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Abstract

Voice disorders need to be better understood because they may lead to reduced job chances and
social isolation. Correct treatment indication and treatment effect measurements are needed
to tackle these problems. They must rely on robust outcome measures for clinical intervention
studies. Diplophonia is a severe and often misunderstood sign of voice disorders. Depending
on its underlying etiology, diplophonic patients typically receive treatment such as logopedic
therapy or phonosurgery. In the current clinical practice diplophonia is determined auditively
by the medical doctor, which is problematic from the viewpoints of evidence-based medicine
and scientific methodology. The aim of this thesis is to work towards objective (i.e., automatic)
detection of diplophonia.

A database of 40 euphonic, 40 diplophonic and 40 dysphonic subjects has been acquired.
The collected material consists of laryngeal high-speed videos and simultaneous high-quality
audio recordings. All material has been annotated for data quality and a non-destructive data
pre-selection is applied. Diplophonic vocal fold vibration patterns (i.e., glottal diplophonia) are
identified and procedures for automated detection from laryngeal high-speed videos are pro-
posed. Frequency Image Bimodality is based on frequency analysis of pixel intensity time series.
It is obtained fully automatically and yields classification accuracies of 78 % for the euphonic
negative group and 75 % for the dysphonic negative group. Frequency Plot Bimodality is based
on frequency analysis of glottal edge trajectories. It processes spatially segmented videos, which
are obtained via manual intervention. Frequency Plot Bimodality obtains slightly higher clas-
sification accuracies of 82.9 % for the euphonic negative group and 77.5 % for the dysphonic
negative group.

A two-oscillator waveform model for analyzing acoustic and glottal area diplophonic waveforms
is proposed and evaluated. The model is used to build a detection algorithm for secondary oscil-
lators in the waveform and to define the physiologically interpretable ”Diplophonia Diagram”.
The Diplophonia Diagram yields a classification accuracy of 87.2 % when distinguishing diplo-
phonia from severely dysphonic voices. In contrast, the performance of conventional hoarseness
features is low on this task. Latent class analysis is used to evaluate the used ground truth
from a probabilistic point of view. The used expert annotations achieve very high sensitivity
(96.5 %) and perfect specificity (100 %). The Diplophonia Diagram is the best available auto-
matic method for detecting diplophonic phonation intervals from speech.

The Diplophonia Diagram is based on model structure optimization, audio waveform modeling
and analysis-by-synthesis, which enables a more suitable description of diplophonic signals than
conventional hoarseness features. Analysis-by-synthesis and waveform modeling had already
been carried out in voice research, but systematic investigation of model structure optimiza-
tion with respect to perceived voice quality is novel. For diplophonia, the switch between one
and two oscillators is crucial. Optimal model structure is a qualitative outcome that may be
interpreted physiologically and one may conjecture that model structure optimization is also
useful for describing other voice phenomena than diplophonia. The obtained descriptors might
be more easily accepted by clinicians than the conventional ones.

Useful definitions of diplophonia focus on the levels of perception, acoustics and glottal vi-
bration. Due to its subjectivity, it is suggested to avoid the sole use of the perceptual definition
in clinical voice assessment. The glottal vibration level connects with distal causes, which is of
high clinical interest but difficult to assess. The definition at the acoustic level via two-oscillator
waveform models is favored and used for in vivo testing. Updating definitions and terminology
of voice phenomena with respect to different levels of description is suggested.
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Preface

Research is puzzling. In undergraduate studies, one is told very clearly what puzzles need to be
solved, maybe also where to find the right pieces and where to put them. That does not usually
happen in doctoral studies.

When I arrived at the Medical University of Vienna, I started to search for puzzle pieces, and
I found plenty of them. I started to collect all pieces that looked interesting to me, and I put
all those into a little bag. Of course, I found out that most of my pieces did not fit together,
maybe because they belonged to different puzzles, or maybe because there were several pieces
missing in between them. So I started to collect more and more pieces, and some day I found
two pieces that fitted together.

My two pieces were comparable in size and color, so I decided to search for some more that
look like them. At some point I had collected one corner piece and a few edge pieces, and I
realized that those might be more important than the middle pieces. So I collected more of
them, and some day I was able to put ten edge pieces together. I decided to bring my puzzle
artifact to a conference, where I met a lot of interesting and inspiring people. I met people who
have already built several big and beautiful puzzles, and also people who have just put their
first two pieces together. So that was a good experience, and I realized that I am on the right way.

However, I had to learn that not all pieces of my puzzle looked like those that I had. The
pieces to look for were comparable in size, but there were also pieces in other colors. That was
again a bit more difficult, because I did not know what color they have. Fortunately, some day I
found my puzzle box, which was covered under thousands of puzzle pieces. I had not been able
to find it in the beginning of my journey, because I was looking for puzzle pieces and not for a
box. There were still some puzzle pieces in the box, and most of them belonged to my puzzle.
But more importantly, I was able to see my puzzle on the cover of the box. Unfortunately a
big part of the box was torn apart, because somebody probably had angrily thrown away the
box years ago. Nevertheless, I was able to recognize my puzzle artifacts on the boxes cover, so
I could be sure that my puzzle is something that can actually be built.

After some other months of puzzling, I realized that I had to finish some day. I looked at my
puzzle and saw that I have put together 34 pieces, which are connected to the puzzle’s edges,
and that I have several other parts of 3 or 4 pieces, which were separated from the bigger part.
When I compared my parts to the cover of the box I was able to approximate where the isolated
pieces could be located in relation to the bigger part. All in all I was able to get a quite good
impression of how the puzzle should look like.

I spent the next months with taking photos of my puzzle, and I took them from several dif-
ferent perspectives. I took close up photos from the perspective of signal processing experts,
from which the puzzle looked very huge. I realized that there were still some very tiny and rare
pieces missing, but I decided to leave the puzzle as it is and not to look for pieces that I was
not able to find. I also took some photos from the perspective of clinical experts. The puzzle
looked rather small from there and maybe a bit to detailed, but for me it felt just right as it was.

Now that I have finished, I hope that people like to watch my pieces and maybe to use them
for their own work. I have tried to put together a puzzle that nobody has ever tried to build
before. It is far from being finished, but I hope that I have found some cornerstones that I can
use in my upcoming work and that may perhaps also inspire some of my colleagues.
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Diplophonia

1
Introduction

”By three methods we may learn
wisdom: First, by reflection, which is
noblest; Second, by imitation, which
is easiest; and third by experience,

which is the bitterest.”
– Confucius

1.1 Motivation

Verbal communication is one of the most important achievements of human beings. Any com-
munication handicap can lead to reduced job chances, social isolation or loss of quality of live
in the long run [1]. Failures in the diagnosis and treatment of patients suffering from voice
disorders may result in substantial follow-up costs, and so the care of voice disorders is of great
importance for assuring our well-being as a community.

A need for treatment of voice disorders should be recognized in time, treatment should never
be administered unnecessarily, and the effectiveness of treatment techniques should be continu-
ously monitored in clinical intervention studies. However, correct indication for treatment and
treatment effect measurement are possibly not always accomplished and must be investigated.
As a prerequisite for achieving these goals, valid, reliable, objective and accurate methods for
the diagnosis of voice disorders are needed.

Diplophonia is a severe and often misunderstood sign of voice disorders. As a subcategory to
dysphonia, it is classified into R49 in the ICD-10. Depending on the underlying etiology, diplo-
phonic patients typically receive treatment such as phonosurgery. The absence of diplophonia
is being used as an outcome measure in clinical intervention studies [2–13]. It is auditively
assessed on connected speech by phoniatricians during clinical anamnesis [14]. Auditory assess-
ment suffers from its subjectivity, and so objectification is needed to agree with principles of
evidence-based medicine and scientific methodology.

The terms ”hoarseness”, ”irregularity” and ”roughness” are often used as supercategories of
diplophonia. Irregularity is defined on waveform properties [15], whereas hoarseness and rough-
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1 Introduction

ness are perceptually defined [14]. Hoarseness is the overall deviation from normal voice quality,
excluding deviations in pitch, loudness and rhythm. It is part of the RBH scale (Rauigkeit, Be-
hauchtheit, Heiserkeit) that is used for perceptual voice assessment in German-speaking clinics.
The Grade of hoarseness is part of the GRBAS scale (Grade, Roughness, Breathiness, Asthenia,
Strain) that is used internationally. Roughness is the ”audible impression of irregular glottal
pulses, abnormal fluctuations in fundamental frequency (F0), and separately perceived acoustic
impulses (as in vocal fry), including diplophonia and register breaks”.

By summarizing several voice phenomena into the categories irregularity, hoarseness or rough-
ness, the accuracy of voice assessment is reduced. This approach might be legitimate for daily
use in clinical practice, but from the signal processing perspective and for moving forward the
state-of-the-art more subcategories like diplophonia, fry, creak, glottalization and laryngealiza-
tion should be used [16, 17]. Those subcategories are fuzzily defined however, which hinders
scientific communication. By choosing diplophonia as the research focus, the problem of defin-
ing irregular phonation is subdivided into several subproblems, which smooths the way towards
its solution [18].

Observed diagnoses of clinically diplophonic patients are unilateral paresis, edema, functional
dysphonia, cyst, polyp, sulcus, laryngitis, nodules, scar, benign tumor and bamboo nodes. An
unilateral paresis is most common in diplophonic subjects. It may manifest as a malfunctioning
of the abduction and adduction required for coordinating respiration/phonation and voiced/un-
voiced phonation, and/or asymmetric vocal fold tension. The left and the right vocal fold is
normally coupled by airstream modulation and collision, which is reduced if the lateral place-
ment of the vocal folds is abnormal or the vocal fold tension is asymmetric. Decoupled vocal
folds often vibrate at different frequencies. The anterior and the posterior part of the vocal folds
are coupled by connecting tissue. Anterior-posterior desynchronization in unilateral pareses
may mainly be due to asymmetric vocal fold tension. The most common therapies for unilateral
pareses are the medialization thyroplasty and vocal fold augmentation.

Other diagnoses are less frequent in diplophonic patients. Tissue abnormalities like edema,
cyst, polyp, sulcus, nodules and scar may mainly be caused by mechanical stress to the vocal
folds during phonation. Thus, vocal misuse plays a role in the development of these impairments.
They can be treated by logopedists, teaching of a proper use of the voice, and by phonosurgery,
removing pathologic structures. Functional voice disorders are characterized by abnormal voice
sounds in the absence of observable organic impairment. Risk factors are multiple, such as
constitutional and hormonal. They can be treated by medication, if they arise from a primary
disease, or by logopedic therapy. Psychogenic components are addressed by psychiatric therapy.
Bamboo nodes arise from rheumatism and can be treated conservatively or by phonosurgery.
Laryngitis may be caused by environmental pollutants or infections and can be treated by med-
ication and avoiding pollutant exposure. Benign tumors are treated by phonosurgery.

In diplophonic vocal fold vibration, two glottal oscillators vibrate at different frequencies. If
the eigenfrequencies of the oscillators were known one could focus on the mechanical properties
(mass and stiffness), which may enable more precise phonosurgery. However, the observed fre-
quencies do not equal the eigenfrequencies due to coupling. From a physical point of view, one
does not exactly know how to affect the oscillations in a desirable way. Because of the lack of
sufficient data, the determination of the vocal fold eigenfrequencies is an ill-posed problem and
no speculations about eigenfrequencies are made in the present thesis. In lesions like edema,
cysts, polyps, nodules, laryngitis and tumors, the most obvious mechanical factor is mass. The
oscillator eigenfrequency decreases if mass is increased and stiffness is kept constant. If the
mass asymmetry is escalating, the coupling forces may not synchronize the glottal oscillators
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1 Introduction

anymore, and diplophonia may occur. Besides, predominantly in lesions like scars and bamboo
nodes, the stiffness parameters may change, which changes the oscillators’ eigenfrequency.

Oscillator coupling and combination types allow for further differentiation of the phenomenon.
In strong coupling (i.e., entrainment) the frequency ratio of the two oscillators is attracted to
a ratio of two small integer numbers (e.g., 1:2, 2:3, 2:2 or 3:3). In such a condition the overlap
of the two spectra increases and the fundamental frequencies are likely to merge perceptually,
which leads to the perception of one pitch only. The threshold for the transition from two
pitches to only one is unknown and certainly not only depends on the frequency ratio. Con-
sidering conventional masking models, other factors that play a role are the relative energies
and the relative spectral envelope of the oscillators. In weaker coupling, the integer frequency
ratios involve larger integers (e.g., 3:4, 7:8, 9:18), and the separate fundamental frequency traces
may evolve more or less independently. The spectral overlap of the oscillators is smaller than
in strong coupling, which may make the two pitches easier to segregate and detect perceptu-
ally. In the theoretical case of ”anticoupling”, the frequency factor is irrational and the signal
is aperiodic, which is sometimes referred to as biphonation. Irrational frequency factors are
hard to distinguish from rational ones, because measurement time intervals are finite and the
fundamental frequencies of the oscillators are time-variant. To understand the full complexity of
the coupling problem, one must take into account that coupling is time-variant and non-linear.
Small changes in coupling may change the vibration pattern substantially, which is described in
the theory of non-linear dynamics and bifurcations [19]. Oscillator combination can either be
additive or modulative. In additive combination, one oscillator waveform is added to another,
while in modulative combination, one oscillator is the carrier and the other one is a modulator.
In reality, these two types of combination often coexist.

For determining the clinical relevance of diplophonia, its prevalence must be known, but in the
lack of a unified definition and acceptable diagnostic test, it is not. Within pathologic speakers,
the rate of occurrence may be above 25 %, but may highly depend on the definition or the
instrument used for detecting diplophonia [20]. The prevalence of diplophonia in the general
population is even more uncertain, because diplophonia may also occur in healthy phonation,
which makes interpretation of and conclusions from clinical studies dealing with diplophonia
difficult. E.g., if diplophonia occurs in 2 % of the healthy general population and also in 2 %
of speakers with voice complaints, detecting diplophonia does not have any clinical relevance,
because there is no gain of information in assessing diplophonia. Thus, to determine the preva-
lence and the clinical relevance of diplophonia, a unified definition and the development of an
objective diagnostic test for detecting diplophonia is absolutely indispensable.

In the beginning of research on diplophonic voice, it was investigated what kind of physical
phenomena cause double pitch sensation. Today’s knowledge about human perception clearly
says that double pitch sensation is highly individual, variant, ambiguous and subject to training
[21, 22]. The factors influencing the perception of two pitches are manifold, and not necessar-
ily clinically relevant. In a clinical setup, the influencing factors might include room acoustics,
background noise, the relative position of the patient to the medical doctor, the medical doctor’s
general impression of the patient, including visual cues from endoscopic images, and training.
From the viewpoint of science and evidence-based medicine, more objective methods for voice
assessment are needed.
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1 Introduction

1.2 Milestones in the literature

The first investigations on double pitch phenomena in voice production were made in 1837 [23].
Müller described the occasional occurrence of two pitches in both vocal fold replica and human
excised larynx experiments, when asymmetric vocal fold tensions are applied. 20 years later
Merkel described double pitch phenomena during singing [24]. He was occasionally able to pro-
duce two simultaneous pitches at the lower end of his falsetto register, and at the lower end of
his modal register, most frequently in an interval of an octave. In 1864, Gibb presented several
clinical cases with double pitch voice, and introduced the term ”diplophonia”. Türck [25] intro-
duced the German term ”Diphthonie” and Rossbach [26] ”Diphthongie” which describe the same
phenomenon. It was already clear that the vocal fold tension is not the only parameter that
has to be taken into account, as the clinical observations and diagnoses are diverse. Scientists
had already realized, that the double pitch phenomenon can arise from two spatially distinct
oscillators, which are distributed in the anterior-posterior direction. In 1879, Grützner showed
that subharmonic double pitch phenomena can be produced with a siren disc by manipulating
its holes in a periodic pattern [27]. He created sound signals that agreed with Titze’s definition
of diplophonia [28]. In 1927, Dornblüth included the terms ”Diplophonie” and ”Diphthongie”
in his clinical lexicon [29].

The first laryngeal high-speed film of a subharmonic phenomenon in healthy voice was pre-
sented by Moore and von Leden [30] in 1958. It is remarkable that the authors were already
able to produce spatio-temporal plots at three positions along the vocal folds, which inspired
researchers for several decades. The glottis oscillated with alternating period lengths in a 1:2
ratio, which corresponds to a musical interval of an octave. The authors called this phenomenon
”glottal fry”, and still today it is unclear what relationship the terms ”diplophonia” and ”glottal
fry” may have. Smith [31] performed experiments with vocal fold replicas in the same year, and
realized that alternating period amplitudes can arise from superior-inferior frequency asymme-
try of the vocal folds, i.e., the inferior part of the vocal folds vibrating at a different frequency
than the superior part. Švec documented a case of 3:2 superior-inferior frequency asymmetry
and argued that open quotient and flow may distinguish the observed phenomenon from vocal
fry [32]. In 1969, Ward [33] was the first to discover that a double pitch phenomenon can arise
from left-right frequency asymmetry of the vocal folds. He was able to measure the fundamental
frequency ratio (approx. 13:10.25) in a case of voluntarily produced diplophonia by a healthy
female subject.

Dejonckere published a milestone article on the analysis of auditive diplophonia in 1983
[20]. He examined 72 diplophonic patients by means of acoustic recordings, electroglottography
(EGG), photoglottography and stroboscopy. He showed that diplophonia arises at the level of
glottal vibration from oscillators at different frequencies, which results in a beat frequency phe-
nomenon. It manifests at the waveform level in repeating patterns of cycle length and/or cycle
peak amplitude.

From that time on, mostly methodical studies with small sample sizes have been published.
A milestone in mechanical modeling of diplophonia has been set by Ishizaka in 1976 [34]. He
used an asymmetric two-mass model (two-masses for each vocal fold) to obtain diplophonic
waveforms. In Cavalli’s experiment in 1999, seven trained listeners were able to reliably detect
diplophonia in audio material from five diplophonic and five dysphonic subjects [35]. Cavalli
was the first to report that auditive diplophonia is not equivalent to the presence of subhar-
monics visually determined from audio spectrograms. Bergan and Sun showed that perception
of pitch and roughness of subharmonic signals depends on modulation type and extent as well
as F0 and vowel type, while interrater reliability is low [36, 37]. In 2001, Gerratt contributed
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a theoretical work on the taxonomy of non-modal phonation and warned that the use of diver-
gent levels of description across studies results in ambiguous definitions and hardly generalizable
conclusions [17]. The work has not yet received the attention it demands, and so no unification
of definitions or change in publication habits have been achieved. In the same year, spectral
analysis of laryngeal high-speed videos was introduced by Granqvist [38]. The method enables
visualizing laryngeal structures vibrating at different frequencies in a false color representation.
Granqvist analyzed vibrations of the ventricular folds and the arytenoid cartilages, but did not
test perceptual cues. Kimura reported two diplophonic subjects with spatially distributed oscil-
lation frequencies, as determined by spectral video analysis [12]. Neubauer introduced empirical
eigenfunction analysis for describing oscillation modes and quantitatively measuring spatial ir-
regularity [39]. The procedure was tested on an euphonic example, and on one example of
left-right and anterior-posterior frequency asymmetry each. Hanquinet proposed a synthesis
model for diplophonia and biphonation in 2005 [40]. An amplitude driving function of a pulsed
waveform is sinusoidally modulated. In diplophonia, the modulation frequency is the pulse fre-
quency times a ratio of two small integers. In biphonation, it is an irrational number. Sakakibara
proposed a voice source model for analysis-by-synthesis of subharmonic voice in 2011 [41]. It was
based on physiological observations in laryngeal high-speed videos of three diplophonic subjects
(paresis, cyst, papilloma). Pulsed waveforms were amplitude modulated by sawtooth functions.
Their sum was amplitude modulated by sinusoidal functions and drove a vocal tract model. The
parameter estimation was manual, and the model was used to conduct perceptual experiments
with six listeners, judging roughness and the presence of diplophonia. Sakakibara showed that
both diplophonia and roughness are increased for 4:3 and 3:2 frequency ratios as compared to
a 2:1 ratio. The amplitude ratio of the pulse waveforms was another factor that affected the
perception of diplophonia. The ratio needs to be close to 0 dB, otherwise the weaker waveform is
masked by the louder one. This result agrees with principles of current masking models. Alonso
recently introduced a synthesis model for subharmonic voice that considers additive oscillator
combination [42].

The steps towards the full understanding of diplophonic phonation are becoming smaller,
probably because no technique superior to laryngeal high-speed video has been invented yet. It
is remarkable that diplophonic phonation has been investigated for nearly 200 years now, partly
by means of sophisticated methods, and still it is not really clear what diplophonia is.

1.2.1 Three related PhD-theses

To pinpoint the main research questions and aims of the present thesis, three related PhD theses
are analyzed for their content in terms of clinical and technical relevance. Moreover, common-
alities and differences with the present thesis are identified. The reviewed theses are Michaelis’
”Das Göttinger Heiserkeits-Diagramm - Entwicklung und Prüfung eines akustischen Verfahrens
zur objektiven Stimmgütebeurteilung pathologischer Stimmen” [43–45], Mehta’s ”Impact of hu-
man vocal fold vibratory asymmetries on acoustic characteristics of sustained vowel phonation”
[46] and Shue’s ”The voice source in speech production: Data, analysis and models” [47].

Das Göttinger Heiserkeits-Diagramm - Entwicklung und Prüfung eines akustischen
Verfahrens zur objektiven Stimmgütebeurteilung pathologischer Stimmen

In 1997, Dirk Michaelis published his dissertation ”Das Göttinger Heiserkeits-Diagramm - En-
twicklung und Prüfung eines akustischen Verfahrens zur objektiven Stimmgütebeurteilung pathol-
ogischer Stimmen” (The Göttingen Hoarseness Diagram - development and evaluation of an
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acoustic method for objective voice quality assessment of pathologic voice) [43–45]. The the-
sis aimed at creating an objective method for clinical voice quality visualization and may be
grouped into five entities. First, the Glottal-to-Noise Excitation Ratio (GNE) has been intro-
duced. The GNE aims at estimating the level of additive noise components in dysphonic voice.
Second, informative representations of conventional hoarseness features together with the GNE
have been identified to formulate the Göttingen Hoarseness Diagram. Third, the influence of
the vocal tract on jitter and shimmer has been investigated. Fourth, perceptual experiments
on the GNE, several perturbation measures, roughness and breathiness have been conducted.
Finally, the clinical application of the Hoarseness Diagram has been investigated by means of
group effect interpretation, recording protocol shortening and case studies of 48 patients. The
following paragraphs give more detailed explanations on Michaelis’ investigations.

The GNE correlates Hilbert envelopes obtained from a filterbank and thus reports additive
noise in disordered voice, because glottal pulse energy is correlated across frequency bands,
whereas noise is not. The GNE is obtained as follows: 1) linear prediction based block wise
inverse filtering of the speech signal, 2) filterbank analysis, 3) Hilbert envelope calculation, 4)
calculation of across frequency correlation and 5) obtaining the maximum of all correlation co-
efficients. The GNE has been trained and tested on natural and synthetic audio material. On
synthetic material, the Normalized Noise Energy [48] and the Cepstral Harmonic to Noise Ratio
[49] are prone to jitter and shimmer, whereas the GNE is not. On natural material, it distin-
guishes normal voice from whispering. With regard to filterbank bandwidth, GNE1, GNE2 and
GNE3 are distinguished (1 kHz, 2 kHz and 3 kHz).

The formulation of the Hoarseness Diagram is based on observations from singular value de-
composition and information theory. With regard to singular value decomposition, Michaelis
analyzed the data space of 20 hoarseness features, obtained from 1799 analysis intervals of
pathological and normal speakers. The features were period length, the waveform matching
coefficient, jitter, shimmer and the GNE. The average, the minimum, the maximum and the
standard deviation of the period length, the waveform matching coefficient and the GNE were
considered. For jitter and shimmer, the perturbation quotients (PQ), as well as the perturba-
tions factors (PF) have been used. With regard to block length K, three versions of the PQ have
been considered (PQ3, PQ5 and PQ7). The decomposition resulted in a four-dimensional data
space. In a second approach, Michaelis analyzed the data space of four hoarseness features, i.e.,
the mean waveform matching coefficient (MWC), the shimmer (energy perturbation factor), the
jitter (period perturbation factor) and the GNE. This approach resulted in a two-dimensional
data space. Data from pathologic speakers were distributed along both axes, whereas normal
voice and whispering were located at low and high perturbation values separately.

Michaelis selected the best versions of GNE, jitter and shimmer with respect to information
theory. The MWC and numerous versions of jitter and shimmer were considered. The period
perturbation quotient (K=3) and the energy perturbation quotient (K=15) added the most in-
formation to MWC, as compared to other jitter and shimmer combinations. GNE3 added the
most information to the perturbation measures, as compared to other noise features. Thus, the
Hoarseness Diagram was obtained by projecting the data space onto two dimensions, namely
irregularity (MWC, J3, S15) and noise (GNE3). Rotation and origin shift of the axes enabled
convenient visualization.

Michaelis investigated the influence of the vocal tract on perturbation measures by experi-
menting with EGGs, microphone signals, synthetic glottal signals and synthetic acoustic signal.
The correlation of perturbation measures obtained from different signals is fair only. A the-
ory of co-modulation has been proposed, i.e., the amount of shimmer depends on jitter that is
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modulated in the vocal tract. One can conclude that features obtained at the level of glottal
vibration should be used differently than acoustic measures.

The correlation of acoustic measures with perceptual ratings has been tested. Data from 20
trained and untrained raters was used. The correlation of GNE with breathiness turned out to
be moderate, whereas the picture is less clear for perturbation measures and roughness. It is
unknown whether imperfect correlation is due to failures in measurement or in auditive judg-
ment.

The clinical application of the Hoarseness Diagram has been investigated by means of group
effect interpretation, shortening of the recording protocol and case studies. Michaelis showed
group effects of vowel type, diagnosis and phonatory mechanism. Different vowel types are lo-
cated at different positions in the Hoarseness Diagram, which is modeled by multidimensional
linear regression and a neuronal network. The different diagnosis were tumor, paresis, benign
neoplasm, functional dysphonia and neurological dysphonia. Different phonatory mechanisms of
substitution voices have been evaluated. Differentiation between different diagnoses or phona-
tory mechanisms in substitution voice is not possible.

With regard to removing redundancies, a shortening of the recording protocol has been pro-
posed. Michaelis’ recording protocol consists of 28 vowels (seven vowels times four pitch levels).
In clinical practice obtaining recordings is expensive, because it is time consuming for patient
and examiner. Thus, it has been investigated if the recording protocol can be condensed, with-
out losing relevant information. Linear regression or a neuronal network was used to predict the
large recording protocol’s average of vowel values from only three vowels. The prediction error
was in an acceptable range mostly.

Additionally, case studies of 48 patients have been published. Multiple measurements before,
during and after treatment are available, which enables generating hypotheses and designing
studies to investigate further clinical interpretations.

Michaelis’ thesis and the present thesis have in common that an objective method for clini-
cal voice quality is developed. Signal processing methods are used to develop vowel recording
features that correlate with perceptual attributes. Differences are that the present thesis aims
at diplophonia, which is a subcategory of irregularity or roughness. Michaelis’ irregularity is
a conglomerate of three established perturbation features: jitter, shimmer and mean waveform
matching coefficient, which depend on correct cycle length detection. However, cycle length de-
tection from irregular voice is often error prone. In laryngeal high-speed videos the voice source
can be evaluated more straight forwardly than in the audio signal, hence cycle length detection
from laryngeal high-speed videos is investigated in the present thesis. It has been hypothesized
that splitting up the problem of measuring irregularity into several smaller subproblems smooths
the way towards its solution.

Impact of human vocal fold vibratory asymmetries on acoustic characteristics of sustained
vowel phonation

Daryush Mehta published his dissertation ”Impact of human vocal fold vibratory asymmetries
on acoustic characteristics of sustained vowel phonation” in 2010 [46]. Mehta investigated cor-
relations of features obtained from laryngeal high-speed videos with acoustic features. Three
corpora of observed data (normal and pathologic speakers) as well as one corpus of synthesized
data have been used. Mehta showed that acoustical perturbations can arise from cycle-to-cycle
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variability in vocal fold asymmetry, both in natural and simulated data. Steady asymmetry
does not influence the tested acoustic measures, including spectral tilt and noise.

Investigated measures of laryngeal high-speed videos were both subjective and objective. Left-
right phase asymmetry in digital videokymograms was assessed by three raters on a five-point
scale. In objective analysis, one measure for left-right amplitude asymmetry, axis shift, open
quotient and period irregularity (i.e., a jitter-like video feature) each and two measures for left-
right phase asymmetry were considered. In glottal area waveforms (GAW) the open quotient,
the speed quotient, the closing quotient and a plateau quotient were considered.

Acoustic analyses considered perturbation (jitter and shimmer), spectral features and noise.
The jitter was the average absolute difference between successive period lengths divided by the
average period length in percent. This is the ”Jitt” feature in the widespread Multidimensional
Voice Program (MDVP). The shimmer was the average absolute difference of peak amplitudes of
consecutive periods divided by the average peak amplitude in percent (MDVP’s ”Shim”). The
spectral features were derived from the inverse filtered acoustic signal. The considered features
were H1*-H2*, H1*-A1*, H1*-A3* and TL*, where H1* and H2* are the inverse filtered magni-
tudes of the first and second harmonic, A1* and A3* are the inverse filtered magnitudes of the
harmonics next the first and third formant and TL* is a measure for spectral tilt that is obtained
from a regression line over the first eight inverse filtered harmonic peaks. The investigated noise
feature was the Noise-to-Harmonics Ratio (MDVP’s NHR).

