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Kurzfassung

In dieser Arbeit wird das Multigrid-Verfahren für zeitharmonische Wirbelstrom-

probleme präsentiert. Verschiedene Glättungsalgorithmen werden auf das Multigrid-

Verfahren für Gleichungssysteme resultierend aus der A, V -A Formulierung und

der T , Φ-Φ Formulierung angewendet.

Um die Anisotropie des Finite-Elemente-Netzes zu behandeln, wird der planare

Glätter für Kantenelemente vorgeschlagen, und auf Finite-Elemente-Formulierungen

mit Vektorpotential angewendet. Seine Glättungseigenschaften für mit dünnen

finiten Elementen diskretisierte Probleme wird analysiert. Die Leistungsfähig-

keit des Multigrid-Verfahrens mit dem planaren Glätter wird für magnetostati-

sche und Wirbelstromprobleme untersucht. Darüber hinaus wird das Multigrid-

Verfahren als Vorkonditionierer der Methode der konjugierten Gradienten ver-

wendet, um die Effizienz des Lösers zu verbessern.

Im Falle von nichtlinearen Problemen wird das Multigrid-Verfahren basiert auf

einer modifizierten Picard-Banach Methode auf die resultierenden nichtlinearen

Gleichungssysteme angewendet. Die Eigenschaften des Multigrid-Lösers werden

durch praktische numerische Beispiele demonstriert.
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Abstract

This work presents the multigrid method for time-harmonic eddy current prob-

lems. Various smoothers for systems of equations resulting from the A, V -A

formulation and the T , Φ-Φ formulation are applied to the multigrid algorithm.

To deal with the anisotropy in the finite element mesh, the plane smoother for

edge elements is proposed and applied to finite element formulations with vector

potentials. Its smoothing ability for problems discretized by thin finite elements

is analyzed. The performance of the multigrid method with the plane smoother

for magnetostatic and eddy current problems is investigated. In addition, the

multigrid method as the preconditioner of the conjugate gradient method is used

for the improvement of the efficiency of the solver.

In the case of nonlinear problems, the multigrid method based on a modified

Picard-Banach method is applied to the resulting nonlinear system of equations.

The characteristics of the multigrid solver are demonstrated by solutions of prac-

tical numerical examples.
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Chapter1
Introduction

1.1 Introduction

Computer-aided simulation is an essential tool in all fields of technical and sci-

entific research. It provides the opportunity of investigating properties of pro-

totypes in advance by means of numerical calculation and thus saves costs. Its

applications range from the calculation of characteristics of mobile phones, power

transformers, magnetic resonance imaging and turbo machinery to the simulation

of weather, tides and avalanches.

An efficient technique for the numerical calculation of electric and magnetic

fields is the finite element method by which the problem domain is divided into

smaller subregions called finite elements. With the help of this decomposition, the

partial differential equations derived from Maxwell’s equations can be discretized

to set up a system of equations whose solution results in the field quantities.

The number of unknowns in the equation system depends directly on the num-

ber of finite elements, which means that for areas or volumes with fine discretiza-

tion, large systems of equations are usually obtained. Since their corresponding

system matrices are primarily populated by zero, they are called sparse systems

of equations.

In the finite element method, mainstream applications are using scalar po-

tentials and vector potentials to describe the electric and magnetic fields. The

scalar potential is commonly approximated by nodal elements. However, for the

discretization of vector potentials, it has been proven that edge elements have

advantages. In recent years, the significance of edge elements for the numerical
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Chapter 1 Introduction

treatment of magnetostatic problems, eddy current problems and high frequency

problems has increased rapidly. They have become indispensable in those fields.

The solution of large sparse systems of equations constitutes a comprehen-

sive topic in numerical mathematics. Since the calculation of the direct solution

of a large system of equations is time-consuming or needs big amount of com-

puter memory, algorithms for iterative solutions have become a promising choice.

Starting with an initial solution, a new value of the solution is computed and ap-

proximates the exact solution better and better. Classical algorithms of iterative

methods include the Jacobi iteration, Gauss-Seidel iteration or their correspond-

ing overrelaxation methods. But these iterative methods are no longer used in

practice, since their convergence is poor for problems with large condition num-

ber, influenced by large number of degrees of freedom, poor mesh quality, etc..

A widely used algorithm is the preconditioned conjugate gradient method which

is a faster and more stable method, for which the above classical iterative algo-

rithms can be used as a preconditioner. The most frequently used preconditioner

is the incomplete Cholesky decomposition. However, the convergence of the pre-

conditioned conjugate gradient method deteriorates as the number of unknowns

increases.

One of the fastest methods for solving large sparse systems of equations is the

multigrid (multilevel) method, in which the error of the approximate solution is

corrected by a solution based on a coarser finite element or finite difference grid.

A brief overview of the history of the multigrid method and its application for

electromagnetics are given in the following sections.

1.2 Overview of the multigrid method

The development of the multigrid method is based on three well-known ideas [1]:

the smoothing property of iterative methods; calculation of the correction on a

coarse grid; nested iterations.

The first description and analysis of the multigrid method is presented by

Fedorenko in [2, 3] and by Bakhvalov in [4] in the early 1960s. The authors

combined the smoothing error of the Jacobi iteration with the correction of the

error on a coarser mesh. The convergence behavior for problems which consist of

a unit cubic, as well as complex structures is demonstrated in these works.

The efficiency of the multigrid method was first investigated in [5]. In 1976/77,
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1.3 Overview of the application to the multigrid method for electromagnetic problems

Hackbusch developed a multigrid algorithm independent of previous works. In

1977 the multigrid method for solving Navier-Stokes equations was developed by

Wesseling, and results for the multigrid method from the group of Trottenberg,

Stueben and Malevich have been published since 1980. After 1981, the number

of publications on the multigrid method has been growing rapidly.

The first multigrid method was developed for the finite difference method. An

important application was computational fluid dynamics. The multigrid algo-

rithm for finite element equations was presented in [6] in 1977, which was used

for practical applications starting in 1980 [7]. In the early 1980s, Brandt and

Ruge developed the algebraic multigrid method.

A good summary of the history of the multigrid method before 1981 and an

introduction to the algorithm can be found in [1]. A guide for the construction

of multigrid algorithms is described in [8]. The first monography was published

in 1985 by Hackbusch, in which he presented the geometric multigrid method

for the finite difference method, as well as for the finite element method [9]. In

addition, a detailed introduction to the multigrid method for finite differences can

be found in [10]. For the algebraic multigrid method, a general description is given

in the book [11], and its application to the finite element method is presented

in [11]. The book published by Trottenberg et al. [12] includes an overview of

the multigrid method, and the investigation of its efficiency and the optimization

and improvement of the multigrid components.

1.3 Overview of the application to the multigrid

method for electromagnetic problems

The multigrid method considered in the calculation of electric and magnetic fields

discretized by finite elements was first developed for nodal elements using var-

ious algorithms as presented in [13]. However, since edge elements are popular

and advantageous for the discretization of vector potentials, their corresponding

multigrid algorithm have become the focus of research.

The difficulty for solving the curl-curl equation derived from Maxwell’s equa-

tions discretized by edge elements originates from the kernel of the curl oper-

ator [14]. An important publication by Hiptmair in 1998 [15] proposes a new

smoother by which the kernel of the curl operator and its orthogonal space are

solved individually with the help of a so-called lift operator and nodal basis func-
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Chapter 1 Introduction

tions. In 2000, Arnold, Falk and Winther (AFW) resolved the same problem by

using a block iteration based on a domain decomposition method as the smoother

for the multigrid method [16].

As practical applications, in the case of magnetostatic problems, the above

smoothers applied to regular meshes with triangular elements, second order hex-

ahedral elements and nonstructured mesh are presented in [17–19], respectively,

as well as the hierarchy of grids, the prolongation and restriction operators for

edge elements. It has been found that symmetric Gauss-Seidel iterations instead

of block iterations can also be applied to the multigrid as the smoother for edge

elements [20–22], which reduces the complexity of the algorithm. In parallel, the

algebraic multigrid method has been successfully applied to edge elements [23,24].

In the case of eddy current problems, for the finite element formulation dis-

cretized by the magnetic vector potential only, i.e. the A∗ formulation [25], the

Hiptmair smoother and the AFW smoother are capable of smoothing errors in

the kernel space of the curl operator and thus can be applied to the multigrid

method, whereas the Gauss-Seidel smoother failed. But for the formulation with

scalar potentials, i.e. the A, V formulation and the T , Φ formulation [26], the

Gauss-Seidel smoother is able to eliminate the error in both edge and nodal ele-

ment spaces [27,28]. Moreover, the application of the algebraic multigrid method

to eddy current problems is presented in [29,30].

The nonlinearities of material properties and anisotropies of meshes in most

cases need to be taken into special account. For the former issue, the multigrid

based on a Picard-Banach method for solving nonlinear magnetostatic and eddy

current problems are presented in [20, 31], respectively. For the latter one, the

line smoother and the plane smoother for 2-D and 3-D problems discretized by

nodal elements are introduced in [12]. The applications of these smoothers have

been extended to edge elements as presented in [32,33].

For complicated problems where the multigrid may lose its efficiency, the com-

bination of the multigrid method with the conjugate gradient method may have

the potential of a substantial acceleration [34]. Its application for electromag-

netic problems is investigated in [33,35] for the geometric and algebraic multigrid

methods, respectively.
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1.4 Thesis organization

1.4 Thesis organization

This work is organized as follows: In the second chapter, iterative methods used

in this work are presented. A detailed introduction of the multigrid algorithm

is given. The third chapter can be divided into two parts, one of which deals

with the nodal elements and edge elements used for the discretization of scalar

and vector potentials, and the other focuses on the individual components of the

multigrid method (hierarchy of grids, prolongation and restriction, smoother).

Chapter four describes the application of the multigrid method to systems of

equations arising from the finite element discretization of magnetostatic problems.

Smoothers applied to the Φ-formulation and the A-formulation are presented,

respectively. In particular, the efficiency of the plane smoother designed for

problems with thin elements in the finite element mesh is investigated by a test

problem. The numerical analysis of a practical example is used to demonstrate

advantages of the plane smoother and the improvement of the efficiency of the

solver achieved by the multigrid preconditioned conjugate gradient method.

Chapter five is dedicated to time-harmonic eddy current problems. First of all,

the A, V -A and T , Φ-Φ formulation are presented. The second part of this chap-

ter introduces the algorithm for solving nonlinear systems of equations. In the

following, the characteristics of smoothers designed for the eddy current formula-

tions are investigated by comparison of the convergence and the solution time for

test problems. In the end, two numerical examples illustrate the efficiency of the

proposed multigrid algorithms. Finally, there is a brief summary of this work.

The major contributions of this work are listed as follows:

• The geometric MG method has been applied for solving the systems of

equations resulting from various finite element formulations.

• The plane smoothing iteration for edge elements has been proposed to deal

with problems discretized by anisotropic meshes.

• The geometric MG method based on a modified Picard-Banach method has

been used as the solver for nonlinear eddy current problems.

• The characteristics of the MG method with different smoothers are demon-

strated by practical numerical examples.
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Chapter2
General principle of the multigrid method

Consider the linear system of equations

Ax = b (2.1)

where A ∈ Rn×n is a symmetric, positive (or negative) semi-definite matrix with

coefficients denoted by aij (i, j = 1, 2, . . . , n), and x, b ∈ Rn are vectors with

entries denoted by xi and bi (i = 1, 2, . . . , n), respectively.

Two important subspaces that are associated with the system matrix A are its

kernel defined by kerA = {x ∈ Rn : Ax = 0} and its range defined by RankA =

{Ax : x ∈ Rn}. The dimension of the range of A is called the rank of A and is

equal to the number of linearly independent equations in (2.1).

The iterative methods used in this work will be briefly introduced in the fol-

lowing sections, the details of which can be found in [36,37].

2.1 Iterative methods

2.1.1 Introduction

An iterative method that produces iterates x1,x2, . . . , from an arbitrary starting

value x0 can be described as

xm+1 := Φ(xm, b). (2.2)

where Φ depends on A and b in (2.1) and m denotes the number of iterations.

7



Chapter 2 General principle of the multigrid method

Definition 1. An iterative method is a mapping

Φ : Rn × Rn → Rn. (2.3)

Definition 2. x∗ = x∗(b) is called a fixed point of the iterative method Φ

belonging to b ∈ Rn, if

x∗ := Φ(x∗, b). (2.4)

Definition 3. The iterative method Φ is called consistent with the system of

equations (2.1), if for all right-hand sides b ∈ Rn any solution x of (2.1) is a fixed

point of Φ with respect to b.

Definition 4. An iterative method Φ is called convergent, if for all right-hand

sides b ∈ Rn, there is a limit x∗(b) of iterates xm independent of the starting

value x0.

Definition 5. An iterative method Φ is called linear if Φ(xm, b) is linear in

x and b, i.e., if there are matrices M and N such that

Φ(x, b) = Mx+Nb (2.5)

where the matrix M is called the iteration matrix (also called error prolongation

matrix) of the iteration Φ.

All linear iterative methods for solving linear equations can be described as [36]:

1. The first normal form:

xm+1 := Mxm +Nb m ≥ 0. (2.6)

2. The second normal form:

xm+1 := xm −N(Axm − b) m ≥ 0 (2.7)

where the matrix N is called the matrix of the second normal form of Φ.

3. The third normal form:

W (xm − xm+1) = Axm − b m ≥ 0 (2.8)

8



2.1 Iterative methods

where the matrix W is called the matrix of the third normal form of Φ, or

the preconditioner of iteration Φ since (2.8) can be also expressed as

xm+1 = xm −W−1(Axm − b) m ≥ 0. (2.9)

A convergence criterion of the consistent iteration Φ is given by a norm esti-

mate [36]:

Theorem 1. A sufficient condition for the convergence of an iteration is the

estimate of the iteration matrix M :

‖M‖ ≤ 1 (2.10)

where ‖·‖ be a corresponding matrix norm defined by ‖A‖ := sup
{
‖Ax‖
‖A‖ : 0 6= x ∈ Rn

}
.

