidze, and Gačečiladze (1959) applied Fucks’ ideas to Georgian lin-
guistic material by generalizing once more his proposed model (cf. also Gačečiladze

1 Antić is the maiden name of Djuraš.
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and Cilosani, 1971). Two Polish authors, Bartkowiakowa and Gleichgewicht (1964,
1965), suggested an alternative way to estimate the parameters of the Fucks’ distri-
bution. Also worth mentioning is the contribution of Vranić and Matković (1965).
They suggested the modification of the Poisson distribution as a solution for existing
discrepancy in monosyllabic and disyllabic words (cf. also Vranić, 1965).

An intensive examination of word length began with Grotjahn’s (1982) modi-
fication of Fucks’ approach. There are several factors existing in the mind of the
author that control the flow of information in a text and the text generation at all.
They have influence not only on individual words but also on entire length classes.
With this in mind, Grotjahn argued that the probability of word appearance might
change in the text due to some factors such as context, with a change of topic or
after an interruption of writing. He proposed mixtures of distributions where the
parameter of the Poisson distribution is considered as a random variable following
the gamma distribution. The resulting marginal model is the well-known negative
binomial distribution and provides a good fit, as Grotjahn showed, at least for Ger-
man texts. Grotjahn’s contribution was an important step in the history of word
length studies. He showed that instead of searching for one general model for all
languages and all texts, one should rather concentrate on a variety of distributions.

Afterwards Wimmer et al. (1994) introduced an entirely new concept of word
length frequency distributions. The distribution of word length is a result of complex
processes and mechanisms which need not lead to one single pattern. The author
produces a text without caring about the length of a chosen word, since the primary
focus is on the text content. Moreover, if e.g. the author takes a brake during the
writing and starts in a different mood the conditions may change. As a consequence,
e.g. in long chapters of a novel, word length may show irregular patterns due to these
structural breaks. Hence, as already stated by Grotjahn and Altmann (1993), quite
rarely one single model can be sufficient for the same language, even by the author
himself, some modifications are desirable. Searching for regularities which might
affect word length distribution Wimmer et al. (1994, p.101) assumed that the various
word length classes do not evolve independently of each other. Their flexible system
of distributions is based on the idea that each two neighboring probability classes
are proportional, i.e. Px ∝ Px−1. The proportionality results from the interaction
of a large number of different factors, such as author, genre, language, epoch, etc.,
responsible for the text generation. These should be considered when searching for
the adequate model solution. In order to construct a model as universal as possible
in its applicability, i.e. valid for all texts, all authors, all genres and all languages, the
following assumption is made. The proportion of word length classes is not constant,
rather it can be understood as a function of length, denoted by g(x). Consequently,
the word length distributions are generated by the basic mechanism defined by the
formula

Px = g(x)Px−1 , (1.1)

where Px denotes the probability of the word length x and Px−1 is the probability of
the word length x− 1. This approach has the advantage that in order to determine
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some particular distribution, it is not necessary to know the probabilities of all
individual frequency classes. A special choice of the function g(x) leads to different
models. The simplest function g(x) has the form of Menzerath’s law2, i.e.

g(x) = ax−b , a > 0, b ≥ 0 . (1.2)

Wimmer et al. (1994, 101ff.) distinguish three levels of modeling the distribution
of word length: (i) elementary form, (ii) modifications, and (iii) generalizations.

(i) The most elementary form of a word length distribution arises by setting the
function g(x) given in (1.2) into the formula (1.1). Hence, we have

Px =
ax

(x!)b
P0 , x = 0, 1, 2, . . . , a, b > 0 , (1.3)

where P0 is the normalization constant which can be computed from
∑

x Px = 1.
This finally results in the Conway-Maxwell-Poisson distributions (cf. Wimmer et al.,
1994; Wimmer and Altmann, 1996)

Px =
ax

(x!)bT0

, x = 0, 1, 2, . . . , a, b > 0, T0 =
∞∑

j=0

aj

(j!)b
. (1.4)

These distributions appear typically in Slovak poetry texts (cf. Nemcová and Alt-
mann, 1994, 215f.).

(ii) On the second level of modeling we distinguish between local and global
modifications, also called “first order extensions” (cf. Wimmer and Altmann, 1996).
Local modifications influence only probability classes and they can be of two kinds:
“unrestricted” and “restricted”. “Unrestricted” modifications occur as a result of
displacement in the given language, such as the increase of zero-syllable3 words
in Slavic languages. Here all frequency classes are modified by scalars whose sum
is 1. “Restricted” modifications affect only some frequency classes and are mostly
influenced by personal fluctuations in texts (cf. Wimmer and Altmann, 1996, p. 113).

A global modification occurs when the parameter b in (1.2) is set to 0 or to 1. Set-
ting b = 0 yields g(x) = a which for 0 < a < 1 results in the geometric distribution.
In this case the proportionality is constant. Its linear extension g(x) = a(R−x+1)
gives the Palm-Poisson distribution

Px =
R(x)a

x

R∑
j=0

R(j)aj

, x = 0, 1, . . . , R , (1.5)

2 The general formulation of Menzerath’s Law says: “The longer a language construct the shorter
its components (constituents)”. According to this hypothesis, e.g. the length of syllables, g(x)
is inversely proportional to the length of the words, x in which they occur. It means, “the
longer the word the shorter its syllables” (cf. Altmann, 1980, p. 1).

3 For the explanation of zero-syllable words see Section 1.5.
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with R(x) = R(R − 1) . . . (R − x + 1), R ∈ N, a > 0, which proved to be useful for
Italian texts (cf. Altmann et al., 1997).
The choice b = 1 is more frequent and implies g(x) = a/x, wherefrom we easily
obtain the Poisson distribution with parameter a. In German language where zero-
syllable words do not exist, the positive (zero-truncated) Poisson distribution can
be a useful model (cf. Altmann and Best, 1996). Its unrestricted local modifications
result in the positive Pandey-Poisson, positive Singh-Poisson, and positive Cohen-
Poisson distributions (cf. Wimmer and Altmann, 1996, 117ff.). Furthermore, four
linear extensions of the function g(x) = a/x are possible:

(a) from g(x) = (a+bx)/x with reparametrisation a/b = k−1, b = q we obtain the
negative binomial and when there are no zero-syllable words the positive neg-
ative binomial distribution which proved to be adequate for German texts (cf.
Altmann and Best, 1996),

(b) the choice g(x) = (a − bx)/x after reparametrisation a/b = n + 1, n ∈ N,
b/(b + 1) = p yields the binomial and when there are no zero-syllable words
the positive binomial distribution, typical for Turkish texts (cf. Altmann, Erat,
and Hřeb́ıček, 1996). In Polish texts, where the zero-syllable prepositions are
treated as a separate closed class of zero-syllabic words, the positive bino-
mial distribution upgraded for the class x = 0 results in the extended positive
binomial distribution (cf. Uhĺı̃rová, 1996, 1997),

(c) taking g(x) = a/(b + x − 1) leads to the Hyper-Poisson distribution, which
can be found e.g. in Italian (cf. Altmann et al., 1997) and Slovak journalistic
texts (cf. Nemcová and Altmann, 1994),

(d) for g(x) = (a + bx)/(c + x) after substitution a/b = k− 1, b = q, c = m− 1 we
obtain the Hyper-Pascal distribution which turned out to be appropriate, e.g.
for Slovak prose texts (cf. Nemcová and Altmann, 1994).

For illustration purposes we present the derivation of the negative binomial distri-
bution. Using reparametrisation given in (a) and after some calculations we have

Px = b

a

b
+ x

x
Px−1 = q

k + x − 1

x
Px−1 = qx (k + x − 1)!

x!(k − 1)!
P0 = qx

(
k + x − 1

x

)
P0 .

Since,

1 =
∞∑

x=0

Px = P0

∞∑

x=0

qx

(
k + x − 1

x

)
= P0

∞∑

x=0

(−q)x

(−k

x

)
=

P0

(1 − q)k

we obtain P0 = (1 − q)k = pk.
(iii) On the third level further generalizations are possible (cf. Wimmer et al.,

1994; Wimmer and Altmann, 1996; Altmann, 2005). These more complex models
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assume that the set of word length classes is organized as a whole. It means that
the class x is controlled not only by the neighboring class x − 1, but also by all j
previous classes, yielding

Px = g(x)
x∑

j=1

h(j)Px−j , j = 1, 2, . . . , x , (1.6)

where h(j) denotes the weighting function that can itself be a probability distribution
and g(x) is the proportionality function as in (1.1). The probability of class x results
as a weighted sum of all lower classes. Obviously, (1.1) is a special case of (1.6).
Wimmer et al. (1994, p. 103) considered (1.6) to be a general proportionality form
wherefrom various word length frequency models for all languages can be derived.
The correct specification of the functions g(x) and h(j) is required. If we choose e.g.
g(x) = a/x and h(j) = jHj, where Hj is itself a probability function of a random
variable J , then we get the class of well-known generalized Poisson distributions.
Setting Hj to have Borel distribution (cf. Johnson et al., 1992, 394f.)

Hj =
jj−2bj−1e−bj

(j − 1)!
, j = 1, 2, . . . , 0 ≤ b < 1 (1.7)

results in the Consul-Jain-Poisson distribution, also known as Consul’s generalized
Poisson distribution4 (cf. Wimmer and Altmann, 1999, p. 93)

Px =
a(a + bx)x−1e−(a+bx)

x!
, x = 0, 1, . . . , a > 0 , 0 ≤ b < 1 . (1.8)

Lately, Wimmer and Altmann (2005) presented an approach that unifies all previous
assumptions, linguistic hypotheses and empirical findings. In order to construct an
overall discrete model they looked for requirements that can affect the behavior of
the relative rate of change of the probability of the word length x, i.e.

∆Px−1

Px−1

=
Px − Px−1

Px−1

and obtained the general recurrence formula

Px =

(
1 + a0 +

k1∑

i=1

a1i

(x − b1i)c1
+

k2∑

i=1

a2i

(x − b2i)c2
+ . . .

)
Px−1 , ci 6= cj , i 6= j . (1.9)

Various well-known families of distributions can be derived from this general formula.
After the substitution k1 = k2 = . . . = 1, a11 = a1, b11 = −b1 and a21 = a31 = . . . = 0
we obtain

Px =

(
1 + a0 +

a1

(x + b1)c1

)
Px−1 (1.10)

representing the family of word length distributions frequently used for Slavic lan-
guages (cf. Rottmann, 2006). Obviously, this simplified recurrence formula is a
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Table 1.1: Some distributions used in word length studies of Slavic languages

Name Conditions on parameters g(x) Px

Conway-Maxwell-
Poisson

a0 = −1, a1 = a,
ax−b ax

(x!)b
P0

b1 = 0, c1 = b

Poisson
a0 = −1, a1 = a, a

x
e−aax

x!b1 = 0, c1 = 1

binomial
a0 = −1 − b, a1 = a, a − bx

x

(
n

x

)
pxqn−x

b1 = 0, c1 = 1

negative-binomial
a0 = −1 + b, a1 = a, a + bx

x

(
k + x − 1

x

)
pkqx

b1 = 0, c1 = 1

Hyper-Poisson
a0 = −1, a1 = a, a

b + x − 1

ax

b(x)
1F1[1; b; a]b1 = b − 1, c1 = 1

Hyper-Pascal
a0 = −1 + b, a1 = a − bc, a + bx

c + x

qxk(x)

m(x)
2F1[k, 1;m; q]b1 = c, c1 = 1

special case of the basic mechanism in (1.1) where g(x) = 1 + a0 + a1/(x + b1)
c1 .

Table 1.1 gives an overview of some frequently used word length distributions for
Slavic languages. These can be derived from the recurrence formula (1.10) under
appropriate conditions listed in Table 1.1 5 and above given reparametrisations.

The developed theory shows that there is a general mechanism behind various
language processes represented by (1.9). Still, there is no explanation why a partic-
ular language prefers one special model and which language phenomena affect the
values of the parameters of appropriate models.

1.3 The Problem of Representativeness

Let us assume that there is a universe of texts consisting of an infinite/finite number
of textual objects. To explain the structure of this universe it is first important to
define a text as an analytical unit and then to classify these objects. The process
of classification includes identification and description of hierarchically ordered sub-
systems and has to be realized with respect to theoretical assumptions. Some textual
objects are more similar to each other, some of them differ instead. Therefore, any

4 Detailed analysis of this distribution is given in Chapter 6.
5 In Table 1.1 b(x) denotes the Pochhammer’s symbol, sometimes called the rising (or ascending)

factorial, 1F1 is the confluent hypergeometric function, and 2F1 is the Gaussian hypergeometric
function.
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kind of classification involves also quantification. To apply statistical methods a ba-
sic theoretical prerequisite to be fulfilled is the homogeneity of the texts examined.
Closely associated with homogeneity is the question of a representative sample that
should reflect the characteristics of the whole textual population. However, the con-
ventional interpretation of the population of a particular language as a collection of
a variety of different texts written by different authors and text types, is not plausi-
ble. In fact, such an approach, though striving to achieve “representative” language
description, leads to a mixture of heterogeneous text material, of a “quasi” text, in a
way, for which harmonious behavior of observed frequencies cannot be expected (cf.
Kelih, Buk, Grzybek, and Rovenchak, 2009). Notice that any corpus is one such
mixture. On the contrary, quantitative text analysis focuses explicitly on individ-
ual texts endeavoring to minimize “internal” heterogeneity, characteristic for corpus
analysis (cf. Altmann, 1992). As pointed out by Kelih (2009a) particular regularities
hold primarily for semantically coherent, holistic and closed linguistic texts. These
quantitative regularities, not necessarily present in text segments, are likely to in-
terfuse in any kind of text mixture (cf. Grzybek et al., 2005b). Thus, following the
approach given in Strauss, Grzybek, and Altmann (2006), chapters of a longer prose
text (such as a novel) will be treated as separate analytical units, whereas complete
poetic, journalistic texts and letters are considered as homogeneous individual texts.

In the quantitative approach, as mentioned in Grzybek et al. (2005b), text uni-
verse is structured with respect to the concepts of functional styles and text types (cf.
Figure 1.1). Commonly, five to eight different functional styles are considered, such

6.!
Poetry!

7.!
Drama!

5.!
Prose!

4.!
Journalistic!

*Abstract!

 *Article!
      *Humanities!
      *Natural!
       sciences!

 *Diploma!
  Thesis!

 *Ph.D. Thesis!

 *Presentation!

 *Review!

 *Conference!
   Report!

 *etc.!

2.!
Science!

1.!
Everyday Style!

3.!
Administration!

*News Agency!
  communication!

 *Report!

 *Professional!
  Article!

 *Feuilleton!

 *Comment!

 *Column!

 *Reader's!
  Letter!

 *Sport!
  Report!

 *Weather!
   Report!

 *Newspaper!
  Article!

 *etc.!

*Instructions!

 *Business!
  Letter!

 *Legal Text!

 *Expertise!

 *Political!
  Convention!

 *Sermon!

 *Contract!

 *Open Letter!

 *Resolution!

 *Parliament!
  Speech!

 *etc.!

 *Autobiography!

 *Biography!

 *Epistolary!
   Novel!

 *Epilogue!

 *Memoirs!

 *Short Story!

 *Fable!

 *Parable!

 *Fairy Tale!

 *Novel!

 *Legend!

 *Myth!

 *Diary Novel!

 *etc.!

*Elegy!

 *Epos!

 *Poem!

 *Ode!

 *Sonnet!

 *Novel in Verse!

 *etc.!

 *Drama!

 *Comedy!

 *Tragedy!

 *Drama in!
  Verse!

 *etc.!

 *Private!
  Letter!

 *Diary!
  Entry!

 *Joke!

 *Cooking!
  Recipe!

 *etc.!

Figure 1.1: Functional styles and text types
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as everyday, official/administrative, scientific, journalistic or artistic style. However,
such categorization results in an extreme heterogeneity of the texts attributed to the
individual categories. The concept of text sorts describes the whole spectrum of text
types as a population of ca. 4000 various text types. Clearly, it is impossible and
even not necessary to take into consideration all of them. For the systematic sta-
tistical analysis it should be rather guaranteed that the whole spectrum of different
stylistic shapes is correctly represented (cf. Kelih et al., 2009). Consequently, based
on above considerations and intensive empirical work on word length frequencies in
Slavic languages (cf. Kelih et al., 2005; Grzybek et al., 2005b; Grzybek, Kelih, and
Stadlober, 2005a), it proved to be efficient to combine these two principles. In order
to cover the broad textual spectrum, further quantitative and statistical analysis
should be based on the scheme presented in Figure 1.1. The selection of individual
texts will be with regard to their attribution to a particular text type and functional
style. In this respect, an individual text represents a larger group of similar texts.
For example, a particular poem is a representative of the “population” of all poems,
hence based on the knowledge derived from its properties (e.g. word length) we can
make conclusions about the characteristics of the entire population.

Finally, in addition to the decision made above, it still remains to be defined
what a “word” is and in which units word length should be measured. This topics
will be considered in the following sections.

1.4 On the Definition of Word and Word Length

The topic of our interest is a text, a written sequence of statements which consists
of graphemes, syllables, words, sentences or even elements of higher order such as
paragraphs, sections and chapters. Thereby, a word has a central role in linguistics.
It seems that in everyday life, everyone has an idea of what the term word implies.
Yet, there is no generally accepted definition of this term, not even in linguistics6.
The basic requirement for the quantitative study of the word length is to define
all linguistic units that are subject of quantification, thus also a word has to be
defined according to the objective of the research. Knowing that there is no uniquely
accepted, general definition which we can use for our purposes, we should first discuss
some available definitions and then choose one, adequate for dealing with concrete
questions we are interested in.

Within the framework of quantitative linguistics, the mostly used operational
definitions of a word are the following three alternatives, discussed in detail in Kelih
(2007) and explained here on the example of a Russian sentence:

(a) orthographical - describes a word as a unit of a text which appears as a se-
quence of written letters between spaces (cf. Bühler et al., 1972; Bünting

6 There are over 200 different definitions of the term word in linguistics. A detailed overview
is given in Krámský (1969). For example in a written German text every sequence of letters
between two blanks can be considered as one word.
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and Bergenholtz, 1995). Such a definition, applicable only to written texts,
has been fundamentally criticized by many linguists. Some of the arguments
against this definition are: (i) some languages have never been alphabetized,
(ii) the space and other punctuation marks do not have a word-separating
function in all languages, as e.g. in Chinese where text appears as a chain of
characters strung together and (iii) the space must not be generally considered
as a reliable and consistent means of separating words. Nevertheless, for lan-
guages with a long “writing” tradition this definition can be used as a starting
point.

|On| |vsluwivals�| |v| |trubku|, |volnu�sь| |i|
He listen into headset excited and

|stara�sь| | ulovitь| |qto| | to| .
trying to understand something –

(b) orthographic-phonetic - defines a word, based on an orthographic criterion, as a
unit between spaces where zero-syllable words (for explanation see Section 1.5),
both not stressed and proclitically7 or enclitically attached to the following or
previous word respectively, are to be treated as a part of a neighboring word
(cf. Antić et al., 2006a). According to this definition zero-syllable words in
the word length studies on Slavic languages do not exist as a separate word
class, rather they“merge”with other full-accented words in the process of word
length determination.

|On| |vsluwivals�| |vtrubku| 8 ,|volnu�sь| |i| |stara�sь| | ulovitь|
|qto| | to|.

(c) phonological (from phono = concerning sound) - takes an independent, ac-
centuated unit as a word, a unit that sounds like one word when spoken.
It means, the word is defined as so-called “rhythm group”. In contrast to the
orthographic-phonetic definition, not only zero-syllable pro- and enclitic words,
but also all potentially not accentuated words are taken into consideration. As
mentioned in Kelih (2007), in Russian these groups of words without an accent
include primarily prepositions (na, iz, za, o, bez, dǉa), conjunctions (such
as i, a, no, ni), as well as interjection and particles (vot, жe, ni, ne, li).

|On| |vsluwivals�| |vtrubku|, |volnu�sь| |istara�sь| 9 |ulovitь|
|qtoto|10.

7 A clitic is a morpheme that has syntactic characteristics of a word, but shows the evidence of
being phonologically bound to another word. A clitic that is attached to the beginning (end)
of another word is called proclitic (enclitic).

8 v has no accent, thus according to Lehfeldt (1999) is a proclitic and merges with trubku
9 i has no accent, hence forms proclitically one word with stara�sь
10 to is a particle with enclitic behavior to word qto
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Without a doubt, each of the three described definitions favors different linguistic
aspects and causes significant differentiation in statistical measurements as clearly
illustrated in Table 1.2. The number of words and the first two empirical moments of

Table 1.2: Statistical measurements due to two different word definitions

Number Number of Mean Standard
Definition of words syllables word length deviation

orthographical 10 19 1.90 1.28
orthographic-phonetic 9 19 2.11 1.16
phonological 7 19 2.71 1.11

the above displayed Russian sentence vary with respect to diverse word definitions,
while the number of syllables stays unmodified. Consequently, this results in the
necessity to introduce different statistical models. The ultimately chosen definition
should therefore be of relevance for automatic text processing and quantitative text
analysis.

Apart from the linguistic difficulty to define the concept of a word, data con-
struction in the length research is associated with the problem of the measurement
unit. The word length is usually measured in the number of components of lower-
level units which in turn have their own lengths. Grotjahn and Altmann (1993,
p. 142) stated that there are three basic types of units to measure the word length,
namely (a) graphical, (b) phonetic, and (c) semantic ones. In most of the languages
the graphical units are letters. A letter is the smallest unit that can be used to
measure the word length. Sounds, phonemes or syllables are phonetic units, while
morphemes are the semantic measurement units. A morpheme is the smallest lin-
guistic unit that has a meaning. In a spoken language, a morpheme is composed
of phonemes, the smallest linguistically distinctive units of sound and in written
language it consists of graphemes, the smallest units of written language. As can
be seen, even the measurement unit is not uniform and naturally given, it must be
established for each aim to be achieved and the resulting mathematical model (inclu-
sively the theory) depends always on the choice of the measurement unit. This fact
is clearly demonstrated by Figure 1.2 which presents the distribution of word length
measured in letters and syllables in Ivan Cankar’s letter to Ana Lušinova. Obviously,
if word length is measured in letters we obtain much more frequency classes, and
the heterogeneity structure requiring quite complex theoretical models. In contrast,
when modelling the distribution of word length measured in syllables, simple and
easy interpretable models are sufficient. Moreover, in quantitative analysis of word
length in texts, a word is usually measured by the number of syllables, since the
syllable is considered to be a direct constituent of the word (cf. Altmann et al.,
1997, p. 2). By definition, a syllable is any of the units into which a word can be
divided, usually consisting of a vowel sound (or at least one “syllabic” segment) with
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a consonant before and/or after it. Therefore, in order to automatically measure
word length it is not primarily necessary to define syllable boundaries; rather it is
sufficient to count the number of vowels per word. Other measurement units such
as phonemes or morphemes are also possible, but make the analysis of quantitative
properties of a language pretty complicated.
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Figure 1.2: Distribution of word length measured in letters (left) and syllables (right)

In the present work, due to the analytical unit, the word length is to be measured
in the number of syllables per word, since the number of syllables can be easily
determined and automatically calculated, at least for Slovenian and Russian texts
which represent the text material of the present study.

1.5 Zero-Syllable Words in Slavic Languages

The above mentioned definition of the word as an orthographically defined unit
(every chain of letters separated by blanks is considered to be a word) and a choice
of syllable as an appropriate measurement unit (as direct constituent of the word)
lead, especially in Slavic languages, to the problem of so-called zero-syllable words.
In general, these words are prepositions which neither exhibit syllabic vowels nor an
independent accent and may thus be treated as clitics from a phonetic viewpoint.
Therefore, a further important step for the quantitative study on word length is to
decide whether these zero-syllable words should be treated as a separate word class
or not. Figure 1.3 shows the distribution of word length in a letter of I. Cankar to
A. Lušinova (see Appendix A, Table A.1, text no. 18) for both cases. Obviously,
the decision to consider or neglect this specific word class will result in different
probability models.

The problem of zero-syllable words has become quite evident in a number of
word length studies in Slavic languages when modelling the word length frequency
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Figure 1.3: Distribution of word length measured in syllables (left: with zero-syllable
words, n = 1385, x̄ = 1.718, s = 0.935; right: without zero-syllable words, n = 1359,
x̄ = 1.751, s = 0.913)

distributions. With regard to this question two different approaches exist. On the
one hand, there are studies where the zero-syllable words have been treated and
analyzed as a separate word class, such as in works of Nemcová and Altmann (1994)
in Slovak, Uhĺı̃rová (1996, 1997) in Czech or Girzig (1997) in Russian. On the other
hand, some researchers favored the orthographic-phonetic definition which negates
zero-syllabic words as a category on its own. For example, Wilson (2006), who
analyzed Lower Sorbian11 newspaper texts, argued that in case these prepositions
are counted as independent words only rare probabilistic models can be fitted to
the data. Since these zero-syllable words do not contain any vowels Wilson claimed
that, in accordance with the principles of the Göttingen project12, they should be
treated as a part of the neighboring words (i.e. as clitics) and disregarded from
the analysis. As a result more regular probability models can be obtained (cf.
Figure 1.3). In analogy to the other Slavic languages, a special problem of a class of
zero-syllable words appears also in Slovenian and Russian. In Slovenian such words
are the prepositions v, k/h, s/z, consisting of a single consonant (cf. Antić et al.,
2006a, 124f.); in Russian these are again prepositions k, s, v and particles ж and b

(cf. Girzig, 1997; Kelih, 2007). In all Slavic languages, these prepositions follow a
general trend: they had originally one syllable and have been over time shortened
to zero-syllable words.

Subsequent to the operational definition of the linguistic unit word and an ad-
equate choice of the measurement unit, decision with regard to the zero-syllable
words is made. These words are not stressed, and should thus be proclitically or en-
clitically attached to the succeeding or preceding word, respectively. In other words,

11 The Sorbian languages are the native languages of the Sorbs, a Slavic minority in Eastern
Germany. There are two standard varieties of Sorbian: Upper Sorbian which is mainly used
in Saxony and Lower Sorbian spoken in Brandenburg by only 28% of all 70.000 Sorbian
speakers. The area where the two languages are spoken is known as Lusatia.

12 For the details on the Göttingen project see http://wwwuser.gwdg.de/~kbest
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the analysis should be performed without zero-syllable words, hence we consider
the orthographic-phonetic definition. The crucial arguments in favor of this decision
are: (i) the orthographic-phonetic criterion offers clear-cut principles making the au-
tomatic text processing very simple, (ii) this criterion is used by many researchers,
thus allowing for comparability of the results and (iii) the proportion of zero-syllable
words in Russian and Slovenian texts turned out to be relatively small compared
to other x-syllable words. Even many poetic texts do not contain any zero-syllable
words at all (cf. Antić et al., 2006a, p. 129).

1.6 Technical Preparation of Texts

At the very beginning the first important step is to prepare everything necessary for
a systematic and automatic investigation of the word length frequencies in Slavic
languages we are dealing with. Texts have been collected from several available
sources such as internet, cd-rom or by very time-consuming text scanning. This
has produced differently coded texts. In order to be able to work with these texts,
they had to be converted into a unique format (Unicode Standard), enabling as such
compatibility with special software. Each text has been saved as a file, as well as
a meta-data file containing the information not only about the language, author
and title, but also about processing status and computed statistical characteristics
and has been stored in a SQL text data base13. Consequently, this enables both
a possibility to obtain individual texts and extract subgroups of texts according to
some criteria.

Special software, developed in the programming language PERL, is used to au-
tomatically compute statistical measures such as mean, variance, higher moments,
distribution parameters, etc. as well as to determine word lengths and frequency
with which words of a given length occur in an individual text. Further informations
can be found in Kelih et al. (2003).

1.7 Principles of Word Length Counting

The automatic processing and quantitative analysis of texts consider primarily ap-
propriate choice of the definition of a word and determination of the measurement
unit of its length given in Section 1.4. In the process of automatically counting word
lengths each text is further submitted to particular tagging procedures, developed
in the framework of the Graz project on Quantitative Text Analysis (QuanTA)14.

13 The texts are stored in the QuanTA database. For both Slovenian and Russian, over 1000
texts from different authors and text types originating from 19th and 20th century have been
collected.

14 The Graz research project “Word Length (Frequencies) in Slavic Texts” was financially sup-
ported by the Austrian Fund for Scientific Research (FWF, P-15485). Further details can be
found at http://www-gewi.uni-graz.at/quanta.
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Similar criteria have been applied in word length studies on other Slavic languages
(cf. Wilson, 2006; Rottmann, 2006). The idea is that only the so called “running
text” should be analyzed, thus the certain text components that possibly differ from
the word length structure of the “running text” should be excluded from the auto-
matic word lengths analysis. The advantage of this approach is the possibility to
unify processing of a huge number of texts. To satisfy this criteria it was necessary
to tag e.g. (i) titles, subtitles and chapter titles, (ii) comments not written by the
author himself, such as foreword, editorial comment or footnote of the publisher,
(iii) book number, chapter number and verse number, (iv) text classification given
by the author himself, e.g. “ballad”as a subtitle of a ballad, (v) epilogue or prologue,
etc.15 In the process of text unification a couple of additional textual modifications
arise from the definition of word chosen above (cf. Antić et al., 2006a):

(a) revision of acronyms : being realized as a sequence of capitals from the words’
initial letters or as letters separated by punctuation marks, acronyms are trans-
formed into corresponding unabbreviated pronunciation textual form. In the
examples below, the acronyms are counted as words with two or three syllables.

SMS (Slovenska mladinska stranka) → EsEmEs
SDS (Socialdemokratska stranka Slovenije) → EsDeEs
NK (Nogometni klub) → EnKa
JLA (Jugoslovanska ljudska armada) → JeLeA

(b) revision of abbreviations : they are completely transformed into the appropriate
full form, e.g.:

c.k. → cesarsko–kraljevi
sv. → sveti, svetega
g. → gospod

(c) revision of numerals (especially years), in the form of Arabic or Latin figures
(year, date, etc.): numerals are written in their complete form (full words),
e.g. year “1907” in the sentence below is counted as three words consisting of
seven syllables.

Bilo je leta 1907 → Bilo je leta tisoč devetsto sedem.

(d) revision of hyphenated words (including hyphenated adjective and noun com-
posites): these are counted as two words, such as “Beneži–Najstati”.

15 For details of tagging procedures see http://www-gewi.uni-graz.at/quanta/projects/

quanta_server/quanta_tags.html
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(e) revision of words and passages written in foreign languages : in the case when
they appear as single elements in the text they are processed according to their
syllabic structure. For instance the name “Wiener Neustadt” occurring in a
Slovenian text will be “transliterated” as Viner Nejstadt in order to guarantee
the underlying Slavic sounded syllabic structure. Furthermore, attention is
paid to syllabic and non-syllabic elements which for the two considered lan-
guages can differ in function, as for e.g. the letter “Y” in lorry → lori but
New York → Nju Jork. Longer passages written in a foreign language are
completely eliminated.

It should be also noted that independent of these manipulations, the original text
structure remains fully recognizable for a researcher and open for further exami-
nation. The texts revised in this way are now ready for the concrete statistical
analysis.

1.8 Word Length Frequency Distribution

Let w1, w2, . . . , wn denote different words in a linguistic text of size n, where wj

refers to the j -th word in the text. The set W = {w1, w2, . . . , wn}, consisting of all
possible words of the given text, corresponds to the sample space. The length of the
word wj ∈ W , denoted by l(wj) is measured by the number of syllables per word
consistent with the principles of automatic text analysis specified in Section 1.7.
According to this principles zero-syllable words as parts of the subsequent word do
not exist as a separate word class (cf. Section 1.5). Therefore, a certain linguistic
text can be seen as a collection of one, two, three, or maximally k syllable words.
By counting the number of words of the same length l(wj) = i, i = 1, . . . , k, we
observe the frequency fi with which words of a certain length i appear in a given
text. The number of elements fi that belong to the same frequency class i is
called absolute frequency. Relative frequencies, denoted by pi, are calculated as
fi/n. The total number of words in a given text (text length), n, the absolute
frequencies, fi and the relative frequencies, pi, are related through

∑k
i=1 fi = n

and
∑k

i=1 pi = 1. Collecting the words of the same length into one class leads to
the frequency distribution of the word length or frequency distribution of i -syllable
words (cf. Table 1.4). In other words, the collection of values i with their associated
frequencies fi, is called frequency distribution of word length occurrence for a given
sample. For illustration purposes, consider the first sentence of a Slovenian prose
text “Hlapec Jernej in njegova pravica” (I. Cankar, Chapter 1):

To povest vam pripovedujem, kakor se je po resnici vršila z vsemi
svojimi nekrščanskimi krivicami in z vso svojo veliko žalostjo.

This sentence contains 19 words, since the zero-syllable word z in z vsemi and z vso
is not counted as a separate word. Table 1.3 presents the word length list of this
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Table 1.3: The length l(wi) of the words wi: “Hlapec Jernej in njegova pravica”, Chapter
1, first sentence

i wi l(wi) i wi l(wi) i wi l(wi)

1 to 1 8 po 1 15 in 1
2 povest 2 9 resnici 3 16 z vso 1
3 vam 1 10 vršila 3 17 svojo 2
4 pripovedujem 5 11 z vsemi 2 18 veliko 3
5 kakor 2 12 svojimi 3 19 žalostjo 3
6 se 1 13 nekrščanskimi 5
7 je 1 14 krivicami 4

sentence. For each word wi, the length l(wi) is specified. The words pripovedujem
and nekrščanskimi are the only two five-syllable words. There is only one four-
syllable word, five three-syllable words and four two-syllable words. The remaining
seven words are one-syllable words. This frequencies are strictly bound to this
particular sentence. Obviously, the increase of the sample size from 19 words of
the first sentence to 584 words in the whole Chapter 1 of “Hlapec Jernej in njegova
pravica” leads to a quite different frequency distribution, as apparent in Table 1.4.

Table 1.4: Frequency distribution of “Hlapec Jernej in njegova pravica” (Chapter 1)

# Syllable absolute relative
per word frequencies frequencies

(i) (fi) (pi)

1 259 0.4435
2 195 0.3339
3 92 0.1575
4 35 0.0599
5 3 0.0051

In the textual surrounding a random variable X is a function X : W → R

which assigns to each word wj ∈ W of a particular text one and only one real
number X(wj) = i, namely its length. The random variable X denotes hereby the
number of syllables per word. The range of X is {1, 2, . . . , k}, since no infinitely
long words exist in a language (cf. Wimmer et al., 1994, p. 104). As our extensive
textual data show, words with more than nine syllables are very rare in Slovenian and
Russian. A similar trend can be observed for many other Indo-European languages.
As the range of X is finite, the random variable X has a discrete distribution with
probability mass function (pmf) given by

πi = P (X = i) = P ({wj ∈ W : X(wj) = i}) for all i, (1.11)
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where 0 ≤ πi ≤ 1 for all i and
∑k

i πi = 1 with πk = 1 − ∑k−1
i=1 πi.

Statistical distributions serve to model populations and are commonly defined by
one or more parameters which determine its functional form. In order to emphasize
the dependence of the distribution on the parameter vector Θ = (θ1, θ2, . . . , θq) from
a given parameter space Ω we write πi|Θ = PΘ(X = i) instead of πi = P (X = i). In
the following chapter special attention is given to the Poisson distribution and its
generalizations and we are interested in inferring about Θ.





Chapter 2

General Approaches

2.1 Restrictions of the Poisson Model

An essential question when modeling count data is how to choose an appropriate
probability model to describe the observed values. The simplest and probably the
most widely used distribution for analyzing count data is the Poisson distribution. It
is primarily used to model the number of events occurring over a particular period of
time (or in a given area) with low probability. Therefore, the Poisson distribution is
also called the law of rare events. The underlying randomness requires independence
of these events and constant average number of occurrences in the given time interval
(or region of space). Haight (1967) mentioned a multitude of references regarding
Poisson applicability in industry, agriculture, biology, medicine, telephony, sociology
and demography as well as traffic flow theory. In numerous cited examples the
Poisson distribution is applied to the number of defects in material, the number of
victims of specific diseases like cholera or malaria, and the number of car accidents
in a fixed length of roadway, to mention just some of them. Furthermore, as already
noted in Section 1.2, the Poisson distribution and its generalizations proved to be
useful for linguistic data regarding word length studies of Slavic languages.

The Poisson distribution depends on a single positive parameter and has proba-
bility mass function (pmf) given by

πx = P (X = x) =
θxe−θ

x!
, x = 0, 1, . . . , θ ∈ R

+ . (2.1)

Some examples of the Poisson distribution shown in Figure 2.1 for different values
of θ illustrate its flexible form. From its probability generating function (pgf)

GX(t) =
∞∑

x=0

txP (X = x) = e−θ

∞∑

x=0

(tθ)x

x!
= eθ(t−1) , (2.2)

we can derive simple expressions for the characteristic function (cf), moment gener-
ating function (mgf), factorial moment generating function (fmgf), cumulant gener-
ating function (cgf) and factorial cumulant generating functions (fcgf); see Table 2.1.

21
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Figure 2.1: Examples of the Poisson probability mass function (left) and its cumulative
distribution function (right) for diverse values of parameter θ with mass points at integer
values of x only. The connecting lines potentiate only visualization of the functional form.

The mean and the variance are obtained as E(X) = var(X) = θ. A short introduc-
tion to generating functions and their relations to the theoretical moments is given in
Appendix B. Another useful property of the Poisson distribution is that it is closed

Table 2.1: Generating functions of X ∼ Poisson(θ)

pgf GX(t) = eθ(t−1) fmgf GX(1 + t) = eθt

cf ϕX(t) = eθ(eit−1) cgf KX(t) = θ(et − 1)

mgf MX(t) = eθ(et−1) fcgf ln GX(1 + t) = θt

under addition. Closed under addition means that the sum of any two independent
count variables coming from the same parametric model also belongs to the same
parametric model. Specifically, if X1 and X2 are independent with Xi ∼ Poisson(θi)
for i = 1, 2 then X1 + X2 ∼ Poisson(θ1 + θ2). This result generalizes analogously to
the sum of more than two Poisson observations. An important practical consequence
of this result is the possibility to analyze grouped data with equivalent results. For
further interesting properties of the Poisson model look at the book of Haight (1967)
and Johnson et al. (1992).

The equality of mean and variance, known as equidispersion, is an important
characteristic of the Poisson distribution. However, this requirement is sometimes
too restrictive for the count data. In many practical situations empirical data sets
exhibit departures from equidispersion which can be either overdispersion (the vari-
ance of the count variable exceeds its mean) or underdispersion (the variance is
smaller than the mean) with respect to the Poisson model and thus cannot be con-
sidered to be fitted by the Poisson distribution. A closer look at the distributions
of word length in Slovenian and Russian texts shows that texts within one single
language, but also between languages, significantly differ with regard to their word
lengths. However, as the contribution of Kelih et al. (2005) emphasizes, the word
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length is rather a characteristic of a genre than a helpful variable to describe an au-
thor’s individual style. Some typical frequency distributions of word length for four
different text types (private letters, journalistic texts, poems and prose texts) are
displayed in Figure 2.2. It can be observed that the structure of private letter and
prose text do only differ marginally. The most frequent1 are the one-syllable words,
however, even five- and six-syllable words can occur. Compared to this, only very
short words are characteristic for the texts from the group of poems. The longest
words seem to be typical for journalistic texts, although the frequency of two- and
three-syllable words tend to be almost the same for such kinds of texts.

1 2 3 4 5 6

Private letter

0
.0

0
.2

0
.4

0
.6

1 2 3 4 5 6 7 8

Journalistic

0
.0

0
.2

0
.4

0
.6

1 2 3 4 5

Poem

0
.0

0
.2

0
.4

0
.6

1 2 3 4 5 6

Prose

0
.0

0
.2

0
.4

0
.6

Figure 2.2: Examples of word length frequency distributions for four different text types

To find out whether the count data come from the Poisson distribution we can
apply the index of dispersion of a count variable X being defined as the variance to
mean ratio (cf. Grotjahn, 1982; Puig and Valero, 2006). Due to the fact that texts
under study contain no zero-syllable words 1-displaced and size-biased versions of the
proposed models became relevant for our further research (for detailed explanation
see Section 2.3). For this reason, we propose using the following index of dispersion

δ =
var(X)

E(X) − 1
(2.3)

1 There is a relationship between word frequency and word length saying: “the more frequent
a particular word is, the shorter it is”. It means that the word length is conditioned by the
word frequency, rather than the frequency by the length (cf. Grotjahn, 1982, p. 45).
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and estimate it by the empirical value d = s2/(x̄ − 1). Since the 1-displaced Pois-
son distribution has δ = 1, this model provides an adequate fit only for empirical
samples with d ≈ 1, i.e. for count data where the sample mean diminished by one
is near to the sample variance. Therefore, δ can be used as a measure for detecting
departures from the 1-displaced Poisson model. Notice that δ > 1 holds for the
1-displaced negative binomial models. Although this family of distributions may
arise from various random scenarios, they are likely to be adequate only for empir-
ical samples with overdispersion. However, 1-displaced Dacey-Poisson distributions
having δ ≤ 1 offer potential solutions in case of underdispersion. As to the problem
of Poisson overdispersion various Poisson modifications have been suggested in the
literature using continuous discrete mixtures of Poisson distributions, an approach
we consider in Section 2.2.1. The same behavior is also typical for Poisson-stopped-
sum distributions. Section 2.2.2 gives explanation how to construct such generalized
Poisson distributions. Apart from that, the real-life data quite frequently manifest
overdispersion through excess of zeros. The zero-inflated distributions, introduced in
Section 2.2.1, can be useful in such situations. Moreover, to accomplish discrete dis-
tributions that allow for over- and underdispersion a further possibility is to modify
Poisson distributions by weighting. Section 2.3.2 gives more details on this topic.

In the following chapters our aim is to find a general theoretical model for word
length frequency distributions that covers the whole d range. If possible, the model
should be unique for all texts under study and should have at most two parameters.

2.2 Constructions of Distributions

In this section we discuss three different approaches for constructing new distri-
butions that lead to mixed or compound distributions, generalized or stopped-sum
distributions and finally misrecorded distributions. Special attention is paid to the
generalization of the Poisson. It is also demonstrated that compounding and gener-
alizing are related concepts. However, the choice of the most adequate distribution
for the observations at hand must be justified later based on the sample data.

2.2.1 Mixtures of Discrete Distributions

We distinguish two types of mixtures of discrete distributions, namely finite mixtures
and countable or alternatively continuous mixtures (see e.g. Johnson et al., 1992).

Let {Fj(x)} represent a set of various proper cumulative distribution functions
(cdf’s) of different random variables Xj, j = 1, 2, . . . , k. The weighted average

F (x) =
k∑

j=1

ωjFj(x) , (2.4)

with weights ωj ≥ 0,
∑k

j=1 ωj = 1 and finite number of components k, defines the k-
component finite mixture distribution. If the components are discrete distributions,
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then the resulting mixture distribution has the probability mass function (pmf) and
the probability generating function (pgf) defined respectively by

πx = P (X = x) =
k∑

j=1

ωjP (Xj = x) and G(t) =
k∑

j=1

ωjGj(t) , (2.5)

where Gj(t) denotes the pgf of a random variable Xj. The component distributions
do not have to be defined over the same sample space. Rather, the sample space
of the mixture distribution (2.4) is the union of the sample spaces of the individual
components of the mixture. The component distributions are very often of the same
type and differ possibly in parameters, although this need not be the case. The
k-component finite Poisson mixture with pmf

P (X = x) =
k∑

j=1

ωj

e−θjθx
j

x!
(2.6)

is one such example. In most of the cases the number of components k is quite
small. The generalized Poisson distribution, considered in Chapter 3, is such a sum
of weighted Poisson probabilities with an identical parameter. Figure 2.3 shows
three examples of two-component Poisson mixtures, demonstrating that they can
be both unimodal as well as bimodal. Finite mixtures of discrete distributions, in
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Figure 2.3: Examples of various two Poisson mixtures (left: θ1 = 2 , θ2 = 8 , ω1 = 0.45;
middle: θ1 = 2 , θ2 = 8 , ω1 = 0.2; right: θ1 = 1 , θ2 = 4 , ω1 = 0.2)

particular Poisson and binomial mixtures are described in some detail in Johnson
et al. (1992).

Zero-inflated distributions are very special two-component finite mixtures (cf.
Cameron and Trivedi, 1998; Winkelmann, 2000). Here, the original distribution
with pmf πparent

x and support at x = 0, 1, . . ., is combined with the degenerate
distribution whose all probability mass is cumulated at zero point, i.e. whose pmf is

πdeg
x =

{
1, for x = 0 ,
0, otherwise .

(2.7)
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Hence, based on the equation (2.5) the resulting mixture has the pmf defined by

P (X = x) = (1 − ω)πdeg
x + ωπparent

x , x = 0, 1, . . . (2.8)

where 0 ≤ ω ≤ 1, or more precisely as

P (X = x) =

{
(1 − ω) + ωπparent

0 , x = 0 ,
ωπparent

x , x = 1, 2, . . .

Other synonyms mentioned in the literature for this type of mixture are a zero-
modified distribution or a distribution with added zeros (cf. Johnson et al., 1992).
A nice feature of zero-inflated distributions is that their pgf and moments are easily
obtained from those of the original distribution. Since the pgf of πdeg

x equals unity,
the pgf of the modified distribution (2.8) is

GX(t) = (1 − ω) + ωH(t) , (2.9)

where H(t) identifies the original pgf. Similarly, if µparent
(k) are the factorial moments

of the original distribution, then the k-th factorial moment of the mixture (2.8) may
be derived using the general formula

µ(k) = ωµparent
(k) , k = 1, 2, . . . (2.10)

Also, using equation (B.9), Appendix B, it can easily be proved that the same
relation holds for the raw moments. The central moments can then be derived using
the standard relations between the raw and central moments given in Appendix B.
Hence, the variance is given by

µ2 = ωµparent
2 + ω(1 − ω)(µparent)2 . (2.11)

Choosing the original distribution to be a Poisson, yields the zero-modified Poisson
distribution, discussed in more detail in Chapter 4. An important feature of this dis-
tribution is its ability to model over- and even underdispersion for ω > 1. Moreover,
for ω = 1 it reduces to the standard Poisson distribution, the equidispersed case.

Nevertheless, the mixture distribution can also arise when the distribution func-
tion of a random variable X depends on some parameter Θ which is itself a random
variable distributed according to a different probability law. The conditional dis-
tribution of X|Θ and the marginal distribution of Θ are known and what we are
interested in is the marginal distribution of X. If Θ is defined on the nonnegative
integers, the resulting mixture, called countable mixture, is obtained by summing
the joint distribution of X and Θ over all values θ. Hence, the marginal distribution
of X is given by

P (X = x) =
∑

θ∈Ω

P (X = x, Θ = θ) =
∑

θ∈Ω

P (X = x|θ)P (Θ = θ) , (2.12)
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where Ω denotes the parameter space. As an illustration, consider the mixture of bi-
nomial and Poisson where X|N ∼ Binomial(N, p) is combined with N ∼ Poisson(θ).
The summation of P (X = x,N = n) over n yields then

P (X = x) =
∞∑

n=x

(
n

x

)
pxqn−x θne−θ

n!
=

e−θ(pθ)x

x!

∞∑

n=x

(qθ)n−x

(n − x)!

=
e−θ(pθ)xeqθ

x!
=

e−pθ(pθ)x

x!
,

(2.13)

since q = 1 − p, which is the pmf of the Poisson distribution with parameter pθ.
Notice that the parameter n has been summed out, hence does not appear in the mix-
ture distribution. Another well-known example of countable mixture is the Neyman
Type A distribution which results as a Poisson mixture of Poisson distributions (cf.
Neyman, 1939; Feller, 1943; Altmann and Hammerl, 1989).

A continuous mixture occurs when parameter Θ has a continuous distribution
with probability density function f(θ). Then the pmf of the mixture is obtained by
integrating the joint distribution of X and Θ over the mixing parameter Θ, i.e.

P (X = x) =

∫

θ∈Ω

P (X = x, Θ = θ) dθ =

∫

θ∈Ω

P (X = x|θ)f(θ) dθ . (2.14)

The support of the mixture is the same as the support of the initial distribution.
Again, parameter θ does not exist in the resulting mixture, since it has been inte-
grated out. The most famous example of a continuous mixture for count data is the
negative binomial distribution obtained as a gamma mixture of Poisson distribu-
tions. Assume that X|Θ ∼ Poisson(Θ) where Θ is gamma distributed with density
function

f(θ) =
1

βαΓ(α)
θα−1e−θ/β , θ, α, β > 0 . (2.15)

Then

P (X = x) =

∫ ∞

0

θxe−θ

x!

1

βαΓ(α)
θα−1e−θ/β dθ

=
1

βαΓ(α)x!

∫ ∞

0

θα+x−1e−θ(1+1/β) dθ ,

which by taking t = −θ(1+β)/β and using Euler’s definition of the gamma function
yields

P (X = x) =
Γ(α + x)

Γ(α)x!

(
β

β + 1

)x(
1

β + 1

)α

=

(
α + x − 1

x

)(
1

β + 1

)α(
β

β + 1

)x

.

Hence, X has a negative binomial distribution with parameters α and 1/(β +1) (cf.
Wimmer and Altmann, 1999, p. 449). The hyper-Poisson model, treated in more
detail in Chapter 5, is another example of a mixture of Poisson distributions using
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the truncated Pearson type III mixing distribution. The distribution function of
X and Θ may also depend on additional parameters and the procedure can be
repeated. For instance, assuming X|(N,P ) ∼ Binomial(N,P ) where both binomial
parameters are randomized as N ∼ Poisson(λ) and P ∼ Beta(α, β) results in the
Beta-Poisson distribution with parameters λ, α and β, which has found its successful
application in problems of underreporting (cf. Neubauer and Djuraš, 2009).

Gurland (1957) called mixture distributions of type (2.12) and (2.14) compound
distributions2 and introduced the symbolic notation

F1

∧

Θ

F2 , (2.16)

where F1 represents the original conditional distribution of X|Θ and F2 the mixing
distribution, which is that of Θ. If the distribution F1 depends on several parameters
θ1, θ2, . . . , θm, then only the parameter involved in the compounding operation will
be specified under the

∧
sign. Instead of symbols F1 and F2, it is also convenient

to write the names of the distributions with corresponding parameters given in
parentheses. If the support of Θ is discrete, then by utilizing relation (2.12) the pgf

Table 2.2: Examples of some compound Poisson distributions with their pgf’s

Distribution of X Derivation GX(t)

Negative binomial(α, 1/(β + 1)) Poisson(Θ)
∧
Θ

Gamma(α, β) 1/(1 − β(t − 1))α

Pascal-Poisson(θ, k, p) Poisson(θL)
∧
L

Negative binomial(k, p) pk/(1 − qeθ(t−1))k

Beta-Poisson(α, β) Poisson(Θ)
∧
Θ

Beta(α, β) 1F1[α; α + β; t − 1]

Binomial-Poisson(θ, n, p) Poisson(θL)
∧
L

Binomial(n, p) (q + peθ(t−1))n

Hyper-Poisson(θ, λ) Poisson(θL)
∧
L

truncated Pearson 1F1[1; λ; θt]

1F1[1; λ; θ]type III(θ, λ)

of X results in

GX(t) =
∞∑

x=0

txP (X = x) =
∞∑

x=0

tx
∑

θ∈Ω

P (X = x|θ)P (Θ = θ) ,

which after the change of the order of summation becomes

GX(t) =
∑

θ∈Ω

P (Θ = θ)
∞∑

x=0

txP (X = x|θ) =
∑

θ∈Ω

GX(t|θ)P (Θ = θ) ,

whereas for continuous support of parameter Θ, an integral replaces the summation.
Consequentaly, the pgf of X is given by

GX(t) = Eθ(GX(t|θ)) . (2.17)

2 Altmann and Zörnig (1992) denote it by Zusammensetzung of distributions.
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The mean and variance of the marginal distribution of X under mixing can easily
be calculated by (cf. Casella and Berger, 2002, 164ff.)

E(X) = Eθ(E(X|θ)) , var(X) = Eθ(var(X|θ)) + varθ(E(X|θ)) , (2.18)

provided that the expectations exist. However, specifying the conditional distribu-
tion of X|Θ to be Poisson and using its equidispersion property we have

Eθ(var(X|θ)) = Eθ(E(X|θ)) = E(X) ,

which after substitution for variance in (2.18) results in overdispersion at the marginal
level of X, no matter what the distribution of Θ is and due to the fact that

var(X) = E(X) + varθ(E(X|θ)) > E(X) . (2.19)

This special type of mixture where X|Θ has a Poisson distribution is called the
compound Poisson distribution by Feller (1943) and Maceda (1948), although the
notation mixture of Poisson distributions used above is even more common. The
pgf of X is obtained by substituting GX(t|θ) = eθ(t−1) in (2.17), hence it becomes

GX(t) =





∑
θ∈Ω

eθ(t−1)P (Θ = θ), if Θ dicrete ,
∫

θ∈Ω

eθ(t−1)f(θ), if Θ continuous ,
(2.20)

thereby the random variable Θ can take only positive real values. The resulting
mixture is necessarily a discrete distribution with jumps at the nonnegative inte-
gers (cf. Teicher, 1960). This is also apparent from the examples in Table 2.2.
Furthermore, it is interesting to note that the k-th factorial moment of a mixture of
Poisson distributions is obtained from (2.20) as

µ(k) = G
(k)
X (1) = E(Θk) , k = 1, 2, . . . (2.21)

thus being equal to the k-th raw moment of the mixing distribution. Notice also, that
the factorial moment generating function (fmgf) of a mixture of Poisson distributions
GX(1+t) is equal to the moment generating function (mgf) of the mixing distribution
MΘ(t) (see Appendix B for definitions). Another important feature, proved by Feller
(1943, p. 394), states that the convolution of two mixtures of Poisson distributions
is again a mixture of Poisson distributions with a mixing distribution that is the
convolution of the two given mixing distributions. A quite large number of various
continuous and countable mixtures of Poisson distributions can be found in Johnson
et al. (1992) and Altmann and Zörnig (1992). Among them are also examples given
in Table3 2.2 and Table 2.3, in the next section.

3 In Table 2.2 above 1F1 denotes the confluent hypergeometric function. For further details see
Chapter 5.
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2.2.2 Generalized Distributions

The distributions considered in this section are based on the random summation of
independent and identically distributed random variables.
Let X1, X2, . . . , XN be mutually independent random variables with common distri-
bution P (X = j) = πj and pgf GX(t) =

∑∞
i=0 tiπi. Consider a random variable

SN = X1 + X2 + . . . + XN =
N∑

i=1

Xi , (2.22)

where the number of components N is a random variable independent of Xi, for
each i = 1, . . . , N . Let P (N = n) = gn be the probability function of N and
GN(t) =

∑∞
n=0 tngn its pgf. For a fixed n the distribution of X1+X2+. . .+Xn is given

by the n-fold convolution4 of X with itself and hence equals πj ∗ πj ∗ . . . ∗ πj = πn∗
j .

Therefore, the distribution of SN is obtained by the conditional probabilities as

P (SN = j) =
∞∑

n=0

P (SN = j|N = n)P (N = n) =
∞∑

n=0

πn∗
j gn . (2.23)

However, Feller (1968, p. 287) showed that it is much easier to calculate the pgf of SN

instead of its distribution (2.23) using the pgf’s of X and N . Since the pgf of the sum
of independent random variables is equal to the product of the respective pgf’s (see
relation (B.18), Appendix B), we obviously have GSN |N(t) = E(tSN |N = n) = Gn

X(t).
Consequently, after a permitted change of the order of summation, we have

GSN
(t) =

∞∑

j=0

tjP (SN = j) =
∞∑

n=0

gn

∞∑

j=0

tjπn∗
j =

∞∑

n=0

gnGn
X(t) .

The last expression represents the pgf of the random variable N , where t is replaced
by the whole pgf of X, thus

GSN
(t) = GN(GX(t)) . (2.24)

Notice that this identity can also be derived by use of relation (2.18) since

GSN
(t) = E(tSN ) = EN(E(tSN |N)) = EN(En(tX)) = EN(Gn

X(t)) = GN(GX(t)) .

Substituting above any particular distribution function for N we can get a certain
form of GSN

(t), so that (2.24) determines a whole family of distributions (see the
class of generalized Poisson distributions below).

Denote further by ϕN(t) = GN(eit) and ϕX(t) = GX(eit) the characteristic func-
tions (cf’s) of random variables N and X, respectively. Then we get the cf of the

4 German writers prefer the notation Faltung instead of the term convolution. Particulary im-
portant is the convolution of identical distributions, denoted by ∗. The pmf of the convolution
of two identical distributions is πx ∗ πx = π2∗

x .
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random sum SN by applying (2.24) to ϕSN
(t) = GSN

(eit) and we have (cf. Johnson
et al., 1992, p. 345)

ϕSN
(t) = GN(GX(eit)) = GN(ϕX(t)) = GN(ei(−i ln ϕX(t) )) = ϕN(−i ln ϕX(t)) . (2.25)

This model was named contagion by Neyman (1939) who developed a new family of
contagious distributions of types A, B and C that provide a reasonably good fit for
biological phenomena, especially in the population of insects and bacteria. Later on,
concentrating primary on the Poisson context some authors, such as Satterthwaite
(1942), Feller (1943) and Maceda (1948), have chosen to use the term generalization
instead to describe such a process. Gurland (1957) maintained the former notation
and introduced the symbolic representation of these distributions, given by Defini-
tion 2.2 below, in order to facilitate their application. Let us first define the term
“equivalent distributions” (cf. Gurland, 1957, p. 266).

Definition 2.1 Let the random variables Y1 and Y2 have cdf’s F1(y|α) and F2(y|β),
respectively. If for each α exists some β and for each β exists some α such that
F1(y|α) = F2(y|β) whatever y is, the random variables Y1 and Y2 are said to be
equivalent. Symbolically we write Y1 ∼ Y2.

Now the distribution of a random variable SN is given by the following definition.

Definition 2.2 Let the random variables N and X have distributions F1 and F2

with pgf’s GN(t) and GX(t), respectively. Then a distribution with pgf of the form
GN(GX(t)) is called a generalized F1 distribution, or an F1 distribution generalized
by the generalizing F2 distribution. Symbolically it is represented by

SN ∼ F1

∨
F2 . (2.26)

Thereby, as pointed out by Gurland (1957), distributions F1 and F2 need not neces-
sarily to be discrete. Generalized distributions are often referred to as stopped-sum
distributions, meaning that the number of observations from the distribution F2

which is to be summed is determined (or stopped) by an observation having the
distribution F1 (cf. Johnson et al., 1992, 343ff.).

The main properties of the generalized distributions are easily obtained using
their pgf’s. Katti (1966) showed that the factorial moments of distribution (2.26)
can be expressed in terms of their component distributions F1 and F2. Denote by

1µ(i) and 2µ(i) the factorial moments of distributions F1 and F2, respectively. Then
the factorial moments of F1

∨
F2 distribution are obtained from the derivatives of

GSN
(t) = GN(GX(t)) at t = 1. The first three of them are given by

µ(1) = 1µ(1)2µ(1) , µ(2) = 1µ(2)2µ
2
(1) + 1µ(1)2µ(2) ,

µ(3) = 1µ(3)2µ
3
(1) + 31µ(2)2µ(2)2µ(1) + 1µ(1)2µ(3) .