Mehta’s experiments were carried out on four copora, three built from observed data and one
from synthesized data. The observed corpora were one corpus of 52 normal subjects, phonating
comfortable and pressed (corpus A), one corpus of 14 pathologic speakers (corpus B) and one
corpus of 47 subjects, which were 40 pathologic and seven normal (corpus C). In corpus C, six
pathologic speakers brought pre- and post-treatment data, resulting in 53 datasets. The synthe-
sized data was obtained from computational models of the vocal folds and the vocal tract. The
vocal fold model was modified from the asymmetric two-mass model of Steinecke and Herzel
[19]. The model accounts for nonlinear acoustic coupling, and nonlinear source-filter interaction
(level 1: glottal airflow and level 2: tissue dynamics) [50].

In corpus A (52 normal subjects, comfortable and pressed phonation), visual ratings of left-
right phase asymmetry were compared to the objective measures with respect to the sagittal
position of the kymogram and descriptive statistics of left-right phase asymmetry, left-right
amplitude symmetry and axis shift during closure were reported. Mehta showed that his new
measure for left-right phase asymmetry correlates stronger to visual ratings than a former ver-
sion [51]. The correlation was stronger in the midglottis (sagittal position of the kymogram)
and weaker toward the endpoints of the main glottal axis. No differences between comfortable
and pressed phonation were found.

In corpus B (14 pathologic speakers), objective kymogram measures were compared to nor-
mative ranges and their correlation to acoustic features was tested. The objective kymogram
measures were left-right phase asymmetry, left-right amplitude asymmetry, axis shift during
closure, open quotient and period irregularity. The acoustic features were jitter, shimmer and
the NHR. 31 to 62 % of the subjects showed above normal values for phase and amplitude
asymmetry as well as for axis shift. The open quotient and the period irregularity fell within
normal limits. Correlations were found for standard deviation of left-right phase and amplitude
asymmetry. Both measures reflect variability of asymmetry and result in increased acoustic
jitter values. The standard deviation of the open quotient also reflects variability of asymmetry
but correlates with shimmer.
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Model data was compared to observed data (corpora C and D), considering analyses of kymo-
grams, GAWs and acoustical spectra. The measures obtained from kymograms are the left-right
phase asymmetry (slight modification to formerly used measure), the left-right amplitude asym-
metry and the axis shift. The open quotient, closing quotient and a plateau quotient were
obtained from the GAWs. The spectral features were H1*-H2*, H1*-A1*, H1*-A3* and TL*.
At first, relationships between the measures in synthesized data were investigated. Over certain
ranges, there were linear relationships of the phase asymmetry to the plateau quotient and the
axis shift. A monotonic relationship of the closed closing quotient to the phase asymmetry was
found. Second, in subject data, only the relationship of phase asymmetry and axis shift could
be reproduced, all other observations do not agree with model data.

Divergences between model data and observed data showed the complexity of the apparent
physical phenomena and may be explained as follows. Although great effort is put into creating
a realistic synthesis model, its parameters could not be estimated appropriately, because they
are too many. The number of parameters must be very wisely chosen when observed data should
be modeled. Trade offs between model complexity and model fits must be assessed by means
of ”goodness of fits” measures. The topic of the present thesis is similar to Mehta’s, but their
scopes do not overlap because:

1. Features used by Mehta rely on cycle detection, which must fail in diplophonic phonation.

2. Vocal fold vibration and waveform patterns are compared to auditive ratings.

3. Frequency asymmetry is considered.

The voice source in speech production: data, analysis and models

Yen-Liang Shue published his dissertation ”The voice source in speech production: data, anal-
ysis and models” in 2010 [47]. Shue’s dissertation is relevant for diplophonia analysis from a
methodological point of view. A new GAW model and a new inverse filtering technique were
proposed and evaluated. In addition, acoustic features were extracted and correlated to inde-
pendent variables. The independent variables were voice quality, F0 type, the presence of a
glottal gap, gender and prosodic features. All speakers were healthy and the used voice quality
types were pressed, normal and breathy. The F0 types were low, normal and high. Evaluations
were conducted on corpora of different sizes, which consisted both of sustained phonation and
read text.

A new parametric GAW model was trained and evaluated. The GAW cycle model was trained
from data of three male and three female healthy speakers with perceptually normal voice. Sta-
ble intervals of sustained phonations with different voice quality and F0 types were used for
training. The GAWs were manually segmented at cycle borders, and average cycle shapes were
obtained. The proposed model was parametric and Liljencrants-Fant (LF) like. It was an inte-
grated version of the first LF equation, which was used for both the opening and the closing.
The used parameters were the open quotient, a temporal asymmetry coefficient α, the speed
of the opening phase SOP and the speed of the closing phase SCP . The model showed better
agreement to observed data than comparable models.

Inverse filtering via codebook search was proposed and evaluated on observed GAWs. Shue
jointly estimated parameters of the proposed source model and a conventional six-pole vocal
tract model from the acoustic waveform. A larger and a smaller codebook were trained from
the proposed parametric voice source model. The smaller one allows for preselecting the coarse
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shape of the GAW cycle, and the smaller one is used for fine tuning. The vocal tract model was
jointly tuned by constrained nonlinear optimization, and its model error was used as optimiza-
tion criterion for the codebook search. It was shown that the proposed model outperforms the
LF model, but that the performance of the procedure crucially relies on the correct estimation
of formant frequency and bandwidth.

Acoustic features have been extracted with the custom MATLAB software ”VoiceSauce” and
evaluated with respect to voice quality and voice source parameters, automatic gender classifi-
cation and prosody analysis. The acoustic features were F0, energy, cepstral peak prominence,
Harmonics-to-Noise Ratio (HNR) and spectral features. In voice quality and voice source anal-
ysis, spectral features correlated with the open quotient, breathiness, the asymmetry coefficient
α and the speed of closed phase SCP . Energy correlated with loudness and voice intensity,
and the cepstral peak prominence and HNR with modality and breathiness. The open quotient
was decreased in pressed phonation and increased in breathy phonation. In that study, the
open phase was shorter in breathy phonation surprisingly. Automatic gender classification and
prosody analysis is less adjacent to the present thesis and thus not reviewed here.

Shue’s methods are similar to the presented methods, because he used analysis-by-synthesis
based on a voice source and vocal tract model with optimization via minimization of the resyn-
thesis error. Shue’s approach, however, differs substantially from the approach pursued in the
present thesis because:

1. Average cycle prototypes are not parameterized and used to train a codebook, but ex-
tracted directly from the signal under test.

2. The present approaches do not require separating the voice source from the vocal tract, a
simpler model structure is therefore sufficient.

3. Two-oscillator waveform models are considered in the present thesis.

A drawback of Shue’s thesis may be that the evaluation of the proposed model as compared
to other models might be erroneous, because the training data equals the test data. Thus, Shue
ran the risk of overfitting because the proposed model received an undue advantage to other
models in evaluation.

1.3 The definition of diplophonia

Diplophonia may be defined at three levels of description. The perceptual definition is the most
pragmatic and used in clinical practice. Definitions based on the acoustic waveform may be
quantitative and enable formulating the Diplophonia Diagram, i.e., an automated procedure for
discriminating diplophonic voice from other voice phenomena. Definitions based on vocal fold
vibration connect with the mechanical properties of the vocal folds and consequently the distal
causes of diplophonia.

At the level of perception, diplophonia is the presence of two pitches [20], which is a rather
vague definition. The origin of this definition is in the 19th century and is considered to be
traditional. Recent psychoacoustic investigations report complex perceptual effects [21,22]. The
presence of two pitches depends firstly on the signal (the stimulus), and secondly on the ob-
server (the subject). The ability to segregate a voice sound into separate pitches is a matter
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of training, which is often conducted without the aid of accredited sound files and proper play
back techniques. In addition, divergent room acoustics and background noise change perceived
timbre, which results in high inter- and intrarater variability.

Titze’s definition is at the level of waveforms, which can be applied to the level of acoustics.
Titze’s diplophonia is defined by counting pulses within one metacycle (MC), i.e., a ”period-two
up-down pattern of an arbitrary cyclic parameter” [52]. Other waveform patterns that rely
on pulse counting are ”triplophonia”, ”quadruplophonia” and ”multiplophonia”. Titze’s terms
”biphonia”, ”triphonia” and ”multiphonia” denote the presence of two, three or multiple inde-
pendent sound sources. It is remarkable that, e.g., biphonia can be multiplophonic at the same
time. Such a waveform is shown in figure 4.4.

Diplophonic waveforms are described by means of subcycles and metacycles. When two os-
cillators are summed, the summands’ waveform cycles are referred to as subcycles. Meta cycles
manifest in temporal fluctuations of the dominant pulse heights, which are pseudo periodic,
depending on the frequency ratio of the oscillators and its evolvement. The meta cycle length
can fluctuate, and very likely does in natural signals, because the oscillators’ frequencies and
their ratio vary in time. The variation depends on the oscillators’ coupling strength, laryngeal
muscle tension and subglottal pressure.

On the glottal vibration level, diplophonia is defined as the presence of two distinct oscilla-
tions at different frequencies. In the search for a robust and clinically relevant outcome measure,
the assessment of vocal fold vibration is central. Medical doctors are interested in the question
how abnormal voice is produced and its underlying etiology, because a better understanding of
voice production would facilitate the development of more effective treatment techniques. The
presence of diplophonia is assessed by detecting left-right and anterior-posterior frequency asym-
metries in laryngeal high speed videos. In the case of superior-inferior frequency asymmetry, the
observation of the secondary frequency is impeded because it is partly or entirely hidden from
view. A hidden oscillator affects the glottal area in a purely modulative way, i.e., its additive
contribution to the waveform is zero.

All definitions of diplophonia are problematic in practical use. The perceptual definition via
the presence of two pitches suffers from its subjectivity. The waveform definition suffers from the
unsolved problems of cycle detection and sound source independence decision. The definition
at the glottal vibration level suffers from the constraints of the observation methods, i.e., laryn-
geal high-speed videos offer two-dimensional projections of the opaque three-dimensional vocal
fold tissue. To obtain insight in the diplophonia phenomenon, all three levels of description are
addressed in this thesis.

1.4 Methodical prerequisites

Testing aims at detecting a certain target condition in a sample. In a diagnostic context, ”the
term test refers to any method for obtaining additional information on a patient’s health status.
It includes information from history and physical examination, laboratory tests, imaging tests,
function tests and histopathology. The condition of interest or target condition can refer to a
particular disease or to any other identifiable condition that may prompt clinical actions, such
as further diagnostic testing, or the initiation, modification or termination of treatment” [53].
Test outcomes indicate clinical actions to avoid clinical consequences such as death or suffering,
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ideally via predefined rules. As an ultimate scientific goal, it must be proven if an individual
patient benefits from the administration of a diagnostic test, and what the benefit is quantita-
tively, because unnecessary testing should be avoided.

A good diagnostic test has to respect several quality criteria. The main criteria in test theory
are validity, reliability and objectivity. A valid test measures what it is supposed to measure, and
influencing factors that are probably biasing the results (i.e., covariates) are either controlled
to be constant between groups, or are adjusted for. E.g., when measuring the intelligence quo-
tient, a subject under test has to solve several logical tasks. Such a test can only measure how
subjects behave in this particular test situation, with all covariates as they are. Covariates
can be: affinity for solving IQ tasks, practice, vigilance, age, education, patience and cultural
background. Generalization (i.e., deductive conclusions) of test results to other life situations
might be problematic or even invalid. Very wisely, intelligence is defined as the magnitude that
is measured by the IQ test, which solves parts of the validity problem. However, economical
validity may still be small because of the divergence between laboratory setups and real world
setups. In the clinical assessment of voice disorders, the same is true. Conclusions from single
descriptors to general voice health conditions may lack validity.

Regarding reliability, measurement divergences between raters (intra and inter), test proce-
dures, test repetitions and test devices need to be assessed [54]. Both systematic and random
measurement errors may occur. Systematic errors (e.g., a rater giving systematically higher
rates than his/her colleague) can be adjusted for if their magnitudes are known. Random errors
need to be kept as small as possible right from the beginning of the experiment, because they
cannot be removed from the results afterwards.

Objective test results only depend on the test object (i.e., the patient under test) and not
on the test subject (e.g., the measurement device/procedure, or the reader of the test). In an
objective diagnostic test, any effect that does not directly stem from the patient is avoided. One
may see here, that the described concepts of validity, reliability, objectivity and systematic/ran-
dom measurement errors are dependent on each other.

Diagnostic table

In diagnostic accuracy studies, the performance of a diagnostic test is evaluated with respect to
a known true target condition. The target condition and the test outcome have two possible val-
ues, namely present or absent and positive or negative. In a diagnostic study, positive subjects
must be available for which the target condition is present, and negative subjects for which the
target condition is absent. The negative group should consist of subjects that typically need to
be distinguished from positive subjects.

The performance of a test is evaluated by setting up a cross table with four cells. The columns
of the table denote the target condition, whereas the rows denote the test outcome. The en-
tries of the table are absolute counts or rates of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN). In a true positive, the target condition is present and
the test result is positive, which is desirable. The second desirable situation is a negative test
result, given the condition is absent. Undesirable events are positive tests if the condition is
absent (false positives) and negative tests of the condition is present (false negatives). Table 1.1
illustrates an example of a diagnostic table.
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Target condition
Present Absent

Test
Positive TP FP
Negative FN TN

Table 1.1: Example of a diagnostic table. True positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN).

Several summary measures are calculated from diagnostic tables. The measures express sta-
tistical properties of the observed data distribution and are used to draw conclusions for clinical
decision making. The measures are the sensitivity, the specificity, the accuracy, the prevalence
(aka pretest probability), the positive predictive value (aka posttest probability), the positive
likelihood ratio, the negative predictive value and the negative likelihood ratio. All measures
are derived from absolute counts of TP, TN, FN and FP. The measures range from 0 to 1 or
from 0 % to 100 %.

Sensitivity (SE)

The sensitivity is the probability for a positive test outcome, given the target condition is present.

SE =
TP

TP + FN
(1.1)

Specificity (SP)

The specificity is the probability for a negative test result, given the target condition is absent.

SP =
TN

TN + FP
(1.2)

Accuracy (ACC)

The accuracy is the probability for a correct test result.

ACC =
TN + TP

TP + FP + FN + TN
(1.3)

Prevalence (PR) aka pretest probability (PRP)

The prevalence equals the proportion of positive subjects or samples in a cohort. The pretest
probability is the probability for a present target condition, independently of the test outcome.
In other words, the pretest probability is the probability of randomly picking a positive subject
or sample from a cohort. The values of the prevalence and the pretest probability are equal,
but the term prevalence is used for proportions, whereas the term pretest probability expresses
probability. A proportion is a property of observed data, whereas probability is a property of a
random process.

PR =
FN + TP

TP + FP + FN + TN
(1.4)
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Positive predictive value (PPV) aka posttest probability (POP)

The positive predictive value aka posttest probability is the probability for a present target
condition, given a positive test outcome. High positive predictive values reflect good tests, but
must always be seen in relation to the prevalence, which is better achieved by the positive
likelihood ratio.

PPV =
TP

TP + FP
(1.5)

Positive likelihood ratio (PLR)

Probabilities can also be expressed in odds, which are calculated from equation 1.6. An exem-
plary probability of 10 % results in odds of 1

9 , which means that on average 1 positive event
happens while 9 negative events. The positive likelihood ratio is actually an odds ratio and
given by equation 1.7.

Odds(P) =
P

1− P
(1.6)

PLR =
Odds(PPV )

Odds(PR)
=

SE

1− SP
(1.7)

Negative predictive value (NPV)

The negative predictive value is the probability for an absent target condition, given a negative
test outcome.

NPV =
TN

TN + FN
(1.8)

Negative likelihood ratio (NLR)

The negative likelihood ratio expresses how the odds for the absence of a target condition change
from their pretest value, if a single subject or sample under test is tested negative.

NLR =
Odds(NPV )

Odds(1− PR)
=

SP

1− SE
(1.9)

Confidence intervals

The above measures are estimates of the true proportions. Confidence intervals express the
certainty of the estimates. Binomial distribution is assumed and the intervals are calculated by
an iterative algorithm [55].
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Receiver operating characteristic curves and optimal threshold selection

The receiver operating characteristic (ROC) curve is a way for depicting the test performance
of a cut-off threshold classifier with respect to its threshold. The curve is useful for interpreting
the overlap of two data distributions used for classification. It is applied for determining optimal
cut-off thresholds.

The ROC curve shows the sensitivity on its y-axis and 1 - specificity on its x-axis and relates
to different values of the threshold. Figure 1.1 shows an example of an ROC curve. The plot
also shows the line of pure guessing (dashed green) and selected threshold values (red crosses).
The boxes on the bottom right show the area under the curve (AUC), the optimal threshold
and the sensitivity and specificity at the optimal threshold. As a rule of thumb, an AUC of 0.7
or more reflects a meaningful test paradigm. A 10-fold bootstrap validation is used throughout
the thesis for calculating the confidence intervals of the AUC [56].
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Figure 1.1: Example of an receiver operating characteristic (ROC) curve.

The optimal threshold is found by minimizing the geometrical distance of the ROC curve to the
virtual optimal point, i.e., the upper left corner in the coordinate system (SE = 1, SP = 1). The
distance D equals

√

(1− SE)2 + (1− SP )2 and is a function of the cut-off threshold. The opti-
mal threshold is found at the point of the ROC for which D is minimal. Unless stated otherwise,
the optimal thresholds in this thesis are derived by minimizing D. Other methods for optimizing
the threshold are, e.g., maximal F1 measure from pattern recognition (F1 = 2 · PPV ·SE

PPV+SE
), equal

error rate (SE = SP ), maximal PLR or moving a straight line from the upper left corner toward
the curve. The last option is explained and used in chapter 3.
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Interpretation

All presented performance measures reflect a good diagnostic test if they are high. The majority
of the measures are probabilities or proportions, which can go from 0 % to 100 %. The PLR
and the NLR are measures for likelihood ratio and can take any positive number.

The sensitivity, the specificity and the accuracy should be (far) above 50 %. If they are below
50 %, one should check if an inverse test has been administered. An inverse test would test for
the absence of the condition instead for the presence. The prevalence aka pretest probability is
a number that purely reports a property of the cohort and not a property of the test. It cannot
be influenced by test design, but needs to be taken into account for adjusting thresholds and
interpreting results. The proportion of diplophonic samples in the used database is most likely
not equal to the prevalence in general population, which is discussed in section 2.4 and chapter
6. The positive predictive value aka posttest probability highly depends on the prevalence and
thus should be interpreted in relation to it. The positive likelihood ratio relates the pretest prob-
ability and the posttest probability by dividing their odds and is thus a very valuable feature,
because it expresses how the odds for the target condition change if a single subject or sample
under test is tested positive. A PLR of 1 reflects pure guessing, and a PLR below 1 reflects an
”inverse” test. As a rule of thumb, a PLR of 2 or more is considered to reflect a meaningful
test. The advantage of the PLR in comparison to other measures is that it evaluates how much
additional information about the presence of a target condition is obtained by administering a
test, while taking prevalence into account. It is difficult to achieve high posttest probability for
very rare pathologies, but the gain of information obtained by administering the test is reflected
by the PLR.

1.5 Aims and Hypotheses

The aim of this thesis is to work towards an automated method for the clinical detection of
diplophonia. A diagnostic study of sensitive and specific discrimination of diplophonia from
other voice phenomena is conducted.

It is hypothesized that:

1. typical vocal fold vibration patterns of diplophonic phonation can be identified,

2. the patterns can be automatically detected from laryngeal high-speed videos,

3. diplophonia can be automatically detected from audio waveforms,

4. the detectors outperform related approaches,

5. the test rationales are physiologically interpretable, and

6. a solid ground truth for the presence of diplophonia can be defined.
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1.6 Overview

In chapter 2, a database that consists of laryngeal high-speed videos with simultaneous high-
quality audio recordings is presented. The database enables investigating vocal fold vibration
patterns, glottal area waveforms and audio recordings with regard to perceptual cues. In chap-
ter 3, automatic detectors that are based on recent publications [57, 58] are introduced. The
detectors are designed for discriminating diplophonic from non-diplophonic vocal fold vibration
patterns. The detection paradigms are discussed with respect to a geometric model of diplo-
phonic vocal fold vibration, which improves the understanding of spatially complicated vibration
patterns. Recent publications on audio waveforms [59,60] are presented in chapter 4. The state-
of-the art of disordered voice analysis and synthesis is moved forward by modeling diplophonic
waveforms accurately. The pursued strategies increase the knowledge of physical correlates
of perceptual cues of disordered voice. In chapter 5, the waveform model is used to design
the Diplophonia Diagram, which relates diplophonic and non-diplophonic audio waveforms to
physiologically interpretable scales [60]. Finally, the ground truth is checked from a probabilistic
viewpoint by combining information from three independent descriptors via latent class analysis.

List of publications

The thesis is based on material that has partially been presented in the listed publications. The
author’s contributions to the publications 1-3 and 5-6 were the basic idea, theoretical analysis,
experimental design, data collection, software implementation, interpretation of the results and
paper writing. The author’s contributions to the publications 4 and 7 were the basic idea, ex-
perimental design, data collection and the interpretation of the results. The publications are
listed in chronological order.

1. ”Describing the transparency of mixdowns: the Masked-to-Unmasked-Ratio,” in 130th
Audio Engineering Society Convention, 2011. [61].

2. ”Double pitch marks in diplophonic voice,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2013, pp. 7437-7441. [59].

3. ”Spectral analysis of laryngeal high-speed videos: case studies on diplophonic and euphonic
Phonation,” in Proceedings of the 8th International Workshop on Models and Analysis of
Vocal Emissions for Biomedical Applications, 2013, pp. 81-84. [57].

4. ”Automatic glottis segmentation from laryngeal high-speed videos using 3D active con-
tours,” in Medical Image Understanding and Analysis, 2014, pp. 111-116. [62].

5. ”Comparison of an audio-based and a video-based approach for detecting diplophonia,”
Biomedical Signal Processing and Control, in Press. [58].

6. ”Towards objective voice assessment: the Diplophonia Diagram,” Journal of Voice, ac-
cepted. [60].

7. ”Automatic high-speed video glottis segmentation using salient regions and 3D geodesic
active contours,” Annals of the British Machine Vision Association, submitted. [63].
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Diplophonia

2
A database of laryngeal high-speed videos with

simultaneous high-quality audio recordings

2.1 Motivation

A prerequisite for the development of a method for detecting diplophonia is the investigation of
phonatory mechanisms, typically by means of laryngeal high-speed videos. Several publications
based on fairly large databases of laryngeal high-speed videos are available [64–76], but unfortu-
nately no database is open to the scientific community, probably because publishable databases
are expensive to obtain and administrate. In many scientific disciplines it is common to publish
databases, but not so in research on disordered voice. Examples of published databases in speech
research are [77–79], but also medical databases with patient related data have been opened for
retrieval by the scientific community [80–83]. Publishing databases increases the comparability
of research results and makes scientific communication more effective. Publishing databases
of laryngeal high-speed videos would professionalize voice research and increase the quality of
scientific studies.

Analyzing laryngeal high-speed videos seems to be a fruitful approach to investigating diplo-
phonic voice, because the amount of information available in the video exceeds that in the audio
signal. Because diplophonia is assessed perceptually, the additional acquisition of high-quality
audio recordings is mandatory. Quality criteria that should be striven for are high sampling rates
(at least 44.1 kHz), anechoic room acoustics, low levels of background noise, high quantization
resolution (at least 16 bits), high quality microphones (e.g., professional condenser microphones
with symmetrical wiring), high quality pre-amplifiers and recorders. This chapter documents
the design, creation and administration of a database of laryngeal high-speed videos with syn-
chronous high-quality audio recordings. The database is highly valuable for answering research
questions addressed in this thesis.
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2.2 Design

2.2.1 Data collection

Between September 2012 and August 2014, 80 dysphonic subjects have been recruited among the
outpatients of the Medical University of Vienna, Department of Otorhinolaryngology, Division
of Phoniatrics-Logopedics. 40 of these subjects were diplophonic and 40 were non-diplophonic1.
All those subjects have a Grade of Hoarseness greater than 0, as determined by phoniatricians
during medical examination. The presence of diplophonia is a dichotomic and subject-global
attribute of voice, and has been determined by perceptual screening of the dysphonic subjects.
Additionally 40 subjects that constitute the euphonic group have been recruited via public an-
nouncement in Vienna, Austria. The data collection has been approved by the institutional
review board of the Medical University of Vienna (1810/2012 and 1700/2013). The study de-
sign has been chosen to enable the development of a sensitive and specific method for detecting
diplophonia both in dysphonic subjects and in the general population.

Table 2.1 shows the diagnoses with respect to the clinical groups. One observes a high num-
ber of pareses in the diplophonic group and a high number of dysfunctional dysphonia in the
dysphonic group. The risk for pareses is significantly increased in the diplophonic group (odds
ratio 9.15, CI [1.91, 43.90], calculated by [84]), but the presence of diplophonia should not be
used to derive the diagnosis of a patient because the confusion rates are high.

Euphonic Diplophonic Dysphonic

Unknown 40 1 1

Laryngitis (acute/chronic) 0 2 8

Sulcus 0 2 2

Nodules 0 1 3

Polyp 0 3 2

Edema 0 6 5

Cyst 0 4 2

Scar 0 1 2

Paresis 0 13 2

Dysfunction 0 5 12

Benign tumor 0 1 0

Bamboo nodes 0 1 0

Neurological 0 0 1

Table 2.1: Number of diagnoses per clinical group.

A laryngeal high-speed camera and a portable audio recorder were used for data collection.
The camera was a HRES Endocam 5562 (Richard Wolf GmbH) and the audio recorder was a
TASCAM DR-100. The frame rate of the laryngeal high-speed camera was set to 4 kHz. The
CMOS camera sensor had three color channels, i.e., red, green and blue. Its spatial resolution
was 256x256 (interpolated from red: 64x128, green: 128x128, blue 64x128). The light intensity
values were quantized with a resolution of 8 bits.

Two microphones have been used for recording audio signals. A headworn microphone AKG

1 For convenience, in the remainder of the thesis ”diplophonic dysphonic” is referred to as ”diplophonic” and
”non-diplophonic dysphonic” is referred to as ”dysphonic”.
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HC 577 L was used to record the voice of the subjects. The loudest noise source in the room
was the cooling fan of the camera’s light source. A lavalier microphone AKG CK 77 WR-L
was put next to the fan to record its noise. Both microphones were used with the original cap
(no presence boost) and with windscreens AKG W77 MP. The microphones were connected
to phantom power adapters AKG MPA V L (linear response setting) and the portable au-
dio recorder (headworn: left channel, lavalier: right channel). The sampling rate was 48 kHz
and the quantization resolution was 24 bits. The subjects’ sessions mostly consisted of more
than one video and were entirely microphone recorded. The audio recordings were carried out
by the author. The sound quality was continuously monitored during the recordings with AKG
K 271 MK II headphones. The audio files are saved in the uncompressed PCM/WAV file format.

Figure 2.1a shows the footprint of the recording room, which is a standard room for ENT
examinations. The figure shows the subject and the medical doctor who were sitting on chairs,
the sound engineer, the high-speed camera, the lavalier microphone, the head-worn microphone
and the portable recorder. The other items in the room were not used in the experiment, but
are depicted for documentation. The background noise was 48.6 dB(A) and 55.5 dB(C), mea-
sured with a PCE-322A sound level meter (IEC 61672-1 class 2), with temporal integration
set to ”slow”. Figure 2.1b is taken from [64] and shows the midsagittal view of an endoscopic
examination. The tip of the tongue was lightly held by the medical doctor when he inserted the
endoscope into the mouth of the subject way back to the pharynx. The larynx was illuminated
and filmed by the endoscopic camera and the medical doctor previewed the camera pictures on
a computer screen. He adjusted the position of the camera for optimal sight of the vocal folds.
Once an optimal position was achieved the medical doctor instructed the subject to phonate an
/i/, which positioned the epiglottis so as to allow direct sight of the vocal folds2.

2.048 seconds of video material were continuously stored in a first-in-first-out loop. When the
medical doctor decided to store video data permanently, he pushed the trigger on the handle
of the camera. The loop was then stopped and the video was watched in slow motion and pre-
evaluated for video quality. The experimenters either decided to copy the video to a long-term
storage or to dismiss the current video and to take a new one, depending on the achieved video
quality. The stored video data have been included in the database. Tables 2.2 and 2.3 show the
numbers of stored videos per clinical group and per subject.

Nr. of videos Proportion (%)

Euphonic 132 35.2

Diplophonic 123 32.8

Dysphonic 120 32

Table 2.2: Number of videos per clinical group.

Min Max Average Std

Euphonic 0 5 3.3 1.181

Diplophonic 0 6 3.075 1.3085

Dysphonic 1 6 3 1.281

Table 2.3: Number of videos per subject and clinical group. Minimum, maximum, average, standard devia-
tion.

