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ABSTRACT

In this thesis, a combination scheme in the scene of the MRA (multi-

resolution analysis) process is developed for a combined gravity field model.

Based on the spherical wavelets and MRA principles, the local (terrestrial)

and global (satellite gravity) data are combined using the spectral-stochastic

weighting scheme for a regional geoid solution. This weighting scheme, on

the one hand, ensures an appropriate contribution of the global and local

data in different frequency ranges, and on the other hand, takes all stochas-

tic information of input data into account. Beside the weighting method

which is the key for a successful combination, other practical issues such

as regularization and grid configuration are also concerned. The numeri-

cal study is based on high-accuracy terrestrial gravity data in Austria, and

satellite data from the GRACE mission. The results show that the MRA pro-

cess works correctly with real data, but the solutions are limited to decime-

ter differing from the reference Austrian Geoid 2007. Although having the

essential advantage over the classical method least-squares collocation that

it can deal with full signals (i.e. non-reduced data), it seems that the MRA

process in the present state of this thesis is still not mature enough for a

centimeter-accuracy regional geoid solution.
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CHAPTER1
INTRODUCTION

The earth’s gravity field is often represented by the geoid, a surface of

equal gravity potential coinciding with the mean surface of the oceans at

rest. Information about the geoid provides valuable insight into the earth as

a complex dynamic system. Its knowledge offers a fundamental contribution

to geodetic and earth-related applications. In geodesy and oceanography,

the geoid serves as a height reference surface for describing continental and

sea surface topography. Geophysics exploits the geoid as a gravity field rep-

resentation revealing the distribution of deeper located masses (Torge 2001).

Globally, since the geoid represents a mean sea surface at rest, it is re-

quired for all applications that need to determine dynamic sea surface to-

pography from the altimetry measurements. The orbit determination of

satellites, particularly for the low-orbit satellites, also requires the accurate

gravity field models. Moreover, the global gravity field reflects the internal

structure of the Earth, and can help in the exploration for oil and mineral

resources.

Locally, geoid determination is the basic geodetic work for the nations.

Nowadays, with the more and more popular GPS measurement, the most

directly important application is the possibility to transform the geometric

heights observed by GPS to the orthometric/normal heights in the national

height system. If a high precision geoid is known, the GPS measurement

4



5

can more or less replace the traditional leveling measurement, which is an

expensive and time-consuming technique with increasing error over long dis-

tances.

The terrestrial observables are often collected for comparatively small

regions, i.e. the territory of a country. The data distribution is also inho-

mogeneous with the existence of data gaps due to the terrain, e.g., the in-

accessibility of certain areas. Compared to the satellite data, the terrestrial

observables are much denser, and a gravity field with much higher resolu-

tion can be computed from them. However, as a drawback, the quality at

long wavelengths is not as good as the quality of satellite data.

The satellite data are good at long wavelengths, but limited in its spatial

resolution. A combination of both data sources is required for the computa-

tion of precise high-resolution regional gravity fields.

Nowadays, the terrestrial measurements, the airborne gravimetry, and

the recent dedicated satellite gravity missions CHAMP (Challenging Mini-

satellite Payload, see webpage of GeoForschungsZentrum Potsdam at http://

op.gfz-potsdam.de/champ), GRACE (Gravity Recovery and Climate Experi-

ment, Flechtner 2005, Tapley et al. 2004), and GOCE (Gravity and Ocean

Circulation Explorer, see ESA 1999 and Drinkwater et al. 2003) provide the

gravity data with higher and higher quality and resolution as well as the

opportunity for more and more precise geoid determination.

Traditionally, for each kind of data sets (satellite, airborne, terrestrial),

the dedicated data processing schemes have been developed using different

methods. The optimal combination for different kinds of data requires, at

least, a methodology that can be used for any kind of data. Elements of this

methodology comprise the estimation principle, the regularization, the data

weighting scheme, the error propagation, and other practical configurations.

Generally, the data sets can be classified into the two main sources, the

global data and the terrestrial observations. The combination of these two

data sources has been achieved by a remove-restore technique using the

least-squares collocation (Moritz 1989). Least-squares collocation, known

as the standard approach so far, uses the covariance functions as the ker-
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nel function; and the proper computation of these values is always the key

challenge. Moreover, the remove-restore steps cause unavoidable errors by

themselves. Thus there is always room for the development of a new method

to overcome the disadvantages of this classical approach.

The use of spherical (radial) base functions in gravity field modeling

is not new. Over the years, several attempts have been made. Freeden’s

group at Kaiserslautern university has investigated spherical base functions

and wavelets for a long time, mostly focusing on multi-scale representations

(Freeden 1999, Freeden et al. 2003, Freeden et al. 2004, Fengler et al. 2004,

Freeden et al. 2009). A general description of the concept of wavelets and

their applications in geodesy and geodynamics can be found in literature, for

instance in Freeden et al. (1998) and Keller (2004). Spherical wavelets were

applied to the analysis of CHAMP data by Fengler et al. (2004) and Schmidt

et al. (2005). Fengler et al. (2007) used wavelets for the representation of

time variable GRACE gravity fields; they made use of existing global spher-

ical harmonics and applied wavelets to the spherical harmonic coefficients,

in this way the spherical harmonic solutions were decomposed into different

scales. And lately, Wittwer (2009) used radial basis functions in the param-

eterization for global and regional models of the mean and time-variable

gravity field.

Moreover, Schmidt et al. (2007) also developed an approach and applied

it to compute the regional potential field from CHAMP and terrestrial data,

as well as the temporal variations from GRACE. The so-called unique re-

producing kernel introduced in their paper will be applied in this thesis as

a core for the functional model. And in the framework of the GEOnAUT

(Austrian Geoid 2007) project, Pail (2006, 2007) has also investigated a local

geoid processing method based on wavelets and multi-resolution analysis,

from which this thesis inherits several valuable things.

However, no ”standard” methodology for data combination has been es-

tablished so far. So there is still room for innovative attempts to develop an

approach for combining different data sources in the scheme of the wavelet

process for the geoid determination purpose. It is also the main goal of this

thesis.
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Based on the principle of spherical wavelets and multi-resolution analy-

sis (MRA) process, a solution for the combined gravity field model will be pre-

sented in this thesis. In principle, the application of this MRA process does

not require the reductions; consequently we can skip some steps and reduce

the data processing effort as well as avoid the errors propagated from them.

Furthermore, different types of data sources can be combined thanks to an

adequate weighting scheme, and the error estimates of the output model can

be totally estimated according to the law of error propagation. Concerning

the new aspects, this thesis develops an approach for combining different

types of data using the combined spectral-stochastic weighting scheme in

the scene of the MRA process and applies it to the real data for a local geoid

solution.

It should be noticed that, in this thesis, though based on the multi-

resolution analysis concept, the actual process is carried out at one reso-

lution (of the output grid) for the simplicity as well as reducing the com-

putation effort. In principle, the essence of MRA is still guaranteed; and a

complete MRA process can possibly be the continuation after this thesis. For

convenience and due to the habitual name of MRA, this term is also used in

the whole thesis; and please keep in mind the note mentioned above.

The initially intended objective (for the case study) is a geoid solution

for Vietnam (my country); however, the deficiency of Vietnamese terrestrial

data did not allow doing that. Fortunately, Professor Roland Pail kindly pro-

vided the Austrian data; thus the case study result is about the Austrian

geoid. This also helps to skip the data pre-processing step due to the given

data which was already pre-processed for the previous project (Pail 2007). In

addition, the use of the same terrestrial data set gives the chance to check

and compare with the official result of that project (GEOnAUT).

With that purpose, the content of the thesis is organized as follow:

∙ Chapter 1 presents the background of the geoid determination work,

the motivation for the wavelets and MRA-derived combination process

using spherical base functions, the (restricted) objective and the out-

line.
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∙ Chapter 2 is pure theoretical. After an overview of the gravity field and

gravity data as well as the reference method least-squares collocation

(LSC), the functional model is introduced, leads the way to apply the

MRA-wavelets principles into the gravity field modeling using spheri-

cal base functions. Here the theoretical essence is the unique reproduc-

ing kernel (Schmidt et al. 2007), and the practically meaningful point

is the scaling coefficient vector. At last, a comparison between LSC and

MRA in a theoretical point of view is performed.

∙ Chapter 3 is concerned with regularization, a practically key issue to

overcome the ill-posed problem when estimating parameters (the scal-

ing coefficient vector). Here the Tikhonov regularization, which is sim-

ple and sufficient for the gravity potential modeling, is the baseline

method. And to answer the question about the choice of regulariza-

tion parameter which is the essence in Tikhonov regularization, sev-

eral simulations in the scheme of gravity field modeling using the MRA

process will be presented.

∙ Chapter 4 deals with the grid configuration including two main issues,

the type of grid and the grid’s resolution. For the former question,

once again, the answer is the simplicity, i.e. the equiangular grid is

chosen. The resolution depends on the input data, the set-up of the

computation scheme, as well as the expected output. Simulations in

this chapter will give a practical guidance to a certain degree.

∙ Chapter 5 is dedicated to the weighting problem which is the key for

a successful combination. Concerning the spectral content, where the

basic principle is that the long wavelengths are reserved for the global

data and the short wavelengths are the domain of local data, the spec-

tral weighting method is introduced. The other way is of using the

stochastic information of input data to compute the weighting values.

At last, the combination of those two, the so-called spectral-stochastic

weighting method is proposed with the expectation that it will be ade-

quate for the MRA process which implies the frequency-based analysis,

as well as take the stochastic information of all input data sources into



9

account.

∙ Chapter 6 presents the implementation of the MRA process using real

data for the case study of an Austrian geoid solution. After the de-

scription for the input data, a computation scheme is set up for the

later approaches, which includes the choice for the scaling function,

the number of levels will be used, regularization method, the set-up for

grids and weighting schemes. An overview about the reference solu-

tion GEOnAUT is also given. Afterwards, five approaches using dif-

ferent combining schemes are presented. These approaches comprise

the use of reduced and non-reduced data, including or excluding the

GPS/leveling data as an input data source. This chapter ends with the

summary and discussion for all approaches.

∙ At last, chapter 7 with the summary, conclusion and outlook will finish

the content of this thesis.



CHAPTER 2
THEORIES

This chapter presents theories of gravity field models and the method

using spherical wavelets and multi-resolution analysis (MRA) to construct

a local geoid model. Besides, the classical standard method least-squares

collocation are also presented as a reference. Before that, an introduction to

the gravity data and gravity reductions is given.

2.1 GRAVITY DATA AND GRAVITY REDUCTIONS

In this section, the first part introduces some most basic surfaces in

geodesy acting as the reference surfaces for gravity measurements. Then,

the concept of observations in the geoid modeling issue as well as the com-

putational relationship of them is briefly presented. Finally, the steps to

refer the observations to the reference surface is given.

2.1.1 Gravity field and gravity data

Earth’s surface is represented by the geoid, which is defined as the equal

gravity potential surface that most closely approximates the mean sea level.

It means that the gravity potential W of any point on the geoid is constant.

Meanwhile, the ellipsoid is defined as the equipotential surface of normal

gravity (U = const), and is considered as the mathematical figure of the

10



2.1. Gravity data and gravity reductions 11

earth. The difference between the actual value W and the normal value U is

called the disturbing potential T

T(x, y, z) = W(x, y, z)− U(x, y, z) . (2.1)

Gradients of W and U are vectors of gravity and normal gravity, respec-

tively. In figure 2.1, the gravity vector at P on the geoid in direction n (plumb-

line) is denoted by gP; the normal gravity vector at Q on the ellipsoid in di-

rection n′ (ellipsoidal normal) is denoted by γQ; Q is the projection of P in

direction of the ellipsoidal normal. The difference in direction between two

vectors g and γ (the angle made by n′ and n) is called the deflection of the ver-

tical, usually divided into two components: the north-south component ξ and

the west-east component η. Two components of the deflections of the vertical

can be calculated from astronomical coordinates (relate to the plumb-line)

and geodetic coordinates (relate to the ellipsoidal normal) according to

ξ = Φ − ϕ

η = (Λ − λ) cos ϕ
(2.2)

where Φ and Λ are astronomical latitude and longitude, ϕ and λ are geodetic

latitude and longitude.

The difference in magnitude between the gravity (measured value g) and

the normal gravity (computable value γ) is called the gravity anomaly ∆g

∆g = gp − γQ . (2.3)

Gravity anomaly and the deflection of the vertical are two main types of

terrestrial gravity data in the issue of (local) geoid modeling. In addition,

the geoid height N (distance QP in figure 2.1) can be directly obtained by a

combination of leveling and GPS measurement:

N = h − H (2.4)

where h is the geodetic height (from GPS measurement) and H is the ortho-

metric height (from leveling).

On a global scale, the gravity field models are usually provided by the

fully normalized harmonic coefficients Cnm and Snm. The (disturbing) poten-
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Figure 2.1: Geoid and reference ellipsoid (source: Hofmann-Wellenhof and

Moritz 2005)

tial T can be determined in terms of spherical harmonics according to

T(r, θ, λ) =
GM

R

nmax

∑
n=2

(

R

r

)n+1 n

∑
m=0

Pnm(cos θ)
(

Cnm cos(mλ) + Snm sin(mλ)
)

(2.5)

where r is distance to the earth’s center, θ and λ are co-latitude and longi-

tude, respectively, R is the earth’s reference radius, GM is the product of

gravity constant G and the earth’s mass M, n and m are harmonic degree

and order, respectively, nmax is the maximum degree of the given model, and

Pnm is the normalized Legendre function.

The relationship between the geoid height (also called geoidal undula-

tion) N and the (disturbing) potential T is given by the Bruns formula

NP =
T

γQ
. (2.6)

The conversion between T and N is easily and directly, so the concept of

gravity field models (provide T) and geoid models (provide N) can often be

used interchangeably.

The relationship between gravity anomaly ∆g and the potential T is pro-
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vided via equation

∆g = −
∂T

∂h
+

1

γ

∂γ

∂h
T . (2.7)

In spherical approximation, equation (2.7) becomes

∆g = −
∂T

∂r
−

2T

r
. (2.8)

For the deflection of the vertical quantities, equation (2.8) can be replaced

by

ξ = −
1

γQr

∂T

∂ϕ

η = −
1

γQr cos ϕ

∂T

∂λ
.

(2.9)

The most basic measurements and their relationship in the issue of (lo-

cal) geoid modeling are briefly introduced above. However, these measure-

ments cannot be used directly but require the gravity reduction step which

is presenting in the next part.

2.1.2 Gravity reductions

The gravity observations are measured on the terrain surface. For the

geoid determination purpose, these values need to refer to see level, so the

reductions are required. Generally, the gravity reduction includes two main

processes: remove the topographic masses outside the geoid, and lower the

gravity stations from the earth’s surface to the geoid.

Free-air reduction

In the assumption that there is no mass above the geoid, i.e. the gravity

station is ”in free air”, the difference along the plumb-line between the grav-

ity value at the height H (of the station) and one on geoid can be obtained

according to

∆A =
GM

(R + H)2
−

GM

R2
. (2.10)
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This quantity is called the free-air reduction F and can be approximated

by the Taylor expansion. Keep only the linear term of Taylor’s series, equa-

tion (2.10) becomes

F = GM

(

1

R2
+

−2H

R3
−

1

R2

)

=
−2GM

R3
H . (2.11)

Using the parameter values of WGS84, and converting to the unit of

mGal, we get

F = −0.3086 H [mGal] (2.12)

for H in meter.

Bouguer reduction

Now we consider the masses between the earth’s surface and the geoid.

Assume that these masses have a constant density ρ, and the area around

the gravity station is completely flat, then the attraction of this so-called

Bouguer plate is

AB = 2πGρH . (2.13)

With the gravity constant G = 6.674 . 10−11 m3 kg−1 s−2 and standard den-

sity ρ = 2.67 g cm−3, it becomes

AB = 0.1119 H [mGal] (2.14)

for H in meter.

Now applying the free-air reduction given in equation (2.12), the Bouguer

gravity on the geoid may be finally obtained by

gB = g − AB − F . (2.15)

Terrain correction

Unfortunately, the earth’s surface is not completely flat as implied in the

Bouguer reduction. Now we take into account the deviation of the actual

topography from the Bouguer plate. Exemplarily, at A (figure 2.2), the topo-

graphic mass ∆m+ (above the Bouguer plate) attracts P upward causing g
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Figure 2.2: Terrain correction (source: Hofmann-Wellenhof and Moritz

2005)

at P to decrease. At B, the topographic mass should be removed, or equiva-

lently, there is the mass ∆m− with negative value, which attracts P upward

again. It means that the terrain always causes the gravity at P to decrease,

or in other words, the terrain correction is always negative.

