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Abstract

Every engineering discipline faces the fact of ever-shortening time-to-market windows
and development cycles. In order to counteract these, virtual prototyping, simulation and
problem optimization are employed in a rapidly increasing number of cases. Yet, the key to
efficient problem formulation by professionals still lies in the use of sophisticated simulation
software capable of processing numerous diverse design and optimization tasks in a versatile
way.

More often than not, different tools for different workflows need to be coordinated and
interdepend on each other’s data in the design process chain. When toolchains need to be
run multiple times, as it is typically the case in numerical optimization, the lineup overhead
tends to be tedious to both man and machine.

This thesis describes different aspects concerning the design of a software and data
framework which tackles the problem of lining up software tools that may be incoherent in
terms of data exchange and control mode. The resulting system covers all parts of multiphys-
ical simulation problems that may arise in electrical engineering and its adjoining disciplines
as an application of the finite element method.



Kurzfassung

So gut wie jede Ingenieursdisziplin sieht sich heutzutage stets kürzer werdenden Entwick-
lungszyklen und Produktvorlaufzeiten gegenüber. Um entsprechend mithalten zu können,
werden zunehmend Virtuelle Prototypenentwicklung, Simulation und Problemoptimierung
angewandt. Dennoch liegt der Schlüssel zu effizienter Problemformulierung durch Profes-
sionisten nach wie vor in der Verwendung ausgeklügelter Simulationssoftware, die es erst
ermöglicht, eine Vielzahl unterschiedlicher Design- und Optimierungsaufgaben bearbeiten
zu können.

Häufig müssen in so einem Entwicklungsprozess höchst unterschiedliche Werkzeuge für
verschiedene Abläufe koordiniert werden, die zusätzlich auch noch wechselweise von produ-
zierten Daten abhängig sind. Werden solche Prozessketten mehrfach durchlaufen, wie es in
der numerischen Optimierung typischerweise der Fall ist, summiert sich der Koordinations-
und Kommunikationsaufwand für Mensch wie Maschine.

Diese Arbeit beschreibt verschiedene Aspekte hinsichtlich des Designs einer Software-
und Datenumgebung, die das Problemfeld der Aufreihung von - in Bezug auf Datenaus-
tausch und Steuerung sehr inkohärenten - Softwarewerkzeugen aufgreift. Das resultierende
System deckt somit alle Teile von multiphysikalischen Simulationsproblemen ab, die in der
Elektrotechnik und ihren benachbarten Disziplinen als Anwendung der Methode der Finiten
Elemente entstehen mögen.
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Chapter 1

Introduction & Concept Formulation

“Poca favilla gran fiamma seconda.”

[Dante Alighieri]

Across generations and disciplines, engineering has followed a certain pattern, the engi-
neering cycle. It is commonly perceived as consisting of four steps: specification and design,
prototyping, test, evaluation. These follow each other, and as the denotation of being a cycle
implies, are typically fed back from the end, evaluation, to its origin, design.

On the one hand, this model expounds the rather philosophical view of technological
advance; on the other hand it shows the rocky path that may lead from a problem specification
towards a solution to it. The American Engineers’ Council for Professional Development
(ECPD) has defined ’Engineering’ precisely as being [17]:

... the creative application of scientific principles to design or develop struc-
tures, machines, apparatus, or manufacturing processes, or works utilizing them
singly or in combination; or to construct or operate the same with full cognizance
of their design; or to forecast their behavior under specific operating conditions;
all as respects an intended function, economics of operation and safety to life
and property.

The process of developing some marketable product of whatever nature now exactly fol-
lows the above mentioned engineering cycle. To break new ground may bear unforeseeable
obstacles, and therefore massive endeavours have been undertaken to remove the commer-
cial risk from engineering and product development. The ECDP already mentions behaviour
prediction, and this is exactly what finally could be obtained some decades ago by making
use of increasing computational capacities.

Computer aided design and manufacturing, virtual prototyping, simulation and problem
optimization therefore have been employed in a rapidly increasing number of cases. Up
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CHAPTER 1. INTRODUCTION & CONCEPT FORMULATION 2

to today, all engineering disciplines have lept forward through creation of ingenious tools
speeding up the engineering cycle’s rotational speed.

Yet, the key to efficient problem formulation by professionals still lies in the use of
sophisticated simulation software capable of processing numerous diverse design and opti-
mization tasks in a versatile way. More often than not, different tools for different workflows
need to be coordinated and interdepend on each other’s data in the design process chain.
This is especially true, whenever the solution to a given problem can be – or has to be – par-
titioned in multiple domains of different physical nature, such as mechanical stress or load
and thermodynamics. When such toolchains need to be run multiple times, as it is typically
the case in numerical optimization, the lineup overhead tends to be tedious to both man and
machine.

This is the inflection point this thesis hooks into.

1.1 What to Expect

This thesis is a recapitulation of results obtained during a research project at the Institute for
Fundamentals and Theory in Electrical Engineering of Graz University of Technology [25].
The institute’s team works on simulation and optimization strategies in electrical engineer-
ing. Around 1980, the institute’s research and development activities resulted in the first
release of EleFAnTs, the Electromagnetic Field Analysis Tools [24]. This software pack-
age solves numerical problems in electromagnetics by employing the finite element method
(FEM). At that time, FEM was already well introduced for structural analysis in aeronau-
tics, and just made its transition to other engineering disciplines such as thermodynamics,
computational fluid dynamics and, surprisingly, also the financial sector.

Though the mentioned software package has undergone development and major revi-
sions during its three decades of existence, its major focus has not been laid on integration
into optimization strategies. This thesis, aiming to close this gap, therefore follows the un-
dermentioned structure.

The next chapter, Chapter 2, places the work conducted into its context, as of giving
detailed analysis of existing approaches towards computer aided alignment of prototyping
tools and optimization toolboxes. Special emphasis is put on multiphysics and how weakly
coupled problems may be modeled and solved.

Chapter 3 compiles a catalogue of postulations for an ideal system, delineating what
would be a desirable set of assistance tools. It also reports essential characteristics of
weak coupling of multiphysical problems and how these should be represented within such
toolsets.

Subsequently, Chapter 4 describes the engineering aspects around design and implemen-
tation of such a prototypic software system as well as a selection of novel realization details.

Chapter 5 depicts problems actually researched into at IGTE in all necessary detail, and
how they can be routed towards a solution making use of the afore detailed system.
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As a conclusion, Chapter 6 will reflect on ideas about general trends around this issue,
and will motivate possible future work to further improve the existing work and pushing it
beyond its current horizons.



Chapter 2

State of the Art

“The most reliable way to anticipate the future is to understand the present.”

[John Naisbitt]

When numerical optimization of multiphysical problems is to be addressed, three differ-
ent issues arise. Each of these accounts for several dimensions of complexity and, therefore,
different approaches towards solving have been researched. As a result, numerical simula-
tion, optimization and coupling frameworks are in use in areas as different as natural science,
engineering, medicine, and social sciences.

Common to all of these is that the numerical simulation of large-scale, complex systems
requires consideration of a number of physical components, such as electromagnetics, solid
mechanics, heat transfer, or fluid dynamics and the like [32]. This multidisciplinary nature
of research requires simulation code development to be partitioned among different research
groups, yielding independently developed software modules. Integration of these modules
into a coupled system is usually done by integration frameworks [76].

2.1 Software Integration Frameworks

For describing such frameworks and for establishing clear relations to existing tools, a couple
of terms - application, framework, component, and module - need to be defined properly.
Table 2.1 gives such a definition.

4



CHAPTER 2. STATE OF THE ART 5

Application A collection of components that can be used without adaption to perform
tasks for the computer user

Component A system element offering a predefined service and able to communicate
with other components

Framework A collection of reusable components that act as a template for software
applications

MCS Multi-component simulation application
Module A software entity that groups a set of (typically cohesive) components

Table 2.1: Definition of technical terms for software frameworks [71]

It has to be put on record that the difference between frameworks and applications is
only a small one. [71] defines frameworks as being ”a reusable set of components that can
be used as the basis for software applications”, leaving some kind of freedom to the users
for adapting the software at their wish. That may be some parametrization as well as user-
produced code that is brought into execution. Additionally, frameworks are based on the
reuse of components.

Aiming on the reuse of components and modules, the software designer is confronted
with having to find a way to elaborate appropriate data and communication structures. As
early as in the 1970s, information hiding was introduced and found to tremendously im-
prove software adaptability [52]. Essentially that means to decouple design decisions which
are subject to change. This enables the designer to change the affected parts of code inde-
pendently. Another key idea would be to create the option to improve a whole system by
experimenting with new or other implementations of its sub-parts, be they components or
modules, and by seamlessly substituting any inferior for superior solutions [65]

For multiphysics code to be integrated into such a system of different abstraction and
interaction layers, a number of challenges in software engineering arise, besides complexities
of physical model creation, numerical methods, and computing efficiency [32]:

First, the data exchanged between modules must be abstracted appropriately
so that inter-module interfaces can be as simple and clean as possible.

Second, the software architecture must encourage good software practice,
such as encapsulation and code reuse, and provide conveniences to code devel-
opers while being as nonintrusive as possible.

Third, the software architecture must be heterogeneous to provide sufficient
flexibility to application scientists and engineers in choosing appropriate dis-
cretization schemes, data structures, and programming languages according to
their tastes and needs.

Fourth, to support cutting-edge research, the software architecture must max-
imize concurrency in code development of different subgroups and support rapid
prototyping of various coupling schemes through well-defined service compo-
nents.
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Figure 2.1: Relationships between integration problems and causes. [45]

From a software engineering point of view, [45] identifies a couple of integration prob-
lems for software frameworks and their components. The most common can be identified as
being the cohesion of frameworks, domain coverage, design intention, source code inacces-
sibility, and a lack of design standards. Figure 2.1 shows the implications of these problems
on actual software generation.

Based on the solutions proposed there, a set of approaches exists for ensuring clean
integration of architectural elements of whatever the abstraction level.

Data Management for Inter-Module Communication
Independently from each other, physical components of simulation code may be devel-
oped by different sources. Especially when products originating from different development
styles, eras or objectives have to be integrated, they differ in significant partitions. Spa-
tial discretization (meshes), data structures, code base, and data interfaces may be seen as
examples for that.

While for above mentioned reasons, data structure unification across modules is impos-
sible (or, to say the least, impractical), a unified, language-independent, abstracted view of
data objects is inevitable for inter-module communication and data exchange. Serving both
physical and numerical requisitions, such a view has to be flexible and self-descriptive, and
should encapsulate data along with its description and metadata. Mechanisms for safeguard-
ing data integrity add to these requirements.

Concurrency in Component Development
Due to models and algorithms in numerical simulation being ever-evolving, programme code
and resulting components evolve along. This requires an option for different modules’ con-
current development based on reliable architecture of service utilities, data communication
and control structures.
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Programming-Language Interoperability
Integration of different modules into a whole often sees itself confronted with a variety of
programming language preferences. As long as different methodologies shall be allowed to
exist in parallel in a software framework, it has to be guaranteed that the adoption of different
programming languages is enabled by design. Different naming and calling conventions pose
the major obstacle in this case. Indeed, engineers and computer scientists use their favourite
coding languages on purpose, since Fortran, C++, Java or Python all have their strengths in
certain aspects. In order to align all of these for working along smoothly, a common practice
for interoperation without sacrificing objectorientedness of interfaces needs to be created and
applied.

Complexity of Coupling Schemes
Simulation frameworks as the example described in [32] enable each physics module to
solve in its own domain, and to exchange jump conditions at defined interfaces between
these domains. When two or more different physics’ solvers interdepend on each other,
some coupling scheme of implicit nature is necessary for deciding whether another itera-
tion is necessary or the results obtained are already correct. Operations such as transferring
data between different meshes or data manipulation via interfaces are rendered necessary
for such coupling. Yet, they are independent from single physics’ modules and have to be
made available by specialised service functionality, so-called wrappers. A central controller
module orchestrates the whole process.

Plug-and-Play Capability
A numerical simulation application may as well consist of different modules that supply
similar functionality based on different methodologies. Such a redundancy can be seen as
to be allowed by intention for various motivations. Flexible selection of different methods
for different physics or for certain demands, verification through result comparison, and the
integration of third-party modules would add to these.

Particular attention should be drawn to the concept of dummy modules or black boxes
that offer certain computation functionality to other modules for enabling them to run stand-
alone. Also, code integration and verification can be facilitated through these. Although the
associated implications on the controller functionality need to be kept to a minimum, the
framework design must support these requirements.

Debugging and Performance Tuning
Although generation of test cases and test vectors are part of preparation work prior to actual
code generation, debugging and testing add up to a large portion of the time consumed for
general software development. Additionally, performance tuning for high-performance ap-
plications has to be taken into consideration in this calculation. For system integration, these
efforts are just as considerable and demanding – even though individual modules may have
been accurately tested – as a secondary source of faulty behaviour is introduced through in-
teraction between subsystems. Identifying errors originating from this source is often quite
challenging, especially when third-party software has to be integrated and neither access to
source code nor application specialists is given.
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A simulation software framework, therefore, has to provide debugging features that en-
able users to trace bugs to individual modules effectively in order to have experts taking
adequate counteractions. Performance analysis and identification of shortages or bottlenecks
are, in the same manner, the key to efficiency enhancements of multiple kinds.

Checkpointing and Restarting
In spite of ever-increasing computing capacity of large scale systems and personal equipment
as well, simulation of ample problems oftentimes requires days or weeks of processor time.
Still, computer systems cannot be guaranteed to work stable enough for such a period. Then
again, for platforms shared among multiple users, booked time may have been consumed
before all computations have converged and come to some result.

Therefore, it is advisable to offer functionality for saving a snapshot of the current sys-
tem state. This would enable the user to restart a simulation run later on or using different
computing infrastructure. Implicitly or weakly coupled physical modules also have to store
their internal states in order to restart iterations as mentioned above.

Consistent functionality for obtaining system snapshots and for restarting operation hence
is a significant requirement. Providing this functionality to individual modules adds to this
demand.

2.2 Data Structures

Summing up the afore mentioned challenges in software engineering, it soon becomes clear
that within software integration frameworks careful design of data structures plays a key role
in meeting these challenges.

This is especially true for voluminous packages of data of similar nature, such as model
meshing or, even more, calculation results. Years ago, the only way to cope with these huge
amounts of data was to make use of programming languages’ low-level I/O functionality for
storing the data as files to physical media. Due to file I/O operations being tightly coupled to
the operating system, the data structures used could not easily be referred to as being open
and self-descriptive [54].

Therefore, for model and result data of numerical simulations, more productive, powerful
or efficient data structures have been researched into [1], [13]. Both eXtensible Markup
Language (XML) and Hierarchichal Data Format (HDF) have proven most prominent for
storing and exchanging data across operating system or computing infrastructure boundaries
[75], [54].

As search operations within the result set of numerical simulations account for the largest
part of a postprocessor’s operating speed, organizing the data to be searched through in rea-
sonable structures promises to accelerate this process eminently. In [75], an XML tree struc-
ture is proposed for this operation. XML is a self-descriptive data description language,
forming documents of both logical and physical structure by the mere use of textual charac-
ters [9]. Being based on simple text, it is perfectly cross-platform capable as well. In this
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context, extensible would mean that it is possible for software designers to expand the data
definition space at their discretion, thus forming a meta-markup language without any fixed
set of descriptors.

Despite all freedoms offered by XML with regard to content and content characterization,
it is bound to some quite strict grammar [74]. This grammar offers enough strictness to create
XML parsers for any given code base, thus again adding to its platform indepence.

In the world of engineering, HDF has likewise gained more and more supporters. In
addition to the five basic reasons demonstrated by [54] and summarized below, the Hierar-
chical Data Format has, in its 5th version, also advanced to present itself as both fast [22]
and remotely accessible from distributed architectures [62].

The tree structure of HDF
Similar to XML data structures, HDF is organized as a data tree, the term ”hierarchichal”

in its name explicitly denotes that fact. In computer science, tree-shaped data structures are
well known [36], and have proven to be robust even when holding huge amounts of data [1].
Furthermore, there is a need for a formalism to reflect a simulation’s design and data space,
which is motivated by [54]:

Simulations often have many equations, scalar values, and fields of values;
some are input parameters or constants, while others are results that depend on
this input. Such values explicitly and implicitly define the context for your sim-
ulation. With huge amounts of interrelated data, you need a conceptual model to
help organize and manage data – first in your mind, and hopefully on the com-
puter thereafter.
[...]
There’s no better organization than yours, because you know your simulation
and your application, as well as its algorithm and required parameters. But if
your application will be used more than once, you have to write all this down –
both so you can remember it and so you can share it with other scientists if the
need arises.

The data tree’s root element would, accordingly, contain the simulation’s global informa-
tion, while the actual tree structure is then built of grouped data, that can hold more groups
and so-called data sets themselves. Metadata and attributes facilitate handling and distin-
guishing of groups.

Middleware for Numerical Simulation
A software layer that is inserted between the operating system and applications build-

ing on it is called middleware. In that context, HDF may be seen as some middleware that
provides storage services for large sets of data, usually being numbers. Now that the orga-
nization of this data is determined to be a tree, the actual storage of the data that forms the
leaves of this tree has to be taken care of. HDF offers all functionality for handling num-
bers in huge multidimensional arrays, along with sophisticated virtualization of the physical
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layer. This is needed to uncouple data representation from whatever kind of file system the
data is stored in. Especially when a need for spreading data across multiple file systems
arises, sound virtualization stands as an imperative.

With programming interfaces (APIs) available for all major programming languages and
a couple of functionality for parallelization, the range of application has even been widened
for HDF5.

Portability, Code Maintainability, Compatibility
HDF safeguards portability through a set of descriptive meta data, and thereby sheds light
on type sizes, compression, byte ordering and more. With all this information being part of
the actual file, not only data sets with fixed interpretation rules can be exchanged, but also
a full context system including complete data. This context along with the interpretation
of transported data is made available through a couple of functions within the API, thus
ensuring portability of the data saved to a HDF file. HDF implements both backward and
forward compatibility.

This portability is extended even more when taking the data format’s compatibility with
other operating system platforms, code libraries and applications into account. Such compat-
ibility facilitates the use of inhomogeneous infrastructure, making use of vectorial comput-
ers, Linux clusters, or GPUs and the like. Similar to other open source projects, also updates
of installed applications with a new version would therefore be possible without having to
change API calls. The designers of HDF strictly adhere to the concept of incorporating both
forward and backward compatibility as versions advance. Table 2.2 explains how these terms
may be interpreted.

Format Software
Backward Newer library versions can read a

file and/or objects within a file that
were created or written by older ver-
sions.

Applications written to work with a
newer library version will compile,
link, and run as would be expected
with an older version.

Forward Older library versions can read a file
and/or objects within a file that were
created or written by newer versions.

Applications written to work with an
older library version will compile,
link, and run as would be expected
with a newer version.

Table 2.2: Backward and Forward compatibility as understood by [20]

The Open System Option
With simulation demands constantly increasing in complexity, adequate frameworks are of-
ten created by pulling together software from different sources – in-house developments,
commercial or open-source software. Each of these features its own input-output system,
while code-to-code data exchange remains a necessity. Aggregation of different players
therefore can be implemented through direct one-to-one translation functionality, capable of
interceding between two modules. This approach will, traceably, result in tremendous efforts
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each time a new software module is added to the framework, as for each connection a new
data translator would have to be created.

Keeping such a system open on base of a common abstracted data model would render
single translators unnecessary. The introduction of an established public file format not only
would reduce the number of direct code-to-code connections, but also keep single modules
easily exchangeable. Though, all modules to be added would have to be able to read and
write HDF files. HDF is frequently used as such a data model, as many tools handle it
natively. Those which do not, can nicely be included using wrapper functionality [58]. Still,
the newly aggregated framework system is kept open, and each new player can be connected
to it with manageable efforts.

Trustworthiness and Support
The standard HDF is based upon is wide spread both in terms of geography and disciplines
in science and engineering. A broad spectrum of tools utilizing HDF and tools and platforms
of guaranteed functionality are available today, proving the software library’s maturity and
stability.

For a conclusive summary, it can be noted that HDF consists of three parts that make it a
eligible candidate for utilization within software frameworks [20]:

• The HDF5 file format, a specification for the bit-level organization of an HDF5 file.

• The HDF5 data model, consisting of the building blocks for organizing and storing
data.

