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Abstract

The analysis of facial images has always attracted researchers across different disciplines

ranging from psychology over human behavior understanding to computer vision and

pattern recognition. It is very challenging to “read” faces automatically due to biological

factors like gender, race, facial hair or age, and extrinsic factors like occlusion, noise,

lighting and pose variations.

One of the most popular applications for facial analysis is biometrics. In this context

the International Civil Aviation Organization (ICAO) provides a number of specifications

to prepare automated recognition from travel document photos. The goal of these specifi-

cations is to increase security in civil aviation on the basis of standardized biometric data.

Due to this international standard, there is a high demand for automatically checking

facial images to assist civil service employees in decision-making.

We propose a facial analysis system according to the ICAO standard and several novel

algorithms motivated by the needs of our facial analysis system to solve issues addressing

the huge variety of facial appearance. Furthermore our facial analysis should demonstrate

robustness to occlusion, noise, lighting and pose variations.

We start with a procedure called tokenization to bring arbitrary input images, con-

taining a face, to a standardized coordinate frame. Therefore we need a robust face and

facial component detection. After the detection of the eyes and mouth components, they

are assessed if they show an open or closed state. To be robust, we propose to fuse several

classifiers to utilize the strengths of the single classifiers. The ICAO standard prohibits

faces differing from the frontal pose. Therefore, we propose three algorithms determining

the pose of the head. The last criterion we have to deal with is occlusion. We show how to

detect occlusions in a facial image. Furthermore, we propose a robust Active Appearance

Model fitting strategy, which is based on our novel Fast-Robust PCA approach. All the

approaches are evaluated extensively on several publicly available databases and our own

dedicated database. We compare our algorithms to state-of-the-art approaches in terms

of speed and accuracy.
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Kurzfassung

Die Analyse von Gesichtsbildern hat schon immer die Forscher verschiedenster Disziplinen

inspiriert, angefangen von der Psychologie über das Verstehen menschlichen Verhaltens

bis hin zu Computer Vision und Mustererkennung. Gesichter automatisiert zu “lesen” ist

eine große Herausforderung aufgrund biologischer Faktoren wie Geschlecht, Rasse, Alter

oder Gesichtsbehaarung, und äußerer Faktoren wie Verdeckungen, Rauschen, Beleuchtung

und Variationen in der Pose.

Eine der populärsten Anwendungen für die Gesichts-Analyse ist die Biometrie. In

diesem Zusammenhang stellt die International Civil Aviation Organization (ICAO) eine

Spezifikation zur Verfügung, um Fotos in Reisedokumenten für die automatisierte Erken-

nung vorzubereiten. Das Ziel dieses Standards ist die Sicherheit in der Zivilluftfahrt auf

der Grundlage von standardisierten biometrischen Daten zu erhöhen. Aufgrund dieses in-

ternationalen Standards gewinnt die automatische Überprüfung von Gesichtsbildern mehr

und mehr an Bedeutung um Beschäftigte des öffentlichen Diensts bei der Entscheidungs-

findung zu unterstützen.

Wir zeigen ein Gesichts-Analyse-System basierend auf den Vorgaben des ICAO-

Standards und verschiedene neuartige Algorithmen, motiviert durch die Anforderungen

unseres Systems in Bezug auf die Vielfalt von Gesichtern. Unsere Gesichts-Analyse

sollte robust gegenüber Verdeckungen, Rauschen, Beleuchtungsänderungen und Pose

Variationen sein.

Wir beginnen mit einem Verfahren namens Tokenisierung. Dabei werden beliebige

Bilder, die ein Gesicht enthalten, in ein standardisiertes Koordinatensystem gebracht.

Daher brauchen wir eine robuste Gesichts- und Gesichts-Komponenten (Augen, Mund)

Detektion. Nach der Detektion der Augen und Mund-Komponenten werden diese auf

einen offenen oder geschlossenen Zustand beurteilt. Um bei dieser Beurteilung robust zu

sein, fusionieren wir mehrere Klassifikatoren um die Stärken der einzelnen Klassifikatoren

zu kombinieren. Gemäß des ICAO-Standards müssen die Gesichter eine frontale Pose
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aufweisen. Daher zeigen wir drei Algorithmen zur Pose Bestimmung des Kopfes. Als let-

ztes Kriterium behandeln wir die Verdeckungen auf Gesichtsbildern. Wir zeigen, wie wir

Verdeckungen detektieren können. Weiters zeigen wir unsere robuste Active Appearance

Model (AAM) Fitting Strategie, die auf unserem neuen Fast-Robust PCA Algorithmus

basiert. Alle Algorithmen werden umfassend auf verschiedenen frei zugänglichen Daten-

banken und auf unserer eigenen Datenbank ausgewertet. Wir vergleichen unsere Algorith-

men zu State-of-the-Art Ansätzen in Bezug auf Geschwindigkeit und Genauigkeit.
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1
Introduction

Facial analysis is a rather subjective discipline, which depends on many factors, from

genetics to environmental influences. Therefore, it is very hard to find a basic recipe to

interpret the expression and emotion of a person’s face. Humans become especially skilled

at analyzing personality characteristics based on facial features, hair, facial expressions and

gaze. They learn to recognize these visual cues and to read faces within seconds. In this

context an interesting quotation stands out: “The face is the mirror of the mind. - Saint

Jerome”. The face is a rich source of nonverbal communication. A famous psychologist

and philosopher said: “One cannot not communicate. - Paul Watzlawick”. That means,

even when not talking, a person always conveys a message.

Automatically determining the facial expression and subsequently deriving the emo-

tional state of a person attracted a lot of researchers in the computer vision and pattern

recognition community. Facial analysis is not an exact science, but as we said before, very

subjective. Facial expressions can also be interpreted differently depending on the cultural

background. The facial analysis research is also driven by the increasing demands of many

applications like:

• human-computer interaction

• human behavior understanding

• automotive safety

• facial avatar animation

• biomedical applications

1



2 Chapter 1. Introduction

• video surveillance

• biometrics

• computer games

Human-computer interaction [63] is providing an interface between a human and a

computer, e.g., computers can be used to determine the gaze direction as well as head

gesturing. This enables very direct means to interact with virtual worlds, especially in

the computer gaming industry. A further example includes the interaction with robots.

Human behavior understanding [107] is strongly related to human-computer interaction.

Here the interactions are interpreted, e.g., the meaning of head movements like nodding,

to interpret facial expressions or social interactions. In the domain of automotive safety,

e.g., the driver’s head is monitored to recognize driver distraction and inattention to

avoid vehicle collisions [99]. In the facial avatar animation [39], a system records and

extracts facial expressions from a source individual and transfers the expressions to another

individual or artificial avatar. For example, this procedure is used in the movie industry

to animate characters. Biomedical facial analysis [49] assesses medical states like fatigue

or bad posture used in, e.g., driver assistance systems [135] or for the prevention of work-

related disorders.

Biometric related applications like person verification/identification [1, 78, 160] or

video surveillance also require the analysis of facial images. Our specific interest lies

in security related applications to check facial images for their compliance to the Inter-

national Civil Aviation Organization (ICAO) specification for machine readable travel

documents [57]. This compliance check is our main motivation in this thesis. Thus, we

propose several algorithms motivated by the needs of our face analysis system to solve

issues addressing the huge variety of facial appearance, e.g., gender, race, facial hair or

age. Furthermore our face analysis should demonstrate robustness to occlusion, noise,

lighting and pose variations. All these aspects make it particularly difficult to design a

robust system for face analysis.

We present a general description and the goal of the ICAO face analysis system in Sec-

tion 1.1. An overview of our system and our developed algorithms is given in Section 1.2.

1.1 ICAO Face Analysis

The ICAO specification [57] describes a standardized coordinate frame based on face and

eye positions for potential travel document photographs, therefore a face image alignment
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(tokenization) step has to be performed. Furthermore, the standard provides a definition

of parameters for image quality and facial expressions that classify images as suitable

or improper for documents like passports, identification cards or visas. The ICAO

criteria are presented in Figure 1.1. These ICAO criteria specify requirements to prepare

automated face recognition from travel document photos and to allow interoperability

among vendors. The goal of these specifications is to increase travel security on the basis

of standardized biometric data. Furthermore, the overall system, called ICAO portrait

checker, provides a method that assists civil service employees in determining suitable

machine readable travel document photos, thereby increasing efficiency in this selection

process and significantly reducing manual work. For example, the US Visa Waiver

Program requires more secure and biometrically enabled passports. The aim there is to

improve international travel security.

The advantages of this automatic checking system are:

• Objectively analyze and evaluate the quality of face images according to the ISO

19794-5 standard.

• No more subjective manual checking, wondering whether the captured images are

suitable for automated facial recognition tasks.

• Higher throughput at inspections points.

• Interoperability and compliance with international standard and legislative require-

ments.

• Higher facial recognition performance.

• Higher database integrity.

• Easy to integrate into existing or new applications.

The ICAO portrait checker is a module in a homeland security suite, see Figure 1.2.

This suite consists of several modules. The face module processes facial images originating

from digital cameras, scanners or an input file and offers automatic facial image verifica-

tion functionality. The fingerprint modules provide accurate fingerprint matching. The

eDocument module reads data stored on a RF-ID of a machine readable travel document.

All the modules can contribute to several applications. The data capture, validation and
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checkpoint applications offer a complete workflow for enrollment, border control and self-

service checking stations for machine-readable travel documents. One possible application

is illustrated in Figure 1.3.
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Figure 1.2: Siemens homeland security suite
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Verifi cation of biometric and personal data at border control stations.

SHSS Face Module: 
A traveler has his or her 
picture taken with a digital 
camera.

SHSS Validation Application: The application 
compares patterns detected in the pictures and 
validates the data embedded in the passport or visa.

Biometric and personal data is 
offered via the application 
interface to allow e.g. back-
ground scans against govern-
ment watch lists for terrorists 
or immigration violators.

SHSS Finger Module or
SHSS Multi Finger Module: 
A traveler has his or her 
fi ngerprints scanned with an 
optical fi ngerprint scanner.

SHSS eDocument Module

Figure 1.3: Siemens homeland security suite (SHSS). Verification of biometric and personal
data at border control stations. (Illustration provided by Siemens Austria)
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1.2 Contributions

We propose a facial analysis system according to the ICAO standard and several algorithms

motivated by the needs of our facial analysis system to solve issues addressing the huge

variety of facial appearance, e.g., gender, race, facial hair or age. Furthermore our face

analysis should demonstrate robustness to occlusion, noise, lighting and pose variations.

Our facial analysis system consists of two modules. First, we need to derive a normal-

ized face coordinate system based on eye locations to extract a standardized face image

from arbitrary input images. We will refer to this process as tokenization according to [57].

The second step takes the tokenized images as input and performs several analysis algo-

rithms in order to derive continuous scores for the likeliness of the corresponding event,

e.g., mouth-closed. Figure 1.4 shows the overall workflow of the face analysis system.

Figure 1.4: Illustration of the overall image analysis system consisting of normalization
(tokenization) and compliance analysis.

We focus on parts of the ICAO specification for checking arbitrary input images for

their compliance: eyes-open, mouth-closed, deviation from frontal pose and face covered

criteria, see Figure 1.5. The following rules for accepting photos are applicable. The full-

face frontal pose has to be used. Rotation of the head has to be less than ±5 degrees from

frontal in every direction – up/down, rotated left/right, and tilted left/right. The face

expression has to be neutral (non-smiling) with both eyes open normally, looking straight

into the camera and the mouth closed. A smile is unacceptable regardless of the inside

of the mouth and/or teeth being exposed or not. The region of the face, from the crown

to the base of the chin, and from ear-to-ear, has to be clearly visible and free of shadows.

Special care shall be taken in cases when veils, scarves or headdresses cannot be removed

for religious reasons to ensure these coverings do not obscure any facial features and do

not generate shadows. In all other cases head coverings must be absent. Some sample

images exhibiting variations according to the specification are shown in Figure 1.6.

Biometric applications like face recognition/verification systems are not able to work

with arbitrary input images taken under different imaging conditions or showing occlusions

and/or variations in expression or pose. Thus, the main intention of the ICAO standard is

to define how arbitrary images have to be prepared in order to perform robust and highly
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Figure 1.5: Our ICAO checked criteria.

accurate face recognition/verification. To support face recognition one has to perform

a face image alignment (tokenization) step that takes occlusions/variations into account.

Thus, we present a robust face normalization algorithm suitable for arbitrary input images

containing a face in Section 2.1. The algorithm is based on detecting face and facial

component candidates and robustly voting for the best face and eyes. For many of our

used algorithms in the tokenization step, e.g., the AdaBoost learning algorithm, we need

a lot of training data of high quality. Thus, we propose an approach for an unsupervised

alignment of an ensemble of images called congealing in Section 2.2.