In practical computation, the topographic masses are subdivided into el-

ementary bodies (like ∆m+ and ∆m−) in rectangular prism shape with the

constant area ∆S and the height h = ∣H − HP∣. By the law of gravitation,

the attraction of the elementary body ∆m onto P at the distance d can be

calculated by

∆At = −
G∆m

d2

h

2d

= −
Gρ

2d3
∆S h

2
.

(2.16)

The terrain correction at P can be obtained by summing the effects of the

individual elementary bodies

At = ∑ ∆At . (2.17)
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By adding the terrain correction At to (2.15),

g
re f ined
B = g − AB − At − F (2.18)

called refined Bouguer gravity, is obtained.

It is also possible to compute the total effect of the topographic masses

AT = AB + At

= ∑ ∆AT

(2.19)

in one step by using elementary bodies with bases at sea level, i.e. equation

(2.16) becomes

∆AT =
Gρ

d3
∆S H

(

HP −
H

2

)

. (2.20)

Note that the sign of ∆AT in (2.20) depends on whether HP is larger or

less than H/2 instead of being always negative as of ∆At in equation (2.16).

Note that the computation for the terrain reduction obviously requires

a height model in the given area. A digital terrain model (DTM) can be

used for this purpose as well as for the computation of topographic-isostatic

reduction.

Topographic-isostatic reduction

With the assumption that the topographic masses are superposed on the

homogeneous crust, the residual gravity field quantities after applying re-

ductions would be very small and fluctuate randomly around zero. However,

in reality, Bouguer anomalies in mountainous areas are systematically neg-

ative and may attain large values. The possible explanation is that the topo-

graphic masses are compensated by some kind of mass deficiency under the

mountains. Therefore, the total reduction consists not only of the free-air

reduction to the geoid and the removal of topography, but also the removal

of this compensation effect. For this purpose, the Airy-Heiskanen isostasy

model is applied (Hofmann-Wellenhof and Moritz 2005).

The principle of Airy-Heiskanen system is the floating equilibrium. The

earth’s crust is assumed around 30 km thick (denoted T in figure 2.3) and has

the density ρ0 = 2.67 g cm−3. It ”floats” on a denser under-layer having the

density ρ1 = 3.27 g cm−3. If there exists a mountain with the height H (the
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Figure 2.3: Airy-Heiskanen isostasy model (source: Hofmann-Wellenhof and

Moritz 2005)

Figure 2.4: Topography and compensation – Airy-Heiskanen isostasy model

(source: Hofmann-Wellenhof and Moritz 2005)
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density of the mountain is also ρ0), there should be a ”root” of the mountain

in the under-layer with the thickness t having the density ρ0 instead of ρ1

to compensate for the mass of the mountain. The higher the mountain, the

deeper its root; and the relation between H and t satisfies the condition of

the floating equilibrium

t(ρ1 − ρ0) = Hρ0 . (2.21)

So that

t =
ρ0

ρ1 − ρ0

H = 4.45 H . (2.22)

Under the oceans (with density of sea water ρw = 1.03 g cm−3), the ”anti-

roots” have density ρ1 instead of ρ0, then the corresponding floating equilib-

rium equations are

t′(ρ1 − ρ0) = H′(ρ0 − ρw) (2.23)

and

t′ =
ρ0 − ρw

ρ1 − ρ0

H′ = 2.73 H′ (2.24)

where H′ is the depth of the ocean, t′ is the thickness of the anti-root (figure

2.3).

In analogy with equation (2.16), replacing h by t, ρ by ∆ρ = ρ1 − ρ0 and

considering the thickness of the earth’s crust T = 30 km when computing

the distance d, the attraction of the root onto P (figure 2.4) can be calculated

by

∆AC = −
G∆ρ

d3
∆S t(HP + T +

t

2
) . (2.25)

The sum of the effects of the individual elementary bodies gives the topo-

graphic-isostatic reduction

AC = ∑ ∆AC . (2.26)

Adding AC to equation (2.18) and considering equations (2.19), the topographic-

isostatically reduced gravity on the geoid becomes

gTI = g − AT − AC − F . (2.27)
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The indirect effect

The gravity reductions imply the removal or shifting of masses. This

causes the change of the gravity potential and the geoid. The computed

surface, called the co-geoid, is slightly different from the geoid. Denoting

the undulation at the co-geoid by Nc, the actual undulation N at the geoid is

obtained by

N = Nc + δN (2.28)

where δN is the indirect effect on N

δN =
δW

γ
. (2.29)

In above equation, ∂W is the change of potential on the geoid. In case of

topographic-isostatic reduction,

δWTI = UT + UC , (2.30)

where UT and UC are the potentials corresponding to the attractions AT and

AC in equations (2.19) and (2.26). By the same way as in equations (2.20),

(2.19), (2.25) and (2.26), the numerical values of UT and UC can be obtained

with a reminder that the potential U = Gm/d instead of the attraction A =

Gm/d2, and the point U refers to is always P0 at sea level. Note that exactly

the same topographic-isostatic model as for the gravity reductions has to be

used to compute UC.

The indirect effect on gravity δ can be obtained from δN in the similar

way of (2.12)

δ = −0.3086 δN [mGal] (2.31)

for δN in meter.

Derived from (2.9), the indirect effect on the deflection of the vertical is

given by

δξ = −
1

r

∂δN

∂ϕ

δη = −
1

r cos ϕ

∂δN

∂λ
.

(2.32)
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Free-air anomaly in Molodensky’s sense

Conventionally, the gravity anomaly is defined by the difference between

the gravity gP at point P on the geoid and the normal gravity γQ at the

corresponding point Q on ellipsoid (c.f. section 2.1.1). If we start with the

actual gravity g at ground (the measured value), then the free-air anomaly

can be obtained by applying the free-air reduction (section 2.1.2)

∆gFA = g − F − γQ . (2.33)

In the sense of Molodensky, instead of reducing the gravity g from ground

to geoid, the normal gravity γQ is ”reduced” from ellipsoid upward to the tel-

luroid. Telluroid is defined as the surface whose normal potential U at every

point is equal to the actual potential W at the corresponding point along

the ellipsoidal normal. Now (i.e. in the Molodensky’s sense), the gravity

anomaly is defined as the difference between the measured gravity g on the

ground and the normal gravity γ on the telluroid

∆g = g − γ . (2.34)

The normal gravity γ on the telluroid can be obtained from the normal

gravity γQ on the ellipsoid by the normal free-air reduction (but upward).

For this reason, the gravity anomaly ∆g in above equation is also called free-

air anomaly. Applying Taylor expansion up to the second order, we get

γ = γQ +
∂γ

∂h
H∗ +

1

2!

∂2γ

∂h2
H∗2 (2.35)

where h denotes the ellipsoidal height and H∗ the normal height (i.e. dis-

tance from ellipsoid to telluroid).

In approximation (using only linear term of the flattening f in the first

derivative and neglecting f in the second derivative), γ can be obtained by

γ = γQ

[

1 − 2(1 + f + m − 2 f sin2 ϕ)
H∗

a
+ 3

(

H∗

a

)2
]

(2.36)

where ϕ is latitude of the target point and m = ω2a2b/(GM) with conven-

tional parameters of the reference ellipsoid.
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In summary, this section introduces the main types of gravity data and

the reductions required to compute the geoid. Briefly, the principles of the

computational process can be described as follows

∙ The gravity station is lowered from the ground to the geoid, then the

free-air anomalies are computed. In Molodensky’s sense, the normal

gravity values are ”raised” from ellipsoid to telluroid instead of ”lower-

ing” the measured gravity values from ground to geoid (equation (2.33)

and equation (2.34)).

∙ The masses outside the geoid are computationally removed or shifted

inside the geoid. The presently standard method (for geoid determina-

tion purpose) is the topographic-isostatic reduction (equation (2.27)).

This step causes the change δN of geoid (equation (2.29)). It is called

the indirect effect.

∙ The indirect effect is computationally excluded from data (equations

(2.31) and (2.32)).

∙ Now the data refer to the co-geoid, being ready for the co-geoid com-

putation. The classical standard method for computation here is least-

squares collocation which is introduced in section 2.2.

∙ After getting the co-geoid, the geoid can be obtained by adding back the

indirect effect δN.

∙ Finally, the inconsistency between the computed geoid and the (na-

tional) vertical datum is estimated using a low-order polynomial sur-

face. After this validation step, the final geoid is obtained.

2.2 LEAST-SQUARES COLLOCATION

Least-squares collocation (LSC) is the classical geodetic method for the

geoid computation from different gravity data types. It was originally intro-

duced as a prediction and interpolation method, and was then extended to

a method for determining the anomalous gravity field by a combination of



2.2. Least-squares collocation 22

geodetic measurements of different types (Hofmann-Wellenhof and Moritz

2005, Moritz 1989). A fundamental role plays the (local or global) covari-

ance function, describing the stochastic properties of the input and output

quantities (Tscherning and Rapp 1974).

The expected gravity field output ŝ can be estimated from the observation

vector l using the basic formula

ŝ = Csl(Cll + Σ)−1l , (2.37)

where Cll is the covariance matrix describing the statistical properties of the

observations l, whose measuring accuracy is expressed by the noise matrix

Σ, and matrix Csl describes the cross covariances between the observations l

and the estimated quantities ŝ.

One valuable feature of LSC is that the resulting quantities are comple-

mented by their stochastic error estimates. By the covariance propagation,

the statistical error estimation of the output ŝ can be obtained by

σ2
ŝ = σ2

0 − Csl(Cll + Σ)−1CT
sl (2.38)

where σ2
0 denotes the a-priori variance, and the upper index T denotes the

matrix transposition.

In principle, the observation vector l can contain arbitrary types of grav-

ity observations. For example, if gravity observations consist of the gravity

anomalies ∆g and the deflections of the vertical {ξ, η}, then (2.37) becomes

ŝ =
[

Cs∆g Csξ Csη

]

⋅

⎡

⎢

⎣

C∆g∆g C∆gξ C∆gη

Cξ∆g Cξξ Cξη

Cη∆g Cηξ Cηη

⎤

⎥

⎦

−1

⋅

⎡

⎢

⎣

∆g

ξ

η

⎤

⎥

⎦
, (2.39)

herein the noise of the observations ∆g, ξ, η are included in C∆g∆g, Cξξ , Cηη

implicitly.

The essence in LSC is the determination of covariance matrices. For

gravity anomaly quantity which is exemplarily a representative of terrestrial

gravity field observations, the element of covariance matrix C∆g∆g related to

two observables ∆gi and ∆gj can be computed by

C∆gi∆gj
= cov

(

∆gi, ∆gj

)

=
∞

∑
n=0

cn

(

R2

rirj

)n+2

Pn

(

cos ψij

)

. (2.40)
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Here, the covariance depends on the Earth’s radius R, the radii from the geo-

center of the observables ri, rj, the Legendre polynomials Pn, and the spher-

ical distance ψij between the observation positions, which can be expressed

by

cos ψij = cos θi cos θj + sin θi sin θj cos(λi − λj) (2.41)

where θ and λ are co-latitude and longitude, respectively.

The covariance function cn can be computed using a covariance model, for

example the Tscherning-Rapp model (Tscherning and Rapp 1974)

cn = A
n − 1

(n − 2)(n + B)
(2.42)

with globally or locally adapted parameters A, B. An overview of different

global and local covariance models can be found, e.g., in Tscherning and

Rapp (1974), Moritz (1989).

In LSC, a fundamental requirement is that the observations l have zero

mean: E{l} = 0. If the observations contain a deterministic component such

as a trend field, it has to be removed beforehand, and to be restored after-

wards (the remove-restore technique). In the remove step, the reductions

presented in section 2.1 have to be applied to the local gravity data, and ad-

ditionally they have to be reduced by the global model complete to a specific

maximum degree of harmonic expansion before applying LSC.

The trend field and global reductions in LSC, firstly, require the restore

afterwards. This process causes an error at a certain degree. Secondly,

the long-wavelength components (which are reduced) are not taken into ac-

count, i.e., more or less, we miss information of this part in the computa-

tion process. The next section will introduce the other method, called multi-

resolution analysis (MRA), which, in general, does not require the trend field

and global reductions. As the result, at least in theory, the more propagated

error can be avoided and the more information can be used in the computa-

tion process in comparison with LSC.
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2.3 COMBINED GRAVITY FIELD MODEL USING

SPHERICAL WAVELETS AND MRA

The main idea of the multi-resolution analysis (MRA) is the splitting of a

signal into a smoothed version and a number of detail signals by successive

low-pass filtering. Applying to the gravity field modeling issue, the MRA is

based on two main processes:

∙ the analysis: used to decompose the signal of each data type to the

detail signals in individual levels, and

∙ the synthesis: used to (re-)construct the (output) signal by the combi-

nation of detail signals.

Figure 2.5 illustrates the flowchart of the MRA process. It comprises the

following main steps:

∙ using an appropriate reproducing kernel, the scale coefficients for each

data type can be computed by a least-squares adjustment,

∙ determining the detail signals using scale coefficients and spherical

wavelets, and

∙ combining individual signals to obtain the synthetic output signal.

The next parts provide the more detail view into the MRA process. They

give the necessary mathematical formulation and explanation, as well as an

example for the better understanding.

2.3.1 Functional model

Spherical harmonics

Spherical harmonic is the classical representation for the (global) gravity

field. In the following, some basic reminders are given as the materials for

next issues. Any vector x = (x1, x2, x3)
T ∈ R

3 ∖ {0} is uniquely represented as

x = rξ, where r = ∣x∣ and ∣ξ∣ = 1. Call ΩR a sphere with radius R and L2(ΩR)
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Figure 2.5: The flowchart of MRA

the space of all real square-integrable functions F on ΩR, the spherical har-

monics Yn,m(ξ) of degree n and order m form a complete orthonormal basis

of L2(ΩR). The function F ∈ L2(ΩR) can be uniquely expressed as Fourier

series

F(ξ) =
∞

∑
n=0

n

∑
m=−n

Fn,mYn,m(ξ) (2.43)

with ξ ∈ Ω, Fn,m are Stokes coefficients which can be computed via the spher-

ical Fourier transform Fn,m = ⟨F, Yn,m⟩L2(ΩR)
.

Given the (disturbing) gravity potential F on the sphere ΩR, the upward

continuation can be written by

F(x) =
∞

∑
n=0

n

∑
m=−n

Fn,mHR
n,m(x) (2.44)

where the functions

HR
n,m(x) =

1

R

(

R

r

)n+1

Yn,m (ξ) (2.45)

are the solid spherical harmonics.
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Spherical base functions

The relation between the spherical harmonics and the Legendre polyno-

mials is given by (Freeden et al. 1998)

n

∑
m=−n

Yn,m(ξ)Yn,m(η) =
2n + 1

4π
Pn(ξ

Tη) . (2.46)

Note that ξ and η here are the unit vectors on the centripetal directions

of the sphere ΩR, not the components of the deflection of the vertical as in

section 2.1. The misunderstanding is easily avoidable thanks to the context.

Equation (2.46) forms the foundation in formulating the spherical wavelets

through the spherical base functions (with an approximation up to the given

degree nmax)

B(x, xk) =
nmax

∑
n=0

2n + 1

4πR2

(

R

r

)n+1

BnPn(ξ
Tξk) (2.47)

with x = rξ ∈ ΩRext (ΩRext is the outer space including the sphere), xk =

Rξk ∈ ΩR, Pn(ξ
Tξk) is the Legendre polynomial of degree n, and Bn are the

Legendre coefficients reflecting the spectral behavior.

Now, the signal F(x) can be represented by

F(x) =
N

∑
k=1

ckB(x, xk) (2.48)

where N is the number of position x and the initially unknown coefficients ck

play a similar role as the Stokes coefficients Fn,m of the spherical harmonics

approach.

For x ∈ ΩR, the spherical base function B(x, xk) depends only on the

spherical distance α = arccos(ξTξk), i.e. the spatial positions, thus it may

describe regional signals better than the spherical harmonics based on the

degrees and orders, which would have to be expanded globally to large de-

gree to achieve an equivalent representation.

Reproducing kernel

Schmidt et al. (2007) introduced the unique reproducing kernel

Krep(x, xk) =
nmax

∑
n=0

2n + 1

4πR2

(

R

r

)n+1

Pn(ξ
Tξk) (2.49)
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fulfilling the condition (Moritz 1989)

F(x) = (Krep ∗ F)(x) . (2.50)

Rewriting the convolution Krep ∗ F as a series expansion in spherical base

functions Krep, we can replace the original representation (2.48) by equation

(2.51) in terms of the reproducing kernel

(Krep ∗ F)(x) =
N

∑
k=1

dkKrep(x, xk) = krep(x)
Td (2.51)

where krep and d are Nx1 vectors containing N values of the reproducing

kernel function and scale coefficients, respectively.