• Software for managing, analyzing, acquiring, and querying HDF5 data. This includes
an open source HDF5 library, a set of command line tools, and a large number of third
party applications.

2.3 Programming Languages for Software Frameworks

Software reuse forms a major goal in framework creation, it does so likewise an abstraction
layer lower for modules’ programme code writing. Software architecture elements such
as libraries or object orientation, or visual programming have improved the programmers’
efficiency by magnitudes.

In order to create a programmable environment which aggregates software components
on a high level, a couple of approaches have been investigated by [59]. For reasons to be
discussed in the due course, interpreted programming languages turned out to be of particular
advantage to that undertaking. Python has been selected for closer examination within that
context:

We settled on Python for a number of reasons, including: its concise and
almost pseudocode-like syntax; its modularity; its object oriented design; its
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profiling, debugging, reflection, introspection and self documentation capabil-
ities; and the availability of a numeric extension allowing the efficient storage
and manipulation of large amounts of numerical data. Python is as good a glue
as any other interpreted language but in addition it can be used to develop sub-
stantial extension components.

Python is available for all current operating system platforms, and through its interpreted
nature its features and services are identical to all of them. This is true for interactive usage,
for stand-alone scripts or large programmes, and as well when used as extension language for
existent applications [72]. Furthermore, Python itself is open to extension through modules
written in C or C++ [55].

Compared to other interpreted or compiled languages that are commonly employed within
software framework designs, Python offers a couple of vantage points. It is easier to read,
write and maintain than Perl code, programme code produced with Python is substantially
shorter than C code, and in comparison with TCL, larger or more elaborate programmes are
represented in a still comprehensible, inornate way.

In the engineering world MATLAB is, on the other hand, an omnipresent player in any
profession used for a vast multiplicity of purposes. While a widespread impression may take
it as yet another programming language, this has to be regarded as being only half the truth.
MATLAB - the MATrix LABoratory - offers in fact a fully integrated development environ-
ment (IDE) for technical algorithm design. A mathematical shell for interactive calculations
or debugging purposes and a source code editor for more complex scripts or even applica-
tions cater for any user interaction need. Code, file and data management and debugging
is taken care of by various tools that are expected to be part of an integrated development
environment. A vast collection of plug-in libraries, so-called toolboxes, have functionality
for almost any engineering discipline in store [68]. The current version of MATLAB is 7.11
(called R2010b), and is available for Windows, Linux and MAC platforms, each in their
32 bit or 64 bit flavours. Its code base is formed by C and Java, and it is delivered under
proprietary licensing [37].

For developing a numerical optimization framework MATLAB is able to supply a couple
of functionality packages, obtainable by only little endeavours:

• data visualization (2D and 3D graphics)

• data analysis

• built-in debugging

• profiling (i.e. testing for efficiency)

• interactive algorithm development

• native HDF/HDF5 support
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The programming language offered by MATLAB adhers to several different program-
ming paradigms. As a start, MATLAB code can be produced in an imperative way, meaning
that it is formulated in statements each of which changes the programme’s state during exe-
cution. Also, it can be of procedural nature, a term which is often used interchangeably with
being imperative, with the additional value of the subroutines concept being introduced.
That means at any point of the programme, a fully swapped-out series of commands can be
executed.

One of the major differences to other popular programming languages is MATLAB’s
characteristic of being an array programming language. That means an array is also carried
as a basic type of variables in exactly the same manner as it is the case with e.g. integer or
floating point variables.

Starting with 7.6 (R2008a), MATLAB now also extensively supports object oriented
programming, which, together with its IDE functionality, makes it an interesting candidate
for prototype developments. Properties, methods, and events with associated event handling
are fully supported architectural components by now.

Surprisingly enough, though being an interpreted language, MATLAB in its current de-
velopment status is claimed to run specific tasks faster than C or C++ [46]. This fact may
well be derived from MATLAB being based on Java in large portions. Java, in return, has
already been seen as being superior to C/C++ and others in certain specialized fields of ap-
plication [8], [10].



Chapter 3

Objectives

“Failure comes only when we forget our ideals and objectives and principles.”

[Jawaharlal Nehru]

At the institute for Fundamentals and Theory in Electrical Engineering, a large part of
current research activities revolves around different topics in the field of numerical opti-
mization [25]. As representative examples, Evolution Strategies as in [2] or [39], and their
application in industry ([14], [63], [26]) and education ([28], [31]) can be cited.

Facing the fact of inadequate support through software tools that could assist in obtaining
sound conclusions for the questions and problems under investigation, a set of functionality
requirements for such a tool was compiled.

Sought for is the creation of a

• coupled

• transient

• multi-conductor

• multi-objective

• optimization system

– following a modular software architecture

– allowing for multiple solver kernels to be triggered

– in a client-server environment

∗ with definable user access rights

∗ offering output functionality suitable for web-browsers and

∗ accepting input via some special client or web application

14
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For controlling the optimization process within such a system, some separate toolbox
has to be created. The functionality of such a toolbox can be summarized with the following
requirements:

• problem description in near-standard language or as a geometric sketch

• able to optimize a problem’s...

– geometry

– materials’ composition using a material properties database

– boundary conditions

– sources

• within definable constraints and

• following a certain strategy

– of a given definition

– using appropriate quality functions, where applicable, and

– discontinuing on reaching some provided stopping criterion

For the framework to be developed, the system boundary is set at taking over commands
for solving a certain coupled problem, and at the delivery of the current solution to the op-
timization control again, thus offering full connectivity to an optimization toolbox. Fig. 3.1
shows an exemplary block diagram, containing both actors (coloured rectangles) and data to
be exchanged between these (rounded rectangles). On the contrary, the optimization control
functionality is denoted as an orange pentacle.

As the input for the problem setup should be any given problem that may be subject to
optimization, data interoperability and data exchange are the main principles to be followed.
Therefore, as a format for exchanging and storing data, eXtensible Markup Language XML
was chosen [9]. XML bears a number of advantages to proprietary data formats in exactly
these fields [49]:

XML is a language for specifying semi or completely structured data. It has
been explored over and over by both research and industry communities. More
than ten years after its proposal, its initial expectation of ”solving all the prob-
lems in the world” has not been fulfilled. However, we cannot say XML failed,
since it solved some really important problems very efficiently. Some of those
problems include data integration, data interoperability, and data publishing on
the Web. Moreover, XML is adopted as a standard language by many industries
(from retail to healthcare) for exchanging data.
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Among others, it is for these reasons that today XML is seen as to be the most successful,
ubiquitous technology for the Web, at the same level as URI, HTTP, and HTML [74]. This
may well be the merits of the main objective stated in [9], namely for XML being ”straight-
forwardly usable over the Internet”. Others of the objectives to be found l.c. strongly support
the design decision of making use of XML as data exchange format as well. These are:

2. XML shall support a wide variety of applications.
6. XML documents should be human-legible and reasonably clear.
8. The design of XML shall be formal and concise.
9. XML documents shall be easy to create.
10. Terseness in XML markup is of minimal importance.

The tenth design goal, on the other hand, apparently already foreshadows XML’s major
drawback. When conciseness is not a major concern, applications or programmes dealing
with XML data do not have to implement sophisticated data compression or packing. This
makes working with XML coded data quite straight forward on both sender and recipient
side of the communication channel.

In addition, the little impact of verbose data markup allows for any arbitrary extension of
the data to be worked on, which nicely plays to extending the framework in the future in any
dimension. Unfortunately, voluminous data collections with a large quantity of data quanta
may get hard to handle, apart from the mere data volume that can easily be multiplied in
comparison to proprietary data formats.

This is, for example, especially true for matrix or solution data. Therefore, other data
formats have to be found. For these it is necessary to consume significantly less memory
space and/or computing time, play well with XML on input and output terms, and be easily
accessed and handled.

As a last field of requirements, modularity and module communications shall further be
expounded. The concept of software modularity, allows system designers to build complex
products from smaller subsystems. These subsystems may be designed independently, but
still work together to form a larger whole [6]. Additionally, modularity allows for shorter
development cycles while still improving both flexibility and comprehensibility of a system
[52] Albeit, the most important argument to value software modularity that much may be
that it gives designers the freedom to experiment with different approaches. The obedience
of introduced design rules is the only rule in that context [65]. For the system under scrutiny
that would mean that single components shall be exchangeable by such ones that respect the
same input and output rules - but ’do their thing’ in an alternative way.



Chapter 4

Framework and Components

“Reasoning draws a conclusion, but does not make the conclusion certain, un-
less the mind discovers it by the path of experience.”

[Roger Bacon]

Based on the objectives established in chapter 3, a major part of research was focused on
pulling together a working prototype offering according functionality. The result consisted
of a system that allows verification of this prototype and its objectives against real-world
examples.

The next sections describe the engineering aspects around design and implementation of
such a prototypic software system as well as a selection of novel realization details.

In the engineering world, MATLAB is an omnipresent player in any profession and is
used for a vast multiplicity of purposes. Therefore, a wide number of so-called toolboxes
with standardized interfaces exist. The combination of this fact with offering a fully in-
tegrated development environment (IDE) for technical algorithm design, even allowing for
object oriented design, led to the decision of selecting MATLAB for prototype development.

Depending on the application area, data representation follows one of three approaches.
The finite element analysis makes use of certain parts that can be seen as objects, such as
matrices, vectors, meshes and elements. Therefore, concepts of object oriented design and
programming are employed [43]. That means for example that a computation’s results are
kept in a computer’s memory represented by objects.

Persistent yet accessible storage of large data sets, on the other hand, requires employ-
ment of appropriate strategies. The Hierarchical Data Format HDF as introduced in chap-
ter 2.2 has proven to largely comply with these demands, and therefore interfaces with HDF
have been created. Together with XML officiating as the data exchange backbone between
the framework and the outside world as well as between actors within the framework, ex-
pedient data representation models have been identified and implemented for each use case.

18
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Details about potential and limits of an XML data representation are discussed in chapter 4.6,
while chapter 4.3 shows how the system’s functionality avails itself of employing HDF fea-
tures.

4.1 Controller

The Controller offers the main interface to the outside world. It is also the main instance
that governs the handling of the full process between input and output data as depicted in
figure 3.1.

All other actors within that process are fed by data provided through the controller, and
are also started and queried for results by this command structure accordingly. It therefore
makes use of the overall input as an XML string and other models’ postprocessing results
as defined in chapters 4.6 and 4.7. The input is split up into single models’ data which
is, where necessary, supplemented by data retrieved from other models’ results in order to
consequently yield self-contained and fully-fledged model data that can be forwarded to
model solving functionality of whatever nature.

This linkage of different models defines the weak coupling process mentionend in chap-
ter 3. Most prominently, this will be the coupling of two finite element method’s models,
but the current functionality is not limited to these. For the simulation of electrical circuits,
for example, active parts are typically presented as equivalent circuits [34]. As such equiva-
lent circuits often do not provide sufficient information about the behaviour of the replaced
system, the field equations are solved numerically and then coupled with the circuit equa-
tions [50]. In order to fulfill these demands, the circuit can either be modelled in external
applications, or through inclusion of the respective logics using the Python interface of chap-
ter 4.2.2.

As already foreshadowed, coupling of models can result in circular dependencies be-
tween them. This may, for example, be the case when electric or magnetic field intensities
or temperatures derived by one model influence material properties of another. Similar ex-
amples arise when mechanical forces act on parts of the setup which are therefore displaced
and result in a new problem topography. All these entail recalculation of the full setup. The
controller automatizes this need. Figures 3.1 and 4.1 respectively delineate this fact with
simulation data being fed back to the controller and possibly to the next model. It is one
of the controller’s main responsibilities to monitor suitable stopping criteria in order to halt
the process once stability is reached. This stability can be tested on parameters that are
interchanged between models both in absolute numbers and percentages.

Although weak coupling may increase the overall computation time by having to let
circular dependencies converge, it offers great flexibility in model design. An interesting
option that arises due to this approach may be seen as the possibility to use different meshes
for differend finite element models. This is especially beneficial when thermal problems
have to be simulated. Chapter 5.1 describes the coupling of such a problem, obtaining its



CHAPTER 4. FRAMEWORK AND COMPONENTS 20

Coupling 
Data

XML, Matlab

Input
XML

Model
Data XML

Output
XML

Solution
XML, HDF
Matlab Obj.

Controller / Model Building

Post-
Processor

Evaluator

Solver

Output 
Control Data

XML

Figure 4.1: Data interfaces between framework actors

input for determining thermal sources from the results of a precedingly calculated current
flow model.

Thermal finite element models can often be conveniently described by the use of bound-
ary conditions, and their results are formed by the distribution of temperature values within
the modelled domain. Therefore, the solution space can be obtained by interpolation from
coarse meshing with sufficient accuracy. This provides the opportunity to save computation
time through using different meshes.

As an example, the setup of the problem depicted in figure 5.1 may be seen. It describes
the geometry of a electrothermal heating device along with a workpiece of steel. The simu-
lation of this problem is done in two partitions, one calculating the current flow through the
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heating plate, the other using the ohmic losses within the heating plate as a source of heat
for the thermal problem. Figures 4.2 and 4.3 show an according setup for both partitions.
As both of these share the geometry of the horizontal heating plate, the domain occupied by
it has to be part of both models, while the rest of the problem domain does not have to be
modelled within both problem setups.

Figure 4.2: Mesh of the current flow model

Figure 4.3: Mesh of the thermal model

The option of adaptive meshes also leaves room for being adjusted from outside by the
optimization control. This is especially useful when geometric structures with strong curva-
ture or bending, acute angles or eminent differences in adjacent materials’ parameters have to
be modelled. In such cases, simple static meshes with constant edge length for each element
will not suffice for yielding a satisfactorily accurate discretization as singularities would
probably come into existence. These in turn would lead to problems during mathematical
processing and calculation. Global refinement of the meshing grid that would discretize
these areas with sufficient precision would in most cases be somewhat counterproductive in
terms of eminently rising memory consumption and computation efforts.
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The idea of adaptive mesh refinement with respect to this is to apply finer discretization
only and exactly at these places where higher resolution is needed [73]. By this, the area
around the problematic realm receives new discretization with stronger weighting, while the
singularity itself is accounted for with less weight.

Chapter 4.6.2 gives more details on how to prepare models in order to circumnavigate
computational errors using different mesh refinement methods.

4.2 Solvers

4.2.1 FEM

4.2.1.1 The Ritz-Galerkin Finite Element Method

As a part of research conducted on the topic of creating a software framework for coupled
simulation problems, a novel Finite Element Method solver was created [37]. FEMtastic,
as it was called by the developers, in its current state of development allows obtaining solu-
tions to electrostatic, thermal, static current flow and magnetostatic problems alike, offering
support to problems that are either of two-dimensional nature or can be modelled by a two-
dimensional setup. This can, for example, be achieved for rotational symmetric problems;
cross sections through a problem geometry with an assumedly infinite third dimension would
also qualify.

It implements the Ritz-Galerkin method for solving the continuous potential function
u(x, y) through means of discretization, owing to the fact that analytical solutions to such
function are de facto nonexistent for problems that haven’t undergone special conditioning.
Therefore, the continuous potential function u gets approximated by the discrete potential
function un. More precisely, this can be achieved through employing methods of variational
calculus to the Laplace-Poisson equation as in (4.1). The basic idea will subsequently be
explained by means of solving an electrostatic Laplace problem.

div ( gradu) = ∆u = −ρ
ε

(4.1)

Therefore, relation (4.2) has to be solved, and it is the starting point of the following
derivation.

Au !
= f (4.2)

In equation (4.2), A denotes a linear, symmetric and positive definite operator to a vari-
able u, while f is an arbitrary function. According to variational calculus, assignment (4.2)
can be solved by minimizing

W (u) =
1
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x
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Under the assumption of ū being the exact solution to assignment (4.2), (4.4) follows:

W (ū) = minimum!⇐⇒ Aū = f (4.4)

As already mentioned, for the continuous potential function u(x, y) analytical solutions
can be derived only for certain cases, the approximation of the continuous space through
discrete space has to be accepted. The potential function u therefore is approximated by the
discrete potential function un as in (4.5).

u ≈ un =
n∑
i=1

aifi +
n+m∑
k=n+1

ukfk︸ ︷︷ ︸
uD

(4.5)

For successful processing of (4.5), a number of issues arise that have to be taken care of
subsequently.

• Instead of a continuous problem domain, only a limited amount of m + n discrete
points within a two-dimensional domain has to be considered. This paves the way for
application of object oriented design patterns.

• The index k relates to those m points the potential values uk of which are already
determined by the problem definition, thus already bearing the solution value. These
points are called Dirichlet points following Dirichlet boundary conditions.

• The index i relates to those n points the potential values ai of which are unknown and
therefore have to be computed.
Stated more prominently, the determination of the coefficients ai yields the solution to
the given problem.

• Immediately following that statement is the fact that the problem consists of n un-
knowns. Therefore, n also denotes the degree of freedom of the problem.

• All potential values at continuous coordinates between this solution set of discrete
points have to be retrieved by interpolating through using the basis functions fk and
fi respectively. Role and usage of these and of the interpolation procedure will be
discussed below.

Now, the next step would comprise inserting the discretized potential function (4.5) into
functional (4.3). Two important derivatives will turn out to be useful for that:

∂un
∂ai

=
∂

∂ai
(uD + a1f1 + a2f2 + · · ·+ aifi + · · ·+ anfn) = fi (4.6)
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∂

∂ai
(Aun) =

∂

∂ai
[A (uD + a1f1 + a2f2 + · · ·+ aifi + · · ·+ anfn)] =

=
∂

∂ai
[A (aifi)] = Afi (4.7)

Insertion of (4.5) into (4.3) then yields

W (un) =
1

2

x

Ω
unAundΩ−

x

Ω
unfdΩ (4.8)

Through minimization of this functional, the solution to assignment (4.2) with the dis-
cretized potential follows:

Aun = f with un ≈ u

The coefficients ai denote the unknowns which are to be determined. The functional has
its minimum when all partial derivatives with respect to the coefficients ai are zero, which is
referred to as the first variation δ of the functional:

δ(W ) =
∂W (un)

∂ai
= 0 i = 1, 2, . . . , n (4.9)

Therefore, the solution to the given problem is obtained once these n equations are
solved. Further evaluation of (4.9) gives

∂W (un)

∂ai
=

1

2

x

Ω

∂un
∂ai︸︷︷︸
=fi

AundΩ +
1

2

x

Ω
un

∂

∂ai
(Aun)︸ ︷︷ ︸

=Afi

dΩ−
x

Ω

∂un
∂ai︸︷︷︸
=fi

fdΩ =

=
1

2

x

Ω
fiAundΩ +

1

2

x

Ω
unAfidΩ︸ ︷︷ ︸

Symmetry: fiAun=unAfi

−
x

Ω
fifdΩ =

=
x

Ω
fiAundΩ−

x

Ω
fifdΩ =

=
x

Ω
fi (Aun − f) dΩ = 0 i = 1, 2, . . . , n (4.10)

This can now be summarized as the Ritz-Galerkin equations as in 4.11:

Ritz-Galerkin equations

un = uD +
n∑
i=1

aifi (4.11a)

x

Ω
fiAundΩ =

x

Ω
fifdΩ i = 1, 2, . . . , n (4.11b)
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Taking into consideration that fi are the basis functions and f is the right-hand side of
equation (4.2), equation (4.11b) turns out to be equal to (4.10) with the known function f
converted to the right-hand side.

After derivation of the Ritz-Galerkin equation (4.11b), the operator A can be substituted
with the negative Laplace operator −∆ which is defined to be linear, symmetric and positive
definite. The Laplace-Poisson equation can, within that respect, be denoted as

−∆u =
ρ

ε
(4.12)

On the other hand, applying the Laplace-Poisson equation to the Ritz-Galerkin equation
(4.11b) yields

x

Ω
fi(−∆un)dΩ =

x

Ω
fi
ρ

ε
dΩ i = 1, 2, . . . , n (4.13)

With ε brought to the left-hand side and using div grad as notation for ∆, the term
transforms to

−
x

Ω
fi( div ε gradun)dΩ =

x

Ω
fiρdΩ i = 1, 2, . . . , n (4.14)

In (4.14), ε denotes a tensor that can represent anisotropic materials. This relation has
also been implemented into the software. Nevertheless, further considerations will treat ε as
a scalar dependent on a position.