After the detection of eyes and mouth components in a facial image, an analysis pro-

cedure is applied to assess the ICAO criteria eyes-open and mouth-closed, see Chapter 3.

We propose to fuse the decisions of several classifiers to gain robustness in the presence

of difficult situations like noisy input data, lighting conditions or partial occlusions, e.g.,

wearing glasses.

According to the ICAO standard, persons are required to show a frontal head pose

which means that the head rotation must not deviate more than±5 degrees in any direction

from frontal. Thus, we propose three head pose estimation approaches starting from a

coarse head pose estimation (only frontal/non-frontal decision) to a very fine estimation
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(a) (b) (c)

(d) (e) (f)

Figure 1.6: Sample images: (a) frontal pose, eyes open, mouth closed, (b) left pose, eyes
open, mouth closed, (c) right pose, eyes open, mouth closed, (d) frontal pose, eyes closed,
mouth closed, (e) frontal pose, eyes open, mouth open, (e) frontal pose, eyes open, mouth
open.

in Chapter 4. The coarsest approach is based on AdaBoost classification. The next finer

estimation approach builds upon a Histogram of Oriented Gradients (HOG) descriptor

used as input for a non-linear regression. Furthermore a Biased Manifold Embedding

(BME) approach is extended to cope with multiple pose-angles. In addition, we present

an approach for the creation of an artificial training database. The finest head pose

estimation is a novel approach called 3D Morphable Appearance Model (3D-MAM) and

is applied for head pose estimation. The finer head pose estimation approaches are more

accurate but are only applicable in a smaller range of head poses.

Photographs showing occlusions are prohibited according to the ICAO standard. In

Chapter 5 we show our approaches dealing with occlusions. Section 5.1 shows an ap-
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proach for occlusion detection. We detect occluded images automatically and evaluate

the occlusion detection performance on several databases. In case of an occluded image,

we cannot only detect occlusions, but we can also improve the fitting quality of an Ac-

tive Appearance Model (AAM), see Section 5.2. The AAM itself is not robust against

occlusions. If parts of the image are occluded, the AAM fails to converge correctly and

the obtained results become unreliable. To overcome this problem we propose a robust

AAM fitting strategy. The main idea is to apply a robust PCA model to reconstruct the

missing feature information and to use the obtained image as input for the standard AAM

fitting process. Since existing methods for robust PCA reconstruction are computationally

too expensive for real-time processing we developed a more efficient method: Fast-Robust

PCA (FR-PCA), see Section 5.3. In fact, by using our FR-PCA the computational ef-

fort is drastically reduced. Moreover, more accurate reconstructions are obtained. In the

experiments, we evaluate both, the FR-PCA model and the whole robust AAM fitting

chain on facial images. The results clearly show the benefits of our approach in terms of

accuracy and speed when processing disturbed data (i.e., images containing occlusions).

The thesis is concluded in Chapter 6 and possible directions for future work are given.

The organization of this thesis is given in Figure 1.7.

ICAO

Eyes and Deviation
Chapter 2 Chapter 3 Chapter 4 Chapter 5Chapter 1 Chapter 6

Tokenization
Eyes and 
Mouth 
Analysis

Deviation 
from Frontal 
Pose Analysis

Occlusion 
HandlingIntroduction Conclusion

2.1 Robust Facial Component
Detection for Face 
Alignment Applications

2 2 I t it B d C li

3.1 Face Analysis
System Description

3.2 Classifier Fusion

4.1 Boosting Approach

4.2 Head Pose 
Estimation by Non‐

5.1 Occlusion Detection
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Model Fitting Under

2.2 Intensity‐Based Congealing
for Unsupervised Joint 
Image Alignment

Linear Regression 
and Manifold
Embedding

4.3 3D‐MAM

Occlusion

5.3 Fast Robust PCA

Figure 1.7: The organization of this thesis.
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1.3 Related Work

Facial analysis has a long tradition in the computer vision literature. We give an overview

over the facial analysis literature in this related work section. More extensive surveys of

the appropriate related literature will be given in the following dedicated chapters and

sections for our algorithms and our applications.

Face and facial component detection covers a broad area in the computer vi-

sion literature, a survey can be found in [51, 153]. Face detection from single images is

challenging due to possible variabilities in scale, location, orientation, and pose. Schnei-

derman and Kanade [121] use multi-resolution information based on wavelet analysis to

construct a nonlinear face and non-face classifier based on histogram statistics and the

AdaBoost learning technique. Their approach inspired the important work of Viola and

Jones [142] using simple and efficient Haar features which had an enormous impact on

object detection over the last years. An example for a non-holistic approach is Heisele et

al. [50] who exploit the idea of using components like mouth, eyes and nose for face detec-

tion. A similar direction is proposed by Felzenszwalb and Huttenlocher [42] in their work

on pictorial structures. A recent work in this direction is Erukhimov and Lee [40] who

combine facial components with a graphical model. Recent methods can also be applied

successfully for multi-view face detection [52, 148]. These methods are able to find faces

exhibiting arbitrary poses.

Facial expression analysis is used to analyze facial expressions resulting from one

or more motions or positions of the muscles of the face. Facial expressions are a form of

nonverbal communication. Areas of applications include the recognition of the behavior

and emotion from images and videos. It can also be used to animate a facial avatar.

Surveys can be found in [41, 108]. According to [38], there are six basic expressions:

happiness, sadness, fear, disgust, surprise, and anger. The facial expressions are coded by

Action Units (AUs) in the Facial Action Coding System (FACS) [38], which objectively

describe the facial deformations in terms of visually observable muscle actions. Most of

the facial expression analysis systems extract 2D spatiotemporal facial features either by

landmark locations (e.g., corners of the eyes or mouth) [17], by the shape of the facial

components (e.g., eyes, mouth) [68] or the texture modality [154].

Face recognition has received significant research attention over the last two

decades [2, 8, 137, 158]. Zhao et al. provides a survey [160]. This area has also led

to many commercial systems [110]. The area of face recognition can be divided into

verification and identification [59]. In verification, a system validates whether the
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individual is the one who claims to be. In contrast, in face identification the individual is

searched in a database to expose the identity.

Head pose estimation An extensive survey on head pose estimation problems can be

found in [100]. Appearance template methods [10, 102] try to estimate the head pose by

directly comparing facial images with either a set of template images or a detector array

in order to assign a new facial image to a pose with the most similar feature. Classification

based methods [54, 62] learn classifiers between the input image and a discretized space

of poses. There are many classifiers that have been used such as multiclass SVMs [76],

multiclass linear discriminant analysis (LDA) or the kernelized version (KLDA [34]), such

that a test facial image can be assigned to one of the discrete pose classes [150]. These

methods also suffer from the non-uniform sampling of the input space and only return

discrete head pose estimates. Regression based methods estimate the pose by learning a

linear or nonlinear function between the image and continuous angles. Several regressors

are possible such as Support Vector Regression (SVR) [79, 87, 96] and Gaussian Process

Regression (GPR) [113]. Embedding based methods compute the low dimensional coun-

terparts of the high dimensional training data lying on a continuous manifold describing

the pose variations of facial images [92]. A test image is first embedded into these low

dimensional manifolds and then used for template matching or regression to compute the

angle. Balasubramanian et al. [6] presents a supervised extension to Isomap [130], locally

linear embedding (LLE) [117], and Laplacian Eigenmaps (LE) [9] and shows, that this

change improves the head pose estimation performance.

Regarding the ICAO facial analysis system itself, there have been no previous publica-

tions on this topic besides [128], reporting results on an automatic face image validation

system, where a number of rather simple quality aspects of face images are checked. How-

ever, a number of commercial products (e.g., Cognitec
TM∗, Kee Square

TM†) currently exist

for ICAO compliant facial analysis.

∗www.cognitec-systems.de
†www.keesquare.com





2
Tokenization

Biometric applications like face recognition/verification are an important topic in com-

puter vision, both for research and commercial systems. Unfortunately, state of the art

face recognition systems are not able to work with arbitrary input images taken under

different imaging conditions or showing occlusions and/or variations in expression or pose.

To support face recognition one has to perform a face image alignment (tokenization) step

that takes occlusions/variations into account. In Section 2.1 we present a robust face nor-

malization algorithm suitable for arbitrary input images containing a face. The algorithm

is based on detecting face and facial component candidates and robustly voting for the

best face and eyes. Our restrictions are a certain pose range (frontal to half profile) and

suitable illumination conditions.

Faces are detected using the well known AdaBoost technique [141] incorporating Haar-

like- and orientation histogram features. There might be more than one detection from the

AdaBoost face detection algorithm [56], so the correct face has to be found in a robust way.

In addition, for every potential face detection rectangle, the facial components, mouth and

eyes, are located using AdaBoost classifiers [142]. The AdaBoost learning algorithm is a

supervised method, i.e., we need a lot of labeled training data. We manually labeled the

facial images and aligned them in an unsupervised manner. This alignment of an ensemble

of images is called congealing and is described in Section 2.2.

The most likely face is obtained using the face and facial component detections in a

normally distributed probabilistic model based on an empirically determined prior distri-

bution of eye and mouth locations. The derived eye locations from the AdaBoost step are

further refined by an Active Appearance Model (AAM) [22]. Identified left and right eye

coordinates initiate the actual tokenization step according to the ICAO specification [57].

13
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Our algorithm is designed to deal with occlusions and its performance is shown on three

publicly available image databases. Figure 2.1 illustrates the tokenization step.

W

W/0.75

0.6*W

0.25*W

Figure 2.1: Illustration of the geometrical alignment procedure to form a normalized face
portrait image (right) given an arbitrary input image (left). Image taken from the Caltech
Faces database [19].

2.1 Robust Facial Component Detection for Face Alignment

Applications

The main intention of the ICAO standard is to define how arbitrary images have to be

prepared in order to perform robust and highly accurate face recognition/verification.

For the purpose of geometrical alignment a part of the ICAO specification describes a

standardized coordinate frame based on eye locations. A definition of this geometrical

coordinate system forming normalized face portrait images (token images) is shown in

Figure 2.1. This illustration clearly motivates the need to localize faces and facial com-

ponents like eyes or mouth in arbitrary input images. Localization algorithms suffer from

problems due to occlusions like glasses, beards or covering objects (hands or hair) or facial

expressions like an open mouth, closed eyes or facial grimaces. Images with differences in

facial pose and illumination conditions further contribute to the difficulty of facial image

analysis and normalization.

In this section we describe a robust facial image detection and normalization algorithm

that may serve as a powerful pre-processing step for face recognition [160], face analysis

and facial expression recognition [106]. Our method is based on separate modules for
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facial component detection which are combined in a probabilistic voting scheme to fuse the

results of independent detectors, thus achieving robustness to occlusions and disturbances.

The voting scheme results in face and eye locations that are used to calculate a face

normalization transformation.

Detection of faces and facial components has a long tradition in computer vision re-

search. Application areas dealing with face analysis/processing require an initial face

localization step, see [51, 153] for literature surveys on face detection methods. Face de-

tection from single images is challenging due to possible variabilities in scale, location,

orientation, and pose. Further, different facial expressions, occlusions and illumination

conditions also have an effect on the appearance of faces. According to [153], we define

face detection as: Given an arbitrary image, the goal of face detection is to determine

whether or not there are any faces in the image and, if present, return the image location

and extent of each face. Further, facial feature detection has the goal of detecting facial

components like eyes, mouth, nose, ears, etc., either under the assumption that there is

only a single face in the image or given a known face detection.

In the face detection literature one distinguishes holistic (whole face is detected at

once) and component based (non-holistic) approaches. Moghaddam and Pentland [95]

describe a holistic principal component analysis (PCA) based detection system, where a

PCA subspace (or eigenface representation) is used and the detection is performed in a

sliding window manner. Rowley et al. [119] show a neural network based approach for face

detection, where the sliding windows are pre-processed and reduced in their dimensional-

ity in order to be put into a neural network. Jesorsky et al. [60] describe a face detection

method based on point sets and the Hausdorff distance. Schneiderman and Kanade [121]

use multi-resolution information based on wavelet analysis to construct a nonlinear face

and non-face classifier based on histogram statistics and the AdaBoost learning technique.