(2.27)



32 CHAPTER 2. GENERAL APPROACHES

Moreover, single probabilities of the generalized distribution (2.26) can be computed
by using its component probabilities gi = P (N = i) and πi = P (X = i). Denote by

GSN
(t) =

∞∑

i=0

tiP (SN = i) , GN(t) =
∞∑

i=0

tigi , GX(t) =
∞∑

i=0

tiπi , (2.28)

then using the relation (B.2), Appendix B, we obtain

P (SN = 0) = GN(GX(0)) = GN(π0) =
∞∑

i=0

πi
0gi ,

P (SN = 1) = G′
N(GX(0)) G′

X(0) = G′
N(π0)π1 =

∞∑

i=0

iπi−1
0 giπ1 ,

P (SN = 2) =
1

2
G′′

N(π0)π
2
1 + G′

N(π0)π2 =
∞∑

i=0

gi

(
i(i − 1)

2
πi−2

0 π2
1 + iπi−1

0 π2

)
.

However, this calculation becomes quite tedious and complex for higher probabilities.
If SN has a discrete distribution, the above computation is considerably simplified
by the use of formula (B.7) from Appendix B, which enables to get probabilities
P (SN = i) through its factorial moments µ(i), provided that 1µ(i) and 2µ(i) in (2.27)
are known.

Among all random sums SN of particular interest are those where N has a
Poisson distribution. If we denote the expectation of N with θ, then SN obeys the
generalized Poisson distribution law. By formula (2.24) its pgf is

GSN
(t) = eθ(GX(t)−1) = e−θ+θGX(t) , (2.29)

where GX(t) is the pgf of an arbitrary distribution. Interestingly, the k-th convolu-
tion of SN with itself is again a distribution of the same type, only with θ replaced
by kθ, since [GSN

(t)]k = ekθ(GX(t)−1). Furthermore, as Gurland (1965, p. 142) in-
dicated, there is a connection between the probabilities of the generalized Poisson
distribution and that of X. Based on (B.2), Appendix B, the single probabilities
Pi = P (SN = i) are defined by the derivatives of GSN

(t) at t = 0. Thus, derivation
of relation (2.29) by setting t = 0 yields in first three iterations

P1 = θπ1P0 , P2 =
θ2

2
π2

1P0 +θπ2P0 , P3 =
θ3

6
π3

1P0 +3θ2π1π2P0 +θπ3P0 , . . . (2.30)

Consequently, after k − 1 derivations we obtain the following recurrence formula

Pk =
θ

k

k−1∑

i=0

(i + 1)πi+1Pk−1−i . (2.31)

Satterthwaite (1942, p. 412) obtained the first four moments of the generalized Pois-
son distribution by differentiating its cf ϕSN

(t) = GN(ϕX(t)) = eθ(ϕX(t)−1) which
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results from equation (2.25). The resulting moments of a generalized Poisson distri-
bution are functions of the raw moments of the underlying distribution due to the
fact that

µ′
1 = θ gµ

′
1 , µ2 = θ gµ

′
2 ,

µ3 = θ gµ
′
3 , µ4 = θ gµ

′
4 + 3θ2(gµ

′
2)

2 ,
(2.32)

where gµ
′
k denotes the k-th raw moment of the generalizing distribution of X. Notice

that for any X the above variance can be written as µ2 = θ (gµ2 + gµ
2) > θ gµ = µ,

thus generalized Poisson distributions are characterized by overdispersion.
The generalized Poisson distribution considered in Chapter 6 is obtained by

generalizing Poisson through Borel distribution (cf. Wimmer and Altmann, 1999,
p. 93). But, we could also assume Xi in (2.22) be independent and identically dis-
tributed Bernoulli random variables with probability of success p, for some p ∈ (0, 1].
This process of generalizing the Poisson distribution by the Bernoulli distribution is
known as an independent p-thinning (cf. Puig and Valero, 2007). Based on equa-
tion (2.29), the pgf of SN results in GSN

(t) = eθ (q+pt−1) = epθ(t−1), which is the
pgf of the Poisson distribution with parameter pθ, already given in (2.13). Since
SN |N ∼ Binomial(N, p), the resulting random variable SN can also be understood
as a binomial subsampling of N . The negative binomial distribution, regarded as a
gamma mixture of Poisson distributions, may also be interpreted as a generalized
Poisson distribution where the generalization is achieved by logarithmic distribu-
tion (cf. Gurland, 1965; Winkelmann, 2000). There are various other distributions
that can be considered both as compound and stopped-sum Poisson distributions,
one further example being Neyman’s two-parametric distribution of Type A (cf.
Feller, 1943; Gurland, 1958, 1965). Moreover, Table 2.3 below emphasizes that com-
pounding and generalizing are related construction concepts, as listed distributions
are simultaneously of the type (2.16) and (2.26). The following Gurland’s (1957)
theorem defines the crucial condition under which the same distribution can be
generated both as a compound and as a generalized distribution.

Theorem 2.1 Let X be a random variable with distribution function F2(x|θN) and
pgf GX(t|θN) which is dependent on a parameter θ such that

GX(t|θN) = [GX(t|θ)]n . (2.33)

Let parameter N itself be a random variable with distribution function F1 and pgf
GN(t) =

∑∞
n=0 tngn. Then, whatever N is the following relationship holds

F2(θN)
∧

N

F1 ∼ F1

∨
F2(θ) . (2.34)

To prove the above theorem we obtain the pgf of the mixture F2(θN)
∧

F1 using the
conditional probabilities

GX(t) =
∞∑

x=0

txP (X = x) =
∞∑

x=0

tx
∞∑

n=0

P (X = x|θN)gn ,
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Table 2.3: Examples of some distributions with dual genesis and common pgf’s

Distribution of X Character of derivation GX(t)

Poisson(pθ)
Binomial(N, p)

∧
N

Poisson(θ)
epθ(t−1)

Poisson(θ)
∨

Bernoulli(p)

Poisson-binomial(θ, n, p)
Binomial(nL, p)

∧
L

Poisson(θ)
eθ((q+pt)n− 1)

Poisson(θ)
∨

Binomial(n, p)

Binomial-Poisson(θ, n, p)
Poisson(θL)

∧
L

Binomial(n, p) (
q + peθ(t−1)

)n

Binomial(n, p)
∨

Poisson(θ)

Negative binomial(k, p)
Poisson(Θ)

∧
Θ

Gamma(k, q/p)
pk/(1 − qt)k

Poisson(−k ln p)
∨

Logarithmic(q)

Neyman Type A(θ, λ)
Poisson(θN)

∧
N

Poisson(λ)
eλ(eθ(t−1)− 1)

Poisson(λ)
∨

Poisson(θ)

Poisson-Pascal(θ, k, p)
Negative binomial(kN, p)

∧
N

Poisson(θ)
eθ(pk(1−qt)−k− 1)

Poisson(θ)
∨

Negative binomial(k, p)

where gn = P (N = n) is pmf of N . By interchanging the order of summation and
applying Gurland’s requirement (2.33) we have

GX(t) =
∞∑

n=0

gnGX(t|θN) =
∞∑

n=0

[GX(t|θ)]n gn = GN(GX(t|θ)) .

The right-hand side of the last expression is the same as (2.24), hence relation (2.34)
holds, regardless of distribution F1 . This means that the mixed distribution which
satisfies Gurland’s precondition has an alternative genesis as the generalized distri-
bution. There is an infinite class of distributions with this property. In particular,
discrete mixtures of the following Poisson, binomial and negative binomial distribu-
tions with pgf’s

Poisson(θN) ⇒ GX(t|θN) = eθn(t−1) =
(
eθ(t−1)

)n
= [GX(t|θ)]n ,

Binomial(mN, p) ⇒ GX(t|mN) = (q + pt)mn = ((q + pt)m)n = [GX(t|θ)]n ,

Negative binomial(kN, p) ⇒ GX(t|kN) =

(
p

1 − qt

)kn

=

((
p

1 − qt

)k
)n

= [GX(t|θ)]n ,

may also be interpreted as generalized distributions in the sense of Definition 2.2.
Some examples are given in Table 2.3. However, not every distribution which is
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both a compound and generalized distribution can be generated in this manner.
The negative binomial distribution given in Table 2.3 is one such example.

2.2.3 Misrecorded Poisson Distributions

These modified distributions consider certain models conforming to the Poisson ex-
cept for some particular category, which is subject to defective counts. The Cohen-
Poisson distribution discussed extensively in Chapter 7 has its application in situ-
ations where some, though not necessarily all, values of “ones” are faulty recorded
as “zeros” while values of two and more from Poisson are recorded correctly. The
data of this type arise very often as a result of misclassification during inspection of
the number of defects per unit. An investigator may sometimes fail to see the units
which actually have a single defect as being free of defects and hence make errors
in data reporting. Cohen (1959, 1991) observes a more general case in which some
values of x = k + 1 are incorrectly reported as x = k with probability α, where k
may be any value of the random variable X and 0 ≤ α ≤ 1.

2.3 Effect of Excluded Zero-Syllable Words

In linguistics, very often a need arises to deal with variables that can not take the
zero value, such as syllable length measured in number of graphemes, word length
measured in number of graphemes, morphemes or even syllables (cf. Section 1.4).
Also sentence length measured in number of words can never take a zero value.
In some concrete situations even more values at the lower end of the scale can be
missing, specifically in the case when the random variable denotes “number of words
in the verse”. We discuss here two possibilities that enable dealing with distributions
when the zero class is omitted, namely the 1-displaced and the size-biased approach.

2.3.1 1-Displaced Distributions

The 1-displaced distribution corresponds to the distribution of the linear transfor-
mation Xd = X + 1 of the random variable X. Thereby, if X is a discrete random
variable with distribution function FX(x) then Xd is also a discrete random vari-
able (cf. Casella and Berger, 2002, p. 48).
The first two moments of the random variable Xd can easily be calculated as

E(Xd) = E(X + 1) = E(X) + 1 and var(Xd) = var(X) . (2.35)

The pgf of Xd is given by

GXd(t) = E(tX
d

) = E(tX+1) = tGX(t) , (2.36)

whereas its mgf equals

MXd(t) = E(etXd

) = E(etX+t) = etMX(t) . (2.37)
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If all factorial moments µ(k) of X are known, then by applying formula (2.36) the
factorial moments µd

(k) of Xd can be evaluated by the following recurrence relation

µd
(k) = µ(k) + kµ(k−1) , k = 1, 2, . . . , (2.38)

where µ(0) = 1 holds. Furthermore, raw and central moments of the random variable
Xd can be determined using relations (B.9) and (B.13), Appendix B. Table 2.4 gives
several basic discrete distributions and their 1-displaced forms with pmf and first
two moments.

Consider X to be Poisson distributed with parameter θ ∈ R
+. Then the distri-

bution of the random variable Xd is referred to as 1-displaced Poisson distribution
with pmf defined by

πd
x = P (Xd = x) =

e−θθx−1

(x − 1)!
, x = 1, 2, . . . , (2.39)

where the nonnegative integer valued domain N0 of X is replaced by the domain N.
Since E(Xd) = θ + 1 > var(Xd) = θ for any θ > 0 this distribution is characterized
by underdispersion regarding the standard Poisson distribution. This further implies
that linear transformation on the sample space do not generate again the Poisson
distribution with a different value of the parameter θ, i.e. the Poisson distribution
is not closed under linear transformation.

2.3.2 Size-Biased Distributions

Size-biased distributions arise as a special case of a more general class of weighted
distributions. Although first introduced by Fisher (1934) as a method to model as-
certainment bias, it was Rao (1965) who later formalized this approach in a unifying
theory. The concept of weighted distributions has been used mainly in situations
where the usual random sampling from the underlying population is not possible
due to data having unequal probabilities of being selected in the sample. Even if a
random sample can be obtained it may be too difficult or too expensive or possibly
less effective to do so. As an example suppose that one is interested in studying the
population of criminals in a particular country. Obviously, it would be highly expen-
sive and rather hopeless to sample randomly from the entire population of criminals.
An easier way, mentioned by Larose and Dey (1996), would be to investigate the
population of criminals already in jail with a distribution which is the weighted
version of the original distribution according to the probability of a criminal being
caught. Among others, such weighted probability surveys arise as a result of the
probability proportional to size, size-biased and line-transect sampling designs (cf.
Patil and Rao, 1978; Patil, 2002). Properly defined sampling frames rarely exist for
human and wildlife populations which is evident from the study of data on abnormal
(albino) children in Rao (1965), the analysis on family size and sex ratio reported
in Patil and Rao (1978) or the question of estimating the abundance of a particular
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animal species (deep-sea red crab and minke whale) in a given region illustrated
by Patil (2002). Moreover, weighted distributions are applicable in many other ap-
plied fields as agriculture, forestry and ecology (cf. Gove, 2003a), to mention just
a few of them. Recorded observations in these populations are biased and will not
have the original distribution. In order to make a specification of the probabilities
of recorded events it is necessary to adjust the probabilities of actual occurrences of
events. The size-biased distributions are applied here in the modelling framework,
as a tool to select an appropriate model for the observed data and are not to be
connected with the sample selection methods. First, we introduce the concept of
weighted distributions.

Suppose that the original (unobserved) pmf of the discrete random variable X is
πx|Θ = PΘ(X = x) with unknown parameter vector Θ from a given parameter space
Ω. Assume further that the probability of recording the observation X = x is given
by an arbitrary non-negative weight function w(x, α) depending on the value x and
possibly on an unknown parameter α. Then the corresponding weighted distribution
of the random variable Xw has a pmf5 given by (cf. Patil and Rao, 1978; Patil,
2002)

πw
x|Θ = PΘ(Xw = x) =

w(x, α)πx|Θ

E(w(x, α))
, x ∈ N , α ∈ R

+ , (2.40)

where E(w(x, α)) =
∑

x w(x, α)πx|Θ is the normalizing factor obtained to make the
total probability equal to unity. The weighted function does not necessary need to be
bounded by 0 ≤ w(x, α) ≤ 1, it may even exceed unity. However, it should be of the
form for which E(w(x, α)) exists. Note that πw

x|Θ = πx|Θ holds if and only if w(x, α)

is a constant, because then E(w(x, α)) = w(x, α). Patil and Rao (1978) mentioned
that some statistical distributions may be expressed as weighted distributions. For
example, a zero-truncated distribution is a special case of distribution (2.40), where
w(0, α) = 0 and w(x, α) = 1 for x ≥ 1.

An important family of distributions, known as size-biased distributions, arises
when the weight function in formula (2.40) is taken to be w(x, α) = x. Consequently,
the pmf of the size-biased version X∗, of a random variable X is of the form

π∗
x|Θ = PΘ(X∗ = x) =

xπx|Θ

E(X)
, x = 1, 2, . . . , (2.41)

where the denominator is the mean of the original distribution and π∗
0|Θ = 0 holds.

Some practical examples of such distributions are considered by Rao (1965) and Patil
(2002). In forestry, size-biased models are referred to as length-biased distribu-
tions, since the probability of selecting individuals into the sample is proportional to
some linear measure, such as piece length or diameter. Two- and three-parameter
size-biased Weibull distributions found wide application as a diameter at breast
height distribution models (cf. Gove, 2003a). Their estimating equations for both
method of moments and maximum likelihood are presented in Gove (2003b). Akman

5 Notice that the recorded x is not an observation on the random variable X, but on Xw.



38 CHAPTER 2. GENERAL APPROACHES

et al. (2007) studied how to identify length-biased samples and provided a simple
distribution-free test which only uses the sampled information with the application
to the population of grasshoppers. Table 2.4 presents several basic discrete distri-
butions and their size-biased forms with pmf and first two moments. It can be seen
that the resulting distribution of X∗ is of the same form as the distribution of X
for binomial, Poisson and negative binomial distributions with the variable reduced
by unity. Patil and Rao (1978) observed the same result for hypergeometric and
binomial beta distribution. However, the situation is different for the logarithmic
distribution which changes instead to the geometric distribution. Apparently, the
size-biased and 1-displaced versions of the Poisson distribution are identical. Com-
parison of the panels in Figure 2.4 clearly shows the interplay between the Binomial
distribution and its 1-displaced and size-biased forms, being plotted as rows, for the
sample size of n=10. The columns show the effect of increasing the parameter p by
a factor of three.
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Figure 2.4: Binomial distribution compared to its 1-displaced (left column) and size-
biased version (right column) for two different values of p=0.2 and p =0.6 given as rows
with (µ, µd, µ∗)= (2, 3, 2.8), s= sd =1.26, s∗ =1.2 and (µ, µd, µ∗)= (6, 7, 6.4), s= sd =1.55,
s∗ =1.47, respectively.
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Table 2.4: Some basic discrete distributions with their 1-displaced and size-biased forms

Random Variable

Distribution X Xd X∗

Notation P(θ) 1+P(θ) 1+P(θ)

P
o
is

s
o
n

Range N0 N N

pmf
e−θθx

x!
πx−1 πx−1

E(·) θ 1 + θ 1 + θ

var(·) θ θ θ

Notation B(n, p) 1+B(n, p) 1+B(n − 1, p)

B
in

o
m

ia
l Range {0, . . . , n} {1, . . . , n + 1} {1, . . . , n}

pmf

(
n

x

)
pxqn−x πx−1

x

np
πx

E(·) np np + 1 (n − 1)p + 1

var(·) npq npq (n − 1)pq

Notation NB(k, p) 1+NB(k, p) 1+NB(k + 1, p)

N
e
g
a
ti
v
e

B
in

o
m

ia
l

Range N0 N N

pmf

(
k + x − 1

x

)
pkqx πx−1

xp

kq
πx

E(·) kq

p

kq + p

p

kq + 1

p

var(·) kq

p2

kq

p2

(k + 1)q

p2

Notation Log(p) 1+Log(p) G(p)

L
o
g
a
r
it
h
m

ic Range N N N

pmf
apx

x
πx−1 px−1(1 − p)

E(·) ap

(1 − p)

ap

(1 − p)
+ 1

1

(1 − p)

var(·) ap(1 − ap)

(1 − p)2
ap(1 − ap)

(1 − p)2
p

(1 − p)2

Note regarding parameters: θ > 0 , 0 < p < 1 , q = 1 − p , a = − ( ln(1 − p))
−1
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The probability and moment generating functions of the size-biased distributions
arise directly from the corresponding generating functions of the original distribu-
tions. Generally, the following holds

GX∗(t) =
k∑

x=1

txπ∗
x|Θ =

1

E(X)

k∑

x=1

xtxπx|Θ =
tG′

X(t)

E(X)
=

tG′
X(t)

G′
X(1)

, (2.42)

MX∗(t) =
k∑

x=1

etxπ∗
x|Θ =

1

E(X)

k∑

x=1

xetxπx|Θ =
M ′

X(t)

E(X)
=

M ′
X(t)

M ′
X(0)

, (2.43)

wherefrom the cumulant generating function results as

KX∗(t) = ln MX∗(t) = ln M ′
X(t) − ln M ′

X(0) . (2.44)

Table 2.5 provides probability and moment generating functions of the discrete dis-
tributions listed in Table 2.4 for both original and its size-biased version.

Table 2.5: Probability and moment generating functions of some basic discrete distribu-
tions and their size-biased forms

Distribution
X X∗

GX(t) MX(t) GX∗(t) MX∗(t)

Poisson eθ(t−1) eθ(et−1) teθ(t−1) eθ(et−1)+t

Binomial (pt + q)n (pet + q)n t(pt + q)n−1 et(pet + q)n−1

Negative Binomial pk/(1 − qt)k pk/(1 − qet)k tpk+1/(1 − qt)k+1 etpk/(1 − qet)k+1

Logarithmic −a ln(1 − pt) −a ln(1 − pet) (1 − p)t/(1 − pt) (1 − p)et/(1 − pet)

Logarithmic distribution: a = − ( ln(1 − p) )
−1

The k-th factorial moment of the size-biased distribution can be expressed by
appropriate factorial moments of the original distribution. By substituting t = 1 in
the k-th derivative of GX∗(t)

G
(k)
X∗(t) =

1

µ

(
kG

(k)
X (t) + tG

(k+1)
X (t)

)
,

we obtain the following relation

µ∗
(k) = k

µ(k)

µ
+

µ(k+1)

µ
, k = 1, 2, . . . (2.45)

Also, the k-th raw moment of the size-biased random variable X∗ is simply calculated
as a ratio of the (k + 1)-th raw moment and the mean of the original distribution

µ∗
k
′ = E((X∗)k) =

k∑

x=1

xkπ∗
x|Θ =

1

E(X)

k∑

x=1

xk+1πx|Θ =
E(Xk+1)

E(X)
=

µ′
k+1

µ
. (2.46)
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Consequently, we have E(X∗) = var(X)/E(X) + E(X) for non-degenerate X, hence
the size-biased mean is displaced for the value var(X)/E(X)6 with respect to the
original mean. Finally, central moments of the size-biased distribution can be derived
directly from its raw moments by applying equations (B.13), Appendix B. Thus the
variance of X∗ becomes

var(X∗) = µ∗
2
′ − (µ∗)2 =

µ′
3µ − (µ′

2)
2

µ2
. (2.47)

It is important to mention that the size-biased family (2.41) contains distributions
with index of dispersion greater than, equal to and smaller than one. This feature
enables them to fit discrete data in under-, equi- and overdispersed situations, as
demonstrated in forthcoming chapters.

The more general case, known as size-biased distributions of order α, which
corresponds to the weight w(x, α) = xα (cf. Rao, 1965) has also been widely utilized
in statistics. Clearly, distribution (2.41) is its special case that results for α = 1.
Area-biased sampling applied extensively in forestry and discussed by Gove (2003a)
is obtained for α = 2. Individuals (standing or dead and fallen material in the forest)
are selected into the sample with probability proportional to some arial attribute,
the well-known example is tree basal area.

2.4 Parameter Estimation Procedures

Let X1, . . . , Xn be a sample from a population having pmf πx|Θ = PΘ(X = x) with
an unknown parameter vector Θ = (θ1, . . . , θq) taking on values in the parameter
space Ω. The knowledge of parameter vector Θ yields the knowledge of the entire
population, thus our interest is to find a good estimator of Θ. An estimator is a
function of the random variables X1, . . . , Xn of a sample and should be distinguished
from an estimate, a function of the realized values x1, . . . , xn, which is a number.
Sometimes we have to deal with quite complicated models requiring not always the
same estimation procedures. Application of different estimation techniques yields
very often different estimators. In this section we introduce three most common esti-
mation methods: method of moments, maximum likelihood method and estimation
based on sample mean and first frequency class.

2.4.1 Estimation by Method of Moments

The method of moments is one of the simplest estimation procedures that almost
always yields some kind of estimates, provided the theoretical moments exist. It is
based on equating the first q sample raw moments m′

r, r = 1, . . . , q, to the corre-
sponding q population moments µ′

r, where q is the number of unknown parameters.
The population moments µ′

r are functions of unknown parameters θ1, . . . , θq which

6 Note that var(X)/E(X) is the index of dispersion regarding the standard Poisson distribution.
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are to be replaced by their empirical counterparts. Hence, the moment (MM) esti-
mator (θ̂1, . . . , θ̂q) of (θ1, . . . , θq) is obtained by solving simultaneously the following
system of q equations

m′
1 = µ′

1(θ̂1, . . . , θ̂q) ,
...
m′

q = µ′
q(θ̂1, . . . , θ̂q).

(2.48)

Sometimes it is preferred to equate the first q central moments mr, to the corre-
sponding q population moments µr, or even the first q factorial moments m(r) can
be set equal to the corresponding q population moments µ(r). All three procedures
yield identical estimates. Thereby the sample moments are calculated as follows

m′
r =

1

n

k∑

i=1

irfi , mr =
1

n − 1

k∑

i=1

(i − m′
1)

rfi ,

m(r) =
1

n

k∑

i=1

i(i − 1)(i − 2) . . . (i − r + 1)fi ,

(2.49)

where n is the sample size, fi denotes the absolute frequency of the i-th class, whereas
the last frequency class is labelled by k. Also, note that m′

1 = x̄ and m2 = s2.
Nevertheless, the range of the moment estimator may sometimes differ from the

range of the parameter it is estimating. For example, we can get negative moment
estimates of both binomial parameters7, although per definition they should be
positive. This can happen if and only if the sampled data exhibit overdispersion, i.e.
the sample mean is smaller than the sample variance (cf. Neubauer and Friedl, 2006).
Although the method of moments yields unbiased and consistent point estimators
for moments, it is rather inefficient for functions of moments, which are generally
biased and may have large quadratic errors. Therefore, we use moment estimates
sometimes as starting values from which more efficient estimates can be determined.
Basic properties of the estimators and the criteria for choosing the most appropriate
one are given in Appendix C.

The size-biased moment equations require size-biased moments. For example, we
can equate the raw moments given in equation (2.46) to the corresponding sample
moments, obtaining as a solution the size-biased moment estimators.

2.4.2 Estimation by Maximum Likelihood

Consider a random sample of size n from a population with pmf πi|Θ = PΘ(X = i).
Let fi denote the observed frequency of different classes i, i = 1, . . . , k such that∑k

i=1 fi = n, where k is the largest frequency class. The maximum likelihood (ML)

7 The MM estimates of the binomial parameters are n̂MM = x̄2/(x̄ − s2) and p̂MM = 1 − s2/x̄,
where x̄ and s2 denote the first two sample moments.
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estimator of parameter vector Θ = (θ1, θ2, . . . , θq) is the value that maximizes the
likelihood function L(Θ|f1, . . . , fk) defined by

L(Θ|f1, . . . , fk) =
k∏

i=1

(PΘ(X = i))fi . (2.50)

However, it is rather its log-likelihood function given by

l(Θ|f1, . . . , fk) = log L(Θ|f1, . . . , fk) =
k∑

i=1

fi log PΘ(X = i) (2.51)

that will be maximized, since maximizing the logarithm often requires simpler com-
putation. Also, the logarithm is a strictly increasing function over the range of the
likelihood, hence the two maxima coincide. Assuming l(Θ|f1, . . . , fk) to be differ-

entiable in θi, the ML estimate Θ̂ = (θ̂1, . . . , θ̂q) results as a solution of the score
equations8 S(Θ) = 0, where the score function is the following first derivative vector

S(Θ) =
∂l(Θ|f1, . . . , fk)

∂Θ
=

(
∂l(Θ|f1, . . . , fk)

∂θ1

, . . . ,
∂l(Θ|f1, . . . , fk)

∂θq

)T

. (2.52)

Equations (2.52) can be solved iteratively for Θ̂ using the Newton-Raphson method
(cf. Schwarz and Köckler, 2006) where the sequence {Θ(r), r = 1, 2, . . .} is deter-
mined from the recurrence relation

Θ(r+1) = Θ(r) − S(Θ(r) )

H(Θ(r) )
, r = 0, 1, . . . (2.53)

Thereby, H is the Hessian, the squared matrix of the second-order partial derivatives
of l(Θ|f1, . . . , fk) that is evaluated at Θ(r). Commonly, the moment estimator Θ̂MM

is taken as the starting value Θ(0) for the iteration process. The iteration process
ends at the m-th step, if the inequality |Θ(m+1) − Θ(m)| < ε holds for some posi-
tive integer m and sufficiently small value of ε. Then, Θ(m) is the solution of the
equation (2.52) and hence Θ(m) = Θ̂ML. The ML estimators are not always unbi-
ased, however, if an efficient estimator exists, it will be achieved by the ML method,
at least asymptotically. It means that as the sample size increases to infinity, the
ML estimator achieves the Cramér-Rao lower bound (CRLB). For the definition see
Appendix C. Also, ML estimators are consistent and asymptotically normal.

Furthermore, the variance-covariance matrix of Θ̂ML can be obtained by inverting
the Fisher information matrix I(Θ̂) defined as minus the Hessian of l(Θ|f1, . . . , fk)

evaluated at Θ̂ML. At the maximum the second derivative of l(Θ|f1, . . . , fk) is nega-

tive, thus I(Θ̂) measures in some way the “sharpness” of the log-likelihood curve in

8 Note that the solutions of the score equation are the only possible ML candidates, since the
zeros of the first derivative yield extremes (local or global) or inflection points. Our interest
is rather to find a global maximum. Thus, the matrix of second derivatives has to be negative
definite for all values of Θ.
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the neighbourhood of Θ̂ML. Low information means flat maximum, hence indicates
more uncertainty about Θ and vice versa. Parameters with larger information will
have smaller variance, therefore greater precision. An approximate 95% confidence
interval for the parameter θi is obtained as

θ̂i ± 1.96

√
var(θ̂i) , (2.54)

where var(θ̂i) is the i-th diagonal element of the squared matrix (I(Θ̂))−1.
In some situations the invariance property of the ML estimate can be useful. It says
that if Θ̂ = (θ̂1, . . . , θ̂q) is the ML estimate of Θ = (θ1, . . . , θq) and g(θ1, . . . , θq) is

any function of the parameters, then the ML estimate of g(θ1, . . . , θq) is g(θ̂1, . . . , θ̂q).
For further references see e.g. Casella and Berger (2002) or Pawitan (2001).

The general form of the size-biased likelihood, independent of any distribution
assumption, is given by

L∗(Θ|f1, . . . , fk) =
k∏

i=1

(PΘ(X∗ = i))fi =
k∏

i=1

(
iPΘ(X = i)

E(X)

)fi

, (2.55)

hence the log-likelihood function results in

l∗(Θ|f1, . . . , fk) =
k∑

i=1

(
fi log i + fi log PΘ(X = i) − fi log E(X)

)
. (2.56)

Notice that the first term in the formula above is a constant which depends only on
the data and thus may be dropped if needed, the second term is the log-likelihood of
the original distribution given in (2.51) and the last term

∑k
i=1 fi log E(X) = n log µ

is a correction term, emphasizing the fact that the observations were not sampled
with equal probability (cf. Gove, 2003a, 2003b).

In order to apply the Newton-Raphson iteration algorithm the score function of
the first derivatives of l∗(Θ|f1, . . . , fk) is required. Hence, the score equations are

∂l∗(Θ|f1, . . . , fk)

∂θi

=
∂l(Θ|f1, . . . , fk)

∂θi

− n

µ

∂µ

∂θi

= 0 . (2.57)

These will be combined with the second-order partial derivatives given by

∂2l∗(Θ|f1, . . . , fk)

∂θ2
i

=
∂2l(Θ|f1, . . . , fk)

∂θ2
i

+
n

µ2

(
∂µ

∂θi

)2

− n

µ

∂2µ

∂θ2
i

,

∂2l∗(Θ|f1, . . . , fk)

∂θi∂θj

=
∂2l(Θ|f1, . . . , fk)

∂θi∂θj

+
n

µ2

∂µ

∂θj

∂µ

∂θi

− n

µ

∂2µ

∂θi∂θj

.

(2.58)

The score vector and the Hessian matrix are of the same form as the log-likelihood,
being composed of the part from original distribution and correction components.
Interestingly enough, the correction term depends on the size-biased order α because
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in the general case µ =
∑k

x=1 xαπx|Θ. Hence, unique corrections with respect to size-
biased (α=1) and area-biased (α=2) log-likelihoods, score and Hessian exist.

In practice, we often use numerical optimization procedures to find Θ̂ directly
from the log-likelihood function. In that case we do not need to find analytically the
score function or the Hessian, since they are provided numerically by the procedure.
The variance-covariance matrix, as well as confidence intervals of the estimated pa-
rameters, can afterwards be easily calculated from the resulting Hessian, as explained
above.

2.4.3 Estimation Based on Mean and First Frequency Class

This method has proven to be useful for various situations in which the frequency
of the lowest class in the sample is much larger than the other frequency classes or
when the graph of the sample distribution is approximately L-shaped (cf. Anscombe,
1950; Johnson and Kotz, 1969). It has been already mentioned in Section 1.8 that
the lowest frequency class is the first one, since zero-syllable words as parts of the
subsequent words do not exist as a separate word class. Therefore, the approach here
is to equate the sample mean x̄ and the relative frequency of the first class f1/n to the
population mean µ and the probability of the first class πd

1|Θ (or π∗
1|Θ in size-biased

case), respectively, in order to give more weight to this large frequency class. The
estimators are obtained by solving the resulting system of simultaneous equations
and are denoted by FF. This technique offers an efficient and useful alternative to
the maximum likelihood method. Moreover, it is likely to give better results, with
increasing values of the corresponding πx|Θ’s.

2.5 Sampling From Discrete Probability Models

In this section we give a short introduction to the inversion algorithm, discussed by
Stadlober (1989, 7ff.), needed for generating random variables of the distributions
considered in Chapters 4 - 7. The inversion concept is based on the following theorem.

Theorem 2.2 Let F (x) be any distribution function on R. If U is uniformly dis-
tributed on (0, 1), then the random variable X = inf{y|U ≤ F (y)} has distribution
function F (x).

Next theorem gives a specialization to discrete random variables.

Corollary 2.1 Let F (x) be a discrete cdf of a distribution {πj}, j = 0, 1, . . . Define

X = k , if
k−1∑

i=0

pi < U ≤
k∑

i=0

pi , k = 0, 1, . . . , (2.59)

where U ∼ U(0, 1). Then X has distribution function F (x).
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Assume that there is a recurrence relation for the probabilities of the discrete dis-
tribution of interest defined by

πk = g(πk−1) , k = 2, 3, . . . (2.60)

The discrete random variables are generated by using the following search procedure:

0. [Pre-set] Define probability π1 and precision b.

1. Generate U ∼ U(0, 1). Set K ← 1, f ← π1.

2. If U ≤ f return K.

3. If K > b go to step 1.

4. Set U ← U − f , K ← K + 1, f ← g(f) and go to step 2.

In step 3. we do not allow K to exceed the bound b at which we are sure that the
calculated probabilities πk are insignificant. Hence, b is found as b = min{k|πk < ε},
with ε ∈ {10−4, 10−5, 10−6, . . .}. Obviously, different choices of ε yield also different
bounds of b. This method is also known as a chop-down search and is applicable
when the distribution has a small number of mass points.

2.6 Goodness of Fit

Whenever count data are considered and one wants to test the fit of a certain model,
the standard procedure is to compare the expected frequencies with the observed
frequencies. It means testing the null hypothesis

H0 : πi = π0i(Θ) , i = 1, 2, . . . , k , Θ ∈ Ω ⊂ R
q (2.61)

that the observed frequency distribution is consistent with a particular theoretical
distribution. Here, π = (π1, π2, . . . , πk) denotes the true probability vector of the
event that some particular word has length i, whereas π0 = (π01, π02, . . . π0k) is the
hypothesized probability vector evaluated at Θ = (θ1, . . . , θq) with q < k − 1. The
probability of the largest word length class πk, is calculated as 1 minus the sum of all
remaining classes, since there are no infinitely long words in the language. To verify
the hypothesis that a certain model holds we calculate Pearson’s X2 test statistics
defined by

X2 =
k∑

i=i

(fi − nπ0i(Θ))2

nπ0i(Θ)
, i = 1, 2, . . . , k , (2.62)

where the vector f = (f1, . . . , fk) is the number of words of length i, and n represents
the total number of words in a given text. All unspecified parameters θj, j = 1, . . . , q
have to be estimated before the expected frequencies nπ0i(Θ) are calculated. If the
observed vector f = (f1, . . . , fk) is replaced by the random vector F = (F1, . . . , Fk),
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then X2 is a random variable which is X2 as∼ χ2
k−q−1 distributed when H0 is true.

Therefore, the null hypothesis will be rejected at the significance level α whenever
X2 ≥ χ2

k−q−1;1−α holds.
Furthermore, Pearson’s X2 test statistics is a member of the power-divergence

family9 of the goodness-of-fit statistics, introduced by Cressie and Read (1984, 1988).
It examines, like other test statistics of this family, the adequacy of the model
by evaluating the discrepancy between observed frequencies and their hypothetical
expectations, however it is strongly dependent on the sample size. If the difference
between the theoretical and empirical frequencies is taken to be fixed, all these
statistics increase linearly with the increase of the sample size (cf. Grotjahn and
Altmann, 1993). It means that in case of large sample sizes, even small model
deviations will be detected as significant having as a consequence the possible model
rejection. Another disadvantage of the goodness-of-fit test is that it indicates only
a statistical significance of a possible deviation from the model, but not the order
of the divergence. Therefore, a direct comparison of goodness-of-fit values in case of
different sample sizes may be misleading. Also, differences in the number of classes
influence differences in the degrees of freedom.

2.6.1 Discrepancy Index

In order to avoid the problems with the goodness-of-fit test it was necessary to
find some measure allowing to compare fits of a single model to empirical samples
differing in the sample size. To measure the degree of the goodness of fit, Moore
(1984) considered the value T/n, where T denotes any of the statistics belonging
to the power-divergence family. The usage of the standardized discrepancy index
C = X2/n, as its special case, became common practice in linguistics (cf. Grotjahn
and Altmann, 1993). Obviously, the relation (2.62) can be written as

X2 =
k∑

i=1

(
Fi − nπ0i(Θ̂)

)2

nπ0i(Θ̂)
= n

k∑

i=1

(
Fi/n − π0i(Θ̂)

)2

π0i(Θ̂)
,

when the observed vector f is replaced by the random vector F . Evidentially, the
value C = X2/n, called the standardized discrepancy index, measures discrepancy

between the empirical relative frequencies F/n and the probabilities π0(Θ̂) esti-
mated under H0. The discrepancy index has the advantage that it does not depend
on the degrees of freedom and sample size. At the beginning of empirical research,
the values of C > 0.02 were usually considered unacceptable and hence the model
rejection was recommended (cf. Antić et al., 2005, 2006b). Mačutek, Švehĺıková,
and Cenkerová (2011) studied the rank-frequency distributions of melodic intervals
and showed that fitting the negative hypergeometric distribution to the data yields

9 This family includes also the log-likelihood ratio statistics, the Freeman-Tukey statistics, the
modified log-likelihood ratio statistics and the Neyman-modified statistics as its special cases.
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contradictory results. Although the fit proved not to be satisfactory in terms of
discrepancy index C, it was considered very good in terms of determination coef-
ficient R2. Since rejection rules for both C and R2 are not theoretically derived,
but only considered as rules of thumb, the above authors suggested an extensive
future study, based on many data sets from different areas, in order to get at least
roughly comparable results. Based on empirical investigations done in the frame-
work of QuanTA10 project, we consider here the fit of the model (a) extremely good
if C ≤ 0.01, (b) good if 0.01 < C ≤ 0.02 and (c) acceptable if 0.02 < C ≤ 0.05 (cf.
Djuraš and Stadlober, 2010). However, there is a need for an extensive simulation
study to evaluate the plausibility of the suggestions above.

2.7 Software Used

All computations regarding parameter estimation and verifications of the goodness
of fits done in this work were mainly implemented by the public domain statistical
software R, version 2.8.0 (cf. R Development Core Team, 2008). The only excep-
tion are the distributions arising as special cases of the Fucks’ generalized Poisson
distribution, dealt with in Chapter 3. For the corresponding calculations in this area
we used the software Maple, version 9 (cf. Ablamowicz and Fauser, 2011). The
main results concerning this part of calculations are summarized in Tables 3.6 - 3.9.
Additionally, random variables from the distributions of interest were generated in R
via the inversion method explained in Section 2.5 and subsequently simulation stud-
ies were done. Several R functions developed here are documented in Appendix D.
Although the software R is an open source project, there are many books written
already on this topic. A great deal of useful information can be obtained from the
home page http://www.r-project.org/.

10 More details considering the main results of this project were given in Chapter 1.



Chapter 3

Fucks’ Generalized Poisson
Distribution

3.1 Historical Context

Scientific work of German physicist Wilhelm Fucks (1902–1990) motivated by the
desire to find the “mathematical law of the process of word formation from syllables
for all those languages, which form their words from syllables” (cf. Fucks, 1955) was
remarkable in the history of word length studies and remains worth mentioning still
today.

Based on elaborate mathematical ideas and the conditions that each word con-
tains at least one syllable, Fucks (1955, p. 209) assumed that the 1-displaced Poisson
distribution might be accepted as a general theoretical model for word length fre-
quency distributions. Even more, he proved that his suggested model, often termed
as the Fucks’ model by the linguist community, is a special case of a much more
general model. However, this generalization, named Fucks’ Generalized Poisson
Distribution (Fucks’ GPD) throughout this chapter, has hardly ever been discussed
in detail. Rather, he mentioned it only in a very few of his publications (cf. Fucks,
1956a, 1956c) but without application to the linguistic material. Interestingly, Fucks’
GPD has been discussed more intensively by several scholars from Eastern Europe
and the former Soviet Union, due to the Russian translation of Fucks’ (1956c) article.
In that context Fucks’ theoretical assumptions were not only generally accepted and
applied to specific linguistic material, but also served as a starting point for new de-
velopments with regard to alternative ways of parameter estimation and even further
generalizations (cf. Section 3.3).

As to the study of text and language, Fucks’ work includes the research on the
individual styles of single authors, as well as the properties of texts from different
authors, both from one single language but also across languages. As an example
for the comparison of two different languages, distributions of relative frequencies of
texts of two German authors, Rilke and Goethe, and of two Latin authors, Sallust

49
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and Caesar, given by Fucks (1957, p. 33), are displayed in Figure 3.1(a)1. Being
convinced only by the graphical impressions, Fucks came to the conclusion that
the curves of different authors but of one specific language show certain similarity.
In contrary to this, curves of the German and Latin texts turned out to be quite
different. The small differences within texts could be explained, according to him,

(a) German and Latin authors differences (b) Language differences

Figure 3.1: Distribution of relative frequencies of syllables per word

as being characteristic for the author’s individual style, rather than text specific. To
eliminate this author specific differences for the texts written in one single language,
Fucks suggested to look at the frequency distributions of a huge number of texts of
various authors and languages by calculating the mean values

p̄i
(λ) =

1

T

T∑

t=1

p
(t;λ)
i , 1 ≤ i ≤ I , 1 ≤ t ≤ T , (3.1)

where p
(t;λ)
i denotes the relative frequency of the i-syllable word of the text t written

in language λ. The analyzed languages are marked by 1 ≤ λ ≤ Λ. Furthermore,
the number of texts T should be considered to be large enough, in order to have
a representative cross-section of the given language (cf. Fucks, 1955, p. 202). Fig-
ure 3.1(b), taken from Fucks (1957, p. 33), represents the results for a great number
of German and Latin texts. Two curves, regarding to “the German” and “the Latin”
author, are obviously of a different type.

Unfortunately, Fucks never presented any raw data, a fact which renders it im-
possible to control the results he obtained. Moreover, he did not apply any tests to

1 Figure 3.1(a) shows relative frequency distributions of the following texts: Rilke “Die Weise

von Liebe und Tod des Cornets”, Goethe “Wilhelm Meisters Lehr- und Wanderjahre”, Sallust
“Belleum Jugurthinum” and Caesar “De Bello Gallico”.
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check the statistical significance of the goodness of his fits. Being probably aware
of the fact that the value of the X2 test statistics, introduced in Section 2.6, lin-
early increases with an increase of the sample size and hence results in significant
differences for larger samples, Fucks emphasized that his linguistic data are not
particularly adequate for the application of the χ2 test. Thus, one was forced to
believe that the 1-displaced Poisson distribution is the best possible model on the
basis of his empirical investigations. Only in the case when he compared texts from
eight natural and one artificial languages, at least the relative frequencies are pub-
lished (cf. Fucks, 1956a, 1956c). Original data from those nine different languages
are presented in Table 3.1. In addition to the relative frequencies of i-syllable words
calculated by formula (3.1), Table 3.1 contains also the mean word length x̄, as well
as the sample variance s2, for each of the given languages. The latter two are cor-
rected values from Fucks’ original ones which are obtained from relative frequencies
p̄i. Figure 3.2 illustrates word length frequency distributions of Fucks’ data. Ap-

Table 3.1: Relative frequencies p̄i, mean and variance of nine languages (Fucks, 1956a)

i English German Esperanto Arabic Greek

1 0.7152 0.5560 0.4040 0.2270 0.3760
2 0.1940 0.3080 0.3610 0.4970 0.3210
3 0.0680 0.0938 0.1770 0.2239 0.1680
4 0.0160 0.0335 0.0476 0.0506 0.0889
5 0.0056 0.0071 0.0082 0.0017 0.0346
6 0.0012 0.0014 0.0011 – 0.0083
7 – 0.0002 – – 0.0007
8 – 0.0001 – – –

x̄ 1.4064 1.6333 1.8971 2.1032 2.1106
s2 0.5645 0.7442 0.8532 0.6579 1.3526

i Japanese Russian Latin Turkish

1 0.3620 0.3390 0.2420 0.1880
2 0.3440 0.3030 0.3210 0.3784
3 0.1780 0.2140 0.2870 0.2704
4 0.0868 0.0975 0.1168 0.1208
5 0.0232 0.0358 0.0282 0.0360
6 0.0124 0.0101 0.0055 0.0056
7 0.0040 0.0015 0.0007 0.0004
8 0.0004 0.0003 0.0002 0.0004
9 0.0004 – – –

x̄ 2.1325 2.2268 2.3894 2.4588
s2 1.3952 1.4220 1.2093 1.1692

parently, the curve for Arabic shows certain systematic deviation compared to eight
other languages of a similar pattern. This could be explained by the fact that the
observed data were gained from only two texts, both from the same genre, namely,
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fairy tales (cf. Fucks, 1956a, p. 15), which can not be understood to be statistically
representative random cross-section of Arabic texts. Although Fucks claimed that
the 1-displaced Poisson model can be accepted as an overall valid standard model
for word length frequencies, we will show in Section 3.5 that it fits only three of
the nine observed languages above. One reason for this might be the fact that the
data for each of the languages originated from text mixtures, not from individual
texts. Therefore, the material might be characterized by an internal heterogeneity,
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Figure 3.2: Distribution of relative frequencies of word lengths of Fucks’ (1956a) data

violating the statistical principles of data homogeneity. However, this point can not
be pursued in detail, hence it will be neglected here, and Fucks’ data will be used
as an exemplary material throughout the following discussions.

The purpose of this chapter is to consider the concept of Fucks’ GPD more
precisely, as well as the modifications and generalizations derived from it. Also,
different parameter estimation methods are discussed. Since the relevant works are
not systematic in their approaches, the corresponding derivations will be calculated
and presented here, in detail.

3.2 Derivation of the Fucks GPD

Trying to find a universal mechanism to describe the process of word formation out
of syllables Fucks (1956a) assumed that this process can be seen as a superposition of
two processes, one being completely random and the other completely determined.
The final formula describing the probabilistic organization of this mathematical law
is derived in the following way (see also the preliminary study of Antić et al., 2005).
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Let us consider a large number of elements which should be stochastically dis-
tributed on a great number of cells. We distinguish between elements of two kinds,
namely one- and zero-elements. It is further assumed that each of these cells has a
place for n and only n elements. The probability for a one-element to fall into a spe-
cific cell at a given place within that cell will be denoted by q. The complementary
probability for a zero-element will be thus 1 − q. Before starting the distribution
process a certain number of elements will be placed into a certain number of cells so
that there will be εk−εk+1 cells pre-occupied with k one-elements in them, where the
trivial condition εk ≥ εk+1 holds. Once this pre-placing is completed, we randomly
distribute the rest of the elements on the remaining n− k empty places in the cells.
Hence, the probability to find further i− k one-elements and n− i zero-elements in
one given cell, in some specific order is qi−k(1 − q)n−i while the probability of all
possible arrangements is

(
n−k
i−k

)
.

As a result of these considerations Fucks (1956a, p. 12) finally conceived a model,
giving the probability to find exactly i one-elements in a given cell. This model later
became known as the Fucks binomial distribution and is defined as

πFB

i|q,εk
= P (X = i) =

∞∑

k=0

(εk − εk+1)

(
n − k
i − k

)
qi−k(1 − q)n−i , i = 0, . . . , n. (3.2)

The random variable X denotes the number of syllables per word, πFB

i|q,εk
is the

probability that a given word has i syllables, with
∑

i π
FB

i|q,εk
= 1, q = 1−p, 0 < p < 1,

n ∈ N. Ultimately, the distribution (3.2) is a sum of weighted binomial probabilities.
The corresponding weights are labelled as (εk − εk+1), k indicating the number of
components to be analyzed. The expected number of syllables per word or mean of
the distribution (3.2) is found to be

µ =
n∑

i=1

iπFB

i|q,εk
= (n − ε′)q + ε′ with ε′ =

∞∑

k=1

εk , (3.3)

and can be obtained by decomposition of the summation into corresponding ε terms

n∑

i=1

iπFB

i|q,εk
=

n∑

i=1

i

(
∞∑

k=0

(εk − εk+1)

(
n − k
i − k

)
qi−k(1 − q)n−i

)

= ε0

n∑

i=0

iqi(1 − q)n−i

(
n

i

)
+

+ ε1

(
n∑

i=1

iqi−1(1 − q)n−i

(
n − 1

i − 1

)
−

n∑

i=1

iqi(1 − q)n−i

(
n

i

))
+

+ ε2

(
n∑

i=2

iqi−2(1 − q)n−i

(
n − 2

i − 2

)
−

n∑

i=1

iqi−1(1 − q)n−i

(
n − 1

i − 1

))
+ . . .

= qn + ε1(1 − q) + ε2(1 − q) + . . . = qn + (1 − q)
∞∑

k=1

εk = qn + (1 − q)ε′ .
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When n → ∞ and q → 0 such that µ − ε′ = (n − ε′)q = const the probability (3.2)
can be written in the form

πFB

i|q,εk
=

∞∑

k=0

(εk − εk+1)

(
n − k

i − k

)(
µ − ε′

n − ε′

)i−k (
1 − µ − ε′

n − ε′

)n−i

=
∞∑

k=0

(εk − εk+1)
(µ − ε′)i−k

(i − k)!

(n − k)!

(n − i)!(n − ε′)i−k

(
1 − µ − ε′

n − ε′

)n−i

.

(3.4)

We use the fact that

(n − k)!

(n − i)!(n − ε′)i−k
=

(n − k)(n − k − 1) . . . (n − i + 1)(n − i)!

(n − i)!(n − ε′)i−k

=

(
1 − k − ε′

n − ε′

)(
1 − k − ε′ + 1

n − ε′

)
. . .

(
1 − i − ε′ − 1

n − ε′

) (3.5)

tends to unity if n increases without limit and apply the equality

(
1 − µ − ε′

n − ε′

)n−i

=




(
1 +

1
n−ε′

−(µ−ε′)

) n−ε′

−(µ−ε′)




−(µ−ε′) (
1 − µ − ε′

n − ε′

)ε′−i

(3.6)

where 


(
1 +

1
n−ε′

−(µ−ε′)

) n−ε′

−(µ−ε′)




−(µ−ε′)

→ e−(µ−ε′) as n → ∞

and (
1 − µ − ε′

n − ε′

)ε′−i

→ 1 as n → ∞ .

Hence, if n → ∞ and q → 0 such that µ− ε′ = (n− ε′)q = const the Fucks binomial
distribution (3.2) converges to the Fucks’ GPD, which by replacing (µ − ε′) with λ
has the following form

πFGP

i|λ,εk
= P (X = i) = e−λ

∞∑

k=0

(εk − εk+1)
λi−k

(i − k)!
, i = 0, 1, 2, . . . (3.7)

The condition λ = µ − ε′ ≥ 0 implying µ ≥ ε′ is required to ensure nonnega-
tive probabilities. In fact, the distribution (3.7) is the sum of weighted Poisson
probabilities with parameter λ. The parameters {εk} of the distribution are called
the ε-spectrum. For probabilities in (3.7), the following conditions are additionally
postulated by Fucks (1956a, p. 12):

(a) the condition εk − εk+1 ≥ 0 implies that εk ≥ εk+1;
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(b) since the sum of all the weights equals 1, we have

1 =
∞∑

k=0

(εk − εk+1) =
∞∑

k=0

εk −
∞∑

k=0

εk+1 = ε0;

(c) from (a) and (b), we obtain a more restrictive condition as to the ε-spectrum
requiring 1 = ε0 ≥ ε1 ≥ ε2 ≥ . . . ≥ εk ≥ εk+1 ≥ . . .

The following investigations use conditions (a) to (c) as basic restrictions. However,
assuming further that some εl = 0 for k ≥ l, then based on condition (a) it results
in εl−1 ≥ 0, and hence 1 ≥ ε1 ≥ . . . ≥ εl−1 ≥ 0. In Section 3.4, where the special
cases of the Fucks’ GPD model are discussed, this additional restriction is required.

In the following section, we go more into details, concentrating on the derivation
of the probability generating function and moments of the Fucks’ GPD. Also, our
aim is to determine the unknown εk values which characterize the Fucks’ GPD as
given in equation (3.7).

3.2.1 Probability Generating Function and Moments

The mean of the Fucks Generalized Poisson model (3.7) can be derived directly, by
definition, which after summing up the corresponding ε expressions results in

E(X) =
∞∑

i=1

iπFGP

i|λ,εk
= e−λ

∞∑

i=1

i

( ∞∑

k=0

(εk − εk+1)
λi−k

(i − k)!

)

= e−λ

( ∞∑

i=1

i
λi

i!
+ ε1

∞∑

i=0

λi

i!
+ ε2

∞∑

i=0

λi

i!
+ . . .

)

= e−λ

(
λeλ + eλ

∞∑

k=1

εk

)
= λ + ε′ = µ .

(3.8)

This fact is consistent with the border condition when the Fucks binomial distribu-
tion converges to the Fucks GPD. To determine E(X2) we calculate

∞∑

i=1

i2πFGP

i|λ,εk
= e−λ

∞∑

i=1

i2
( ∞∑

k=0

(εk − εk+1)
λi−k

(i − k)!

)

= e−λ

( ∞∑

i=1

i2
λi

i!
+ ε1

∞∑

i=0

(2i + 1)
λi

i!
+ ε2

∞∑

i=0

(2i + 3)
λi

i!
+ . . .

)

= e−λ

( ∞∑

i=1

i2
λi

i!
+ 2

∞∑

i=1

i
λi

i!

∞∑

k=1

εk +
∞∑

i=0

λi

i!

∞∑

k=1

(2k − 1)εk

)
.

Simplification of the expression above gives

E(X2) = λ(λ + 1) + 2ε′λ +
∞∑

k=1

(2k − 1)εk ,
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which substituting λ = µ − ε′ yields

E(X2) = µ2 + µ − ε′
2
+ 2

∞∑

k=1

(k − 1)εk .

Therefore, the variance of the Fucks GPD becomes

var(X) = E(X2) − E2(X) = µ − ε′
2
+ 2

∞∑

k=1

(k − 1)εk . (3.9)

The probability generating function (pgf) of the Fucks GPD random variable can be
found directly by the use of definition (B.1), Appendix B, and the series expansion
of ex =

∑∞
i=0 xi/i! for x = λt. Hence, we have

G(t) = eλ(t−1)

∞∑

k=0

(εk − εk+1)t
k . (3.10)

Now, based on the pgf we can easily derive all factorial moments, denoted by µ(k),
of the distribution (3.7). However, for many linguistic problems it is sufficient to
indicate only a few moments of the given distribution. For extensive explanation of
the relation between the pgf and the moments of the distribution see Appendix B.
Differentiating (3.10) partially with respect to t we have

∂G(t)

∂t
= eλ(t−1)λ

∞∑

k=0

(εk − εk+1)t
k + eλ(t−1)

∞∑

k=0

ktk−1(εk − εk+1) , (3.11)

which by substituting t = 1 and using the relations

∞∑

k=0

(εk − εk+1) = 1 and
∞∑

k=0

k(εk − εk+1) =
∞∑

k=1

εk = ε′ , (3.12)

gives the first factorial moment µ(1), which is in fact the mean of the distribution

µ(1) = λ + ε′ = µ . (3.13)

The second factorial moment µ(2) arises from the second derivative of G(t) with
respect to t, putting t = 1 and using (3.12) together with the relation

∞∑

k=0

k2(εk − εk+1) =
∞∑

k=1

(2k − 1)εk . (3.14)

Hence,

∂2G(t)

∂t2
=λ2eλ(t−1)

∞∑

k=0

(εk − εk+1)t
k + 2λeλ(t−1)

∞∑

k=0

k(εk − εk+1)t
k−1

+ eλ(t−1)

∞∑

k=0

k(k − 1)(εk − εk+1)t
k−2 ,

(3.15)
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for t = 1 and after replacing λ with µ − ε′ results in

µ(2) = µ2 − ε′
2
+ 2

∞∑

k=1

(k − 1)εk . (3.16)

In a similar manner, it can be shown that the third factorial moment is given by

µ(3) = µ3 −3µε′
2
+2ε′

3
+6(µ− ε′)

∞∑

k=1

(k − 1)εk +
∞∑

k=0

k(k − 1)(k − 2)(εk − εk+1) . (3.17)

Since the method described above becomes quite cumbersome and very time con-
suming for the computation of higher factorial moments, we suggest to apply the
following recurrence formula being useful for the successive evaluation

µ(r) =
r∑

i=0

(
r

i

)
(µ − ε′)i

∞∑

k=0

k(r−i)(εk − εk+1) , r = 1, 2, . . . (3.18)

Here, k(r−i) denote the descending or falling factorial which is defined as

k(r−i) =
r−i−1∏

j=0

(k − j) =
k!

(k − r + i)!
,

where k(r−i) = 0 for r − i > k.
Analogously to the procedure discussed in Appendix B, the initial and central mo-
ments of the Fucks GPD, denoted by µ′

k and µk, respectively, can be determined
from the factorial moments using relations (B.9) and (B.13). Hence, the second and
third initial moments result in

µ′
2 = µ2 + µ − ε′

2
+ 2

∞∑

k=1

(k − 1)εk ,

µ′
3 = µ3 + 3µ2 + µ − 3µε′

2 − 6µε′ + 2ε′
3
+ 3ε′

2 − ε′+

+ 6(µ − ε′)
∞∑

k=1

kεk +
∞∑

k=1

k3(εk − εk+1) ,

(3.19)

whence the third central moment can be written as

µ3 = µ+2ε′
3−3ε′

2
+6(1−ε′)

∞∑

k=1

(k − 1)εk +
∞∑

k=1

k(k − 1)(k − 2)(εk − εk+1) . (3.20)

3.3 A Generalization of the Fucks GPD

Only a few years after the Russian translation of the Fucks’ (1956a) article, three
Georgian scholars, Cercvadze, Čikoidze, and Gačečiladze (1959) applied Fucks’ ideas
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to Georgian linguistic material, mainly concentrating on phoneme frequencies and
word length frequencies (see also Zerzwadse, Tschikoidse, and Gatschetschiladse,
1962). Moreover, they introduced a further generalization of the Fucks’ (3.7) model
which has been discussed in subsequent papers by Gačečiladze, Cercvadze, and
Čikoidze (1961), Bokučava and Gačečiladze (1965), and Gačečiladze and Cilosani
(1971). Later on, Piotrowski, Bektaev, and Piotrowskaja (1985, p. 269) termed this
generalization the Fucks-Gačečiladze distribution.