2.3.2 Multi-resolution analysis

Equation (2.50) expresses the relation between spherical base functions

and convolutions, i.e. the basic tool for filtering processes. The fundamen-

tal idea of the multi-resolution analysis is to split a given input signal into

a smoothed version and a number of detail signals by successive low-pass

filtering. In other words, the multi-resolution representation provides a se-

quence of signal approximations at different resolutions; the detail signals

are the spectral components of multi-resolution analysis due to the fact that

they are related to specific frequency bands (Schmidt et al. 2007).

Spherical scaling functions

Equation (2.52) introduces the spherical scaling function

Φj(x, xk) =

nj max

∑
n=0

2n + 1

4πR2

(

R

r

)n+1

Φj;nPn(ξ
Tξk) (2.52)

of level j, with the Legendre coefficients Φj;n = 0 for all n > nj. This means

that the scaling function works as a low-pass filter. Hence, a signal

Fj+1(x) = (Φj+1 ∗ F)(x) (2.53)

can be analyzed to the smoother version

Fj(x) = (Φj ∗ F)(x) (2.54)
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and the detail signal

Gj(x) = (Ψj ∗ F)(x) (2.55)

which contains the fine structures of Fj+1(x) missing in Fj(x).

Spherical wavelet functions

In comparison with spherical scaling functions working as low-pass fil-

ters, the spherical wavelet function

Ψ(x, xk) =

nj+1 max

∑
n=0

2n + 1

4πR2

(

R

r

)n+1

Ψj;nPn(ξ
Tξk) (2.56)

can be interpreted as a band-pass filter defined by the Legendre coefficients

Ψj;n = Φj+1;n − Φj;n . (2.57)

Finally, a (band-limited) signal F(x) can be written as

F(x) = Fj′(x) +
J

∑
j=j′

Gj(x) + ∆FJ+1(x) (2.58)

which includes the smoothed version (at a certain level j′), the detail signals

at levels from j′ to (maximum level) J, and the residuals

∆FJ+1(x) = F(x)− FJ+1(x)

= (∆ΦJ+1 ∗ F)(x) .
(2.59)

Figure (2.6) illustrates how F(x), G(x), and ∆F(x) look like in implemen-

tation using data modeled from the global model EGM2008 (Pavlis et al.

2008). The gravity anomaly input data are distributed on an equiangular

grid whose indices of column and row are indicated on x and y axes. The

z axis shows the amplitude of signal in meters (due to the application of

the field transformation from gravity anomalies to geoid heights, c.f. section

2.3.4). The input signal is split to the smoothed version F6 and the detail sig-

nals G7 and G8. The higher level, the more detailed the signal; and visually,

the residual ∆F contains a very high-frequency component of the signal.
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Figure 2.6: Illustration of the analysis using wavelets (left to right, top to

bottom: smoothed signal at level 6, detail signals at level 7 and 8, and the residuals)
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Dyadic wavelets

Several types of wavelets can be found in literature, e.g. Freeden 1999.

We introduce here some dyadic wavelets because of the convenience in com-

putation. These wavelets are represented by the Legendre coefficients of the

scaling functions Φj;n.

∙ Shannon function

Φj;n =

⎧

⎨

⎩

1 if n ∈ [0, 2j)

0 elsewhere .
(2.60)

∙ CuP (cubic polynomial) function

Φj;n =

⎧

⎨

⎩

(1 − 2−jn)2(1 + 2−j+1n) if n ∈ [0, 2j)

0 elsewhere .
(2.61)

∙ Blackman function

Φj;n =

⎧







⎨







⎩

1 if n ∈ 0, 2j−1)

Aj(n) if n ∈ [2j−1, 2j)

0 elsewhere

(2.62)

wherein

Aj(n) =
21

50
−

1

2
cos

(

2πn

2j

)

+
2

25
cos

(

4πn

2j

)

. (2.63)

∙ Bernstein function

Φj;n =

⎧



⎨



⎩

(2j)!(2j − 1)!

(2j − n − 1)!(2j + n)!
if n ∈ [0, 2j)

0 elsewhere .

(2.64)

Figure 2.7 illustrates how the wavelets work by means of the scaling func-

tions. The simplest case is the Shannon function which filters signals using,

say, a ”box”. The width of box corresponds to which level (j) it filters, and can

be easily calculated according to 2j − 2j−1. Furthermore, its coefficients are

clearly 1 or 0 (not any intermediate value); hence, it is convenient for mon-

itoring and checking in simulations. In case of CuP function, the low-pass
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Figure 2.7: Dyadic wavelets
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filter coefficients are always less than 1 for any level. Blackman function

means some kind of compromise between Shannon and CuP function (figure

2.7), and in some literature (e.g. Freeden 1999, Schmidt et al. 2007), there

adds a coefficient b deciding the width of band of filtered signal; b = 2 is

equivalent to our case (dyadic).

2.3.3 Least-squares adjustment

First of all, we require a very important result through the below theo-

rem, the proof of which can be found in Freeden et al. (1998).

Theorem

Theorem 2.1. Let F ∈ L2
ΩR

and

K(x, xk) =
∞

∑
n=0

2n + 1

4πR2

(

R

r

)n+1

KnPn(ξ
Tξk) (2.65)

be a kernel with

Kn

⎧

⎨

⎩

∕=0 for n = 0, . . . , nmax

= 0 for n > nmax .
(2.66)

Assume that

(K ∗ F)(x) =
N

∑
k=1

dkK(x, xk) (2.67)

holds. If

L(x, xk) =
∞

∑
n=0

2n + 1

4πR2

(

R

r

)n+1

LnPn(ξ
Tξk) (2.68)

is another kernel with Ln = 0 for n > nmax, then

(L ∗ F)(x) =
N

∑
k=1

dkL(x, xk) . (2.69)

In practice, it means that we just need to determine the scaling coefficient

vector d in equation (2.51) and apply it to equations (2.54), (2.55), (2.59) to



2.3. Combined gravity field model using spherical wavelets and MRA 33

compute all components of the multi-resolution analysis according to

Fj(x) = φT
j (x)d (2.70)

Gj(x) = ψT
j (x)d (2.71)

∆FJ+1(x) = ∆φT
J+1(x)d . (2.72)

Herein φj(x), ψj(x), and ∆φ J+1(x) are the Nx1 vectors containing values of

scaling functions, wavelet functions and functions for residuals, respectively.

Parameter estimation for scaling coefficients

Rewriting equation (2.51) in the form of matrices

f = KT
repd (2.73)

where f is the vector of input values F(x), Krep is the matrix containing val-

ues of the reproducing kernel function. The scaling coefficient vector d can

be achieved using a standard Gauss-Markov model. The parameter estima-

tion yields

d = (AT PA)−1ATP f (2.74)

where A = KT
rep is the design matrix, P is the weight matrix whose errors

are described by Σ( f ) = P−1σ2 with σ2 being the variance factor. The corre-

sponding parameter covariance matrix can also be obtained using the error

propagation

Σ(d) = (AT PA)−1σ2 . (2.75)

2.3.4 Field transformation

In LSC, it is implied that the field transformations underlay cross co-

variance matrices. In MRA, we need a particular treatment for this issue.

Deriving from the relation (2.8) and expanding into the series of harmonics,

we obtain (Hofmann-Wellenhof and Moritz 2005)

∆g =
1

r

∞

∑
n=2

(n − 1)Tn(θ, λ) . (2.76)
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Equations (2.6) and (2.76) yield the degree-dependent conversion factors

(Pail 2007)

Nn =
1

γ
Tn (2.77)

and

∆gn = −
n − 1

r
Tn . (2.78)

Introducing these factors into the MRA process, equation (2.49) including

the ∆g-to-N transformation becomes

Krep(x, xk) =
nmax

∑
n=0

2n + 1

4πR2

(

R

r

)n+1

γ
n − 1

r
Pn(ξ

Tξk) . (2.79)

2.3.5 Numerical example

For illustrating step by step how the MRA process works, a simplified

simulation using global data is given as an example. The flowchart in figure

2.5 should be referred to for a better understanding.

The input data are gravity anomalies generated from the global model

EGM2008 using harmonic coefficients up to the degree and order (D/O) 10,

represented by a (globally) equiangular input grid 30 × 60 (equivalently, the

resolution is 6∘ × 6∘ in latitude and longitude, respectively). It means that

the size of input vector f is (30 × 60 =) 1800 × 1. The base grid where the

input data is projected onto is also globally equiangular with the resolu-

tion of 6∘ × 12∘. Consequently, the scaling coefficient vector d is a column

of (30 × 30 =) 900 elements. Note that the input grid has to be denser (or

larger) than the base grid at a certain degree to guarantee the solvability of

equation (2.73), see chapter 4 for more details. The output grid represent-

ing the output signal is chosen the same as the input grid for the sake of

convenience; hence the output vector is also a column of 1800 elements.

Using the reproducing kernel (2.79) which includes the field transforma-

tion, the design matrix A can be obtained; note that A = KT
rep has a size of

1800 × 900 here.

Now, the scaling coefficients can be estimated by least-squares adjust-

ment according to equation (2.74).
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The next step is the analysis of the signal to the smoothed version and de-

tail signals at individual levels. Due to the fact that we use dyadic wavelets

and the maximum harmonic D/O of input data is 10, we have three levels

here: the smoothed signal F2 corresponds to harmonic D/O from 2 to 3, the

detail signals G2 and G3 contain the components corresponding to harmonic

D/O from 4 to 7 and from 8 to 10, respectively (figure 2.8). The computation

is carried out using equations (2.52), (2.56), (2.70), and (2.71). Note that we

do not consider the residual ∆F due to the very low harmonic D/O of input

data which can be completely represented by three levels F2, G2, and G3.

Finally, the output signal is obtained by the synthesis by means of sum-

ming the individual signals. Here the result (the ”total” in figure 2.8) are

global geoidal undulations (up to D/O 10) in meters.

For an evaluation, a comparison between the computed result and the

”origin” is carried out. The origin here are the global geoidal undulations

generated from the global model EGM2008 using harmonic coefficients up

to D/O 10, which is plotted in figure 2.8 (bottom, left) as the reference. The

bottom-right plot shows that the difference between the computed signal and

the original one is absolutely negligible (about 10−12 m). It proves that the

MRA process (including the field transformation) presented above works cor-

rectly.

2.3.6 Key issues in MRA implementation

The example above shows that the MRA process works perfectly in a sim-

plified simulation, i.e. with a small amount of data, in global scale, and at

low resolution (by means of harmonic D/O). For applying to a sophisticated

situation in reality, some key problems have to be solved.

Recalling the flowchart of MRA (figure 2.5) and presenting in a more

animated way (also means less strictly), figure 2.9 gives us an overview about

key issues in the implementation of the MRA process.

Firstly, when using a large amount of input data at high resolution, equa-

tion (2.73) becomes unstable due to the rank deficiency, and an ill-posed

problem occurs. To improve the condition of normal equations, a stabiliza-

tion by means of regularization is required. This issue will be presented in
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chapter 3.

Secondly, the gravity field quantities are (discretely) represented by some

kind of grids. In the scene of the MRA process, we need the input, base, and

output grid. These grids have to properly represent the signals in terms of

the harmonic D/O, as well as guarantee for the solvability of normal equa-

tions by means of the data sufficiency. The configuration of grids will be the

content of chapter 4.

Finally, when combining signals of different types of input data at the

synthesis step, the adequate weight for each component is essential. Chapter

5 will be dedicated to the weighting issue.

2.3.7 A comparison between LSC and MRA in

the theoretical point of view

To complete this theoretical chapter, a comparison between LSC and MRA

from a theoretical point of view is performed.

∙ Both of LSC and MRA are based on the linear approximation using a

reproducing kernel which relates the estimated parameters to the ob-

servations; and in principle, the observations can comprise different

types of (gravity field) data. In LSC, the covariance matrices, for exam-

ple equation (2.40), play the role of the kernel corresponding to equa-

tion (2.49) in MRA. However; in MRA, equation (2.49) can be applied

separately for each type of data sources, while in LSC, all covariance

matrices have to be dealt with in the same equation (2.39) leading the

huge size of the normal equations. Furthermore, the determination of

covariance matrices (Moritz 1989) by itself is much more sophisticated

than the computation of equation (2.49) and related equations (2.52)

and (2.56).

∙ In both approaches, the resulting gravity field quantities are comple-

mented by stochastic error estimates which can be computed by equa-

tions (2.38) for LSC and (2.75) for MRA. Note that equation (2.75) gives

the error estimates of the scale coefficients. To obtain the final ones,
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the error propagation has to be continuously applied for the following

steps (figure 2.5).

∙ In LSC, cross-covariance matrices relate an observation quantity to

each others (and to the estimated parameter), while MRA requires a

particular field transformation step (c.f. section 2.3.4). However; in

essence, both are derived from relations (2.6), (2.8) and (2.9).

∙ LSC requires the trend field (systematic components) and the global

reductions while MRA does not, except the reduction of the very long-

wavelength component of input data to ensure the proper representa-

tion for a local area. It would be an important advantage of MRA due

to the fact that: what has been removed has to be restored again. So

that the less reduction carried out, the less error propagates into the

computational process.



CHAPTER 3
REGULARIZATION

In order to solve ill-posed problems numerically, regularization can be

applied. An improvement of the condition of the normal equations system

is achieved because some additional information about the solution is intro-

duced. Such information can be assumptions on the smoothness or a bound

on the norm.

There exist several methods for the computation of numerically stable so-

lutions, e.g. Tikhonov regularization (Tikhonov and Arsenin 1977), biased

estimation or ridge regression (Marquardt and Snee 1975), and methods

based on singular value decomposition (Xu 1998). Here, Tikhonov regular-

ization is applied. The theoretical part in this chapter is mainly based on

Bouman (2000).

3.1 TIKHONOV REGULARIZATION

By minimizing the functional

J(d) = ∥Ad − f∥2 , (3.1)

the solution of the linear model Ad = f can be obtained using the least

square estimator

d = (AT A)−1AT f . (3.2)

40
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However, if the model is rank-deficient, a so-called ill-posed problem oc-

curs, i.e., a small change or error in f may cause a large change in the solu-

tion d. Here regularization can be applied to improve the condition of normal

equations AT A by introducing a penalty term from some additional informa-

tion (e.g. the smoothness or a bound on the norm of f or d). Respectively,

equations (3.1) and (3.2) become

J(dα) = ∥Ad − f∥2 + α∥d∥2 (3.3)

and

dα = (AT A + M)−1AT f (3.4)

where α is the regularization parameter, and M is the regularization matrix.

The introduction of M to the normal equations causes an error

dα − d = (A+
α − A+) f (3.5)

called regularization error or bias; herein, A+ = (AT A)−1AT and A+
α =

(AT A + M)−1AT.

In the spectral form, the solutions without and with regularization, re-

spectively, are

d =
∞

∑
n=1

< f , un >

σn
vn

dα =
∞

∑
n=1

σn

σn
2 + α

< f , un >

(3.6)

where σn is the singular value of A, vn and un are eigenvectors of AT A and

AAT , respectively.

For a specific degree n, the regularized solution is written by

dα,n = δndn + δn
εn

σn
, with δn =

σn
2

σn
2 + α

(3.7)

where δn is the filter stabilizing the system, dn is the exact solution from

exact data, and εn represents the data error.

The first part of the right-hand side of equation (3.7) shows that α should

be as small as possible (δn → 1) to obtain the solution close to the exact

one dn, whereas it also should be as large as possible (δn → 0) to reduce the
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influence from data error (the second part of the right-hand side). Thus, how

to choose a optimal parameter is the essence in regularization.

In equation (3.4), M can be a diagonal matrix whose diagonal contains

parameters according to the number of unknowns in the normal equations;

in this case, it is called multiple parameter regularization. One represen-

tative of multiple parameter regularization is the Generalized Biased Esti-

mation (GBE) method (Bouman 2000), of which the minimizing function is

J(d) = ∥Ad − f∥2 + L∥ f∥2 , with M = LT L . (3.8)

In the simpler version, M = αI with α is a scalar, it is called single pa-

rameter regularization or Tikhonov regularization.

Theoretically, the multiple parameter regularization is more flexible and

adequate to the inhomogeneous data (i.e., it can eliminate unnecessary reg-

ularization for some unknowns and reduce the regularization error conse-

quently). However, in practice, the result of multiple parameter regulariza-

tion is not really improved in comparison with single parameter regulariza-

tion in the determination of geopotential models (Xu et al. 2006). Thus the

next section is dedicated to the single parameter regularization, or so-called

Tikhonov regularization, of which the essence is how to choose the optimal

parameter α.

