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Kurzfassung

In den letzten Jahren hat sich die Komplexität von System-on-Chips (SoC), ähnlich
dem Gesetz nach Moore, exponentiell erhöht. Dies führt dazu, dass der Bedarf an neuen
Systemen zur Verifikation bzw. Evaluation der Sicherheitsmaßnahmen im SoC deutlich
angestiegen ist und es aktuell zahlreiche Bestrebungen zur Entwicklung neuer Fehlerin-
jektionsverfahren gibt. Eine dieser Methoden stellt die sogenannte

”
Emulation von Feh-

lerattacken“ dar, welche im Vergleich zu den anderen Verfahrensweisen eine Überprüfung
von vielen unterschiedlichen Fehlerangriffen binnen kürzester Zeit ermöglicht. In diesem
Zusammenhang spielt neben einer verbesserten Geschwindigkeit der Fehleremulation auch
eine Reduktion der Anzahl der Fehlertests auf ein Minimum eine besondere Rolle.

In der vorliegenden Dissertation wird eine neu entwickelte Methode zur Emulation
von Fehlerattacken präsentiert, welche auf einer Verbesserung der Fehlerinjektionsmetho-
dik, Fehlerinjektionsstrategien sowie Auswertung der Fehlereffekte aufbaut und zur Be-
schleunigung der emulations-basierten Sicherheitsverifikation von komplexen SoCs dient.
In dieser Arbeit wird ein spezieller modularer Fehlerinjektor zur gezielten Einbringung
von Fehlern verwendet, der über die Ansteuerung von sogenannten

”
Saboteuren“ zu ei-

ner gezielten Manipulation der Signale im Design führt. Bevor diese Saboteure verwendet
werden können, müssen sie in die Hardwarebeschreibung des SoC über eine entsprechen-
de automatisierte Modifizierung integriert werden. Außerdem wurde eine neue Strategie
zur Beschleunigung des Fehlerinjektionsverfahrens entwickelt, welche mit Hilfe einer au-
tomatisierten Analyse eines sogenannten

”
Golden Model Run“ eine gezielte Einbringung

von Fehlern ausschließlich in die aktiven Regionen am SoC zur Folge hat, wodurch die
Resistenz gegen Fehlerattacken eines ganzen SoC im Vergleich zu herkömmlichen Fehler-
injektionsverfahren innerhalb einer viel kürzeren Zeitspanne überprüft werden kann. Nach
Ablauf der erwähnten Fehlerinjektionstests erfolgt anhand einer Überprüfung von Ein-
und Ausgängen, Kontrollfluss sowie nichtflüchtigem Speicher des Systems die Evaluation
der erzielten Effekte auf das System direkt auf der Emulationsplattform mit Hervorhebung
der sicherheitsrelevanten Fehleremulationsdurchläufe.
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Abstract

Over the years the complexity of system-on-chips (SoCs) has increased in a speed
similar to the defined law by Moore. Especially for complex security SoCs, as the effort to
verify their security against fault attacks is a difficult process. Therefore, many different
fault testing methods have been developed over the years to cope with this problem. One
of these methods is fault emulation. This method is a very fast method compared to other
fault injection methods. The disadvantage of this method is that the hardware description
of the device under test has to be modified, and it is harder to analyze what effect an attack
produces in the system. It is not only the speed of the fault testing approach, but also the
test strategies that are important. The fastest test method without proper test strategies
cannot handle complex SoCs because of the high number of possible fault locations.

In this thesis a novel method is presented on how to accelerate emulation based security
testing of complex SoCs, especially for operating system development, by an improved
fault emulation method together with an improved fault injection test scenario. The
concept of this fault injection method is based on the emulation of fault effects, because
for operating system testing it is not important how a fault is produced, it only matters
if the operating system can cope with the fault effect. To emulate such effects a flexible
and modular fault injector is used which controls saboteurs. These saboteurs manipulate
the system’s behavior to produce fault effects which can be used to test the security
features of the operating system. The placement of the modular fault injection controller
and the saboteurs is a time consuming and error prone process which is replaced by an
automatic placement method. Because of the complexity of the SoCs it is not possible to
test every fault. Therefore, several improvements to the fault injection campaigns have to
be developed. These improvements can be split into two main groups. The reduction of
the required fault injection campaigns and the automatic analysis of what effect an attack
has on the system. The reduction of the fault injection campaigns is based on an analysis
of the system during a golden model run to detect security critical regions in the software
and the hardware. The post injection analysis is a step which is especially required to
accelerate the evaluation by the test engineer to highlight critical attacks.
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Extended Abstract

The complexity of system-on-chips (SoCs) has been increased in a speed similar to
Moore’s law. In some publications it is already spoken of as an increase more-than-moore.
This increase is reached by an increasing level of integration and decreasing size of circuit
elements. This small size makes the system more vulnerable against external influences
such as: cosmic rays, light and radiation. Because of recent chip technologies (e.g. 20nm
technology) the chance of multi-bit faults caused by natural influences (e.g. cosmic rays)
is increasing. On the other hand the equipment of attackers has improved over the years.
The attackers often use multi-bit attacks and multi-attack scenarios to make the system
perform unintended operations. To increase the security level of a system the SoC has
to be verified against such external influences. To verify a system against multi-bit fault
attacks, requires much more verification effort than a simple single event upset (SEU)
verification strategy. The additional verification effort depends on the used verification
model which defines which signals are attacked in parallel. For dependability verification it
can be assumed that bits with a near location on the silicon are disturbed simultaneously.
In security applications this assumption is often not true, because an attacker can use
multiple attacks to manipulate the system at different locations. The verification can be
done using three different methods. The simulation method can be performed very early on
during the design of a SoC, and is also the most flexible and easiest observable method. The
main disadvantage is that this method is also the slowest method. The second method uses
physical tests which only can be done very late in the SoC development process because
a physical chip must exist. If a fault was detected during this stage a redesign of the chip
is required. The last method is emulation were the functionality of the SoC is mapped
on an FPGA. This method is a really fast method for fault testing because the system

Emulation Platform

Fault Injection
Pre-Injection 

System Analysis

Post-Injection 
Fault 

Verification

Fault Emulation 
Platform Generation

Automatic 
System 

Manipulation

Figure 1: Concept of the novel automated fault injection method. This method is based
on two parts: the generation of the injection platform, and the fault injection process. The
generation of the emulation platform is based on automatic system manipulation. The
injection process can be split into three categories: Pre-Injection System Analysis, Fault
Injection and Post- Injection Fault Verification.
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has a similar performance to the produced chip. The main disadvantages are that for the
fault emulation process the system has to be modified. None of these methods can verify
a whole system in a feasible time without proper verification strategies. The increase of
SoC complexity increases the verification gap between the possible attack targets and the
number of testable fault attacks, because the increase of the SoC complexity is growing
faster than the verification methods and verification strategies. Therefore, methods have
to be developed to accelerate fault verification and to decrease the amount of required
fault verification to an absolute minimum without leaving out important tests.

In this thesis a novel method for accelerating fault attack verification is presented. The
acceleration of fault attack verification is done using several different steps. These steps
can be split into three main groups, automatic code adaption, pre-injection system analysis
and post-injection fault effect analysis. This thesis is part of the Power-Modes1 Project
which focuses on fast fault emulation and power emulation for smart card developments.
The method is based on a modular fault injector2 (MFI) which is based on an in-system
fault injection strategy. This strategy abstracts the internal location of the fault by using
an automatic test pattern injection. This abstraction allows for the emulation of different
fault effects without exact knowledge of the internal structure. This is especially important
for software developers who do not know exactly how the hardware is build. The controller
has a general interface that allows the use of MFI on most emulation platforms. To disturb
the normal behavior of the system the MFI also controls saboteurs, which are small blocks
which are placed between the source and the sink of a signal. With the saboteurs it is
possible to reproduce different fault models e.g., stuck-at faults, delays, bit-flips and so
on.3 This MFI and the saboteurs have to be added into the VHDL description of the SoC.
Doing this manually is an error prone and time consuming process. To reduce the effort of
adding the required code for the fault injection into the system, an automatic placement
tool was developed. This tool analyses the structure of the SoC with the VMAGIC tool
and modifies the system depending on the attack targets4.

After the SoC is modified the fault verification method can be used for security ver-
ification. This method emulates fault effects to verify if the software security features
fulfill the requirements. The reason only fault effects are emulated is because for software
verification it is not important how a fault is produced, it only matters what effect a
fault has on the software. For example the manipulation of a memory cell can be done
in many different ways (write access attack, direct memory cell attack), but the software
only notices that the memory is attacked. With this limitation the number of required
fault attacks can be reduced5. The best fault injection strategy needed for verifying a

1POWer EmulatoR and MOdel based DEpendability and Security evaluation platform. Project Partners
are Infineon Technologies Austria AG, Austria Card Plastikkarten und Ausweissysteme GmbH and TU
Graz. The project is funded by the Austrian Federal Ministry for Technology under the FIT-IT contract
FFG 825749

2Modular Fault Injection for Multiple Fault Dependability and Security Evaluation, 14th Euromicro
Conference on Digital System Design, Oulu, Finland, 2011

3Case Study on Multiple Fault Dependability and Security Evaluation, Elsevier Microprocessors and
Microsystems, in press

4Automatic Saboteur Placement for Emulation-Based Multi-Bit Fault Injection, 6th International Work-
shop on Reconfigurable Communication-centric Systems-on-Chip, Montpellier, France, 2011

5POWER-MODES- POWer EmulatoR and MOdel based Dependability and Security evaluation, ACM
Transactions on Reconfigurable Technology and Systems, Volume 5, Issue 4, Article 19
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large SoC in a reasonable time are proper test scenarios. Therefore, a new pre-injection
system analysis method is needed to be developed. This analysis should show security
critical regions in the system in such a way that fault injection campaigns can be reduced
to an absolute minimum. Therefore, the activity of memory accesses and activity of dif-
ferent modules are analyzed. This information is generated during a golden-model-run on
the emulation platform. To reduce the time overhead of sending this information back
to the environment this information is analyzed directly on the FPGA6. Another step
which reduces the number of fault injection scenarios is to find reasonable attack patterns
on how the memory should be attacked. Therefore, the locality of memory elements on
the silicon is analyzed. If a memory is attacked by an attacker it is very likely that the
memory cell nearby is also disturbed. Therefore, a design analysis tool was implemented
which highlights nearby memory cells. With this method it is possible to generate proper
test patterns for memory attacks or register attack scenarios7. The pre-injection system
analysis reduces the required fault injection campaigns but there are still millions of fault
injection campaigns required to verify the security of the SoC against fault attacks. For
a verification engineer it is nearly impossible to check all results by hand. Therefore,
a post-fault injection effect analysis was developed. This method already checks on the
FPGA what effect fault attacks have on a specific system. This effect can be: manipu-
lation of output, program flow manipulation, memory changes and so on8. Fault attacks
can also have an effect on the power-profile of a system on chip. To give the verification
engineer a hint what effect an attack has on the power profile an emulation based power
analysis tool was integrated into the post fault injection effect analysis tool9. In future
work an automatic method for side-channel analysis should be improved. This is required
because novel high-order fault attacks try to manipulate the system in such a way that it
leaks additional side-channel information, like timing and power. Therefore, it would be
necessary to analyze the timing and the power leakage of the SoC with the whole fault
emulation process.

6Efficient Fault Emulation using Automatic Pre-Injection Memory Access Analysis, 25th IEEE System-
on-Chip Conference, Niagara Falls, USA, 2012

7Acceleration of Fault Attack Emulation by Consideration of Fault Propagation, International Confer-
ence on Field-Programmable Technology, Seoul, Korea, 2012

8Efficient Fault Emulation based on Post-Injection Fault Effect Analysis (PIFEA), 55th International
Midwest Symposium on Circuits and Systems, Boise, USA, 2012

9Characterization and Handling of Low-Cost Micro-Architectural Signatures in MPSoCs, IEEE 25th
European Test Symposium, Annecy, France, 2012
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Glossary

Fault
A fault is a broken or manipulated part of a system which can lead to an error. A example
of a fault is that one signal in the chip is stuck at zero and cannot switch back to one.
For example, such faults can be caused by production problem, external influences or aging.

Error
An error is a unintended behavior of a system. An example of an error is when the system
has an output different to the expected result. An error can be caused by a fault.

Emulation
An emulation is defined by [13] “to copy something achieved by someone else and try
to do it as well as they have”. In the case of this thesis it means to map the function-
ality of a chip on a FPGA platform in such a way that the digital parts act like a real chip.

Fault Attack
A fault attack is a intentional manipulation of the SoC, with the aim to produce an error
in the system which allows an attacker to extract security critical information.

Fault Injection Campaign
A fault injection campaign uses multiple fault injections, which are required to test the
security of a specific part of a system-under-verification. For example a fault injection
campaign verifying if a AES core is vulnerable against fault attacks, consists of multiple
fault injection runs where the AES core is attacked.
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Chapter 1

Introduction

Worldwide the number of system-on-chips (SoC) is rapidly growing. Not only are the
number of SoCs growing, but also the complexity is rising. As seen in Figure 1.1 the
complexity of portable devices is increasing with each year in an exponential way. Not only
are the logic size and memory size expected to increase but also the number of processing
engines as well. In some publications there is already talk about an increase of speed more
than moore [14, 15]. This increase in complexity must be handleable by development
processes and test concepts. The test concepts have to make sure the functionality of the
device matches the predefined requirements. Especially in safety and security domains as
the requirements have to be examined with particular attention. If these requirements are
not fulfilled this can lead to enormous costs for the company, loss of trust in the products
of this company and in and in the safety environment if the product poses a danger when
used.

1.1 Smart Cards

Smart cards are chip cards which have to fulfill higher security requirements than RFID
cards [2]. As seen in Figure 1.2 the difference between RFID cards and smart cards is the
complexity and their security features. This additional security level and complexity leads
to higher costs in development, because of this financial effort Smart Cards are used only
if the application requires the additional effort. Some typical areas where they an used
are [16] Enterprise ID, Financial, Government, Healthcare, Identity, Telecommunications,
Pay-TV and Transportation.

The number of smart card chips has grown over the last few years. From 2010 to 2012
an increase from 5520 million to 6925 million was forecast [3] (see Figure 1.3). This is an
increase of 25,5 percent over 2 years. The trend shows that this increase will continue over
the next few years. This increase of usage will also increase the number of attackers who
will try to manipulate the smart cards to get an advantage out of it. Depending on the
application it is worthwhile for the attacker to invest different amounts of money to attack
the smart card. Because the cost of the equipment for such attacks is going down and
the knowledge of the attackers is increasing, the smart card systems have to be improved
to cope with the attackers. Therefore, new countermeasures against attacks have to be
implemented and tested.

1
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Figure 1.1: This trend shows how the complexity of portable devices is increasing over the
next few years. Not only is the logic and memory size increasing, but also the number of
processing engines following the exponential trend [1].

1.2 The Importance of Security Testing

Smart Cards are used in many security critical environments for example in banking,
pay-TV and passports. To proof the security level of such smart cards, the smart cards
have to be evaluated by a laboratory in order to achieve certification by a certification
authority. The certification is often done following the common criteria standard. This
evaluation can only be done by special laboratories. They test the security of the smart
card against different side channel attacks and fault attacks. In Figure 1.4 [4] it can be seen
that an EAL4 certification cost approximately 300.000 dollars. These costs can increase if
faults are found, because such faults often require a redesign of the chip or the software.
Due to of this high cost the companies want these problems to be resolved before these
certification tests are done on the real chip, to test the system against fault attacks whilst
in the development stage. These tests can be split into two main groups. The first one
is the random test where the system is attacked at random times and locations to check
if an attack has any effect on the system. The second method is to attack the system
at a specific location because a developer thinks that there might be a weak point in the
design. These two methods vary in the method used for the fault injection. The second
method can be best tested with a simulation with exactly knowing the parameters of the
expected attack and in this case a slow simulation time has no bearing. For random tests
this simulation is often too slow. Therefore, the fault emulation is a proper method.
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Figure 1.2: This figure shows the difference of RFID cards and smart cards [2].

1.3 Smart Fault Injection Method

The smart fault injection method, presented in this thesis, has a goal to improve the
commonly used fault injection methods used to accelerate fault attack testing. This can
be done by reducing the required time for one fault injection campaigns, by reducing the
effort for the verification engineer and by reducing the number of fault injection campaigns.
Before the novel fault injection method can be explained, the questions must be asked
about the need to accelerate the fault injection process.

1.3.1 Problem Statements

� Increasing complexity of SoC: The complexity of SoC has increased extremely
over the last few years. This lead to a high test effort for security testing.

� Increasing number of Smart Cards: The number of smart cards has increased
over the last two years more than 25 percent. This growth in the number of smart
cards, increases the risk that the user might have a smart card that can be hacked.

� Increasing security requirements: The number for security requirements of
smart cards is increasing because the usage of smart cards becomes more common in
different environments. Especially, for passport security as it is extremely important
that it is not possible to hack the smart card chip, because they store biometric
data.

� Increasing test effort: The effort to test such smart cards is also increasing because
they are becoming more complex and the security and encryption is improving.
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Figure 1.3: The number of smarts cards sold per year worldwide goes into the billions.
This number is increasing yearly by a double digit percentage value [3].

Figure 1.4: This figure shows the cost of the common criteria certification process of smart
cards depending on the Evaluation assurance level (EAL) [4]

� High cost of certification: The certification process cost rises depending on the
complexity and the security level.
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1.3.2 Power-Modes Project

This thesis is part of the Power-Modes project (POWer EmulatoR and MOdel based
DEpendability and Security evaluation platform)1. The goal of this project is to design
and implement a fault emulation platform which can be used for dependability and security
evaluation by including power information.

1.4 Thesis Structure

The structure of this thesis is shown in this section. At the beginning of this thesis an
introduction into the field of fault injection and smart card security is given in Chapter
1. After the background is explained the most important related works are discussed in
Chapter 2. Chapter 3 shows the novel approach about how the fault injection method can
be accelerated by using the smart fault injection method. The performance of this method
is shown in Chapter 4. Chapter 5 shows the conclusion and the future work. Finally the
publications which describe this method in more detail are shown in Chapter 6.

1Project Partners are Infineon Technologies Austria AG, Austria Card Plastikkarten und Ausweissys-
teme GmbH and Institute of Technical Informatics. The project is funded by the Austrian Federal Ministry
for Technology under the FIT-IT contract FFG 825749



Chapter 2

Related Work

The testing of SoC’s is a time consuming process. Especially for fault attack testing the
time to test if a system is secured against attacks on the hardware is enormous. This time
is also increasing exponentially to the complexity of the system-under-verification (SuV)
[17, 18, 19]. Therefore, a large amount of research is done on how to decrease the test
time. This research can be split into the following three main topics:

� improving the fault injection method

� reducing the required fault injection campaigns

� automatizing the analysis after a fault injection is performed

2.1 Improving the Fault Injection Method

The fault injection methods can be split into the following three main methods:

� Fault Simulation: The fault simulation approach is the most common method for
fault testing. Compared to other fault testing methods the time required for verifying
a SuV is much higher [20]. This slower fault testing time would be compensated by
the flexibility of this approach. In [21] an early example of this approach it is shown
where simple simulation commands are used for a full fault injection simulation.

An example for a high-level fault injection simulation is the paper from Rothbart et
al., where faults are injected into a SystemC model of the design [22]. An overview
of the most common fault injection simulation methods are given in [23].

Novel fault simulation approaches allow the simulation of SoCs which are written in
different hardware description languages. A good example for such an approach is
[24] where a system is tested and designed in SystemC and VHDL.

� Physical Fault Tests: This approach uses physical manipulations of a real chip
to check if the system can resist fault attacks [17]. Therefore, a good knowledge
about the design is required. Also the verification engineer needs to perform the
fault injection using special equipment [25] which could be very expensive. Another
disadvantage is that if a fault is detected a redesign of the system is required which
leads to high costs.

6
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� Fault Emulation: To solve the problems of a long simulation time and the ex-
pensive physical tests, the fault emulation approach was developed. This approach
maps the functionality of the chip on an FPGA. On this FPGA the behavior of the
SoC can be emulated [26, 27, 28, 29]. To inject faults in this emulated chip three
different methods are known.

– Mutants: Mutants are manipulated blocks of the SoC which have the same
functionality as the original block of the SoC until they are activated [30].
When they are activated they act as a manipulated block. The disadvantage of
this module is that the effort to produce such a mutant is very high, because
the functionality of this module has to be modified. Another disadvantage
is that the hardware description of the system has to be manipulated. The
big advantage of this mutant is that complex fault models can be reproduced
because every manipulation to this system can be implemented.

– Saboteurs: Saboteurs are blocks which are placed between the source and the
sink of a signal. While they are not active they act as a transparent block.
When they are activated they can manipulate the signal in many different ways
(e.g. stuck-at faults, delays, ... ) [30]. The disadvantages of this module is
that they have to be placed into the hardware description of the SuV. This is a
time consuming and error prone process. The advantage is that with saboteurs,
fault effects can be injected into every signal in the design.

– Partial Reconfiguration: The partial reconfiguration is a very new approach
for fault injection campaigns. This approach uses the functionality of new
SRAM FPGAs where it is possible to manipulate the look-up-tables (LUTs)
of the FPGA while the system is running. For this approach many different
publications have been written over the last few years [31, 32, 33, 34, 35]. The
main disadvantage of this approach is that it only works with the new SRAM
FPGAs and the tooling to use this fault injection method is not optimal.

Independent to how the faults are injected exist two different fault basic models on
how faults can be injected. These models should be known because not every injection
method support all the injection models. Therefore, some of the work is done by [36, 30]
splitting the injection models into:

� Permanent fault model: Permanent faults are manipulations of the system which
are active forever. Such permanent faults are often also called destructive faults
because to produce them often parts of the chip are destroyed. These faults are easy
to test with every one of these fault injection methods.

� Transient fault model: Transient faults are manipulations of the system which
are only active for some amount of time. This fault model is often used for memory
fault attack emulation, because an attack to the memory often only manipulates the
content of a memory cell until the next write access.
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2.2 Reducing the Required Fault Injection Campaigns

The requirements to reduce the number of fault injection campaigns has increased over the
last few years because the complexity of SoC has increased. It is not possible to test every
possible fault effect on the system. Therefore, the number of fault injection campaigns
have to be reduced to the most critical fault attacks. The main problem is to find the
critical fault attack targets.

In the literature two different ways to deal with the problem exist:

� Statistical approaches: Statistical approaches use mathematical methods to find
worthy attack targets. The main problem with this approach is that after the fault
injection the verification engineer does not know if all the critical regions were tested.
Therefore, Leveugle et al. tried to solve this by generating a confidence quantifier for
this approach [37, 38]. Their results show that it is possible with statistical methods
to obtain very precise results about the robustness of a circuit. Therefore, only a
limited number of fault injection is required.

� System analysis approaches: The target of this approach is to automatically find
security critical regions in the design by analyzing the source code or by analyzing
the activity of system components. The analysis of the source code can be done
without running a golden model. In [39, 40] a method is presented on how the
source is analyzed to find memory information. They extract from the ASM code
every access to the memory and use this information do reduce the fault injection
campaigns against the memory to the real write and read accesses. This reduces the
required amount of fault injection campaigns against the memory.

The approach presented in [41] works in a similar way but in this approach a golden
model is used to generate the information required for reducing the number of re-
quired fault injection campaigns. They check every access to the registers and use
this information to reduce the number of fault injections. This reduces the number of
required fault injection campaigns to the registers to about 12 percent of the normal
run.

2.2.1 Automatizing the Analysis after a Fault Injection is Performed

The analysis of the results is an important task to help the verification engineer find the
successful attack within the millions of test scenarios. One method to solve this problem
is shown in [42]. They uses failure mode effects analysis to calculate the effect of a fault to
the system using a high level system model of the SoC. In [43] different fault models are
explained and how it is possible to detect these faults using this fault model. The fault
effects can be split into multiple types:

� Correct: This means the fault attack has no effect to the system.

� Silent: Silent means the fault attack had a effect on the system but the effect is not
visible in the output of the system.

� Latent: A latent fault is a manipulation of the system which does not have an effect
on the system at that moment, but it might produce a fault effect in the future.
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� Detected: Detected faults are attacks which are already found by the system.

� Failure: Failure are faults which already had an effect on the output of the system.

2.3 Difference to Related Work

The differences between the related work and this thesis can be spit into three main parts:

� Automation of the system manipulation required for a saboteur based fault emula-
tion process. In the literature no method is shown how the hardware description of
a SuV can be manipulated automatically to generate a fault emulation system which
can be used for long term fault testing.

� Using more activity information for reducing the fault injection campaigns to an
absolute minimum. In this thesis additional information of the system are used to
reduce the required fault injection campaigns. This information is about the memory
access information and the power information.

� Analyzing the effect of the fault injection automatically on the emulation platform.
In the literature the fault effect analysis is done mostly on the host PC, the difference
between this work and the related work is to bring this directly onto the emulation
platform to reduce the communication overhead between the emulation platform and
the host PC.

2.4 Contributions and Significance

The contribution of this work is to accelerate emulation based fault resistance verifica-
tion for smart card operating system development. This acceleration is required because
without an improvement it is not possible to cope with the increasing complexity of system-
on-chips (SoC), because the number of possible fault targets rises exponentially compared
to the complexity of the SoC. To accelerate the fault verification it is a requirement to
improve many different steps of the fault verification.

This starts by improving the fault injection method, which means how the faults are
injected and how the required system manipulations are introduced into the system. In
this thesis a new fault injection controller is presented to cope with this problem. Because
the system manipulation is an error-prone and time-consuming process, a method on how
such manipulation can be done automatically is presented.

The second step is to improve the fault verification flow by analyzing the system to
find security critical regions in the design. Therefore, a new novel analysis method is
presented which can analyze meaningful attack targets directly on the FPGA. With this
method it is possible to reduce the required test campaigns by a factor between ten and
one thousand.

The final step for accelerating the fault verification is to reduce the effort for the
verification-engineer to detect what attack was a successful attack. This is required because
an engineer cannot check millions of fault attack scenarios. Therefore, a novel analysis
block was introduced to test this directly on the emulation platform if the control-flow,
memory content or the communication to the environment are disturbed.



Chapter 3

Smart Fault Injection Method

In this section the smart fault injection method is summarized. The structure of this
method can be split (as seen in Figure 1) into 4 working packages. Before the working
packages have been specified the target of this whole concept has to be described. The
target is to test the resistance of the system against fault attacks as fast as possible.
Therefore, several intermediate steps are required. The whole work is based on the fault
injection method shown in detail in Chapter 6.1

Emulation Platform

Fault Injection
Pre-Injection 

System Analysis

Post-Injection 
Fault 

Verification

Fault Emulation 
Platform Generation

Automatic 
System 

Manipulation

Figure 3.1: Overview of a smart fault emulation tool.

3.1 Challenges

The challenges this work has to cope with are described in the following block. The main
aim behind these challenges is to accelerate the fault emulation, reducing the effort for the
verification engineer and make the fault injection usable without exact knowledge about
the internal structure of the SuV.

3.1.1 Smart Attack Scenarios for Fault Emulation

For fault testing we have an advantage against the attacker by using additional information
of the system to find areas, time slots, memory access and so, we can find out where
the system is vulnerable against fault attacks. A simple example is that an attack to a
multiplier has only an effect to the system if the multiplication is used. This information
can be used to reduce the fault emulation to the times where the multiplication is used.
Also power information can be used to find when the system leaks power information,
which can be used by attackers for differential power analysis.

10
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3.1.2 Abstraction of the Attack Target for Fault Emulation

A big problem of common fault emulation tools is that the verification engineer must know
exactly what signal should be attacked and at what time. But this level of knowledge is
difficult in some situations. This fault injection technique should be used by software
developers to test if their software is resistant against fault attacks before the physical
test at a certification laboratory is done. The software developers do not and sometimes
should not know which exact signal to disturb to produce a specific fault effect. For
the software development it is only important to produce the fault effect to check if the
software can handle this attack. Therefore, an abstraction of the attack targets is be
realized.

3.1.3 Multi-bit Attack Scenarios

Because of the increasing knowledge of attackers and cheaper equipment the number of
fault attacks has increased over the last few years. Also the number of known multi-bit
attacks has increased. Multi-bit attacks are fault attacks where an attacker interferes
with multiple regions of a chip during a single attack scenario. A simple example would
be to firstly deactivate the fault detection unit and secondly to attack the security critical
component.

3.1.4 Automatic System Manipulation

Fault emulation requires, if saboteurs are used as fault injection elements the adaption
of the system with triggers, saboteurs and a control logic. This system manipulation
is a time consuming and error-prone process. To cope with this problem an automatic
system manipulation step was developed (see Chapter 6.2). This approach allows to place
hundreds of saboteurs, the control logic, and the triggers automatically into the hardware
description of the SuV. It is only required that a verification engineer specifies the location
where the saboteurs should be placed.

3.1.5 Injection Campaign Generation based on System Information

Because of the large number of possible fault attack campaigns the number of these cam-
paigns has to be reduced to an absolute minimum. This can be realized by analyzing
the system information which is generated with a golden model run. With this method
security critical regions of the design should be detected and so it is possible to attack the
most important regions of the chip.

3.1.6 Fault Verification Directly on the FPGA

Verification engineers must verify if a fault injection campaign has manipulated a system
in such a way that the secure information can be extracted from the SuV. This process is
a time consuming and error-prone process which should be reduced by fault verification
directly on the FPGA. This has the aim to reduce the effort for the verification engineer
by analyzing the fault injection results. The analysis directly on the FPGA also reduces
the communication overhead to the host PC which increases the overall speed of the
verification process.
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3.1.7 Standard Communication Interface

The standard communication interface is required because the system should be used on
different emulation platforms.

3.2 Fault Injection Method

The fault injection method is the back bone of this thesis. This is the method where faults
are injected into the system to manipulate its behavior (for a more detailed description
see Chapter 6.1). These fault injection methods should fulfill the following requirements:

� System independent: The method should not be limited to a specific product or
FPGA.

� Flexible: The concept should be expandable if new features should be added.

� Multi-bit attack support: Because multi-bit attack get more and more common
the fault emulation tool should support such a feature.

� Simple configuration: The interface for the test environment should be as simple
as possible to allow its methods to be used on multiple platforms.

� Attack abstraction: The attack abstraction is one key requirement of the MFI
because for software development the software developer should not or maybe must
not know what signal should be attacked. For them only the effect of the attack to
the software is important.

� Synchronize the fault injection with the SuV: For fault attack it is important
that the system can be attacked exactly at a specific time and location.

� Repeatable: The attacks should be repeatable.

To fulfill all these requirements a modular system is the choice to use. This system
consists of a central core with a flexible interface where the fault injection and the trigger
elements can be connected. This controller is called the Modular Fault Injector (MFI).