Their approach inspired the important work of Viola and Jones [142] using simple and

efficient Haar features which had an enormous impact on object detection over the last

years. An example for a non-holistic approach is Heisele et al. [50] who exploit the idea

of using components like mouth, eyes and nose for face detection. These components

are related by constraints on their spatial configuration, which obviously makes the al-

gorithm more robust to occlusions. A similar direction is proposed by Felzenszwalb and

Huttenlocher [42] in their work on pictorial structures. A recent work in this direction

is Erukhimov and Lee [40] who combine facial components with a graphical model. Our

presented approach also uses the strategy to combine facial components for face detection
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and eye localization to be more robust against occlusions. A slightly different research

direction for face detection makes use of statistical models of shape and/or appearance to

localize faces and facial components, with the seminal work by Cootes et al. [22].

In the following paragraphs we describe two important basic components of our system

in more detail. These are the efficient object detection approach from Viola and Jones [142]

and the statistical shape and appearance model of Cootes et al. [22].

Efficient AdaBoost Object Detection The most influential work in object detection

of the last few years is definitely the approach of Viola and Jones [142] based on boosting

simple weak classifiers to form a strong classifier (Appendix C). One of their application

areas was face detection.

Localization Refinement based on Statistical Active Appearance Models Gen-

erative model-based segmentation approaches for highly accurate feature localization have

received a lot of attention in computer vision over the last decade. While the Viola and

Jones approach solely leads to a coarse feature localization due to the sliding window

approach, an exact object delineation is often performed using statistical models of shape

and appearance. The most important representative of this class of algorithms is the

Active Appearance Model (AAM) from Cootes et al. [22], see Appendix B. It has success-

fully found a large number of applications ranging from face detection to medical image

analysis.

The remainder of this section is structured as follows. Section 2.1.1 describes the

components of our algorithm and the overall system. To demonstrate the strength of our

approach we evaluate our algorithm on publicly available databases and compare it to

state of the art methods in Section 2.1.2. Finally, we discuss our findings and summarize

our work in Section 2.1.3.

2.1.1 Face Image Normalization System Description

In this section we describe our novel algorithm for robust face image normalization. We

consider arbitrary input images containing at least one face. However, there are some

assumptions we have to make considering potential input images. We restrict the possible

deviations in pose angles of the depicted head to smaller than 45 degrees in yaw and

pitch. For heads with larger angles the face and facial component detection performance

significantly deteriorates, however, in our targeted application of normalizing face images

according to the ICAO specification we can safely assume that profile or near-profile



2.1. Robust Facial Component Detection for Face Alignment Applications 17

images are rare. Roll angle deviations in head pose are targeted in our system by the

facial component detection and the face symmetry lines. Another assumption we have to

make is that images are taken under normal lighting conditions. Illumination problems

that lead to nonlinear intensity changes are therefore not considered.

Input 
Image

Viola and 
Jones Face 
D t ti

Tokenized
Image

Eyes and 
Mouth 

Detection
for each
face

Robust
Face & Eyes 
Voting 

Eye 
Refinement 
Using Local

Image 
Normalization 
T f tiImage Detection

gface
Symmetry 

Line 
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g
Scheme

Using Local 
AAM

Transformation

Figure 2.2: Illustration of the face image normalization work flow consisting of several
stages. At the heart of the system is the voting scheme that decides from a number of
face and facial component detections the most probable one while taking the detected
symmetry line into account.

Our algorithm consists of several modules including face detection, facial component

detection, face symmetry line detection, incorporation of spatial a priori knowledge in a

probabilistic voting scheme for most likely face and eye detections, a detailed eye center

localization module using a statistical model describing shape and appearance, and finally

a normalization transformation. The algorithm work-flow is illustrated in Figure 2.2.

2.1.1.1 Face Detection

The face detection component uses the efficient face detector [142] described in Section 2.1.

We extend the original feature set according to Lienhart et al. [80] using an open-source

implementation [56] that provides a pre-trained detector cascade for portrait and near-

portrait faces. After experimentation with this pre-trained face detection cascade we were

able to find a parameter set leading to a high detection rate, however, also leaving a

significant number of false positive detections. Thus, to achieve an accurate face detection

we additionally need to detect facial components (eyes and mouth) to vote for the single

face candidate having the highest probability of being the correct face. To prepare for the

subsequent probabilistic voting scheme we calculate a normalized confidence measure

f = 1− exp

(∑
m αmhm(x)

maxm(αm)

)
,
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where x is a pattern to be classified, hm(x) ∈ {−1,+1} are the M easily constructible,

weak classifiers and αm ≥ 0 are the combining coefficients. More details on the Boosting

algorithm can be found in Appendix C. This measure resembles the confidence of a certain

spatial location to be a face.

2.1.1.2 Eyes and Mouth Component Detection

We trained facial component detectors using the same AdaBoost object detection (see

Section 2.1) framework that was used for face detections. However, the facial components

were trained by using our own set of positive and negative object patches. We used 5646

manually annotated face images which were taken from several databases; the Caltech

Faces database [19], the FERET database [111], and our own proprietary database. Man-

ual annotations were performed for left and right eye patches and for mouth patches under

different poses and different facial expressions (eyes closed, half-closed and open, mouths

closed, open, wide open or smiling). Roughly 40 percent of these images show a deviation

from frontal pose and neutral expression. 16 percent of the images contain glasses and 21

percent contain a beard.

For facial component detection we apply these individual detectors to each potential

face detection and look for the eyes in the upper two thirds of the face detection, while the

mouth search area is restricted to the lower two thirds. This way we receive a number of

potential eye and mouth candidates for each face. Again we tune the detection parameters

to get a high detection rate with the downside of a larger number of false positive detec-

tions, an issue that gets resolved later in our voting scheme. To calculate a normalized

confidence measure we calculate the same confidence as described in Section 2.1.1.1.

2.1.1.3 Face Symmetry Line Detection

Facial mirror symmetry is an important cue that should contribute to a robust face de-

tection system to deal with in-plane rotations. After investigating the state of the art in

symmetry detection algorithms we developed a simple and efficient face symmetry detec-

tion scheme based on [112]. In this algorithm we calculate image gradient points restricted

to the detected face patch. Afterwards we randomly draw a large number of image gradi-

ent point pairs, where each of these point pairs votes for a certain symmetry line normal

to their connecting line segment. The voting is performed similar to a Hough line voting

scheme, taking the similarity of the gradient magnitudes of the point pair into account

as the voting increment. Finally the line with the highest vote counter is selected as the
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potential symmetry line and the magnitude of the vote counts is used as a confidence

value. Since this algorithm is rather time-consuming when implemented testing all point

pairs, we restrict our search range to point pairs leading to symmetry lines between minus

and plus 25 degrees.

2.1.1.4 Robust Probabilistic Face and Eye Voting

The previous detection stages lead to a number of face and facial component hypotheses.

We proceed with a probabilistic voting framework to find the most likely candidates. Our

goal is to effectively combine the different components to form a robust vote for a face

detection and an associated eye localization under the constraints of a priori knowledge

about spatial locations.

(a) (b)

Figure 2.3: Probabilistic face and eye voting: (a) Setup of the voting procedure showing
potential face rectangles (white and yellow, white ones have no support by detected facial
components) and most likely face (red) due to support of facial components (green, cyan),
and (b) prior probability distribution of spatial facial component locations in a face rect-
angle, modeled as normal distributions with means and covariance matrices derived from
manually annotated training data. Image from Caltech Faces database [19].

We denote the K potential face rectangle candidates in an image as Fi, i = 1, . . . ,K.

For each of the K faces, we have candidate rectangles for left eye Lijl , jl = 1, . . . , Nl,

right eye Rijr , jr = 1, . . . , Nr and mouth M i
jm
, jm = 1, . . . , Nm. Since we have no a priori

knowledge about the spatial location of faces in the arbitrary input images, we assume it

uniformly distributed. The confidence in a certain face rectangle candidate now depends

on two factors. A measure cf (Fi) delivered from the AdaBoost detection and the con-

tribution of the facial components that were detected inside the face rectangle. For the
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individual facial component detections per face rectangle we perform a Bayesian proba-

bility estimation to reach a maximum a posteriori (MAP) solution. Therefore, a priori

assumptions p(L), p(R), p(M) on the spatial distribution of eye and mouth patches rela-

tive to face rectangles (in a normalized coordinate system to be independent of the size of

rectangles) are estimated in a maximum likelihood sense from our database of annotated

portrait and near-portrait face images. Thus, the models are normal distributions calcu-

lated from the facial component locations in the face coordinate system (see Figure 2.3b for

an illustration). Here the detected symmetry line (compare Section 2.1.1.3) is taken into

account in order to perform an in-plane rotation of the prior distributions. Furthermore,

each facial component detection has an associated likelihood measure from the AdaBoost

detection, e.g. for the left eye p(Ljl |L) resembling the likelihood of measurement Ljl being

a left eye. To sort out the most likely facial components we apply Bayes theorem to get

an MAP solution by comparing the products of priors and likelihoods. For each face Fi

we thus receive a left eye rectangle Lijl with

arg max
Lijl

(
p(L|Lijl)

)
= arg max

Lijl

(
p(Lijl |L)p(L)

)
,

and right eye Rijr and mouth M i
jm

rectangles, respectively. In case no candidate can be

found for a facial component from the AdaBoost detection, we hypothesize a candidate at

the location of the maximum of the prior distribution. However, this hypothetic candidate

gets assigned only a small likelihood of 0.1 since we do not want the guessed part to have

a high confidence. If in a face candidate rectangle no facial component can be found at all,

we remove the face candidate from further processing. The posteriors for the three facial

components now get combined to a single confidence vote by averaging the (normalized)

posteriors

cfc(Fi) =
1

3
(p(L|Lijl) + p(R|Rijr) + p(M |M i

jm)).

If no facial component can be found in a face candidate rectangle, we set cfc(Fi) = 0. We

finally combine the confidences of face rectangle and facial component confidence votes to

a single vote using c(Fi) = cf (Fi)cfc(Fi). The face rectangle Fi maximizing c (Fi) is taken

as the final result of the face voting, with the corresponding left and right eyes Lijl , R
i
jr

as

final results for the eye localization. This simple scheme gives us robustness to occlusions,

since it is not necessary to detect all facial components as long as the final face confidence

measure of the most likely face is larger than 0. Figure 2.3a illustrates this voting scheme.
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2.1.1.5 Eye Localization Refinement

Our voting procedure results in a robust but rough localization of the eyes in the form

of eye patches. In order to come up with an exact localization that can be used to apply

the face image normalization procedure, we have to further refine this rough localization.

Therefore we have trained an Active Appearance Model as described in Section 2.1. Since

we are solely interested in the localization of the eyes, we restrict our model to incorporate

only the eyes region (see Figure 2.4a,b for the setup of the eyes region).

The training data set consists of 427 manually annotated face images taken partly

from the Caltech Faces database and partly from our own collection. Training images

show variations with respect to open and closed eyes, eye gaze and only slight variations

in head pose. During principal component analysis we keep 95 percent of the eigenvalue

energy spectrum to represent our compact model on the highest resolution level. We use

three levels of resolution and adapt the percentage of kept eigenvectors, i.e., on lower

levels we restrict the shape variability to 90 and 80 percent respectively, while keeping the

texture and appearance variability at 95 percent. This restriction enables a stronger focus

on the global pose parameters for lower resolution levels.

AAM fitting is performed by initializing the mean shape of the AAM with the roughly

estimated left and right eye locations from the facial component detection. This gives

an initial solution for the pose parameters and the multi-resolution fitting algorithm is

started with the lowest resolution. To switch between resolution levels it is necessary

to upscale the shape and upsample the texture result and project it into the model of

the higher resolution level. This gives the initialization for the higher level. After the

fitting procedure has reached a local minimum we report the corresponding eyes shape.

Additionally a confidence value derived from the final L2 norm of the difference between

synthetic model texture and warped image texture is calculated.

2.1.1.6 Face Normalization Transformation

The final step of our normalization work-flow is the calculation of the face normalization

transformation and the resampling of the input image using this transformation according

to the ICAO specification of eye locations for normalized token images [58]. Therefore we

investigate the confidence value from the AAM model fitting and compare it to a fixed

threshold that determines a measure of quality for the fitting. This fixed threshold was

determined empirically on a set of typical test images. If the confidence value is large

enough we take the center point between the AAM eye corners for left and right eye,
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(a) (b)

deye = 0.25

0.5 1.00.0

Left Eye Right Eye

(c)

Figure 2.4: Detail illustration of the eye region. (a) Active Appearance Model: Learned
mean shape/texture and the texture after successful fitting. (b) AAM shape model after
successful fitting drawn on the input image. (c) Eye setup for the experimental evaluation
measure face detection rate.

respectively, and compute the similarity transformation to map the eye coordinates to the

standardized coordinates (see Figure 2.1). If the confidence in the AAM fitting is too

low, we use the center points of the Boosting based eye localization patches as rougher

estimates of the true eyes. Additionally if no face candidate with facial components was

found, we report that no face was detected. Finally, the resampling is performed using

bilinear interpolation. Note that for the evaluation it is only necessary to validate eye

locations since the normalization is always the same similarity transformation.