3.2 CHOICE OF REGULARIZATION PARAMETER

There exist several methods to determine the optimal parameter α in

Tikhonov regularization. In principle, it is an attempt to balance the data

error with the regularization error, for the goal to find a solution close to the

exact one, but simultaneously with a regularization error which is as small

as possible.

The L-curve method (Hansen 1992), with its visual advantage, will be

presented in detail. Afterwards, also other methods are being introduced.
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Figure 3.1: Illustration of L-curve in log-log scale (source: Hansen 1997)

3.2.1 L-curve

L-curve is the plot of the norm of regularized solution vs. the correspond-

ing residual norm, for valid values of regularization parameter. Its L shape

can be explained by considering two error components, the perturbation er-

ror and the regularization error. Referring to equation (3.7), the perturba-

tion error caused by the erroneous data, and the regularization error caused

by the regularization itself can be described in the spectral form at a specific

degree n by
εnσn

σ2
n + α

and

(

σ2
n

σ2
n + α

− 1

)

dn, respectively.

The vertical part of the L-curve corresponds to solutions which are very

sensitive to changes in the regularization parameter because of the domi-

nance of the perturbation error (i.e., small values of α). The horizontal part

of the L-curve corresponds to solutions where the residual norm is sensitive

to the regularization parameter due to the dominance of the regularization

error (i.e., large values of α). Therefore, the corner of the L-curve should be

expected as the balance point representing to the optimum value of regular-

ization parameter.
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The exact location of the corner can be found by the maximum value

of curvature or equivalently, by using two conditions: the concavity, and

that the tangent has slope −1. In practice, we can get these conditions by

minimizing the function

Ψ(α) = ∥dα∥ ⋅ ∥Adα − f∥ . (3.9)

The key problem of this method is that the range (and the interval) of α

values should be scanned. From an initial value, the range (surrounding this

value) should be large enough to cover the corner, but as small as possible to

get the result fast.

3.2.2 Quasi-solutions and Discrepancy

principle

Quasi-solutions (Ivanov 1962) and Discrepancy principle (Morozov 1984)

are a-posteriori methods finding the regularization parameter satisfying the

a-priori bound of certain known information, i.e., the norm of the exact solu-

tion for Quasi-solutions or the error level for Discrepancy principle method.

Numerically, α can be obtained by solving the equation (3.10) for Quasi-

solutions or equation (3.11) for Discrepancy principle method

Z(α) = ∥dα∥
2 − c2 = 0 (3.10)

Z(α) = ∥ f∥2− < dα, AT f > −α∥dα∥
2 − e2 = 0 (3.11)

where c is the a-priori bound of the exact solution, e is the known error level,

and <,> represents the inner product.

Essentially, Quasi-solutions and Discrepancy principle are two methods

on the same way:

∙ For given c > 0, minimize the defect ∥Ad − f∥ under the constraint

that the norm is bounded by ∥d∥ ≤ c;

∙ For given e > 0, minimize the norm ∥d∥ under the constraint that the

defect is bounded by ∥Ad − f∥ ≤ e.
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Which method should be chosen depends on which a-priori knowledge we

have: the bound of the norm of the solution, or the data error level.

3.2.3 Generalized cross validation (GCV)

GVC method (Wahba 1990) is based on the leave-out-one idea: omitting

the kth observation yk, the corresponding leave-out-one solution vector (x)k

can be used to predict the ”missing” observation. A good regularization pa-

rameter will product the solution where ∣(Ax)k − yk∣ is small in average over

all possible yk.

In practice, the optimal regularization parameter can be found by mini-

mizing

J(α) =
∥Adα − f∥

(trace(I − Q))2
, with Q = A(AT A + αI)−1AT . (3.12)

3.2.4 Quasi-optimality

Like the L-curve method, Quasi-optimality (Morozov 1984) also tries to

compromise between the data error and the regularization error by minimiz-

ing the change in the regularized solution with respect to the regularization

parameter. The optimal value is obtained when both errors are equal. Nu-

merically one can get it by minimizing

J(d, dαi) = ∥Ad − f∥2 + α∥d − dαi∥
2 . (3.13)

3.3 SIMULATIONS

3.3.1 Simulation 1: spatial resolution and

system stability

In principle, the higher the degrees and orders of the model are, the more

unstable the normal equations become. The first simulation will investigate

the effect of high harmonic D/O on the system stability.
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Figure 3.2: Effect of high harmonic degrees and orders on the system stabil-

ity in MRA process: D/O 360 (left) vs. D/O 900 (right) (From top: the original

geoidal undulations, the reconstructed signals, and their errors)



3.3. Simulations 47

The input data are local geoidal undulations represented by an equian-

gular grid with the interval of 6′ covering the Austrian territory. In the rest

of this thesis, the local area implied this region (about from 46∘N to 49∘N

in latitude and from 9∘E to 18∘E in longitude), unless specific notes. Due to

the size of the local area, long-wavelength components of the input (under

D/O 32 in terms of harmonics) have to be reduced to guarantee the proper

representation of signals.

The MRA process is used to reconstruct the geoidal undulations at two

different maximum degrees and orders, with no regularization applied. The

two original models are generated using EGM2008 harmonic coefficients up

to D/O 360 and 900, plotted in the top of figure 3.2, the middle row shows the

reconstructed signals, and the errors of the MRA process (no regularization

applied) are in the bottom, where we can see the obvious difference between

two cases (20 micrometers vs. 6 centimeters).

Moreover, the irregular distribution and the error of input measurements

also increase the instability of system (see simulation and figure 3.3 below).

Hence, in practice, with the irregular and noisy observables at very high

D/O (in principle infinity), regularization is one key issue requiring proper

treatment.

3.3.2 Simulation 2: regularization error

The purpose of the second simulation is the investigation for regulariza-

tion error. The methods mentioned above (section 3.2) will be applied to a

well-posed system, where input f is the geoidal undulations computed from

the model EGM96 (Lemoine et al. 1998) up to D/O 10, represented by a

global equiangular grid 6∘ × 12∘, solution d is the scale coefficient vector,

and the matrix A is KT
rep in the notation of chapter 2. Table 3.1 gives a com-

parison for several methods. The error in this scene means the root mean

squares of the residuals Ad − f . Note that in Tikhonov regularization ap-

plied here, the regularization matrix is M = αI.

Obviously, regularization causes an error as a price for the stabiliza-

tion. In this simulation, the error changes from micrometer level (absolutely

negligible) to several centimeters. It shows that the heuristic methods (L-
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Table 3.1: Errors of regularization methods

Method Quasi- Discrepancy L-curve GCV Quasi- No regula-

solutions principle optimality rization

α 3.54e-27 4.54e-27 2.31e-31 1.70e-31 1.10e-31 0

Error (m) 0.05 0.07 4e-6 4e-6 6e-6 3e-11

curve, GCV, Quasi-optimality) perform much better than the a-posteriori

ones (Quasi-solutions and Principle discrepancy) in the scene of MRA.

Among the heuristic methods, Quasi-optimality will be chosen for the

next simulation, where a seriously ill-posed problem occurs, because of its

highly automatic operation (i.e., it does not require the initial value of α as

L-curve or GCV does). Furthermore, a representative of the multiple pa-

rameter regularization method, called Generalized Bias Estimation (GBE),

will be also applied for a comparison.

3.3.3 Simulation 3: effect of regularization in

case of noisy data with irregular

distribution

In this third simulation, input data are the geoidal undulations gener-

ated from the model EGM2008 (D/O 900) and represented by 5796 points

which are irregularly distributed inside the Austrian territory. These points

are realistic positions of gravity measurement stations in Austria. More-

over, a white noise with amplitude of 5 cm (rms) is added to the input. The

output are geoidal undulations represented by an equiangular grid with the

interval of 6′ covering the Austrian territory.

In this scenario, regularization shows its important role: without regu-

larization, one cannot obtain a solution due to the fact that the error rises

up to 1.55 m. However, this error is significantly reduced by applying regu-

larization methods. Figure 3.3 shows that the differences between regular-
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Figure 3.3: Regularized solutions and the reference (From top: the refer-

ence geoidal undulations generated from EGM2008 D/O 900, solution with Quasi-

optimality, and solution with GBE regularization)
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ized solutions (middle row corresponds to Quasi-optimality and bottom row

corresponds to GBE) and the ”true” one (top row) which is generated from

EGM2008 (D/O 900) are visually unrecognizable. In numerical values, these

differences are about 5 cm rms, which is the level of white noise of the input

data.

In summary, the simulations show that the irregularly distributed input

data at high resolution (by means of harmonic degrees and orders) cause a

seriously ill-posed problem which can be solved by regularization. Among

several methods, Quasi-optimality proves to be effective one both in the as-

pect of regularization bias and in implementation in the scene of the MRA

process. Therefore, it will be used for all simulations later on.



CHAPTER4
GRID CONFIGURATION

Gravity field quantities are (discretely) presented by grids; they play the

role of either input observations or output results. Moreover, in the scene

of MRA, it requires an intermediate grid called base grid which defines the

size of scale coefficient vector d. Beside the type of grids which has to be

defined firstly, the resolution and size require an adequate configuration to

guarantee the proper representation of frequency bands contained in signals

during the process.

4.1 GRID TYPE

A natural choice is a grid with equiangular intervals (along longitudi-

nal and latitudinal directions). This popular type of grid is very convenient

and easy for computing and displaying. However, at high latitudes, the grid

becomes increasingly dense in longitudinal direction. Due to this disadvan-

tage, the use of an equiangular grid should be avoided for high-latitude ar-

eas.

One solution to this problem is using a grid derived from subdividing a

polyhedron (Freeden, 1999), e.g., icosahedron grid. The icosahedron grid

shows an almost equidistant point distribution at high latitudes. A disad-

vantage is the fast increase in the number of points n from level to level γ

51
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Figure 4.1: Grid types (source: Wittwer 2009) (Top to bottom: equiangular grid,

icosahedron grid at level 4, Reuter grid at level 30; left to right: global scale and at

high latitudes)
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n = 20 ⋅ 4γ−1 . (4.1)

The Reuter grid also provides an almost equidistant point distribution,

but has a slower increase of n. Compared with equation (4.1), this advantage

can be observed in equation (4.2)

n ∼= 2 + 4
γ2

π
(4.2)

which gives an estimate for the number of points at level γ of Reuter grid.

See Driscoll and Healey (1994) for further details about Reuter grids.

For the Austrian territory (latitude is about from 46.4∘N to 49∘N), the

disadvantage of an equiangular grid is not remarkable compared with its

convenience. Moreover, Pail (2006) has also shown that there is almost no

difference between using equiangular and Reuter grid for Austria. Thus,

equiangular grids are preferred in this thesis.

4.2 GRID SIZE AND RESOLUTION

In the MRA process, summarily, input signals (represented by discrete

data points on input grids) are projected onto a base grid via the scale coef-

ficients d (equation (2.73)), analyzed to individual levels afterwards through

wavelet functions (2.56), and finally synthesized to the output signal on an

appropriate output grid (2.58). These grids (input, base, output) have the

spatial correlation through the factor cos ψ (ψ is the spherical distance be-

tween two points on the sphere) and, in principle, cover the same target area.

Hence, the sizes of grids are almost predefined by the limited area where we

determine the local geoid. However, in practice, the input grid is usually

expanded a bit due to the requirement of data redundancy (see the simula-

tion below), and in order to reduce the boundary effects (i.e. peaks of error

caused by the discontinuity of data distribution at the boundary).

The limited size of the input grid leads to the requirement of low har-

monic degree reduction in order to properly represent the frequency bands.

With the Austrian territory, as the test field area covers about 5 degrees in
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latitude and 10 degrees in longitude, harmonic degrees lower than 32 will

be reduced for all following computations.

Beside the issue of grid size, the grid resolution is also a key to ensure

that the grids (input, base, and output) properly represent high-frequency

bands contained in the signals. In practice, the number of local input data

points is known; the output points are also given or chosen with the largest

number in order to appropriately represent the output signal (by means

of the frequency bandwidth following the approximation: the spatial wave-

length = 180∘/nmax). The number of base grid points, on the one hand, should

be small for reducing the computation effort, on the other hand, has to be

sufficiently large corresponding to the frequency bandwidth.

4.2.1 Simulation 1: grid resolution and

harmonic D/O

This simulation illustrates the effect of base grid resolution onto the ac-

curacy of the solution (scale coefficient vector d) of the normal equations.

The harmonic coefficients of the model EGM2008 (up to D/O 900) are used

to compute the local geoidal undulations, represented by an irregular distri-

bution of realistic positions of 5796 stations in Austria. These input signals

are projected onto base grids with different resolutions (152, 555, and 3276

points, corresponds to ∆θ = ∆λ = 0.5∘, 0.25∘, and 0.1∘ respectively) using the

MRA process. Table 4.1 shows the accuracies of solutions of scale coefficient

vector d corresponding to the different base grid resolutions. It is clear that

the grid resolution has to be sufficiently high in order to correspond to the

frequency bandwidth to represent signals in a proper way.

4.2.2 Simulation 2: data sufficiency

Apparently, sufficient redundancy is necessary for solving the normal

equations. This simulation will show the requirement of (sufficiently) redun-

dant observables, or in other words, the number of input grid points must

be sufficiently larger than that of the base grid points. The simulation will

reconstruct two data sets of geoidal undulations (EGM2008 up to D/O 360)
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Table 4.1: Errors of solution d correspond to different resolutions of the base

grid

Case 1 2 3

Number of base grid points 152 555 3276

∆θ = ∆λ [degree] 0.5 0.25 0.1

Error of solution d [m] 1.081 0.427 3e-7

with the base grid and output grid are the same and similar to the above

simulation (40.5∘ ≤ θ ≤ 44∘, 9∘ ≤ λ ≤ 18∘, ∆θ = ∆λ = 0.1∘). The number of

base grid point is 3276, being equal to the number of unknowns (elements

of scale coefficient vector d). Theoretically, the number of input data has

to be equal to or larger than 3276. In this simulation, two regular input

grids, which differ in data density, are used to illustrate the effect of redun-

dancy. In the first case, there are 3321 input data points (38∘ ≤ θ ≤ 46∘,

6∘ ≤ λ ≤ 22∘, ∆θ = ∆λ = 0.2∘), where the redundancy is only 45; in the

second case, 6216 input points are used (39.5∘ ≤ θ ≤ 45∘, 8∘ ≤ λ ≤ 19∘,

∆θ = ∆λ = 0.1∘), and the redundancy now is larger. The difference between

two cases is shown in figure 4.2.

The output signal in the first case (middle row) is unacceptable, when

compared to the good result in the second case (bottom row) whose error is

less than a millimeter in comparison with the ”true” one (top row) generated

from model EGM2008 (up to D/O 360). Obviously, sufficient redundancy

is required to guarantee a stable and correct solution. However, in practice,

this condition does not always hold. In those situations, regularization meth-

ods should be applied to stabilize the solution and improve the final result

as presented above (chapter 3).
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Figure 4.2: Effect of redundancy: reconstructed geoidal undulations using

a 3321 (middle) and a 6216 (bottom) point input grid (base grid consists of

3276 points) in comparison with the ”true” one (top)



CHAPTER5
GRAVITY DATA COMBINATION

In principle, data combination can be performed using the spectral weight-

ing (i.e., only dependent on the harmonic degree), or the stochastic solution

derived from the error propagation. In the scheme of the MRA process, the

combination can be done right after computing the scale coefficient vector d,

or later with the decomposed signals in individual levels.

Generally, there is an acknowledged assumption to premise that the in-

formation from global gravity models (or satellite missions, i.e., at global

scale) is reliable and properly represents the Earth gravity field at the long-

wavelength part; the high-frequency part on the spectrum would be reflected

by the terrestrial observation which is accurately measured in a small area.

In this point of view, the weighting methods for combining global and local

data are usually based on the information derived from the harmonic degree,

so-called spectral weighting or deterministic method.

On the other hand, if the stochastic information of both data sources is

available, and the error propagation is properly performed during the com-

putation process, we can weight data using solely this covariance informa-

tion. In this way, the weighting methods are denoted as stochastic methods.

Next, both kinds of weighting method (in the scheme of the MRA process)

are presented. After that, a combined spectral-stochastic weighting method

will be proposed.
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5.1 STOCHASTIC WEIGHTING

The weights for global and local components of the detail signals can be

determined by means of error propagation through the computation pro-

cess. Together with the estimation of the scale coefficient vector d, also its

variance-covariance matrix can be computed

d = (ATPA)
−1

ATP f , (5.1)

Σ(d) = (AT PA)−1σ2 (5.2)

where σ2 is the variance factor of input data, of which the error described by

Σ( f ) = P−1σ2 propagates to the covariance matrix Σ(d) of the scale coeffi-

cient vector d.