3.2.1 The Modular Fault Injector

The modular fault injector (MFI) is a system which consists (as seen in Figure 3.2) of
multiple elements.

� Control Logic: The control logic is configured via the GPIO interface and activates
the saboteurs depending on the trigger values and the defined attack.

� Internal Fault Pattern Memory: The memory stores the attack campaigns that
should be performed.

� Memory Control: This block is a control logic which allows access to the Internal
Fault Pattern Memory from the GPIO Interface.
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� GPIO Interface: This interface is the connection to the environment. With this
interface it is possible to configure the MFI and read out debug information.

� Saboteur Interface: The saboteur interface consists of two buses. The first bus
is shared from every saboteur and defines which attack type the saboteurs should
emulate. The second bus contains for every saboteur exactly one bit which defines
if the saboteur should be activated or not.

� Trigger Interface: The trigger interface is an interface which is used to configure
the trigger and to check if a trigger is active or not.

Modular Fault Injector

GPIO 
Interface

Internal
Fault Pattern

Memory

Memory Control

Control
Logic

Saboteur 
Interface 

Trigger 
Interface

Figure 3.2: Overview of all components of the MFI with their interface to the environment,
the saboteurs and the triggers (adapted from [5]).

3.2.2 Saboteur as Fault Injection Element

Saboteurs are small hardware blocks which are placed between the source and the sink
of a signal. If not activated they do not influence the behavior of the signal. If they are
activated they can manipulate the signal. The saboteurs are clock interdependent which
means that there is nearly no delay between the activation signal and the manipulation
of the manipulated signal. Only the delay generated by the combinatoric of the saboteur
produces a delay. As seen in Figure 3.3 the saboteurs have several different control signals.
The Activate signal is used to activate the fault injection (for a more detailed description
see Chapter 6.3).

3.2.3 Synchronized Fault Injections and MFI with Triggers

Triggers are blocks which are used to synchronize the SuV with the fault injection con-
troller. Therefore, these blocks have to be connected to, for the fault injection, relevant
regions for example the program counter, memory address line, op code and so on. The
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Figure 3.3: Overview of the functionality of a Saboteur (obtained from [5])

trigger will be configured over a specific trigger configuration interface. The triggers can
be split up into two main types. The timing and the event triggers. The event triggers are
used to trigger on state values of the SuV (e.g. program counter). The timing trigger is
used to activate a fault after certain clock cycles. As seen in Figure 3.4 these triggers can
be combined to allow counting clock events after an event trigger is activated. For example
this can be used if the event trigger is set to trigger when the first program counter value
of a critical function is reached. After this trigger is activated the counter begins to count.
With this method it is possible to attack every specific clock cycle of the critical function
only by counting from the beginning of this function until the specific clock cycle when
the fault should be injected is reached.

MFI

Event Trigger Timing Trigger Event Trigger Event Trigger Timing Trigger

Masking

=

Masking Register

Trigger Register

Injection ConfigPattern Memory
Saboteur 
Control

Saboteurs DUT

Figure 3.4: Overview of the Trigger Concept
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3.3 Automatic System Manipulation

The automatic system manipulation is an essential part in accelerating emulation-based
fault injection, because the modification of the hardware description language of the SuV
is an error-prone and time consuming process. The system manipulations modify the SoC
in such a way that all modules required for producing a specific fault effect are placed
automatically. These modules are the MFI, the triggers, the saboteurs and an interface to
the environment. For this system manipulation the system has to be analyzed to get the
structure of the SoC. After the analysis a verification engineer has to specify which parts
of the system should be attacked. Therefore, a GUI was designed (for a more detailed
description see Chapter 6.2).

3.3.1 Method

As seen in Figure 3.5 the method can be split into three parts:

� VHDL analysis: Figure 3.6 shows the parsing and analysis methodology. The
target of this method is to generate a tree which represent the structure of the SoC’s
hardware description. With the help of this tree it is possible to root signals from
the saboteur location to the top-level file of the SoC. This is required because the
control signals of the saboteurs must be manipulated. This process is split into three
steps:

– parsing the VHDL files

– linking of detected modules

– building of a tree representation

� Saboteur Placement: With this step a verification engineer has to specify the
attack location. Therefore, the verification engineer has to know exactly where to
place the saboteurs. To help the verification engineer place the saboteurs a GUI is
provided which shows a project tree. The engineer can use many different categories
to decide were to place the saboteurs. The categories are:

– Dependable relevance of the signal

– Security relevance of the signal

– Influence of the signal on the power profile

– Clock signals

– Critical signals of fault detection blocks

– Critical signals of fault recovery blocks

– Memory interfaces

– Register ports

– Data and address buses
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Figure 3.5: System manipulation steps (obtained from [6]

� Saboteur Routing: This step routes the signal of the saboteurs and the trigger
signals to the top-level of the SoC. Therefore, the control signal of the saboteurs
has to be added to the entity, components and declarations of every module which
contains the saboteurs. The saboteurs and the triggers are connected to the modular
fault injector (MFI).

3.4 Pre-Injection System Analysis

The target of the pre-injection system analysis is to reduce the number of required fault
injection campaigns because it is not possible to test every thinkable fault. This reduction
can be reached by analyzing the system while a golden model run, to find security relevant
regions. This pre-injection system analysis method can be split into two different meth-
ods. The memory access analysis and the module activity analysis. (for a more detailed
description see Chapter 6.5)

3.4.1 Memory Access Analysis

The memory access analysis tries to find memory cells which are used by a security critical
function. This is required because the size of the memory has reached a size where its
not possible to test the effect of a fault attack on every memory cell with every possible
pattern. Therefore, the number of fault attacks has to be reduced to the most important.
The effect of this reduction can be calculated by the Equation 3.1. The time (T) required
to test the effect of the fault injection depends on the number of scenarios and the time
per scenario. In many cases the time per scenario cannot be improved only the reduction
of the test scenarios can reduce the overall test time. For example an emulation of a
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Figure 3.6: System manipulation Method (obtained from [6]

smart card with the parameters shown in Table 3.1 requires, to inject in every memory
cell exactly one fault ever 1000 clock cycles, 33 million seconds. This is nearly a whole
year.

Memory size = 100KB
Run-time of the OS = 100ms
Frequency = 33MHz

Table 3.1: Example values of a smart card and their operating system.

T = nscenarios ∗ tscenario (3.1)

To reduce this amount of required attacks an analysis of the memory accesses can
be done. Therefore, all memory accesses, while a security critical code is executed, are
analyzed and the gained information is used to find security critical memory cells. As seen
in Figure 3.8 only a limited set of memory cells are used from the security critical code.

For reducing the amount of fault attack scenarios the information if a memory access
is a read or write access is relevant. This knowledge allows emulation of the transient
fault attacks. Transient fault attacks on memory are attacks which are only active until
the next write access to the same memory cell. This can be seen in figure 3.9. With the
knowledge of the time and the access type the following rules can be defined to emulate
transient memory attacks:

1. Inject a fault to a memory cell before every read access until the next write access.
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2. Do not inject a fault before a write access.

3. Inject a fault before the last write access.

CPURAM Cycle Counter

FIFOMFI

PowerPC

S

Flow Level

Log and Control 
Level

Device Level

PC

Addr & W/R

DataData

Addr & W/R

UART

Figure 3.7: Hierarchical model of the pre-injection memory access analysis hardware struc-
ture (obtained from [7]

The system to perform such a memory log is build as shown in Figure 3.7. This system
consists of the following blocks:

� RAM: The memory of the SuV.

� CPU: The CPU of the SuV.

� MFI: The modular fault injector.

� Cycle Counter: A counter which counts the clock cycles beginning after a SuV
reset.

� FIFO: This FIFO stores all memory accesses from the SuV CPU to their memory.

� Flow Controlling CPU (in this case the PowerPC): This CPU is used as the
connection between the verification engineer and the fault injection method.

This system allows for logging all memory accesses of an SuV and analyzes them to
find security critical memory cells. Therefore, every memory access, while a critical code
section is executed, has to be stored into a FIFO and analyzed. As seen in Figure 3.8 an
SuV only uses a small part of the whole memory while critical code is executed. If the
verification engineer wants to test the security of the critical code region it is enough to
attack exactly the memory cells which are used within these critical code regions. This
reduces the amount of required fault attacks enormously.

In Figure 3.9 it is also shown that with the generated information it is easily possible
to emulate different attack models, as well as knowing the exact time of a read or write
execution on a specific memory cell. From this we can emulate transient or permanent
faults. For transient fault the manipulation of the memory cell is only active until the
next write access to the memory cell.
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Figure 3.8: This figure shows the memory analysis problem (obtained from [7])
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Figure 3.9: In this figure it can be shown how a memory attack can be performed (obtained
from [7])

3.5 Post-Injection Fault Effect Analysis

The post-injection fault effect analysis (PIFEA) is a method about how the effects of fault
attacks can be analyzed directly on the FPGA. The aim behind this analysis is to give a
verification engineer a hint which fault injection scenarios have a security critical effect on
the system-under-verification (SuV). Therefore, it must be defined what effects are security
critical. This work is focused on smart card security, so we can define that a successful
fault attack has to manipulate the output of the device or manipulate the content of
the non-volatile-memory (NVM). With this method every successful fault attack can be
detected, but to get a better insight into about what happened after the fault was injected,
the PIFEA tool is used to check if the control flow was manipulated (for a more detailed
description see Chapter 6.4).

To solve these problems the hardware shown in Figure 3.10 was designed. As seen
in this figure the communication of the SuV to the environment, the control flow and
the memory content are connected to the PIFEA module. To control the PIFEA module
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several interfaces have been designed.

3.5.1 The Post-Injection Fault Effect Analysis (PIFEA) Block

The structure of the PIFEA module consists of five main components (see Figure 3.11).

� Memory: The memory stores the communication of the SuV to the environment,
the control flow and the memory content while the PIFEA module is activated.

� Golden Model Memory: Stores also the communication of the SuV to the envi-
ronment, the control flow and the memory content but only while the golden model
is running.

� Comparator: The comparator checks if there are differences between the golden
model run and the fault injection run.

� Secure State Definition Memory: In this memory secure states can be defined.
For example a secure state could be that the system resets or a fault detection process
is activated.

� Secure State Checker: This checker proves if the system is in a secure state after
a fault injection or not.

DUT

PIFEA

MFI

Memory

Core

IO

Address

PC

Output

Control Signals

Fault Injection

Control Flow 
CPU

Figure 3.10: Overview of the connection of the PIFEA to the environment (obtained from
[8]).

3.5.2 Fault Effect Analysis with Power Information

A help for the verification engineer is the power leakage information of a chip after a
fault attack. Therefore, a power-emulator is used. The functionality of this emulator is
shown in Figure 3.12. As seen in this figure the power information is calculated on the
FPGA using activity signals of active blocks which are weighted by a constant, which
represent the power consumption of the block. These constants are estimated while a
characterization process which is based on modelsim and physical measurements (for a
more detailed description see Chapter 6.6 and Chapter 6.7).
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Figure 3.11: The internal structure of the PIFEA module (obtained from [8]).
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Figure 3.13: Signature architecture augmentation methodology (obtained from [10]).

3.5.3 Fault Effect Analysis with Signatures

The last method presented in this thesis which helps the verification engineer to find
which fault injection campaign has lead to a security critical state of the system, is the
signatures approach shown in Chapter 6.7. This approach uses a golden model to store
information while the execution of the software the activation time of certain control
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Figure 3.14: Signature segmentation approach (obtained from [10]).
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Figure 3.15: Signature generation and comparison architecture (obtained from [10]).

signals. If a successful fault attack occurs this flow should be manipulated (see Figure
3.13). The other advantage of these signatures is that with the signature position the
verification engineer can see what blocks are manipulated (see Figure 3.14). If the system
is manipulated (see Figure 3.15) then automatically a system control unit on the FPGA
detects this manipulation and the verification engineer knows that this injection has an
effect on the system(for a more detailed description see Chapter 6.8).



Chapter 4

Evaluation and Case Study

In this chapter an overview about the experimental results is given.

4.1 Test Environment

In this section the platform for the emulation and simulation are presented. Additionally
the test target is shown.

� Emulation Platform: As FPGA platform the Xilinx ML507 [44] evaluation board
with a Virtex5 FPGA is used. The synthesis required for the generation of the netlist
for the FPGA is generated on an AMD X6 based PC with a 3.2 GHz processor and
8GB RAM.

� Simulation Platform: For the simulation results the Modelsim software which is
part of the ISE software package provided by Xilinx are used. The simulation is
running on an AMD X6 based PC with a 3.2 GHz processor and 8GB RAM.

� Test System: The test system which is used for showing the effect of the fault
emulation is the LEON3 Processor which is a SPARC V8 conformal processor of
Gaisler Research [45].

4.2 Fault Injection Method

The first tests show the performance of the fault injection method. For a detailed descrip-
tion of the test see Chapter 6.1. The configuration of the fault injection setup is shown in
Table 4.1. As seen the configuration is a single-bit saboteur approach with a bit-flip fault
model. The attack targets where the saboteurs are placed are: the integer pipeline, the
cache controller, the register file, the multiplier unit and the divider unit.

4.2.1 LEON3 Platform Setup

The configuration of the LEON3 processor is a single-core configuration with the default
platform settings for the ML507 evaluation board. The PowerPc is used to communicate
with the MFI over a GPIO interface.

23
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Table 4.1: Fault injection setup

Saboteur type Fault mode Fault target type Fault injection targets

Single-bit Bit-flip Control logic Integer pipeline

Cache controller

Register file

Multiplier unit

Divider unit

Table 4.2: Simulated fault injection performance

Saboteurs Inj. Patterns Time [sec] Patterns/sec.

8 256 274 0.93

16 256 282 0.91

24 256 286 0.90

32 256 299 0.86

Table 4.3: VHDL synthesis results

Saboteurs Look-up-tables Overhead[%] Slices Overhead[%]

0 14897 - 10423 -

8 14950 0.36% 10513 0.86%

32 15107 1.41% 10642 2.10%

96 15194 1.99% 10716 2.81%

170 15244 2.33% 10774 3.37%

326 15478 3.9% 11088 6.34%

4.2.2 Principle Simulation Results

To ensure that the fault injection method worked as intended a simulation using the
ModelSIM software package was used. The results of these injection campaigns are shown
in Table 4.2. As above, the pattern injection rate is nearly constant when the number of
saboteurs is smaller than 32. If this number increases, additional configuration overhead
of the MFI must be added which leads to a decreased performance.

4.2.3 VHDL Synthesis Results

After the simulation was run correctly the fault injection controller can be synthesized
and the results are shown in Table 4.3. As seen in this table the size of the saboteurs has
only a small overhead to the overall system, with 326 saboteurs and only an overhead of
3.9 percent is generated.



4. Evaluation and Case Study 25

Table 4.4: Emulated fault injection performance

Saboteurs Inj. Patterns Time [sec] Patterns/sec. Pattern Blocks/sec.

8 100M 46.76 2.17M 2.17M

32 100M 46.76 2.17M 2.17M

96 100M 114.48 873.5k 2.17M

170 100M 156,4 639.4k 2.17M

326 100M 282.16 354.4k 2.17M
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Figure 4.1: Speed of the fault injection depending on the number of saboteurs (obtained
from [5]).

4.2.4 Fault Injection Performance

One of the most important values to measure the quality of the fault injection approach is
the speed of how fast faults can be injected. As seen in Table 4.4 the speed is influenced
by the number of saboteurs which must be changed between the fault injection campaigns.
The number of saboteurs which can be manipulated in parallel are 32. The number of
saboteurs which have to be changed is called patterns. If the pattern size is less than 32
it is possible to write 2.17 million patterns per second (see Figure 4.1).

4.2.5 Case Study: Long-time Test for Light Attack Emulation on the
Memory of a Smart Card

To show that this fault injection method can be used for real products we tested this
method together with the companies Austria Card with their operating system develop-
ment for smart card systems. The detailed test is shown in Chapter 6.3. This test checks
if the MFI can handle fault injection campaigns with a long duration. For this test we
chose a light attack which is described in [46]. Faults are injected into the memory of
the emulated smart card and prove that the software security features can cope with this
faults.

As seen in Figure 4.2 not every region of the memory is security critical over the whole
run-time of a system. Using the knowledge of the verification engineer of Austria Card
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Figure 4.3: System modifications for the RAM fault emulations (obtained from [11]).

we chose memory cells for the attacks where security critical information is stored (e.g.
access rights). With the Equation 4.1 it is possible to calculate the required fault injection
campaigns to test the system against fault attacks. For this test we attack 1536 memory
addresses at 102 specific clock cycles with one attack patterns. As seen in Equation 4.2
this leads to a total of 156672 injection campaigns.

Ntests = Nmemoryaddresses ∗Nclkcycles ∗Nattackpatterns (4.1)

For this test we place the saboteur as seen in Figure 4.3 between the Core and the
Memory of the system.

Ntests = 1536 ∗ 102 ∗ 1 = 156672 (4.2)

Table 4.5 shows the results of this fault test. 121570 memory cells are never accessed
after the fault injection is performed. In 35102 cases the fault was injected into a memory
cell which was used after the attack. In 30373 of these cases the fault has no effect on
the operating system. Only 4729 fault injections had an effect to the smart card, but all
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Table 4.5: Results of the light attack emulation on the memory
N %

Total number of injections 156672 100%

Memory cell never accessed 121570 77,6%

Fault injected 35102 22,4%
No effect 30373 19,4%
Fault detected by smart card 4729 3,0%

of them were detected by the software security features. There was no successful attack
against the smart card operating system developed by Austria Card.

4.3 Automatic System Manipulation

The automatic system manipulation has the aim to reduce the effort for the verification
engineer. Therefore, the time consuming and error-prone process of the manually ma-
nipulation of the hardware description of the SuV is replaced by an automatic approach.
The modules which have to be added to the hardware description are: MFI, triggers and
saboteurs.

The test results of the automatic saboteur placement are shown in detail in chapter
6.2. The most important results are summarized in this section.

The fault injection which should be emulated to show that the automatic system
manipulation is working correctly is a method shown in [47] where it would be assumed
that if while a RSA authentication only one bit of a multiplication is disturbed, it is
possible to extract the private key. In Figure 4.5 it shows where the saboteurs should be
placed to emulate this attack.

To reproduce this fault attack saboteurs have to be placed at the hardware multiplier
of the SuV. This can be done easily by using the automatic system manipulation tool.
Figure 4.4 shows how the GUI looks like, which is used for the saboteur placement. For a
more detailed explanation of the results see Chapter 6.2

Table 4.6 shows the required time for the system manipulation. As seen in this table the
system manipulation is split into two parts: the design analysis and the design adaption.
The design analysis has to be performed once during the whole system manipulation step.
For the test system this analysis requires 70s. The system manipulation step requires for
each saboteur exactly 200ms. This means if 100 saboteurs are placed, 20s are required.
Both times together give the time required by the tool to manipulate the system.

Table 4.7 shows the synthesis results of the manipulated design. The manual and the
automatic approach requires the same amount of slices which shows that the automatic
approach has no disadvantages against the manual approach. It also shows that the
overhead is rising depending on the number of saboteurs placed into the design.

4.4 Pre-Injection System Analysis

The automatic pre-injection system analysis has the aim to reduce the required fault
injection campaigns to an absolute minimum. Therefore, the system has to be checked



4. Evaluation and Case Study 28

Saboteur 
placed at 
“rst“ Port

Modules, generates, 
ports and signals 

are presented  in a 
expandable tree

Figure 4.4: The saboteur placement GUI allows the verification engineer to specify the
location of the saboteurs.

Table 4.6: VHDL design analysis and saboteur placement time

VHDL design analysis

Parsing 48565ms

Linking 5373ms

Routing 16072ms

Sum 70010ms

VHDL design adaption time per saboteur

Saboteur placement 20ms

Signal routing 180ms

Sum 200ms

Table 4.7: Synthesis time and hardware requirements depending on the number of sabo-
teurs.

Nr. Saboteurs 0 10 10 50

Routing method n.a. manual auto. auto.

Synthesis Time[s]a 1536 1543 1543 1559

Synthesis Time OHa,b[%] - 0.46 0.46 1.5

Slices 14780 14950 14948 15172

Slices OHa[%] - 1.15 1.14 2.65

during a golden model run. The detailed experimental results of this approach are shown
in Chapter 6.5. The most important results are summarized in this section. Table 4.8
shows the detailed configuration of the Leon3 processor for this experiment. For this test
the saboteurs are placed between the core and the cache of the Leon3 processor.
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Figure 4.5: Evaluation of the fault injection flow test setup (adapted from [6])

Table 4.8: LEON3 Configuration

Operating Frequency [MHz] 40

Instruction Cache Sets 2

Instruction Cache Set Size [kB] 4

Data Cache Sets 1

Data Cache Set Size [kB] 4

Table 4.9: Fault injection setup

Test System Test System & Per- Overhead [%]

Injection Memory Analysis

Number Slices 11401 12137 6.5

Number LUT 20832 20954 0.6

Number BRAM’s 38 103 171

Total Memory(KB) 1332 3654 174

4.4.1 Hardware Overhead

As seen in Table 4.9 the hardware overhead of the pre-injection system analysis tool is
not very high. Only the number of BRAM to store the golden model information is high.
This is not a really big problem because the BRAM can be replaced by external memory.
Normally an emulation platform has enough memory placed on the board to allow the
storage several seconds of golden model run.

4.4.2 Proof of Concept

To prove that the pre-injection system analysis is working a short program was executed
and analyzed by the pre-injection system analysis concept. The program is showing in
Listing 4.1. Table 4.10 shows the memory access measured with the tool and the estimated
memory accesses. The estimated values are generated by analyzing the assembler code
of the test program. As seen the number of accesses is the same. Table 4.11 shows the



4. Evaluation and Case Study 30

Table 4.10: Memory accesses of the proof of concept example.

estimated value measured value

Read 23 23

Write 22 22

Total Memory Accesses 47 47

Table 4.11: Results for the proof of concept example.

Simulation [s] Emulation [s] Speed-up factor

per run 603 0.224 2692

25 Test Cases 15065 5.6 2690

10000 Test Cases est. 6030000 2260 2668

required time for simulating and emulating this proof of concept example.

i n t t e s t ( ){
v o l a t i l e i n t i =0,h=0;
f o r ( i =0; i<10 ; i++){

h+=i ;
}
r e turn h ;

}

Listing 4.1: Test Program for Proof of Concept

4.4.3 AES Example

This approach also works on a larger test program, therefore, an AES implementation
from [48] is used. Only the encryption of a 16 Byte plain text was attacked. Table
4.12 and Table 4.13 shows the results of this experiment. As seen in these tables the
speed-up between the simulation and the emulation approach is approximately 2600 and
the reduction of required fault injection scenarios generated by the pre-injection system
analysis tool is approximately 1000.

4.5 Post-Injection Fault Effect Analysis

The PIFEA module is used to analyze the effect of a fault injection to the system. For
detailed information see Chapter 6.4. In this section the most important results are
summarized. To prove the functionality of the PIFEA tool saboteurs are placed into the
memory interface of the Leon3 processor and a small program is executed on the Leon3
(see Listing 4.2). With this program it is possible to test if a fault injection can manipulate
the system in a way that the program flow, the output or the none volatile memory is
manipulated. If one of these parameters was disturbed the tool reports a security critical
behavior of the SuV which indicates the verification engineer that this fault injection is
possibly security critical. The hardware overhead of the PIFEA tool is shown in Table
4.14. As seen the biggest hardware overhead to the total system of the PIFEA tool is the
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Table 4.12: Data memory accesses during AES encryption

Read 250

Write 111

Total Memory Accesses 361

Rom Addresses 121

Ram Addresses 42

Total Addresses 163

Total Clk Cycles 2584

Test Cases (without our approach) 249873

Test Cases (with our approach) 249

Speed-up factor 1003

Table 4.13: Simulation and emulation time for the AES example

Simulation [s] Emulation [s] Speed-up factor

per run 480 0.5 960

249 Test Cases est. 119520 120 996

249873 Test Cases est. 119939040 119050 1007

Table 4.14: Required number of FPGA slices

Test System MFI PIFEA

Number Slices 7811 2291 238

Number LUT 14081 2043 358

Number BRAM’s 30 0 90

Total Memory(KB) 1080 0 3132

required memory. Due to the emulation platforms have a large amount of memory this
does not lead to a problem.

01 : f u n c t i o n t e s t begin
02 : v a r i a b l e i =0, r e s u l t =0, f l ow con t o l =0;
03 : v a r i a b l e array [ 10 ]=0 ;
04 : f o r i=1 to 10 do //manipulate i
05 : i f f l ow con t o l==0 then //manipulate f l ow con t o l
06 : r e s u l t+=array [ i ] ; //manipulate i
07 : e l s e
08 : . . . // unal lowed code
09 : end f o r
10 : output ( r e s u l t ) ; //manipulate r e s u l t
11 :end func t i on

Listing 4.2: Test Program for Proof of Concept



Chapter 5

Conclusion and Future Work

5.1 Conclusion

The enormous increase of complexity and usage of smart card systems leads to a high effort
to verify if these cards fulfill the security requirements. Therefore, several methods have
been developed over the last decades to prove these requirements. Because smart cards
are often used in high security environment, certification schemes like common criteria
are often utilized. Specialized protection profiles and security targets define rules that
smart cards have to fulfill in order to achieve common criteria certification. A typical
part of the evaluation process is the physical fault attack verification, where e.g. a laser
is used to manipulate the smart card chip. A security evaluations are very expensive, the
manufacturers are aware to remove as many design bugs as possible before the evaluation
in an external laboratory starts. Therefore, the system must be tested directly while the
system is being developed. For this issue fault emulation could be used, but the time for
testing a smart card against all possible fault attacks is enormous.

In this thesis a method is presented on how to accelerate the fault injection process by
improving the fault injection method, reducing the required test scenarios and improving
the analysis of the results of the fault injection. The improvement of the fault injection
method is done by developing a modular fault injection concept which allow for automatic
system manipulation which reduces the time consuming and error-prone process of manual
system manipulation. This step does not accelerate the verification process in such a way
that a whole system can be tested against fault attacks. Therefore, the number of required
fault injection scenarios has to be reduced. For the reduction of the scenarios the system
has to be analyzed while a golden model run. While this run is happening the the usage
of the memory is analyzed, and now it is possible to inject a fault into the memory, but
only when this area is active. With this improvement it is possible to reduce the required
scenarios from over some billions to a handleable number of some millions. To check the
results by a verification engineer manually the number of some million scenarios is also
too high. Therefore, a module was developed which analyze directly on the emulation
platform what effect a fault injection have to the system. This allows to highlight fault
injections which manipulate the system in a not allowed way.

32
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Figure 5.1: Long term perspective of the Power-Modes Projects, obtained from [12]

5.2 Future Work

5.2.1 Analyze High Order Fault Attacks

High order fault attacks are a combination of normal fault attacks and side-channel attacks.
A fault attack is used to manipulate a system in such a way that the system leaks side-
channel information (e.g. power and timing) in such a way that this information can be
used to extract security critical information. To cope with this problem the system has
to analyze the side channel information during the fault injection process. Therefore, a
method has to be developed to analyze leakage information automatically on the emulation
platform.

5.2.2 Connection to other Research Projects

This project is one part of a large cooperation between Infineon Technologies Austria AG,
Austria Card Plastikkarten und Ausweissysteme GmbH and RF-iT Solution which is split
into multiple parts. In Figure 5.1 an overview of the ongoing and previous projects is
shown.

The POWERHOUSE1 (POWER-aware, Hardware-supported Operating System and
Ubiquitous application Software development Environment) Project has been established
to focus on a power emulation during operating system development for smart card sys-
tems. This power emulation method was used in the Power-Modes Project to generate
power information together with the fault verification.

1POWER-aware, Hardware-supported Operating System and Ubiquitous application Software develop-
ment Environment. Project Partners are Infineon Technologies Austria AG, Austria Card Plastikkarten
und Ausweissysteme GmbH and TU Graz. The project is funded by the Austrian Federal Ministry for
Technology under the FIT-IT contract FFG 815193
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The META[:SEC:]2(Mobile Energy-efficient Trustworthy Authentication System with
Elliptic Curve based SECurity) Project brings the power emulation from the POWER-
HOUSE Project and fault injection method from the Power-Modes Project to a system
view. The target is to generate power and security information with the development of
reader card systems.

2Mobile Energy-efficient Trustworthy Authentication System with Elliptic Curve based SECurity.
Project Partners are Infineon Technologies Austria AG, RF-iT Solution and TU Graz. The project is
funded by the Austrian Federal Ministry for Technology under the FIT-IT contract FFG 829586



Chapter 6

Publications

This chapter contains all the relevant publications that were published whilst writing this
PhD thesis. Figure 6.1 shows an overview of all publications and how the publications can
be mapped to the work packages. The work packages of this thesis are the fault emulation
platform generation and the emulation platform itself. The platform can also be split into
several parts. The Pre-Injection System Analysis which handles the generation of infor-
mation about the system before the fault injection campaign are stated. This information
is used to reduce the required fault injection campaigns to a minimum. The next block is
the fault injector. This block uses the information generated at the Pre-Injection System
Analysis and manipulates the behavior of the system in such an manner that a special
fault effect can be produced. Finally the effect of the fault to the overall system has
to be analyzed. Therefore, the post-injection Fault Verification block is designed. This
block checks if an attack caused unindented behavior to the system-under-verification.
Therefore two different ways which work in parallel are developed. The first one is the
PIFEA module which detects control flow changes. The second is the signature based
approach which detected successful attacks to the system because the attack signatures
were manipulated.
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Abstract—The increasing level of integration and decreasing
size of circuit elements leads to greater probabilities of oper-
ational faults. More sensible electronic devices are also more
prone to external influences by energizing radiation. Additionally
not only natural causes of faults are a concern of today’s chip
designers. Especially smart cards are exposed to complex attacks
through which an adversary tries to extract knowledge from
a secured system by putting it into an undefined state. These
problems make it increasingly necessary to test a new design for
its fault robustness. Several previous publications propose the
usage of single bit injection platforms, but the limited impact of
these campaigns might not be the right choice to provide a wide
fault attack coverage.

This paper first introduces a new in-system fault injection
strategy for automatic test pattern injection. Secondly, an ap-
proach is presented that provides an abstraction of the in-
ternal fault injection structures to a more generic high level
view. Through this abstraction it is possible to support the
task separation of design and test-engineers and to enable the
emulation of physical attacks on circuit level. The controller’s
generalized interface provides the ability to use the developed
controller on different systems using the same bus system. The
high level of abstraction is combinable with the advantage of
high performance autonomous emulations on high end FPGA-
platforms.