2.1.2 Experimental Results

The accuracy of our facial image normalization procedure is tested on three different

publicly available databases with known ground truth annotations of the eye centers.

Since our intended application is face normalization we focus our evaluation on the eye

centers. For evaluation we use the AR face database [90] consisting of 509 images, the

BioID database [60] consisting of 1521 images, and the IMM database [103] consisting of

240 images. The databases show a variety of different people, poses, occlusions and facial

expressions, and they have in common that there exists an annotation of the face intended

for use in Active Shape Models where one can easily extract eye center locations from.

Our face normalization pipeline leads to a left and right eye center location, we compare
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this location with the ground truth annotation using the evaluation measure from [60].

We calculate the absolute pixel distance from the ground truth positions to receive two

distance values. We choose the larger value and divide by the absolute pixel distance

of the two manually set eye positions to become independent from face size according

to [60]. We call this value relative eye distance deye. Further, we rate a face as found

if the relative distance is equal or less than 0.25, which corresponds to an accuracy of

about half the width of an eye in the image. The face detection rate is then calculated by

dividing the number of correctly found faces by the total number of faces in the dataset

(see Figure 2.4c). Images where no face can be found also contribute to this error measure

as mis-detected faces.

We compare our method on all three databases against a standard Viola and Jones face

detection approach using the implementation from [56]. For this standard implementation

we use the default face detection parameters. We predict the eye location relative to the

face rectangle using our large database of manually annotated eye rectangles by combining

them with the Viola and Jones face detections. The relative eye distance error metric is

presented in Figure 2.5 for the standard Viola and Jones algorithm and our method.

Additionally, we compare our results on the BioID database with the face detection

results presented by the authors of the BioID study [60] (see Figure 2.5b), who call their

approach Hausdorff-MLP. They show quantitative results solely on the BioID database

report a face detection rate of 91.8% as opposed to 96.1% with our method. On the IMM

and AR databases our face detection rates are 99.2% and 97.5%, respectively. Concerning

the face detection rate we see that our method performs significantly better than the

Hausdorff distance based method from [60]. This improvement is also reflected in the

cumulative error distribution, where the ideal curve would be a step function to 100% at

a relative eye distance of zero. The intersection of our proposed method with the relative

eye distances of 0.05 and 0.1 are at approximately 62 and 89% compared to 39 and 79% for

the Hausdorff-MLP method. From the face detection rate we can also see that the classic

Viola-Jones method performs quite favorable in comparison to our method. However,

after looking at the relative error distributions one can clearly see that the robust method

shows a significant improvement in accuracy. This is very important since the definition of

the face detection rate [60] allows a large amount of error. We conclude that our method

outperforms the state of the art algorithms on these three publicly available data sets.

Finally, Figure 2.6 shows a number of qualitative results for the eye detection in the

presence of pose deviations, facial expressions, and occlusions. The rightmost image of
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Figure 2.5: Quantitative results on relative error distributions of our method compared
to different algorithms. (a) BioID database (1521 images), (b) AR database (509 images),
(c) IMM database (240 images).
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the bottom row shows a detection problem due to a pose deviation that is too large. Here

also the symmetry detection has failed. The leftmost image of the bottom row shows

an occluded eye, which is correctly detected by the probabilistic voting scheme. Images

where no refined eye contour is drawn have resulted in a bad AAM fit, such that the center

of the AdaBoost eye rectangles are used as eye centers. The other images show correct

algorithm results. Finally, to assess algorithm run-time we did an evaluation on a small

set of typical input images. The Viola-Jones implementation requires on average about

900 ms to detect a face from 800× 600 images (note that we use the detection cascade on

a large number of scales and with conservative parameter settings) on an Intel Core2 Duo

notebook CPU at 2.53 GHz. Our algorithm performs of course slower due to the robust

extensions. However, our run-time of on average about 3300 ms is still acceptable for our

task of face image normalization.

Figure 2.6: Selected qualitative results on representative images from the databases.
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2.1.3 Summary

In this section we presented a robust face normalization system suitable for transforming

arbitrary images containing a face into a standardized coordinate system as, e.g., needed

to fulfill the ICAO requirements on passport photographs. We show how our robust

system is able to process input images with pose deviations, occlusions and over different

facial expressions by making use of several redundant component detection methods. A

robust approach is achieved by combining these detections. Our experimental results

show superior results compared to state of the art algorithms. Further work is necessary

to increase the range of pose deviations we are able to process. Here we need multi-view

face and facial component detections which will be incorporated using multiple separately

trained detection cascades over the possible range of poses.
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2.2 Intensity-Based Congealing for Unsupervised Joint Im-

age Alignment

For our AdaBoost based algorithms we need a lot of labeled training data. We manually

labeled the facial images and align them in an unsupervised manner. Therefore we present

an approach for the unsupervised alignment of an ensemble of images called congealing.

Our algorithm is based on image registration using the mutual information measure as a

cost function. The cost function is optimized by a standard gradient descent method in a

multiresolution scheme. As opposed to other congealing methods [27, 28], which use the

SSD measure, the mutual information measure is better suited as a similarity measure for

registering images since no prior assumptions on the relation of intensities between images

are required. We present alignment results on the MNIST handwritten digit database and

on facial images obtained from the CVL database.

Congealing is the alignment of an ensemble of misaligned images. The only assump-

tion in congealing is the type of geometric misalignment, e.g., translation, similarity, affine,

and the assumption of a self-similar appearance class, e.g., faces, cars. There are several

applications for congealing, e.g., the registration of a stack of images from different modal-

ities in medical imaging [88] or the alignment of a training database for machine learning

algorithms [53].

The seminal work of Learned-Miller [72] termed the notion “congealing”. They mini-

mize parametric warp differences between a stack of images by applying a sum of entropies

cost function. In recent work of Cox et al. [27] some problems of Learned-Miller are alle-

viated, namely the slow convergence, the need to select a stepsize and sensitivity on the

warp parameterization. In their work, they applied a sum of squared differences (SSD)

cost function to allow for an effective application of a Gauss-Newton gradient descent

approach. They are able to simultaneously estimate warp parameter updates and they

do not need a pre-defined step size as opposed to [72]. Their approach is similar to the

well known Lucas & Kanade image alignment with the extension to an ensemble of images

rather than a single image. Cox et al. further improved their results for a larger amount

of images [28]. In their work, they claim that employing an inverse compositional for-

mulation of least-squares congealing is superior to their additive formulation in [27] and

thereby show an increase of alignment performance.

There are some other methods based on subspace techniques for automatically aligning

an ensemble of images. Frey and Jojic [44] extended the Principal Component Analysis

(PCA) to cope with non-aligned images. They obtained a set of aligned basis images
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by applying the EM algorithm. However, one major drawback was the need to define a

discrete set of allowable spatial warps affecting also computation time. De la Torre and

Black [70] and Schweitzer [122] proposed extensions on Frey and Jojic’s approach. They

learn a subspace, which is invariant to affine or higher order geometric transformations.

The advantage is that the spatial warp variation is modeled continuously rather than

discretely. The major drawback is the need for estimates of the basis images for the

iterative algorithms which limits the applicability of their algorithms.

In this section we concentrate on the state-of-the-art congealing methods of [27, 28].

They make use of the SSD similarity measure. The SSD measure makes the implicit as-

sumption that the images differ only by Gaussian noise after registration. Only in that

case, the SSD measure is optimal [143]. For congealing this is never the case because we

have a lot of intraclass variation, e.g., in the case of congealing facial images, different

subjects, facial hair, gender or race. In other words, the SSD is not an appropriate cost

function for generic image registration, hence we apply a more sophisticated cost function

based on the mutual information measure [88, 133, 143]. This information-theoretic cri-

terion is very general and powerful, because it does not depend on any assumption on the

data (other than stationarity) and does not assume specific relations between intensities

in a pair of images.

Based on the basic image registration method using mutual information we build our

congealing approach, which is explained in detail in Section 2.2.1. Section 2.2.2 exhibits

experiments congealing handwritten digit images and a stack of facial images. Our ap-

proach shows very good congealing results and is furthermore easy to implement. Finally,

we discuss and summarize our work in Section 2.2.3.

2.2.1 Congealing

Congealing in our case is defined as an advanced case of image registration. In image

registration we have one image called moving image IM (x) which is deformed to fit the

other image, the fixed image IF (x). That is, we have to find a transformation Tθ(x)

that aligns IM (x) with IF (x), where θ are the transformation parameters. The optimal

transformation is found by minimizing a cost function C with respect to θ

θ̂ = arg min
θ
C (θ; IF ; IM ) . (2.1)

In the introductory section we noted that the SSD is not an appropriate cost function

for generic image registration, hence we apply a more sophisticated cost function based
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on the mutual information measure [88, 133, 143]:

C (θ; IF ; IM ) = −
∑

m∈LM

∑
f∈LF

p (f,m; θ) log2

(
p (f,m; θ)

pF (f ; θ) pM (m; θ)

)
, (2.2)

where p is the discrete joint probability, pF and pM are the marginal probabilities, and LF

and LM are sets of regularly spaced histogram bins containing intensity values of the fixed

and moving image respectively. LF and LM together span a 2D joint discrete histogram

h (f,m; θ) where the joint histogram values are estimated using Parzen windows wF and

wM representing the fixed and moving image:

h (f,m; θ) =
1

σFσM

∑
xi∈ΩF

wF

(
f − IF (xi)

σF

)
wM

(
m− IM (Tθ (xi))

σM

)
. (2.3)

The scaling constants σF and σM must equal the intensity histogram bin widths defined

by LF and LM . These follow directly from the grey-value ranges of IF and IM and the

userspecified number of histogram bins |LF | and |LM |.
The joint histogram h (f,m; θ) is proportional to the discrete joint probability

p (f,m; θ) given by

p (f,m; θ) =
1

|ΩF |
h (f,m; θ) (2.4)

where |ΩF | is the number of pixels in the fixed image domain ΩF . The marginal discrete

probabilities pF and pM of the fixed and moving image are obtained by summing p over

m and f , respectively

p (f ; θ) =
∑

m∈LM

p (f,m; θ)

p (m; θ) =
∑
f∈LF

p (f,m; θ).
(2.5)

The mutual information measure is very general; only a relation between the proba-

bility distributions of the intensities of the fixed and moving image is assumed. This cost

function is minimized iteratively by a standard gradient descent method [67] in a mul-

tiresolution scheme. The advantage of a multiresolution scheme is to start the registration

process at lower image complexity to reduce the sensitivity to get stuck in local minima

of the cost function. Furthermore the overall runtime is decreased.

In (2.3) we observe a loop over pixel coordinates xi over the fixed image domain ΩF .

In general, it is not necessary to take all coordinates into account, but a smaller amount



30 Chapter 2. Tokenization

of coordinates may already suffice [67, 133]. This subsampling strategy leads to a lower

computational cost, especially for larger images. We use a random selection of a user-

specified number of coordinates xi. Furthermore the sampling is performed by taking

samples off the pixel grid to improve the smoothness of the cost function, as suggested by

[81, 132].

The image registration functionality is provided by the elastix package [66], which

also allows to choose some other cost functions, optimization techniques, subsampling

strategies and interpolation methods.

For congealing we extend the concept of image registration. Every image of the ensem-

ble of unaligned images is taken once as a moving image. This happens in an outer loop

over all images. During one outer loop iteration all other images serve as fixed images.

We register the moving image to every fixed image using the entropy based registration

described above obtaining the transformation parameters θ. By averaging the transfor-

mation parameters obtained from all those registrations we get the final transformation

parameters for the moving image. Note that this procedure is significantly simpler and

easier to implement than the comparable approaches of [28, 72].

2.2.2 Experimental Results

First we evaluate our congealing algorithm on handwritten digits obtained from the

MNIST database [73] in Section 2.2.2.1. The outcome of the experiments using hand-

written digits motivated us to apply congealing to a more difficult object class. Therefore

we show congealing with an ensemble of facial images in Section 2.2.2.2.

2.2.2.1 Congealing Handwritten Digits

We show the applicability of congealing using samples from the MNIST handwritten digit

database [73]. A total of 50 randomly selected images per digit are used for our exper-

iments. We allow an affine transform Tθ(x) for this image registration task having six

parameters to optimize. The results are presented visually in terms of average images.

Figure 2.7 (second row) shows the sharpness of the average images generated from con-

gealing compared to the average images of the unaligned digits in Figure 2.7 (first row).

It can clearly be seen that most of the spatial variation among the digits is removed. The

average runtime∗ to congeal one sample of size 28x28 is 78s.