If the iteration is consistent, the error estimate can be written as∥∥em+1
∥∥ ≤ ‖M‖ ‖em‖ or ‖em‖ ≤ ‖M‖m

∥∥e0
∥∥ (2.11)

where em = xm − x is defined as the iteration error.

2.1.2 Symmetric Gauss-Seidel method

The Gauss-Seidel (GS) method is one of iterative methods used to solve the linear

system of equations (2.1). The matrix A can be decomposed into the sum

A = D − L− U (2.12)

where D is a diagonal matrix, L is a strictly lower triangular matrix and U is a

strictly upper triangular matrix. The standard GS method, i.e. the forward GS

method results from the third normal form (2.8) by choosing

WFGS = D − L. (2.13)

Then the iteration matrix MFGS is expressed as

MFGS = (D − L)−1U. (2.14)

The backward GS iteration can be obtained by choosing

WBGS = D − U (2.15)

9



Chapter 2 General principle of the multigrid method

instead of (2.13) and

MBGS = (D − U)−1L (2.16)

instead of (2.14). The iteration matrix of the symmetric GS (SGS) iteration is

defined by the product of iteration matrices of the forward and backward GS

iterations:

MSGS = (D − U)−1L(D − L)−1U. (2.17)

The matrix W SGS of the third normal form (2.8) is

W SGS = (D − L)D−1(D − U). (2.18)

The componentwise description of the SGS iteration can be written as

xm+1
i :=

(
bi −

i−1∑
j=1

aijx
m+1
j −

n∑
j=i+1

aijx
m
j

)
/aii i, j = 1, 2, . . . , n,

xm+1
i :=

(
bi −

i−1∑
j=1

aijx
m
j −

n∑
j=i+1

aijx
m+1
j

)
/aii i, j = n, n− 1, . . . , 1.

(2.19)

2.2 The multigrid idea

The multigrid (MG) method is an iterative method that combines the smoothing

property of certain iterative methods with the scheme called the coarse grid cor-

rection whose fundamental idea is to calculate the correction of the solution on

a coarse finite element or coarse finite difference grid.

The consideration of the MG idea is based on the observation of the smoothing

property of classic iterative methods. The highly oscillating (high frequency)

components of errors in the first few iterations are greatly reduced, while the

components with less local variation (low frequency) are damped slowly.

Let xm be the approximation of the solution x of (2.1) after m steps of smooth-

ing iterations and the error of xm be written as em = xm − x. The error vector

em is composed of high frequency and low frequency components. In Fig. 2.1,

the smoothing property of the iterative method against the error em for a one-

dimensional problem

− u′′
(x) = f(x), x ∈ (0, xL)

u(0) = u(xL) = 0
(2.20)

10



2.2 The multigrid idea

Figure 2.1 The error em after m smoothing iterations for a one-dimensional

problem.

is schematically illustrated. After one step of the smoothing iteration, high fre-

quency components in the error are greatly damped, and after three iterations

the error e3 has basically only low frequency components, which indicates that e3

has been successfully smoothed. An iterative method with this property is called

smoother and can be applied to the MG method.

According to the above observation, since the error consists of mainly low

frequency components, it is possible to approximate the error by means of a

coarse grid. The idea of the coarse grid correction is to project the defect defined

as Axm − b onto the coarse grid, solve the error correction scheme thereon, and

project the coarse correction again to the original grid.

It can be seen that the interaction between the smoothing property of the itera-

tive method and the coarse grid correction is the key factor of the MG algorithm.

With respect to the setup of the grid hierarchy, there are two types of MG

methods: the algebraic MG method and the geometric MG method. In the

geometric MG method, a hierarchy of grids has to be established a priori. To

achieve this, a coarse grid is primarily constructed. The following finer grids

are obtained either by subdividing the grids into finer grids (h-method), or by

increasing the order of the shape functions (p-method) [38].

11



Chapter 2 General principle of the multigrid method

The algebraic MG method is a true “black-box” solver for the system of equa-

tions discretized by finite differences or finite elements. It constructs a hierarchy

of systems of equations and MG operators without a priori knowledge of the

coarse grid and the geometric interpretation. The algebraic MG method has its

advantage when the coarse grid is too hard to be generated primarily [39].

In this work only the geometric MG method with the hierarchy of grids gener-

ated by the h-method will be investigated.

2.3 Two-grid method

For better understanding, the two-grid method is first introduced. The finite

element discretization on the fine grid h leads to a system of nh linear equations:

Ahxh = bh (2.21)

where the system matrix is denoted byAh. After ν1 smoothing iterations Sν1(xh, bh)

the approximation x̃h of the solution of (2.21) can be obtained. The exact cor-

rection of x̃h is

eh = x̃h − xh. (2.22)

Let dh be the defect of x̃h,

dh = Ahx̃h − bh. (2.23)

From (2.21) and (2.23) one can obtain

Aheh = dh (2.24)

called defect equation which would yield xh = x̃h − eh. According to the idea of

the coarse grid correction, the approximation to eh on a coarse grid H needs to

be computed, leading to the equation

AHeH = dH (2.25)

where the solution eH is an approximation of eh on the coarse grid H. The linear

mapping

dH = Rhdh (2.26)

is called restriction with Rh as the restriction matrix that projects the defect dh
to the coarse grid. By the prolongation operator Ph one can interpolate the error

12



2.3 Two-grid method

from the coarse grid to the fine grid:

eh = PheH . (2.27)

Finally, the new solution xnew
h is calculated by the coarse grid correction:

xnew
h = x̃h − PheH . (2.28)

The above procedure is presented in the following algorithm:

Algorithm 1. Two-grid algorithm xm+1
h = TGA(xmh , bh)

1. x̃h = Sν1(xmh , bh): ν1 smoothing iterations

2. dh = Ahx̃h − bh: Calculation of the defect

3. dH = Rhdh: Restriction of the defect to the coarse grid H

4. eH = A−1
H dH : Solution on the coarse grid H

5. xh = x̃h − PheH : Correction of x̃h

6. xnew
h = Sν2(xh, bh): ν2 smoothing iterations

7. TGA(xmh , bh) = xm+1
h

In step 6 above, ν2 steps of smoothing iterations are introduced to the two-grid

algorithm. In this case, the steps 1 and 6 are called pre- and post- smoothing,

respectively. The iteration matrix MTGI
h of the two-grid iteration is

MTGI
h (ν1, ν2) = Sν2h (I − PhA−1

H RhAh)S
ν1
h . (2.29)

It can be seen that MTGI
h is the product of the iteration matrix MCGC

h of the

coarse grid correction

MCGC
h = I − PhA−1

H RhAh, (2.30)

the pre-smothing iteration matrix Sν1h and the post-smoothing iteration matrix

Sν2h .

The convergence of the two-grid iteration depends on the combination of the

approximation property of the coarse grid correction and the smoothing property

of the pre- and post- smoothing iterations.

13
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W-CycleV-Cycle

Smoothing

Restriction

Prolongation

Exact solution

Level 2

Level 1

Level 3 (fine)

Level 0 (coarse)

Figure 2.2 MG V-cycle and W-cycle for lmax = 3.

2.4 Multigrid method

In step 4 of the algorithm 1, the defect equation AHeH = dH has to be exactly

solved. This step can be replaced by another two-grid algorithm; this operation

can be done recursively to generate a recursive algorithm called the MG iteration.

Based on a hierarchy of grids, the associated system matrices for each level of

the MG method Al (l = 0, 1, 2, . . . , lmax) have to be constructed, where l is the

level number of grids. The finest and coarsest grids are denoted as l = lmax and

l = 0, respectively. The MG algorithm can be described as:

Algorithm 2. Multigrid algorithm xm+1 = MGAl(x
m
l , bl)

1. if l = 0 then A0x
m+1
0 = b0 is exactly solved else

2. x̃l = Sν1(xml , bl)

3. dl−1 = Rl(Alx̃l − bl)

4. e
(0)
l−1 = 0

5. for i = 1 to γ do e
(i)
l−1 = MGAl−1(e

(i−1)
l−1 ,dl−1)

14



2.5 Preconditioned conjugate gradient method

6. xl = x̃l − Ple(γ)
l−1

7. xm+1
l = Sν2(xl, bl)

8. MGAl(x
m
l , bl) = xm+1

l

In step 5 of the above algorithm, γ steps of MG iterations are applied to solve

the system of equations based on coarser grids. Only cases γ = 1 and γ = 2

are of practical interest. The MG iteration with γ = 1 is called V-cycle, whereas

the iteration with γ = 2 has the name W-cycle. The MG iterations for four MG

levels (lmax = 3) with γ = 1 and γ = 2 are illustrated in Fig. 2.2.

The iteration matrix MMGI
l of the MG iteration is

MMGI
0 (v1, v2) = 0, MMGI

1 = MTGI
1 (v1, v2),

MMGI
l (v1, v2) = MTGI

l (v1, v2) + Sv2l Pl(M
MGI
l−1 )γ(v1, v2)A−1

l−1RlS
v1
l for l ≥ 1

(2.31)

and the iteration matrix of the coarse grid correction is

MCGC
l = I − Pl

[
I − (MMGI

l−1 )γ)
]
)A−1

l−1RlAl. (2.32)

The solution of linear equations on the coarsest grid l = 0 has to be carried

out. In this case, a direct solver needs to be used. Since the coarsest grid has

the smallest number of grid points, the solution should not lead to practical

difficulties.

Although the MG method is very efficient, in some cases especially nonlinear

problems it can be improved by using the nested iteration, also called full MG.

The system of equations on the coarsest grid is exactly solved and the solution is

used as an initial guess for the approximation on a finer grid (see Fig. 2.3). The

disadvantage of the W-cycle MG iteration and the full MG iteration is that they

are more expensive than the V-cycle MG iteration, therefore, in this work only

the V-cycle MG iteration is applied to solve the linear system of equations.

2.5 Preconditioned conjugate gradient method

Another important iterative method is the conjugate gradient (CG) method whose

purpose is to approximate the solution of the equation (2.1) by means of a search

direction pm ∈ Rn. It is known that two vectors p and q are conjugate if pTAq =

0 which is denoted by Aq⊥p. The optimal search direction is guaranteed if
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Level 3 (fine)

Level 2

Level 1

Level 0 (coarse)

Figure 2.3 Full MG for lmax = 3.

pm 6= 0 and pm is conjugate to all preceding directions pl (l < m). Assuming

exact arithmetic the CG method would terminate after n iterations with the exact

solution [36].

The CG method can be improved when it is applied to a symmetric iteration

Φ : xm+1 = xm −W−1(Axm − b) (2.33)

Substituting A and b in (2.33) by Ǎ = W−1/2AW−1/2 and b̌ = W−1/2b and ap-

plying the CG method to the associated system of equations Ǎx̌ = b̌ leads to the

following preconditioned conjugate gradient (PCG) algorithm:

Algorithm 3. Preconditioned conjugate gradient method PCG(x0, b, A,W )

1. r0 = b− Ax0

2. p0 = W−1r0

3. ρ0 = 〈p0, r0〉 m = 0

4. do while (‖r‖ ≥ ε)

5. am = Apm

6. λopt = ρm/ 〈am,pm〉

7. xm+1 = xm + λoptpm

16



2.5 Preconditioned conjugate gradient method

8. rm+1 = rm − λoptpm

9. qm+1 = W−1rm+1

10. ρm+1 = 〈qm+1, rm+1〉

11. pm+1 = qm+1 + ρm+1

ρm
pm

12. m = m+ 1

13. end do

where r denotes the residual of (2.1) defined as r = b−Ax and 〈·, ·〉 denotes the

Euclidean scalar product.

The CG method preconditioned by the incomplete Cholesky factorization (ICCG)

is often used as an iterative solver [37]. In this work, the SGS iteration precondi-

tioned CG method (SGSCG) will be used as the smoother of the MG method. Ad-

ditionally, the MG method as the preconditioner of the CG method (MGCG) [12]

will be investigated and its performance for solving linear systems of equations

will be compared to that of the ICCG method.

17





Chapter3
Multigrid for finite elements

3.1 H1(Ω) and H(curl,Ω) spaces

This section gives a brief introduction to the Sobolev spaces [40] used in this work.

These spaces are built on the function space L2(Ω) which is defined as follows:

In a given domain Ω with the boundary Γ which is composed of the boundary

ΓD with Dirichlet boundary conditions and the boundary ΓN with Neumann

boundary conditions, L2(Ω) consists of all the square-integrable functions u in Ω:∫
Ω

|u(r)|2 dΩ <∞. (3.1)

L2(Ω) is a Hilbert space with the scalar product

(u, v)L2(Ω) =

∫
Ω

u · vdΩ (3.2)

and the norm

‖u‖L2(Ω) =
√

(u, u)L2(Ω). (3.3)

In following sections of this chapter, the scalar product (·, ·)L2(Ω) and the norm

‖·‖L2(Ω) are written as (·, ·) and ‖·‖ for the sake of brevity, respectively.

The other two Hilbert spaces used are

H1(Ω) =
{
v ∈ L2(Ω); gradv ∈ (L2(Ω))3

}
, (3.4)

H(curl; Ω) =
{
η ∈ L2(Ω)3; curlη ∈ (L2(Ω))3

}
(3.5)
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Chapter 3 Multigrid for finite elements

as introduced in [41].

The corresponding scalar products and norms of these two function spaces are:

(u, v)H1(Ω) = (u, v) + (gradu, gradv), (3.6)

‖u‖2
H1(Ω) = ‖u‖2 + ‖gradu‖2 , (3.7)

and

(ξ,η)H(curl,Ω) = (ξ,η) + (curlξ, curlη), (3.8)

‖η‖2
H(curl,Ω) = ‖η‖2 + ‖curlη‖2 . (3.9)

When Dirichlet boundary conditions are taken into account, these spaces can be

defined as

H1
0 (Ω; ΓD) =

{
v ∈ L2(Ω); gradv ∈ (L2(Ω))3; v = 0 on ΓD

}
, (3.10)

H0(curl; Ω; ΓD) =
{
η ∈ L2(Ω)3; curlη ∈ (L2(Ω))3;η × n = 0 on ΓD

}
(3.11)

where n is the normal vector to ΓD.