Index Terms—fault emulation, fault injection controller, sabo-
teurs, multi-bit faults, automatic test pattern injection

I. INTRODUCTION

The continuing success of the semiconductor industry re-
garding the progress of structure downscaling has led to highly
integrated but also highly sensitive devices. External radiation
effects, thermal and electric degradation have become common
problems for the dependability of a system [1].

Through these effects transient or even permanent faults are
introduced which lead to a change of the system’s behavior.
These faults happen randomly in contrast to ones resulting
out of so-called fault attack scenarios. In this case an attacker
deliberately injects faults into a system to change the system
behavior. If no precautions are taken it is possible that such
an attack is successful [2].

Therefore in the last years intensive research has introduced
several different tools to simulate or emulate possible fault
scenarios during the design phase. Especially fault emulation

                                DUT
FU FU FU FU FU

GPIO ETH

FPGA-Platform Host PC

Attack
Database

Fault Injection 
Controller

SI

PowerPC

Fig. 1. Schematic view of the proposed fault injection system

proved to be a very effective way of testing a system under in-
fluence of a fault source. The usual platform to emulate such a
faulty system is an FPGA because of its flexibility. An example
of such an FPGA fault injection platform is shown in Figure 1.
There are different ways of injecting such a fault into a circuit.
One would be the use of partial reconfiguration features of the
used FPGA [3]. This design approach also heavily limits the
platform choice as there are only few candidates such as the
Virtex families from Xilinx [4]. Another way is to instrument
the given circuit either with manipulated logic elements or with
integrated controllable fault elements. In the latter case it can
be distinguished between saboteurs and mutants [5]. Saboteurs
are small circuit elements which do not affect system behavior
under normal conditions. If activated they directly inject faults
into the targeted submodule by disturbing the internal signals.
To disturb signals saboteurs have to placed between there
source and there sink. Mutants are modified submodules that
also do not affect system behavior under normal conditions
but if activated behave like a faulty version of the original. To
simulate or emulate fault attacks with mutants the submodule
have to be replaced by a mutated submodule.

To accomplish such a test setup, it is necessary to have
access to the hardware description or a standardized test
interface. Such a test interface could be test chains [6]. Another
important step in creating an effective fault injection platform
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is the selection of a proper fault model. For dependability
evaluations a single event upset (SEU) fault model is often
sufficient. In case of faults caused by radiation or degradation
it can be safely assumed that only a single random fault will
happen at a time [7]. Security evaluations on the contrary
consider intentional faults. Therefore it is possible that an
attacker introduces several faults at once to achieve the desired
effect of secret exposure.

Such a multi-bit fault model results in much more complex
fault relationships than SEU ones, as time and space of such
faults cannot be assumed of being random. This model has to
reflect the dependency of several SEUs among each other. In
case of dependability analyses this means that similar types
of sensitive sub-circuits will fail at the same time. In case of
security evaluations this dependency is defined by the attack
scheme of the adversary.

Finally, the controlling element itself has to be designed
very carefully. The scope reaches from a very simple imple-
mentation completely controlled by an external source like
a personal computer to very sophisticated integrated designs.
Simple implementations have the advantage of being very
adaptable to system changes, but they are also highly depen-
dent on the used communication interface. Therefore they can
be considered as slow. Such an implementation based on a
PCI interface is shown in [6]. Sophisticated solutions allow
for very high fault injection rates while being difficult to adapt
to system changes [8].

In the past years implementations of fault injection emula-
tion controllers are either simple and limited by slow interface
performance or they are highly complex and therefore not
portable from one design to another.

In this paper we propose a modular fault injector(MFI) that
combines the advantages of a simple portable design and fast
highly complex implementations. It also helps to provide a
common platform for fault injection campaigns on different
target architectures. Another point that is often neglected in
previous work in this field is the consideration of fault attacks.

Finally the consideration of multi-bit fault patterns instead
of simple SEUs can be seen as an important contribution of
this work. This is especially important for security evaluations.
It has also to be mentioned that this fully synthesizable
controller can also be used as an online-testing implementation
if desired.

The main goals of this work can be summarized as follows:

• Fully modular fault injector design
• Multi-bit fault injection to support fault attack emulation
• Online-testing support

This paper is structured as follows. Section II briefly shows
the state of the art on work related to emulated fault injec-
tion using integrated controllers and different reconfiguration
techniques. In Section III the design of the fault injection
controller is described. Section IV shows some experimental
results of this MFI by means of the LEON3 processor [9].
Finally, conclusions are drawn in Section V.

II. RELATED WORK

The introduction of fault emulation on FPGA platforms
has led to several publications especially concerned with the
emulation of SEUs in space applications. It has to be distin-
guished between approaches using direct circuit manipulation
like the solution proposed in this paper and techniques using
reconfiguration features of certain FPGAs.

The former possibility can again be divided into two sub-
categories. One using specialized hardware units to instrument
saboteurs or mutants as shown in [8].

The second variant is to use available processor cores for
fault injection automation similar to the solution provided by
[10]. This solution promises a high emulation performance
because of fast on-chip communication channels, but it is more
difficult to port to other platforms.

In the last years partial and complete runtime reconfig-
uration of FPGAs got a common technique to implement
fault injection in a flexible way. Reconfiguration is possible
on special FPGA series using an external communication
interface to directly feed different fault configurations into
the FPGA as shown in [11]–[13]. If this external interface
is too slow it is also possible to use existing processor
resources for the reconfiguration task as presented in [14],
[15]. While the reconfiguration approach is tempting (and has
been used by several research groups) it also limits the maxi-
mum reachable fault injection performance and the designer’s
platform selection. Similar to reconfiguration approaches is
the work presented in [16], in which the synthesized netlist is
augmented to preserve the original structure of the system.

In the field of security evaluations work has been done by
the authors of [17]. The presented work is done using a proven
fault injection platform presented in [18]. This investigation
confirms the strong need for multiple fault injection campaigns
in the design process. However in their experiments only a
small fault multiplicity (six) was used to prove this point.

III. MODULAR FAULT INJECTOR

The following reasons summarize the main drivers behind
the development of this modular fault injection controller
(MFI):

• Support for fault patterns to support multi-bit fault injec-
tion

• Multi-mode saboteur support
• Scalable interfaces to support automatic saboteur place-

ment
• Standardized communication interface
• Internal memory for automatic fault injection
To support an easy application of the fault injection system

to a new design under test, a standardized communication
interface is needed. The General Purpose Input/Output (GPIO)
communication interface enables the developer to use the pro-
posed controller in a wide selection of different architectures.
The GPIO interface consists of pins which can be configured
via software commands. These pins allow for controlling the
MFI without disturbing the device-under-test.
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Fig. 2. Schematic view of the fault injection controller

Extensive fault injection campaigns are only possible using
a large number of active saboteurs. It is not possible to route
such a large number manually, therefore internal interfaces
have to be scalable to enable automated injection processes.

An effective separation of the design and test-engineers
tasks can only be guaranteed through a generalized view of
the fault injection system. This is done using so called fault
patterns, high level representations of the underlying saboteur
distribution. These patterns are also necessary for efficient
physical fault attack emulation.

High speed automated operation is enabled through a flex-
ible internal memory system. In the design phase of the
proposed fault injector, future advances of the evaluation
platform have to be considered. This includes support of large
fault patterns and burst loading from the bus-system.

Different fault and attack scenarios call for different sabo-
teur types. To simplify the reconfiguration process, different
saboteur modes are provided by a single flexible saboteur
design.

A basic block diagram of the proposed fault injection system
is shown in Figure 1. The flow consists of the fault injection
controller which specifies the attack scenario, the saboteurs
which disturb signals and a PowerPC which is used as the
interface to the PC.

A. Fault Injection Controller

The fault injection controller is the main part of the MFI.
It controls the mode and the activation time of the saboteurs.
As seen in Figure 2 the fault injection controller consists of
two interfaces. The first one is the saboteur interface. This
interface is a bus where for each saboteur an own activate
signal is included. It also contains mode signals for controlling
the mode of the saboteurs. The second port is the General
Purpose Input/Output (GPIO) port. This interface is used to
control the fault injection controller. Via the GPIO port the
internal fault pattern memory is filled. This memory is used
to specify when which attack pattern shall be activated.

Thanks to the GPIO interface of the MFI it is possible to
automate fault injection campaigns. The easiest way to control
the MFI via GPIO commands is through the FPGA-internal
PowerPC. Through this solution a simple generic software

TABLE I
SABOTEUR OPERATION TYPES AND THEIR DESCRIPTION

Saboteur mode Fault type Description
Stuck-at-Zero Permanent Signal value of ’0’ until reload
Stuck-at-One Permanent Signal value of ’1’ until reload
Indetermination Permanent Undefined signal state until reload
Bridging fault Permanent No output propagation until reload
Negation of input Permanent Undefined signal state until reload
Bit-flip Transient Output inverts input for one cycle
Artificial delay Transient Input to output propagation delay

interface to the generic hardware interface is provided. This
has the advantage that a test-engineer does not need specific
knowledge about the fault injection system itself. Especially
in case of security evaluations the test-engineer will be mostly
concerned with a good mapping of a real attack scenario to
the saboteur matrix inside the system of interest. The GPIO
interface of the MFI can be easily changed to every other
interface which allows to write the internal memory of the
MFI. This flexibility makes the whole flow independent to the
used test environment.

Implementation: The fault injection controller is split
into five main parts.

• Saboteur interface: The saboteur interface was imple-
mented to allow for easy expandability to support a higher
number of saboteurs. The size of the saboteur interface
bus is equal to the number of saboteurs. The interface
also includes mode signals to control the mode of the
saboteurs.

• GPIO interface: The GPIO interface is the interface of the
MFI to the controlled processor. Via this port all attack
scenarios can be loaded into the MFI.

• Memory control: The memory control is used to place
the fault patterns into the internal fault pattern memory.
It also generates signals for the control logic if a special
command is sent via the GPIO port.

• Internal fault pattern memory: This memory stores the
fault patterns which define the attack scenario.

• Control logic: The control logic activates the saboteurs
depending on the information stored in the internal fault
pattern memory.

B. Saboteurs

To model a wide selection of possible faults we introduce
a configurable saboteur. According to [19] and [20] saboteurs
can be distinguished into several different types. Depending
on their location it can be differentiated between serial and
parallel saboteurs. Depending on the directionality the division
can be made between uni- and bidirectional ones. Finally
depending on their complexity it can be distinguished between
simple and complex saboteurs. The saboteur used in this work
can be classified as an unidirectional serial simple saboteur.
This means it only works in one direction, it is located directly
into the connection signal and affects only one port at the
input and output side. The supported fault models of such an
injection element are shown in Table I.
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Fig. 3. Block diagram of the proposed saboteur element

The proposed saboteur can be used to inject faults into
single bit lines or even complete buses. This allows the
emulation of bus attacks with e.g., unfocused lasers or in-
fluences by strong external energy sources. The first four
saboteur configuration modes are equivalent to direct circuit
modifications. Bit-flips could also be forced by short intensive
external pulses. Delay faults emulate circuit behavior in case
of operating voltage changes. A schematic block diagram and
fault effect visualization of the proposed single-bit saboteur is
shown in Figure 3.

Implementation: The complexity of the implementation
of the saboteurs depends on the features a saboteur shall
support. Therefore the required number of slices for one
saboteur mainly depends on their complexity. If the interface
of the saboteurs is not changed only the architecture of the
saboteur has to be modified to support more features. So if the
saboteurs are placed the test-engineer can adapt the saboteurs
by only changing one file. This makes the saboteur placement
concept very flexible.

C. Fault pattern support

To evaluate a device-under-test for its fault attack sensitivity
it is important to know the exact location of security relevant
silicon regions. At this locations saboteurs have to be placed by
a test-engineer. A fault pattern approach is used for an effective
mapping of saboteurs to their corresponding fault locations.
Of course, not every possible pattern combination has to
be transmitted into the MFI. Every used pattern represents
a very likely fault scheme determined in previous physical
experiments. The basic concept of fault pattern to physical
implementation mapping is shown in Figure 4.

Implementation: In this example only a random number
generator is used as pattern generator to show the function of
the fault MFI. The complexity of such a pattern generation
does not increase the required slices of the MFI, because the
patterns are not generated directly in the MFI.

D. Automatic Saboteurs

For a high amount of saboteurs an automatic saboteur place-
ment approach is required, because manual saboteur placement
is a very time consuming process. In [19], a theoretical method
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Fig. 4. Schematic view of an extracted fault pattern
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Fig. 5. Automatic routed saboteurs (adapted from [21])

is discussed how to place saboteurs automatically into a VHDL
design. Our approach works very similar to that approach.
In Figure 5, a schematic example of an automatic saboteur
placement is shown. The saboteurs placement tool is based
on the vMAGIC VHDL parser library [22]. VMagic is a
Java API which allow to parse and adapt VHDL code in an
automatic way. The flow can automatically add hundreds of
saboteurs [21]. Then the VHDL code is automatically adapted
with saboteurs and the fault injection controller. A method to
modify VHDL code automatically is shown in [23].

E. Attack Scenario

As seen in Figure 6 the attack flow is based on a golden
model run. The golden model runs from one reset to the next
reset of the DUT. All information of the golden model is stored
(e.g., the output, none volatile memory (NVM), timing, ...).

The next step is to reset the whole system. Then all attack
patterns are stored into the internal fault pattern memory via
the GPIO interface. Also the attack mode has to be transmitted
via GPIO. The mode is used to define the attack type of
the saboteurs (e.g., bit-flip). After a pre-determined time the
specified fault attack will be injected and then the saboteurs are
activated depending on the fault pattern. Now the faulty DUT
will run until it is reset or a pre-defined timeout is reached.
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This timeout is required because the device could run into an
infinite loop after the fault injection.

After the fault injection run is finished the saboteurs are
deactivated and the result is compared to the results from the
golden model run. If the results are not equal a fault analysis
process has to be launched. This procedure is continued until
all attack patterns are tested.

The fault pattern generator creates attack patterns for the
fault injection. In this example only a random number gener-
ator is used as pattern generator to show the function of the
fault MFI. But because the patterns are not generated directly
in the MFI the complexity of such a pattern generation does
not increase the required slices of the MFI.

IV. EXPERIMENTAL RESULTS

To prove the effectiveness of our approach we chose to im-
plement the proposed controller on a widely used platform,the
LEON3 SPARC V8 conformant processor of Gaisler Research
[9].

The test setup is implemented on a Virtex5 FPGA using the
Xilinx ML507 evaluation board. Simulation results are gained
using the Modelsim software which is part of the ISE software
package provided by Xilinx.

The fault injection setup is configured as shown in Table II.

A. LEON3 platform setup

The LEON3 is configured for a single-core configuration
using default platform settings for this particular evaluation
board (ML507). The MFI is configured via GPIO and can be
accessed using the PowerPC.

TABLE II
FAULT INJECTION SETUP

Saboteur type Fault mode Fault target type Fault injection targets

Single-bit Bit-flip Control logic Integer pipeline
Cache controller
Register file
Multiplier unit
Divider unit

TABLE III
SIMULATED FAULT INJECTION PERFORMANCE

Saboteurs Inj. Patterns Time [sec] Patterns/sec.

8 256 274 0.93

16 256 282 0.91

24 256 286 0.90

32 256 299 0.86

B. Saboteur configuration

The random approach of fault injection proposed in this
publication allows to find global dependencies between local
fault occurrences. Of course, with rising number of saboteurs
possible combinations rise until an analysis of the results is
not possible in a reasonable time frame. Therefore a small
number of saboteur locations has been chosen for these fault
injection experiments.

C. Principle simulation results

To ensure the correct behaviour of the fault injector and
its saboteur, the whole LEON3 system has been thoroughly
simulated using the ModelSIM software package. It has to
be mentioned that the simulation includes not only the fault
injection process but also start and calculation instructions.
Results of these injection campaigns are shown in Table III.

The pattern injection rate is constant for patterns smaller
than 32, because of the working principle of the MFI. For
larger patterns additional GPIO transfers are required. How-
ever with increasing pattern size the amount of concurrently
injected faults rises accordingly.

D. VHDL Synthesis Results

To estimate the necessary FPGA area requirements a syn-
thesis of a typical platform configuration has been performed.
The results of several synthesis runs using different saboteur
configurations is shown in Table IV.

It can be seen that the MFI and its saboteurs has a negligible
effect on the size of the resulting synthesized design. Basing
on this routed results, it can be expected that it should be
possible to implement a large amount of saboteurs on this
FPGA-platform.

E. Fault Injection Performance

In this subsection results of several fault injection campaigns
are presented to show that higher structural flexibility does not
come with disadvantages concerning emulation speed. It also
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TABLE IV
VHDL SYNTHESIS RESULTS

Saboteurs Look-up-tables Overhead[%] Slices Overhead[%]

0 14897 - 10423 -

8 14950 0.36% 10513 0.86%

32 15107 1.41% 10642 2.10%

96 15194 1.99% 10716 2.81%

170 15244 2.33% 10774 3.37%

326 15478 3.9% 11088 6.34%

TABLE V
EMULATED FAULT INJECTION PERFORMANCE

Saboteurs Inj. Patterns Time [sec] Patterns/sec. Pattern Blocks/sec.

8 100M 46.76 2.17M 2.17M

32 100M 46.76 2.17M 2.17M

96 100M 114.48 873.5k 2.17M

170 100M 156,4 639.4k 2.17M

326 100M 282.16 354.4k 2.17M
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Fig. 7. Speed of the fault injection depending on the number of saboteurs

needs to be mentioned that such a multi-bit injection campaign
leads to complex results in system behavior and therefore the
analysis modules will most likely be the slowest link in the
emulation chain. The results are summarized in Table V. It
can be seen that the number of saboteurs has an influence on
the number of patterns which can be injected per second. The
reason is that the GPIO interface only support the transmission
of 32 bits of the pattern simultaneously. If the size of the
pattern is increased the time for the pattern transmission is
increasing. The last column shows that the transmission of one
pattern is interdependent to the number of saboteurs. It is not
required to send for each attack the whole pattern. If only one
pattern block has to be changed only one GPIO transmission is
required. But not always only the maximum number of faults
is important because not all saboteurs are activated. The more
important numbers are the patterns injected per second. The
speed of the pattern injections per seconds is not independent
of the number of saboteurs. But the transmission of on fault
pattern is constant. This is presented in Figure 7.

Fault Injection Platform

Leon3FI Controller

Multiplier

RS232RS232

PowerPC

OP2[0:32]
OP1[0:32]
CLK

OUTS[0:32] S[0:63]

Fig. 8. Overview of the test environment.

F. Case Study: Attack on RSA Authentication

The MFI is used to show a case study of a fault attack
on RSA authentication [24]. The RSA authentication process
signs a message with a private key. To generate such an
signature the RSA algorithm uses multiplications. In [24] it has
been concluded that fault attacks on the multiplication unit can
be used to attack the RSA algorithm. For the described fault
attack the authors assume that only one bit of the multiplier
output switches. In this case study we show that our approach
can emulate exactly such fault attacks.

For this test we chose the LEON3 processor in single core
configuration. For the attack target the output signals and one
of the operand registers of the multiplier have been chosen.

An overview of the test environment is given in Figure 8.
Listing 1 shows pseudo code describing the fault injection
flow. The saboteur placement methodology is described in
[21]. The FPGA-internal PowerPC is running a Linux kernel
to allow for programming the fault injection flow in an com-
fortably way.The fault injection control software is running on
the PowerPC. The host PC evaluates the results of the fault
injection. During this attack the saboteurs are configured in
bit-flip mode.

run go lden mode l ( ) ;
s t o r e a l l i n f o r m a t i o n ( ) ;
f o r ( i =0 ; i<n p a t t e r n s ; i ++){

r e s e t d u t ( ) ;
l o a d p a t t e r n ( p a t t e r n [ i ] ) ;
run DUT ( p a t t e r n t i m e [ i ] ) ;
a c t i v a t e s a b o t e u r s ( ) ;
run DUT ( max time ) ;
d e a c t i v a t e s a b o t e u r s ( ) ;
c h e c k r e s u l t ( ) ;

}

Listing 1. Pseudo code of the fault injection flow

In Table VI and Figure 9 the results are shown. As seen
the MFI can emulate a fault attack on the multiplier interface.
Because the MFI supports a large amount of saboteurs it is
possible to place the saboteurs not only at the output. With this
it is possible to test also the effect of a fault injection to the
input of the multiplier. As assumed, attacks to the output of
the multiplier can be used to emulate attacks as shown in [24].
Attacks to the input of the multiplier mostly disturb more than
one output bit. But in [24] the authors assume for there attack
that only one bit of the multiplication has to be disturbed.
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Fig. 9. Influence of saboteurs on the multiplication unit. Bit-flips of the
output depending on the number of active saboteurs at the input/output.

TABLE VI
NUMBER OF FAULTS DETECTED DEPENDING ON THE ATTACK PATTERN

Attack Target OP1 OP1 OP1 OP1 Out

Number of Saboteurs 1 2 3 4 1

Nr. of Bit-flips

0 37 37 37 37 0

1 208 0 0 0 5000

2 275 365 129 59 0

3 477 428 532 224 0

4 676 624 478 646 0

5 899 836 862 704 0

6 942 862 762 852 0

7 714 686 787 817 0

8 369 529 580 604 0

9 226 337 432 487 0

10 105 170 221 319 0

11 40 82 99 167 0

12 20 22 56 58 0

13 9 13 13 24 0

G. Comparison to existent fault injector solutions

During the last years many high performance fault injection
emulation platforms have been published. While fault injection
speed is only one parameter to quantify the performance
of a fault injector solution, it is important to measure how
many faults can be injected in a reasonable time. This is
especially important for complex system-on-chip designs with
a high amount of interesting injection points. In [6] fault
injection campaigns using different benchmark configurations
have been compared to typical simulation solutions. To cover
all considered design approaches also reconfiguration tech-
niques are presented in [12]. This publication shows two
implementations, one using autonomous emulation (AE) and
one using partial reconfiguration (PR). The test object in this
case is the freely available CORDIC16 core.

It has to be mentioned that our fault injector solution profits
from a higher clock frequency and state-of-the-art FPGA
hardware. Another difference that has to be considered is that
because of the pattern approach the fault injection rate is not
constant. Therefore the total number of activated faults has

TABLE VII
FAULT INJECTION PERFORMANCE COMPARED TO PREVIOUS RESULTS

Approach Clock cycle Inj. Faults Time Inj. Speed Nor. Inj. Speed

[ns] [s] 1/[s] 1/[s]

[6] 50 100k 83 1205 603

[12] AE 16.8 129.75M 698 185888 276619

[12] PR 18.97 10k 1014 9.86 13

[14] DPR 10 - - 12987 32468

[14] PRR 10 - - 414.94 1037

This work 25 100M 46.76 2.17M 2.17M

been calculated, based on the number of activated faults per
turn. For the evaluation the worst case is assumed, that only
one fault is injected per pattern. If the simultaneous injected
faults are increased the number of faults per seconds will be
increased (one turn consists of all possible bit combinations
of the selected fault pattern width). The results of these
investigations are compared to our result in Table VII. Because
of the different test systems the values have to be normalized.
The last column shows the fault injection speed normalized to
a clock cycle of 25 ns.

The comparison shows that the in-system solution does not
suffer from additional performance penalties. Strong spacial
containment of possible fault locations leads to very high
injection results if combined with large fault injection patterns.

It can also be concluded that autonomous emulation pro-
vides injection speed advantages compared to partial reconfig-
uration techniques. The reconfiguration approach suffers not
only from limiting communication interfaces but also from
long delays caused by the reconfiguration process. This also
does not include the time needed to generate reconfigurable
sub-blocks. These problems are targeted by the work presented
in [14]. In this publication partial reconfiguration is compared
to direct reconfiguration using an FPGA internal port to its
configuration memory. While reconfiguration speed is greatly
improved, it is still slower than autonomous emulation solu-
tions like the one proposed in this paper.

V. CONCLUSION

This paper presents a highly modularized controller solution
for portable fault injection systems. It has been shown that
these fault injection campaigns can be executed very efficiently
through a generalized interface using a high level abstraction
of physical fault sources. The design is scalable to allow
both, fully automated campaigns with a larger fault pattern
memory or more user controlled campaigns using a small
silicon footprint. The performance is comparable to existing
platforms using circuit manipulation and significantly faster
than ones using partial and complete FPGA reconfiguration.

This is the first step towards a complete fault injection
platform for dependability and security evaluations. Its flexible
design will allow the test-engineer to shift the focus from
complex testing architectures to more complex fault models.
This should finally allow to not only model simple SEUs but
also complex fault attack scenarios. Through the additional
abstraction level a better separation of the test and design
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engineer’s tasks is provided. The gained knowledge of these
experiments will be used to get a better understanding of inner-
chip fault mechanics. Such full scale investigations need fully
automated saboteur injection techniques which are currently
under development.

The consideration of such attacks will be necessary to
design efficient and secure smart card systems. This is also
valid for highly integrated systems or systems under high
environmental stress.
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Abstract—During recent years the dependability and security
requirements of system-on-chip (SoC) designs have increased
tremendously. Both, dependability and security, domains are
concerned with operational faults of a random or intentional
nature. In former case random faults e.g. caused by radiation or
degradation effects could lead to execution errors with possible
dramatic results. The security domain is more concerned with
intentional faults injected by an adversary during a physical
attack to drive the system into an unintended state. The resistance
of such a design against faults can be emulated during early
design phases using fault injection methods. For these methods
the design-under-test is augmented with additional circuitry
to emulate faults at predestined locations. One method uses
saboteurs, elements that are transparent during normal operation
and faulty if activated, are placed into the target system. If
this placement process includes a high number of saboteurs, the
hardware description manipulation could be a challenge for the
design engineer.

Therefore this paper presents an automatic placement method-
ology for fault injection evaluations using saboteur techniques.
The automatized process allows for the efficient placement of
large amounts of saboteurs. This enables the designer to evaluate
a high number of different dependability and fault attack sce-
narios during early design phases using FPGA-based functional
emulation. Selected case studies show how this approach can be
applied to a common general purpose architecture in an efficient
way.

I. INTRODUCTION

Dependability and security requirements of system-on-chip
(SoC) have increased over the last years. Currently most
of these requirements are either ensured by tests after the
first samples of a new product are available or by lengthy
and computational intensive simulation runs. To improve a
designer’s ability to detect possible flaws and weaknesses in a
target design a wide variety of hardware-accelerated emulation
techniques has been introduced. These techniques allow to
functionally test a given hardware description on a FPGA-
based platform. Detailed evaluations of dependability and
security features rely on a large amount of tested fault scenar-
ios. Designer of applications in security critical environments
have to consider the possibility of fault attacks, the deliberate
introduction of operational faults by an adversary. Similar to
the security domain, also in the dependability domain systems
have to be tested for their fault resistance to ensure correct
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Fig. 1. Fault injection method based on the novel automatic saboteur
placement method

behavior in case of faults. Depending on the application field
fault could lead to life threating errors or loss of expensive
equipment. Contrary to faults caused by an attack scenario in
this case these are of a random nature.

A good overview of possible attack scenarios in the security
domain is given by [1] and [2]. Not only the type of an attack is
important, also which area of a system is manipulated. Another
critical characteristic of such an attack is of importance, the
attack timing. This results out of the fact that with increasing
complexity of SoCs the number of possible parallel fault
attacks is increasing.

An overview of the most common faults tested for in
dependability systems are described in [3].

In this paper an automatized fault injection emulation
method is presented which can be used for dependability and
security evaluations. This approach is based on an automatic
saboteur placement method (see Figure 1). Through this ap-
proach the following disadvantages of hardware accelerated
fault emulation approaches are targeted:

• Complex fault scenarios result in high VHDL code adap-
tion times

• In case of manual adaption the process can prove to be
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error prone
• In case of manual adaption only a small number of

saboteurs can be added

The advantage of high emulation speeds is not affected. The
speed-up of the saboteur placement allows for the addition
of saboteurs at an early design phase, because the effort of
the saboteur placement is significantly reduced. The saboteur
fault injection approach allows for evaluations at very early
design stages. Correction of design weaknesses at an early
phase results in significantly reduced redesihn costs [4].

An overview of the related work is given in Section II. In
Section III an overview of the used fault injection method
and the main ideas behind this approach are shown. Detailed
information about the structure of the saboteur placement
method is given in Section IV. Section V shows all required
steps and hints to reproduce this flow. And finally, Section VI
shows the results of an application of this saboteur placement
flow to a common general-purpose architecture.

II. RELATED WORK

Fault injection methods can be split into three main groups:
simulation, physical and emulation groups.

A. Fault Injection Simulation

The most common method used for fault injection is the
simulation approach. Compared to the emulation approach
design simulation requires an extensive amount of time as
shown [5]. The advantage of this method is its flexibility and
the lacking need of hardware description adaption. An early
example of this approach is shown in [6]. This paper presents
a flow using simulation commands to run a full fault injection
simulation.

Also for simulation approaches hardware-description adap-
tion can yield its advantages. One of the first fault injection
methods using such an approach was the MEFISTO tool
[7], [8]. This tool is used to place saboteurs which can be
controlled by the fault injection process computed by the sim-
ulating computer. As similar approach has been introduced in
[9]. Rothbart et al. presented fault injection methods for system
level description in [10]. Their approach adds fault injection
modules between the described components to simulate fault
attacks. In [11] cdifferent fault injection simulation approaches
are described.

B. Fault Injection Physical Method

The second method group includes techniques to physically
inject faults into a given system. This requires exact knowledge
of the device and depending on the performed tests specialized
equipment may be required [12]. Another big disadvantage of
this method is that is requires a physical implementation of the
target device. Therefore if the test results show that the device
does not fulfill the given security or dependability standards,
a redesign may be required. At such a late design stage the
correction of design weaknesses result in high redesign costs.

C. Fault Injection Emulation

To cope with the problems of long simulation time and
expensive physical testing hardware accelerated emulation
techniques are preferred. One method of FPGA-based fault
emulation is to use partial reconfiguration abilities of modern
SRAM FPGAs. Currently this technique is slow, but very
flexible. It allows the test engineer to run specific tests without
high time overhead. Examples for this method can be found in
many publications like [13]–[16]. A good overview over the
partial reconfiguration concept itself is given in [15].

In [17] an approach is described where a so called Fault
Injection Hardware Unit (FIHU) is placed into a FPGA design.
This unit is used for controlling the partial reconfiguration pro-
cess of the Virtex II FPGA. The unit requires only very little
FPGA resources and its only disadvantage is that this approach
is slower than a fault injection process using saboteurs [15].

Another approach is based on the adaption of the design
hardware description. This is realized using so called saboteur
or mutant blocks [18]. Saboteurs are modules which are placed
into signal lines to disturb these signals in a defined way at
predetermined times. The injectable faults can be divided into
transient and permanent faults. These fault types can again be
split into subtypes like stuck-at errors, time delayed, bit flips
and many others.