∗The runtime is measured using an Intel Core 2 Duo processor running at 2.4GHz.
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Figure 2.7: Average images before (first row) and after congealing (second row). The
samples were obtained from the MNIST database [73].

2.2.2.2 Congealing Facial Images

Motivated from the results of our congealing experiments with handwritten digits in Sec-

tion 2.2.2.1 we apply our algorithm also to facial images from the CVL database [109],

because the images of this database show variation in gender, pose and facial expression

and are not aligned. The CVL database consists of facial color images from 114 indi-

viduals of a resolution of 640x480 pixels. For our experiments we use the frontal pose

image of every individual. We crop the faces to a size of 270x270 pixels and perturb the

images randomly by a small amount of translation, scale and rotation to build a strongly

unaligned set of facial images. In contrast to our first experiment in Section 2.2.2.1 we

allow only a similarity transform Tθ(x) for image registration, because we do not want

to shear our facial images. The unaligned facial images and the result of congealing are

shown in Figure 2.9.

Figure 2.8: Annotation of a facial image with 19 landmark points at salient facial feature
positions.
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To be able to perform also a quantitative evaluation of congealing quality, we anno-

tated all frontal images manually with our annotation tool (described in Appendix D) with

19 landmark points at salient facial feature positions, shown in Figure 2.8. We will provide

our annotations for the public research community. We created a set of aligned landmarks

used as groundtruth by applying Procrustes Analysis. The Point-to-Point distance of the

unaligned landmarks (corresponding to the perturbed images) to the aligned landmarks

is illustrated in Figure 2.10. After congealing we used the obtained landmarks and com-

pared them also to the groundtruth exhibited in Figure 2.10. It can clearly be seen that

the distribution of the Point-to-Point distances is shifted towards smaller displacements

emphasizing the applicability of our algorithm. We also want to show the benefits of our

mutual information cost function by replacing (2.2) by a SSD measure and compare the

congealing results in Figure 2.10. The SSD is clearly outperformed by the mutual infor-

mation measure, especially the SSD exhibits many outliers. These findings substantiate

our claims from the introductory section.

Figure 2.9: The spatial variation gets removed from the perturbed facial samples by our
algorithm. The samples are taken from the CVL database [109].

2.2.3 Summary

We presented an algorithm for the unsupervised alignment of a stack of images. The com-

monly used SSD measure for congealing is not appropriate for generic image registration.

Hence, we used the more sophisticated mutual information similarity measure as a cost
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Figure 2.10: Point-to-Point distance of the unaligned landmarks and the congealed land-
marks to the aligned landmarks.

function. This cost function is optimized by a standard gradient descent method in a

multiresolution scheme. The congealing results on the MNIST handwritten digit database

and the results for congealing facial images obtained from the CVL database clearly show

the applicability of our algorithm. We also provide our annotations on facial images of

the CVL face database for the public research community.





3
Eyes and Mouth Analysis

After the detection of eyes and mouth components in a facial image, an analysis procedure

is applied to assess the ICAO criteria eyes-open and mouth-closed. Reviewing the literature

revealed a multitude of techniques being applied to this problem, among them machine-

learning approaches like support vector machines [139], or Boosting [120], model-based

approaches like EigenFaces [137] or Active Appearance Models [22], or simpler geometric

and template based methods for detecting eye- or mouth-related features like lips, teeth,

iris, or eyelids. Despite their usefulness in many situations, all of these approaches have

their specific drawbacks, e.g., performance of model-based approaches decreases signifi-

cantly in the presence of outliers, while their accuracy is superior to other methods if the

model fitting is successful. From the observation of differing performance of different - to

a certain extent complementary - algorithms, we adapted the interpretation of each algo-

rithm as a single expert giving a vote for a certain classification decision. By combining

the votes of all classifiers in a classifier fusion scheme [65, 69], we state the hypothesis that

the performance of the combined scheme is superior compared to the performance of the

single classifiers in the ensemble. This makes the decision for the specific events eyes-open

and mouth-closed more robust in the presence of difficult situations like noisy input data,

lighting conditions or partial occlusions, e.g., wearing glasses.

In the following we will validate our hypothesis by presenting our face analysis system

consisting of the single classifiers (Section 3.1) and the classifier fusion strategies in more

detail in Section 3.2. Section 3.3 shows the results of our experiments on two databases.

Finally we discuss and summarize our findings in Section 3.4.

35



36 Chapter 3. Eyes and Mouth Analysis

(a) (b) (c)

Figure 3.1: Some sample images from the evaluation database: (a) eyes open, mouth
closed, (b) eyes open, mouth open, (c) eyes closed, mouth open. Taken from the AR face
database [90].

3.1 Face Analysis System Description

Our face analysis system operates on tokenized images. It performs several classification

decisions of which we present the eyes-open and mouth-closed events in this section. These

criteria rely on our facial component detection stage, where a robust scheme performs

face, eye and mouth localization from face component hypotheses in a probabilistic voting

framework, see Section 2.

The ICAO specification [57] defines the following rules for accepting photos as suitable

according to eyes-open and mouth-closed criteria. The face expression has to be neutral

(non-smiling) with both eyes open normally and the mouth closed (see Figure 3.1). A

smile is unacceptable regardless of the inside of the mouth and/or teeth being exposed

or not. Starting from this specification and taking the large variety of possible problems

in real-world images (due to noisy data, inappropriate lighting situations, occlusions due

to hair or glasses, or the large variety in appearance of different people) it is intuitive

that a single classification method will not be able to solve this task in a robust manner.

Therefore several different classifiers are combined in a fusion step (see Figure 3.2). An

important assumption for efficiently combining classifiers is that they show complementary

behavior and their estimates are as independent as possible. In practice it is very hard to

come up with a set of totally independent methods, so one has to rely on experimental

evaluation to show their applicability to a given task.

For the training based approaches we have used a large manually annotated training
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set of around 4600 face images which were taken from the Caltech Face database [19], the

FERET database [111] and from a third database constructed from our own images.

Input Tokenized
ICAO  
CriteriaRobust FaceInput 

Image
Tokenized
Image

Criteria
Compliance 

?

Tokenization
Robust Face 
Analysis

Tokenized
Image

Mouth Closed
Analysis 

Preprocessing

Eyes Open 
Analysis 

Preprocessing

5 Cl ifi 5 Cl ifi

Fusion Fusion

5 Classifier
Mouth Closed

5 Classifier
Eyes Open

Mouth
Closed?

Eyes
Open?

Figure 3.2: Face analyzer workflow. From tokenized images we perform some pre-
processing, apply the single classifiers and fuse their results to form a final decision.

3.1.1 Eyes Open Analysis

For the analysis of the event eyes-open we use an ensemble of five classifiers. Two classifiers

are based on AdaBoost, one uses the Active Appearance Model , one is derived from the

EigenFace method and the last method is based on a geometric iris localization strategy.

The eyes-open decision is performed independently for the left and right eye and leads

to a confidence value di(x) ∈ [0, 1] representing the range between closed and open eyes.

The minimum of these two separate decisions forms the final result, since one closed eye

already corresponds to an eyes-closed decision.

3.1.1.1 Active Appearance Model

We trained an Active Appearance Model (AAM) [22], (Appendix B), (CL1), for face

image regions around the eyes, which we have also used in the tokenization step, see

Figure 2.4. Our training set consists of 427 manually annotated face images taken from
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the Caltech Face database and our own collection. Training images show variations in the

opening of the eyes, slight pose variations, and eyes, which are looking straight and away.

For model building we keep 97.5 percent of the eigenvalue energy spectrum to represent

our compact model. To apply the AAM to a given image for eyes-open classification, we

initialize the mean shape of the AAM by the roughly estimated left and right eye locations

from facial component detection. To derive a measure of the likelihood of the eyes-open

event we analyze the vertical eyes’ opening of the converged AAM shape model in the

left and right eye area respectively. We compare the opening to a pre-defined threshold

TE,aam and additionally weight the distance to the threshold with the AAM residual error

that represents an estimate of success or failure of model fitting.

3.1.1.2 Iris Detection Approach

Our geometric iris detection approach (CL2) is based on a fast radial symmetry detector

presented in [86]. For each eye we restrict ourselves to an image patch around the eye.

After performing edge-preserving anisotropic smoothing [145], we calculate a symmetry

transform image by estimating gradient orientation and magnitude projection images over

several scales according to [86]. Local minima of the symmetry transform image corre-

spond to centers of radial-symmetric structures. The strongest response of this transform

corresponds to iris centers. Afterwards we perform a more accurate iris radius estimation

by using a one-dimensional Hough voting on the binary response image from a Canny

edge detector [20]. We favor iris radii that are conform to a rough scale estimation of the

iris that we are able to derive from our tokenized input images. The voting histogram

entry with the maximal response gives the desired iris radius. From the strength of the

symmetry image minimum and the voting histogram we derive a confidence measure for

the eyes-open event.

3.1.1.3 AdaBoost Classifier

Eyes-open analysis using AdaBoost [120], [142], (Appendix C), utilizes two different

classifiers, both trained with the OpenCV [56] library. These classifiers focus on Haar

wavelet filter features. The first one (CL3) was trained on image patches of closed eyes

and the second (CL4) on open eyes. For the closed eye classifier 464 positive image

patches were used, while the open eye classifier was trained with 2732 image patches.

The discrepancy in the number of positives is due to the unequal representation of both

classes in our training set. In both cases the set of negative images was taken from generic
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background images.

Our classification strategy for each trained Boosting classifier takes the approximate

location of the eye from the facial component detection stage and applies the classifier

to a slightly enlarged region around this region. That is the reason, why we trained one

open-eye and one closed-eye detector utilizing the sliding window approach in the enlarged

region, hence exploiting the detector as a classifier. If we detect an open eye rectangle

we report a confidence measure according to [149]. If we detect a closed eye rectangle we

report the inverse of this confidence measure.

3.1.1.4 EigenEye Model

The EigenFace model [137] is a generative method that explicitly models face images in

the face image space. It is based on registered image patches of equal dimensions and is

calculated by applying a PCA to the face image vectors in the face image space. From

this compact PCA representation, the eigenvectors according to the smallest eigenvalues

are discarded. Given such a model consisting of a mean image and the remaining eigen-

vectors, it is possible to represent unknown image patches in the face image space. Thus,

the reconstruction error of an image patch gives information about the similarity to fa-

cial images. By applying a threshold on the reconstruction error, classification can be

performed.

The same principle can be used to model open eyes (EigenEye, CL5). This generative

EigenEye model is based on a training set of approximately 2700 open eye images for left

and right eye, respectively. These images are coarsely registered before model calculation.

From the compact PCA representation we keep 120 eigenvectors, resembling 97.5 percent

of the energy in the eigenvalue spectrum. For deciding on the similarity to the space of

open eyes we define a threshold TE,pca on the reconstruction error. The distance to this

threshold gives a continuous confidence measure.

3.1.2 Mouth Closed Analysis

For the mouth-closed analysis we have also used an ensemble of five classifiers. Three

classifiers are based on AdaBoost, one approach makes use of the EigenFace framework

and the last classifier utilizes a blob detection algorithm that locates dark blobs due to

mouth cavity shadows. Decision scores di(x) ∈ [0, 1] range between 0 for open and 1 for

closed mouths.
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3.1.2.1 Geometric Dark Blob Analysis

The dark blob analysis (CL1) is a geometric method that makes use of the fact that open

mouths very often exhibit dark blobs due to shadows in the open mouth cavity compared

to the rest of a mouth image patch. Therefore, we investigate a slightly enlarged version

of the mouth detection area, transform it into HSV color space and proceed by working

solely on the Value coordinate. After binarizing the mouth patch using thresholding [105],

we perform a blob detection process that extracts dark blobs corresponding to shadow

regions. A filtering stage on the extracted blobs regarding their size, center locations and

compactness removes unlikely shadow regions that may occur, e.g., due to beards. If a dark

blob region survives this filtering stage we decide for the mouth-open event, otherwise for

mouth-closed. A confidence measure is derived from the size of the detected blob region.

3.1.2.2 Boosting Classifier

Mouth-closed analysis using AdaBoost (Appendix C) leads to three different classifiers.

The first one (CL2) is trained with the OpenCV library using 3785 closed mouth patches

as positives and a large pool of non-mouth patches as negatives. This classifier focuses on

Haar wavelet filter features. The classification strategy takes the approximate location of

the mouth from the facial component detection stage into account and applies the classifier

to a slightly enlarged region around the mouth.