2 The produced sound is schwa-like, due to the endoscope and the lowered position of the tongue.
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(a) Footprint of the recording room. Ear,
nose and throat (ENT) unit, sound engi-
neer (SE), portable audio recorder (PR)
(TASCAM DR-100), laryngeal high-
speed camera (Cam) (HRES Endocam
5562, Richard Wolf GmbH), medical doc-
tor (MD), headworn microphone (HM)
(AKG HC 577L), subject (S), lavalier mi-
crophone (LM) (AKG CK 77 WR-L),
electroglottograph (EGG).

(b) Midsagittal view of the subject and the en-
doscope, taken from [64]. 1: vocal folds, 2:
endoscope.

Figure 2.1: Footprint of the recording room and midsagittal view of an endoscopic examination.
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2.2.2 Data annotations

The collected data have been annotated for voice quality, video to audio synchronization, video
quality and audio quality.

Voice quality

To learn voice quality annotation, three scientific all-day seminars on the detection of diplo-
phonia were conducted. Several experts on voice and signal processing attended the meetings,
which were in alphabetical order: Wolfgang Bigenzahn (Medical University of Vienna), Martin
Hagmüller (Graz University of Technology), Christian Herbst (Palacký University Olomouc),
Christian Kasess (Austrian Academy of Sciences), Gernot Kubin (Graz University of Tech-
nology), Sylvia Moosmüller (Austrian Academy of Sciences), Berit Schneider-Stickler (Medical
University of Vienna), Jean Schoentgen (Université Libre de Bruxelles) and Jan Švec (Palacký
University Olomouc). Additionally, within the New Investigator Research Forum of The Voice
Foundation, an expert discussion (25 minutes) was conducted with several experts on voice
assessment, which were in alphabetical order: Ronald Baken (New York Eye and Ear Infir-
mary of Mount Sinai), James Daugherty (University of Kansas), Molly Erickson (University of
Tennessee), Michael Johns (Emory Voice Center, Atlanta), Robert Sataloff (Drexel University
College of Medicine, Philadelphia), Nancy Pearl Solomon (Walter Reed Army Medical Center,
Washington) and Sten Ternström (KTH Royal Institute of Technology, Stockholm). There have
been intensive discussions on the definition of diplophonia. The results from these discussions
were faithfully aggregated by the author and used to learn annotating voice quality with respect
to the presence of diplophonia.

The author has annotated all phonated audio recordings with available video for voice qual-
ity. The voice quality groups are euphonic, diplophonic and dysphonic. Diplophonia has been
defined as the simultaneous presence of two different pitches or a distinct impression of beating.
Simple pitch breaks have not been considered to be diplophonic. When the perceptual determi-
nation of the presence of diplophonia was doubtful, the audio waveforms and spectrograms were
visually inspected. The spectral criterion was the presence of two separate harmonic series or
the presence of metacycles in the waveform. The audio signal only was available to the annotator.

Audio to video synchronization

The audio files have been synchronized to the video by visually matching their waveforms to
the waveforms of the audio that was recorded with the camera’s inbuilt microphone. The cam-
era was equipped with a Sennheiser KE 4-211-1 microphone. It was fixedly mounted on the
endoscope, approximately 16 cm from the tip. It could not be used to carry out perceptual or
acoustic analysis, because the microphone was pre-amplified with a harsh automatic gain control
(integrated circuit, SSM2165) and filtered with a 2 kHz low pass filter. It is synchronized to
the video signal, which enabled synchronizing the high-quality audio to the video, up to the
difference of the microphone positions. This difference is approximately 10 cm or 0.3 ms at
c = 343 m

s or 1
6 of a cycle length at a high phonation frequency of 600 Hz.

Praat [85] was used to annotate the audio files for synchronization points. Synchronization
points have been set at corresponding local maxima of the high-quality audio and the camera’s
inbuilt audio. Figure 2.2 shows examples of audio waveforms together with their synchronization
markers. In the shown example the local maximum in the KE 4-211-1 audio is approximately at
0.603 s with respect to the video file beginning, and the corresponding maximum in the HC577 L
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audio is at 447.484 s with respect to the audio file beginning.

KE 4-211-1 

HC577 L 

Figure 2.2: Synchronization of the camera’s inbuilt audio (KE 4-211-1) and the high-quality audio
(HC577 L). The synchronization markers denote corresponding local maxima.

Video quality

A problem of laryngeal high-speed videos is the inconsistent video quality. A pre-selection based
on video quality has been performed to allow correct analyzes. The video quality has been eval-
uated with respect to the visibility of relevant structures and the presence of artifacts. The used
criteria, the classes and the labels are shown in table 2.4. The videos have been annotated with
the Anvil tool [86], which allows for placing time interval tiers considering time-variant video
quality.

The visibility of the vocal fold edges and vocal fold vibration is important for facilitating
spectral video analysis (cf. chapter 3) and extracting the glottal area waveform (cf. chapter 4).
To ensure that no visualizable distinct glottal oscillations are hidden, a sufficiently large propor-
tion of the glottal gap must be visible. Parts of the vocal fold edges can be hidden behind the
epiglottis, the epiglottis’ tubercle, the false vocal folds, the aryepiglottic folds or the arytenoid
structures. The criteria used for judging the visibility of the glottal gap were the visibility of
the anterior commissure and the visibility of the processus vocales. The processus vocales act as
nodes in the vocal fold oscillation modes, and thus are adequate for orientation in the anatomy
when oscillation patterns are observed and interpreted.
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Criteria Classes (labels) Acronyms

Visibility

Vocal fold edges Visible (1) A1

Not visible (0)

Vocal fold vibration Visible (1) A2

Not visible (0)

Anterior commissure Visible (1) A3

Not visible (0)

Processus vocales Both visible (2) A4

One visible (1)

None visible (0)

Artifacts

Blurring Severe (2) B1

Mild (1)

Absent (0)

Reduced contrast Severe (2) B2

Mild (1)

Absent (0)

Mucus on the vocal folds Connecting the vocal folds (3) B3

Blurring the vocal fold edges (2)

Visible (1)

Not visible (0)

Extraglottal mucus yarn artifact Blurring the vocal fold edges (2) B4

Present (1)

Absent (0)

False vocal fold artifact Hiding the vocal fold edges (1) B5

Absent (0)

Aryepiglottic folds artifact Hiding the vocal fold edges (1) B6

Absent (0)

Table 2.4: Overview of the video quality annotation criteria.

The presence of blurring and/or reduced contrast, false vocal fold artifacts, mucus that blurs
the vocal fold edges and a remote mucus yarn may impede spectral video analysis or the ex-
traction of the glottal area waveform. Blurring occurred if the camera was not focused on the
glottal gap, or if there were fluid artifacts on the endoscope. A false vocal fold artifact occurred
when the vocal fold edges are partly hidden behind the false vocal folds. Reduced contrast
occurred for several reasons. It was not always possible to illuminate the larynx sufficiently due
to inter-individual anatomical differences, for instance, the epiglottis was not fully lifted and in
subjects with lowered larynx the light reaching the vocal folds was weaker. Blurring and reduced
contrast have been labeled as absent, mild or severe.

The selection of usable video intervals has been based on a logical expression. The logical
expressions ensure that only video intervals with sufficient visibility are analyzed and that dis-
advantageous combinations of video artifacts are excluded.
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Logical expressions, acronyms from table 2.4, video frame is usable if:

(A2 = 1) AND
((A3 = 1) OR (A4 = 1) OR (A4 = 2)) AND

NOT(B1 = 2) AND
NOT(B2 = 2) AND

NOT((B1 = 1) AND (B2 = 1)) AND
NOT(B3 = 2) AND
NOT(B3 = 3) AND
NOT(B4 = 1) AND
NOT(B4 = 2) AND

NOT(B5 = 1).

Audio quality

Audio quality has been evaluated with respect to the presence of artifacts and synchronizability.
Parts of some recordings contain the medical doctor’s voice giving instructions to the subject
and only the remaining parts can be used for audio analyzes. Other artifacts are background
noise or stem from microphone contact. Artifacts were successively minimized as they had been
recognized in the course of the study, but were not fully avoidable.

Figure 2.3 shows an example of the audio quality annotation using Praat [85] with one point
tier and five interval tiers. The ”sync” tier has been used for synchronizing the audio and the
video. The ”Video” tier denotes the temporal borders of the high-speed video. The ”Phonation”
tier denotes the temporal borders of the phonation(s) and is bounded to the video borders. The
”Voice quality” tier labels the voice quality, which has been assessed for all audio material within
phonation borders. The ”Examiner” tier denotes time intervals in which the examiner’s voice is
audible, and the ”Artifact” tier labels other audio recording artifacts.

The video in the example is the fourth of the recording session, thus the sync point and the
Video interval are labeled ”4”. Within the video borders, two intervals of phonation are observed,
with a phonation break in between. The phonation intervals are labeled ”1”, denoting phonation
within video borders. For all phonation within video borders, the voice quality is labeled in the
”Voice quality” tier (1: euphonic, 2: diplophonic and 3: dysphonic). The examiner’s voice is
labeled in the ”Examiner” tier (”1”), and background noise is labeled in the ”Artifact” tier (”1”).

Logical expressions, acronyms from table 2.5, audio sample is usable if:

EXIST(C1) AND
NOT(C2 = 0) AND

(D1 = 1) AND
((D2 = 1) OR (D2 = 2) OR (D2 = 3)) AND

NOT(E1 = 1) AND
NOT(E2 = 1).
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Figure 2.3: An example of annotated audio material.

Criteria Classes (labels) Acronyms

Video relation

sync (Video ID) C1

Video Absent (0) C2

Present (Video ID)

Auditive assessment

Phonation Absent (0) D1

Present (1)

Group Absent (0) D2

Euphonic (1)

Diplophonic (2)

Dysphonic (3)

Audio artifacts

Examiner Absent (0) E1

Present (1)

Artifact Absent (0) E2

Present (1)

Table 2.5: Overview of the audio annotation criteria.

December 16, 2014 – 33 –



2 A database of laryngeal high-speed videos with simultaneous high-quality audio recordings

2.2.3 Corpora

The previous sections explain how the video and audio material has been annotated with respect
to their usability for further analyzes. To allow for joint analyzes of audio and video material,
unusable video and audio have been excluded and only uninterrupted intervals of different voice
qualities are used. Figure 2.4 shows the analysis interval selection on the base of joint data
quality pre-selection and voice quality annotation. Subplot 1 shows the borders of the video file,
subplot 2 vocal fold visibility, subplot 3 shows the visibility of vocal fold vibration, subplot 4
shows the presence of video artifacts. Subplots 5 to 7 refer to audio annotation, namely the
presence of phonation, the voice quality and the presence of audio artifacts. Finally, subplot 8
shows the borders of the resulting analysis intervals. All intervals shorter than 0.125 s are dis-
carded.

Several corpora were built between September 2012 and August 2014. Table 2.6 gives an
overview of the corpora, which are shown row wise. The columns specify the characteristics,
which are: the number of subjects, videos and intervals, the range of the intervals lengths, the
signal type and the date. The seventh column shows the corpus ID. The last column denotes the
chapters of this thesis, in which the corpora are referred to. The corpora grew incrementally as
the available clinical data grew in time. In the corpora 8, 98 and 99 no video quality based pre-
selection has been performed, because only audio material has been used for analysis. In early
corpora (ID 88, 89, 82, 92), intervals for analysis have been selected without the aid of video
quality annotation. In later corpora (ID 46, 99), the video annotations have been used to make
the selection more explicit. The corpora 88 and 89 are used for training the model structures
introduced in chapters 3 and 4. The remaining corpora are used for testing and evaluation.
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Subjects Videos Intervals Interval lengths Signal type Date ID Chapter

(E./Di./Dy.) (E./Di./Dy.) (E./Di./Dy.)

0/1/0 0/1/0 0/1/0 300 ms Glottal area
waveform (GAW)

20.09.2012 88 4

1/1/0 1/1/0 1/1/0 126.5 ms GAW 13.03.2013 89 4

8/11/1 8/16/1 10/10/10 125 ms Spatially cropped
video, GAW

11.07.2013 82 2

8/8/0 9/10/0 10/10/0 100 - 125 ms Spatially cropped
video

24.09.2013 92 3

15/19/10 17/27/10 21/20/20 132.8 - 2047.8 ms Spatio-temporal
plot (STP), raw

video

02.05.2014 46 3

30/28/22 75/66/44 96/55/127 125.4 - 2048 ms Audio 12.06.2014 8 4, 5

9/23/13 12/49/23 0/55/70 125.4 - 2048 ms Audio 29.09.2014 98 4, 5

29/23/27 54/39/45 65/28/84 128.7 - 2047.4 ms Raw video, audio 29.09.2014 99 4

Table 2.6: Overview of the corpora. E. ... euphonic, Di. ... diplophonic, Dy. ... dysphonic.
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2 A database of laryngeal high-speed videos with simultaneous high-quality audio recordings

2.2.4 Data structure and analysis framework

A data structure and analysis framework that had to meet several requirements has been estab-
lished. The requirements were the anonymization of subject related data, the availability of a
professional backup system, the application of a non-destructive system for data selection, the
integration into clinical practice and the management of data and code. Figure 2.5 gives an
overview of the data structure and analysis framework. The structure is organized into input
data (yellow), executable code (green), output data (red) and procedures (blue).

Cam 

PR 

Anonymization 

B
a

ck
u

p
 

Pre-

selection 

Corpus pointer 

Statistical 

modeling 

Figure 

plotting 

Feature 

extraction 

ViQA AQA 
  

PSC VoQA 

Output dataset 

Figure 2.5: Overview of the data structure and analysis framework. Input data volumes are in yellow, ex-
ecutable code volumes are in green, the output data volumes are in red and procedures are in
blue. Laryngeal high-speed camera (Cam), portable audio recorder (PR), pre-selection combina-
tions (PSC), video quality annotations (ViQA), audio quality annotations (AQA), voice quality
annotations (VoQA).

The laryngeal high-speed camera fed a person database, who’s real names are visible to
the clinician. This feature has been protected for clinical reasons. The audio files from the
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recorder have been integrated into the camera’s database. The database has been mirrored on
an institutional backup server of the Medical University of Vienna. For scientific purposes the
database had to be anonymized to protect the subjects’ identities. The anonymized database
has been mirrored onto a secondary harddisk, from which all scientific queries are performed.
An anonymization list relates the primary keys of the camera’s database to the primary keys of
the mirrored database.

As shown in section 2.2.2, the video and audio files have been annotated for video quality,
audio quality and voice quality. Selection criteria that were used for creating corpora from these
annotations are given as logical expressions (i.e., the selection combinations). The selection
criteria and their combination are subject to change, unused data are therefore not deleted from
the database (i.e., non-destructive pre-selection).

MATLAB was used as analysis environment because it provides capabilities for indexing and
processing data arrays, feature extraction, statistical modeling and generating vector graphics.
MATLAB queried the database of the laryngeal high-speed camera and carried out data analyses
in three steps. In step one (feature extraction) the audio/video data were analyzed. In step two
(statistical modeling) the data distributions were statistically modeled with respect to their voice
quality. In step three (figure generation) the results were visualized. To ensure reproducibility,
the experimenter took snapshots of all input data pointers and executables. All snapshots
were copied into a tagging folder of a Subversion repository. Additionally, the experimenter
maintained a logbook of all performed experiments.

2.3 Evaluation

The evaluation of the pursued strategies was carried out in two steps, namely a pilot study on a
smaller database and a confirmatory study on a larger database. In the pilot study, the clinical
group allocation, the sample size and hypotheses, the effectiveness of the data collection, the
data quality and the database structure were tested.

Clinical group allocation

The clinical group allocation has been tested with respect to the appropriateness for answering
the research questions. Meaningful classification results were produced from the pilot study
data, and so the group allocation was kept for the confirmatory study. Some discussions have
taken place about clinically defining subgroups of dysphonia, which would have complicated and
prolonged the data collection.

Sample size and hypotheses

Two versions of the sample size planning were designed. Version 1 was based on strict criteria
for demanding high sensitivity and specificity with subsequent estimation of the sample size.
Version 2 was based on proposing a minimally achievable sample size and estimating the ex-
pected statistical outcome.

Working hypothesis 1 was that the spectral modality M of the high-speed video (cf. chap-
ter 3) differs between diplophonic and euphonic phonation. Table 2.7 shows the classification
results, with M 6= 1 indicating a positive test, and M = 1 indicating a negative test. Working
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hypothesis 2 was that the difference of synthesis qualities SQ1 and SQ2 (cf. chapter 5) distin-
guishes diplophonic from dysphonic phonation. Table 2.8 shows the classification results for an
optimal cut-off threshold classifier.

Voice quality
Diplophonic Euphonic

M
6= 1 9 2
= 1 1 8

(a) Diagnostic table.

Estimate CI

SE (Eq. 1.1) 90 % [55.5 %, 99.7 %]

SP (Eq. 1.2) 80 % [44.4 %, 97.5 %]

ACC (Eq. 1.3) 85 % [62.1 %, 96.8 %]

PR (Eq. 1.4) 50 % [27.2 %, 72.8 %]

PPV (Eq. 1.5) 81.8 % [48.2 %, 97.7 %]

PLR (Eq. 1.7) 4.5 [1.28, 15.81]

NPV (Eq. 1.8) 88.9 % [51.7 %, 99.7 %]

NLR (Eq. 1.9) 8 [1.21, 52.69]

(b) Performance measures.

Table 2.7: Results of the pilot study: Diplophonic versus euphonic phonation, with spectral video modality
serving as predictor. 95 % confidence intervals (CI).

Voice quality
Diplophonic Dysphonic

SQ1 − SQ2
> 0.23 dB 8 3
≤ 0.23 dB 2 7

(a) Diagnostic table.

Estimate CI

SE 80 % [44.4 %, 97.5 %]

SP 70 % [34.8 %, 93.3 %]

ACC 75 % [50.9 %, 91.3 %]

PR 50 % [27.2 %, 72.8 %]

PPV 72.7 % [39 %, 94 %]

PLR 2.67 [0.99, 7.22]

NPV 77.8 % [40 %, 97.2 %]

NLR 3.5 [0.95, 12.9]

(b) Performance measures.

Table 2.8: Results of the pilot study: Diplophonic versus dysphonic phonation, with synthesis quality differ-
ence serving as predictor. 95 % confidence intervals (CI).

In version 1 of the sample size planning, the procedure ”Sample size for one proportion” was
used [87, 88]. The estimation was chosen to be ”exact” and the hypothesis test was designed
to be one-sided. The α was set to 0.05 and the β was set to 0.8, which are commonly used
parameters. The α expresses the desired level of significance, i.e., the probability for falsely de-
tecting a significant effect. The β expresses the power, i.e., the probability of correctly detecting
a significant effect.

For working hypothesis 1 the desired lower limit of the confidence interval of the sensitivity
estimator was chosen to be 80 % and that of the specificity estimator to be 70 %, which are
the estimates minus 10 %. Those demands resulted in a sample size of 99 diplophonic and 119
euphonic phonation intervals. For working hypothesis 2 the desired lower limit of the confidence
interval of the sensitivity estimate was chosen to be 70 % and that of the specificity estimate
to be 60 %. Those demands resulted in a sample size of 119 diplophonic and 142 dysphonic
intervals. Taking the maximum of the estimated sample sizes results in a study design of 119
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diplophonic intervals, 142 dysphonic intervals and 119 euphonic intervals. It would not have
been feasible to record such a large number of intervals within the given time frame, man power
and financial resources.

In version 2 of the sample size planning, a sample size of 30 intervals per group was assumed
(three times the pilot study sample size) and the prospects of the statistical outcomes were
estimated. The PLR has been chosen as the statistical outcome criterium. For example, a PLR
of 2 would mean that the odds for the presence of diplophonia in a randomly selected interval
would double if it is tested positive.

Test 1 (spectral modality) of the pilot study resulted in a PLR of 4.50, with a 95% confidence
interval of [1.28, 15.81], and test 2 (synthesis quality) resulted in a PLR of 2.67, with a 95%
confidence interval of [0.98, 7.22]. The PLR estimate and its confidence interval were calculated
with the online software MedCalc [88]. Both estimates for the PLR are above 2, which would
indicate a reasonable test performance. However, the lower confidence interval limits are 1.28
(close to guessing), and 0.98 (pure guessing).

To estimate how the confidence interval limits change when more data are added, it is assumed
that future observations will behave as past observations, i.e., that the PLR estimates equal the
true population PLRs. The hypothesized data distribution is obtained by multiplying all counts
of tables 2.7 and 2.8 by three, which gives tables 2.9 and 2.10. The confidence intervals rose to
2.18 and 1.5. A PLR of 2.18 would be acceptable but a PLR of 1.5 would still be suboptimal.
The lower confidence interval however rose from 0.98 to 1.5. Hence, the proposed sample size was
kept in the confirmatory study and the overall sample size (pilot study + confirmation study)
resulted in 40 intervals per group. At the time of planning the confirmation study, the number
of intervals that can be obtained per subjects was unknown, because the database pre-selection
had not been implemented yet. A conservative estimate is one interval per subject, which re-
sults in the overall sample size of 40 subjects per group. In corpus 99, which was based on the
described selection procedure from audio and video quality, 177 intervals from 120 subjects (on
average 1.475 intervals per subject) were obtained. Therefore assuming one interval per subject
was appropriate.

Voice quality
Diplophonic Euphonic

M
6= 1 27 6
= 1 3 24

(a) Diagnostic table.

Estimate CI

SE 90 % [73.5 %, 97.9 %]

SP 80 % [61.4 %, 92.3 %]

ACC 85 % [73.4 %, 92.9 %]

PR 50 % [36.8 %, 63.2 %]

PPV 81.8 % [64.5 %, 93 %]

PLR 4.5 [2.18, 9.3]

NPV 88.9 % [70.8 %, 97.6 %]

NLR 8 [2.7, 23.8]

(b) Performance measures.

Table 2.9: Hypothesized distribution for sample size planning of confirmatory study: Diplophonic versus
euphonic phonation, with spectral video modality serving as predictor. 95 % confidence intervals
(CI).
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Voice quality
Diplophonic Dysphonic

SQ1 − SQ2
> 0.23 dB 24 9
≤ 0.23 dB 6 21

(a) Diagnostic table.

Estimate CI

SE 80 % [61.4 %, 92.3 %]

SP 70 % [50.6 %, 85.3 %]

ACC 75 % [62.1 %, 85.3 %]

PR 50 % [36.8 %, 63.2 %]

PPV 72.7 % [54.5 %, 86.7 %]

PLR 2.67 [1.5, 4.74]

NPV 77.8 % [57.7 %, 91.4 %]

NLR 3.5 [1.65, 7.43]

(b) Performance measures.

Table 2.10: Hypothesized distribution for sample size planning of confirmatory study: Diplophonic versus
dysphonic phonation, with synthesis quality difference serving as predictor. 95 % confidence
intervals (CI).

Effectiveness of data collection

The effectiveness of the data collection has been evaluated with respect to the appropriateness
of the recorded material for testing the hypotheses. In the pilot study an additional audio cor-
pus and a logopedic anamnesis including a voice range profile had been recorded. The audio
corpus contained recordings of sustained vowels at different loudness levels and pitches, stan-
dard text readings, continuous conversation elicited via written prompts, counting at different
loudness levels and sung notes at different loudness levels and pitches. The logopedic anamne-
sis consisted of auditive perceptual rating (RBH), measurement of the s/z ratio, administering
questionnaires, measuring a voice range profile, the dysphonia severity index (DSI) [89], the
Göttingen Hoarseness Diagram and querying some general information on the subject. Testing
the relation of the presence of diplophonia with such clinical data would be necessary to gain
full insight into the clinical relevance of diplophonia. Nevertheless, only laryngeal high-speed
videos with synchronous audio recordings were recorded in the confirmation study, because data
collection and data handling are very time consuming and should only be done if hypotheses
with good prospects for testing can be formulated.

Data quality

Although the image quality of laryngeal high-speed videos and the audio quality of microphone
recordings are crucial factors for analyses, analysis intervals are most commonly selected subjec-
tively in voice research. This strategy was kept in the pilot study and evaluated on its scientific
appropriateness. In the confirmation study video quality and audio quality annotation criteria
were formulated, which increased the explicitness of the selection.

Database structure

With incrementally growing databases one runs the risk of over- or underestimating the appropri-
ate amount of data administration. The amount of administration must be assessed continuously
when a new database structure and analysis framework is built. However, it is also important
not to adapt the administration procedures to often, but to continuously keep track of desired
features and occasionally implement them.

In the beginning of the thesis, only a small amount of recordings was available. Small databases
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can easily be handled manually, but conclusions on small corpora are criticizable in terms of
their significance and validity. As the number of observation grows, one should have a database
that is easy to feed and query and which is non-redundant as well.

If changes in the analyzes are necessary, previous experiments should be reproducible. It may
be sufficient to make a snapshot of all the data and archive them as soon a study is finished.
If the data size is of the order of Tera bytes, which is the case for laryngeal high-speed videos,
this costs a lot of harddisk space, which may not be available. Thus, snapshots of data pointers
only were made instead of creating redundant copies of the files. All small files were version
controlled and tagged on a Subversion repository.

2.4 Discussion and conclusion

The design and the evaluation of a database of laryngeal high-speed videos with simultaneous
high-quality audio recordings have been described. This section summarizes the original contri-
butions, discusses limitations and gives an outlook.

The study design aimed at a group of patients that can be recruited from clinical practice by
perceptual screening and that is reproducibly detectable by using signal processing methods in
a physiologically interpretable way. Added values are that the data collection and analysis have
been performed at the same center and that the database and the analysis framework have been
integrated into clinical practice. Medical and technical know-how have been combined, which
required interdisciplinary communication.

Laryngeal high-speed videos with simultaneous high-quality audio recordings have been ob-
tained and purposefully pre-selected. In contrast to what has often been practiced in the field
of disordered voice research [90], the analysis intervals were not selected subjectively and/or
destructively. Instead, video and audio quality criteria that allow for reproducible and non-
destructive pre-selection of analysis have been proposed. The quality of the collected audio
material exceeds that of most other work in the field of disordered voice research. The audio
material was recorded with a high-quality microphone and high quality recorder, a high sam-
pling rate of 48 kHz and a high bit resolution of 24 bits. In contrast to clinical group allocation
in terms of subject global voice quality, audio quality annotation aims at assessing voice quality
interval wise.

However, there are also some limitations that should be taken into account when the data
are analyzed and conclusions are drawn. First, statistical interpretation maybe difficult. The
distributions in the study design are not the same as the distributions in the general population.
Because diplophonia is a rare phenomenon in the general population, the classification thresh-
olds may have to be adjusted for population prevalence. The database was built from sustained
phonations during rigid endoscopic high-speed laryngoscopy, which imposes unnatural phona-
tory conditions. Moreover, the recordings are 2.048 seconds short and so the ecological validity
of the collected data can be questioned. Several stages of pre-selection needed to be passed
through, the number of intervals differs between subjects and the interval lengths differ, which
may harm the assumption of independence in statistical testing.

Second, the recording and playback conditions were not perfect. Experimental conditions in
a hospital are similar to field conditions rather than laboratory conditions. Often it was not
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possible to carry out video recordings repeatedly because rigid telescopic high-speed video laryn-
goscopy is demanding for the subject, which impacts on achieved video quality. Hospitals are
not equipped with professional recording studios, and so noise may disturb the recordings. No
reference listening room was available for the audio judgments. The annotations were therefore
performed with headphones, which eliminates the room acoustics of the listening room that is
unrelated to the subject’s condition. The timbre at the position of the microphone is different
from the timbre anywhere else in the room, and so the perceptual impression during the record-
ing may differ from the impression during playback.

Future work should focus on addressing the limitations of the database. To increase repre-
sentativeness and ecological validity, studies that account for the prevalence of diplophonia in
spoken language of the general population are needed. Perceptual effects in the clinical environ-
ment need further investigation with calibrated recording and playback setups that account for
different room acoustics. It is also important to investigate what data quality is sufficient for
what kind of analysis. Moreover, data handling that allows for publishing the database should
be established.

A state-of-the-art database of laryngeal high-speed videos with synchronous high-quality au-
dio recordings has been created successfully. The database has proven to be highly valuable for
answering the central research questions of the thesis.
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Diplophonia

3
Spatial analysis and models of vocal fold

vibration

3.1 Motivation and overview

This chapter describes how spatial analysis and modeling is used to identify diplophonic vocal
fold vibration patterns. The presented approaches are motivated by the clinical wish to under-
stand the etiologies and distal causes of diplophonic phonation. In other disciplines one may
want to know what information is conveyed by phonation auditorily, but in a clinical context
one may prefer to focus on glottal conditions. However, clinicians are still being trained to
use perceptual methods and the origin of the diplophonic timbre may remain unknown in the
absence of other tools. In contrast to auditive detection, analyzing laryngeal high-speed videos
aims at detecting spatially separate oscillations with different fundamental frequencies, which
may in parallel with the auditive approach help in clinical decision making.

Known approaches to spectral video analysis with respect to time are adapted and used for
deriving scalar features that describe diplophonia in recorded data [12, 38, 41, 57–59, 72, 91, 92].
The features that are introduced are the Frequency Image Bimodality (FIB) and the Frequency
Plot Bimodality (FPB). The FIB is an automated approach that is applied to raw video data.
The intensity time-series of each pixel is normalized and transformed to the frequency domain.
The FIB is obtained from a Frequency Image that shows the spatial distribution of spectrally
dominant frequencies across the pixel coordinates in false colors. The FIB is the minimal spec-
tral magnitude of the diplophonic frequency.