The fault injection process using saboteurs represents a very
fast emulation method. The main disadvantage is its reduced
flexibility compared to simulation methods because of the
required augmentation of the description and re-synthesis of
the SoC design.

In [18] also the possibility of placing saboteurs automati-
cally is discussed in theory without a practical design applica-
tion. Leveugle et al. presented a method how to automatically
place mutants into a VHDL design [19]. The difference
between saboteur and mutant approaches is the different level
of flexibility. Mutants are pre-manipulated modules that work
normally if not activated but behave like a defective version of
the module used for manipulation if activated. In [20] a VHDL
analyzer tool called HSECT is used to find attack relevant
regions for fault injection simulation. The authors use this
information only for a simulation based fault injection method.
In [21] a method is shown how to route automatically signals
out of a VHDL design for power emulation purposes, but this
approach is not reversible.

III. FAULT INJECTION METHOD

First a motivation for the automatic fault injection method is
given to show the need for a automatic fault injection process.
In several publications different methods are shown how a
system can be specifically influenced using fault injection. The
following two examples show how an automatic fault injection
method can alleviate fault injection evaluations.

Examples of use on AES Fault Attack: In [22] an
attack on the AES cryptographical algorithm is shown. For
this attack a ultra violet light source is used to clear parts of
the SBOX of the microcontroller-based AES implementation.
After the attack a readout of the SBOX results into a byte of
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which all bits are set to one. To check if an implementation is
resistant to such an attack the designer has to evaluate how the
system would react to such a manipulation. Using the approach
presented in this publication a high amount of saboteurs can
be efficiently placed into the targeted system during design
phase. These saboteurs allow for fast emulation of possible
signal manipulations to evaluate how the design reacts to
different fault attacks. In this case only the data interface to
the EEPROM has to be disturbed for fault emulation.

Examples of use on Network-on-Chip Switches:
Network-on-chips (NOC) have to be tested for their resistance
to single-event-upsets (SEU) and crosstalk effects. In [23]
a method is shown how these dependability tests can be
performed by showing that a SEU emulating fault injection
can be easily implemented by adding only a controllable fault
injection register. This functionality can also be introduced
by our chosen saboteur approach. The main advantage of our
approach compared to this register-based one is that we can
place saboteurs automatically into the design keeping a high
level of test flexibility.

After this motivation a short overview of the whole fault
injection method is given to facilitate the understanding of
the automatic saboteur placement flow. Figure 1 presents
the structure of the fault injection methodology. This fault
injection technique is based on the automatic adaption of
the VHDL hardware description of a design-under-test. The
required adaptations of the description consist of the routing
of signals to the top-level module, the placement of saboteurs
and the placement of the fault injection controller.

Figure 2 depicts the fault emulation method. This method-
ology can be divided into five blocks:

• design input: The input of this fault injection emulation
method is a VHDL description of a system-on-chip.

• analysis: The analysis step parses the VHDL design and
generates a tree representation containing the structure of
the design.

• VHDL design adaption: The adaption of the VHDL
design augments the VHDL code with saboteurs and

a fault injection controller. The last step of the code
augmentation contains the synthesis of the fault injection
emulator.

• fault pattern generation: The fault pattern generator
uses the information generated during the previous steps
to generate attack scenarios.

• fault injection emulation: During the fault injection
emulation the design is evaluated using pre-defined fault
patterns.

A. Saboteurs

Saboteurs are modules to manipulate signal states in a
defined manner. According to [24] several different fault
effects implemented by such saboteurs can be described:

• single event upset (SEU)
• stuck-at 0
• stuck-at 1
• open-line
• delay
• indetermination
• stuck-open

A simple saboteur structure is preferred to keep circuit over-
head low and to not unnecessarily slow down synthesis. More
complex fault scenarios can be achieved by the combination of
different simple fault models. Figure 3 shows a more detailed
view the saboteur functionality.

B. Fault Injection Controller

For the efficient control of the placed saboteurs a fault injec-
tion controller is required. This controller uses fault patterns
to define time and location of the selected fault scenario. See
[25] for more details.A fault pattern has at least to contain the
following information:

• Fault type (stuck-at, bit-flip, . . . )
• Saboteur selection
• Fault timing
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C. Fault Patterns

A fault pattern is a high-level representation of a specific
fault scenario. While some scenarios only affect a limited local
area like a fault using a fine laser, other affect large parts of
the whole system. In latter case a large amount of saboteurs
would have to be spread into the design. It is only necessary to
place saboteurs on security-relevant or dependability-relevant
signals. As seen in Equation 1 the number of different test
scenarios depends on the number of saboteurs. But a blind
increase of the number of saboteurs does not always directly
increase the quality of the security or dependability evaluation.

Npatterns = (2Nsaboteurs − 1) (1)

To maximize the test coverage against faults it is required to
manipulate all security- and dependability-relevant signals. To
route these signals manually is a very time-consuming and
error-prone process. The automatic saboteur routing process
allows to add a large number of saboteurs in a efficient manner.

IV. NOVEL AUTOMATIC SABOTEUR PLACEMENT METHOD

The automatic fault injection flow can be split into three
main parts (see Figure 4). The first part consists of a VHDL
parsing step. This step is required to get an overview of the
design structure. The second (signal selection) step requires
user interaction because the user has to define which signals
are relevant. Finally the tool flow is used to automatically
adapt the VHDL hardware description. During this adaptation
process saboteurs and a fault injection controller is added
to the system. This automatized description adaption process
results into a fully synthesizable hardware description.

A. Parsing/Analysis of the VHDL Code

Figure 5 gives an overview over the parsing and analysis
methodology. This method is used to generate a tree which
represents the structure of the hardware description. The
generated representation of the SoC design is required because
a VHDL design can be split into multiple modules partially
divided into different files. The advantage of this general
representation is that all files have to be parsed only once
to detect inter-module dependencies. The whole methodology
was implemented for VHDL designs but it should be easily
portable to Verilog or any other hardware description language.
This process is split into three steps:

Top Level File VHDL LIB1 VHDL LIB2
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Top Level File
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SABOTEUR 
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Fig. 4. Saboteur placement flow

XML file after parsing

XML file after linking XML file after tree building

A
E

CD

CI

A

E
A

CI
E

A

CI

E

CI

E

A
CI

CD

CI

A

E
A

CI
E

A

CI

E

CI

E

CD

CD

CD

CD

M1:
A,E,CI,CD

M2:
A,E,CI,CD

M4:
A,E,CI,CD

M5:
A,E,CI,CD

M3:
A,E,CI,CD

A CI

E CD

Architecture

Entity

Component Instantion

Component Declaration

Design Input Parse VHDL

Link Modules  Build Tree 

Fig. 5. Method for parsing, analysis and tree generation of the VHDL code

• parsing the VHDL files
• linking of detected modules
• building of a tree representation

B. Saboteur Placement

The saboteur placement process requires interaction by the
design engineer. At the moment no automatic process for
localizing security relevant regions has been implemented.
Another alternative would be to place saboteur modules into
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every available signal. Caused by the tremendously increased
management effort this approach would be inefficient because
of the enormous number of signals in even small designs. But
it would be possible to place saboteurs to every signal of a
critical module in the design (e.g. AES block). To place the
saboteurs the test engineer uses a GUI, which represents the
design as an expandable tree where the modules, its ports and
all signals are listed. This allows the test engineer to locate the
required signals quickly. Signal selection criteria could include
the following:

• Dependability relevance of the signal
• Security relevance of the signal
• Influence of the signal on the power profile (allow differ-

ential power analysis (DPA) [26])
• Clock signals
• Critical signals of fault detection blocks
• Critical signals of fault recovery blocks
• Memory interfaces
• Register ports
• Data and address buses

C. Saboteur Routing

The saboteur routing process adapts the VHDL code us-
ing the saboteurs and the connection to the fault injection
controller. Figure 6 shows the flow of the routing method.
This process requires to modify the whole design, therefore
the control signals of the saboteurs have to be routed to the
top level module. This method adds the control signals of all
included saboteurs to the interface of all parent modules. These
signals are connected directly to the fault injection controller
which is automatically placed at the top level module. The only
adaption to the code which can not implemented automatically
is the connection of the controller to the PC. The reason why
the interface to the PC cannot be implemented automatically
is because this flow should be independent of the FPGA and
the environment. When the interface to the PC is implemented

once it can be added to the flow. After adding the interface
to the tool the fault injection controller can be connected
automatically.

V. IMPLEMENTATION

This section describes the implementation of the saboteur
placement concept. The tool is implemented using Java to
ensure platform independence.

A. Parsing/ Analysis of the VHDL Code

The parsing and analysis task is one of the most important
steps of the whole saboteur placement process, because every
one of the following steps relies on the generated tree. The
process itself is split into three tasks. First the parsing of the
VHDL files. The second task consists of linking the generated
information, followed by the tree building task.

1) Parsing of the VHDL Files: As described earlier during
the parsing step the VHDL design is analyzed to extract inter-
module dependencies. This step is based on the vMAGIC
VHDL parser generator [27]. The parser generates a Java
class-tree of the VHDL file. To get all required information
about the hardware description only this representation has to
be analyzed. The vMAGIC tool flow only supports the parsing
of one file. Therefore some intermediate steps are required to
retrieve a representation of the whole VHDL project. At first
all information has to be extracted from the VHDL hardware
description.

• library declarations
• ”use” clauses
• entities
• component declarations
• architectures
• component instantiations
• signals
• ports
• generic maps
• ”generate” statements
• constants
The information of all VHDL files is stored into an XML

file. This file contains all key facts of the VHDL files plus
additional information such as file name, library name, path
and so on.

This intermediate step is required to ensure system inde-
pendency of the saboteur placement process. The parsing of
the VHDL files is the most time-consuming process of the
whole saboteur placement flow. Only using this intermediate
step large VHDL designs are handleable. The holding of all
VHDL files opened would result in a significantly increased
memory consumption of the program. This approach reduces
the number of simultaneously opened files to one. Also
runtime is reduced by this approach because the parsing of
the required information from the XML file is faster than the
parsing of the VHDL file. An additional advantage is that for
the following steps only this XML file is required and only at
the very last step, the VHDL files are required again.
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2) Linking: In this context linking means to connect every
architecture with its entity and every entity with its declaration.
This is required because this information maybe split up into
multiple files. This problem can be solved through the analysis
of use clauses.

The linking concept is based on a recursive search algo-
rithm. During the parsing process every architecture is linked
to its entity. The entity is also linked to every component decla-
ration. The component declaration is linked to the component
instantiation.

3) Tree Building: The last step of the parsing/analysis flow
is the building of a hierarchical representation of the complete
SoC design. Starting at the top module all previously defined
links are used to build a tree. VHDL supports ”generate”
statements which are used to make a design easy to configure.
The configure parameters are often stored into a configuration
file or can also be derived from generic maps. To generate
the correct tree these generic statements have to be resolved.
Therefore all generic maps, all constants and signal attributes
have to be resolved. This requires a recursive solving function
of constants. This implies that this step has to be done for
every configuration of the design.

B. Saboteur Placement

The saboteur placement process is based on the interaction
of a test engineer. It requires too much space on the FPGA to
place a saboteur everywhere. For an easy placement of the
saboteurs a graphical user interface (GUI) is implemented.
This GUI presents the whole design using a tree structure.
The test engineer only has to select the signal or port which
have to be disturbed and specifies a name of this saboteur.
All information is stored in the XML file. This allows for
the repetition of this step as often as required to place all
saboteurs. After all saboteurs are placed they have to be routed
to the fault injection controller.

C. Saboteur Routing

During the saboteur routing step saboteurs are placed into
the VHDL code structure and the control signals are routed
to the top module. The interface of a saboteur mainly consists
of the input port to which the target signal is connected. The
second port is the output of the saboteur. This port represents
the disturbed signal. The remaining ports of the saboteur are
control signals. These signals are used to control the function
of the saboteur. To route the signals to the top level module
the vMAGIC tool is used.

To add this saboteur to the specified ports the following
code blocks are required. This code sections are defined using
a template file which can be easily adapted to other saboteurs.
If a saboteur has been changed only the template file has to
be modified.

l i b r a r y t u g r a z ;
use t u g r a z . f i l e o n 3 p a c k a g e . a l l ;

Listing 1. Required library and use clauses definition

An overview of the required adaptation to the VHDL files is
given in the following text. The first one is the library and
package definition (see Listing 1).

The control signals of the saboteurs must be routed to the
top level module. Therefore the easiest solution is to add ports
to all parent modules. An example is given in Listing 2.
FI CLK : i n s t d u l o g i c : = ’ 0 ’ ;
FI SIGNAL SELECT MODE :

i n s t d l o g i c v e c t o r (2 downto 0 ) : = ( o t h e r s => ’ 0 ’ ) ;
s a b o t e u r a c t i v a t e F I S I G N A L : i n s t d u l o g i c : = ’ 0 ’ ;

Listing 2. Control signals which have to be added to the modules

The next step is to add a signal to the architecture. This
signal must have the same type and size like the signal which
should be disturbed. If the saboteur is added into a signal
line the original signal is used as input and the new generated
signal is used as output of the saboteur. An example is given
in Listing 3.
s i g n a l a t t a c k t a r g e t F I S I G N A L : s t d u l o g i c ;

Listing 3. Signal which has to be added to the architecture

The last step is to add the saboteur itself to the architecture.
An example is given in Listing 4.
sab003 : f i s a b o t e u r 1 s y n w a i t

p o r t map (
FI CLK ,
a t t a c k t a r g e t ,
a t t a ck t a rge t F I S IGNAL ,
FI SIGNAL SELECT MODE ,
s a b o t e u r a c t i v a t e F I S I G N A L

) ;

Listing 4. Saboteur placement code

VI. EXPERIMENTAL RESULTS

A. Test Environment

For the evaluation a ML507 board containing a Virtex5
XC5VFX70 FPGA is used. This FPGA already includes a
PowerPC that is used for the communication to the host PC.

As a fault injection target we took the open source Leon3
SPARC V8 implementation from Aeroflex Gaisler [28]. There-
fore results can be easily reproduced. The second reason
was that the Leon3 can be configured easily by using a
configuration interface. This allows us to test the saboteur
placement concept using many different configurations. For
our test we use a Leon3 in a single-core configuration. The
test system for synthesis was an AMD X6 based PC with
3.2 GHz and 8GB RAM. The implementation of the saboteur
placement tool is designed single threaded. This implies that
only one core is used for the test.

B. Saboteur Placement

The test scenario was to add saboteurs using the automatic
fault injection tool. The saboteurs are placed into the mul-
tiplier. The multiplier was used because in [29] a method
is shown that assume that only one bit of the multiplication
output of an RSA authentication must be attacked to extract
the private key. Five files have to be adapted to place the
saboteurs. For the placement process using the automatic
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Fig. 7. The saboteur placement GUI allows the test engineer to specify the
location of the saboteurs.

TABLE I
VHDL DESIGN ANALYSIS AND SABOTEUR PLACEMENT TIME

VHDL design analysis
Parsing 48565ms
Linking 5373ms
Routing 16072ms

Sum 70010ms

VHDL design adaption time per saboteur
Saboteur placement 20ms

Signal routing 180ms

Sum 200ms

saboteur placement tool the most time consuming step was to
specify where the saboteurs shall be placed. But the very error-
prone process of placing the saboteur should be eliminated.
Figure 7 shows the graphic user interface (GUI) used to add
the saboteurs to the VHDL design.

The normalized results are shown in Table I. It can be seen
that for small numbers of saboteurs the analysis time is much
higher than the pure placement time for the saboteur. But
this analysis step must only be done once because all parsing
information are stored in an XML file. This step must only be
repeated when the architecture of the SoC design have been
changed. The analysis processes can be run in parallel, because
the VHDL files are independent to each other. This parsing
step can be accelerated at least about 50% by optimization of
the saboteur placement tool (multi threading). The selection of
the signal which should be disturbed by the test engineer is the
largest proportion of time required for the saboteur placement
approach. This time is not filled into the table because it is
extremely depending on the design and the knowledge of the
test engineer. But if the designer know already where to place
the saboteurs he can easily find the signal in the expendable
tree.

C. Synthesis Time and Hardware Overhead

This section shows the differences in synthesis time of a
system augmented with saboteurs compared to an unchanged

Fault Injection Platform

Leon3
FI Controller

Multiplier

RS232RS232

PowerPC

OP2[0:32]

OP1[0:32]

CLK

OUTS[0:32] S[0:63]

S single-bit type saboteur

S

S[0:32]

S[0:32] multi-bit type saboteur

Fig. 8. Evaluation of the fault injection flow test setup (adapted from [25])

system. For an exemplary VHDL design a LEON3 processor
in single-core configuration has been chosen. As seen in
Table II the synthesis without saboteurs takes about 25min
using our chosen evaluation system. Augmented with 50
saboteurs synthesis time is prolonged by only 30sec. The
number of slices required for the FPGA implementation is
increased only by three percent using 50 saboteurs.

TABLE II
SYNTHESIS TIME AND HARDWARE REQUIREMENTS DEPENDING ON THE

NUMBER OF SABOTEURS.

Nr. Saboteurs 0 10 10 50

Routing method n.a. manual auto. auto.

Synthesis Time[s]a 1536 1543 1543 1559

Synthesis Time OHa,b[%] - 0.46 0.46 1.5

Slices 14780 14950 14948 15172

Slices OHa[%] - 1.15 1.14 2.65

aExecuted on a 3.2 GHz AMD X6 system
bOverhead

D. Evaluation of the Fault Injection Flow

The fault injection flow is used to show that the auto-
matically routed saboteurs are working effectively. For this
test we added saboteurs to a LEON3 processor in single-core
configuration. The saboteurs are placed at the multiplier(see
Figure 8). The multiplier is used because in [29] an attack
on a RSA authentication process is shown by attacking the
multiplication. To control the whole process we connected
the fault injection controller to the PowerPC of the Virtex5-
FXT FPGA-device. This PowerPC processor is used to run a
Linux operating system that automatically connects to a host
computer using an Ethernet interface. This host computer is
used to control the fault injection flow. The LEON3 processor
is used to run a program calculating multiplications of two
random numbers every 100 us. The operands and result are
then sent to the host computer using a RS232 interface. After
activation of the saboteurs the multiplication was disturbed.

VII. CONCLUSION

In this paper an automatic fault injection emulation method
based on automatic saboteur placement is presented. The
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automatized approach allows for the efficient augmentation
of complex hardware designs in reasonable amounts of time.
The shorter investigation cycles enable a system designer to
implement test scenarios for more complex dependability and
security evaluations at early design stages. The augmented
hardware description can then used for efficient FPGA-based
hardware accelerated emulation of the target design.

Its feasibility and efficiency is shown using case studies
from the dependability and security domains. We showed how
our selected approach can be applied to a common general-
purpose architecture and that only a slight time overhead is
introduced to the synthesis and evaluation flow.

Our future work will include the automation of the signal
extraction process to support the design engineer with the
selection of critical signals.
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a b s t r a c t

The increasing level of integration and decreasing size of circuit elements leads to higher probabilities of
operational faults. More vulnerable electronic devices are also more prone to external influence from
energizing radiation. Additionally, the concerns of chip designers include not only the natural causes
of faults but also the misbehavior of chips due to ‘‘planned’’ attacks, as, for example, in critical security
applications. In particular, smart cards are exposed to complex attacks through which an adversary
attempts to extract knowledge from secured systems by provoking undefined states. These problems
increase the need to test new designs for their fault robustness.

This paper presents a case study on fault injection strategies. An in-system fault injection strategy for
automatic test pattern injection by enabling the emulation of fault effects on the circuit level is intro-
duced. Second, an approach is presented that provides an abstraction of the internal fault injection struc-
tures to a more generic high-level view. Through this abstraction, it is possible to help the operating
system designer test a product against different fault effects without knowing how to produce this effect
by a fault attack. Therefore, we implemented a modular fault injection controller that is located along
with the system under test on the emulator platform.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The continuing success of the semiconductor industry with re-
gard to downscaling structures has led to highly integrated but
also highly sensitive devices. External radiation effects and thermal
and electric degradation have become common problems for the
dependability of a system [1].

Through these effects, transient or even permanent faults are
introduced, which leads to a change in the system behavior. These
faults occur randomly, unlike faults resulting from so-called fault
attack scenarios. In this case, an attacker deliberately injects faults
into a system to change the system behavior. Without dedicated
precautions, such attacks are easy to implement [2].

In recent years, intensive research has introduced several differ-
ent tools to simulate or emulate possible fault scenarios during the
design phase. In particular, fault emulation proved to be a very
effective way of testing systems under the influence of fault
sources. The platform usually used to emulate such a faulty system
is a field programmable gate array FPGA because of its flexibility.
An example of such an FPGA fault injection platform is shown in
Fig. 1. There are different ways to inject faults into circuits. One

is the use of partial reconfiguration features of the FPGA [3], but
this design approach heavily limits the platform choice because
there are only a few candidates, such as the Virtex families from
Xilinx [4]. Another way is to instrument the given circuit either
with manipulated logic elements or with integrated controllable
fault elements. The latter case can distinguish between saboteurs
and mutants [5]. Saboteurs are small circuit elements that do not
affect the system behavior under normal conditions. If activated,
they directly inject faults into the targeted submodule by disturb-
ing the internal signals. To disturb signals, saboteurs must be
placed between their source and their sink. Mutants are modified
submodules that also do not affect system behavior under normal
conditions but, if activated, behave like a faulty version of the ori-
ginal. To simulate or emulate fault attacks with mutants, the sub-
module must be replaced by a mutated submodule.

To accomplish such a test setup, it is necessary to have access to
the hardware description or a standardized test interface. Such a
test interface could consist of test chains [6]. Another important
step in creating an effective fault injection platform is the selection
of a proper fault model. For dependability evaluations, a single
event upset (SEU) fault model is often sufficient. If the faults are
caused by radiation or degradation, it can be safely assumed that
only a single random fault will occur at a time [7]. In contrast, secu-
rity evaluations consider intentional faults. Therefore, it is possible
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that an attacker introduces several faults at once to achieve the de-
sired effect of secret exposure.

This type of multi-bit fault model results in much more com-
plex fault relationships than SEU models because the time and
space of such faults cannot be assumed to be random. This model
must reflect the interdependency of several SEUs. Thus, in depend-
ability analyses, similar types of sensitive sub-circuits will fail at
the same time. In security evaluations, this dependency is defined
by the attack scheme of the adversary.

Finally, the controlling element itself must be designed very
carefully. The scope ranges from a very simple implementation
completely controlled by an external source such a personal com-
puter to very sophisticated integrated designs. Simple implemen-
tations have the advantage of being very adaptable to system
changes, but they are also highly dependent on the communication
interface used. Therefore, they can be considered slow. An imple-
mentation based on a PCI interface is shown in [6]. Sophisticated
solutions allow for very high fault injection rates but are difficult
to adapt to system changes [8]. In recent years, implementations
of fault injection emulation controllers have been either simple
and limited by slow interface performance or highly complex and
therefore not portable from one design to another.

In this paper, we propose a modular fault injector (MFI) that
combines the advantages of a simple portable design and fast,
highly complex implementations. It also helps to provide a com-
mon platform for fault injection campaigns on different target
architectures. Another point that has often been neglected in pre-
vious work in this field is the consideration of fault attacks.

Finally, the consideration of multi-bit fault patterns instead of
simple SEUs can be seen as a main contribution of this work. This
consideration is especially important for security evaluations. This
fully synthesizable controller can also be used as an online-testing
implementation if desired. The main goals of this work can be sum-
marized as follows:

� Fault effect modeling for software development.
� Fully modular fault injector design.
� Multi-bit fault injection to support fault attack emulation.

This paper is structured as follows. Section 2 briefly describes
the state of the art of work related to emulated fault injection using
integrated controllers and different reconfiguration techniques. In
Section 3, the design of the fault injection controller is described.
Section 4 presents some of the experimental results of this MFI
by means of the LEON3 processor [9]. Finally, conclusions are
drawn in Section 5.

2. Related work

The introduction of fault emulation on FPGA platforms has led
to several publications concerned particularly with the emulation

of SEUs in space applications. Approaches using direct circuit
manipulation such as the solution proposed in this paper must
be distinguished from techniques using the reconfiguration fea-
tures of certain FPGAs.

The former possibility can again be divided into two subcatego-
ries. One uses specialized hardware units to instrument saboteurs
or mutants as shown in [8]. The second variant uses available pro-
cessor cores for fault injection automation similar to the solution
provided by [10]. This solution promises a high emulation perfor-
mance because of fast on-chip communication channels, but it is
more difficult to port to other platforms.

In recent years, the partial and complete runtime reconfigura-
tion of FPGAs became a common technique to implement fault
injection in a flexible way. Reconfiguration is possible on special
FPGA series using an external communication interface to directly
feed different fault configurations into the FPGA, as shown in
[11–13]. If this external interface is too slow, it is also possible
to use existing processor resources for the reconfiguration task,
as presented in [14,15]. While the reconfiguration approach is
tempting (and has been used by several research groups), it also
limits the maximum reachable fault injection performance and
the designer’s platform selection. An approach similar to the
reconfiguration approaches is presented in [16], in which the
synthesized netlist is augmented to preserve the original struc-
ture of the system.

In the field of security evaluations, the authors of [17] used a
proven fault injection platform presented in [18]. This investiga-
tion confirms the strong need for multiple fault injection cam-
paigns in the design process. However, in their experiments, only
a small fault multiplicity (six) was used to prove this point. In
[19], a system demonstrating the use of multiple emulation plat-
forms to run simultaneous fault injection campaigns is described.
This parallelism increases the emulation speed.

3. Modular fault injector

For this case study, a fault injection method is required. There-
fore, a modular fault injection controller concept and its imple-
mentation are presented in this section. The following
requirements summarize the main drivers behind the develop-
ment of this modular fault injector (MFI):

� Effect modeling for software development.
� Support for fault patterns to support multi-bit fault injection.
� Multi-mode saboteur support.
� Scalable interfaces to support automatic saboteur placement.
� Standardized communication interface.
� Internal memory for automatic fault injection.

To support the easy application of the fault injection system to a
new design under test, a standardized communication interface is
needed. The General Purpose Input/Output (GPIO) communication
interface enables the developer to use the proposed controller in a
wide selection of different architectures. The GPIO interface con-
sists of pins that can be configured via software commands. These
pins allow for controlling the MFI without disturbing the device-
under-test. Extensive fault injection campaigns are only possible
using a large number of active saboteurs. It is not possible to route
such a large number manually; therefore, internal interfaces must
be scalable to enable automated injection processes. An effective
separation of the design and evaluator tasks can only be guaran-
teed through a generalized view of the fault injection system,
which is accomplished using so-called fault patterns, high level
representations of the underlying saboteur distribution. These

Fig. 1. Schematic view of the proposed fault injection system (obtained from [27]) .
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patterns are also necessary for efficient physical fault attack
emulation.

High-speed automated operation is enabled through a flexible
internal memory system. In the design phase of the proposed fault
injector, future advances of the evaluation platform must be con-
sidered, which include support of large fault patterns and burst
loading from the bus-system. Different fault and attack scenarios
call for different saboteur types. To simplify the reconfiguration
process, different saboteur modes are provided by a single flexible
saboteur design.

A basic block diagram of the proposed fault injection system is
shown in Fig. 1. The flow consists of the fault injection controller,
which specifies the attack scenario; the saboteurs, which disturb
signals; and a PowerPC, which is used as the interface to the PC.
The PowerPC is an optional component because the interface of
the MFI can be easily configured. As described in the following sec-
tions, the MFI is controlled over a GPIO interface. This interface can
also be controlled from different devices, e.g., for Smart card fault
emulation, and during the development process of the operation
system, the MFI can be controlled with APDU commands.

3.1. Fault injection controller

The fault injection controller is the main part of the MFI. It con-
trols the mode and the activation time of the saboteurs. As shown
in Fig. 2, the fault injection controller consists of two interfaces.
The first is the saboteur interface. This interface is a bus where,
for each saboteur, an activating signal is included. It also contains
mode signals to control the mode of the saboteurs. The second port
is the General Purpose Input/Output (GPIO) port. This interface is
used to control the fault injection controller. The internal fault pat-
tern memory is filled via the GPIO port. This memory is used to
specify when each attack pattern is activated.

Due to the GPIO interface of the MFI, it is possible to automate
fault injection campaigns. The easiest way, when using a Virtex5
FXT FPGA, is to control the MFI via GPIO commands through the
FPGA-internal PowerPC. Using this solution, a simple, generic soft-
ware interface to the generic hardware interface is provided, which
has the advantage that the test-engineer does not need specific
knowledge about the fault injection system itself. Especially in
the case of security evaluations, the evaluation engineer will be
mostly concerned with the proper mapping of a real attack sce-
nario to the saboteur matrix inside the system of interest. The GPIO
interface of the MFI can be easily changed to every other interface,
which allows the writing of the internal memory of the MFI. This

flexibility makes the whole flow independent of the test
environment.

3.1.1. Implementation
The fault injection controller is split into five main parts.

� Saboteur interface: The saboteur interface was imple-
mented to allow for easy expandability to support several
hundreds of saboteurs. The size of the saboteur interface
bus is equal to the number of saboteurs plus the mode sig-
nals to control the mode of the saboteurs. Another method
to control the saboteurs is the scan-chain approach. The
disadvantage of the scan-chain approach is that multiple
clock cycles are required for the configuration of the
saboteurs.

� GPIO interface: The GPIO interface is the interface of the
MFI to the controlled processor. All attack scenarios can
be loaded into the MFI via this port.

� Memory control: The memory control is used to place the
fault patterns into the internal fault pattern memory. It also
generates signals for the control logic if a special command
is sent via the GPIO port.

� Internal fault pattern memory: This memory stores the
fault patterns, which define the attack scenario.

� Control logic: The control logic activates the saboteurs
depending on the information stored in the internal fault
pattern memory.

� Trigger: The MFI also has a trigger source, which can be
used to synchronize the fault injection with the current
state of the executed software.

3.2. Saboteurs

To model a wide selection of possible faults, we introduce a con-
figurable saboteur. According to [20,21], saboteurs can be catego-
rized into several different types. Depending on their location,
they can be differentiated between serial and parallel saboteurs.
Depending on the directionality, a division can be made between
uni- and bidirectional ones. Finally, depending on their complexity,
simple and complex saboteurs can be distinguished. The saboteur
used in this work can be classified as a unidirectional, serial, simple
saboteur. Thus, it only works in one direction, it is located directly
in the connection signal, and it affects only one port at the input
and output side. The supported fault models of such an injection
element are shown in Table 1.