The second AdaBoost classifier (CL4) uses integral image approximations of edge ori-

entation histograms. The weight update strategy follows the RealBoost scheme. We expect

complementary behavior of our RealBoost approach to the OpenCV implementation due

to the different features under consideration, i.e., the OpenCV library focuses on wavelet

filter approximations, while our RealBoost learns features from the edge information of

an image. RealBoost is applied similar to the first classifier but uses 2475 open mouth

patches as positive images in the training stage.

The third AdaBoost classifier (CL3) is also trained with the RealBoost scheme on

1200 closed mouth patches. This classifier uses the same amount of open mouth patches

as negatives and can only be applied directly (without a sliding window approach) to

the detected mouth patches from the facial component detection. All of the AdaBoost

classifiers report a confidence measure which is calculated according to [149] in case of

closed mouths.
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3.1.2.3 EigenMouth Model

Similar to the EigenEye model, the generative EigenMouth model (CL5) is based on a

training set of 3785 closed mouth images in neutral expression. These images are coarsely

registered and the model is calculated. From the compact PCA representation we keep

140 eigenvectors, resembling 97.5 percent of the energy in the eigenvalue spectrum. For

deciding on the similarity to the space of closed mouths we define a threshold TM,pca on

the reconstruction error. The distance to this threshold gives a continuous confidence

measure.

3.2 Classifier Fusion

We hypothesize that fusing multiple classifiers generates more accurate classification re-

sults compared to single classifier decisions. Hence, our goal is to evaluate different fusion

strategies to combine the classifiers discussed in the previous sections. Let D denote a

single classifier and x ∈ Rn a feature vector representing a pattern to be classified. The

classifier represents a mapping

D : x ∈ Rn → ωj ∈ Ω ,

where ωj is one of the c possible classes of Ω = {ω1, . . . , ωc}. Denote {D1, . . . , DL} as

the set of L classifiers. The output of the ith classifier is Di(xi) = [di,1(xi), . . . , di,c(xi)]
T ,

where xi is the specific feature vector representation of the input pattern needed by classi-

fier Di and di,j(xi) is the confidence, i.e., the degree of support, classifier Di assigns to the

assumption of xi originating from class j. The fused output D̂ of the L single classifiers is

D̂(x) = F(D1(x), . . . , DL(x)), (3.1)

where F is called the fusion strategy. Resulting from D̂, the final confidence values

assigned to each class are d̂j . The following fusion strategies are investigated:

Majority vote (MAJ) The outputs of the single classifiers di,j are assigned to a specific

class explicitly. The class label that occurs most often is taken as the final decision.

Minimum (MIN) d̂j(x) = min
i
{di,j(x)}

Maximum (MAX) d̂j(x) = max
i
{di,j(x)}
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Average (AVR) d̂j(x) = 1
L

L∑
i=1

di,j(x)

Binarized Average (BAVR) This scheme is equivalent to the average fusion strategy,

except for the outputs of the single classifiers di,j being assigned to a specific class

explicitly before averaging.

Product (PRO) d̂j(x) =
L∏
i=1

di,j(x)

Prior Confidence (PRIOR) A priori confidences of the single classifiers are obtained

from tests on a validation dataset according to their performance exhibited (Ta-

ble 3.1). The prior confidences are accumulated according to the decision of the

corresponding single classifier.

Bayes Combination (BAYES) This scheme assumes that the classifiers are mutually

independent and that the posterior confidences of the single classifiers are equal to

posterior probabilities. For our single classifiers we expect independence, because

different underlying concepts and methodologies are used, e.g., different features for

classification.

The fusion strategies presented above can only be justified under strict probabilistic

conditions. Nevertheless, some of them exhibit excellent performance as can be seen in

the experimental results, a fact which was already stated in [65] for some of the classifier

fusion strategies. The strict probabilistic conditions motivate to learn the fusion of the

single classifiers. Thus, we use a support vector machine (SVM) [139], [82] to learn the

optimal fusion in a linear combination.

SVM learned posterior confidence fusion (SVM POST) Obtained posterior con-

fidences on a labeled validation dataset (independent of the training- and test set)

are used for the learning of a linear combination of the single classifiers by the use

of a SVM.

SVM learned binary posterior confidence fusion (SVM BPOST) Obtained pos-

terior confidences on a validation dataset are assigned to a specific class explicitly.

These binarized confidences are then used for learning the optimal combination by

the use of a SVM.

SVM learned Bayes combination (SVM BAYES) In this scheme the optimal

Bayes combination of the single classifiers confidences is learned by the use of a

SVM on a validation dataset.
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3.3 Experimental Results

We used two different face databases for the evaluation of our single classifiers and fusion

strategies. The first one is the publicly available AR face database [90]. It consists of 126

unique people, frontal view face images (70 male, 56 female) of different facial expressions,

illumination conditions and occlusions resulting in a total amount of over 4000 color images

of a resolution of 768 by 576. We used all the images except those with dark sunglasses or

occluded mouth due to a scarf yielding about 1700 images for evaluation. Annotation data

is available on request. Some samples of this challenging database are given in Figure 3.3.

The second database we used is a private data set containing 325 frontal face color

images of 480 by 640 pixels with 30 people showing different facial expressions.

Figure 3.3: Sample images from the AR face database [90] showing the difficulties of the
images under consideration.

The evaluation procedure is exemplified on our own database for the AAM eyes-open

classifier in Figure 3.4. All evaluation results on the AR face database are summarized

in Table 3.2 for eyes-open and in Table 3.4 for mouth-closed analysis. The evaluation

results on our private database are presented in Table 3.3 for eyes-open and Table 3.5 for

mouth-closed analysis. The comparison of the ROC curves of the best single classifier to

the best fusion strategy is shown in Figure 3.5 for the AR face database and in Figure 3.6

for our own database.

The best overall fusion performance is exhibited by the learning based SVM ap-

proaches, and here especially the SVM using the posterior confidences. However, also
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Table 3.1: Prior confidences of the single classifiers. (left) eyes-open classifiers, (right)
mouth-closed classifiers

 Classifier Prior  Classifier Prior

CL1 0.25 CL1 0.23
CL2 0.20 CL2 0.21
CL3 0.25 CL3 0.25
CL4 0.19 CL4 0.21
CL5 0.11 CL5 0.10
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Figure 3.4: Evaluation procedure for the eyes-open AAM on our own database. (a)
Distribution of the confidence values for open-eyes in the database. (b) Distribution of the
confidence values for closed-eyes in the database. (c) Characteristic of the false rejection
rate (FRR) and false acceptance rate (FAR). (d) ROC curve
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Figure 3.5: Comparison of the ROC curves of the best single classifier to the best fusion
strategy for the (a) eyes-open and (b) mouth-closed analysis on the AR face database.
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Figure 3.6: Comparison of the ROC curves of the best single classifier to the best fusion
strategy for the (a) eyes-open and (b) mouth-closed analysis on our own face database.

simple fusion strategies, e.g., average, show very good results. The single classifier perfor-

mance on our private database is slightly better compared to the AR database due to a

larger complexity of the images contained in the latter data set. The AR face database

contains a large number of images from people wearing different glasses, often show se-

vere specular reflections, simulate bad illumination conditions and extremely wide open

mouths, where we have problems of robustly locating the mouth region. However, the

hypothesis of fusing multiple classifiers generating more accurate and robust classification
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results compared to a single classifier, is thus approved, illustrated in our figures and

tables.

Table 3.2: Evaluation results for the eyes open analysis on the AR face database
  EER

0.05 0.1 0.3 0.5
CL1 18.35 48.90 68.68 86.66 94.14
CL2 29.37 70.63 70.63 70.63 70.63
CL3 10.85 11.96 85.18 93.49 95.04
CL4 24.89 74.45 74.61 75.37 76.65
CL5 25.75 47.87 63.86 76.04 81.12

MAJ 18.08 81.92 81.92 81.92 81.92
MIN 26.91 71.38 71.77 73.34 75.44
MAX 15.91 29.00 62.17 99.13 99.73
AVR 9.21 87.96 91.17 96.23 99.66
BAVR 7.82 81.92 92.18 92.18 99.73
PRO 28.03 70.59 70.89 72.09 73.28
PRIOR 7.82 90.55 92.18 92.18 99.73
BAYES 8.81 89.22 91.65 96.99 99.82
SVM POST 7.65 90.86 93.19 97.97 99.86
SVM BPOST 8.26 85.72 92.11 99.25 99.73
SVM BAYES 11.31 85.18 87.91 96.03 99.86

Detection Rate @ FAR

Table 3.3: Evaluation results for the eyes open analysis on our own face database
  EER

0.05 0.1 0.3 0.5
CL1 7.50 79.39 96.93 97.92 98.14
CL2 10.96 89.04 89.04 89.04 89.04
CL3 13.51 85.09 85.53 92.65 94.88
CL4 12.72 87.28 87.28 87.28 87.28
CL5 15.30 67.11 83.77 88.16 90.94

MAJ 5.70 94.30 94.30 94.30 94.30
MIN 13.16 86.84 86.84 96.38 97.04
MAX 6.50 87.72 99.56 100.00 100.00
AVR 3.95 96.05 96.49 100.00 100.00
BAVR 5.00 96.05 96.05 100.00 100.00
PRO 12.97 86.64 86.89 87.85 88.82
PRIOR 3.95 96.05 99.56 100.00 100.00
BAYES 3.73 96.49 96.49 100.00 100.00
SVM POST 3.51 96.49 98.25 100.00 100.00
SVM BPOST 3.51 100.00 100.00 100.00 100.00
SVM BAYES 5.00 95.18 98.25 100.00 100.00

Detection Rate @ FAR
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Table 3.4: Evaluation results for the mouth closed analysis on the AR face database
  EER

0.05 0.1 0.3 0.5
CL1 36.90 0.00 0.00 0.00 92.31
CL2 28.33 64.83 66.03 72.18 80.17
CL3 25.13 31.49 44.88 79.67 95.31
CL4 19.53 25.34 50.80 97.83 99.67
CL5 23.90 47.66 60.63 81.36 90.31

MAJ 17.12 24.20 48.39 97.16 97.16
MIN 16.91 60.36 70.61 89.66 89.76
MAX 39.77 42.49 43.16 45.82 98.26
AVR 9.40 81.12 91.90 98.33 99.75
BAVR 15.71 42.94 84.29 97.16 99.50
PRO 11.78 75.79 85.96 93.60 94.64
PRIOR 14.34 50.63 84.29 97.41 99.67
BAYES 10.79 79.18 88.33 98.07 99.75
SVM POST 11.21 73.74 87.45 97.17 99.75
SVM BPOST 14.14 51.53 63.99 98.08 99.67
SVM BAYES 13.35 67.94 83.06 93.57 99.67

Detection Rate @ FAR

Table 3.5: Evaluation results for the mouth closed analysis our own face database

  EER

0.05 0.1 0.3 0.5
CL1 12.02 87.98 87.98 87.98 87.98
CL2 11.86 53.48 85.49 94.97 95.78
CL3 8.62 89.36 93.82 98.71 99.14
CL4 12.39 55.56 81.93 98.02 99.57
CL5 25.50 25.17 51.52 77.21 84.55

MAJ 3.61 97.00 97.00 97.00 97.00
MIN 16.03 83.76 83.86 84.24 84.62
MAX 13.04 40.26 47.47 100.00 100.00
AVR 3.61 97.85 97.85 99.14 100.00
BAVR 3.61 97.00 97.00 98.71 98.71
PRO 8.81 91.00 91.24 92.24 93.23
PRIOR 3.00 97.00 98.71 99.57 99.57
BAYES 2.26 97.85 98.82 99.57 99.57
SVM POST 3.00 98.28 98.71 99.57 99.57
SVM BPOST 3.00 97.00 98.71 99.57 99.57
SVM BAYES 3.11 97.67 98.78 99.57 99.57

Detection Rate @ FAR
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3.4 Summary

In this section we presented our face analysis system for checking ICAO specification com-

pliance regarding the eyes-open and mouth-closed criteria. Both criteria are challenging

due to different possible input images showing noise, bad lighting, occlusions (glasses,

beard) and the large variety of human faces in general. Our face analysis system builds

upon several pre-processing steps before eyes-open and mouth-closed events are evaluated

by different, complementary classification methods. We adopt a classifier fusion framework

testing a number of different fusion strategies to combine the votes of different classifiers.

In our experimental results we show that the classification performance on our criteria

improves significantly due to classifier fusion, thus validating our hypothesis. The fu-

sion strategies based on the learned linear combination utilizing the SVM approach show

superior results, however, simpler fusion strategies exhibit competitive performance.