By the use of partial differential integration and Green’s identity (as described in [33]),
(4.14) can be transformed to

−
x

Ω
( grad fi)T ε gradundΩ =

x

Ω
fiρdΩ +

w

ΓD

fiuDdΓD i = 1, 2, . . . , n (4.15)

and is, consequently, transformed further by substituting un with (4.5) to

−
x

Ω
( grad fi)T ε grad

n∑
j=1

ajfjdΩ =
x

Ω
fiρdΩ +

w

ΓD

fiuDdΓD i = 1, 2, · · · , n (4.16)

For the reason of uD being defined on boundary ΓD ⊆ ∂Ω only and Ω ∩ ∂Ω = ∅, it does
not appear on the left-hand side of the equation. Index i is already in use within equations
(4.10) and (4.11b). Therefore, (4.16) introduces j as the index for the approximated potential
(4.5).

Taking the linearity of the Laplace operator into consideration, the sum can enclose the
integral:
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−
n∑
j=1

aj
x

Ω
( grad fi)T ε grad fjdΩ =

x

Ω
fiρdΩ +

w

ΓD

fiuDdΓD i = 1, 2, · · · , n (4.17)

Summing up left and right-hand sides for all indexes i yields

n∑
i=1

n∑
j=1

aj
x

Ω
( grad fi)T ε grad fjdΩ = −

n∑
i=1

(x
Ω
fiρdΩ +

w

ΓD

fiuDdΓD

)
(4.18)

or, when presented in matrix form:

Ka = f (4.19)

with

K =


s

Ω
( grad f1)T ε grad f1dΩ · · ·

s
Ω

( grad f1)T ε grad fndΩs
Ω

( grad f2)T ε grad f1dΩ · · ·
s

Ω
( grad f2)T ε grad fndΩ

... . . . ...s
Ω

( grad fn)T ε grad f1dΩ · · ·
s

Ω
( grad fn)T ε grad fndΩ



a =


a1

a2

...
an

 and f =


−

s
Ω
f1ρdΩ−

r
ΓD
f1uDdΓD

−
s

Ω
f2ρdΩ−

r
ΓD
f2uDdΓD

...
−

s
Ω
fnρdΩ−

r
ΓD
fnuDdΓD

 (4.20)

Some conclusions can be drawn from these relations:

• Matrix K is an (n × n) square matrix. With respect to its representation in structural
analysis, it is called the stiffness matrix.

• Vector f has n entries and is defined as being the load vector.

• Setting up the stiffness matrix and the load vector is known as the assembly of the
finite element system of linear equations (SLE).

After definition of basis functions fi, the system of equations is ready for being solved.
The next paragraphs will further explain the necessary steps.
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Figure 4.4: Modules and module interaction within FEMtastic



CHAPTER 4. FRAMEWORK AND COMPONENTS 28

4.2.1.2 Implementation Details

4.2.1.2.1 Preprocessor In a typical FEM workflow, certain functionality is needed for
reconditioning incoming data in order to retrieve data structures that can be forwarded to an
equation system solver. Usually, this functionality is referred to as the preprocessor.

In the given case, the FEM solver’s preprocessor is fed with a model’s XML represen-
tation by the controller. Therefore, such a representation first needs to get itemized by an
XML parser so as to incorporate the information deduced from the input.

A problem’s geometry markup is composed of macro elements. An efficient polygon
assembly algorithm takes care of any two-dimensional setup by applying boolean set op-
erations to given polygons [44]. Engineered by F. Martı́nez et.al., it is referred to by the
Martinez section within the system’s block diagram representation in figure 4.4. Its func-
tionality is defined as applying said operations – union (A or B), intersection (A and B)
and subtraction (A and not B) – to the macro elements as defined within the XML file and
passing back the finalized geometry to the preprocessor.

The final step performed by the preprocessor is generating a triangulation of the geom-
etry; this yields a set of finite elements in the end. The MATLAB extension mesh2d [19]
constitutes the groundwork for that functionality. It uses quadtree decomposition and Delau-
nay triangulation and produces meshes of very high quality [18], [53].

4.2.1.2.2 Finite Element Method The functionality block covering the Finite Ele-
ment Method follows in the workflow’s due course. While the present code of FEMtastic’s
FEM solver is technically prepared for any shape finite elements may assume within multiple
dimensions, the focus of the following considerations is laid on two-dimensional triangular
finite elements featuring linear basis functions. For static potential problems, the appendant
model is defined within the domain Ω with boundary ∂Ω = Γ = ΓE ∪ ΓD (the latter two
within electrostatic problem descriptions).

As a consequence of analytical solutions being practically nonexistent within continuous
space, the above mentioned triangulation algorithm is applied to discretize Ω into a delimited
number of subdomains, so called finite elements T (r) with r being the unique index of each
element.

This discretization procedure has to yield a result meeting the following prerequesites:

• The union of all finite elements should approximate Ω, being a continuous domain, to
its best effort:

Ω ≈
R⋃
r=1

T (r) (4.21)
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• Any two finite elements T (r) and T (r′) must either share a common node, or edge, or
nothing at all:

T (r) ∩ T (r′) =


∅
one common node

one common edge

(4.22)

Basis Functions
The nodes derived by above mentioned discretization serve as exactly these points within

Ω where a solution will be computed consequently. In order to correctly interpolate this dis-
crete solution to any point within both continuous and discretized representations of domain
Ω, the concept of form and basis functions is introduced.

Form functions are defined with in the local scope of a certain finite element, each node
being assigned exactly one form function. A basis function, on the contrary, serves as the
combination of all form functions a certain node in global space is assigned. It is commonly
referred to as the pyramid function. All basis functions of nodes within a valid triangulation
share the following main prerequisites:

• The function’s value is 1 at the very position of the current node

• The function’s value is 0 at the position of any other node

• The function’s value differs from 0 only within the finite elements that share this node.

These basis functions will ”span” the discrete solution over the global domain Ωn, there-
fore superinducing a continuous solution again. Figure 4.5 depicts two neighbouring nodes
P14 and P43 of a sample triangulation along with their (linear) basis functions. The finite
elements contributing form functions to P14’s basis function are accentuated in gray.

x
y

u

1

P14

1

P43

Figure 4.5: Basis functions
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A finite element’s shape within the global problem scope is obtained by a projection of
a local reference element. Such a reference element or reference frame is, for triangular
elements, defined by

T̂ = {(ξ, η) : 0 ≤ ξ, η ≤ 1, ξ + η ≤ 1} (4.23)

ξ and η denote the local coordinates in that respect. The left part of figure 4.9 depicts
such a reference element in local space. In the case of triangular finite elements, each of the
three local nodes α = {1, 2, 3} defining the reference element is assigned a form function as
in (4.24).

f̂α(ξ, η) =


α = 1 : 1− ξ − η
α = 2 : ξ

α = 3 : η

(4.24)

For obtaining the global coordinates (x, y) of the problem domain associated with a local
coordinates (ξ, η) of the reference frame, a mechanism of coordinate transformation needs
to be applied as delineated in equation (4.25).

(
x

y

)
= J(r)

(
ξ

η

)
+

(
x

(r)
1

y
(r)
1

)
(4.25)

The Jacobian Matrix J(r) in (4.25) is defined as in equation (4.26).

J(r) =

[
x

(r)
2 − x(r)

1 x
(r)
3 − x(r)

1

y
(r)
2 − y(r)

1 y
(r)
3 − y(r)

1

]
(4.26)

In (4.25) and (4.26), (x1, y1)(r), (x2, y2)(r) and (x3, y3)(r) depict the global coordinates of
nodes 1, 2 and 3 of a finite element r.

Among other characteristics, for finite elements exhibiting linear basis functions, each
element’s Jacobian matrix J(r) is computed at its initialization.

Finite Element Initialization
The FEM block’s input consists of the geometry data provided by the preprocessor. In

the first step the input data is being fed into congruous data structures, which means that
for each node of the triangulation a node object is created. Each triangle forms a finite
element object, and in terms of one finite element consisting of exactly 3 nodes, these types of
objects are linked to each other appropriately. Some initial computations are also conducted
immediately after the object’s creation. For finite elements employing linear form functions,
these are:

• The computation of the Jacobian matrix J(r) defined by equation (4.26),
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• the computation of the inverse Jacobian matrix J−1(r) and

• the computation of the Jacobi determinant detJ(r).

These three characteristics have to be calculated only once for above mentioned type of
finite elements during initalization, owing to the fact of being invariant. Further initialization
of finite element objects would contain the determination of:

• the finite element’s circumcenter in global space

• the radius of its circumcircle.

This is an important issue for performing the inverse global-to-local transformation and
will be discussed within the description of the postprocessor.

Equation System Assembly
Assembly of the system of equations to be solved constitutes the next step. Stiffness

matrix and load vector as stated in (4.20) are developed using numerical quadrature [37].
While Neumann boundary conditions are considered implicitly within the FEM system of
equations, Dirichlet boundary conditions are incorporated using homogenization.

The left-hand side of equation (4.18) is:

n∑
i=1

n∑
j=1

aj
x

Ω
( grad fi)T ε grad fjdΩ (4.27)

The continuous domain Ω has been discretized by a triangulation as in (4.21). Thus, the
integration over Ω is approximated using all subdomains of the triangulation, these being the
finite elements T (r):

R∑
r=1


n∑
i=1

n∑
j=1

aj
x

T (r)
( grad fi(x, y))T ε grad fj(x, y)dxdy︸ ︷︷ ︸

=0 if node Pi or node Pj /∈ T (r)


(4.28)

Considering the basis functions being different from zero only in exactly one node and
within the region covered by the finite elements adjacent to it, it is sufficient to evaluate
(4.28) only for nodes that belong to the current finite element r:

R∑
r=1

∑
i(r)

∑
j(r)

aj
x

T (r)
( grad fi(x, y))T ε grad fj(x, y)dxdy (4.29)
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with

i(r) =
{
i : Pi ∈ T (r)

}
(4.30)

j(r) =
{
j : Pj ∈ T (r)

}
(4.31)

In equation (4.29), the basis functions fi and fj are formulated in global space with
coordinates x and y. A formulation of these within the realm of local space would allow
performing all computations by means of the local reference element T̂ . Therefore, a linkage
between global and local nodes has to be introduced:

α↔ i = i(r)(α) (4.32)

β ↔ j = j(r)(β) (4.33)

This means that for a certain finite element T (r) with three global nodes it is known which
global node corresponds to which local node of the reference element.

Equation (4.29) can therefore be transformed into

R∑
r=1

3∑
α=1

3∑
β=1

aβ
x

T̂
( grad f̂α(ξ, η))T ε̂ grad f̂β(ξ, η)

∣∣det J (r)
∣∣ dξdη =

R∑
r=1

K(r) (4.34)

with K(r) being denoted as the element stiffness matrix of finite element T (r):

K(r) =
3∑

α=1

3∑
β=1

aβ
x

T̂
( grad f̂α(ξ, η))T ε̂ grad f̂β(ξ, η)

∣∣det J (r)
∣∣ dξdη (4.35)

Analogously, also a element load vector f (r) exists. Neglecting the boundary condition
term on the right-hand side of (4.18) –

r
ΓD
fiuDdΓD – and by employing local scope formu-

lation, it can be transformed to:

f (r) =
3∑

α=1

x

T̂
f(x(ξ, η), y(ξ, η))f̂α(ξ, η)

∣∣det J (r)
∣∣ dξdη (4.36)

where x(ξ, η) and y(ξ, η), respectively, denote the local-to-global transformation (4.25).

The association between local and global nodes is retained by the element coherence
matrix C(r). It is a (α× i) matrix and is defined for every finite element r:

C(r)(α, i) =

{
1, if i is the global node number of local node α

0, otherwise
(4.37)

with (α, i) being the row and column indices.
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The stiffness matrix K can, therefore, be constructed as follows.

K =
R∑
r=1

(
C(r)

)T
K(r)C(r) (4.38)

The load vector f , on the other hand, consists of:

f =
R∑
r=1

(
C(r)

)T
f (r) (4.39)

Having all these at hand, the system of linear equations as in (4.19) can be composed.

Integration of boundary conditions
Neumann boundary conditions Integrating the Neumann boundary condition term of

(4.18) into the FEM system of equations changes the load vector f as depicted in (4.20) [33].

Like the whole domain Ω, also the boundary ∂Ω is partitioned into finite elements. For
a two-dimensional Ωn, ∂Ωn consists of straight lines E(e), with E denoting an edge of the
index e. Similar to two-dimensional finite elements, a reference element Ê exists, which is
a one-dimensional straight line defined by a local coordinate ξ within the interval [0, 1]. It
exhibits two local nodes at ξ = 0 and ξ = 1. Such a construction leads to an edge element
load vector f (e):

f (e) =
2∑

α=1

w

Ê
uD(ξ)f̂α(ξ)dξ (4.40)

In conjunction with an edge element coherence matrix C(e) implicating the two local
nodes of the edge to the global nodes of the problem discretization, the Neumann boundary
conditions can be integrated into the FEM system of equations as in (4.41):

f = f + C(e)T f (e) (4.41)

Dirichlet boundary conditions For the demonstration of how Dirichlet boundary con-
ditions can be integrated, an assembled FEM system of equations with two unknown node
values and one known Dirichlet node value is imagined:

 k11 k12 k13

k21 k22 k23

k31 k32 k33

 ·


a1

ā2

a3

 =


f1

f2

f3


Assuming ā2 being mentioned known value, it can be brought to the right-hand side:
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 k11 0 k13

k21 0 k23

k31 0 k33

 ·


a1

ā2

a3

 =


f1 − k12ā2

f2 − k22ā2

f3 − k32ā2


This step offers the opportunity to now delete the stiffness matrix’ second line and col-

umn, and the load vector’s second line. This yields the final system of equations, being
reduced by exactly these lines for which a solution is already known:[

k11 k13

k31 k33

]
·
{
a1

a3

}
=

{
f1 − k12ā2

f3 − k32ā2

}
This process is usually referred to as homogenization. It follows the general approach of:

• Setting aj = uD(xj, yj) for all indices j of known coefficients

• Correcting the right-hand side of the FEM system of equations:

fi = fi −
∑
j

K(i, j)aj ∀i 6= j

• Deleting the rows j of K and f and the columns j of K.

Problem solving
Solving the system of equations (4.19) is the last duty the Finite Element block has

to fulfill. The solution set sought for, namely the coefficients ai, is therefore retrieved by
evaluation of (4.42). For reasons of efficiency, this fully relinquished to MATLAB native
functions.

a = {a1, a2, . . . , an} = K−1f (4.42)

The solution arising from these calculations yields the so far unknown node potential
values. These are offered to postprocessors and thus – via detour through the postprocessors
– to other models as well.

In practice, problems easily exhibit numbers of several thousand to millions of coeffi-
cients ai. In such cases, the solution cannot simply be obtained through inverting the stiff-
ness matrix to K−1. While for small problems Newton’s method might be sufficient to solve
equation (4.42), larger problems or problems of higher dimensions have to employ gradient
descent methods such as the conjugate gradient method or one of its varieties for solving the
equation systems that arise.
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Figure 4.6: Data definition for addressing analytic solver code

4.2.1.2.3 Postprocessor The postprocessor of an application of the finite element
method works as the interface between the derived solution and its further utilization by man
or machine, providing data acquisition and visualization functionality. The postprocessor
within FEMtastic is a self-contained module, offering direct access to methods implemented
within the FEM module. Its range of functionality is discussed in detail in chapter 4.4.

4.2.2 Analytical Solvers - Python and Matlab

Usually, computer applications are distributed in some sort of self-contained way, i.e. they
offer encapsulated functionality aimed at solving a given problem or fulfilling a given task.
Some programmes provide extensions or even extendability with limited complexity; the
potential sphere of operations is limited in both cases.

Therefore, a completely open approach was selected for the work under scrutiny, open in
a sense of not binding the user to a newly created set of directives and therefore to predefined
functionality. Rather, a scripting framework was added, which would allow fast prototyp-
ing of new functions or even applications, thus postponing code specialization as much as
possible [59].

For achieving such a goal, interpreted languages were chosen because of their character-
istics of flexibility, interactivity and extensibility. Matlab, as forming the backbone program-
ming language of the whole project, lends itself to being employed automatically. Apart from
that, Python was selected for a number of reasons. It offers concise and almost pseudocode-
like syntax, modularity, object oriented design principles, and the availability of numeric
extensions that allow for efficient handling of large volumes of numerical data [72].

Within the simulation framework under scrutiny, an interface for carrying out Python as
well as Matlab code was created. The latter one emerges straightforward from the design
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decision of Matlab being the development environment for most of the project, Python on
the other hand offers the above mentioned assets. Therefore, models that do not have to
undergo FEM simulation can be solved using deterministic code using the interfaces to these
two environments.

The XML schema in figure 4.6 shows how analytic solvers are deployed as a part of
the global data structure. In case the Model’s attribute solver is set to either Matlab or
Python, the respective interface is loaded. Therefore, the subsequent XML directives have
to consist of both Input and Code. The values supported using the Input directive either as
their explicit value or via the Import from another model are then supplied to the Code as a
vector of variables, input[]. This array contains all the values forwarded in the order of
their appearance. An example for this is given in listing 5.10, containing two explicit values
and two values implicitly derived from model 1.

In the same manner, returnValues[] is reserved by the interface as means of data
transport back into the framework again. It has to be seized by the solver’s code and may
contain any values that are worth being considered for further evaluation through any part
of the framework. Thus, import into other models or creating output to the superimposed
control structure are facilitated.

The Code section does not impose any restrictions on the actual code transported with it.
For both of the programming interfaces currently supported – Python and Matlab – import
mechanisms for outsourced code packages are available. Therefore it is advisable to keep the
XML payload short and simple, and to only fill it with code portions that either call external
routines or are bound to automatic refactoring by the mentioned control structure.

For Matlab, also a circuit solver exists. It takes over PSpice netlist files [69] from the
file system and returns matrices for voltages and currents, respectively. The netlist can be
altered for each simulation run by external functionality, but its inclusion into the simulation
framework is granted without any constraints.

4.3 Storage of Intermediate Results

In many cases, the simulation framework under scrutiny may be used for cycling repeatedly
through simulation tasks. That may either happen in horizontal direction, meaning that two
or more models are coupled in a circular manner, interdepending on each other’s results in
certain ways. The circulation typically stops once stability is reached, and exactly one result
set is obtained. Nevertheless, in some cases also provisional results may be of interest, such
as for creation of chapter 5.1’s convergence examination in figure 5.9.

On the other hand, also the vertical dimension may require repetition of simulation pro-
cesses. This is the case when the whole framework is queried for its services multiple times
by the superimposed control structure, such as an optimization toolbox. In that case, inter-
mediary results are often used for determining the quality of the finally obtained one.

Even the combination of these two mechanisms is common, thus forming a two-dimensional
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result set

final result set 
(convergence 
criterion met)

no. of simulation cycles
(internal, to reach 
convergence)

no. of simulation cycles
(externally given,
e.g. optimization cycles, 
time steps)

Figure 4.7: Accumulation of result sets

simulation process. Chapter 5.3 discusses an example where an external control – the time-
stepping algorithm – depends on results obtained through cyclic approximating and converg-
ing simulation processes, calculating a coils impedance as a function of amperage. Here, a
set of solutions arises for each time step, thus resulting in a two-dimensional matrix of all
retrieved solutions. Figure 4.7 explains how solution sets may accrue in the simulation’s due
course.

In all of these cases, access to such historical data may be of interest. The simulation
framework stores all calculated data, and the evaluator offers said access to all of these using
data storage mechanisms offered by HDF5 [20].

HDF stores data in hierarchically ordered data sets that make it particularly suitable for
the two-dimensional superset of result sets. The object representation of finite elements, for
example, stores all information that is necessary to recalculate any quantity that is asked for,
without the need for any additional data compounds. All these data are inserted into a data set
within a HDF5 file which bears the current simulation run as description within its meta data.
The file itself then contains all solution sets that have accrued within the whole process, and
is named using the unix timestamp of the moment when the last entry was stored. Therefore,
for externally initiated process repetition, the vertical dimension keeps distinctly identifiable
as well.

4.4 Post-Processors

Delivery of computational support in interpreting the solution is the postprocessor’s main
task. Therefore, it can be seen as an interface between the framework and the user, as well
as it assists in interpreting the results and preparing data for further computations.

The postprocessor implemented for this framework prototype consists of a set of routines
delivering access to data acquisition and visualization. Though being a self-contained mod-
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ule, methods offered by finite element objects are accessed by the postprocessor. Access to
form functions and their gradients range among the most expedient features a finite element
object exhibits. This is especially useful as externally provided FEM code may exhibit con-
venient access to such functionality as well, and therefore it wouldn’t have to be duplicated
as a part of the postprocessor module.