It is well-known that a vector function whose curl is zero can be represented as

the gradient of a scalar function. For an arbitrary scalar function ϕ ∈ H1
0 (Ω; ΓD),

it satisfies

gradϕ = η ∈Ho
0(curl; Ω; ΓD) (3.12)

where the space Ho
0(curl; Ω; ΓD) is the kernel of the curl operator and defined as

in [41]

Ho
0(curl; Ω; ΓD) = {η ∈H0(curl; Ω; ΓD); curlη = 0} . (3.13)

For a vector functionw ∈ (L2(Ω))3, there exist one scalar function ϕ ∈ H1
0 (Ω; ΓD)

and one vector function u ∈H0(curl; Ω; ΓD) so that

w = u+ gradϕ (3.14)

and

(gradϕ, gradψ) = (w, gradψ) ∀ψ ∈ H1
0 (Ω; ΓD) (3.15)

with divu = 0 and u · n = 0 on ΓN where n is the unit normal vector to ΓN
satisfied.

The space that consists of functions u satisfies

H⊥0 (curl; Ω; ΓD) = {u ∈ H0(curl; Ω; ΓD); divu = 0} . (3.16)
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3.2 Finite elements

This is the space of the vector functions in H0(curl; Ω; ΓD) with their divergence

equal to zero.

Derived from equation (3.14) called the Helmholtz decomposition of a vector

function, the Helmholtz decomposition for the space H0(curl; Ω; ΓD) can be writ-

ten as

H0(curl; Ω; ΓD) = Ho
0(curl; Ω; ΓD)⊕H⊥0 (curl; Ω; ΓD) (3.17)

where ⊕ denotes the sum of two function spaces.

3.2 Finite elements

3.2.1 Introduction to finite elements

A finite element defined in [42] is a triple (T, P,Σ), where

1. T , a finite element, is a closed subset of R3 with non-empty interior and

the Lipschitz-continuous boundary.

2. P is a space that contains polynomials on T with the dimension k.

3. Σ is a set of linear functionals on P . These linear functionals are called

degrees of freedom of the finite element.

The most characteristic aspect of the finite element method is that the triangula-

tion Th is established over the domain Ω̄, i.e., the set Ω̄ is subdivided into a finite

number of subsets T such that the following conditions are satisfied [42]:

1. Ω̄ = ∪T∈ThT .

2. For each T ∈ Th, the set T is closed and the interior
o

T is non-empty.

3. For each distinct T1, T2 ∈ Th, one has
o

T 1 ∩
o

T 2= 0.

4. For each T ∈ Th, the boundary ∂T is Lipschitz-continuous.

Over the domain Ω̄, the finite element space of nodal elements and edge elements

presented in [42,43] are introduced in the following sections, respectively.
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3.2.2 Nodal elements

Scalar functions can be discretized by nodal elements. The space spanned by the

kth-order finite elements is denoted by Sk(Th). This subspace of H1(Ω) consists

of piecewise continuous polynomials of degree k. The interpolation operator that

projects H1(Ω) onto Sk(Th) is denoted by Ihk : H1(Ω) 7→ Sk(Th). The degrees of

freedom αn ∈ Σ at the node n are written as αn(u) with u ∈ Sk(Th).
With homogeneous Dirichlet boundary conditions on ΓD considered, the space

Sk(Th; ΓD), a subspace of H1
0 (Ω; ΓD), is called the finite element space of nodal

elements with Dirichlet boundary conditions on ΓD:

Sk(Th; ΓD) = {ϕh ∈ Sk(Th);ϕh = 0 on ΓD} . (3.18)

For brevity, Sk(Th) and Sk(Th; ΓD) are written as Skh and Skh,D, respectively.

In this work, second-order (k = 2) hexahedral finite elements with 20 nodes

shown in Fig. 3.1(a) are used. The finite element has local coordinates ξ, η,

ζ which all range from −1 to 1. The global coordinate system and the local

coordinate system are related by the following coordinate transformation:

x(ξ, η, ζ) =
20∑
i=1

Ni(ξ, η, ζ)xi,

y(ξ, η, ζ) =
20∑
i=1

Ni(ξ, η, ζ)yi,

y(ξ, η, ζ) =
20∑
i=1

Ni(ξ, η, ζ)zi

(3.19)

where (xi, yi, zi) are the coordinates of the i-th node, and Ni ∈ Skh,D is the basis

function for the i-th node given by

Ni =
1

8
(1 + ξξi)(1 + ηηi)(1 + ζζi)(ξξi + ηηi + ζζi − 2) (3.20)

for the corner nodes and

Ni =
1

4
(1− ξ2)(1 + ηηi)(1 + ζζi) (3.21)

for the midside nodes i = 4, 8, 16, 20 and

Ni =
1

4
(1− η2)(1 + ξξi)(1 + ζζi) (3.22)
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3.2 Finite elements

(a) Second order hexahedral finite elements

with 20 nodes

(b) Second order hexahedral finite elements

with 36 edges

Figure 3.1 Second order hexahedral finite elements

for the midside nodes i = 2, 6, 14, 18 and

Ni =
1

4
(1− ζ2)(1 + ξξi)(1 + ηηi) (3.23)

for the midside nodes i = 9, 10, 11, 12. Here (ξi,ηi,ζi) are the local coordinates of

the i-th node.

3.2.3 Edge elements

Edge elements, in contrast to nodal elements with scalar basis functions, have

vector basis functions with amplitudes and directions. In the three-dimensional

case, with vector functions in R3, P is a subspace of (C∞(T̄ ))3. For any u ∈
(C∞(T̄ ))3, one can define a unique interpolation Πu so that for the degrees of

freedom αi(·) ∈ Σ, one can obtain

αi(u− Πu) = 0,∀αi(·) ∈ Σ; Πu ∈ P (3.24)

as defined in [43].
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Let T1 and T2 be two elements with a common face f and u ∈ (C∞(T1 ∪ T2))3

so that the functions v defined by v = Π1u on T1, v = Π2u on T2, belong to

H(curl;T1 ∪ T2). A finite element is conforming in H(curl; Ω) if and only if

1. The tangential components of Π1u and Π2u are the same on the boundary

face f .

2. For any αi(·) ∈ Σ defined only on the face f , αi(p) = 0 with p ∈ P , the

tangential component of p on the face f equals zero, i.e.

n× p = 0 on f (3.25)

where n is the unit normal vector to the face f .

Finite elements, which follow the above properties, are called edge elements or

Nédélec’s elements [43].

The edge elements used in this work are conforming hexahedral edge elements

in H(curl; Ω) defined as:

Definition 6. For each index k, a conforming hexahedral edge element (T,N (T ),Σ)

is defined as follows:

N k(T ) = {u;u1 ∈ Qk−1,k,k;u2 ∈ Qk,k−1,k;u3 ∈ Qk,k,k−1} (3.26)

where Qk1,k2,k3 is the space of polynomials of degree k ≤ ki in the ith coordinate

direction, i = 1, 2, 3.

The discretization Th := {Ti}i of Ω consists of the hexahedral elements Ti so

that the global finite element space of order k is defined as

N k(Th) =
{
ηh ∈H(curl; Ω);ηh,T ∈N k(T ) ∀T ∈ Th

}
. (3.27)

Vector functions in N k(Th) have the property that the continuity of their tangen-

tial components at the interface of the finite elements is enforced, but not that

of their normal components, which means that the normal components are free

to jump at the interface.

Definition 7. The degree of freedom αe ∈ Σ is defined by the functional

αe(u) =

∫
e

u · dl (3.28)
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3.2 Finite elements

where e denotes edges of finite elements. Based on the degrees of freedom, the

interpolation operators Πh
k onto N k(Th) is defined in [15].

With homogeneous Dirichlet boundary conditions on ΓD one can define

N k,0(Th; ΓD) = {ηh ∈N k(Th);ηh × n = 0 on ΓD} (3.29)

where n is the nomal vector to ΓD. In following sections, N k(Th) and N k,0(Th; ΓD)

are written as N k
h and N k

h,D for the sake of brevity, respectively.

In this work, second-order (k = 2) hexahedral finite elements with 36 edges [44]

as shown in Fig. 3.1(b) are used. Among the 12 edges along each of ξ, η and ζ

directions, 8 edges lie along the edges of the element and 4 edges are on the surface

of the element. For edges in the ξ direction, the shape functions N i ∈N k
h,D are

expressed as

Ni =
1

8
(1 + ξξi)(1 + ηηi)(1 + ζζi)(ξξi + ηηi + ζζi − 2)gradξ (3.30)

for edges along the edges of the element and

Ni =
1

4
(1 + ζζi)(1 + ηηi)(1− ξ2)gradξ (3.31)

for edges on the surface of the element. The shape functions for edges in the η-

and ζ- directions can be obtained by the permutations of ξ, η and ζ.

3.2.4 Relation between the nodal element space and the edge

element space

The relation between the nodal element space and the edge element space can be

described by the following diagram [15]:

Definition 8. For all k ≥ 1:

D(Ihk ) ⊂ H1(Ω)
grad−−−→ D(Πh

k) ⊂H(curl; Ω)yIhk yΠh
k

Skh
grad−−−→ N k

h

(3.32)

where D(X) represents the domain of definition of the operator X. From the

diagram it can be seen that for all ϕ ∈ D(Ihk )

gradIhkϕ = Πh
kgradϕ. (3.33)
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Figure 3.2 First-order triangular elements containing node vi. The gradient

of the scalar basis function associated with the node vi is the linear

combination of vector basis functions of all edges containing the node

vi.

Applying the relation gradϕ = η ∈ ker(curl) in (3.12) to (3.33) and substituting

gradIhkϕ by Skh lead to

gradSkh = ηh ∈N k,o
h (3.34)

where N k,o
h is defined as

N k,o
h =

{
ηh ∈N k

h; curlηh = 0
}
. (3.35)

This indicates that the kernel of the curl operator in the finite element space can

be written as the gradient of nodal basis functions. Thus, the following relation

is satisfied:

gradNi =
ne∑
j=1

gijNj , i = 1, 2, . . . , nn (3.36)

where Ni and N j are the nodal and edge basis functions (see 3.2.2 and 3.2.3),

respectively, nn, ne are numbers of nodes and edges of the finite element grid,

respectively, and the weighting values gij are -1 for edges j with the starting node

i, 1 for edges j with the ending node i and elsewhere 0. The nn by ne matrix

26



3.3 Hierarchy of grids

with entries gij is the incidence matrix of the finite element mesh multiplied by

−1 and is denoted by G.

For instance, as shown in Fig. 3.2, for a scalar basis function ψh(r) ∈ S1
h

associated with the node vi, the gradient can be easily calculated: according to

(3.36), the linear combination of vector basis functions of all edges emanating

from the node vi is equal to gradψh(r).

The discrete form of the space H⊥0 (curl; Ω; ΓD) can be written as in [41],

N k,⊥
h,D =

{
ηh ∈N k

h,D; (ηh, gradψh) = 0 ∀ψ ∈ Skh,D
}

(3.37)

so that the Helmholtz decomposition of the discrete form of the function space is

described as follows [41]:

Theorem 2. For each function wh ∈N k
h,D, there exist one function uh ∈N k,⊥

h,D

and ϕh ∈ Skh,D so that

wh = uh + gradϕh. (3.38)

Together with (3.37) one can find that the function gradϕh satisfies

(gradϕh, gradψh) = (wh, gradψh) ∀ψ ∈ Skh,D. (3.39)

3.3 Hierarchy of grids

For the geometric MG algorithm, a hierarchy of finite element spaces must be

constructed. Let X (Th0) be a finite dimensional finite element subspace based on

the finite element grid Th0 which is regarded as the coarse grid with h0 defined

as the discretization parameter, i.e., the minimum characteristic size of the finite

elements. Each element in the coarse grid can be subdivided in order to obtain

the finite element space X (Th1) based on the grid Th1 which is considered as the

fine grid.

To simplify the notations, X (Thl) for 0 ≤ l ≤ lmax is written as Xl:

X0 ⊂ X1 ⊂ · · · Xlmax (3.40)

where l is the level number of the grids. The systems of equations corresponding

to Xl are

Alxl = bl (l = 0, 1, 2, . . . lmax) (3.41)
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Figure 3.3 Hierarchy of multigrid grids with three levels. The macro element

is indicated by black, and the lines representing subdivisions are

indicated by red.

with the dimension of equations nl. The system matrices Al and right hand side

vectors bl are calculated during the pre-processing.

There are two main approaches to construct the hierarchy of grids. In the

bottom up approach, only the coarsest grid T0 is available. The elements in the

coarse grid are subdivided to obtain fine grids Tl, for example, hl+1 = hl
2

, which

results in a nested hierarchy of finite element spaces X0 ⊂ X1 ⊂ · · · Xlmax . In

the other approach called top down approach, the finest grid Tlmax is available.

Finite elements Tlmax−1 ∈ Tlmax−1 can be obtained by combining the elements

Tlmax ∈ Tlmax , for example, Tlmax−1 = T
′

lmax
∪ T ′′

lmax
where T

′

lmax
, T

′′

lmax
∈ Tlmax , which

also results in Xl−1 ⊂ Xl.
In this work a method which combines both approaches is used to construct

the hierarchy of grids. For a problem discretized by the finite element method, its

geometry is described by elements called macro elements Tmac as shown on the

right hand side of Fig. 3.3. The grid composed of the macro element Tmac = T0

is considered as the coarse grid T0.