In case of applying regularization methods, equations (5.1) and (5.2), re-

spectively, become

d = (ATPA + M)
−1

ATP f (5.3)

and

Σ(d) = N−1ATPAN−1σ2 (5.4)

where M is the regularization matrix and N = (ATPA + M).

Based on the definition G = ψTd, the covariance matrix of the detail

signal G can be estimated at each individual level j by

Σ(G) = ψΣ(d)ψT . (5.5)

Similarly, for the residual signal

∆F = ∆φTd , (5.6)

the corresponding covariance matrix can be obtained according to

Σ(∆F) = ∆φΣ(d)∆φT . (5.7)

Finally, the weights for detail signals G at each level j can be determined

as the inverse of variance values extracted from covariance matrices

wG =
1

σ2
G

(5.8)
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with the boundary condition: wglo + wloc = 1.

With the full covariance matrices propagated through the computational

process, this weighting method can reflect the stochastic characteristic of

input data, and also the spatial relation of local observations. Another major

advantage is that we can estimate the error of the output model.

However, the weighting values based on stochastic-only approach indi-

cate the non-negligible role of local data in low levels (by means of low har-

monics or long wavelengths in the spectral domain) where the dominance of

(the long-wavelength part of) global data is assumed.

5.2 SPECTRAL WEIGHTING

The degree variance which expresses how much energy is contained in

a certain frequency can be computed using the fully normalized harmonic

coefficients Cnm and Snm

σn
2 =

n

∑
m=0

(C
2

nm + S
2

nm) . (5.9)

Its ”error”, the error degree variance, is similarly computed from the vari-

ances of Cnm and Snm

ε2
n =

n

∑
m=0

(δC
2

nm + δS
2

nm) (5.10)

where δCnm and δSnm are the standard deviation of Cnm and Snm, respectively.

Like the measurement error in the stochastic approach, this kind of ”er-

ror” in spectral domain will be used for weighting. Firstly, the ratio between

the error degree variance (edv) ε2
n and the degree variance (dv) σ2

n expressing

the percentage of error in the spectral domain of the harmonics at each de-

gree is computed. Figure 5.1 illustrates this information for about first 900

degrees of EGM 2008.

The higher the degree is, the larger the relative error
ε2

n

σ2
n

is, or in other

words, the lower the reliability of information extracted from the harmonics

is. The weights of the global data are proportional to this reliability

wn = 1 −
ε2

n

σ2
n

. (5.11)
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Figure 5.2: The degree-weight values of EIGEN-GL04S (D/O 140)

Figure 5.2 illustrates the weight (with respect to degree n) of the global

model EIGEN-GL04S (D/O 140).

Finally, this weighting is introduced to the MRA process by computing

the weight values for each level j according to

wn,j =
∑

n′

n=0 wnΦn,j

∑
n′

n=0 Φn,j

(5.12)

where Φn,j is the coefficient of the kernel function in equations (2.60) or

(2.61), (2.62), (2.64), and (n′ = 2j−1 − 1). The weights for local data also

agree with the boundary condition: wloc = 1 − wglo.

In the MRA process, the input data is decomposed into individual levels
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separated by frequency intervals in the spectral domain; thus the spectral

weighting seems to be a proper method for combining the detail signals of

both global and local sources. However, this deterministic method neglects

all possible stochastic a-priori information about the data. It also does not

take the spatial relationship of the observables into account, or in other

words, there is only one weighting value for each level, not for each point.

Moreover, this method cannot estimate the output error by itself.

5.3 COMBINED SPECTRAL-STOCHASTIC

WEIGHTING

Generally, the spectral method works well for weighting the detail signals

in the wavelet process; however, for taking full advantage of the stochastic

information of input data, a combined spectral-stochastic weighting method

is proposed.

From equations (5.8) and (5.12), the combined weights can be determined

according to

wj = wn,j ⋅ wG,j , (5.13)

with the boundary condition

w
glo
j + wloc

j = 1 . (5.14)

Using this weighting method, all advantages of both spectral and stochas-

tic weighting are taken into account. Every point (of output grid) at every

level has a weighting value satisfying the premise that the global informa-

tion dominates at the long-wavelength part in the spectral domain but grad-

ually decreases according to the increase of the frequency.

Figure 5.3 illustrates the (mean of) weight values for all levels when com-

bining the global component from the model EIGEN-GL04S and the local

gravity anomalies in Austria (see chapter 6). Analyzing each level in more

detail, the weights for every point in level 6 are plotted in figure 5.4. These

values are the weight applied in the simulation at section 6.8.

One more key advantage is that the error of the output model can be
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estimated according to

σ2
j = w

glo
j ⋅ (σ

glo
j )2 + wloc

j ⋅ (σloc
j )2 (5.15)

and

σ2 =
J

∑
j=1

σ2
j , (5.16)

where (σ
glo
j )2 and (σloc

j )2 are the variance factors extracted from the corre-

sponding covariance matrices Σ(G) (of the global and local data).

When should we make the combination?

One important question is raised in the process: When should we make

the combination? In principle, we can combine either at the step when the

scale coefficient vector d is computed, or after getting all detail signals at the

very end of the process. The combination right after getting the scale vector

d will reduce the computation effort; however, the spectral weighting cannot



5.3. Combined spectral-stochastic weighting 64

500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

point

w
ei

gh
t

point weights of local (red) and global (blue) components

10 12 14 16 18
46

46.5

47

47.5

48

48.5

49

49.5

longitude

la
tit

ud
e

point weights of local component in geographical display

 

 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.4: Combined weights of points at level 6, blue for global and red

for local component (top), and weights of local component in geographical

display (bottom)



5.3. Combined spectral-stochastic weighting 65

be applied to the scale coefficient vector d due to the algorithm used in this

MRA process (we have only one set of scale coefficients for all levels). There-

fore, the weighting methods are applied at the level of the detail signals in

the computation.



CHAPTER 6
NUMERICAL RESULTS

The main content of this chapter is the computation for a geoid solution

for the case study of Austria. At first, the data sources and the set-up for the

computations are described. After that, several computation approaches are

presented, as well as an overview about the reference solution will be given.

6.1 DATA SOURCES

In principle, there are two main data sources: the global and the local

data. The local data, in this scene, are the terrestrial observables, while

the global data can be extracted from the earth gravity models. In the view

of frequency characteristic, it is presumed that the global models represent

properly the long-wavelength part, while the short-wavelength information

should be found in the terrestrial observables.

6.1.1 Global data

There exist several global gravity models. In the following, a short intro-

duction of the models EGM96 (Lemoine et al. 1998), EGM2008 (Pavlis et al.

2008), and EIGEN-GL04S (ESA website) used in this thesis is given.

The EGM96 model is based on the WGS84 ellipsoid, and the coefficients

are calculated from a worldwide database of 30 minute mean free-air gravity
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anomalies plus the satellite tracking data and the direct altimetry. EGM96

is a composite solution for a geopotential model of the earth. The NASA

Goddard Space Flight Center (GSFC), the National Imagery and Mapping

Agency (NIMA), and the Ohio State University (OSU) have collaborated to

develop an improved spherical harmonic model of the Earth’s gravitational

potential to degree 360. The final solution blends a low-degree combination

model to degree 70, a block-diagonal solution from degree 71 to 359, and

a quadrature solution at degree 360. The model was used to compute the

Geoid undulations with the accuracy better than one meter (with the excep-

tion of areas void of dense and accurate surface gravity data) and realize

WGS84 as a true three-dimensional reference system. A detail description

can be found in Lemoine et al. (1998). This very classical and popular model

is used in this thesis for some beginning simulations which do not require a

high D/O model.

The Earth Gravitational Model EGM2008 was publicly released by the

US National Geospatial-Intelligence Agency (NGA) EGM Development Team.

This gravitational model is complete to spherical harmonic degree and order

2159, and contains additional coefficients extending to degree 2190 and or-

der 2159 (see Pavlis et al. 2008 for more details). This is the recently highest

resolution model and is used for several simulations in this thesis.

In contrast to the two above composite models, EIGEN-GL04S is a pure

satellite data model, complete to degree and order 150 from GRACE and

LAGEOS data only. It is given in normalized spherical harmonic coefficients

in ITRF2000, and uses exactly 2 years of GRACE plus LAGEOS data (73

ten-day periods between 2003/02/24 and 2005/02/23). Its reference date is

2004.0. This field does not include time-variable terms. This model and its

relatives on the series of GL04 models can be found at the website of ESA.

EIGEN-GL04S is used as the main global data for the final computations in

this thesis.

6.1.2 Local data

For local data, the acquisition and pre-processing of the terrestrial ob-

servables are not easy, and very time consuming. In this thesis, we use the
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same terrestrial data sources as in the project GEOnAUT (Pail 2007), see

section 6.3 for an overview about this project, whose results play a role as

the reference solution for this thesis.

The main characteristics and key statistical parameters of the local data

are extracted from Pail et al. 2008 as follow:

Derived from a quite inhomogeneous data set of about 122 000 gravity

anomaly points, all data is classified by its height and position errors (us-

ing a DTM) and reduced to a smaller but more homogeneous data set with

the approximate distance between observables is about 4 km. The distribu-

tion of this reduced data set of 14001 points is shown in figure 6.1. While

the distribution in the Austrian territory is very homogeneous, the distri-

bution in Czech as well as Slovakia is too sparse, the distribution in the

regions near the border could be denser, and there is a gap in the North of

Slovenia where accurate data are missing. The internal consistency of this

gravity anomaly data set has been validated by separating this data set into

two sub-sets, using one of them as the input of a LSC procedure, predict-

ing gravity anomalies at the stations of the complementary data set, and,

finally, comparing the residuals between predicted and measured values. It

can be summarized that the gravity data set is (partly) homogeneous, but

improvements along the Austrian border are desirable.

The (free-air) anomalies here are computed in Molodensky’s sense, i.e.

by subtracting the normal gravities on telluroid from the measured grav-

ities on the ground. For using in least-squares collocation approach, the

topographic-isostatic reduction and the global reduction up to harmonic D/O

70 (using the model EIGEN-GL04S), as well as the indirect effect are com-

puted for this data set. This reduction procedure leads to a significantly

smoother signal, as shown in figure 6.2 (reduced anomalies) in comparison

with the free-air anomalies (no reduction) in figure 6.3. The effect of the

reductions is also numerically expressed throw the statistical parameters in

table 6.1.

In brief, we have both the original observables, i.e. the (free-air) gravity

anomalies, and the reduced gravity anomalies (global reduction, topographic-

isostatic reduction, and indirect effect) data being ready for several compu-

tation approaches later on.
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Figure 6.1: Distribution of 14001 gravity anomalies

Table 6.1: Key statistical parameters of local data

Gravity anomalies [mGal] min [mGal] max [mGal] std. dev. [mGal]

Free-air −155.60 200.86 42.32

Reduced −75.29 21.47 19.60
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Figure 6.2: 14001 reduced gravity anomalies (reductions: global,

topographic-isostatic, and indirect effect)
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Figure 6.4: Distribution of 170 GPS/leveling points

The other important type of terrestrial observables is the GPS/leveling

measurement. It is usually used for validating (fitting) and evaluating (check-

ing) the computed geoid heights, or sometime included in the computation.

It should be mentioned that if the GPS/leveling data set is used as an input

data source, the resulting surface is more or less forced to the GPS/leveling

points, and thereby mapping all the systematic errors from the height sys-

tem and GPS measurements. Moreover, the combination with the other data

sources requires appropriate weighting solutions (see next sections). In this

thesis, 170 GPS/leveling points covering the Austrian territory will be used

for combining, fitting, and checking as well. The distribution of these points

can be seen in figure 6.4.

Furthermore, there are about 670 deflections of the vertical, which en-

tered the GEOnAUT solution. However, due to their limited impact on the

final combined solution, they are not used in the computation process here.
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6.2 SET-UP OF COMPUTATION SCHEME

The set-up for a computation scheme comprises the choice and definition

for several parameters such as the scaling function and the highest level

used (in the scene of MRA), regularization method, grid resolution, the de-

gree of global reduction, weighting schemes, and data sets. Based on the

fundamentals and simulations presented in previous chapters, the set-up

for later computations is described in the following.

6.2.1 Choice of scaling function and jmax

Among several dyadic kernels introduced in chapter 2, the Shannon func-

tion is the simplest one. Its response consists only of zero and one, so it is

very convenient and easy for monitoring and checking in small beginning

simulations. Consequently, due to its simplicity and reliability, it was used

for all later simulations as well as the final computations.

When using a dyadic kernel, the signal is analyzed into individual levels;

a level j corresponds to the frequency bandwidth of, in terms of harmonic

degree and order, from 2j to 2j+1 − 1. Now the question is: how many levels

should we use, or equivalently, what is the highest level jmax? Generally, the

answer is: the higher the better, due to the fact that the highest harmonic

D/O of terrestrial observations is, in principle, infinity. If jmax is too small,

the high-frequency component of the signal will be missing. On the contrary,

the too large jmax will increase the computational effort and require the cor-

responding amount of input data. The simulation below will give a specific

answer for the real data set of Austrian gravity anomalies.

From the 14001 topographic-isostatic reduced gravity anomalies described

above, a set of 5667 values inside the Austrian territory is extracted. This

data set will be reconstructed using the MRA process with different values

of jmax (6, 8, and 10, respectively). The differences between the reconstructed

signals and the original one will point out how much information is missing

during the process using 6, 8, and 10 levels.

Figures 6.5, 6.6, and 6.7 illustrate for cases jmax = 6, jmax = 8, and

jmax = 10, respectively. Each figure comprises the individual signals (left),
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Figure 6.5: Signal reconstruction using 6 levels. Left: detail signals at levels

4, 5, 6; right: reconstructed signal, the reference, and their difference (top to

bottom)
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Figure 6.6: Signal reconstruction using 8 levels. Left: detail signals at levels

6, 7, 8; right: reconstructed signal, the reference, and their difference (top to

bottom)



6.2. Set-up of computation scheme 76

Figure 6.7: Signal reconstruction using 10 levels. Left: detail signals at

levels 8, 9, 10; right: reconstructed signal, the reference, and their difference

(top to bottom)
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Table 6.2: Errors of reconstructed signals (gravity anomalies) when using 6,

8, and 10 levels

Number of levels Error (rms) in [mGal]

6 8.5

8 4.9

10 2.3

and the reconstructed signal, the original one, and the difference between

them (right, top to bottom). Obviously, the more levels are used, the better

a reconstructed signal can be obtained. The results summarized in table 6.2

show that the difference between the reconstructed signal and the original

one decreases to about 2 mGal when using 10 levels, compared with 5 and 9

mGal in cases of 8 and 6 levels were used.

Regarding to the accuracy of gravity anomaly observations which is con-

ventionally assumed of 1 mGal, the error about 2 mGal (included the error

of the MRA process) when using 10 levels is acceptable. Furthermore, the

use of 10 levels is also the limit which a standard PC (i.e., 1 GB memory) can

handle in this computation scheme due to the fact that the size of the normal

equations is proportional to the resolution of the base grid, and in its turn,

the grid resolution has to be sufficiently high corresponding to the band-

width of the signal it represents. Moreover, the amount of gravity anomaly

observables in the given data set is barely sufficient for representing signals

up to level 11, but does not guarantee the solvability of the normal equa-

tions (see the simulation about the data sufficiency in section 4.2.2). Conse-

quently, the set-up of maximum 10 levels is used for the later computations.

Concerning the stabilization of the normal equations, the Tikhonov reg-

ularization using Quasi-optimality method is applied for all computations

below. Its convenience and reliability were shown in several simulations in

chapter 3 as well as during the whole implementation.
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6.2.2 Set-up for grids and the long-wavelength

component reduction

As mentioned in chapter 4, equiangular grids are the choice for this the-

sis. Now, what we need is the set up for grid’s size and resolution. Because

we use 10 levels (harmonic D/O up to 2047 equivalently) for the analysis, the

resolution of, at least, (180∘/2047 =) 5′16′′ is required for the base grid; and

due to the fact that the geographic coordinates of Austria are about from

46.4∘N to 49.0∘N in latitude and from 9.5∘E to 17.2∘E in longitude, the base

grid is set up as follow:

∙ Base grid: 37 × 97 = 3589 points

– Latitude: 46.25∘N : 5′ : 49.25∘N

– Longitude: 9.25∘E : 5′ : 17.25∘E

The input grid (for global data) is a bit extended in comparison with the

base grid, and is required to satisfy the condition of data sufficiency (to solve

the normal equations). The set up for the input grid is:

∙ Input grid: 56 × 111 = 6216 points

– Latitude: 45∘N : 6′ : 50.5∘N

– Longitude: 8∘E : 6′ : 19∘E

For the sake of convenience, the resolution of 6′ (= 0.1∘) is chosen for the

output grid. This resolution is also sufficient to display the output signal

smoothly. The illustration for this grid is given in figure 6.8.