The most important functions offered by the postprocessor are:

• Value(): Calculates the solution value at any continuous coordinate of the solution
space through interpolation using the finite element basis functions.

• Gradient(): Retrieves the solution gradient at any continuous coordinate of the
solution space.

• Data(): Retrieves a sequence of solution data along a straight line. Line diagrams,
for example, make use of such a functionality.

• GradientData(): Retrieves a sequence of the solution gradient along a straight
line.

• Additionally, plotting functions are quite useful for data interpretation by the user. Ge-
ometry, solution values, solution gradient, and the gradient taking material properties
into account can be depicted through these.

The implementation of functionality beyond these basic features is left to user-defined
scripting code. Such an interface allows extensive usage of the calculated result set without
being bound to prearranged methods. The availability of any physical quantity at any point
of the problem domain is the basis to all such extensions. This can be reached using a
mechanism of transformation between global problem space and local reference frame which
closes the gap between globally defined problems and locally executed computations.

4.4.1 Transformation of Local to Global Coordinates

This mechanism of transformation retrieves the global coordinate (x, y) of the problem do-
main associated with a local coordinate (ξ, η) of the reference frame. This is obtained
through application of equation (4.25), which is implemented as a function of each finite
element object.

In (4.25) and (4.26), (x1, y1)(r), (x2, y2)(r) and (x3, y3)(r) depict the global coordinates of
nodes 1, 2 and 3 of a finite element r.

Each finite element’s Jacobian matrix J(r) is computed at its initialization. For finite ele-
ments applying linear form functions the Jacobian Matrix is static, while for finite elements
of higher order this is not the case. It depends on the local coordinates to be transformed,
and therefore necessitates to be computed at every function call.
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4.4.2 Transformation of Global to Local Coordinates

The common approach of obtaining the potential value u at any given global coordinate (x, y)

from the solution space requires global-to-local coordinate transformation. This stems from
the necessary step of interpolation using the finite elements’ basis functions. Nevertheless,
for several reasons the inverse coordinate conversion cannot be done by transforming (4.25)
in order to retrieve the local coordinates (ξ, η):

• The finite element r that contains the point in space with coordinates (x, y) is unknown.

• For finite elements of higher order, the inverse transformation gets nonlinear because
of the Jacobian matrix depending on the local coordinates J(r)(ξ, η). A circular state-
ment arises out of the inverse Jacobian matrix also depending on the local coordinates
J−1

(r)(ξ, η).

The first issue can be counteracted through employing the concept of circumcircles. For
finite elements with linear basis functions, the second problem converges easily, for higher
order elements a numeric method has to be employed. The gradient descent method fulfills
the requirements quite well.

x

y

c

a

b

Figure 4.8: Circumcircles and nearest neighbour search within finite elements

In figure 4.8 a sample mesh triangulation is shown. Three finite elements and their ac-
cording circumcircles depict the area of closer investigation. The red dot displays the point
of global coordinates (x, y) that shall be transformed into the local scope.

As mentioned, retrieval of the finite element r that contains the point in space with coor-
dinates (x, y) can be algorithmized through performing a k-nearest neighbour search using
the finite elements’ circumcircles:
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k← 1
while no local coordinate found do
{Find the next circumcenter to (x, y) and tell finite element r}
r← k-Nearest-Neighbor(k, x, y)

if (x, y) is within circumcircle of finite element r then
(ξ, η)← localCoord(x, y) {global-to-local transformation}

if (ξ, η) is inside of reference element then
{found (ξ, η)}

else
{continue search}
k← k + 1

end if
end if

end while

The circumcenter and the radius of the circumcircle is a member variable of each finite
element object, and thus computed at its initialization. The k-nearest neighbour search algo-
rithm then obtains the ”k-nearest” circumcenter to (x, y). In figure 4.8, the circumcenter of
finite element a marks the first result in this respect.

Now, the actual location of (x, y) whether being contained in a or not has to be deter-
mined by executing a global-to-local transformation. This might be a quite expensive step
in terms of computing time, as will be shown below. Albeit feasible, such a transforma-
tion is therefore not conducted on each single finite element, buth rather after some certain
proximity has been established.

The global-to-local transformation of (x, y) pertaining to finite element a delivers local
coordinates (ξ, η) residing outside of a’s reference triangle, thus yielding a negative eval-
uation of the search criterion. The search for the correct local frame therefore has to be
continued with the next nearest neighbor. Finite element b would be returned as the next
search result where also a valid local coordinate can be obtained, thus breaking the search
loop.

The global-to-local transformation strategy is depicted in figure 4.9. The red dot at (x, y)

in global space (right) is given, while its equivalent in the local frame (left) is searched
for. As this transformation is not straight forward, the correspondig local coordinates need
to be approximated. Following the Newton-Raphson method, starting at local coordinates
of (0.5, 0.5), they are transformed to global space and tested against the given coordinates
(x, y).
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Figure 4.9: Finding local coordinates by applying the Newton-Raphson method

A stopping criterion in terms of a certain ε-neighborhood has to be accepted for reasons
of efficiency in numerical determination of equality of two continuous figures. Depending
on the test against the given coordinates, a new iteration of local coordinates is computed
until finally the stopping criterion matches.

As a result, the local coordinates (ξ, η) are obtained, depicted as a black dot. Its global
space equivalent resides within the ε-neighborhood shown as a red circle around (x, y).

The current implementation defines ε = 1 · 10−6m, thus yielding sufficiently accurate
results without major losses of efficiency.

Pursuing this algorithm is only necessary for finite elements of higher order. In the
special case of linear finite elements, the mentioned static Jacobian matrix allows for a con-
venient transformation by inverting equation (4.25) into (4.43).

(
ξ

η

)
= J−1

(r)

[(
x

y

)
−
(
x

(r)
1

y
(r)
1

)]
(4.43)

4.4.3 Determination of a Solution Value

In figure 4.10, an arbitrary one-dimensional finite element in local space is shown along with
a sketch of a solution interpolation query. At a global coordinate x, the value of the solution
is asked for. After transforming x to the local coordinate ξA of the respective local reference
frame, the values of the two basis functions at coordinate ξA are summed up, thus yielding
the solution uA as in (4.44). Figure 4.10 plots the dashed form functions of local nodes P̂1

and P̂2 with their associated, computed solution values u1 and u2, respectively. These two
span the interpolated solution between the nodes, marked in red.
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Figure 4.10: Solution retrieval by interpolation
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Figure 4.11: Triangular finite element in global space with linear form functions and spanned
solution space

uA(x) =
2∑

α=1

uα · f̂α(ξA) = u1 · f̂1(ξA) + u2 · f̂2(ξA) (4.44)

For triangular finite elements employing linear form functions, the same interpolation
algorithm can be applied (4.45). The form functions for such finite elements typically consist
of the set given in (4.46), and figure 4.11 accordingly shows a triangular finite element along
with its linear form functions and the solution space supported by the nodal solutions.

u(x, y) =
3∑

α=1

uα · f̂α(ξ(x, y), η(x, y)) (4.45)

f̂1(ξ, η) = 1− ξ − η f̂2(ξ, η) = ξ f̂3(ξ, η) = η (4.46)

The output value of these interpolation operations depends on the nature of the problem
solved. Its interpretations are listed in table 4.1.
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problem type interpretation unit
electrostatic electric potential u [V ]

current flow electric potential u [V ]

magnetostatic magnetic scalar potential Θ [A]

thermal temperature T [K]

Table 4.1: Solution dimensions and their interpretation

4.5 Evaluator

The Evaluator’s main responsibility is to generate output values on the basis of design pa-
rameters [4]. These serve, for example, as objective function values for evaluation of the
obtained result by superimposed control structures.

Its functionality is more or less confined to executing the output queries that are extracted
by the controller from the input XML as discussed in chapter 4.8. As it is necessary when
dealing with the interface to analytic solvers – the Evaluator, in the end, offering similar
functionality – these query statements need to contain a returnValue[] array that is
filled during the course of execution. The contents of this data vector are then inserted
into the output XML structure. Figure 4.12 shows how the framework’s output is therefore
composed.

Figure 4.12: XML schema definition of returned output XML data

4.6 Data Interface Controller - Solvers

Once the controller has got hold of all data that is needed for solving a particular problem, it
assembles the model’s data structure and forwards it to the respective solver. While for cer-
tain problem types this may be minimal, other descriptive data collections may be somewhat
voluminous in comparison. Deterministic algorithm code for analytically solvable problems
such as for determination of the quench condition of chapter 5.2 would, for example, range
on the facile end of said spectrum. Extensive geometries of problems demanding FEM simu-
lation may as well produce wide ranging data structures, especially when complex boundary
conditions, sources, and material properties have to be considered.

Common to both examples and all varieties in between is the fact of being representable
by XML. Data structures following such demands can be defined within an XML schema
definition (XSD) file, which for the sake of legibility can comfortably be depicted as a tree
structure as in 4.13.
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Figure 4.13: XML schema definition of the full modelling space
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The root element bears the name ModelCollection, its children are one or more models
of problems to be solved. These models have to be distinguished by an unambiguous name,
if more than one is present. This identifier is necessary for data referentiation during the
coupling process later on.

A model may hold data for different simulation options, such as FEM or analytics. The
problem’s nature is stated implicitly through the solver - attribute. FEMtastic would, for
example, launch the finite element solver discussed in chapter 4.2.1, while Elfe or EleFAnT
initiate the respective FEM solvers of [56] and [24].

Python or Matlab would also qualify and denote the intention to analytically solve a
simulation assignment using the respective code base. This option offers an implicit data
interface to and from the supported analytic computation enviroments. Both programme
code input data – as payload of the Code - statement – and input data using the Input -
directive can be transported as part of such a model type. The input data may well originate
from another model’s computation and be fed into this domain by using an import statement.

A FEM model, on the other hand, is composed of multiple MacroElements, in a cardinal-
ity of ’at least one’. This container is needed to hold the respective number of MacroElement
statements. A particular problem is set up of at least one MacroElements container; typically,
it is only one. The option for more of these containers has been added to unite MacroElement
entries sharing common properties in the future.

Subsequently, a MacroElement is set up of four basic properties:

• A polygon defines the geometry of the macroelement. Figure 4.18 gives details about
the according XML scheme.

• The boundary conditions set up properties on the border of the macroelement, thus
affecting one or more edges, respectively, as in figure 4.14.

• Depending on the type of problem the material may define

– the permittivity ε of dielectric material in electrostatic problem setups

– the electrical conductivity σ of conducting material in static current flow problem
setups

– the permeability µ of magnetic material in magnetostatic problem setups

– the thermal conductivity k for thermal problem setups

• The source is used to define volume charge densities in electrostatic problems, or a
thermal source.

The definition of the geometry property is discussed within the next chapter, material,
sources and boundary condition definitions are depicted by means of a real-world problem
in chapter 5.1.1.
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Figure 4.14: XML schema definition of a macro element’s boundary conditions

4.6.1 Geometry

The toolset under scrutiny offers functionality to model any two-dimensional geometry using
polygon set operations, employing a robust polygon combination algorithm [44].

Intersection noinUQ dna P snogyloP P − Q

P

Q

Figure 4.15: Boolean operations on polygons

This algorithm applies a boolean operation to two polygons, the subject polygon P and
the clipping polygon Q. These operations are, as depicted in figure 4.15

• Union,

• Difference and

• Intersection.

The algorithm’s major characteristics can be subsumed as:

• Fast computation in the order of O((n + k) log(n)), with n being the accumulated
number of edges of both polygons and k the total amount of intersections between
these edges. This makes it advantageous for usage within the scope of a graphical user
interface as well, where fast response time are imperative.

• The algorithm is not limited to a certain type of polygons. Concave or self-intersecting
polygons are supported.

• Polygons with ”holes” are possible.
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• The output is not degenerated. Degeneration means within that respect that the output
is only an approximation of the real result due to limitations implied by the algorithm
itself. Figure 4.16 depicts the correct result of a boolean polygon operation on the
right-hand side, while the result on the left is considered degenerated. This is due to
the two areas of the real result being connected by small bands.

• Regions composed of non-intersecting polygon sets are supported and consolidated
into single polygons. The result of the difference operation in figure 4.15, for example,
yields two separate regions. These are, however, treated as one polygon data structure.
Such a combination of polygons may also be used as an input subject or clipping
polygon.

P

Q

P − QP − Q

Figure 4.16: Polygon degeneration through difference calculation
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Figure 4.17: Iron core with air gap
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The Martinez algorithm therefore provides adequate functionality in order to build up
complex geometry topographies by defining simple polygon primitives and applying boolean
operations to them. As an example, the proper combination of four rectangular polygons A,
B, C and D leads to the exemplary iron core with air gap as depicted in figure 4.17. It is
then the result of applying the rule ((A ∩ B) \ C) \D, or in other words: Intersection of A
and B minus C minus D. The appropriate XML statement would be

Listing 4.1: Geometry definition of an iron core
<Geometry>

<S u b t r a c t>
< I n t e r s e c t>

<Polygon> . . r e c t a n g l e A . . < / Polygon>
<Polygon> . . r e c t a n g l e B . . < / Polygon>

< / I n t e r s e c t>
<Polygon> . . r e c t a n g l e C . . < / Polygon>
<Polygon> . . r e c t a n g l e D . . < / Polygon>

< / S u b t r a c t>
< / Geometry>

The geometry is set up by combining <Polygon> primitives. The resulting geometry
is also a polygon. Possible combinations of polygons are the boolean set operations Union
(<Add>), Difference (<Subtract>) and Intersection (<Intersect>). For full flexibility,
the boolean operations can be nested. The only restriction is composed by the fact that the
<Geometry> entry must have at least one child of the following types: <Add>,<Subtract>,
<Intersect> or <Polygon>.

The boolean operations are evaluated from top to bottom. Therefore,

Listing 4.2: Polygon set evaluation from top to bottom
<S u b t r a c t>

<Polygon> . . A . . < / Polygon>
<Polygon> . . B . . < / Polygon>
<Polygon> . . C . . < / Polygon>

< / S u b t r a c t>

evaluates to (A\B)\C. This resembles A minus B minus C. A more complex example
would be
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Listing 4.3: Example of a nested geometry definition
<S u b t r a c t>

<Polygon> . . A . . < / Polygon>
<Add>

< I n t e r s e c t>
<Polygon> . . D . . < / Polygon>
<Polygon> . . E . . < / Polygon>
<Polygon> . . F . . < / Polygon>

< / I n t e r s e c t>
<Polygon> . . G . . < / Polygon>
<Polygon> . . H . . < / Polygon>

< / Add>
<Polygon> . . B . . < / Polygon>
<Polygon> . . C . . < / Polygon>

< / S u b t r a c t>

This satisfies

A \
{[(

(D ∩ E ∩ F )︸ ︷︷ ︸
intersection

∪G ∪H
)

︸ ︷︷ ︸
union

\B
]
\ C
}

︸ ︷︷ ︸
subtraction

Polygons within XML
The Polygon directive is a set of two-dimensional Coordinates that define the nodes of

such a polygon. By definition, polygons must have at least three nodes. The last node is
defined to be automatically connected to the first one. The number of nodes per polygon
is unlimited, and their succession defines the numbering of the resulting macro element’s
edges. This is a necessary characteristic for edge identification, as used for defining boundary
conditions.

Figure 4.18 shows the XML schema definition for the <Geometry> entry.

4.6.2 Accuracy

With triangles being a very popular drawing primitive, there is a broad number of graphics
libraries and hardware subsystems that make triangular meshes very common in computer
aided modelling or drawing (CAM or CAD, respectively). Complex models reproducing
substantial real-world domains can easily contain millions of faces, and current CAD/CAM
tools handle these without any problem [12].
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Figure 4.18: XML schema definition of a macro element’s geometry

Unfortunately, a major drawback arises when such problem space discretizations not
only have to be depicted, but also form the basis for numerical calculations, as an increase in
data complexity may easily reach hardware performance boundaries. The algorithms used
for finite element calculations within numerical simulation problems usually are of quadratic
complexity, O(n2), which means the consumed processing time increases in the order of
the second power of the number of finite elements. Chapter 6.2.1 shows the monitoring of
real-world parameters to substantiate this claim.

However, a highly complex data representation is not always required, as for many prob-
lems to be fed into a simulation tool chain only small parts of the model space are of par-
ticular interest. These parts are typically characterized by strong gradient changes of the
underlying physical quantity that is to be determined. Coarse meshes in these areas would
lead to inaccurate solutions, which is why often a tradeoff between overall accuracy and
processing time as contemplated above has to be found.

This tradeoff can be overcome when only the mentioned regions of interest are equipped
with some mesh of finer resolution. The XML problem representation offers two directives
for that purpose, refinement and edgerefinement, both showing their own peculiarities. They
are available in the form of attributes assigned to each MacroElement, where necessary (see
figure 4.13 or listing 5.9).

Therefore, both are of an optional nature, are accepted as real numbers, and can be seen
as to lengthen or shorten an arbitrary base length by multiplication. 1.0 is the neutral factor,
it is assumed to be in force when no refinement factor is set. Accordingly, numbers larger
than 1.0 yield coarser meshes, smaller ones result in finer ones.
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• refinement refactors all of the mesh of an actual macro element. This should be used
with caution when modelling the far problem boundary, as finer meshes would result
in enormous numbers of finite elements and respective computation times, all out of
proportion to the increase in accuracy. Therefore, regions of interest could, for exam-
ple, be furnished with a small macro element, that bears the same physical quantities
as the background one, but offers finer mesh refinement.

• edgerefinement, on the contrary, only works on the boundaries of a macro element and
therefore creates a gradient of mesh resolution leading away from these boundaries.
This comes in very handy when major differences of the solution’s quantity are to be
expected along or in the near vicinity of a macro element’s edges.

Figures 4.19 and 4.20 show the difference between a problem discretization of no refine-
ment at all and a setup with a refinement factor of 0.1. Figure 4.21, on the contrary, depicts
a model setup where an edge refinement factor of 0.1 was chosen for the far boundary and
for the outer (right) coil, respectively, leaving both the air space and the inner (left) coil
unrefined.

Figure 4.19: Unrefined standard meshing of the TEAM22 benchmark problem

Having the mesh refinement parameters available as real numbers, it is possible to vary
the refinement process either from outside as part of the optimization process, or by instruct-
ing the controller to adapt the mesh coarseness on its own discretion. Chapter 4.1 shows the
approach the controller would follow in order to exhibit this functionality.
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Figure 4.20: Adapted area meshing of the TEAM22 benchmark problem

Figure 4.21: Adapted boundary meshing of the TEAM22 benchmark problem
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4.7 Data Interface Solvers - Post-Processors

As depicted in figure 3.1, there is a data path between a model’s solver output and another
model’s input. Between them, usually, some postprocessing structure is located. The frame-
work under scrutiny offers two ways for deriving data from a problem’s solution set.

4.7.1 Multiple Models & the Import - Directive

The import of values from one model to another is the process that is pursued with respect
to weakly coupling them. Therefore, it plays an eminent role within the whole simulation
workflow. Importing values is currently allowed for models that are to be solved analytically,
and for certain characteristics of FEM models. Figure 4.13 depicts permissible applications
within the main XML schema; the values to be applied as sources or material parameters
would qualify.

The Import - directive within the model offers two ways of deriving values that are to be
forwarded to the next model’s setup. Figure 4.22 shows the according data schema diagram.

Figure 4.22: XML schema for importing

On the one hand, a number of readily available functions for common coupling problems
exists. For these, the type - attribute of the Import element may be employed. Currently, the
following directives are available:

• max(ν) gathers the maximal value of a quantity ν in the domain of the current macro
element (where applicable). ν depends on the nature of the problem to be solved. Apart
from that, also certain derivatives from the addressed result set may be queried. For
electrostatic and current flow models, for example, ν may take the following values:

– U delivers the maximal value of the electric potential Φ (denoted as U, to simplify
matters)

– E delivers the maximal value of the electric field strength depending on the po-
tential distribution within the given domain

– J delivers the maximal value of the current density, depending on electric field
and material properties within the given domain



CHAPTER 4. FRAMEWORK AND COMPONENTS 54

• source retrieves integral qantities that serve as a source with respect to the given
simulation model’s nature. For magnetostatic problems, this would be the total current
I within a given domain.