The macro elements are subdivided individually to generate finite elements to

form finer grids. For this purpose, macro elements are subdivided in all three

local directions ξ, η, ζ with subdivisions denoted by uil(i = ξ, η, ζ). For brevity,

uil(il = ξ, η, ζ) is written as ul. When a finest grid as shown in the graph on the

left side of Fig. 3.3 with the subdivision ulmax is available and the subdivision for

the coarsest grid u0 is set to 1, a sequence of subdivisions {u1, u2, . . . , ulmax−1}
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3.4 Restriction and prolongation

can be calculated by

ul = Round(uplmax
), p = l/lmax, (3.42)

and the correponding grids with level l = 1, 2, . . . , lmax − 1 can be produced. For

the case shown in Fig. 3.3, the hierarchy of grids is composed of three levels, and

their corresponding subdivisions are 1, 2, and 4 from the coarsest grid to the

finest grid.

For cases with multiple macro elements, Table 3.1 gives an example on how to

calculate the number of subdivisions ul of the coarser grids from the subdivision

ulmax of the finest grid. The example consists of five macro elements, and the cor-

responding subdivisions ulmax for the finest grid are 2, 3, 6, 9, 11 listed in the first

row of the table, respectively. In the corresponding rows below, the subdivisions

u2 and u3 for grids on level two and level one are listed.

Table 3.1 Subdivisions ul for different finest subdivision ulmax with lmax = 3

Level No. of subdivisions ul
3 2 3 6 9 11

2 2 2 3 4 5

1 1 1 2 2 2

0 1 1 1 1 1

3.4 Restriction and prolongation

The restriction R is an injection that maps functions on the fine grid h onto func-

tions on the coarse grid H. The restriction for nodal elements can be generated

in the following way:

If SH ⊂ Sh holds, there is an nH × nh matrix Rv with

NH
i =

nh∑
j=1

rvijN
h
j (3.43)

where i = 1, 2, . . . , nH and j = 1, 2, . . . , nh, r
v
ij are entries of the matrix Rv, and

NH
i and Nh

j are the basis functions of the coarse grid and the fine grid (see 3.2.2),

respectively.
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Figure 3.4 The nodal basis function NH of the coarse grid and the nodal basis

functions Nh
i of the fine grid. Entries of the restriction matrix are

values of the coarse grid basis function at nodes of the fine grid.

For each v ∈ Sh, one can find

v =

nh∑
j=1

v(ahj )N
h
j (3.44)

where v(ahj ) are values at the nodes ahj of the fine grid. It is known that NH
i ∈ SH

can be expressed as

NH
i =

nh∑
j=1

NH
i (ahj )N

h
j . (3.45)

Compared to (3.43), it can be easily seen that

rvij = NH
i (ahj ), (3.46)

which means that entries of the restriction matrix are values of the coarse grid

basis function at nodes of the fine grid. The construction of the restriction matrix

Rv in a one-dimensional problem is illustrated in Fig. 3.4.

The transpose of Rv is used as the prolongation matrix P v, i.e.:

P v = (Rv)T . (3.47)
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3.4 Restriction and prolongation

For edge elements, a vector function A ∈H(curl; Ω) on the coarse grid H can

be approximated by

A ≈ AH =

nH∑
j=1

aH,jNH,j (3.48)

where NH,j ∈N k
H,D is the vector basis function associated with the j-th edge on

the coarse grid (see 3.2.3). In order to obtain ah,i associated with the i-th edge

on the fine grid h, the integration of the vector potential AH along edges on the

fine grid needs to be done:

ah,i =

∫
eh,i

AH · dl (3.49)

where ah,i denotes the i-th edge on the fine grid. Substituting equation (3.48)

into (3.49) and interchanging the order of the summation and the integration, the

degrees of freedom on the fine grid can be represented as a linear combination of

integrals of the vector basis functions of the coarse grid along edges of the fine

grid:

ah,i =

nH∑
j=1

∫
eh,i

aH,jNH,j · dl. (3.50)

This leads to the matrix P e [17]:

peij =

∫
eh,i

NH,j · dl. (3.51)

where 1 ≤ i ≤ nh and 1 ≤ j ≤ nH
To obtain the prolongation matrix, the integrals of the basis functions of the

coarse grid have to be calculated on each edge of the fine grid. The restriction

matrix Re is the transpose of the prolongation matrix

Re = (P e)T . (3.52)

The calculation of the prolongation matrix for a one-dimensional problem is il-

lustrated in Fig. 3.5.

For problems discretized by both nodal and edge elements, the prolongation

matrix can be written as [27]

P =

[
P e 0

0 P n

]
. (3.53)
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Figure 3.5 The edge basis function NH of the coarse grid and edge basis func-

tions Nh
i of the fine grid. The prolongation matrix is calculated by

the integrals of basis functions of the coarse grid on each edge of the

fine grid.

The restriction matrix R is the transpose of the prolongation matrix

R = (P )T . (3.54)

3.5 Smoother

As introduced in section 2.2, the task of the smoother Sνl (xl, bl) is to damp the

high frequency components of the error eml . After ν steps of smoothing iterations,

a better smoothing measure ‖AlSνl el‖2 can be obtained [42]. For a good smoother,

the number ν should be small.

For both nodal and edge elements, the SGS iteration is often used as the

smoother. A better smoothing effect can be obtained by using the SGSCG it-

eration instead of the SGS iteration as the smoother [21, 28]. Since both SGS

and SGSCG iterations solve the linear system of equations with respect to com-

ponents of points or edges, they are called pointwise smoothers when they are

applied to the MG method.

Another type of smoothers is called block smoother or blockwise smoother based

on block iterations where the system of equations is solved with respect to blocks
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3.5 Smoother

Figure 3.6 AFW domain decomposition for first-order triangular elements. In

the subdomain Ωv
h corresponding to the node vi, the function space

N v
h is the space spanned by the vector basis function N e of edges

e1 to e5.

consisting of groups of points or edges [36]. The block iteration is a domain

decomposition method whereby the system of equations Ax = b representing the

discretization of a complete boundary value problem in the domain Ω is split

into smaller systems of equations corresponding to boundary value problems in

subdomains Ω
′ ⊂ Ω. Let X = Rn be the linear space containing the solution x.

In this work, the multiplicative Schwarz iteration (MSI) (also called block GS

iteration) is applied to the MG method as the smoother [45].

3.5.1 Multiplicative Schwarz iteration

The space Rn is subdivided into n̂ smaller subspaces with the dimension ni (i =

1, 2, . . . n̂). The solutions corresponding to the lower-dimensional subproblems

are represented by xi ∈ X i = Rni . For the linear mapping from X i to X, a

prolongation operator denoted by P s
i : X i → X is used and represented by an

n× ni rectangular matrix. The transpose of the matrix P s
i is a mapping from X

to X i, i.e. a restriction matrix denoted by Rs
i : X →X i.

For each subproblem, an ni × ni square matrix is defined by

Ai := Rs
iAP

s
i , (3.55)
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and one step of the MSI for updating the unknowns corresponding to the i-th

subproblem is written as

xmi = xm−1
i − P s

i A
−1
i Rs

i ((D − U)xm−1 − Lxm − b) i = 1, 2, . . . , n̂. (3.56)

The iteration matrix of the MSI is

MMSI = (I − Pn̂)(I − Pn̂−1) . . . (I − P1) (3.57)

where

Pi = P s
i A
−1
i Rs

iA. (3.58)

Similarly to the SGS iteration, the symmetric MSI also consists of one step of

forward iteration (3.56) and one step of backward iteration. Therefore, it can be

described by the following algorithm:

Algorithm 4. Symmetric Multiplicative Schwarz Iteration

1. xm−1
0 = xm−1

2. xmi = xm−1
i − P s

i A
−1
i Rs

i ((D − U)xm−1 − Lxm − b) i = 1, 2, . . . , n̂

3. xmi = xm−1
i − P s

i A
−1
i Rs

i ((D − L)xm−1 − Uxm − b) i = n̂, n̂− 1 . . . , 1

4. xm = xm2n̂

3.5.2 Arnold, Falk and Winther smoother

A domain decomposition method of the finite element space for tetrahedral ele-

ments has been introduced by Arnold, Falk and Winther (AFW) in [16].

Definition 9 (AFW Block). Let Th be the finite element grid in the domain

Ωh. This domain can be subdivided into subdomains Ωv
h formed by elements

sharing a node v

Ωv
h = interior {T ∈ Th|v ∈ T} . (3.59)

Using this definition, the decomposition of the finite element space can be

described as

N h =
∑
v

N v
h (3.60)
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Figure 3.7 A large AFW block is formed by combining multiple AFW blocks.

where N v
h =

{
N ∈N h : suppN ⊂ Ωv

h

}
with suppN defined as the closure in

N h of the set {x ∈N h:N (x) 6= 0}. For first-order triangular elements, the sub-

space N v
h is the space spanned by vector basis functions corresponding to edges

emanating from the vertex v as shown in Fig. 3.6. Multiple AFW blocks can be

combined together and form a larger block as shown in Fig. 3.7. All vector basis

functions whose support lies in Ωv
h and of edges in those finite elements contained

in the larger block form the corresponding finite element space.

For second-order hexahedral elements in a regular mesh, on the one hand, the

subdomain Ωv
h for a corner node consists of all eight elements containing the

node, the schematic illustration of the AFW domain decomposition for second

order hexahedral elements is depicted in Fig. 3.8. From the picture it can be

seen that an AFW block for second-order hexahedral elements consists of edges

containing the corner node denoted by red, as well as edges emanating from mid-

side nodes denoted by green so that the patch for the corner node is formed by 36

edges. On the other hand, for non-regular meshes, the block is formed by edges

containing the corner node and can be extended to all edges of elements sharing

the corner nodes [18].

Since edges containing mid-side nodes are already included in the block, only

eight corner nodes have been used to generate the patches so that this decompo-

sition results in the reduction of the number of blocks by about 75% compared

35



Chapter 3 Multigrid for finite elements

Figure 3.8 The AFW block for second-order hexahedral elements. All edges

which contain the corner node denoted by red and mid-side nodes

denoted by green are included in one block.

to the original one [18].

The assembly and inversion of block matrices based on the AFW block is done

in the pre-processing and the corresponding submatrix equation is solved by the

MSI algorithm.

3.5.3 Plane smoother

One factor that influences the smoothing capability of the smoother is the qual-

ity of the finite element mesh measured by the maximum aspect ratio δmax =

hmax/hmin which is defined as the ratio of the length of the longest edge hmax of

the element to the length hmin of its shortest edge.

For problems discretized by elements with small δmax as shown in Fig. 3.9(a),

a pointwise smoother such as the SGS method or the SGSCG method can result

in a highly efficient MG algorithm. However, for problems discretized by thin

elements with large values of δmax as shown in Fig. 3.9(b) where the width of the

element is illustrated not to scale, the SGS or the SGSCG iteration smooths the

error slowly or even fails. For example, applying the GS iteration in (2.19) to
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(a) Isotropic element with δmax = 1. (b) Anisotropic element with δmax � 1.

Figure 3.9 Rectangular elements with different values of δmax.

the 2-D Poisson equation discretized by nodal elements, one can find the error

relation [12]:

em+1
h (xi, yj) =

1

2(1 + 1
δ2max

)
[

1

δ2
max

em+1
h (xi−1, yj) +

1

δ2
max

emh (xi+1, yj)

+ em+1
h (xi, yj−1) + emh (xi, yj+1)],

(3.61)

which for δmax →∞ becomes

em+1
h (xi, yj) =

1

2

[
em+1
h (xi, yj−1) + emh (xi, yj+1)

]
. (3.62)

where xi and yi are the coordinates of nodes in the 2D domain as illustrated in

Fig. 3.9(b).

It is obvious that there is no averaging effect with respect to the x-direction,

which means that no smoothing with respect to this direction is achieved so that

the direction x, thus will be called the anisotropic direction of the grid. (For

δmax = hy/hx � 1, it is the other way around.) Such errors which cannot be

smoothed by the pointwise smoother can no longer be efficiently reduced by means

of the coarse grid correction.

The smoothing effect of the pointwise smoother is very poor with respect to

the anisotropic direction of the grid. Therefore, the smoother applied to the MG
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Figure 3.10 The line smoothing block for first-order rectangular nodal elements.

All nodes on a line along the y direction are included in one block

and four line smoothing blocks are generated from the macro ele-

ment.

Figure 3.11 The line smoothing block for first-order rectangular edge elements.

Three blocks are generated from the macro element.
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3.5 Smoother

Figure 3.12 The plane smoothing block for second-order hexahedral nodal ele-

ments. All nodes on the plane of the macro element are included

in one block.

method has to be adapted and tuned to problems discretized by elements with

large values of δmax. An alternative approach is to change the smoothing proce-

dure from pointwise smoothing to line smoothing [12]. Thereby all unknowns of

points which are strongly coupled on a line of the finite element grid, e.g., points

on a line along the y axis in Fig. 3.9(b), are included in one block, and the errors

of unknowns in the block are smoothed collectively by a block iteration such as

the symmetric MSI.

As introduced in section 3.3, the geometry of the problem is described by macro

elements Tmac which are subdivided into finite elements afterwards. The selection

of nodes for the generation of line smoothing blocks is introduced by the example

shown in Fig. 3.10. One macro element is subdivided into three finite elements,

and subdivisions in x and y directions are 3 and 2, respectively. All nodes on the

line along the y direction are contained in one block so that the corresponding

submatrix is a tridiagonal matrix. The number of blocks is equal to the number

of lines along the y direction in the grid.

Different from the line smoother for nodal elements, for the structure discretized

by 2-D first-order edge elements, the edges for one block are selected in the manner
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Figure 3.13 The plane smoothing block for second-order hexahedral edge ele-

ments. All edges directed along the x direction on the plane of the

macro element are included in one block.

illustrated in Fig. 3.11 so that a tridiagonal submatrix associated with the block

can be obtained [33]. For example, the block 1 is obtained by including edges

parallel to the x axis in elements FE1 and FE4.