The FPB is obtained from spatially segmented videos (i.e., spatio-temporal plots). The tra-
jectories of the vocal fold edges are transformed to the frequency domain. The FPB is obtained
from a Frequency Plot that shows the spatial distribution of spectrally dominant frequencies
along the vocal folds’ edges. The FPB is the spatial proportion of the diplophonic frequency
along the vocal fold edges in dB.

Four experiments on the automatic detection of diplophonia from laryngeal high-speed videos
are presented. Two experiments deal with the FIB that is tested on two databases. In the
smaller database only diplophonic and euphonic intervals are used. In the larger database all
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three types of phonation (euphonic, diplophonic, dysphonic) are used and the impact of the
analysis block length and the region of interest (ROI) cropping are investigated. In the exper-
iments on FPB only the large database is used, once with block wise (short-time) results and
once with analysis fragment averages.

Frequency asymmetry, of which three types exist, is referred to as ”glottal diplophonia”.
Types that are fairly understood are anterior-posterior and left-right frequency asymmetry. In
anterior-posterior frequency asymmetry the anterior and the posterior part of the vocal folds
vibrate at different frequencies, whereas in left-right frequency asymmetry the left and the right
vocal fold vibrate at different frequencies. In both types the oscillators are visible in the laryngeal
high-speed video. Less well understood is the superior-inferior type, because the inferior oscilla-
tion is likely to be occasionally or permanently hidden under superior tissue. Superior-inferior
asymmetry is discussed by geometric modeling of asymmetric vocal fold vibration.

3.2 Frequency analysis of pixel intensity time series

3.2.1 Video spectrum model description

The proposed procedure [57] is based on groundwork by Granqvist and Lindestad [38]. The al-
gorithm aims at determining the presence of secondary oscillation frequencies (i.e., diplophonic
oscillators) from laryngeal high-speed videos, and uses Frequency Images of vocal fold vibration.
The Frequency Images show the spatial distribution of the dominant frequencies of the pixel
intensity time-series, which are thresholded by their spectral magnitude. The scalar feature FIB
is the minimal spectral magnitude threshold, for which only one oscillation frequency is observed
in the video. The algorithm for determining the FIB is structured as follows.

1. Region of Interest (ROI) cropping

2. Normalization of the pixel intensity time series

3. Time-windowing of the pixel intensity time series

4. Discrete Fourier transform (DFT)

5. Identification of the maximal spectral magnitudes

6. High-pass filtering

7. Spectral magnitude thresholding

8. Creation of the Frequency Images

9. Extraction of the Frequency Image Bimodality (FIB)

10. Time-averaging of the FIB (only confirmatory corpus)
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Let I(x,y,n) denote the three-dimensional video data array, where x is the lateral position, y
is the sagittal position, n is the discrete time index and N is the block length. The video data
are manually cropped for the region of interest (ROI), which is a rectangular image section that
contains the glottal gap only. The intensity time series are normalized, which reduces the influ-
ence of luminosity. Each intensity time series is divided by its time average. The subtraction of
1 yields zero-mean signals. Figure 3.1 illustrates the extraction and normalization of intensity
time series.
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Figure 3.1: Extraction of a pixel intensity time series I(x,y,n) and its normalization.

Inorm(x,y,n) =
I(x,y,n)

1
N

·∑N
n=1 I(x,y,n)

− 1 (3.1)

The normalized intensity time series Inorm(x,y,n) are time-windowed (Kaiser window, β = 0.5).
The pixel spectra J(x,y,k) are obtained by discrete Fourier transform of the windowed time
series, where k denotes discrete frequency. The dominant frequencies (i.e., the frequency at the
maximal spectral magnitude) are determined for each spectrum. The spatial distribution of the
dominant frequency is the Frequency Image K(x,y).

K(x,y) = argmax
k

∣

∣J(x,y,k)
∣

∣ (3.2)

The spatial distribution of the dominant frequencies is high-pass filtered at 70 Hz and small
spectral magnitudes are discarded, because low frequencies and small spectral magnitudes are
considered to be irrelevant for detecting diplophonia. A magnitude threshold increases or de-
creases the number of detected frequencies in the Frequency Image K(x,y). Figures 3.2a and 3.2b
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and equations 3.3 and 3.4 illustrate the spectral magnitude thresholding. The frequencies are
summarized in the frequency histogram Hk, with M distinct oscillation frequencies.

(a) Extraction of the spatial distributions of the
maximal spectral magnitude A(x, y) and
the dominant oscillation frequency K(x,y)

(equations 3.2 and 3.3).

(b) Creating the high-passed and thresholded
spatial distribution of the dominant oscilla-
tion frequency K

HP,thr

(x,y) and the histogram

of distinct frequencies Hk. (equation 3.4).

Figure 3.2: Obtaining Frequency Images from laryngeal high-speed videos.

A(x, y) = max
k

∣

∣J(x, y, k)
∣

∣ (3.3)

KHP,thr

(x,y) =

{

K(x,y), if K(x,y) ≥ 70 Hz ∩ A(x, y) ≥ thr

NaN, if K(x,y) < 70 Hz ∪ A(x, y) < thr
(3.4)

3.2.2 Video spectrum model parameter estimation

The Frequency Image Bimodality (FIB) is a threshold-based spectral magnitude feature that
estimates the presence of secondary oscillators in vocal fold vibration. The FIB is obtained via
Frequency Images. A spectral magnitude threshold thr enables discarding irrelevant oscillations
from Frequency Images. The choice of this threshold depends on objective criteria of relevancy,
which are derived hereafter.
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The number M of spatially distinct oscillation frequencies is a function of the spectral magni-
tude threshold. The FIB is defined as the minimal threshold for which the number of detected
oscillator frequencies is 1.

FIB = min
{

thr ∈ R
+|M(thr) = 1

}

(3.5)

Figures 3.3b and 3.3a show the high-passed and thresholded spatial distributions of the dom-
inant oscillation frequencies of a diplophonic interval and an euphonic interval. Each interval
is analyzed using two different thresholds3. In the diplophonic interval two distinct frequencies
exist at a threshold of 20, but only one at a threshold of 29. In the euphonic interval there
are two distinct frequencies at a threshold of 3, but only one at a threshold of 5. The FIB is
somewhere in between the depicted thresholds and needs to be estimated. Exactly one number
fulfills the requirement of equation 3.5 in an observed video interval. Figures 3.3d and 3.3c show
the boxplots of the discussed cases, with amplitude on the y-axis and frequency on the x-axis.
The FIB equals the maximal amplitude at the secondary frequency (288 and 688 Hz). If a
threshold greater than the FIB is used for creating a Frequency Image, only primary frequencies
(224 and 344 Hz) are visible.

3 The values for the thresholds have been chosen for the purpose of visualization and do not have any further
meaning.
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thr = 3 thr = 5

(a) Euphonic interval: 3 < FIB < 5

thr = 20 thr = 29

(b) Diplophonic interval: 20 < FIB < 29

(c) Euphonic interval: FIB = 4.9 dB (d) Diplophonic interval: FIB = 28.6 dB

Figure 3.3: Determination of the Frequency Image Bimodality from Frequency Images and maximal spectral
magnitude boxplots.

3.2.3 Evaluation

The FIB is tested and evaluated with regard to its ability to detect videos of diplophonic intervals
in two corpora, namely the test corpus (ID 92) [57] and the confirmatory corpus (ID 46).

Test corpus (ID 92)

In the test corpus ten diplophonic and ten euphonic video intervals of length 400-500 frames (i.e.,
100-125 ms at 4000 frames per second) have been auditively selected from the database. Figure
3.4 shows the boxplots and the ROC curve when the FIB is used for detecting diplophonia.
The boxplots reveal a group effect and a t-test confirms its significance. The ROC curve in
figure 3.4b shows that the optimal cut-off threshold for separating diplophonic from euphonic
fragments is 7. Table 3.1a shows the classification performance in absolute numbers of video
fragments and table 3.1b shows the performance measures of the classifier and their confidence
intervals. The performance measures are promising but suffer from large confidence intervals,
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which reflect the small sample size.

Voice quality
Diplophonic Euphonic

FIB
> 7 9 2
< 7 1 8

(a) Diagnostic table.

Estimate CI

SE 90 % [55.5 %, 99.7 %]

SP 80 % [44.4 %, 97.5 %]

ACC 85 % [62.1 %, 96.8 %]

PR 50 % [27.1 %, 72.8 %]

PPV 81.8 % [48.2 %, 97.7 %]

PLR 4.5 [1.28, 15.81]

NPV 88.9 % [51.7 %, 99.7 %]

NLR 8 [1.21, 52.69]

(b) Performance measures.

Table 3.1: Diagnostic test evaluation, diplophonic versus euphonic phonation. The Frequency Image Bi-
modality serves as predictor.
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Figure 3.4: Frequency Image Bimodality versus voice quality (diplophonic vs. euphonic).

Three out of 20 videos are incorrectly classified. Figure 3.5 shows the Frequency Images of
these, with the spectral magnitude threshold set equal to the optimal cut-off threshold (7). The
Frequency Images for the false positive videos show secondary oscillations at integer multiples
of the primary frequency. Visual inspection of the video fragments revealed that these artifacts
stem from multiple vocal folds reflections within one cycle. A traveling mucosal wave may reflect
the light beam of the light source more often than once, which is hard to interpret because no
three-dimensional data of the vocal fold surface are available.

Another source of false decisions is camera movement. In the Frequency Image of the false
negative video fragment, only a small amount of pixels show oscillations that are above thresh-
old. Visual inspection of the video revealed that camera movement leads to left/right and
forward/backward movement of the glottal gap in the video. The spectral energy is spatially
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smeared and the maximal spectral magnitudes fall below threshold.
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Figure 3.5: Frequency Images of false decisions from Frequency Image Bimodality classification. The spectral
magnitude threshold is set equal to the optimal cut-off threshold.

Confirmatory corpus (ID 46)

To evaluate the validity of the FIB it is tested on a larger corpus. Corpus 46 is well suited,
because it is pre-selected for video quality. In contrast to corpus 92, the videos are not spatially
cropped prior to analysis. To suppress artifacts from camera movement, the analyzed intervals
are shorter (128 frames or 64 ms). The FIB is time-averaged over video intervals.

The same tendencies as in the test corpus are observed, which suggest that the FIB is a valid
method for detecting diplophonia. Figure 3.6 shows the boxplots of the FIB versus voice quality
and the p-value of the Kruskal-Wallis test. The FIB is significantly increased in the diplophonic
group compared to the other two groups (euphonic and dysphonic), which confirms the expected
relationship between FIB and diplophonic voice quality. Figure 3.7 shows the ROC curves for
the FIB classifier. Both negative groups (euphonic or dysphonic) are depicted. The classification
performances of both classifiers are comparable, which is reflected by similar sensitivities (90 %
and 80 %), specificities (66.7 % and 70 %) and AUCs (0.76 and 0.73). The ROC curves show a
very steep decrease of sensitivity in a threshold range from 2.6 to 3.3, which reflects the large
number of diplophonic videos in that range. The algorithm for searching the optimal threshold
obtains low specificity, because increasing the threshold would have disastrous consequences for
the sensitivity.

Tables 3.2 and 3.3 show the classification outcome and the performance measures. The con-
fidence intervals are smaller than in the test corpus, but far from narrow, which suggests that
larger corpora are necessary for statistical validation.

The camera movement problem can successfully be addressed by choosing shorter analysis
windows (N = 128 frames instead of 500 frames). It appears that window length is crucial for
analysis, which must be adjusted for if FIB values are to be compared. The optimal thresholds
are lower in the confirmatory set (2.3 and 2.6, compared to 7), because shorter time-windows are
used for analysis. FIB is a threshold of spectral magnitude, which decreases if the block length
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is decreased. If the shorter window length is adjusted for, optimal thresholds of 2.3 · 128
500 = 9

and 2.6 · 128
500 = 10.2 are obtained, which are closer to 7.

The results from the confirmatory corpus suggest that spatial cropping is not crucial for clas-
sification accuracy. Data pre-selection was carried out, which may be a prerequisite for accurate
analysis of uncropped videos.
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Figure 3.6: Boxplots of Frequency Image Bimodality versus voice quality, testing on corpus 46.
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Figure 3.7: ROC curves for predicting voice quality from corpus 46, predictor: Frequency Image Bimodality.
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Voice quality
Diplophonic Euphonic

FIB
> 2.3 18 7
< 2.3 2 14

(a) Classification outcome.

Estimate CI

SE 90 % [68.3 %, 98.8 %]

SP 66.7 % [43 %, 85.4 %]

ACC 78 % [62.4 %, 89.4 %]

PR 48.8 % [32.9 %, 64.9 %]

PPV 72 % [50.6 %, 87.9 %]

PLR 2.7 [1.45, 5.04]

NPV 87.5 % [61.6 %, 98.4 %]

NLR 6.67 [1.73, 25.7]

(b) Performance measures.

Table 3.2: Classification outcome, diplophonic versus euphonic phonation, with Frequency Image Bimodality
as predictor. Confirmatory corpus (ID 46).

Voice quality
Diplophonic Dysphonic

FIB
> 2.6 14 4
< 2.6 6 16

(a) Classification outcome.

Estimate CI

SE 70 % [45.7 %, 88.1 %]

SP 80 % [56.3 %, 94.3 %]

ACC 75 % [58.8 %, 87.3 %]

PR 50 % [33.8 %, 66.4 %]

PPV 77.8 % [52.3 %, 93.6 %]

PLR 3.5 [1.39, 8.8]

NPV 72.7 % [49.8 %, 89.3 %]

NLR 2.67 [1.32, 5.39]

(b) Performance measures.

Table 3.3: Classification outcome, diplophonic versus dysphonic phonation, with Frequency Image Bimodal-
ity as predictor. Confirmatory corpus (ID 46).

3.3 Frequency analysis of glottal edge trajectories

In the previous section two-dimensional Frequency Images are derived from three-dimensional
video data. In this section one-dimensional Frequency Plots are derived from two-dimensional
video data (i.e., from glottal edge trajectories). It is hypothesized that analyzing trajectories
is less prone to mucosal wave artifacts than analyzing pixel intensity time-series because the
mucosal wave is not present in the trajectories.

The algorithm is structured as follows:

1. Extraction of the glottal edge trajectories.

2. Mean removal from the trajectories.

3. Short-time Fourier transform.

4. Plotting of the dominant frequencies along the vocal fold edges.

5. Determination of the Frequency Plot Bimodality (FPB).
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The trajectories have been extracted from the videos with the program ”Glottis Analysis
Tools” via spatial glottis segmentation (figure 3.8) [93, 94]. The dashed yellow line is the main
glottal axis, the red and the blue curves are the glottal edges. The time-variant separation
of the glottal edge pixels from the main axis are the glottal edge trajectories (red and blue
horizontal lines). They have been obtained for 256 positions along the main glottal axis via
spatial interpolation. More details on the extraction of the trajectories can be found in [94].

Figure 3.8: Extraction of the glottal edge trajectories. The dashed yellow line is the main glottal axis, the
red and the blue curves are the vocal fold edges. The time-variant separation of the glottal edge
pixels from the main axis are the glottal edge trajectories (red and blue horizontal lines). They
have been obtained for 256 positions along the main glottal axis via spatial interpolation.

3.3.1 Video spectrum model description

Let d
(x′)
y′ (n) denote the trajectories, where y′ is the position along the main glottal axis (poste-

rior: 1, anterior: 256), x′ labels the positions of the left and right vocal fold edges and n is the

video frame index. The trajectories are blocked with respect to time which yields d
(x′)
y′ (n′, i),

where i is the block index and n′ the block-relative video frame index. The block length N
equals 240 video frames (i.e., 60 ms at a video frame rate of 4000 frames per second) and the
overlap is 50 %. Figure 3.9 shows an example of a spatio-temporal plot (STP) of diplophonic
vocal fold vibration, with the left and the right vocal fold vibrating at different frequencies.

δ
(x′)
y′ (n′, i) denotes the blocked and zero-mean trajectories, where the mean is computed over

n′, separately for each position x′ and y′ and each block i .

δ
(x′)
y′ (n′, i) = d

(x′)
y′ (n′, i)− d

(x′)
y′ (n′, i) (3.6)

∆
(x′)
y′ (k, i) are the short-time Fourier transforms of the trajectories, where k is the discrete

frequency and wn′ is a 240 frames time-domain Hann window (equation 3.7, figure 3.10). Both
vocal fold frequencies are visible in the majority of the spectra, which is due to the coupling.
The dominant frequency κx

′

y′ (i) is the frequency at the maximal spectral magnitude and obtained
as a function of positions x′ and y′ (figure 3.11a).

∆
(x′)
y′ (k, i) = DFT

n′→k

{

δ
(x′)
y′ (n′, i) · wn′

}

(3.7)
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Figure 3.9: Example of a spatio-temporal plot of diplophonic phonation, with color-coded distances of the
glottal edges from the main glottal axis. y′ denotes the position along the main glottal axis.
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Figure 3.10: Short-time Fourier transforms ∆
(x′)

y′ (k, i) of the mean free glottal edge trajectories. y′ denotes
the position along the main glottal axis.
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Figure 3.11: Frequency Plot and normalized frequency histogram. y′ denotes the position along the main
glottal axis.

.

3.3.2 Video spectrum model parameter estimation

The FPB (Frequency Plot Bimodality) quantifies the spatial distribution of dominant frequen-
cies along the vocal fold edges. It is obtained from the Frequency Plot (figure 3.11a). The
rationale of the FPB is published in [58] and described hereafter.

The Frequency Plot is summarized in the normalized frequency histogram H(κ, i) (figure
3.11b). The second highest peak H(κ2, i) is obtained by peak picking and κ2 is its diplophonic
frequency. The peaks are represented by circle headed stems in the normalized frequency his-
togram. The FPB is obtained by relating H(κ2, i) to 0.5 on a dB scale (equation 3.8).

FPB(i) = 20 · log
(

H(κ2, i)

0.5

)

dB (3.8)

The choice of 0.5 is justified by the desired range of FPB. For perfect bimodality, i.e., two
equally high peaks in the normalized frequency histogram, 0 dB are desired. Any deviation from
perfect bimodality results in a reduction of FPB towards negative values. One possibility of a
deviation is a decrease of the second highest peak, while the highest peak is increased. Another
possibility is a decrease of the second highest peak while other peaks are increased (tertiary,
quaternary etc.), which indicates other oscillation patterns than diplophonia. Considering 512
trajectories (256 positions y′ for each vocal fold) the smallest possible FPB is −48.2 dB, because
H(κ2, i) ≥ 1

512=̂−48.2 dB, and thus the FPB is set to −50 dB if there is only one peak in H(κ, i).

3.3.3 Evaluation

The ability of FPB to detect diplophonic vocal fold vibration from a corpus of euphonic, diplo-
phonic and dysphonic phonation video intervals is tested. Results from two experiments are
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presented, the first one on block wise analysis [58], and the second one on interval averages. A
sample of 21 euphonic, 20 diplophonic, 20 dysphonic video intervals has been drawn from the
database. The intervals are between 0.1328 and 2.048 seconds long (corpus ID 46).

Block wise classification

The analysis has been carried out for blocks of 240 frames with 50 % overlap. The results are
obtained for 753 euphonic, 443 diplophonic and 616 dysphonic blocks.

Figure 3.12 shows the boxplots of FPB versus voice quality. A group effect is observed,
i.e., diplophonic video blocks have higher FPB values than euphonic and dysphonic blocks
(p < 0.001). The overlap between the euphonic and the diplophonic group is smaller than the
overlap between the diplophonic and the dysphonic group.
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Figure 3.12: Boxplots of the block wise Frequency Plot Bimodality versus voice quality.

Block wise classification from the proposed FPB is not perfect, and the distinction between
diplophonia and dysphonia is more challenging than the distinction between diplophonia and
euphonia. The ROC curve for the euphonic negative group shows a better performance than the
ROC curve for the dysphonic negative group (figure 3.13). The AUCs are at 0.87 and 0.79 and
differ quantitatively, which reflects the overlap of the data distributions. The optimal thresholds
are -12.2 dB (diplophonic versus euphonic) and -8.2 dB (diplophonic versus dysphonic). The
specificities are comparably high at 92.3 and 92.7 % and the sensitivities are lower and differ
quantitatively (64.6 and 54.6 %). Tables 3.4 and 3.5 summarize test performances.

The optimal thresholds in this section have been obtained by moving a straight line with slope
S from the upper left corner of the ROC (i.e., the ultimate optimum) to the right and to the
bottom, until it intersects the curve. The slope S is given by S = N

p
, where N is the number

of negative observations and P the number of positive observations. The optimal threshold is
at the point of intersection [56]. This approach to threshold determination takes into account
that if the number of negative observation exceeds the number of positive ones, the specificity
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estimates are more reliable than sensitivity estimates.
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Figure 3.13: ROC curves of the block wise Frequency Plot Bimodality predicting voice quality.

Voice quality
Diplophonic Euphonic

FPB(i)
≥ −12.2 dB 286 58
< −12.2 dB 157 695

(a) Classification outcome.

Estimate CI

SE 64.6 % [59.9 %, 69 %]

SP 92.3 % [90.2 %, 94.2 %]

ACC 82 % [79.9 %, 84.2 %]

PR 37 % [34.3 %, 39.8 %]

PPV 83.1 % [77.8 %, 86.9 %]

PLR 8.39 [6.49, 10.8]

NPV 81.6 % [78.8 %, 84.1 %]

NLR 2.61 [2.3, 2.96]

(b) Performance measures.

Table 3.4: Classification performance at the optimal cut-off threshold, block wise Frequency Plot Bimodality
(FPB), euphonic negative group. 95 % confidence intervals (CI).

Classification from interval averages

This section shows results of voice quality classification from video fragment averages of the
FPB (equation 3.8) as compared to block wise results from the previous section. Figure 3.14
shows the boxplots for the averaged FPB versus voice quality. The variances of the averaged
FPB are smaller than those of the block wise FPB because extreme values average out. The
confidence intervals (notches) are larger due to the smaller sample size. Figure 3.13 shows the
ROC curves for the euphonic negative group and the dysphonic negative group. In contrast to
the ROC curves obtained from block wise results, the curves do not differ significantly for the
euphonic and dysphonic negative groups. The optimal thresholds are lower than those for block
wise classification. Tables 3.6 and 3.7 summarize test performances.
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Voice quality
Diplophonic Dysphonic

FPB(i)
≥ −8.2 dB 242 45
< −8.2 dB 201 571

(a) Classification outcome.

Estimate CI

SE 54.6 % [49.9 %, 59.3 %]

SP 92.7 % [90.3 %, 94.6 %]

ACC 76.8 % [74.1 %, 79.3 %]

PR 41.8 % [38.8 %, 44.9 %]

PPV 84.3 % [79.6 %, 88.3 %]

PLR 7.48 [5.57, 10]

NPV 74 % [70.7 %, 77 %]

NLR 2.04 [1.84, 2.27]

(b) Performance measures.

Table 3.5: Classification performance at the optimal cut-off threshold, block wise Frequency Plot Bimodality
(FPB), dysphonic negative group. 95 % confidence intervals (CI).
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Figure 3.14: Boxplots of interval averages of the Frequency Plot Bimodality versus voice quality.

Voice quality
Diplophonic Euphonic

FPB(i)
≥ −20.1 dB 14 1
< −20.1 dB 6 20

(a) Classification outcome.

Estimate CI

SE 70 % [45.7 %, 88 %]

SP 95.2 % [76.1 %, 99.2 %]

ACC 82.9 % [67.9 %, 92.8 %]

PR 48.8 % [32.9 %, 64.9 %]

PPV 93.3 % [68.1 %, 99.8 %]

PLR 14.6 [2.12, 100]

NPV 76.4 % [56.4 %, 91 %]

NLR 3.17 [1.61, 6.24]

(b) Performance measures.

Table 3.6: Classification performance at the optimal cut-off threshold, interval average Frequency Plot Bi-
modality, euphonic negative group. 95 % confidence intervals (CI).
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Figure 3.15: ROC curves of the interval average Frequency Plot Bimodality predicting voice quality.

Voice quality
Diplophonic Dysphonic

FPB(i)
≥ −12.9 dB 12 1
< −12.9 dB 8 19

(a) Classification outcome.

Estimator CI

SE 60 % [36.1 %, 80.8 %]

SP 95 % [75.1 %, 99.2 %]

ACC 77.5 % [61.6 %, 89.2 %]

PR 50 % [33.8 %, 66.2 %]

PPV 92.9 % [64 %, 99.8 %]

PLR 12 [1.72, 83.8]

NPV 70.4 % [49.8 %, 86.2 %]

NLR 2.38 [1.38, 4.1]

(b) Performance measures.

Table 3.7: Classification performance at the optimal cut-off threshold, interval average Frequency Plot Bi-
modality, dysphonic negative group. 95 % confidence intervals (CI).

3.4 Discussion

Spectral representations of glottal edge trajectories in the presence of frequency asymmetry in
vocal fold vibration are not fully understood, because two problems limit the interpretability
of the analyzes. First, laryngeal high-speed videos are three-dimensional projections of four-
dimensional phenomena. Second, the vocal fold tissue is opaque and only visible glottal edges
are observable. Hereafter, a geometrical model of vocal fold vibration is used to simulate sev-
eral types of asymmetric vocal fold vibration and some clinically observed kymograms are shown.

3.4.1 Titze’s phase-delayed overlapping sinusoids model

A geometric phase-delayed overlapping sinusoids (PDOS) model is used to gain insight into
the complexity of asymmetric vocal fold vibration. Titze’s geometric PDOS model has been
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generalized for frequency asymmetry [95]. The effective glottal width, the glottal area and
pseudo-kymographic patterns are simulated.

Superior-inferior asymmetry

Figure 3.16 shows that unequal glottal cycles can arise both from superior-inferior phase asym-
metry and superior-inferior frequency asymmetry. Neither the FIB nor the FPB are able to
distinguish these phenomena, but only frequency asymmetry (figure 3.16b) should test positive
on glottal diplophonia.

(a) Superior-inferior phase asymmetry - No
diplophonia - 1:1 double pulsing

(b) Superior-inferior 1:2 frequency asymmetry
- Diplophonia

Figure 3.16: Simulation of superior-inferior asymmetry with a phase-delayed overlapping sinusoids (PDOS)
model, modified from [96].

Spectral representations of subharmonic patterns similar to those shown in figure 3.16b were
investigated by Malyska et al. [97]. In metacyclic vibration, the partials’ magnitudes of the
spectrum are multiplied by a continuous envelope function M(ω), where M(ω) is the Fourier
transform of one metacycle. The dominant spectral frequency depends on the fundamentals’
positions relative to the spectral envelope M(ω), which is not fully understood. Malyska inves-
tigated spectral representations of scaled and time-displaced versions of unit pulses. Figures 6
and 8 to 10 in [97] show that subharmonic frequencies (white headed stems) are weak compared
to fundamentals (black headed stems). Thus it is likely that the correct fundamental is found
by the global spectral maximum selection in the proposed algorithms if unit pulses are replaced
by more realistic pulses.
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Anterior-posterior asymmetry

As opposed to double pulsing due to superior-inferior asymmetry, patterns of double pulsing can
also arise from anterior-posterior asymmetry (figure 3.17), where one distinguishes phase asym-
metry and frequency asymmetry. FIB and FPB succeed in detecting glottal diplophonia (figure
3.17b), because the separate frequencies are spatially distributed along the anterior-posterior
glottal axis.

(a) Anterior-posterior 1:2 frequency asymme-
try

(b) Anterior-posterior phase asymmetry

Figure 3.17: Simulation of anterior-posterior asymmetry with a phase-delayed overlapping sinusoids (PDOS)
model, modified from [96].

Left-right asymmetry

In left-right 1:2 frequency asymmetry, the edge of the right vocal fold (red) vibrates at two times
the left edge frequency (figure 3.18). The right trajectory experiences clipping due to the colli-
sion, which introduces subharmonic frequencies in its spectrum. The FIB and FPB are expected
to detect the true fundamental frequencies by selecting the maximal spectral magnitude.

More examples

Figure 3.19 shows left-right 2:3, 4:5 and 1:1.43 frequency ratios. Collision clipping causes sub-
harmonic patterns that are more complicated with regard to former cases. It is likely that the
meta fundamental is the dominant frequency in the spectrum, but the spectral representations
of these signals are not fully understood.
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Figure 3.18: Simulation of 1:2 left-right asymmetry with a phase-delayed overlapping sinusoids (PDOS)
model, modified from [96].
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(a) Left-right 2:3 frequency asymmetry (b) Left-right 4:5 frequency asymmetry

(c) Left-right 1:1.43 frequency asymmetry

Figure 3.19: Simulation of left-right frequency asymmetry with a phase-delayed overlapping sinusoids
(PDOS) model, modified from [96].
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3.4.2 Digital kymograms

This section shows some kymograms of diplophonic phonation to demonstrate the complexity
of the phenomenon. Left-right and anterior-posterior frequency asymmetry can be directly ob-
served from laryngeal high-speed videos of diplophonic vocal fold vibration. The observation of
superior-inferior asymmetry is more difficult, because inferior edges are likely to be permanently
or occasionally hidden by the superior tissue.