Starting from the assumption that the process of text generation is a stochastic
process Gačečiladze et al. (1961, p. 5) derived the following formula, representing
the sum of weighted binomial probabilities

πi|p,q,εk
=

n∑

k=0

(εk − εk+1)

(
n − k

i − k

)
pi−kqi−k[1− p+ p(1− q)]n−i , i = 0, . . . , n , (3.21)

where the difference (εk−εk+1) represents the statistical weight of the system’s status
before the beginning of the distribution process. Note that

∑n
k=0 (εk − εk+1) = 1 as

the sum of all the weights, hence ε0 = 1 + εn+1. If we assume that p ∈ (0, 1], then
distribution (3.21) has the following form

πi|q,εk
=

n∑

k=0

(εk − εk+1)

(
n − k

i − k

) 1∫

0

(pq)i−k(1 − pq)n−idp , i = 0, . . . , n . (3.22)

In a similar manner, as already demonstrated for the mean of the Fucks-binomial dis-
tribution (see Section 3.2), it can be shown that after summing up the corresponding
εk expressions, the mean of the distribution (3.22) is given by

µ =
n∑

i=0

i πi|q,εk
=

q

2

(
n −

n∑

k=1

k(εk − εk+1)

)
+

n∑

k=1

k(εk − εk+1) . (3.23)

This relation differs from those mentioned by Gačečiladze et al. (1961)2. However,
whenever the number of components k is not limited, the two equations will coincide,
since then

∑∞
k=1 k(εk − εk+1) =

∑∞
k=1 εk = ε′. Taking n → ∞ and q → 0 such that

µ−ε′ = q(n−ε′)/2 = const and by substituting p = (t+1)/2, the probability (3.22)
can be written in the following form

πi|q,εk
=

∞∑

k=0

(εk − εk+1)

(
n − k

i − k

)(
µ − ε′

n − ε′

)i−k
1

2

∫ 1

−1

(t + 1)i−k

(
1 − (t + 1)

µ − ε′

n − ε′

)n−i

dt.

Since the last factor in the integral part of the above equation converges to e−(t+1)(µ−ε′)

as n increases without a limit, as a result we have

∫ 1

−1

(t + 1)i−k

(
1 − (t + 1)(µ − ε′)

n − ε′

)n−i

dt → e−(µ−ε′)

∫ 1

−1

(t + 1)i−ke−t(µ−ε′)dt .

2 Instead of the sum
∑n

k=1 k(εk − εk+1) in (3.23) Gačečiladze et al. (1961) have
∑n−1

k=1 εk.
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Hence, by replacing µ − ε′ with λ, we obtain as the limiting distribution of (3.22)
the Fucks-Gačečiladze distribution3 with the probability mass function given by

πFG

i|λ,εk
= P (X = i) = e−λ

∞∑

k=0

(εk − εk+1)
λi−k

(i − k)!
ϕk(λ, i) , (3.24)

where function ϕk(λ, i) denotes

ϕk(λ, i) =
1

2

∫ 1

−1

(t + 1)i−ke−λtdt . (3.25)

Analogously to the case of the Fucks’ GPD (3.7), the condition ε0 = 1 ≥ εk ≥ εk+1,
for k ≥ 1 is again required while the individual weights (εk − εk+1) are additionally
multiplied by the function ϕk(λ, i), which depends on the parameter λ and the rele-
vant class i. For ϕk(λ, i) = 1 distribution (3.24) simplifies to the Fucks’ GPD (3.7),
as its special case. Note that equality ϕ0(λ, i) = ϕk(λ, i + k) holds for any k ≥ i,
where i ∈ N0. Furthermore, we show that the function ϕi(λ) = ϕ0(λ, i) satisfies the
following recurrent relation

ϕi(λ) = −2i−1e−λ

λ
+

i

λ
ϕi−1(λ) , i = 1, 2, . . . (3.26)

where ϕ0(λ) = (eλ − e−λ)/2λ. Denoting by i − k = l and substituting z = (t + 1)λ
in equation (3.25) we can rewrite the function ϕk(λ, i) as

ϕl(λ) =
1

2

∫ 2λ

0

(
z

λ

)l

eλ−z dz

λ
=

eλ

2λl+1

∫ 2λ

0

zle−zdz . (3.27)

Transforming the expression ϕi−1(λ) at the right-hand side of the formula (3.26) by
the relation (3.27) and expressing additionally the term (2λ)ie−2λ as an integral

(2λ)ie−2λ =

∫ 2λ

0

∂(zie−z)

∂z
dz =

∫ 2λ

0

(izi−1e−z − zie−z)dz ,

we have

ϕi(λ) =
eλ

2λi+1

(∫ 2λ

0

izi−1e−zdz − (2λ)ie−2λ

)
=

eλ

2λi+1

∫ 2λ

0

zie−zdz

which is ϕi(λ) given in (3.27). Another way to express the function ϕi(λ) would
imply the use of the Gamma function, defined as

Γ(a) =

∫ ∞

0

za−1e−zdz , a > 0 .

3 Unfortunately, neither Gačečiladze et al. (1961) nor other authors mentioned above do not
explain how to get distribution (3.24), they only present this final formula. For this reason,
we consider here its exact derivation.
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Therefore, relation (3.27) can be written as

ϕi(λ) =
eλ

2λi+1

(∫ ∞

0

zie−zdz −
∫ ∞

2λ

zie−zdz

)
=

eλ

2λi+1

(
Γ(i + 1) −

∫ ∞

2λ

zie−zdz

)
.

Accordingly, substituting z = a + 2λ and applying the binomial theorem

(a + 2λ)i =
i∑

j=0

(
i

j

)
(2λ)i−jaj

we obtain (cf. Antić et al., 2005, p. 170)

ϕi(λ) =
eλ

2λi+1

(
Γ(i + 1) − e−2λ

i∑

j=0

(
i

j

)
(2λ)i−j Γ(j + 1)

)
. (3.28)

3.3.1 Probability Generating Function and Moments

The pgf of distribution (3.24) can be found directly by applying definition (B.1),
Appendix B. Consequently, we have

G(t) =
∞∑

i=0

tiπFG

i|λ,εk
=

∞∑

i=0

tie−λ

∞∑

k=0

(εk − εk+1)
λi−k

(i − k)!
ϕk(λ, i) .

By summing up corresponding (εk −εk+1) terms and considering the fact that based
on relation (3.25) the identity ϕ0(λ, i) = ϕk(λ, i + k) holds for all k ≥ i, i ∈ N0, the
above pgf can be rewritten as

G(t) = e−λ

(
ϕ0(λ, 0) + tλϕ0(λ, 1) +

t2λ2

2!
ϕ0(λ, 2) + . . .

) ∞∑

k=0

(εk − εk+1)t
k ,

which by expressing ϕ0(λ, k) in terms of ϕ0(λ, 0) and some calculations simplifies to

G(t) = e−λ

∞∑

k=0

tk

(
ϕ0(λ, 0) − e−λt

∞∑

k=0

(2tλ)k

(k + 1)!

)
∞∑

k=0

(εk − εk+1)t
k .

Ultimately, substitution of the series expansions and ϕ0(λ, 0) = (eλ − e−λ)/2λ gives
the pgf of distribution (3.24) in the form (cf. Gačečiladze et al., 1961, p. 6) 4

G(t) =
1

2

e2λ(t−1) − 1

λ(t − 1)

∞∑

k=0

(εk − εk+1)t
k . (3.29)

4 This formula is presented by the authors, however the process of its derivation is not explained
neither in any of their papers nor in other related contributions.
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The expressions for the factorial moments can be evaluated from the formula (3.29)
as described in Appendix B. Applying the relations (3.12) and (3.14), the first three
factorial moments of the distribution (3.24) are

µ(1) = ε′ + λ ,

µ(2) =
4

3
λ2 + (2λ − 2)ε′ + 2

∞∑

k=1

kεk ,

µ(3) = 2λ3 + 4λ2ε′ + (5 − 6λ)ε′ + 6(λ − 1)
∞∑

k=1

kεk +
∞∑

k=0

k3(εk − εk+1) ,

which by substituting λ = µ − ε′ yields

µ(1) = µ ,

µ(2) =
4

3
µ2 − 2

3
µε′ − 2

3
ε′2 − 2ε′ + 2

∞∑

k=1

kεk ,

µ(3) = 2µ3 − 2µ2ε′ − 2µε′
2 − 6µε′ + 2ε′

3
+ 6ε′

2
+ 5ε′+

+ 6(µ − ε′ − 1)
∞∑

k=0

kεk +
∞∑

k=0

k3(εk − εk+1) .

(3.30)

Following the derivation analogy approach of Fucks’ GPD, initial moments of the
distribution (3.24) can be derived as

µ′
2 =

4

3
µ2 − 2

3
µε′ + µ − 2

3
ε′

2 − 2ε′ + 2
∞∑

k=1

kεk ,

µ′
3 = 2µ3 + 4µ2 − 2µ2ε′ − 2µε′

2
+ µ − 8µε′ + 2ε′

3
+ 4ε′

2 − ε′+

+ 6(µ − ε′)
∞∑

k=1

kεk +
∞∑

k=1

k3(εk − εk+1) .

(3.31)

whence the second and third central moments of distribution (3.24) result in

µ2 =
1

3
µ2 − 2

3
µε′ + µ − 2

3
ε′

2 − 2ε′ + 2
∞∑

k=1

kεk ,

µ3 = µ2 + µ − 2µε′ + 2ε′
3
+ 4ε′

2 − ε′ − 6ε′
∞∑

k=1

kεk +
∞∑

k=1

k3(εk − εk+1) .

(3.32)

3.4 Parameter Estimation

Let us assume that the probability mass function, given in (3.7), is known, except
for its parameters εk and λ. We know the theoretical representation of the observed
distribution if we find the estimated values of the unknown parameters.
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3.4.1 Estimation by Method of Moments

To estimate the εk values, the simplest method to apply, also suggested by Fucks
(1956a, 12f.), is the method of moments. Since the moments are represented as
polynomials in εk, one obtains estimates of the unknown parameters by substituting
the theoretical moments by the empirical ones and by solving algebraic equations for
εk. The estimation process is rather complex because many equations with unknown
parameters εk require their solution. Below, it will be shown that the estimation
process is getting much easier for special cases of the Fucks’ GPD. Also, we will
show that the 1-displaced Poisson distribution is a special case of the Fucks’ GPD
for a particular choice of εk values. Two more special cases which can be derived
from Fucks’ GPD will be additionally discussed in detail. Depending on the number
of parameters taken into consideration, one may distinguish one-, two-, and three-
parameter special cases of Fucks’ GPD, which will be considered in this order.

3.4.1.1 A One-Parameter Case of the Fucks’ GPD

Let us first consider the one-parameter model as the simplest of all special cases
mentioned. Here, only one parameter has to be estimated. Assuming that ε0 = 1
and εk = 0 for k ≥ 1, the Fucks’ GPD (3.7) leads to the Poisson distribution

πP

i|λ =
e−λλi

i!
, i = 0, 1, 2, . . . (3.33)

where λ = µ > 0 and E(X) = var(X) = µ.
Choosing ε0 = ε1 = 1 and εk = 0, k ≥ 2, i.e. assuming that our sample has no
zero-syllable words, we obtain the 1-displaced Poisson distribution

π1dP

i|λ =
e−λλi−1

(i − 1)!
, i = 1, 2, . . . (3.34)

Here, λ = µ − 1 > 0, E(X) = µ and var(X) = µ − 1.

3.4.1.2 A Two-Parameter Case of the Fucks’ GPD

Setting ε0 = 1, ε1 = α and εk = 0, k ≥ 2 in Fucks’ GPD (3.7), yields a two-
parameter distribution. This distribution, termed also Dacey-Poisson distribution in
contemporary research (cf. Wimmer and Altmann, 1999, p. 111), has been discussed
by Fucks (1955, p. 207) as another special case of his GPD, though not by this name,
and only in its 1-displaced form. In its ordinary setting, it takes the following form

πDP

0|λ,α = e−λ(1 − α) ,

πDP

i|λ,α = e−λ

(
(1 − α)

λi

i!
+ α

λi−1

(i − 1)!

)
, i = 1, 2, . . .

(3.35)

where λ = µ − α > 0, 0 ≤ α ≤ 1, E(X) = µ and var(X) = µ − α2.
Hence, in addition to λ, a second parameter α has to be estimated. Notice that under
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a particular condition, namely for µ = 2α, the Dacey-Poisson distribution yields
the so-called Kemp-Kemp-Poisson distribution with parameter α (cf. Wimmer and
Altmann, 1999, p. 344), being therefore a one-parameter special case of the Fucks’
GPD. Its probability mass function is given by

πKKP

i|α =
e−ααi

i!
(i − α + 1) , i = 0, 1, 2, . . . (3.36)

Here, λ = α, 0 < α ≤ 1, E(X) = 2α and var(X) = α(2 − α).
Similarly, for ε0 = ε1 = 1, ε2 = α and εk = 0, k ≥ 3, the 1-displaced Dacey-Poisson
model results from the Fucks’ GPD (3.7) (cf. Wimmer and Altmann, 1999, p. 111) as

π1dDP

1|λ,α = e−λ(1 − α) ,

π1dDP

i|λ,α = e−λ

(
(1 − α)

λi−1

(i − 1)!
+ α

λi−2

(i − 2)!

)
, i = 2, 3, . . . ,

(3.37)

with λ = µ − α − 1, 0 ≤ α ≤ 1, E(X) = µ and var(X) = µ − 1 − α2.
Now, using the first two moments of the given model, referring to (3.8) and (3.9),

we can find the moment estimates of the parameters λ and α. These are summarized
in Table 3.2 for the one- and two-parameter special case of the Fucks’ GPD.

Table 3.2: Moment estimates of the special cases of the Fucks’ GPD

Distribution Restriction Estimates

Poisson
ε0 = 1,

λ̂ = x̄
εk = 0, k ≥ 1

1-displaced Poisson
ε0 = ε1 = 1,

λ̂ = x̄ − 1
εk = 0, k ≥ 2

Kemp-Kemp-Poisson
µ = 2α, ε0 = 1, α̂ = x̄/2

ε1 = α, εk = 0, k ≥ 2

Dacey-Poisson
ε0 = 1, ε1 = α, α̂ =

√
x̄ − s2,

εk = 0, k ≥ 2 λ̂ = x̄ − α̂

1-displaced Dacey-Poisson
ε0 = ε1 = 1, ε2 = α, α̂ =

√
x̄ − 1 − s2,

εk = 0, k ≥ 3 λ̂ = x̄ − 1 − α̂

3.4.1.3 A Three-Parameter Case of the Fucks’ GPD

In case of the three-parameter model, in addition to λ, two more parameters from the
whole ε-spectrum have to be estimated, namely ε2 and ε3. However, the estimation
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depends on whether a class of zero-syllable words has to be taken into consideration,
or not. Here, we assume that our sample has no zero-syllable words.

Setting ε0 = ε1 = 1, ε2 = α, ε3 = β, and εk = 0, k ≥ 4, results in a model,
here called 1-displaced three-parameter Fucks model, with probability mass function
given by

π1|λ,α = e−λ(1 − α) ,

π2|λ,α,β = e−λ ((1 − α)λ + (α − β)) ,

πi|λ,α,β = e−λ

(
(1 − α)

λi−1

(i − 1)!
+ (α − β)

λi−2

(i − 2)!
+ β

λi−3

(i − 3)!

)
, i ≥ 3 ,

(3.38)

where λ = µ − 1 − α − β > 0 and condition 0 ≤ β ≤ α ≤ 1 holds. The first two
moments of distribution (3.38) are E(X) = µ and var(X) = µ − 1 − (α + β)2 + 2β.
In Section 3.5 we discuss restrictions of this model based on the variance to mean
ratio. However, there seem to be also other limitations, discussed below, responsible
for the possible inadequacy of this model.

In the next step, α and β have to be estimated using the second and third
theoretical central moment of the Fucks’ GPD. Substituting the above given ε-values
in (3.9) and (3.20) we obtain the following system of equations

µ2 = µ − (1 + α + β)2 + 2(α + 2β) = µ − 1 − (α + β)2 + 2β ,

µ3 = µ + 2(1 + α + β)3 − 3(1 + α + β)2 − 6(α + β)(α + 2β) + 6β .
(3.39)

By replacing α+ = α + β we get a simplified system

µ2 = µ − 1 − α2
+ + 2β ,

µ3 = µ − 1 + 2α3
+ − 3α2

+ − 6α+β + 6β ,
(3.40)

whose solution is a cubic equation with regard to the parameter α+ given by

α3
+ − 3α+(µ − 1 − µ2) + µ3 − 3µ2 + 2µ − 2 = 0 . (3.41)

There are three possible solutions to this equation, not all of which are necessarily
real ones. For each real solution a = α̂+ (possibly ai, i = 1, 2, 3), the values for
ε2 = α and ε3 = β have to be estimated, what can quite easily be done by computer
programs. Furthermore, estimated values have to fulfill condition (a), postulated by
Fucks (see Section 3.2), which requires to satisfy inequality α̂ ≥ β̂. Using the fact
that a = α̂+ = α̂ + β̂ and s2 = x̄ − 1 − a2 + 2β̂ in inequality above, we have

2a − a2 − s2 + x̄ − 1

2
≥ a2 + s2 − x̄ + 1

2
, (3.42)

which by defining the difference M = x̄ − s2 can be simplified as

a2 − a + 1 − M ≤ 0 .

As a consequence, one obtains the following two conditions:



3.4. PARAMETER ESTIMATION 65

(a) The sum a = α̂ + β̂ must be in a particular interval for each of the three
possible solutions of a, i.e. ai ∈ [ai1, ai2] for i = 1, 2, 3, where

ai1 =
1 −

√
4M − 3

2
and ai2 =

1 +
√

4M − 3

2
.

(b) In order to have a ∈ R, 4M − 3 ≥ 0 must hold, i.e. M = x̄ − s2 ≥ 0.75 .

Summing up, the three-parameter Fucks’ model is adequate only for particular types
of empirical distributions, and it can not serve as an overall model for a language,
not even for languages which form their words from syllables, as Fucks himself con-
sidered. One possible reason might be the specific parameter estimating procedure
suggested by Fucks, which subsequently inspired some authors, though generally
following Fucks’ ideas, to find alternative ways to estimate the parameters of the
Fucks’ GPD.

3.4.1.4 A Three-Parameter Case of the Fucks-Gačečiladze Distribution

Opposite to Fucks’ approach, Gačečiladze and Cilosani (1971, p. 115) suggested to
estimate the unknown parameters of the Fucks-Gačečiladze model (3.24) not with
recourse to the central moments, but by deriving the theoretical initial moments from
the probability generating function (3.29). Obviously, central and initial moments
can be transformed into each other, hence both methods lead to identical parameter
estimates.

Setting ε0 = ε1 = 1 to exclude the class of zero-syllable words as well as ε2 = α,
ε3 = β, and εk = 0 for k ≥ 4 results in the 1-displaced three-parameter Fucks-
Gačečiladze distribution with probability mass function given by

π1|λ,α = e−λ(1 − α)ϕ1(λ, 1) ,

π2|λ,α,β = e−λ ((1 − α)λϕ1(λ, 2) + (α − β)ϕ2(λ, 2)) , (3.43)

πi|λ,α,β = e−λ

(
(1 − α)

λi−1

(i − 1)!
ϕ1(λ, i) + (α − β)

λi−2

(i − 2)!
ϕ2(λ, i) + β

λi−3

(i − 3)!
ϕ3(λ, i)

)
, i ≥ 3 ,

where λ = µ − 1 − α − β > 0 and 0 ≤ β ≤ α ≤ 1. Here, the mean is E(X) = µ and
the variance is

var(X) =
1

3

(
µ2 − 2µ(α + β − 0.5) − 2(1 + α + β)2 + 6(α + 2β)

)
. (3.44)

Denoting a = 1+α+β, equation system (3.31) simplifies to the following equations
necessary for the estimation of the unknown parameters

µ′
2 =

4

3
µ2 − 2

3
µa + µ − 2

3
a2 + 2(α + 2β) ,

µ′
3 = 2µ3 − 2µ2a + 4µ2 − 2µa2 + µ − 8µa + 2a3 + 4a2+

+ 6(µ − a)(a + α + 2β) + 6α + 18β .

(3.45)
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3.4.2 Estimation by µ, µ2 and First Frequency Class

An alternative way to estimate the two parameters ε2 and ε3 of the three-parameter
Fucks’ distribution (3.38) was suggested by two Polish authors, Bartkowiakowa and
Gleichgewicht (1964, 1965). Their considerations are based on the assumption that
each word can be divided into two syllable-parts. The first part, named word begin-
ning can have one, two or maximally three syllables and is described by the random
variable XB with the range {1, 2, 3}. The subsequent part or word end, independent
from the first one is supposed to be Poisson distributed with parameter λ, called
here XE. Furthermore, starting from the basis of a certain number of words, they
assumed that the proportion of one-syllable word beginnings is (1 − ε2), the pro-
portion of two-syllable word beginnings is (ε2 − ε3) and that of three-syllable word
beginnings is ε3. Therefore, the distribution of the random variable X = XB + XE,
denoting the number of syllables per word, is given by

πi|λ,εk
= P (X = i) =

3∑

j=1

P (XB = j,XE = i − j)
ind.
=

3∑

j=1

P (XB = j)P (XE = i − j) ,

wherefrom the following special cases are obtained

π1|λ,ε2 = (1 − ε2)g0 ,

π2|λ,ε2,ε3 = (1 − ε2)g1 + (ε2 − ε3)g0 ,

πi|λ,ε2,ε3 = (1 − ε2)gi−1 + (ε2 − ε3)gi−2 + ε3gi−3 , i ≥ 3 ,

(3.46)

in which gk identifies the Poisson probabilities

gk = P (XE = k) =
λk

k!
e−λ , k = 0, 1, 2, . . . (3.47)

Using the independency of the random variables XB and XE we have

µ = E(X) = E(XB) + E(XE) = 1 + ε2 + ε3 + λ ,

var(X) = var(XB) + var(XE) = µ − (1 + ε2 + ε3)
2 + 2(ε2 + 2ε3) .

(3.48)

It may be noted that distribution (3.46) is only a reformulated version of the three-
parameter Fucks’ distribution (3.38) using the Poisson distribution (3.47) with the
parameter λ = µ − 1 − ε2 − ε3.

As to the estimation of the unknown parameters ε2 and ε3, the authors did
not apply the method of moments, as did Fucks, since results were not satisfac-
tory. Their method is rather based on the adjustment of the distribution on the
proportion of one-syllable words that were most frequent in their studied works (cf.
Bartkowiakowa and Gleichgewicht, 1964, p. 347). Hence, using a logarithmic trans-
formation of the proportion π1|λ,ε2 in formula (3.46), we obtain as the first equation

log

(
π1|λ,ε2

1 − ε2

)
= log g0 .
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Since g0 = e−λ we have

log

(
π1|λ,ε2

1 − ε2

)
= − (µ − 1 − ε2 − ε3) .

The second equation required for the system of equations is then gained from the
variance specified in (3.48). Considering the empirical distribution, we get the fol-
lowing system of equations, adequate to arrive to a solution for ε2 and ε3

log

(
p1

1 − ε̂2

)
= − (x̄ − 1 − ε̂2 − ε̂3) ,

s2 − x̄ = −(1 + ε̂2 + ε̂3)
2 + 2(ε̂2 + 2ε̂3) ,

(3.49)

where p1 is the observed relative frequency of one-syllable words.
In addition to the different estimation procedure, the two Polish authors argued

in favor of the χ2-test in order to measure the goodness of fit of the theoretical
distribution. Moreover, to improve the estimation results they suggested to apply
the minimum χ2 method, where the process of estimation is repeated as long as the
minimal value for the χ2 function is obtained.

3.5 Historical Applications and Limitations

In order to verify the accuracy of Fucks’ statements we re-analyse his linguistic
data given in Table 3.1. For this purpose we created nine artificial samples of an
approximate size n=10000 each, by multiplying the given relative frequencies with
10000. Since the texts studied by Fucks contained no zero-syllable words5, only the
1-displaced one-, two-, and three-parametric versions of the Fucks’ GPD submodels
are considered here.

Moreover, we studied under which empirical conditions some chosen model may
be satisfactory for word length frequencies by applying the δ-value principle, intro-
duced in Section 2.1. As can be seen from Table 3.3, the 1-displaced Poisson dis-
tribution (3.34) provides an adequate fit only for empirical samples with d ≈ 1. In
contrast, we have δ = 1−α2/(µ−1) for the 1-displaced Dacey-Poisson model (3.37).
The fact var(X) > 0 results in α2/(µ− 1) < 1. Since λ ≥ 0 as well as 0 ≤ α ≤ 1, we
have α2/(µ − 1) = α2/(λ + α) ≥ 0. Consequently δ ≤ 1, hence this two-parametric
model may be applicable as a theoretical model for empirical samples having d ≤ 1.
Furthermore, for the Fucks’ three-parametric model (3.38) the index of dispersion is
given by

δ = 1 − (α + β)2 − 2β

λ + α + β
. (3.50)

Obviously, taking λ → ∞, δ converges to unity. However, for λ → 0 it is difficult
to find a range for δ directly. For this reason, we create a grid of various parameter

5 Note here Fucks’ incorrect assumption that all words of nine languages mentioned in Table 3.1
are of at least one syllable. Actually, in Russian, k, s, v are zero-syllable words.



68 CHAPTER 3. FUCKS’ GENERALIZED POISSON DISTRIBUTION

values with 0 ≤ β ≤ α ≤ 1 and calculate the δ-value for each pair (α, β). Figure 3.3
provides the graphical illustration of our findings. The shaded triangle under the
solid reference line α = β represents the domain of the parameters α and β. The

Table 3.3: Limitations for 1-displaced Fucks’ sub-models based on index of dispersion

Distribution E(X) var(X) δ =
var(X)

E(X) − 1

Poisson µ µ − 1 δ = 1
Dacey-Poisson µ µ − 1 − α2 δ ≤ 1
3-param. Fucks µ µ − 1 − (α + β)2 + 2β 0 ≤ δ < 2
3-param. Fucks-Gačečiladze µ see Formula (3.44) δ ≥ 0

blue colored area identifies those cases where δ ≤ 1 holds, whereas pairs with δ > 1
are signified by red color. Table 3.4 exemplifies our obtained results for some certain
parameter values. The pairs which are not allowed are marked by ∅. Evidently,
choice α ∈ [0.5, 1] and β ∈ [0, α] implies 0 ≤ δ ≤ 1. As opposed to this, for
β ≤ α, α ∈ [0, 0.5] and λ → 0 results 0 ≤ δ < 2 (cf. Table 3.5). Finally, we can
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Figure 3.3: Under- and overdispersion area for the three-parametric Fucks’ distribution

conclude that the three-parametric Fucks’ model is likely to be an appropriate one
for empirical samples with 0 ≤ d < 2. In the case of the three-parametric Fucks-
Gačečiladze model (3.43) the index of dispersion is getting even more complicated
and is defined by

δ =
λ2 + 3λ − 3α2 − 3β2 + 3(α + 3β − 2αβ)

3(λ + α + β)
.

Following the analogous approach as in the previous case we can conclude that for
λ ≥ 2.5 and 0 ≤ β ≤ α ≤ 1, this distribution becomes over-dispersed (δ > 1). For
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Table 3.4: Three-parametric Fucks’ model: index of dispersion δ for α ∈ [0.5, 1], β ≤ α,
when λ → 0

α
β 0.5 0.6 0.7 0.8 0.9 1

0 0.500 0.400 0.300 0.200 0.100 0.000
0.1 0.733 0.586 0.450 0.322 0.200 0.082
0.3 0.950 0.767 0.600 0.446 0.300 0.162
0.5 1.000 0.809 0.633 0.469 0.314 0.167
0.7 ∅ ∅ ∅ 0.433 0.275 0.124
0.9 ∅ ∅ ∅ ∅ 0.200 0.047

1 ∅ ∅ ∅ ∅ ∅ 0.000

small values of λ this model seems to be a good choice for empirical samples meeting
both conditions 0 ≤ d ≤ 1 but also d > 1. The under- and overdispersion regions
are identical with the corresponding areas of the three-parametric Fucks’ model (cf.
Figure 3.3).

Table 3.5: Three-parametric Fucks’ model: index of dispersion δ for 0 ≤ β ≤ α ≤ 0.5,
when λ → 0

α
β 0 0.05 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 1 0.950 0.85 0.800 0.750 0.700 0.650 0.600 0.550 0.500
0.05 ∅ 1.899 1.30 1.150 1.033 0.936 0.850 0.772 0.700 0.632
0.15 ∅ ∅ 1.70 1.507 1.350 1.217 1.100 0.995 0.900 0.812
0.25 ∅ ∅ ∅ ∅ 1.500 1.359 1.233 1.119 1.014 0.917
0.35 ∅ ∅ ∅ ∅ ∅ ∅ 1.300 1.183 1.075 0.974
0.45 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 1.100 0.997
0.5 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 1.000

Further, we calculated the values of d for each of the nine observed languages.
As shown in the Table 3.6, the value d ranges from 0.596 for Arabic up to 1.389 for
English, indicating quite heterogeneous text samples. Additionally, Table 3.6 sum-
marizes the results of the goodness of fit test, giving the standardized discrepancy
index6 C for each of the given models and languages where parameter estimates are
evaluated by the method of moments.

It is obvious that the 1-displaced Poisson model does not equally fit linguistic
data given by Fucks. The best fit is provided for Esperanto, good results are also
achieved for Latin and German, but it seems to be an inadequate model for the

6 For the explanation of the discrepancy index see Section 2.6.1.
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remaining languages, especially English and Arabic. This result is also underlined
by the values of d, since there is no good fit for those empirical samples where
d significantly differs from unity. In some cases, the 1-displaced Dacey-Poisson
model provides slightly better results than those obtained by 1-displaced Poisson
distribution. Again, the best fit is obtained for Esperanto. Interestingly, it ensures
a very good fit for Arabic and Turkish. Also for Latin, this model is useful. However,
in cases denoted as ∅, no valid results can be obtained. This is due to the fact that
the estimate of α, α̂ =

√
x̄ − 1 − s2, is not defined if x̄− 1 ≤ s2. Checking the index

of dispersion for Esperanto, Arabic, Latin, and Turkish it becomes clear, why the
results for the two-parametric model are appropriate only for these languages. In
all these cases d < 1 holds.

Fitting the three-parametric model to the Fucks’ data, we observe good results
in five of nine cases. Verification of the model is conformed by condition 0 ≤ d < 2
for each of the five samples. However, there are no solutions for the remaining four
languages, although for all of them d > 1 is satisfied. Table 3.7 offers explanation

Table 3.6: Results of fitting various 1-displaced models to Fucks’ (1956a) data

Method of moments Discrepancy coefficient C

Language d Poisson Dacey-Poisson 3-param. Fucks

English 1.3890 0.0816 ∅ ∅

German 1.1751 0.0168 ∅ ∅

Esperanto 0.9511 0.0025 0.0020 0.00003
Arabic 0.5964 0.1125 0.0083 0.0060
Greek 1.2179 0.0328 ∅ ∅

Japanese 1.2319 0.0333 ∅ ∅

Russian 1.1591 0.0208 ∅ 0.0005
Latin 0.8704 0.0182 0.0148 0.0002
Turkish 0.8015 0.0232 0.0016 0.0016

for this findings, by specifying limitations responsible for the failure of Fucks’ three-
parameter model for English, German, Greek and Japanese. On the one hand, as
soon as M < 0.75, the definition of the interval limits of a1 and a2 involves a negative
argument for the root function. This is the case with the Japanese data. On the
other hand, even if condition M ≥ 0.75 is fulfilled, fitting Fucks’ three-parameter
model may fail, if a ∈ [ai1, ai2] is not satisfied, as is in the case of English, German,
and Greek.

Moreover, it is interesting to see how much the estimation procedure suggested
by Bartkowiakowa and Gleichgewicht (1964) is able to improve the results of the fit.
Table 3.8 compares the results obtained by two different parameter estimation meth-
ods: the original procedure as suggested by Fucks and the modification suggested
by the Polish authors. The comparison is done only for those data sets, appropri-



3.5. HISTORICAL APPLICATIONS AND LIMITATIONS 71

ate for the application of Fucks’ three-parameter distribution model. Apparently,
the approach of the Polish authors results in better estimates, at least for the data
analyzed. A possible interpretation might have its justification in the fact that this
estimation procedure is particularly adequate when the observed frequency in the
first class is relatively large. Thus, more weight is given to this large frequency class,
as compared to the the third moment which is more affected by the frequencies of
the higher classes.

Table 3.7: Violations of the conditions for Fucks’ three-parameter model

Method of moments English German Esperanto Arabic Greek

C ∅ ∅ <0.01 <0.01 ∅

α̂ — — 0.3933 0.7174 —

β̂ — — 0.0995 0.1805 —

a = α̂ + β̂ -0.0882 -0.1037 0.4929 0.8980 0.2800
ai1 0.1968 0.1270 -0.0421 -0.3338 0.4108
ai2 0.8032 0.8730 1.0421 1.3338 0.5892

ai1 < a < ai2 − − X X −
x̄ 1.4064 1.6333 1.8971 2.1032 2.1106
s2 0.5645 0.7442 0.8532 0.6579 1.3526

M = x̄ − s2 0.8419 0.8891 1.0438 1.4453 0.7580
M ≥ 0.75 X X X X X

Japanese Russian Latin Turkish

C ∅ < 0.01 < 0.01 < 0.01
α̂ — 0.2083 0.5728 0.6164

β̂ — 0.1686 0.2416 0.1452

a = α̂ + β̂ -0.1798 0.3769 0.8144 0.7616
ai1 C 0.2659 -0.1558 -0.2346
ai1 C 0.7341 1.1558 1.2346

ai1 < a < ai2 − X X X

x̄ 2.1325 2.2268 2.3894 2.4588
s2 1.3952 1.4220 1.2093 1.1692

M = x̄ − s2 0.7374 0.8048 1.1800 1.2896
M ≥ 0.75 − X X X

Finally, the conclusions of fitting the three-parametric Fucks–Gačečiladze model
are given in Table 3.9. An acceptable result is now obtained for Greek, what was
not the case when fitting the three-parameter Fucks’ distribution (cf. Table 3.6).
In fact, this generalization of Fucks’ GPD provides a very good fit in six of the
nine samples. Still, English, German and Japanese data can not be successfully
modelled. The reason for this failure might be the fact that, for ϕk(λ, i) = 1, the
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Table 3.8: Fucks’ three-parameter model: two estimation methods

Esperanto Arabic Russian Latin Turkish

Fucks (Method of moments)

α̂ 0.3933 0.7174 0.2083 0.5728 0.6164

β̂ 0.0995 0.1805 0.1686 0.2416 0.1452

C 0.00003 0.0060 0.0005 0.0002 0.0016

Polish (Estimation by µ, µ2, π1)

α̂ 0.3893 0.7148 0.2098 0.5744 0.6034

β̂ 0.0957 0.1599 0.1695 0.2490 0.1090

C 0.00001 0.0045 0.0005 0.0001 0.0012

Fucks–Gačečiladze distribution (3.24) simplifies to the Fucks’ GPD, and under this
condition provides the identical results.

Table 3.9: Three-parameter Fucks-Gačečiladze model: estimation by µ, µ2, π1

English German Esperanto Arabic Greek

C ∅ ∅ 0.0008 0.0091 0.0148

α̂ — — 0.4490 0.7251 0.3013

β̂ — — 0.1261 0.1986 0.1511

Japanese Russian Latin Turkish

C ∅ 0.0029 0.0034 0.0083

α̂ — 0.3821 0.6230 0.6870

β̂ — 0.1885 0.3050 0.2606

In summary, we can conclude that none of the discussed models above can be
accepted as an overall valid theoretical model for word length frequencies, not even
for syllabic languages, as Fucks himself claimed. Therefore, we search for the further
possible generalizations of the Poisson distribution based on approaches discussed
in Chapter 2.



Chapter 4

Singh-Poisson Distribution

4.1 Introduction

The Singh-Poisson (SP) distribution is a simple alternative to the Poisson distribu-
tion applicable in situations where the observed count data have d 6= 1, indicating
that there is some deviation from the Poisson distribution. This distribution is a
special case of a finite mixture1, known also as zero-modified Poisson distribution
where the Poisson distribution is combined with a one-point (degenerate) distribu-
tion concentrated at zero (cf. Johnson et al., 1992; Djuraš and Stadlober, 2010). It
has two parameters denoted by α and θ and both of them are asked to be positive.

Let us remark that for 0 ≤ α ≤ 1 the SP distribution may also be derived as a
Bernoulli mixture of Poisson distributions (cf. Wimmer and Altmann, 1999, p. 605).
Starting from the conditional model X|K ∼ Poisson(Kθ) and assuming additionally
parameter K to be randomized as K ∼ Bernoulli(α), we obtain as a marginal model
X ∼ Singh-Poisson(α, θ). Since the pgf of the Poisson(Kθ) distribution satisfies the
precondition (2.33) of Gurland’s theorem 2.1 given in Section 2.2.1, we have

Poisson(Kθ)
∧

K

Bernoulli(α) ∼ Bernoulli(α)
∨

Poisson(θ)

hence, the pgf of the mixed distribution of X has an alternative derivation as the
pgf of the generalized Bernoulli distribution. Consequently, we have

GX(t) = GK(GX|K(t|θ)) = 1 − α + αeθ(t−1) . (4.1)

Obviously, for α = 1 it follows GX(t) = eθ(t−1) hence, SP distribution simplifies to
an unmodified Poisson distribution with parameter θ. When 0 ≤ α ≤ 1 the model
here is called the zero-inflated Poisson distribution (ZIP) or a Poisson distribution
with added zeroes ; see e.g. Cohen (1991) or Winkelmann (2000). In the last twenty
years, much attention has been given to this model in the literature. Application
areas include among others manufacturing defects (cf. Lambert, 1992), occupational

1 For further details about finite mixtures see Section 2.2.1.
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health injury data (cf. Lee, Wang, and Yau, 2001), dental epidemiology (cf. Dietz
and Böhning, 2000) and zoological data, such as deaths of turtle juveniles caused
by their exposure to the sun (cf. Özmen and Famoye, 2007). A good discussion on
modeling count data having too many zeros, with particular focus on agricultural
research, is available in Ridout, Demétrio, and Hinde (1998). Several applications
of the ZIP model involving discrete data can also be found in Böhning (1998).
Studied examples confirm that the ZIP distribution might be a useful alternative
when the simple Poisson distribution does not provide an adequate fit due to an
excess of zero counts in the observed data. To handle such overdispersed count data
other authors proposed mixing a degenerate distribution with all mass at zero with
distributions distinct from the Poisson. For example, Gupta, Gupta, and Tripathi
(1996) suggested to combine it with Consul’s generalized Poisson distribution2 and
used it to analyze overdispersed fetal lambs movement data and the numbers of
death notices of older women appearing in the “London Times” on each day of three
consecutive years.

However, for 1 < α ≤ 1/(1 − e−θ) we have a zero-deflated Poisson distribu-
tion (cf. e.g. Johnson et al., 1992; Dietz and Böhning, 2000) which can no longer
appear as a mixture distribution. In practice, this case occurs seldom and thus
has been much less explored. Recently, Kemp (2005) showed that the ability of
this distribution to model underdispersion is very limited and complemented it by
several illustrative examples. Moreover, the author compared it to the generalized
Poisson underdispersed case which proved to have similar limitations. Obviously,
substituting α = 1/(1 − e−θ) in relation (4.1) we get the pgf of the zero-truncated
Poisson distribution. The SP model considered here incorporates both inflated and
deflated case. In the next section we clarify that this distribution is both under- and
overdispersed.

4.2 1-Displaced Singh-Poisson Distribution

In its 1-displaced form, the probability mass function of a discrete random variable
Xd having SP distribution is given by

πd
x|α,θ = P (Xd = x) =

{
1 − α + αe−θ, x = 1

αθx−1e−θ/(x − 1)!, x = 2, 3, . . .
(4.2)

where θ > 0 and 0 ≤ α ≤ αmax = 1/(1 − e−θ). Here, αmax denotes the maximal
possible value of α for given θ > 0 and results from the inequality 1− α + αe−θ ≥ 0
which has to be satisfied. Moreover, note that for α = 1 this distribution simplifies
to the standard 1-displaced Poisson distribution with parameter θ.

The pgf of Xd can easily be derived using formula (2.36), Section 2.3.1 and

2 This distribution was first introduced by Consul and Jain (1973a) and is studied in detail in
Chapter 6.
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formula (2.9), Section 2.2.1 or otherwise applying GX(t) from (4.1). Hence, we get

GXd(t) = tGX(t) = t
(
(1 − α) + αeθ(t−1)

)
. (4.3)

The mean and the variance of distribution (4.2) result from the above pgf as

µd = E(Xd) = 1 + αθ and var(Xd) = αθ(1 + θ − αθ) . (4.4)

The factorial moments can be found by substituting equation (2.10), Section 2.2.1
into equation (2.38), Section 2.3.1. However, direct derivation from (4.3) is also
possible, as explained in Appendix B. Consequently, we obtain

µd
(1) = 1 + αθ and µd

(k) = kαθk−1 + αθk , for k = 2, 3, . . . (4.5)

Table 4.1 summarizes the basic features of the distribution above in relation to those
of its original and size-biased (see Section 4.3) versions.

Table 4.1: Singh-Poisson distribution: original, 1-displaced and size-biased forms

Random Variable

X Xd X∗

Notation SP(α, θ) 1+SP(α, θ) 1+P(θ)

Range N0 N N

pmf πx|α,θ πx−1|α,θ

e−θθx−1

(x − 1)!

pgf 1 − α + αeθ(t−1) tGX(t) teθ(t−1)

E(·) αθ 1 + αθ 1 + θ

var(·) αθ(1 + θ − αθ) αθ(1 + θ − αθ) θ

In order to get a better understanding of the behavior of the SP distribution (4.2)
we plotted in Figures 4.1 and 4.2 a set of graphs for various values of parameters α
and θ. Additionally, we compare SP probabilities to those of the 1-displaced Poisson
with the same value of θ, displayed in the charts as blue dashed bar plots. The
successive SP probabilities for possible x values are computed using the following
ratio of recursive probabilities

πd
x|α,θ

πd
x−1|α,θ

=
θ

x − 1
, for x = 3, 4, . . . , (4.6)

where πd
1|α,θ = 1−α+αe−θ and πd

2|α,θ = αθe−θ. Each row in the figures corresponds to
a different value of parameter α, whereas the columns show the effect of increasing
parameter θ. Since the columns in both figures illustrate bar diagrams for two



76 CHAPTER 4. SINGH-POISSON DISTRIBUTION

particular values of θ, namely θ = 0.8 (left) and θ = 2.2 (right), and differ in the value
of α only, they clearly indicate the differences in the probability distributions that
follow from modifications in the value of α. As long as 0 < α < 1, the probability
P (Xd = 1) is greater than e−θ, the 1-displaced Poisson probability at one and hence
we have an excess of ones compared to the parent 1-displaced Poisson distribution.
The closer α is to zero, the higher the proportion of ones is, while for α = 0 we have a
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Figure 4.1: Graphs of probability distributions for θ = 0.8 (left column), θ = 2.2 (right
column) and α = 0.3, 0.6, 0.9 for the SP(α, θ) and the Poisson(θ) distribution.
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degenerate, one-point distribution with all its mass at one. The one-inflation further
implicates a reduction of the remaining frequencies by a corresponding amount (see
Figure 4.1). The proportion of ones decreases as α converges to 1, and the SP
probabilities are much closer to that of the Poisson. The total matching of the two
distributions is given for α = 1, regardless of the value of θ (see Figure 4.2, first
row). As soon as 1 < α ≤ αmax we have one-deflation in SP compared to the Poisson
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Figure 4.2: Graphs of probability distributions for θ = 0.8 (left column), θ = 2.2 (right
column) and α = 1, 1.1, αmax for the SP(α, θ) and the Poisson(θ) distribution.
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model, which influences also the remaining probability classes. The last row of the
Figure 4.2 points out that the probability at one is reduced to zero when α reaches
αmax, whereas values of α higher than this would give negative probability at one.
It is also visible from the graphs that as θ becomes bigger, given a fixed value of α,
the SP distribution requires a bigger interval on the x axis by spreading to the right
side. As a consequence, probabilities in the first frequency class decrease.

An important characteristic of the 1-displaced SP distribution is its ability to
model under- and overdispersion. Table 4.2 demonstrates both situations for differ-
ent values of parameters α and θ. An invalid pair of parameters is denoted here by
∅. Such a case arises when for given θ the value of α exceeds αmax. The parameter
α measures dispersion and hence tunes the type of the distribution. Justification is
based on the following index of dispersion3

δ =
var(Xd)

E(Xd) − 1
=

αθ(θ + 1 − αθ)

αθ
= 1 + θ(1 − α) . (4.7)

Clearly, under- or overdispersion is governed only by parameter α, as θ is positive.
For α = 1 we have equidispersion, i.e. δ = 1. When 0 < α < 1, δ is strictly greater
then 1 and we have overdispersion with respect to Poisson variation. The degree
of overdispersion decreases as α increases to unity, also evident in the proportion
of ones, which are now much closer to the Poisson probabilities (see Figure 4.1).
However, for α = 0 the variance becomes zero while the mean becomes unity, hence
δ is indefinite. Therefore, we conclude that the 1-displaced SP distribution enables

Table 4.2: Over- and underdispersion in the 1-displaced Singh-Poisson distribution

θ

α 0.1 0.5 0.8 1 2.2 5 8

µd 1.03 1.15 1.24 1.30 1.66 2.50 3.40

0.3 δ 1.07 1.35 1.56 1.70 2.54 4.50 6.60

µd 1.06 1.30 1.48 1.60 2.32 4.00 5.80

0.6 δ 1.04 1.20 1.32 1.40 1.88 3.00 4.20

µd 1.09 1.45 1.72 1.90 2.98 5.50 8.20

0.9 δ 1.01 1.05 1.08 1.10 1.22 1.50 1.80

µd 1.10 1.50 1.80 2.00 3.20 6.00 9.00

1 δ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

µd 1.11 1.55 1.88 2.10 3.42 ∅ ∅

1.1 δ 0.99 0.95 0.92 0.90 0.78 ∅ ∅

µd 1.15 1.75 2.20 2.50 ∅ ∅ ∅

1.5 δ 0.95 0.75 0.60 0.50 ∅ ∅ ∅

µd
max 2.051 2.271 2.453 2.582 3.474 6.034 9.003

αmax δmin 0.049 0.229 0.347 0.418 0.726 0.966 0.997

3 For the explanation of this topic see Section 2.1.
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us to model overdispersion, provided that 1 < δ < 1 + θ. Notice also that for α
fixed at any given value, the increase in the value of θ increases the mean as well
as the variance (not explicitly shown in Table 4.2) of the SP distribution. When
α increases from 1 to αmax the distribution becomes underdispersed. For α = αmax,
we have δ = 1 − θ/(eθ − 1) < 1, which is obtained when P (Xd = 1) = 0, i.e.
when the first probability class disappears (see Figure 4.2, last row). Notice that for
the fixed value of α the degree of underdispersion decreases with increasing θ and
ultimately reaches its minimum for α = αmax. Therefore, as already recognized by
Kemp (2005), the ability of the SP distribution to model underdispersion is limited.
However, this limit need not be reached in practical situations.

4.3 Size-Biased Singh-Poisson Distribution

Following the concept of the size-biased distributions introduced in Section 2.3.2 and
applying transformation (2.41) to the SP random variable X we obtain its size-biased
version X∗ with pmf given by

π∗
x|θ = P (X∗ = x) =

θx−1e−θ

(x − 1)!
, for x = 1, 2, . . . (4.8)

Notice that the parameter α disappears in the size-biased version of the SP model
taking as such a very simple form, the well-known 1-displaced Poisson distribution
with single parameter θ. The simplicity of its pgf GX∗(t) = teθ(t−1) enables easy
computation of its factorial moments. The k-th factorial moment results in

µ∗
(k) = kθk−1 + θk , for k = 1, 2, . . . (4.9)

After simple calculations the mean and variance of X∗ are given by

E(X∗) = µ∗ = θ + 1 , var(X∗) = θ , (4.10)

whence the index of dispersion results in

δ =
var(X∗)

E(X∗) − 1
= 1 . (4.11)

Clearly, distribution (4.8) is characterized by equidispersion.

4.4 Parameter Estimation

In this section we derive parameter estimators based on the three most common
methods introduced in Section 2.4. As already mentioned above, the size-biased SP
distribution is determined through a single parameter θ. The moment and maximum
likelihood estimators of θ are identical and given by θ̂MM = θ̂ML = x̄ − 1. There-
fore, parameter estimators obtained in the next sections refer to the 1-displaced SP
model (4.2) only.
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4.4.1 Estimation by Method of Moments

Moment estimators are obtained by equating µ = 1 + αθ, the theoretical mean and
µ(2) = 2αθ+αθ2, the second theoretical factorial moment of the distribution (4.2), to
their empirical counterparts x̄ and m(2), respectively. Thus by solving simultaneously
the following system of equations

x̄ = 1 + αθ , m(2) = 2αθ + αθ2 , (4.12)

one gets simple moment (MM) estimators of the parameters α and θ as

θ̂MM =
m(2)

x̄ − 1
− 2 and α̂MM =

x̄ − 1

θ̂MM

. (4.13)

4.4.2 Estimation by Maximum Likelihood

Consider a random sample of size n from a distribution with pmf defined in (4.2).
Let fi denote the observed frequency of the i-th class such that

∑k
i=1 fi = n, where k

is the largest frequency class. The maximum likelihood (ML) estimator of parameter
vector Θ = (α, θ) is the value that maximizes the following likelihood function

L(α, θ|f1, . . . , fk) = (1 − α + αe−θ)f1

k∏

i=2

(
αθi−1e−θ

(i − 1)!

)fi

. (4.14)

Therefore, the log-likelihood function is given by

l(α, θ|f1, . . . , fk) = log L(α, θ|f1, . . . , fk) =

= f1 log (1 − α + αe−θ) +
k∑

i=2

fi (log α + (i − 1) log θ − θ − log(i − 1)!) .
(4.15)

The score equations are obtained by equating the first partial derivatives of (4.15)
with respect to the parameters α and θ to zero. These equations are

∂l(α, θ|f1, . . . , fk)

∂α
=

(e−θ − 1)f1

1 − α + αe−θ
+

1

α

k∑

i=2

fi = 0 , (4.16)

∂l(α, θ|f1, . . . , fk)

∂θ
=

−αe−θf1

1 − α + αe−θ
+

1

θ

k∑

i=2

fi(i − 1 − θ) = 0 . (4.17)

By solving equation (4.16) for α, the resulting ML estimator α̂ML of parameter α is

α̂ML =
n − f1

n(1 − e−θ̂ML)
. (4.18)

Multiplying equation (4.16) by α and adding it to (4.17) we obtain after a few
algebraic simplifications the ML estimator θ̂ML of parameter θ as a solution of the
transcendental equation

θ(n − f1)

n(x̄ − 1)
+ e−θ − 1 = 0 . (4.19)

This equation can be solved for θ using function uniroot() available in R software.
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4.4.3 Estimation Based on Mean and First Frequency Class

By equating the relative frequency of the first class f1/n and the sample mean x̄
to the probability of the first class πd

1|α,θ = 1 − α + αe−θ and the population mean
µ = 1 + αθ, respectively, we get the estimators of the parameters α and θ, which
we denote here by α̂FF and θ̂FF. After some calculations, it can be shown that these
estimators are identical to the ML estimators α̂ML and θ̂ML obtained in Section 4.4.2.

4.5 A Simulation Study

To evaluate the performance of the above processed estimation procedures we made
a simulation study where all three situations (i) overdispersion (δ > 1), (ii) equidis-
persion (δ = 1) and (iii) underdispersion (δ < 1) were taken into account. Referring
to the fact that the journalistic texts are overdispersed, the majority of the private
letters and prose texts are equidispersed, whereas poems are underdispersed4, we
choose as model parameters (i) (α, θ ) = ( 0.82, 1.58 ), (ii) ( α, θ ) = ( 0.92, 0.91 ) and
(iii) ( α, θ ) = ( 1.14, 0.63 ). These parameter settings coincide with the ML estimates
of each text aggregation for Slovenian journalistic texts, private letters (i.e. prose),
and poems, respectively, in order to get representative texts of each text type. For
each of the three dispersion situations M = 500 Monte Carlo samples of size n = 500
and n = 1000 are drawn. To generate SP random variables we apply the inversion
method introduced in Section 2.5, where the probabilities of the SP distribution are
computed using recurrence formula (4.6), Section 4.2. The whole procedure was
implemented by the software R, as already mentioned in Section 2.7.

The results of the simulation study are summarized in Table 4.3 for both sample
sizes, namely n = 500 and n = 1000. For each of the three data situations MM and
ML estimates have been calculated. The corresponding mean values of M = 500
estimated parameters α̂ and θ̂ are displayed in the second and fourth columns of Ta-
ble 4.3. Additionally, we calculated the estimated standard errors of the mean values
ᾱ and θ̄ as the standard deviation of the M = 500 parameter estimates. These are
labelled by seᾱ and seθ̄ and provide the precision of the resulting estimates (see third
and fifth columns of Table 4.3). For both sample sizes, we observed similar results,
independently of the data case and the estimation procedure applied. However, the
standard errors of the estimated parameters are smaller for ML estimates by a factor
of 0.90 or less compared to MM estimates and decrease with increasing sample size.

Figure 4.3 contains six plots visualizing the dependence between parameter es-
timates α̂ and θ̂ for M = 500 generated 1-displaced SP samples of size n = 1000 for
both estimation methods and each of the three dispersion cases: (i) overdispersion
(left column) (ii) equidispersion (middle column) and (iii) underdispersion (right
column). Notice that the intensity of their correlation increases from overdispersed
to underdispersed case, irrespective of the estimation procedure applied. The esti-

4 This is the result of the statistical analysis of the Slovenian texts under study, discussed in
more detail in Chapter 8.
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Table 4.3: Estimation results for over-, equi- and underdispersed data situations

(α, θ) = (0.82, 1.58)

δ > 1 (ᾱMM; θ̄MM) (seᾱMM ; seθ̄MM
) (ᾱML; θ̄ML) (seᾱML ; seθ̄ML

)

n = 500 (0.823; 1.579) (0.037; 0.093) (0.821; 1.582) (0.030; 0.081)

n = 1000 (0.821; 1.581) (0.026; 0.065) (0.820; 1.581) (0.021; 0.056)

(α, θ) = (0.92, 0.91)

δ = 1 (ᾱMM; θ̄MM) (seᾱMM ; seθ̄MM
) (ᾱML; θ̄ML) (seᾱML ; seθ̄ML

)

n = 500 (0.928; 0.907) (0.066; 0.079) (0.925; 0.909) (0.057; 0.071)

n = 1000 (0.923; 0.909) (0.046; 0.055) (0.922; 0.910) (0.039; 0.049)

(α, θ) = (1.14, 0.63)

δ < 1 (ᾱMM; θ̄MM) (seᾱMM ; seθ̄MM
) (ᾱML; θ̄ML) (seᾱML ; seθ̄ML

)

n = 500 (1.156; 0.628) (0.107; 0.068) (1.152; 0.629) (0.097; 0.063)

n = 1000 (1.145; 0.630) (0.075; 0.048) (1.143; 0.631) (0.068; 0.044)

mated Pearson’s correlation coefficient calculated as ρ̂ = cov(α̂, θ̂)/seᾱseθ̄ measures
the strength of this linear dependence and reconfirm the results obtained.
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Figure 4.3: Scatterplots of the estimated parameters obtained from M = 500 simulated
1-displaced SP samples of size n = 1000 for over- (left column), equi- (middle column)
and underdispersed (right column) data situation and both estimation methods applied.



Chapter 5

Hyper-Poisson Distribution

5.1 Introduction

The hyper-Poisson (HP) distribution is probably the most frequently used model of
word length distributions, although it has also been mentioned in the literature as
the model of the distribution of sentence length (cf. Antić et al., 2006b; Best, 2001;
Kelih and Grzybek, 2004). This distribution is a two-parametric generalization of
the Poisson distribution, and contains the Poisson distribution as a one-parameter
subclass. To derive it, consider the conditional Poisson model X|Y ∼ Poisson(θY )
and assume additionally parameter Y to have a truncated Pearson Type III distri-
bution with probability density function given by

g(y) =
(λ − 1)eθy(1 − y)λ−2

1F1[1; λ; θ]
, 0 ≤ y ≤ 1 , (5.1)

where λ > 1, θ > 0 and 1F1[1; λ; θ] denotes the confluent hypergeometric function
(i.e. Kummer’s function) with first argument equal to 1. As a result, the pmf of the
mixture distribution follows as

πx|λ,θ = P (X = x) =

∫ 1

0

e−θy(θy)x

x!

(λ − 1)eθy(1 − y)λ−2

1F1[1; λ; θ]
dy

=
θx(λ − 1)

x!1F1[1; λ; θ]

∫ 1

0

yx(1 − y)λ−2dy =
θxΓ(λ)

1F1[1; λ; θ]Γ(λ + x)
, x = 0, 1, . . .

(5.2)

where λ > 0 and θ > 0, hence we obtain as a marginal model the HP distribution (cf.
Bardwell and Crow, 1964). Some details are also given in Johnson et al. (1992, 193f).
In its series representation the function 1F1[1; λ; θ] has the form

1F1[1; λ; θ] = 1 +
θ

λ
+

θ2

λ(λ + 1)
+ . . . =

∞∑

x=0

θx

λ(x)
, (5.3)

83



84 CHAPTER 5. HYPER-POISSON DISTRIBUTION

where λ(x) = λ(λ+1) . . . (λ+x−1) is Pochhammer’s symbol, also known as ascending
factorial. Since λ(x) = Γ(λ + x)/Γ(λ) the pmf (5.2) can be rewritten as

πx|λ,θ =
θx

1F1[1; λ; θ]λ(x)
, x = 0, 1, 2, . . . (5.4)

Notice that for λ = 1, the confluent hypergeometric series (5.3) becomes the ex-
ponential series, i.e. we have 1F1[1; 1; θ] =

∑∞
x=0 θx/x! = eθ, and distribution (5.4)

reduces to the Poisson distribution with parameter θ. Also, λ(0) = 1 for any λ ∈ R
+.

For fixed λ, the function λ(x) depends only on x, hence distribution (5.4) becomes a
power series distribution with θ being a power parameter (cf. Noack, 1950).