The proposed saboteur can be used to inject faults into single bit
lines or even complete buses, which allows the emulation of bus
attacks with, e.g., unfocused lasers or influence by strong external
energy sources. The first four saboteur configuration modes are
equivalent to direct circuit modifications. Bit-flips could also be
forced by short, intensive, external pulses. Delay faults emulate cir-
cuit behavior in the case of operating voltage changes. A schematic
block diagram and fault effect visualization of the proposed single-
bit saboteur is shown in Fig. 3.

Fig. 2. Schematic view of the modular fault injector (adapted from [27]).

Table 1
Saboteur operation types and their description.

Saboteur mode Fault type Description

Stuck-at-zero Permanent Signal value of ’0’ until reload
Stuck-at-one Permanent Signal value of ’1’ until reload
Indetermination Permanent Undefined signal state until reload
Bridging fault Permanent No output propagation until reload
Negation of input Permanent Undefined signal state until reload
Bit-flip Transient Output inverts input for one cycle
Artificial delay Transient Input to output propagation delay
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3.2.1. Implementation
The complexity of the implementation of the saboteurs depends

on the features a saboteur supports. Therefore, the required num-
ber of slices for one saboteur mainly depends on their complexity.
If the interface of the saboteurs is not changed, only the architec-
ture of the saboteur must be modified to support more features.
Thus, once the saboteurs are placed, the evaluation engineer can
adapt the saboteurs by changing only one file, which makes the
saboteur placement concept very flexible.

3.3. Fault pattern support

To evaluate a device-under-test for its fault attack sensitivity, it
is important to know the exact location of security relevant silicon
regions. Because the system is designed for fault effect modeling to
test security features during software development, the required
locations to place saboteurs are limited. Important locations can
be memory interfaces, inputs and outputs of the system or inputs
and outputs of calculation modules. At these locations, saboteurs
must be placed by an evaluation engineer. A fault pattern approach
is used for an effective mapping of saboteurs to their correspond-
ing fault locations. Of course, not every possible pattern combina-
tion must be transmitted to the MFI. Every pattern used represents
a very likely fault effect. For example, memory data at a specific
address have been manipulated. Where exactly the attack was
injected does not matter; only the effect that can be observed by

the software is important for the operating system designer. For
hardware evaluation, other methods must be used. This approach
allows the user to check that the software security features devel-
oped work as intended, independent of how the fault effect is pro-
duced. The basic concept of mapping the fault pattern with the
physical implementation is shown in Fig. 4.

The encoding of the fault pattern is performed by an array with
x columns and y rows. Each element represents one saboteur or an
area where no saboteur is placed. To define a special attack pattern,
only an array where the active saboteurs are marked must be
transmitted to the MFI.

3.3.1. Implementation
In this example, two methods of pattern generation are used to

show the function of the fault MFI. The first one is a random num-
ber generator to show the functionally of the MFI. The second
method is a pattern defined by a test engineer, which can be used
for fault effect production. The complexity of such a pattern gener-
ation does not increase the required slices of the MFI because the
patterns are not generated directly in the MFI.

3.4. Automatic placement of saboteurs

For a large number of saboteurs, an automatic saboteur place-
ment approach is required because manual saboteur placement
is a very time consuming and error prone process. In [20], a theo-
retical method is discussed for placing saboteurs automatically
into a VHDL design. Our approach works very similar to that ap-
proach. In Fig. 5, a schematic example of automatic saboteur place-
ment is shown. The saboteur placement tool is based on the
vMAGIC VHDL parser library [23]. VMagic is a Java API that can
parse and adapt VHDL code automatically. The flow can automat-
ically add hundreds of saboteurs [22]. Then, the VHDL code is auto-
matically adapted with saboteurs and the fault injection controller.
A method to modify the VHDL code automatically is shown in [24].

3.4.1. Implementation
For this paper, the automatic saboteur placement tool was used

to place the saboteurs into a critical signal in the design, which im-
proves the very error prone and time consuming process of manual
placement of the saboteurs.

3.5. Attack scenario

As shown in Fig. 6, the attack flow is based on a golden model
run. The golden model runs from one reset to the next reset of
the DUT. All of the golden model information is stored (e.g., the
output, none volatile memory (NVM), and timing).

Fig. 3. Block diagram of the proposed saboteur element (obtained from [27]).

Fig. 4. Schematic view of an extracted fault pattern (obtained from [27]). Fig. 5. Automatic routed saboteurs (adapted from [22]).
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The next step is to reset the whole system. Then, all of the attack
patterns are stored in the internal fault pattern memory via the
GPIO interface. In addition, the attack mode must be transmitted
via GPIO. The mode is used to define the attack type of the sabo-
teurs (e.g., bit-flip). After a pre-determined time, the specified fault
attack will be injected, and then the saboteurs are activated
depending on the fault pattern. Now, the faulty DUT will run until
it is reset or a pre-defined timeout is reached. This timeout is re-
quired because the device could run into an infinite loop after
the fault injection.

After the fault injection run is finished, the saboteurs are deac-
tivated, and the result is compared to the results from the golden
model run. If the results are not equal, a fault analysis process must
be launched. This procedure is continued until all attack patterns
are tested.

The fault pattern generator creates attack patterns for the fault
injection. In this example, only a random number generator is used
as the pattern generator to show the function of the fault MFI. The
complexity of such pattern generation does not increase the re-
quired slices of the MFI because the patterns are not generated di-
rectly in the MFI.

4. Experimental results

To prove the effectiveness of our approach, we chose to imple-
ment the proposed controller on a widely used platform, the
LEON3 SPARC V8 conformant processor from Gaisler Research [9].

The test setup is implemented on a Virtex5 FPGA using the Xi-
linx ML507 evaluation board. Simulation results are obtained using
Modelsim software, which is part of the ISE software package pro-
vided by Xilinx. The fault injection setup is configured as shown in
Table 2.

4.1. LEON3 platform setup

The LEON3 is configured for a single-core configuration using
the default platform settings for this particular evaluation board
(ML507). The MFI is configured via GPIO and can be accessed using
the PowerPC.

4.2. Saboteur configuration

The random approach of fault injection proposed in this publi-
cation can find global dependencies between local fault occur-
rences. Of course, with an increasing number of saboteurs, the
number of possible combinations increases until an analysis of
the results is not possible in a reasonable time frame. Therefore,
a small number of saboteur locations were chosen for these fault
injection experiments.

4.3. Simulation results

To ensure the correct behavior of the fault injector and its sab-
oteur, the whole LEON3 system are thoroughly simulated using the
Modelsim software package. The simulation includes not only the
fault injection process but also start and calculation instructions.
The results of these injection campaigns are shown in Table 3.

The pattern injection rate is constant for patterns smaller than
32 because of the working principle of the MFI. For larger patterns,
additional GPIO transfers are required. However, with increasing
pattern size, the amount of concurrently injected faults increases
accordingly.

4.4. Proof of fault models

To show that all possible fault models of the saboteur work as
intended, a simple program is attacked. The program attacked is
a simple program that sends five bytes via the UART to a host PC.
On the UART interface, saboteurs are placed and activated during
the send process. Table 4 shows the effects that can be reproduced
with the saboteurs. As shown, all of the effects can be reproduced
in software as well on the FPGA.

4.5. VHDL synthesis results

To estimate the necessary FPGA area requirements, the synthe-
sis of a typical platform configuration has been performed. The
results of several synthesis runs using different saboteur configura-
tions are shown in Table 5.

The MFI and its saboteurs have a negligible effect on the size of
the resulting synthesized design. Basing on the routing results, it
should be possible to implement a large number of saboteurs on
this FPGA platform. These results show that the saboteurs and
the MFI produce an overhead to the system. The PowerPC is an op-

Fig. 6. Flow diagram shows a typical fault injection run (adapted from [27]).

Table 2
Fault injection setup.

Saboteur type Fault mode Fault target type Fault injection targets

Single-bit Bit-flip Control logic Integer pipeline
Cache controller
Register file
Multiplier unit
Divider unit

Table 3
Simulated fault injection performance.

Saboteurs Inj. patterns Time (s) Patterns (s)

8 256 274 0.93
16 256 282 0.91
24 256 286 0.90
32 256 299 0.86
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tional block to control the MFI. This controller is only used to con-
trol the GPIO of the MFI. The GPIO can be controlled directly by a
host PC or any other tool.

4.6. Fault injection performance

In this subsection, the results of several fault injection cam-
paigns are presented to show that higher structural flexibility does
not come with disadvantages concerning emulation speed. It also
must be mentioned that such a multi-bit injection campaign leads
to complex results in system behavior, and therefore, the analysis
step will most likely be the slowest link in the emulation chain. The
results are summarized in Table 6. The number of saboteurs has an
influence on the number of patterns that can be injected per sec-
ond. The reason is that the GPIO interface only support the trans-
mission of 32 bits of the pattern simultaneously. If the size of the
pattern is increased, the time required for the pattern transmission
also increases. The last column shows that the transmission of one

pattern is interdependent of the number of saboteurs. It is not nec-
essary to send the whole pattern for each attack. If only one pattern
block must be changed, only one GPIO transmission is required.
Only the maximum number of faults is important because not all
of the saboteurs are activated. The more important numbers are
the patterns injected per second. The speed of the pattern injec-
tions per second is not independent of the number of saboteurs.
However, the time required for the transmission of one fault pat-
tern is constant.

The results presented in Fig. 7 shows the maximum speed that
the fault pattern can be changed per second. This number is impor-
tant if an attack is emulated by a laser moving over the chip. Thus,
it is possible to change the fault effect in the range of 300 k–2 M
times per second. If one fault per run should be injected, the whole
test requires the run time of the program that should be tested in
addition to the configuration time of the MFI.

4.7. Case study: Attack on RSA authentication

The MFI is used to show a case study of a fault attack on RSA
authentication [25]. The RSA authentication process signs a mes-
sage with a private key. To generate the signature, the RSA algo-
rithm uses multiplications. In [25], it is concluded that fault
attacks on the multiplication unit can be used to attack the RSA
algorithm. For this fault attack, the authors assume that only one
bit of the multiplier output switches. In this case study, we show
that our approach can emulate such fault attacks exactly.

For this test, we chose the LEON3 processor in a single core con-
figuration. For the attack target, the output signals and one of the
operand registers of the multiplier have been chosen. Because only
the fault effect of this one-bit result attack should be reproduced,
no hardware error detections methods are implemented in the
LEON3 processor.

An overview of the test environment is given in Fig. 8. Listing 2
shows the pseudo code describing the fault injection flow. The sab-
oteur placement methodology is described in [22]. The FPGA-inter-
nal PowerPC runs a Linux kernel to allow programming of the fault
injection flow in a comfortable way. The fault injection control
software runs on the PowerPC. The host PC evaluates the results
of the fault injection. During this attack, the saboteurs are config-
ured in bit-flip mode.

As shown in Listing 1, the code that is executed on the LEON3 is
a simple program that only calculates one multiplication and send
the result back to the host PC. This program should only be used as
a proof of concept.

The results are shown in Table 7 and Fig. 9. The MFI can emulate
a fault attack on the multiplier interface. Because the MFI supports
a large number of saboteurs, it is possible to place the saboteurs at
not only the output: it is also possible to test also the effect of a
fault injection to the input of the multiplier. If the operant 1

Table 4
Saboteur fault model simulation and emulation results.

Saboteur mode Simulation Emulation

Stuck-at-zero ok ok
Stuck-at-one ok ok
Indetermination ok ok
Bridging fault ok ok
Negation of input ok ok
Bit-flip ok ok
Artificial delay ok ok

Table 5
VHDL synthesis results.

Saboteurs Look-up-tables Overhead (%) Slices Overhead (%)

0 14897 – 10423 –
8 14950 0.36 10513 0.86

32 15107 1.41 10642 2.10
96 15194 1.99 10716 2.81

170 15244 2.33 10774 3.37
326 15478 3.9 11088 6.34

Table 6
Emulated fault injection performance.

Saboteurs Inj. patterns Time (s) Patterns (s) Pattern blocks (s)

8 100 M 46.76 2.17 M 2.17 M
32 100 M 46.76 2.17 M 2.17 M
96 100 M 114.48 873.5 k 2.17 M

170 100 M 156,4 639.4 k 2.17 M
326 100 M 282.16 354.4 k 2.17 M

Fig. 7. Speed of the fault injection depending on the number of saboteurs. Fig. 8. Overview of the test environment (adapted from [27]).

6 J. Grinschgl et al. / Microprocessors and Microsystems xxx (2012) xxx–xxx

Please cite this article in press as: J. Grinschgl et al., Case study on multiple fault dependability and security evaluations, Microprocess. Microsyst. (2012),
http://dx.doi.org/10.1016/j.micpro.2012.05.016

Publication 3 - Elsevier MICPRO 2012 58



(OP1) is attacked, the number of output bits switches depends on
which bit of the input is attacked. A similar effect can be repro-
duced by attacking multiple bits at OP1. If exactly one bit at the
output should be disturbed, the simplest method is to attack the
output (OUT) of the multiplier with exactly one saboteur.

This emulated fault reproduces a fault attack on RSA authenti-
cation where exactly one output bit of the multiplication must

be disturbed [25]. To test whether the operating system can detect
such an attack, it makes sense to place saboteurs at the output of
the multiplier and manipulate exactly one bit of the result.

4.8. Case study: Long-time test for light attack emulation on the
memory of a smart card

The MFI can also be used for tests with long durations. This test
shows how the MFI can be used in systems development to im-
prove security. As an example, the estimated effect of a light attack
on a smart card memory is emulated [26]. In particular, the effect
of permanent faults injected into the memory should be evaluated.
Therefore, security relevant memory regions must be attacked
every clock cycle.

Fig. 10 shows that only some memory regions at special times
are security relevant. The relevance of the different memory re-
gions must be defined by the evaluation engineer. Some criteria
for the engineer by which code regions should be tested can in-
clude regions that.

� Contain final or intermediate results of an security relevant
function.

� Contain keys of an encryption process.
� Contain, for example, an AES S-Box.

This reduction is required because attacking every memory cell
is too time-consuming. In Eq. (1), the number of tests required is
calculated. If the critical memory address section is 100 bytes,
the critical regions consist of 1 k clock cycles, and the number of
tested patterns per memory address is 10, we obtain an overall
number of 1 M tests. Assuming that the time required for one
run is 500 ms, then the whole test would require approximately
6 days.

Ntests ¼ Nmemoryaddresses � Nclkcycles � Nattackpatterns ð1Þ

Fig. 11 shows the structure of the fault emulator for this fault
injection campaign. For this test, the MFI is placed directly into
the Smart Card system. The MFI is controlled via a serial interface,
which can also be used to control the smart card and allows us to
control the MFI without adding an additional port to the smart
card emulation system.

For this test, we used software that requires 150 k clock cycles
for a full execution. The security-relevant region of this code is
approximately 1000 clock cycles long. During these cycles, an
authentication process is performed. To test whether the operating
system can cope with light attacks on the memory, we choose 100
attack points within security relevant regions. We also reduced the
tested memory section to 1536 bytes because only these bytes are

Listing 1. Pseudo code of the LEON3 software.

Listing 2. Pseudo code of the fault injection flow.

Table 7
Number of faults detected depending on the attack pattern.

Attack target OP1 OP1 OP1 OP1 Out
Number of saboteurs 1 2 3 4 1

No. of bit-flips
0 37 37 37 37 0
1 208 0 0 0 5000
2 275 365 129 59 0
3 477 428 532 224 0
4 676 624 478 646 0
5 899 836 862 704 0
6 942 862 762 852 0
7 714 686 787 817 0
8 369 529 580 604 0
9 226 337 432 487 0

10 105 170 221 319 0
11 40 82 99 167 0
12 20 22 56 58 0
13 9 13 13 24 0

Fig. 9. Influence of saboteurs on the multiplication unit. Bit-flips of the output
depending on the number of active saboteurs at the input/output.

Fig. 10. Critical memory regions of a smart card system.
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security-relevant. To emulate a permanent fault, we set the mode
of the saboteurs to stuck-at-one. This leads to a total of 157 k tests
(see Eq. (2)).

Ntests ¼ 1536 � 102 � 1 ¼ 156672 ð2Þ

The flow of this test is shown in Fig. 12. The test flow can be
split into seven main parts:

� Run a Golden Model: The golden model run is required as
reference to evaluate whether an attack was successful or
not. During the golden model runs, all output values and
the content of the memory are stored.

� Reset Device: The reset is required to start the execution at
the same point for each run. This reset is the reason that
the execution time of a fault injection campaign is approxi-
mately as long as the execution of the software tested.

� Initialize MFI: The initialization of the MFI requires only a
few microseconds (5–30 s). The values that must be transmit-
ted to the MFI include the following:
– What attack should be performed (in this case, stuck-at-

one).
– When the attacked should occur.
– What memory address should be attacked.

� Run the Software with Fault Injection: After the MFI is ini-
tialized, the execution of the software is started. When the
predefined time is reached, the MFI starts the fault injection.
All of the software outputs are stored. If the execution of the
software requires more than twice the execution time of the
golden model, the system is stopped.

� Dump the Memory: To determine whether the attack was
successful, the memory of the whole system is dumped out
of the device to the PC.

� Evaluate Results: The evaluation step checks what effect the
attack had on the system. The effects can include the following:
– Fault injected into memory.
– Output changed.
– Output and memory content changed.

� Report: This step writes the information collected during this
test to a file.

Finally, the results of the RAM fault emulation are shown. Table
8 shows that we used a total of 157 k fault injection runs. The exe-
cution of the whole test requires 22 h. In 122 k attack scenarios,
the fault injection had no effect because the memory cell we at-
tacked was never used after the attack. 35 thousand attacks chan-
ged the content of the RAM, but they had no effect on the non-
volatile memory or the output of the system. In the rest of the at-
tack cases, the fault detection algorithms of the smart card operat-
ing system detects the fault injection. There was no attack case
where the system was successfully attacked. The system never
sent incorrect outputs or changed non-volatile memory content.

4.9. Comparison to existent fault injector solutions

In recent years, many high-performance fault injection emula-
tion platforms have been published. While fault injection speed
is only one parameter to quantify the performance of a fault injec-
tor solution, it is important to measure how many faults can be in-
jected in a reasonable time. It is especially important for complex
system-on-chip designs with a high number of interesting injec-
tion points. In [6], fault injection campaigns using different bench-
mark configurations have been compared to typical simulation
solutions. To cover all design approaches considered, reconfigura-
tion techniques are also presented in [12]. This publication shows
two implementations, one using autonomous emulation (AE) and
one using partial reconfiguration (PR). The test object in this case
is the freely available CORDIC16 core.

Our fault injector solution profits from a higher clock frequency
and state-of-the-art FPGA hardware. Another difference that must
be considered is that, because of the pattern approach, the fault
injection rate is not constant. Therefore, the total number of acti-
vated faults is calculated based on the number of activated faults
per turn. For the evaluation, the worst case is assumed, where only
one fault is injected per pattern. If the simultaneously injected

Fig. 11. System modifications for the RAM fault emulations.

Fig. 12. RAM fault emulation flow.

Table 8
Results of the light attack emulation on the memory.

N %

Total number of injections 156672 100
Memory cell never accessed 121570 77.6
Fault injected 35102 22.4

No effect 30373 19.4
Fault detected by smart card 4729 3.0

Table 9
Fault injection performance compared to previous results.

Approach Clock cycle
(ns)

Inj. faults Time
(s)

Inj. speed
1/(s)

No. inj. speed
1/(s)

[6] 50 100 k 83 1205 603
[12] AE 16.8 129.75 M 698 185888 276619
[12] PR 18.97 10 k 1014 9.86 13
[14] DPR 10 – – 12987 32468
[14] PRR 10 – – 414.94 1037
This

work
25 100 M 46.76 2.17 M 2.17 M
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faults are increased, the number of faults per seconds will be in-
creased (one turn consists of all possible bit combinations of the
fault pattern width selected). The results of these investigations
are compared to our result in Table 9. Because of the different test
systems the values have to be normalized. The last column shows
the fault injection speed normalized to a clock cycle of 25 ns.

The results of this work presented in Table 9 shows the maximum
speed that the fault pattern can be changed per second. This number
is important if an attack is emulated by a laser moving over the chip.
Thus, it is possible to change the fault effect in the range of 300 k–
2 M times per second. If one fault per run should be injected, the
whole test requires the run time of the program that should be
tested in addition to the configuration time of the MFI.

The comparison shows that the in-system solution does not suf-
fer from additional performance penalties. Strong spatial contain-
ment of the possible fault locations leads to very high injection
results if combined with large fault injection patterns. It can also
be concluded that autonomous emulation provides injection speed
advantages compared to partial reconfiguration techniques. The
reconfiguration approach suffers not only from limiting communi-
cation interfaces but also from long delays caused by the reconfig-
uration process. This reconfiguration also does not include the time
needed to generate reconfigurable sub-blocks. These problems are
targeted by the work presented in [14]. In this publication, partial
reconfiguration is compared to direct reconfiguration using an
FPGA internal port to its configuration memory. While the recon-
figuration speed is greatly improved, it is still slower than autono-
mous emulation solutions such as the one proposed in this paper.

5. Conclusion

This paper presents a case study on multiple fault dependability
and security evaluation. A highly modularized controller solution for
portable fault injection systems was used. It has been shown that
fault injection campaigns can be executed very efficiently through
a generalized interface using a high level abstraction of physical
fault sources. The design is scalable to allow both fully automated
campaigns with a larger fault pattern memory and more user con-
trolled campaigns using a small silicon footprint. The performance
is comparable to existing platforms using circuit manipulation and
significantly faster than ones using partial and complete FPGA
reconfiguration. This study is the first step towards a complete fault
injection platform for dependability and security evaluations. Its
flexible design will allow the evaluation engineer to shift focus from
complex testing architectures to more complex fault models, which
should finally allow the modeling of not only simple SEUs but also
complex fault attack scenarios. Through the additional abstraction
level, a better separation of the test and design engineering tasks
is provided. The knowledge gained from these experiments will be
used to obtain a better understanding of inner-chip fault mechanics.
Such full scale investigations require fully automated saboteur
injection techniques, which are currently under development.
Consideration of such attacks will be necessary to design efficient
and secure smart card systems and is also valid for highly integrated
systems or systems under high environmental stress.
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Abstract—Over the last years the complexity of SoC’s has
increased enormously. This increase leads to a high test effort
against faults. Therefore, methods have been developed to speed-
up fault testing to cope with the increasing number of possible
faults. One method is to emulate fault attacks. To cope with the
large amount of test data a method to check automatically if a
fault injection was successful is required.

In this paper a novel method is presented how automatically,
on a fault emulation platform, can be proven if a fault forces
the system to unintended behavior. The PIFEA hardware block
is designed to check if the system execution flow is manipulated
or if the system detects the fault and switches in a secure mode.

Index Terms—fault emulation, fault injection controller, sabo-
teurs, multi-bit faults, automatic test pattern injection

I. INTRODUCTION

Over the last years the complexity of systems-on-chips
(SoC) has been increased. Some publications already speak
about more than moore [1], [2]. This increasing system-on-
chip size also leads to an increasing test effort. Especially the
effort for testing the system against natural faults and fault
attacks has increased over the last years. Therefore, several
methods exist on how to prove if a system on chip can fulfill
safety and security levels (e.g., for smart card applications the
common criteria test is one of the most widely used methods
to classify the chips’ security level [3]). Such certification
processes are very time consuming and costly. Critical faults,
detected during the evaluation process, may imply a costly
redesign. To increase the probability that the SoC would pass
the certification process at first time, fault testing methods
can be used. The testing methods, which can be used during
the design phase, can be split into fault simulation and fault
emulation. Simulations are on of the oldest method and can be
used early in the design phase and are flexible in testing faults
because every signal can be manipulated and it is easy to check
the fault’s effect on the system. The main disadvantage is that
simulations are slow compared to other methods. To solve this
speed problem fault emulation was developed. This method
maps the functionality of the SoC to a configurable hardware
platform (e.g., FPGA). The advantage is that the emulation
runs extremely fast. The disadvantage is that the control-ability
is reduced because not every signal can be manipulated at
every point of time and for debugging not every internal signal
can be observed. These, disadvantages are often acceptable for
the speed-up win. For example in simulation you can not test
millions of attacks against the whole memory of a system
in a reasonable amount of time, but an emulator system can
handle such an amount of attack scenarios. Several methods
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Fig. 1. Schematic view of the proposed fault injection system with post-
injection fault effect analysis (adapted from [9])

exist to generate fault injection campaigns in such a way that
the number of required test campaigns is reduced. There are
methods, which use statistical attacks [4]–[6]. Another method
monitors the program flow during a golden model run. This
information is then used to detect security relevant regions [7],
[8].

For such a high number of fault injection campaigns some
methods are required to detect if a fault drives the system in an
unintended behavior. To cope with this problem a novel post-
injection fault effect analysis (PIFEA) method is presented in
this paper. The main contributions of this paper are:

• A novel post-injection fault effect analysis method for de-
tecting security relevant attacks directly on an emulation
platform.

• Increasing analysis speed for checking if a fault brings
the system in an unexpected state.

• Reducing communication overhead between emulation
platform and host PC.

This paper is structured as follows. Section II briefly shows
the state of the art on fault effect monitoring. In Section III
the design of the fault injection controller is described. Section
IV describes the function of the post-injection fault effect
analysis concept. Section V shows some experimental results
of this concept based on a Leon3 implementation [10]. Finally,
conclusions are drawn in Section VI.

II. RELATED WORK

In the field of post-injection fault analysis several works
were published in the last years. These works can be split
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into two main groups. The first group is to observe the output
of the system and to check if the output of the system is
correct or corrupted. The second method is to observe also
internal signals. To check if a fault occurs often golden model
runs are used to generate data of a correct program execution.
For the observation of the output several publications exists in
literature [11], [12]. Output is not only the communication of
the device with the environment also power consumption or
EMV are viable information for an attacker. This method is
often used in emulation and physical fault injection approaches
because it is a error-prone and time consuming process to
observe internal signals.

The other method is the white box testing method where
internal signals are used to test if a system fulfills a certain
security level. This method is described very often in the
literature but mainly for simulation approaches [13], [14]. The
main advantage of this method is that it is a flexible method
because also hidden faults can be detected and the analysis
what happened to the device after a fault is injected is much
easier than with a normal black box testing method. But to
evaluate such white box tests huge knowledge of the system
is required to find the proper signals which indicate the type
of the injected fault.

To the best of our knowledge there exists no post-injection
fault effect analysis based on fault emulation which using
internal signals for automatic checking if the system is in a
secure state or not in literature.

III. MODULAR FAULT INJECTOR

The modular fault injection approach is a flexible fault
injection method, which is used to test if the presented
approach works correctly [9]. The advantages of the modular
fault injection concept is that it can be easily modified for
every possible system-under-verification. The modification of
the RTL description of the system is done automatically [15],
which reduces the time and error-prone process of manually
modifying the system. This automatic source adaption is also
used to place the modules of the new approach presented in
this paper into the device-under-test (DUT). For providing the
required flexibility the system consists of following blocks
(seen in Figure 1).

1) Attack Database: This database is used to store attack
and the attack scenarios.

2) Host PC: The host PC is the interface between the
modular fault injection module and the test engineer.
Tools allow the engineer to configure the injection
campaigns and the evaluation of the test results.

3) Modular Fault Injection Controller: The modular
fault injector is used to communicate with the host
PC and to manage the whole fault injection campaign.
Therefore, the controller offers several features. First,
there are trigger modules, which can be used to syn-
chronize the injection flow with the SoC. Two examples
of such trigger signals are the program counter or the
memory address. Second, there is an interface to the
saboteurs, which can be used to inject the faults into the
system.

4) Saboteurs: Saboteurs are blocks which inject a fault
between source and sink of a signal line when they
are activated. The injected fault can be configured by
the modular fault injection controller. Possible faults are
stuck-at-one, stuck-at-zero, delay and invert.

DUT

PIFEA

MFI

Memory

Core

IO

Address

PC

Output

Control Signals

Fault Injection

Control Flow 
CPU

Fig. 2. Connection of the PIFEA module to the DUT and the environment.

5) Control Flow CPU: The control flow CPU can be
connected between the modular fault injector (MFI)
and the host PC. This module is optional but often on
emulation platforms a fix controller is mounted, which
can be used to reduce the communication overhead to
the host PC by doing some pre-processing.

IV. POST-INJECTION FAULT EFFECT ANALYSIS SYSTEM

The post-injection fault effect analysis (PIFEA) is a block
which checks the status of the system-under-verification after a
fault injection. As seen in Figure 2, the PIFEA is directly con-
nected to the system-under-verification. Especially the inputs
and outputs, the memory accesses and the program counter
values are used to check if the system is in a secure state
after a fault injection. The connection to the MFI is required
because the PIFEA must know when a fault is injected. The
interface to the control flow CPU is used to configure the
PIFEA before the injection and to read out the result of the
post-injection fault effect analysis. This output indicates if the
system is in a secure or insecure state. Also the difference
between the logged pc, memory accesses and input/outputs of
the golden model run as well as the faulty run can be read out
and analyzed.

A. PIFEA Module
The structure of the PIFEA module consists of five main

components (see Figure 3).
• Memory: The memory stores the input values every

clock cycle. This information is stored to allow the
analysis of what went wrong if an unindented state is
reached. Because the size of the memory is limited,
the recording of input data is started when the fault is
injected. If the size of the memory is not big enough it is
possible to halt the emulation and read out the memory
with the control flow CPU.

• Golden Model Memory: To compare the stored flow of
the system it is important to have a reference flow. This
flow is generated during a golden model run. During this
run all logged input data is stored to a memory.

• Comparator: The comparator checks if the golden model
run and the injection run flow match. If there are no dif-
ferences in the execution there was no detect able system
manipulation. If a difference is detected the behavioral of
the design flow changes has to be evaluated.

• Secure State Definition Memory: This memory is writ-
ten before the test is started and defines which system
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states are safed for the system. E.g., if the system goes
into a reset state, the fault has been detected and the
whole system is restarted. An other safe state is that the
system executes some fault recovery mechanisms. This
state can be detected if the system reaches a specific pro-
gram counter. Also information of not allowed program
flows can be defined here. For example it is not allowed
to read from or write to a specific memory address if a
fault occurs because there are security relevant variables
stored.

• Secure State Checker: This checker uses the information
stored in the secure state definition memory to analyze if
all defined security patterns are fulfilled. All generated
information is combined and can be read out by the
controlling CPU.