∙ Output grid: 36 × 86 = 3096 points

– Latitude: 46∘N : 6′ : 49.5∘N

– Longitude: 9∘E : 6′ : 17.5∘E
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Table 6.3: Errors of reconstructed signals (gravity anomalies) when using

global reductions up to D/O 55, 63, and 70

Global reduction up to Error (rms) in [mGal]

D/O 55 2.3

D/O 63 2.3

D/O 70 2.3

Moreover, for the fitting and checking steps using GPS/leveling data, the

170 positions of GPS/leveling observations are added to the output grid.

Hence, the set of output positions actually comprises 3266 points instead

of 3096 regular points (of the output grid).

Concerning the long-wavelength components, which should be reduced

from data to ensure the appropriate representation of the signal on a local

area, the maximum degree of the reduced component can be approximated

by 180∘/dϕ where dϕ is the smaller size of the target area. With the base

grid set up above (dϕ = 3∘), the long-wavelength component up to about

D/O 60 should be removed. This number (sixty) is just an approximation.

An investigation for three values around 60, which are 55, 63, and 70, is

carried out. The third case of the simulation about jmax (i.e. jmax = 10) above

is repeated, however, not only D/O 70 but also D/O 55 and 63 are applied.

The differences between the reconstructed signals and the original ones for

three cases (global reductions up to D/O 55, 63, and 70) are listed in table

6.3. It shows that the errors are the same for all cases, i.e. we can chose

any number in that range (from 55 to 70) without considering. For later

computations, the value D/O 63 is chosen (partly because of the convenience

when using dyadic kernel).

6.2.3 Set-up for data sets and corrections

Here we have three data sources including the (modeled) global geoidal

undulations, the gravity anomaly observables, and the GPS/leveling mea-

surements which also are the three major data types in the geoid determi-
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nation. Note that the data set of deflections of the vertical, which entered

the GEOnAUT solution, was not used due to its limited impact on the final

combined solution.

The terrestrial gravity anomaly is the main observation type forming the

(regional) geoid as well as contributing to the physical characteristic of this

surface. However, the disadvantage of this data source is the lack of high

quality information of the earth gravity field in long wavelengths, which

requires the complementary information from the global data. This is also

one of the main reasons causing the difference between the resulting geoid

and the existing set of GPS/leveling points.

The set of GPS/leveling data, due to the fact that it sticks on both geo-

metric coordinate reference system and (physically-derived) national height

system, is often used to fit the systematic difference between the computed

geoid and the national height system as well as for evaluating the quality

of the resulting geoid. Moreover, in the scene of the MRA process, it can be

also used as an input data source.

Concerning the global data, in reality, most of EGMs are composite mod-

els also including terrestrial data. Therefore, we use the pure satellite model

EIGEN-GL04S as the main global input data. EIGEN-GL04S is available up

to harmonic D/O 150, we used the maximum D/O of 127 (= 27 − 1) for the

convenience when applying dyadic kernel. Furthermore, due to the limited

size of the target region, long wavelengths below harmonic D/O 64 are re-

duced for all types of data using EIGEN-GL04S.

In summary, we have the following data sets:

∙ The set of 6216 global geoidal undulations generated from model EIGEN-

GL04S using harmonic D/O from 64 to 127, which is represented by the

input grid described above.

∙ The set of 14001 terrestrial gravity anomalies which is global (up to

D/O 63) and topographic-isostatic reduced.

∙ The set of 170 GPS/leveling points is separated into two subsets of 85

points, one for fitting (validating) and one for checking (evaluating) the

resulting geoid. Figure 6.9 shows that the scattering distribution (over
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Figure 6.9: Distribution of 85 GPS/leveling fitting points (blue ◇) and 85

GPS/leveling checking points (red ×)

Austria) of those two data sets is ensured. Moreover, the whole data set

of 170 measurements is used as an input data source in approaches 2, 3,

and 4. In analogy to the case of gravity anomaly data, the GPS/leveling

data are global (up to D/O 63) and topographic-isostatic reduced.

Concerning the difference between the resulting geoid and the national

height system represented by the GPS/leveling observations (so-called the

”direct” geoid height measurements), it is attributed to

∙ the datum inconsistencies, different tidal systems, long-wavelength geoid

errors, GPS errors, distortions in the vertical network, and

∙ the intrinsic non-unique problem of the operator mapping the gravity

anomalies into the geoid heights within a local area and vice versa

(Prutkin and Klees 2008).
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Generally, the first error sources are systematic or long-wavelength char-

acteristic, and can be parameterized by a low-order polynomial (here we call

it fitting surface). The second one, caused by the field transformation, has

a more sophisticated property. In the scene of the MRA process, a simu-

lation described below shows that, for signals up to harmonic D/O 511, the

error of the field transformation has also a long-wavelength characteristic,

hence can be implicitly included in a low-order polynomial which is used for

the fitting correction. For signals at very high frequency bands, an idea is

to construct a non-trivial function which is harmonic in the neighborhood

of the target area and has an almost zero gravity anomaly signal over the

target data, then its non-zero potential signal is the correction for the field

transformation error, see Prutkin and Klees (2008) for more details.

Simulation: The harmonic coefficients of model EGM2008 up to D/O 511

are used to generate the values of gravity anomalies as well as geoidal undu-

lations for 14001 positions of the local input data set (see above). The MRA

process is applied for these gravity anomalies to compute the geoidal undula-

tions for the same 14001 positions. The differences between these computed

values and the generated ones indicate the error of the field transforma-

tion. Afterwards, these differences (14001 values) are projected onto the

output grid (3096 points) also using the MRA process (without field trans-

formation). The result is plotted in figure 6.10. These values can be used as

a simple model for the field-transformation correction in the MRA process.

Figure 6.10 shows the long-wavelength characteristic of this simple correc-

tion model, so it may be also included in the low-order polynomial used for

the fitting surface. However, in the computation of all approaches below, this

field-transformation correction is applied separately with the fitting surface

due to the intrinsic difference between them. See figure 6.16 for the illus-

tration about the field-transformation correction for each level. Note that

this correction is applied for all approaches but exemplarily mentioned in

approach 1.

Concerning the fitting correction, this is the required step to fit the com-

puted geoid to the nation height system represented by GPS/leveling points.

Here we use a set of 85 GPS/leveling points (figure 6.9) for this purpose. The
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Figure 6.10: Correction for ∆g-to-N transformation (EGM2008 D/O 511)

85 values of differences between this fitting data set and the computed geoid

are used to estimate the coefficients of a third-order polynomial using the

least-squares adjustment

f = (AT A)−1ATy85 (6.1)

where f is the vector of 10 coefficients of the polynomial, y85 is the vector of

85 values of differences, and A is the design matrix.

The covariance matrix of f is also obtained by

Σ( f ) = (AT A)−1σ2 (6.2)

where σ2 is the variance factor of y85.

Then all correction values for the output-grid points and their corre-

sponding estimated errors can be computed according to

y = A f (6.3)

and

Σ(y) = AΣ( f )AT . (6.4)
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Recalling equation (5.16), the final estimated error of the output signal

σout now can be obtained by

σ2
out = σ2 + σ2

f it (6.5)

where σ2
f it are the main diagonal elements of Σ(y).

For the evaluation, a set of 85 GPS/leveling checking points is used.

The root mean square (rms) value of 85 differences indicates the incon-

sistency between the resulting geoid and the ”direct” geoid represented by

GPS/leveling measurements. Remind that these 85 checking points and the

85 fitting points mentioned above are two subsets of the given set of 170

GPS/leveling observations. Moreover, for a comparison with the reference

solution GEOnAUT, the 164 mutual points (inside Austria) of two output

grids are picked up, and the rms of these 164 differences represents the in-

consistency between two geoid solutions. The 164 checking points used to

compare with GEOnAUT are the mutual points between the output grid set

up at section 6.2.2) and the output grid of GEOnAUT. After excluding points

on (or very close to) the border, we get 164 mutual points of those two output

grids inside Austria. The distribution of these 164 positions is displayed in

figure 6.11. The comparison between the solutions of approaches and GEO-

nAUT is present in section 6.9.

6.2.4 Set-up for the combination scheme

As mentioned before, the local data (terrestrial gravity anomalies) are

the main effort in the regional geoid determination work; however, in order

to take full advantage of the long-wavelength information of global data, a

global-local data combination should be carried out.

For the global-local data combination, the simplest way is choosing a

turning point (e.g., a certain degree and order when using harmonic coef-

ficients) where the upper part is the domain of local components and the

lower one purely uses the global data. This separating point usually belongs

to the long-to-medium wavelengths; however, it is not easy to define exactly

where the border should be. Any answer is more or less forced. So, instead

of an exact border separating areas of global and local components, a (buffer-
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ing) combination zone where the impact of the global component gradually

decreases corresponding to the increase of the local component’s contribu-

tion seems to be more flexible and reasonable. The frequency band of the

combination also should belong to the long-to-medium wavelengths. In this

thesis, the combination is carried out for the frequency range of 64 to 127

harmonic degrees. The key problem in this solution is the adequate (combi-

nation) weighting for the global and local components; see chapter 5 for more

details about this issue.

The GPS/leveling data, beside their role of the reference set for fitting

and checking the computed geoid, can theoretically be used as an indepen-

dent input data source. However, the very strong requirement in the frame

of MRA is that the number of GPS/leveling measurements have to be dense

enough (i.e. equivalent to the resolution of the base grid, at least) which

is almost never satisfied in practice because of the expensive cost for the

GPS/leveling measurement. Hence, in order to use this type of data as input

data, the GPS/leveling points have to be merged into a larger input data set,

i.e. the 6216 global undulations or the 14001 terrestrial gravity anomalies.

The latter approach is impossible, at least in the scene of this MRA process,

due to the different types of data (height vs. gravity); so the possible way is

to merge the GPS/leveling data into the global data set. The problem here

is the inconsistency of the frequency band; i.e., while the global data con-

tain only the long to medium wavelength information, the GPS/leveling data

include the shorter wavelength components. When putting them into the

same basket, we have to use the same (wavelet) functions. Due to the maxi-

mum harmonic degree and order of the global data is up to 127 (equivalent

to level 6), we have two choices here: process all (the global and GPS/leveling

data) up to level 6 (i.e. ignore the frequency part higher than D/O 127 of the

GPS/leveling data), or up to the higher levels (in this thesis is level 10, equiv-

alent to D/O 2047) to use the more detail information of the GPS/leveling

data with the assumption that the lack of information of many global data

points in this frequency range (from level 7 to level 10) does not effect to the

MRA process.

In summary, we have the following combination schemes:



6.3. Reference solution: GEOnAUT 88

∙ Using the reduced data of 14001 gravity anomalies and 170 GPS/leveling

observables (topographic-isostatic reduced including indirect effect, and

global up to D/O 63 reduced), and 6216 global geoidal undulations (D/O

from 64 to 127):

– 14001 gravity anomalies analyzed to 10 levels combine with 6216

global geoidal undulations analyzed to 6 levels;

– 14001 gravity anomalies analyzed to 10 levels combine with a set

of 6216 global geoidal undulations and 170 GPS/leveling points an-

alyzed to 6 levels;

– 14001 gravity anomalies analyzed to 10 levels combine with a set

of 6216 global geoidal undulations and 170 GPS/leveling points an-

alyzed to 10 levels:

∗ using the combined spectral-stochastic weighting as all other

approaches, and

∗ no weighting (i.e. using level 6 as the ”turning point”).

∙ Free-air data without topographic-isostatic reduction, only global re-

duction up to D/O 63: 14001 gravity anomalies analyzed to 10 levels

combine with 6216 global geoidal undulations (D/O from 64 to 127) an-

alyzed to 6 levels.

Table 6.4 summarizes all computation schemes which will be carried out

later on. The first four are the different approaches of data combination

for a geoid solution. The last one which uses the non-reduced data should

be counted as an investigation into how MRA deals with extremely high-

frequency signals more than a geoid solution, since it is not completely cor-

rect from a theoretical point of view if one computes geoidal undulations

disregarding masses between the terrain surface and geoid.

Before presenting these approaches, an overview of the reference solu-

tion, the Austrian Geoid 2007 (GEOnAUT), will be given in the next section.

6.3 REFERENCE SOLUTION: GEONAUT

This section consists of parts from the paper of Pail et al. (2008).
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Table 6.4: Computation approaches

No Global data GPS/leveling jmax Reductions for Weighting

(EIGEN-GL04S) as input data global ∆g and GPS/leveling method

global up to D/O 63 spectral-

1 D/O 64 to 127 no 6 topographic-isostatic stochastic

indirect effect

global up to D/O 63 spectral-

2 D/O 64 to 127 yes 6 topographic-isostatic stochastic

indirect effect

global up to D/O 63 spectral-

3 D/O 64 to 127 yes 10 topographic-isostatic stochastic

indirect effect

global up to D/O 63

4 D/O 64 to 127 yes 10 topographic-isostatic none

indirect effect

5 D/O 64 to 127 no 6 global up to D/O 63 spectral-

stochastic
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Overview

In the framework of the project ”The Austrian Geoid 2007” (GEOnAUT),

funded by the Austrian Research Promotion Agency, a new Austrian geoid

solution has been computed (Pail et al. 2008). Compared to the existing Aus-

trian geoid model, the accuracy could be significantly improved mainly due to

the substantially enhanced quality of the input data. A new digital terrain

model (DTM) has been assembled as a combination of highly accurate re-

gional DTMs of Austria and Switzerland, complemented by data of the Shut-

tle Radar Topography Mission (SRTM) in the neighboring countries. Since

SRTM reflects the surface heights, a correction using Corine Land Cover

(CLC90) data has to be applied to transform to terrain heights. In addition

to a thoroughly validated database of gravity anomalies and deflections of

the vertical, new measurements of deflections of the vertical in the South-

East of Austria as well as GPS/leveling information have been incorporated.

Finally, these terrestrial data have been combined with global gravity field

information represented by a recent GRACE gravity field model, leading to

a significantly improved representation of the long to medium wavelength

of the solution. Several strategies for the optimum combination of differ-

ent (global and local) data types, including optimum weighting issues, have

been investigated. For the final geoid solution, the least-squares collocation

(LSC) technique, representing the most frequently used approach, has been

selected. The new geoid solution, including covariance information, has been

thoroughly validated both internally and externally.

The first steps were the pre-processing of the terrestrial gravity data, the

assembling of an enhanced digital terrain model. In parallel, several meth-

ods for the optimum combination of these different data types have been

investigated, analyzed, assessed, and compared:

∙ tailored series expansions (based on spherical harmonic base functions,

∙ multi-resolution analysis and spherical wavelet techniques,

∙ least-squares collocation,

∙ fast multipoles approach and algebraic approximation methods.
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After a thorough assessment of these methods, finally the LSC approach

turned out to be the currently most mature technique to be applied for the

final Austrian geoid solution. The final output product, a new Austrian geoid

solution, is complemented by corresponding error estimates.

Input data

Summarily, the input data consist of:

∙ gravity anomalies (14001 stations, approximate 4 × 4 km average dis-

tance),

∙ deflections of the vertical (672 stations),

∙ GPS/leveling observations (161 stations),

∙ global gravity field EIGEN-GL04S (complete to D/O 70), and

∙ a highly accuracy DTM with the resolution of 44 × 49 m for Austria

and Switzerland, complemented by data of SRTM (applied a correction

using CLC90) in neighboring countries.

Geoid computation

The final geoid solution was computed using the remove-restore tech-

nique. The basic idea is to remove the long-wavelength gravity field effect

represented by the global gravity field model (EIGEN-GL04S), and the high

frequency signals, which are mainly related to topography, by a topographic-

isostatic reduction (Airy-Heiskanen model with a density of 2670 kg/m3).

The remove step results in smoother signals of the form

βred = β − βglo − βTI − βind (6.6)

where β can be any derived quantity of the gravity potential, e.g., gravity

anomalies, deflections of the vertical, or geoid heights. Starting from the

free-air quantity β, the following reductions are applied: global gravity field

model reduction βglo, topographic-isostatic reduction βTI , including the indi-

rect effect βind, which copes with the change in the potential due to the mass
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Figure 6.12: Empirical covariance function (blue dots) and model covariance

function (red solid line) (source: Pail 2007)

redistribution related to the topographic reduction βTI . After the reduction

procedure, βred refers to the co-geoid.