In order to avoid difficulties by computing the confluent hypergeometric function

1F1[·] it is helpful to use its relation to the lower incomplete gamma function γ(a, x),
formulated generally as (cf. Johnson et al., 1992, p. 14)

γ(a, x) = a−1xae−x
1F1[1; a + 1; x] , (5.5)

where a 6= 0,−1,−2, . . . and x > 0. When a = λ−1 and x = θ is substituted above,
we obtain

1F1[1; λ; θ] = (λ − 1)θ1−λeθγ(λ − 1, θ) , (5.6)

provided that λ 6= 1 and θ > 0 holds. Moreover, the function γ(a, x) is closely related
to the cumulative distribution function of a Gamma distribution, being specified by

F (x, a) =
1

Γ(a)

∫ x

0

ta−1e−tdt =
γ(a, x)

Γ(a)
, a > 0, x ≥ 0 . (5.7)

Therefore, for all positive real values of θ and λ > 1, the function γ(λ− 1, θ) can be
computed by this relation as γ(λ − 1, θ) = F (θ, λ − 1)Γ(λ − 1). However, whenever
0 < λ < 1, F (θ, λ− 1) is not defined. In that case, for the calculation of γ(λ− 1, θ)
one should use its relationship to the upper incomplete gamma function Γ(λ− 1, θ),
expressed by γ(λ − 1, θ) = Γ(λ − 1) − Γ(λ − 1, θ). Nevertheless, there is a function
hyperg_1F1(a, b, x) available in R package gsl that offers solutions for all real
values of a, b and x, hence combines both cases above (see Hankin, 2006).

Crow and Bardwell (1965) stated that the parameter λ determines the type of
the distribution (5.4), as it measures dispersion, and classified this model according
to the values of λ. For λ > 1, they called it super-Poisson since the variance exceeds
the mean, whereas if 0 < λ < 1 the mean is greater than the variance, hence it has
been named sub-Poisson. Obviously, when λ = 1 we have the equality of mean and
variance, i.e. the standard Poisson case. The next two sections attest that the same
holds for both the 1-displaced and the size-biased version of the HP distribution.
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5.2 1-Displaced Hyper-Poisson Distribution

Let Xd be a discrete random variable that is 1-displaced HP distributed. Its pmf is
then defined by the following formula (cf. Wimmer and Altmann, 1999, p. 281)

πd
x|λ,θ = P (Xd = x) =

θx−1

1F1[1; λ; θ]λ(x−1)
, x = 1, 2, . . . , (5.8)

where λ > 0, θ > 0 and 1F1[1; λ; θ] is given by (5.3). Notice that for λ = 1 it follows
that λ(x−1) = (x− 1)! and 1F1[1; λ; θ] = eθ, hence as a result the 1-displaced Poisson
model is obtained.

The pgf of distribution (5.8) can be derived directly by definition as follows

GXd(t) =
∞∑

i=1

tiπd
i|λ,θ =

t

1F1[1; λ; θ]

∞∑

i=1

(θt)i−1

λ(i−1)
= t

1F1[1; λ; θt]

1F1[1; λ; θ]
. (5.9)

Based on the partial derivatives of the confluent hypergeometric functions used above
and given by the following relations

∂n
1F1[1; λ; θ]

∂θn
=

n!

λ(n) 1F1[1 + n; λ + n; θ] ,

∂n
1F1[1; λ; θt]

∂tn
=

n!θn

λ(n) 1F1[1 + n; λ + n; θt] ,

(5.10)

the mean of distribution (5.8), derived from the pgf above, results in

E(Xd) = G′
Xd(1) = 1 +

θ

λ
1F1[2; λ + 1; θ]

1F1[1; λ; θ]
= 1 +

θ

1F1[1; λ; θ]

∂1F1[1; λ; θ]

∂θ
. (5.11)

However, instead of the term 1F1[2; λ + 1; θ] we can use its relation to the function

1F1[1; λ; θ] generally formulated as (cf. Abramowitz and Stegun, 1965, p. 506)

a1F1[a + 1; b; z] = (1 + a − b) 1F1[a; b; z] + (b − 1) 1F1[a; b − 1; z] , (5.12)

which by substituting a = 1, b = λ + 1 and z = θ results in

1F1[2; λ + 1; θ] = (1 − λ) 1F1[1; λ + 1; θ] + λ 1F1[1; λ; θ] , (5.13)

where further 1F1[1; λ+1; θ] = λθ−1 (1F1[1; λ; θ]−1) holds. Consequently, we obtain
the mean in the simplified form as follows1

µd = E(Xd) = 1 + θ + (1 − λ)(1 − 1F
−1
1 [1; λ; θ]) . (5.14)

1 Evidently, as E(Xd) = E(X)+1, we have µ = E(X) = θ +(1−λ)(1− 1F
−1
1 [1;λ; θ]) being the

expression obtained by Bardwell and Crow (1964) for the mean of the HP distribution (5.2).
However, as noted by the authors, they derived it differently by summing both sides of the
recurrence relation for the successive HP probabilities over all x.
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To derive the variance of distribution (5.8), we set t = 1 in the second derivative
of GXd(t) to first determine the second factorial moment. Using the second relation
of (5.10) and the fact that ∂/∂t(1F1[2; λ+1; θt] ) = 2θ1F1[3; λ+2; θt]/(λ+1) we get

µd
(2) = G′′

Xd(1) =
2θ

λ
1F1[2; λ + 1; θ]

1F1[1; λ; θ]
+

2θ2

λ(λ + 1)
1F1[3; λ + 2; θ]

1F1[1; λ; θ]
. (5.15)

Replacing subsequently 1F1[3; λ + 2; θ] and 1F1[2; λ + 2; θ] by the expressions result-
ing from relation (5.12) when (a, b, z) = (2, λ + 2, θ) and (a, b, z) = (1, λ + 2, θ),
respectively, and 1F1[2; λ + 1; θ] by equation (5.13) yields after few simplifications

µd
(2) = (µd − 1)(2θ + 2 − λ) + 2θ − θµd . (5.16)

Finally, the variance is obtained as

var(Xd) = µd
(2) − µd(µd − 1) = θµd + (µd − 1)(2 − µd − λ) . (5.17)

Calculation of the higher factorial moments becomes quite tedious and time con-
suming using the method described above. Hence, we rather suggest to combine the
recurrence formula (2.38), Section 2.3.1 with formula (B.8), Appendix B, to get

µd
(k) =

k∑

i=0

s(k, i)µ′
i + k

k−1∑

i=0

s(k − 1, i)µ′
i , (5.18)

where s(k, i) are the Stirling numbers of the first kind2 and µ′
i denotes the i-th raw

moment of distribution (5.4), given recursively by (cf. Crow and Bardwell, 1965)

µ′
k+1 = (θ − λ + 1)µ′

k + θ

k∑

i=1

(
k

i

)
µ′

k−i , for k = 1, 2, . . . (5.19)

All moments of distribution (5.8) for λ, θ ∈ R
+ exist. With factorial moments

determined, raw and central moments of distribution (5.8) can be calculated using
the relations (B.9) and (B.13) from Appendix B. In particular, the second and third
raw moments are derived from (5.18) as follows

µd
2

′
= µd

(2) + µd = (θ − λ + 3)µd + λ − 2 ,

µd
3

′
= µd

(3) + 3µd
(2) + µd = (θ − λ + 4)µ′d

2 + (2λ − 5)µd − λ + 2 .
(5.20)

The basic properties of the distribution above in relation to those of its original and
size-biased (see forthcoming section) versions are summarized in Table 5.2.

To study further the behavior of distribution (5.8), the successive probabilities
for possible values of x by varying values of parameters λ and θ are computed using
the following recurrence relation

πd
x|λ,θ =

θ

λ + x − 2
πd

x−1|λ,θ , for x ≥ 2 , (5.21)

2 For more details on Stirling numbers of the first kind see Appendix B.
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where πd
1|λ,θ = 1F

−1
1 [1; λ; θ], as defined by formula (5.8). Figure 5.1 contains six

plots for θ = 0.8 (left column), θ = 2.4 (right column), and λ = 0.3, 1, 4.3 and
illustrates changes in the form of distribution (5.8) when for any given value of λ
the value of θ changes or when θ is fixed but parameter λ varies. The comparison to

1 2 3 4 5 6 7 8

x

P
(X

d
=
x
)

0
.0

0
.2

0
.4

0
.6

0
.8

λ = 0.3
θ = 0.8

1 2 3 4 5 6 7 8

x

P
(X

d
=
x
)

0
.0

0
.2

0
.4

0
.6

0
.8

λ = 0.3
θ = 2.4

1 2 3 4 5 6 7 8

x

P
(X

d
=
x
)

0
.0

0
.2

0
.4

0
.6

0
.8

λ = 1
θ = 0.8

1 2 3 4 5 6 7 8

x

P
(X

d
=
x
)

0
.0

0
.2

0
.4

0
.6

0
.8

λ = 1
θ = 2.4

1 2 3 4 5 6 7 8

x

P
(X

d
=
x
)

0
.0

0
.2

0
.4

0
.6

0
.8

λ = 4.3
θ = 0.8

1 2 3 4 5 6 7 8

x

P
(X

d
=
x
)

0
.0

0
.2

0
.4

0
.6

0
.8

λ = 4.3
θ = 2.4

Figure 5.1: Graphs of the HP(λ, θ) and the Poisson(θ) (dashed bars) probability distri-
butions for θ = 0.8 (left column), θ = 2.4 (right column) and different values of λ.
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the 1-displaced Poisson distribution with parameter θ, displayed here as dashed bar
plot, is given to provide an insight into the boundary case. Evidently, as λ gets close
to zero, the hypergeometric series (5.3) becomes positively infinite, and hence the
probability π1|λ,θ approaches zero. When θ is fixed, the series representation of the
function 1F1[1; λ; θ] decreases as λ increases, and becomes unity for λ large enough.
As a result, we have π1|λ,θ → 1, therefore the limiting form of distribution (5.8) when
λ → ∞ is a degenerate distribution with all its mass concentrated at one. From the
last row in Figure 5.1 it is clear that it happens faster for smaller values of θ. Notice
also that the asymmetry in the probability distribution decreases as the value of θ
increases. For λ = 1 the 1-displaced HP model achieves the Poisson limit, as obvious
from the middle row in Figure 5.1, whereas for both 0 < λ < 1 and λ > 1 we have
departure from the Poisson case.

To summarize, parameter λ carries information about the type of the distribution
above. In order to verify it, we calculate the index of dispersion

δ =
var(Xd)

E(Xd) − 1
= θ − λ − µd + 2 +

θ

µd − 1
, (5.22)

where µd is given by (5.14). Table 5.1 shows values of µd and δ for various combina-
tions of the two parameters. For λ = 1 we have δ = 1, since then E(Xd) = 1+θ and
var(Xd) = θ. Clearly, when 0 < λ < 1, δ is strictly below 1, whereas it reaches max-
imum at unity for large enough θ. Therefore, we have underdispersion with respect
to Poisson variation. However, when λ > 1 the distribution becomes overdispersed.

Table 5.1: Under- and overdispersion in the 1-displaced Hyper-Poisson distribution

θ

λ 0.1 0.5 0.8 1 2.4 5 8

µd 1.29 2.00 2.38 2.62 4.09 6.70 9.70

0.3 δ 0.87 0.70 0.69 0.70 0.79 0.88 0.92

µd 1.16 1.71 2.08 2.31 3.78 6.40 9.40

0.6 δ 0.96 0.89 0.87 0.86 0.88 0.93 0.95

µd 1.11 1.54 1.86 2.07 3.49 6.10 9.10

0.9 δ 0.99 0.98 0.97 0.97 0.97 0.98 0.99

µd 1.10 1.50 1.80 2.00 3.40 6.00 9.00

1 δ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

µd 1.08 1.40 1.66 1.83 3.14 5.70 8.70

1.3 δ 1.01 1.04 1.06 1.06 1.08 1.06 1.04

µd 1.02 1.13 1.21 1.27 1.79 3.31 5.82

4.3 δ 1.01 1.07 1.12 1.15 1.34 1.56 1.54

Notice also that as λ increases, the mean decreases, hence the value of δ increases
as well, irrespective of the value of θ. Still, when λ becomes quite large the distribu-
tion (5.8) transforms to a degenerate distribution concentrated at one (cf. Figure 5.1
above), hence its variance becomes zero, whereas the mean becomes unity. For this
reason δ is then indefinite.
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5.3 Size-Biased Hyper-Poisson Distribution

The size-biased HP distribution results by applying transformation (2.41), Sec-
tion 2.3.2 to the original HP distribution (5.4), where E(X) is obtained from (5.11).
The pmf of the corresponding random variable X∗ is then for x = 1, 2, . . . given by

π∗
x|λ,θ = P (X∗ = x) =

xθx

1F1[1;λ; θ]λ(x)

λ 1F1[1;λ; θ]

θ 1F1[2;λ + 1; θ]
=

xλθx−1

1F1[2;λ + 1; θ]λ(x)
. (5.23)

Although its pgf might be derived directly from (5.23), another possibility is to use
relation (2.42), Section 2.3.2, where G′

X(t) is obtained applying the second equation
of (5.10). As a result, we have

GX∗(t) = t
1F1[2; λ + 1; θt]

1F1[2; λ + 1; θ]
. (5.24)

All raw moments of the HP distribution (5.23) for λ, θ ∈ R
+ exist, and can easily be

computed from those of the original HP distribution specified by (5.19), by utilizing
relation (2.46), Section 2.3.2 where E(X) is determined from (5.11) as E(Xd) − 1.
Accordingly, the mean is found to be

µ∗ = E(X∗) = (θ − λ + 1) + λ
1F1[1; λ; θ]

1F1[2; λ + 1; θ]
. (5.25)

When this relation is rewritten as λ1F1[1; λ; θ]/1F1[2; λ+1; θ] = µ∗− (θ−λ+1) and
substituted into (2.46) the second and third raw moments are obtained as

µ∗
2
′ = (θ + λ − 1) + (θ − λ + 2)µ∗ ,

µ∗
3
′ = (θ − λ + 1)µ∗

2
′ + (3θ + 1)µ∗ + 2θ + λ − 1 .

(5.26)

Consequently, after few algebraic simplifications the variance results in

var(X∗) = µ∗
2
′ − (µ∗)2 = θ(µ∗ + 1) + (µ∗ − 1)(1 − µ∗ − λ) . (5.27)

With the size-biased raw moments calculated, the factorial and central moments can
be determined using relations (B.8) and (B.13) from Appendix B, respectively.

Figure 5.2 illustrates the differences in the size-biased HP probability distribution
compared to the corresponding 1-displaced version for θ = 0.8, 2.4 and λ = 0.1, 1, 5.3.
In order to draw individual size-biased probabilities we use the ratio of the recursive
probabilities given by

π∗
x|λ,θ =

xθ

(x − 1)(λ + x − 1)
π∗

x−1|λ,θ , for x ≥ 2 , (5.28)

where π∗
1|λ,θ = 1F

−1
1 [2; λ + 1; θ], as defined by (5.23). It is evident from the graphs

that as long as 0 < λ < 1 we have P (Xd = 1) < P (X∗ = 1) and both probabilities
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Figure 5.2: The size-biased HP (sbHP(λ, θ)) and 1-displaced HP (1+HP(λ, θ)) distribu-
tions compared to the 1-displaced Poisson (1+P(θ)) for θ = 0.8, 2.4 and λ = 0.1, 1, 5.3.

are smaller than e−θ, hence there is one-deflation compared to the Poisson model.
Notice that this also affects the probabilities of the remaining frequencies. All three
distributions coincide for λ = 1. For λ > 1 we have P (Xd = 1) > P (X∗ = 1) > e−θ,
i.e. one-inflation with respect to the Poisson case. It may also be noted that both
HP distributions exhibit opposite behavior to that observed for the SP distribution.
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Table 5.2: Hyper-Poisson distribution: original, 1-displaced and size-biased forms

Random Variable

X Xd X∗

Notation HP(λ, θ) 1+HP(λ, θ) sbHP(λ, θ)

Range N0 N N

pmf
θx

1F1[1;λ; θ]λ(x)
πx−1|λ,θ

xπx|λ,θ

E(X)

pgf
1F1[1;λ; θt]

1F1[1;λ; θ]
tGX(t) t

1F1[2;λ + 1; θt]

1F1[2;λ + 1; θ]

E(·) θ + (1 − λ)(1 − 1F
−1
1 [1; λ; θ]) 1 + E(X) (θ − λ + 1) + λ

1F1[1; λ; θ]

1F1[2;λ + 1; θ]

var(·) θ(1 + µ) + µ(1 − µ − λ) var(X) θ(1 + µ∗) + (µ∗ − 1)(1 − µ∗ − λ)

Based on the graphs above we can conclude that the parameter λ defines the type
of distribution (5.23). To measure effective dispersion we apply the relations (5.25)
and (5.27) and get the index of dispersion by the following formula

δ =
var(X∗)

E(X∗) − 1
= θ − λ − µ∗ + 1 +

2θ

µ∗ − 1
. (5.29)

Since the ability of this distribution to model under-, equi- and overdispersed sample
data is not apparent from the expression above, we compute δ and µ∗ for different
values of λ and θ. Table 5.3 displays the results obtained. It can be observed that

Table 5.3: Under- and overdispersion in the size-biased Hyper-Poisson distribution

θ

λ 0.1 0.5 0.8 1 2.4 5 8

µ∗ 1.15 1.70 2.08 2.32 3.88 6.58 9.62

0.3 δ 0.98 0.93 0.91 0.90 0.89 0.92 0.94

µ∗ 1.12 1.60 1.94 2.17 3.66 6.33 9.35

0.6 δ 0.99 0.97 0.95 0.95 0.94 0.95 0.96

µ∗ 1.11 1.52 1.83 2.04 3.46 6.08 9.09

0.9 δ 1.00 0.99 0.99 0.99 0.99 0.99 0.99

µ∗ 1.10 1.50 1.80 2.00 3.40 6.00 9.00

1 δ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

µ∗ 1.09 1.44 1.71 1.90 3.22 5.76 8.74

1.3 δ 1.00 1.02 1.02 1.03 1.04 1.04 1.03

µ∗ 1.04 1.20 1.33 1.42 2.13 3.87 6.36

4.3 δ 1.01 1.05 1.08 1.09 1.21 1.32 1.33
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analogous to the 1-displaced HP model and depending on the fact whether 0 < λ < 1
or λ > 1, we have under- or overdispersion, respectively. Obviously, the 1-displaced
Poisson limit is obtained for λ = 1.

5.4 Parameter Estimation

This section deals with parameter estimation of the two different versions of the
HP distribution, defined by (5.8) and (5.23). Since their estimators are different we
discuss the three estimation methods, mentioned in Section 2.4, for each of them
separately. Furthermore, alternatives to these methods are also considered here.

5.4.1 Estimation by Method of Moments

1-displaced HP model

(a) λ known: The moment estimator of parameter θ is obtained most easily from
equation (5.17) by replacing the first two theoretical moments by the corresponding
sample moments. Consequently, we obtain

θ̂MM =
m2 − (x̄ − 1)(2 − x̄ − λ)

x̄
. (5.30)

(b) λ unknown: In this situation the estimation procedure becomes more complex.
The moment estimators of λ and θ follow then by equating the sample mean x̄ and
the second raw moment m′

2 to the corresponding theoretical moments, specified
by (5.14) and the first equation of (5.20), respectively. Thus, we get the following
system of equations

x̄ = 1 + θ + (1 − λ)(1 − 1F
−1
1 [1; λ; θ]) , m′

2 = (θ − λ + 3)x̄ + λ − 2 . (5.31)

Eliminating parameter λ from the previous equations, we obtain as a result

H(θ) = 1F1

[
1;

θx̄ + 3x̄ − m′
2 − 2

x̄ − 1
; θ

]
− θx̄ + 2x̄ − m′

2 − 1

θ + x̄2 − m′
2

= 0 . (5.32)

This equation may be solved iteratively for θ using, e.g. function uniroot() available
in R software. The positive root of equation (5.32) is the required estimate. With
θ̂MM calculated in this way, λ̂MM follows from the second equation of (5.31) as

λ̂MM =
θ̂MM x̄ + 3x̄ − m′

2 − 2

x̄ − 1
. (5.33)

However, simple moment estimators are obtained when the first equation of the
system (5.31) is replaced by that for the third raw moment defined by (5.20). Solving
simultaneously thus determined system of equations, the estimator for θ follows as

θ̂MM =
m′

3(x̄ − 1) + m′
2x̄ + m′

2 − (m′
2)

2 − x̄2

2x̄2 − x̄ − m′
2

, (5.34)

whereas for such θ̂MM, the moment estimator of λ is again given by (5.33).
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size-biased HP model

(a) λ known: The moment estimator of θ can be found from equation (5.27) as

θ̂MM =
m2 − (x̄ − 1)(1 − x̄ − λ)

x̄ + 1
. (5.35)

(b) λ unknown: Contrary to (a), the estimation procedure here is more complex.
Starting with the first equation of (5.26), and substituting the theoretical moments
by the corresponding sample moments we obtain the following expression for λ

λ =
θ(x̄ + 1) + 2x̄ − m′

2 − 1

x̄ − 1
. (5.36)

The second equation of the system is given by equating the population mean, defined
by (5.25), to its empirical counterpart x̄ which after some transformations results in

(x̄ − θ + λ − 1) 1F1[2; λ + 1; θ] − λ 1F1[1; λ; θ] = 0 . (5.37)

Substituting subsequently λ by expression (5.36) we get a quite complex equation
in θ which can be solved iteratively in the similar manner as in the 1-displaced case.
With θ̂MM calculated we ultimately obtain λ̂MM from (5.36).

To derive simple estimators of λ and θ we return to equation (5.36) and combine
it with the second equation of (5.26) instead of that for the population mean. After
further simplifications, the estimator of θ is expressed by

θ̂MM =
m′

3(x̄ − 1) − (m′
2)

2 + x̄m′
2 − x̄2 + m′

2

3x̄2 − 2m′
2 − 1

, (5.38)

whereas λ̂MM results from (5.36) when θ is replaced with θ̂MM.

5.4.2 Estimation by Maximum Likelihood

1-displaced HP model

Consider a random sample of size n from the 1-displaced HP model, defined by (5.8).
To find the maximum likelihood (ML) estimator of the parameter vector Θ = (λ, θ)
we begin with the following likelihood function

L(λ, θ|f1, . . . , fk) =
k∏

i=1

(
θi−1Γ(λ)

1F1[1; λ; θ]Γ(λ + i − 1)

)fi

, (5.39)

where fi are the observed frequencies such that
∑k

i=1 fi = n with k being the largest
observation and maximize its log-likelihood function given by

l(λ, θ|f1, . . . , fk) = log L(λ, θ|f1, . . . , fk) =

= n(x̄ − 1) log θ + n log Γ(λ) − n log 1F1[1; λ; θ] −
k∑

i=1

fi log Γ(λ + i − 1) .
(5.40)
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Then, we equate the first partial derivatives of (5.40) with respect to the parameters
λ and θ to zero, which by substituting the digamma function Ψ(x) = Γ′(x)/Γ(x)
enables us to obtain the following score equations

∂l(λ, θ|f)
∂λ

= nΨ(λ) − n

1F1[1; λ; θ]

∂1F1[1; λ; θ]

∂λ
−

k∑

i=1

fiΨ(λ + i − 1) = 0 ,

∂l(λ, θ|f)
∂θ

=
n(x̄ − 1)

θ
− n

1F1[1; λ; θ]

∂1F1[1; λ; θ]

∂θ
= 0 , with f = (f1, . . . , fk) .

(5.41)

(a) λ known: The first equation of the system above becomes in this case irrelevant,
whereas the second one, by using the first relation of (5.10), simplifies to

λ(x̄ − 1)1F1[1; λ; θ] − θ1F1[2; λ + 1; θ] = 0 . (5.42)

Hence, the estimator θ̂ML is obtained by solving (5.42) iteratively for θ.

(b) λ unknown: The system (5.41) may be solved iteratively for the unknown pa-
rameters using the Newton-Raphson algorithm. However, from the definition of the
function 1F1[1; λ; θ] given in (5.3) it is apparent that the calculation of its partial
derivatives with respect to λ is quite troublesome. Apart from the series represen-
tation, the confluent hypergeometric function 1F1[1; λ; θ] can be defined using the
following integral (cf. Johnson et al., 1992, p. 20)

1F1[1; λ; θ] =
Γ(λ)

Γ(λ − 1)

∫ 1

0

(1 − p)λ−2eθpdp , (5.43)

where Γ(·) is the gamma function. Both representations of 1F1[1; λ; θ] are inappro-
priate for the analytical treatment needed in maximum likelihood estimation. The
contribution of Butler and Wood (2002) offers a solution to this problem. The au-
thors derived a Laplace approximation for the integral in (5.43), both for the scalar
and matrix case, and based on simulations verified extremely high precision of their
approach. Generally, they considered the integral

I =

∫

p∈D

h(p)e−ωg(p)dp, (5.44)

where D ⊆ Rd and ω is a real parameter. If g(p) has a unique minimum at the
stationary point ps ∈ D of g(p), then Laplace’s approximation of I is given by

Ĩ = (2π)d/2ω−d/2|g′′(ps)|−1/2h(ps)e
−ωg(ps) . (5.45)

For our purposes, only the scalar case is of interest and we take ω = 1 for simplicity.
Moreover, the authors remarked that when implementing Laplace’s approximation,
the choice of the functions g and h as well as the possibility of calibration (see below)
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can affect its exactness. To approximate the integral in (5.43) they proposed to use
the following representation of the functions g and h

h(p) = B(1, λ − 1)−1p−1(1 − p)−1 ,

g(p) = −
(

log p + (λ − 1) log(1 − p) + θp

)
,

(5.46)

where D = (0, 1), d = 1 and B(1, λ− 1) = Γ(λ− 1)/Γ(λ) denotes the beta function.
Applying (5.45) the raw Laplace approximation of the function 1F1[1; λ; θ] results in

1F̃1[1; λ; θ] =
(2π)1/2ps(1 − ps)

λ−1eθps

B(1, λ − 1)
√

(1 − ps)2 + (λ − 1)p2
s

, (5.47)

where the stationary point ps ∈ (0, 1) obtained from solving g′(p) = 0 is given by

ps =
2

λ − θ +
√

(θ − λ)2 + 4θ
. (5.48)

Butler and Wood (2002) also noticed that it would be even better to use the approx-

imation 1F̂1[1; λ; θ] which is calibrated at θ = 0, since it gives more accurate results.
The calibrated approximation is defined by

1F̂1[1; λ; θ] =
1F̃1[1; λ; θ]

1F̃1[1; λ; 0]
, (5.49)

where 1F̃1[1; λ; 0] has the same form as 1F̃1[1; λ; θ], but the stationary point p0 = 1/λ
instead of ps. Notice that p0 is given by substituting θ = 0 in expression (5.48).
Eventually, the calibrated approximation in (5.49) can be written as

1F̂1[1; λ; θ] =
ps(1 − ps)

λ−1

√
(1 − p0)2 + (λ − 1)p2

0

p0(1 − p0)λ−1
√

(1 − ps)2 + (λ − 1)p2
s

eθps =
Aλ,θ

Bλ,θ

eθps . (5.50)

Hence, estimation and inference of the HP model (5.8) is based on the approximate

log-likelihood that results from replacing 1F1[1; λ; θ] in (5.40) by 1F̂1[1; λ; θ]. Conse-
quently, the first partial derivatives are obtained when instead of ∂ log 1F1[1; λ; θ]/∂λ
and ∂ log 1F1[1; λ; θ]/∂θ in (5.41) one uses the expressions

∂ log 1F1[1; λ; θ]

∂λ
=

∂Aλ,θ

∂λ

1

Aλ,θ

− ∂Bλ,θ

∂λ

1

Bλ,θ

+ θ
∂ps

∂λ
,

∂ log 1F1[1; λ; θ]

∂θ
=

∂Aλ,θ

∂θ

1

Aλ,θ

− ∂Bλ,θ

∂θ

1

Bλ,θ

+ ps + θ
∂ps

∂θ
.

(5.51)



96 CHAPTER 5. HYPER-POISSON DISTRIBUTION

Subsequently, the second partial derivatives of the approximate log-likelihood needed
for the Newton-Raphson algorithm are obtained as

∂2l̂(λ, θ|f1, . . . , fk)

∂λ2
= nΨ′(λ) − n

∂2 log 1F̂1[1; λ; θ]

∂λ2
−

k∑

i=1

fiΨ
′(λ + i − 1) ,

∂2l̂(λ, θ|f1, . . . , fk)

∂λ∂θ
= −n

∂2 log 1F̂1[1; λ; θ]

∂λ∂θ
,

∂2l̂(λ, θ|f1, . . . , fk)

∂θ2
= −n(x̄ − 1)

θ2
− n

∂2 log 1F̂1[1; λ; θ]

∂θ2
,

(5.52)

where Ψ′(x) = ∂Ψ(x)/∂x denotes the trigamma function. The second derivatives of

log 1F̂1[1; λ; θ] result from (5.51). Further details are omitted here, as the definitions
of Aλ,θ, Bλ,θ and ps are extremely complex to write the explicit versions of their first
and second derivatives.

However, the ML estimate Θ̂ML can also be found directly from the log-likelihood
function specified in (5.40) applying e.g. the R function optim() for numerical op-
timization. In that case we do not need to find analytically the score function or
the Hessian, since they are provided numerically by the procedure. Inference is then
based on the estimated variance-covariance matrix derived from the Hessian.

size-biased HP model

The likelihood function of the size-biased HP model (5.23) is given by

L(λ, θ|f1, . . . , fk) =
k∏

i=1

(
iθi−1Γ(λ + 1)

1F1[2; λ + 1; θ]Γ(λ + i)

)fi

. (5.53)

To find ML estimates of λ and θ we take logarithms of (5.53), differentiate the log-
likelihood function l(λ, θ|f1, . . . , fk) = log L(λ, θ|f1, . . . , fk) with respect to λ and θ,
equate to zero and simplify to get the following score equations

∂l(λ, θ|f)
∂λ

= nΨ(λ + 1) − n

1F1[2; λ + 1; θ]

∂1F1[2; λ + 1; θ]

∂λ
−

k∑

i=1

fiΨ(λ + i) = 0 ,

∂l(λ, θ|f)
∂θ

=
n(x̄ − 1)

θ
− n

1F1[2; λ + 1; θ]

∂1F1[2; λ + 1; θ]

∂θ
= 0 , (5.54)

where f = (f1, . . . , fk).

(a) λ known: The first equation of the system above becomes here meaningless.
We obtain θ̂ML by solving iteratively for θ the following simplified form of the second
equation above

λ(x̄ − 1)1F1[2; λ + 1; θ] − 2θ1F1[3; λ + 2; θ] = 0 . (5.55)
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(b) λ unknown: When there is no information about λ, to solve the system (5.54)
for the unknown parameters iteratively we use findings of Butler and Wood (2002)
to get derivatives of the function 1F1[2; λ + 1; θ]. In a similar manner as in the
1-displaced case we can show that its calibrated approximation is given by

1F̂1[2; λ + 1; θ] =
p2

s(1 − ps)
λ−1

√
2(1 − p0)2 + (λ − 1)p2

0

p0
2(1 − p0)λ−1

√
2(1 − ps)2 + (λ − 1)p2

s

eθps =
Cλ,θ

Dλ,θ

eθps , (5.56)

where ps = 4/(λ − θ + 1 +
√

(θ − λ − 1)2 + 8θ ) and p0 = 2/(λ + 1). Consequently,

the estimation and inference are based on the approximated log-likelihood l̂(λ, θ|fi)

where 1F̂1[2; λ + 1; θ] is used instead of 1F1[2; λ + 1; θ]. The score equations are now
obtained by replacing the partial derivatives of log 1F1[2; λ + 1; θ] with respect to λ
and θ in (5.54) with the following relations

∂ log 1F̂1[2; λ + 1; θ]

∂λ
=

∂Cλ,θ

∂λ

1

Cλ,θ

− ∂Dλ,θ

∂λ

1

Dλ,θ

+ θ
∂ps

∂λ
,

∂ log 1F̂1[2; λ + 1; θ]

∂θ
=

∂Cλ,θ

∂θ

1

Cλ,θ

− ∂Dλ,θ

∂θ

1

Dλ,θ

+ ps + θ
∂ps

∂θ
.

(5.57)

The second partial derivatives of the approximate log-likelihood are derived applying
the derivatives of (5.57). The details of their explicit versions are omitted because
of their complexity.

Furthermore, the size-biased HP model (5.23) can be implemented in software
R, using the functions for numerical optimization, as already mentioned for the 1-
displaced HP case. Some of them allow even to choose whether numerical or rather
analytical gradient and Hessian should be used.

5.4.3 Estimation Based on Mean and First Frequency Class

1-displaced HP model

By equating the sample mean x̄ and the relative frequency f1/n for the first class to
the population mean µd and the theoretical probability πd

1|λ,θ, respectively, we get
the following estimating equations for the 1-displaced HP model, defined by (5.8)

x̄ = 1 + θ + (1 − λ)(1 − 1F
−1
1 [1; λ; θ]) , and f1/n = 1F

−1
1 [1; λ; θ] . (5.58)

(a) λ known: In this particular case the estimator of θ can be determined from the
first equation of (5.58) as follows

θ̂FF = x̄ − 1 − (1 − λ)(1 − f1/n) . (5.59)

(b) λ unknown: The estimators λ̂FF and θ̂FF can not be obtained here as the simul-
taneous solutions of the previous system. Rather, their solution requires additional
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estimating equation. Following the approach suggested by Bardwell and Crow (1964)
we equate the second sample moment m2 to the corresponding theoretical one, given
by (5.17), to get

m2 = θx̄ + (x̄ − 1)(2 − x̄ − λ) . (5.60)

When 1F
−1
1 [1; λ; θ] is eliminated from the two equations of (5.58), we then substitute

the obtained expression for θ in (5.60). After some algebraic simplifications the
explicit parameter estimators of the 1-displaced HP model (5.8) are

λ̂FF =
n(m2 + 2) − x̄(n + f1)

n − x̄f1

, and θ̂FF =
m2(n − f1) − f1(x̄ − 1)2

n − x̄f1

. (5.61)

Bardwell and Crow (1964) noted that parameter estimators obtained in this way are
possibly better for the overdispersed case compared to the underdispersed one for
the same value of θ. This is due to the size of frequency f1, as evident in Figure 5.1.

size-biased HP model

The estimating equations for the size-biased HP model (5.23) are given by

x̄ = θ − λ + 1 + λ
1F1[1; λ; θ]

1F1[2; λ + 1; θ]
, and

f1

n
=

1

1F1[2; λ + 1; θ]
. (5.62)

Substituting 1F1[1; λ + 1; θ] = λ (1F1[1; λ; θ] − 1)/θ in relation (5.13) we have

1F1[1; λ; θ] = θ
1F1[2; λ + 1; θ]

λ(θ − λ + 1)
+

1 − λ

θ − λ + 1
. (5.63)

The expression for 1F1[1; λ; θ] obtained in this way is substituted in the first equation
of (5.62) which by replacing 1F1[2; λ + 1; θ] with n/f1 results in

x̄n(θ − λ + 1) = n(θ − λ + 1)2 + nθ + λf1(1 − λ) . (5.64)

Ultimately, a few algebraic modifications enable us to rewrite it as following equation

θ2 − 2θ

(
λ +

x̄ − 3

2

)
+ (λ − 1)

(
λ − 1 + x̄ − λf1

n

)
= 0 . (5.65)

(a) λ known: We can estimate θ from the quadratic equation above. Its positive
root is the required estimator, which can be written as

θ̂FF = λ +
x̄ − 3

2
+

√(
λ +

x̄ − 3

2

)2

− (λ − 1)

(
λ − 1 + x̄ − λf1

n

)
. (5.66)

(b) λ unknown: If there is no information about λ, derivation of the estimators
λ̂FF and θ̂FF needs an additional estimating equation. Analogously to the 1-displaced
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case, we use relation (5.27) and replace theoretical moments with the corresponding
sample moments to obtain

m2 = θ(x̄ + 1) + (x̄ − 1)(1 − x̄ − λ) . (5.67)

Combining this equation with (5.65) and solving simultaneously the resulting system
of equations we obtain the following quadratic equation in λ

(
4 − (x̄ + 1)2f1

n

)
λ2 −

(
4m2 + (x̄ − 3)2 − (x̄ + 1)2f1

n

)
λ + c = 0 (5.68)

where c = (m2 + (x̄ − 1)2)
2−m2(x̄+1)(x̄−3)− (x̄2−1)(x̄2−3x̄+4). The estimator

λ̂FF is the positive root, whereas θ̂FF follows from (5.67) replacing λ with λ̂FF.
Moreover, Crow and Bardwell (1965) discussed further alternative approaches, as

the one based on the mean and the first two frequencies. If the first two frequencies
are much larger than the remaining ones, they recommended to use them exclusively
to estimate parameters λ and θ. Another simple estimators could be obtained from
the first three frequency classes where the second and third one are calculated from
the recurrence relation for the successive HP probabilities. However, as emphasized
by the authors, the usage of the frequencies is adequate only if they are “prominent
features” of the distribution.

5.5 A Simulation Study

To investigate the behavior of the hyper-Poisson models, specified in (5.8) and (5.23)
we performed a simulation study, reflecting the three possible dispersion situations:
(i) overdispersion (δ > 1), (ii) equidispersion (δ = 1), (iii) underdispersion (δ < 1).
In order to be able to find out which of the two distributions might be preferable,
we have to fix some of their common properties, otherwise comparison is not mean-
ingful. Since both of them are two-parametric models we fix the first two moments,
or equivalently the mean µ and the index of dispersion δ. The theoretical param-
eter pairs (λ, θ) corresponding to the selected µ and δ values (all precise to two
decimal places) can be determined applying grid search. Table 5.4 exemplifies some
of the possible parameter combinations. The sampling experiments are carried out
to produce M = 500 Monte Carlo samples each of size n = 500 and n = 1000
for the parameter settings colored green in Table 5.4. These are identical to those
given in the headings of Tables 5.5 and 5.6. The 1-displaced and size-biased HP
random variables are generated by applying the inversion method, considered in
Section 2.5, where the corresponding probabilities are computed using the recur-
rence relations (5.21) and (5.28), respectively. Tables 5.5 and 5.6 show the mean
values of M = 500 parameter estimates λ̂ and θ̂, denoted by λ̄ and θ̄, for diverse
dispersion situations and the three estimation techniques discussed in Section 5.4.
Additionally, we calculate the estimated standard errors of the mean values as the
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standard deviation of the M = 500 parameter estimates. These are labelled by seᾱ

and seθ̄ and measure the goodness of the resulting estimates. Although the obtained
results are quite imprecise in both 1-displaced as well as size-biased HP model, the
relative standard errors of the parameter estimates, calculated as RSEλ̄ = seλ̄/λ̄ and
RSEθ̄ = seθ̄/θ̄, show a clear trend among estimation techniques applied.

Table 5.4: Parameter settings for HP models when δ and µ are fixed at some value

1-displaced size-biased

δ µ λ θ λ θ

δ
>

1 1.34 2.72 2.74 3.04 5.97 4.18

1.27 2.28 2.43 2.23 5.48 3.14

1.18 1.82 2.12 1.41 5.15 2.07

δ
≈

1 1.07 1.83 1.32 1.01 1.87 1.10

1.02 1.44 1.11 0.48 1.28 0.49

0.99 1.25 0.87 0.22 0.65 0.21

δ
<

1 0.90 1.73 0.65 0.54 0.12 0.47

0.85 2.64 0.57 1.28 0.11 1.17

0.83 2.80 0.52 1.38 0.01 1.25

It is evident from Table 5.5 that in case of the 1-displaced HP model the smallest
RSE are obtained for the ML method, followed by those arising from the FF ap-
proach, whereas the MM estimates have the largest RSE. Moreover, the increasing
tendency of the relative standard errors is also apparent with respect to the vari-
ous dispersion scenarios. We obtain the following relation: RSE(δ>1) < RSE(δ<1) <
RSE(δ≈1). Notice also that RSEθ̄ < RSEλ̄ holds, irrespective of the estimation tech-
nique and dispersion case.

Table 5.5: Estimation results for data simulated from the 1-displaced HP model

δ = 1.27 (λ, θ) = (2.43, 2.23)

µ = 2.28 λ̄MM(seλ̄MM
) θ̄MM(seθ̄MM

) λ̄ML(seλ̄ML
) θ̄ML(seθ̄ML

) λ̄FF(seλ̄FF
) θ̄FF(seθ̄FF

)

n = 500 2.494 (0.890) 2.268 (0.549) 2.509 (0.676) 2.277 (0.435) 2.520 (0.683) 2.284 (0.439)

n = 1000 2.457 (0.621) 2.245 (0.383) 2.453 (0.449) 2.243 (0.288) 2.459 (0.453) 2.246 (0.292)

δ = 1.07 (λ, θ) = (1.32, 1.01)

µ = 1.83 λ̄MM(seλ̄MM
) θ̄MM(seθ̄MM

) λ̄ML(seλ̄ML
) θ̄ML(seθ̄ML

) λ̄FF(seλ̄FF
) θ̄FF(seθ̄FF

)

n = 500 1.364 (0.560) 1.029 (0.287) 1.378 (0.402) 1.036 (0.220) 1.382 (0.408) 1.039 (0.223)

n = 1000 1.337 (0.387) 1.018 (0.199) 1.337 (0.275) 1.018 (0.151) 1.341 (0.281) 1.020 (0.154)

δ = 0.9 (λ, θ) = (0.65, 0.54)

µ = 1.73 λ̄MM(seλ̄MM
) θ̄MM(seθ̄MM

) λ̄ML(seλ̄ML
) θ̄ML(seθ̄ML

) λ̄FF(seλ̄FF
) θ̄FF(seθ̄FF

)

n = 500 0.657 (0.278) 0.544 (0.142) 0.663 (0.175) 0.547 (0.103) 0.666 (0.188) 0.549 (0.109)

n = 1000 0.653 (0.195) 0.541 (0.098) 0.653 (0.117) 0.541 (0.069) 0.656 (0.127) 0.543 (0.073)
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Figure 5.3 illustrates the degree of dependence between parameter estimates of
λ and θ for M = 500 generated 1-displaced HP samples of size n = 1000 for each of
the relevant estimation methods and the three dispersions situations. The estimated
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Figure 5.3: Correlation between parameters of the 1-displaced HP model for M = 500
created Monte Carlo samples of size n = 1000 in over-, equi and underdispersed case.
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correlation coefficient of M = 500 replications is also reported. Additionally, the
95% and 99% confidence ellipses of the corresponding parameter pairs are drawn.

Table 5.6 shows the results of the simulation experiment for the size-biased HP
model. As to the method based on the first frequency class (FF) we found out

Table 5.6: Estimation results for data simulated from the size-biased HP model

δ = 1.27 (λ, θ) = (5.48, 3.14)

µ = 2.28 λ̄MM(seλ̄MM
) θ̄MM(seθ̄MM

) λ̄ML(seλ̄ML
) θ̄ML(seθ̄ML

) λ̄FF(seλ̄FF
) θ̄FF(seθ̄FF

)

n = 500 6.076 (3.758) 3.371 (1.485) 6.234 (3.560) 3.434 (1.413) 7.233 (6.461) 3.826 (2.511)

n = 1000 5.813 (2.227) 3.271 (0.898) 5.882 (2.064) 3.298 (0.834) 6.119 (2.687) 3.391 (1.076)

δ = 1.07 (λ, θ) = (1.87, 1.10)

µ = 1.83 λ̄MM(seλ̄MM
) θ̄MM(seθ̄MM

) λ̄ML(seλ̄ML
) θ̄ML(seθ̄ML

) λ̄FF(seλ̄FF
) θ̄FF(seθ̄FF

)

n = 500 2.119 (1.629) 1.171 (0.488) 2.177 (1.416) 1.189 (0.428) 2.554 (1.615) 1.301 (0.481)

n = 1000 2.022 (1.026) 1.145 (0.314) 2.051 (0.904) 1.153 (0.277) 2.315 (0.888) 1.232 (0.272)

δ = 0.90 (λ, θ) = (0.12, 0.47)

µ = 1.73 λ̄MM(seλ̄MM
) θ̄MM(seθ̄MM

) λ̄ML(seλ̄ML
) θ̄ML(seθ̄ML

) λ̄FF(seλ̄FF
) θ̄FF(seθ̄FF

)

n = 500 0.455 (0.414) 0.569 (0.120) 0.366 (0.327) 0.544 (0.101) 0.345 (0.286) 0.538 (0.089)

n = 1000 0.323 (0.288) 0.531 (0.087) 0.284 (0.228) 0.520 (0.072) 0.278 (0.223) 0.519 (0.071)

that the parameter estimates are considerably biased compared to the other two
methods, except for the underdispersed case in which for all three techniques we
obtained comparable results. Apparently, here we also have RSEθ̄ < RSEλ̄. The
greatest accuracy have the estimates of θ when δ < 1. However, in this case the most
imprecise results for λ are obtained. It should also be noticed that in some cases we
could not get all M = 500 estimation results. The number of the effective samples
providing reliable estimates are given in Table 5.7 for each of the three dispersions
scenarios and relevant estimation methods.

Table 5.7: Number of samples (out of M=500) providing valid estimates for the three
estimating methods and various dispersion cases

method of moments maximum likelihood first frequency class

Sample size δ > 1 δ ≈ 1 δ < 1 δ > 1 δ ≈ 1 δ < 1 δ > 1 δ ≈ 1 δ < 1

n = 500 500 496 273 500 499 322 487 428 316

n = 1000 500 500 328 500 500 346 499 405 351
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Figure 5.4 shows very high correlation between parameter estimates λ̂ and θ̂ for
the M = 500 size-biased HP samples of size n = 1000 irrespective of the estimation
method and dispersion situations.
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Figure 5.4: Correlation between parameters of the size-biased HP model for M = 500
created Monte Carlo samples of size n = 1000 in over-, equi- and underdispersed case.





Chapter 6

Generalized Poisson Distribution

6.1 Introduction

The generalized Poisson (GP) distribution was first introduced by Consul and Jain
(1973a) as a limiting form of the generalized negative binomial distribution. Hence,
it is also known in the literature as the Consul’s generalized Poisson distribution.
Moreover, this distribution can be derived as a Poisson-stopped sum of N Borel
random variables with the pmf defined by (cf. Consul and Famoye, 2006, p. 158)

P (Y = y) =
(λy)y−1e−λy

y!
, y = 1, 2, . . . , (6.1)

and zero otherwise, where 0 < λ < 1. The Borel distribution belongs to the basic
Lagrangian distributions, and has the pgf defined by GY (t) = z, where z = teλ(z−1).
The Lagrangian distributions1 have been extensively studied by Consul and Famoye
(2006) and include numerous useful discrete distributions applicable in various fields.
Since the pgf of N ∼ Poisson(θ) is GN(t) = eθ(t−1), then applying formula (2.24),
Section 2.2.2, the pgf of the random variable X = Y1 + Y2 + . . . + YN is given by

GX(t) = GN(GY (t)) = GN(z) = eθ(z−1) , where z = teλ(z−1) . (6.2)

Using Gurland’s notation we can represent symbolically this process of generalizing2

the Poisson distribution by the Borel distribution as X ∼ Poisson(θ)
∨

Borel(λ).
The generalized Poisson distribution considered here is an important member of the
class of general Lagrangian distributions, formed from the functions f(z) = eθ(z−1)

and g(z) = eλ(z−1) that satisfy the necessary conditions g(0) 6= 0, g(1) = 1, f(1) = 1
and [

∂x−1

∂zx−1

(
(g(z))x ∂f(z)

∂z

)]

z=0

≥ 0 , for x ∈ N ,

1 Discrete Lagrangian probability distributions can, according to their probabilistic structure,
be divided into three subclasses: (i) basic, (ii) delta and (iii) general Lagrangian distributions.

2 For the preliminaries regarding the generalized distributions see Section 2.2.2.
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for generating Lagrangian distributions (cf. Consul and Famoye, 2006, p. 165). Thus,
the pgf of X can be obtained by the Lagrangian expansion of f(z) in powers of t,
under the transformation z = tg(z), as follow (cf. Consul and Famoye, 2006, p. 25)

GX(t) = f(z) =
∞∑

x=0

tx

x!

[
∂x−1

∂zx−1

(
(g(z))x ∂f(z)

∂z

)]

z=0

, x ∈ N . (6.3)

The pmf of the GP distribution is then given by the following formula

P (X = 0) = f(0) , P (X = x) =
1

x!

[
∂x−1

∂zx−1

(
(g(z))x ∂f(z)

∂z

)]

z=0

, x ∈ N , (6.4)

and for θ > 0 being independent of 0 < λ < 1 it results in (see also Consul, 1989)

πx|λ,θ = P (X = x) =
θ(θ + xλ)x−1e−(θ+xλ)

x!
, x = 0, 1, . . . (6.5)

Notice that in case when λ < 0 the term (θ + xλ) becomes negative for λ < −θ/x,
x 6= 0, thus the values in (6.5) get also positive or negative depending on whether the
power (x−1) is an even or odd number, respectively. To avoid this difficulty Consul
and Jain (1973a) suggested to bring into use truncation of the model to m + 1 mass
points, i.e. to adopt πx|λ,θ = 0 for all x > m, where m denotes the largest positive
integer x for which θ + xλ > 0. This kind of a non-standard truncation causes for
some particular parameter values that the total sum of probabilities in (6.5) differs
from unity. For illustration, we assume that θ = 1.35, λ = −0.65 and m = 2. We
get π0|λ,θ = 0.2592, π1|λ,θ = 0.6704, π2|λ,θ = 0.0321 and πx|λ,θ = 0 for all x > 2, but∑

πx|λ,θ = 0.9617. The solution of this problem, as pointed out by Consul (1989), is
to normalize the pmf in (6.5) by dividing each probability with

∑m
x=0 πx|λ,θ whenever

λ < 0. However, Consul and Shoukri (1985) made detailed error analysis showing
that in such a case one should rather consider the estimated value of θ and the
number of non-zero probability classes m + 1, since the error of truncation may be
serious only when simultaneously holds m ∈ {2, 3} and the estimated value of θ is
bigger than 1.5 (see also Consul, 1989, Section 9.1.1). In all other cases where λ < 0
the model (6.5) can be applied without any additional correction for truncation. In
the next section we show that negative values of λ indicate in fact x̄ > s2 data cases.

The determination of the mean and variance of the GP distribution by direct
summation is pretty complex since the parameters λ and θ appear in (6.5) in linear
functional form. Using a tricky method instead, Consul and Jain (1973a) got simple
expressions for the first two moments given in Table 6.1. Next section proves that
based on the first two moments of the Borel distribution, however, their derivation
is rather simple.

The GP model has found its successful application in various practical situations
in which the inequality of the mean and variance is present, and the observed counts
exhibit either underdispersion or overdispersion. Moreover, it proved to be useful
for fitting equidispersed data, and thus contains a Poisson model as its special case.
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Neubauer and Djuraš (2008) considered this model in regression context to estimate
the total number of the crimes committed. However, since certain criminal activities,
such as those associated with shame (e.g. sexual offence, domestic violence), theft of
low value goods or victims being themselves criminals, are likely not to be reported
to the police, we have to deal with a problem of underreporting. The determination
of the number of unreported occurrences, the so-called “dark figures”, out of the
expected total number of cases and available counts is of enormous importance (cf.
Neubauer, Djuraš, and Friedl, 2010). Moreover, in public health there are register
systems for infectious and chronic diseases, and the recording errors often occur as
a result of misdiagnosis or patients avoiding medical screening. In this case it is also
beneficial to figure out the true number of the sick people in the population. Numer-
ous further examples including home injuries, behavior patterns of bacteria in the
human body or pest eggs on the plant leaves, traffic research studies of the number of
cars travelling the street, etc., all being not Poisson distributed could be successfully
described by the GP distribution, as referred by Consul (1989). Based on simulation
studies Neubauer, Djuraš, and Friedl (2009) concluded that for 0 < λ < 1 the GP
model is near to the negative binomial (NB) model, and whenever λ is negative it
nearly corresponds to the binomial model. The parameter λ provides therefore an
information about the type of the distribution, and the parameter θ indicates the
intensity of the natural Poisson process. Figure 6.1 illustrates differences in the pmf
between the GP and NB models for s2 > x̄, whereas probabilistic comparison for
the GP and binomial (B) distributions when s2 < x̄ is shown in Figure 6.2. In
both cases the first two moments are fixed. As a consequence, we have the following
parametrization of the model parameters according to the mean and variance

for NB(r, p) : µ =
(1 − p)r

p
, σ2 =

(1 − p)r

p2
, thus r =

µ2

σ2 − µ
and p =

µ

σ2
,

for GP(λ, θ) : µ =
θ

1 − λ
, σ2 =

θ

(1 − λ)3
, thus λ = 1 −

√
µ

σ2
and θ = µ

√
µ

σ2
,

for B(n, p∗) : µ = np∗ , σ2 = np∗(1 − p∗) , thus n =
µ2

µ − σ2
and p∗ =

µ − σ2

µ
.

In Figure 6.1 the mean is taken to be µ = 0.5, 1.5, 5, 15 and the index of dispersion
δ = 1.5, 5, 10 in order to demonstrate low, large and very large overdispersion cases.
Each row contains three plots having the same value of µ, and in each column we have
those four with the same value of δ. The rows thus indicate if there is any difference
in the probability distribution that results from increase in dispersion, whereas the
columns describe modifications according to the change in mean. The pmf of the GP
distribution is computed by using the ratio of two successive probabilities, suggested
by Consul (1989, p. 19). Obviously, for low overdispersion (when δ is close to 1) there
is negligible difference in the pmf’s. The same happens for µ = 0.5, irrespective of the
value of δ. When µ becomes much bigger, the pmf’s differ as δ increases. However,
the difference becomes significant only for very large values of δ. Interestingly, the
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NB distribution has larger zero probability compared to that of the GP model, which
is even more apparent for bigger values of δ. For this reason someone might prefer
to use the NB model instead of the GP model when the observed counts exhibit to
many zeros relative to the Poisson case. Nevertheless, when sample data manifest
jointly the excess of zero observations and heavy right tails, it is beneficial to use
the zero-inflated GP distribution to get a better fit (cf. Joe and Zhu, 2005; Famoye
and Singh, 2006).
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Figure 6.1: Differences in pmf’s between GP(λ, θ) (red solid line) and NB(r, p) (blue
dashed line) for mean µ = 0.5, 1.5, 5, 15 and δ = 1.5, 5, 10 overdispersion cases.
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Figure 6.2 contains 12 graphs for µ = 1.5, 7.5, 16.5, and δ = 0.25, 0.5, 0.75, 0.95,
to visualize various underdispersion cases. Each column shows plots with the same
value of µ, and rows display those with the same indices of dispersion. The difference
between the binomial and the corresponding GP distribution is so small that the two
lines overlap in most cases. The slight disagreement is only seen for δ = 0.25, but
vanishes as µ increases. To sum up, the GP model approximates both the negative
binomial and binomial model, being thus suitable for both types of dispersion.
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Figure 6.2: Differences in pmf’s between GP(λ, θ) (red solid line) and B(n, p∗) (blue
dashed line) for mean µ = 0.5, 1.5, 5, 15 and δ = 0.25, 0.5, 0.75, 0.95 underdispersion cases.
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It should be also noted that the GP distribution possesses an important property
that facilitates its wide application in practice. Namely, it is closed under addition,
as mathematically formulated by the following theorem (cf. Consul and Jain, 1973b).

Theorem 6.1 The sum X1 + X2 of two independent GP random variables X1 and
X2, with parameters (λ, θ1) and (λ, θ2), respectively, is itself a GP random variable
with parameters (λ, θ1 + θ2).

This theorem holds even more generally. The sum of n independent random variables
Xi ∼ GP (λ, θi), is again a GP random variable, where

∑n
i=1 Xi ∼ GP (λ,

∑
θi).

Therefore, we can obtain equivalent results for individual and grouped data provided
that at least the parameter λ stays fixed in all groups.

Table 6.1 compares the main features of the original GP distribution to those of
its 1-displaced and size-biased versions, both discussed in the forthcoming sections.

Table 6.1: Generalized Poisson distribution: original, 1-displaced and size-biased forms

Random Variable

Distribution X Xd X∗

Notation GP(λ, θ) 1+GP(λ, θ) sbGP(λ, θ)

Range N0 N N

pmf
θ(θ + xλ)x−1e−(θ+xλ)

x!
πx−1|λ,θ

(1 − λ)x

θ
πx|λ,θ

pgf as in (6.2) as in (6.7) as in (6.15)

E(·) θ/(1 − λ) E(X) + 1 E(X) + 1/(1 − λ)2

var(·) θ/(1 − λ)3 var(X) var(X) + 2λ/(1 − λ)4

6.2 1-Displaced Generalized Poisson Distribution

Suppose X is a discrete random variable with pmf πx|λ,θ given in (6.5). The pmf
corresponding to the distribution of the linear transformation Xd = X + 1 defined
only over positive integers is then given by the formula

πd
x|λ,θ = P (Xd = x) =





θ(θ + xλ − λ)x−2e−(θ+xλ−λ)

(x − 1)!
, x = 1, . . . ,m + 1 ,

0 , x > (m + 1), for λ < 0

(6.6)

and zero otherwise, where θ > 0, max(−1,−θ/m) ≤ λ < 1 and m is the largest
positive integer such that θ+mλ > 0 when λ is negative. Additionally, the condition
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m ≥ 4 is proposed in order to ensure that there are at least five non-zero probability
classes in the truncated model when λ < 0 (cf. Consul, 1989, p. 4). Notice that in
the case when 0 ≤ λ < 1, the support of the model (6.6) needs not to be truncated,
hence we have m = ∞. When λ is negative we obtain πd

x|λ,θ > 0 only for x ≤ (m+1),
but m depends now on the unknown parameters θ and λ. Apparently, for λ = 0 the
distribution above reduces to the 1-displaced Poisson distribution with parameter θ.

The pgf of Xd can be obtained from that of X, given in (6.2), and has again the
implicit form defined by

GXd(t) = tGX(t) = teθ(z−1) , where z = teλ(z−1) . (6.7)

To derive the mean and variance of Xd we return to the fact that the GP distribution
is a Poisson-stopped sum of N Borel random variables Yi, defined by (6.1), with mean
E(Y ) = 1/(1−λ) and variance var(Y ) = λ/(1−λ)3 (cf. Consul and Famoye, 2006).
Since N ∼ Poisson(θ), by using relation (2.32), Section 2.2.2 we get for the first two
moments of X = Y1 + . . . + YN ∼ GP(λ, θ) the following expressions

E(X) = θE(Y ) =
θ

1 − λ
and var(X) = θE(Y 2) =

θ

(1 − λ)3
. (6.8)

Consequently, we obtain the mean and variance of the distribution in (6.6) as

E(Xd) = E(X) + 1 =
θ

1 − λ
+ 1 and var(Xd) = var(X) =

θ

(1 − λ)3
, (6.9)

and therefore the index of dispersion takes the simple form

δ =
var(Xd)

E(Xd) − 1
=

1

(1 − λ)2
. (6.10)

Accordingly, the parameter λ has an important role as a diagnostic measure, since
it determines the dispersion in model (6.6). Obviously, λ = 0 indicates the presence
of equality of mean and variance (i.e. equidispersion case), and the GP in (6.6)
reduces to the common Poisson model. For 0 < λ < 1 we have δ > 1, the feature of
overdispersion, hence the model here allows for modelling counts having s2 > x̄− 1.
When λ < 0 it follows that δ < 1, and the distribution (6.6) becomes underdispersed.
Therefore, it also enables to describe s2 < x̄ − 1 data cases.