For 3-D problems discretized by second-order hexahedral finite elements, in-

stead of the line smoother, the plane smoother which is applied to the plane of

the macro element needs to be implemented. As shown in Fig. 3.12, one macro

element is subdivided into finite elements with subdivisions 3, 3 and 2 in x, y

and z-directions, respectively. On one of the x-z planes of the macro element for

instance, all nodes on lines of the plane along the y direction are grouped in one

block. Roughly speaking, on the one hand, the block contains all nodes on the

x-z plane as shown in Fig. 3.12. On the other hand, blocks for edge elements

contain all edges along the x-direction as shown in Fig. 3.13. In addition to x-z

planes of the macro element, the y-z planes also need to be considered by plane

smoothing blocks.

The submatrices corresponding to line or plane smoothing blocks need to be

assembled and their inverses need to be calculated in the pre-processing. In this

work the MSI based on plane smoothing blocks is used as the smoother of the
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3.6 Multigrid preconditioned conjugate gradient method

MG method.

3.6 Multigrid preconditioned conjugate gradient

method

The MG iteration is symmetric if the number of pre- and post-smoothing steps

are equal:

ν1 = ν2 = ν > 0, (3.63)

and the iteration matrices Mpre and Mpost of the pre- and post-smoothing itera-

tions are adjoint in the energy inner product:

〈Mpreu,v〉A = 〈u,Mpostv〉A ∀u,v ∈ Rn. (3.64)

which can be also expressed as〈
vTAMpreu

〉
=
〈
vMT

preAu
〉
∀u,v ∈ Rn or Mpre = M∗

post (3.65)

Derived from the above equation, it can be seen that

AMpre = MT
postA (3.66)

needs to be satisfied.

In the case of the SGS iteration as the smoother of the MG method, substituting

Mpre and Mpre by the iteration matrices in (2.14) and (2.16) leads to

AMFGS = MT
BGSA, (3.67)

which indicates that (2.14) and (2.16) are adjoint. Therefore, the MG method

with the SGS smoother can be used as the preconditioner of the CG method.

However, since (3.66) doesn’t hold for the SGSCG iteration, the MG method

with the SGSCG smoother cannot be the preconditioner of the CG method.

As introduced in (2.5), in the PCG algorithm, the system of equations Ǎx̌ = b̌

with Ǎ = W−1/2AW−1/2 and b̌ = W−1/2b is solved by the CG method. The

matrix W of the symmetric MG iteration is expressed as

WMGI
l (ν) = (I −MMGI

l (ν))A−1 (3.68)
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where MMGI
l (ν) is the iteration matrix of the symmetric MG iteration with ν

steps of pre and post-smoothing iterations.

The use of the MGCG method is of practical interest with respect to robust-

ness especially cases where the MG method fails to exhibit high efficiency [12].

As problems to be solved become more and more complicated, and anisotropies,

nonlinearities or both occur simultaneously, the fundamental idea of the MG

method to reduce the high frequency components of the error by smoothing it-

erations and to take care of the low frequency error components by the coarse

grid correction, does not work optimally. Certain error components may remain

large after the MG iterations. These specific errors are responsible for the poor

MG convergence. In such situations, the combination of the MG method with

the CG method may have the potential of a substantial acceleration.

In the next two chapters, the MGCG solver with the AFW smoother as well as

the plane smoother will be applied to solve the matrix equations resulting from

finite element formulations for magnetostatic problems and time harmonic eddy

current problems.
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The magnetostatic problem

There are two ways to describe the static magnetic field either by the magnetic

scalar potential discretized by nodal elements [46] or by the magnetic vector po-

tential discretized by edge elements [47].

4.1 Differential equations and boundary conditions

Maxwell’s equations for the static magnetic field are

curlH = J0, (4.1)

divB = 0 (4.2)

where H is the magnetic field intensity, B is the magnetic flux density and J0 is

the given current density of the current excitation in coils. B and H satisfy the

following constitutive equation

B = µH or H = νB (4.3)

with the reluctivity ν and the permeability µ = µ0µr = 1/ν where µ0 is the

vacuum permeability and µr is the relative permeability.

The given current density J0 of the current excitation is assumed to be de-

scribed by an impressed field quantity T 0 satisfying [47]

curlT 0 = J0. (4.4)
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Instead of using its exact value, T 0 can be approximated by edge basis functions

N j (see 3.2.3),

T 0 =
ne∑
j=1

tjN j (4.5)

where tj are the line integrals of T 0 along the edges.

In a domain Ω, the boundary conditions can be given at artificial far bound-

aries or along symmetry planes. The homogeneous boundary conditions for the

magnetic field and flux density are given as follows:

H × n = 0 on ΓH , (4.6)

B · n = 0 on ΓB. (4.7)

The boundary conditions (4.6) and (4.7) can be replaced by

H × n = T 0 × n on ΓH , (4.8)

B · n = µT 0 · n on ΓB (4.9)

which in some cases can simplify the boundary value problems resulting from the

potential formulations.

The boundary conditions (4.6) and (4.8) specify the tangential components of

the magnetic field and the current density on the boundary surface ΓH . By (4.7)

and (4.9) the normal component of the magnetic flux density on ΓB is given.

The potential formulations introduced in following sections can be used to

describe the static magnetic field either in a magnetostatic problem or in the

nonconducting eddy current free region of an eddy current problem.

4.1.1 The Φ-formulation

The magnetic scalar potential Φ is defined by

H = T 0 − gradΦ (4.10)

where T 0 is given by (4.4).

The assumption (4.10) exactly satisfies (4.1), and substituting B in (4.2) by

the first relation in (4.3) leads to the differential equation

div(µgradΦ) = div(µT 0) in Ω. (4.11)
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Using the boundary conditions in (4.7) and (4.8) results in the Dirichlet bound-

ary conditions:

Φ = 0 on ΓH (4.12)

and the Neumann boundary conditions:

µgradΦ · n = µT 0 · n on ΓB (4.13)

on the scalar potential.

The scalar potential Φ ∈ H1
0 (Ω; ΓH) is approximated by nodal basis functions

Nj ∈ S0(Th; ΓH) (see 3.2.2) as

Φ ≈ Φh = ΦD +

nn−nnd∑
j=1

ΦjNj, ΦD =

nnd∑
j=1

ΦjNj (4.14)

where Φj are the nodal values of Φh, ΦD represents the magnetic scalar potential

of nodes on the Dirichlet boundary, nn is the total number of nodes, and nnd
is

the number of nodes on ΓH .

Applying Galerkin’s techniques to (4.11) one can obtain the following algebraic

equations:

−
∫

Ω

gradNi ·µgradΦhdΩ = −
∫

Ω

gradNi ·µT 0dΩ, i = 1, 2, ..., nn − nnd
. (4.15)

The equations (4.15) can be written in a matrix form

Ax = b (4.16)

with entries of A and b expressed as

aij = (gradNi, µgradNj), i, j = 1, 2, ..., nn − nnd
, (4.17)

bi = (gradNi, µT 0), i = 1, 2, ..., nn − nnd
. (4.18)

4.1.2 The A-formulation

Since the divergence of the magnetic flux density is zero, one can define the

magnetic vector potential A as

B = curlA. (4.19)
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Writing (4.1) with the second relation in (4.3) leads to the differential equation

curl(νcurlA) = curlT 0 in Ω. (4.20)

Using the boundary conditions in (4.7) or (4.8) results in the following Dirichlet

boundary conditions on the vector potential:

A× n = 0 on ΓB (4.21)

or the Neumann boundary conditions:

νcurlA× n = T 0 × n on ΓH . (4.22)

The vector potential A ∈ H0(curl; Ω; ΓB) can be approximated by the edge

basis function N i ∈N 0(Th; ΓB) (see 3.2.3) as

A ≈ Ah = AD +

ne−ned∑
j=1

ajN j, AD =

ned∑
j=1

ajN j (4.23)

where aj is the line integral of A along the edge ej, AD represents the magnetic

vector potential of edges on the Dirichlet boundary, ne is the total number of

edges, and ned is the number of edges on ΓB.

Setting (4.23) into (4.20) as well as into the Neumann boundary conditions in

(4.22), the following Galerkin equations are obtained:∫
Ω

curlN i · νcurlAhdΩ =

∫
Ω

curlN i · T 0dΩ, i = 1, 2, ..., ne − ned . (4.24)

These equations can be written in a matrix form:

Ax = b (4.25)

where

aij = (curlN i · νcurlN j), i, j = 1, 2, ..., ne − ned , (4.26)

bi = (curlN i · T 0), i = 1, 2, ..., ne − ned . (4.27)

The right hand side of (4.25) is consistent since the same linear interdependence

among its elements is present as among the rows of the left-hand side.
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Figure 4.1 A tree-cotree graph of the second-order hexahedral edge elements

with tree edges denoted by red and cotree edges denoted by black.

4.2 Tree and Cotree

The sum of all nodal basis functions is obviously 1 (see 3.2.2):

nn∑
i=1

Ni = 1. (4.28)

Taking the gradient of (4.28) leads to

nn∑
i=1

gradNi = 0. (4.29)

This indicates that the maximal number of linearly independent gradients of the

nodal basis functions is nn− 1, i.e. the number of tree edges of the finite element

in the graph as shown in Fig. 4.1.

As pointed out in section 3.2.4, since the gradients of the nodal basis functions

are in the function space spanned by the edge basis functions (see (3.36)), the

following nn − 1 linearly independent relations can be obtained:

gradNi =
ne∑
j=1

gijNj , i = 1, 2, . . . , nn − 1 (4.30)
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where
ne∑
j=1

g2
ij > 0, i = 1, 2, . . . , nn − 1. (4.31)

Taking the curl of each of the equations in (4.30) results in

ne∑
j=1

gijcurlN i = 0 i = 1, 2, . . . , nn − 1. (4.32)

which indicates that the number of linear interdependences between the functions

curlN i is also nn − 1, i.e. the number of tree edges.

The approximation of the vector potential in (4.23) can be rewritten as

A ≈ Ah = Atree
h +Acotree

h (4.33)

where Atree
h and Acotree

h are the approximations of the vector potential on the tree

edges and on the cotree edges, respectively. Since Atree
h is a gradient function,

there exists a scalar function u so that

Atree
h = gradu. (4.34)

The scalar function u can be constructed as gradu =
∑nn

j=1 ujNj by setting the

nodal values uj and the value of the vector potential of the j-th edge as aj =

uj2 − uj1 for all edgej ∈ Tree pointing from node j1 to j2.

Setting Atree
h , i.e. all degrees of freedom corresponding to the tree edges to zero

changes the vector potential by a gradient function and does not change B =

curlA. This also eliminates the linear interdependences between the functions

curlN i. Meanwhile, the functions gradNi can then no more be expressed as

linear combinations of the functions N j as pointed out in (4.30), since at least

one tree edge is always incident with each node due to the properties of a tree

(connects all nodes without a loop).

This means that the vector potential can be approximated as

A ≈ Ah = Acotree
h . (4.35)

If the co-tree edges are numbered first, then

Acotree
h =

ne−(nn−1)∑
j=1

ajN j. (4.36)
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The Dirichlet boundary conditions can be taken into account by considering

that the aj values corresponding to the edges on ΓB are known. If these edges

are numbered first:

Acotree
h = Acotree

D +

n
′
cotree∑
j=1

ajN j (4.37)

where Acotree
D satisfies the Dirichlet boundry conditions and n

′
cotree is the number

of cotree edges outside ΓB.

The solution of cotree edges can be obtained from solving the following non-

singular matrix equation by a direct solver:

Accxc = bc (4.38)

where Acc, xc, and bc correspond to the cotree edges outside ΓB.

In this work, on the coarsest level of the MG method, a parallel direct solver

(PARDISO) [48] is used for solving the linear system of equations. When the

system matrix is singular, the above tree-cotree gauge has to be applied to the

PARDISO solver.

4.3 Smoothers for magnetostatic problems

For solving the systems of equations arising from magnetostatic problems, the

smoothers applied to the MG method have to be carefully chosen.

In the case of the Φ formulation, the scalar Poisson equation (4.11) is discretized

with nodal elements. For the resulting system of equations (4.16), the smoothing

iterations are usually carried out by GS type iteration such as the SGS iteration,

the smoothing efficiency for the MG method of which can be improved by using

the SGSCG iteration [21].

4.3.1 The smoother for the A formulation

In the case of the A formulation, the discretized form of the differential equation

(4.20) can be described in finite element spaces with Ah ∈N h,D:

(curlAh, νcurlξh) = f(ξh), ∀ξh ∈N h,D. (4.39)
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Figure 4.2 Magnetic thin plate exposed to a static magnetic flux density.

According to Theorem 2 (see 3.2.4), Ah and ξh can be decomposed as:

Ah = A⊥h +Ao
h (4.40)

ξh = ξ⊥h + ξo
h (4.41)

where A⊥h , ξ
⊥
h ∈N⊥

h,D, Ao
h = gradϕh ∈N o

h,D with ϕh ∈ Sh,D, and ξo
h = gradϕh ∈

N o
h,D with ϕh ∈ Sh,D.

Substituting (4.40) and (4.41) in (4.39) leads to the following equations:

(curlA⊥h , νcurlξ⊥h ) = f(ξ⊥h ) (4.42)

(curlAo
h, νcurlξo

h) = f(ξo
h) (4.43)

where f(ξh) = (curlξh,T 0) in (4.20). This indicates that the solutions of both

A ∈ Ho
0(curl; Ω; ΓD) and A ∈ H⊥0 (curl; Ω; ΓD) can be solved when an iterative

method is applied to (4.39). Therefore, it is not necessary to use special block

smoothers but SGS or SGSCG smoothing iterations adapted to theA formulation

for the MG solver are sufficient.

4.3.2 The plane smoother for thin elements

As pointed out in section 3.5.3, the efficiency of pointwise smoothers deteriorates

when thin plates of magnetic materials need to be modeled by finite elements.
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In this case, the pointwise smoother has to be replaced by the plane smoother

for three-dimensional magnetostatic problems, e.g. the symmetric MSI based on

plane smoothing blocks adapted to the Φ and A formulations, respectively.