4
Analysis of the Deviation from Frontal

Pose

Automatically determining the head orientation from images has been a challenging task

for the computer science community for decades [100]. The head can be assumed to be

modeled as a rigid object, and therefore the pose of the head can be characterized by

pitch, roll and yaw angles as illustrated in Figure 4.1. Head pose is also essential for

understanding the eye’s gaze, i.e., to determine the viewing direction of a person. In [71]

it is shown, that the gaze direction is a combination of head pose and eye’s gaze.

Many exciting and important application areas for head pose estimation emerged in

the last decade. One major interest is human-computer interaction to determine the gaze

as well as interpreting head gesturing, i.e., the meaning of head movements like nodding.

This enables very direct means to interact with virtual worlds, especially in the computer

gaming industry. A second area of application is automotive safety. To avoid vehicle

collisions, the driver’s head is monitored to recognize driver distraction and inattention.

A 3D head tracking approach for a driver assistance system is presented in [99]. Biometrics

also utilizes the important task of head pose estimation. One direction of impact is the

rectification of non-frontal facial images to the frontal pose to improve the accuracy of

face recognition [14]. Recently, extraordinary attempts to person surveillance for far-field

distance views were announced. Even though there is a broad area of applications and

a high demand for accurate systems, research on identity-invariant head pose estimation

shows fewer evaluated systems and generic solutions compared to face detection and face

recognition.

Murphy-Chutorian and Trivedi [100] give a recent and extensive survey on head pose

49



50 Chapter 4. Analysis of the Deviation from Frontal Pose

Figure 4.1: The three degrees of freedom of a human head described by pitch, roll and
yaw angles.

estimation in computer vision. They arrange the methods published over the last 14

years in several categories: appearance template based methods, detector arrays, manifold

embedding, flexible models, geometric methods, tracking methods and hybrid methods:

Appearance Template Methods and Detector Array Methods try to estimate

the head pose by either directly comparing head images with a set of template

images or by using a trained detector in order to find the most similar pose for a

new head image.

Regression Methods learn a continuous estimate of the head pose by a possibly non-

linear mapping of the high dimensional image features to pose angles.

Manifold Embedding Methods assume that even though an image consists of hun-

dreds of dimensions spanned by the pixels of the image, only a few dimensions

define the pose [92]. Thus these methods map the head image to a low-dimensional

manifold that is defined by the continuous pose angles. Both methods rely on a

robust and accurate face localization.

Geometric Methods rely more on human perception and include measurements of dis-

tances between facial features and deviation from bilateral symmetry [146]. These

methods require that facial features such as eye corners can be detected robustly.

Due to occlusion, facial expressions and pose-dependent viewing angles this is a

non-trivial task [140].
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Flexible Models solve this problem by fitting non-rigid face models to the 2D image of

a face in order to determine the head pose. For example, graphs of facial features

can be automatically deformed until they fit to a face in an arbitrary pose [147].

In contrast to many other approaches we are specifically interested in the more difficult

task of head pose estimation from still images, instead of tracking faces in image sequences.

Head pose estimation from still images is a challenging task due to the high variability of

facial appearance, e.g., gender, ethnicity or age. A Head Pose Estimation System (HPES)

should demonstrate robustness to such factors and also to occlusion, noise, lighting and

perspective distortion. In the context of ICAO type passport photos, persons are required

to show a frontal head pose which means that the head rotation must not deviate more

than ±5 degrees in any direction from frontal.

In this section we propose three head pose estimation approaches starting from a

coarse estimation (only frontal/non-frontal decision) to a very fine estimation. The coars-

est approach (Section 4.1) is based on AdaBoost classifiers and only performs a frontal vs.

non-frontal decision. The next finer estimation approach (Section 4.2) builds upon a His-

togram of Oriented Gradients (HOG) descriptor used as input for a non-linear regression.

Furthermore a Biased Manifold Embedding (BME) approach is extended to cope with

multiple pose-angles. In addition, we present an approach for the creation of an artificial

training database. The finest head pose estimation approach is the 3D Morphable Appear-

ance Model which is proposed in Section 4.3. The finer head pose estimation approaches

are more accurate but are only applicable in a smaller range of head poses.

4.1 Boosting Approach

The analysis of the deviation from frontal pose is carried out using a combination of six

different AdaBoost classifiers (Appendix C) using Haar wavelet like features. The clas-

sifiers make a decision on frontal-, left-, right-, up- or down pose deviation (Figure 4.2).

There is one classifier which is trained on upwards-looking versus frontal pose face images,

another one trained on downwards-looking versus frontal face images. For the deviations

from left- and right pose we combine four different classifiers. The first classifier is trained

using centered cropped face images, the second classifier takes face images, which are

cropped taking a shifted window around the face center, see Figure 4.3. In order to incor-

porate symmetry information in the third classifier, the original image and its mirrored

image are overlaid and the average pixel value is taken to form a new image, see Figure 4.4.
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The advantage is that deviations from frontal pose become “amplified”. So the boosting

approach is able to discriminate better between pose- and frontal images. This classifier

can only determine, either if the face is frontal or not. Hence, a fourth classifier is needed

to decide between left- or right pose, see Figure 4.2.

Up
Classifier

Down
Classifier

f d

Up‐ or
Down Pose

Left‐Centered
Classifier

Left‐Shifted
Classifier
Averaged
Classifier

Left‐Right
Classifier

Left PoseΣ

Classifier Classifier

Figure 4.2: Pose classification with six AdaBoost learned pose classifiers.

4.1.1 Experimental Results

The performance of the AdaBoost based head pose estimation algorithm is evaluated on

our own database. This database consists of 1355 JPEG-compressed face images of 35 in-

dividuals. Various scenarios, e.g., mouth open/closed, eyes open/closed, frontal/left/right

pose, different eye gaze directions, partial face occlusion, are covered equally throughout

the database. Note that this database is different from the data that we use for determin-

ing the prior confidences of our multi-classifier fusion step and different from the dataset

we use for the training of the AdaBoost classifiers. Table 4.1 gives a summary of the

prior confidences for combining the classifiers. The applied fusion strategy is a linear

combination of prior confidences and AdaBoost classifier output confidences.

Our results are compared to the state-of-the-art technology of two commercial ven-

dors, which we are unfortunately not allowed to mention, therefore we refer to them as

vendor ’X’ and vendor ’Y’. Figure 4.5 shows the comparisons of the relative detection rate

for the analysis of the deviation from frontal pose. We show our results using the best

performing system as the reference to which the other systems are compared. This rela-
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Figure 4.3: Cropping area for the training images: centered crop (left column), shifted
cropping area (right column)

Table 4.1: Prior confidences for the classifier fusion of the AdaBoost based deviation from
frontal pose decision.

 Classifier Prior

Left‐Centered 0.39

Left‐Shifted 0.37

Averaged + Left‐Right 0.24

tive performance comparison is presented at several different false acceptance rate (FAR)

configurations. The comparisons show the good performance of our head pose estimation

approach with respect to the other vendors.
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Figure 4.4: The original image and its mirrored image were overlaid and the average pixel
value was taken to form a new image (left figure: frontal image, right figure: image showing
pose deviation). The red squares illustrate the cropping area for AdaBoost training.
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Figure 4.5: Comparison of the relative detection rates for the analysis of the deviation
from frontal pose.
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4.2 Person Independent Head Pose Estimation by

Non-Linear Regression and Manifold Embedding

The contributions in this section deal with enhancements of existing algorithms in order

to improve their pose estimation accuracy. We show how to extend the Biased Manifold

Embedding [5] technique to multi-DOF pose estimation and use the histogram of oriented

gradients descriptor [29] for non-linear regression [98]. In addition to that we propose a

database for training a head pose estimation system (Section 4.2.3). An evaluation of all

methods in an unified framework allows a direct comparison of the estimation performance

of different systems (see Section 4.2.4). More details can be found in [126, 127].

We require that the HPES is person independent and can handle the large variety

of faces correctly. Detecting facial features like the nose or the mouth is a challenging

problem and wrongly detected features will degrade the overall performance. Therefore

it is beneficial if these features need not to be detected in the input image. Only two

types of methods from the overview (Chapter 4) fulfill our requirements. Both Manifold

Embedding (see Section 4.2.1) as well as Non-Linear Regression methods (see Section 4.2.2)

perform pose angle regression and require only a good face localization, which is given in

our application. In addition to that, they are able to adapt to the variety of people found

in real world scenarios automatically.

We propose an HPES similar to [98] which is sketched in Figures 4.6 and 4.7. The head

pose estimation starts with a tokenized image of a human head which is presented as the

input to the system. In the tokenization procedure, the eyes are detected and the input

image is normalized according to their position. Therefore the roll angle can automatically

be estimated by this step. A narrow region around the face is then extracted based on the

position of the eyes. The yaw and pitch angles can subsequently be estimated by learning a

mapping of the pixels of the region to pose angles. The remainder of this section describes

two algorithms that work within such a framework.

4.2.1 Biased Manifold Embedding

The first algorithm we evaluate uses a manifold embedding technique [5] to estimate the

pose of the human head. The main idea is to map the high dimensional input image

onto a low-dimensional manifold which correctly maps pose angles while ignoring lighting,

occlusions and facial differences of individuals. Pitch and yaw angles can be extracted

from such a manifold by using regression techniques.
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SVR

SVR

Yaw estimation

Pitch estimation

Manifold 
Embedding

Crop image and 
normalize size

Face Image

Figure 4.6: Components of a head pose estimation system using manifold embedding

We use the geometrically motivated Laplacian Eigenmaps (LE) [9] algorithm for rep-

resenting high dimensional data. It allows an efficient non-linear dimensionality reduction

while preserving locality properties. This makes it suitable for clustering applications such

as an HPES which tries to keep similar poses within a small neighborhood on the manifold.

LE require a distance measure between every tuple of data points (xi, xj) from a training

set such as the Euclidean distance between the i-th and j-th data point:

d(i, j) = ‖xi − xj‖ (4.1)

As feature vectors xi we use the facial region scaled to 32×32 pixels filtered by a Lapla-

cian of Gaussian filter in order to extract edge information. Laplacian Eigenmaps can be

generated from the distances between feature vectors alone [9]. When using the unmodi-

fied distance calculation, features of the same person at different poses are likely to have a

lower distance than features of different people at the same pose, which is a disadvantage

in our context. Balasubramanian et al. [5] therefore enhanced manifold embedding tech-

niques by using a Biased Manifold Embedding (BME) approach that incorporates pose

information into the creation of the manifold in order to weight pose differences much

higher than inter-person differences:

d̃(i, j) =
|p(i, j)|

maxm,n p(m,n)− p(i, j)
· d(i, j) with p(i, j) = |φy(i)− φy(j)| (4.2)

In (4.2) this biasing term is multiplied with the Euclidean distance from (4.1). This

ensures that data points with a small pose distance p(i, j) for the images i and j lie close

together on the resulting manifold. Balasubramanian et al. [5] use only the yaw angle φy(i)

of the head in the image. For our system we extend the definition of the pose distance by
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Figure 4.7: Components of a descriptor based head pose estimation system

the pitch angle φp(i):

p(i, j) =

√
[φy(i)− φy(j)]2 + [φp(i)− φp(j)]2 (4.3)

The complete head pose estimation process is shown in Figure 4.6. With the help of

Laplacian Eigenmaps, the low dimensional manifold is created from the feature vectors of

several thousand training images (see Section 4.2.3). We use two support vector regression

machines to extract the yaw and pitch angles from the low dimensional manifold. As there

exists no direct way to map new feature points onto an existing manifold, we learn the

mapping from feature space to the manifold using a Gaussian Regression Neural Network

(GRNN) [159] in order to estimate the pose of previously unseen head images.

4.2.2 Non-Linear Regression of Image Descriptors

Another approach that promises to support our requirements was initially published by

Murphy-Chutorian et al. [98] who calculated a localized gradient orientation (LGO) his-

togram on the facial region of a normalized facial image. An LGO descriptor can be

compared to a single SIFT descriptor [85] with a fixed position, orientation and scale.

The system, which can be seen in Figure 4.7, extracts a scale normalized region around

the face and calculated an LGO descriptor for it. Two support vector regression machines

then estimate the yaw and pitch angle for the LGO descriptor vector. With this system

pose angle estimation with a mean absolute pitch error of 5 degrees as well as 7 degrees

in yaw angles are possible [98].