To derive the factorial moments of the distribution above we combine the rela-
tion (2.38), Section 2.3.1 with the formula (B.8), Appendix B, and obtain

µd
(k) =

k∑

i=0

s(k, i)µ′
i + k

k−1∑

i=0

s(k − 1, i)µ′
i , (6.11)

where s(k, i) are the Stirling numbers of the first kind specified in Appendix B, and
µ′

i is the i-th raw moment of the original GP distribution (6.5), defined in Consul
(1989, p. 50) by the following recurrence formula

(1 − λ)µ′
k+1 = θµ′

k + θ
∂µ′

k

∂θ
+ λ

∂µ′
k

∂λ
, k = 0, 1, . . . (6.12)
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With the factorial moments determined by (6.11), all central and raw moments of
distribution (6.6) exist for θ > 0 and λ < 1, and can be found using appropriate
formulas from Appendix B.

Figures 6.3 and 6.4 display differences in the probability mass functions between
the 1-displaced GP distribution and its size-biased competitor with the pmf (6.14)
defined in the next section, for positive and negative values of λ, respectively. The
individual probabilities of the GP distribution (6.6) are computed using the following
ratio of successive probabilities

πd
x|λ,θ

πd
x−1|λ,θ

=
(θ + xλ − λ)x−2e−λ

(x − 1)(θ + xλ − 2λ)x−3
, for x ≥ 2 , (6.13)

where πd
1|λ,θ = e−θ, as given in (6.6) for x = 1. For the calculation of the correspond-

ing size-biased probabilities we apply the recurrence relation (6.19). To illustrate
various overdispersion cases we choose λ to be 0.1, 0.2, 0.4, and 0.6 (cf. Figure 6.3),
whereas to allow for different degrees of underdispersion we take negative values of
λ, in fact -0.1, -0.2, -0.4, and -0.6 (cf. Figure 6.4). Subplots in each row possess the
same value of λ and highlight alternations in the pmf caused by the change in the
value of θ. Columns, however, have the same value of θ, and thus clearly show the
effect of varying the value of λ on the shape of the distribution. Since only the value
of θ participates in the computation of the first probability, changes in the mass at
unity are visible exclusively between columns.

From both figures we can see that the 1-displaced GP distribution is L-shaped for
small values of θ, though becomes bell-shaped as θ increases. Moreover, its profile
is more L-shaped for 0 < λ < 1 and less L-shaped for the negative values of λ.
For the values of λ close to zero the plot of the 1-displaced GP model differs only
slightly from the 1-displaced Poisson case, however the difference becomes larger as
λ increases or decreases. It can be also seen that an increase in the value of λ by
the fixed value of θ, increases the mean and variance of the distribution as well (cf.
formula (6.9)). The bell-shaped form of the distribution then becomes flatter and
the cupola of the bell lower, as clearly evident from the rightmost columns. Note
that for the negative values of λ the right-hand tail of the distribution becomes in
this case longer. Furthermore, when λ < 0 we have less mass points due to the fact
that for all values of x for which θ + xλ < 0 the corresponding probabilities πd

x|λ,θ

are zero. Choosing e.g. λ = −0.6 and θ = 1.5 it follows that m = 2, thus we have
three non-zero probability classes, i.e. πd

x|λ,θ = 0 for x > 3, as the plot in the middle
of the last row in Figure 6.4 correctly displays. The behavior of the size-biased GP
distribution is similar to that of the 1-displaced GP distribution. However, we see
that πd

1|λ,θ > π∗
1|λ,θ holds for the positive values of λ, while for the negative values of

λ we have πd
1|λ,θ < π∗

1|λ,θ. These differences become even bigger, when λ increases in
absolute value. We will see in the next section that this is due to the multiplication
factor that is dependent on parameter λ in the size-biased case.



6.2. 1-DISPLACED GENERALIZED POISSON DISTRIBUTION 113

1 2 3 4 5 6

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

1+GP(0.1,0.8)

sbGP(0.1,0.8)

1+P(0.8)

1 2 3 4 5 6 7 8

x
P

(X
=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

1+GP(0.1,1.5)

sbGP(0.1,1.5)

1+P(1.5)

1 2 3 4 5 6 7 8 9

x

P
(X

=
x
)

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

1+GP(0.1,3)

sbGP(0.1,3)

1+P(3)

1 2 3 4 5 6

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

1+GP(0.2,0.8)

sbGP(0.2,0.8)

1+P(0.8)

1 2 3 4 5 6 7 8

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

1+GP(0.2,1.5)

sbGP(0.2,1.5)

1+P(1.5)

1 2 3 4 5 6 7 8 9

x

P
(X

=
x
)

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

1+GP(0.2,3)

sbGP(0.2,3)

1+P(3)

1 2 3 4 5 6

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

1+GP(0.4,0.8)

sbGP(0.4,0.8)

1+P(0.8)

1 2 3 4 5 6 7 8

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

1+GP(0.4,1.5)

sbGP(0.4,1.5)

1+P(1.5)

1 2 3 4 5 6 7 8 9

x

P
(X

=
x
)

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

1+GP(0.4,3)

sbGP(0.4,3)

1+P(3)

1 2 3 4 5 6

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

1+GP(0.6,0.8)

sbGP(0.6,0.8)

1+P(0.8)

1 2 3 4 5 6 7 8

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

1+GP(0.6,1.5)

sbGP(0.6,1.5)

1+P(1.5)

1 2 3 4 5 6 7 8 9

x

P
(X

=
x
)

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

1+GP(0.6,3)

sbGP(0.6,3)

1+P(3)

Figure 6.3: Differences in 1-displaced GP (1+GP(λ, θ)), size-biased GP (sbGP(λ, θ))
and Poisson (1+P(θ)) distributions for θ = 0.8, 1.5, 3, λ = 0.1, 0.2, 0.4, 0.6 and δ > 1.



114 CHAPTER 6. GENERALIZED POISSON DISTRIBUTION

1 2 3 4 5 6

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

1+GP(−0.1,0.8)

sbGP(−0.1,0.8)

1+P(0.8)

1 2 3 4 5 6 7 8

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4 1+GP(−0.1,1.5)

sbGP(−0.1,1.5)

1+P(1.5)

1 2 3 4 5 6 7 8 9

x

P
(X

=
x
)

0
.0

0
0

.1
0

0
.2

0
0

.3
0

1+GP(−0.1,3)

sbGP(−0.1,3)

1+P(3)

1 2 3 4 5 6

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

1+GP(−0.2,0.8)

sbGP(−0.2,0.8)

1+P(0.8)

1 2 3 4 5 6 7 8

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

1+GP(−0.2,1.5)

sbGP(−0.2,1.5)

1+P(1.5)

1 2 3 4 5 6 7 8 9

x

P
(X

=
x
)

0
.0

0
0

.1
0

0
.2

0
0

.3
0

1+GP(−0.2,3)

sbGP(−0.2,3)

1+P(3)

1 2 3 4 5 6

x

P
(X

=
x
)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1+GP(−0.4,0.8)

sbGP(−0.4,0.8)

1+P(0.8)

1 2 3 4 5 6 7 8

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5 1+GP(−0.4,1.5)

sbGP(−0.4,1.5)

1+P(1.5)

1 2 3 4 5 6 7 8 9

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4 1+GP(−0.4,3)

sbGP(−0.4,3)

1+P(3)

1 2 3 4 5 6

x

P
(X

=
x
)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1+GP(−0.6,0.8)

sbGP(−0.6,0.8)

1+P(0.8)

1 2 3 4 5 6 7 8

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

1+GP(−0.6,1.5)

sbGP(−0.6,1.5)

1+P(1.5)

1 2 3 4 5 6 7 8 9

x

P
(X

=
x
)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

1+GP(−0.6,3)

sbGP(−0.6,3)

1+P(3)

Figure 6.4: Differences in 1-displaced GP (1+GP(λ, θ)), size-biased GP (sbGP(λ, θ))
and Poisson (1+P(θ)) distributions for θ = 0.8, 1.5, 3, λ = -0.1, -0.2, -0.4, -0.6 and δ < 1.
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6.3 Size-Biased Generalized Poisson Distribution

To obtain the size-biased GP distribution we apply the transformation (2.41), Sec-
tion 2.3.2 to the pmf given in (6.5), with E(X) defined by the first expression of (6.8).
Then, the pmf of the size-biased GP random variable X∗ results in

π∗
x|λ,θ = P (X∗ = x) =





(1 − λ)(θ + xλ)x−1e−(θ+xλ)

(x − 1)!
, x = 1, . . . , m ,

0 , x > m , for λ < 0 ,

(6.14)

where θ > 0 and all necessary conditions regarding the domain of the parameter
λ mentioned before hold also here. For λ < 0 the support of (6.14) depends on
the unknown parameters θ and λ, as the process of determining m requires both of
them. Clearly, for λ = 0 the above distribution simplifies to the 1-displaced Poisson.

The pgf of X∗ can be found by the relation (2.42), Section 2.3.2, which, however,
requires derivative of the implicit pgf in (6.2). Denoting z = z(t) = teλ(z(t)−1) and
taking its derivative with respect to t we have the following relation

z′(t) = eλ(z(t)−1) + teλ(z(t)−1)λz′(t) ,

which after rearranging leads to the following equality

z′(t) =
eλ(z(t)−1)

1 − tλeλ(z(t)−1)
=

1

e−λ(z(t)−1) − tλ
.

Finally, the pgf of X∗ becomes

GX∗(t) =
t(1 − λ)eθ(z−1)

e−λ(z−1) − tλ
, where z = teλ(z−1) . (6.15)

All moments of the size-biased GP model exist for θ > 0 and λ < 1. Applying
relation (2.46), Section 2.3.2, the k-th size-biased raw moment is obtained as a ratio
of the (k + 1)-th raw moment, denoted by µ′

k+1, and the mean of the unmodified
model (6.5). These are given by (6.12) and the first equation of (6.8), respectively.
Thus, the raw moment of distribution (6.14) follows from the expression below

µ∗
k
′ = µ′

k+1(1 − λ)θ−1 , k = 1, 2, . . . (6.16)

With the raw moments calculated in this way, all factorial and central moments of
X∗ are obtained by using the relations (B.8) and (B.13), Appendix B, respectively.
As a consequence of (6.16), we can write the mean and variance of (6.14) as follows

E(X∗) = µ′
2(1 − λ)θ−1 and var(X∗) = µ′

3(1 − λ)θ−1 − (E(X∗))2 ,

which by substituting the values of µ′
2 and µ′

3 obtained from (6.12) finally results in

E(X∗) = θ(1 − λ)−1 + (1 − λ)−2 = (θ(1 − λ) + 1) (1 − λ)−2 ,

var(X∗) = θ(1 − λ)−3 + 2λ(1 − λ)−4 = (θ(1 − λ) + 2λ) (1 − λ)−4.
(6.17)
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In contrast to (6.10), the index of dispersion has here a more complex form given by

δ =
var(X∗)

E(X∗) − 1
=

θ(1 − λ) + 2λ

(1 − λ)2 (1 + (1 − λ)(θ + λ − 1))
. (6.18)

From this expression we can not easily conclude whether the distribution (6.14) has
capability for modeling over-, equi- and underdispersion, hence we calculate δ and µ∗

for various values of λ and θ. Table 6.2 summarizes the results obtained. It can be
seen that, analogously to the 1-displaced GP model, the size-biased competitor (6.14)
possesses the property of overdispersion for 0 < λ < 1, whereas when λ = 0 we have
Poisson limit. However, for negative values of λ apart from underdispersion we
obtain particular areas where δ > 1 and δ = 0 (cf. violet marked cases in Table 6.2).
Figures 6.5 and 6.6 locate these areas for the parameter range relevant for our further
research by visualizing all parameter pairs for which 0 < δ < 1 as red areas, and
all those with δ = 0 as white areas. Notice that δ = 0 corresponds to the case
of one-point distribution, having variance equal to zero. Different blue toned areas
point up the cases where δ > 1, whereas the darkest ones signify cases with δ ≥ 4.

Table 6.2: Under- and overdispersion in the size-biased generalized Poisson distribution

θ
λ 0.1 0.5 0.7 0.82 0.98 1 1.01 1.6 1.8

µ∗ 0.58 0.87 1.01 1.10 1.21 1.22 1.23 1.65 1.80

-0.4 δ 0.41 0.20 4.59 0.94 0.71 0.70 0.69 0.57 0.56
µ∗ 0.67 0.98 1.13 1.22 1.35 1.36 1.37 1.82 1.98

-0.3 δ 0.50 0.00 0.83 0.73 0.68 0.68 0.68 0.63 0.62

µ∗ 0.84 1.19 1.36 1.47 1.61 1.63 1.63 2.15 2.32

-0.15 δ 0.67 0.82 0.79 0.78 0.78 0.78 0.78 0.77 0.77
µ∗ 1.08 1.48 1.67 1.79 1.95 1.97 1.98 2.56 2.76

-0.01 δ 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

µ∗ 1.10 1.50 1.70 1.82 1.98 2.00 2.01 2.60 2.80
0 δ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

µ∗ 1.12 1.53 1.73 1.85 2.01 2.03 2.04 2.64 2.84

0.01 δ 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02

µ∗ 1.44 1.90 2.13 2.26 2.45 2.47 2.48 3.16 3.39

0.13 δ 1.39 1.35 1.35 1.34 1.34 1.34 1.34 1.33 1.33
µ∗ 1.69 2.19 2.44 2.59 2.79 2.81 2.82 3.56 3.81

0.2 δ 1.70 1.64 1.63 1.62 1.62 1.62 1.62 1.60 1.60
µ∗ 4.20 5.00 5.40 5.64 5.96 6.00 6.02 7.20 7.60

0.5 δ 5.25 5.00 4.91 4.86 4.81 4.80 4.80 4.65 4.61

The individual size-biased GP probabilities are dependent on previous occurrences
and thus can be calculated using the ratio of the successive probabilities given by

π∗
x|λ,θ

π∗
x−1|λ,θ

=
e−λ(θ + xλ)x−1

(x − 1)(θ + xλ − λ)x−2
, x ≥ 2 , (6.19)

where π∗
1|λ,θ = (1 − λ)e−(θ+λ) is given by (6.14).
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Figure 6.5: Values of δ for the size-biased GP model when λ ∈ [−0.49, 0], θ ∈ [0.1, 0.9]
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Figure 6.6: Values of δ for the size-biased GP model when λ ∈ [−0.45, 1.04], θ ∈ [0.9, 1.7]
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6.4 Parameter Estimation

In this section we consider the three estimation procedures introduced in Section 2.4
and apply them to the 1-displaced and size-biased GP models.

6.4.1 Estimation by Method of Moments

The moment estimators of the unknown parameters λ and θ, for the 1-displaced GP
model (6.6), are obtained by equating the sample mean x̄ and the sample variance
m2 to the corresponding theoretical counterparts defined by the first and second
equation of (6.9), respectively. Solving such a system of equations, the moment
estimators are obtained as

θ̂MM =

√
(x̄ − 1)3

m2

and λ̂MM = 1 −
√

x̄ − 1

m2

. (6.20)

In the same manner we can determine the moment estimators for the size-biased
GP model, defined in (6.14). In this case, the equating equations are given by

x̄(1 − λ)2 = θ(1 − λ) + 1 , m2(1 − λ)4 = θ(1 − λ) + 2λ . (6.21)

Substituting a = 1−λ in the equations above and eliminating parameter θ we obtain
the following polynomial equation of the fourth degree

m2a
4 − x̄a2 + 2a − 1 = 0 . (6.22)

This equation can be solved easily in software R by executing a function uniroot().
Another possibility is to use e.g. the Newton-Raphson iterative method. It is obvious
that the algebraic equation above has four solutions for a. Nevertheless, the required
a has to be a positive real root of (6.22) such that 0 < a < max(1, θ/m) + 1, as
predetermined by the definition of the parameter λ. With a calculated in this way,
the moment estimates of parameters λ and θ are given as

λ̂MM = 1 − a and θ̂MM =
x̄a2 − 1

a
. (6.23)

6.4.2 Estimation by Maximum Likelihood

Consider a random sample of size n from the 1-displaced GP model, defined by (6.6).
To find the maximum likelihood (ML) estimators of the parameters λ and θ we begin
with the following likelihood function

L(λ, θ|f1, . . . , fk) =
k∏

i=1

(
θ (θ + (i − 1)λ)i−2 e−(θ+(i−1)λ)

(i − 1)!

)fi

, (6.24)
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and maximize its log-likelihood function given by

l(λ, θ|f1, . . . , fk) = log L(λ, θ|f1, . . . , fk) = (6.25)

= n log(θ) +
k∑

i=1

fi(i − 2) log (θ + (i − 1)λ) −
k∑

i=1

fi (θ + (i − 1)λ) −
k∑

i=1

fi log Γ(i) ,

where fi are the observed frequencies such that
∑k

i=1 fi = n with k being the largest
observation. We differentiate (6.25) partially with respect to the parameters λ and
θ, and equate the resulting expressions to zero to obtain the ML equations as

∂l(λ, θ|f1, . . . , fk)

∂λ
=

k∑

i=1

fi(i − 2)(i − 1)

θ + (i − 1)λ
− n(x̄ − 1) = 0 , (6.26)

∂l(λ, θ|f1, . . . , fk)

∂θ
=

n

θ
+

k∑

i=1

fi(i − 2)

θ + (i − 1)λ
− n = 0 . (6.27)

The second-order partial derivatives of the log-likelihood function are given by

∂2l(λ, θ|f)
∂λ2

= −
k∑

i=1

fi(i − 2)(i − 1)2

(θ + (i − 1)λ)2 ,
∂2l(λ, θ|f)

∂λ∂θ
= −

k∑

i=1

fi(i − 2)(i − 1)

(θ + (i − 1)λ)2 ,

∂2l(λ, θ|f)
∂θ2

= − n

θ2
−

k∑

i=1

fi(i − 2)

(θ + (i − 1)λ)2 , (6.28)

where f = (f1, . . . , fk), and obviously all of them are negative when k > 2. Therefore,
all the points (λ, θ) being solutions of the ML equations above are maxima of the log-
likelihood function. Multiplying (6.26) by λ and (6.27) by θ, as suggested by Consul
(1989, p. 102) for the unmodified distribution, and adding them afterwards results
in the simple ML estimator of θ as

θ̂ML = (x̄ − 1)(1 − λ) , (6.29)

which when substituted in the equation (6.26) yields the ML estimate λ̂ML as a
solution of the following equation in λ

H(λ) =
k∑

i=1

fi(i − 2)(i − 1)

(x̄ − 1) + (i − x̄)λ
− n(x̄ − 1) = 0 . (6.30)

It can be seen that for k ∈ {1, 2} the sum above will become zero, and hence the ML
estimates λ̂ML and θ̂ML will not exist in this case. However, when the observed data
sample has at least three non-zero frequency classes (i.e. k > 2), the equation (6.30)
has a unique root of λ. To prove this statement notice that for λ ∈ {0, 1} we have

H(1) =
k∑

i=1

fi(i − 2) − n(x̄ − 1) = −n < 0 , (6.31)

H(0) =
1

x̄ − 1

( k∑

i=1

fi(i − 2)(i − 1) − n(x̄ − 1)2

)
= n

(
m2

x̄ − 1
− 1

)
, (6.32)
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hence iff d = m2/(x̄ − 1) ≥ 1 (i.e. equi- or overdispersed data case) there must be a
single real value of λ in [0, 1) such that H(λ) = 0 (cf. Consul and Shoukri, 1984). To
obtain such a unique value of λ the equation (6.30) has to be solved iteratively by
applying the Newton-Raphson algorithm. As starting value of the iteration process
one can use e.g. the moment estimator λ̂MM given in (6.20). The value λ(m) at which
the iteration process stops after m steps is then the required estimate λ̂ML, whereas
θ̂ML is subsequently obtained from (6.29).

Furthermore, Consul and Famoye (1988) showed that the unique and admissible
ML estimators λ̂ML and θ̂ML also exist in the case when θ > 0 and λ < 0, and that
these can be obtained by using the same ML equations as in the case 0 ≤ λ < 1.

The ML estimates of λ and θ for the size-biased GP model (6.14), are obtained
by maximizing the corresponding size-biased log-likelihood function defined by

l(λ, θ|f) = n log(1−λ)+
k∑

i=1

fi(i − 1) log(θ + iλ)−nθ−nx̄λ−
k∑

i=1

fi log Γ(i) . (6.33)

where f = (f1, . . . , fk). By differentiating (6.33), the ML equations are obtained as

∂l(λ, θ|f)
∂λ

=
n

λ − 1
+

k∑

i=1

fi(i − 1)i

θ + iλ
− nx̄ = 0 , (6.34)

∂l(λ, θ|f)
∂θ

=
k∑

i=1

fi(i − 1)

θ + iλ
− n = 0 , (6.35)

and the Newton-Raphson algorithm may be used to find the ML estimates λ̂ML and
θ̂ML as the simultaneous solutions of these two equations. Consequently, the second-
order partial derivatives of the log-likelihood (6.33) required for this iterative process
result in

∂2l(λ, θ|f)
∂λ2

= − n

(λ − 1)2
−

k∑

i=1

fi(i − 1)i2

(θ + iλ)2
,

∂2l(λ, θ|f)
∂λ∂θ

= −
k∑

i=1

fi(i − 1)i

(θ + iλ)2
,

∂2l(λ, θ|f)
∂θ2

= −
k∑

i=1

fi(i − 1)

(θ + iλ)2
. (6.36)

However, the log-likelihood above can be also optimized with a numerical optimizer.

6.4.3 Estimation Based on Mean and First Frequency Class

To derive the parameter estimators based on mean and first frequency class for the
1-displaced GP model (6.6) we equate the sample mean x̄ and the relative frequency
of the first class f1/n to the theoretical mean µd = θ/(1−λ)+1 and the probability
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πd
1|λ,θ = e−θ of the first class, respectively. Solving such a system of simultaneous

equations we obtain very simple estimators of the parameters λ and θ as follows

θ̂FF = log

(
n

f1

)
and λ̂FF = 1 − 1

x̄ − 1
log

(
n

f1

)
. (6.37)

The explicit versions for the estimators λ̂FF and θ̂FF are not available for the size-
biased GP model (6.14), since they are solutions of the following system of equations

x̄ =
θ(1 − λ) + 1

(1 − λ)2
,

f1

n
= (1 − λ)e−θ−λ , (6.38)

which after substituting the expression for θ given by the second equation above
into the first equation results in the following complex transcendental equation in λ

(x̄−1)λ2− (2x̄+log(f1/n)−1)λ− (1−λ) log(1−λ)+ x̄+log(f1/n)−1 = 0 . (6.39)

This equation can be solved for λ̂FF in the same manner as suggested for solving
equation (4.19) from Chapter 4 to obtain θ̂ML. However, we can use also the Newton-
Raphson method instead. Knowing λ̂FF, the estimator θ̂FF is given by substituting
it into one of the two equations in (6.38).

6.5 A Simulation Study

We investigate the accuracy of the previously mentioned estimation techniques for
the 1-displaced and size-biased GP models by performing a simulation study where
all three dispersion situations are considered. Since the comparison of the two dis-
tributions is reasonable only when some common characteristics are fixed, and both
distributions are two-parametric, we fix the degree of dispersion δ and the first the-
oretical moment µ. If the true parameter values, specified in terms of δ and µ, are
known, then we can easily find out the consequence of applying the wrong model
and how effective the proposed estimation techniques are. With µ and δ known, the
parameters of the 1-displaced GP model arise from the relations (6.9) and (6.10) as
λ = 1 −

√
1/δ and θ = (µ − 1)

√
1/δ. The model settings are given in the headings

of Table 6.3. However, it is impossible to obtain explicit expressions for the the-
oretical parameter values of the size-biased GP model, because relation (6.18) for
δ is considerably complex. Therefore, we make an exhaustive grid search through
the parameter space to identify the proper (λ, θ) combinations for a particular pairs
(µ, δ), specified in advance. These model settings are obtained from Table 6.2 as
green marked cases and displayed once again in the headings of Table 6.4. For each
dispersion case M = 500 Monte Carlo samples of size n = 500 and n = 1000 are con-
structed from both models above and compared. To generate GP random variables
we use the inversion method (cf. Stadlober, 1989), where the single probabilities are
computed through the recurrence relationship defined above (see relations (6.13)
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and (6.19)). The mean values of M = 500 parameter estimates, denoted by λ̄ and θ̄,
as well as the estimated standard errors, denoted by seλ̄ and seθ̄, have been calculated
for each of the data situations considered here. Table 6.3 summarizes the simulation
results for the 1-displaced GP model. We encountered no difficulty when perform-
ing these simulation experiments. All three estimation methods yield equally good
results for both sample sizes, differing only in the third or fourth decimal place.
Both parameters are estimated without bias. Nevertheless, the relative standard

Table 6.3: Estimation results for data simulated from the 1-displaced GP model

δ = 1.34 (λ, θ) = (0.14, 1.25)

µ = 2.45 λ̄MM(seλ̄MM
) θ̄MM(seθ̄MM

) λ̄ML(seλ̄ML
) θ̄ML(seθ̄ML

) λ̄FF(seλ̄FF
) θ̄FF(seθ̄FF

)

n = 500 0.137 (0.031) 1.256 (0.066) 0.137 (0.031) 1.256 (0.065) 0.136 (0.038) 1.256 (0.070)

n = 1000 0.140 (0.022) 1.251 (0.044) 0.140 (0.022) 1.251 (0.040) 0.140 (0.027) 1.251 (0.049)

δ = 1.02 (λ, θ) = (0.01, 0.84)

µ = 1.85 λ̄MM(seλ̄MM
) θ̄MM(seθ̄MM

) λ̄ML(seλ̄ML
) θ̄ML(seθ̄ML

) λ̄FF(seλ̄FF
) θ̄FF(seθ̄FF

)

n = 500 0.009 (0.031) 0.842 (0.049) 0.008 (0.032) 0.842 (0.049) 0.009 (0.036) 0.841 (0.050)

n = 1000 0.011 (0.022) 0.840 (0.033) 0.010 (0.022) 0.840 (0.033) 0.011 (0.026) 0.839 (0.036)

δ = 0.78 (λ, θ) = (−0.13, 0.71)

µ = 1.63 λ̄MM(seλ̄MM
) θ̄MM(seθ̄MM

) λ̄ML(seλ̄ML
) θ̄ML(seθ̄ML

) λ̄FF(seλ̄FF
) θ̄FF(seθ̄FF

)

n = 500 -0.130 (0.032) 0.711 (0.045) -0.132 (0.031) 0.712 (0.045) -0.130 (0.036) 0.711 (0.046)

n = 1000 -0.130 (0.023) 0.710 (0.031) -0.131 (0.022) 0.711 (0.030) -0.130 (0.026) 0.710 (0.032)

errors of θ̄ are much smaller than those of λ̄, regardless of the estimation method
and the dispersion case. The results for the size-biased GP model are presented in
Table 6.4. It can be seen that the results obtained for the mean of 500 estimates
λ̂ (i.e. λ̄) are consistent with those of the 1-displaced model. However, the relative

Table 6.4: Estimation results for data simulated from the size-biased GP model

δ = 1.34 (λ, θ) = (0.13, 0.98)

µ = 2.45 λ̄MM(seλ̄MM
) θ̄MM(seθ̄MM

) λ̄ML(seλ̄ML
) θ̄ML(seθ̄ML

) λ̄FF(seλ̄FF
) θ̄FF(seθ̄FF

)

n = 500 0.127 (0.028) 0.991 (0.113) 0.127 (0.028) 0.993 (0.111) 0.126 (0.034) 0.994 (0.130)

n = 1000 0.130 (0.020) 0.981 (0.078) 0.130 (0.019) 0.981 (0.077) 0.129 (0.024) 0.982 (0.091)

δ = 1.02 (λ, θ) = (0.01, 0.82)

µ = 1.85 λ̄MM(seλ̄MM
) θ̄MM(seθ̄MM

) λ̄ML(seλ̄ML
) θ̄ML(seθ̄ML

) λ̄FF(seλ̄FF
) θ̄FF(seθ̄FF

)

n = 500 0.008 (0.031) 0.825 (0.099) 0.007 (0.031) 0.827 (0.100) 0.009 (0.036) 0.823 (0.110)

n = 1000 0.010 (0.022) 0.819 (0.069) 0.010 (0.022) 0.820 (0.070) 0.010 (0.026) 0.818 (0.081)

δ = 0.78 (λ, θ) = (−0.15, 1.01)

µ = 1.63 λ̄MM(seλ̄MM
) θ̄MM(seθ̄MM

) λ̄ML(seλ̄ML
) θ̄ML(seθ̄ML

) λ̄FF(seλ̄FF
) θ̄FF(seθ̄FF

)

n = 500 -0.153 (0.037) 1.019 (0.102) -0.156 (0.036) 1.024 (0.099) -0.154 (0.042) 1.020 (0.112)

n = 1000 -0.151 (0.026) 1.013 (0.071) -0.153 (0.025) 1.016 (0.069) -0.152 (0.030) 1.014 (0.079)
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standard errors RSEθ̄ manifest rather increasing tendency compared to those of the
1-displaced case.

Attempting to evaluate whether the GP model or the SP model performs better
under particular requirements, we fix again δ and µ to obtain the parametrization
of the SP model as θ = δ + µ − 2 and α = (µ − 1)/θ (see relations (4.4) and (4.7),
Section 4.2). With these expressions, the SP model settings for δ and µ determined a
priori are given in the headings of Table 6.5 showing simulation results obtained. It
become apparent that the parameter estimates of θ are of similar precision as those
obtained in Table 6.3 for the GP model in the over- and equidispersed data case, but
get more imprecise as soon as the underdispersed data case is at hand. As to the
RSE of the parameter α we found out that they are more precise compared to those
of the parameter λ. For δ > 1 we obtain 2 - 4% accuracy, for δ ≈ 1 approximately
4 - 7%, whereas for δ < 1 around 8 - 12% estimation precision for α.

Table 6.5: Estimation results for data simulated from the 1-displaced SP model

δ = 1.34 (α, θ) = (0.81, 1.79)

µ = 2.45 ᾱMM(seᾱMM
) θ̄MM(seθ̄MM

) ᾱML(seᾱML
) θ̄ML(seθ̄ML

)

n = 500 0.813 (0.034) 1.787 (0.093) 0.811 (0.027) 1.790 (0.080)

n = 1000 0.812 (0.024) 1.788 (0.067) 0.811 (0.019) 1.789 (0.057)

δ = 1.02 (α, θ) = (0.98, 0.87)

µ = 1.85 ᾱMM(seᾱMM
) θ̄MM(seθ̄MM

) ᾱML(seᾱML
) θ̄ML(seθ̄ML

)

n = 500 0.989 (0.071) 0.867 (0.076) 0.985 (0.061) 0.869 (0.069)

n = 1000 0.984 (0.049) 0.869 (0.052) 0.982 (0.043) 0.870 (0.048)

δ = 0.78 (α, θ) = (1.54, 0.41)

µ = 1.63 ᾱMM(seᾱMM
) θ̄MM(seθ̄MM

) ᾱML(seᾱML
) θ̄ML(seθ̄ML

)

n = 500 1.572 (0.192) 0.409 (0.054) 1.565 (0.179) 0.410 (0.052)

n = 1000 1.554 (0.133) 0.410 (0.039) 1.551 (0.124) 0.410 (0.037)

Figures 6.7, 6.8 and 6.9 contain nine plots showing estimation results corresponding
to the model settings given in Table 6.3 for over-, equi- and underdispersed situ-
ations, respectively. In each figure the first two rows illustrate the distribution of
the M = 500 parameter estimates λ̂ and θ̂ for each of the estimation procedures
applied. The third row demonstrates the corresponding scatterplots. The vertical
solid black line pictured in the histograms shows the true parameter value, and the
dashed black line displays the mean of the obtained estimates, i.e. λ̄ and θ̄. In all
cases these two lines coincide. Additionally, we plotted normal densities with the
mean values λ̄ and θ̄ as centers, whereas the standard deviation is obtained from
the simulation variance of the estimates. In case of the ML estimation we plot also
a second density, with the same center but standard deviation resulting from the
variance-covariance matrix obtained by the Hessian. Notice that the differences be-
tween these two curves are negligible. The asymptotic normality of the estimates is
given in all cases.
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Figure 6.7: Estimation results obtained from M = 500 simulated 1-displaced GP samples
of size n = 1000 with model parameters (λ, θ) = (0.14, 1.25).
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Figure 6.8: Estimation results obtained from M = 500 simulated 1-displaced GP samples
of size n = 1000 with model parameters (λ, θ) = (0.01, 0.84).
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Figure 6.9: Estimation results obtained from M = 500 simulated 1-displaced GP samples
of size n = 1000 with model parameters (λ, θ) = (−0.13, 0.71).

Figures 6.10, 6.11 and 6.12 visualize the simulation results corresponding to the
settings given in Table 6.4 for over-, equi- and underdispersed situations, respectively.
The scatterplots show very high correlation among the estimated parameter values
for each of the estimation methods applied to all dispersion cases.
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Figure 6.10: Estimation results obtained from M = 500 simulated size-biased GP sam-
ples of size n = 1000 with model parameters (λ, θ) = (0.13, 0.98).
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Figure 6.11: Estimation results obtained from M = 500 simulated size-biased GP sam-
ples of size n = 1000 with model parameters (λ, θ) = (0.01, 0.82).
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Figure 6.12: Estimation results obtained from M = 500 simulated size-biased GP sam-
ples of size n = 1000 with model parameters (λ, θ) = (−0.15, 1.01).

The estimation results for the 1-displaced SP model are graphically presented in
Figures 6.13, 6.14, 6.15 and 6.16. Notice that in the case of d < 1 there is a nearly
linear dependence between the estimated parameter values (cf. Figure 6.16).
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Figure 6.13: Estimation results obtained from M = 500 simulated 1-displaced SP sam-
ples of size n = 1000 with model parameters (α, θ) = (0.81, 1.79).
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Figure 6.14: Estimation results obtained from M = 500 simulated 1-displaced SP sam-
ples of size n = 1000 with model parameters (α, θ) = (0.98, 0.87).
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Figure 6.15: Estimation results obtained from M = 500 simulated 1-displaced SP sam-
ples of size n = 1000 with model parameters (α, θ) = (0.98, 0.87).
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Figure 6.16: Estimation results obtained from M = 500 simulated 1-displaced SP sam-
ples of size n = 1000 with model parameters (α, θ) = (1.54, 0.41).



Chapter 7

Cohen-Poisson Distribution

7.1 Introduction

The Cohen-Poisson (CP) distribution belongs to the class of misrecorded Poisson
distributions. These altered distributions allow for errors in recording a variable that
is in fact Poisson distributed. Specifically, the CP distribution has its application in
situations where the true values of “ones” are erroneously recorded as “zeros” with
probability α, while values of two and more are recorded correctly from a Poisson (cf.
Johnson et al., 1992, p. 187). This distribution is a two-parametric modification of
the Poisson distribution with nonnegative parameters, named here α and θ. The next
sections provide evidence that its 1-displaced and size-biased versions are applicable
to count data with overdispersion and underdispersion, respectively. Furthermore,
for α = 0 the CP distribution reduces to the standard Poisson distribution with
parameter θ, the equidispersed case.

7.2 1-Displaced Cohen-Poisson Distribution

A discrete random variable Xd is said to have a 1-displaced CP distribution if its
pmf is given by (cf. Wimmer and Altmann, 1999, p. 82)

πd
x|α,θ = P (Xd = x) =





(1 + αθ)e−θ, x = 1 ,
(1 − α)θe−θ, x = 2 ,

θx−1e−θ/(x − 1)!, x = 3, 4, . . . ,
(7.1)

where θ > 0 and 0 ≤ α ≤ 1. Its pgf can be easily found by definition as

GXd(t) =
∞∑

i=1

tiπd
i|α,θ = t(1 + αθ)e−θ + t2(1 − α)θe−θ +

∞∑

i=3

ti
θi−1e−θ

(i − 1)!
,

and since the above series expansion equals t(eθ − tθe−θ − e−θ), it becomes

GXd(t) = t
(
eθ(t−1) + αθe−θ(1 − t)

)
. (7.2)

133
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From this result, the mean and the variance are obtained as

µd = E(Xd) = 1+ θ(1−αe−θ) and var(Xd) = θ +αθe−θ(2θ− 1)−α2θ2e−2θ . (7.3)

It subsequently follows from the pgf that the factorial moments are given by

µd
(1) = µd , µd

(2) = θ2 + 2θ(1 − αe−θ) , and µd
(k) = θk + kθk−1 , for k ≥ 3 . (7.4)

Furthermore, raw and central moments of distribution (7.1) can be easily found
from the above factorial moments using relations (B.9) and (B.13), Appendix B.
Computation of the successive probabilities is possible by applying the first three
probabilities in (7.1) and the following recurrence relation for the remaining ones

πd
x|α,θ =

θ

x − 1
πd

x−1|α,θ , for x ≥ 4 . (7.5)

This distribution has the ability to model overdispersion with respect to Poisson
variation, which can be confirmed by the following index of dispersion

δ =
var(Xd)

E(Xd) − 1
= 1 +

αθe−θ(2 − αe−θ)

1 − αe−θ
= 1 + g(α, θ). (7.6)

Obviously, for α = 0 we have δ = 1 and GXd(t) = teθ(t−1), hence distribution (7.1)
simplifies to the 1-displaced Poisson distribution. Modifications in mean and index
of dispersion for diverse choices of parameters α and θ are illustrated in Table 7.1.
The left panel of Figure 7.1 clearly indicates that given a fixed value of θ, the value

Table 7.1: 1-displaced Cohen-Poisson as adequate model choice for overdispersed data

θ
α 0.1 0.5 1 1.5 2 2.5 3 6 9

µd 1.10 1.50 2.00 2.50 3.00 3.50 4.00 7.00 10.00
0 δ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

µd 1.08 1.44 1.93 2.43 2.95 3.46 3.97 7.00 10.00
0.2 δ 1.04 1.13 1.15 1.14 1.11 1.08 1.06 1.01 1.00

µd 1.06 1.38 1.85 2.37 2.89 3.42 3.94 6.99 10.00
0.4 δ 1.09 1.28 1.32 1.28 1.22 1.17 1.12 1.01 1.00

µd 1.05 1.32 1.78 2.30 2.84 3.38 3.91 6.99 10.00
0.6 δ 1.17 1.47 1.50 1.43 1.34 1.25 1.18 1.02 1.00

µd 1.03 1.26 1.71 2.23 2.78 3.34 3.88 6.99 10.00
0.8 δ 1.33 1.71 1.71 1.59 1.46 1.34 1.24 1.02 1.00

µd 1.01 1.20 1.63 2.17 2.73 3.29 3.85 6.99 10.00
1 δ 2.04 2.07 1.95 1.77 1.58 1.43 1.31 1.03 1.00

of the function g(α, θ) increases, as α increases from 0 to 1. Consequently, the degree
of overdispersion increases as well. However, for sufficiently large θ, the value of the
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Figure 7.1: Behaviour of the functions g(α, θ) (left) and h(α, θ) (right), having a decisive
role in determining indices of dispersion, for different values of parameter θ.

function g(α, θ) becomes equal to zero, hence δ converges to the Poisson limit, where
we have δ = 1. Figure 7.2 exemplifies the ability of the above distribution to model
overdispersed data and even more, to provide acceptable fits for empirical samples
having d ≈ 1, when commonly a 1-displaced Poisson model would be applicable. The
performance of the CP distribution (blue dashed barplot) is compared to the Poisson
distribution (red solid line) for two different situations, namely for d ≈ 1 (left panel)
and d > 1 (right panel). The original data represent Slovenian texts number 110 and
47, respectively, with observed absolute frequencies given in Table A.2, Appendix B.
The corresponding parameter estimates are obtained by the maximum likelihood
method, discussed in Section 7.4.2. In both cases the CP model gives a better fit.
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Figure 7.2: Examples of frequency distributions for equidispersed (left: d = 1.01) and
overdispersed (right: d = 1.28) Slovenian text data, fitted by 1-displaced CP model,
1+CP(α, θ), and 1-displaced Poisson model, 1+P(θ).
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7.3 Size-Biased Cohen-Poisson Distribution

Applying transformation (2.41) considered in Section 2.3.2 to the CP random vari-
able X we obtain its size-biased version X∗ with pmf defined by

π∗
x|α,θ = P (X∗ = x) =





(1 − α)

(1 − αe−θ)
e−θ, x = 1 ,

1

(1 − αe−θ)

θx−1e−θ

(x − 1)!
, x = 2, 3, . . . ,

(7.7)

where θ > 0 and 0 ≤ α ≤ 1. However, note that taking α∗ = 1/(1 − αe−θ) implies
1−α∗+α∗e−θ = (1−α)e−θ/(1−αe−θ), and the above pmf corresponds to that of the
1-displaced SP distribution (4.2) with parameters α∗ and θ, as defined in Chapter 4.

To derive the pgf of X∗ we recall relation (2.42), Section 2.3.2 and substitute
GX(t) = eθ(t−1)+αθe−θ(1−t) and E(X) = θ(1−αe−θ) from Table 7.2. Consequently,
it follows that

GX∗(t) =
te−θ(etθ − α)

1 − αe−θ
, (7.8)

from which the mean and the variance are obtained as

µ∗ = E(X∗) = 1 +
θ

1 − αe−θ
and var(X∗) =

θ

1 − αe−θ
− αe−θθ2

(1 − αe−θ)2
. (7.9)

Subsequently, the factorial moments of the distribution (7.7) arise from its pgf as

µ∗
(1) = 1 +

θ

1 − αe−θ
and µ∗

(k) =
θk−1(k + θ)

1 − αe−θ
, for k ≥ 2 , (7.10)

whereas raw and central moments can be determined from these applying the rela-
tions (B.9) and (B.13), Appendix B. Table 7.2 compares the original CP distribution
to its 1-displaced and size-biased versions, by demonstrating changes in pmf, pgf and
the first two moments of the given distributions.

Calculation of the size-biased CP probabilities is facilitated by the definition (7.7)
for π∗

1|α,θ and π∗
2|α,θ and the following recurrence relation for the remaining ones

π∗
x|α,θ =

θ

x − 1
π∗

x−1|α,θ , for x ≥ 3 . (7.11)

Considering the index of dispersion given by

δ =
var(X∗)

E(X∗) − 1
= 1 − αe−θθ

1 − αe−θ
= 1 − g(α, θ)

h(α, θ)
, (7.12)

with h(α, θ) = 2−αe−θ and g(α, θ) defined in (7.6), it can be shown that this distri-
bution has the feature to model underdispersion with respect to Poisson variation.
From the right panel of Figure 7.1 it is apparent that the function h(α, θ) takes the
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Table 7.2: Cohen-Poisson distribution: original, 1-displaced and size-biased forms

Random Variable

X Xd X∗

Notation CP(α, θ) 1+CP(α, θ) 1+SP(α∗, θ)

Range N0 N N

pmf πx|α,θ πx−1|α,θ

xπx|α,θ

θ(1 − αe−θ)

pgf eθ(t−1) + αθe−θ(1 − t) tGX(t)
te−θ(etθ − α)

1 − αe−θ

E(·) θ(1 − αe−θ) 1+E(X) 1 +
θ

1 − αe−θ

var(·) θ + αθe−θ(2θ − 1) − α2θ2e−2θ var(X)
θ − αe−θ(1 + θ)

(1 − αe−θ)2

α∗ = 1/(1 − αe−θ)

maximal value of 2 for α = 0 or if θ is sufficiently large. Decreasing the value of θ,
given a fixed value of α, will lead to a reduction in h(α, θ). However, the function
h(α, θ) will never fall below unity, its lowest value is obtained when simultaneously
α = 1 holds and θ reaches its minimum. Consequently, since h(α, θ) is a positive
function for all parameter values allowed, the index of dispersion has its maximum
at unity when g(α, θ) becomes zero. Hence, the Poisson limit is attained for any α,
whenever θ is large enough. The same occurs for α = 0, irrespective of the value of
θ. Table 7.3 illustrates the way in which underdispersion changes with alteration in
α and θ. Obviously, as α increases, the value of δ decreases for any fixed value of θ.
Figure 7.3 graphically illustrates the application of the size-biased CP model to two

Table 7.3: Size-biased Cohen-Poisson as adequate model choice for underdispersed data

θ
α 0.1 0.5 1 1.5 2 2.5 3 6 9

µ∗ 1.10 1.50 2.00 2.50 3.00 3.50 4.00 7.00 10.00
0 δ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

µ∗ 1.12 1.57 2.08 2.57 3.06 3.54 4.03 7.00 10.00
0.2 δ 0.98 0.93 0.92 0.93 0.94 0.96 0.97 1.00 1.00

µ∗ 1.16 1.66 2.17 2.65 3.11 3.58 4.06 7.01 10.00
0.4 δ 0.94 0.84 0.83 0.85 0.89 0.92 0.94 0.99 1.00

µ∗ 1.22 1.79 2.28 2.73 3.18 3.63 4.09 7.01 10.00
0.6 δ 0.88 0.71 0.72 0.77 0.82 0.87 0.91 0.99 1.00

µ∗ 1.36 1.97 2.42 2.83 3.24 3.68 4.12 7.01 10.00
0.8 δ 0.74 0.53 0.58 0.67 0.76 0.82 0.88 0.99 1.00

µ∗ 2.05 2.27 2.58 2.93 3.31 3.72 4.16 7.01 10.00
1 δ 0.05 0.23 0.42 0.57 0.69 0.78 0.84 0.99 1.00



138 CHAPTER 7. COHEN-POISSON DISTRIBUTION

Slovenian text samples, namely text no. 2 and text no. 89, with frequency distri-
butions given in Table A.2, Appendix B. To calculate expected frequencies for the
size-biased CP model, displayed in charts as blue dashed barplots, we use maximum
likelihood parameter estimates and apply recurrence relation (7.11). Moreover, the
comparison with the 1-displaced Poisson distribution as its lower limit, pictured with
the red solid line, is also shown. Obviously, the size-biased CP distribution provides
an adequate fit for empirical data with d < 1. For d ≈ 1, both distributions fit well.
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Figure 7.3: Examples of frequency distributions for underdispersed (left: d = 0.66)
and equidispersed (right: d = 0.99) Slovenian text data, fitted by size-biased CP model,
1+SP(α∗, θ), where α∗ = 1/(1 − αe−θ), and 1-displaced Poisson model, 1+P(θ).

7.4 Parameter Estimation

In this section we derive parameter estimators for the 1-displaced CP model (7.1) and
the size-biased CP model (7.7) based on the three methods introduced in Section 2.4.
However, since the size-biased CP(α, θ) distribution corresponds to the 1-displaced
SP(α∗, θ) distribution, with α∗ = 1/(1 − αe−θ), estimators of the parameter θ for
model (7.7) are identical to that of model (4.2) given in Section 4.4, for all three
techniques applied.

7.4.1 Estimation by Method of Moments

By equating the sample mean x̄ and the second factorial sample moment m(2) to
the theoretical mean µd = 1 + θ(1 − αe−θ) and the second factorial theoretical
moment µd

(2) = θ2 + 2θ(1−αe−θ), respectively, we get the moment estimators of the
parameters α and θ, for the 1-displaced CP model, defined by (7.1), as follows

θ̂MM =
√

m(2) − 2(x̄ − 1) and α̂MM =
θ̂MM − x̄ + 1

θ̂MM e−θ̂MM

. (7.13)
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To obtain the corresponding moment estimators for the size-biased CP model,
given in (7.7), we proceed analogously as above. Solving simultaneously the following
system of equations

x̄ = 1 +
θ

1 − αe−θ
and µ(2) =

θ(2 + θ)

1 − αe−θ
,

we get the following moment estimators

θ̂MM =
m(2)

x̄ − 1
− 2 and α̂MM =

θ̂MM − x̄ + 1

(1 − x̄)e−θ̂MM

. (7.14)

It should be noted here that the moment estimator θ̂MM of θ for the size-biased CP
model coincides with that of the 1-displaced SP model (4.2), given in equation (4.13).

7.4.2 Estimation by Maximum Likelihood

The likelihood function of a random sample of size n from the 1-displaced CP model
with the pmf (7.1) is given by

L(α, θ|f1, . . . , fk) =
(
(1 + αθ)e−θ

)f1
(
(1 − α)θe−θ

)f2

k∏

i=3

(
θi−1e−θ

(i − 1)!

)fi

. (7.15)

Maximum likelihood estimating equations obtained by equating to zero the partial
derivatives of l(α, θ|f1, . . . , fk) = log L(α, θ|f1, . . . , fk) with respect to α and θ are

∂l(α, θ|f1, . . . , fk)

∂α
=

f1θ

1 + αθ
− f2

1 − α
= 0 , (7.16)

∂l(α, θ|f1, . . . , fk)

∂θ
=

f1α

1 + αθ
+

f2

θ
+

k∑

i=3

fi(i − 1)

θ
−

k∑

i=1

fi = 0 . (7.17)

This equations can be simplified as follows

α =
f1θ − f2

θ(f1 + f2)
and

f1α

1 + αθ
+

n(x̄ − θ − 1)

θ
= 0 . (7.18)

We substitute the expression above for α in the second equation of (7.18) to obtain
the estimator θ̂ML as a solution of the following equation

θ2 −
(

x̄ − 2 +
f1

n

)
θ −

(
x̄ − 1 − f2

n

)
= 0 , (7.19)

which is quadratic in θ and has two roots in cases where estimates exist. The positive
root is the required estimator and is given by the quadratic formula as

θ̂ML =
1

2

(
x̄ − 2 +

f1

n

)
+

1

2

√(
x̄ − 2 +

f1

n

)2

+ 4

(
x̄ − 1 − f2

n

)
. (7.20)
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Then, the estimator α̂ML follows from the first equation of (7.18) by inserting θ̂ML.
The likelihood function of the size-biased CP model with pmf (7.7) is

L(α, θ|f1, . . . , fk) =

(
(1 − α)e−θ

1 − αe−θ

)f1 k∏

i=2

(
θi−1e−θ

(1 − αe−θ)(i − 1)!

)fi

. (7.21)

We take logarithms of (7.21), differentiate with respect to α and θ, equate to zero
and subsequently simplify to get the following ML estimating equations

∂l(α, θ|f1, . . . , fk)

∂α
=

−f1

1 − α
+

ne−θ

1 − αe−θ
= 0 , (7.22)

∂l(α, θ|f1, . . . , fk)

∂θ
=

n(x̄ − 1)

θ
− n − nαe−θ

1 − αe−θ
= 0 . (7.23)

Further substituting the expression for α, derived directly from (7.23), in equa-
tion (7.22) we obtain the estimator θ̂ML of θ as a solution of the following equation

θ(n − f1)

n(x̄ − 1)
+ e−θ − 1 = 0 . (7.24)

The solution of this transcendental equation can be found by the same procedure
as outlined for the solution of equation (4.19) in Chapter 4, since the two equations
coincide. Hence, the estimator α̂ML is obtained by substituting θ̂ML in the expression
for α. Note that the resulting α̂ML is analogous to that of the method of moments
given in (7.14), the only difference being that θ̂MM is replaced here by θ̂ML.

7.4.3 Estimation Based on Mean and First Frequency Class

The estimators for the parameters of the 1-displaced CP model (7.1) based on mean
and first frequency class, denoted here by α̂FF and θ̂FF, result from the system of
simultaneous equations given by

x̄ = 1 + θ(1 − αe−θ) and f1/n = (1 + αθ)e−θ . (7.25)

Solving the first equation of (7.25) we get the same expression for the estimator α̂FF

of α as that of α̂MM given in (7.13), where instead of θ̂MM we have θ̂FF. To derive
the estimator θ̂FF of θ we substitute the expression for α given by the first equation
of (7.25) in the second one. Consequently, after a few algebraic modifications θ̂FF

follows as a solution of the following equation

θ + e−θ + 1 − x̄ − f1/n = 0 . (7.26)

To obtain the corresponding estimators of the size-biased CP model (7.7) we
search for the simultaneous solution of the following estimating equations

x̄ = 1 +
θ

1 − αe−θ
and

f1

n
=

(1 − α)e−θ

1 − αe−θ
. (7.27)

Applying the same algebraic approach leading to equation (7.26), it can be easily
shown that the parameter estimators θ̂FF and α̂FF are identical to the corresponding
ML estimators θ̂ML and α̂ML, given in Section 7.4.2.
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7.5 A Simulation Study

Wanting to further investigate the behavior of the proposed estimation procedures
we carry out a simulation experiment based on the results obtained for representative
Slovenian journalistic texts, private letters/prose, and poems. These representatives
are created as aggregation of texts under study belonging to the same genre. Be-
ing aware of the fact that the journalistic data sets are overdispersed, the majority
of the private letters and prose texts are equidispersed, whereas poems are under-
dispersed, we take (α, θ) = (0.29, 1.38) and (α, θ) = (0.11, 0.90) to generate the
overdispersed (δ > 1) and equidispersed (δ = 1) 1-displaced CP samples, respec-
tively. These choices coincide with the corresponding ML estimates of the given
text type aggregations. In order to analyze the underdispersed (δ < 1) data case
we create the size-biased CP sample with ML estimates of the representative poem,
given by (α, θ) = (0.20, 0.66), taken as model parameters. However, neither for
private letters nor for prose texts aggregation, the ML results obtained were plau-
sible when fitting this model. Since for α = 0 the CP models simplify to Poisson,
we set (α, θ) = (0, 0.90) to study performance of the estimation approaches near
the boundary case. To generate 1-displaced and size-biased CP random variables
we apply the inversion method, introduced in Section 2.5, where the corresponding
probabilities are calculated using the recurrence formula (7.5) and (7.11), respec-
tively. For all situations mentioned above we create M = 500 Monte Carlo samples
of size n = 500 and n = 1000. Tables 7.4 and 7.5 present the estimation results
obtained. The mean values of M = 500 parameter estimates, denoted here by ᾱ and
θ̄, based on method of moments (MM), maximum likelihood (ML) and that of mean
and first frequency class (FF) are calculated. Also, the estimated standard errors of
the mean values, denoted by seᾱ and seθ̄, are obtained for each estimation technique.
These are calculated as the standard deviation of the M = 500 parameter estimates.

As it is evident from Table 7.4, relating to the 1-displaced CP model, the best
results are those of the ML method, independently of the analyzed dispersion situ-
ation. Also, the standard errors of the estimated parameters are the smallest here
and decrease with increasing sample size. However, for δ = 1 we could not obtain
all estimation results. For the sample of size n = 500 we got 444 valid MM esti-

Table 7.4: Estimation results for over- and equidispersed data situations

(α, θ) = (0.29, 1.38)

δ > 1 ᾱMM(seᾱMM
) θ̄MM(seθ̄MM

) ᾱML(seᾱML
) θ̄ML(seθ̄ML

) ᾱFF(seᾱFF
) θ̄FF(seθ̄FF

)

n = 500 0.283 (0.099) 1.378 (0.061) 0.286 (0.051) 1.379 (0.054) 0.285 (0.057) 1.379 (0.055)

n = 1000 0.282 (0.071) 1.376 (0.043) 0.285 (0.036) 1.377 (0.039) 0.284 (0.040) 1.377 (0.039)

(α, θ) = (0.11, 0.90)

δ = 1 ᾱMM(seᾱMM
) θ̄MM(seθ̄MM

) ᾱML(seᾱML
) θ̄ML(seθ̄ML

) ᾱFF(seᾱFF
) θ̄FF(seθ̄FF

)

n = 500 0.124 (0.075) 0.907 (0.051) 0.117 (0.053) 0.905 (0.047) 0.113 (0.057) 0.904 (0.048)

n = 1000 0.112 (0.058) 0.902 (0.037) 0.110 (0.040) 0.901 (0.034) 0.101 (0.043) 0.900 (0.034)
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mates, whereas there were 442 and 477 available results in the case of ML and FF
estimation, respectively. Increasing the sample size by factor 2, we still had 23 not
obtainable MM estimates, 24 of the ML method and 5 of the FF method. Figure 7.4
illustrates 95% and 99% confidence ellipses of the corresponding parameter pairs for
the sample of size n = 1000 and the δ > 1 data situation. In all three cases, the
coverage of the true values is apparent.
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Figure 7.4: 95% and 99% confidence ellipses for overdispersed data sample of size 1000

Estimation results for the size-biased CP model are displayed in Table 7.5 below.
As FF estimates of the size-biased model coincide with those of ML, they are doc-
umented only once. The number of samples resulting in valid estimates are given
in columns named Mvalid. Note that when δ = 1, approximately 50% of all M=500
possible results are reported only. Once again, slightly better results are obtained
for ML estimates, regardless of the observed dispersion data situation. The stan-
dard errors are again smaller in this case. However, as apparent from Figure 7.5
parameter estimates of α and θ are highly correlated for both estimation methods.
Thereby, the estimated correlation coefficient of the M=500 replications is computed
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Figure 7.5: 95% and 99% confidence ellipses for underdispersed data sample of size 1000
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as ρ̂ = cov(α̂, θ̂)/seᾱseθ̄. The correlations of the n = 500 generated data points with
M=500 replications are ρ̂MM = −0.827 and ρ̂ML = −0.811, whereas for n = 1000 we
have ρ̂MM = −0.834 and ρ̂ML = −0.808.

Table 7.5: Estimation results for under- and equidispersed data situations

(α, θ) = (0.20, 0.66)

δ < 1 ᾱMM(seᾱMM
) θ̄MM(seθ̄MM

) Mvalid ᾱML(seᾱML
) θ̄ML(seθ̄ML

) Mvalid

n = 500 0.232 (0.114) 0.639 (0.062) 440 0.230 (0.105) 0.640 (0.058) 432

n = 1000 0.209 (0.093) 0.648 (0.046) 478 0.211 (0.084) 0.648 (0.043) 475

(α, θ) = (0, 0.9)

δ = 1 ᾱMM(seᾱMM
) θ̄MM(seθ̄MM

) Mvalid ᾱML(seᾱML
) θ̄ML(seθ̄ML

) Mvalid

n = 500 0.127 (0.085) 0.850 (0.054) 267 0.122 (0.076) 0.851 (0.052) 220

n = 1000 0.094 (0.069) 0.863 (0.041) 264 0.085 (0.060) 0.865 (0.037) 235





Chapter 8

Application to Data

8.1 Introduction

In this chapter the two-parametric generalizations of the Poisson model considered in
the previous chapters are applied to text data of different genres from two particular
Slavic languages. The main interest of this study is to find a unique model for word
length frequency distributions of texts selected that covers the whole d range. Then,
the totality of all texts of a given natural language would be an extreme realization
of this procedure. We look at the goodness of fit properties of the analyzed models
and check the suitability of the estimated model parameters to discriminate the
text sorts given. This is done with the aim of getting the information whether
different texts from a single language but also across languages can be compared
and distinguished on the basis of specific model parameters.