• energy yields the total energy stored in a magnetic or electric field within a particular
domain.

Then again, more complex dependencies have to be modelled using very specific func-
tions that are not easily mapped using said features. For example, the temperature depen-
dency of a metal’s specific conductivity follows a curve that is best implemented using for-
mulae as discussed in chapter 4.8.1. Chapter 5.1.3 describes an example for such a coupling
scheme. In such cases, special code of any necessary complexity may be implemented using
CouplingCode. Its attribute interpreter denotes which code interpretation base should be
deployed, e.g. Matlab directly, or Python via the interface described in chapter 4.2.2.

Common to both interface varieties is the necessity to determine where to take informa-
tion from. fromModel denotes exactly that linkage, and refers to a model’s name attribute.
In that respect, the weak coupling scheme pursued within this work is of information pulling
nature; a single model and its solving architecture does not have to be aware of being coupled
with others, it is only queried for certain results when necessary.

When two or more models are not coupled in one direction, but information is also gath-
ered from the last model in the chain to feed the first one again, the resulting workflow
may easily end in infinite round trips. This may be desirable when particular results have to
converge on account of changing external conditions determined by another simulation.

Nevertheless, such a process needs to be brought to a stop once stability is reached. This
is usually done by comparing results of two succeeding simulation runs for their difference,
and halt the round-trip accordingly as soon as a certain threshold is under-run. Both absolute
and relative values are accepted for the respective attribute, with 1% being the default value
that is employed automatically in order to avoid infinite loops.

4.8 Data Interface Evaluator - Solvers

4.8.1 Postprocessing Functionality

Typical numerical simulation frameworks suffer from a major drawback concerning the def-
inition of postprocessing functionality. While standard functionality such as drawing of ge-
ometry, contour or field plots and computing a set of predefined quantities can be expected
from virtually any FEM software, adding new instructions to evaluate initially disregarded
quantities may as well turn out to be impossible.

The main functionality of some FEM problem solver’s postprocessing functionality typ-
ically is to calculate, visualize or integrate quantities which are not a direct result of the
solving procedure. These can be split into two categories [47]:
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• Local quantities depend on a single point within the modelled domain. Current flow
density or the magnetic flux density would, for example, be characterized by such
quantities.

• Global quantities are derived by evaluating an integral along a surface or volume (or
it’s two-dimensional simplification) of a local quantity. Total current, tension, force or
flux can be counted within this category.

Quantities of both categories can be expressed using an arithmetic formula. The advance
of efficient interpreted programming languages almost inflicts creating an interface to ex-
press these formulae directly and interactively for postprocessing instead of predefining new
subroutines for each quantity to evaluate. Therefore, both MATLAB and Python have been
integrated for supplying postprocessing features.

The mentioned formulae, of course, need to be granted access to some basic values such
as problem topology and geometry or its physical properties [38]. Above that, the intro-
duction of parameters or placeholders is worth being considered. Using these, a formula
can receive its input arguments as descendants of other formulae, thus even introducing the
convenient concept of recursivity, by the way.

The most basic value that is to be obtained by postprocessing is also the most crucial
one. For almost any further calculation, of course the problem solution is of interest in each
point of the problem geometry. This is straightforward for the mesh nodes, especially when
the solver has returned a full solution set to the framework that has been stored as objects
(or their persistent HDF representation). The approximation of values at points within the
area covered by a finite element may be somewhat trickier when the software module does
not allow for access to according functionality. In such cases, it is in the user’s discretion
to resort to either the solver’s wrapper or the framework, both of which offer reasonable
functionality for retrieving the field value for a given computation point solely based on its
coordinates.

4.8.2 Data Structures and Commands

In order to close the feedback loop back to the superordinate optimization structure signified
in figure 3.1, structured output has to be produced by the evaluator. This is done by following
the instructions handed over to the controller with the input XML data. The controller then
splits this input into models to be simulated, and the part concerning output generation. Its
structure is depicted in figure 4.23.

Output generation is based on the concept of the so-called query, meaning that the full
space of intermediate (stored) and final solutions have to be interrogated or queried for values
to be output. The permissible number of queries is unlimited for each simulation set.

Very much following the process for importing data from one physic’s model into an-
other, and therefore allowing for the above mentioned formula concept, each query requires
OutputCode to be passed. The programming code contained in the directive’s payload has to
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Figure 4.23: XML schema for output generation

be qualified by interpreter in order to hand it on to the appropriate processing functionality;
again, a choice between Matlab and Python is available.

Using the importFrom attribute, the model to obtain data from has to be identified. Other
than in the case of coupling two models, in this case also historical data may be accessed.
This is fulfilled by appending the historical cycle that is to be evaluated to the model iden-
tifier. Numbering is carried out in reverse chronologic order, -1 therefore denoting the last
run before a stopping criterion has been met and the solutions have therefore been marked as
definite.

The output is then composed using the functionality the evaluator provides for that pur-
pose as discussed in chapter 4.5. With returning the full range of retrieved data the service
the simulation framework offers is completed.



Chapter 5

Applications

“We have no idea about the ’real’ nature of things ... The function of modeling
is to arrive at descriptions which are useful.”

[Richard Bandler and John Grinder]

During the course of research on the topics covered by this thesis, a number of real-world
optimization problems have been investigated. This chapter summarizes the activities several
publications originated from. The respective references can be found in the corresponding
chapters.

5.1 Electrothermal Hardening

5.1.1 Problem Setup

Hardening of steel components is commonly done using the method of annealing. This
typically requires controlled heating of the workpieces to exact temperatures following a just
as exact time schedule in order to effectuate the desirable material properties.

Therefore, the design of an appropriate heating device would include the determination
of the dimensions a heating plate should have, given the fact that the device is supplied with
a fixed voltage. The optimization strategy and the determination of fitness with respect to the
optimization objectives is left to an optimization toolbox not within the scope of this thesis.
Nevertheless, as the XML file to be filled with data is the input interface to the outside world,
it is of quite some interest to show how an actual input file would be made up. As mentioned
in chapter 4.6, XML equally allows man and machine to read and write within its structures,
and hence it is a good starting point for each optimization task to start with a man-made
model and proceed in altering it automatically.

57
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The two-dimensional cross-section model of such an appliance made from alloy is shown
in Fig. 5.1 together with its cupreous feed connections shown on either side of the heating
plate. An arbitrary workpiece of steel is placed on top of it. All measurements are given
in meters, the third dimension is assumed to be infinite in length, which eases the model to
being of two-dimensional nature only.

0.3 0.2 0.1 1.2 0.1 0.2 0.3

0.1
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0.3

Cu Cuheating element alloy
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y

Steel

12Vthermal isolation

Figure 5.1: Heating device - problem geometry

Figure 5.2: Electrical potential distribution

Figure 5.3: Current density causing the losses that serve as thermal source
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The electric potential distribution that arises as shown in figure 5.2 drives current through
the heating plate (as depicted in figure 5.3). As a result of the power dissipation due to ohmic
losses therein, it will heat up and thus serve as a source for the thermal model simulation.
Within this model, the feed connections can be neglected, but as, of course, the workpiece to
be hardened has to be taken into account, a problem space discretization entirely different to
the current flow model’s is the result. Figures 5.4 and 5.5 show the according model space
and its discretization as well as the resulting simulated thermal distribution.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1
Geometry

x [m]

y 
[m

]

Figure 5.4: Thermal problem setup and triangulation

Now, taking advantage of the finite elements being realized as software objects, the input
values for source elements of the thermal model can easily be determined for each finite
element’s integration points. As each FE object of the current flow problem offers its own
postprocessing functionality, exact input values - the power dissipation in each integration
point as a result of the current density ~J - can be retrieved and fed into the new thermal
source elements.

Also, the temperature that arises within the heating plate can influence its material prop-
erties, e.g. specific conductivity. Therefore it may be advisable to re-feed this information
into the electric model and simulate it again, before starting the thermal simulation using
the now freshly calculated current flow. This round-trip can be repeated until the difference
between two iterations falls below a certain threshold.

[30] holds details to early stages of reasearch on this topic, while [29] summarizes and
publishes the findings expounded within the next chapters.

5.1.2 Model Creation

In order to create a fully functional model within the optimization framework under scrutiny,
a few details of the data structure holding said model shall be explained. Above mentioned
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Figure 5.5: Thermal distribution within the modelled domain

problem is perfectly apt for dividing it into two partitions, each of which can be solved using
FEM principles. Hence, the model is explained in a bottom-up manner, until the whole
structure is filled and can be forwarded to the solving framework. The full XML structure is
given in listing A.2.

5.1.2.1 Geometry

The relatively simple model geometry allows for the use of polygons only, sophisticated
union or intersection operations do not have to be conducted. This is equally true for all 4
macro elements the geometry consists of. Fig. 5.1 already foreshadows a meaningful com-
position of these elements - both feeders and the heating plate for the current flow partition,
the heating plate and the workpiece for the thermal distribution model.

For each of these macro elements, a polygonic layout as given in listing 5.1 is sufficient to
fit into the XML scheme developed and described in chapters 4.2.1 and 4.6. Special attention
has to be paid that even if no operation on polygon sets is necessary, at least one polygon has
to be ’added’ to the geometry structure.
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Listing 5.1: Left feeder geometry definition
<Geometry>

<Add>
<Polygon>

<Coords>
<Coord x=” 0 ” y=” 0 . 7 ” />
<Coord x=” 0 ” y=” 0 ” />
<Coord x=” 0 . 3 ” y=” 0 ” />
<Coord x=” 0 . 5 ” y=” 0 . 3 ” />
<Coord x=” 0 . 6 ” y=” 0 . 3 ” />
<Coord x=” 0 . 6 ” y=” 0 . 4 ” />
<Coord x=” 0 . 5 ” y=” 0 . 4 ” />
<Coord x=” 0 . 3 ” y=” 0 . 7 ” />

< / Coords>
< / Polygon>

< / Add>
< / Geometry>

The result of such a geometric layout would be the left feeder’s macro element, also
depicted in figure 5.6. All other macro elements have to be set up similarly; the full listing
in A.2 shows these as well.

5.1.2.2 Boundary Conditions

Applications of the Finite Element Method, in general, make use of Dirichlet, Neumann and
Cauchy boundary conditions. How these are utilized for the hardening device example shall
be delineated subsequently.

Listing 5.2: Defining Dirichlet and Neumann boundary conditions
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i o n t y p e =” D i r i c h l e t ” from=” 8 ” t o =” 2 ”>
<Value>

12
< / Value>

< / B ound a ry Cond i t i o n>
<Bo unda ryC ond i t i o n t y p e =”Neumann” from=” 5 ” t o =” 5 ”>

<Value>
0

< / Value>
< / B ound a ry Cond i t i o n>

< / B o u n d a r y C o n d i t i o n s>
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Figure 5.6: Edges and boundary conditions of the left feeder
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Figure 5.7: Material and boundary conditions within the thermal model

Listing 5.2 defines the boundary conditions for the heating device shown in figure 5.6.
As, by design, the edges of the macroelement are numbered counterclockwise, edges 1, 2

and 8 are to be seen as being the electrodes of the device. Their electric potential is defined
with 12V by means of defining Dirichlet boundary conditions for each of them.

A range of edges can be defined using the attributes from and to. A polygonal shape is
defined as being enclosed by edges, it is both allowed and useful to have a to-value that is
larger than the from-value. In such a case, all edges with a numbering equal or higher than
from or lower than or equal to to are taken into account. The Dirichlet boundary condition
definition in listing 5.2 for the feeder figure 5.6 shows exactly this situation.

Both attributes for the edges’ range, from and to, have to be set as well in case there is
only one edge to be allocated with certain boundary conditions. The Neumann boundary
condition set for edge 5 would be such a case, and represents a symmetry surface.

For thermal problems, Cauchy boundary conditions are of great importance. Using these,
heat transfer can be modelled quite easily. Listing 5.3 shows the definition for the steel work-
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piece to be hardened as given in the current problem. As depicted in figure 5.7, its seven
edges that are in direct contact with surrounding air of temperature TA emit heat. This emis-
sion is expressed through an additional value entry, <Transition>. Using this, the transition
coefficient α of a Cauchy boundary condition is defined. The transition coefficient for the
workpiece is to be assumed as α = 5.6WK−1m−2 at an ambient environment temperature
of TA = 300K.

<Transition> is only expected when the boundary condition’s type property is set to
”Cauchy”, in all other cases it will simply be ignored.

The bottom of the heating plate is thermally insulated and also the connections to the
electrodes are assumed to have no temperature flow. This is mathematically expressed by
Neumann boundary conditions as described above.

Listing 5.3: Defining a Cauchy boundary condition
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i o n t y p e =” Cauchy ” t o =” 7 ” from=” 1 ”>
<Value>300< / Value>
<T r a n s i t i o n>5 . 6< / T r a n s i t i o n>

< / B ound a ry Cond i t i on>
< / B o u n d a r y C o n d i t i o n s>

5.1.2.3 Material

By definition, a macro element is a region within a model setup that consists of material with
equal properties over exactly this region. For the problem under scrutiny, two material prop-
erties are of special interest - the feeders’ and heating plate’s electrical conductivity, and the
heating plate’s and workpiece’s thermal conductivity respectively. For each model (electrical
and thermal) and the macro elements assigned, the material properties have to be entered.
Listing 5.4 shows how this is done for the feeder macro elements which should resemble
copper. As the feeders are of interest while computing the static current flow problem setup,
the electrical conductivity of copper, σ = 59.1 · 106S/m is given.

Listing 5.4: Material definition of a macro element representing copper
<M a t e r i a l>

<Value>
5 9 . 1 E6

< / Value>
< / M a t e r i a l>

Table 5.1 summarizes the material properties used in the electrothermal hardening device
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setup corresponding to the model type.

problem type macro element interpretation value unit
static current flow left feeder electrical conductivity σ = 59.1 · 106 S/m

static current flow right feeder electrical conductivity σ = 59.1 · 106 S/m

static current flow heating plate electrical conductivity σ = 1.4 · 106 S/m

thermal heating plate thermal conductivity k = 85 W ·K−1 ·m−1

thermal workpiece thermal conductivity k = 42 W ·K−1 ·m−1

Table 5.1: Material properties and their interpretation

5.1.2.4 Source

In electrostatic or thermal problem setups, a macro element can also represent a source of
certain nature. Therefore, a facultative fourth macro element property has to be introduced.
In case a <Source> entry exists and differs from 0, the macroelement represents a volume
charge density for electrostatic problems or a thermal source. The value defined in such
a manner bears a unit of C

m3 or W
m3 , respectively. Listing 5.5 would show such a source’s

definition.

Listing 5.5: Source definition
<Source>

<Value>
5 . 9

< / Value>
< / Source>

Ensuring weak coupling between two models via a way of exchanging data, the statement
<Import> is of great help. The exact syntax for using the data import from another model as
a source is given in listing 5.6. The value contained in the<FromModel> expression denotes
the model that shall serve as the source in this context, while <Type> and <Threshold>
supply the controller with additional information on how the import procedure should be
handled. More information about the actual model coupling for the hardening device is to be
found in chapter 5.1.3.
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Figure 5.8: XML schema definition of a MacroElement

Listing 5.6: Import of another model’s data
<Source>

<Im po r t>
<FromModel>1< / FromModel>
<Type>c u r r e n t−t h e r m a l< / Type>
<T h r e s h o l d>1%< / T h r e s h o l d>

< / I mp or t>
< / Source>

With all four properties of macro elements being defined by now, the XML schema defi-
nition for the <MacroElement> statement can be developed. Figure 5.8 summarizes such a
definition.

5.1.3 Multiphysical Coupling of Current Flow and Thermal Mod-
els

The computation of a full optimization cycle for the given problem setup requires, as out-
lined in chapter 5.1.1, an intermediate result to be computed. In the case of the first model –
the static current flow model – that would be the distribution of the current density J.
In order to gain the final result, the thermal model has to be computed subsequently in order
to receive the temperature distribution or the scalar temperature field T of the steel work-
piece.
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For the reason of having two coupled models originating from different physical domains
this approach is called multiphysics. After computing the current flow within the heating
plate, the respective power losses can be calculated. In the course of calculating the second
thermal model, these power losses will act as energy sources for heat.

Figures 5.4 and 5.7 define the thermal subtask. Only the heating plate and the steel
workpiece have to be modelled; thermal effects within the electrodes can safely be neglected
in just the same manner as the influences on the current flow in the workpiece are disre-
garded. The heating plate is then constructed of an alloy with a thermal conductivity of
k = 85WK−1m−1, the steel workpiece on the other hand shows a thermal conductivity of
k = 42WK−1m−1.

The framework supports weakly coupled problems through the <Import> expression in
the input XML file. It advises the controller to access the model that is identified by the
therein contained number. It is then queried for its postprocessing features to return certain
computed values. The controller, in the end, forwards these values to the actual model for
assembling it into its calculations.

The current implementation necessitates parts analysed in both models to be located at
the same positions in their respective geometry. For the given example this would mean
that the heating plate features the same coordinates in both the current flow and the thermal
model. Different setups of macroelements or a different meshing and triangulation would,
on the contrary, be of no concern.

p =
1

σ
JTJ (5.1)

Listing 5.6 shows how the import functionality for a given model is activated, in this
actual case for a current flow - thermal coupling. Equation 5.1 states the relation between
the current flow J and the power loss p in W

m3 , with the latter being the source of the thermal
problem. This relation is specified through the value of the <Type> directive being set to
current-thermal. The value for <Threshold> can be set to any arbitrary value, when no
roundtrip coupling is applied.

In case the influence of the heating plate’s temperature should also be fed back to its
material properties, an import of the respective value for this would have to be put into
execution before another calculation cycle is started as this may influence the current flow
and the temperature distribution accordingly. In order to find a stopping criterion, either
value being imported can be monitored by the controller. Should the difference of imported
values between two cycles fall below the given threshold in the <Import> directive, the
calculation cycle is halted. <Threshold> accepts both percentages and absolute values, and
is – as mentioned above – ignored when the models to be calculated are not coupled in both
ways.

The given setup was evaluated including such a feedback loop. That means that the
temperature that arises within the heating plate has to be obtained and forwarded as input to
calculate the heating plate’s temperature dependent specific conductivity σ(T ). Engineering
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reference compendia such as [67] list a temperature coefficient α for the electrical resistivity
ρ. Therefore, the respective value of α = 0, 4%K−1 for the alloy material chosen for the
heating plate has to be applied to obtain σ(T ) as in (5.3).

ρ(T ) = ρ(T0) · (1 + α∆T ) (5.2)

σ(T ) = σ(T0) ·
1

1 + α∆T
(5.3)

Listing 5.7 implements exactly this relation with temps being an array for storing the
sequence of temperatures that may arise during the simulation process. T0 – and σ(T0) along
with it – has been fixed at 300K.

Listing 5.7: Determination of σ(T )

sigmaT = sigma / (1+ a l p h a ∗ ( temps ( numel ( temps ) ) −3 0 0 ) ) ;

The first simulation run per default uses T0 for determination of σ(T ). After that, the
maximum temperature within the heating plate is obtained and stored in temps. As soon as
the difference between the latest two values determined by this drops below 1%, the stopping
criterion flag is set which brings the evaluation to an end.

Listing 5.8: Determination of simulation convergence
i f abs ( temps ( numel ( temps ) ) / temps ( numel ( temps )−1)−1) < 0 . 0 1

s t o p c r i t e r i o n = 1 ;
end

For reasons of simplicity, α has been chosen to be a linear coefficient with respect to ρ,
which in fact is a raw, yet sufficient approximation. As metals increase in specific resistivity
with temperature, a temperature curve as shown in figure 5.9 arises. The temperature has also
been chosen as the stopping criterion – once the recently obtained maximum temperature
within the heating plate differs by less than 1% from last iteration’s, the process is halted. 30
iterations proved to deliver the stability sought for. Both figure 5.9 and 5.11 show that either
of the values determined for T , σ, p, or J would qualify for feeding the stopping criterion
due to their similar convergence patterns.