The efficiency of the plane smoother will be investigated by the test problem

shown in Fig. 4.2. The problem consists of a magnetic thin plate located in air

with its geometry described by a macro element which is subdivided into finite

elements. The relative permeability of the plate is µr = 1× 103 and the imposed

magnetic field in z direction is produced by a current-fed coil around the plate.

The maximum aspect ratio δmax of the finite elements varies from 1 to 1000 by

simply varying the thickness of the plate.

The problem can be described by either the Φ formulation or theA formulation.

On the one hand, in case of the Φ formulation, the symmetric MSI based on plane

smoothing blocks for nodal elements is used as the smoother. On the other hand,

for theA formulation, the symmetric MSI associated with plane smoothing blocks

for edge elements needs to be applied to the MG algorithm. The resulting system

of equations is solved by either the MG solver or the MGCG solver with different

smoothers, the performance of which will be compared in the following. For the

stopping criterion of the iterative solver, (‖Ahxh − bh‖)/(‖bh‖) ≤ 10−6 is used

in this work. The computations are performed based on the platform of the

Intel Fortran compiler installed on a computer with Intel core 2Quad Processor

2.66GHz, 8-GByte RAM.

The number of iterations of the MG solver with 6 steps of SGSCG smooth-

ing iterations, the MG solver with two steps of plane smoothing iterations and

the MGCG solver with one step of the plane smoothing iteration for the Φ and

A formulations is compared in Table 4.1 and Table 4.2, respectively. It can be

seen that the MG solver with the SGSCG smoother has the same or even better

efficiency than the MG solver with the plane smoother for δmax less than 10. How-

ever, its number of iterations increases significantly for δmax larger than 100. In

contrast, the MG solver with the plane smoother does not deteriorate noticeably

with the increase of δmax indicating that the plane smoother is able to smooth

errors along the anisotropic direction of the grid as discussed in section (3.5.3).

From the data of the MGCG solver with the plane smoother, it can be noted

that the combination of the MG method with the plane smoother and the CG

method gives a satisfactory solution. The solver retains its good efficiency even

for large values of the maximum aspect ratio δmax.
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Table 4.1 Number of iterations versus δmax for the problem described by the Φ

formulation

Maximum aspect MG with MG with MGCG with

raio δmax = 1 6 SGSCG two plane smoothing one plane smoothing

1 5 5 4

10 7 7 5

100 19 6 4

500 40 5 3

1000 89 5 4

Table 4.2 Number of iterations versus δmax for the problem described by the A

formulation

Maximum aspect MG with MG with MGCG with

raio δmax = 1 6 SGSCG two plane smoothing one plane smoothing

1 4 5 4

10 5 8 6

100 24 12 8

500 60 13 9

1000 93 13 10
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4.3 Smoothers for magnetostatic problems

Figure 4.3 Solution times versus the maximum aspect ratio δmax for the problem

described by the Φ formulation

Figure 4.4 Solution time versus the maximum aspect ratio δmax for the problem

described by the A formulation
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The solution time is a more important factor for evaluating the efficiency of

the solver than the number of iterations. Fig. 4.3 compares the solution times of

all three solvers applied to the Φ formulation. For δ = 100, the solution times of

the MG and MGCG solvers with the plane smoother are 40% and 26% of that

of the MG solver with the SGSCG smoother, respectively, and for δ = 1000, the

solution times of the MG and MGCG solvers with the plane smoother are 6.8%

and 4.9% of that of the MG solver with the SGSCG smoother, respectively.

Fig. 4.4 compares solution times of the solvers applied to the A formulation.

Similar results to the case of the Φ formulation are obtained. For example, for

thin elements with δ = 1000, solution times of the MG and MGCG solvers with

the plane smoother are 22% and 9.1% of that of the MG solver with the SGSCG

smoother, respectively.

From the comparison, it can be concluded that two steps of plane smoothing it-

erations are sufficient for an efficient reduction of errors associated with unknowns

of nodal and edge elements and the MG solver with the plane smoother has a

stable convergence with the increase of the maximum aspect ratio. In addition,

the MGCG solver with the plane smoother results in further improvement of the

efficiency.

4.4 Numerical examples

In this section, a practical problem shown in Fig. 4.5 consisting of a magnetic

box shield and a coil above the shield is discretized by the finite element method

using both the Φ formulation and the A formulation. The relative permeability

of the box is µr = 1× 103. The finite element discretization is shown in Fig. 4.6.

As the thickness of the shield plate is 0.01mm and the plate is divided into two

layers of finite elements, the maximum aspect ratio δmax is 2000. Since the mesh

is composed of only cuboids and generated orthogonally, δmax can reach nearly

10000 at the far boundary of the computational domain.

In Table 4.3, the solution data of the MG solver with 6 steps of SGSCG itera-

tions, the MGCG solver with one step of the plane smoothing iteration and the

commonly used ICCG solver for solving the system of equations resulting from

the Φ formulation are compared. The computations are performed based on the

platform of the Intel Fortran compiler installed on a computer with Intel core

2Quad Processor 2.66GHz, 8-GByte RAM. Although the preprocessing time for
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Figure 4.5 The geometry of the box and the coil

Figure 4.6 The finite element discretization of one eighth of the box and the

coil due to the symmetry
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Table 4.3 Solution data for the problem described by the Φ formulation

ICCG MG with MGCG with

6 SGSCG one plane smoothing

Number of equations 92568 92568 92568

Number of blocks 0 0 4879

Preprocessing time (s) 1.1 11.6 32.7

Iterations 7894 298 13

Solution time (s) 351.1 374.0 32.4

Table 4.4 Solution data for the problem described by the A formulation

ICCG MG with MGCG with

6 SGSCG one plane smoothing

Number of equations 254072 254072 254072

Number of blocks 0 0 9086

Preprocessing time (s) 4.3 27.8 60.6

Iterations 12422 566 15

Solution time (s) 895.1 2167.6 68.4

the plane smoother is higher than that of the SGSCG smoother since the inverse

of the submatrices has to be calculated, the solution time has been reduced by

more than 90% using the MGCG with the plane smoother. Compared to the

ICCG solver, the MG solver with the SGSCG smoother loses its advantage but

the MGCG solver with the plane smoother achieves approximate 90.8% of de-

crease of the solution time, which means that the MG method with the plane

smoother behaves as a better preconditioner than the imcomplete Cholesky fac-

torization in this case.

Similar results as listed in Table 4.4 have been obtained for the problem de-

scribed by the A formulation. The number of iterations, the preprocessing and

solution times of the ICCG solver, the MG solver with 6 steps of SGSCG itera-

tions and the MGCG solver with one step of the plane smoothing iteration have
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been compared. It can be seen that the solution time has been reduced by 92.4%

and 95% compared to the ICCG solver and the MG method with the SGSCG

smoother by the MGCG solver with the plane smoother, respectively.

The analyses above indicate that the MGCG solver with the plane smoother

acts as an efficient solver for magnetostatic problems discretized by either nodal

elements or edge elements. The next chapter will present that it can be also

applied to finite element formulations for eddy current problems.
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Chapter5
The time-harmonic eddy current problem

An eddy current problem arises if a time varying magnetic field is excited within

a conductor. As shown in Fig. 5.1, an eddy current problem involves two regions:

a conducting region Ωc constituted by eddy current carrying conductors and a

nonconducting region Ωn including nonconductors and coils with given current

densities. In Ωc, the current density distribution is unknown, an eddy current

field is present here.

5.1 Differential equations and boundary conditions

The time variation of fields is assumed to be sinusoidal with an angular frequency

of ω and the displacement current density to be negligible, hence, the time-

harmonic Maxwell equations for both regions are the following:

curlH = J0 in Ωn, (5.1)

divB = 0 in Ωn, (5.2)

curlH = J in Ωc, (5.3)

curlE = −jωB in Ωc, (5.4)

divJ = 0 in Ωc, (5.5)

divB = 0 in Ωc. (5.6)

where E is the electric field intensity.
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Chapter 5 The time-harmonic eddy current problem

Figure 5.1 The domain of the eddy current problems.

The material equations are

B = µH , H = νB in Ωc and Ωn, (5.7)

J = σE, E = ρJ in Ωc (5.8)

where σ is the conductivity and ρ the resistivity.

The boundary conditions assumed on the boundary of Ωc are

H × n = T 0 × n on ΓHc, (5.9)

E × n = 0 on ΓE (5.10)

where T 0 is defined by (4.4).

The boundary conditions assumed on the boundary of ΓHn and ΓB are the

same as the boundary conditions in (4.6)-(4.9) assumed on the boundary of ΓH
and ΓB in magnetostatic problems, respectively.
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The continuity conditions on the interface Γnc between the conducting and

nonconducting regions are

H × n and B · n are continuous on Γnc. (5.11)

In the nonconducting region Ωn, the potential formulations introduced in sec-

tions 4.1.1 and 4.1.2 can be used. For the conducting region Ωc, two following

formulations: the A, V formulation and the T , Φ formulation are presented [26].

5.1.1 The A, V formulation

The magnetic vector potential A and the electric scalar potential V are defined

as

B = curlA, (5.12)

E = −jωA− jωgradV. (5.13)

Faraday’s law (5.4) is exactly satisfied and using the first relationship in (5.7)

and the second in (5.8), Ampere’s law (5.3) results in the differential equation

curl(νcurlA) + jωσA+ jωσgradV = 0 in Ωc, (5.14)

and the divergence free property of the current density (5.5) leads to

− div(jωσA+ jωσgradV ) = 0 in Ωc. (5.15)

Using the boundary conditions (5.10) and (5.9), the Dirichlet and Neumann

boundary conditions for A are

A× n = 0 on ΓE, (5.16)

νcurlA× n = T 0 × n on ΓHc, (5.17)

and for V they are

V = V0 = constant on ΓE, (5.18)

n · (−jωσA− jωσgradV ) = 0 on ΓHc. (5.19)

The vector potential A ∈H0(curl; Ω; ΓE) is approximated by edge basis func-

tions N j ∈ N0(Th; ΓE) (see 3.2.3) as

A ≈ Ah = AD +

ne−ned∑
j=1

ajN j, AD =

ned∑
j=1

ajN j (5.20)
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where aj are the line integrals of A along the edges, AD represents the magnetic

vector potential of edges on the Dirichlet boundary, ne is the total number of

edges, and ned is the number of edges on ΓE.

The electric scalar potential V ∈ H1
0 (Ω; ΓE) is approximated by nodal basis

fuctions Nj ∈ S0(Th; ΓE) (see 3.2.2) as

V ≈ Vh = VD +

nn−nnd∑
j=1

VjNj, VD =

nnd∑
j=1

VjNj (5.21)

where Vj are the nodal values of Vh, nn is the total number of nodes, VD represents

the electric scalar potential of nodes on the Dirichlet boundary, and nnd
is the

number of nodes on ΓE.

Setting (5.20) and (5.21) into (5.14) and (5.15) as well as into the Neumann

boundary conditions in (5.17) and (5.19) and using the basis functions N i and

Ni as weighting functions, the following Galerkin equations are obtained:∫
Ωc

curlN i · νcurlAhdΩ +

∫
Ωc

jωσN i ·AhdΩ

+

∫
Ωc

jωσN i · gradVhdΩ =

∫
Ωc

curlN i · T 0dΩ, i = 1, 2, ..., ne − ned ,
(5.22)

∫
Ωc

jωσgradNi ·AhdΩ +

∫
Ωc

jωσgradNi · gradVhdΩ = 0, i = 1, 2, ..., nn − nnd

(5.23)

where curlT 0 = J0 is assumed in the nonconducting region.

These equations (5.22) and (5.23) can be written in the matrix form[
K C

CT B

]{
a

v

}
=

{
f1
f2

}
(5.24)

where the entries of the matrices K, C and B are

kij =

∫
Ωc

curlN i · νcurlN j +

∫
Ωc

jωσN i ·N jdΩ, (5.25)

cij =

∫
Ωc

jωσN i · gradNjdΩ, (5.26)

bij =

∫
Ωc

jωσgradNi · gradNjdΩ (5.27)
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and the entries of f are

f1i =

∫
Ωc

curlN i · T 0dΩ, (5.28)

f2i = 0. (5.29)

Since the linear combinations of the equations in (5.22) with the coefficients gij
defined in (4.30) result in equations in (5.23), the system matrix in (5.24) is

singular. This means that if the matrix equation is solved by a direct solver, a

tree in the graph of the finite element mesh has to be selected and the values of

the unknowns on the tree edges must be set to zero (see section 4.2).

5.1.2 The T , Φ formulation

The field quantities are derived from the current vector potential T and the

magnetic scalar potential Φ as

H = T 0 + T − gradΦ, (5.30)

J = curlT . (5.31)

Ampere’s law (5.3) follows from (5.30) and (5.31), and using the first relationship

in (5.7) and the second in (5.8), Faraday’s law (5.4) results in the differential

equation

curl(ρcurlT ) + jωµT − jωµgradΦ = −jωµT 0 in Ωc, (5.32)

and the divergence free property of the magnetic flux density (5.6) leads to

jωdiv(µT − µgradΦ) = −jωdiv(µT 0) in Ωc. (5.33)

Using the boundary conditions (5.10) and (5.9), the following Dirichlet and Neu-

mann boundary conditions on the vector potential are:

T × n = 0 on ΓHc (5.34)

νcurlT × n = −ρT 0 × n on ΓE, (5.35)

and for V they are

V = V0 = constant on ΓHc (5.36)
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n · (−jωσA− jωσgradV ) = 0 on ΓE. (5.37)

The current vector potential T ∈ H0(curl; Ω; ΓHc) is approximated by edge

basis functions N j ∈N 0(Th; ΓHc) as (see 3.2.3)

T ≈ T h = TD +

ne−ned∑
j=1

tiN j, TD =

ned∑
j=1

tiN j (5.38)

where tj are the line integrals of T h along the edges, TD represents the current

vector potential of edges on the Dirichlet boundary, ne is the total number of

edges, ned is the number of edges on ΓHc.