8.2 Data Base of the Study

The 120 Slovenian, as well as Russian texts, serving as a basis for this study represent
four different text types, namely journalistic, poems, private letters and prose, thirty
texts of each text type being analyzed.1 These texts have been systematically chosen
based on findings from recent word length studies (cf. Antić et al., 2006a; Grzybek
et al., 2005b) in order to generate a balanced experimental design with equal number
of observations for each text group. As to historical and methodological background
of these studies see the contribution of Grzybek (2006). The specific selection of the
texts sorts above has been deliberately made to cover the broad textual spectrum, or
at least its extreme realizations and relies on the scheme of Figure 1.1, Section 1.3.
In accordance with the considerations of Section 1.3, homogeneous texts or parts of
texts are taken as analytical units. The detailed reference for the texts under study
are given in Appendix A, Tables A.1 for the Slovenian and A.7 for the Russian

1 The text basis of this study is part of the text data base developed in the Graz research project
“Word Length Frequencies in Slavic Texts”, mentioned already.
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language. Frequency distributions with the first two empirical moments and disper-
sion index are summarized in Tables A.2 and A.8, respectively. Table 8.1 illustrates
the characteristical statistical measures for our text sample: mean word length (x̄),
sample variance (s2), text length (TL) and index of dispersion (d). Although not

Table 8.1: Statistical measures of Slovenian and Russian texts under study

x̄ s2 TL d

Text Type N min max min max min max min max

S
lo

v
en

ia
n Journalistic 30 2.05 2.46 1.22 1.96 328 1166 1.09 1.35

Poems 30 1.48 1.90 0.37 0.84 58 626 0.60 1.14

Private letters 30 1.72 1.98 0.78 0.98 401 1979 0.97 1.15

Prose 30 1.73 1.98 0.70 1.04 288 4401 0.95 1.16

R
u
ss

ia
n Journalistic 30 2.40 2.83 1.46 2.17 320 901 1.03 1.34

Poems 30 1.76 2.40 0.73 1.60 77 1014 0.76 1.41

Private letters 30 1.83 2.52 0.90 2.11 48 488 0.79 1.53

Prose 30 2.02 2.52 1.15 1.83 236 3154 0.93 1.24

very different with respect to mean word length and sample variance, Slovenian
prose texts seem to be more dispersed than private letters regarding text length as
Figure 8.1, left panel, clearly shows. Evidently, the shortest are the poems, followed
by journalistic texts which are, however, characterized by the longest words of up
to nine syllables. As opposed to this, it turned out that among all Russian texts
observed, the private letters are the shortest ones, though having the widest range
of 1.83 up to 2.52 syllables per word on average, as shown in Table 8.1. Again, the
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Figure 8.1: Differences in text length measured as the number of words and word length
measured as the number of syllables regarding text type for Slovenian (left) and Russian
(right) texts under study.

longest words are specific for journalistic texts, whereas prose texts are the most
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dispersed with respect to text length, as demonstrated in Figure 8.1, right panel.
Figure 8.2 visualizes the differences in the mean word length of the Slovenian texts
compared to that of the Russian texts for four text types given. Evidentally, the
average word lengths in Russian texts are significantly longer than in Slovenian texts
(Wilcoxon rank-sum test, p<0.01). The detailed theoretical explanation regarding
the question of the linguistic differences between the Slovenian and Russian lan-
guage can not be given here. However, analyzing the Slavic parallel corpus, Kelih
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Figure 8.2: Differences in word length between languages for different text types.

(2009b) has reached the same conclusion. He mentioned, among other reasons, that
the Russian compared to Slovenian has more complex syllable structure, and on the
morphological level tends to form longer word forms, in particular compound words.
For details see also Kelih (2011).

The left panel of Figure 8.3 shows results of plotting sample mean versus sample
variance for all 120 Slovenian texts. The solid black line is the Poisson reference
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Figure 8.3: Sample mean compared to sample variance for Slovenian (left) and Russian
(right) texts selected with respect to different text types.
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line where the sample mean diminished by one is near to the sample variance, i.e.
the equidispersion holds. Obviously, all journalistic texts lie above the Poisson line,
private letters and prose texts are around this line, while most of the poems lie below
the Poisson line. Being aware of this fact and based on findings in Section 2.1, we
calculated the index of dispersion for each of 120 Slovenian texts selected. It turned
out that d > 1 for all 30 journalistic texts. 27 out of 30 Slovenian poems have d < 1,
whereas for private letters and prose texts we obtain 0.98 < d < 1.05 in 43.33% and
63.33% cases, respectively. Concerning Russian texts the right panel of Figure 8.3
clearly displays that all journalistic texts are overdispersed, just like the most of the
private letters (76.67%) and prose texts (80%), while for poems under-, equi- and
overdispersion situations may come into question. Figure 8.4 graphically displays
our obtained results regarding index of dispersion for both Slavic languages.
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Figure 8.4: Differences in index of dispersion regarding text type for Slovenian (left) and
Russian (right) texts selected

8.3 Model Selection

As an essential result of the considerations in the previous chapters it turned out
that due to the specific syllable and word structure in the analyzed Slavic languages
several two-parametric probability models can be taken into account for the word
length frequency distributions of the texts under study. Nevertheless, the final de-
cision depends on whether the chosen model has ability to cover the whole d range,
and thus allows for modelling under-, equi- and overdispersed count data. Table 8.2
summarizes our findings for 1-displaced and size-biased versions of the discussed
models. Because δ ≤ 1 for the 1-displaced Dacey-Poisson and Kemp-Kemp-Poisson
distributions, they are likely to be adequate only for empirical samples with under-
or equidispersion.2 Quite contrary to this, having δ > 1 both versions of the nega-

2 The size-biased versions of Dacey-Poisson and Kemp-Kemp-Poisson distributions were not the
scope of this study, hence are marked as grey areas in Table 8.2.
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tive binomial models offer possible solutions in the case of overdispersion. The same
holds for the 1-displaced Cohen-Poisson distributions. Interestingly enough, its size-
biased competitor is suitable exclusively for count data being underdispersed. This
is the reason why we obtained unreliable estimates α̂ for poems in the case of the
1-displaced CP model, but get the plausible one if applying its size-biased version
(cf. Table A.6 and A.12, Appendix A). The generalized Poisson distributions, ap-
proximating both binomial and negative-binomial distributions, allow for all types
of dispersion. However, its 1-displaced version proved to be more advantageous than
the size-biased one. Some convincing arguments are the following: (i) based on the
parameter λ it is possible to clearly determine the type of mean-variance relation-
ship, and thus to identify Poisson under-/overdispersion as well as the Poisson limit,
(ii) the parameter estimates are stable, easy obtainable and implementable, (iii)
simulation studies show good performance of the model for all dispersion situations.
Moreover, standard errors of θ̄ proved to be smaller compared to those of the size-
biased case (cf. Section 6.5). Although providing an unified approach for all data

Table 8.2: Index of dispersion as crucial value for real data

1-displaced size-biased

Distribution δ < 1 δ ≈ 1 δ > 1 δ < 1 δ ≈ 1 δ > 1

Binomial X X

Dacey-Poisson X X

Generalized Poisson X X X X X X

Hyper-Poisson X X X X X X

Kemp-Kemp-Poisson X X

Negativ-Binomial X X

Poisson X

Singh-Poisson X X X X

Cohen-Poisson X X X X

cases, detailed analysis showed that both Hyper-Poisson models are unsuitable for
the Slovenian journalistic texts and poems. The explanation for this fact may lie in
the structure of the journalistic texts displaying almost the same frequencies of two-
and three-syllable words. However, a satisfactory fit requires instead a monotonic
decreasing trend of these frequencies, as demonstrated in Antić et al. (2006b). As
to Russian texts, it turned out to be rather problematic to fit some of the private
letters and poems. Finally, the 1-displaced Singh-Poisson model providing simple
alternative to the Poisson distribution is applicable in situations where the observed
count data have d 6= 1, but has also ability for modelling equidispersion. In all cases
we obtain reasonable and stable estimates of the model parameters. Impressions
from real data analysis are also supported by the simulation study (cf. Section 4.5).
The special benefit of this model is that the maximum likelihood estimation pro-
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cedure leads to the same estimates as the method based on the sample mean and
the first frequency class. Since it is primarily applicable when higher proportion of
ones is at hand, we analyze in the next step which percentage of the whole text
corpus (i.e. all sampled texts) is represented by x-syllable words, for Slovenian and
Russian language separately. The results of the same analysis but with respect to
each of the four text types are represented in Table 8.3. Figure 8.5, left panel,

1 2 3 4 5 6 7 8 9

x

P
e
rc
e
n
ta
g
e
 (
%
)

0
1
0

2
0

3
0

4
0

5
0

1 2 3 4 5 6 7 8 9 10

x

P
e
rc
e
n
ta
g
e
 (
%
)

0
1
0

2
0

3
0

4
0

5
0

Figure 8.5: Word length frequencies (in %) in Slovenian (left) and Russian (right) corpus

clearly shows that for Slovenian texts the percentage of one-syllable words is the
highest, both as compared to the whole text corpus, and to isolated samples of the
four text groups mentioned above (see the upper part of Table 8.3). However, the
difference between one- and two-syllable words is not so obvious when Russian texts
are considered. Even more, for the journalistic texts we notice rather the decrease of
one-syllable words compared to the other text types. Consequently, we restrict our

Table 8.3: Percentage of x-syllable words for Slovenian and Russian texts under study

x-syllable words

Text Type 1 2 3 4 5 6 7 8 9 10

S
lo

v
en

ia
n Journalistic 35.21 24.72 22.71 12.39 3.77 0.90 0.23 0.06 0.01 -

Poems 46.69 36.75 14.62 1.87 0.08 0.00 0.00 0.00 0.00 -

Private letters 44.87 33.39 15.66 5.10 0.84 0.13 0.01 0.00 0.00 -

Prose 45.25 31.90 16.87 5.22 0.69 0.06 0.00 0.00 0.00 -

R
u
ss

ia
n Journalistic 25.60 28.05 23.38 13.78 6.38 2.11 0.56 0.09 0.05 0.01

Poems 34.82 34.30 20.21 8.48 2.02 0.16 0.00 0.00 0.00 0.00

Private letters 34.32 30.84 20.93 10.44 2.62 0.65 0.16 0.05 0.00 0.00

Prose 32.21 30.85 22.27 10.07 3.48 0.91 0.18 0.03 0.02 0.00
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further analysis to 1-displaced generalized Poisson and Singh-Poisson distributions
only. Furthermore, it is of particular interest to find out whether the chosen model(s)
allow for text discrimination. Most studies in this field, particulary the ones men-
tioned above, analyzed the relevance of word length in general, and for purpose of
text classification. Based on the methods of multivariate analysis, it has been shown
that word length, if properly defined as the number of syllables per word, is a char-
acteristic of genre, rather than a variable describing author’s individual style, thus
playing a crucial role in the discrimination and classification of text types (cf. Kelih
et al., 2005; Stadlober and Djuzelic, 2006). In these studies, discriminant analysis
uses mainly characteristics derived from the empirical frequency distributions. Here,
however, we carry out discriminant analysis based on the parameters of theoretical
discrete probability models fitted to the observed data.

8.4 Interpretation of Parameters

The results of fitting the Singh-Poisson model to 120 Slovenian texts are displayed
in Figure 8.6a. The solid red line in the graph is the reference bound C = 0.02,
whereas the dashed line refers to C = 0.05. Obviously, the SP model provides a
good fit for the majority of the texts. It seems not to be appropriate just for the
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Figure 8.6: Results of fitting Singh-Poisson model to 120 Slovenian texts

three poems of Gregorčić, namely “Kesanje” (text no. 66), “Na sveti večer” (text no.
69) and “Pri zibelki” (text no. 76). A closer look at their structure shows that all of
them are indeed short texts, having length of 181, 117 and 114 words, respectively.
The natural question arising from this fact is whether and how goodness of fit may
be influenced by text length, and in particular if a minimal length of texts is needed
in order to achieve satisfactory results. Kelih (2012) investigated in more detail
the question of a “minimal”, “maximal” and “optimal” text length, with a specific
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accent on its interaction with word length. The main result of his study says that
these two basic text properties are directly related (the longer the text, the longer its
words), and can be explained by an appropriate mathematical model, at least for the
Russian and Bulgarian texts studied. This means that at the beginning of the text
the author uses some “known” vocabulary. But, being forced to continually provide
a flow of new information he starts to involve more infrequent and unusual words,
generally longer than the frequent ones, hence text begins to grow systematically.
Short texts, like those above, still possibly miss this kind of “balance” as to the use
of differently long words. Besides, Best and Zinenko (1998) argued that only letters
can be accepted as a representative of “natural” short texts, since they are written in
one act of creating written works, and hence present an “optimal” text sort. A text
containing at least 250 words corresponds thus to “natural” act of speaking (Best,
personal communication); the three poems above not requiring this pre-condition.

For all 120 Slovenian texts maximum likelihood (ML) estimates of both param-
eters were computed and each pair of parameters ( α̂ML, θ̂ML ) was plotted versus the
corresponding text, as shown in Figure 8.6b. The estimated parameters α̂ML are
represented by red circles, while estimated parameters θ̂ML are signified by the blue
ones. It is evident that each group of texts leads to a different pattern of param-
eters. In case of private letters both parameters are very close to each other, the
same holds for prose texts although reversed in respect to the order. Contrary to
this, in journalistic texts and poems parameters are quite distant from each other.
The α̂ML outlier in Figure 8.6b refers to Gregorčić’s poem“Njega ni!” (text no. 70).
This text has only 106 words, α̂ML = 2.35 and θ̂ML = 0.3 ( αmax = 3.88 ). Surprisingly,
the value of C = 0.0002 indicates here rather an extremely good fit.

The results of fitting the Singh-Poisson model to 120 Russian texts are displayed
in Figure 8.7. Notice that for five texts the values of C are beyond the reference
line. These texts include again four extremely short private letters of Achmatova
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written to Brodsky, Chardžiev and Maksimov (texts no. 2, 8, 13 and 20) consisting
of 130, 63, 48 and 75 words, respectively, and poem of Nekrasov “Muza” (text no.
73) with 302 words. The ( α̂ML, θ̂ML ) parameter regions distinguish from those of the
Slovenian texts shown in Figure 8.6b, mostly for private letters, poems and prose.

Plotting the parameters of the Singh-Poisson model versus each other lead to a
good discrimination of three Slovenian text groups, as can be seen in Figure 8.8a.
Although some Russian texts are located in clearly defined areas there are many
overlappings. However, some general tendency of journalistic texts to build a sep-
arate category, can still be observed (cf. Figure 8.8b). One possible explanation
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Figure 8.8: Text types discrimination by (α, θ) parameter range of Singh-Poisson model

can be found in the fact that the journalistic texts originate from a Russian quality
newspaper being as such free of colloquial speech, for which the use of nouns and
compound words is quite typical. Furthermore, these types of words are featured by
longer word forms, and hence location of the journalistic texts in the upper area of
Figure 8.8b seems plausible. Although determined by the use of poetic meters, the
Russian poems can not be so clearly distinguished from letters and prose texts, as
the Slovenian do. This quite surprising phenomenon happens possibly due to higher
heterogeneity of the Russian poems compared to Slovenian ones.

Furthermore, Figure 8.9a shows that the generalized Poisson model is not ap-
propriate for almost half (46.67%) of the Slovenian journalistic texts. However, the
existence of three different parameter patterns, namely for journalistic, poems and
joint group of letters and prose texts, is evident from Figure 8.10a, regardless of the
fact that the model fit for journalistic texts is not satisfactory.

As compared to this, this model provides more or less good fits for Russian texts,
with exception of Achmatova short letters no. 2, 8, 9, 13, 16, and 20 of 130, 63, 151,
48, 201, and 75 words, respectively and poems no. 62, 73 and 83 of length 157, 302,
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and 109, respectively, as evident from Figure 8.9b. Yet, discrimination of Russian
texts is again not so obvious as for the Slovenian text material.
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Figure 8.9: Results of fitting Generalized Poisson model to texts under study
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Figure 8.10: Text types discrimination by (λ, θ) parameter range of Generalized Poisson
model

8.5 Summary

The analyzed Slavic languages, Slovenian and Russian, although belonging to the
same family of Indo-European languages, can be attributed from both real and ge-
netic point of view to two different subgroups. Russian is the largest of the three
living members (together with Ukrainian and Belorussian) of the East Slavic lan-
guages. It is also the most widely spoken of all Slavic languages. Throughout history
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Russian showed, however, different development compared to the Slovenian. The
first disparities in the level of development date from 7th to 8th century and affect
all linguistic levels, in particular the phonology, the syllable structure and morphol-
ogy. Slovenian, on the contrary, belongs to the Western subgroup of the South Slavic
branch of the Slavic languages, just like Serbian or Croatian. This language, located
on the periphery of the Slavic languages, had large lexical influence from other non-
Slavic languages, such as German or Italian, and hence has developed phonologically
and morphologically in a different direction than Russian. This could be also demon-
strated on the basis of word length and associated quantities in the present work.
Nevertheless, we proved that the word length frequency distribution of our sampled
texts can be theoretically described and that one discrete probability model is suf-
ficient to describe them. This model, know in the literature as the Singh-Poisson
model, is a simple two-parametric generalization of the Poisson distribution with pa-
rameter θ. The new parameter α tunes the type of dispersion. It allows to model
under-dispersion (1 < α ≤ αmax), equi-dispersion (Poisson case α = 1) and over-
dispersion (0 < α < 1). Therefore, the proposed model offers a unified approach
for all cases of under-, equi and over-dispersion. An additional benefit is that the
maximum likelihood estimation leads, in case of the Singh-Poisson distribution, to
the same estimates as the method based on the sample mean and the first frequency
class. For this reason, the calculation of maximum likelihood estimates is a very
simple task. In a simulation study we demonstrated the usefulness of the parameter
estimates under three data-driven dispersion scenarios. Finally, the Singh-Poisson
model is applied to 120 Slovenian, as well as 120 Russian texts, and in all cases we
obtained reasonable and stable estimates.





Appendix A

Text Sources

This appendix gives an overview of the Slovenian and Russian texts, which are con-
sidered to represent the text corpus of this study. The detailed reference for the
private letters (text number 1 to 30), journalistic texts (text number 31 to 60), po-
ems (text number 61 to 90), and prose texts (text number 91 to 120) are given in
Table A.1 for Slovenian and Table A.7 for Russian texts under study. Tables A.2
and A.8 show frequency distributions for each Slovenian and Russian text, respec-
tively, as well as their text lengths TL, and three crucial statistical measures, namely
mean word length x̄, sample variance s2, and index of dispersion d = s2/(x̄ − 1).
Subsequently, Tables A.3 to A.6 display parameter estimation results of our speci-
fied models for Slovenian text, whereas Tables A.9 to A.12 highlights results for the
Russian texts under study.

A.1 Slovenian Texts

Table A.1: Sources of the Slovenian texts

Text No. Author Title Year

1-24 Cankar, Ivan Letter to Ana Lušinova 1898
25-29 Cankar, Ivan Letter to Ana Lušinova 1902

30 Cankar, Ivan Letter to Ana Lušinova 1904
31 Journal Delo Baron 2001
32 Journal Delo Čistilka za ustavno sodǐsče 2001
33 Journal Delo Dete je žur 2001
34 Journal Delo Duhovi in duhovi 2001
35 Journal Delo Kaj je z napadi 2001
36 Journal Delo Kaj vse potrebujemo One? 2001
37 Journal Delo Kam z Jelinčičem? 2001
38 Journal Delo Ko še regulatorju ni jasno 2001
39 Journal Delo Kriza vpliva tudi na obrambno moč držav 2001
40 Journal Delo Motivi 2001
41 Journal Delo Mrtvaški marš 2001
42 Journal Delo Ne bobnajmo v prazno 2001

157
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Table A.1: Sources of the Slovenian texts

Text No. Author Title Year

43 Journal Delo Ne spreglejmo bistva 2001
44 Journal Delo Obrezovanje po rusko 2001
45 Journal Delo Odhod z odra 2001
46 Journal Delo Odločila bo Sadamova modrost 2001
47 Journal Delo Omnibus politika 2001
48 Journal Delo Oni pa da niso packi 2001
49 Journal Delo Po sili razmer na istem bregu 2001
50 Journal Delo Presežek demokracije 2001
51 Journal Delo Protizakonite samoumevnosti 2001
52 Journal Delo S porcelanastimi skodelicami na glavi 2001
53 Journal Delo Strah pred kroglo 2001
54 Journal Delo Teroristični koncert 2001
55 Journal Delo Treznitev z vodo 2001
56 Journal Delo Tržaški župan zaprl vrata manǰsini 2001
57 Journal Delo Verjetno bo zakonodajo treba 2001

spremeniti, toda po legalni poti
58 Journal Delo Vpliv uniforme na rast književnikov 2001
59 Journal Delo Vse je mogoče pokvariti 2001
60 Journal Delo Za uvod 2001
61 Gregorčič, Simon Čas 1888
62 Gregorčič, Simon Človeka nikar! 1877
63 Gregorčič, Simon Cvete, cvete pomlad 1901
64 Gregorčič, Simon Domovini 1880
65 Gregorčič, Simon Kako srčno sva se ljubila 1901
66 Gregorčič, Simon Kesanje 1882
67 Gregorčič, Simon Moj crni plašč 1879
68 Gregorčič, Simon Na potujčeni zemlji 1880
69 Gregorčič, Simon Na sveti večer 1882
70 Gregorčič, Simon Njega ni! 1879
71 Gregorčič, Simon O nevihti 1878
72 Gregorčič, Simon Oj zbogom, ti planinski svet! 1879
73 Gregorčič, Simon Oljki 1882
74 Gregorčič, Simon Pogled v nedolžno oko 1882
75 Gregorčič, Simon Pozabljenim 1881
76 Gregorčič, Simon Pri zibelki 1882
77 Gregorčič, Simon Primuli 1882
78 Gregorčič, Simon Sam 1872
79 Gregorčič, Simon Samostanski vratar 1882
80 Gregorčič, Simon Siroti 1882
81 Gregorčič, Simon Sveta odkletev 1882
82 Gregorčič, Simon Ti veselo poj! 1879
83 Gregorčič, Simon Tri lipe 1878
84 Gregorčič, Simon Ujetega ptica tožba 1878
85 Gregorčič, Simon Veseli pastir 1871
86 Gregorčič, Simon Zaostali ptič 1876
87 Gregorčič, Simon Zimski dan 1879
88 Gregorčič, Simon Življenje ni praznik 1878
89 Vodnik, Valentin Vršac 1806
90 Vodnik, Valentin Ilirija Oživljena 1811
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Table A.1: Sources of the Slovenian texts

Text No. Author Title Year

91-108 Cankar, Ivan Hlapec Jernej in njegova pravica, Ch. 1-18 1907
109-117 Cankar, Ivan Hǐsa Marije pomočnice, Ch. 1-9 1904

118 Cankar, Ivan Mimo življenja 1920
119 Cankar, Ivan O prešcah 1920
120 Cankar, Ivan Brez doma 1903

Table A.2: Slovenian texts - frequency distribution and characteristic statistical measures

Text Frequency classes

No. f1 f2 f3 f4 f5 f6 f7 f8 f9 TL x̄ s2 d

1 384 280 157 43 8 2 0 0 0 874 1.875 0.920 1.051
2 456 407 190 54 9 3 1 0 0 1120 1.898 0.898 0.999
3 451 370 195 65 8 1 0 0 0 1090 1.910 0.905 0.994
4 553 370 210 61 12 2 0 0 0 1208 1.853 0.929 1.088
5 712 543 242 79 8 0 0 0 0 1584 1.818 0.815 0.996
6 582 436 220 59 16 2 0 0 0 1315 1.857 0.903 1.054
7 747 576 277 84 17 3 0 0 0 1704 1.860 0.897 1.043
8 595 415 238 61 10 3 1 0 0 1323 1.858 0.918 1.070
9 601 447 207 69 3 0 0 0 0 1327 1.814 0.803 0.987

10 390 292 129 50 14 2 0 0 0 877 1.873 0.985 1.128
11 390 240 92 38 3 0 0 0 0 763 1.721 0.789 1.095
12 511 443 225 73 5 3 0 0 0 1260 1.910 0.882 0.969
13 726 526 260 77 7 2 0 0 0 1598 1.823 0.838 1.019
14 504 422 162 55 7 0 0 0 0 1150 1.817 0.792 0.970
15 407 310 130 43 4 2 0 0 0 896 1.809 0.832 1.028
16 903 638 333 92 11 2 0 0 0 1979 1.826 0.847 1.026
17 759 495 268 73 10 0 0 1 0 1606 1.808 0.863 1.069
18 680 422 183 64 9 1 0 0 0 1359 1.751 0.834 1.109
19 581 378 176 45 9 0 0 0 0 1189 1.758 0.798 1.053
20 681 415 194 62 11 2 0 0 0 1365 1.764 0.864 1.130
21 570 457 199 59 11 3 0 0 0 1299 1.840 0.862 1.026
22 883 619 262 100 12 3 0 0 0 1879 1.801 0.866 1.081
23 512 400 186 68 7 3 0 0 0 1176 1.866 0.902 1.041
24 239 204 120 45 6 0 0 0 0 614 1.982 0.967 0.985
25 184 163 65 34 4 1 0 0 0 451 1.922 0.965 1.046
26 399 313 147 50 17 1 0 0 0 927 1.895 0.977 1.091
27 267 211 68 30 12 1 0 0 0 589 1.832 0.956 1.150
28 232 164 88 24 5 1 0 0 0 514 1.850 0.907 1.067
29 181 149 51 16 4 0 0 0 0 401 1.786 0.784 0.998
30 252 177 89 29 5 1 0 0 0 553 1.844 0.914 1.083
31 298 200 202 131 29 6 0 0 0 866 2.320 1.494 1.132
32 388 230 219 106 22 7 4 0 0 976 2.161 1.452 1.251
33 357 300 242 137 52 8 1 2 1 1100 2.337 1.605 1.200
34 304 189 202 88 29 4 1 0 0 817 2.223 1.431 1.170
35 192 133 129 75 40 9 1 0 0 579 2.428 1.806 1.264
36 218 157 107 53 19 3 0 0 0 557 2.115 1.346 1.208
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Table A.2: Slovenian texts - frequency distribution and characteristic statistical measures

Text Frequency classes

No. f1 f2 f3 f4 f5 f6 f7 f8 f9 TL x̄ s2 d

37 251 167 156 75 21 4 1 0 0 675 2.206 1.419 1.177
38 198 148 145 84 29 5 0 4 0 613 2.401 1.741 1.242
39 205 146 147 72 35 9 3 1 0 618 2.401 1.800 1.284
40 301 254 219 94 14 9 1 1 0 893 2.218 1.328 1.090
41 385 267 213 97 20 5 1 0 0 988 2.108 1.276 1.151
42 177 119 116 65 27 8 3 0 0 515 2.383 1.797 1.300
43 256 148 210 91 33 15 8 1 1 763 2.456 1.960 1.346
44 222 147 146 100 16 2 3 0 0 636 2.307 1.511 1.156
45 310 200 155 73 11 4 0 0 0 753 2.053 1.221 1.159
46 197 138 182 82 36 3 1 2 0 641 2.446 1.638 1.133
47 341 247 228 163 43 6 11 1 1 1041 2.417 1.811 1.278
48 235 160 110 70 14 11 0 0 0 600 2.168 1.519 1.300
49 168 114 137 86 22 6 0 0 0 533 2.433 1.584 1.105
50 203 150 119 92 23 7 1 0 0 595 2.339 1.625 1.213
51 273 239 161 72 23 1 1 0 0 770 2.143 1.241 1.086
52 257 174 136 98 35 7 1 0 0 708 2.301 1.659 1.275
53 442 321 249 113 32 7 2 0 0 1166 2.143 1.347 1.178
54 386 271 222 141 36 26 3 0 0 1085 2.318 1.732 1.314
55 265 224 188 114 29 8 2 1 0 831 2.344 1.549 1.152
56 188 113 134 75 23 5 0 1 0 539 2.354 1.631 1.204
57 149 95 75 41 14 2 1 0 0 377 2.167 1.491 1.277
58 107 81 88 37 11 3 1 0 0 328 2.320 1.472 1.115
59 148 103 108 57 32 3 0 0 0 451 2.404 1.659 1.182
60 232 169 148 86 15 2 1 0 0 653 2.224 1.355 1.107
61 71 62 34 2 0 0 0 0 0 169 1.805 0.634 0.788
62 113 66 33 7 3 0 0 0 0 222 1.743 0.843 1.135
63 48 40 10 1 0 0 0 0 0 99 1.636 0.499 0.784
64 75 48 22 5 0 0 0 0 0 150 1.713 0.703 0.985
65 55 42 18 3 0 0 0 0 0 118 1.737 0.657 0.891
66 72 63 42 4 0 0 0 0 0 181 1.878 0.707 0.805
67 92 44 16 6 0 0 0 0 0 158 1.595 0.676 1.136
68 105 63 21 3 0 0 0 0 0 192 1.594 0.557 0.937
69 55 37 24 1 0 0 0 0 0 117 1.752 0.654 0.869
70 42 55 8 1 0 0 0 0 0 106 1.698 0.422 0.605
71 100 84 35 2 0 0 0 0 0 221 1.724 0.573 0.792
72 97 50 12 6 0 0 0 0 0 165 1.558 0.614 1.101
73 264 226 125 9 2 0 0 0 0 626 1.816 0.675 0.827
74 68 47 14 2 0 0 0 0 0 131 1.618 0.546 0.882
75 65 49 15 2 0 0 0 0 0 131 1.649 0.553 0.852
76 45 48 21 0 0 0 0 0 0 114 1.789 0.539 0.683
77 59 49 14 1 0 0 0 0 0 123 1.650 0.508 0.781
78 24 23 10 1 0 0 0 0 0 58 1.793 0.623 0.786
79 99 91 45 6 0 0 0 0 0 241 1.826 0.670 0.811
80 47 34 10 3 0 0 0 0 0 94 1.670 0.632 0.943
81 99 69 23 1 0 0 0 0 0 192 1.615 0.510 0.830
82 105 63 11 0 0 0 0 0 0 179 1.475 0.374 0.788
83 145 117 59 6 0 0 0 0 0 327 1.774 0.648 0.838
84 116 89 32 3 1 0 0 0 0 241 1.689 0.607 0.881
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Table A.2: Slovenian texts - frequency distribution and characteristic statistical measures

Text Frequency classes

No. f1 f2 f3 f4 f5 f6 f7 f8 f9 TL x̄ s2 d

85 54 52 24 2 0 0 0 0 0 132 1.803 0.617 0.769
86 59 49 25 2 0 0 0 0 0 135 1.778 0.637 0.819
87 123 93 28 4 0 0 0 0 0 248 1.649 0.553 0.851
88 79 58 34 3 0 0 0 0 0 174 1.776 0.672 0.866
89 49 84 19 7 0 0 0 0 0 159 1.899 0.597 0.664
90 111 85 54 10 1 0 0 0 0 261 1.870 0.806 0.927
91 259 195 92 35 3 0 0 0 0 584 1.849 0.866 1.019
92 461 325 130 33 3 0 0 0 0 952 1.731 0.716 0.980
93 497 315 164 37 6 0 0 0 0 1019 1.763 0.792 1.037
94 372 249 131 32 1 0 0 0 0 785 1.778 0.767 0.986
95 373 280 119 19 3 1 0 0 0 795 1.745 0.704 0.946
96 427 237 151 50 10 0 0 0 0 875 1.833 0.965 1.159
97 430 306 157 46 7 0 0 0 0 946 1.831 0.854 1.028
98 646 449 270 52 4 0 0 0 0 1421 1.817 0.783 0.959
99 406 288 168 37 5 0 0 0 0 904 1.835 0.822 0.984

100 544 337 180 39 5 0 0 0 0 1105 1.755 0.778 1.030
101 433 269 165 49 1 0 0 0 0 917 1.818 0.843 1.031
102 547 339 213 71 2 0 0 0 0 1172 1.841 0.882 1.048
103 693 477 283 61 11 0 0 0 0 1525 1.833 0.838 1.006
104 454 265 156 48 7 0 0 0 0 930 1.805 0.893 1.109
105 613 423 230 69 9 0 0 0 0 1344 1.838 0.867 1.035
106 555 361 185 58 10 1 0 0 0 1170 1.812 0.887 1.092
107 566 339 188 67 6 0 0 0 0 1166 1.806 0.886 1.099
108 129 93 46 16 4 0 0 0 0 288 1.865 0.940 1.087
109 1088 950 491 197 21 3 1 0 0 2751 1.955 0.954 0.999
110 1060 878 520 209 23 1 1 0 0 2692 1.984 0.990 1.006
111 1353 1058 578 180 23 4 0 0 0 3196 1.897 0.904 1.008
112 1632 1104 580 174 18 2 0 0 0 3510 1.817 0.851 1.041
113 1877 1450 775 251 43 5 0 0 0 4401 1.898 0.927 1.032
114 1612 1232 583 180 25 3 0 0 0 3635 1.840 0.852 1.014
115 1259 900 568 218 37 5 0 0 0 2987 1.958 1.040 1.086
116 1415 1006 496 165 25 8 0 0 0 3115 1.845 0.915 1.083
117 1085 833 438 168 17 5 0 0 0 2546 1.906 0.945 1.044
118 522 464 243 93 15 1 0 0 0 1338 1.967 0.962 0.995
119 1908 1521 656 208 22 6 0 0 0 4321 1.827 0.824 0.996
120 428 313 131 58 14 2 0 0 0 946 1.862 0.985 1.143

Table A.3: Singh-Poisson model - estimation results for Slovenian texts

1-displaced SP size-biased SP

No. d α̂MM θ̂MM α̂ML θ̂ML θ̂MM = θ̂ML

1 1.051 0.946 0.925 0.904 0.969 0.875
2 0.999 1.002 0.897 1.001 0.898 0.898
3 0.994 1.008 0.903 0.953 0.955 0.910
4 1.088 0.907 0.941 0.864 0.988 0.853
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Table A.3: Singh-Poisson model - estimation results for Slovenian texts

1-displaced SP size-biased SP

No. d α̂MM θ̂MM α̂ML θ̂ML θ̂MM = θ̂ML

5 0.996 1.006 0.813 0.959 0.853 0.818
6 1.054 0.941 0.910 0.919 0.932 0.857
7 1.043 0.953 0.902 0.933 0.922 0.860
8 1.070 0.926 0.927 0.889 0.965 0.858
9 0.987 1.017 0.800 0.952 0.855 0.814

10 1.128 0.873 1.000 0.886 0.986 0.873
11 1.095 0.885 0.815 0.864 0.834 0.721
12 0.969 1.036 0.879 0.986 0.923 0.910
13 1.019 0.978 0.841 0.928 0.887 0.823
14 0.970 1.039 0.786 1.019 0.801 0.817
15 1.028 0.968 0.836 0.955 0.847 0.809
16 1.026 0.971 0.851 0.914 0.903 0.826
17 1.069 0.922 0.876 0.875 0.923 0.808
18 1.109 0.874 0.860 0.854 0.880 0.751
19 1.053 0.935 0.810 0.896 0.846 0.758
20 1.130 0.855 0.894 0.837 0.913 0.764
21 1.026 0.971 0.865 0.967 0.869 0.840
22 1.081 0.909 0.882 0.898 0.893 0.801
23 1.041 0.956 0.907 0.934 0.928 0.866
24 0.985 1.018 0.965 0.945 1.039 0.982
25 1.046 0.955 0.966 0.957 0.964 0.922
26 1.091 0.908 0.986 0.909 0.985 0.895
27 1.150 0.849 0.980 0.916 0.908 0.832
28 1.067 0.929 0.915 0.894 0.951 0.850
29 0.998 1.006 0.781 1.025 0.767 0.786
30 1.083 0.913 0.925 0.886 0.954 0.844
31 1.132 0.910 1.451 0.820 1.610 1.320
32 1.251 0.823 1.410 0.777 1.495 1.161
33 1.200 0.870 1.536 0.854 1.566 1.337
34 1.170 0.879 1.391 0.803 1.523 1.223
35 1.264 0.845 1.690 0.805 1.775 1.428
36 1.208 0.844 1.320 0.818 1.363 1.115
37 1.177 0.873 1.381 0.812 1.485 1.206
38 1.242 0.854 1.641 0.831 1.687 1.401
39 1.284 0.832 1.684 0.814 1.722 1.401
40 1.090 0.932 1.307 0.888 1.372 1.218
41 1.151 0.881 1.258 0.827 1.341 1.108
42 1.300 0.823 1.680 0.797 1.735 1.383
43 1.346 0.809 1.800 0.789 1.845 1.456
44 1.156 0.894 1.461 0.815 1.603 1.307
45 1.159 0.870 1.211 0.807 1.304 1.053
46 1.133 0.917 1.577 0.846 1.710 1.446
47 1.278 0.837 1.694 0.816 1.736 1.417
48 1.300 0.797 1.466 0.786 1.486 1.168
49 1.105 0.933 1.537 0.835 1.717 1.433
50 1.213 0.864 1.551 0.818 1.638 1.339
51 1.086 0.931 1.227 0.895 1.277 1.143
52 1.275 0.826 1.574 0.788 1.650 1.301



A.1. SLOVENIAN TEXTS 163

Table A.3: Singh-Poisson model - estimation results for Slovenian texts

1-displaced SP size-biased SP

No. d α̂MM θ̂MM α̂ML θ̂ML θ̂MM = θ̂ML

53 1.178 0.866 1.320 0.831 1.376 1.143
54 1.314 0.808 1.631 0.796 1.655 1.318
55 1.152 0.899 1.495 0.863 1.558 1.344
56 1.204 0.870 1.556 0.797 1.700 1.354
57 1.277 0.810 1.441 0.779 1.499 1.167
58 1.115 0.922 1.432 0.858 1.539 1.320
59 1.182 0.887 1.583 0.820 1.712 1.404
60 1.107 0.921 1.329 0.841 1.455 1.224
61 0.788 1.368 0.588 1.157 0.696 0.805
62 1.135 0.852 0.873 0.830 0.896 0.743
63 0.784 1.542 0.413 1.451 0.439 0.636
64 0.985 1.031 0.692 0.941 0.758 0.713
65 0.891 1.188 0.621 1.077 0.684 0.737
66 0.805 1.293 0.679 1.085 0.809 0.878
67 1.136 0.822 0.723 0.789 0.754 0.595
68 0.937 1.128 0.526 1.047 0.567 0.594
69 0.869 1.226 0.614 1.007 0.747 0.752
70 0.605 2.348 0.297 2.345 0.298 0.698
71 0.792 1.413 0.512 1.232 0.587 0.724
72 1.101 0.855 0.652 0.873 0.638 0.558
73 0.827 1.272 0.642 1.112 0.734 0.816
74 0.882 1.252 0.494 1.176 0.526 0.618
75 0.852 1.313 0.494 1.226 0.529 0.649
76 0.683 1.692 0.467 1.417 0.557 0.789
77 0.781 1.530 0.425 1.401 0.464 0.650
78 0.786 1.403 0.565 1.242 0.638 0.793
79 0.811 1.304 0.633 1.151 0.718 0.826
80 0.943 1.111 0.603 1.085 0.618 0.670
81 0.830 1.395 0.441 1.237 0.497 0.615
82 0.788 1.835 0.259 1.673 0.284 0.475
83 0.838 1.271 0.609 1.106 0.699 0.774
84 0.881 1.216 0.566 1.154 0.597 0.689
85 0.769 1.419 0.566 1.239 0.648 0.803
86 0.819 1.317 0.590 1.135 0.685 0.778
87 0.851 1.307 0.497 1.226 0.529 0.649
88 0.866 1.218 0.637 1.035 0.749 0.776
89 0.664 1.608 0.559 1.636 0.550 0.899
90 0.927 1.097 0.793 0.972 0.895 0.870
91 1.019 0.980 0.867 0.928 0.915 0.849
92 0.980 1.030 0.710 0.983 0.744 0.731
93 1.037 0.955 0.799 0.889 0.859 0.763
94 0.986 1.021 0.763 0.924 0.842 0.778
95 0.946 1.080 0.689 1.034 0.720 0.745
96 1.159 0.841 0.990 0.780 1.068 0.833
97 1.028 0.969 0.858 0.913 0.910 0.831
98 0.959 1.054 0.775 0.938 0.871 0.817
99 0.984 1.020 0.819 0.929 0.899 0.835

100 1.030 0.962 0.784 0.884 0.853 0.755
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Table A.3: Singh-Poisson model - estimation results for Slovenian texts

1-displaced SP size-biased SP

No. d α̂MM θ̂MM α̂ML θ̂ML θ̂MM = θ̂ML

101 1.031 0.964 0.848 0.860 0.951 0.818
102 1.048 0.947 0.888 0.847 0.993 0.841
103 1.006 0.994 0.838 0.910 0.915 0.833
104 1.109 0.882 0.913 0.816 0.987 0.805
105 1.035 0.961 0.872 0.895 0.937 0.838
106 1.092 0.899 0.903 0.861 0.943 0.812
107 1.099 0.892 0.904 0.825 0.977 0.806
108 1.087 0.912 0.948 0.886 0.976 0.865
109 0.999 1.002 0.954 0.958 0.997 0.955
110 1.006 0.994 0.989 0.927 1.061 0.984
111 1.008 0.992 0.904 0.935 0.959 0.897
112 1.041 0.953 0.858 0.892 0.916 0.817
113 1.032 0.965 0.930 0.921 0.974 0.898
114 1.014 0.984 0.854 0.945 0.888 0.840
115 1.086 0.918 1.044 0.862 1.112 0.958
116 1.083 0.911 0.927 0.890 0.950 0.845
117 1.044 0.955 0.949 0.911 0.995 0.906
118 0.995 1.006 0.961 0.962 1.006 0.967
119 0.996 1.005 0.823 0.979 0.845 0.827
120 1.143 0.858 1.004 0.873 0.987 0.862

Table A.4: Hyper-Poisson model - estimation results for Slovenian texts

1-displaced HP size-biased HP

No. d λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF

1 1.051 0.925 0.864 1.369 1.084 1.256 1.019 1.095 0.920 1.917 1.176 1.234 0.962
2 0.999 1.060 0.926 0.988 0.891 0.997 0.897 1.086 0.924 0.962 0.885 0.993 0.896
3 0.994 0.627 0.729 1.115 0.978 0.974 0.895 0.411 0.724 1.205 0.980 0.957 0.895
4 1.088 1.010 0.898 1.624 1.196 1.497 1.123 1.449 1.014 2.681 1.389 3.500 1.628
5 0.996 0.657 0.662 1.100 0.874 0.981 0.808 0.453 0.658 1.192 0.879 0.966 0.807
6 1.054 1.037 0.899 1.330 1.042 1.261 1.002 1.299 0.963 1.867 1.137 1.271 0.954
7 1.043 0.995 0.877 1.267 1.011 1.201 0.973 1.175 0.925 1.689 1.083 1.252 0.948
8 1.070 1.113 0.942 1.456 1.112 1.364 1.058 1.511 1.032 2.187 1.240 2.717 1.394
9 0.987 0.537 0.600 1.102 0.870 0.940 0.781 0.240 0.590 1.162 0.865 0.901 0.782

10 1.128 1.476 1.154 1.699 1.262 1.669 1.245 2.572 1.390 3.207 1.585 3.296 1.610
11 1.095 1.097 0.801 1.672 1.051 1.570 0.999 1.738 0.941 3.008 1.282 3.407 1.384
12 0.969 0.642 0.725 0.984 0.901 0.876 0.836 0.363 0.701 0.893 0.874 0.750 0.822
13 1.019 0.754 0.720 1.222 0.945 1.090 0.872 0.686 0.737 1.495 0.979 1.114 0.862
14 0.970 0.712 0.673 0.923 0.773 0.881 0.750 0.456 0.650 0.783 0.747 0.716 0.726
15 1.028 0.993 0.818 1.167 0.900 1.126 0.878 1.104 0.847 1.427 0.942 1.216 0.879
16 1.026 0.745 0.722 1.275 0.977 1.126 0.894 0.699 0.745 1.624 1.023 1.138 0.873
17 1.069 1.064 0.867 1.499 1.074 1.382 1.009 1.444 0.955 2.295 1.205 2.943 1.386
18 1.109 1.230 0.897 1.754 1.131 1.665 1.083 2.091 1.079 3.309 1.416 3.921 1.579
19 1.053 0.917 0.745 1.398 0.963 1.286 0.904 1.118 0.804 2.039 1.063 1.221 0.833
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Table A.4: Hyper-Poisson model - estimation results for Slovenian texts

1-displaced HP size-biased HP

No. d λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF

20 1.130 1.386 0.987 1.903 1.221 1.830 1.180 2.593 1.240 3.880 1.600 4.918 1.883
21 1.026 1.050 0.874 1.130 0.913 1.114 0.904 1.187 0.903 1.344 0.950 1.238 0.918
22 1.081 1.150 0.904 1.489 1.061 1.423 1.025 1.674 1.017 2.408 1.231 2.590 1.279
23 1.041 0.960 0.867 1.264 1.016 1.190 0.974 1.107 0.911 1.671 1.086 1.244 0.953
24 0.985 0.464 0.708 1.130 1.063 0.934 0.942 0.149 0.696 1.204 1.056 0.896 0.943
25 1.046 0.999 0.943 1.225 1.055 1.198 1.040 1.178 0.992 1.621 1.135 1.372 1.055
26 1.091 1.226 1.045 1.486 1.172 1.444 1.148 1.819 1.177 2.408 1.362 2.513 1.391
27 1.150 1.959 1.334 1.673 1.195 1.734 1.233 3.813 1.702 3.511 1.611 2.791 1.402
28 1.067 1.015 0.887 1.441 1.095 1.347 1.040 1.327 0.967 2.157 1.220 1.268 0.950
29 0.998 0.983 0.776 0.949 0.758 0.992 0.781 0.955 0.772 0.899 0.754 0.972 0.777
30 1.083 1.073 0.915 1.526 1.133 1.437 1.082 1.519 1.022 2.443 1.302 2.877 1.426
31 1.132 0.418 1.063 2.113 2.083 1.864 1.886 0.554 1.195 3.590 2.427 1.368 1.519
32 1.251 1.537 1.583 2.833 2.309 3.066 2.405 3.526 2.180 6.705 3.359 1.467 1.424
33 1.200 1.554 1.768 2.164 2.139 2.109 2.086 2.812 2.143 4.206 2.712 1.561 1.642
34 1.170 0.804 1.208 2.288 2.067 2.202 1.978 1.397 1.437 4.315 2.563 1.404 1.440
35 1.264 1.091 1.636 2.868 2.725 2.938 2.724 2.375 2.110 6.250 3.744 1.588 1.783
36 1.208 1.268 1.365 2.420 1.996 2.344 1.933 2.606 1.763 5.296 2.737 1.458 1.353
37 1.177 0.948 1.273 2.273 2.035 2.185 1.950 1.695 1.533 4.375 2.557 1.423 1.432
38 1.242 1.815 2.017 2.449 2.410 2.512 2.425 3.530 2.543 5.052 3.180 1.597 1.747
39 1.284 1.749 2.003 2.830 2.662 2.959 2.710 3.819 2.679 6.493 3.793 1.625 1.776
40 1.090 1.100 1.322 1.556 1.594 1.434 1.506 1.482 1.434 2.321 1.762 1.358 1.388
41 1.151 1.004 1.189 2.069 1.779 1.940 1.682 1.697 1.410 3.862 2.195 1.385 1.300
42 1.300 1.604 1.905 3.067 2.789 3.288 2.884 3.741 2.624 7.346 4.112 1.610 1.754
43 1.346 2.461 2.526 3.249 3.016 3.862 3.358 5.884 3.659 8.273 4.675 1.672 1.885
44 1.156 0.718 1.234 2.198 2.121 2.047 1.988 1.145 1.425 3.904 2.536 1.407 1.529
45 1.159 0.928 1.097 2.199 1.780 2.082 1.690 1.648 1.331 4.282 2.253 1.364 1.233
46 1.133 0.895 1.462 1.938 2.123 1.773 1.982 1.291 1.623 3.137 2.419 1.421 1.678
47 1.278 1.904 2.109 2.749 2.631 2.890 2.688 4.022 2.785 6.141 3.675 1.625 1.791
48 1.300 1.862 1.794 3.188 2.531 3.328 2.584 4.932 2.728 8.810 4.167 1.534 1.476
49 1.105 0.317 1.092 1.959 2.122 1.648 1.877 0.298 1.184 3.068 2.370 1.336 1.618
50 1.213 0.955 1.435 2.504 2.363 2.416 2.272 1.851 1.766 5.039 3.063 1.515 1.632
51 1.086 0.886 1.127 1.556 1.506 1.408 1.406 1.141 1.225 2.370 1.683 1.353 1.303
52 1.275 1.186 1.561 3.051 2.655 3.173 2.685 2.823 2.127 7.216 3.875 1.545 1.624
53 1.178 1.246 1.369 2.171 1.887 2.086 1.817 2.289 1.676 4.299 2.419 1.441 1.368
54 1.314 1.851 1.980 3.181 2.763 3.360 2.838 4.605 2.874 8.257 4.336 1.608 1.684
55 1.152 1.114 1.496 1.942 2.000 1.811 1.896 1.765 1.712 3.382 2.377 1.486 1.601
56 1.204 0.907 1.417 2.506 2.386 2.545 2.361 1.698 1.718 4.866 3.017 1.471 1.627
57 1.277 1.550 1.611 3.052 2.449 3.254 2.530 3.862 2.323 7.787 3.780 1.500 1.453
58 1.115 0.866 1.308 1.793 1.872 1.625 1.741 1.192 1.441 2.843 2.114 1.385 1.519
59 1.182 0.607 1.279 2.355 2.352 2.209 2.216 1.050 1.498 4.363 2.888 1.476 1.675
60 1.107 0.579 1.050 1.876 1.807 1.625 1.627 0.725 1.159 3.037 2.057 1.332 1.390
61 0.788 ∅ 0.260 0.540 0.535 0.295 0.396 ∅ 0.215 ∅ 0.435 ∅ ∅

62 1.135 1.405 0.971 1.921 1.200 1.888 1.179 2.670 1.231 3.973 1.588 5.328 1.952
63 0.784 0.230 0.250 0.364 0.308 0.336 0.294 ∅ 0.198 ∅ 0.239 ∅ ∅

64 0.985 0.459 0.479 1.097 0.762 0.924 0.676 0.078 0.465 1.120 0.747 0.886 0.679
65 0.891 0.279 0.382 0.717 0.585 0.577 0.512 ∅ 0.336 0.243 0.511 0.097 0.465
66 0.805 ∅ 0.301 0.627 0.650 0.323 0.471 ∅ 0.254 0.027 0.541 ∅ ∅

67 1.136 1.270 0.744 2.183 1.094 2.132 1.068 2.753 1.026 5.202 1.592 8.328 2.306
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Table A.4: Hyper-Poisson model - estimation results for Slovenian texts

1-displaced HP size-biased HP

No. d λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF

68 0.937 0.455 0.366 0.816 0.510 0.711 0.463 ∅ 0.332 0.469 0.461 0.363 0.434
69 0.869 ∅ 0.258 0.787 0.637 0.441 0.456 ∅ 0.223 0.329 0.549 ∅ ∅

70 0.605 0.151 0.184 0.135 0.176 0.157 0.189 ∅ 0.135 ∅ 0.125 ∅ ∅

71 0.792 0.086 0.251 0.486 0.441 0.316 0.349 ∅ 0.205 ∅ 0.354 ∅ ∅

72 1.101 1.427 0.744 1.666 0.831 1.670 0.834 2.639 0.936 3.353 1.092 3.230 1.066
73 0.827 0.145 0.354 0.614 0.590 0.396 0.467 ∅ 0.301 0.018 0.494 ∅ ∅

74 0.882 0.374 0.331 0.602 0.426 0.545 0.399 ∅ 0.284 0.015 0.360 ∅ ∅

75 0.852 0.308 0.316 0.533 0.413 0.471 0.382 ∅ 0.265 ∅ 0.341 ∅ ∅

76 0.683 ∅ 0.177 0.325 0.378 0.148 0.274 ∅ 0.137 ∅ 0.287 ∅ ∅

77 0.781 0.177 0.237 0.385 0.329 0.316 0.295 ∅ 0.189 ∅ 0.256 ∅ ∅

78 0.786 0.095 0.292 0.463 0.476 0.341 0.407 ∅ 0.239 ∅ 0.381 ∅ ∅

79 0.811 0.108 0.335 0.562 0.565 0.375 0.458 ∅ 0.282 ∅ 0.468 ∅ ∅

80 0.943 0.586 0.477 0.766 0.553 0.768 0.554 0.140 0.438 0.397 0.504 0.417 0.510
81 0.830 0.168 0.232 0.514 0.378 0.378 0.313 ∅ 0.190 ∅ 0.306 ∅ ∅

82 0.788 0.151 0.132 0.309 0.189 0.255 0.167 ∅ 0.100 ∅ 0.142 ∅ ∅

83 0.838 0.110 0.314 0.634 0.568 0.411 0.446 ∅ 0.267 0.053 0.477 ∅ ∅

84 0.881 0.472 0.423 0.617 0.489 0.562 0.462 ∅ 0.368 0.050 0.417 0.003 0.403
85 0.769 0.056 0.277 0.460 0.481 0.293 0.385 ∅ 0.226 ∅ 0.384 ∅ ∅

86 0.819 0.065 0.287 0.584 0.541 0.368 0.422 ∅ 0.240 ∅ 0.447 ∅ ∅

87 0.851 0.324 0.323 0.535 0.414 0.469 0.382 ∅ 0.272 ∅ 0.342 ∅ ∅

88 0.866 0.071 0.309 0.749 0.637 0.464 0.483 ∅ 0.268 0.271 0.549 ∅ ∅

89 0.664 0.268 0.392 0.216 0.358 0.272 0.396 ∅ 0.308 ∅ 0.268 ∅ ∅

90 0.927 0.262 0.491 0.941 0.835 0.689 0.691 ∅ 0.454 0.708 0.772 0.446 0.680
91 1.019 0.654 0.698 1.236 0.982 1.091 0.900 0.527 0.714 1.531 1.021 1.118 0.890
92 0.980 0.657 0.577 1.007 0.735 0.908 0.684 0.387 0.561 0.954 0.718 0.815 0.676
93 1.037 0.729 0.662 1.372 0.957 1.202 0.867 0.721 0.696 1.884 1.025 1.160 0.818
94 0.986 0.434 0.524 1.154 0.861 0.929 0.741 0.071 0.514 1.248 0.854 0.904 0.747
95 0.946 0.684 0.586 0.845 0.662 0.777 0.626 0.331 0.548 0.560 0.613 0.498 0.594
96 1.159 1.044 0.925 2.322 1.528 2.253 1.475 2.108 1.205 5.098 2.093 1.295 0.967
97 1.028 0.707 0.710 1.291 0.991 1.137 0.906 0.644 0.734 1.670 1.043 1.147 0.882
98 0.959 0.337 0.500 1.071 0.856 0.807 0.712 ∅ 0.477 1.008 0.819 0.703 0.719
99 0.984 0.477 0.590 1.144 0.916 0.926 0.794 0.145 0.578 1.216 0.904 0.897 0.800

100 1.030 0.652 0.618 1.364 0.942 1.168 0.840 0.566 0.644 1.831 0.999 1.133 0.800
101 1.031 0.428 0.574 1.463 1.068 1.180 0.913 0.208 0.597 2.013 1.133 1.121 0.862
102 1.048 0.456 0.614 1.568 1.152 1.287 0.995 0.317 0.653 2.305 1.255 1.164 0.904
103 1.006 0.561 0.636 1.237 0.964 1.028 0.848 0.338 0.640 1.464 0.980 1.032 0.844
104 1.109 0.868 0.794 1.903 1.277 1.740 1.184 1.360 0.940 3.513 1.566 1.257 0.911
105 1.035 0.663 0.700 1.366 1.040 1.182 0.937 0.604 0.731 1.850 1.108 1.161 0.896
106 1.092 1.031 0.867 1.653 1.159 1.532 1.092 1.534 0.993 2.814 1.368 1.275 0.918
107 1.099 0.798 0.760 1.832 1.242 1.648 1.139 1.166 0.882 3.266 1.494 1.250 0.906
108 1.087 1.010 0.908 1.548 1.169 1.456 1.116 1.419 1.016 2.508 1.351 1.308 0.984
109 0.999 0.681 0.799 1.118 1.027 0.994 0.952 0.512 0.797 1.229 1.036 0.990 0.952
110 1.006 0.553 0.765 1.225 1.122 1.028 1.000 0.345 0.769 1.444 1.143 1.037 0.998
111 1.008 0.674 0.746 1.188 1.006 1.036 0.918 0.526 0.752 1.383 1.026 1.051 0.915
112 1.041 0.730 0.714 1.387 1.027 1.216 0.932 0.740 0.753 1.931 1.107 1.179 0.881
113 1.032 0.789 0.813 1.284 1.062 1.152 0.985 0.796 0.844 1.671 1.122 1.179 0.963
114 1.014 0.781 0.746 1.170 0.935 1.064 0.875 0.713 0.759 1.380 0.962 1.098 0.873
115 1.086 0.809 0.907 1.652 1.343 1.470 1.230 1.058 1.005 2.655 1.533 3.729 1.870
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Table A.4: Hyper-Poisson model - estimation results for Slovenian texts

1-displaced HP size-biased HP

No. d λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF

116 1.083 1.136 0.945 1.512 1.127 1.431 1.081 1.639 1.060 2.427 1.298 2.779 1.398
117 1.044 0.802 0.832 1.349 1.108 1.210 1.026 0.862 0.876 1.847 1.191 1.215 0.986
118 0.995 0.642 0.788 1.105 1.032 0.979 0.954 0.443 0.784 1.189 1.035 0.963 0.953
119 0.996 0.810 0.739 1.050 0.855 0.984 0.819 0.692 0.736 1.089 0.855 0.968 0.817
120 1.143 1.540 1.177 1.826 1.313 1.783 1.290 2.869 1.467 3.704 1.721 3.799 1.747

Table A.5: Generalized Poisson model - estimation results for Slovenian texts

1-displaced GP size-biased GP

No. d λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF

1 1.051 0.025 0.854 0.026 0.852 0.060 0.822 0.024 0.805 0.026 0.800 0.058 0.704
2 0.999 0.000 0.899 -0.001 0.899 0.000 0.899 0.000 0.899 -0.001 0.900 0.000 0.899
3 0.994 -0.003 0.913 -0.004 0.914 0.030 0.882 -0.003 0.919 -0.004 0.921 0.030 0.822
4 1.088 0.041 0.818 0.046 0.814 0.084 0.781 0.040 0.736 0.045 0.724 0.080 0.617
5 0.996 -0.002 0.820 -0.003 0.820 0.023 0.800 -0.002 0.824 -0.003 0.826 0.022 0.755
6 1.054 0.026 0.835 0.027 0.834 0.049 0.815 0.026 0.783 0.027 0.780 0.048 0.719
7 1.043 0.021 0.842 0.022 0.841 0.041 0.825 0.021 0.800 0.022 0.797 0.040 0.744
8 1.070 0.033 0.829 0.035 0.828 0.069 0.799 0.033 0.764 0.034 0.758 0.066 0.665
9 0.987 -0.007 0.819 -0.008 0.820 0.027 0.792 -0.007 0.833 -0.008 0.836 0.026 0.739