Figure 5.10 depicts the position of a cross-sectional determination of the current flow
density J. It is calculated every 0.01 m along that line. The sum of 30 iterations’ s/J-
diagrams is depicted in figure 5.11.
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Figure 5.10: Cross-section through feeders and heating plate for evaluation of the results
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Figure 5.11: Convergence of the cross-sectional current flow over 30 coupling feedback runs
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5.2 TEAM 22 Benchmark Problem

5.2.1 Problem Setup

In 1996 a Superconducting Magnetic Energy Storage (SMES) arrangement was selected to
become a benchmark problem for testing different optimization algorithms, both determin-
istic and stochastic ones [61]. Since the forward problem can be solved semi analytically
by Biot-Savart’s law, this benchmark became quite popular. Nevertheless, the demands on
optimization software have increased dramatically since then. To give an example, methods
looking for Pareto-optimal points rather than for a single solution only have been introduced
by several groups [57].

SMES are devices for energy storage within magnetic fields. These fields are produced
by coils the windings of which consist of superconducting wires. The coils are connected to
the power grid via a switch that facilitates feeding and discharching the apparatus. During
persistent-mode operation both terminals of the coil are connected. Superconductors are the
only material suitable for SMES as they lose their electrical restistance completely once they
are cooled to appropriate, typically very low temperatures.

Two different approaches for SMES setups have been proposed, making use of solenoidal
or toroidal coils. The advantage of solenoids is to offer easily manageable winding mecha-
nisms, while manufacturing a toroid coil is much more intricate. Additionally, such a wind-
ing consumes almost double the amount of superconductiong material; albeit, a toroidal coil
offers the benefit of the magnetic flux generated through its operation to be almost fully
enclosed in the coil itself.

The setup under scrutiny within this research project consists of a configuration of two
solenoidal coils, as depicted by figure 5.12. Such a configuration offers a significantly
smaller magnetic stray field than a single solenoid, provided the coils are fed with currents
oriented in the opposite direction. While such a setup requires more material than a setup us-
ing toroidal coils, at least the requisitions towards construction remain relatively low. Above
that, a double solenoidal coil setup forms a marvellous example for optimization procedures
due to its number of different, yet often conflicting, demands [2], [40].

An optimal design of the system was therefore agreed upon to couple the desired value of
energy to be stored (first objective) with a minimal magnetic flux density’s stray field (second
objective) [3]. This problem has been accepted as TEAM benchmark problem number 22
[41].

The TEAM 22 benchmark problem offers two different approaches for performance as-
sessment of optimization algorithms. The first one consists of a discrete problem, asking
for three geometric parameters of the problem setup to be manipulated. These are radius,
height and width of the outer solenoidal coil. The second approach features 8 continuous
parameters to be orchestrated, being radius, height, width and current density of both inner
and outer coil. Common to both problems is the fact that the objective function is defined as
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Figure 5.12: Configuration of SMES Benchmark Problem

a weighted sum of the two objectives (5.4).

Irrespective of the number of parameters to be optimized, for a SMES as described above
the following objectives are in force and have to be considered:

1. The stored energy in the device should be as close as possible to 180 MJ.

2. The stray field B2
stray(measured at a distance of 10 meters from the device) should be

as small as possible.

3. The magnetic field must not violate a certain physical condition which guarantees
superconductivity, the so-called quench condition as shown in (5.6) and figure 5.13.

However, the first two objectives are mapped into a single objective function given in (5.4).

OF =
B2
stray

B2
norm

+
|E − Eref |

Eref
, (5.4)

where Eref = 180 MJ, Bnorm = 200 µT and B2
stray is defined by (5.5).

B2
stray =

22∑
i=1

∣∣∣ ~Bstray, i

∣∣∣2
22

. (5.5)

5.2.1.1 Quench Condition

An operating point that is to be avoided by any means is the return of parts of the super-
conduction coil to the normal resisitve operating state. This transition, called quench, im-
mediately terminates the magnet’s operation and may happen due to a number of different
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reasons. The most typical ones are either the magnetic field inside the coil being too large,
or the frequency of current alternation is too high. The latter one would cause eddy currents
in the supporting structure not made from superconductors, and thus heating of the whole
apparatus.

Once a spot suffers from quenching and thus from a sudden return to its resistive state,
it is subject to impetuous heating due to ohmic losses driven by the enormous current. This
would have immediate effect to the neighbouring regions, as these would be heated up con-
sequently and return to resistive state as well. The resulting chain reaction is a threat to
safe operation of the device, and therefore has to be avoided, if possible, already during de-
sign. For superconductors of industrial use, the conditions under which safe operation can
be guaranteed are well documented. (5.6) and figure 5.13 show the quench condition for a
niobium-titanium alloy (Nb-Ti) as an example.

Figure 5.13: Critical quenching curve for a Nb-Ti industrial superconductor

|Jlim| = −6.4|B|+ 54.0A/mm2 (5.6)
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5.2.2 Multiphysical Coupling of Magnetostatic and Analytic
Models

Other than coupling two models to be worked on using finite elements, in this case an an-
alytic solution is of interest. That means, that calculations whether the quench condition is
fulfilled or not can be conducted by the model calculation framework using the program code
input interface for Python [72]. While chapter 4.2.2 describes the technical background, this
section details the composition of a data structure to actually fulfill the task that is asked for.

The question to be answered can be subsumed as to calculate both total energy in the
apparatus and the stray field, thus feeding the objective function as in (5.4). Then, identify
and return a flag declaring the stated setup as being valid against the quench condition (5.6)
as well.

This can easily be done by creation of two models within the input XML as in listing A.3.
This offers the opportunity to retrieve the values of E and B2

stray through FEM calculations
and to immediately obtain declarative information whether the setup is valid or not through
analytic calculations on base of the results delivered by the FEM solver. Though the above
mentioned semi-analytical approach using Biot-Savart’s law to solve this problem would
suffice, calculations using a FEM model were employed for testing reasons.

The setup of the first model is shown in listing 5.9. Special attention is drawn to the
model’s type property. Infinite elongation in the third dimension is implicitly assumed for
two-dimensional models such as the thermal hardening appliance of chapter 5.1. By con-
trast, the SMES model is of rotationally symmetric nature. Therefore, the solver has to
be instructed to use the ordinate as rotational symmetry axis. For FEMtastic, this can be
achieved by determining the geometry property as being ”rotational” [37].

Solvers that do not handle symmetry as a directive would have do be advised to simulate
a model in some symmetric way via the small detour of defining the modelling space as a
macro element of its own with appropriate boundary conditions along the symmetry axes,
for either rotational or axial symmetry. The decision of which procedure to use is left to the
wrapper catering to the solver functionality and does not necessarily have to be part of the
setup.
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Listing 5.9: Magnetostatic calculation of SMES solenoidal coil field
<Model t y p e =” m a g n e t o s t a t i c s ” geomet ry =” r o t a t i o n a l ”
s o l v e r =” FEMtas t i c ”>
<MacroElements>

<MacroElement>
<Geometry>

<Add>
<Polygon>

<Coords>
<Coord x=” 1 .865 ” y=”−0.8 ” />
<Coord x=” 2 .135 ” y=”−0.8 ” />
<Coord x=” 2 .135 ” y=” 0 . 8 ” />
<Coord x=” 1 .865 ” y=” 0 . 8 ” />

< / Coords>
< / Polygon>

< / Add>
< / Geometry>

<Source>
<Value>2 2 . 5 E6< / Value>

< / Source>
< / MacroElement>
<MacroElement>

<Geometry>
<Add>

<Polygon>
<Coords>

<Coord x=” 2 . 9 ” y=”−0.65 ” />
<Coord x=” 3 . 1 ” y=”−0.65 ” />
<Coord x=” 3 . 1 ” y=” 0 . 6 5 ” />
<Coord x=” 2 . 9 ” y=” 0 . 6 5 ” />

< / Coords>
< / Polygon>

< / Add>
< / Geometry>

<Source>
<Value>−22.5E6< / Value>

< / Source>
< / MacroElement>

< / MacroElements>
< / Model>
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The according model space and its discretization as well as the resulting magnetic field
are shown in figures 5.14 and 5.15 as obtained using FEMtastic [37]. Figure 5.16, on the
other hand, shows the same setup calculated using EleFAnT for verification purposes [24].

The Python code for checking the calculation for violation of the quench condition is
comparably simple. It takes over four values – J1, B1, J2 and B2 – and calculates a decision
whether this violation is reached or not. If safe operation can be ensured in both solenoids,
1 is returned, and 0 as return value for the erroneous case. The part of the input XML that
carries the Python code for that model is given in listing 5.10.

Listing 5.10: Calculation of quench condition violation flag by means of analytic code
<Model t y p e =” a n a l y t i c ” r e f i n e m e n t =” ” s o l v e r =” Python ”>

<I n p u t>
<Value>2 2 . 5 E6< / Value>
<Value>−22.5E6< / Value>
<Im po r t>

<FromModel>1< / FromModel>
<Type>maxFromRegion< / Type>
<T h r e s h o l d>< / T h r e s h o l d>

< / I mp or t>
<Im po r t>

<FromModel>1< / FromModel>
<Type>maxFromRegion< / Type>
<T h r e s h o l d>< / T h r e s h o l d>

< / I mp or t>
< / I n p u t>
<Code><! [CDATA[

# i n p u t = [ B1 , B2 , J1 , J2 ]

J1check =(−6.4∗ i n p u t [ 0 ] + 5 4 )
J2check =(−6.4∗ i n p u t [ 1 ] + 5 4 )

# v a l i d a t e s whe the r quench c o n d i t i o n i s f u l f i l l e d ( 1 )
# o r n o t ( 0 , e r r o r c a s e )
i f ( J1check > i n p u t [ 2 ] ) o r ( J2check > i n p u t [ 3 ] ) :

r e t V a l = 1
e l s e :

r e t V a l = 0

r e t u r n V a l u e s = [ ]
r e t u r n V a l u e s . append ( r e t V a l ) ] ]>
< / Code>

< / Model>



CHAPTER 5. APPLICATIONS 76

Figure 5.14: SMES problem space discretization

In- and output are handled by the according framework functionality blocks, and serve
just the way they would do for FEM coupling: a postprocessor reconditions the solution of
the first model and forwards it to the second one, where needed. Analogously, the return
values from the second model to be solved by analytic means are available in just the same
manner. That means for creation of the full computation output data the (for this example
small) solution space stretched by the analytic code can be accessed by the evaluator.
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Figure 5.15: SMES solenoid coils’ magnetic field intensity as derived from FEMtastic

Figure 5.16: SMES solenoid coils’ magnetic field intensity as derived from EleFAnT
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5.3 Switching Operation within an R - L - Circuit

5.3.1 Problem Setup and Coupling Scheme

A quaint method of measuring currents can be modelled using a linear amperemeter. It fea-
tures a cylindrical coil and a ferromagnetic core that works as an actuator. Figure 5.17 shows
a sample setup. With current flowing through the coil’s windings, a magnetic force draws
the iron core towards the coil’s center. Some sophisticated retention mechanism ensures the
coil takes a linear movement depending on the excitation current. With the maximum am-
perage being reached, the iron core is fully inserted. Figure 5.18 shows the corresponding
equivalent network.

iron
core

position @ I=0A

iron
core

coil

position @ I=Imax

0.03m

0.05m

0.01m0.015m

coil

0.03m

0.05m

0.01m0.015m

Figure 5.17: Cross-sectional axisymmetric model of an electromagnetic actuator

Uo

L(i)

R

to t

U

Figure 5.18: Diagram of the actuator’s R-L circuit

Due to the iron core being inserted into the coil depending on the current, the coil’s induc-
tance is increased in a manner that does not allow any predictions. Simulating the behaviour
of the device while switching on the voltage source therefore bears some imponderabilities,
namely the amperage increase right after the switching event not only being dependent on
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R and L, but L also depending on i in turn. The connection scheme can be transformed
straightforward to the network equation (5.7). For the simulation, a Matlab network solver
takes over the part of computing the retroactivity of the inductance on the thus arising cur-
rent. FEMtastic takes care of simulations of the coil and iron core, thus paving the way to
calculating the inductance for certain hardware configurations again.

L
di(t)

dt
+Ri = U0 ⇒

di(t)

dt
+
R

L
i =

U0

L
(5.7)

For setting up the simulation, the parameters outlined in table 5.2 and the geometry de-
picted in figure 5.19 have to be taken into consideration.

Voltage source U0 12V

Resistance R 120Ω

Coil number of windings, N 500
Iron core µr 104

Table 5.2: Simulation parameters

Figure 5.19 shows the FEMtastic model with the iron core being in position i = 0A. The
resulting XML input file is presented in full scope in appendix A.4.

Figure 5.19: Geometry of the actuator’s FEM model in position i = 0A

After obtaining a solution to the magnetostatic FEM problem, the postprocessor is queried
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for the full energy stored within the magnetic field. Based on the correlation of (5.8), the in-
ductance follows directly:

W =
L · i2

2
⇒ L =

2 ·W
i2

(5.8)

A graph depicting both W and thus the resulting L as a function of i is shown in fig-
ure 5.20. The nonlinear relation of the exciting current and thus the insertion state of the iron
coil on the one hand and the inductance on the other is clearly visible, therefore vindicat-
ing the computational intensive use of a FEM solver for obtaining the correct value for the
inductance at any given excitation amperage.
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Figure 5.20: Total stored energy and inductance as functions of i

5.3.2 Application of Numerical Time-Stepping Methods

For the determination of the amperage over time as a consequence of switching on the volt-
age source, application of the self-contained solution (5.9) would not suffice because of the
unpredictable value of L.

iL(t) =
U0

R

(
1− e−

R
L
t
)

(5.9)

Therefore, different varieties of the Euler method have been investigated for their conver-
gence behaviour. Both the explicit and backward Euler methods share the characteristic of
being a first-order numerical procedure for solving differential equations with a given initial
value, while the Midpoint or Predictor-Corrector method is of second order, yet targeting the
same purpose.
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First, some preparatory work has to be carried out. As speaking of time-stepping meth-
ods, first time will have to be discretized. Given an initial point in time t0, subsequent points
tk, and a time step of ∆t, (5.10) follows.

tk = t0 + k ·∆t ∀k = 0, 1, 2, . . . (5.10)

With i being a function of time, the current at each point in time k can be stated as
in (5.11).

ik = i (tk) = i (t0 + k ·∆t) (5.11)

Furthermore, developing i(t) into a Taylor series would result in (5.12).

ik+1 = i (tk + ∆t) = i (tk) +
di

dt

∣∣∣∣
tk

·∆t+
1

2

d2i

dt2

∣∣∣∣
tk

· (∆t)2 + . . . (5.12)

Given the fact that ∆t should already be selected very small, (∆t)2 and all subsequent
terms of the Taylor series grow insignificantly small. Therefore, the series is reduced to (5.13).

ik+1 ≈ ik + i′k ·∆t (5.13)

5.3.2.1 The Explicit Euler Method

Also known as the forward method, it develops ik+1 solely on base of data already known
at tk. Generally speaking, Euler methods develop the shape of a curve yet unknown, but
of which a starting point and a differential equation the curve is satisfying is given. The
differential equation allows calculating the slope of a tangent line to the curve for any point
part of the curve, as soon as that point’s position has been identified.

As mentioned above, starting from a given point – i(t0) – within the current example,
the slope to i(t) at t = t0 can be obtained, and thus its tangent. For a step size ∆t small
enough, the tangent line resembles i(t) sufficiently. Therefore, the same reasoning is applied
to i(t0 + ∆t) in order to obtain the next value. The curve resulting from several time steps
stays reasonable close to the exact curve, given the time step is small enough, as already
mentioned.

Combining (5.13) with i′ from (5.7) and the inductance’s dependency on ik, (5.14) fol-
lows.

ik+1 = ik +

(
− R

L(ik)

ik +
U0

L(ik)

)
·∆t = ik ·

(
1− R

L(ik)

·∆t
)

+
U0

L(ik)

·∆t (5.14)

In figure 5.21, the values derived for ik are depicted using the reddish curve. It converges
to an error of less than 1% within 12 simulation runs. Compared with the other examined
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methods, this one therefore is the fastest which is due to the fact of the determined values for
ik being inherently situated above the true curve.

5.3.2.2 The Backward or Implicit Euler Method

The backward Euler method is of an implicit nature, denoting that in order to obtain ik+1, an
equation or even an equation system has to be solved. This is due to ik+1 not being given
explicitly, but depending on its own, yet unknown value.

ik+1 = ik + i′k+1 ·∆t (5.15)

In other words, the tangent line that is employed at ik is assigned the slope that is to be
expected at ik+1 as in (5.15), which unfortunately is still unknown. With the explication of
i′k+1, the dependency develops to (5.16).

i′k+1 = −R
L
ik+1 +

U0

L

∣∣∣∣
k+1

(5.16)

For this example, the dependency can be solved into (5.18). In case such a solution
cannot be obtained, other numeric methods have to be employed. Their cost of computa-
tion, of course, has to be taken into account for any decisions on employing this method to
approximating differential equations’ solutions.

ik+1 = ik−
R

L(ik+1)

·ik+1·∆t+
U0

L(ik+1)

·∆t→ ik+1

(
1 +

R

L(ik+1)

·∆t
)

= ik+
U0

L(ik+1)

(5.17)

ik+1 =
ik + U0

L(ik+1)(
1 + R

L(ik+1)
·∆t

) (5.18)

Figure 5.21 shows the collection of calculated values for ik in green. Due to the nature
of ik+1 offering a slope that is less than ik’s, the curve resides steadily below the true values.
Therefore, it converges rather late. The 15th run has yielded an error less than 1%, again.
Nevertheless, the errors are generally smaller than those for values obtained by the explicit
Euler method.

5.3.2.3 The Predictor-Corrector or Midpoint Method

This method is part of a collection of higher-order methods, usually referred to as Runge-
Kutta methods. Its name is derived from the fact that the slope to apply at ik in order to find
ik+1 is obtained at the point in the very middle of these, namely at t = tk + ∆t

2
.

Obtaining ik+1 requires two steps to be executed, therefore this method is among a class
of so-called linear multistep methods. The first retrieves an approximate value ĩk+1, therefore
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(vaguely) predicting its value. The explicit Euler method as in (5.14) works nicely for this
purpose, as it only relies on already known values at tk.

Then, a correcting step is taken as shown in (5.19). It fulfills above mentioned midpoint
claim inherently.

ik+1 = ik +
∆t

2
·
(̃
i′k+1 + i′k

)
(5.19)

While being computationally more extensive than the Euler methods mentioned above,
the results are regarded as more accurate. In figure 5.21, the results obtained using the
predictor-corrector method are drawn in blue.
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Figure 5.21: Run of the excitation current curve for different numerical methods

Figure 5.22 finally compares the run of the current curve obtained by the midpoint
method with two analytically calculated solutions, both offering static inductances as re-
trieved for i = 0A and i = imax. The midpoint method’s curve applying a nonlinear, varying
Li is expectedly oriented along the curve obtained with Li=0 in its first parts, while later in-
creasingly approximating the curve resulting from calculations with Li=imax and eventually
converging with it.
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Chapter 6

Retrospect and Outlook

“The outcome of any serious research can only be to make two questions grow
where only one grew before.”

[Thorstein Bunde Veblen]

The fact that two or more models of different nature and simulation requirements are
calculated one after another and linked losely through exchanging certain simulation results
determines the coupling state as being weak. In comparison to strong coupling, where load
vectors and stiffness matrices of two models are combined into one equation system, this
approach may consume more computing time. On the other hand, it offers unmatched easier
operation to the user, and keeps both number and characteristics of the models to be coupled
unlimited.

For this reason weak coupling was incorporated as an objective towards the software
framework detailed in the previous chapters, hazarding the consequences of software per-
formance issues. Therefore, computational performance of single modules play an eminent
role in such surroundings. For FEMtastic, the FEM solver developed as part of this research
project, investigations concerning conceptual correctness and operational capacity have been
conducted.

6.1 Proof of Concept

As mentioned in preceding parts of this work, EleFAnTs is a well established player in
the field of FEM software applications. It was therefore used to verify results obtained by
FEMtastic and the surrounding software framework.

Figure 6.1 shows the setup and mesh of the hardening device problem’s current flow
setup, as detailed in chapter 5.1, modelled using tools provided for EleFAnTs. Geometry
and material properties as well as boundary conditions have been chosen to coincide. The

85



CHAPTER 6. RETROSPECT AND OUTLOOK 86

Figure 6.1: EleFAnTs’ current flow model

left electrode is assigned an electric potential of u = 12V , the right one exhibits u = 0V ,
the material conductivity of the electrodes amounts to σ = 60 · 106S/m while the heating
plate’s conductivity is σ = 420S/m.