The magnetic scalar potential Φ ∈ H1
0 (Ω; ΓHc) is approximated by nodal basis

functions Nj ∈ S0(Th; ΓHc) as (see 3.2.2)

Φ ≈ Φh = ΦD +

nn−nnd∑
j=1

ΦjNj, ΦD =

nnd∑
j=1

ΦjNj (5.39)

where Φj are the nodal values of Φ, ΦD represents the magnetic scalar potential

of nodes on the Dirichlet boundary, nn is the total number of nodes, and nnd
is

the number of nodes on ΓHc.

Setting (5.38) and (5.39) into (5.32) and (5.33) as well as into the Neumann

boundary conditions in (5.35) and (5.37) and using the basis functions N i and

Ni as weighting functions, the following Galerkin equations are obtained:∫
Ωc

curlN i · ρcurlT hdΩ +

∫
Ωc

jωµN i · T hdΩ

−
∫

Ωc

jωµN i · gradΦhdΩ = −
∫

Ωc

jωµN i · T 0dΩ i = 1, 2, ..., ne − ned ,
(5.40)

−
∫

Ωc

jωµgradNi · T hdΩ +

∫
Ωc

jωµgradNi · gradΦhdΩ

= −
∫

Ωc

jωµgradNi · T 0dΩ, i = 1, 2, ..., nn − nnd
.

(5.41)

The matrix form of equations (5.40) and (5.41) are[
K C

CT B

]{
t

ϕ

}
=

{
f 1

f 2

}
(5.42)
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where the entries of the matrices K, C and B are

kij =

∫
Ωc

curlN i · ρcurlN j +

∫
Ωc

jωµN i ·N jdΩ, (5.43)

cij =

∫
Ωc

−jωµN i · gradNjdΩ (5.44)

bij =

∫
Ωc

jωµgradNi · gradNjdΩ (5.45)

and the entries of f1 and f2 are

f1i = −
∫

Ωc

jωµN i · T 0dΩ (5.46)

f2i =

∫
Ωc

jωgradNi · T 0dΩ. (5.47)

Similarly to (5.24), the system matrix of equations (5.42) is also singular since a

linear combination of (5.40) is (5.41).

5.1.3 Coupling of the potential formulations

The potential formulations in Ωn and Ωc presented in sections 4.1 and 5.1 can be

coupled by satisfying the interface conditions (5.11). The most commonly used

coupled formulations are theA, V -A formulation and the T , Φ-Φ formulation [26].

In the case of the A, V -A formulation, the continuity of the tangential compo-

nent of the vector potential A on Γnc is explicitly satisfied by the use of the edge

basis function. This enforces the continuity of normal component of the magnetic

flux density B. The continuity of H × n is considered by the term∫
Γnc

N i · (H × n)dΓ. (5.48)

Equation (5.48) arises in the Galerkin equations in both regions and is cancelled.

Therefore, the equations of the A, V -A formulation are (5.22), (5.23) and (4.24).

For the T , Φ-Φ formulation, the continuity of H × n is enforced by the con-

tinuity of the magnetic scalar potential and by setting the tangential component

of the current vector potential to zero on the interface:

T × n = 0 on Γnc. (5.49)
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The normal component of the flux density is taken into account by∫
Γnc

NiB · ndΓ (5.50)

arising in Galerkin equations in both regions and cancelling. So the Galerkin

equations of the T , Φ-Φ formulation are (5.40), (5.41) and (4.15).

5.2 Multigrid for nonlinear problems

In ferromagnetic materials the relationship between the magnetic flux density B

and the magnetic field intensity H is nonlinear. In general cases the function

B = f(H) or H = f(B) is described by hysteresis curves shown in Fig. 5.2.

In this work, it is assumed that the material is isotropic and that no hysteresis

effects arise. Hence, the nonlinearity can be described by the reluctivity ν or the

permeability µ:

H = ν(|B|)B or B = µ(|H|)H (5.51)

In the case of nonlinear problems with a time-harmonic excitation, only the

fundamental harmonic is taken into account in the complex formulations in this

work. To solve the nonlinear equations, a modified Picard-Banach method has

been used to guarantee the stable choice of the new reluctivity νi+1 or the new

permeability µi+1 [49]. This means that a series of linear system of equations

A(νi)xi = bi or A(µi)xi = bi i = 1, 2, . . . (5.52)

needs to be solved.

The new value of νi+1 or µi+1 can be calculated as follows:

In the case of the A, V -A formulation, if the magnetizing curve is monotonous

and convex (i.e. dB/dH > 0 and d2B/dH2 < 0) as shown in Fig. 5.2(a), from the

solution of xi (5.52) one can obtain the value of Bi. The magnetic field intensity

Hi is calculated by multiplying Bi with νi obtained from the previous step. Bi+1

is obtained from the B-H curve and the new reluctivity νi+1 is derived as the

secant Hi/Bi+1. But if the magnetizing curve is concave (d2B/dH2 > 0) for low

field values as in the domain B < BT , H < HT in the curve shown in Fig. 5.2(b),

the method is changed as follows: the value of Bi is obtained from the solution

xi and Hi+1 from the B-H curve to yield the new reluctivity νi+1 as Hi+1/Bi. By
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(a) The nonlinear iteration of the modified Picard-Banach

method for convex magnetizing curves

(b) The nonlinear iteration of the modified Picard-Banach

method for concave magnetizing curves

Figure 5.2 Modified Picard-Banach method for nonlinear iterations.
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the above procedure the new value νi+1 can be calculated in each Gaussian point

of the finite elements.

In the case of the T , Φ-Φ formulation, for the curve shown in Fig. 5.2(a), the

value of Hi can be obtained from the solution. Afterwards, Bi is calculated by

Bi = µiHi. Finally, from the B-H curve, the new Hi+1 and the new permeability

µi+1 are obtained. A similar process is carried out in the case of the concave

curve as presented for the A, V -A formulation. The value of Hi is obtained from

the solution xi, and then Bi is calculated with the aid of the old value µi and

Hi+1 is afterwards obtained from the B-H curve. Thereupon, the value µi+1 is

derived as Bi = µiHi+1.

Since the system matrices Al(ν) or Al(µ) depend on ν or µ, for different MG

levels l = 0, 1, . . . , lmax they have to be assembled in every nonlinear iteration

step. For the MG method, the solution xl for calculating νi+1 or µi+1 is the

solution on the finest grid, which is also used to compute their values on the

coarser grids. This results in a proper hierarchy of systems of equations which

can be solved by the following algorithms:

Algorithm 5. Nonlinear iteration for the A, V -A formulation

1. i = 0

2. ν0 and the B-H curve µBH(H) are given

3. Assemble the matrices Al(νi), l = 0, 1, 2, . . . , lmax

4. Solve Almax(νi)xi = blmax,i

5. Calculate Bi from xi

6. H i = νiBi

7. νi+1 = 1/µBH(Hi)

8. If ‖ |νi+1−νi|
νi+1

‖max < ε1 or ‖ |νi+1−νi|
νi+1

‖mean < ε2 then Al(ν)xl = bl is solved

else

9. i = i+ 1

10. back to step 3
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Algorithm 6. Nonlinear iteration for the T , Φ-Φ formulation

1. i = 0

2. µ0 and the B-H curve µBH(H) are given

3. Assemble the matrices Al(µi), l = 0, 1, 2, . . . , lmax

4. Solve Almax(µi)xi = blmax,i

5. Calculate H i from xi

6. Bi = µiH i

7. µi+1 = µBH(Bi)

8. If ‖ |µi+1−µi|
µi+1

‖max < ε1 or ‖ |µi+1−µi|
µi+1

‖mean < ε2 then Al(ν)xl = bl is solved

else

9. i = i+ 1

10. back to step 3

5.3 Smoothers for eddy current problems

5.3.1 Gauss-Seidel smoother for the A, V formulation

In the A, V formulation, the magnetic vector potential A and the electric scalar

potential V can be approximated by Ah ∈ N h,D and Vh ∈ Sh,D, respectively,

hence, with these approximations, (5.14) and (5.15) can be described in finite

element spaces as follows:

(νcurlAh, curlξh) + jω(σAh, ξh) + jω(σgradVh, ξh) = fh(ξh) (5.53)

jω(σAh, gradηh) + jω(σgradVh, gradηh) = 0 (5.54)

for all ξh ∈N h,D and ηh ∈ Sh,D.

Equation (5.54) can be rewritten as

jω(σAh + σgradVh, gradηh) = 0, ∀ηh ∈ Sh,D. (5.55)

69



Chapter 5 The time-harmonic eddy current problem

This weak form is equivalent to the Laplace equation div(σgradV̂ ) = 0 with

gradV̂ = jω(Ah + gradVh). (5.56)

From the above equation, one can obtain

(gradV̂h − jωgradVh) = jωAh ∈N o
h,D. (5.57)

This means that in the scalar products jω(σgradVh, ξh) and jω(σAh, gradηh) in

(5.53) and (5.54) which describe the coupling of Ah and Vh, only Ah ∈ N o
h,D

is taken into account, whereas for vector functions in Ah ∈ N⊥
h,D, these scalar

products are zero due to the definition in (3.37).

The vector potential Ah ∈N h,D can be decomposed as

Ah = A⊥h +Ao
h (5.58)

with Ao
h ∈N o

h,D and A⊥h ∈N⊥
h,D.

The test function ξh can be also decomposed as

ξh = ξ⊥h + ξoh (5.59)

with ξoh ∈N o
h,D and ξ⊥h ∈N⊥

h,D.

Substituting ξh in (5.53) by ξoh = gradφh leads to the equation

jω(σ(Ah + gradVh), gradφh) = fh(gradφh) ∀φh ∈ Sh, D. (5.60)

which is already solved by (5.54) for Ao
h ∈N o

h,D. It can be seen that the consis-

tency of the equation is ensured with fh(gradφh) = 0.

Inserting ξ⊥h into (5.54), one can obtain:

(σcurlA⊥h , curlξ⊥h ) + jω(σA⊥h , ξ
⊥
h ) = fh(ξ

⊥
h ) ∀ξ⊥h ∈N⊥

h,D (5.61)

where only the function in N⊥
h,D is solved, which indicates that no error in the

kernel of the curl operator has to be taken care of by the smoothing iteration so

that the MG method with the GS type smoother can be used as the solver.

It has been shown that the equations (5.54) are equivalent to Laplacian equa-

tions which can be also solved by the GS smoother. By solving this equation,

not only the error of the scalar potential Vh is smoothed, but also the error of

the magnetic vector potential in the kernel of the curl operator. Therefore, the
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5.3 Smoothers for eddy current problems

pointwise SGS or SGSCG iteration can be a proper smoother of the MG method

applied to (5.24).

Since the system matrix of (5.42) resulting from the T , Φ formulation is similar

to that of (5.24) resulting from the A, V formulation, the GS iteration can also

be the smoother of the MG method applied to the matrix equation resulting from

T , Φ formulation.

5.3.2 Block smoothers for eddy current problems

The modified AFW smoother for the A, V -A formulation

In addition to the GS iteration adapted to the A, V formulation, another choice

is to use a block smoother based on the domain decomposition method. As

introduced in section 3.5.2, the property of the AFW blocks is that they consist of

at least one function of the kernel functions of the curl operator. Therefore, in the

case of the A, V formulation, by applying the symmetric MSI based on the AFW

block to (5.14), the error of the magnetic vector potential Ah in the kernel space

of the curl operator can be eliminated. Adding one step of the SGS or SGSCG

iteration to the smoother applied to (5.15), the error of the scalar potential Vh
can be also smoothed. The iteration which combines the AFW block iteration

with the SGS or SGSCG iteration used as the smoother in the MG algorithm

is called the modified AFW (MAFW) smoother for the A, V formulation [31].

In addition, the MG method with the MAFW smoother can be also used as the

preconditioner of the CG solver for solving eddy current problems [31,50,51].

The performance of the MG solver with the SGSCG smoother, as well as the

MG and MGCG solvers with the MAFW smoother for the A, V -A formulation

will be investigated with the aid of the following test problem. It is worth men-

tioning that when the AFW smoother is applied to the A formulation used in the

nonconducting region, the resulting submatrices associated with the AFW blocks

are singular. Hence the corresponding unknowns cannot be directly solved with

the aid of the symmetric MSI. As shown in section 4.2, eliminating tree edges in

the finite element grid can result in nonsingular matrices. For AFW blocks based

on second order hexahedral elements shown in Fig. 3.8, one emanating edge can

be eliminated [18] for every interior node, i.e., a tree can be generated by all

edges emanating from the center node plus one arbitrary edge as illustrated in

Fig. 5.3. As a result, the nonsingular submatrix corresponding to unknowns of
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Figure 5.3 Tree edges of a AFW block for second order hexahedral finite ele-

ments.

cotree edges can be applied to the symmetric MSI.

The model of the test problem in Fig. 5.4 consists of a cubic core surrounded by

a cylindrical coil fed with a current. The relative permeability and conductivity

of the core are µr = 2.3×103 and σ = 4×106S/m, respectively, and the frequency

of the current excitation is 50Hz. To accurately simulate the eddy currents in

the conductor, a key factor to be taken into account is the penetration depth

defined as δp =
√

2/σµω. Since for most cases ferromagnetic materials have

high values of conductivity and relative permeability, the penetration depth is

much smaller than the scale of the object. Therefore, for this problem, since

δp and the length of the longest edge belonging to the elements in the cube are

7.4×10−4m and 5×10−2m, respectively, finite elements with δmax = 50 have to be

used in the mesh. The computations are performed based on the platform of the

Intel Fortran compiler installed on a computer with Intel core 2Quad Processor

2.66GHz, 8-GByte RAM.

The convergence of the MG solver with the SGSCG smoother, the MG solver

and the MGCG solver with the MAFW smoother is compared by the residual

plot shown in Fig. 5.5. As suggested in [28], 6 SGSCG smoothing steps result

in an optimal solution time for the MG method. Since the MAFW iteration is

about three times as expensive as the SGSCG iteration, two MAFW smoothing
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Figure 5.4 Geometry of the current-fed coil with a core.

steps are used in the MG algorithm. The number of iterations of the three

solvers for solving this problem is 30, 8 and 4, respectively, which means that

the MAFW smoother has better efficiency than the SGSCG smoother for eddy

current problems discretized by anisotropic meshes.