10 1.128 0.058 0.822 0.061 0.820 0.072 0.810 0.056 0.708 0.059 0.700 0.069 0.669
11 1.095 0.044 0.689 0.049 0.686 0.069 0.671 0.043 0.602 0.047 0.590 0.066 0.537
12 0.969 -0.016 0.925 -0.017 0.926 0.009 0.902 -0.016 0.956 -0.017 0.960 0.009 0.885
13 1.019 0.009 0.815 0.010 0.815 0.041 0.789 0.009 0.797 0.010 0.795 0.040 0.708
14 0.970 -0.015 0.829 -0.016 0.830 -0.010 0.825 -0.015 0.860 -0.016 0.863 -0.010 0.846
15 1.028 0.014 0.798 0.014 0.798 0.025 0.789 0.014 0.771 0.014 0.771 0.024 0.740
16 1.026 0.013 0.815 0.014 0.814 0.050 0.785 0.012 0.790 0.014 0.787 0.048 0.687
17 1.069 0.033 0.781 0.035 0.779 0.072 0.750 0.032 0.716 0.035 0.709 0.069 0.610
18 1.109 0.051 0.713 0.055 0.710 0.078 0.692 0.049 0.614 0.054 0.601 0.074 0.541
19 1.053 0.026 0.738 0.028 0.737 0.055 0.716 0.025 0.688 0.027 0.682 0.053 0.609
20 1.130 0.059 0.719 0.065 0.715 0.090 0.695 0.057 0.603 0.062 0.588 0.085 0.522
21 1.026 0.013 0.829 0.013 0.829 0.019 0.824 0.013 0.804 0.013 0.804 0.019 0.785
22 1.081 0.038 0.771 0.041 0.769 0.058 0.755 0.037 0.696 0.040 0.688 0.056 0.642
23 1.041 0.020 0.849 0.021 0.848 0.040 0.832 0.020 0.810 0.021 0.807 0.039 0.752
24 0.985 -0.008 0.990 -0.010 0.992 0.039 0.944 -0.008 1.005 -0.010 1.011 0.038 0.866
25 1.046 0.022 0.902 0.022 0.902 0.028 0.897 0.022 0.857 0.022 0.857 0.028 0.841
26 1.091 0.043 0.857 0.045 0.855 0.058 0.843 0.042 0.773 0.044 0.767 0.057 0.728
27 1.150 0.067 0.776 0.067 0.776 0.049 0.791 0.065 0.644 0.064 0.647 0.048 0.695
28 1.067 0.032 0.823 0.034 0.822 0.064 0.795 0.031 0.760 0.033 0.755 0.062 0.670
29 0.998 -0.001 0.786 -0.002 0.787 -0.013 0.795 -0.001 0.788 -0.002 0.792 -0.013 0.821
30 1.083 0.039 0.812 0.041 0.810 0.069 0.786 0.038 0.735 0.040 0.728 0.066 0.651
31 1.132 0.060 1.241 0.074 1.222 0.192 1.067 0.059 1.121 0.073 1.072 0.176 0.696
32 1.251 0.106 1.038 0.124 1.017 0.205 0.922 0.101 0.830 0.118 0.772 0.186 0.531
33 1.200 0.087 1.221 0.096 1.209 0.158 1.125 0.084 1.048 0.093 1.018 0.148 0.816
34 1.170 0.076 1.130 0.091 1.112 0.191 0.989 0.073 0.981 0.088 0.930 0.175 0.621
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Table A.5: Generalized Poisson model - estimation results for Slovenian texts

1-displaced GP size-biased GP

No. d λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF

35 1.264 0.111 1.270 0.133 1.239 0.227 1.104 0.106 1.051 0.128 0.972 0.207 0.665
36 1.208 0.090 1.015 0.104 1.000 0.159 0.938 0.086 0.838 0.099 0.795 0.147 0.633
37 1.177 0.078 1.112 0.092 1.095 0.180 0.989 0.076 0.957 0.089 0.911 0.165 0.643
38 1.242 0.103 1.257 0.113 1.243 0.194 1.130 0.099 1.054 0.109 1.017 0.179 0.754
39 1.284 0.118 1.236 0.134 1.214 0.213 1.103 0.113 1.004 0.128 0.947 0.195 0.693
40 1.090 0.042 1.167 0.045 1.164 0.107 1.087 0.041 1.083 0.044 1.075 0.102 0.877
41 1.151 0.068 1.033 0.079 1.021 0.150 0.942 0.066 0.899 0.076 0.865 0.139 0.654
42 1.300 0.123 1.213 0.143 1.185 0.227 1.068 0.117 0.970 0.137 0.898 0.207 0.630
43 1.346 0.138 1.255 0.154 1.231 0.250 1.092 0.131 0.983 0.147 0.923 0.226 0.611
44 1.156 0.070 1.215 0.084 1.197 0.194 1.053 0.068 1.077 0.082 1.029 0.179 0.677
45 1.159 0.071 0.978 0.084 0.965 0.157 0.887 0.069 0.838 0.081 0.798 0.145 0.586
46 1.133 0.060 1.359 0.069 1.347 0.184 1.180 0.059 1.239 0.067 1.210 0.171 0.821
47 1.278 0.115 1.253 0.130 1.233 0.212 1.116 0.111 1.025 0.124 0.974 0.195 0.705
48 1.300 0.123 1.025 0.142 1.003 0.198 0.937 0.117 0.784 0.134 0.723 0.180 0.559
49 1.105 0.049 1.363 0.060 1.348 0.195 1.155 0.048 1.266 0.059 1.228 0.180 0.776
50 1.213 0.092 1.216 0.110 1.192 0.197 1.075 0.089 1.034 0.106 0.973 0.181 0.694
51 1.086 0.040 1.097 0.044 1.092 0.093 1.037 0.040 1.017 0.044 1.004 0.089 0.855
52 1.275 0.114 1.152 0.138 1.121 0.221 1.013 0.109 0.926 0.132 0.844 0.200 0.590
53 1.178 0.079 1.053 0.089 1.041 0.152 0.970 0.076 0.898 0.086 0.864 0.141 0.677
54 1.314 0.128 1.150 0.147 1.124 0.216 1.033 0.121 0.899 0.140 0.831 0.196 0.619
55 1.152 0.068 1.252 0.076 1.241 0.150 1.143 0.067 1.116 0.075 1.089 0.141 0.851
56 1.204 0.089 1.234 0.107 1.210 0.222 1.053 0.086 1.059 0.103 0.996 0.202 0.626
57 1.277 0.115 1.033 0.135 1.010 0.205 0.928 0.109 0.807 0.128 0.743 0.185 0.538
58 1.115 0.053 1.250 0.059 1.242 0.151 1.120 0.052 1.145 0.058 1.125 0.142 0.825
59 1.182 0.080 1.291 0.098 1.266 0.206 1.114 0.078 1.132 0.095 1.070 0.189 0.715
60 1.107 0.050 1.163 0.059 1.151 0.154 1.035 0.049 1.064 0.058 1.034 0.144 0.736
61 0.788 -0.126 0.906 -0.156 0.930 -0.078 0.867 -0.136 1.171 -0.168 1.252 -0.081 1.027
62 1.135 0.061 0.698 0.065 0.695 0.091 0.675 0.059 0.578 0.062 0.568 0.086 0.500
63 0.784 -0.129 0.719 -0.134 0.722 -0.138 0.724 -0.143 0.995 -0.150 1.012 -0.153 1.019
64 0.985 -0.008 0.719 -0.013 0.722 0.028 0.693 -0.008 0.734 -0.013 0.748 0.028 0.637
65 0.891 -0.059 0.781 -0.072 0.790 -0.035 0.763 -0.062 0.903 -0.075 0.937 -0.036 0.835
66 0.805 -0.114 0.979 -0.144 1.005 -0.049 0.922 -0.122 1.216 -0.153 1.298 -0.051 1.022
67 1.136 0.062 0.558 0.067 0.555 0.091 0.541 0.059 0.439 0.064 0.424 0.084 0.368
68 0.937 -0.033 0.613 -0.039 0.617 -0.016 0.604 -0.034 0.680 -0.040 0.697 -0.017 0.637
69 0.869 -0.073 0.807 -0.100 0.828 -0.004 0.755 -0.076 0.957 -0.105 1.032 -0.004 0.762
70 0.605 -0.286 0.898 -0.227 0.857 -0.326 0.926 -0.345 1.540 -0.279 1.391 -0.398 1.659
71 0.792 -0.124 0.813 -0.144 0.828 -0.095 0.793 -0.134 1.074 -0.157 1.130 -0.102 0.991
72 1.101 0.047 0.531 0.047 0.532 0.047 0.531 0.045 0.440 0.045 0.441 0.045 0.440
73 0.827 -0.100 0.898 -0.111 0.907 -0.058 0.863 -0.106 1.104 -0.118 1.136 -0.060 0.981
74 0.882 -0.065 0.658 -0.073 0.663 -0.060 0.656 -0.068 0.792 -0.077 0.814 -0.063 0.781
75 0.852 -0.084 0.703 -0.092 0.709 -0.080 0.701 -0.089 0.878 -0.099 0.901 -0.085 0.868
76 0.683 -0.210 0.955 -0.267 1.000 -0.177 0.930 -0.238 1.407 -0.298 1.553 -0.197 1.306
77 0.781 -0.132 0.736 -0.142 0.743 -0.130 0.735 -0.146 1.018 -0.158 1.047 -0.143 1.011
78 0.786 -0.128 0.895 -0.153 0.914 -0.113 0.882 -0.139 1.164 -0.166 1.233 -0.120 1.117
79 0.811 -0.111 0.917 -0.128 0.931 -0.077 0.890 -0.118 1.147 -0.136 1.195 -0.081 1.049
80 0.943 -0.030 0.690 -0.037 0.695 -0.034 0.693 -0.030 0.751 -0.038 0.770 -0.035 0.763
81 0.830 -0.097 0.674 -0.113 0.684 -0.078 0.662 -0.105 0.880 -0.123 0.922 -0.083 0.825
82 0.788 -0.126 0.535 -0.142 0.542 -0.123 0.533 -0.145 0.816 -0.162 0.854 -0.141 0.806
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Table A.5: Generalized Poisson model - estimation results for Slovenian texts

1-displaced GP size-biased GP

No. d λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF

83 0.838 -0.093 0.845 -0.110 0.859 -0.051 0.813 -0.098 1.038 -0.117 1.086 -0.053 0.917
84 0.881 -0.065 0.734 -0.067 0.735 -0.062 0.731 -0.068 0.869 -0.071 0.874 -0.064 0.858
85 0.769 -0.140 0.916 -0.163 0.934 -0.113 0.894 -0.153 1.211 -0.178 1.275 -0.121 1.129
86 0.819 -0.105 0.860 -0.129 0.878 -0.064 0.828 -0.112 1.079 -0.138 1.143 -0.067 0.959
87 0.851 -0.084 0.704 -0.090 0.708 -0.080 0.701 -0.090 0.879 -0.096 0.896 -0.085 0.868
88 0.866 -0.074 0.834 -0.095 0.850 -0.018 0.790 -0.078 0.987 -0.100 1.043 -0.018 0.825
89 0.664 -0.227 1.104 -0.199 1.078 -0.309 1.177 -0.255 1.586 -0.223 1.506 -0.355 1.836
90 0.927 -0.039 0.903 -0.047 0.911 0.017 0.855 -0.040 0.982 -0.048 1.007 0.017 0.821
91 1.019 0.010 0.841 0.010 0.841 0.043 0.813 0.009 0.822 0.010 0.822 0.042 0.729
92 0.980 -0.010 0.739 -0.012 0.740 0.008 0.725 -0.010 0.759 -0.012 0.763 0.008 0.709
93 1.037 0.018 0.750 0.020 0.748 0.060 0.718 0.018 0.714 0.020 0.709 0.057 0.602
94 0.986 -0.007 0.784 -0.009 0.786 0.041 0.747 -0.007 0.799 -0.009 0.804 0.039 0.667
95 0.946 -0.028 0.766 -0.029 0.766 -0.016 0.757 -0.029 0.823 -0.030 0.826 -0.016 0.790
96 1.159 0.071 0.774 0.084 0.763 0.139 0.717 0.068 0.636 0.081 0.598 0.127 0.454
97 1.028 0.014 0.820 0.015 0.819 0.051 0.788 0.013 0.793 0.014 0.790 0.049 0.688
98 0.959 -0.021 0.834 -0.025 0.838 0.035 0.788 -0.022 0.877 -0.026 0.889 0.034 0.719
99 0.984 -0.008 0.842 -0.010 0.843 0.042 0.800 -0.008 0.858 -0.010 0.863 0.041 0.719

100 1.030 0.015 0.744 0.017 0.742 0.061 0.709 0.015 0.714 0.016 0.709 0.059 0.590
101 1.031 0.015 0.805 0.018 0.803 0.083 0.750 0.015 0.775 0.018 0.767 0.078 0.590
102 1.048 0.023 0.822 0.028 0.818 0.094 0.762 0.023 0.776 0.028 0.762 0.089 0.580
103 1.006 0.003 0.830 0.003 0.830 0.053 0.789 0.003 0.825 0.003 0.825 0.051 0.685
104 1.109 0.050 0.765 0.059 0.758 0.110 0.717 0.049 0.666 0.057 0.642 0.102 0.507
105 1.035 0.017 0.823 0.019 0.822 0.063 0.785 0.017 0.789 0.019 0.784 0.061 0.662
106 1.092 0.043 0.777 0.048 0.773 0.081 0.746 0.042 0.692 0.046 0.679 0.077 0.588
107 1.099 0.046 0.769 0.054 0.763 0.103 0.723 0.045 0.678 0.053 0.656 0.097 0.524
108 1.087 0.041 0.829 0.043 0.827 0.071 0.803 0.040 0.749 0.042 0.742 0.068 0.664
109 0.999 -0.001 0.956 -0.001 0.956 0.029 0.928 -0.001 0.957 -0.001 0.958 0.029 0.870
110 1.006 0.003 0.981 0.003 0.980 0.052 0.932 0.003 0.975 0.003 0.974 0.051 0.829
111 1.008 0.004 0.893 0.004 0.893 0.041 0.860 0.004 0.885 0.004 0.885 0.040 0.778
112 1.041 0.020 0.801 0.022 0.799 0.063 0.766 0.020 0.761 0.022 0.754 0.060 0.643
113 1.032 0.016 0.883 0.017 0.882 0.051 0.852 0.016 0.852 0.017 0.848 0.049 0.753
114 1.014 0.007 0.834 0.007 0.834 0.032 0.813 0.007 0.820 0.007 0.819 0.031 0.750
115 1.086 0.040 0.920 0.046 0.914 0.099 0.864 0.039 0.840 0.045 0.823 0.093 0.672
116 1.083 0.039 0.812 0.042 0.810 0.066 0.789 0.038 0.736 0.041 0.728 0.064 0.659
117 1.044 0.021 0.887 0.023 0.885 0.058 0.853 0.021 0.845 0.023 0.839 0.056 0.739
118 0.995 -0.003 0.970 -0.003 0.970 0.027 0.941 -0.003 0.975 -0.003 0.976 0.026 0.888
119 0.996 -0.002 0.829 -0.002 0.829 0.012 0.817 -0.002 0.832 -0.002 0.833 0.012 0.794
120 1.143 0.065 0.806 0.069 0.802 0.079 0.793 0.062 0.679 0.066 0.668 0.076 0.639
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Table A.6: Cohen-Poisson model - estimation results for Slovenian texts

1-displaced CP size-biased CP

No. d α̂MM θ̂MM α̂ML θ̂ML α̂FF θ̂FF α̂MM θ̂MM α̂ML θ̂ML

1 1.051 0.068 0.900 0.119 0.919 0.104 0.914 ∅ 0.925 ∅ 0.969
2 0.999 ∅ 0.897 0.004 0.900 ∅ 0.898 0.004 0.897 0.002 0.898
3 0.994 ∅ 0.907 0.067 0.934 0.051 0.929 0.019 0.903 ∅ 0.955
4 1.088 0.117 0.896 0.159 0.912 0.149 0.908 ∅ 0.941 ∅ 0.988
5 0.996 ∅ 0.816 0.050 0.836 0.041 0.833 0.014 0.813 ∅ 0.853
6 1.054 0.072 0.883 0.090 0.890 0.085 0.888 ∅ 0.910 ∅ 0.932
7 1.043 0.058 0.881 0.074 0.887 0.071 0.886 ∅ 0.902 ∅ 0.922
8 1.070 0.093 0.892 0.136 0.907 0.120 0.902 ∅ 0.927 ∅ 0.965
9 0.987 ∅ 0.807 0.064 0.837 0.048 0.831 0.038 0.800 ∅ 0.855

10 1.128 0.167 0.935 0.102 0.911 0.125 0.919 ∅ 1.000 ∅ 0.986
11 1.095 0.128 0.766 0.120 0.764 0.133 0.768 ∅ 0.815 ∅ 0.834
12 0.969 ∅ 0.894 0.032 0.922 0.014 0.916 0.083 0.879 ∅ 0.923
13 1.019 0.025 0.832 0.088 0.855 0.074 0.850 ∅ 0.841 ∅ 0.887
14 0.970 ∅ 0.801 ∅ 0.810 ∅ 0.810 0.082 0.786 0.042 0.801
15 1.028 0.037 0.822 0.044 0.825 0.045 0.825 ∅ 0.836 ∅ 0.847
16 1.026 0.034 0.838 0.107 0.864 0.089 0.858 ∅ 0.851 ∅ 0.903
17 1.069 0.092 0.841 0.147 0.861 0.130 0.855 ∅ 0.876 ∅ 0.923
18 1.109 0.146 0.804 0.139 0.802 0.147 0.804 ∅ 0.860 ∅ 0.880
19 1.053 0.072 0.784 0.112 0.798 0.103 0.795 ∅ 0.810 ∅ 0.846
20 1.130 0.172 0.826 0.161 0.822 0.167 0.825 ∅ 0.894 ∅ 0.913
21 1.026 0.035 0.852 0.033 0.852 0.034 0.852 ∅ 0.865 ∅ 0.869
22 1.081 0.108 0.841 0.095 0.836 0.105 0.839 ∅ 0.882 ∅ 0.893
23 1.041 0.054 0.886 0.070 0.892 0.070 0.892 ∅ 0.907 ∅ 0.928
24 0.985 ∅ 0.974 0.085 1.013 0.064 1.005 0.045 0.965 ∅ 1.039
25 1.046 0.059 0.944 0.026 0.932 0.047 0.940 ∅ 0.966 ∅ 0.964
26 1.091 0.120 0.939 0.086 0.927 0.100 0.932 ∅ 0.986 ∅ 0.985
27 1.150 0.193 0.903 0.036 0.845 0.087 0.864 ∅ 0.980 ∅ 0.908
28 1.067 0.088 0.882 0.123 0.895 0.113 0.892 ∅ 0.915 ∅ 0.951
29 0.998 ∅ 0.783 ∅ 0.773 ∅ 0.777 0.013 0.781 0.052 0.767
30 1.083 0.108 0.884 0.124 0.890 0.122 0.889 ∅ 0.925 ∅ 0.954
31 1.132 0.184 1.384 0.317 1.427 0.301 1.423 ∅ 1.451 ∅ 1.610
32 1.251 0.334 1.280 0.337 1.281 0.336 1.281 ∅ 1.410 ∅ 1.495
33 1.200 0.281 1.433 0.221 1.414 0.241 1.420 ∅ 1.536 ∅ 1.566
34 1.170 0.231 1.304 0.330 1.337 0.306 1.331 ∅ 1.391 ∅ 1.523
35 1.264 0.382 1.554 0.325 1.539 0.361 1.547 ∅ 1.690 ∅ 1.775
36 1.208 0.273 1.213 0.233 1.200 0.256 1.207 ∅ 1.320 ∅ 1.363
37 1.177 0.238 1.290 0.295 1.310 0.286 1.307 ∅ 1.381 ∅ 1.485
38 1.242 0.346 1.517 0.287 1.498 0.300 1.502 ∅ 1.641 ∅ 1.687
39 1.284 0.407 1.536 0.308 1.506 0.334 1.513 ∅ 1.684 ∅ 1.722
40 1.090 0.122 1.262 0.186 1.283 0.163 1.276 ∅ 1.307 ∅ 1.372
41 1.151 0.201 1.181 0.249 1.198 0.241 1.195 ∅ 1.258 ∅ 1.341
42 1.300 0.426 1.524 0.329 1.496 0.363 1.504 ∅ 1.680 ∅ 1.735
43 1.346 0.508 1.619 0.403 1.587 0.404 1.587 ∅ 1.800 ∅ 1.845
44 1.156 0.216 1.382 0.320 1.415 0.306 1.412 ∅ 1.461 ∅ 1.603
45 1.159 0.208 1.129 0.267 1.150 0.259 1.147 ∅ 1.211 ∅ 1.304
46 1.133 0.192 1.510 0.322 1.548 0.281 1.539 ∅ 1.577 ∅ 1.710
47 1.278 0.402 1.549 0.304 1.520 0.333 1.527 ∅ 1.694 ∅ 1.736
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Table A.6: Cohen-Poisson model - estimation results for Slovenian texts

1-displaced CP size-biased CP

No. d α̂MM θ̂MM α̂ML θ̂ML α̂FF θ̂FF α̂MM θ̂MM α̂ML θ̂ML

48 1.300 0.398 1.309 0.276 1.270 0.322 1.283 ∅ 1.466 ∅ 1.486
49 1.105 0.151 1.484 0.333 1.540 0.300 1.533 ∅ 1.537 ∅ 1.717
50 1.213 0.298 1.441 0.279 1.437 0.309 1.445 ∅ 1.551 ∅ 1.638
51 1.086 0.114 1.184 0.142 1.194 0.143 1.195 ∅ 1.227 ∅ 1.277
52 1.275 0.381 1.431 0.310 1.411 0.356 1.423 ∅ 1.574 ∅ 1.650
53 1.178 0.237 1.229 0.237 1.229 0.241 1.230 ∅ 1.320 ∅ 1.376
54 1.314 0.438 1.466 0.298 1.424 0.345 1.436 ∅ 1.631 ∅ 1.655
55 1.152 0.214 1.418 0.219 1.420 0.226 1.422 ∅ 1.495 ∅ 1.558
56 1.204 0.287 1.452 0.371 1.478 0.355 1.474 ∅ 1.556 ∅ 1.700
57 1.277 0.366 1.297 0.306 1.278 0.334 1.286 ∅ 1.441 ∅ 1.499
58 1.115 0.157 1.375 0.263 1.408 0.230 1.400 ∅ 1.432 ∅ 1.539
59 1.182 0.259 1.491 0.318 1.510 0.322 1.511 ∅ 1.583 ∅ 1.712
60 1.107 0.145 1.275 0.258 1.313 0.241 1.309 ∅ 1.329 ∅ 1.455
61 0.788 ∅ 0.688 ∅ 0.784 ∅ 0.755 0.484 0.588 0.272 0.696
62 1.135 0.173 0.805 0.174 0.806 0.172 0.805 ∅ 0.873 ∅ 0.896
63 0.784 ∅ 0.512 ∅ 0.546 ∅ 0.536 0.531 0.413 0.482 0.439
64 0.985 ∅ 0.702 0.084 0.743 0.055 0.733 0.061 0.692 ∅ 0.758
65 0.891 ∅ 0.676 ∅ 0.728 ∅ 0.713 0.294 0.621 0.142 0.684
66 0.805 ∅ 0.772 0.003 0.879 ∅ 0.848 0.447 0.679 0.177 0.809
67 1.136 0.179 0.656 0.185 0.658 0.193 0.661 ∅ 0.723 ∅ 0.754
68 0.937 ∅ 0.559 ∅ 0.590 ∅ 0.582 0.192 0.526 0.078 0.567
69 0.869 ∅ 0.679 0.083 0.781 ∅ 0.750 0.340 0.614 0.015 0.747
70 0.605 ∅ 0.456 ∅ 0.473 ∅ 0.468 0.773 0.297 0.772 0.298
71 0.792 ∅ 0.609 ∅ 0.681 ∅ 0.659 0.488 0.512 0.339 0.587
72 1.101 0.138 0.603 0.076 0.582 0.107 0.593 ∅ 0.652 ∅ 0.638
73 0.827 ∅ 0.724 ∅ 0.804 ∅ 0.779 0.406 0.642 0.210 0.734
74 0.882 ∅ 0.553 ∅ 0.583 ∅ 0.574 0.330 0.494 0.254 0.526
75 0.852 ∅ 0.566 ∅ 0.602 ∅ 0.592 0.391 0.494 0.313 0.529
76 0.683 ∅ 0.607 ∅ 0.706 ∅ 0.675 0.652 0.467 0.514 0.557
77 0.781 ∅ 0.526 ∅ 0.571 ∅ 0.557 0.530 0.425 0.455 0.464
78 0.786 ∅ 0.670 ∅ 0.742 ∅ 0.720 0.506 0.565 0.369 0.638
79 0.811 ∅ 0.723 ∅ 0.798 ∅ 0.777 0.439 0.633 0.268 0.718
80 0.943 ∅ 0.636 ∅ 0.647 ∅ 0.646 0.183 0.603 0.145 0.618
81 0.830 ∅ 0.520 ∅ 0.574 ∅ 0.558 0.440 0.441 0.315 0.497
82 0.788 ∅ 0.351 ∅ 0.383 ∅ 0.372 0.589 0.259 0.534 0.284
83 0.838 ∅ 0.686 ∅ 0.763 ∅ 0.740 0.392 0.609 0.193 0.699
84 0.881 ∅ 0.625 ∅ 0.657 ∅ 0.646 0.313 0.566 0.242 0.597
85 0.769 ∅ 0.674 ∅ 0.754 ∅ 0.730 0.520 0.566 0.368 0.648
86 0.819 ∅ 0.678 ∅ 0.760 ∅ 0.736 0.435 0.590 0.236 0.685
87 0.851 ∅ 0.568 ∅ 0.601 ∅ 0.592 0.386 0.497 0.313 0.529
88 0.866 ∅ 0.703 0.041 0.790 ∅ 0.764 0.338 0.637 0.072 0.749
89 0.664 ∅ 0.709 ∅ 0.722 ∅ 0.722 0.661 0.559 0.673 0.550
90 0.927 ∅ 0.830 0.084 0.900 0.029 0.880 0.195 0.793 ∅ 0.895
91 1.019 0.024 0.858 0.082 0.879 0.075 0.877 ∅ 0.867 ∅ 0.915
92 0.980 ∅ 0.720 0.029 0.741 0.016 0.737 0.059 0.710 ∅ 0.744
93 1.037 0.050 0.781 0.134 0.811 0.111 0.803 ∅ 0.799 ∅ 0.859
94 0.986 ∅ 0.770 0.108 0.817 0.075 0.805 0.043 0.763 ∅ 0.842
95 0.946 ∅ 0.716 ∅ 0.742 ∅ 0.734 0.148 0.689 0.068 0.720
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Table A.6: Cohen-Poisson model - estimation results for Slovenian texts

1-displaced CP size-biased CP

No. d α̂MM θ̂MM α̂ML θ̂ML α̂FF θ̂FF α̂MM θ̂MM α̂ML θ̂ML

96 1.159 0.205 0.908 0.258 0.927 0.249 0.924 ∅ 0.990 ∅ 1.068
97 1.028 0.036 0.844 0.106 0.869 0.091 0.864 ∅ 0.858 ∅ 0.910
98 0.959 ∅ 0.796 0.111 0.857 0.063 0.840 0.111 0.775 ∅ 0.871
99 0.984 ∅ 0.827 0.111 0.875 0.074 0.862 0.045 0.819 ∅ 0.899

100 1.030 0.041 0.769 0.143 0.805 0.115 0.796 ∅ 0.784 ∅ 0.853
101 1.031 0.041 0.833 0.183 0.884 0.148 0.872 ∅ 0.848 ∅ 0.951
102 1.048 0.064 0.865 0.198 0.913 0.167 0.902 ∅ 0.888 ∅ 0.993
103 1.006 0.007 0.835 0.128 0.879 0.094 0.867 ∅ 0.838 ∅ 0.915
104 1.109 0.144 0.858 0.214 0.883 0.199 0.878 ∅ 0.913 ∅ 0.987
105 1.035 0.047 0.855 0.130 0.885 0.112 0.878 ∅ 0.872 ∅ 0.937
106 1.092 0.122 0.856 0.151 0.867 0.147 0.865 ∅ 0.903 ∅ 0.943
107 1.099 0.131 0.854 0.199 0.878 0.187 0.875 ∅ 0.904 ∅ 0.977
108 1.087 0.111 0.905 0.120 0.909 0.124 0.910 ∅ 0.948 ∅ 0.976
109 0.999 ∅ 0.954 0.056 0.976 0.047 0.973 0.005 0.954 ∅ 0.997
110 1.006 0.008 0.987 0.103 1.021 0.085 1.015 ∅ 0.989 ∅ 1.061
111 1.008 0.010 0.901 0.089 0.929 0.071 0.923 ∅ 0.904 ∅ 0.959
112 1.041 0.055 0.837 0.129 0.864 0.113 0.858 ∅ 0.858 ∅ 0.916
113 1.032 0.043 0.913 0.097 0.933 0.086 0.929 ∅ 0.930 ∅ 0.974
114 1.014 0.019 0.847 0.065 0.864 0.056 0.860 ∅ 0.854 ∅ 0.888
115 1.086 0.113 1.000 0.176 1.023 0.165 1.019 ∅ 1.044 ∅ 1.112
116 1.083 0.110 0.885 0.116 0.888 0.117 0.888 ∅ 0.927 ∅ 0.950
117 1.044 0.058 0.927 0.106 0.944 0.099 0.942 ∅ 0.949 ∅ 0.995
118 0.995 ∅ 0.964 0.052 0.986 0.043 0.983 0.016 0.961 ∅ 1.006
119 0.996 ∅ 0.825 0.026 0.837 0.021 0.835 0.011 0.823 ∅ 0.845
120 1.143 0.186 0.930 0.109 0.902 0.139 0.912 ∅ 1.004 ∅ 0.987

A.2 Russian Texts

Table A.7: Sources of the Russian texts

Text No. Author Title Year

1 Achmatova, Anna Andreevna Letter to Blok 1914
2 Achmatova, Anna Andreevna Letter to Brodsky 1965
3 Achmatova, Anna Andreevna Letter to Chardžiev 1932

4-6 Achmatova, Anna Andreevna Letter to Chardžiev 1933
7-8 Achmatova, Anna Andreevna Letter to Chardžiev 1942

9-13 Achmatova, Anna Andreevna Letter to Chardžiev 1943
14 Achmatova, Anna Andreevna Letter to Chardžiev 1954
15 Achmatova, Anna Andreevna Letter to Chardžiev 1965
16 Achmatova, Anna Andreevna Letter to Čulkov 1914
17 Achmatova, Anna Andreevna Letter to Čulkov 1930

18-19 Achmatova, Anna Andreevna Letter to Gumilev 1914
20 Achmatova, Anna Andreevna Letter to Maksimov 1963
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Table A.7: Sources of the Russian texts

Text No. Author Title Year

21 Achmatova, Anna Andreevna Letter to Mandeľstam 1935
22 Achmatova, Anna Andreevna Letter to Najman 1960

23-25 Achmatova, Anna Andreevna Letter to Štejn 1906
26-30 Achmatova, Anna Andreevna Letter to Štejn 1907

31 Journal Novaja Gazeta Čistyj užas 2002
32 Journal Novaja Gazeta Ded pogibaet 2002
33 Journal Novaja Gazeta God kreona 2002
34 Journal Novaja Gazeta Ich edjat, a oni gljadjat 2002
35 Journal Novaja Gazeta Igra bez pravil 2002
36 Journal Novaja Gazeta Istorija ledjanoj 2002
37 Journal Novaja Gazeta Kurortnaja ljubov 2002
38 Journal Novaja Gazeta Licedej, kak on est 2002
39 Journal Novaja Gazeta Malčiki napravo, devočki nalevo 2002
40 Journal Novaja Gazeta Molodežnyj gus 2002
41 Journal Novaja Gazeta Nenormativnaja premera 2002
42 Journal Novaja Gazeta Oblomovskij štolc 2002
43 Journal Novaja Gazeta Očen smešnoe 2002
44 Journal Novaja Gazeta Pervaja ledi sssr 2002
45 Journal Novaja Gazeta Pervaja vysadka 2002
46 Journal Novaja Gazeta Planeta ljubvi 2002
47 Journal Novaja Gazeta Povest o poterjannom vremeni 2002
48 Journal Novaja Gazeta Premera v teatre 2002
49 Journal Novaja Gazeta Puškin i zlaja baba 2002
50 Journal Novaja Gazeta Putešestvie Diletantov 2002
51 Journal Novaja Gazeta Reinkarnacija revizora 2002
52 Journal Novaja Gazeta Rekonstrukcija ljubvi 2002
53 Journal Novaja Gazeta Semero svjatych 2002
54 Journal Novaja Gazeta Skazka o ščaste 2002
55 Journal Novaja Gazeta Smert todero 2002
56 Journal Novaja Gazeta Šou kak putešestvie 2002
57 Journal Novaja Gazeta Sovremmenyj teatr 2002
58 Journal Novaja Gazeta Spoem tolstogo 2002
59 Journal Novaja Gazeta Teatr ermitaž v poiskah odessy 2002
60 Journal Novaja Gazeta Ustalost kultury i golyj zad 2002
61 Nekrasov, Nikolaj Alekseevič Ach byli ščastlivye gody 1851
62 Nekrasov, Nikolaj Alekseevič Blazen nezlobivyj poet 1852
63 Nekrasov, Nikolaj Alekseevič Činovnik 1844
64 Nekrasov, Nikolaj Alekseevič Da, naša žizn tekla mjatežno 1850
65 Nekrasov, Nikolaj Alekseevič Edu li nočju po ulice temnoj 1847
66 Nekrasov, Nikolaj Alekseevič Esli, mušimyj ctrastju mjatežnoj 1847
67 Nekrasov, Nikolaj Alekseevič Filantrop 1853
68 Nekrasov, Nikolaj Alekseevič Ja za to gluboko prezuraju sebja 1845
69 Nekrasov, Nikolaj Alekseevič Kogda iz mraka zabluzdenija 1846
70 Nekrasov, Nikolaj Alekseevič Kolybelnaja pesnja 1845
71 Nekrasov, Nikolaj Alekseevič Maša 1855
72 Nekrasov, Nikolaj Alekseevič Moe razočarovane 1851
73 Nekrasov, Nikolaj Alekseevič Muza 1852
74 Nekrasov, Nikolaj Alekseevič Nesžataja polosa 1854
75 Nekrasov, Nikolaj Alekseevič O pisma ženšiny 1852
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Table A.7: Sources of the Russian texts

Text No. Author Title Year

76 Nekrasov, Nikolaj Alekseevič Ogorodnik 1846
77 Nekrasov, Nikolaj Alekseevič Otradno videt, čto nachodit 1845
78 Nekrasov, Nikolaj Alekseevič Otryvok 1844
79 Nekrasov, Nikolaj Alekseevič Pjanica 1845
80 Nekrasov, Nikolaj Alekseevič Poražena poterej nevozvgatnoj 1848
81 Nekrasov, Nikolaj Alekseevič Priznanija truzenika 1854
82 Nekrasov, Nikolaj Alekseevič Rodina 1846
83 Nekrasov, Nikolaj Alekseevič Sovremennaja oda 1846
84 Nekrasov, Nikolaj Alekseevič Stiski! Stiski! 1845
85 Nekrasov, Nikolaj Alekseevič Svadba 1855
86 Nekrasov, Nikolaj Alekseevič Tak eto šutka 1850
87 Nekrasov, Nikolaj Alekseevič Trojka 1846
88 Nekrasov, Nikolaj Alekseevič V doroge 1845
89 Nekrasov, Nikolaj Alekseevič V nevedomoj gluši 1846
90 Nekrasov, Nikolaj Alekseevič Zastenčivost 1852
91 Čechov, Anton Pavlovič Chameleon 1884
92 Čechov, Anton Pavlovič Chirurgija 1884
93 Čechov, Anton Pavlovič Dačnica 1884
94 Čechov, Anton Pavlovič Dvoe v odnom 1883
95 Čechov, Anton Pavlovič Edinstvennoe sredstvo 1883
96 Čechov, Anton Pavlovič Ekzamen na čin 1884
97 Čechov, Anton Pavlovič Idillija 1884
98 Čechov, Anton Pavlovič Ispoved 1883
99 Čechov, Anton Pavlovič Iz ognja da v polymja 1884

100 Čechov, Anton Pavlovič Na gvozde 1883
101 Čechov, Anton Pavlovič Na magnetičeskom seanse 1883
102 Čechov, Anton Pavlovič Nadležasie mery 1884
103 Čechov, Anton Pavlovič Nevidimye miru slezy 1884
104 Čechov, Anton Pavlovič Papaša 1880
105 Čechov, Anton Pavlovič Pered svadboj 1880
106 Čechov, Anton Pavlovič Petrov den 1881
107 Čechov, Anton Pavlovič Po amerikanski 1880
108 Čechov, Anton Pavlovič Radost 1883
109 Čechov, Anton Pavlovič Rjaženye 1883
110 Čechov, Anton Pavlovič Russkij ugol 1884
111 Čechov, Anton Pavlovič Salon de varete 1881
112 Čechov, Anton Pavlovič Sovet 1883
113 Čechov, Anton Pavlovič Sovremennye molitvy 1883
114 Čechov, Anton Pavlovič Sud 1881
115 Čechov, Anton Pavlovič Temnoju nočju 1883
116 Čechov, Anton Pavlovič Temperamenty 1881
117 Čechov, Anton Pavlovič Ušla 1883
118 Čechov, Anton Pavlovič V cirulne 1883
119 Čechov, Anton Pavlovič V vagone 1881
120 Čechov, Anton Pavlovič Za jabločki 1880
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Table A.8: Russian texts - frequency distribution and characteristic statistical measures

Text Frequency class

No. f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 TL x̄ s2 d

1 34 27 14 6 2 1 0 0 0 0 84 2.024 1.277 1.247
2 31 54 19 21 4 0 1 0 0 0 130 2.362 1.380 1.013
3 52 44 24 17 7 0 0 0 0 0 144 2.188 1.412 1.189
4 24 19 16 5 0 1 0 0 0 0 65 2.092 1.179 1.079
5 23 26 17 7 0 0 0 0 0 0 73 2.110 0.932 0.840
6 19 14 13 7 1 0 0 0 0 0 54 2.204 1.260 1.046
7 29 14 11 4 0 0 0 0 0 0 58 1.828 0.952 1.151
8 25 13 8 12 3 2 0 0 0 0 63 2.381 2.111 1.528
9 50 36 40 18 3 4 0 0 0 0 151 2.338 1.572 1.175

10 83 82 51 27 9 0 0 0 0 0 252 2.194 1.249 1.046
11 31 28 21 4 3 0 0 0 0 0 87 2.080 1.098 1.016
12 18 17 13 11 4 1 0 0 0 0 64 2.516 1.746 1.152
13 14 11 16 4 1 1 1 0 0 0 48 2.458 1.828 1.253
14 13 27 15 8 1 0 0 1 0 0 65 2.415 1.465 1.035
15 24 16 8 8 0 0 0 0 0 0 56 2.000 1.164 1.164
16 77 54 50 18 2 0 0 0 0 0 201 2.075 1.079 1.004
17 19 16 18 6 4 0 0 0 0 0 63 2.365 1.429 1.047
18 32 52 30 12 3 0 0 0 0 0 129 2.240 1.012 0.816
19 41 57 39 11 2 0 0 0 0 0 150 2.173 0.923 0.786
20 24 21 14 14 2 0 0 0 0 0 75 2.320 1.410 1.068
21 33 26 18 9 2 1 0 0 0 0 89 2.146 1.353 1.181
22 145 154 103 52 25 6 3 0 0 0 488 2.361 1.619 1.190
23 149 96 71 22 4 1 0 0 0 0 343 1.948 1.050 1.108
24 106 100 64 25 6 3 0 0 0 0 304 2.125 1.212 1.077
25 94 89 40 28 7 1 2 0 0 0 261 2.142 1.422 1.246
26 58 42 22 5 2 0 0 0 0 0 129 1.845 0.898 1.062
27 69 63 41 19 4 1 1 0 0 0 198 2.157 1.310 1.133
28 156 139 86 38 14 4 0 0 0 0 437 2.146 1.318 1.150
29 129 113 75 32 16 1 0 0 0 0 366 2.169 1.319 1.128
30 87 106 49 35 14 5 0 0 0 0 296 2.318 1.533 1.163
31 124 132 101 69 37 13 5 1 1 0 483 2.654 2.169 1.311
32 135 147 131 81 31 7 2 1 0 0 535 2.551 1.694 1.092
33 127 166 106 69 28 11 2 2 0 0 511 2.523 1.803 1.184
34 105 114 110 66 33 11 5 0 0 0 444 2.687 1.958 1.161
35 125 135 136 80 29 9 4 1 0 0 519 2.617 1.785 1.104
36 119 123 109 80 42 10 1 1 0 0 485 2.674 1.914 1.143
37 87 122 79 34 21 5 0 0 0 0 348 2.411 1.476 1.046
38 124 127 78 55 21 5 4 0 0 0 414 2.403 1.752 1.249
39 131 160 159 59 27 10 2 1 0 0 549 2.515 1.586 1.047
40 80 86 73 50 23 7 1 0 0 0 320 2.609 1.812 1.126
41 115 112 82 56 33 10 4 0 1 0 413 2.593 2.140 1.343
42 117 139 121 67 20 9 6 0 0 0 479 2.551 1.746 1.125
43 110 137 106 68 34 9 3 0 1 1 469 2.640 1.996 1.217
44 164 176 158 94 55 19 2 1 0 0 669 2.656 1.939 1.170
45 139 128 109 63 27 10 3 0 0 0 479 2.484 1.811 1.220
46 145 144 118 64 34 12 1 1 0 0 519 2.505 1.826 1.213
47 175 178 145 107 47 17 5 0 1 0 675 2.630 2.002 1.229
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Table A.8: Russian texts - frequency distribution and characteristic statistical measures

Text Frequency class

No. f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 TL x̄ s2 d

48 120 133 104 51 32 9 5 0 0 0 454 2.535 1.887 1.229
49 172 186 163 78 22 8 3 1 0 0 633 2.420 1.538 1.083
50 110 128 110 67 37 17 0 0 1 0 470 2.681 1.970 1.172
51 95 103 127 86 36 12 4 1 0 0 464 2.832 1.937 1.057
52 230 272 192 127 53 23 3 1 0 0 901 2.542 1.802 1.169
53 208 229 195 123 64 20 2 0 1 0 842 2.620 1.863 1.150
54 82 104 86 30 16 6 0 0 0 0 324 2.420 1.458 1.027
55 149 156 137 82 36 12 5 0 0 0 577 2.577 1.845 1.170
56 90 101 89 51 22 6 0 0 0 0 359 2.532 1.607 1.049
57 208 233 196 109 44 14 4 0 0 0 808 2.512 1.670 1.104
58 190 201 181 114 48 16 5 1 0 0 756 2.606 1.852 1.154
59 128 113 107 53 20 9 1 1 1 0 433 2.460 1.828 1.252
60 170 169 109 78 43 14 7 0 0 0 590 2.534 2.052 1.338
61 25 39 20 9 1 0 0 0 0 0 94 2.170 0.938 0.802
62 43 71 22 16 5 0 0 0 0 0 157 2.166 1.088 0.933
63 395 307 196 98 17 0 1 0 0 0 1014 2.052 1.143 1.087
64 108 84 54 16 6 0 0 0 0 0 268 1.985 1.048 1.064
65 89 96 52 22 3 0 0 0 0 0 262 2.061 0.977 0.921
66 26 39 23 10 3 0 0 0 0 0 101 2.257 1.093 0.869
67 219 151 121 84 34 3 0 0 0 0 612 2.301 1.595 1.226
68 60 27 12 8 2 0 0 0 0 0 109 1.761 1.072 1.408
69 39 46 21 9 4 1 0 0 0 0 120 2.133 1.226 1.082
70 53 65 37 2 2 0 0 0 0 0 159 1.962 0.733 0.761
71 68 67 51 12 3 0 0 0 0 0 201 2.080 0.964 0.893
72 157 139 110 33 3 0 0 0 0 0 442 2.063 0.962 0.905
73 79 81 93 42 6 1 0 0 0 0 302 2.397 1.204 0.861
74 54 63 29 11 1 0 0 0 0 0 158 2.000 0.866 0.866
75 38 45 20 6 2 0 0 0 0 0 111 2.000 0.909 0.909
76 146 146 77 21 3 0 0 0 0 0 393 1.954 0.850 0.891
77 41 42 18 5 1 0 0 0 0 0 107 1.907 0.821 0.906
78 60 52 43 20 7 2 0 0 0 0 184 2.283 1.439 1.122
79 47 44 23 15 6 0 0 0 0 0 135 2.178 1.341 1.139
80 27 24 16 7 3 0 0 0 0 0 77 2.156 1.265 1.094
81 135 157 82 29 5 0 0 0 0 0 408 2.049 0.926 0.883
82 154 143 79 27 7 1 0 0 0 0 411 2.010 1.024 1.014
83 40 29 22 15 2 1 0 0 0 0 109 2.202 1.403 1.168
84 87 70 33 19 3 1 0 0 0 0 213 1.986 1.127 1.143
85 59 68 52 16 1 0 0 0 0 0 196 2.143 0.923 0.808
86 83 72 38 19 5 0 0 0 0 0 217 2.037 1.119 1.079
87 71 80 42 22 2 0 0 0 0 0 217 2.097 1.004 0.916
88 163 145 76 24 3 0 0 0 0 0 411 1.927 0.878 0.947
89 55 54 46 14 3 1 0 0 0 0 173 2.185 1.128 0.952
90 76 76 44 30 8 0 0 0 0 0 234 2.222 1.289 1.055
91 291 275 187 84 29 4 0 0 0 0 870 2.192 1.274 1.069
92 314 292 188 83 22 4 1 0 0 0 904 2.140 1.222 1.071
93 187 211 149 66 39 12 2 0 1 0 667 2.414 1.693 1.198
94 205 188 112 50 14 2 0 1 0 0 572 2.110 1.233 1.111
95 244 217 149 55 28 6 1 0 0 0 700 2.183 1.377 1.164
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Table A.8: Russian texts - frequency distribution and characteristic statistical measures

Text Frequency class

No. f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 TL x̄ s2 d

96 256 218 215 110 42 16 6 1 1 0 865 2.476 1.833 1.242
97 64 63 57 32 15 5 0 0 0 0 236 2.517 1.706 1.125
98 299 296 182 72 24 3 0 0 0 0 876 2.127 1.164 1.034
99 657 499 347 169 64 10 3 0 0 0 1749 2.157 1.400 1.210

100 115 152 86 38 12 4 1 0 0 0 408 2.255 1.286 1.025
101 201 186 152 53 26 5 0 0 0 0 623 2.249 1.351 1.082
102 261 247 194 121 42 11 3 0 0 0 879 2.410 1.618 1.148
103 452 425 308 132 38 6 0 1 0 0 1362 2.194 1.257 1.053
104 620 424 342 151 53 11 1 1 0 0 1603 2.148 1.401 1.220
105 520 460 266 89 37 14 1 0 0 0 1387 2.069 1.239 1.159
106 880 1021 788 357 72 33 0 2 1 0 3154 2.314 1.295 0.986
107 148 143 118 50 20 5 1 0 1 0 486 2.333 1.538 1.154
108 120 129 127 52 17 2 0 0 0 0 447 2.380 1.290 0.935
109 134 143 110 43 15 4 0 0 0 0 449 2.274 1.298 1.019
110 378 376 231 121 36 11 4 0 0 0 1157 2.231 1.411 1.147
111 269 302 205 84 26 12 2 0 0 0 900 2.267 1.359 1.073
112 146 112 66 34 11 3 0 0 0 0 372 2.089 1.326 1.218
113 97 96 74 44 5 4 0 1 0 0 321 2.318 1.436 1.090
114 334 332 229 97 32 7 1 0 0 0 1032 2.211 1.290 1.065
115 78 94 61 30 9 2 4 0 0 0 278 2.353 1.579 1.168
116 271 240 248 125 55 13 3 0 0 0 955 2.481 1.652 1.116
117 159 110 82 30 6 2 0 0 0 0 389 2.023 1.152 1.125
118 252 265 193 90 23 3 1 0 0 0 827 2.250 1.251 1.000
119 455 448 283 104 53 16 3 1 0 0 1363 2.205 1.425 1.182
120 530 566 365 180 64 12 7 0 0 0 1724 2.273 1.410 1.108

Table A.9: Singh-Poisson model - estimation results for Russian texts

1-displaced SP size-biased SP

No. d α̂MM θ̂MM α̂ML θ̂ML θ̂MM = θ̂ML

1 1.247 0.815 1.256 0.850 1.204 1.024
2 1.013 0.996 1.367 1.046 1.301 1.362
3 1.189 0.868 1.368 0.848 1.401 1.188
4 1.079 0.946 1.155 0.895 1.221 1.092
5 0.840 1.183 0.938 1.050 1.057 1.110
6 1.046 0.978 1.231 0.861 1.398 1.204
7 1.151 0.864 0.958 0.746 1.109 0.828
8 1.528 0.733 1.885 0.701 1.970 1.381
9 1.175 0.889 1.505 0.839 1.594 1.338

10 1.046 0.966 1.236 0.925 1.292 1.194
11 1.016 0.996 1.085 0.945 1.144 1.080
12 1.152 0.919 1.649 0.872 1.738 1.516
13 1.253 0.865 1.686 0.872 1.672 1.458
14 1.035 0.986 1.435 1.110 1.275 1.415
15 1.164 0.875 1.143 0.802 1.247 1.000
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Table A.9: Singh-Poisson model - estimation results for Russian texts

1-displaced SP size-biased SP

No. d α̂MM θ̂MM α̂ML θ̂ML θ̂MM = θ̂ML

16 1.004 1.001 1.074 0.870 1.236 1.075
17 1.047 0.978 1.395 0.891 1.532 1.365
18 0.816 1.181 1.050 1.127 1.101 1.240
19 0.786 1.229 0.955 1.118 1.049 1.173
20 1.068 0.961 1.374 0.872 1.514 1.320
21 1.181 0.872 1.314 0.850 1.349 1.146
22 1.190 0.879 1.548 0.903 1.507 1.361
23 1.108 0.900 1.052 0.832 1.139 0.948
24 1.077 0.938 1.199 0.926 1.215 1.125
25 1.246 0.826 1.383 0.881 1.296 1.142
26 1.062 0.940 0.899 0.910 0.929 0.845
27 1.133 0.901 1.284 0.901 1.283 1.157
28 1.150 0.886 1.293 0.886 1.294 1.146
29 1.128 0.903 1.294 0.881 1.327 1.169
30 1.163 0.892 1.477 0.934 1.411 1.318
31 1.311 0.843 1.962 0.876 1.889 1.654
32 1.092 0.945 1.641 0.916 1.693 1.551
33 1.184 0.893 1.704 0.935 1.628 1.523
34 1.161 0.914 1.845 0.903 1.868 1.687
35 1.104 0.941 1.719 0.916 1.765 1.617
36 1.143 0.922 1.815 0.891 1.880 1.674
37 1.046 0.970 1.454 0.985 1.432 1.411
38 1.249 0.851 1.649 0.878 1.598 1.403
39 1.047 0.971 1.560 0.959 1.581 1.515
40 1.126 0.929 1.732 0.901 1.786 1.609
41 1.343 0.824 1.933 0.854 1.867 1.593
42 1.125 0.926 1.674 0.932 1.664 1.551
43 1.217 0.884 1.854 0.920 1.781 1.640
44 1.170 0.908 1.825 0.896 1.849 1.656
45 1.220 0.872 1.702 0.866 1.715 1.484
46 1.213 0.877 1.716 0.880 1.711 1.505
47 1.229 0.878 1.856 0.878 1.856 1.630
48 1.229 0.871 1.762 0.898 1.709 1.535
49 1.083 0.946 1.502 0.931 1.526 1.420
50 1.172 0.908 1.851 0.909 1.849 1.681
51 1.057 0.971 1.887 0.921 1.988 1.832
52 1.169 0.902 1.709 0.914 1.687 1.542
53 1.150 0.916 1.768 0.903 1.793 1.620
54 1.027 0.984 1.443 0.973 1.459 1.420
55 1.170 0.904 1.745 0.896 1.761 1.577
56 1.049 0.971 1.578 0.927 1.653 1.532
57 1.104 0.936 1.615 0.921 1.643 1.512
58 1.154 0.914 1.758 0.900 1.785 1.606
59 1.252 0.854 1.709 0.864 1.690 1.460
60 1.338 0.820 1.870 0.853 1.798 1.534
61 0.802 1.214 0.964 1.149 1.018 1.170
62 0.933 1.067 1.093 1.126 1.035 1.166
63 1.087 0.925 1.138 0.870 1.209 1.052
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Table A.9: Singh-Poisson model - estimation results for Russian texts

1-displaced SP size-biased SP

No. d α̂MM θ̂MM α̂ML θ̂ML θ̂MM = θ̂ML

64 1.064 0.942 1.045 0.894 1.102 0.985
65 0.921 1.084 0.978 1.023 1.038 1.061
66 0.869 1.125 1.118 1.079 1.165 1.257
67 1.226 0.853 1.525 0.799 1.628 1.301
68 1.408 0.658 1.157 0.653 1.166 0.761
69 1.082 0.940 1.206 0.990 1.144 1.133
70 0.761 1.338 0.719 1.226 0.785 0.962
71 0.893 1.116 0.968 1.005 1.074 1.080
72 0.905 1.101 0.966 0.966 1.100 1.063
73 0.861 1.113 1.256 0.966 1.447 1.397
74 0.866 1.162 0.861 1.106 0.904 1.000
75 0.909 1.110 0.901 1.104 0.906 1.000
76 0.891 1.132 0.843 1.057 0.902 0.954
77 0.906 1.127 0.804 1.097 0.827 0.907
78 1.122 0.917 1.398 0.877 1.462 1.283
79 1.139 0.900 1.308 0.887 1.328 1.178
80 1.094 0.935 1.236 0.896 1.290 1.156
81 0.883 1.128 0.930 1.072 0.978 1.049
82 1.014 0.988 1.022 0.962 1.049 1.010
83 1.168 0.884 1.359 0.826 1.456 1.202
84 1.143 0.877 1.124 0.875 1.126 0.986
85 0.808 1.208 0.946 1.059 1.080 1.143
86 1.079 0.933 1.111 0.906 1.145 1.037
87 0.916 1.088 1.008 1.023 1.072 1.097
88 0.947 1.064 0.871 0.996 0.930 0.927
89 0.952 1.047 1.132 0.964 1.229 1.185
90 1.055 0.960 1.273 0.917 1.333 1.222
91 1.069 0.946 1.259 0.913 1.306 1.192
92 1.071 0.942 1.210 0.917 1.244 1.140
93 1.198 0.878 1.610 0.915 1.546 1.414
94 1.111 0.911 1.219 0.911 1.219 1.110
95 1.164 0.879 1.345 0.882 1.341 1.183
96 1.242 0.860 1.717 0.857 1.722 1.476
97 1.125 0.927 1.637 0.891 1.702 1.517
98 1.034 0.972 1.159 0.947 1.190 1.127
99 1.210 0.847 1.367 0.831 1.393 1.157

100 1.025 0.982 1.277 1.009 1.244 1.255
101 1.082 0.940 1.329 0.905 1.380 1.249
102 1.148 0.906 1.556 0.881 1.600 1.410
103 1.053 0.958 1.246 0.919 1.300 1.194
104 1.220 0.840 1.368 0.809 1.420 1.148
105 1.159 0.871 1.227 0.898 1.190 1.069
106 0.986 1.011 1.299 0.974 1.349 1.314
107 1.154 0.898 1.485 0.900 1.481 1.333
108 0.935 1.051 1.313 0.959 1.440 1.380
109 1.019 0.987 1.290 0.950 1.341 1.274
110 1.147 0.894 1.376 0.906 1.358 1.231
111 1.073 0.946 1.339 0.954 1.328 1.267
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Table A.9: Singh-Poisson model - estimation results for Russian texts

1-displaced SP size-biased SP

No. d α̂MM θ̂MM α̂ML θ̂ML θ̂MM = θ̂ML

112 1.218 0.835 1.304 0.833 1.307 1.089
113 1.090 0.938 1.404 0.914 1.442 1.318
114 1.065 0.950 1.275 0.928 1.305 1.211
115 1.168 0.892 1.516 0.946 1.430 1.353
116 1.116 0.928 1.595 0.880 1.683 1.481
117 1.125 0.893 1.146 0.839 1.219 1.023
118 1.000 1.001 1.250 0.950 1.316 1.250
119 1.182 0.869 1.386 0.905 1.332 1.205
120 1.108 0.922 1.380 0.928 1.371 1.273

Table A.10: Hyper-Poisson model - estimation results for Russian texts

1-displaced HP size-biased HP

No. d λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF

1 1.247 2.203 1.750 2.344 1.822 2.398 1.856 5.053 2.475 5.937 2.776 6.356 2.921
2 1.013 1.124 1.436 0.904 1.289 1.042 1.394 1.193 1.442 0.877 1.306 ∅ ∅

3 1.189 0.967 1.268 2.216 1.974 2.069 1.871 1.781 1.546 4.461 2.558 6.477 3.298
4 1.079 1.057 1.155 1.425 1.365 1.380 1.332 1.326 1.230 1.979 1.468 1.327 1.236
5 0.840 0.011 0.499 0.703 0.903 0.471 0.747 ∅ 0.440 0.207 0.787 ∅ ∅

6 1.046 0.139 0.748 1.556 1.577 1.249 1.365 ∅ 0.766 2.094 1.651 1.180 1.289
7 1.151 0.458 0.641 2.352 1.534 2.446 1.550 0.739 0.789 4.705 1.964 1.260 0.948
8 1.528 1.824 2.151 6.137 4.702 14.224 9.357 9.506 5.061 27.265 12.327 ∅ ∅

9 1.175 1.130 1.508 2.080 2.084 2.036 2.031 1.884 1.759 3.744 2.519 8.277 4.324
10 1.046 0.599 0.999 1.365 1.442 1.196 1.326 0.535 1.036 1.827 1.533 1.249 1.305
11 1.016 0.711 0.933 1.159 1.184 1.068 1.124 0.586 0.937 1.305 1.198 1.107 1.124
12 1.152 0.567 1.335 1.966 2.227 1.787 2.081 0.780 1.479 3.258 2.572 5.613 3.570
13 1.253 2.511 2.489 1.992 2.175 2.306 2.384 4.555 3.053 3.862 2.758 6.310 3.804
14 1.035 2.789 2.475 0.627 1.121 1.097 1.493 3.622 2.510 0.257 1.061 ∅ ∅

15 1.164 0.476 0.810 2.254 1.737 2.145 1.655 0.771 0.971 4.380 2.191 1.354 1.173
16 1.004 0.166 0.642 1.400 1.330 1.023 1.089 ∅ 0.642 1.717 1.348 1.020 1.083
17 1.047 0.347 1.006 1.464 1.699 1.223 1.521 0.141 1.029 1.905 1.768 1.211 1.470
18 0.816 0.277 0.735 0.541 0.895 0.486 0.854 ∅ 0.648 ∅ 0.766 ∅ ∅