Figure 6.2 illustrates the conformity of results obtained by obtained by EleFAnTs (top)
and FEMtastic (bottom). This is demonstrated in more detail in figure 6.3, showing the
electric potential along a straight horizontal line through the center of the modelled area.
Figures 6.4 and 6.5 present the same conformity for the resulting electric field, figures 6.6
and 6.7 for the current flow.

For the thermal problem’s solution domain, results comparison yields a similar out-
come [37], thus confirming the correctness verification.

6.2 Performance Evaluation

MATLAB has been chosen as development environment for a couple of reasons, all of them
justified in chapter 4. While for assembling software modules of different origin and func-
tionality MATLAB has proven well-suited, for substantial numerical calculations this predi-
cation cannot be maintained.

Although by comparison of different interpreted languages only small deviations can be
identified [70], this is not necessarily true for comparing MATLAB code, especially object
oriented one, with other OOP languages. The differences in execution time may well accu-
mulate to factors of 50 to 100 between slow interpreted and fast compiled code [7].

The reasons for such a significant difference shall be illuminated in the following para-
graphs.
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Figure 6.2: Comparison of electric potential u modelled by EleFAnTs (top) and FEMtastic
(bottom)

Figure 6.3: Comparison of the electric potential u along a straight line
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Figure 6.4: Comparison of electric field Ex modelled by EleFAnTs (top) and FEMtastic
(bottom)

Figure 6.5: Comparison of the electric field Ex along a straight line
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Figure 6.6: Comparison of current flow Jx modelled by EleFAnTs (top) and FEMtastic
(bottom)

Figure 6.7: Comparison of the current flow Jx along a straight line
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6.2.1 CPU time

For clarification of the behaviour of the developed FEM tool, a number of calculations on
the current flow model described in chapter 5.1 were conducted. Different mesh refinements
of the same problem topology yielded finite elements numbers ranging from 91 to 64188.
In diagram 6.8, the computation times of each step in the programme flow are summed up
to the total time, depicted by the red line at the top. The number of finite elements in each
test calculation is delineated along the x-axis. Interpolation between actual measurements
(flagged with markers) using second order polygons yields the actual curves, which implies
an algorithm complexity of O(n2). This is plausible inasmuch as the problem’s stiffness
matrix grows quadratically with an increasing number of finite elements.
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Figure 6.8: Cumulated computation time for different numbers of finite elements

Hovewer, a lack of efficiency in executing programme code is also raised to the second
power, even though algorithms may prove to treat certain problems efficiently. This is why
further development of the given software towards specialized, compiled, object oriented
software such as treated in [56] is highly recommended.

Figure 6.9 shows the percentage share of the single computation steps. With increasing
numbers of finite elements and consequentially increasing numbers of unknowns in the equa-
tion system to be solved, the MATLAB native solver accounts for ever increasing shares of
the execution time. For a stiffness matrix greater than 20k×20k elements it already expends
more than 50% of total CPU time. Equation system solvers specialized in handling FEM
matrices and their peculiarities may help in sparing time there.

A great amount of time during system assembly is used by Dirichlet boundary conditions’
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Figure 6.9: Percentage share of the full CPU time of different programme steps

homogenization. Removing 514 rows and columns from a stiffness matrix of 64188×64188

entries takes almost three times as long as assembling the actual system.

The combination of the blue, orange and yellow areas in figure 6.9 can be interpreted as
the preprocessing steps. The green and red areas together form the actual FEM computation.

The yellow band in figure 6.9 represents the the search for correct edges for Neumann
and Cauchy boundary conditions, having to process through all finite elements within a mesh
in order to find them. Though not having that much of a stake in the time balance sheet, this
step could as well be integrated directly into the meshing algorithm, saving processor time
again.

Table 6.1 shows the detailed results of the measurements, conducted on an Intel T7250
CPU with 2 GHz clock speed, 2 MB L2 cache and 2 GB of working memory.

mesh refinement 1 0.1 0.05 0.03 0.02 0.01 0.0063 0.00625 0.005

finite elements 91 179 803 1152 3768 15906 32074 53987 64188

mesh 1.64 1.75 2.22 2.71 5.57 19.00 32.86 69.53 104.08

discretize 0.58 0.94 3.71 5.16 16.75 76.60 183.66 399.77 514.73

process 0.30 0.62 2.67 3.62 12.64 54.58 114.32 201.74 243.47

assemble 0.41 0.73 3.10 4.48 14.96 183.68 529.20 1441.48 1793.15

solve 0.05 0.12 0.29 2.61 22.95 371.44 1496.78 4201.45 5886.14

total 2.98 4.16 11.99 18.58 72.87 705.30 2356.82 6313.97 8541.57

Table 6.1: Absolute figures of CPU time usage (times in seconds)
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6.2.2 Memory Usage

Apart from some status and helper variables, the main share of memory space is consumed
by finite element objects, node objects, the stiffness matrix and the load vector. The stiffness
matrix is a sparse matrix, which is inherently optimized by MATLAB to only store values to
memory that actually differ from zero. In this respect, memory consumption by the algorithm
depends in a linear manner from the number of finite elements to be processed. Figure 6.10
substantiates that interrelation.

Table 6.2 summarizes the peak values of memory consumption of the sequence of com-
putation tasks. Each task’s memory is cleared after finishing execution. It’s worth to notice
that unlike for CPU time, finite element processing does not consume any noticeable mem-
ory at all. This is due to the finite element objects already are created in memory, and results
of the calculations performed on each of them (e.g. Jacobian matrix) only occupy memory
space reserved for member variables already allocated before.

Above a certain number of finite elements that are processed, the solver accounts for the
maximum amount of memory consumption. Nevertheless, its memory usage still remains
almost linear along the monitored range.

This approximate linearity also gets clear from figure 6.11, depicting the percentage
shares of each computational task’s memory consumption. The nonlinearity of measured
values below around 10’000 finite elements can be explained by each algorithm’s helper and
service data structures still being of greater influence than the actual data containers.
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6.3 Framework Design

Implementation and verification of the simulation framework and FEMtastic against current
research problems left a couple of issues for further investigation. Computational efficiency
is one of the larger ones, and has been reviewed in the previous chapters. Porting the FEM
solver to more efficient data structures offered by other programming languages now obvi-
ously is the next step to promote developments in this application area.

In contrast, for the overall software framework design, MATLAB has proven to be accu-
rate and flexible in general. It allows a clear differentiation between software modules and

mesh refinement 1 0.1 0.05 0.03 0.02 0.01 0.0063 0.00625 0.005

finite elements 91 179 803 1152 3768 15906 32074 53987 64188

mesh 376 376 376 376 826 3013 4077 8438 11718

discretize 241 241 241 241 265 1118 2255 3796 4513

assemble 46 46 115 163 513 2119 4248 7137 8475

solve 49 67 337 434 1366 6422 14355 26375 26933

peak 376 376 376 434 1366 6422 14355 26375 26933

Table 6.2: Absolute figures of memory consumption (values in KB)
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components, uniting them into common data structures, and thus making them accessible for
the computation of coupled problems.

Also, the use of XML as common data interchange format has proven to cater to a number
of different problem setups. Nevertheless, when pushing forward the software functionality’s
capabilities, the notation of problem geometry in XML may turn out to be inefficient, maybe
even not sufficient to cover all needs.

IGES, the Initial Graphics Exchange Specification, should be mentioned as one of the re-
sources worth investigating. It is a free, well established, manufacturer independent data for-
mat that is widely used for data interchange among computer-aided-design products [64], [35].

The incorporation of a data format like this would also overcome two drawbacks the
current framework exhibits. Firstly, it would be possible to also work with complex three-
dimensional topographic layouts. Secondly, through incorporating a prevalent data format
also for internal purposes, interfaces to external programme modules would be more consis-
tent, and the complexity of and efforts to create wrappers could therefore be reduced.

6.4 Parallelization

Modern computing equipment with cheap multi-core or multi-processor infrastructure al-
lows to ventilate parallelization of the computational load. The implementation of paral-
lelized algorithms usually contributes significantly to speeding up a numerical simulation
and optimization process [51].

Parallelization for a full application framework can be achieved on two levels:

• Module parallelization means to run two independent software modules simultane-
ously. This is, from a data management point of view, an easy task; yet, for the frame-
work under scrutiny, model coupling typically inhibits such independency. Even with
entirely different model setups, at some point data needs to be interchanged. An idea
would be to at least build both models until an import of results from another model
becomes necessary, then halt the execution of the affected model until the missing data
becomes available. Depending on model type and nature of coupling, this may at least
save parts of the model building process from being performed consecutively.

Alternatively, for couplings exchanging data back and forth until meeting some conver-
gence criterion (see chapter 4.6.2), also some predictor-corrector functionality could
be contemplated [32]. Such an approach would enable both solvers to work on their
solutions, even though no definite solution to be taken over can be offered, but only a
prediction. For the next iteration, this prediction can be rectified so that convergence
is consequently met in the further course of calculation.

• Intra-module or algorithm parallelization usually has to be left to module suppliers.
Simple parallelization of tasks consuming lots of processor time is inherently offered
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by any modern operating system inasmuch as programme state changes and calcula-
tions are performed on one processor or core, and all memory operations on the other.
This already speeds up computation significantly. More drastic attempts to parallelize
computation at least require arrangements within the programme code, or even con-
siderate algorithm design.

Both of these approaches can be supported via the use of MPI, the Message Passing In-
terface [23]. MPI is used in a vast spectrum of cases for solving voluminous scientific or
engineering problems using parallelized infrastructure. It can be characterized as an API
specification, allowing processes to communicate with one another through sending and re-
ceiving messages.

MPI is implemented for all established operating system platforms as well as for all
current programming languages. Python and Matlab are no exemption to this.

Although MPI is neither defined nor supervised by any major standardization body, it
has developed into a de facto standard for communication among parallel processes. MPI
remains the dominant model used in high-performance computing today [66].

Apart from MPI implementations, MATLAB offers extensive parallelization support as
well. Though in 1995, Mathworks officials asserted that there was no market for parallel
MATLAB functionality [48], this focus has shifted enormously. Some ten years later, 27
independent parallelization projects were under development [11]. Today, with MATLAB’s
Parallel Computing ToolboxTMhaving been introduced recently, solutions to computationally
and data intensive problems can be obtained by multicore processors, computer clusters,
or through the use of a GPU. MATLAB offers a number of high-level constructs for that.
Parallel for-loops, invoked by the so-called parfor statement, specialized array types, and
numerical algorithms prepared as being parallelized by design add to these. MPI calls or
invocations are not necessary for using elements of this toolbox.

Said tool collection supports the use of up to eight MATLAB computational cores, the
so-called workers. These workers execute parts of applications locally on a multi-CPU or
multicore machine. For an exemplary dual quad-core computer, a performance increase of
more than 500% can be expected [21]. In case even more massive parallelization becomes
necessary, the same code can also be run on a computer cluster or grid computing service.



Appendix A

Listings

A.1 Input XML Schema Definition

Listing A.1: Full XML schema definition of the input data compound
ı̈�¿<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>
<xsd : schema e l e m e n t F o r m D e f a u l t =” q u a l i f i e d ”

x m l n s : x s d =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema”>
<x s d : e l e m e n t name=” M o d e l C o l l e c t i o n ” t y p e =” M o d e l C o l l e c t i o n ” />
<xsd :complexType name=” M o d e l C o l l e c t i o n ”>

<x s d : s e q u e n c e>
<x s d : s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>

<x s d : e l e m e n t name=” Model ”>
<xsd :complexType>

<x s d : c o m p l e x C o n t e n t>
<x s d : e x t e n s i o n base =” Model ” />

< / x s d : c o m p l e x C o n t e n t>
< / xsd :complexType>

< / x s d : e l e m e n t>
< / x s d : s e q u e n c e>
<x s d : e l e m e n t name=” Outpu t ” t y p e =” Outpu t ” />

< / x s d : s e q u e n c e>
< / xsd :complexType>
<xsd :complexType name=” Model ”>

<x s d : c h o i c e>
<x s d : s e q u e n c e>

<x s d : e l e m e n t name=” MacroElements ”
t y p e =” MacroElements ” />

< / x s d : s e q u e n c e>
<x s d : e l e m e n t name=” I n p u t ” t y p e =” I n p u t ” />
<x s d : e l e m e n t name=” Code ” t y p e =” CodeType ” />

96
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< / x s d : c h o i c e>
<x s d : a t t r i b u t e name=” t y p e ” t y p e =” ModelType ” use =” r e q u i r e d ”

/>
<x s d : a t t r i b u t e name=” geomet ry ” t y p e =” GeometryType ”

use =” r e q u i r e d ” />
<x s d : a t t r i b u t e name=” s o l v e r ” t y p e =” So lve rType ” />
<x s d : a t t r i b u t e name=”name” t y p e =” x s d : s t r i n g ” />

< / xsd :complexType>
<xsd :complexType name=” MacroElements ”>

<x s d : s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>
<x s d : e l e m e n t name=” MacroElement ” t y p e =” MacroElement ” />

< / x s d : s e q u e n c e>
< / xsd :complexType>
<xsd :complexType name=” MacroElement ”>

<x s d : s e q u e n c e>
<x s d : e l e m e n t name=” Geometry ” t y p e =” Geometry ”

minOccurs=” 1 ” maxOccurs=” 1 ” />
<x s d : e l e m e n t name=” B o u n d a r y C o n d i t i o n s ”

t y p e =” B o u n d a r y C o n d i t i o n s ” minOccurs=” 0 ”
maxOccurs=” 1 ” />

<x s d : e l e m e n t name=” M a t e r i a l ” t y p e =” M a t e r i a l ”
minOccurs=” 0 ” maxOccurs=” 1 ” />

<x s d : e l e m e n t name=” Source ” t y p e =” Source ” minOccurs=” 0 ”
maxOccurs=” 1 ” />

< / x s d : s e q u e n c e>
<x s d : a t t r i b u t e name=” r e f i n e m e n t ” t y p e =” x s d : s t r i n g ”

use =” o p t i o n a l ” />
<x s d : a t t r i b u t e name=” e d g e r e f i n e m e n t ” t y p e =” x s d : s t r i n g ”

use =” o p t i o n a l ” />
<x s d : a t t r i b u t e name=”name” t y p e =” x s d : s t r i n g ”

use =” o p t i o n a l ” />
< / xsd :complexType>
<xsd :complexType name=” Geometry ”>

<x s d : c h o i c e minOccurs=” 1 ” maxOccurs=” 1 ”>
<x s d : e l e m e n t name=”Add” t y p e =”Add” minOccurs=” 0 ”

maxOccurs=” 1 ” />
<x s d : e l e m e n t name=” S u b t r a c t ” t y p e =” S u b t r a c t ”

minOccurs=” 0 ” maxOccurs=” 1 ” />
<x s d : e l e m e n t name=” I n t e r s e c t ” t y p e =” I n t e r s e c t ”

minOccurs=” 0 ” maxOccurs=” 1 ” />
<x s d : e l e m e n t name=” Polygon ” t y p e =” Polygon ” />

< / x s d : c h o i c e>
< / xsd :complexType>
<xsd :complexType name=”Add”>
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<x s d : s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>
<x s d : c h o i c e>

<x s d : e l e m e n t name=” Polygon ” t y p e =” Polygon ” />
<x s d : e l e m e n t name=”Add” t y p e =”Add” />
<x s d : e l e m e n t name=” S u b t r a c t ” t y p e =” S u b t r a c t ” />
<x s d : e l e m e n t name=” I n t e r s e c t ” t y p e =” I n t e r s e c t ” />

< / x s d : c h o i c e>
< / x s d : s e q u e n c e>

< / xsd :complexType>
<xsd :complexType name=” S u b t r a c t ”>

<x s d : s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>
<x s d : c h o i c e>

<x s d : e l e m e n t name=” Polygon ” t y p e =” Polygon ” />
<x s d : e l e m e n t name=”Add” t y p e =”Add” />
<x s d : e l e m e n t name=” S u b t r a c t ” t y p e =” S u b t r a c t ” />
<x s d : e l e m e n t name=” I n t e r s e c t ” t y p e =” I n t e r s e c t ” />

< / x s d : c h o i c e>
< / x s d : s e q u e n c e>

< / xsd :complexType>
<xsd :complexType name=” Polygon ”>

<x s d : s e q u e n c e>
<x s d : e l e m e n t name=” Coords ” t y p e =” Coords ” />

< / x s d : s e q u e n c e>
< / xsd :complexType>
<xsd :complexType name=” Coords ”>

<x s d : s e q u e n c e minOccurs=” 3 ” maxOccurs=” unbounded ”>
<x s d : e l e m e n t name=” Coord ” t y p e =” Coord ” />

< / x s d : s e q u e n c e>
< / xsd :complexType>
<xsd :complexType name=” Coord ”>

<x s d : a t t r i b u t e name=” x ” t y p e =” x s d : s t r i n g ” use =” r e q u i r e d ” />
<x s d : a t t r i b u t e name=” y ” t y p e =” x s d : s t r i n g ” use =” r e q u i r e d ” />

< / xsd :complexType>
<xsd :complexType name=” B o u n d a r y C o n d i t i o n s ”>

<x s d : s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>
<x s d : e l e m e n t name=” Bo und a ryC ond i t i o n ”

t y p e =” Bou nda r yCo nd i t i on ” />
< / x s d : s e q u e n c e>

< / xsd :complexType>
<xsd :complexType name=” Bou nda r yCo nd i t i on ”>

<x s d : s e q u e n c e>
<x s d : e l e m e n t name=” Value ” t y p e =” x s d : s t r i n g ”

minOccurs=” 1 ” maxOccurs=” 1 ” />
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<x s d : e l e m e n t name=” T r a n s i t i o n ” t y p e =” x s d : s t r i n g ”
minOccurs=” 0 ” maxOccurs=” 1 ” />

< / x s d : s e q u e n c e>
<x s d : a t t r i b u t e name=” t y p e ” t y p e =” BoundaryCond i t ionType ”

use =” r e q u i r e d ” />
<x s d : a t t r i b u t e name=” from ” t y p e =” x s d : p o s i t i v e I n t e g e r ”

use =” r e q u i r e d ” />
<x s d : a t t r i b u t e name=” t o ” t y p e =” x s d : p o s i t i v e I n t e g e r ”

use =” r e q u i r e d ” />
< / xsd :complexType>
<x s d : s i m p l e T y p e name=” BoundaryCond i t ionType ”>

<x s d : r e s t r i c t i o n base =” x s d : s t r i n g ”>
<x s d : e n u m e r a t i o n v a l u e =” D i r i c h l e t ” />
<x s d : e n u m e r a t i o n v a l u e =”Neumann” />
<x s d : e n u m e r a t i o n v a l u e =” Cauchy ” />

< / x s d : r e s t r i c t i o n>
< / x s d : s i m p l e T y p e>
<xsd :complexType name=” M a t e r i a l ”>

<x s d : c h o i c e>
<x s d : e l e m e n t name=” Value ” t y p e =” x s d : s t r i n g ” />
<x s d : e l e m e n t name=” I mp or t ” t y p e =” I mp or t ” />

< / x s d : c h o i c e>
< / xsd :complexType>
<xsd :complexType name=” Source ”>

<x s d : c h o i c e>
<x s d : e l e m e n t name=” Value ” t y p e =” x s d : s t r i n g ” />
<x s d : e l e m e n t name=” I mp or t ” t y p e =” I mp or t ” />

< / x s d : c h o i c e>
< / xsd :complexType>
<xsd :complexType name=” I n t e r s e c t ”>

<x s d : s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>
<x s d : c h o i c e>

<x s d : e l e m e n t name=” Polygon ” t y p e =” Polygon ” />
<x s d : e l e m e n t name=”Add” t y p e =”Add” />
<x s d : e l e m e n t name=” S u b t r a c t ” t y p e =” S u b t r a c t ” />
<x s d : e l e m e n t name=” I n t e r s e c t ” t y p e =” I n t e r s e c t ” />

< / x s d : c h o i c e>
< / x s d : s e q u e n c e>

< / xsd :complexType>
<x s d : s i m p l e T y p e name=” ModelType ”>

<x s d : r e s t r i c t i o n base =” x s d : s t r i n g ”>
<x s d : e n u m e r a t i o n v a l u e =” e l e c t r o s t a t i c ” />
<x s d : e n u m e r a t i o n v a l u e =” c u r r e n t f l o w ” />
<x s d : e n u m e r a t i o n v a l u e =” m a g n e t o s t a t i c ” />
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<x s d : e n u m e r a t i o n v a l u e =” t h e r m a l ” />
< / x s d : r e s t r i c t i o n>