The reduced gravity anomalies have been used to derive an empirical

covariance function (ECF) and to adapt the parameters of the analytical

Tscherning-Rapp covariance function model. The locally adapted parame-

ters here are A = 332.453 mGal2, B = 24, s =

(

R2

rirj

)

= 0.998724, and n

starts from 71 (refer to equations (2.40) and (2.42) in chapter 2). Figure 6.12

shows the empirical covariance function (blue dots) as well as the adapted

local Tscherning-Rapp model (red solid line). Herein the variance of the

residual gravity anomaly field is 385 mGal2, the correlation length is about

42.6 km.

Concerning the restore procedure, the correction terms of equation (6.6)

were evaluated for the predicted geoidal undulations, defined on a regular
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Figure 6.13: The Austrian Geoid 2007 (source: Pail 2007)

3′ × 3′ grid, and finally they were added to the LSC output.

Final result

The final solution for the Austrian Geoid 2007 is shown in figure 6.13;

and figure 6.14 displays its corresponding error estimates being of the order

of 2 to 3 cm.

Due to the fact that the data used for following approaches of MRA method

are almost the same with data of GEOnAUT, so the result of each approach

will be compared to the GEOnAUT solution as a reference, beside the main
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Figure 6.14: The Austrian Geoid 2007: error estimates (source: Pail 2007)
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evaluation using the set of 85 GPS/leveling checking points.

6.4 APPROACH 1

For all five approaches, the complete procedure, in which, the MRA pro-

cess plays the core, is carried out to obtain the geoid solution from the gravity

data sources. The main steps comprise:

∙ The scale coefficients are computed for the global and local data.

∙ Thanks to scale coefficients, each data source is analyzed into individ-

ual levels (of detail signals).

∙ The individual signals are combined according to the combined weight-

ing method, then the output signal is synthesized. In this step, the

field-transformation correction is also applied.

∙ The validation is performed using the set of 85 GPS/leveling fitting

points.

∙ After the validation step, the solution is obtained in accompany with

the error estimation.

∙ The evaluation is performed using the set of 85 GPS/leveling checking

points. Besides, the solution is also compared with GEOnAUT as a

reference.

It is should be noted that the solutions of all approaches (except approach

5) do not include the reduction restore. It does not mater due to the fact that

all reductions are the same for data sources as well as the sets of fitting and

checking points.

In this first approach, the procedure is presented step by step, the related

equations are also referred to. For remaining approaches, the description is

briefed due to the similarity of the computation steps.
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Figure 6.15: 14001 reduced gravity anomalies (reductions: global,

topographic-isostatic, and indirect effect)

Local data The local input data consist of the 14001 gravity anomalies

(including reductions: global reduction up to D/O 63 using EIGEN-GL04S,

topographic-isostatic reduction and the indirect effect) displayed in figure

6.15.

The MRA process introduced in chapter 2 is applied to the local data. At

first, the scale coefficient vector is estimated according to equation (2.74).

Afterwards, the analysis step is performed using the value jmax = 10. As fig-

ured out in section 6.2, 10 levels are quite sufficient to represent this reduced

data set. The individual signals are obtained using equation 2.71. Here the

field transformation (∆g to N) is required, so the design matrix in equation

(2.74) is computed according to equation (2.79) instead of (2.49).

Figure 6.16 illustrates the individual signals (after field transformation)

at levels 6, 7, 8 (left), and their field-transformation corrections (right), re-
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spectively. The computation of field transformation correction is described

in section 6.2.3.

Global data The global data is the geoidal undulations using harmonic

coefficients from D/O 64 to 127 of the model EIGEN-GL04S. It is illustrated

in figure 6.17. Due to the frequency band limit of the input signal (D/O up

to 127), the value jmax = 6 is used. After estimating the scale coefficients,

the global data are analyzed to six levels. Figure 6.18 displays the global

signal at level 6 where the combination of globally and locally detail signals

is performed.

Combination and solution The combination is performed using the spectral-

stochastic weighting method (c.f. chapter 5). The value of 1 mGal is assumed

for the accuracy of terrestrial gravity anomalies. The stochastic property of

the (modeled) global geoidal undulations, which are generated from equation

(2.5), can be obtained according to

N = R
nmax

∑
n=2

(

R

r

)n+1 n

∑
m=0

Pnm(cos θ)
(

Cnm cos(mλ) + Snm sin(mλ)
)

= AX (6.7)

⇒ Σ(N) = AΣ(X)AT (6.8)

where X and Σ(X) are harmonic coefficients
{

Cnm, Snm

}

and their variances
{

δC
2

nm, δS
2

nm

}

, respectively, A is the design matrix whose elements contain
{

R ⋅ Pnm(cos θ) ⋅ cos(mλ), R ⋅ Pnm(cos θ) ⋅ sin(mλ)
}

.

The combined individual signals at levels 6, 8, the residuals are exem-

plarily illustrated in first three plots of figure 6.19. The synthetic signal

is obtained by summing all individually combined signals that are alreadly

included the field-transformation correction. This output signal of the MRA

process is illustrated in the last plot (bottom-right corner) of figure 6.19. Note

that the field-transformation correction is applied for all next approaches

without repeating; i.e., the synthetic output signal is already included this

correction term before the validation step.

The output signal requires the validation using the set of 85 GPS/leveling

fitting points (c.f. section 6.2). The difference between the output signal
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Figure 6.16: Top to bottom: local individual signals at levels 6, 7, 8 (left) and

their field-transformation corrections (right)
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Figure 6.18: Globally detail signal at level 6
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Figure 6.19: Approach 1: combined signals at level 6 (top-left), level 8 (top-

right), the residuals (bottom-left), and the total signal (bottom-right)
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and the fitting data set is illustrated in figure 6.20 (top). These values of

differences are used to parameterize a 3rd order polynomial, and in turn,

the polynomial is used to estimate the fitting values for all output points

(equations (6.1) and (6.3)). This fitting surface is displayed in the bottom of

figure 6.20.

After applying the fitting values, the output is obtained. Note that the ac-

tual geoid solution is only obtained after restoring all reductions performed

beforehand: the global reduction, the topographic-isostatic reduction, and

the indirect effect. However, the output solutions in the context of these ap-

proaches do not include the reduction restores mentioned above, due to the

fact that, the same reductions applied for gravity data are also applied for

two subsets of GPS/leveling fitting and checking data. Therefore, the vali-

dation and evaluation steps can be carried out without the requirement to

restore the reductions.

The output solution of approach 1 is plotted in the top of figure 6.21. It is

accompanied by the error estimates plotted in the bottom of the same figure.

This error model is estimated by applying the law of error propagation for

all input data sources and through the computation process according to

equations (6.5), (5.16), (5.15), (5.5), and (5.4) . Figure 6.21 points out that

the error estimates are at the order of 3 to 5 cm in general but go down

significantly toward the borders. These values only reflect the stochastic

errors, for the actual accuracy, the evaluation step is required.

The evaluation which uses the set of 85 GPS/leveling checking points

shows that the solution of this approach 1 differs from the checking data

about 12 cm in root mean square (figure 6.22), wherein the largest values

gather to the alpine area at the West. The twelve-centimeter error is much

larger than the error estimation (just about 5 cm) which should be counted

as the expected precision of the output (excluding the systematic bias) if all

procedures work perfectly. This inconsistency expresses that there may exist

a systematic error source within the MRA process which increases the error

up to 12 cm. This remarkable value requires a reasonable explanation. Due

to the fact that, firstly, MRA process works perfectly in the example of sec-

tion 2.8 where the ∆g-to-N transformation is performed at long wavelengths

(D/O up to 10), and secondly, it also works well in the simulation at section
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Figure 6.20: Approach 1: differences from 85 GPS/leveling fitting points

(top) and the 3rd order polynomial fitting surface (bottom)
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Figure 6.21: Approach 1: the output signal (top) and the error estimates

(bottom)
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Figure 6.22: Approach 1: differences from 85 GPS/leveling checking points
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6.2.1 where the gravity anomaly quantity ∆g is reconstructed using 10 lev-

els (the neglect of higher frequencies causes an error of 2.3 mGal by itself

as pointed out in that simulation), the possible explanation is that the in-

adequate performance of the field transformation (in the scene of the MRA

process) at short wavelengths causes the main part of this 12 cm error.

6.5 APPROACH 2

The GPS/leveling points are usually used for validating and evaluating

the resulting geoid. Besides, they may also be used as an input data source.

Due to the quantity of the observables, the set of GPS/leveling points is not

dense enough for being an independent data source for MRA. It also cannot

be a part of the local input data because of the data inconsistency (heights

vs. gravity anomalies). So in the scene of this thesis, it is merged into the

global data. Here is the problem. While the global input data are generated

at the range of long-to-medium wavelength (harmonic D/O up to 127), the

GPS/leveling points are the observables having a higher frequency charac-

teristic (not limited by the D/O 127). This raises the question that how to

treat them in the same basket; or in other words, which levels should be

used to analyze them. If we analyze up to level 6, i.e. based on the har-

monic D/O 127 of the global data, we cannot use the whole signals of the

GPS/leveling data set (the short-wavelength components will be ignored). If

we add higher levels (than 6) to use the information content of the signals

of the GPS/leveling data set, the problem occurs with the global data when

they cannot be represented properly at high levels. In this approach, the

case of using 6 levels is carried out.

Now, the input data set of geoidal undulations includes the global model

(EIGEN-GL04S D/O 64 to 127) and 170 GPS/leveling observations. Both are

analyzed up to level 6. The individual signal at level 6 are illustrated in fig-

ure 6.23. In comparison with figure 6.18, figure 6.23 is similar, due to the

fact that the GPS/leveling data only contribute a part of signals. The differ-

ence will become remarkable when the GPS/leveling information is used up

to level 10 (approach 3).

The local data set of gravity anomalies is the same as in approach 1.
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Figure 6.23: Approach 2: Globally detail signal at level 6
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Figure 6.24: Approach 2: combined signals at level 6 (top-left), level 8 (top-

right), the residuals (bottom-left), and the total signal (bottom-right)

The combined signals are obtained using the spectral-stochastic weighting

method and are plotted in figure 6.24, exemplarily for level 6 (top-left), level

8 (top-right), and the residuals (bottom-left). The remaining plot (bottom-

right) is the synthetic signal.

The validation is carried out in analogy to approach 1. Figure 6.25 il-

lustrates the differences between the synthetic output signal and the set of

85 GPS/leveling fitting points (top). The bottom plot is the fitting surface

generated from 85 differences above.

After the fitting step, the resulting solution is obtained and displayed in

the top of figure 6.26. This geoid solution is complemented by the corre-

sponding error estimates illustrated in the bottom plot. Similar to approach

1, the error model in this approach is also around 3 to 4 cm, except the sud-

denly changeful values on the South-East border.
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Figure 6.25: Approach 2: differences from 85 GPS/leveling fitting points

(top) and the 3rd order polynomial fitting surface (bottom)
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Figure 6.26: Approach 2: the output signal (top) and the error estimates

(bottom)
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Figure 6.27: Approach 2: differences from 85 GPS/leveling checking points

The evaluation is carried out also using 85 GPS/leveling checking points.

Figure 6.27 shows the differences between the final result and the checking

data sets. The root mean square values of differences are about 16 cm. It

looks like that the addition of GPS/leveling data does not improve the final

result. In other words, only using the lower part of the spectrum of the

GPS/leveling signal is not an adequate choose. An attempt to use also the

higher frequency components of GPS/leveling data will be carried out in next

approach.

6.6 APPROACH 3

As mentioned above, the use of GPS/leveling measurements as an input

data source does not give an improvement due to the fact that we only take

into account a small part (harmonic D/O 64 to 127) of information which
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GPS/leveling data can provide. In this approach, an attempt to use higher

frequency components of GPS/leveling data is performed. The global input

data set (comprises global model and GPS/leveling data) is analyzed into

10 levels instead of 6 levels as in approach 2. Consequently, we can use

GPS/leveling information up to harmonic D/O 2047, with the drawback that

the modeled geoidal undulations with their harmonic D/O just up to 127

will be also analyzed up to (high) levels where they have no information.

This is obviously an inadequate treatment for the long-wavelength global

data, and the final error of this solution is very bad. However, this approach

is still presented as a point of view in the attempts of using GPS/leveling

measurements as the input data.

In this approach, the input data are absolutely the same as in approach 2

but the data set of geoidal undulations (including the global model EIGEN-

GL04S and the GPS/leveling observations) is analyzed into 10 levels (up to

harmonic D/O 2047 equivalently), same as for the local data. Thanks to

higher levels used to analyze, we can employ the informative signals of the

GPS/leveling data also in the high-frequency range. Figure 6.28 shows that

the geoidal undulation signals (including GPS/leveling data) now provide

not only the detail signal at level 6 (top) but also at higher levels exemplarily

represented by level 8 (middle) and the residuals (bottom).

Now the combination is performed for all levels (6 to 10) using the spectral-

stochastic weight. The synthetic output signal is displayed in figure 6.29.

The validation is carried out in analogy to other approaches and illustrated

in figure 6.30 where the top plot is the 85 differences from the GPS/leveling

fitting data and the bottom one shows the fitting surface.

After fitting step, the final result of approach 3 is obtained (top plot of

figure 6.31). The error estimates in the bottom plot shows that the stochas-

tic error of this approach is around 3 to 4 cm, as same as the previous ap-

proaches. However, the evaluation step (figure 6.32) expresses that the ac-

tual differences from the checking data jump up to 40 cm. This points out

that there must be a systematic problem in the process.

Now we back to the weighting issue of this approach. Every point at each

level has a individual weight value thanks to the spectral-stochastic weight-

ing method. In figure 6.33, the weight of local data of every point at levels 6
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Figure 6.28: Approach 3: Globally detail signals at level 6 (top), level 8 (mid-

dle), and the residuals (bottom)
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Figure 6.29: Approach 3: The synthetic signal
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Figure 6.30: Approach 3: differences from 85 GPS/leveling fitting points

(top) and the 3rd order polynomial fitting surface (bottom)
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Figure 6.31: Approach 3: the output signal (top) and the error estimates

(bottom)
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Figure 6.32: Approach 3: differences from 85 GPS/leveling checking points
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to 10 is illustrated in the subplots 2 to 6, respectively. Moreover, for estimat-

ing the contribution of each component (global or local) of data, the so-called

level weight is also computed and displayed in the first subplot. In one hand,

the additional use of the higher frequency band of GPS/leveling signals (in

comparison with approach 2) gives us more information. In the other hand,

due to the much larger contribution of the GPS/leveling data, the weight

values of global components also increase. The first plot in figure 6.33 indi-

cates that the dominance of global components is up to level 8. This is com-

putationally reasonable due to the high accuracy of the GPS/leveling data

(assumed less than 1 cm), but not realistic in the scheme of the combination

between the long-wavelength components of the global data and the short-

wavelength component of the local one. In this case, the global data (in-

cluding GPS/leveling data) are over-weighted and the computational weight

matrix is inadequate to apply the combined spectral-stochastic weighting

method for the MRA process. A non-weighting combination solution will be

presented in the next approach as an alternative solution.

Comparing approaches 1 to 3 to each other, we may conclude that the

inadequate inclusion of GPS/leveling measurements in the input data does

not improve the final result in case neglecting high-frequency component

of GPS/leveling data (approach 2), or even much worse in case ”stretching”

long-wavelength component of modeled data into high levels where it has

no information (approach 3). For a possible improvement, in the author’s

opinion, the GPS/leveling measurements should be merged into the much

higher resolution modeled data (e.g. the global model EGM2008), and all

of them are analyzed up to reasonably high levels. However, it should be

considered that, EGM2008 is a composite model (i.e. including terrestrial

data by itself), and that how to determine the optimal level used to analyze

the mixed GPS/leveling and global modeled data needs to be investigated in

detail.

6.7 APPROACH 4

As mentioned before, this approach is the non-weighting solution of ap-

proach 3, or in other words, the weights of the global components are as-
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signed the value of one for the levels equal and less than 6, and zero for the

other levels (zero and one for the local component correspondently). That

means the solution here is simply to ignore the weighting matrix and apply

the principle that the long-wavelength information is dedicated to the global

component and the short-wavelength component is the domain of the local

data. Here the border of the global signals is up to level 6, identify to the

harmonic D/O 127 of the global geoidal undulation input computed from the

model EIGEN-GL04S.