Figure 3.19 shows kymograms of subharmonic metacycle patterns. The technique of kymog-
raphy and digital multiplane kymography is explained in [98, 99]. In that figure no spatial
asymmetry is visible in the kymograms. With regard to Schoentgen’s geometrical model it is
not clear whether the metacyclic patterns arise from superior-inferior frequency asymmetry or
left-right n:n frequency asymmetry. Superior-inferior phase shift is less likely because the infe-
rior edges cannot be seen in the kymogram and the cycle lengths are unequal.

(a) Titze’s diplophonia. Two cycles per metacycle.

(b) Titze’s triplophonia. Three cycles per metacycle.

Figure 3.20: Metacycles observed in kymograms. Brightness and contrast were corrected.

Figure 3.21 shows a kymogram and a qualitative model fit of left-right 5:4 frequency asymme-
try. One sees that the superior and inferior edges are phase shifted, which is correctly simulated
in the model. However, one also sees that the model might benefit from adding more cross sec-
tions in the superior-inferior direction and from modulation capabilities (amplitude, frequency,
pulse shape). Pixelizing the model would avoid unobservable double peaks medially. Both the
FIB and the FPB would succeed in detecting diplophonia in this video.

Figure 3.22 shows a kymogram of anterior-posterior 1:2 frequency asymmetric phonation.
This observed case is similar to the modeled case in figure 3.17b but no closure is observed and
anterior-posterior phase asymmetry exists. The spatial amplitude of the secondary oscillator is
very small, which may lead to failure to detect by the FIB and the FPB.
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(a) Kymogram.
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(b) Simulation with a phase-delayed overlapping sinusoids (PDOS) model.

Figure 3.21: Left-right frequency asymmetry (4:5).

Figure 3.22: Anterior-posterior frequency asymmetry (2:1) + phase asymmetry. Anterior: top, posterior:
bottom.

3.5 Conclusion

Investigating spatial aspects of vocal fold vibration connects with the etiologies of possible
disorders. Semi-automatic and automatic procedures for detecting the presence of secondary
oscillations in the vocal folds have been proposed, evaluated and discussed with respect to a
geometric vocal fold model and measurement artifacts [58, 59]. It has been shown that the
proposed procedures are likely to be valid for left-right and anterior-posterior frequency asym-
metry, and in the absence of measurement artifacts, likely to succeed in detecting these kinds of
asymmetries. The procedures are not able to distinguish superior-inferior frequency asymmetry
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from superior-inferior phase asymmetry. The discussion on superior-inferior asymmetry offers
the potential to resolve the definition problem in chapter 1: alternating patterns in phonation
pulses can be explained by superior-inferior asymmetry. Both frequency and phase asymmetry
are possible, but only frequency asymmetry is glottal diplophonia.

The literature suggests that diplophonia discovered in the audio domain is similar to diplo-
phonia discovered in the in the video domain [12], but the presented data show that this is not
always true. The voice quality annotation has been carried out solely on the base of the audio
material and several reasons exist for divergences between levels of description. First, turbulent
or extraglottal sound sources possibly exist. Turbulent noise does not have a harmonic structure,
but can cause a pitch sensation [100]. ”Glottal whistle” may also arise from glottal turbulence,
but produces periodic sound pressure variations by interacting with vocal tract resonances [101].
The perceived periodic sound pressure variations are similar to labial whistling and cannot be
seen in the video. Other examples of extraglottal sound sources are the false vocal folds and the
aryepiglottal folds. The amplitude based FIB does not detect false vocal fold or aryepiglottic
folds vibration, because their contrast with the surrounding tissue is lower than the contrast of
the glottal gap. The FPB is not able to detect extraglottal vibrations either, because they are
not represented in STPs. Extraglottal sound sources that are outside of the camera’s viewing
angle are not detectable at all. In addition, auditive diplophonia arising from small amplitude
vibrations of the vocal folds may not be detectable from laryngeal high-speed videos due to the
coarse spatial camera resolution. The FIB fails in detecting such vibrations because the pixel
intensity fluctuations are subliminal and the FPB fails if the oscillation spectral intensity falls
below the spatial quantization noise floor.

Analysing three-dimensional video data (FIB) has one advantage and one disadvantage. The
advantage is that raw video data can be analyzed automatically. No spatial segmentation of the
glottal gap is needed, and the ROI cropping may not be necessary because the FIB classification
has been tested successfully on uncropped video data. However, the procedure suffers from low
specificity, which is mainly due to mucosal wave artifacts.

Analysing two-dimensional video data (FPB) has one advantage and two disadvantages. The
advantage is that the FPB is not prone to the mucosal wave problem. One disadvantage is
that semi-automatic spatial segmentation of the glottal gap needs to be done as a preliminary
step to FPB analysis. Another disadvantages is that the classifier achieves rather low sensitivity.
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4
Two-oscillator waveform models for analyzing

diplophonia

4.1 Motivation

The previous chapter introduces strategies for modeling and analyzing the spatial patterns
observed in laryngeal high-speed videos. That approach is cause-oriented, because it enables
understanding the underlying mechanisms of phonation. In this chapter, procedures for investi-
gating the glottal area and the audio waveform are proposed and evaluated. These procedures are
output-oriented, because they enable understanding the acoustic output of disordered phonation
and its perception. An analysis-by-synthesis paradigm for automated detection of diplophonia
from observed waveforms is pursued.

Fundamental frequency is an essential input to synthesis procedures and cycle marks4 express
fundamental frequency by identifying cycle-synchronous events in the waveform. Figure 4.1
shows an audio waveform with speech cycles and cycle marks that were determined via two
different approaches [102]. The first is the one of Praat [85] and the second is based on Poincaré
sections. Praat misses every second pulse in the diplophonic interval of alternating amplitudes
and cycle lengths (2.46 - 2.54 s). The estimated fundamental frequency drops from approxi-
mately 90 Hz to 45 Hz (i.e., the approximate frequency of the metacycle) at 2.46 s and returns
back at 2.58 s. In contrast, the Poincaré approach detects all pulses. Neither of the approaches
is correct or wrong because no ground truth for diplophonic phonation is available. The correct
value of the fundamental frequency and the positions of the cycle marks depend on the definition
of fundamental frequency, which is imposed by the extraction algorithms in the shown exam-
ple. The extraction of double cycle marks for diplophonic voice [59] accounts for the ambiguity
of the definition of the fundamental frequency and describes additively combined primary and
secondary oscillators. The approach is presented in section 4.2.

4 The term ”pitch marks” is often used synonymically to ”cycle marks”, but should be avoided because pitch is
a perceptual attribute.
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Figure 4.1: A diplophonic speech waveform together with its fundamental frequencies and cycle marks, de-
termined with Praat [85] and from Poincaré sections, taken from [102].

A synthesizer for disordered voice sounds has been published by Schoentgen and co-workers
[40, 103]. In an early version, diplophonic waveforms are simulated by periodic modulation of
amplitude and/or frequency. The modulator is sinusoidal and its frequency is the signals’ fun-
damental divided by a small integer ratio. Figure 4.2 is taken from [40] and shows an example
of a simulated phonatory excitation signal with simultaneous amplitude and frequency modu-
lation. In this example the modulator’s frequency is at half the signals’ fundamental frequency
and results in period-two alternating amplitudes and period lengths. Such a pattern (Titze’s
diplophonia) can be explained by 2:2 entrainment.

The presence of modulation oscillators with its fundamental at the signal’s fundamental di-
vided by a small integer ratio is a special case of diplophonia. Secondary oscillators with nearly
irrational frequency ratios are observed in clinical diplophonia more frequently. It is believed
that the superior-inferior coupling of oscillators is usually stronger than the coupling in other
kinds of asymmetry, which leads to small rational frequency ratios and strictly consonant inter-
vals (1:2, 2:3). Consonant intervals are auditorily less salient than dissonant intervals and thus
less likely to be detected perceptually. Therefore consonant diplophonia is much less frequent
in the used database than dissonant diplophonia.

Figure 4.3 shows an observed glottal area waveform acquired from clinically diplophonic
phonation (corpus ID 88). The waveform is qualitatively evaluated with regard to its time-
domain waveform properties and modeled with two different approaches. The first one is Han-
quinet’s modulative approach [40] and the other one is an additive approach [59]. The model
parameters are adjusted manually to obtain waveform models that visually fit the observed
waveform. The temporal fine structure of the observed waveform can only be modeled with the
additive approach.
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Figure 4.2: Simulation of a diplophonic phonatory excitation signal with sinusoidal amplitude and frequency
modulation, taken from [40].

The time-domain properties that can be observed are:

1. The presence of major and minor pulses

2. Fluctuations of the major pulse height

3. Fluctuations of the residual glottal gap

4. Occasional excursions in major pulses

The glottal area waveform shows large fluctuations of the major pulse height. Height dips
are marked with downward facing black arrows and its maxima are marked with tilted red ar-
rows. The periodic pattern of pulse heights enables splitting the waveform into metacycles. The
metacycle length increases from four major pulses per metacycle in the beginning to nine major
pulses per metacycle in the end. The metacycle length is constant in the last three metacycles.
A similar fluctuation is observed in the waveform’s minima. The residual glottal gap fluctuates
at the same frequency as the major pulse height. The upwards facing arrows mark the maximal
residual glottal gap in each metacycle. The maximal residual glottal gaps are located 11

2 and
21
2 cycles after each major pulse height dip.

The upper subplot of figure 4.4 shows the stationary interval of the signal (1.833 - 1.981 s).
It contains three metacycles of nine major pulses each, denoted by downward facing black and
red arrows. Minor pulses in between the major pulses are marked by upwards red arrows. The
occasional excurvations of major pulses are marked by upward black arrows. The waveform
model later shows that all major pulses are excurvated in theory, but only those that are visible
are marked by arrows here.

The middle subplot shows the model waveform, generated with Hanquinet’s modulative ap-
proach. Hanquinet’s amplitude driving function is sinusoidally modulated with a modulation
frequency of 1

9 times the signals’ fundamental. The cycle shape template is a Liljencrants-Fant
(LF) model cycle shape [104]. The synthesizer is able to produce a fluctuation of the major
pulse height and a fluctuation in the residual glottal gap. In the model waveform the maximal
residual glottal gap is always situated 1

2 cycle after the major pulse height minimum. In the
observed waveform the maximal residual glottal gap is situated one or two cycles later. Other
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differences from the observed waveform are the absence of minor pulses in between the major
ones and the absence of the major pulses’ excurvations.

The additive waveform model is shown in the lower subplot of figure 4.4. Two independent
waveforms with a frequency ratio of 17:9 are additively combined. The dominant oscillator
is generated with an LF cycle shape, and the second one with a sinusoidal cycle shape. The
synthesis paradigm (polynomial modeling) is explained in section 4.3. One sees that the proposed
model is able to copy the fine structure of the observed waveform. All described waveform
properties can be modeled, i.e., the height fluctuations of major pulses, the fluctuations of the
residual glottal gap, the occasional presence of minor pulses and the occasional presence of
pulse excurvations. The noise in the observed waveform is not considered in the model. Other
divergences are that the position of the first maximal residual glottal gap is one cycle late and
that the exact shapes of excurvations differ from the observed patterns. These divergence stem
from the a priori assumption with regard to the cycle shapes, which will dropped in section
4.2. These qualitative observations suggest that oscillators combine additively in the observed
diplophonic waveform.
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Figure 4.3: Glottal area waveform, acquired from a clinically diplophonic phonation. The arrow annotations
indicate the phases of metacycles. Downwards black arrows mark major pulse height dips, up-
wards black arrows mark maxima of the glottal gap residue and red arrows mark major pulse
height maxima.
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4.2 Unit-pulse FIR filtering for modeling glottal area waveforms

The previous section suggests that an additive waveform model is needed for simulating diplo-
phonic phonation. Manual parameter adjustment enabled producing waveforms that imitate the
detailed time-domain properties of a diplophonic glottal area waveform. A model structure that
enables automatic estimation of the model parameters is a prerequisite for automated detection.
The model is introduced and evaluated on euphonic and diplophonic glottal area waveform in-
tervals (corpus ID 89).

4.2.1 Model description

Figure 4.5 illustrates the unit-pulse FIR filtering model, which is a cycle mark based wave-
form model [59]. M independent unit-pulse oscillators with period lengths Nm are taken into
account. The fundamental frequencies km are restricted to the range of [60, 700] Hz and the
period lengths in samples are rounded to even numbers. The phases of the unit-pulse oscillators
are controlled by the parameters ∆lm. The unit-pulse trains um are convolved with filter coef-
ficients rm, which are the length-Nm pulse shapes of the oscillator waveforms dm. The maxima
of rm are centered, and so the positions of the unit-pulses um coincide with the positions of
maximal amplitudes of dm. The individual oscillator waveforms dm are added together to give
the glottal area waveform d. The noisy glottal area waveform d′ is observed in the laryngeal
high-speed video. The zero-mean white Gaussian noise η is the spatial quantization noise of
glottal area waveform extraction and is uncorrelated with the oscillators. All model parameters
are constant within one synthesis block.

Equations 4.1 to 4.8 explain the model, where n is the time index, n′ is the relative time index,
N is the length of the synthesis block, m is the oscillator index, fs is the sampling frequency, µ
is the pulse index and lm are the filter coefficient indices.

Frequencies:

km ∈ R | 70Hz ≤ km ≤ 600Hz, where m = 1, 2, ...M (4.1)

Pulse lengths:

Nm = 2 ·
⌊

fs
2 · km

⌉

(4.2)

Unit-pulse:

δ(n′) =

{

1, ... n′ = 0

0, ... n′ 6= 0
, n′ ∈ Z (4.3)

Unit-pulse series:

um(n) =
∑

m

δ(n− µ ·Nm −∆lm), µ ∈ Z, n = 0, 1, 2, ... N − 1 (4.4)
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Figure 4.5: Block diagram of the model structure.

Filter coefficients:

rm(lm) ∈ R, where lm =− Nm

2
+ 1,−Nm

2
+ 2, ...− 1, 0,+1, ...

Nm

2
− 2,

Nm

2
− 1

and argmax
lm

{rm(lm)} =0
(4.5)

Oscillator waveforms:

dm(n) =
∑

lm

um(n) · rm(n− lm) (4.6)

Model waveform:

d(n) =

M
∑

m=1

dm(n) (4.7)

Noisy model waveform:

d′(n) = d(n) + η(n) (4.8)
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4.2.2 Parameter estimation and resynthesis

The noisy glottal area waveform d′ is obtained from the laryngeal high-speed video and re-
sampled at 50 kHz. The parameter estimation and resynthesis aims at estimating the model
parameters ∆lm and rm, while M , km and Nm are assumed to be known from spectral video
analysis (section 3.2).

The parameter estimation and resynthesis is structured as follows:

1. Extract the glottal area waveform

2. Resample at 50 kHz

3. Generate the phase-uncompensated unit-pulse trains

4. Extract the phase-uncompensated FIR-filter coefficients

5. Determine the phase shift

6. Generate the phase-compensated unit-pulse trains

7. Extract the phase-compensated FIR-filter coefficients

8. Go to step 5 and repeat if the phase shift is not 0.

9. Create the individual oscillator waveforms

10. Add the individual oscillator waveforms together

11. Subtract the waveform model from the observed waveform

Figure 4.6 shows the block diagram of the parameter estimation, where the circumflexes
denote estimators. The position of the unit-pulses with respect to the observed waveform is
used for visually evaluating the procedure in section 4.2.3, therefore the unit-pulses must be
phase-compensated. Unit-pulse oscillators are driven with period lengths N̂m and generate the
phase-uncompensated unit-pulse trains ûm (equation 4.10). The phase-uncompensated pulse
shapes r̂′m are obtained by cross correlating ûm with the noise corrupted desired signal d′ (equa-
tion 4.11). The phase shift ∆̂l̂m is the lag at which r̂′m is maximal. The phase-compensated
unit-pulse trains ûm are obtained by shifting û′m by ∆̂l̂m. The phase compensation is iteratively
repeated until the maxima of r̂m are at l̂m = 0. The individual oscillators d̂m are obtained by
convolving the unit-pulse trains ûm with the FIR-filter coefficients r̂m. All individual oscillator
waveforms are added together to give the glottal area waveform model d̂. The model is sub-
tracted from its observed counterpart, yielding the time domain error signal e.

N̂m = 2 ·
⌊

fs

2 · k̂m

⌉

, m = 1, 2, ... M̂ (4.9)

û′m(n) =
∑

m

δ(n− µ · N̂m), µ ∈ Z, n = 0, 1, 2, ... N − 1 (4.10)
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Figure 4.6: Block diagram of the parameter estimation.

r̂′m(l̂m) =
1

∑

n û
′

m(n)
·
∑

n

û′m(n) · d′(n+ l̂m), where

l̂m = 1− N̂m

2
, 2− N̂m

2
, ...− 1, 0,+1, ...

N̂m

2
− 2,

N̂m

2
− 1

(4.11)

ûm(n) =
∑

m

δ(n− µ · N̂m − ∆̂l̂m), µ ∈ Z, n = 0, 1, 2, ... N − 1 (4.12)

∆̂l̂m = argmax
l̂m

{

r̂′m(l̂m)
}

(4.13)

r̂m(l̂m) =
1

∑

n ûm(n)
·
∑

n

ûm(n) · d′(n+ l̂m) (4.14)

d̂m(n) =
∑

l̂m

ûm(n) · r̂m(n− l̂m) (4.15)

d̂(n) =

M̂
∑

m=1

d̂m(n) (4.16)
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e(n) = d(n)− d̂(n) (4.17)

4.2.3 Evaluation and validation

The unit-pulse FIR-filtering model is illustrated on euphonic and diplophonic intervals, 506
frames or 126.5 ms long each (corpus ID 89). The audio signals stem from the camera’s inbuilt
microphone. The model is evaluated by both visual and quantitative comparison of the model
waveform with its observed counterpart and is validated by visual comparison of the estimated
cycle marks with the empiric glottal area and audio waveforms.

Figure 4.7 shows the results of the spectral video analysis. The fundamental frequency of the
euphonic interval is 221.8 Hz and the fundamentals of the diplophonic interval are 213.9 Hz and
404 Hz. Figure 4.8 shows the estimated pulse shapes of the euphonic and diplophonic phona-
tion intervals. The pulse shape estimated from the euphonic interval looks typical. A short
constant/closed phase at the pulse edges alternates with a evolving open phase in the center of
the pulse. Pulse shape r1 of the diplophonic waveform has a longer constant/closed phase at its
edges. Pulse shape r2 looks like a sinusoid, it has no constant/closed phase and it is shorter in
time and smaller in amplitude.

Visual inspection of the diplophonic video reveals anterior-posterior asymmetry. The anterior
part of the left vocal fold is separated from its posterior companion by a polyp. The posterior
part of the vocal folds vibrates and closes normally (oscillator 1), which is reflected in r1. The
posterior part of the left vocal fold (oscillator 2) vibrates faster than the anterior part, which
shortens r2 compared to r1. No prolonged posterior closed phase exists, because the polyp pro-
hibits the collision of the vocal folds anteriorly. A full closure is achieved seldom and shortly
only, in times when amplitude minima of oscillator 1 coincide with amplitude minima of oscil-
lator 2. Oscillator 2 vibrates sinusoidally, which is reflected in r2.

Figures 4.9 and 4.10 show the waveform modeling results. The upper subplots show the ob-
served waveform and its models. The middle subplots show the normalized unit-pulse trains and
the filter outputs. To clarify the spatial origins of the oscillators, the colors of the lines and stems
in the middle subplots are identical to the colors of the corresponding regions of the spectral
video analysis (figure 4.7). The lower subplots show the time-domain modeling error e. One
oscillator models the euphonic waveform (figure 4.9) and two oscillators model the diplophonic
waveform (figure 4.10).

The upper subplot of figure 4.9 illustrates the high accuracy of the euphonic model, because it
is similar to the observed signal. The waveform model is quantitatively evaluated via the relative
root mean square error (relRMSE, [dB]), which relates the energy level of the error waveform
to the energy level of the observed waveform. It would become −∞ if the error was zero, which
is practically never achieved because of noise. If the model waveform would be zero, the error
would equal the empiric waveform and relRMSE would equal 0 dB. It is desirable to have a
small modeling error, which is reflected in negative numbers. The relRMSE is approximately
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Figure 4.8: Measured pulse shapes from one euphonic and one diplophonic phonation interval.

-12.3 dB in the shown example.

relRMSE = 20 · log





√

1
N

·∑N
n=1 e(n)

2

√

1
N

·∑N
n=1 d

′(n)2



 (4.18)
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The modeling error of the euphonic waveform is larger at the onset and offset of the depicted
interval than at its center. At onset the pulses of the model are early, i.e., they are shifted to
the left with respect to the observed pulses. In the middle the model’s pulses coincide with the
empiric pulses, resulting in a small modeling error. Near offset the model’s pulses are late, i.e.,
the are shifted to the right with respect to the observed pulses. These divergences stem either
from fluctuations of fundamental frequency within the analysis block or from a coarse frequency
resolution in the fundamental frequency estimation. Divergences arising from the first problem
are addressed by using shorter analysis blocks and divergences arising from the latter problem
are addressed by introducing zero-padding in spectral analysis. Both strategies are described in
section 4.3.

The upper subplot of figure 4.10 shows that the model of the diplophonic waveform is accurate.
The model is capable of imitating all properties of the observed signal that are discussed in
section 4.1. Although the waveform model is more complex for diplophonia than for euphonia,
the modeling error relRMSE is -10.40 dB exceeding that of the euphonia model. If only one
oscillator would have been used in the diplophonic waveform model, the error would have been
larger (-8.81 dB). The numbers indicate that the accuracy of the diplophonic waveform model
increases when a second oscillator is added, whereas one oscillator is sufficient for modeling
euphonic phonation.
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Figure 4.9: Waveform modeling summary of the euphonic interval (zoomed in).

Evaluation via visual comparison of cycle marks and waveforms

The model is evaluated by comparing the phase-compensated unit-pulse trains ûm to the ob-
served glottal area and audio waveforms. The temporal positions of the unit-pulses denote times
of maximal oscillator amplitude and enable explaining the height fluctuations of major pulses,
the occasional presence of minor pulses in-between the major ones and the occasional excurvation
of the major pulses. The term ”double pitch marks” is introduced for the phase-compensated
unit-pulse trains of two-oscillator waveform models [59].

Figure 4.11 shows the glottal area and audio waveforms, together with their estimated cycle

December 16, 2014 – 79 –



4 Two-oscillator waveform models for analyzing diplophonia

0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22
−200

0

200

400
P

ix
el

s

 

 

Mean subtracted GAW d(n)

Filter output d̂(n)

0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22
−200

0

200

400

P
ix

el
s

 

 

Normalized filter input u1(n)

Filter output d̂1(n)

0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22
−50

0

50

100

P
ix

el
s

 

 

Normalized filter input u2(n)

Filter output d̂2(n)

0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22
−200

0

200
Estimation error e(n)

P
ix

el
s

Time (s)

relRMSE = −10.395 dB

MC 2

Figure 4.10: Waveform modeling summary of meta cycle 2 of the diplophonic interval.

marks. Praat’s [105] cycle marks are extracted from the audio signal for comparison. Figure
4.11a shows that Praat’s and the proposed cycle marks are valid for euphonic voice because all
cycle marks approximately coincide with positive peaks in the glottal area waveform and with
cycle synchronous negative peaks in the audio signal.

Figure 4.11b shows the diplophonic glottal area and audio waveform together with its cycle
marks. Praat loses synchronization to the waveforms in the mid-metacycle. In contrast, the
primary cycle marks retrieved by unit-pulse FIR-filtering succeed in recognizing the positions of
the waveform’s major pulses. In the glottal area waveform the stems denote time instances of
the oscillators’ maximal positive amplitudes.

At the first major pulses within each metacycle, the oscillators are exactly out of phase.
Destructive interference leads to minimal height of the major pulses. In the middle of each
metacycle, the oscillators are in phase and the height of the major pulses is increased by con-
structive interference. Yellow stems coincide with minor pulses in the waveform. Yellow stems
that are close to blue stems cause excurvation because the secondary oscillator pulses disturb
the flanks of the primary oscillator pulses. Yellow stems that are very close to blue stems result
in a pulse height increase because the secondary oscillator pulses are absorbed by the primary
oscillator pulses.

The metacycles in the audio waveform are reported by a fluctuation of the signal peak ampli-

December 16, 2014 – 80 –



4 Two-oscillator waveform models for analyzing diplophonia

tudes, similar to that observed in the glottal area waveform. The primary cycle marks retrieved
with unit-pulse FIR-filtering coincide with cycle synchronous negative peaks in the audio signal.
The negative peaks at the metacycle boundaries are blurred by the vocal tract resonances and
thus cannot be seen. Praat’s cycle marks agree with the primary cycle marks in the first and
last metacycles, but fail to agree in the mid-metacycle. The secondary cycle marks are observed
in the audio signal only via the overall amplitude decrease at the metacycle boundaries. This
suggests that analyzing laryngeal high-speed videos gains qualitative insight into the temporal
fine structure of vocal fold vibration in the presence of two or more distinct oscillator frequencies,
as opposed to analyzing audio recordings.
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4.3 Polynomial modeling of audio waveforms

In the previous section unit-pulse FIR filtering for building two-oscillator waveform models of
diplophonic phonation is introduced. It has been assumed that the model parameters are con-
stant within each analysis block. A violation of this assumption can lead to discontinuous cycle
boundaries in resynthesized oscillators, which are broadband disturbances and undesired in syn-
thesis for auditive evaluation. To relax this assumption and limit the bandwidth of the candidate
oscillators, the FIR filters are replaced by polynomial oscillator models. The polynomial model
has been proposed by Schoentgen and co-workers [40], and a simplified version is used here. It is
further assumed in the last section that the correct number of oscillators and their fundamental
frequencies are known a priori. This assumption is relaxed by introducing a heuristic oscilla-
tor selector for the joint estimation of the number of sources and the waveform model parameters.

The model is evaluated with respect to voice quality group effects of quantitative waveform
modeling errors. A database of 55 diplophonic and 223 non-diplophonic audio waveform intervals
(corpus ID 8) and a critical corpus of 55 diplophonic and 70 dysphonic intervals (corpus ID 98) are
used. Different versions of diplophonic model waveforms are visually compared to their observed
counterpart. Their individual oscillators and the error waveform are auditively evaluated and
analyzed by means of a mutual masked loudness model for multiple sources [61]. Moreover,
fundamental frequencies extracted with three different methods are evaluated on a corpus of 65
euphonic, 28 diplophonic and 84 dysphonic intervals (corpus ID 99).

4.3.1 Model description

A waveform model for diplophonic and euphonic audio waveforms is proposed (equations 4.19).
dm are the oscillator waveforms, m is the oscillator index, n is the discrete time index, a and b
the real and imaginary parts of the oscillators’ Fourier coefficients, P is the number of partials,
p the partial index, ωm is the angular frequency and km is the fundamental frequency, which is
in the range of [70, 600]Hz. fs is the sampling frequency, d is the waveform model combining
M oscillators (1 for euphonia and 2 for diplophonia) and η is random noise, which consists
of aspiration noise, background noise and measurement noise. The spectral magnitude at the
fundamental is greater or equal -15 dB with regard to the overall maximum of the waveform’s
spectrum. All model parameters are constant within one synthesis block, the maximal partial
frequency is below the Nyquist frequency, the oscillators are independent and η is uncorrelated
with the oscillators.

dm(n) =
1

2
· am,0 +

P
∑

p=1

[am,p · cos (ωm · p · n) + bm,p · sin (ωm · p · n)] , where

ωm =
2π km
fs

, 2 · π · 70Hz ≤ ωm ≤ 2 · π · 600Hz ∀m, and

20 · log
(√

a2m,1 + b2m,1

)

≥

max
p

{

20 · log
(√

a2m,p + b2m,p

)

, 20 · log(am,0)
}

− 15 dB ∀m, p = 2, 3, ... P

(4.19)

December 16, 2014 – 83 –



4 Two-oscillator waveform models for analyzing diplophonia

d(n) =

M
∑

m=1

dm(n) (4.20)

d′(n) = d(n) + η(n) (4.21)

4.3.2 Parameter estimation and resynthesis

The parameter estimation and resynthesis aims at estimating the model parameters M , ω, a
and b from the observed noisy audio waveform d′.

The parameter estimation and resynthesis is structured as follows:

1. Resample the audio waveform at 50 kHz

2. Spectral peak pick fundamental frequency candidates

3. Generate unit-pulse trains

4. Extract the pulse shapes via cross correlation

5. Approximate the pulse shapes with finite Fourier series

6. Transform polynomial coefficients

7. Resynthesize individual oscillators

8. Build all possible one- and two-oscillator models

9. Select the optimal one- and two-oscillator models

Figure 4.13 shows an example of a normalized magnitude spectrum of a diplophonic audio
signal and its estimated fundamental frequency candidates. The fundamental frequency candi-
dates k̂γ are obtained by peak picking in the waveform’s magnitude spectrum (figure 4.13). To
save computation time during oscillator selection, the maximal number of oscillator candidates
is limited to 12. If the number of candidates obtained via peak picking exceeds 12, the 12 with
the lowest frequencies are retained. The block length N is 60 ms with 50 % overlap, the window
is rectangular and the signal is zero padded to obtain a frequency step of 0.1 Hz (i.e., 5·105-point
DFT). The fundamental frequency candidates are restricted to the range [70, 600 Hz] and only
pulses that exceed -15 dB with regard to the global maximum are taken into account.