< / x s d : s i m p l e T y p e>
<x s d : s i m p l e T y p e name=” GeometryType ”>

<x s d : r e s t r i c t i o n base =” x s d : s t r i n g ”>
<x s d : e n u m e r a t i o n v a l u e =” p l a n e ” />
<x s d : e n u m e r a t i o n v a l u e =” a x i s y m m e t r i c ” />
<x s d : e n u m e r a t i o n v a l u e =” m a g n e t o s t a t i c ” />
<x s d : e n u m e r a t i o n v a l u e =” t h e r m a l ” />

< / x s d : r e s t r i c t i o n>
< / x s d : s i m p l e T y p e>
<x s d : s i m p l e T y p e name=” So lve rType ”>

<x s d : r e s t r i c t i o n base =” x s d : s t r i n g ” />
< / x s d : s i m p l e T y p e>
<x s d : s i m p l e T y p e name=” CodeType ”>

<x s d : r e s t r i c t i o n base =” x s d : s t r i n g ” />
< / x s d : s i m p l e T y p e>
<x s d : s i m p l e T y p e name=” ModelNameType ”>

<x s d : r e s t r i c t i o n base =” x s d : s t r i n g ” />
< / x s d : s i m p l e T y p e>
<x s d : s i m p l e T y p e name=” ImportTypeType ”>

<x s d : r e s t r i c t i o n base =” x s d : s t r i n g ” />
< / x s d : s i m p l e T y p e>
<x s d : s i m p l e T y p e name=” Thresho ldType ”>

<x s d : r e s t r i c t i o n base =” x s d : s t r i n g ” />
< / x s d : s i m p l e T y p e>
<x s d : s i m p l e T y p e name=” I n t e r p r e t e r T y p e ”>

<x s d : r e s t r i c t i o n base =” x s d : s t r i n g ” />
< / x s d : s i m p l e T y p e>
<xsd :complexType name=” I n p u t ”>

<x s d : s e q u e n c e minOccurs=” 1 ” maxOccurs=” unbounded ”>
<x s d : e l e m e n t name=” Value ” t y p e =” x s d : s t r i n g ” />
<x s d : e l e m e n t name=” I mp or t ” t y p e =” I mp or t ” />

< / x s d : s e q u e n c e>
< / xsd :complexType>
<xsd :complexType name=” Im po r t ”>

<x s d : s e q u e n c e minOccurs=” 0 ” maxOccurs=” 1 ”>
<x s d : e l e m e n t name=” Coupl ingCode ”>

<xsd :complexType>
<x s d : s i m p l e C o n t e n t>

<x s d : e x t e n s i o n base =” CodeType ”>
<x s d : a t t r i b u t e name=” i n t e r p r e t e r ”

t y p e =” I n t e r p r e t e r T y p e ” />
< / x s d : e x t e n s i o n>
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< / x s d : s i m p l e C o n t e n t>
< / xsd :complexType>

< / x s d : e l e m e n t>
< / x s d : s e q u e n c e>
<x s d : a t t r i b u t e name=” fromModel ” t y p e =” ModelNameType ”

use =” r e q u i r e d ” />
<x s d : a t t r i b u t e name=” t y p e ” t y p e =” ImportTypeType ”

use =” r e q u i r e d ” />
<x s d : a t t r i b u t e name=” t h r e s h o l d ” t y p e =” Thresho ldType ”

use =” r e q u i r e d ” />
< / xsd :complexType>
<xsd :complexType name=” Outpu t ”>

<x s d : s e q u e n c e minOccurs=” 0 ” maxOccurs=” unbounded ”>
<x s d : e l e m e n t name=” que ry ” t y p e =” QueryType ” />

< / x s d : s e q u e n c e>
< / xsd :complexType>
<xsd :complexType name=” QueryType ”>

<x s d : s e q u e n c e>
<x s d : e l e m e n t name=” OutputCode ”>

<xsd :complexType>
<x s d : s i m p l e C o n t e n t>

<x s d : e x t e n s i o n base =” CodeType ”>
<x s d : a t t r i b u t e name=” i n t e r p r e t e r ”

t y p e =” I n t e r p r e t e r T y p e ” />
< / x s d : e x t e n s i o n>

< / x s d : s i m p l e C o n t e n t>
< / xsd :complexType>

< / x s d : e l e m e n t>
< / x s d : s e q u e n c e>
<x s d : a t t r i b u t e name=” fromModel ” t y p e =” ModelNameType ” />
<x s d : a t t r i b u t e name=” t y p e ” t y p e =” ImportTypeType ” />

< / xsd :complexType>
< / x sd : schema>
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A.2 Full Problem Setup: Electrothermal Hardening

Listing A.2: Full XML definition of the hardening device example
ı̈�¿<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>
<M o d e l C o l l e c t i o n

x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”>
<Model t y p e =” c u r r e n t f l o w ” geomet ry =” p l a n e ” s o l v e r =” FEMtas t i c ”>

<MacroElements>
<MacroElement>

<Geometry>
<Add>

<Polygon>
<Coords>

<Coord x=” 0 ” y=” 0 ” />
<Coord x=” 0 . 3 ” y=” 0 ” />
<Coord x=” 0 . 5 ” y=” 0 . 3 ” />
<Coord x=” 0 . 6 ” y=” 0 . 3 ” />
<Coord x=” 0 . 6 ” y=” 0 . 4 ” />
<Coord x=” 0 . 5 ” y=” 0 . 4 ” />
<Coord x=” 0 . 3 ” y=” 0 . 7 ” />
<Coord x=” 0 ” y=” 0 . 7 ” />

< / Coords>
< / Polygon>

< / Add>
< / Geometry>
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i o n t y p e =” D i r i c h l e t ” from=” 1 ” t o =” 1 ”>
<Value>12< / Value>

< / B ound a ry Cond i t i o n>
<Bo unda ryC ond i t i o n t y p e =” D i r i c h l e t ” from=” 7 ” t o =” 8 ”>

<Value>12< / Value>
< / B ound a ry Cond i t i o n>

< / B o u n d a r y C o n d i t i o n s>
<M a t e r i a l>

<Value>5 9 . 1 E6< / Value>
< / M a t e r i a l>

< / MacroElement>
<MacroElement>

<Geometry>
<Add>

<Polygon>
<Coords>

<Coord x=” 0 . 6 ” y=” 0 . 3 ” />
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<Coord x=” 1 . 8 ” y=” 0 . 3 ” />
<Coord x=” 1 . 8 ” y=” 0 . 4 ” />
<Coord x=” 0 . 6 ” y=” 0 . 4 ” />

< / Coords>
< / Polygon>

< / Add>
< / Geometry>
<M a t e r i a l>

<Value>420< / Value>
< / M a t e r i a l>

< / MacroElement>
<MacroElement>

<Geometry>
<Add>

<Polygon>
<Coords>

<Coord x=” 2 . 1 ” y=” 0 ” />
<Coord x=” 2 . 4 ” y=” 0 ” />
<Coord x=” 2 . 4 ” y=” 0 . 7 ” />
<Coord x=” 2 . 1 ” y=” 0 . 7 ” />
<Coord x=” 1 . 9 ” y=” 0 . 4 ” />
<Coord x=” 1 . 8 ” y=” 0 . 4 ” />
<Coord x=” 1 . 8 ” y=” 0 . 3 ” />
<Coord x=” 1 . 9 ” y=” 0 . 3 ” />

< / Coords>
< / Polygon>

< / Add>
< / Geometry>
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i o n t y p e =” D i r i c h l e t ” from=” 1 ” t o =” 3 ”>
<Value>0 . 1< / Value>

< / B ound a ry Cond i t i on>
< / B o u n d a r y C o n d i t i o n s>
<M a t e r i a l>

<Value>5 9 . 1 E6< / Value>
< / M a t e r i a l>

< / MacroElement>
< / MacroElements>

< / Model>
<Model t y p e =” t h e r m a l ” r e f i n e m e n t =” 1 . 5 ” s o l v e r =” FEMtas t i c ”>

<MacroElements>
<MacroElement>

<Geometry>
<Polygon>
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<Coords>
<Coord x=” 0 . 6 ” y=” 0 . 3 ” />
<Coord x=” 1 . 8 ” y=” 0 . 3 ” />
<Coord x=” 1 . 8 ” y=” 0 . 4 ” />
<Coord x=” 1 . 7 ” y=” 0 . 4 ” />
<Coord x=” 0 . 7 ” y=” 0 . 4 ” />
<Coord x=” 0 . 6 ” y=” 0 . 4 ” />

< / Coords>
< / Polygon>

< / Geometry>
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i o n t y p e =” Cauchy ” t o =” 3 ” from=” 3 ”>
<Value>300< / Value>
<T r a n s i t i o n>5 . 6< / T r a n s i t i o n>

< / B ound a ry Cond i t i o n>
<Bo unda ryC ond i t i o n t y p e =” Cauchy ” t o =” 5 ” from=” 5 ”>

<Value>300< / Value>
<T r a n s i t i o n>5 . 6< / T r a n s i t i o n>

< / B ound a ry Cond i t i o n>
<Bo unda ryC ond i t i o n t y p e =”Neumann” t o =” 2 ” from=” 1 ”>

<Value>0< / Value>
< / B ound a ry Cond i t i o n>
<Bo unda ryC ond i t i o n t y p e =”Neumann” t o =” 6 ” from=” 6 ”>

<Value>0< / Value>
< / B ound a ry Cond i t i o n>

< / B o u n d a r y C o n d i t i o n s>
<M a t e r i a l>

<Value>85< / Value>
< / M a t e r i a l>
<Source>

<Im po r t>
<FromModel>1< / FromModel>
<Type>c u r r e n t−t h e r m a l< / Type>
<T h r e s h o l d>1%< / T h r e s h o l d>

< / I mp or t>
< / Source>

< / MacroElement>
<MacroElement>

<Geometry>
<Polygon>

<Coords>
<Coord x=” 0 . 7 ” y=” 0 . 4 ” />
<Coord x=” 0 . 7 ” y=” 0 . 6 ”>< / Coord>
<Coord x=” 0 . 8 ” y=” 0 . 6 ”>< / Coord>
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<Coord x=” 0 . 9 ” y=” 0 . 8 ” />
<Coord x=” 1 . 5 ” y=” 0 . 8 ” />
<Coord x=” 1 . 6 ” y=” 0 . 6 ” />
<Coord x=” 1 . 7 ” y=” 0 . 6 ” />
<Coord x=” 1 . 7 ” y=” 0 . 4 ”>< / Coord>

< / Coords>
< / Polygon>

< / Geometry>
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i o n t y p e =” Cauchy ” t o =” 7 ” from=” 1 ”>
<Value>300< / Value>
<T r a n s i t i o n>5 . 6< / T r a n s i t i o n>

< / B ound a ry Cond i t i o n>
< / B o u n d a r y C o n d i t i o n s>
<M a t e r i a l>

<Value>42< / Value>
< / M a t e r i a l>

< / MacroElement>
< / MacroElements>

< / Model>
< / M o d e l C o l l e c t i o n>
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A.3 Full Problem Setup: TEAM22 Benchmark Prob-
lem

Listing A.3: Full XML definition of the TEAM22 Benchmark Problem Example
ı̈�¿<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>
<M o d e l C o l l e c t i o n

x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”>
<Model t y p e =” m a g n e t o s t a t i c s ” symmetry=” r o t a t i o n a l ”
r e f i n e m e n t =” 1 . 5 ” s o l v e r =” FEMtas t i c ”>
<MacroElements>

<MacroElement>
<Geometry>

<Add>
<Polygon>

<Coords>
<Coord x=” 1 .865 ” y=”−0.8 ” />
<Coord x=” 2 .135 ” y=”−0.8 ” />
<Coord x=” 2 .135 ” y=” 0 . 8 ” />
<Coord x=” 1 .865 ” y=” 0 . 8 ” />

< / Coords>
< / Polygon>

< / Add>
< / Geometry>

<Source>
2 2 . 5 E6

< / Source>
< / MacroElement>
<MacroElement>

<Geometry>
<Add>

<Polygon>
<Coords>

<Coord x=” 2 . 9 ” y=”−0.65 ” />
<Coord x=” 3 . 1 ” y=”−0.65 ” />
<Coord x=” 3 . 1 ” y=” 0 . 6 5 ” />
<Coord x=” 2 . 9 ” y=” 0 . 6 5 ” />

< / Coords>
< / Polygon>

< / Add>
< / Geometry>

<Source>
−22.5E6

< / Source>
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< / MacroElement>
< / MacroElements>

< / Model>
<Model t y p e =” a n a l y t i c ” r e f i n e m e n t =” ” s o l v e r =” Python ”>

<I n p u t>
<Value>2 2 . 5 E6< / Value>
<Value>−22.5E6< / Value>
<Im po r t>

<FromModel>1< / FromModel>
<Type>maxFromRegion< / Type>
<T h r e s h o l d>< / T h r e s h o l d>

< / I mp or t>
<Im po r t>

<FromModel>1< / FromModel>
<Type>maxFromRegion< / Type>
<T h r e s h o l d>< / T h r e s h o l d>

< / I mp or t>
< / I n p u t>
<Code><! [CDATA[

# i n p u t = [ B1 , B2 , J1 , J2 ]

J1 =(−6.4∗ i n p u t [ 0 ] + 5 4 )
J2 =(−6.4∗ i n p u t [ 1 ] + 5 4 )

# v a l i d a t e s whe the r quench c o n d i t i o n i s f u l f i l l e d ( 1 ) o r n o t ( 0 ,
e r r o r c a s e )

i f ( J1 > i n p u t [ 2 ] ) o r ( J2 > i n p u t [ 3 ] ) :
r e t V a l = 1

e l s e :
r e t V a l = 0

r e t u r n V a l u e s = [ ]
r e t u r n V a l u e s . append ( r e t V a l ) ] ]>

< / Code>
< / Model>

< / M o d e l C o l l e c t i o n>
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A.4 Full Problem Setup: Electromagnetic Actuator

Listing A.4: Full XML definition of the Electromagnetic Actuator Problem Example
ı̈�¿<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>
<M o d e l C o l l e c t i o n x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”>

<Model t y p e =” c u r r e n t f l o w ” geomet ry =” p l a n e ” s o l v e r =” FEMtas t i c ”>
<MacroElements>

<MacroElement>
<Geometry>

<Add>
<Polygon>

<Coords>
<Coord x=” 0 ” y=” 0 ” />
<Coord x=” 0 . 3 ” y=” 0 ” />
<Coord x=” 0 . 5 ” y=” 0 . 3 ” />
<Coord x=” 0 . 6 ” y=” 0 . 3 ” />
<Coord x=” 0 . 6 ” y=” 0 . 4 ” />
<Coord x=” 0 . 5 ” y=” 0 . 4 ” />
<Coord x=” 0 . 3 ” y=” 0 . 7 ” />
<Coord x=” 0 ” y=” 0 . 7 ” />

< / Coords>
< / Polygon>

< / Add>
< / Geometry>
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i o n t y p e =” D i r i c h l e t ” from=” 1 ” t o =” 1 ”>
<Value>12< / Value>

< / B ound a ry Cond i t i o n>
<Bo unda ryC ond i t i o n t y p e =” D i r i c h l e t ” from=” 7 ” t o =” 8 ”>

<Value>12< / Value>
< / B ound a ry Cond i t i o n>

< / B o u n d a r y C o n d i t i o n s>
<M a t e r i a l>

<Value>5 9 . 1 E6< / Value>
< / M a t e r i a l>

< / MacroElement>
<MacroElement>

<Geometry>
<Add>

<Polygon>
<Coords>

<Coord x=” 0 . 6 ” y=” 0 . 3 ” />
<Coord x=” 1 . 8 ” y=” 0 . 3 ” />
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<Coord x=” 1 . 8 ” y=” 0 . 4 ” />
<Coord x=” 0 . 6 ” y=” 0 . 4 ” />

< / Coords>
< / Polygon>

< / Add>
< / Geometry>
<M a t e r i a l>

<Value>420< / Value>
< / M a t e r i a l>

< / MacroElement>
<MacroElement>

<Geometry>
<Add>

<Polygon>
<Coords>

<Coord x=” 2 . 1 ” y=” 0 ” />
<Coord x=” 2 . 4 ” y=” 0 ” />
<Coord x=” 2 . 4 ” y=” 0 . 7 ” />
<Coord x=” 2 . 1 ” y=” 0 . 7 ” />
<Coord x=” 1 . 9 ” y=” 0 . 4 ” />
<Coord x=” 1 . 8 ” y=” 0 . 4 ” />
<Coord x=” 1 . 8 ” y=” 0 . 3 ” />
<Coord x=” 1 . 9 ” y=” 0 . 3 ” />

< / Coords>
< / Polygon>

< / Add>
< / Geometry>
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i o n t y p e =” D i r i c h l e t ” from=” 1 ” t o =” 3 ”>
<Value>0 . 1< / Value>

< / B ound a ry Cond i t i on>
< / B o u n d a r y C o n d i t i o n s>
<M a t e r i a l>

<Value>5 9 . 1 E6< / Value>
< / M a t e r i a l>

< / MacroElement>
< / MacroElements>

< / Model>
<Model t y p e =” t h e r m a l ” r e f i n e m e n t =” 1 . 5 ” s o l v e r =” FEMtas t i c ”>

<MacroElements>
<MacroElement>

<Geometry>
<Polygon>

<Coords>
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<Coord x=” 0 . 6 ” y=” 0 . 3 ” />
<Coord x=” 1 . 8 ” y=” 0 . 3 ” />
<Coord x=” 1 . 8 ” y=” 0 . 4 ” />
<Coord x=” 1 . 7 ” y=” 0 . 4 ” />
<Coord x=” 0 . 7 ” y=” 0 . 4 ” />
<Coord x=” 0 . 6 ” y=” 0 . 4 ” />

< / Coords>
< / Polygon>

< / Geometry>
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i o n t y p e =” Cauchy ” t o =” 3 ” from=” 3 ”>
<Value>300< / Value>
<T r a n s i t i o n>5 . 6< / T r a n s i t i o n>

< / B ound a ry Cond i t i o n>
<Bo unda ryC ond i t i o n t y p e =” Cauchy ” t o =” 5 ” from=” 5 ”>

<Value>300< / Value>
<T r a n s i t i o n>5 . 6< / T r a n s i t i o n>

< / B ound a ry Cond i t i o n>
<Bo unda ryC ond i t i o n t y p e =”Neumann” t o =” 2 ” from=” 1 ”>

<Value>0< / Value>
< / B ound a ry Cond i t i o n>
<Bo unda ryC ond i t i o n t y p e =”Neumann” t o =” 6 ” from=” 6 ”>

<Value>0< / Value>
< / B ound a ry Cond i t i o n>

< / B o u n d a r y C o n d i t i o n s>
<M a t e r i a l>

<Value>85< / Value>
< / M a t e r i a l>
<Source>

<Im po r t>
<FromModel>1< / FromModel>
<Type>c u r r e n t−t h e r m a l< / Type>
<T h r e s h o l d>1%< / T h r e s h o l d>

< / I mp or t>
< / Source>

< / MacroElement>
<MacroElement>

<Geometry>
<Polygon>

<Coords>
<Coord x=” 0 . 7 ” y=” 0 . 4 ” />
<Coord x=” 0 . 7 ” y=” 0 . 6 ”>< / Coord>
<Coord x=” 0 . 8 ” y=” 0 . 6 ”>< / Coord>
<Coord x=” 0 . 9 ” y=” 0 . 8 ” />
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<Coord x=” 1 . 5 ” y=” 0 . 8 ” />
<Coord x=” 1 . 6 ” y=” 0 . 6 ” />
<Coord x=” 1 . 7 ” y=” 0 . 6 ” />
<Coord x=” 1 . 7 ” y=” 0 . 4 ”>< / Coord>

< / Coords>
< / Polygon>

< / Geometry>
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i o n t y p e =” Cauchy ” t o =” 7 ” from=” 1 ”>
<Value>300< / Value>
<T r a n s i t i o n>5 . 6< / T r a n s i t i o n>

< / B ound a ry Cond i t i o n>
< / B o u n d a r y C o n d i t i o n s>
<M a t e r i a l>

<Value>42< / Value>
< / M a t e r i a l>

< / MacroElement>
< / MacroElements>

< / Model>
< / M o d e l C o l l e c t i o n>
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