B. Fault Analysis Flow
The main concept of the fault analysis flow is to allow for

easy and fast analyzing if the system is in a secure or insecure
state after a fault injection. Therefore, the flow has to be split
into several parts (see Figure 4). An analysis step where the
test engineer defines security critical regions (e.g., security
critical memory addresses, security critical code region). Also
safe states have to be defined by the test engineer (e.g., reset of
the system, program counter of fault recovery functions). After
this step the system software initialize the PIFEA and runs
a golden model run. During this run for every clock cycle a
program counter value, the memory accesses, and the output is
stored. This step is required because if the system do not reach
a secure or insecure state the PIFEA must check if the system
is influenced by the fault injection or not. After the golden
model run the system-under-verification has to be reset and run
until the fault injection is activated. Starting at this point the
memory stores the program counter, memory access and the
output of the system. Meanwhile the comparator block starts
to check if the execution differs from the original execution.
If a mismatch is detected the comparator stops to read out the
memory and the input information is stored until the memory
is full. Also the time is saved when the first differences
between the golden model and the faulty model occurred. The

Start

Analyze System

Run Golden Model

Run Fault Injection

All Fault 
Injections 

tested

End

no

Flow 
Manipulated

Analyse Faultyes

Init PIFEA

Fig. 4. Flow of the post-injection fault effect analysis.

security state checker starts also when the fault injection is
activated the first time to check if any of the security features
are activated or if the system reaches an unexpected state.
When the execution of the fault injection is finished the control
flow CPU reads out the PIFEA and write a log file for the test
engineer. This flow is executed until all test patterns are tested.

V. EXPERIMENTAL RESULTS

The experimental results are based on a ML507 board,
which includes a Virtex 5 FPGA [16], [17]. For this FPGA
board we synthesized a LEON3 processor in a single-core
configuration. For the fault injection we used the MFI, which
can be configured by the controlling CPU (for this test the
PowerPC on the Virtex 5 FPGA). Also the PIFEA is connected
to the controlling CPU.

A. Saboteur configuration
To prove if the PIFEA tool can detect critical faults we

use saboteurs placed at the memory interface of the LEON3
processor. With an attack to the memory easily every required
fault effect to prove the concept of the PIFEA can be produced.
These effects the execution flow disturbance (e.g., manipulate
variables of an if clause), memory access locations (e.g.,
manipulate a variable which is used as relative address) and
output manipulations (e.g., manipulate a variable which should
be sent to the environment).

B. Hardware overhead
The overhead of the system modifications compared to the

system is shown in Table I. As seen in this table the MFI
produces an overhead to the system. The required slices of
the MFI do not increase linearly with the size of the system.
The only parameter which increases the size of the MFI is
the number of the saboteurs and the number of the triggers.
The PIFEA module mainly increases the required memory. For
the experimental results the BRAM of the FPGA is used as
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TABLE I
REQUIRED NUMBER OF FPGA SLICES

Test System MFI PIFEA

Number Slices 7811 2291 238
Number LUT 14081 2043 358
Number BRAM’s 30 0 90
Total Memory(KB) 1080 0 3132

TABLE II
RUN TIME RESULTS FOR THE PROVE OF CONCEPT EXAMPLE.

Simulation Emulation Speed-up factor

per run 610s 0.226s 2699
25 Test Cases 15105s 5.7s 2650
10000 Test Cases est. 6042000s 2278s 2652

storage for the flow logging but every other external memory
can be used instead.

C. Prove of Concept
To prove the concept of the PIFEA a simple test program is

implemented as shown in Listing 1. This program is simulated
and executed on an FPGA. As seen in Table II the emulation
is much faster than an RTL simulation of a whole system. The
prove of concept test is split into flowing 2 parts:

• Test if the program counter, memory accesses and IO
flow detection works properly. Therefore, the line 04, 06
and 10 of the test program are attacked.

• Test if the PIFEA can detect if the system accesses
a wrong memory region or if the system executes not
allowed code. Therefore, one trigger of the PIFEA is set
to the program counter of line 08 and a trigger is set to
the memory address of the array[11]. Then the variables
flow control and i are attacked at line 05 or 06.

The results of the PIFEA prove of concept tests can be
seen in Table III. As seen in this table attacks to different
code lines have different effects and are differently reported
by the PIFEA.
01 : f u n c t i o n t e s t b e g i n
02 : v a r i a b l e i =0 , r e s u l t =0 , f l o w c o n t o l =0 ;
03 : v a r i a b l e a r r a y [ 1 0 ] = 0 ;
04 : f o r i =1 t o 10 do / / m a n i p u l a t e i
05 : i f f l o w c o n t o l ==0 t h e n / / m a n i p u l a t e f l o w c o n t o l
06 : r e s u l t += a r r a y [ i ] ; / / m a n i p u l a t e i
07 : e l s e
08 : . . . / / una l l owed code
09 : end f o r
10 : o u t p u t ( r e s u l t ) ; / / m a n i p u l a t e r e s u l t
11 : e n d f u n c t i o n

Listing 1. Test Program for Prove of Concept

VI. CONCLUSION

In this paper we presented a method how to analyze if a fault
injection brings a system into an unintended state directly on
an emulation platform. For this analysis all memory accesses,
program counter values, and output information is stored and
analyzed during the execution of the system-under-verification.
Based on the result of this analysis the test engineer can
easily find critical attacks out of the millions of fault attacks
emulated. Another feature of this method is to allow for
analyzing if the system executes unintended code after a fault
injection or if a not allowed memory block is accessed. The
prove of concept shows that this method works as indented.

TABLE III
MEASURED RESULTS FOR THE PROVE OF CONCEPT EXAMPLE.

Attack target line Manipulated Value Detected Effect

04 i flow manipulation
05 flow contol flow manipulation

not allowed PC
06 i memory manipulation

not allowed memory address
10 result io manipulation
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Abstract—The complexity of SoCs has been increasing enor-
mously over the last years. This increases the effort for testing
the SoCs against natural external influences and fault attacks.
These tests require a huge amount of time because of the large
fault scenario space.

In this paper a novel method is presented on reduction of
system test duration. This speed-up is reached by observing
memory accesses during a golden model run to find security
relevant regions in memories. Therefore, a novel monitor module
has been designed and tested which stores the used memory
addresses together with the access time stamps.

Index Terms—fault emulation, fault injection controller, sabo-
teurs, memory fault attacks, automatic memory fault analysis,
pre-injection memory analysis

I. INTRODUCTION

The complexity increase of semiconductors is based on the
decreasing size of transistor structures. This decrease of size
leads to a higher vulnerability against natural effects e.g.,
external radiation effects, thermal and electric degradation [1].

These effects can provoke permanent or transient faults
which can lead to a change of system behavior. Because the
location and the time of a fault cannot be foreseen, it is
important to evaluate safety and security level of the system
by fault detection methods. Especially if an attacker tries to
provoke a fault, it is required that security relevant information
is not exposed. Without security features it is no effort for
an attacker to bring the system in an unintended state [2].
Therefore, security features have to be implemented. These
features have to be tested to test if the selected methods are
sufficient to reach targeted security levels.

Many different fault testing methods have been researched
in the last years. These methods can be split into simulation,
emulation, and physical tests. For early design phase testing
of fault effects on a security critical system, simulation, and
emulation methods are used. Especially emulation methods
have shown that they can be used in a very effective way. The
most commonly used platforms for fault emulation are FPGAs.
An overview of such a fault emulation platform which is based
on an FPGA is shown in Figure 1.

On FPGA platforms different methods for fault injection
into emulated systems are known. The first one is partial
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Fig. 1. Schematic view of the proposed fault injection system for Pre-
Injection Memory Access Analysis (adapted from [5] )

reconfiguration method which is based on the manipulation of
the FPGA configuration during system operation. This method
only works for some special FPGA devices (e.g., the Virtex
families from Xilinx [3]).

The second method is to manipulate the circuit of the
system-under-test by adding logic elements or controllable
fault elements. These elements are also called saboteurs and
mutants [4]. Saboteurs are modules which are placed between
source and sink of signal lines. Not activated, these elements
have no effect on the behavior of the system, but when
activated they can disturb the selected signal. Some of the
possible effects can be stuck-at-one, stuck-at-zero, delaying the
signal flow and inverting of the input signal. Another system
manipulation method are the mutants. A mutant is a modified
system block which works as indented until it is activated.
Then the block acts like a corrupted block.

For the usage of saboteurs or mutants it is required to
have access to the hardware description of the system or the
system must already support this features via a standardized
test interface. An example of such a test interface could be
scan chains [6].

The best fault injection platform is not of interest without
having proper fault models. These fault models are different
depending on the domain. In the dependability domain often
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random occurrence of natural faults is emulated. Therefore,
single event upsets (SEU) fault models are a proper method to
reproduce the effect of e.g., cosmic rays [7], [8]. For security
evaluations such simple faults are not the only way for testing
the effect of an attack because attackers who trying to bring the
system in a mode where secret information can be extracted
can easily disturb multiple bits. This leads to fault models
which allow for specifying multi-bit faults. Testing the whole
system regarding multi-bit faults within reasonable amount
of time is unfeasible. Therefore, test strategies have to be
implemented. Test strategies are also depending on the field
of use. While in dependability systems the whole system has
to be tested, in security systems only security relevant regions
needed to be tested.

One security relevant target is the memory because critical
data might be stored there (e.g., secret keys and access rights).
The increasing size of memories on SoCs leads to an enormous
effort to test if the system fulfills the security level. It is
impossible to test every memory address at every time with all
possible attack patterns. Therefore, some methods have to be
implemented to reduce this effort. Random methods are used
to inject faults into memory. This is especially very inefficient
for large memories.

In this paper we propose a method to detect security
critical memory regions and reduce the required fault injection
emulation time. Especially for operating systems with dynamic
memory management this is an important task because the
location in the memory of security relevant variables is not
known at compile time.

The main goals of this work can be summarized as follows:
• Increasing the fault emulation speed for testing the resis-

tance of a system against memory fault attacks.
• Pre-injection analysis of memory access to find security

relevant regions.
• Testing memory attacks independently of the used hard-

ware (controller, memory) and software (operating sys-
tem, programs).

This paper is structured as follows. Section II briefly shows
the state of the art on fault injection campaigns acceleration.
In Section III the design of the fault injection controller is de-
scribed. Section IV describes the function of the pre-injection
memory analysis concept. Section V shows some experimental
results of this concept based on a LEON3 implementation [9].
Finally, conclusions are drawn in Section VI.

II. RELATED WORK

The increasing complexity of system-on-chips leads to an
time intensive testing process. Especially in high security
applications the effort to test the system against fault attacks
is a major part of the whole development cost [10]. Before
the system can be sold as a high security product, it has to
be certificated by a test laboratory. These tests are a very time
consuming and costly step during the development process. To
prepare for the certification process, the fault-resistance of a
system is tested already in the concept phase. Therefore, many
methods exist to cope with these issues. These methods can

be split into two main groups, increase of the speed of one
fault test and a pre-injection analysis.

The speed increasing of one fault injection test is done by
testing the system on an FPGA based emulator platform [11].
The fault emulation approaches can be split into three main
groups.
• Partial reconfiguration is a method, where a feature of

SRAM-FPGA is used, to modify the netlist of a system
during run-time. [12]–[17].

• Mutants are corrupted models which act like attacked
block. [4], [17], [18]

• Saboteurs are blocks which are placed between source
and sink of a signal. When activated they can manipulate
the signal. [4], [18]

Compared to fault simulation these methods are very effi-
ciently for fault testing. But the time required for a large
number of tests is high. Therefore, the combination of the
speed of emulation methods with pre-injection analysis can
be used.

The pre-injection analysis observe the system during a
golden model run and uses the generated information to reduce
the required test scenarios. Berrojo et al. presented a method
on the usage of read and write information for the reduction
of fault injection sets. They analyzed in a golden model run
the behavior of registers and their bit-flips. This information
is used to generate structured fault emulation processes. For
this method the system has to be analyzed during a simulation.
The main disadvantage is that an RTL-level simulation for an
operating system is a time consuming process. Barbosa et al.
[19], [20] show a method on the usage of assembler code and
op-code information to detect important attack regions in the
design. They read out the op-code and analyze it to know
what register is used and attack the registers directly before
it is used. This reduces the number of fault scenarios. The
disadvantage of this method is that it must be adapted for
every core because if the structure of the op-code changes
the injection system has to be modified. To the best of
our knowledge there exists no pre-injection memory analysis
method for accelerating fault emulations in literature.

III. FAULT INJECTION CONCEPT

This fault injection method is similar to modular fault
injector (MFI) published in [5]. The aim of a modular fault
injection concept is that the MFI can be adjusted exactly to
the needs of the project where the MFI should be used. The
MFI is based on four main parts seen in Figure 1.

1) Attack Database: Stores the attack and the attack
scenarios

2) Host PC: The Host PC controls and defines the fault
injection flow. With tools running on this PC a software
developer can easily define which fault effect should be
produced. Also the parameters for a long time test can
be configured.

3) Modular Fault Injection Controller: This modular
fault injection controller manages the injection process
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on the FPGA. The controller gets different trigger sig-
nals as input and activates saboteurs depending on the
attack which should be performed. The main important
parts of the MFI are an internal memory to store the
attack scenario, the control logic which activates and
deactivates the saboteurs, and the trigger interface which
can be configured for different trigger events.

4) The Saboteurs: Saboteurs inject the fault into the signal
lines.

With this MFI it is possible to produce different fault effects
in a reproducible way. In this paper a method similar to the
MFI is used for the fault injection. The method is adapted
with the pre-injection memory access analysis described in
the following section.

IV. PRE-INJECTION MEMORY ACCESS ANALYSIS

The main problem of fault injection methods is to find
important targets for the manipulation of the systems behavior.
Especially the always increasing size of memory leads to an
enormous effort to test every possible fault introduced into
the system. As seen in Equation 1 the time(T) required for
a whole test depends on two main parameters. The time
per scenario and the number of scenarios. For a calculation
example following values of a normal smart-card example are
assumed:

Memory size = 100KB
Run-time of the OS = 100ms
Frequency = 33MHz

If every byte of the memory should be attacked every 1000th
clock cycle we get an overall time for the test of 33 million
seconds. This is nearly a whole year which is not practicable.
The target is to reduce this effort. The time per scenario
is fixed because the test software always requires the same
execution time. So the only way to decrease the overall time
is by reducing the number of scenarios which must be tested.
Therefore, a method has to be developed to allow for the
analysis of the memory accesses to reduce the number of tests.
To show the functionality of the novel proposed method we
must analyze how source code functions access memory. As
seen in Figure 2 security programs consist of areas where
critical functions are executed. These functions normally only
require a subset of the whole memory region. Analyzing
these memory accesses manually is a very error prone and
time consuming process. Therefore, a novel automatic analysis
step is presented in this paper how memory accesses can be
automatically analyzed and how this information can be used
to reduce the number of required tests. As seen in Figure 3
not only the memory access is important for this analysis but
also the information if it is a read or a write access must be
considered. To generate the optimal test scenarios firstly all
memory accesses have to be logged in a golden model run.
This run does not significantly influence the overall test time
(If there are thousands of injection runs it increases the test
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critical code execution.

time only slightly). Such a memory analysis works only if the
memory accesses do not change from one run to the next.

T = nscenarios ∗ tscenario (1)

The system to perform such a memory log is build as shown
in Figure 4. This system consists of the following blocks:
• Memory: The memory of the system-under-test is con-

nected via a bus to the CPU. The address bus defines
the memory address and the r/w signal defines if data is
written or read out.

• CPU: The CPU requires the interface to the memory for
reading out program code and data.

• MFI: The modular fault injector controls the fault in-
jection process by activating saboteurs in the design. To
synchronize the activation of the fault injection process
trigger signals are used. In this case the program counter
and some signals which indicate memory accesses are
used as trigger signals. In the golden model run the MFI
also controls the FIFO.

• Cycle Counter: The cycle counter counts the clock
cycles starting at the last reset of the system. This
information is used to map each memory access to a
specific time after system reset.

• FIFO: The FIFO memory is used to store all memory
accesses within the critical function during the golden
model run. Therefore, the current memory address, the
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read/write signal, the current cycle counter and the pro-
gram counter are stored. The collected information can
be read out by the Flow Controlling CPU.

• Flow Controlling CPU: The flow controlling CPU is an
controller placed on the FPGA or a host PC outside of the
FPGA which is used for the management of the whole
flow.

The system allows for logging all memory accesses. Addi-
tional information which is stored are the current program
counter value, the cycle counter value, and if the access
was a write or a read. Only some areas of the code are
security relevant so the FIFO can be adjusted that only memory
accesses are stored from a start program counter till an end
program counter. During this time it is possible to store one
entry to the FIFO for every clock cycle, but to reduce the
required memory of the FIFO only an entry is stored when a
memory access is performed. If the FIFO is full, the emulation
stops until some data is read out from the FIFO. After the
golden model run the flow controlling CPU reads out all
memory accesses and calculates a test set for the fault injection
campaigns.

For this paper a test-set generation method is used where
transient bit flips in the memory should be emulated. This
means that after an attack the attacked byte is corrupted until
the next write to this memory cell. The rules for the test-set
generation are:

1) Inject a fault to a memory cell before every read
access: Between two accesses to a specific memory cell
only one fault injection needed to be emulated. The
effect of the injection is the same if the fault is injected
one or ten cycles before the read of the memory cell if
there was no other memory access in between.

2) Inject a fault to a memory cell until next write
access: Every injection is active until the next write to
this memory cell, because a transient fault ends when a
write access to the memory cell occurs.

3) Do not inject before write accesses: Between a read
and a write access no fault injection must be started if
there are other accesses to this memory cell during the
critical code regions.

4) Inject at last write accesses: The last access to this
memory cell should always be attacked until the next
write outside of the critical memory region occurs.

Figure 5 shows an example of such attack scenarios on one
memory address. The deactivation of the fault attack could
differ from the picture because if the attack influences the
system execution, the time for the next write access to the
memory could be changed. Permanent fault attack scenarios
are also shown in the figure and could be easily implemented
by never deactivating the injected fault.

V. EXPERIMENTAL RESULTS

To show the effectiveness of the memory attack scenario we
implemented the proposed method on a widely used platform,
the LEON3 SPARC V8 conformant processor by Gaisler
Research [9].
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Fig. 4. Hierarchical model of the pre-injection memory access analysis
hardware structure.
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Fig. 5. Memory attack scenario on one address split into transient and
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We used a Xilinx ML507 [3] evaluation board with a
Virtex5 FPGA. For the simulation results Modelsim (64bit,
version 6.6) which is part of the ISE software package
provided by Xilinx is in use. As simulation system a six-core
3.2 GHz AMD Phenom-II machine with 16GB of RAM is
used.

A. LEON3 platform setup

The platform for the test is the LEON3 processor in a dual-
core configuration (see Table I). For the fault injection the
MFI can be controlled via the GPIO interface by the flow
controlling CPU (in this case a PowerPC which is part of the
Virtex 5 FPGA). Also the FIFO values can be read out by the
flow controlling CPU over the GPIO bus.

TABLE I
LEON3 CONFIGURATION

Operating Frequency [MHz] 40
Instruction Cache Sets 2
Instruction Cache Set Size [kB]
Data Cache Sets 1
Data Cache Set Size [kB] 4

B. Saboteur configuration

The saboteurs are placed at the interface between the
LEON3 core and the memory. The exact location is between
the CPU and the data cache. Therefore, it is possible to test the
system at an abstract level because only virtual addresses are
attacked. The test engineer does not need knowledge about the
memory concept. This allows for reproducing every thinkable
memory manipulation with the lowest required knowledge for
the software tests. It is also possible to place saboteurs at the
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TABLE II
FAULT INJECTION SETUP

Test System Test System & Per- Overhead [%]
Injection Memory Analysis

Number Slices 11401 12137 6.5
Number LUT 20832 20954 0.6
Number BRAM’s 38 103 171
Total Memory(KB) 1332 3654 174

instruction cache. For these tests we limited the attacks to the
data cache because the attack to the instruction cache works
in the same way as for the data cache attack.

C. Hardware overhead

The pre-injection memory access analysis results in only
minor overhead compared to the whole system (see Table
II). Especially the Block RAM size is increasing because of
the FIFO which stores the memory accesses, is build using
BRAMS. The size of the FIFO can be easily configured based
on the size of the FPGA. If the size of the FIFO is too small
to capture all memory accesses of the critical regions the
process can be split into several parts. Therefore, the emulation
stops when the FIFO is full and waits until some data is
read out from the FIFO. This increases only the time for the
golden model run, but it has no influence on the fault injection
campaigns because during the campaigns the FIFO will not be
used.

D. Proof of Concept

To prove the concept of the memory attack concept a small
calculation program was used. The intention was to test the
system with a small test program allowing us to check the
results by hand. Therefore, we used the code shown in Listing
1.

i n t t e s t ( ){
v o l a t i l e i n t i =0 , h =0;
f o r ( i =0 ; i<1 0 ; i ++){

h+= i ;
}
r e t u r n h ;

}

Listing 1. Test Program for Proof of Concept

For the test we set a trigger point at the begin of test function
and one trigger point at the end of the function. When the
first trigger is activated we start to log all memory accesses.
When the second trigger is reached we stop the logging. The
emulation runs until the end of the program to estimate run-
time of the program. This time is required to detect if the
system is running in an infinite loop, during the fault injection
campaign.

After compiling, this function consists of 22 assembler
commands. To execute the program 47 memory accesses are
required. See Table III to get an overview how many memory
read and write accesses are required. The estimated number is
generated manual by analyzing the assembler code. As seen
in this table the number of estimated and measured memory
accesses are identical.

TABLE III
MEMORY ACCESSES OF THE PROOF OF CONCEPT EXAMPLE.

estimated value measured value

Read 23 23
Write 22 22
Total Memory Accesses 47 47

TABLE IV
RESULTS FOR THE PROOF OF CONCEPT EXAMPLE.

Simulation [s] Emulation [s] Speed-up factor

per run 603 0.224 2692
25 Test Cases 15065 5.6 2690
10000 Test Cases est. 6030000 2260 2668

After the measurement the system automatically generated
a total of 25 test cases. One test case is an fault injection at
one memory address which starts at a special start time and
ends at the the next write access to this memory cell. To test
different manipulations to the memory cell this test case has
to be executed several times. For running every test case once
the fault injection flow requires 5.6s, which is approximately
one injection every 224ms. From this 25 attacks 22 lead to
a faulty result(see Table IV). The other 3 tests calculated the
right result because not every injection has an influence on
the system e.g., if a counter variable is compared to not equal
zero and we change the value of this variable from 2 to 1.

The simulation of one test case requires approximately 2600
times longer than one emulated test-case of the system. To
compare the attack scenario to a test scenario without the
improvement of cache analysis we calculated with 10000 test
cases. 10000 test cases are used because we estimate that at
least 100 addresses have to be tested. Each of these address
should be tested at 100 different points in time. Therefore, the
pre-injection memory access analysis results in a speed-up of
nearly 400.

E. AES Example

To show that the approach also works on a larger test pro-
gram we used an AES implementation from [21]. We attacked
only the encryption of a 16 Byte plain text. The memory
logging is only activated when the encryption function is
executed. From the analysis step we get the following results
as seen in Table V. There are 361 data memory accesses during
the encryption function. The execution of this function requires
2584 clock cycles. To calculate the speed-up compared to
an attack scenario without pre-injection memory analysis we
used this number of 2584 clock cycles as reference. The
second value which is important for the calculation is how
many memory addresses have to be attacked. There are 163
addresses used during the encryption process. These memory
cells are distributed over the memory. The difference between
the highest and the lowest used ROM address is 255 and
the difference between the highest and the lowest used RAM
address is 712. These values are used to calculate the estimated
number of fault attacks which have to be performed to test
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TABLE V
DATA MEMORY ACCESSES DURING AES ENCRYPTION

Read 250
Write 111
Total Memory Accesses 361
Rom Addresses 121
Ram Addresses 42
Total Addresses 163
Total Clk Cycles 2584
Test Cases (without our approach) 249873
Test Cases (with our approach) 249
Speed-up factor 1003

TABLE VI
SIMULATION AND EMULATION TIME FOR THE AES EXAMPLE

Simulation [s] Emulation [s] Speed-up factor

per run 480 0.5 960
249 Test Cases est. 119520 120 996
249873 Test Cases est. 119939040 119050 1007

the system. If every memory cell within the used ROM and
used RAM address range is attacked every ten clock cycles
we get an total of 249873 test cases. As seen in Table V our
approach only has to perform 249 test cases. This is a speed-
up of approximately 1000. Table VI shows the required time
for simulating and emulating these test cases.

VI. CONCLUSION

This paper presents a hardware independent method for fault
injection acceleration by pre-injection analysis of memory
accesses. For this analysis all memory accesses within a
critical code segment are stored in a FIFO and are analyzed.
Based on the result of this analysis the test campaign is
calculated by using simple rules as defined in Section IV.

An advantage of this design is its flexibility, because only
the memory interface of the system-under-test has to be
connected to the pre-injection memory analysis tool. It is
usable for every system which contains memory. The method
has a scaleable hardware overhead so it can be used on every
FPGA. The results show that this flow can provide a speed-up
for a fault injection flow.

Our future work is to further reduce the number of required
fault injection campaigns by using hit and miss information
of cache accesses.
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1. INTRODUCTION
The increasing silicon integration density brought tremendous challenges for system engineers with it. First,
an ever increasing number of new features have to be implemented in ever decreasing implementation cycles.
Second, a growing number of these highly integrated systems are used in critical fields with high demands
on system security and reliability. Therefore system designer support is needed during the design phase to
test new hardware and software implementations for possible weaknesses [Ravi et al. 2004].

Especially for high safety applications (e.g. space, automotive, aeroplane) a wide variety of fault injection
techniques has been developed [Arlat et al. 1990; Jenn et al. 1994; Leveugle and Hadjiat 2003]. In this field
faults are mostly of a random nature and therefore these evaluation approaches rely on a random selec-
tion and injection of operational errors. For these platforms generally no fault attacks have been considered
because of their controlled nature [Leveugle 2007]. Otherwise for modern security evaluations it is of vital
importance to know the impact of faults on the power consumption profile because it forms a direct (simple
power analysis - SPA) or indirect (differential power analysis - DPA) information source to an adversary (e.g.
[Kocher et al. 1999; Roche et al. 2011]). To estimate the power profile during run-time hardware accelerated
methods like power emulation have been proposed. These techniques can be used to close a gap often re-
maining in classic fault injection platforms for reliability purposes. Such a gap constitutes a serious problem
in security critical systems as even the reset behavior during an attack already provides information to the
attacker as depicted in Figure 1. Such information allows to draw conclusions about internal fault reaction
mechanisms like emergency memory accesses that would lead to increased consumption or a decreased power
profile if a simple device reboot is triggered (such effects have been shown in [Bar-El et al. 2006]).
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Fig. 1. Influence of security reset on power consumption profile

To evaluate hardware and software implementations for their fault robustness these techniques have been
combined to form a fault effect evaluation platform. The main contributions of this work are

— A novel evaluation flow combining fault injection, power emulation, power and fault analysis techniques.
— The introduction of a novel FPGA-based platform for run-time fault-attack and dependability evaluations.
— Case studies using a common AES software and hardware implementation and general purpose processor.

This paper is structured as follows. In Section 5 a brief overview over the current state-of-the-art concern-
ing similar evaluation platforms is given. Section 2 contains a short introduction into fault injection methods
and applications. Followed by Section 3 summarizing the main characteristics of different power analysis
methods. Section 4 gives an introduction into power emulation and its application for power analysis pur-
poses. In Section 6 the principle methodology of the fault effect evaluation platform is presented. Followed by
Section 7 showing some experimental results to prove the viability of our approach. Finally Section 8 gives a
short conclusion about our work and some views into future developments in this field.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0, Publication date: 2012.

Publication 6 - ACM TRETS 2012 74



POWER-MODES - POWer EmulatoR and MOdel based Dependability and Security evaluation 0:3

2. FAULT INJECTION (FI)
The term fault injection describes the intentional introduction of faults into a system to simulate errors that
are caused by external influences changing the system’s normal behavior. Faults can be injected on several
different levels of abstraction:

— Hardware-Level: This level requires the least amount of system-invasion as existing test equipment can
be reused. Faults can be injected on pin-level by manipulating data and control flow [Arlat et al. 2002].
Internal manipulation is enabled through radiation sources or by direct injection into the silicon device
[Gunneflo et al. 2002]. The disadvantage of fault injection on this level is the need for existing prototype
samples.

— Software-Level: The basic principle behind software fault injection is the same as in hardware FI [Tsai
et al. 2002]. A comprehensive software testing environment is presented in [Segall et al. 2002].

— Modeling-Level: As shown in Section 5 direct evaluation of hardware description level models is of utter
importance to embedded system designers. As shown in [Baraza et al. 2002] faults can be introduced using
simulator commands or by augmentation of the descriptive code itself.

For this fault injection platform we will concentrate on hardware-description based approaches. In this
case faults can be introduced using simulator commands in hardware model simulators or by adapting the
model description itself for hard-accelerated emulation.

2.1. Simulation-based
The advantage of simulation-based approaches is that no changes to the model description itself are neces-
sary. The complete model simulation flow can be reused for fault injection examinations. Faults are activated
through simulator commands to manipulate certain states of the system. This can be done because every
element of system design is accessible during simulation. The disadvantage of this approach is that a signif-
icantly amount of computational power is necessary for detailed simulations of complex designs. Especially
if the abstraction level is lowered to the gate-level lengthy simulation runs are necessary for comprehensive
evaluations.

2.2. Adaption-based
Adaption-based fault injection approaches augment the existing hardware description with additional cir-
cuitry to influence the behavior of predefined system elements. While specific knowledge about the location of
faults manifesting themselves in form of errors is necessary, very high evaluation performances are enabled.
Especially in combination with emulation techniques using FPGA prototyping platforms large amounts of
different fault patterns can be evaluated in relatively short periods of time [Grinschgl et al. 2011b]. Two
different concepts of manipulative elements are generally used:

— Mutant: In this case a complete system module is replaced with a manipulated version of this module.
During normal operation this module works as designed but after fault activation it behaves like a defective
one.

— Saboteur: Saboteurs are small elements that are inserted into signal lines. During normal operation these
act transparent but after fault activation a predefined fault effect influences the targeted signal.

3. POWER ANALYSIS (PA)
In standard CMOS technology power consumption and emitted electro-magnetical radiation of a given sys-
tem is dependent on the amount of simultaneously switching transistors. Therefore it not only depends on
the control flow of a program but also on the data it processes. This fact is exploited by power analysis ap-
proaches using timing analysis or statistical methods to extract secret information like the encryption key
through this externally available power information. This powerful tool therefore became a strong companion
of adversaries and cryptologists alike.
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3.1. Simple Power Analysis (SPA)
In case of SPA only a small number of power consumption radiation traces are recorded for further analy-
sis. These are analyzed in a direct manner, meaning that these traces are evaluated for specific algorithm
dependent variations and timing characteristics. SPA is therefore based on a variant of control flow analy-
sis of cryptographic workload. To efficiently execute this evaluation at least basic knowledge about the used
algorithm or implementation is needed.