19 0.786 0.124 0.582 0.543 0.839 0.383 0.725 ∅ 0.503 ∅ 0.705 ∅ ∅

20 1.068 0.128 0.855 1.671 1.789 1.348 1.557 ∅ 0.893 2.399 1.927 1.267 1.453
21 1.181 1.266 1.378 2.046 1.814 2.015 1.785 2.250 1.662 3.955 2.293 6.015 3.039
22 1.190 1.690 1.866 1.886 1.983 1.866 1.969 2.939 2.221 3.589 2.489 3.782 2.564
23 1.108 0.868 0.934 1.819 1.422 1.665 1.323 1.267 1.067 3.118 1.673 1.292 1.076
24 1.077 1.121 1.228 1.384 1.377 1.336 1.344 1.471 1.321 1.990 1.513 1.402 1.298
25 1.246 2.434 2.034 2.214 1.911 2.226 1.926 5.257 2.776 5.323 2.800 4.810 2.615
26 1.062 0.982 0.862 1.360 1.045 1.309 1.015 1.215 0.925 1.936 1.143 1.280 0.947
27 1.133 1.521 1.504 1.620 1.563 1.619 1.560 2.401 1.716 2.721 1.837 3.196 2.010
28 1.150 1.338 1.405 1.798 1.662 1.734 1.618 2.229 1.648 3.283 2.038 3.797 2.220
29 1.128 1.001 1.237 1.763 1.669 1.636 1.581 1.514 1.405 3.031 1.975 1.443 1.380
30 1.163 1.454 1.666 1.696 1.804 1.675 1.794 2.388 1.932 3.092 2.215 2.575 2.008
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Table A.10: Hyper-Poisson model - estimation results for Russian texts

1-displaced HP size-biased HP

No. d λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF

31 1.311 2.280 2.644 2.636 2.876 2.614 2.854 4.612 3.429 5.897 4.018 7.473 4.725
32 1.092 0.939 1.569 1.547 1.966 1.399 1.850 1.185 1.671 2.235 2.145 1.448 1.787
33 1.184 1.856 2.149 1.719 2.058 1.752 2.087 3.047 2.486 3.080 2.500 2.789 2.375
34 1.161 1.159 1.886 1.856 2.350 1.744 2.255 1.752 2.103 3.087 2.728 1.673 2.068
35 1.104 1.102 1.743 1.567 2.054 1.456 1.963 1.462 1.869 2.293 2.253 1.505 1.889
36 1.143 0.797 1.636 1.907 2.373 1.698 2.201 1.138 1.801 3.101 2.718 1.572 2.000
37 1.046 1.001 1.437 1.152 1.524 1.164 1.534 1.132 1.483 1.423 1.605 ∅ ∅

38 1.249 1.896 2.070 2.296 2.312 2.245 2.275 3.722 2.627 4.945 3.138 5.609 3.406
39 1.047 1.163 1.641 1.204 1.672 1.176 1.650 1.365 1.692 1.453 1.733 1.319 1.673
40 1.126 0.787 1.553 1.773 2.198 1.584 2.047 1.065 1.693 2.803 2.488 1.541 1.907
41 1.343 2.334 2.622 2.984 3.036 2.967 3.013 5.180 3.597 7.259 4.528 10.808 6.094
42 1.125 1.459 1.905 1.522 1.948 1.517 1.942 2.099 2.085 2.332 2.190 2.787 2.387
43 1.217 2.351 2.612 1.868 2.304 1.935 2.356 3.973 3.075 3.430 2.829 3.657 2.934
44 1.170 1.086 1.815 1.951 2.384 1.809 2.267 1.694 2.047 3.351 2.814 4.684 3.402
45 1.220 1.434 1.873 2.242 2.380 2.170 2.315 2.607 2.262 4.392 3.034 6.698 4.005
46 1.213 1.484 1.922 2.146 2.339 2.069 2.275 2.634 2.297 4.132 2.951 5.551 3.550
47 1.229 1.513 2.088 2.255 2.573 2.170 2.497 2.691 2.491 4.327 3.239 6.343 4.131
48 1.229 1.792 2.152 2.097 2.343 2.067 2.320 3.231 2.602 4.157 3.011 4.592 3.195
49 1.083 1.251 1.615 1.397 1.712 1.345 1.671 1.640 1.720 1.941 1.850 1.454 1.643
50 1.172 1.299 1.975 1.873 2.356 1.777 2.276 2.021 2.225 3.193 2.772 4.068 3.160
51 1.057 0.677 1.658 1.481 2.223 1.250 2.031 0.693 1.711 1.931 2.327 1.302 2.004
52 1.169 1.354 1.858 1.820 2.154 1.741 2.094 2.152 2.116 3.179 2.572 3.551 2.726
53 1.150 1.099 1.773 1.826 2.250 1.688 2.138 1.638 1.972 3.015 2.603 1.630 1.969
54 1.027 0.929 1.392 1.132 1.519 1.099 1.493 0.967 1.416 1.299 1.558 1.204 1.516
55 1.170 1.255 1.836 1.900 2.253 1.801 2.172 1.983 2.084 3.282 2.670 4.458 3.177
56 1.049 0.566 1.298 1.412 1.845 1.206 1.686 0.509 1.339 1.866 1.947 1.267 1.669
57 1.104 1.033 1.594 1.558 1.931 1.447 1.844 1.379 1.720 2.340 2.145 1.518 1.780
58 1.154 1.179 1.810 1.830 2.237 1.714 2.141 1.780 2.021 3.036 2.594 1.627 1.953
59 1.252 2.273 2.363 2.271 2.368 2.349 2.410 4.345 2.976 4.715 3.136 7.091 4.136
60 1.338 2.123 2.417 3.019 2.977 2.921 2.901 4.866 3.358 7.510 4.516 10.187 5.668
61 0.802 0.209 0.632 0.514 0.813 0.452 0.768 ∅ 0.550 ∅ 0.686 ∅ ∅

62 0.933 0.794 1.015 0.654 0.918 0.809 1.027 0.512 0.959 0.257 0.854 0.437 0.934
63 1.087 0.750 0.968 1.653 1.458 1.454 1.330 0.942 1.062 2.611 1.650 1.305 1.187
64 1.064 0.804 0.918 1.456 1.261 1.317 1.174 0.930 0.982 2.116 1.383 2.721 1.574
65 0.921 0.382 0.700 0.849 0.961 0.720 0.876 ∅ 0.653 0.565 0.892 0.413 0.830
66 0.869 0.348 0.817 0.662 1.006 0.608 0.966 ∅ 0.743 0.187 0.897 0.138 0.874
67 1.226 0.791 1.310 2.709 2.440 2.667 2.371 1.674 1.655 5.725 3.271 27.766 11.937
68 1.408 3.534 2.028 6.947 3.518 11.227 5.359 ∅ ∅ ∅ ∅ ∅ ∅

69 1.082 1.400 1.384 1.178 1.252 1.301 1.337 1.903 1.486 1.615 1.377 ∅ ∅

70 0.761 0.248 0.474 0.438 0.585 0.336 0.520 ∅ 0.395 ∅ 0.471 ∅ ∅

71 0.893 0.245 0.630 0.836 0.970 0.609 0.821 ∅ 0.576 0.487 0.877 0.255 0.781
72 0.905 0.114 0.556 0.944 1.027 0.620 0.819 ∅ 0.513 0.693 0.944 0.350 0.805
73 0.861 ∅ 0.689 0.910 1.329 0.481 1.014 ∅ 0.631 0.587 1.204 0.147 0.990
74 0.866 0.350 0.605 0.644 0.765 0.577 0.722 ∅ 0.539 0.130 0.670 0.061 0.642
75 0.909 0.639 0.770 0.676 0.788 0.712 0.810 0.217 0.706 0.227 0.708 0.288 0.732
76 0.891 0.369 0.591 0.746 0.793 0.620 0.715 ∅ 0.535 0.327 0.710 0.190 0.657
77 0.906 0.545 0.642 0.695 0.718 0.684 0.712 0.064 0.583 0.244 0.641 0.251 0.644
78 1.122 0.894 1.288 1.750 1.798 1.611 1.694 1.261 1.430 2.851 2.065 1.434 1.500
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Table A.10: Hyper-Poisson model - estimation results for Russian texts

1-displaced HP size-biased HP

No. d λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF

79 1.139 0.914 1.202 1.806 1.706 1.676 1.619 1.395 1.372 3.179 2.045 1.483 1.408
80 1.094 0.747 1.063 1.559 1.524 1.447 1.446 0.900 1.148 2.366 1.698 1.383 1.331
81 0.883 0.389 0.675 0.711 0.855 0.619 0.794 ∅ 0.613 0.270 0.764 0.169 0.723
82 1.014 0.827 0.929 1.130 1.091 1.059 1.047 0.780 0.940 1.285 1.115 1.110 1.051
83 1.168 0.799 1.178 2.162 1.960 2.050 1.866 1.333 1.386 4.014 2.409 1.427 1.425
84 1.143 1.294 1.200 1.814 1.470 1.748 1.428 2.217 1.433 3.430 1.840 3.864 1.979
85 0.808 ∅ 0.500 0.658 0.900 0.381 0.710 ∅ 0.436 0.109 0.771 ∅ ∅

86 1.079 0.828 0.987 1.491 1.342 1.372 1.266 1.022 1.070 2.263 1.503 1.346 1.182
87 0.916 0.315 0.692 0.848 0.994 0.706 0.899 ∅ 0.644 0.561 0.922 0.389 0.850
88 0.947 0.460 0.641 0.934 0.887 0.790 0.801 0.043 0.606 0.749 0.839 0.579 0.777
89 0.952 0.465 0.866 1.010 1.192 0.815 1.059 0.099 0.830 0.885 1.137 0.678 1.047
90 1.055 0.536 0.995 1.436 1.519 1.242 1.385 0.468 1.040 1.997 1.635 1.281 1.350
91 1.069 0.811 1.126 1.453 1.496 1.307 1.396 0.947 1.197 2.084 1.633 2.621 1.823
92 1.071 0.968 1.161 1.422 1.419 1.316 1.347 1.210 1.242 2.043 1.553 2.481 1.704
93 1.198 1.968 2.096 1.836 2.014 1.865 2.036 3.421 2.498 3.490 2.527 3.464 2.516
94 1.111 1.425 1.391 1.531 1.452 1.504 1.434 2.152 1.560 2.472 1.678 2.766 1.780
95 1.164 1.490 1.536 1.857 1.745 1.812 1.712 2.572 1.827 3.489 2.174 4.116 2.402
96 1.242 1.928 2.173 2.304 2.412 2.336 2.417 3.635 2.697 4.681 3.150 7.840 4.484
97 1.125 0.773 1.452 1.772 2.091 1.596 1.951 1.046 1.589 2.827 2.376 1.500 1.786
98 1.034 0.822 1.049 1.235 1.282 1.138 1.218 0.842 1.081 1.546 1.343 1.220 1.218
99 1.210 1.440 1.506 2.352 2.016 2.282 1.958 2.906 1.932 5.082 2.739 8.555 4.003

100 1.025 1.205 1.381 1.009 1.262 1.086 1.317 1.372 1.407 1.079 1.289 ∅ ∅

101 1.082 0.902 1.239 1.504 1.595 1.373 1.501 1.131 1.330 2.211 1.756 1.369 1.422
102 1.148 1.034 1.515 1.881 2.039 1.732 1.924 1.589 1.714 3.222 2.404 1.527 1.688
103 1.053 0.852 1.142 1.374 1.447 1.232 1.349 0.955 1.197 1.854 1.543 1.274 1.316
104 1.220 1.448 1.505 2.500 2.092 2.495 2.065 3.033 1.970 5.534 2.893 13.570 5.814
105 1.159 1.787 1.558 1.737 1.530 1.758 1.543 3.182 1.884 3.324 1.935 3.362 1.947
106 0.986 0.802 1.193 1.052 1.352 0.947 1.276 0.677 1.180 1.047 1.335 0.900 1.268
107 1.154 1.774 1.862 1.697 1.823 1.708 1.825 2.854 2.135 2.879 2.148 3.625 2.445
108 0.935 0.250 0.906 1.032 1.405 0.750 1.197 ∅ 0.866 0.909 1.338 0.586 1.185
109 1.019 0.745 1.140 1.194 1.412 1.073 1.325 0.678 1.155 1.396 1.444 1.121 1.328
110 1.147 1.500 1.587 1.697 1.701 1.665 1.679 2.435 1.833 2.983 2.046 3.219 2.132
111 1.073 1.276 1.461 1.283 1.465 1.287 1.468 1.671 1.555 1.750 1.586 1.899 1.643
112 1.218 1.575 1.500 2.383 1.938 2.318 1.890 3.342 1.990 5.448 2.740 7.864 3.585
113 1.090 1.239 1.503 1.469 1.649 1.395 1.594 1.665 1.616 2.115 1.802 1.426 1.523
114 1.065 0.963 1.226 1.375 1.467 1.277 1.398 1.166 1.298 1.910 1.586 1.353 1.369
115 1.168 2.177 2.123 1.526 1.728 1.667 1.832 3.586 2.462 2.644 2.074 ∅ ∅

116 1.116 0.802 1.431 1.776 2.050 1.580 1.896 1.078 1.562 2.786 2.308 1.442 1.718
117 1.125 0.985 1.078 1.873 1.551 1.742 1.462 1.541 1.248 3.312 1.858 1.343 1.182
118 1.000 0.611 1.034 1.167 1.368 1.002 1.251 0.436 1.033 1.300 1.378 1.003 1.252
119 1.182 1.949 1.823 1.798 1.735 1.831 1.759 3.503 2.215 3.499 2.213 3.445 2.193
120 1.108 1.309 1.506 1.492 1.614 1.457 1.589 1.886 1.659 2.320 1.832 2.515 1.904
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Table A.11: Generalized Poisson model - estimation results for Russian texts

1-displaced GP size-biased GP

No. d λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF

1 1.247 0.104 0.917 0.104 0.917 0.117 0.904 0.099 0.713 0.099 0.712 0.110 0.679
2 1.013 0.007 1.352 0.003 1.358 -0.053 1.434 0.007 1.339 0.003 1.352 -0.054 1.540
3 1.189 0.083 1.089 0.094 1.076 0.142 1.019 0.080 0.925 0.091 0.890 0.133 0.742
4 1.079 0.037 1.051 0.032 1.058 0.088 0.996 0.037 0.977 0.031 0.994 0.084 0.824
5 0.840 -0.091 1.211 -0.116 1.239 -0.041 1.155 -0.095 1.396 -0.121 1.473 -0.042 1.237
6 1.046 0.022 1.177 0.017 1.184 0.132 1.045 0.022 1.132 0.017 1.150 0.125 0.787
7 1.151 0.068 0.772 0.078 0.763 0.162 0.693 0.065 0.639 0.076 0.608 0.146 0.388
8 1.528 0.191 1.117 0.238 1.052 0.331 0.924 0.178 0.742 0.222 0.567 0.285 0.304
9 1.175 0.077 1.234 0.085 1.224 0.174 1.105 0.075 1.081 0.082 1.055 0.161 0.768

10 1.046 0.022 1.168 0.023 1.167 0.070 1.111 0.022 1.124 0.023 1.121 0.068 0.972
11 1.016 0.008 1.072 0.002 1.078 0.045 1.032 0.008 1.056 0.002 1.073 0.044 0.943
12 1.152 0.068 1.412 0.073 1.405 0.163 1.269 0.067 1.276 0.071 1.259 0.153 0.949
13 1.253 0.107 1.303 0.098 1.316 0.155 1.232 0.103 1.091 0.094 1.123 0.146 0.928
14 1.035 0.017 1.391 0.007 1.405 -0.137 1.609 0.017 1.357 0.007 1.391 -0.143 1.886
15 1.164 0.073 0.927 0.082 0.918 0.153 0.847 0.070 0.784 0.080 0.754 0.141 0.555
16 1.004 0.002 1.072 0.000 1.075 0.107 0.959 0.002 1.068 0.000 1.076 0.102 0.751
17 1.047 0.023 1.334 0.018 1.341 0.122 1.199 0.022 1.289 0.017 1.306 0.116 0.959
18 0.816 -0.107 1.373 -0.114 1.381 -0.124 1.394 -0.111 1.590 -0.118 1.611 -0.130 1.646
19 0.786 -0.128 1.323 -0.138 1.336 -0.105 1.297 -0.134 1.584 -0.146 1.617 -0.110 1.511
20 1.068 0.032 1.277 0.033 1.277 0.137 1.139 0.032 1.213 0.032 1.211 0.129 0.872
21 1.181 0.080 1.055 0.084 1.050 0.134 0.992 0.077 0.897 0.081 0.884 0.126 0.731
22 1.190 0.083 1.247 0.087 1.242 0.108 1.214 0.081 1.082 0.084 1.069 0.104 1.001
23 1.108 0.050 0.900 0.056 0.894 0.120 0.834 0.049 0.802 0.055 0.782 0.112 0.602
24 1.077 0.037 1.084 0.037 1.083 0.063 1.054 0.036 1.011 0.036 1.010 0.062 0.928
25 1.246 0.104 1.023 0.105 1.022 0.106 1.021 0.099 0.819 0.100 0.815 0.100 0.815
26 1.062 0.030 0.820 0.028 0.821 0.054 0.799 0.029 0.761 0.028 0.766 0.052 0.694
27 1.133 0.061 1.087 0.061 1.087 0.089 1.054 0.059 0.967 0.059 0.966 0.085 0.880
28 1.150 0.067 1.069 0.072 1.064 0.102 1.030 0.065 0.936 0.070 0.921 0.097 0.831
29 1.128 0.058 1.101 0.064 1.094 0.108 1.043 0.057 0.985 0.063 0.966 0.103 0.831
30 1.163 0.073 1.222 0.076 1.218 0.071 1.224 0.071 1.077 0.074 1.067 0.069 1.085
31 1.311 0.127 1.445 0.136 1.429 0.178 1.360 0.122 1.193 0.131 1.157 0.167 1.009
32 1.092 0.043 1.485 0.046 1.480 0.112 1.377 0.042 1.399 0.045 1.388 0.108 1.155
33 1.184 0.081 1.399 0.082 1.397 0.086 1.392 0.079 1.238 0.080 1.233 0.083 1.222
34 1.161 0.072 1.566 0.078 1.555 0.145 1.442 0.070 1.423 0.076 1.399 0.138 1.155
35 1.104 0.048 1.538 0.051 1.534 0.119 1.424 0.048 1.442 0.050 1.432 0.115 1.187
36 1.143 0.065 1.566 0.074 1.551 0.161 1.405 0.064 1.437 0.072 1.403 0.152 1.088
37 1.046 0.022 1.379 0.022 1.380 0.017 1.386 0.022 1.335 0.022 1.337 0.017 1.351
38 1.249 0.105 1.256 0.112 1.246 0.141 1.206 0.101 1.048 0.108 1.022 0.133 0.929
39 1.047 0.022 1.481 0.022 1.482 0.054 1.433 0.022 1.437 0.022 1.439 0.053 1.324
40 1.126 0.058 1.517 0.064 1.506 0.139 1.386 0.057 1.402 0.063 1.378 0.132 1.113
41 1.343 0.137 1.375 0.150 1.354 0.198 1.279 0.131 1.103 0.144 1.054 0.184 0.892
42 1.125 0.057 1.462 0.058 1.461 0.091 1.410 0.056 1.348 0.057 1.344 0.088 1.228
43 1.217 0.094 1.486 0.094 1.486 0.116 1.450 0.091 1.300 0.091 1.300 0.111 1.221
44 1.170 0.076 1.531 0.084 1.517 0.151 1.406 0.074 1.380 0.082 1.348 0.143 1.108
45 1.220 0.095 1.344 0.105 1.329 0.166 1.237 0.092 1.156 0.101 1.119 0.156 0.911
46 1.213 0.092 1.366 0.101 1.353 0.153 1.275 0.089 1.183 0.098 1.152 0.144 0.975
47 1.229 0.098 1.470 0.108 1.454 0.172 1.350 0.095 1.276 0.105 1.237 0.162 1.012
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Table A.11: Generalized Poisson model - estimation results for Russian texts

1-displaced GP size-biased GP

No. d λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF

48 1.229 0.098 1.385 0.104 1.376 0.133 1.331 0.095 1.190 0.101 1.169 0.127 1.068
49 1.083 0.039 1.365 0.040 1.364 0.083 1.303 0.039 1.287 0.039 1.285 0.080 1.140
50 1.172 0.076 1.552 0.082 1.542 0.136 1.452 0.075 1.400 0.081 1.377 0.130 1.183
51 1.057 0.028 1.781 0.029 1.778 0.134 1.586 0.027 1.726 0.029 1.720 0.129 1.319
52 1.169 0.075 1.426 0.081 1.417 0.114 1.365 0.073 1.277 0.079 1.256 0.110 1.139
53 1.150 0.067 1.511 0.074 1.500 0.137 1.398 0.066 1.377 0.073 1.351 0.131 1.128
54 1.027 0.013 1.401 0.012 1.403 0.032 1.374 0.013 1.375 0.012 1.378 0.032 1.310
55 1.170 0.075 1.458 0.082 1.447 0.142 1.354 0.074 1.308 0.080 1.283 0.135 1.075
56 1.049 0.024 1.496 0.025 1.493 0.097 1.384 0.023 1.449 0.025 1.443 0.094 1.191
57 1.104 0.048 1.439 0.052 1.434 0.103 1.357 0.048 1.343 0.051 1.330 0.099 1.154
58 1.154 0.069 1.495 0.075 1.485 0.140 1.381 0.067 1.358 0.074 1.335 0.133 1.105
59 1.252 0.106 1.304 0.111 1.298 0.165 1.219 0.102 1.094 0.107 1.077 0.155 0.896
60 1.338 0.135 1.326 0.150 1.303 0.189 1.244 0.129 1.058 0.143 1.003 0.176 0.875
61 0.802 -0.117 1.307 -0.127 1.319 -0.132 1.324 -0.122 1.545 -0.134 1.578 -0.139 1.593
62 0.933 -0.035 1.207 -0.038 1.210 -0.111 1.295 -0.036 1.277 -0.038 1.285 -0.116 1.521
63 1.087 0.041 1.009 0.046 1.003 0.104 0.943 0.040 0.929 0.046 0.911 0.099 0.740
64 1.064 0.031 0.955 0.032 0.953 0.077 0.909 0.030 0.894 0.032 0.889 0.074 0.757
65 0.921 -0.042 1.106 -0.048 1.112 -0.018 1.080 -0.043 1.191 -0.049 1.210 -0.018 1.115
66 0.869 -0.073 1.349 -0.081 1.360 -0.079 1.357 -0.075 1.495 -0.084 1.524 -0.082 1.517
67 1.226 0.097 1.174 0.119 1.145 0.210 1.028 0.093 0.983 0.115 0.906 0.191 0.624
68 1.408 0.157 0.642 0.183 0.622 0.216 0.597 0.142 0.345 0.165 0.273 0.186 0.205
69 1.082 0.038 1.090 0.034 1.095 0.008 1.124 0.038 1.013 0.034 1.027 0.008 1.107
70 0.761 -0.146 1.103 -0.140 1.097 -0.142 1.099 -0.157 1.406 -0.151 1.390 -0.152 1.391
71 0.893 -0.058 1.143 -0.068 1.153 -0.004 1.084 -0.060 1.261 -0.070 1.290 -0.004 1.092
72 0.905 -0.051 1.118 -0.062 1.130 0.027 1.035 -0.053 1.222 -0.064 1.256 0.026 0.982
73 0.861 -0.077 1.506 -0.094 1.528 0.040 1.341 -0.080 1.662 -0.096 1.715 0.040 1.261
74 0.866 -0.074 1.074 -0.082 1.082 -0.074 1.074 -0.077 1.226 -0.085 1.248 -0.076 1.223
75 0.909 -0.049 1.049 -0.053 1.053 -0.072 1.072 -0.050 1.148 -0.054 1.160 -0.074 1.218
76 0.891 -0.060 1.011 -0.065 1.016 -0.038 0.990 -0.061 1.132 -0.067 1.149 -0.038 1.066
77 0.906 -0.051 0.952 -0.056 0.958 -0.058 0.959 -0.052 1.055 -0.058 1.072 -0.060 1.077
78 1.122 0.056 1.211 0.060 1.205 0.126 1.121 0.055 1.100 0.059 1.085 0.120 0.873
79 1.139 0.063 1.104 0.068 1.098 0.104 1.055 0.061 0.979 0.066 0.963 0.099 0.851
80 1.094 0.044 1.105 0.043 1.106 0.093 1.048 0.043 1.017 0.042 1.020 0.089 0.865
81 0.883 -0.064 1.116 -0.069 1.121 -0.054 1.106 -0.066 1.246 -0.071 1.261 -0.056 1.216
82 1.014 0.007 1.003 0.006 1.003 0.028 0.982 0.007 0.988 0.006 0.991 0.027 0.926
83 1.168 0.075 1.112 0.084 1.101 0.166 1.002 0.072 0.965 0.082 0.932 0.154 0.682
84 1.143 0.065 0.922 0.069 0.918 0.092 0.895 0.063 0.795 0.066 0.783 0.087 0.716
85 0.808 -0.113 1.272 -0.133 1.295 -0.051 1.201 -0.118 1.502 -0.139 1.564 -0.052 1.302
86 1.079 0.037 0.998 0.040 0.996 0.073 0.961 0.037 0.924 0.039 0.917 0.070 0.818
87 0.916 -0.045 1.146 -0.053 1.155 -0.019 1.117 -0.046 1.237 -0.054 1.261 -0.019 1.155
88 0.947 -0.028 0.953 -0.032 0.957 0.002 0.925 -0.028 1.009 -0.032 1.021 0.002 0.920
89 0.952 -0.025 1.214 -0.030 1.221 0.033 1.146 -0.025 1.264 -0.030 1.281 0.032 1.081
90 1.055 0.026 1.190 0.028 1.188 0.080 1.125 0.026 1.137 0.028 1.131 0.077 0.967
91 1.069 0.033 1.153 0.036 1.149 0.081 1.095 0.032 1.088 0.035 1.078 0.078 0.935
92 1.071 0.034 1.102 0.036 1.099 0.073 1.057 0.033 1.035 0.036 1.028 0.070 0.914
93 1.198 0.086 1.292 0.088 1.289 0.101 1.272 0.084 1.121 0.086 1.114 0.097 1.073
94 1.111 0.051 1.053 0.052 1.052 0.076 1.026 0.050 0.952 0.051 0.948 0.073 0.877
95 1.164 0.073 1.096 0.078 1.091 0.109 1.054 0.071 0.952 0.076 0.936 0.104 0.841
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Table A.11: Generalized Poisson model - estimation results for Russian texts

1-displaced GP size-biased GP

No. d λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF λ̂MM θ̂MM λ̂ML θ̂ML λ̂FF θ̂FF

96 1.242 0.103 1.325 0.110 1.313 0.175 1.218 0.099 1.122 0.107 1.093 0.164 0.875
97 1.125 0.057 1.430 0.063 1.421 0.140 1.305 0.056 1.317 0.062 1.295 0.133 1.030
98 1.034 0.016 1.108 0.017 1.107 0.046 1.075 0.016 1.076 0.017 1.074 0.045 0.984
99 1.210 0.091 1.052 0.103 1.038 0.154 0.979 0.087 0.873 0.099 0.835 0.143 0.682

100 1.025 0.012 1.240 0.011 1.241 -0.009 1.266 0.012 1.215 0.011 1.220 -0.009 1.285
101 1.082 0.039 1.201 0.042 1.197 0.094 1.131 0.038 1.124 0.041 1.113 0.090 0.946
102 1.148 0.067 1.316 0.075 1.304 0.139 1.214 0.065 1.183 0.073 1.156 0.131 0.942
103 1.053 0.025 1.163 0.027 1.161 0.076 1.103 0.025 1.113 0.027 1.107 0.074 0.953
104 1.220 0.095 1.040 0.108 1.024 0.173 0.950 0.091 0.854 0.104 0.809 0.159 0.618
105 1.159 0.071 0.993 0.073 0.991 0.082 0.981 0.069 0.853 0.070 0.848 0.079 0.819
106 0.986 -0.007 1.323 -0.008 1.323 0.028 1.277 -0.007 1.337 -0.008 1.339 0.028 1.220
107 1.154 0.069 1.241 0.070 1.240 0.108 1.189 0.067 1.105 0.068 1.101 0.104 0.976
108 0.935 -0.034 1.428 -0.040 1.436 0.047 1.315 -0.035 1.497 -0.041 1.516 0.046 1.221
109 1.019 0.009 1.262 0.009 1.263 0.051 1.209 0.009 1.244 0.009 1.246 0.050 1.108
110 1.147 0.066 1.149 0.069 1.145 0.091 1.119 0.064 1.019 0.068 1.008 0.088 0.940
111 1.073 0.035 1.223 0.035 1.223 0.047 1.208 0.034 1.154 0.034 1.153 0.046 1.115
112 1.218 0.094 0.986 0.104 0.976 0.141 0.935 0.090 0.802 0.100 0.770 0.131 0.663
113 1.090 0.042 1.262 0.043 1.262 0.092 1.197 0.041 1.178 0.042 1.177 0.088 1.016
114 1.065 0.031 1.174 0.033 1.172 0.069 1.128 0.031 1.112 0.032 1.106 0.067 0.993
115 1.168 0.075 1.252 0.071 1.256 0.060 1.271 0.072 1.104 0.069 1.116 0.059 1.151
116 1.116 0.053 1.402 0.060 1.391 0.149 1.260 0.052 1.295 0.059 1.270 0.141 0.966
117 1.125 0.057 0.964 0.064 0.957 0.126 0.895 0.056 0.851 0.063 0.830 0.118 0.652
118 1.000 0.000 1.250 0.000 1.251 0.050 1.188 0.000 1.250 0.000 1.252 0.049 1.090
119 1.182 0.080 1.109 0.082 1.107 0.090 1.097 0.077 0.951 0.079 0.945 0.086 0.921
120 1.108 0.050 1.209 0.052 1.206 0.073 1.180 0.049 1.110 0.051 1.102 0.071 1.035

Table A.12: Cohen-Poisson model - estimation results for Russian texts

1-displaced CP size-biased CP

No. d α̂MM θ̂MM α̂ML θ̂ML α̂FF θ̂FF α̂MM θ̂MM α̂ML θ̂ML

1 1.247 0.302 1.134 0.147 1.079 0.190 1.094 ∅ 1.256 ∅ 1.204
2 1.013 0.008 1.364 ∅ 1.318 ∅ 1.337 ∅ 1.367 0.163 1.301
3 1.189 0.245 1.275 0.176 1.253 0.223 1.267 ∅ 1.368 ∅ 1.401
4 1.079 0.085 1.123 0.175 1.154 0.138 1.143 ∅ 1.155 ∅ 1.221
5 0.840 ∅ 1.020 ∅ 1.106 ∅ 1.088 0.395 0.938 0.136 1.057
6 1.046 0.037 1.217 0.247 1.289 0.205 1.277 ∅ 1.231 ∅ 1.398
7 1.151 0.172 0.891 0.331 0.947 0.293 0.935 ∅ 0.958 ∅ 1.109
8 1.528 0.723 1.613 0.436 1.540 0.578 1.570 ∅ 1.885 ∅ 1.970
9 1.175 0.236 1.419 0.290 1.435 0.268 1.429 ∅ 1.505 ∅ 1.594

10 1.046 0.057 1.215 0.099 1.230 0.105 1.232 ∅ 1.236 ∅ 1.292
11 1.016 0.006 1.083 0.100 1.116 0.069 1.106 ∅ 1.085 ∅ 1.144
12 1.152 0.201 1.581 0.208 1.585 0.241 1.594 ∅ 1.649 ∅ 1.738
13 1.253 0.335 1.568 0.275 1.545 0.230 1.534 ∅ 1.686 ∅ 1.672
14 1.035 0.028 1.425 ∅ 1.354 ∅ 1.358 ∅ 1.435 0.356 1.275
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Table A.12: Cohen-Poisson model - estimation results for Russian texts

1-displaced CP size-biased CP

No. d α̂MM θ̂MM α̂ML θ̂ML α̂FF θ̂FF α̂MM θ̂MM α̂ML θ̂ML

15 1.164 0.188 1.069 0.232 1.086 0.255 1.094 ∅ 1.143 ∅ 1.247
16 1.004 ∅ 1.074 0.231 1.155 0.171 1.137 0.002 1.074 ∅ 1.236
17 1.047 0.043 1.380 0.225 1.439 0.179 1.427 ∅ 1.395 ∅ 1.532
18 0.816 ∅ 1.141 ∅ 1.191 ∅ 1.182 0.438 1.050 0.338 1.101
19 0.786 ∅ 1.058 ∅ 1.142 ∅ 1.121 0.484 0.955 0.302 1.049
20 1.068 0.076 1.347 0.197 1.389 0.206 1.391 ∅ 1.374 ∅ 1.514
21 1.181 0.225 1.227 0.198 1.218 0.212 1.222 ∅ 1.314 ∅ 1.349
22 1.190 0.267 1.451 0.118 1.403 0.158 1.415 ∅ 1.548 ∅ 1.507
23 1.108 0.139 0.999 0.228 1.030 0.203 1.022 ∅ 1.052 ∅ 1.139
24 1.077 0.100 1.161 0.096 1.160 0.097 1.160 ∅ 1.199 ∅ 1.215
25 1.246 0.321 1.256 0.102 1.180 0.164 1.201 ∅ 1.383 ∅ 1.296
26 1.062 0.073 0.872 0.104 0.883 0.095 0.880 ∅ 0.899 ∅ 0.929
27 1.133 0.172 1.219 0.126 1.202 0.136 1.206 ∅ 1.284 ∅ 1.283
28 1.150 0.198 1.218 0.135 1.196 0.157 1.203 ∅ 1.293 ∅ 1.294
29 1.128 0.169 1.230 0.152 1.225 0.167 1.229 ∅ 1.294 ∅ 1.327
30 1.163 0.224 1.395 0.038 1.332 0.101 1.353 ∅ 1.477 ∅ 1.411
31 1.311 0.496 1.802 0.184 1.716 0.262 1.734 ∅ 1.962 ∅ 1.889
32 1.092 0.136 1.596 0.153 1.601 0.158 1.602 ∅ 1.641 ∅ 1.693
33 1.184 0.275 1.611 0.067 1.546 0.118 1.561 ∅ 1.704 ∅ 1.628
34 1.161 0.256 1.764 0.181 1.744 0.206 1.750 ∅ 1.845 ∅ 1.868
35 1.104 0.160 1.667 0.170 1.670 0.167 1.669 ∅ 1.719 ∅ 1.765
36 1.143 0.227 1.743 0.199 1.737 0.232 1.745 ∅ 1.815 ∅ 1.880
37 1.046 0.063 1.432 0.003 1.412 0.023 1.419 ∅ 1.454 ∅ 1.432
38 1.249 0.355 1.521 0.147 1.456 0.209 1.474 ∅ 1.649 ∅ 1.598
39 1.047 0.067 1.538 0.095 1.546 0.073 1.540 ∅ 1.560 ∅ 1.581
40 1.126 0.191 1.670 0.171 1.665 0.197 1.671 ∅ 1.732 ∅ 1.786
41 1.343 0.533 1.755 0.210 1.665 0.299 1.687 ∅ 1.933 ∅ 1.867
42 1.125 0.188 1.612 0.115 1.589 0.126 1.592 ∅ 1.674 ∅ 1.664
43 1.217 0.341 1.744 0.115 1.678 0.160 1.690 ∅ 1.854 ∅ 1.781
44 1.170 0.269 1.739 0.180 1.714 0.216 1.723 ∅ 1.825 ∅ 1.849
45 1.220 0.324 1.589 0.213 1.556 0.248 1.566 ∅ 1.702 ∅ 1.715
46 1.213 0.317 1.607 0.184 1.567 0.224 1.578 ∅ 1.716 ∅ 1.711
47 1.229 0.359 1.739 0.198 1.695 0.252 1.708 ∅ 1.856 ∅ 1.856
48 1.229 0.345 1.645 0.142 1.584 0.191 1.597 ∅ 1.762 ∅ 1.709
49 1.083 0.118 1.460 0.125 1.462 0.116 1.460 ∅ 1.502 ∅ 1.526
50 1.172 0.274 1.764 0.151 1.729 0.191 1.739 ∅ 1.851 ∅ 1.849
51 1.057 0.095 1.859 0.204 1.889 0.185 1.885 ∅ 1.887 ∅ 1.988
52 1.169 0.255 1.623 0.115 1.581 0.161 1.594 ∅ 1.709 ∅ 1.687
53 1.150 0.233 1.693 0.163 1.673 0.194 1.681 ∅ 1.768 ∅ 1.793
54 1.027 0.035 1.432 0.052 1.437 0.044 1.435 ∅ 1.443 ∅ 1.459
55 1.170 0.259 1.659 0.176 1.635 0.203 1.642 ∅ 1.745 ∅ 1.761
56 1.049 0.070 1.555 0.136 1.576 0.135 1.576 ∅ 1.578 ∅ 1.653
57 1.104 0.155 1.563 0.132 1.556 0.144 1.560 ∅ 1.615 ∅ 1.643
58 1.154 0.237 1.680 0.177 1.663 0.200 1.669 ∅ 1.758 ∅ 1.785
59 1.252 0.368 1.579 0.226 1.536 0.247 1.541 ∅ 1.709 ∅ 1.690
60 1.338 0.512 1.693 0.190 1.601 0.285 1.625 ∅ 1.870 ∅ 1.798
61 0.802 ∅ 1.062 ∅ 1.114 ∅ 1.105 0.463 0.964 0.359 1.018
62 0.933 ∅ 1.129 ∅ 1.092 ∅ 1.110 0.186 1.093 0.315 1.035
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Table A.12: Cohen-Poisson model - estimation results for Russian texts

1-displaced CP size-biased CP

No. d α̂MM θ̂MM α̂ML θ̂ML α̂FF θ̂FF α̂MM θ̂MM α̂ML θ̂ML

63 1.087 0.114 1.094 0.170 1.114 0.167 1.113 ∅ 1.138 ∅ 1.209
64 1.064 0.081 1.015 0.140 1.036 0.127 1.032 ∅ 1.045 ∅ 1.102
65 0.921 ∅ 1.019 ∅ 1.058 ∅ 1.051 0.207 0.978 0.062 1.038
66 0.869 ∅ 1.186 ∅ 1.226 ∅ 1.219 0.339 1.118 0.235 1.165
67 1.226 0.313 1.408 0.302 1.407 0.335 1.416 ∅ 1.525 ∅ 1.628
68 1.408 0.482 0.938 0.341 0.890 0.403 0.909 ∅ 1.157 ∅ 1.166
69 1.082 0.098 1.169 ∅ 1.125 0.012 1.138 ∅ 1.206 ∅ 1.144
70 0.761 ∅ 0.832 ∅ 0.906 ∅ 0.881 0.519 0.719 0.404 0.785
71 0.893 ∅ 1.022 0.052 1.098 ∅ 1.077 0.273 0.968 0.014 1.074
72 0.905 ∅ 1.013 0.103 1.100 0.041 1.078 0.241 0.966 ∅ 1.100
73 0.861 ∅ 1.325 0.143 1.442 0.055 1.416 0.355 1.256 ∅ 1.447
74 0.866 ∅ 0.928 ∅ 0.965 ∅ 0.958 0.329 0.861 0.237 0.904
75 0.909 ∅ 0.949 ∅ 0.961 ∅ 0.959 0.244 0.901 0.232 0.906
76 0.891 ∅ 0.897 ∅ 0.943 ∅ 0.932 0.271 0.843 0.134 0.902
77 0.906 ∅ 0.854 ∅ 0.876 ∅ 0.871 0.252 0.804 0.201 0.827
78 1.122 0.161 1.339 0.192 1.350 0.190 1.349 ∅ 1.398 ∅ 1.462
79 1.139 0.177 1.241 0.121 1.223 0.160 1.235 ∅ 1.308 ∅ 1.328
80 1.094 0.109 1.195 0.139 1.206 0.143 1.208 ∅ 1.236 ∅ 1.290
81 0.883 ∅ 0.988 ∅ 1.027 ∅ 1.019 0.288 0.930 0.179 0.978
82 1.014 0.016 1.016 0.050 1.028 0.044 1.026 ∅ 1.022 ∅ 1.049
83 1.168 0.214 1.278 0.255 1.293 0.262 1.295 ∅ 1.359 ∅ 1.456
84 1.143 0.182 1.053 0.122 1.032 0.151 1.041 ∅ 1.124 ∅ 1.126
85 0.808 ∅ 1.040 ∅ 1.141 ∅ 1.116 0.443 0.946 0.163 1.080
86 1.079 0.099 1.073 0.103 1.075 0.117 1.080 ∅ 1.111 ∅ 1.145
87 0.916 ∅ 1.052 ∅ 1.091 ∅ 1.087 0.221 1.008 0.065 1.072
88 0.947 ∅ 0.899 0.027 0.937 0.004 0.928 0.143 0.871 ∅ 0.930
89 0.952 ∅ 1.158 0.098 1.219 0.048 1.202 0.139 1.132 ∅ 1.229
90 1.055 0.070 1.247 0.103 1.260 0.119 1.265 ∅ 1.273 ∅ 1.333
91 1.069 0.092 1.225 0.121 1.235 0.122 1.236 ∅ 1.259 ∅ 1.306
92 1.071 0.095 1.175 0.110 1.180 0.111 1.181 ∅ 1.210 ∅ 1.244
93 1.198 0.284 1.509 0.104 1.451 0.144 1.462 ∅ 1.610 ∅ 1.546
94 1.111 0.146 1.163 0.105 1.149 0.117 1.153 ∅ 1.219 ∅ 1.219
95 1.164 0.220 1.262 0.149 1.237 0.167 1.243 ∅ 1.345 ∅ 1.341
96 1.242 0.357 1.592 0.245 1.558 0.264 1.563 ∅ 1.717 ∅ 1.722
97 1.125 0.180 1.576 0.190 1.580 0.202 1.583 ∅ 1.637 ∅ 1.702
98 1.034 0.044 1.143 0.071 1.152 0.070 1.152 ∅ 1.159 ∅ 1.190
99 1.210 0.281 1.258 0.220 1.237 0.245 1.245 ∅ 1.367 ∅ 1.393

100 1.025 0.031 1.266 ∅ 1.245 ∅ 1.250 ∅ 1.277 0.031 1.244
101 1.082 0.111 1.288 0.150 1.302 0.140 1.298 ∅ 1.329 ∅ 1.380
102 1.148 0.212 1.481 0.184 1.473 0.205 1.479 ∅ 1.556 ∅ 1.600
103 1.053 0.072 1.220 0.124 1.238 0.114 1.235 ∅ 1.246 ∅ 1.300
104 1.220 0.293 1.253 0.268 1.245 0.278 1.248 ∅ 1.368 ∅ 1.420
105 1.159 0.209 1.146 0.107 1.109 0.130 1.117 ∅ 1.227 ∅ 1.190
106 0.986 ∅ 1.306 0.060 1.334 0.039 1.327 0.040 1.299 ∅ 1.349
107 1.154 0.214 1.407 0.154 1.387 0.159 1.388 ∅ 1.485 ∅ 1.481
108 0.935 ∅ 1.346 0.117 1.418 0.065 1.403 0.182 1.313 ∅ 1.440
109 1.019 0.023 1.282 0.088 1.305 0.073 1.300 ∅ 1.290 ∅ 1.341
110 1.147 0.200 1.302 0.109 1.270 0.136 1.279 ∅ 1.376 ∅ 1.358



188 APPENDIX A. TEXT SOURCES

Table A.12: Cohen-Poisson model - estimation results for Russian texts

1-displaced CP size-biased CP

No. d α̂MM θ̂MM α̂ML θ̂ML α̂FF θ̂FF α̂MM θ̂MM α̂ML θ̂ML

111 1.073 0.100 1.302 0.061 1.288 0.067 1.290 ∅ 1.339 ∅ 1.328
112 1.218 0.284 1.191 0.192 1.160 0.227 1.171 ∅ 1.304 ∅ 1.307
113 1.090 0.122 1.360 0.138 1.366 0.134 1.364 ∅ 1.404 ∅ 1.442
114 1.065 0.088 1.243 0.102 1.248 0.102 1.248 ∅ 1.275 ∅ 1.305
115 1.168 0.232 1.432 0.055 1.372 0.085 1.382 ∅ 1.516 ∅ 1.430
116 1.116 0.171 1.537 0.228 1.555 0.219 1.553 ∅ 1.595 ∅ 1.683
117 1.125 0.162 1.083 0.220 1.103 0.206 1.099 ∅ 1.146 ∅ 1.219
118 1.000 ∅ 1.250 0.087 1.281 0.072 1.276 0.002 1.250 ∅ 1.316
119 1.182 0.246 1.293 0.105 1.244 0.135 1.254 ∅ 1.386 ∅ 1.332
120 1.108 0.150 1.325 0.088 1.304 0.107 1.310 ∅ 1.380 ∅ 1.371



Appendix B

Generating Functions and
Moments

This appendix summarizes some basic statistical theory on generating functions and
theoretical moments required in this thesis and is based on Casella and Berger (2002,
Chap.2) and Kendall and Stuart (1958, Chap.3).

Let X be a nonnegative discrete random variable which takes values x ∈ N0

with probability mass function (pmf) given by πx = P (X = x). Another function
associated with a random variable X is its cumulative distribution function (cdf),
denoted by FX(x) and defined as FX(x) = P (X ≤ x) for all x ∈ N0. Through-
out this work we consider only proper distributions, i.e. limx→−∞ FX(x) = 0 and
limx→+∞ FX(x) = 1. Also, we denote here random variables by uppercase letters,
while lowercase letters denote their realizations.

Definition B.1 Let X be a discrete random variable defined over nonnegative in-
tegers. The probability generating function (pgf) of X, denoted by GX(t), is given
by polynomial

GX(t) = π0 + π1t + π2t
2 + . . . =

∞∑

i=0

tiπi = E(tX). (B.1)

The subscript of GX(t) may be omitted if the random variable is clear from the
context, then we simply write G(t). The pmf of the random variable X, as well as
its moments, can be derived directly from the pgf. The uniqueness of a polynomial
expansion implies that the pgf in fact defines the single probabilities which can be
calculated as

πi = P (X = i) =
1

i!

diGX(t)

dti

∣∣∣∣
t=0

, i = 0, 1, . . . (B.2)

The k-th factorial moment, if it exists, is given by

µ(k) = E[X(X − 1) . . . (X − k + 1)] =
dkGX(t)

dtk

∣∣∣∣
t=1

= G
(k)
X (1) , k = 1, 2, . . . (B.3)

The pgf of X is also closely related to its moment generating function.
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Definition B.2 Let X be a discrete random variable. The moment generating func-
tion (mgf) of X, denoted by MX(t), is defined as

MX(t) = E(etX) =
∞∑

i=0

etiπi = GX(et) , (B.4)

provided that the expectation exists (i.e. is finite) for real values of t. If the expec-
tation does not exist, the mgf does not exist.

If the mgf of X exists, then it can be used to find all raw moments of the distribution.
The k-th raw moment (or k-th moment about zero) is generated by

µ′
k = E(Xk) =

dkMX(t)

dtk

∣∣∣∣
t=0

= M
(k)
X (0) , k = 1, 2, . . . (B.5)

Notice that the k-th raw moment can also arise as k-th derivative of GX(et) evaluated
at t = 0, since MX(t) = GX(et). Hence, the first raw moment, called the mean of X,
is obtained as µ = E(X) = G′(1). If mgf does not exist the characteristic function
(cf) of X, defined by

ϕX(t) = E(eitX) ,

where i =
√
−1, can be useful. The characteristic function has a great theoretical

importance, since it always exists and is unique for all distributions. Like mgf, ϕX(t)
can be used to generate the raw moments by

µ′
k = (−i)k dkϕX(t)

dtk

∣∣∣∣
t=0

, k = 1, 2, . . . , n , (B.6)

provided that the distribution has finite moments µ′
k up to order n. Apart from pgf

and mgf, other generating functions exist. Their relationship to the pgf is presented
in Table B.1. Generally, they are less useful than pgf, but in some situations they

Table B.1: Relationships between generating functions of a random variable X

Generating function Abbreviation Relation

probability generating function pgf GX(t)

characteristic function cf ϕX(t) = GX(eit)

moment generating function mgf MX(t) = GX(et)

factorial moment generating function fmgf GX(1 + t)

cumulant generating function cgf KX(t) = log MX(t)

can simplify calculations. Using cumulant generating function we can derive the k-th
cumulant of X as κk = K

(k)
X (0). The factorial moment generating function enables
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us to express probabilities of discrete distribution in terms of factorial moments. As
a consequence, we have (cf. Johnson et al., 1992, p. 50)

πi =
∑

k≥i

(−1)i+k

(
k

i

)
µ(k)

k!
. (B.7)

Furthermore, the k-th factorial moment can be calculated directly from the raw
moments using the Stirling numbers of the first kind, s(k, i), as follows (cf. Johnson
et al., 1992, 43f.) :

µ(k) =
k∑

i=0

s(k, i)µ′
i . (B.8)

For the inverse calculation we use the Stirling numbers of the second kind, S(k, i),
as follows :

µ′
k =

k∑

i=0

S(k, i)µ(i). (B.9)

Tables B.2 and B.3 give values for both s(k, i) and S(k, i) for 1 ≤ k, i ≤ 7. The
following holds: s(0, 0) = S(0, 0) = 1 and s(k, 0) = S(k, 0) = 0 , k > 0. Both kinds
of Stirling numbers are non-zero for i = 1, 2, . . . , k, k > 0. For a given k, or a
given i, the sign of s(k, i) alternate. On the contrary, S(k, i) are always positive.

Table B.2: Stirling numbers of the first kind s(k, i)

i
k 1 2 3 4 5 6 7
1 1
2 -1 1
3 2 -3 1
4 -6 11 -6 1
5 24 -50 35 -10 1
6 -120 274 -225 85 -15 1
7 720 -1764 1624 -735 175 -21 1

Useful properties and extensive tables of both sets of Stirling numbers can be found
in Abramowitz and Stegun (1965, p. 824). Also, both S(k, i) and s(k, i) can be
computed directly as

S(k, i) =
1

i!

i∑

j=0

(−1)i−j

(
i

j

)
jk , (B.10)

s(k, i) =
k−i∑

j=0

(−1)j

(
k − 1 + j

k − i + j

)(
2k − i

k − i − j

)
S(k − i + j, j) . (B.11)
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Table B.3: Stirling numbers of the second kind S(k, i)

i
k 1 2 3 4 5 6 7
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1

In applications the moments of maximally fourth order are of interest. In particular,
we have

µ′
1 = µ(1) = µ , µ′

2 = µ(2) + µ ,

µ′
3 = µ(3) + 3µ(2) + µ , µ′

4 = µ(4) + 6µ(3) + 7µ(2) + µ .
(B.12)

The k-th central moment can further be calculated from the raw moments using the
formula

µk = E((X − µ)k) =
k∑

i=0

(
k
i

)
µ′

k−i(−µ)i , k = 1, 2 . . . (B.13)

Inverse calculation is less convenient. First four moments are given by

µ1 = 0 , µ3 = µ′
3 − 3µ′

2µ + 2µ3 ,

µ2 = µ′
2 − µ2 , µ4 = µ′

4 − 4µ′
3µ + 6µ′

2µ
2 − 3µ4 .

(B.14)

The first central moment µ1 is always zero, since by definition µ′
0 = 1. The variance

of a random variable X is its second central moment, µ2 = var(X). The positive
square root of var(X) is the standard deviation of X.

Probability generating functions can also be used to find the convolution of the
two distributions. If X1 and X2 are two independent random variables with pgf
GX1(t) and GX2(t), respectively, then the distribution of their sum X = X1 + X2

has the pgf given by

GX(t) = E(tX) = E(tX1+X2) = E(tX1tX2) = E(tX1)E(tX2) = GX1(t)GX2(t) . (B.15)

Likewise, mgf is

MX(t) = E(etX) = E(etX1etX2) = MX1(t)MX2(t) , (B.16)

and cf is
ϕX(t) = E(eitX) = E(eitX1eitX2) = ϕX1(t)ϕX2(t) . (B.17)



APPENDIX B. GENERATING FUNCTIONS AND MOMENTS 193

Even more generally, if X1, X2, . . . , Xn are mutually independent random variables
with pgf’s GX1(t), GX2(t), . . . , GXn

(t), respectively, then the pgf, mgf and cf of the
random variable X =

∑n
i=1 Xi are given by

GX(t) =
n∏

i=1

GXi
(t) , MX(t) =

n∏

i=1

MXi
(t) , ϕX(t) =

n∏

i=1

ϕXi
(t) . (B.18)





Appendix C

Properties of Estimators

This appendix deals with basic properties of estimators as well as criteria for making
decisions which estimator should be taken as the most appropriate one. It is based
on the theory given by Casella and Berger (2002).

Let X1, . . . , Xn be a sample from a population with pmf πx|θ = Pθ(X = x) where
θ is an unknown parameter. Any function T = T (X1, . . . , Xn) of a sample is a point
estimator of θ. We define the quality criteria for the function T as follows:

Definition C.1 The mean square error (MSE) of an estimator T is defined by

MSEθ(T ) = Eθ((T − θ)2) = varθ(T ) + Bias2
θ(T ) ,

where its bias is given by
Biasθ(T ) = Eθ(T ) − θ .

The estimator T of a parameter θ is called unbiased estimator, if Eθ(T ) = θ, whereas
it is called asymptotically unbiased if lim

n→∞
Eθ(T ) = θ. Clearly, for an unbiased

estimator MSEθ(T ) = varθ(T ) holds.

Definition C.2 A consistent estimator T is one for which the following holds

lim
n→∞

P (|T − θ| > ε) = 0 , for ∀ε > 0 . (C.1)

Apparently, if T is an unbiased estimator, then based on Chebyshev’s inequality we
have P (|T − θ| > ε) ≤ var(T )/ε2. Hence, ∀ε > 0 if lim

n→∞
var(T ) = 0, T is consistent.

Definition C.3 An estimator T1 is an efficient estimator of θ, if for any estimator
T2 of θ the following inequality holds:

E((T1 − θ)2) ≤ E((T2 − θ)2) . (C.2)

Clearly, among all unbiased estimators the most efficient is the one with the smallest
variance, since MSE(T1) ≤ MSE(T2) holds iff var(T1) ≤ var(T2). However, this
fact is even more general for the class of estimators {T : Eθ(T ) = g(θ) 6= θ} with
the same expected value, as stated by the following definition.
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Definition C.4 An estimator T ∗ is said to be the best unbiased estimator of g(θ) if
it satisfies Eθ(T

∗) = g(θ) for all θ and for any other estimator T with Eθ(T ) = g(θ),
we have varθ(T

∗) ≤ varθ(T ) for all θ. T ∗ is also called a uniform minimum variance
unbiased estimator (UMVUE) of g(θ).

Suppose further that both T and T ∗ are unbiased estimators of parameter θ, where
T is better than T ∗. Then, any weighted average Wα(T, T ∗) = αT + (1 − α)T ∗, for
∀α, is also an unbiased estimator of θ. The question is, whether T is also a better
estimator than any Wα(T, T ∗). The following Cramér-Rao theorem gives answer to
this question. It states that for any differentiable function g(θ), if the variability
bound of its unbiased estimator is achieved, then we did the best we could. Thus,
any unbiased estimator getting at this lower bound is the best unbiased estimator
of g(θ). A UMVUE may not necessarily reach it.

Theorem C.1 Let Eθ(T ) = g(θ) and I(θ) be the Fisher information for θ based on
X. Then we have

varθ(T ) ≥ (g′(θ))2

I(θ)
. (C.3)

In particular, if Eθ(T ) = θ, then

varθ(T ) ≥ 1

I(θ)
. (C.4)

The quantity (g′(θ))2/I(θ) is called the Cramér-Rao lower bound (CRLB). Notice
that CRLB depends only on the function g(θ) and the underlying pmf πx|θ. As the
information increases, we have less uncertainty about θ and smaller bound on the
variance of the best unbiased estimator.



Appendix D

Software

This appendix summarizes the names of the programs we used for analyzing word
length frequency distributions. The programs documented here are written in sta-
tistical software R, version 2.8.0. The source code is available as zip file. Pre-
processing is done by a special software, developed in the programming language
PERL, which takes a text as an input and outputs various statistical measures such
as mean, variance, higher moments, etc., as well as word length frequency distri-
bution of the text. Data sets containing Slovenian and Russian texts are saved as
dataSlo.R and dataRus.R, respectively. Tables below summarize the functions used
for the calculations in R.

Table D.1: R Functions used

Function Name Distribution Description

recursion1DSP.R 1-displaced Sing-Poisson calculates probabilities
recursionSBSP.R size-biased Sing-Poisson calculates probabilities
generate1DSP.R 1-displaced Sing-Poisson generates random variables
generateSBSP.R size-biased Sing-Poisson generates random variables
estimation1dSP.R 1-displaced Sing-Poisson parameter estimation
estimationSBSP.R size-biased Sing-Poisson parameter estimation

recursion1DHP.R 1-displaced Hyper-Poisson calculates probabilities
recursionSBHP.R size-biased Hyper-Poisson calculates probabilities
generate1DHP.R 1-displaced Hyper-Poisson generates random variables
generateSBHP.R size-biased Hyper-Poisson generates random variables
estimation1dHP.R 1-displaced Hyper-Poisson parameter estimation
estimationSBHP.R size-biased Hyper-Poisson parameter estimation

recursion1DGP.R 1-displaced generalized Poisson calculates probabilities
recursionSBGP.R size-biased generalized Poisson calculates probabilities
generate1DGP.R 1-displaced generalized Poisson generates random variables
generateSBGP.R size-biased generalized Poisson generates random variables
estimation1dGP.R 1-displaced generalized Poisson parameter estimation
estimationSBGP.R size-biased generalized Poisson parameter estimation
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Table D.2: R Functions used

Function Name Distribution Description

recursion1DCP.R 1-displaced Cohen-Poisson calculates probabilities
recursionSBCP.R size-biased Cohen-Poisson calculates probabilities
generate1DCP.R 1-displaced Cohen-Poisson generates random variables
generateSBCP.R size-biased Cohen-Poisson generates random variables
estimation1dCP.R 1-displaced Cohen-Poisson parameter estimation
estimationSBCP.R size-biased Cohen-Poisson parameter estimation
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Neubauer, G., and Djuraš, G. (2009). A beta-Poisson model for underreporting. In
Booth, J. (Ed.), Proceedings of the 24th International Workshop on Statistical
Modelling, Ithaca, NY, 20-24 July 2009, 255-260.
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Wimmer, G., Köhler, R., Grotjahn, R., and Altmann, G. (1994). Towards a theory
of word length distribution. Journal of Quantitative Linguistics, 1 (1), 98-106.



BIBLIOGRAPHY 209

Winkelmann, R. (2000). Econometric Analysis of Count Data. Berlin: Springer.

Zerzwadse, G., Tschikoidse, G., and Gatschetschiladse, T. (1962). Die Anwen-
dung der mathematischen Theorie der Wortbildung auf die georgische Sprache.
Grundlagenstudien aus Kybernetik und Geisteswissenschaft, 4, 110-118.