The pulse shapes rγ of the candidate oscillators d̂γ are estimated by cross correlating unit-
pulse trains uγ with the observed audio waveform d′ (cf. section 4.2.2). Equations 4.22 to 4.25
explain the building of the candidate pulse shapes, where n′ is the relative time index, µ is the
pulse index, δ is a unit-pulse, Nγ is the period length of the γth candidate oscillator and lγ is
the cross correlation time lag. The length of rγ is kept equal to Nγ .

δ(n′) =

{

1, ... n′ = 0

0, ... n′ 6= 0
, n′ ∈ Z (4.22)
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Figure 4.12: Block diagram of the parameter estimation.
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Figure 4.13: An example of a normalized magnitude spectrum of a diplophonic audio signal block together
with its estimated fundamental frequency candidates.

Nγ = 2 ·
⌊

fs

2 · k̂γ

⌉

, γ = 1, 2, ... Γ (4.23)
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uγ(n) =
∑

γ

δ(n− µ ·Nγ), µ ∈ Z, n = 0, 1, 2, ... N − 1 (4.24)

rγ(lγ) =
1

∑

n uγ(n)
·
∑

n

uγ(n) · d′(n+ lγ)

where lγ =1− Nγ

2
, 2− Nγ

2
, ...− 1, 0,+1, ...

Nγ

2
− 2,

Nγ

2
− 1

(4.25)

The pulse shapes rγ are approximated by a finite Fourier series (equation 4.27) [106]. rγ(lγ)
is a real valued signal and thus has a symmetric spectrum. The number of unique Fourier series
coefficients aγ,p and bγ,p equals the period length Nm and the length of rγ(lγ). The first and
last terms in equation 4.27 represent the mean of rγ(lγ), where ω̂γ is the angular frequency.
Half of its energy is located at zero frequency and the other half at the Nyquist frequency. The
bracketed term represents the Fourier oscillators.

ω̂γ = 2 · π · k̂γ (4.26)

rγ(lγ) =
1

2
âγ,0 +

Nγ

2
−1

∑

p=1

[

âγ,p · cos (ω̂γ · p · lm) + b̂γ,p · sin (ω̂γ · p · lm)
]

+

1

2
â
γ,

Nγ

2

· cos (ω̂γ · p · lm)

(4.27)

The Fourier coefficients âγ,p and b̂γ,p are obtained by the DFT of rγ(lγ) (equations 4.28
and 4.29) [106]. The Fourier coefficients are truncated to P = 10 partials, which allows for a
reasonable model quality, while limiting the bandwidth and saving computation time.

âγ,p =
2

Nγ
·

Nγ−1
∑

lγ=1−
Nγ

2

rγ(lγ) · cos (ω̂γ · p · lm) , where p = 0, 1, ... P (4.28)

b̂γ,p =
2

Nγ
·

Nγ−1
∑

lγ=1−
Nγ

2

rγ(lγ) · sin (ω̂γ · p · lm) , where p = 1, 2, ... P (4.29)

The polynomial coefficients a′γ,p and b′γ,p of the candidate pulse shape are obtained by equa-
tions 4.30 and 4.31, where × is the multiplication of a matrix and a vector, and ⊙ is the element
wise multiplication of two vectors. The matricesMe andMo are derived from the Pascal triangle,
whereMe is P+1×P+1 andMo is P×P . The candidate oscillators d̂γ are obtained by resynthe-
sis equation 4.34. The derivation and the prove of the described transformation is found in [107].
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a′γ,p =
1

2
·M−1

e × (aγ,p ⊙ vp) , where p = 0, 1, ... P, and vp = 2p (4.30)

b′γ,p = M−1
o ×

(

bγ,p ⊙ v′p
)

, where p = 1, 2, ... P, and v′p = 2(1−p) (4.31)

Me =





































1 0 2 0 6 0 20 0 70 . . .
0 1 0 3 0 10 0 35 0 . . .
0 0 1 0 4 0 15 0 56 . . .
0 0 0 1 0 5 0 21 0 . . .
0 0 0 0 1 0 6 0 28 . . .
0 0 0 0 0 1 0 7 0 . . .
0 0 0 0 0 0 1 0 8 . . .
0 0 0 0 0 0 0 1 0 . . .
0 0 0 0 0 0 0 0 1 . . .
...

...
...

...
...

...
...

...
...

. . .





































(4.32)

Mo =





































1 0 1 0 2 0 5 0 14 . . .
0 1 0 2 0 5 0 14 0 . . .
0 0 1 0 3 0 9 0 28 . . .
0 0 0 1 0 4 0 14 0 . . .
0 0 0 0 1 0 5 0 25 . . .
0 0 0 0 0 1 0 6 0 . . .
0 0 0 0 0 0 1 0 7 . . .
0 0 0 0 0 0 0 1 0 . . .
0 0 0 0 0 0 0 0 1 . . .
...

...
...

...
...

...
...

...
...

. . .





































(4.33)

d̂γ(n) =

P
∑

p=0

a′γ,p · cosp (ω̂γ · n) + sin(ω̂γ · n) ·
P
∑

p=1

b′γ,p · cosp (ω̂γ · n) (4.34)

The heuristic oscillator selector searches for the optimal one-oscillator and two-oscillator wave-
form model. Waveform models d̂S and their errors eS are obtained for all possible one- and
two-oscillator additive waveform combinations S. The minimal error one- and two-oscillator
models are selected and their errors are given in equations 4.36 and 4.37, where S1 and S2 are
the minimal error oscillator combinations.

eS(n) = d′(n)− d̂S(n) (4.35)
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relRMSE(S1) = 20 · log





√

1
N

·∑N
n=1 eS1(n)

2

√

1
N

·
∑N

n=1 d
′(n)2



 (4.36)

relRMSE(S2) = 20 · log





√

1
N

·
∑N

n=1 eS2(n)
2

√

1
N

·∑N
n=1 d

′(n)2



 (4.37)

4.3.3 Evaluation

The model is evaluated with regard to waveform similarity and error measures. Additionally,
auditory observations and results from loudness modeling and fundamental frequency extraction
are described.

Waveform similarity and error measures

Figure 4.14 shows an example of a diplophonic audio waveform snippet. The upper subplot
shows the recorded audio signal d′, the middle subplot shows the optimal one-oscillator model
waveform d̂S1 and the lower subplot shows the optimal two-oscillator model waveform d̂S2 . The
model waveforms are evaluated qualitatively by visual comparison of the modeled waveforms
with the recorded waveform. One sees that the waveform of the two-oscillator model is a better
copy of the recorded waveform than the one-oscillator model.

The model waveforms are evaluated quantitatively by obtaining the intervals’ average relRMSE.
The error of the optimal one-oscillator model waveform relRMSE(S1) is -4 dB and the error of
the optimal two-oscillators model waveform relRMSE(S2) is -8.8 dB, which confirms the visual
evaluation.

These results suggest that it is possible to detect the presence of diplophonia from a recorded
audio signal, which is evaluated on a database of 278 phonation intervals (55 diplophonic, 223
non-diplophonic). Figure 4.15 shows the boxplots of the one-oscillator model error relRMSE(S1)
and the two-oscillator model error relRMSE(S2), with regard to voice quality. The numbers are
interval averages, i.e., the average block results of separate voice qualities. relRMSE(S1) is
higher in the diplophonic group than in the other groups, which suggests that one oscillator is
insufficient for modeling diplophonic audio waveforms. Although the model error relRMSE(S2)
is comparable in all groups, it is exploited for building a classifier in chapter 5, because the
model waveforms of the diplophonic group benefit from adding a second oscillator on average,
while model errors of the non-diplophonic intervals tend to increase when a second oscillator is
added.

Auditory observations

The extracted oscillators and the model error waveform are evaluated auditorily. Figure 4.16
shows the oscillator waveforms of an example of a diplophonic phonation and its model er-
ror waveform. The sound files d1.wav, d2.wav, e.wav, d1+d2.wav, d1+e.wav, d2+e.wav,
d1+d2+e.wav can be downloaded at [108]. The blocked waveforms have been extracted from the
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Figure 4.14: Diplophonic audio waveform and its best one-oscillator and two-oscillator model waveforms.

recorded signals as described, and resynthesized with overlap-and-add (Hann window, overlap of
50 %). d̂1 is the oscillator waveform corresponding to the lower pitch of the diplophonic example
and d̂2 corresponds to the higher pitch. The model error (lower subplot) looks noisy.

d1.wav is the waveform of the low pitch oscillator and d2.wav is the waveform of the high
pitch oscillator, i.e., the diplophonic components. One can auditively identify the separate
pitches of the oscillators from these waveforms. d1+d2.wav is the sum of the harmonic oscil-
lators and enables evaluating the perceived musical interval simultaneously. It is time-variant
but approximately a major third. The waveform d1+e.wav can be seen as an enhanced version
of the diplophonic audio recording, because the perceived degree of diplophonia is decreased.
As compared to the recorded waveform, the high pitch auditory stream is louder in d2+e.wav,
because it is not masked by the low pitch stream. In the euphonic interval, the diplophonic
component is zero.

e.wav is the model error waveform that sounds noisy, hoarse and harsh. Narrowband energy
in the waveform model error exists, which arises from oscillator coupling, i.e., the combination
tones of the oscillators. The model error consists of aspiration noise, plus the combination tones
which are remainders of the coupling/co-modulation of the oscillators, plus artifacts from mod-
ulation noise. In the model error waveform, one hears a pitch that is not audible in the recorded
waveform, because it is masked.

Figure 4.17 shows the spectrograms of the extracted oscillations and the error waveform. The
oscillations have harmonic structure and the error is noise plus some narrowband components.
The narrowband energy in the error signal is a linear combination of the oscillators’ partial
frequencies and explained by oscillator coupling.

December 16, 2014 – 89 –



4 Two-oscillator waveform models for analyzing diplophonia

−25

−20

−15

−10

−5

0

Euphonic Diplophonic Dysphonic
Voice quality

re
lR

M
S

E
(S

1) 
[d

B
]

−25

−20

−15

−10

−5

0

Euphonic Diplophonic Dysphonic
Voice quality

re
lR

M
S

E
(S

2) 
[d

B
]

Figure 4.15: Boxplots of the waveform model errors versus voice quality.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.05

0

0.05
d̂1(n)

Time (s)

[a
.u

.]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.05

0

0.05
d̂2(n)

Time (s)

[a
.u

.]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.05

0

0.05
eS(n)

Time (s)

[a
.u

.]

Figure 4.16: Extracted oscillator waveforms of an example of a diplophonic phonation and its model error
waveform. The upper subplot shows the first oscillator waveform, the middle subplot shows the
second oscillator waveform and the lower subplot shows the error waveform.

Loudness modeling

The predicted loudness curves of the individual waveforms are obtained from a multi-source
model of mutual masked loudness [61]. Figure 4.18 shows the masked short-term loudness. A
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Figure 4.17: The oscillators’ and the model error waveforms’ spectrograms.

masking model yields the masked loudness of each of the three signals [109, 110]. The average
sound pressure level of the observed waveform was defined to be 70 dB(A) in binaural head-
phone playback. Three temporal intervals are distinguished: At onset the error waveform is the
loudest (red line), the secondary oscillator (green line) is less loud at 0.15 sone and the primary
oscillator is suppressed. In the quasi modal interval the primary oscillator is the loudest of the
three signals. The loudness of the error waveform is approximately 0.8 sone, and the second
oscillator is absent. In the interval from 0.4 to 1.55 s the error waveform is dominant and both
oscillators are audible. The loudness of the primary oscillator is at approximately 0.8 sone and
the loudness of the secondary oscillator at approximately 0.4 sone. At phonation offset, loudness
decreases and the second oscillator shortly exceeds the loudness of the primary oscillator. It is
illustrated that sound sources of diplophonic phonation, which can be segregated by humans,
can also be segregated automatically and fed into a perceptual model that estimates the single
source contributions to the overall loudness.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5

Lo
ud

ne
ss

 (
so

ne
)

Time (s)

 

 
d̂1(n)

d̂2(n)
eS(n)

Figure 4.18: Estimated short-term masked loudness [61,109,110] of the separated oscillators and the model
waveform. Distinct auditory streams are separated from a diplophonic phonation example and
single source contributions to the overall loudness is estimated. The audio files can be down-
loaded from the internet [108].
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Fundamental frequency extraction

The performance of fundamental frequency extraction is investigated in an experiment with 65
euphonic, 28 diplophonic and 84 dysphonic intervals (corpus ID 99). Fundamental frequency
extraction via polynomial waveform modeling is compared to a state-of-the-art fundamental
frequency extractor for noisy mixtures of two speakers [111].

The fundamental frequency extracted by spectral video analysis serves as ground truth (chap-
ter 3). The block length is 128 video frames and the amplitude filtering threshold is set to 2.45,
which is the average of the optimal thresholds determined in chapter 3 (2.3 and 2.6). The lowest
frequency is 70 Hz, and if more than two estimates for the fundamental frequency are obtained,
the lowest two are chosen.

Figure 4.19 shows the spectrogram of an example of diplophonic phonation together with the
fundamental frequencies extracted by polynomial waveform modeling and spectral video analy-
sis. In the beginning of the interval the phonation is euphonic. There is clear harmonic structure,
but also a high level of noise. The fundamental frequency is approximately 170 Hz and the par-
tials are at integer multiples of the fundamental frequency. Both spectral video analysis and
polynomial modeling are able to extract the fundamental frequency. The diplophonic interval
appears after a bifurcation at approximately 0.35 s. From there on the spectral characteristics
become more complicated, because two fundamental frequencies coexist with coupling products.
The polynomial modeling finds both fundamentals whereas the spectral video analysis fails from
0.35 to 0.6 s.

Figure 4.20 shows the audio spectrogram together with the fundamental frequency extracted
by Wu’s method [111] and spectral video analysis. Wu’s method fails for this example of diplo-
phonic voice. It either tends to obtain some frequency in between the true fundamentals or
the frequency of the meta cycle. The fundamental frequencies are extracted by autocorrelation,
which may be suboptimal for diplophonic phonation. In chapter 5, another approach that is
based on autocorrelation suffers from a similar problem.

E01, E02, E10, E12, E20, E21 are block error rates that express the extraction of the wrong
number of fundamental frequencies. E.g., if there is one fundamental in the analysis block and
the algorithm extracts two, E12 counts an error. EGross is the error rate of gross fundamental
frequency errors, i.e., the rate of blocks in which the number of fundamental frequencies is cor-
rect, but the relative frequency error of either estimate exceeds 20 %. ETotal is the sum of all
above mentioned rates. If no total error is observed, EFine is calculated, which is the relative
frequency error in percent. If there are two fundamental frequencies, it is the sum of the relative
frequency errors. Details on the calculation of the error measures can be found in [111].

Table 4.1 summarizes the error rates with respect to the method of extraction. Some of the
error rates are high, i.e., E12, E21, and EGross for polynomial waveform modeling and E21 and
EGross for Wu’s method, which results in high total error rates for both methods. EFine is tested
with a two-sided Wilcoxon rank-sum test, because the number of observations differs between
the compared groups. All other error rates are tested with an eight-fold Bonferroni corrected
two-sided paired Wilcoxon signed rank test. The rate of total errors is significantly higher for
Wu’s approach (47.18 and 57.53 %).

The polynomial waveform modeling prefers two fundamental frequencies over one, which is re-
flected by E12 (12.12 %). The high rates of E21 (22.22 %) may stem from mucosal wave artifacts
in spectral video analysis. Wu’s method has an even higher E21 (38.11 %), because only one
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Estimated frequencies: Polynomial waveform modeling
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Figure 4.19: Audio spectrogram and fundamental frequency estimates for an example of diplophonic phona-
tion. The used fundamental frequency extractors are polynomial waveform modeling (PWM)
and spectral video analysis (SVA). The frequencies of the sinusoidal components of the spectro-
gram are interpreted by means of linear frequency combinations in the format (a/b), with the
sinusoidal frequency k = a · k1 + b · k2 (right side of the figure).

fundamental frequency is often extracted for diplophonic voice, which confirms the observation
made in figure 4.20.

Table 4.2 shows ETotal with regard to voice quality. Wu’s method is wrong (95.74 %) for
diplophonic intervals, but polynomial waveform modeling achieves at least 46.28 %. The errors
are tested with a three-fold Bonferroni corrected two-sided paired Wilcoxon signed rank test.
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Estimated frequencies: Wu Wang Brown
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Figure 4.20: Audio spectrogram and fundamental frequency estimates for an example of diplophonic phona-
tion. The used fundamental frequency extractors are Wu’s method (WWB) and spectral video
analysis (SVA).

PWM (%) WWB (%) p-value

E01 0.12 0.87 = 0.013

E02 0.68 0.05 < 0.001

E10 1.29 3.63 < 0.001

E12 12.12 1.23 < 0.001

E20 1.5 3.34 < 0.001

E21 22.22 38.11 < 0.001

EGross 9.25 10.29 n.s.

ETotal 47.18 57.53 = 0.009

EFine 2.06 1.25 n.s.

Table 4.1: Median error rates of multiple fundamental frequency extraction. Comparison of polynomial
waveform modeling (PWM) with Wu’s method (WWB) [111]. Wilcoxon signed rank test, paired,
two-sided, eight-fold Bonferroni corrected. EFine is tested with a two-sided Wilcoxon rank sum
test.

(Medians) PWM (%) WWB (%) p-value

ETotal, euphonic intervals 37.5 39.37 n.s.

ETotal, diplophonic intervals 46.28 95.74 < 0.001

ETotal, dysphonic intervals 54.97 58.83 n.s.

Table 4.2: Total error rates of fundamental frequency extraction with respect to voice quality.
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4.4 Discussion and conclusion

Two waveform models that yield physiologically interpretable results for diplophonic phonation
have been proposed, pilot-tested and evaluated on observed data. Unit-pulse FIR filtering was
used for analyzing one euphonic and one diplophonic glottal area waveform. A ground truth
for double cycle marks and fundamental frequencies in diplophonic voice has been established
and the fine structure fidelity of the diplophonic waveform model was demonstrated [59]. The
parameter extraction can handle uncorrelated additive noise, which occurs in glottal area wave-
forms and in audio waveforms of disordered phonation. The waveform parameterization exploits
periodicity and yields a parsimonious signal representation. The results also illuminate limita-
tions of cycle-based analyses (e.g., jitter or shimmer), which rely on a one-oscillator assumption.

Polynomial waveform modeling has been proposed, which improves unit-pulse FIR filtering in
two ways. First, the number of oscillators and the audio waveform model are jointly estimated.
In unit-pulse FIR-filtering, it was assumed that the number of oscillators and their fundamental
frequencies are known from spectral video analysis. Under this assumption, the added diagnos-
tic value of audio waveform modeling over spectral video analysis is small, because the presence
of diplophonia can be detected by counting the number of oscillators in spectral video analysis
alone. Second, cycle discontinuities that occur in unit-pulse FIR filtering when the model param-
eters evolve block internally have been taken into account by band limitation during resynthesis.

Three large data experiments on polynomial waveform modeling were carried out. First, group
effects of model error measures have been illustrated for 55 diplophonic and 223 non-diplophonic
audio waveforms. The model error measures are used as computational markers of voice quality
in chapter 5. Second, one diplophonic example has been analyzed in more detail, namely by
auditive evaluation of the different waveform model components and by modeling the mutual
masked short-term loudness of these components. Sound sources in that example have been
segregated automatically and fed into a perceptual model that estimates the single source con-
tributions to the overall loudness. Third, a corpus of 28 diplophonic and 149 non-diplophonic
phonation intervals has been used for evaluating fundamental frequency extraction. A state-of-
the-art algorithm fails for diplophonic phonation, because its algorithm parameters are optimal
for tracking a mixture of two independent speakers [111], while polynomial waveform modeling
achieves smaller error rates.

Limitations of the waveform models arise from the assumptions of the oscillators’ additivity,
uncorrelatedness and the presence of spectral energy at their fundamentals. In reality, additivity
and co-modulation of oscillators coexist and the correlation of the oscillators is not zero. Thus
the waveform model solutions are not optimal under all circumstances. The assumption that
significant spectral energy is present at the oscillator fundamental frequencies could be criticized
from a perceptual point of view, because the perceived pitch can correspond to a frequency that
has no significant spectral energy [112].

Suggestions for future work are possible. Automatic fitting of waveform models to observed
data is not limited to diplophonic voice but may also be attempted on creak and non-diplophonic
roughness. The combination of additive and modulative oscillators may outperform the additive-
only approach to model diplophonic waveforms in some cases. The video and audio data need
ground truth annotation of fundamental frequency, which requests expert knowledge of wave-
form patterns in disordered phonation and constitutes a workload of many man-hours. Al-
gorithmically separated signal components might be tested for ear training of logopedists and
phoniatricians. The separation approach might also be tested for auditory stream segregation
in dysphonic voices [21]. Methods inspired by joint multiple fundamental frequency estimation
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and source separation should in the future be used to overcome limitations arising from the
assumptions that the proposed parameter estimation procedures rely on. However, it must be
kept in mind that the a priori knowledge available on voices identified as diplophonic is limited
and qualitative only. A promising direction of joint multiple fundamental frequency estimation
and source separation with only qualitative knowledge about the sources is taken in [113].
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Diplophonia

5
Diagnostic tests and their interpretation

In the previous chapters, novel features from laryngeal high-speed videos and audio recordings
are obtained. In this chapter, selected available features are evaluated on their ability to detect
diplophonia in audio signals. In section 5.1, formerly published features are used to train binary
threshold classifiers and evaluated with regard to their underlying assumptions. In section 5.2
the features obtained from waveform modeling are visualized in a physiological interpretable
way, via the Diplophonia Diagram. The Diplophonia Diagram is used for automated detection
of diplophonia by means of a binomial logistic regression model. Finally, the problem that the
voice quality annotation may be an imperfect ground truth is addressed by constructing a ref-
erence standard via latent class analysis.

5.1 Conventional features

To discuss the status-quo of objective clinical assessment of diplophonic voice, five conventional
features are tested with regard to their ability to detect diplophonia. They are jitter [114],
shimmer [115,116], the Harmonics-to-Noise Ratio (HNR) [85], the Göttingen features for irreg-
ularity and noise [44] and the Degree of subharmonics (DSH) [117]. Binary threshold classifiers
are trained for each feature and evaluated with regard to their validity. The corpus consists of
278 phonation intervals, from which 96 are euphonic, 55 are diplophonic and 127 are dysphonic
(corpus ID 8).

5.1.1 Jitter and shimmer

Analysis

Jitter is a measure of the temporal fluctuations of cycle length and has been introduced by
Liebermann in 1961 [114]. Jitter is given in percent and its simplest version is used. The aver-
age absolute difference of adjacent cycle lengths divided by the average cycle length. Shimmer is
a measure of temporal fluctuations of cycle peak amplitudes. The term has been introduced as
a synthesis parameter by Wendahl in 1966 [115]. Shimmer is a cover term for all kinds of cycle
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peak amplitude fluctuations, of which many types exist. The used version of the shimmer is 20
times the average absolute base-10 logarithm of the ratio of adjacent cycle peak amplitudes. It
is given in dB.

The open source software Praat [85] is used to determine jitter and shimmer of audio wave-
forms. At first, the cycle length is determined via the subroutine ”To Pitch (cc)”. All the
parameters are set to their standard values. Cycle-length candidates are obtained via forward
cross-correlation. A post-processing algorithm obtains the cheapest temporal path through the
candidates and delivers the fundamental frequency contour. The subroutine ”To PointPro-
cess (cc)” is used to estimate the underlying cycle marks. The jitter is obtained using the
subroutine ”Get jitter (local)” and the shimmer is obtained using the subroutine ”Get shim-
mer (local dB)” with all its parameters set to their standard values.

In the popular Multi-Dimensional Voice Program (MDVP) of KayPENTAX, the correspond-
ing features for jitter and shimmer are called ”Jitt” and ”ShdB”. It must be noted, that MDVP
may obtain different results than Praat, because the extraction of cycle length and cycle peak
amplitudes is different.

Evaluation and discussion

Figure 5.1a shows the boxplots for jitter with respect to voice quality. The average of the jitter as
well as its within group variation is larger in the diplophonic group than in the other two groups.
The ROC curve (figure 5.1b) shows that the optimal threshold for separating diplophonic from
non-diplophonic voices is at 0.96 %. A sensitivity of 76.4 % and a specificity of 69.4 % are
achieved. The boxplots of shimmer look comparable to jitter (figure 5.2). The optimal thresh-
old is 1 dB, which yields a lower sensitivity (70.9 %) and a higher specificity (88.1 %) than jitter.
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Figure 5.1: Evaluation of jitter versus voice quality.
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Figure 5.2: Evaluation of shimmer versus voice quality.

At first sight, these results suggest that jitter and shimmer are useful for distinguishing diplo-
phonic from non-diplophonic phonation intervals. However, one may question their validity for
diplophonic and dysphonic voices. Both features are based on the assumption that the waveform
is produced by one oscillator only, which does not hold for diplophonic voices and subgroups of
dysphonic voices, i.e., voices with high levels of noise or strong modulative components. Figure
5.3 shows an example of a diplophonic audio waveform together with its spectrogram and Praat
cycle marks. The waveform is composed of metacycles and the cycle mark determination fails.
Cycle mark positions are quasi random in adjacent metacycles, and therefore jitter and shimmer
values are random. Jitter is estimated to be high (7.677 %), owing to the fluctuations of the cycle
mark distances. Shimmer is also estimated to be high (2.091 dB), owing to the cycle-to-cycle
fluctuations of peak amplitudes.

Figure 5.4 shows another example of a diplophonic audio waveform together with its spectro-
gram and cycle marks. Although there are severe divergences from strict periodicity in the micro
structure of the waveform, the negative peaks are quasi-periodic, and so are the estimated cycle
marks. Two oscillations are present in the waveform, and the algorithm detects a subharmonic
fundamental. Jitter and shimmer are low (0.433 % and 0.412 dB) owing to the quasi-periodicity
of the waveform’s macro structure.

Figure 5.5 shows an example of a dysphonic audio waveform together with its spectrogram
and cycle marks. There are even more severe divergences from perfect periodicity than those
shown in figure 5.4. Noise, but no distinct second fundamental frequency can be seen in the
spectrogram. The macro structure of the waveform is pseudo-periodic however, thus jitter is
low (0.707 %) and shimmer is moderate (1.167 dB).

The presence of metacycles and noise may mislead the fundamental frequency measurement
and thus the measurement of jitter and shimmer. One is sometimes tempted to expect high
jitter and shimmer if divergences from normal voice quality are auditorily perceived, but the
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Figure 5.3: Audio waveform, cycle marks and spectrogram of a diplophonic interval where the jitter and
shimmer measurement fails. The jitter is estimated to be 7.677 % and the shimmer is estimated
to be 2.091 dB.

relation of the perturbation measures with perceptual cues is fuzzy. The example in figure 5.3
sounds noisy and rough, and the interval of the two pitches is at a slightly detuned major third.
The example shown in figure 5.4 sounds less noisy, but the pitch interval is much more dis-
sonant (slightly detuned tritone). The example in figure 5.5 sounds rough and noisy, but not
diplophonic. Due to the lack of validity of cycle-based perturbation measures for two-oscillator
waveforms, the presence of diplophonia should not be tracked by means of jitter or shimmer.
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Figure 5.4: Audio waveform, cycle marks and spectrogram of a diplophonic interval where the jitter and
shimmer measurement fails. Two oscillators produce the waveform, and the algorithm detects
the subharmonic fundamental. The jitter is estimated to be 0.433 % and the shimmer is estimated
to be 0.412 dB.

Figure 5.5: Audio waveform, cycle marks and spectrogram of a dysphonic interval where the jitter and shim-
mer measurement fails, because the algorithm detects a subharmonic fundamental. The jitter is
estimated to be 0.707 % and the shimmer is estimated to be 1.167 dB.

5.1.2 Göttingen irregularity feature

Analysis

The Göttingen irregularity feature has been introduced in 1998 by Michaelis et al. [44]. It is part
of the ”Göttingen Hoarseness Diagram”, a clinically evaluated open source algorithm for voice
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assessment. The irregularity feature is a linear combination of the average waveform match-
ing coefficient, the PPQ jitter (period perturbation quotient, K = 3) and the EPQ shimmer
(energy perturbation quotient, K = 15) [44]. The fundamental frequency is measured by the
waveform matching algorithm [118, 119]. Equation 5.1 [44] calculates the irregularity measure,
where MWC is the mean waveform matching coefficient, j3 is the jitter (in percent) and s15 is
the shimmer (in percent). The MWC is the correlation of all corresponding pairs of adjacent
cycles’ samples, averaged over the whole analysis interval. The perturbation quotient is given in
equation 5.2 [44], where N is the number of cycles within the analyzed interval, K is the block
length (3 for jitter and 15 for shimmer), and ν(µ) is the cycle feature of the µth cycle (cycle
length or energy). The energy is the sum of the squared µth cycle’s samples.

Smaller values of MWC or higher values of j3 or s15 lead to higher values of irregularity
(equation 5.1). Thus, the Göttingen irregularity is in principle similar to jitter and amplitude
shimmer, i.e., invalid when estimated from two-oscillator waveforms.