Classic programming language elements that result in strongly visible power profile variations are
branches. Depending on the branch condition these also lead to strong timing differences that could be de-
tected by an adversary. Therefore software implementations of cryptographic algorithms must never be based
on branches to hinder SPA analysis. Another effective countermeasure against such power analysis methods
is execution randomization to disconnect execution behavior from the algorithmic behavior.

3.2. Differential Power Analysis (DPA)
DPA combines the power or radiation profile analysis techniques presented in Subsection 3.1 with statisti-
cal methods. Since its publication by [Kocher et al. 1999] it has been proven to be a powerful tool for the
extraction of secret information from cryptographic devices. While SPA is only based on visible trace vari-
ations caused by differences in the execution of the algorithm, DPA exploits trace information depending
on data-dependent transistor switching. While the original presented techniques required high amounts of
power or radiation records if simple countermeasures are present, newer methods reduced these significantly.
Especially noticeable is correlation DPA as shown in [Brier et al. 2004] and [Mangard et al. 2007].

Countermeasures could be specialized logic styles and shielding to flatten emitted leakage profiles. Ran-
domization and masking techniques help to counteract statistical methods and power consumption assump-
tions. Generally it is more difficult to efficiently fight statistical power analysis attacks. As shown in [Schau-
mont and Tiri 2007] some countermeasure combinations may even be counterproductive.

4. POWER EMULATION (PE)
The wish for efficient power estimation methodologies led to the development of the power emulation tech-
nique, i.e., the hardware-accelerated power evaluation of a given system-under-test. It became a promising
alternative to simulation-based power profiling approaches and its hardware-based nature allows the inte-
gration into embedded systems.

4.1. Principle of Power Emulation

CPU

POWER ESTIMATOR

FU 1

FU 2

FU n

.

.

.

POWER MODEL

Activity

Sensing

Signal

Weighting

Power

Summation
Interpretation

∑ 
 ][* txcP iiestimated

C1 C2 CN

*
*

*

. . .

Storage

Power 

Analyser

CP
-
+

FIFO

Fig. 2. Power Emulation - Principle Architecture (adapted from [Krieg et al. 2011b])

Coburn et al. introduced the principle of power emulation (PE) in [Coburn et al. 2005] as a state-of-the-
art functional emulation using hardware-implemented power models. The functional emulation and power
estimation process are executed concurrently during the run-time of the system.

As depicted in Figure 2 the generated approximated power values can be immediately used for further
processing or saved as traces in case of power consumption evaluations.
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4.2. Extended Power Emulation Unit
Our power evaluation platform is partially based on a high-level power emulation unit similar to the one
introduced in [Genser et al. 2009]. It comprises a direct implementation of the principle architecture depicted
in Figure 2.

Its basic operation utilizes additive linear power macro models as expressed in Equation 1 to generate static
and dynamic power consumption estimates. These values are generated for different system components by
monitoring its power-relevant control signals xi. For each member of the control signal set of size Nc a weight
ci and for each observed data-line a value di in a set of size Nd inside the macro model is defined. The static
power consumption is considered by coefficient c0. Resulting in a combined power model size of Nc +Nd + 1
coefficients that have to be implemented inside the emulation architecture.

P̂ [t] = P̂sta + P̂dyn[t] = c0 +

Nc∑

i=1

cixi[t] +

Nd∑

i=1

dixi[t] (1)

To enable the usage of this power estimation principle for DPA evaluation, its power model has to be
extended for the usage of not only state-dependent (SD) but also data-dependent (DD) signals. The original
design of the PE unit was based on the analysis of the state of various system components by monitoring
selected power-relevant control signals. This approach is only viable for pure power consumption estimation
evaluations within a reasonable accuracy. A power model designed only under the consideration of a system’s
control flow is typically not usable for security evaluations because of the missing dependency between power
profile and processed data. Therefore these power models have to be extended with basic signal switching
information of data-processing architecture elements. Such an extended power emulation hardware module
and characterization process has been presented in [Krieg et al. 2011a].

In case of our chosen target architecture we selected both operand registers of its arithmetic logic unit
(ALU). The elements of these operands have to be pre-processed to extract only switching information. This
approach allows to introduce data-dependency into the power consumption model while resulting in a very
similar power emulation result. This is achieved by data-line switching activity extraction to simulate the
current peak behavior of CMOS inverters. Such data-line weights can be either defined dynamically to in-
vestigate worst- and best-case scenarios, or by extraction of signal line capacitances (as provided by the RC
extraction phase of common semiconductor back-end tools). Our generated power models have been evaluated
and compared to gate-level power simulations and their accuracy has been confirmed to be similar to power
models only concerning control signals. The evaluation of software side-channel leakage countermeasures
can be enabled by scaling only these data-dependent model coefficients. Meaning, leakage can be intention-
ally over and under estimated to simulate well and less optimal routed designs resulting in different gate
capacitances.

To enable our FPGA-based evaluation platform for simple run-time power tracing the power estimation
unit has been additionally extended with an internal and configurable FIFO buffer. This memory allows the
storage of the trace of a single encryption run without control interference of the cryptographic algorithm.
After such an evaluation run has been finished its contents can be safely written to an external memory
target.

4.3. Extended Power Characterization for DPA Evaluations
An automated power characterization methodology has been presented in [Bachmann et al. 2010]. A similar
approach has to be extended to enable the generated power models consisting of both state-dependent and
data-dependent model coefficients. The power characterization flow as depicted in Figure 3 can be described
by the following stages:

(1) Pre-Processing: To gain a good coverage of all components of a given system-under-test, a set of mi-
crobenchmarking applications is simulated and power-profiled using state-of-the-art gate-level power
estimation tools (Synopsys PrimeTimePX). This simulation process results in training-sets containing
signal activity and power estimation data.
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Fig. 3. Automated power characterization methodology for power evaluations

(2) Coefficient selection: Our characterization approach applies several filters to the training set data
retrieved during the previous stage to remove signals that show no (zero-activity filter), irrelevant or
redundant activity (cross-correlation filter). Basing on this filtered data-set power-relevant signals, i.e.,
power model parameters xi are determined according to their correlation to the gate-level power sim-
ulation data. The completely automated approach presented in [Bachmann et al. 2010] only considers
control-flow-related signals for power modeling. Therefore we extended this approach by the addition of
data signals based on a user-defined configuration. These data signals have to be preprocessed using an
in-house VCD-file analyzer solution to extract only its switching activity.

(3) Coefficient fitting: The resulting parameters out of the selection process are now used for the determina-
tion of coefficients ci by means of a model coefficients fitting process. This process is using a non-negative
linear regression technique. Finally a power model containing both state- and data-dependent coefficients
is generated.

5. RELATED WORK
This work includes the application of a variety of technologies to gain a higher level view of complex security
problems. These techniques can be divided into three main groups. First, emulation-based power estimation
methodologies to retrieve accurate cycle-accurate power estimates at early stages of the design process. Sec-
ond, security evaluations of cryptographic software and hardware implementations rely on the application of
power-analysis techniques as soon as possible during the design flow. Finally, fault injection platforms have
been presented to confront hardware models or manufactured devices with eventual occurring faults.

5.1. Emulation-Based Power Estimation
In [Coburn et al. 2005] a brief overview on the basic power emulation principle is given. Run-time improve-
ments by power estimation hardware-acceleration of about 10x to 500x compared to commercial power esti-
mation tools are achieved. The authors also introduced strategies to minimize the hardware overhead caused
by the emulation methodology. In later work this approach has been extended in [Ghodrat et al. 2007] into a
hybrid power estimation technique for complex SoCs. Power analysis times have been significantly reduced
by this framework through the use of combined simulation and emulation techniques. A main advantage
of hardware-assisted power estimation is the possibility of direct interpretation during run-time of a pro-
cess. Such an approach, used for the power-aware process migration between cores has been presented in
[Bhattacharjee et al. 2008].
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5.2. Early Power Analysis Techniques
The first approach comprises a purely software-based solution [Shumov and Montgomery 2010]. For extract-
ing side channel leakage information from a given program, it is executed and every instruction and processor
state is traced. This information is fed into an easily extensible analysis module. Such analysis modules are
directly implemented for the Microsoft Debugger API. The authors do not state any information about accu-
racy and simulation performance.

The second approach uses in-system knowledge provided by power consumption simulators using instruc-
tion set simulators. While promising high simulation speeds this approach is mostly limited to thoroughly
profiled general purpose architectures. Implementations of this approach were presented in [den Hartog and
de Vink 2005] and [Thuillet et al. 2009]. Both solutions promise high simulation speeds, but do not present
any hints about the accuracy of the used power profiles. Inaccurate power profiles could lead a software en-
gineer into a sense of false security as the possibility of missed information leakage could be higher than
anticipated. The implementation presented in [Thuillet et al. 2009] uses several abstract power models to
isolate possible sources of leakage. The presented approach has been designed for the Atmel AVR microcon-
troller series.

The third approach uses highly accurate gate- or even transistor-level simulations to identify critical parts
of the circuit-under-test. This level of accuracy comes with high costs in terms of simulation speed and needed
simulation equipment. The designer therefore has to choose between very short simulation times or reduction
of the evaluation to the smallest possible leakage contributer. The former choice is mostly infeasible because
it is of utter importance to know if an adversary could extract information using a high number of power
traces. Works based on highly accurate analog simulations using SPICE simulators [Li et al. 2005; Regazzoni
et al. 2007; Regazzoni et al. 2009] and using register transfer level (RTL) simulations [Bucci et al. 2007]
for improving simulation speeds have been presented. However, the timely effort of offline power simulations
remains a limiting factor for the trace count. The authors of [Bucci et al. 2007] also note that RTL simulations
may hide leakage contributors only visible after further design flow steps.

5.3. Fault Injection Platforms
To improve the reliability of high-safety applications several fault injection techniques have been introduced
[Arlat et al. 1990; Jenn et al. 1994; Leveugle and Hadjiat 2003]. Faults can be injected into completely man-
ufactured parts e.g. using radiation or during the design phase using hardware description manipulations.
The latter can be divided into simulation and emulation based approaches depending if a model of the imple-
mentation is simulated or emulated on a FPGA platform.

Because high-level hardware descriptions can be simulated directly during the design phase, first fault
injection tools for such hardware-models were based on simulation techniques. One of these first simulation
tools was MEFISTO specifically targeted on fault injection into VHDL models [Jenn et al. 2002]. A higher
level approach using the system-level description language SystemC has been shown in [Rothbart et al.
2004]. A pure simulation-based technique has been complemented with automatized saboteur and mutant
insertion strategies for the VFIT tool in [Baraza et al. 2006]. Further improvements concerning the injection
performance of simulation and emulation approaches have been presented in [Valderas et al. 2007].

The need for higher fault injection coverage led to the heavy research activity in the field of emulation
techniques. As shown in [Leveugle 2002] emulation promises significantly higher injection rates and therefore
enables the possibility to evaluate more possible fault configurations than using simulation. The usage of
FPGAs for hardware prototyping also allowed to use novel reconfiguration techniques for fault injection as
presented in [Antoni et al. 2002]. Since the introduction of these techniques several improvements have been
introduced in [Zheng et al. 2008; Daveau et al. 2009].

All these presented approaches have been developed for dependability evaluations, meaning that in most
cases only single faults have been considered. As shown in [Leveugle 2007] security evaluations need more
complex fault models as intentional faults could happen at several positions at once.
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5.4. Discussion
Existing work concerning the evaluation of SoC designs at early design stages had strong focus on a single
problem. Therefore, physical and emulation-based approaches have been introduced for dependability evalu-
ations and simulation-based techniques have been the prime choice for security investigations. This results
of the need for performance to satisfy statistical models covering random fault models and high behavioral
accuracy for the investigation of circuit effects as gate switching or faults resulting from laser attacks.

As long as all parts of the system are investigated by the same entity, this is a valid procedure as the test
engineers can use very information about the software and hardware implementation. In large SoCs and
in smart-cards this is usually not the case. The hardware is for example provided by a large semiconductor
manufacturer and the software is developed by a specialized company that targets a specific market sector.
Especially in the smart-card section a wide range of rules has been defined for security evaluation to ensure
the combination of the hardware and software fulfills a certain level of trust. Because the hardware manu-
facturer will try to hide the details of the secure implementation, it is not possible to provide such detailed
information like a comprehensive simulation model to the customer. Our modular fault injection approach al-
lows the hardware manufacturer to provide a debugging tool that abstracts the fault effect visible on software
level from the hardware effects causing these effects.

Finally, the power consumption aspect has been completely disregarded in literature. In systems with a
limited power budget a compromise has to be found between the most secure hardware architecture and a
reasonable consumption behavior. A characterization and test environment to determine an optimized soft-
ware and hardware implementation that fulfills both, power and security targets is therefore strongly needed.
To the best of our knowledge there is no comprehensive approach providing power analysis, fault analysis and
a complete power characterization flow, described in literature.

6. EVALUATION PLATFORM
The combination of fault injection and power emulation techniques opens a variety of new design analysis
possibilities. Because of their hardware accelerated nature they can be integrated in a combined form into an
FPGA-based platform.

6.1. Emulation Hardware Generation Flow
As shown in Figure 4 the hardware accelerated emulation architecture generation flow has been divided into
the following phases:

— Model Creation Phase: In this phase a high-level fault event is mapped to a circuit-internal fault model.
It is not necessarily run through during every fault emulation campaign. Additional power coefficient char-
acterization has to be performed if significant hardware changes invalidated a previous power emulation
implementation or if the flow is applied to a new design.

— VHDL Augmentation Phase: According to the chosen fault model and location, saboteurs have to be
placed into the system to emulate a chosen fault effect. if necessary for further analysis steps, additional
analysis modules also have to be placed during this stage.

These tasks have to be completed by the hardware designer to prepare the design and fault patterns for
further distribution.

Model creation phase. The fault model itself can be divided into a low-level and a high-level view. The low-
level fault model concerns the effects directly influencing the system on circuit-level. Such fault models could
be stuck-at, indetermination, delay, open, close or bit-flip faults. A more detailed overview over such low-
level fault-models is given in [Baraza et al. 2006]. High-level fault models can include many low-level effects
resulting in a specific influence on normal program execution. These models are specifically important for
security evaluations which include power- or light attacks that lead to several faults happening at the same
time [Leveugle 2007]. Currently we are not able to provide an automated approach to generate such high-
level models and therefore good evaluations results rely on the experience of the test designer.
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Fig. 4. Emulation hardware generation flow

If the power consumption behavior of the targeted system changed significantly, the system has to be
re-characterized to retrieve an updated power macro model. The process has also been automatized using
MATLAB for coefficient selection, characterization and verification. The verification process compares the
derived power model to cycle-accurate power simulation results for a chosen set of verification programs.

VHDL Augmentation Phase. After the selection of interesting fault models fault locations can be determined.
Onto each selected fault location a saboteur has to be placed to emulate the desired effect at the correct
position. Selection, activation and configuration signals of these saboteurs then have to be routed to the top
level to be connected to the fault injection controller. Because of the complexity of modern processor designs
this process has been completely automated using a VHDL parser application based on the VMagic VHDL
code generator [Pohl et al. 2009]. The complete placement process is shown in [Grinschgl et al. 2011a].

6.2. Fault Emulation Architecture
All parts of the proposed fault emulation platform are designed in a technology-independent way to allow
for the application to FPGA evaluation systems of different manufacturers. Meaning all augmentations are
implemented on a RTL-level to rely on existing implementation flows as provided by the evaluation board
manufacturer. The basic hardware accelerated fault emulation platform is depicted in Figure 5.

In case of a Virtex5-FXT based FPGA system an integrated PowerPC processor can be used for fault injec-
tion control. The generalized GPIO-interface allows to use any hard- or soft-core for control. Also an AMBA-
interface is available if an in-system solution is desired. The fault injection controller can be pre-programmed
to listen for a specific program counter (PC) value. An internal counter is used to start the injection process
when the PC-of-interest is called a pre-determined amount of times.
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Fig. 5. Hardware accelerated fault emulation architecture
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6.3. System evaluation flow
After all characterization and generation tasks have been executed and proper emulation architecture has
been derived, the resulting netlist can be loaded onto a FPGA-based evaluation device. As shown in Figure 6
the following phases have to be passed through to gain information about system power consumption, leakage
and fault robustness.

— Profiling phase: In the profiling phase test programs are executed on the target platform while faults are
continuously injected to gain knowledge about the possible execution effects.

— Analysis phase: All data gathered during the profiling phase is now thoroughly examined to detect rea-
sons and develop countermeasures against undesired execution errors.

— Decision phase: Finally analysis results are used to select software or hardware measures to improve
overall robustness of the target architecture.
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Fig. 6. Hardware accelerated fault and power evaluation flow

Profiling Phase. The profiling phase comprises the main stage of the hardware-accelerated fault emulation
process. A test-set containing applications that would be considered a typical load during normal opera-
tion is executed on the evaluation platform. During this execution faults are injected using a fault injec-
tion controller and saboteurs routed during the placement phase. The fault injection controller can be pre-
programmed to start injection at specific values of the processor program counter or directly controlled by an
additional external processor.

Power profile tracing can be executed in two ways:

— Run-time profile tracing using a PE unit with dedicated trace memory : As described in Section 4.2
dedicated trace memory has to be provided to store intermediate power profile information. This memory
has to be regularly read and saved to a persistent storage module for later analysis. This information can
be easily converted to text-files for usage with MATLAB scripts.

— Power profile tracing using RTL simulation : This would be the technique of choice if examinations
have to done during a very early stage of the design process. The simulation model of the PE unit gen-
erates text-files of a simple format that can be easily parsed and analyzed using MATLAB scripts. En-
cryption/decryption run trace separations have to be ensured using software commands, for example by
placement of NOP instructions.
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Fault analysis tracing can also be done in two ways. First, the fault injection controller contains a checker
interface to transfer data from dedicated checker modules to an external processor. These modules allow to
evaluate which injected faults resulted into a direct operational fault. Second, additional analysis support
modules can be routed into the design-under-inspection if a completely in-system solution is desired. Such
support blocks could be checker or power data pre-processing modules to ease data-interpretation or trigger
modules to detect specific system operation states.

Analysis Phase. During the analysis phase recorded data is used to gain information about the power, de-
pendability and security characteristics of the targeted system. The derived power profile trace file of the
executed test-set programs is parsed using MATLAB scripts. This information then has to be divided into
subtraces to reduce analysis effort.

In case of power analysis evaluations all en- or decryption traces have to be separated to enable DPA.
The quality of the differential power analysis is highly dependent of the alignment of the analyzed traces.
Therefore, eventual trace timing differences have to be corrected by cross correlation techniques. To analyze
the power analysis robustness of a given cryptographical software implementation the stored power profile
traces can be processed using MATLAB scripts from the OpenSCA toolkit. This process has been completely
automatized and results in attack attempts on all key bytes of the used key.

Fault emulation trace information recorded during execution can also be easily parsed using MATLAB to
gain data matrices usable in efficiency and statistical analysis.

Decision Phase. After all analysis tasks have been performed the gained data can be used to derive changes
of the targeted architecture. Such changes could include stronger error detection or recovery mechanisms or
power optimizations to improve the available power budget. If several different fault attack countermeasures
are present it is also possible that their combination results in reduced robustness against power analysis
attacks. In this case it is possible that other combinations or weaker mechanisms using different counter-
measure techniques lead to a better countermeasure performance.

6.4. Automatized Fault Emulation
For real-world applications in the smart-card development and certification sector automatized fault injection
campaigns are needed to ensure the coverage of a wide range of possible attack and device aging scenarios.
To allow a similar test flexibility compared to slow fault simulations, modular control and fault injection
elements as well as a high level fault model representation are needed.

6.4.1. Modular fault injection control blocks. While simple small saboteur elements enable to generate faults at
nearly every possible position inside the design, for exhaustive countermeasure testing it is also necessary to
define points of time when an attack should be emulated. Such an attack time can be derived in the following
ways:

— Program counter (PC): The PC defines the current stage of the running program. By listening to this
register an attack at a certain point of the program can be started.

— Clock: As communication programs can endure a significant amount of time, it is more reasonable to use a
clock signal counter starting at a pre-defined point like a certain PC value.

— Addresses: If certain memory blocks have to be changed during an attack sequence it is necessary to ex-
amine system internal address and data buses. Access to the memory point-of-interest can be manipulated
during transmission from or to the processor pipeline or cache.

To enable easy augmentation of a system-under-test so called trigger modules are introduced that can be
placed to a certain point of interest. As shown earlier most attack scenarios can be accomplished by listening
to the PC register, clock signal and address buses. The needed trigger functionality can be further reduced
to two types of trigger modules: single-bit and multi-bit triggers. These trigger modules only output a binary
signal to show if a given condition has been reached and therefore they can be combined by logic functions to
create different fault activation conditions. All trigger modules are connected to the fault injection controller
by shared buses to enable power-on configuration.
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Single-bit trigger module. A single-bit trigger module contains a very simple counter structure and a con-
figurable detection circuit. If the input signal changes a pre-defined amount of times a output signal is raised
to trigger further processing of other trigger modules or the fault injection controller.

Multi-bit trigger module. Similar to the single-bit trigger module this larger variant contains a counter
structure and additional circuits to mask and compare the input value to a given target value. If necessary
additional conditions can be compared, for example the bus access status or specific access rights.

6.4.2. High level fault model representation. The fault emulation system will also be provided to another com-
pany section or customer to test pre-production software on the given pre-silicon hardware design. As such a
customer usually must not have internal information about the RTL-description fault model representations
have to be provided. Such representations could be very specific fault patterns to emulate an attack shown in
Section 7 or more general representations to simulation intentional memory changes.

Using control elements as presented in Subsection 6.4.1 the complete memory space of a given target
application can be manipulated during runtime. This approach enables software developers with no access
to the RTL-description to do detailed fault attack campaigns as depicted in Figure 7. These are necessary
during certification phases or early evaluations of new secure operating systems.
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Fig. 7. High-Level Fault Pattern Approach

7. EXPERIMENTAL RESULTS
To prove the usability of our approach we chose a widely used hardware platform and software implementa-
tion of the AES cryptography algorithm. For our hardware platform we selected an open source implementa-
tion of the SPARC v8 architecture developed by Aeroflex Gaisler [Aeroflex Gaisler 2010]. This processor has
been synthesized using Xilinx ISE software and tested on the ML507 evaluation board also from Xilinx.

Our operating system tests have been executed using the SnapGear Linux distribution provided by Aeroflex
Gaisler. Our analysis platform consists of MathWorks Matlab 2009b on an six-core 3.2 GHz AMD Phenom-II
machine using eight giga-bytes of RAM.

The characterization process has been done using gate-level and power simulations using Synopsys Prime-
Time provided by our industrial partner. This process resulted into a data-aware power macro model contain-
ing 90 coefficients. For our selected 90nm production process library we achieved accuracies of lower than four
percent average and lower than 15 percent RMSE cycle accurate estimation errors. In Figure 8 a comparison
of gate-level measurements with the results of power emulating the dhrystone benchmark is shown.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0, Publication date: 2012.

Publication 6 - ACM TRETS 2012 84



POWER-MODES - POWer EmulatoR and MOdel based Dependability and Security evaluation 0:13

3.8 3.9 4 4.1 4.2 4.3 4.4

0.005

0.01

0.015

0.02

0.025

0.03

 

 

x 10
-4

Emulation

Gate-Level

Fig. 8. Dhrystone Benchmark - Comparison Gate-Level to Power Emulation

In Table I a performance overview is shown comparing the achievable injection speed of our approach
to previously published systems. This evaluation concerns the pure injection of fault patterns into a given
processor as shown in [Grinschgl et al. 2011b].

Table I. Fault injection performance compared to previous approaches

Approach Clock cycle Inj. Faults Time Inj. Speed Nor. Inj. Speed

[ns] [s] 1/[s] 1/[s]

[Civera et al. 2002] 50 100k 83 1205 603

[Lopez-Ongil et al. 2007] AE 16.8 129.75M 698 185888 276619

[Lopez-Ongil et al. 2007] PR 18.97 10k 1014 9.86 13

[Kafka 2008] DPR 10 - - 12987 32468

[Kafka 2008] PRR 10 - - 414.94 1037

This work 25 100M 46.76 2.17M 2.17M

The comparison is valid as these approaches only concern the injection of faults without any further pro-
cessing of the resulting operating errors. Other solutions use autonomous emulation (AE), partial reconfigu-
ration (PR), partial runtime reconfiguration (PRR) and direct runtime reconfiguration (DPR).

7.1. Dependability Evaluation
Fault injection is already widely used for the emulation of faults to test the efficiency of fault detection and
recovery approaches. Existing solutions often do not consider the impact of such dependability improving
hardware extensions on the system’s power consumption profile. In power constraint systems high power con-
sumption peaks could lead to dangerous supply voltage drops that endanger operating reliability. To present
the advantages of a multi-disciplinary approach our LEON3-target system has been augmented with three
different parity-based error-detection schemes. These error-detection mechanisms (2, 4 and 5-bit parity codes)
have been added to the memory management unit (MMU) to protect the instruction- and data-cache data-
bus. These parity codes are checked inside the integer-unit to ensure integrity of the read data. To implement
our fault injection experiments we augmented this buses with a bus-saboteur transparent under normal
conditions. This saboteur allows the injection of multiple faults to every data line routed through it. Fault
patterns have been selected randomly and injected into a looping calculation. Data errors are detected if the
parity-code generated inside the MMU is different to the parity-code generated inside the IU.

The results of such a fault injection campaign are shown in Table II and match our expectations concerning
their operation principles. The 2-bit parity implementation performs significantly worse than stronger im-
plementations. For the next evaluation step we could therefore select the 5-bit implementation for our power
consumption explorations.
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Table II. Fault injection evaluation of parity-based error detection scheme
- Data-Cache-Bus

Detected Errors (DE) DE [%]

Injected Faults 100000 - -

2-bit Parity Scheme - 74783 74.78

4-bit Parity Scheme - 93705 93.7

5-bit Parity Scheme - 96873 96.87

Another application for automated fault emulation campaigns would be timing investigations to test given
designs for their robustness against device degradation effects. Signal delays caused by negative-bias tem-
perature instability (NBTI) can be emulated by high-clocked delay elements inside the signal path [Krieg et
al. 2011c].

Conclusion. Common error-detection schemes using parity-based hamming codes have been thoroughly ex-
amined for their error-detection efficiency. The proposed platform can also be used for the concurrent exami-
nation of fault resistance, power consumption and delay behavior of a given RTL-description.

7.2. Security Evaluation A (AES Software Implementation)
The nature of faults occurring during an attack scenario is very different to one of those resulting of natural
causes. The reason is that these faults happen randomly while an adversary intentionally injects such faults
in order to drive the attacked system into an unintended state. To prove the feasibility of our approach we
chose a published attack on the AES symmetric cryptographic algorithm shown in [Schmidt et al. 2009]. The
authors presented a light-attack on the AES-SBOX residing inside an programmable flash memory device.
This attack is emulated by the placement of saboteurs on the memory data-bus of our target architecture.
These saboteurs are always activated when the memory region containing the AES-SBOX is read by our
test-program. This way all SBOX accesses return 0xFF as a result and are therefore equivalent to accesses
to an device erased using ultra-violet light. The resulting wrong intermediate results can then be used to
calculate the complete key used for this AES-encryption. In Table III the input key of the AES encryption (a),
the corrupted AES output (b) and the calculated key after the fault injection process (c) are shown.

Table III. AES-SBOX fault emulation results

1F 1B 17 13

1E 1A 16 12

1D 19 15 11

1C 18 14 10

(a) Original Key

e0 1b f7 08

e1 1a f7 08

e2 19 f7 08

31 84 e9 1c

(b) Corrupted Output

1F 1B 17 13

1E 1A 16 12

1D 19 15 11

1C 18 14 10

(c) Calculated Key

By using a data-aware power estimation macro model different power analysis types are also enabled.
Figures 9a and 9b show cropped power traces containing one AES encryption run with and without influence
of a simple clock gating based countermeasure as described in [Krieg et al. 2011b] To reduce power profile
artifacts caused by task switching done by the operating system kernel, this figures have been recorded
during RTL simulation. For emulation a 32000 sample FIFO has been implemented to allow the storage of
a single trace in hardware for further analysis. The evaluation software has to read out this data after each
tracing run to store large amounts of investigation data. A performance comparison of all applied techniques,
as determined in [Krieg et al. 2011a] , is shown in Table IV. Figures 9c and 9d give an overview how successful
an DPA attack on the unmodified and augmented architecture would be. Clock gating has been described in
literature as a measure to increase profile noise and to decrease inter-profile correlation [Benini et al. 2003].
In this case the chosen countermeasure would not have a significant impact on power consumption but its
effectiveness against power analysis would have to be improved.
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(a) Single AES-Trace without any countermeasure application
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(b) Single AES-Trace using a light clock-gating strategy
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(c) DPA-Attack on unmodified architecture
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(d) DPA-Attack on architecture containing light countermeasure

Fig. 9. Tracing and Differential Power Analysis (DPA)

Table IV. Tracing performance: RTL Simulation vs. FPGA Emulation
(taken from [Krieg et al. 2011a])

Traces Time [sec] Speedup

Direct RTL Simulation 100 3850.05 -

FPGA Emulation (w/o OS-overhead) 100 0.0258 149226

FPGA Emulation (w/ OS-overhead) 100 43.13 89.27

Conclusion. Therefore additional hardware used for improved circuit reliability can also be used to improve
fault attack robustness. Simple manipulations of the clock signal provide only weak protection against power
analysis attacks.

7.3. Security Evaluation B (AES Hardware Implementation)
In [Takahashi et al. 2007] Takahashi et al. describe a differential fault attack on the key schedule of an AES
implementation. The authors claim that using this method it is possible to extract a complete 128-bit secret
key using only seven pairs of correct and faulty cipher-texts without using brute-force search.

A reduced variant proposed in [Takahashi et al. 2007] only needs two pairs of correct and faulty cipher-
texts to extract 48-bit of the AES key. For this work we will show how to evaluate a given AES hardware
block for its robustness against such a reduced fault attack.

Target of this approach is the key schedule mechanism, which can be manipulated at three different points
as shown in 10. The first point to be attacked is the 3rd 32-bit column of the 9th round key. Another possibility
would be to attack 2nd 32-bit column and the 1st 32-bit column of the 9th round key. Both scenarios result
in corrupted cipher-texts that can be used for the calculation of the final AES key. The following process is
defined by seven rules as proposed in [Takahashi et al. 2007] and does not require further attacks on the
hardware.
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Fig. 10. Structure of the AES Core fault attack mechanism

For this case study we chose to attack the 3rd column of the AES calculation. For our target we chose an
open implementation of the AES algorithm [OpenCores 2011]. As seen in Figure 10 placed a saboteur into the
3rd column key generation mechanism. This saboteur is controlled by the fault injection controller(FIC). The
FIC has also been connected to the internal AES round counter register. This way the fault injection process
can be automatically activated when this register reaches the 9th round. During the fault attack random bits
of the targeted round key column are flipped.