Table 5.1 compares the computational data of all three solvers. Since the

inverse of the submatrices associated with the AFW blocks has to be calculated,

the preprocessing time of the MAFW smoother is more than that of the SGSCG

smoother. However, the MG and MGCG solvers with the MAFW smoother

achieve a decrease by 65% and 81% of the solution time compared to that of the

MG solver with the SGSCG smoother.

The plane smoother

As presented in section 3.5.3, the plane smoother applied to the A and Φ for-

mulations has a good smoothing ability for thin elements used in magnetostatic

problems. In this section, the plane smoother for both the A, V and T , Φ formu-

lations will be presented for thin plates of conductors discretized by thin finite

elements [32,33].

For finite element formulations discretized by both vector and scalar poten-

tials, both edge and node based plane smoothing blocks associated with their
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Figure 5.5 Residual versus iterations.

Table 5.1 Solution data for the test eddy current problem with 19336 unknowns.

MG with MG with MGCG with

6 SGSCG 2 MAFW 2 MAFW

Number of blocks 0 1331 1331

Preprocessing time (s) 1.8 5.3 5.3

Solution time (s) 275.1 96.8 52.2
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5.3 Smoothers for eddy current problems

Figure 5.6 One thin conductor exposed to a time-harmonic magnetic flux den-

sity.

submatrices have to be constructed. For a plane indexed by i (i = 1, 2, . . . , n̂),

the symmetric MSI iteration instead of the pointwise SGS or SGSCG iteration

can be applied to (5.24) or (5.42), and its forward iteration can be written as

xmi,e = xm−1
i,e + PK

i K
−1
i RK

i (f 1 − (KD −KU)xm−1
e − (−KL)xme −Cxm−1

n ), (5.62)

xmi,n = xm−1
i,n + PB

i B
−1
i RB

i (f 2 − CTxme − (BD −BU)xm−1
n − (−BL)xmn ) (5.63)

where xe and xn represent vector potentials and scalar potentials, respectively,

KD, KU and KL are the diagonal matrix, strictly upper and lower triangular ma-

trices of K, respectively, BD, BU and BL are the diagonal matrix, strictly upper

and lower triangular matrices of B, respectively, Ki and Bi are the submatrices of

K and B, respectively, and PK
i and PB

i are the corresponding mapping operators

of Ki and Bi, respectively.

The convergence of the MG method with the proposed plane smoother will be

investigated by a test problem which consists of a thin plate shown in Fig. 5.6. The

relative permeability of the plate is µr = 1×103 and the imposed magnetic field in

z direction is produced by a current-fed coil around the plate. The conductivity

of the plate is assumed to be 2.3×103S/m. δmax can be adjusted from 1 to 1×103

by simply varying the thickness of the plate.

Figure 5.7 compares the solution times of the MG solver with the SGSCG

smoother, and the MG solver, as well as the MGCG solver with the proposed
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Figure 5.7 Solution time versus the maximum aspect ratio for the problem de-

scribed by the A, V -A formulation.

Figure 5.8 Solution time versus the maximum aspect ratio for the problem de-

scribed by the T , Φ-Φ formulation.
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plane smoother for solving the resulting system of equations arising from the

A, V -A formulation. It can be seen that the solution time of the MG method

with 10 steps of SGSCG smoothing iterations is less than those of the other two

solvers for δmax = 1 but increases significantly as δmax becomes larger than 10. In

contrast to that, the MG method with 3 plane smoothing iterations is capable of

efficiently reducting the errors and has a stable convergence with the increase of

δmax. Additionally, the MGCG solver with two plane smoothing iterations results

in further improvement of the efficiency. For instance, the MGCG solver achieves

83% of the decrease of the solution time compared to the MG solver with the

SGSCG smoother for the case of δmax = 500. For the case of δmax = 1000, the

MG solver with 10 steps of SGSCG smoothing iterations fails to converge to the

solution and the increase of solution times of the MG and MGCG solvers with

plane smoothing iterations are noticeable but still acceptable.

Fig. 5.8 shows similar results obtained from the MG and MGCG solvers for

the T , Φ-Φ formulation to those for the A, V -A formulation. For the case of

δmax = 500, the MG and MGCG solvers with two plane smoothing iterations

need only approximate 27% and 19% of the solution time of the MG solver with

the SGSCG smoother. In the case of δmax = 1000, for the MGCG solver, the

increase of its solution time is only 13% of that of the case with δmax = 500,

which means that the MGCG solver with the plane smoother maintains its high

efficiency for extremely thin elements.

5.4 Numerical examples

Two practical examples will be presented in this section to demonstrate the effi-

ciency of the MGCG solver with the MAFW smoother and the plane smoother

for nonlinear eddy current problems, and their performance will be compared

with that of the MG solver with the SGSCG and the ICCG solvers.

5.4.1 Example 1

A single-phase power transformer consisting of two coils wound around a core

in a tank is described by the A, V -A formulation and the correponding MG

method is a four-level V-cycle algorithm detailed in Table 5.2. The geometry and

discretization of the finite elements for the power transformer are displayed in
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Figure 5.9 Finite element disretization of the single-phase power transformer 1

in a metallic tank

(a) The B-H curve of the tank (b) The B-H curve of the core

Figure 5.10 The magnetization curves of (a) the tank and (b) the core

78



5.4 Numerical examples

Figure 5.11 Solution time of different methods versus the nonlinear iteration

Fig. 5.9. Due to the symmetry, it is only necessary to simulate one quarter of the

power transformer by applying proper boundary conditions. The B-H curves of

the tank in Ωc and the core in Ωn are depicted in Fig. 5.10(a) and Fig. 5.10(b).

The conductivity of the tank is σ = 4.5 × 106S/m. The current density of the

excitation in coils is 2.16 × 106A/m2 and 1.95 × 106A/m2, and the frequency of

the current is 60Hz. δmax of the FEM mesh modelling the tank is about 115.

According to algorithm 5 (see section 5.2), the linear solution of this problem is

calculated with a given relative reluctivity of the core and tank equal to 4× 10−5

and 1 × 10−3, respectively. The number of iterations and solution times of the

MGCG solver with the MAFW smoother and the plane smoother compared to

those of the MG solver with the SGSCG smoother and the ICCG solver for the

linear solution are listed in Table 5.3.

It is found that the convergence of the solution cannot be obtained until the

number of the smoothing iterations is increased to 18 in the MG method, which

means that the smoothing ability of the SGSCG smoother is poor for this problem.

In contrary to that, the number of block smoothing iterations applied to the

MGCG method is relatively small. In particular, only 2 steps of plane smoothing
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Table 5.2 Discretization of the finite elements for example 1 at each MG level.

Level No. of equations No. of elements

1 307847 24244

2 180396 14040

3 81286 6384

4 45985 4950

Table 5.3 Linear solution data of different solvers for example 1.

ICCG MG with MGCG with MGCG with

18 SGSCG 6 MAFW two plane smoothing

Preprocessing time(s) 24.697 58.343 376.274 270.766

Iterations 3602 6 5 8

Solution time (s) 1361.78 880.647 331.43 101.96
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iterations are applied to the MGCG solver. The linear solution times of the

MGCG with 6 MAFW smoothing steps and two plane smoothing steps are about

20% and 6% of that of the ICCG solver, respectively.

Using the linear solution as the initial guess, following the nonlinear algorithm

5 introduced in section 5.2, it applies 15 iterations to obtain the nonlinear solution

for all four methods. Fig. 5.11 compares the solution times of all solvers at each

nonlinear iteration step. The solution time of the MGCG remains nearly constant

and is not influenced by the variation of the nonlinear reluctivity, while those of

the MG and the ICCG solvers vary in a wide range. Moreover, compared to the

ICCG solver, the MGCG solver is much faster in the first few steps but slower in

the following steps. This is because at certain steps an initial guess which is close

to the exact solution can more efficiently reduce the number of iterations for the

ICCG than for the MGCG. Nevertheless, the overall solution time of the MGCG

with the MAFW smoother and the plane smoother is about 59.1% and 36.9% of

that of the MG solver with the SGSCG smoother, and 62.7% and 39.2% of that

of the ICCG, respectively.

5.4.2 Example 2

The geometry of the problem and the discretization of the coarse grid of the

second example are displayed in Fig 5.12. Due to the symmetry, it is only neces-

sary to simulate one half of the power transformer by applying proper boundary

conditions. The T , Φ-Φ formulation is used to describe the problem.

The numerical computation is carried out by a four-level V-cycle MG charac-

terized in Table 5.4. The linear solution of this problem is calculated by assuming

the values of the relative permeability of the core and tank constants equal to

2.5 × 104 and 1 × 103, respectively. The B-H curves of the tank and the core

are the same as those of the first example. The δmax of the FEM mesh modelling

the tank is larger than 150. The convergence behavior of different methods is

compared in Fig 5.13.

The most time-consuming step for solving this problem by the MG method is

that of solving the system of equations with 202039 unknowns for the coarsest

level by the direct solver. To improve this, the MGCG solver with four plane

smoothing iterations converges to the solution in four iterations, which results

in the direct solver being called only four times during the MG iterations. Con-

versely, the MG with the SGSCG smoother fail to converge to the normalized
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Figure 5.12 Geometry of example 2 in a metallic tank.

Figure 5.13 Number of iterations for the power transformer.
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Table 5.4 Discretization for example 2

Level No. of equations No. of elements

1 1511021 238134

2 560256 90720

3 202039 75600

Table 5.5 Solution data for example 2

ICCG MGCG with

4 plane smoothing

Preprocessing time (s) 133.240 2269.159

Linear solution time (s) 9576.327 2141.725

Nonlinera solution time (s) 28419.91 18811.34

residual of 10−6 in twenty iterations.

The solution times of the ICCG and MGCG solvers are compared in Table 5.5.

For the linear and nonlinear solutions, the solution times of the MGCG solver

are 22.3% and 66.2% of those of the ICCG solver.
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Chapter6
Conclusion

The multigrid method for solving the systems of equations resulting from the

A, V -A formulation and the T , Φ-Φ formulation is introduced in this work. Dif-

ferent smoothers are developed to improve the multigrid performance for problems

with nonlinearities and anisotropies.

It has been shown that block iterations have better smoothing ability than

pointwise iterations for dealing with the anisotropy in the finite element mesh.

In particular, plane smoothers for nodal elements applied to the Φ formulation

and those for edge elements applied to the A formulation are cheap and effi-

cient for the static magnetic analysis with thin magnetic plates discreitzed by

anisotropic elements. For eddy current problems, the multigrid with the plane

smoother adapted to the A, V formulation and the T , Φ formulation retains its

high efficiency even for elements with extremely high aspect ratios. In addition,

the convergence of the solver can be further improved by using the multigrid

method as the preconditioner of the conjugate gradient method.

For practical applications, numerical results show that the multigrid precondi-

tioned conjugate gradient iteration with the proposed block smoothers can sub-

stantially decrease the solution time in both linear and nonlinear problems.

The major contributions of this work can be summarized as follows:

• Various smoothers adapted to A, V -A formulation and the T , Φ-Φ formu-

lation are successfully applied to the multigrid method for solving magne-

tostatic and eddy current problems.

• The efficiency of the multigrid method for problems with thin elements has

been enhanced by different block iterations especially the plane smoothing
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iteration.

• The performance of the solver has been further improved by using the multi-

grid method as the preconditioner of the conjugate gradient method.

• Numerical results of practical applications show the advantages of the multi-

grid preconditioned conjugate gradient method with the proposed block

smoothers over the incomplete Cholesky preconditioned conjugate gradient

method.
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[51] C. Chen and O. B́ıró, “Three-dimensional time-harmonic eddy current prob-

lems solved by the geometric multigrid preconditioned conjugate gradient

method,” IET Sci. Meas. Technol., vol. 6, no. 5, pp. 319–323, 2012.

91


	List of abbreviations and symbols
	1 Introduction
	1.1 Introduction
	1.2 Overview of the multigrid method
	1.3 Overview of the application to the multigrid method for electromagnetic problems
	1.4 Thesis organization

	2 General principle of the multigrid method
	2.1 Iterative methods
	2.1.1 Introduction
	2.1.2 Symmetric Gauss-Seidel method

	2.2 The multigrid idea
	2.3 Two-grid method
	2.4 Multigrid method
	2.5 Preconditioned conjugate gradient method

	3 Multigrid for finite elements
	3.1  and  spaces
	3.2 Finite elements
	3.2.1 Introduction to finite elements
	3.2.2 Nodal elements
	3.2.3 Edge elements
	3.2.4 Relation between the nodal element space and the edge element space

	3.3 Hierarchy of grids
	3.4 Restriction and prolongation
	3.5 Smoother
	3.5.1 Multiplicative Schwarz iteration
	3.5.2 Arnold, Falk and Winther smoother
	3.5.3 Plane smoother

	3.6 Multigrid preconditioned conjugate gradient method

	4 The magnetostatic problem
	4.1 Differential equations and boundary conditions
	4.1.1 The -formulation
	4.1.2 The -formulation

	4.2 Tree and Cotree
	4.3 Smoothers for magnetostatic problems
	4.3.1 The smoother for the 
	4.3.2 The plane smoother for thin elements

	4.4 Numerical examples

	5 The time-harmonic eddy current problem
	5.1 Differential equations and boundary conditions
	5.1.1 The 
	5.1.2 The  formulation
	5.1.3 Coupling of the potential formulations

	5.2 Multigrid for nonlinear problems
	5.3 Smoothers for eddy current problems
	5.3.1 Gauss-Seidel smoother for the  formulation
	5.3.2 Block smoothers for eddy current problems

	5.4 Numerical examples
	5.4.1 Example 1
	5.4.2 Example 2


	6 Conclusion