Figure 6.34, 6.35, and 6.36, respectively, illustrate for the validation, the

solution, and the evaluation which are performed similarly to the previous

approaches. While the error estimates (figure 6.35, bottom plot) are the same

as other approaches, the actual error of 17 cm (figure 6.36) is much improved

in comparison with the order of 40 cm in approach 3. Although now the con-

tribution of global components is only at level 6 (and shown that it is better

than the solution of approach 3), one should remember that the global data

are analyzed up to level 10; and this is obviously inadequate for the global

model (D/O 127). Therefore, the final result is only better than approach 3,

but is still not a reasonable treatment for the issue of including GPS/leveling

data in the input data. Summarizing approaches 2, 3, and 4, one can realize

that all those attempts still do not appreciably treat the combined input data

set (global model and GPS/leveling observations). In approach 2, we neglect

the high-frequency component of GPS/leveling data (this data set is already

topographic-isostatic reduced but its bandwidth is still far beyond level 6);

in approach 3, we ”stretch” the global modeled data to 10 levels and use the

global data up to level 10 to combine (with local data), which leads to the

over-weight of global components; in approach 4, we use only level 6 of global

data to combine, but still use 10 levels to analyze like approach 3. The result

is that we obtain a much improved solution in comparison with approach 3

thanks to the elimination of the over-weighting calculation; however, the re-

sult is still worse than approaches 1 and 2 because the inadequate analysis

for the long-wavelength global model still exists. A possible solution is to use

a higher resolution global model which is more consistent with the (reduced)

GPS/leveling data from the spectral point of view. The investigation for a

practicable solution for this issue should be considered in detail in future
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Figure 6.34: Approach 4: differences from 85 GPS/leveling fitting points

(top) and the 3rd order polynomial fitting surface (bottom)
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Figure 6.35: Approach 4: the output signal (top) and the error estimates

(bottom)



6.7. Approach 4 123

9 10 11 12 13 14 15 16 17 18
46

46.5

47

47.5

48

48.5

49

49.5

longitude

la
tit

u
d

e

differences from GPS/leveling checking points (rms = 0.168 m)

 

 

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 6.36: Approach 4: differences from 85 GPS/leveling checking points
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studies.

6.8 SIMULATION FOR FULL SIGNALS

In principle, MRA can deal with full signals, i.e. non-reduced data. How-

ever, using non-reduced data to compute a geoid is not a correct solution

due to disregarding masses outside the geoid. In this simulation, the main

purpose is the investigation of the behavior of MRA with extremely high-

frequency input signals, so the free-air data without topographic reductions

are used. One should be aware that this is not a fully correct solution for the

geoid determination, at least from a theoretical point of view.

Here, the combined solution using local gravity anomalies and global

geoidal undulations is carried out, same as in approach 1. The essential

difference between the two approaches is in the input data: there is no re-

duction here except the global reduction up to D/O 63 due to the limited size

of the area.

Local and global input data used in this simulation are illustrated in

figures 6.3 and 6.17, respectively. Compared with figure 6.15, figure 6.3 ob-

viously indicates the high-frequency characteristic of non-reduced gravity

anomaly data, especially in the mountainous area in south-west Austria.

These data sets are analyzed by the MRA process up to level 10 (harmonic

D/O 2047 equivalently). This means that although the local input signals

include extremely high frequencies, we just use the frequency range from

D/O 64 to D/O 2047 (levels 6, 7, 8, 9, 10) with the local data (and from D/O

64 to D/O 127 with the global data). Note that this limitation means we

neglect all signal components higher than harmonic D/O 2047. Apparently,

the larger this limit value is, the more information of signal can be taken

into account. And theoretically, it can be as high as we design it, as long as

the conditions about data sufficiency and grid resolution are still satisfied

(c.f. chapter 4 and section 6.2.1 of this chapter).

After several steps including the determination of scale vectors, the anal-

ysis, the synthesis, and the validation (figure 6.37), the final result and the

error estimates are obtained (figure 6.38). The evaluation (figure 6.39) shows

that this approach can give a solution with the error about 19 cm. It is ob-
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Figure 6.37: Approach 5: differences from 85 GPS/leveling fitting points (top)

and the 3rd order polynomial fitting surface (bottom)
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Figure 6.38: Approach 5: the output signal (top) and the error estimates

(bottom)
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Figure 6.39: Approach 5: differences from 85 GPS/leveling checking points
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viously not a good result, but indicates that the MRA process works with

extremely high-frequency input signals.

The inconsistency between the output and the references may be attributed

to the disregard of masses outside the geoid, the insufficiency of levels used

to analyze (10 levels up to D/O 2047 compared with the extremely high-

frequency input), and also the error of field transformation at short wave-

lengths (as in approaches above). The first issue requires an approach that

can deal with the masses between the terrain surface and geoid, e.g. the

geoid determination from free-air anomalies (in the Molodensky sense) which

refer to ground level, through the quasi-geoid and the correction terms for

the difference between geoidal undulations and height anomalies (Hofmann-

Wellenhof and Moritz 2005). The second issue cannot be completely satisfied

from the theoretical point of view due to the infinitely high-frequency charac-

teristic of the terrestrial observables. In practice, the higher level, the better

result; however, it strongly depends on the density of terrestrial observables

and the computational effort one can manage. The third issue is the same

problem for all approaches here. A solution for it may be a formulated har-

monic function which has almost zero gravity anomaly values over the target

area, and one can use its corresponding values of geoidal undulations as the

compensator for the error of the ∆g-to-N transformation (Prutkin and Klees

2008, c.f. section 6.2); or simpler, we may apply an appropriate threshold

to the scaling process (represented by the matrix Krep) for an expectation of

reducing noises.

6.9 SUMMARY

An attempt for the regional geoid solution using the MRA process has

been done. Five approaches in this chapter can be classified into three

groups: approach 1 uses reduced input data excluding GPS/leveling mea-

surements; approaches 2, 3, and 4 use reduced input data including GPS/leveling

measurements; and a simulation (approach 5) use non-reduced data (c.f. ta-

ble 6.4). They figure out that the MRA process works with real data (which

were used in GEOnAUT), and even can deal with the full signals (i.e., non-

reduced signals) of input data.
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Table 6.5: Summary of results

Error Difference with Difference with

Approach estimates GPS/leveling data GEOnAUT

(cm) (cm) (cm)

1 5.6 11.8 11.4

2 5.0 15.5 14.8

3 5.0 40.0 41.2

4 5.0 16.8 16.7

5 5.6 18.5 19.3

Table 6.5 summarizes the results. Column 2 points out that the error

estimates of the MRA process is few centimeters. Approaches 2, 3, and 4

are a bit better than approaches 1 and 5 thanks to the contribution of the

GPS/leveling data (5.0 cm vs. 5.6 cm). Figures 6.21, 6.26, 6.31, 6.35, 6.38 also

show the distribution of the error estimates, which the worst values gather

on the border (especially at the South-East), the remaining values are just

around 3 or 4 cm.

While the estimated errors are computationally about few centimeters,

the actual errors in evaluations show that the accuracy of MRA process in

this thesis is limited at the order of decimeter. Column 3 of table 6.5 points

out that even in the best case, i.e. the solution of approach 1, the error

is 12 cm. It can be explained by the inadequate performance of the field

transformation (in the scene of the MRA process) at short wavelengths due

to the fact that, firstly, MRA process works perfectly in the example of section

2.8 where the ∆g-to-N transformation is performed at long wavelengths (D/O

up to 10), and secondly, it also works well in the simulation at section 6.2.1

where the gravity anomaly quantity ∆g is reconstructed using 10 levels (the

neglect of higher frequencies causes an error of 2.3 mGal by itself as pointed

out in that simulation).

The attempt to use the GPS/leveling data as an input data source in ap-

proaches 2, 3, and 4 expresses that they can improve the estimated error
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but not the actual error because of the inadequate inclusion of GPS/leveling

measurements in the input data. In approach 2, the use of only low fre-

quency part of GPS/leveling data does not give an improvement. In ap-

proach 3, an attempt to use higher frequency components of GPS/leveling

data is performed. The global input data set (comprises global model and

GPS/leveling data) is analyzed into 10 levels instead of 6 levels as in ap-

proach 2. Consequently, we can use GPS/leveling information up to har-

monic D/O 2047, with the drawback that the modeled geoidal undulations

with their harmonic D/O just up to 127 will be also analyzed up to (high)

levels where they have no information. This is an inadequate treatment for

the long-wavelength global data leading to the over-weighting problem for

global components. To solve this problem, a non-weighting solution is per-

formed in approach 4. The global data are still analyzed up to level 10 but

only used 6 levels, i.e. the global model (D/O 127) are still stretching” into

high levels where it has no information, but these signals (in high levels) are

not used. In others words, the solution here is simply to ignore the weight-

ing matrix and apply the principle that the long-wavelength information is

dedicated to the global component and the short-wavelength component is

the domain of the local data. However, the result is still not better than the

solution without GPS/leveling data due to the fact that the unreasonable

analysis still exist. In conclusion, the combination of the global model with

GPS/leveling in the geoidal undulations of input data is still not completely

reasonably treated due to the un-correspondence about the spectrum and

density of data points of two data sources. For a possible improvement, in

the author’s opinion, the GPS/leveling measurements should be merged into

the much higher resolution modeled data (e.g. the global model EGM2008),

and all of them are analyzed up to reasonably high levels. However, it should

be considered that, EGM2008 is a composite model (i.e. including terrestrial

data by itself), and that how to determine the optimal level used to analyze

the mixed GPS/leveling and global modeled data needs to be investigated in

detail.

Approach 5 is an attempt to investigate the competence of MRA in deal-

ing with extremely high frequencies when using non-reduced data. The er-

ror about 19 cm is not a good result but at least indicates that the MRA
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process works with very high-frequency signals. The inconsistency between

the output and the references may be attributed to the disregard of masses

outside the geoid, the insufficiency of levels used to analyze (10 levels up to

D/O 2047 compared with the extremely high-frequency input), and also the

error of field transformation at short wavelengths (as in approaches above).

The first issue requires an approach that can deal with the masses between

the terrain surface and geoid, e.g. the geoid determination from free-air

anomalies (in the Molodensky sense) which refer to ground level, through

the quasi-geoid and the correction terms for the difference between geoidal

undulations and height anomalies (Hofmann-Wellenhof and Moritz 2005).

The second issue cannot be completely satisfied from the theoretical point of

view due to the infinitely high-frequency characteristic of the terrestrial ob-

servables. In practice, the higher level, the better result; however, it strongly

depends on the density of terrestrial observables and the computational ef-

fort one can manage. The third issue is the same problem for all approaches

here. A solution for it may be a formulated harmonic function which has

almost zero gravity anomaly values over the target area, and one can use its

corresponding values of geoidal undulations as the compensator for the er-

ror of the ∆g-to-N transformation (Prutkin and Klees 2008, c.f. section 6.2);

or simpler, we may apply an appropriate threshold to the scaling process

(represented by the matrix Krep) for an expectation of reducing noises.

As mentioned before, the MRA process in this thesis uses the same data

sources with project GEOnAUT which applies the LSC method to determine

the Austrian geoid with the accuracy of 2 to 3 cm. So this is also a very

good reference for all approaches in this thesis beside the evaluations using

the data set of GPS/leveling checking points which are carried out in each

approach. The last column of table 6.5 indicates that the differences be-

tween approaches and GEOnAUT are almost the same the evaluations using

GPS/leveling checking data. Moreover, figure 6.40 gives a visual comparison

between approaches and GEOnAUT.

Except approach 3 whose difference is very large, other ones including

approaches 1, 2, 4 are compared with GEOnAUT before restoring reductions

(left to right, top and middle line of figure 6.40), and approach 5, after restor-

ing the global reduction, is compared with the final solution of GEOnAUT
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Figure 6.40: Left to right, top to bottom: approach 1, approach 2, approach

4, GEOnAUT without restore, approach 5, GEOnAUT
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(bottom line of figure 6.40). In general, the differences almost cannot be

graphically recognized. Numerically, they are expressed in the last column

of table 6.5.

Both of the evaluation and the comparison with GEOnAUT give almost

the same result indicating that the MRA process in this thesis is limited

at the accuracy of decimeter, and, in the present state, is still not mature

enough to being the alternative for the LSC method in the problem of centimeter-

accuracy geoid determination. For improving the MRA result, some main

issues should be considered, that include the field transformation in high

frequencies, the proper treatment for input data sources having different

data types and resolutions, and the use of higher levels which also depends

on the density of input data. The possible solutions for these issues are men-

tioned in the frame of the discussion of the individual approaches in this

chapter, and will be summarized in the outlook part of the next chapter.



CHAPTER7
SUMMARY

For the purpose of (regional) combined gravity field modeling, the thesis

presents a solution based on wavelets-MRA process using as the spherical

base function a so-called unique reproducing kernel (chapter 2). This solu-

tion combines the global data (EGMs) and the terrestrial observations; i.e.

makes benefit of the advantage of the global component in long wavelengths

and the local component in short wavelengths; and a combination is per-

formed in the buffer area between them. The combination uses the spectral-

stochastic weighting method which itself is a combination of the spectral

weight based on the data spectrum (or, in other words, the harmonic degrees

and orders), and the stochastic weight based on the stochastic information

of the input data. This combined weight guarantees the spectral principle

that the main contribution of global data is in the low frequencies, and the

high frequencies are dominated by the local observables, as well as the prop-

agation of stochastic information for the final error estimation (chapter 5).

In principle, a combined solution can be made for any type of input data

sources; however, due to the limited availability of data, only two main types

of data, the global geoidal undulations and the terrestrial gravity anomalies

were used in the case study for the Austrian territory; besides, an attempt

to take the GPS/leveling data into account as an input data source is also

presented in chapter 6.

Beside the weighting method which is the main issue for the data com-

134
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bination, the other key in the practical aspect is regularization. Tikhonov

regularization including several methods for choosing the regularization pa-

rameter is presented in chapter 3. Among them, the quasi-optimality method

is chosen for the implementation in chapter 6. Moreover, chapter 4 deals

with the grid configuration; based on it, the choice for equiangular grids

with appropriate resolutions is used in the numerical study.

After several simulations as well as the implementation using real data

presented in this thesis, some conclusions can be extracted as below:

∙ The MRA process works with real data, and even can deal with the

full signals (non-reduced data); the final result is complemented by the

error estimates. The spectral-stochastic weighting scheme ensures the

adequate contribution of global and local data in different frequency

ranges as well as takes all stochastic information of input data into

account.

∙ Tikhonov regularization is sufficient for the gravity field modeling here.

The recommended method for the regularization parameter choice is

the Quasi-optimality; besides, a multiple-parameter method called Gen-

eralized Bias Estimation (GBE) is also helpful.

∙ The equiangular grid still works well for the latitudes of Austria in the

scene of the MRA process. The grid size and resolution have to satisfy

for an adequate representation of the signal wavelengths as well as be

large enough for solving the parameters of the scale coefficient vector.

∙ In the case study for Austria, five approaches in chapter 6 using re-

duced data excluding GPS/leveling measurements (approach 1), reduced

data including GPS/leveling measurements (approaches 2, 3, and 4),

and non-reduced data (approach 5) figure out that the MRA process in

the present state of this thesis can provide a regional combined geoid

solution with the accuracy of decimeter. It is not mature enough for

a centimeter-accuracy regional geoid solution. The simplicity of this

MRA process (in comparison with the standard method LSC) reduces

the computational effort; however, it seems to be not fine enough for
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a highly accuracy result, e.g. the field transformation may require a

more precise treatment, especially at high-frequency ranges.

In conclusion, concerning the new aspect of this thesis, a data combina-

tion using the proposed spectral-stochastic weighting method in the scene of

MRA is performed successfully. This MRA process is applied to real data of

Austria for a geoid solution. In principle, the MRA process with a simple

computation scheme works correctly, but requires improvements for a better

result.

The essential improvement may be obtained by reducing the (high-frequency

characteristic) error of the field transformation at short wavelengths. For

this, a threshold applying to the kernel function to filter these high-frequency

noises may be a simply practicable candidate. Besides, the number of levels

used to analyze should be increased. This is strongly dependent on the den-

sity of terrestrial data and the computational effort one can handle. These

issues should be the first consideration of future studies for a key improve-

ment.

The next promising continuation likely is a full MRA process which takes

all advantages of the multi-resolution representation into account. How-

ever, this will increase the computation steps (for multi base grids) as well

as require an appropriate weighting scheme for uniting the multi-resolution

representations to a unique output. In addition, one practical issue which

can be investigated and improved is a solution for the problem of the incon-

sistent frequency ranges of input data sources. A satisfactory answer for

this problem will be very practically helpful in the use of all data sources.

One simple solution may be the use of higher resolution global model, such

as EGM2008, or the results from the GOCE mission (c.f. section 6.6).

Besides, other additional issues also should be considered such as the

investigation for other kernels (Blackman, Bernstein, etc.) which in prin-

ciple are more flexible than the Shannon function used in this thesis. An

other issue which is also very interesting (and mathematically demanding)

is a formulated model for the field-transformation correction whose idea was

introduced in sections 2.3 and 6.2.3.
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