Table V. Two plain-texts and its corresponding cipher-text pairs

00 44 88 cc

11 55 99 dd

22 66 aa ee

33 77 bb ff

(a) Plain-text 1

69 6a d8 70

c4 7b cd b4

e0 04 b7 c5

d8 30 80 5a

(b) Cipher-text 1

29 2a 71 fc

6b c0 63 1b

27 d1 1a c2

06 ec fc 92

(c) Faulty cipher-text 1

00 04 08 0c

01 05 09 0d

02 06 0a 0e

03 07 0b 0f

(d) Plain-text 2

0a 41 f1 c6

94 6e c3 53

0b f0 94 ea

b5 45 58 5a

(e) Cipher-text 2

4a 01 67 92

3b 7c d4 fc

e6 4f 39 ed

44 99 24 92

(f) Faulty cipher-text 2

Table V shows plain-texts and their corresponding cipher-text pairs with and without manipulation. After
the fault attack using methods described in [Takahashi et al. 2007] the following key bytes (K0,3, K2,0, K2,1,
K2,3, K3,0, K3,3) have been calculated as shown in Table VI.
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Table VI. Fault attack and key calculation results

00 04 08 0c

01 05 09 0d

02 06 0a 0e

03 07 0b 0f

(a) Key

54 f0 b0a 1eb

99 85 91a 2eb

32 57 47a 3db

d1 68 3ca eeb

(b) Corrupted 9th Round Key

54 f0 10 bec

99 85 93 2c

32c 57c ed 97c

d1c 68 9c 4ec

(c) Correct 9th Round Key
aAttacked Corrupted Key Bytes
bConsequentially Corrupted Key Bytes
cCalculated key bytes after fault attack

Conclusion. In this chapter the application of a direct manipulation of a cryptographic hardware module has
been shown. The saboteur-based approach allows the testing of general crypto-implementations as long as the
RTL-level hardware description is available to the test engineer. The general applicability our automatized
fault injection approach has been proven using an open available AES-module and a non-implementation
specific hardware attack described in literature.

8. CONCLUSION
This paper presents a novel FPGA-based platform and methodology for reliability and security evaluations
of smart-card and general purpose processor implementations. Through the combination of fault injection
and power emulation techniques efficient hardware/software co-simulation of cryptographic software and
hardware is enabled. The instant evaluation of power consumption and fault resistance behavior allows for
the design of novel architectures under the consideration of power and security constraints. The effectiveness
of our proposed hardware accelerated fault emulation platform has been shown using software and hardware
implementations of the symmetrical AES algorithm. Novel modular trigger and fault injection mechanisms
allow for the efficient execution of long running injection campaigns.

The efficient modeling and implementation of fault attacks will be play a vital role during the design of
future secure architectures and certification for high security standards.

Our future work includes the usage of the proposed platform to examine new smart-card architectures for
possible weaknesses. It also will be used to identify effective modifications for general purpose architectures
to improve their reliability and fault attack robustness. The combined approach will also allow for a detailed
trade-off analysis of different error detection and recovery mechanisms considering both power and security
constraints.

ACKNOWLEDGMENTS

The authors would like to thank the Austrian Federal Ministry for Transport, Innovation, and Technology, which funded the Power-
Modes Project under the FIT-IT contract FFG 825749. We would also like to thank our project partners Infineon Technologies Austria
AG and Austria Card GmbH.

REFERENCES
AEROFLEX GAISLER. 2010. LEON3 Processor.
ANTONI, L., LEVEUGLE, R., AND FEHER, M. 2002. Using run-time reconfiguration for fault injection in hardware prototypes. In Defect

and Fault Tolerance in VLSI Systems, 2002. DFT 2002. Proceedings. 17th IEEE International Symposium on. IEEE, 245–253.
ARLAT, J., AGUERA, M., AMAT, L., CROUZET, Y., FABRE, J., LAPRIE, J., MARTINS, E., AND POWELL, D. 2002. Fault injection for

dependability validation: A methodology and some applications. Software Engineering, IEEE Transactions on 16, 2, 166–182.
ARLAT, J., AGUERA, M., AMAT, L., CROUZET, Y., FABRE, J.-C., LAPRIE, J.-C., MARTINS, E., AND POWELL, D. 1990. Fault injection for

dependability validation: a methodology and some applications. Software Engineering, IEEE Transactions on 16, 2, 166 –182.
BACHMANN, C., GENSER, A., STEGER, C., WEISS, R., AND HAID, J. 2010. Automated Power Characterization for Run-Time Power

Emulation of SoC Designs. In DSD 2010. 587–594.
BAR-EL, H., CHOUKRI, H., NACCACHE, D., TUNSTALL, M., AND WHELAN, C. 2006. The sorcerer’s apprentice guide to fault attacks.

Proceedings of the IEEE 94, 2, 370–382.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0, Publication date: 2012.

Publication 6 - ACM TRETS 2012 89



0:18 A. Krieg et al.

BARAZA, J., GRACIA, J., GIL, D., AND GIL, P. 2006. Improvement of fault injection techniques based on VHDL code modification. In
High-Level Design Validation and Test Workshop, 2005. Tenth IEEE International. IEEE, 19–26.

BARAZA, J. C., GRACIA, J., GIL, D., AND GIL, P. J. 2002. A prototype of a vhdl-based fault injection tool: description and application.
Journal of Systems Architecture 47, 10, 847 – 867.

BENINI, L., MACII, A., MACII, E., OMERBEGOVIC, E., PRO, F., AND PONCINO, M. 2003. Energy-aware design techniques for differential
power analysis protection. In Proceedings of the 40th annual Design Automation Conference. ACM, 36–41.

BHATTACHARJEE, A., CONTRERAS, G., AND MARTONOSI, M. 2008. Full-System Chip Multiprocessor Power Evaluations Using FPGA-
Based Emulation. In ISLPED 2008.

BRIER, E., CLAVIER, C., AND OLIVIER, F. 2004. Correlation power analysis with a leakage model. CHES 2004, 135–152.
BUCCI, M., LUZZI, R., MENICHELLI, F., MENICOCCI, R., OLIVIERI, M., AND TRIFILETTI, A. 2007. Testing power-analysis attack

susceptibility in register-transfer level designs. IET 2007 1, 3, 128–133.
CIVERA, P., MACCHIARULO, L., REBAUDENGO, M., REORDA, M., AND VIOLANTE, M. 2002. Exploiting circuit emulation for fast hard-

ness evaluation. Nuclear Science, IEEE Transactions on 48, 6, 2210–2216.
COBURN, J., RAVI, S., AND RAGHUNATHAN, A. 2005. Power emulation: a new paradigm for power estimation. In DAC 2005. 700–705.
DAVEAU, J., BLAMPEY, A., GASIOT, G., BULONE, J., AND ROCHE, P. 2009. An industrial fault injection platform for soft-error depend-

ability analysis and hardening of complex system-on-a-chip. In Reliability Physics Symposium, 2009 IEEE International. IEEE,
212–220.

DEN HARTOG, J. AND DE VINK, E. 2005. Virtual Analysis and Reduction of Side-Channel Vulnerabilities of Smartcards. In Formal
Aspects in Security and Trust. Springer, 85–98.

GENSER, A., BACHMANN, C., HAID, J., STEGER, C., AND WEISS, R. 2009. An emulation-based real-time power profiling unit for
embedded software. In SAMOS 2009. 67–73.

GHODRAT, M., LAHIRI, K., AND RAGHUNATHAN, A. 2007. Accelerating system-on-chip power analysis using hybrid power estimation.
In Design Automation Conference, 2007. DAC’07. 44th ACM/IEEE. IEEE, 883–886.

GRINSCHGL, J., KRIEG, A., STEGER, C., WEISS, R., BOCK, H., AND HAID, J. 2011a. Automatic saboteur placement for emulation-based
multi-bit fault injection. In Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2011 6th International Workshop
on. 1 –8.

GRINSCHGL, J., KRIEG, A., STEGER, C., WEISS, R., BOCK, H., AND HAID, J. 2011b. Modular fault injector for multiple fault depend-
ability and security evaluations. In Digital System Design (DSD), 2011 14th Euromicro Conference on. IEEE, 550–557.

GUNNEFLO, U., KARLSSON, J., AND TORIN, J. 2002. Evaluation of error detection schemes using fault injection by heavy-ion radiation.
In Fault-Tolerant Computing, 1989. FTCS-19. Digest of Papers., Nineteenth International Symposium on. IEEE, 340–347.

JENN, E., ARLAT, J., RIMEN, M., OHLSSON, J., AND KARLSSON, J. 1994. Fault injection into vhdl models: the mefisto tool. In Fault-
Tolerant Computing, 1994. FTCS-24. Digest of Papers., Twenty-Fourth International Symposium on. 66 –75.
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Abstract—In recent years the wide spread introduction of small
embedded systems into every corner of everyday life lead to the
strong need for highly reliable and secure computing machines.
These machines now affect the safety of humans as well as the
security of personal data and consequently money transactions.
To ensure the integrity of these systems’ operating state, several
fault detection mechanisms have been developed to safely correct
or stop unforeseen execution behavior. Because of the rise of
battery or even field-supplied systems these mechanisms often
heavily decrease available power budgets or lead to significantly
increased production costs.

Therefore, this paper introduces novel micro-architectural
execution signature characterization and handling techniques for
system-on-chip designs providing power estimation hardware.
Existing power sensor infrastructure is reused to enable efficient
system-state monitoring using micro-architectural hashes to cover
a wide range of implemented system functionality. Reduced hash-
ing implementations are characterized for their fault detection
efficiency. This hardware-based approach provides a completely
transparent solution to counteract faults resulting from emerging
wear-out defects or intentional attacks on the execution integrity.

I. INTRODUCTION

Research on sophisticated fault detection mechanisms using
on-line control flow monitoring has been ongoing for decades.
The main driver behind this research has been computing
machines for high-availability and security applications. Such
threats to system integrity come from two major contributors.
First, continuing semiconductor process integration leads to
finer transistor structures and therefore to a higher probability
of transistor defects. Second, criminal subjects try to gain
secret information from secure devices by disturbing normal
operation using sophisticated fault attacks.

In case of systems for highly dependable applications it
is important to detect control flow changes because of faults
resulting of environmental influences or manufacturing de-
fects. These faults are of a random nature and their detection
will usually lead to the activation of countermeasures to
prevent erroneous actions that could result in loss of money
or life. In case of high-security applications like smart-cards,
fault detection is essential to identify attacks by an external
adversary. The primary function is to prevent the loss of
information and to hide the fact that the attack was successful.

To guarantee a high fault detection coverage usually modular
redundancy techniques are used. By duplicating or tripling
processing units, even small control flow changes or data
manipulations can be detected or corrected in case of a triple
configuration. The disadvantage of such a fault detection
approach are high implementation and manufacturing costs. In
the high volume smart-card market such additional production
costs are prohibitive.

Therefore, a strong need for control flow manipulation
detection mechanisms providing a similar detection coverage
as modular duplication while relying on a smaller resource
footprint rose in the recent past. To gain an area effective
implementation of a control flow observation mechanism,
existing infrastructure has to be reused and simplified hashing
implementations have to be found. Accurate on-line power
estimation is also dependent on a view of the current control
state of the system and therefore a hybrid monitoring structure
is proposed. Hashing mechanisms are simplified by round and
structure reduction and have to be characterized for the impact
of these simplifications on fault detection efficiency.

The main contributions of this work are:

• Introduction of a novel control-signal signature hardware
characterization strategy and hybrid power and fault mon-
itoring infrastructure

• Integration of the proposed methodology into a state-of-
the-art power profiling and functional emulation flow

• Case study using an augmented version of an open
available system-on-chip implementation

This paper is structured as follows. Section II is giving
a short introduction into control-state based hardware power
estimation. In Section III common mechanisms for micro-
architectural signatures are roughly described and the state-
of-the-art concerning these signatures for general purpose
architectures is briefly reviewed. Followed by Section IV
introducing a novel transparent micro-architectural signature
generation methodology. The efficiency of the proposed ap-
proach is experimentally investigated in Section V using a
common general-purpose-processor system. Finally, our re-
sults are concluded and some details about our future work
are given in Section VI.
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II. CONTROL-STATE BASED
HARDWARE POWER ESTIMATION

Hardware power estimation has emerged as a rich technique
in order to obtain power consumption information in a cycle-
accurate manner. Having on-chip power information available
to drive power management algorithms is becoming increas-
ingly important for power-constrained embedded systems [1].
In particular in field-supplied systems it is mandatory to have
power monitoring mechanisms available in order to track the
power consumption of the system and to detect and to prevent
the occurrence of harmful events (i.e., power peaks, supply
voltage drops).

Additional hardware blocks enable the observation of in-
ternal system states, which are then fed to a power model
implemented in hardware. Power estimates delivered by the
power model can then be exploited by power management
mechanisms. The principle of control-state inspection for sys-
tem monitoring is similar to a signature-based fault detection
approach as proposed in this work. Therefore a fusion of both
evaluation techniques (power and fault) is possible to optimize
resource efficiency. This step includes the relying on a joined
activity sensor infrastructure and characterization process.

A. Power Model
The set of internal system states x, each of which denoted

by xi and model coefficients ci constitute the power model as
depicted in (1)

P (x) =
n−1∑

i=0

cixi + e. (1)

The power model’s result gives power estimates P̂ (x)
corresponding to the linear combination of internal system
states xi and the model coefficients ci. The difference of the
power estimate P̂ (x) to the real power consumption P (x)
is denoted by error e. The selection of a representative set
of internal system states as well as the determination of the
power model coefficients is performed during a power charac-
terization process [2]. This process includes the execution of
benchmarking programs using a gate-level description of the
design to create an accurate power consumption abstraction.

B. Power Estimation Architecture
The power estimation architecture as depicted in Figure 1

consists of a number of power sensors that observe and map
internal system states xi to power model coefficients ci. Power
estimates delivered by the power sensors are summed up in
the power accumulation unit, which finally provides the power
estimate P̂ (x).

The accuracy of the power estimate P̂ (x) gathered from the
power model depends on the number and quality of the ob-
served system states. The approach is flexible in a way that the
system state granularity at which the system is observed can
be tailored to accuracy requirements of the power estimates.
This is also advantageous for the coverage of control-flow
based fault detection mechanisms by increasing the number
of instruction-decode stage signals that are considered.
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Fig. 1. Control signal based power estimation principle (adapted from [3])

III. RELATED WORK

State-of-the-art research in the field of fault detection mech-
anisms using on-line control flow monitoring can be split into
three main groups.

A. Software-based signature mechanisms

Purely software-based approaches mostly rely on the au-
tomatic or semi-automatic generation of code signatures to
detect program flow changes caused by tampering or environ-
mental influences. These signatures are directly embedded into
the executed binaries. For the signature checking procedure
itself processor internal resources have to be reused resulting
in a high impact on execution performance.

Pure software solutions have been proposed using extensive
redundancy as shown in [4] or by applying additional state
checking to catch unforeseen execution control behavior as
presented in [5] and [6]. An approach solely based on software
signatures generated during compile time is proposed in [7].
The main disadvantage of these software-only approaches is
their significant impact on execution performance. Further-
more, software checks could be manipulated by an adversary
if such techniques are used in security critical applications.

B. Hardware-based signature mechanisms

Most commonly used hardware blocks for integrity check-
ing are hardware monitors. Depending on the monitored unit
these monitors can be implemented very efficiently. This
advantage is counteracted if large memories are integrated to
store precomputed signatures. Another problem concerning the
state-of-the-art in this field is the selection of the monitored
system region. Pipeline-only approaches may be insufficient
for system-on-chips and the use of multiple monitors increases
system complexity and decreases area efficiency.

To reduce the impact of the monitoring process on the
operating performance and to gain direct access to hardware
resources, control flow-monitoring approaches using dedicated
monitoring hardware have been introduced. Such dedicated
monitoring hardware could be watchdog-type modules as
shown in [8] and [9] or smaller specialized monitoring circuits
covering only selected parts of the system as presented in [10],
[11] and [12]. Other approaches rely on modification of the
processor pipeline to enable the observation of the control flow
[13]. While being very effective in processor-only applications,
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it is often not sufficient for system-on-chips including a wide
range of different processing units.

C. Hardware-Software co-design solutions

To ensure a wide detection coverage several co-design based
approaches have been published. In this case the possibility to
adapt both software support and hardware structure is used
to reduce memory overhead and performance penalties. Such
systems are generally based on application-specific instruction
processors (ASIP) as published in several recent papers [14]–
[16]. By design it is only possible to apply such techniques
if the target architecture is either highly adaptable or the
design process is at a very early stage enabling instruction
set changes.

Another possibility would be to augment existing hardware
to generate representative values to track control changes
inside the system-under-test. Such reusable hardware blocks
could be scan-out-chains as presented in [17]. This approach
while having only a small impact on the complexity of the
targeted system relies on periodic tests and therefore is not
a real on-line testing solution. Another possibility would
be fingerprinting techniques generating hash-values from the
complete architectural state as published in [18]. The pro-
posed fingerprinting approach while providing very accurate
fault detection mechanisms leads to high demands on circuit
bandwidth.

D. Contributions

Our proposed approach can be categorized into group
number three supporting system-internal fault detection mech-
anisms as well as software controlled solutions. Compared
to existing work our implementation does not rely on large
architecture augmentations as necessary in group two and
does not imply performance degradations of group one. It can
be applied to any hardware containing state-dependent power
estimation (PE) units without relying on large hash gener-
ation circuitry. This co-existence with PE hardware should
also result in a very limited amount of additional needed
area resources. Furthermore, our approach not only covers a
microprocessor’s pipeline but large parts of the entire system-
on-chip to guarantee a wide fault detection coverage. The
general applicability only relies on the availability of the RTL
system description.

IV. SIGNATURE MECHANISM FOR
RESOURCE CONSTRAINT SYSTEMS

In resource constraint systems like smart-cards huge mem-
ory, runtime or hardware overhead is prohibitive. Therefore,
large control-flow graphs, embedded code signatures or ex-
tensive monitoring hardware cannot be employed to ensure
correct system behavior. On the other hand the continuing inte-
gration of additional components into system-on-chip devices
also adds a wide range of additional targets for attacks and
points where degradation could lead to system failure.

Therefore, we propose a complete signature element se-
lection and hardware description augmentation methodology

using passive signature generation and comparison hardware.
The goal of this approach is to provide high control flow
security compared with low performance and area overhead.
An overview of this proposed characterization and generation
methodology is depicted in Figure 2.

Autom. Signal Wiring

Pre-Selected Control Signal Search Space

Power Characterization Signal Activity Analysis

Reduced Signature Control Signal Set

Sign. Hardware Generation
Architecture

Constraints

Fig. 2. Signature architecture augmentation methodology

A. Control signal selection

This part of the signature implementation process is crucial
to keep hardware effort low while enabling reliable and
efficient system monitoring. The following two main criteria
are important when selecting control signals for monitoring
purposes:

• Relevance: Significant control signals should show strong
activity in a large selection of standard applications. This
requirement is also of importance considering control
signal based power estimation to gain good estimation
accuracy. Therefore, a power model characterization pro-
cess will be employed to determine good candidates for
hardware block signatures. A good example for such a
characterization process is given in [2].

• Determinism: Signal activity must be directly dependent
on the executed instruction sequence. In this case similar
criteria are important for fault injection campaigns to sim-
ulate device degradation effects caused by high transistor
activity in systems manufactured using very fine semi-
conductor technologies. Therefore RTL-simulation based
activity analysis techniques will be used to determine
good execution-signal correlation. The principle analysis
techniques are similar to those shown in [19].

B. Signature type selection

Selection of a proper signature type is crucial to keep hard-
ware overhead low without increasing the risk of collisions
over an unacceptable level. Most hash signature algorithms,
while being very robust against collisions and providing good
coefficient mixing, need a significant amount of area in
their hardware implementations. In case of system-internal
execution signatures collisions are of lower concern than con-
straints on coefficient mixing. Therefore, the design can rely
on hash algorithms with good avalanche behavior, meaning
large output changes at small input changes, while being less
optimal in means of collision resistance. Another important
point when selecting a good hardware signature algorithm
is calculation latency. Arora et. al. solved the problem of
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limiting maximum calculation latencies by adding hardware
and limiting the maximum block size to 512 [20]. Still their
MD4 and MD5 implementations had a significant impact
on operating performance because the pipeline stalled until
the hash generation is finished. An overview over small and
fast hash functions for hash table lookup including MD4 is
shown in [21]. To gain a lightweight memory-free hardware
implementation only functions are considered that do not rely
on coefficient tables. This excludes the simple SBOX-function
that relies on large data tables while being computationally
simple. All chosen signature implementations have been con-
figured to result into a compression factor of 2:1. Meaning
that the resulting hash value is only half as wide as the input
vector. All hash implementations have been round reduced and
simplified to retrieve a highly efficient hardware integration.
Specifically a single-round implementation has been targeted
to gain fast detection of execution variations.

For our exemplary implementations the following algo-
rithms have been chosen:

CRC hashing: Well documented and automatically gener-
atable for a wide variety of bit-widths are cyclic-redundancy-
check (CRC) code generator-modules. For the VHDL code
generation all even coefficients have been chosen to retrieve a
constant hardware structure [22].

One-at-a-time hash function: The one-at-a-time hash
algorithm shown by Jenkins et al. in [21] has been chosen
because of its simple structure and because it can be simply
implemented in hardware without additional execution latency.
Compared to CRC one-at-a-time provides very good avalanche
behavior while more hardware effort is needed.

MD5 secure hash: The well known MD5 hash algorithm
has been reduced to retrieve a small and fast implementation.
This reduction is achieved by only using one simplified round
of MD5.

SHA secure hash: The basic structure of this signature
implementation is very similar to the MD5-based one. There-
fore, the same restrictions and characteristics apply for this
low-cost hash function.

C. Signature segmentation

The possibility of fault location extraction from an execution
signature is of vital importance for further fault analysis
processes. Therefore, it has to be segmented depending on the
available systems elements. After control signals have been
grouped depending on their original location, individual sig-
natures are generated and concatenated as shown in Figure 3.
Such groups would be individual processor-cores in multi-core
systems or system-on-chip elements like network controllers
or caching control blocks. The selection of group members is
done using a component-aware power characterization process
to identify deterministic and relevant module control signals.

The efficiency of the segmented signature approach depends
on the scalability of the hashing implementation and the
granularity of the signature segments.

Sign0

Control Signal Segments

Signature SegmentsSign1 Sign2 S3

System Signature

IU0 Cache0 MMU MUL0

Hash Function

Segment Concatenation

Fig. 3. Signature segmentation approach

D. Signature-based execution architecture

Depending on the available memory resources on-line or
off-line signature checking techniques can be used.

Off-line techniques would include a software characteriza-
tion process to generate execution signatures of targeted code
regions. In this case a set of the calculated hashes has to be
saved to the target device to be compared in hardware during
regular operation. The advantage of this approach is the lack
of multiple signature generator circuits as the reference is
produced using a system emulator provided to the software
developer. On the other hand large signature memories are
needed to store the control flow history of the complete code
execution.

On-line approaches include both, the reference and control
signature generation, inside the target hardware. This can be
implemented in a completely memory-free manner using a
reference signature generation step during the fetch stage of
the pipeline. Another possibility would be to use a system
emulator for instruction characterization and in-system com-
parison at the end of the processor’s pipeline. The memory-
free approach will rely on a complex signature generation
circuit predicting the future of the control signal state at
a later stage. Instruction-only characterization constitutes a
good compromise between needed circuit and memory re-
quirements.

For our experimental evaluations an off-line approach us-
ing complete pre-calculated signatures has been chosen to
demonstrate the feasibility of our technique. These signatures
have been derived using a golden model run of the selected
benchmark programs. The selected architecture is depicted in
Figure 4.

Target StateActual State

P
C

LEON3Integer Unit MMURegister File

Signature Generator Signature Memory

Power Estimator Unit

. . .

. . .

Error / OK

Fig. 4. Signature generation and comparison architecture

V. EXPERIMENTAL RESULTS

The applicability of our approach is shown by using a
widely known hardware platform based on an open source
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implementation of the SPARC v8 architecture developed by
Aeroflex Gaisler (www.gaisler.com).This system-on-chip ex-
ample has been synthesized using Xilinx ISE software and
tested on the ML507 evaluation board provided by Xilinx.
This processor type constitutes not a classical example of a
smart-card processor because of its complexity but it is still
used to prove the general applicability of the chosen approach.
Our analysis platform consists of MathWorks Matlab 2010b
on a six-core 3.2 GHz AMD Phenom-II machine.

Using the semi-custom design flow and power simulation
tools provided by our industrial partner a power macro model
containing 63 coefficients has been derived. The power esti-
mation module itself implements this power model using a
three stage pipelined adder structure.

The following experimental evaluations of the signature
generator modules have been done using 100000 randomly
generated input vectors. To enable a common simulation
environment all blocks have been implemented into a single
testbench scaled for different input widths.

A. Signature performance

First the signature hardware selection has been evaluated to
determine if every input change also results in a signature
change. Especially when using small signature widths or
reduced implementations suboptimal hash generator hardware
will lead to increased amount of such collisions. Figure 5
shows the behavior of every signature implementation for
different hash widths. It can be clearly seen that while one-
at-the-time is the worst and CRC-based the best, SHA-based
and MD5-based modules result in similar results.
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Fig. 5. No signature switching on input change

Second the amount of switched input bits compared to
switching output bits has been evaluated. This ratio is sup-
posed to be as low as possible, meaning that an input signal
change results into a large change of the output value. The
results are shown in Figure 6 concluding to a similar behavior
of CRC-based, MD5-based and one-at-a-time implementa-
tions. Our SHA-based module had a significant less optimal
performance than the other candidates.

B. Area Requirements of different signature implementations

In a resource-constrained environment hardware resource
usage plays an important role, especially if the inclusion of a
large amount of control signals should be enabled. Therefore,
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all modules have been synthesized for the Xilinx Virtex5
FPGA using different signature widths. Figure 7 shows the
results of these synthesis runs concluding that all implemen-
tations scale as expected and one-at-a-time is needing the
largest amount of FPGA slices. The lowest resource use was
determined for all CRC-based modules.
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C. Evaluation using fault injection

After the signature hardware selection phase CRC proved to
be the most promising candidate concerning hardware resource
usage, scalability and hash performance. Therefore, a tree-
structure has been implemented to generate a segmented hash
containing information of three integrated processor cores.
Each core outputs 63 state signals containing information
about the processor’s integer pipeline as well as register file,
instruction cache, data cache, MMU and divider unit. This
could be easily extended for further system units such as
bus and network controllers. The monitored signals have been
grouped into four segments per processor, resulting in five
signature blocks per processor finally resulting in 15 hash
generating hardware units. For small signature sizes (three,
four, five) no compression has been implemented to avoid high
collision ratios. The retrieved signatures contain 34 hash bits
per processor core, resulting in a 102 bit system hash value.

Table I shows the resource usage of all signature generators
combined in comparison to the complete system and one
processor core. Furthermore, it provides a comparison to the
implementations presented by Arora et. al. in [20]. Each of the
monitored hardware units has been augmented using saboteur
blocks to enable run-time fault injection.
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TABLE I
RESOURCE USAGE COMPARISON

Unit Slices Slice Regs LUTs Resource [%]

System 15937 15017 30768 -

Core 3342 3248 6633 21.6

Signature Generator 103 102 263 0.85

Signature Controller 234 146 451 1.47

Arora et.al [20] - - - 3-9a

aIn [20] several different techniques have been proposed

To reduce the evaluation complexity only the first proces-
sor has been penetrated using 10000 randomly chosen fault
patterns during our fault injection campaign. Table II gives
an overview comparing our approach to the ones presented in
[20] and [11].

TABLE II
FAULT DETECTION EFFICIENCY COMPARISON

Approach Det. Bit Flips [%] Det. latency [Instr.]

This worka >99 1

Mao et.al Control flow [11] 26 23.6

Mao et.al Hash4 [11] 94 1

Arora et.al [20] >99 6

aSingle-round reduced CRC implementation

Our approach only needs a negligible amount of the sys-
tem’s resources while providing higher or similar detection
rates than previously presented work. This result is achieved
without influencing the execution performance as signature
generation and comparison have been done in-system using
dedicated memories. Communication to the integrity checking
hardware is minimized to detection (de-)activation commands.
Furthermore, in contrast to the earlier shown existing solutions
our approach does not rely on any modification of the source
or binary code.

VI. CONCLUSION

This paper presented a novel micro-architectural execution
signature handling and characterization methodology for ar-
chitectures providing existing control-state monitoring infras-
tructure. Our approach works fully transparent and does not
rely on any changes of the executed software to detect unfore-
seen control flow changes. All presented hardware extensions
have a low-impact on logic resources and can be efficiently
integrated into existing power estimation infrastructure. Its
modular design allows to generate execution signatures with
varying signing granularity. Resulting signatures can then
be used for transparent control-flow checking as well as
for continuing modular-redundancy checking in high-security
systems. The segmented approach allows for the direct lo-
calization of execution manipulations in a wide selection of
system-on-chip submodules. All proposed circuits are fully
synthesizable and have been successfully tested for their fault
detection capability using an FPGA-based evaluation platform.

Compared to existing state-of-the-art signature-based fault
detection mechanisms our approach promises high detection
efficiency without the need of additional watchdog hardware.
The needed software overhead can be scaled according to the
requirements of the chosen application.
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���
�������������
��
�C��
������������C�������
�������� ��
��
������������������C�����������������D
����� �����2��
D�������
 C�
� ���
�����������������2
�
�����������������
�����2���

e8@?<9789Q:=8?@A����������
�������2���2�
������ ��
�������������� 2������ ��2������ ����
��

����� ��2
�����������������������������
����������C ����
� �
�������������
��������!��C������f�
�����������
�����������
����������

e8@?<9[QJ[gJM:^<LL8?@A	�C�������������
������D
������������������������f�
 ���
����������
���
���
�����������������������������������������
����� ��
�1�����2����� ���� ����2
�����
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Â t1o�B�1���jn�nj�

gBmi �.�1t����	��1b�,	���
���1��*�������1	��=�̂����1u*�������2
����	����8��	�	
��������	���	��������v̀ ������������	����	�����
������p��1w���{$�{� ���%���%&�%�"�'${���� Â t1o�B��
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