Irregularity feature = 5+
1√
3
·
(

log(1−MWC) + 1.614

0.574
+

log(j3) + 0.374

0.645
+

log(s15)− 0.757

0.368

)

(5.1)
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Evaluation and discussion

Figure 5.6 shows the boxplots and the ROC curve for the irregularity feature versus voice quality.
The group effects are similar to the group effects for jitter and shimmer. At a cut-off threshold
of 5.6, a sensitivity of 80 % and a specificity of 67.9 % are achieved. This performance seems to
be promising, but given the reservations with regard to jitter and shimmer, it is suggested that
the irregularity is not meaningful for two-oscillator waveforms.

The Göttingen irregularity is obtained for intervals that are longer than 520 ms only. 190 out
of the 278 intervals satisfy this criterion. 78 of the 190 intervals are euphonic, 25 are diplophonic
and 87 are dysphonic. The size of the confidence intervals of the observed average estimates
reflects the smaller sample size and the variance of the distributions.
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Figure 5.6: Evaluation of the Göttingen irregularity versus voice quality.

5.1.3 Göttingen noise feature

Analysis paradigm

In the ”Göttingen Hoarseness Diagram”, the Gottal-to-Noise Excitation Ratio (GNE) is a term
in the noise feature expression (equation 5.3). The GNE reports additive noise in disordered
voice [43]. It was introduced by Michaelis in 1997, and measures correlation of Hilbert envelopes
obtained from a filterbank. The rationale is that glottal pulse energy is correlated, whereas the
noise energy is uncorrelated. The GNE is obtained as follows: 1) Block wise inverse filtering of
the speech signal, based on linear prediction, 2) filterbank analysis, 3) Hilbert envelope calcu-
lation, 4) calculation of the correlation across frequency and 5) obtaining the maximum of all
correlation coefficients. GNE3 is obtained using a filterbank bandwidth of 3 kHz.

Noise feature = 1.5 +
0.695−GNE3

0.242
(5.3)

Evaluation and discussion

Figure 5.7 shows the boxplots of the noise feature versus voice quality. In accordance with the
Göttingen irregularity feature, only 190 intervals are used. The dysphonic phonation intervals
were expected to have higher noise than euphonic intervals, which is indeed confirmed. The
noise feature values are higher in the diplophonic group than in the other two groups. Possible
explanations are given as follows.

Firstly, diplophonic voice may on average be more noisy than non-diplophonic voice. Secondly,
the increase may also be explained by some selection bias that may have happened during data
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collection. The length of the phonation intervals was limited to 2.048 seconds, and so the exam-
iners strictly selected diplophonic phonation intervals from clinically diplophonic patients. In
the clinically dysphonic group, the selection has been less strict to obtain a broader variety of
voice qualities. Therefore the noise in the diplophonic intervals may be higher than in the dys-
phonic intervals, which may confound the statistics. For methodical reasons the increased noise
level in diplophonic voice should not be used as an indicator for the presence of diplophonia,
because noise is a different physical phenomenon than diplophonia.
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Figure 5.7: Evaluation of the Göttingen noise feature versus voice quality.

5.1.4 Harmonics-to-Noise Ratio

Analysis

Another noise feature is the Harmonics-to-Noise Ratio (HNR). It promises to estimate the signal
noise energy in relation to its harmonic energy. Praat’s subroutine ”To Harmonicity (cc)” is
used to obtain the time-dependent HNR, with analysis parameters set to their standard values.
The subroutine ”Get mean” is used to calculate the time-average over the phonation interval.

Praat’s algorithm estimates the HNR in the lag domain [105]. The HNR is given in equa-
tion 5.4, where r′ denotes the normalized autocorrelation function of the signal and τmax is the
lag of its local maximum. A decrease of peak height in the autocorrelation function is interpreted
as an effect of noise.

HNR [dB] = 10 · log
(

r′(τmax)

1− r′(τmax)

)

(5.4)
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Evaluation and discussion

Figure 5.8a shows the boxplots of the HNR with regard to voice quality. The euphonic group
has the highest values and the diplophonic group the lowest. The overlap between groups is
smaller as compared to the Göttingen noise, which is reflected by increased performance. At
the optimal threshold of 14.8 dB the sensitivity is 80.7 % and the specificity is 78.2 %.

In addition to the arguments for the group effects that were given with respect to the Göttin-
gen noise (higher noise levels in diplophonic voice and selection bias), a third factor may increase
the group effect of HNR. Boersma’s signal model assumptions do not hold for diplophonic wave-
forms. The local maximum of the autocorrelation function decreases when two oscillator wave-
forms are added. This effect may be wrongly interpreted by the user as noise. The Göttingen
noise has been explicitly related to additive noise, whereas Praat’s algorithm has been tested on
sinusoidal signals + noise disregarding secondary oscillators and modulation noise. Therefore
the Göttingen noise is more trustworthy than Praat’s HNR when diplophonic voice is analyzed.
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Figure 5.8: Evaluation of the Harmonics-to-Noise Ratio (HNR) versus voice quality.

5.1.5 Degree of subharmonics

Analysis

The Degree of subharmonics (DSH) is a feature for detecting ambiguous fundamental frequency
estimates. It has been introduced by Deliyski in 1993 [117] and integrated in the popular
Multi-Dimensional Voice Program (MDVP) of KayPENTAX. The DSH has been implemented
in MATLAB [58]. The procedure estimates the fundamental frequency twice. Each estimator
uses different thresholds for frequency detection. The signal is considered to be subharmonic if
the fundamental frequency detectors obtain different results. Figure 5.9 shows the block diagram
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of the DSH extraction.

Figure 5.9: Block diagrams of the Degree of subharmonics (DSH) extraction. F0: Fundamental frequency,
AC: Autocorrelation, V/UV: voiced/unvoiced, sgn-coding: see text.

In each of the fundamental frequency estimators the signal is resampled to 50 kHz, buffered
in 30 ms blocks and lowpass filtered with a cut-off frequency of 1.8 kHz. The signal is sgn-coded
using the coding threshold Kp. The sgn-coded signal is 0 if the signal’s absolute value is be-
low the threshold and it is -1 or +1 according to the sign of the signal if its absolute value
exceeds the threshold. The fundamental frequency of the sgn-coded signal is determined using
the autocorrelation, once with Kp = 0.78, and once with Kp = 0.45. A signal is considered to
be voiced if the height of the normalized lagged autocorrelation peak exceeds 0.27. A signal
block is considered to be subharmonic if the variation of Kp changes the fundamental frequency
estimate or the voicing condition. The DSH is the rate of subharmonic analysis blocks in percent.

December 16, 2014 – 106 –



5 Diagnostic tests and their interpretation

Evaluation and discussion

Figure 5.10a shows the boxplots for the DSH with regard to voice quality, revealing large group
effects. Figure 5.10b shows the ROC curve. The sensitivity at the optimal threshold of 11.6 %
is good (83.6 %) and the specificity is fair (76.7 %).
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Figure 5.10: Evaluation of the Degree of subharmonics (DSH) versus voice quality.

Figure 5.11 shows results for an analysis block of diplophonic phonation. The upper subplot
shows the audio signal, the sgn-coding thresholds and the measure of a subharmonic time in-
terval (13.3 ms). Subplots 2 and 3 show the two sgn-coded signals. Subplots 3 and 4 show
their autocorrelation functions together with their cycle length estimates. In stage one (Kp =
0.78, subplots 2 and 4) a sub-periodicity is dominant and an artificial cycle length is obtained
(marginally unvoiced). In stage two (Kp = 0.45, subplots 3 and 5) a shorter cycle length is
obtained, which suggests the presence of subharmonics.

To investigate the validity of the fundamental frequency estimates obtained by DSH, the audio
spectrogram and the fundamental frequency estimates are reported (figure 5.12). The funda-
mental frequency estimates are incorrect and most often agree with an artificial low estimate
(at times 0.3 s - 0.6s, 0.85 s) or with a frequency in-between the true fundamentals (rest of the
time). The DSH is 21.4 % in this interval.

The DSH aims at determining the ambiguity of fundamental frequency measurements rather
than measuring the correct values of the fundamental frequencies. However, the DSH is con-
sidered to inform on the presence of diplophonia, because of two reasons. Compared to other
conventional features, the DSH is the only one that considers two fundamental frequency esti-
mates within one analysis block. Second, the DSH detects cyclic peak height fluctuations. Thus,
it is used in section 5.3 when a reference standard for the presence of diplophonia is proposed.
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Figure 5.11: Results for the Degree of subharmonics (DSH) analysis of one 30 ms block of diplophonic
phonation. Subplots 2 and 3 show sgn-coded signals. Subplots 3 and 4 show their autocorrelation
functions together with their cycle length estimates. In sgn-coding version one (Kp = 0.78,
subplots 2 and 4) a sub-periodicity is dominant and an artificial cycle length is obtained. In
sgn-coding version two (Kp = 0.45, subplots 3 and 5) a shorter cycle length is obtained, which
suggests the presence of subharmonics.
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Figure 5.12: Diplophonic phonation: audio spectrogram and fundamental frequency estimates (from Degree
of subharmonics measurement). The rectangle at 1.17 s marks the analysis block of figure 5.11.

5.1.6 Discussion and conclusion

Several available features have been evaluated with respect to their ability to detect diplophonia.
The tested features were jitter, shimmer, the Harmonics-to-Noise Ratio (HNR), the Göttingen
features and the DSH. Jitter, shimmer and the HNR have been calculated with Praat [85], the
Göttingen features with the available release of the Göttingen Hoarseness Diagram [15] and the
DSH with a custom MATLAB implementation [58].

The majority of the features enabled building cut-off threshold classifiers that yield promising
performance measures. However, the validity of the features may be questioned, because they
rely on the assumption that exactly one oscillator produces the observed waveform. If this as-
sumption is violated, the feature values are incorrect and they fail to report valid results, risking
misinterpretations.

The DSH is the only feature that considers two fundamental frequency estimates within one
analysis block. Although their estimates are wrong, the procedure detects cyclic peak height
fluctuations and thus delivers valid information on the presence of diplophonia. The DSH is
used in section 5.3 when constructing a reference standard.
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5.2 The Diplophonia Diagram

Except for the DSH, all features investigated in section 5.1 assume that the signal under test
has either one or no detectable fundamental frequency, which is not true for diplophonic voice.
The present section explains how taking into account two additive oscillators in a signal model
enables automated detection of diplophonia. The model structure discussed in section 4.3 is
used to obtain a Diplophonia Diagram [60].

5.2.1 Binomial logistic regression

Diplophonia is detected by means of binomial logistic regression [120], which is trained to predict
the dichotomic class labels from continuous predictors. The class labels are the voice quality
annotations described in section 2.2.2, and the euphonic and the dysphonic group are pooled
into one non-diplophonic group. The predictors are the modeling error measures of the best
one-oscillator waveform model and the best two-oscillator waveform model (section 4.3.2). 278
phonation intervals are used for testing and evaluation. 96 of the intervals are euphonic, 55 are
diplophonic and 127 are dysphonic (corpus ID 8).

The errors of the optimal one-oscillator and two-oscillator waveform models relRMSE(S1)
and relRMSE(S2) are negative numbers (section 4.3.3). The synthesis quality of the best one-
oscillator (SQ1) and the best two-oscillator models (SQ2) are obtained by inverting the sign.

SQ1 = −relRMSE(S1), SQ2 = −relRMSE(S2) (5.5)

The regression coefficients B1, B2 and B3 are obtained by inserting the dichotomic class labels
and the corresponding synthesis qualities SQ1 or SQ2 into the MATLAB subroutine mnrfit. The
non-diplophonic group is the reference group. The log odds for the interval under test to be
diplophonic is expressed by equation 5.6 [121]. B1 is the intercept coefficient that expresses
the log odds for diplophonia if both predictors SQ1 and SQ2 are zero. B2 and B3 express how
much the log odds of diplophonia change if SQ1 or SQ2 increase by 1 dB. Equation 5.7 gives the
probability of an interval to be diplophonic.

ln

(

P (d)

1− P (d)

)

= B1 +B2 · SQ1 +B3 · SQ2 (5.6)

P (d) = 1− 1

1 + e(B1+B2·SQ1+B3·SQ2)
(5.7)

A 10-fold cross validation is applied. The corpus is split up randomly into 10 approximately
equally large subsets. 10 regression models are trained on 9 subsets and tested on the remaining
one. The final model coefficients and the classification performances are obtained by averaging
over the 10 models. Table 5.1 shows coefficients B1, B2 and B3 together with their confidence
intervals. The confidence intervals are +/- 1.96 times the average model coefficient standard
errors that are returned by mnrfit. They exclude the value 0, therefore all coefficients have a
significant effect on the predicted probability of diplophonia. To obtain the probability of the
presence of diplophonia P (d) from the predictors SQ1 and SQ2, the coefficients are inserted
into equation 5.7. B1 is negative, and so the predicted probability is small for SQ1 = 0 and
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SQ2 = 0. It becomes even smaller when SQ1 is increased, because B2 is negative. In contrast,
B3 is positive and an increase in SQ2 increases the probability. The predicted probability with
respect to the predictors SQ1 and SQ2 is color coded in figure 5.13.

Coefficient CI

B1 -2.719 [-4.217, -1.221]

B2 -1.205 [-1.589, -0.822]

B3 1.612 [1.049, 2.175]

Table 5.1: The estimated model coefficients of the binomial logistic regression and their 95 % confidence
intervals (CI). The confidence intervals are the coefficients +/- 1.96 times the average standard
errors that are returned by the MATLAB function mnrfit.

Estimate CI

SE 76.4 % [63.0 %, 86.8 %]

SP 98.7 % [96.1 %, 99.7 %]

ACC 94.2 % [90.8 %, 96.7 %]

PR 19.8 % [15.3 %, 25.0 %]

PPV 93.3 % [81.7 %, 98.6 %]

PLR 58.8 [18.6, 186.2]

NPV 94.4 % [90.6 %, 97 %]

NLR 4.2 [2.6, 6.7]

Table 5.2: Performance measures of the logistic regression model. 95 % confidence intervals (CI).

5.2.2 Evaluation and discussion

The logistic regression model is evaluated on the corpus that has been used for coefficient esti-
mation and 10-fold cross validation. Figure 5.13 shows the scatter plot of SQ1 and SQ2, together
with the color coded probability for the presence of diplophonia P (d). All information relevant
for detecting diplophonia can be found in the ranges [0 15 dB], therefore the axes of the Diplo-
phonia Diagram are bounded. The markers denote the positions of the phonation intervals in
the feature space, where each marker is located at interval averages. x markers denote euphonic
voice, o markers denote diplophonic voice, and + markers denote dysphonic voice. The dotted
line is the line of equal synthesis quality, i.e., models for intervals lying on this line neither do
improve nor degrade if a second oscillator is considered. Models of diplophonic intervals often
profit from adding the seconds oscillator to the waveform model. Therefore their markers are
situated above the line of equal synthesis quality. Waveform models of non-diplophonic intervals
mostly degrade if a second oscillator is added and so their markers are situated below the line
of equal synthesis quality.

The decision border is obtained by selecting the most probable class for each location across
the data space (P(d) = 0.5). It is slightly tilted with respect to the line of equal synthesis
quality. The tilt either stems from random variations that are not accounted for by the corpus
or from a systematic effect. The systematic difference of the intercept B1 from zero is an ar-
gument for a systematic effect on the line tilt. A dysphonic cluster of noisy intervals with very
low SQ1 and SQ2 exists, because the signal model is not valid for those. These intervals lie by
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chance above or below the line of equal synthesis quality, which flattens the decision border.
In addition, no non-diplophonic intervals with large SQ1 and SQ2 exist, which further flattens
the decision border. The sparseness of non-diplophonic intervals with large SQ1 and SQ2 is due
to the fact that non-diplophonic voices that obtain a high SQ1 also obtain a low SQ2, because
non-diplophonic signals cannot be appropriately modeled by two independent oscillators in the
proposed procedure.

Figure 5.14 shows the boxplots for the predicted probabilities of diplophonic and non-diplophonic
phonation intervals. Non-diplophonic intervals have low probabilities and diplophonic intervals
have high probabilities, which confirms the validity of the regression model.
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Figure 5.13: The Diplophonia Diagram. P(d): predicted probability of diplophonia.

Table 5.3 shows the diagnostic table of the Diplophonia Diagram classifier. One observes 42
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Figure 5.14: Predicted probability of diplophonia versus observed presence of diplophonia.

true positives, 220 true negatives, 3 false positives and 13 false negatives. Table 5.2 summarizes
the performance measures, which have been introduced in chapter 1. The following observations
must be taken into account should the test be used to trigger clinical actions.

Diplophonia
Present Absent

P(d)
> 0.5 42 3
< 0.5 13 220

Table 5.3: Diagnostic table of the Diplophonia Diagram.

The sensitivity is 76.4 %, which means that approximately 3 out of 4 diplophonic intervals
are detected by the test. The specificity is 98.7 %, which means that only 13 out of 1000 non-
diplophonic phonation intervals test positive. The relation between the sensitivity and specificity
must be interpreted with respect to the prevalence. If the target condition is rather rare, as
is the case for diplophonia, false positive tests must be avoided. Otherwise it would be more
likely that a positively tested interval is a false positive than a true positive and the accuracy of
the test would decrease. The positive predictive value is 93.3 %, which means that from 1000
positively tested intervals, 933 are truly diplophonic. If the target condition would be rather
common, 93.3 % would not be satisfying. For example, if the pretest probability would have
been 90 %, there would not be much benefit from administering the test. The positive likeli-
hood ratio takes into account this circumstance and reports how the odds change when the test
is administered. The positive likelihood ratio of 58.8 means that the odds for the presence of
diplophonia increase 58.8-fold if an interval receives a positive test result. The pretest odds are
approximately 1:4, i.e., 1 out of 5 intervals is diplophonic. The posttest odds are much higher,
namely approximately 14:1, i.e., from 15 intervals that receive a positive test result 14 are truly
diplophonic. The negative predictive value and the negative likelihood ratios play similar roles
when the absence of diplophonia should be detected. These numbers are given here for com-
pleteness sake and are relevant for treatment effect measurement, which is beyond the scope of
this thesis.

5.2.3 Evaluation on a critical corpus

The Diplophonia Diagram is now validated on a restricted corpus. All available diplophonic
voice intervals are used as the positive group and only dysphonic intervals with SQ1 < 12 dB are
used as the negative group (corpus ID 98). The negative group constitutes a critical subgroup
of dysphonia, namely waveforms with high levels of short-term modulations (not including beat
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frequency phenomena) and/or additive noise, or severe dysphonia perceptually. It is shown that
the conventional features fail to produce relevant group effects, and that the Diplophonia Dia-
gram is capable of distinguishing diplophonia from the severe non-diplophonic dysphonia.

Figure 5.15 shows the Diplophonia Diagram with green circles for diplophonic intervals, blue
circles for dysphonic intervals, a contour plot of the regression’s predicted probability (solid lines)
and the line of equal synthesis qualities (dotted). The predicted probabilities are obtained from
a binary logistic regression model that has been trained on this critical corpus (cf. section 5.2.1).
The model coefficients happen to be similar to the ones of the original model (B1 = −2.8512,
B2 = −1.0332 and B3 = 1.5027), which suggests that the selected negative group contains all
relevant data, or all support vectors. The decision border is tilted with respect to the line of
equal synthesis quality, similarly to the tilt of the original regression model. The sensitivity
estimate is 80.0 % and the specificity estimate is 92.9 %. Table 5.4 illustrates the performance
of the Diplophonia Diagram.

Figures 5.16 to 5.21 summarize the results of the conventional features. Their AUCs are be-
low 0.7, which suggests that their application on the critical corpus is questionable. The DSH
achieves the highest sensitivity of all conventional features (69.1 %) and the Jitter achieves the
highest specificity (80.3 %). The waveform modeling is superior to the conventional features.
Table 5.5 summarizes the sensitivities and specificities of all approaches.

Diplophonia
Present Absent

P(d)
> 0.5 44 5
< 0.5 11 65

(a) Category table.

Estimator CI

SE 80.0 % [67.0 %, 89.6 %]

SP 92.9 % [84.1 %, 97.6 %]

ACC 87.2 % [80.0 %, 92.5 %]

PR 44.0 % [35.1 %, 53.2 %]

PPV 89.9 % [77.8 %, 96.6 %]

PLR 11.3 [4.8, 26.6]

NPV 85.5 % [75.6 %, 92.5 %]

NLR 4.6 [2.7, 7.9]

(b) Performance measures.

Table 5.4: Performance of the Diplophonia Diagram on the critical corpus. 95 % confidence intervals (CI).
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SE, CI [%] p-value SP, CI [%] p-value

Jitter 50.9, [37.1, 64.6] n.s. 80.3, [68.7, 89.1] n.s.

Shimmer 67.3, [53.3, 78.6] n.s. 69.7, [57.1, 80.4] 0.022

Irr 57.8, [42.2, 72.3] n.s. 64.0, [42.5, 82.0] 0.025

Noise 60.0, [38.7, 78.9] n.s. 77.8, [62.9, 88.8] n.s.

HNR 60.0, [47.6, 71.5] n.s. 58.2, [44.1, 71.3] 0.002

DSH 69.1, [55.2, 80.9] n.s. 57.1, [44.8, 68.9] < 0.001

DD 80.0, [67.0, 89.6] - 92.9, [84.1, 97.6] -

Table 5.5: Comparison of all tested features on the critical corpus. The p-values are obtained by a Chi2-
test for equal proportions, six-fold Bonferroni corrected for adjustment of the multiple testing
effect [55]. Göttingen irregularity feature (Irr), Göttingen noise feature (Noise), Harmonics-to-
Noise Ratio (HNR), Degree of subharmonics (DSH), Diplophonia Diagram (DD), 95 % confidence
intervals (CI).
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Figure 5.15: The Diplophonia Diagram, critical corpus.
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Figure 5.16: Evaluation of jitter versus voice quality, critical corpus.
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Figure 5.17: Evaluation of shimmer versus voice quality, critical corpus.
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Figure 5.18: Evaluation of the Göttingen irregularity measure versus voice quality, critical corpus.
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Figure 5.19: Evaluation of the Göttingen noise measure versus voice quality, critical corpus.
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Figure 5.20: Evaluation of Praat’s Harmonics-to-Noise Ratio (HNR) versus voice quality, critical corpus.
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Figure 5.21: Evaluation of the Degree of subharmonics (DSH) versus voice quality, critical corpus.
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5.3 Latent class analysis

One aim of this thesis is to provide a characterization of diplophonia that enables automated
detection. Several tests that report diplophonia have been evaluated so far. They use voice
quality annotation of phonation intervals with homogeneous voice quality as a gold standard or
ground truth, which may be further questioned because the rating is subjective. One may ask
now: ”Does auditively detectable diplophonia exist, that cannot be detected acoustically?” and
”Does diplophonia exist that can be detected acoustically, but not auditively?”. Another ques-
tion that is addressed is: ”Having applied several tests to a signal interval, what test outcome
combinations do reliably indicate the presence of diplophonia?”

Scientific guidelines exist for conducting diagnostic accuracy studies if no gold standard is
available [122]. The test that is expected to provide the most accurate decision with regard to
some target condition is referred to as the ”gold standard” or the ”reference standard”. The
reference standard may be an expensive procedure, which can mean that 1) the needed devices
are costly, 2) highly specialized experts are needed for conducting the test, 3) the procedure is
time-demanding, 4) the procedure is displeasing for the patients, or 5) the procedure exposes
the patients to some additional risk. The index test in contrast should be less expensive with
respect to the enumerated aspects but still provide results that are comparable to the reference
standard with some acceptable limit of agreement.

In the past, it was hypothesized that laryngeal high-speed videos would enable the develop-
ment of a reference standard that could be used to evaluate less expensive index tests. It turned
out that the analysis of laryngeal high-speed videos is difficult because of the high amount of
user intervention and error proneness. Another possibility for the development of a new refer-
ence standard is the recruiting of an expert panel. The experts judge the presence of the target
condition, which may be based on several sources of information. Standardized procedures for
acquiring expert panel decisions exist, but are currently under discussion [122]. As described
in chapter 2, four expert discussions on the definition of diplophonia were organized. The voice
quality annotation that serves as ground truth throughout the thesis is based on the outcome
of these discussions. Its possible imperfections are addressed in this section.

This section explains how the results of several imperfect index tests can be used to construct
a reference standard. Latent class analysis estimates the prevalence of the target condition
within the given corpus, as well as the sensitivities and specificities of the individual index tests
[122]. Information from the voice quality annotation, the Diplophonia Diagram and the DSH are
combined from a probabilistic point of view. It is shown that the most probable interpretation
of the observed data distribution is that the voice quality annotation is very close to the truth.

5.3.1 Model description

The model and the parameter estimation has been introduced in [123]. The model parameters
are the prevalence, the sensitivities and the specificities. They are estimated by maximizing the
log-likelihood function of the model with respect to the observed data Yijk. Yijk is 3-dimensional
and binary, where i is the phonation interval index, j is the test index and k the test outcome
index. Yijk is 1 if the ith interval put to the jth test produces the outcome k, and 0 otherwise.
Let r be the class index of the latent variable, i.e., the presence of diplophonia, and let πjrk
denote the class conditional probability, i.e., the probability that the jth test returns outcome k
if the interval under test is from class r. πjrk is the matrix of true positive rate (sensitivity), true
negative rate (specificity), false positive rate (1-specificity) and false negative rate (1-sensitivity).
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Equation 5.8 calculates the probability that interval i of class r produces a certain combina-
tion of test outcomes. The equation is equivalent to the ∩ operator for the joint probability.
For the used corpus and tests, i goes from 1 to 278 (the intervals), r is 1 or 2 (diplophonic or
non-diplophonic), J is 3 (the number of tests) and K is 2 (the number of possible outcomes of
each test).

f(Yi;πr) =
J
∏

j=1

K
∏

k=1

(πjrk)
Yijk (5.8)

The mixing proportions pr, i.e., the prevalence and 1 - prevalence are now introduced, and the
probability density function across all classes is derived. The probability density function denotes
the probability of observing a certain combination of test outcomes, given the test performance
measures in π and the prevalence of diplophonia. Given a certain combination of test outcomes,
the probability for the presence of diplophonia is estimated using Bayes’ theorem (equation 5.10).

P (Yi|π, p) =
R
∑

r=1

pr · f(Yi;πr) (5.9)

P̂ (r|Yi) =
p̂r · f(Yi; π̂r)

∑R
q=1 p̂q · f(Yi; π̂q)

(5.10)

5.3.2 Parameter estimation

The model parameters pr, and πjrk are estimated by maximizing the log-likelihood function
(logL), which is a measure of expectation. It measures the likelihood that the given data distri-
bution has been produced by the modeled random process. The model with the maximal logL
is considered to be optimal.

logL =
N
∑

i=1

P (Yi|π, p) (5.11)

The maximization of logL is achieved using the EM-algorithm [124]. The model parame-
ters are initialized with random numbers between 0 and 1, taking care of the restrictions that
∑

pr = 1 and
∑

k π = 1. In the expectation step, the initial values are inserted into the above
equations, to calculate logL and to estimate the probability for the presence of diplophonia,
given a certain combination of test outcomes P̂ (r|Yi). In the maximization step, a new estimate
for the mixing proportions and new estimates for the test performance measures are obtained.
The new estimates are used to calculate new values for logL and P̂ (r|Yi). These two steps are
iterated until the increase in logL is smaller than some arbitrary small threshold, which stops
the iteration.
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p̂newr =
1

N
·

N
∑

i=1

P̂ (r|Yi) (5.12)

π̂new
jrk =

∑N
i=1

{

Yijk · P̂ (r|Yi)
}

∑N
i=1 P̂ (r|Yi)

(5.13)

This procedure for estimating the prevalence of diplophonia and the performance measures
of the diagnostic tests is applied to a corpus of 278 phonation intervals, from which 127 are
euphonic, 55 are diplophonic and 96 are dysphonic (corpus ID 8). The intervals are tested by
means of voice quality annotation (section 2.2.2), a DSH classifier (section 5.1.5) and the Diplo-
phonia Diagram (section 5.2).

The DSH classifier is a cut-off threshold classifier. In section 5.1, the optimal threshold sep-
arating diplophonic from non-diplophonic intervals is 11.6 %. The ground truth on which this
optimal threshold has been estimated is not necessarily the true ground truth. Therefore nu-
merous models are fitted on data distributions achieved from different DSH thresholds.

Figure 5.22 shows the distance D in percent for the three tests with respect to the DSH
threshold. D is

√

(1− SE)2 + (1− SP )2, i.e., a classifiers’ distance from a perfect test. The
threshold at the minimal distance is indeed 11.5 % and practically equal to the previous opti-
mal threshold. This suggests that the previous ground truth was appropriate. At the optimal
threshold, the DSH contributes to the new ground truth, but its performance is weaker than
the ones of the other two tests. The estimated model parameters are given in table 5.8.

Figure 5.23 shows the log-likelihood function logL with respect to the number of iterations.
The function starts at −∞, and increases monotonically. The function saturates and its increase
falls below 0.01 at iteration 18, which stops the optimization. The logL converges to a value of
-327.4.

In the beginning of the optimization, the model parameters were initialized randomly. The op-
timization iteratively updates the parameter estimates by executing deterministic update rules.
The model parameters converge to a local optimum, which is not necessarily the global opti-
mum. To avoid suboptimal parameter estimates at local maxima, the optimization is repeated
several times, each with different starting values. All models are globally optimal, because the
differences are negligible in practice (table 5.6).

Maximum log-likelihood Number of occurrences

-327.6 36

-327.4 64

Table 5.6: Outcomes of 100 repetitions of the maximum log likelihood estimation.

The three evaluated tests have two possible outcomes (diplophonic, non-diplophonic). How-
ever, the number of latent classes is not necessarily two. A latent variable with less than or more
than two classes may explain the observed data better than a latent variable with two classes.
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Figure 5.22: Distance of three tests from the virtual optimum in the ROC curve for different Degree of
subharmonics (DSH) thresholds.

To test which model is the best for explaining the data, the Bayesian information criterion (BIC)
is used as a measure of the goodness of fit [125]. The BIC considers the maximal log likelihood
∆, the number of observations N and the number of estimated parameters Φ, i.e., it receives a
penalty for each parameter to estimate. As the number of estimated parameters grows with a
growing number of latent classes, models with more latent classes need to produce much better
results to survive. Figure 5.24 shows the BIC with respect to the number of latent classes and
suggests that two latent classes are optimal.

BIC = −2 ·∆+Φ · ln (N) (5.14)
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Figure 5.24: Bayesian information criterion (BIC) for different numbers of latent classes.

5.3.3 Evaluation and validation

Table 5.7 shows the data distribution, i.e., the numbers of observed intervals with respect to
all possible test outcome combinations. Label 1 denotes non-diplophonic/negative and label 2
denotes diplophonic/positive. The majority of all intervals (170) are tested negative by all tests.
The tests agree positively on 36 intervals. All other intervals obtain divergent test results from
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different tests. The fifth column shows the estimated probability for the presence of diplopho-
nia obtained from latent class analysis, given the respective test outcome combination. Most
observations obtain definite probability estimates above 90 % or below 10 %. The sixth column
shows the new ground truth, which is derived from P̂ (2). Only if P̂ (2) is greater than 0.5, the
test combination is considered to detect diplophonic phonation. Only two intervals that were
annotated as diplophonic are acutally non-diplophonic (test outcome combination 1 - 2 - 2) and
all other intervals were correctly annotated.

Test outcomes

VoQA DSH DD # intervals P̂ (2)

New
ground
truth

1 1 1 170 0.0 % 1

1 1 2 1 41.6 % 1

1 2 1 50 1.1 % 1

1 2 2 2 92.6 % 2

2 1 1 2 94.9 % 2

2 1 2 7 100.0 % 2

2 2 1 10 99.7 % 2

2 2 2 36 100.0 % 2

Table 5.7: The numbers of intervals, their predicted probability for the presence of diplophonia P̂ (2) and their
new ground truth from latent class analysis with respect to all possible test outcome combinations.
VoQA: voice quality annotations, DSH: Degree of subharmonics, DD: Diplophonia Diagram; 1
... non-diplophonic, 2 ... diplophonic.

Table 5.8 summarizes the estimated sensitivities and specificities for all tests. The voice qual-
ity annotation is superior, the Diplophonia Diagram shows an excellent specificity and a fair
sensitivity. The DSH has a slightly higher sensitivity, but a lower specificity. The prevalence
of diplophonia in the corpus was estimated to be 20.8 %. Tables 5.9 to 5.11 are the diagnostic
tables and the performance measure tables for the three tests.

Test Sensitivity Specificity

VoQA 95.0 % 100 %

DD 78.4 % 99.7 %

DSH 83.7 % 77.5 %

Table 5.8: Estimated parameters in latent class analysis. VoQA: voice quality annotations, DSH: Degree of
subharmonics, DD: Diplophonia Diagram. The prevalence is estimated to be 20.8 %.

In a situation in which diplophonia must be detected automatically without the aid of expert
annotations, only the Diplophonia Diagram and the DSH are available. Table 5.12 shows the
number of observed intervals with respect to all possible test outcome combinations and the
outcome of an optimal test. The outcome of the Diplophonia Diagram agrees with the optimal
test outcome. Thus for the used sample, no need for additionally testing the DSH exists if the
Diplophonia Diagram is available.
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New ground truth
Diplophonic Non-diplophonic

VoQA
Diplophonic 55 0

Non-diplophonic 2 221

(a) Diagnostic table.

Estimate CI

SE 96.5 % [87.9 %, 99.6 %]

SP 100.0 % [98.3 %, 100.0%]

ACC 99.3 % [97.4 %, 99.9 %]

PR 20.5 % [15.9 %, 25.7 %]

PPV 100.0 % [93.5 %, 100.0%]

PLR ∞ -

NPV 99.1 % [96.8 %, 99.9 %]

NLR 28.6 [7.3, 111.7]

(b) Performance measures.

Table 5.9: Diagnostic performance of the voice quality annotation (VoQA), ground truth from latent class
analysis. 95 % confidence intervals (CI).

New ground truth
Diplophonic Non-diplophonic

DD
Diplophonic 45 1

Non-diplophonic 12 220

(a) Diagnostic table.

Estimate CI

SE 78.9 % [66.1 %, 88.6 %]

SP 99.5 % [97.5 %, 100.0%]

ACC 95.3 % [92.1 %, 97.5 %]

PR 20.5 % [15.9 %, 25.7 %]

PPV 97.8 % [88.5 %, 99.9 %]

PLR 157.8 [24.4, 1019]

NPV 94.8 % [91.1 %, 97.3 %]

NLR 4.7 [2.9, 7.8]

(b) Performance measures.

Table 5.10: Diagnostic performance of the Diplophonia Diagram (DD), ground truth from latent class anal-
ysis. 95 % confidence intervals (CI).
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New ground truth
Diplophonic Non-diplophonic

DSH
Diplophonic 48 50

Non-diplophonic 9 171

(a) Diagnostic table.

Estimate CI

SE 84.2 % [72.1 %, 92.5 %]

SP 77.4 % [71.3 %, 82.7 %]

ACC 78.8 % [73.5 %, 83.4 %]

PR 19.8 % [15.3 %, 25.0 %]

PPV 49.0 % [38.7 %, 59.3 %]

PLR 3.7 [2.8, 4.9]

NPV 95.0 % [90.7 %, 97.7 %]

NLR 4.9 [2.7, 9.0]

(b) Performance measures.

Table 5.11: Diagnostic performance of the Degree of subharmonics (DSH), ground truth from latent class
analysis. 95 % confidence intervals (CI).

Test outcome # intervals

DSH DD Diplophonic Non-diplophonic Optimal test
1 1 2 170 1
1 2 7 1 2
2 1 10 50 1
2 2 38 0 2

Table 5.12: Number of observations with respect to test outcome combinations and the presence of diplo-
phonia (new ground truth). The considered tests are the Degree of subharmonics (DSH) and
the Diplophonia Diagram (DD). The voice quality annotation is not available, which favors the
Diplophonia Diagram.
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5.4 Conclusion

Conventional features such as jitter, shimmer, the Göttingen features, the Harmonics-to-Noise
Ratio (HNR) and the Degree of subharmonics (DSH) show evidence for group effects when tested
on corpora of audio recordings of a broad variety of voice disorders and euphonic phonation.
However, only the DSH considers two fundamental frequencies within one analysis block. It has
been demonstrated how the conventional one-oscillator features fail when several oscillations are
combined in the same waveform, which decreases their relevance. A critical corpus of severely
dysphonic phonation on which conventional features fail was defined. The critical corpus con-
sists of diplophonic intervals and dysphonic intervals with high levels of modulation or additive
noise. A large corpus may be more representative of clinical applications, but the critical corpus
focusses on situations, in which diplophonia must be distinguished from particular dysphonic
phonation intervals.

A diagnostic test based on the waveform modeling error measures has been developed. The
test relies on binomial logistic regression and is referred to as the ”Diplophonia Diagram”. It
has been shown that the Diplophonia Diagram outperforms conventional features when tested
on diplophonic and severely dysphonic intervals. The Diplophonia Diagram may be interpreted
physiologically because it reports the presence of secondary additive oscillations in waveforms.

In a final step a probabilistic latent class analysis model has been used to check on the ground
truth. It has been shown that the voice quality annotation is the most likely reference, if test
results from the Diplophonia Diagram and the Degree of subharmonics are considered in addi-
tion. One drawback of the latent class model may be that its clinical relevance may be feeble
because of the model’s abstract nature. Another drawback may be that the model assumes that
the tests’ false decisions are independent from each other, i.e., there are no ”difficult” cases on
which the test is expected to fail systematically. If on the contrary the tests fail on specific
phonation intervals, the constructed reference is biased. This also occurs (to a lesser extent) if
subgroups of tests tend to fail together. The appropriateness of the assumption of independence
cannot be tested explicitly however.

One may argue that it is not surprising that the voice quality annotation and the Diplophonia
Diagram do agree and that the DSH performance is lower. This is true because of two reasons.
First, the voice quality annotation and the Diplophonia Diagram have been trained by the same
person, and second, the selection of the intervals were auditory-based. Regarding the first ar-
gument it is indeed true that the external validity of the procedure would have been higher if
the voice quality annotation and the development of the Diplophonia Diagram would have been
done by different persons. However, it has been proven that diplophonia is a phenomenon that
actually exists and that can be reliably determined by showing strong agreement between the
subjective voice quality annotation and several (semi-)automatic procedures.

Suggestions for future work are automatic temporal segmentation of phonation intervals, anal-
ysis of sustained vowels in the absence of an endoscope, analysis of connected speech and the
development of valid interpretation guidelines for the Diplophonia Diagram. Relevant research
questions might be: Can and should we distinguish between classes of diplophonia severity?
Does a kind of mild diplophonia exist that does not need treatment? Do cases of diplophonia
exist that are improved by treatment but not eliminated? What pre-post treatment difference
is significant?
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6
Discussion, conclusion and outlook

Hoarseness is the main sign of voice disorders. The term summarizes a wide variety of per-
ceptively altered voice sounds and is thus a cover term including voices perturbed by additive
noise and modulation. A more distinguished view on voice disorders is elaborated by investi-
gating diplophonia, which focusses on voices involving two oscillators. Diplophonia is described
at different levels, which are the level of glottal vibration, the acoustic level and the auditive level.

Each level of description involves its own definition of diplophonia. The auditive level al-
lows for the most intuitive definition, i.e., the simultaneous presence of two pitches. The term
describes how a listener perceives the voice and to a lesser extent refers to glottal conditions.
Glottal and non-glottal phenomena are pooled, which blurs the focus of investigation. At the
level of glottal vibration, diplophonia is defined as spatially distinct vocal fold oscillations at
different frequencies and non-glottal vibrations are excluded. Detecting diplophonia at the
level of glottal vibration connects with its distal causes, which is desirable in clinical applica-
tion. However, geometric modeling suggests that available imaging techniques do not enable
distinguishing frequency from phase superior-inferior asymmetry. Thus, the interpretation of
laryngeal high-speed videos remains difficult and needs further refinement. The acoustic level
enables detecting diplophonia automatically. Diplophonia may be characterized by two addi-
tively combined pseudo-periodic oscillations, which is exploited by the Diplophonia Diagram.
It has been shown that the Diplophonia connects to auditive diplophonia. The exact relations
between glottal and acoustic diplophonia should be investigated in the future.

Titze’s pulse counting definition are at a waveform level [52]. It can be applied to any type of
waveform, such as acoustic, glottal area, electroglottographic or flow waveforms. Strictly speak-
ing, the Diplophonia Diagram detects Titze’s ”biphonia” instead of diplophonia, which is the
combination of two sound sources. Nevertheless, the proposed method is named Diplophonia
Diagram, because the term is clinically well established. With regard to pulse counting, biphonia
can be diplophonia, triplophonia, quadruplophonia or multiplophonia. The oscillator definition
may be favored over the pulse counting definition, because it has a wider applicability.

A high-quality database of laryngeal high-speed videos with synchronous audio recordings
has been built for research purposes. It enables interdisciplinary research with regard to glottal
vibration, acoustics and perception. Making the database widely available may increase the
quality and quantity of published research. Research on the database can be pursued in two
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directions. First, as yet undocumented vocal fold phenomena may be revealed by investigating
distinct perceptual voice qualities. This direction has been pursued in the presented thesis. Sec-
ond, novel perceptual attributes may be discovered by investigating distinct vocal fold vibration
patterns.

Observed limitations of the collected data are the following. First, recording conditions in a
hospital are similar to field conditions, because the environment is not perfectly controllable. Sec-
ond, if future research investigates perceptual cues under realistic clinical conditions, calibrated
in-ear recordings and realistic playback setups would be needed. Third, the sound production
conditions during telescopic high-speed video laryngoscopy are not natural. One may wish to
base future work on vowels or connected speech, recorded under less obstructing conditions.
Finally, the prevalence of diplophonia in the used corpora is most likely not representative of
the prevalence in the general population.

Further future work regarding data acquisition concerns data pre-selection, audio to video
synchronization and image quality. Regarding pre-selection based on data quality, one may
wish to investigate what minimal data quality is needed for what kind of analysis. Especially
data quality thresholds enabling automatic spatio-temporal segmentation of the glottal gap are
needed. Regarding synchronization, clinically certified laryngeal high-speed cameras need to be
equipped with hard wired synchronized high-quality audio recording facilities, because manual
synchronization is not always feasible and also time-consuming. Regarding image quality, laryn-
geal high-speed cameras should use light sources with higher luminosity and sensors with higher
spatial resolution, sensitivity and dynamics.

Although the FIB and the FPB report glottal diplophonia, they have been evaluated on au-
ditive diplophonia. The detection performance of the features is fair only, but might be better
when evaluated on glottal diplophonia. Ground truth annotations for glottal diplophonia should
be obtained in the future.

The interpretation of laryngeal high-speed videos is hampered by the projection of a three-
dimensional vibration onto a two-dimensional sensor, which possibly visually masks important
information. The community may wish to aim at a technique extracting three-dimensional vi-
brations in the long run. At first vocal fold surface trajectories and later the trajectories of
reference points inside the tissue should be extracted. Before having these novel technologies,
two-dimensional representations of relevant three-dimensional vibration patterns should be in-
vestigated by means of geometrical modeling. Models may be fitted to in vivo video data to
identify three-dimensional vibration patterns. They must first be tested on synthetic data, be-
cause it is unclear what types of vibrations patterns form well-posed optimization problems.
Additional future work with regard to the interpretation of laryngeal high-speed videos may
be the following. First, the spatio-temporal segmentation of the glottal gap from laryngeal
high-speed videos needs to be investigated with respect to video quality, user intervention and
accuracy. Second, optimal sagittal positions of kymogram lines may be determined automati-
cally by using information theory.

The Diplophonia Diagram is based on model structure optimization, audio waveform modeling
and analysis-by-synthesis, which enables a more suitable description of diplophonic signals than
conventional hoarseness features. Analysis-by-synthesis and waveform modeling had already
been carried out in voice research, but systematic investigation of model structure optimiza-
tion with respect to perceived voice quality is novel. For diplophonia, the switch between one
and two oscillators is crucial. Optimal model structure is a qualitative outcome that may be
interpreted physiologically and one may conjecture that model structure optimization is also
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useful for describing other voice phenomena than diplophonia. The obtained descriptors might
be more easily accepted by clinicians than the conventional ones.

The Diplophonia Diagram addresses well known problems of joint multiple fundamental fre-
quency estimation and source separation, but the existing approaches cannot be applied directly.
Most of them rely on quantitative a priori knowledge about the sources, which is not available in
diplophonia, because the sources do not exist separately. Qualitative assumptions that had to be
made are oscillator additivity, independence, uncorrelatedness and unmodulatedness, which may
in practice be violated. True source separation relies on the correct extraction of the fundamen-
tal frequency, which is not achieved in approximately half of the observed diplophonic analysis
blocks. A promising direction of joint multiple fundamental frequency estimation and source
separation with only qualitative knowledge about the sources is taken in [113]. Future work may
also include estimation of the fundamental frequency from kymographic data, handling of corre-
lated oscillators and tracking the evolution of time-variant model parameters. The Diplophonia
Diagram may be extended for modulative oscillator combination in a next step, because some
types of diplophonic phonation cannot be modeled with available models. A modulative model
may inform about coupling, but quantitative comparisons of modulative and additive models
are pending.

Waveform modeling connects to perceptual aspects of diplophonia and results from the mu-
tual masked loudness model for multiple sources may be correlated with the perception of two
pitches. Model waveforms may in the future be used for ear training of phoniatricians and lo-
gopedists. However, the applicability of the waveform model is limited to harmonic signals and
the masking model’s validity may be decreased for those. Further research may thus focus on
computational auditory scene analysis and auditory stream segregation [21].

In contrario to conventional hoarseness features, the Diplophonia Diagram achieves satisfying
classification performance, because it relaxes the one-oscillator assumption. If the one-oscillator
assumption is violated, the validity of most conventional hoarseness features is lost. Numbers
may then be in a normal or abnormal range, but cannot be interpreted validly. In addition, con-
ventional features are not attended by a warning in case of loss of validity. The only conventional
feature that accounts for the existence of two oscillators is the Degree of subharmonics (DSH).
The Diplophonia Diagram outperforms the DSH in terms of specificity, accuracy, positive like-
lihood ratio and also validity in the case of two added oscillator waveforms. The Diplophonia
Diagram is therefore favored for automated detection of diplophonia at the acoustic level.

Latent class analysis has been used to assess the appropriateness of the ground truth from
the perspective of probabilistic modeling. Information from voice quality annotation, the Diplo-
phonia Diagram and the DSH has been combined. It has been shown that the available voice
quality annotation is almost perfect. Still, the obtained ground truth is not absolute, because
experiments with multiple listeners may increase external validity, and connected speech may
shift the labels of scored audio fragments.

More relevant clinical interpretation guidelines for the Diplophonia Diagram should be devel-
oped in future clinical studies. It should be investigated how clinical actions should be influenced
by the test outcome to enable more efficient clinical care. It is unclear, if the description of
diplophonic intervals is necessary in clinical practice or if subject global description is sufficient.
Other research questions may be: ”How many classes of diplophonia can be distinguished per-
ceptually?”, ”What changes in voice quality are relevant in treatment effect evaluation?”, ”Does
mild diplophonia exist that does not need treatment?” and ”Does inaudible diplophonia exist
that needs treatment?”. The ultimate goal is to quantitatively demonstrate that an individual
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6 Discussion, conclusion and outlook

benefits from administering a diplophonia test.
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Acronyms

ACC accuracy.

AQA audio quality annotations.

AUC area under the curve.

BIC Bayesian information criterion.

Cam laryngeal high-speed camera.

CI 95 % confidence intervals.

CM cycle mark.

CMOS complementary metal-oxide-semiconductor.

DD Diplophonia Diagram.

DFT discrete Fourier transform.

DSH Degree of subharmonics.

DSI dysphonia severity index.

EGG electroglottograph.

ENT ear, nose and throat.

EPF energy perturbation factor.

EPQ energy perturbation quotient.

F0 fundamental frequency.

FIB Frequency Image Bimodality.

FN false negatives.

FP false positives.

FPB Frequency Plot Bimodality.

fps frames per second.

GAW glottal area waveform.

GNE Gottal-to-Noise Excitation Ratio.
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HM headworn microphone.

HNR Harmonics-to-Noise Ratio.

IEC international electrotechnical commission.

IQ intelligence quotient.

LAN local area network.

LF Liljencrants-Fant.

LM lavalier microphone.

MC metacycle.

MD medical doctor.

MDVP Multi-Dimensional Voice Program.

MWC mean waveform matching coefficient.

NHR Noise-to-Harmonics Ratio.

NLR negative likelihood ratio.

NPV negative predictive value.

OS overlapping sinusoids.

PC personal computer.

PCM pulse code modulation.

PDOS phase-delayed overlapping sinusoids.

PF perturbation factor.

PLR positive likelihood ratio.

POP posttest probability.

PPF period perturbation factor.

PPQ period perturbation quotient.

PPV positive predictive value.

PQ perturbation quotient.

PR prevalence.

PR portable audio recorder.

PRP pretest probability.

PSC pre-selection combinations.
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relRMSE relative root mean square error.

ROC receiver operating characteristic.

ROI region of interest.

S subject.

SE sensitivity.

SE sound engineer.

SP specificity.

SQ synthesis quality.

STP spatio-temporal plot.

SVA spectral video analysis.

TN true negatives.

TP true positives.

ViQA video quality annotations.

VoQA voice quality annotations.

WAV waveform file format.
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Glossary

This section provides definitions of used terms. For some of them various different definitions
exist across disciplines and schools, thus universality is not claimed.

auditive diplophonia Auditively determined diplophonia.

cue ”a minor stimulus acting as an indication of the nature of the perceived object or situation”
[126], acoustic cue: ”the perceptual effect of an acoustic correlate” [127].

diagnosis ”the art or act of identifying a disease from its signs and symptoms” [126].

disease ”A definite pathological process having a characteristic set of signs and symptoms. It
may affect the whole body or any of its parts, and its etiology, pathology, and prognosis
may be known or unknown” [128]; or ”an impairment of the normal state of the living
animal or plant body or one of its parts that interrupts or modifies the performance of
the vital functions, is typically manifested by distinguishing signs and symptoms, and is
a response to environmental factors (as malnutrition, industrial hazards, or climate), to
specific infective agents (as worms, bacteria, or viruses), to inherent defects of the organism
(as genetic anomalies), or to combinations of these factors” [126].

dysphonia ”the partial loss of the ability to use the vocal folds to produce phonation” [127].

etiology ”Cause or causes of a disease” [126].

evidence-based medicine ”the use of evidence from well designed and conducted research in
healthcare decision-making” [129].

feature ”an individual measurable heuristic property of a phenomenon being observed” [129],
or ”one of a specified set of phonological primes defined in such a way that every segment
in a language, at least at the phonological level, can be exhaustively characterized as some
permitted combination, or ’bundle’, of features, each with an associated value” [127].

Frequency Image The spatial distribution of dominant frequencies in the laryngeal high-speed
video.

Frequency Plot Spatial distribution of dominant frequencies along the vocal fold edges.

fundamental frequency ”The fundamental frequency of a periodic sound is the frequency of
that sinusoidal component of the sound that has the same period as the periodic sound”
[112].

glottal diplophonia Diplophonic vocal fold vibration.

hoarseness The overall deviation from normal voice quality, excluding deviations in pitch, loud-
ness and rhythm [14].
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ICD-10 The International Classification of Diseases (ICD) of the World Health Organization. It
is the standard diagnostic tool for epidemiology, health management and clinical purposed
[130].

irregularity Variation of fundamental frequency, cycle-to-cycle energy or cycle shape, as defined
in [44].

label ”One or more characters, within or attached to a set of data, contain information about
the set, including its identification” [131].

laryngeal high-speed video A high frame rate video of the larynx.

marker ”something that serves to identify, predict, or characterize” [126].

measure ”The number (real, complex, vector, etcetera) that expresses the ratio of the quantity
to the unit used in measuring it” [131].

measurement ”The determination of the magnitude or amount of a quantity by comparison
(direct or indirect) with the prototype standards of the system of units employed” [131].

normal ”according with, constituting, or not deviating from a norm, rule, or principle” [126].

parameter ”Any specific quantity or value affecting or describing the theoretical or measurable
characteristics of a unit being considered which behaves as an independent variable or
which depends upon some functional interaction of other quantities in a theoretically
determinable manner” [131].

pathology From Ancient Greek ”pathos” (experience, suffering), and -logia (”an account of”).
A synonym of ”disease” [129]; or ”the anatomic and physiological deviations from the
normal that constitute disease or characterize a particular disease” [126].

phonation ”the production of vocal sounds and especially speech” [126], or ”the act of producing
speech sounds” [127].

phonosurgery ”Phonosurgery is composed of procedures that are intended to maintain or im-
prove the quality of the voice by correcting defects in laryngeal sound production” [132].

pitch ”that attribute of auditory sensation in terms of which sounds may be ordered on a musical
scale” [112].

roughness ”Audible impression of irregular glottal pulses, abnormal fluctuations in F0, and
separately perceived acoustic impulses (as in vocal fry), including diplophonia and register
breaks” [14].

short-time Fourier transform The time-variant Fourier transform that is achieved from win-
dowed signals, i.e., a spectrogram.

sign ”an objective evidence of disease especially as observed and interpreted by the physician
rather than by the patient or lay observer” [126].

spectral video analysis Spectral analysis of laryngeal high-speed videos with respect to time.
Both pixel intensity time-series and glottal edge trajectories can be Fourier transformed.
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symptom ”A departure from normal function or feeling which is noticed by a patient, indicating
the presence of disease of abnormality. A symptom is subjective, observed by the patient
and cannot be measured directly” [129]; or ”subjective evidence of disease or physical
disturbance observed by the patient” [126].

voice ”sound produced by vertebrates by means of lungs, larynx, or syrinx; especially : sound
so produced by human beings” [126], or ”any phonation type involving vibration of the
vocal folds” [127].
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Symbols

a Real values of Fourier coefficients.

a′ Even polynomial coefficients for waveform modeling.

α Probability of a rejection error in a hypothesis test.

A Spatial distribution of the peak spectral intensity density.

B Model parameter in multinomial logistic regression.

b Imaginary values of Fourier coefficients.

b′ Odd polynomial coefficients for waveform modeling.

β The power of a hypothesis test, or the Kaiser window parameter.

D Geometrical distance of the ROC curve from the virtual optimum.

d Glottal edge trajectories or general waveform.

∆ Spectra of the vocal fold trajectories, the phase shift for unit-pulse FIR filtering, or the
maximum log likelihood.

δ Mean free and blocked glottal edge trajectories, or unit-pulse function in waveform modeling.

e Error waveform in waveform modeling.

η Noise.

fs Sampling frequency.

Γ Number of oscillator candidates.

γ Oscillator candidate index.

H Histogram of discrete frequencies, drawn from the spatial distribution of the dominant oscil-
lation frequency.

I Light intensity.

i Block index, or phonation interval index in latent class analysis.

J Time respective spectra of light intensity, or the number of index tests in latent class analysis.

j Index test index in latent class analysis.
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K Spatial distribution of the dominant oscillation frequency, or the number of possible index test
outcomes in latent class analysis, or the block length parameter in perturbation quotient
measurement.

k Discrete frequency, or test outcome index in latent class analysis.

κ Spatial distribution of dominant frequencies along the glottal edges, i.e., the Frequency Plot.

κ2 Frequency of the second highest peak in the normalized frequency histogram H(κ, i), i.e.,
the diplophonic frequency.

Kp Sgn-coding threshold.

L The likelihood.

l Lag index for cross correlation, or filter coefficient index in unit-pulse FIR filtering.

M Number of distinct frequencies in the spectral video analysis, or the number of oscillators
used for waveform modeling.

m Oscillator index used for resynthesis.

Me Even matrix for coefficient transformation in polynomial waveform modeling.

Mo Odd matrix for coefficient transformation in polynomial waveform modeling.

M(ω) Continuous Fourier transform of one metacycle.

µ Pulse index.

ν Arbitrary cyclic parameter.

N Block length, period length, number of intervals in latent class analysis, the number of nega-
tive intervals or the number of cycles in periods within the analyzed interval in perturbation
quotient measurement.

n Discrete time.

n′ Relative discrete time index.

ω Angular frequency.

P Number of positive intervals, or probability, or the number of partials.

p Partial index, or the mixing proportions of diplophonic and non-diplophonic intervals, i.e.,
the prevalence and 1 - prevalence.

P (d) Predicted probability for the presence of diplophonia from multinomial logistic regression.

Φ The number of estimated parameters in latent class analysis.

R The number of latent classes.

π The ratio of a circles circumference to its diameter, or the class conditional probability.

r Normalized autocorrelation function.
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r Cross correlation function, pulse shape filter coefficients, or class index in latent class analysis.

τmax Lag of the autocorrelation function’s local maximum.

S Oscillator combination in heuristic oscillator selection, or slope for optimal threshold deter-
mination in a ROC curve.

thr Threshold.

thropt Optimal threshold.

u Unit-pulse train.

v Auxiliary vector for coefficient transformation.

w Time-domain window.

x′ Lateral position index in the spatio-temporal plot (i.e., left or right vocal fold).

x Lateral position, or Cartesian coordinate.

Y Index test outcomes in latent class analysis.

y′ Sagittal position along the main glottal axis.

y Sagittal position, or Cartesian coordinate.
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speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the
underlying laryngeal dynamics,” IEEE Transactions on Medical Imaging, vol. 27, no. 3,
pp. 300–309, 2008.

[95] J. Schoentgen, “Glottal area patterns in numerically simulated diplophonia,”
Third Viennese Scientific Seminar on the Detection of Diplophonia, pp. 1–60,
2014. [Online]. Available: signaux.ulb.ac.be/∼jschoent/pdf/7D30 PRESENTATION.pdf
[Accessed: November 27, 2014]

[96] I. R. Titze and F. Alipour, The myoelastic aerodynamic theory of phonation. Iowa City:
National Center for Voice and Speech, 2006.

[97] N. Malyska and T. F. Quatieri, “Spectral representations of nonmodal phonation,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 16, no. 1, pp. 34–46, 2008.
[Online]. Available: www.ll.mit.edu/mission/communications/ist/publications/0801
Quatieri IEEE.pdf[Accessed:November3,2014]
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