For our system we require a better performance and therefore propose several improve-

ments. In order to reduce lighting effects, we enhance the shadow areas of the gray-level

input image by a non-linear gamma normalization by transforming each pixel I(x, y) to

(I(x, y))γ with γ = 0.2. Instead of the LGO descriptor we use a Histogram of Oriented

Gradients (HOG) descriptor [29] which has proven to be effective for object detection in
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(a) (φy, φp) =

(30◦,−20◦)

(b) (φy, φp) = (0◦, 0◦) (c) (φy, φp) =

(−30◦, 10◦)

(d) (φy, φp) =

(20◦, 10◦)

Figure 4.8: Examples of generated head poses at different yaw and pitch angles (φy, φp)
and light settings

images. Recent work has pointed out that HOG descriptors are well suited for head pose

classification tasks [115] but they have not been used for head pose regression so far. The

major advantage of the HOG descriptor over the LGO is that the orientation of the gra-

dients is weighted according to the gradient magnitude. In addition to that the descriptor

features a spatially selective normalization which stores a single histogram multiple times

but with different weights. Another important improvement deals with the scale normal-

ization of the image. While in [98] only a scaled down facial patch is used, we follow the

recommendation of [29] to use the largest scale possible without smoothing. As a result,

many more gradient values are gathered in the orientation histograms of the descriptor

which increases its robustness.

The effects of these enhancements on the head pose estimation accuracy will be demon-

strated in Section 4.2.4. Before that we present our novel face image database which allows

us to train and evaluate the systems.

4.2.3 Facial Image Database

For training an image based head pose estimation system, a large database of facial im-

ages in different poses and with multiple people is needed. A variety of databases are

mentioned in the literature [12, 98] but there is either not enough variation in the images

or the database is not open to the public. This is why we propose a method to create

a face image database with a high flexibility at a very low cost by rendering 3D models

from existing laser scans. The Facial Expression database from the Binghampton Univer-

sity [155] contains fully textured 3D heads of 100 subjects. We generate multiple facial

images from each head model by rotating it in 3D space with yaw within ±50◦ and pitch
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angles within ±30◦. The background of each rendered image is set to an arbitrary image

in order to simulate a non-uniform background. In addition to that, we rotate a variable

light source around the head in order to generate a variety of lighting situations. Such

training data allows the system to become more robust and person independent. In all

generated images the mid-point of the eyes is kept at a constant position which allows

us to eliminate the face detection prior to head pose estimation. Therefore our training

images are not influenced by the performance of the head localization step. Some of the

synthetic images can be seen in Figure 4.8.

4.2.4 Experimental Results

We performed an experimental evaluation on our artificial database (see Section 4.2.3) as

well as on the publicly available FacePix database [12]. Three different implementations

of a head pose estimation system were evaluated: Biased Manifold Embedding [5], Local

Gradient Orientations mapped by an SVR [98] and our Histograms of Oriented Gradients

based improvement described in this section.

Training of the systems was performed by using a subset of head images from persons

in our database while keeping the remaining persons for testing. The optimal parameters

for the descriptors and machine learning algorithms were found by an exhaustive search

over the parameter space. As the performance measure we used the mean absolute pose

angle estimation error. This measure is often used in the literature and therefore allows

comparison with other publications (e.g. [100]):

Ey =
1

N

N∑
i=1

|φy(i)− Py(Di)| Ep =
1

N

N∑
i=1

|φp(i)− Pp(Di)| (4.4)

It is defined as the absolute difference between the ground-truth pose angle of the i-th

image (e.g. φy(i)) and the predicted angle from the descriptor Di of the image. The mean

over all N images in the test-set yields the final value for either yaw or pitch estimation

errors.

In Table 4.2 the performance of the systems on yaw and pitch angle estimation is

compared using the mean absolute error. It can clearly be seen that the HOG approach

outperforms the other methods in both pitch and yaw angle estimation performance.

The biased manifold embedding approach shows the worst results in our evaluation. This

finding is somewhat contrary to what is stated in [5] where mean absolute errors of around

2◦ are promised. The reason for this is that the original algorithm is trained and tested
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Method Ey our DB Ep our DB Ey FacePix

Biased Manifold Embedding 5.6◦ 6.5◦ 14.0◦

LGO / SVR 4.5◦ 4.4◦ 7.5◦

HOG / SVR 3.6◦ 3.1◦ 4.0◦

Table 4.2: Comparison of the Biased Manifold Embedding, LGO and HOG approach
in terms of mean absolute pose angle estimation error when trained and tested on our
database and additionally tested on the FacePix database [12]
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Figure 4.9: Yaw angle estimation performance of the HOG descriptor with SVR learning
for different yaw angles (mean and standard deviation)

on the FacePix database which only contains rotations around a single axis (left/right).

When used in a multi-dimensional pose estimation system or heterogeneous datasets, this

performance degrades due to ambiguities between neighboring poses.

A more detailed evaluation of the HOG descriptor based system in Figure 4.9(a) shows

that the yaw angle estimation performance has a U-shaped curve for different yaw angles

with a minimum at the 0◦ yaw angle. This means that yaw angles are estimated more

accurately in frontal pose head images. Such behavior is beneficial in applications such as

ours where we want to estimate the head pose in near-frontal images. A similar evaluation

in Figure 4.9(b) shows a good performance of the HOG based system with an average

yaw estimation error of 4.0◦ on the FacePix database [12] while still being trained on our

artificial database.

As the ICAO standard [58] allows only frontal head poses for passport images, we

evaluate the performance of the classification of head images into frontal and non-frontal

poses as well. We do this by thresholding the estimated yaw and pitch angles for a given

head pose image. In Figure 4.10 we show the Receiver Operating Characteristics (ROC) as

true and false positive rates for different threshold values on non-training images from our

generated database. At a threshold of slightly more than five degree we are able to classify
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Figure 4.10: Evaluation of the frontal-pose classification performance of the three system
using ROC plots

over 90% of all faces correctly with less than 5% false positives when using the HOG based

HPES, which is due to the low estimation error in frontal poses. Other methods do not

show such a good performance for frontal pose classification.

4.2.5 Summary

In this section we presented a system for head pose estimation from monocular still im-

ages. We estimated continuous pose angles from either localized gradient orientation

(LGO) histogram descriptors, histogram of oriented gradients (HOG) descriptors or man-

ifold embedded pixel values. The main contributions were the extension of the biased

manifold embedding approach [5] towards pose estimation in two DOF and use of the

HOG descriptor [29] for head pose estimation. While the HOG descriptor has become

quite common in object detection, we showed that its advantages hold in regression tasks

as well. The biased manifold embedding approach did not show convincing results in our

experiments when used for the estimation of more than one pose angle.

For training the HPES a novel database was generated from 3D head models, also

background clutter and lighting variations were simulated. We showed that a system

trained on our database also performed well on different databases.
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4.3 3D-MAM: 3D Morphable Appearance Model for Effi-

cient Fine Head Pose Estimation from Still Images

According to the ICAO standard, persons are required to show a frontal head pose which

means that the head rotation must not deviate more than ±5 degrees in any direction

from frontal. Thus, we present a novel 3D head pose estimation approach, which utilizes

the flexibility and expressibility of a dense generative 3D facial model in combination with

a very fast fitting algorithm. The efficiency of the head pose estimation is obtained by a

2D synthesis of the facial input image. This optimization procedure drives the appearance

and pose of the 3D facial model. We evaluate our approach on two publicly available

databases (FacePix and USF HumanID) and compare our method to the 3D morphable

model and other state of the art approaches in terms of accuracy and speed.

We focus on flexible model based head pose estimation to overcome problems of other

approaches of being not adaptive to unseen facial images. Our proposed approach is

related to the well known Active Appearance Model (AAM) of Cootes et al. [22]. The

AAM is a widely used method for model based vision showing excellent results in a variety

of applications. As a generative model it describes the statistical variation in shape and

texture of a training set representing an object. AAM model fitting is performed in

a gradient descent optimization scheme, where the cost function is defined as the L2

norm of the intensity differences. For optimization, the Jacobian is often approximated

either by a regression to learn the dependency between model parameter updates and

intensity differences [22] or alternatively by a canonical correlation analysis [31]. The

fitting procedure is very fast, but one major drawback is its non-robustness to viewpoint

changes. In the case of facial images, the AAM fitting is not appropriate for adapting to

faces which exhibit pose variations. Cootes et al. [24] extend their AAM approach for

multi pose fitting by combining a small number of 2D AAM models.

Blanz and Vetter [15, 16] overcome the drawbacks of the 2D AAM by creating a 3D

Morphable Model (3DMM). The 3DMM is a statistical model of shape and texture based

on data acquired from a laser scanner. The approach shows amazing image synthesis

results but the fitting procedure is computationally very expensive. One attempt to fit a

3DMM more efficiently was proposed in [116], but the fitting of one facial image still takes

several minutes.

In [25] an extension to the classical AAM approach is proposed. They build a 3D

anthropometric muscle based active appearance model using a generic 3D face shape.

They adapt the 3D shape model so that the projected 3D vertices best fit to a facial 2D
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image. Using several adaptions to different facial images, these obtained shapes can be

taken to create a shape eigenspace using PCA. According to the foregoing shape adaption

the texture of the 2D facial images is warped back onto the 3D model, i.e., they get several

textures to create a texture eigenspace. This generation of training data is a cumbersome

work. The model fitting is similar to the original AAM fitting procedure. They apply

their approach for head tracking and facial expression recovery [26].

Xiao et al. [151] propose a real time combined 2D+3D AAM to fit 3D shapes to images.

They also investigate, that the 2D AAM could generate illegal model instances, which do

not have a physical counterpart. They show how to constrain an AAM by incorporating 3D

shape information so that the AAM can only generate valid model instances. Their work

focuses on tracking applications and experiments show excellent performance, however,

in their setup the generative model is always built from the same person that is tracked

later. Chen and Wang [21] describe a similar model for human-robot interaction.

In the domain of medical image analysis, 3D Active Appearance Models are used with

great success for segmentation [7, 94, 125] and modeling of shape or pathological variations

of a population. These approaches are specifically targeted to 3D volumetric data, where

the notion of efficiency becomes even more important due to the increased dimensionality.

Due to the two major drawbacks of model based vision, the non-robustness to viewpoint

changes and the inefficient fitting procedure, we present a novel 3D Morphable Appearance

Model (3D-MAM) for head pose estimation, which utilizes the flexibility and expressibility

of a dense generative 3D facial model in combination with a very fast fitting algorithm.

The efficiency of the head pose estimation is reached by a 2D synthesis of the facial input

image. This optimization procedure drives the appearance and pose of the 3D facial

model. In contrast to many other approaches we are specifically interested in the more

difficult task of head pose estimation from still images, instead of tracking faces in image

sequences. Much effort is undertaken to build a fair evaluation scheme for our approach.

That is, the data for building and training of our 3D-MAM was totally independent of the

datasets used for the evaluations.

This section is structured as follows: In Section 4.3.1 we introduce and discuss our 3D-

MAM approach in terms of model building and model fitting. In Section 4.3.2 we present

our results by evaluating the head pose estimation accuracy and speed of our approach on

two publicly available databases (FacePix and USF HumanID) and compare our method

to state of the art approaches. Finally, we discuss our findings and summarize our work

in Section 4.3.3.



64 Chapter 4. Analysis of the Deviation from Frontal Pose

4.3.1 3D Morphable Appearance Model

We build a generative 3D Morphable Appearance Model (3D-MAM) based on registered

laser scans of human heads. The advantage of a dense 3D model is its flexibility to express

generic faces and the ability to adapt to non-rigid deformations exhibited by faces. Only

with a dense model, normal vectors of the surface can be computed and therefore depth

can be estimated correctly. This resembles human perception of 3D objects. A human is

only able to estimate depth correctly in the presence of shadowed surfaces.

To overcome the slow fitting performance exhibited by many approaches using dense

3D models, we perform our fitting step in 2D (Section 4.3.1.2). To sum up, we combine

the advantages of dense 3D models and the very efficient fitting speed gained in the 2D

domain.

Figure 4.11: 3D Morphable Appearance Model. Effect of varying the shape, texture and
appearance parameters of the first and second mode by ±3 standard deviations.

4.3.1.1 3D Model

We utilize laser scans of human heads and register them using a nonrigid Iterative Closest

Point (ICP) algorithm [3]. The registered 3D laser scans form the basis for building a

parameterized generative 3D model, which will later be used for head pose estimation.

3D Head Laser-Scans The 3D facial model is built from 350 facial laser scans. The

scans were acquired by a CyberwareTM laser scanner, which captures the 3D information

(vertices) in cylinder coordinates with radius r(h, φ), 512 equally-spaced angles φ

and 512 equally-spaced vertical steps h. Additionally, the RGB-color information

R(h, φ), G(h, φ), B(h, φ) is recorded for each vertex.
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The obtained 3D database consists of 350 different subjects exhibiting a wide variability

in race, gender and age. Most of the subjects show neutral facial expression. The raw

facial scans have to be post-processed to remove certain parts of the scans, e.g., hair and

shoulders. Often those areas cannot be captured very well, because of the fine structure of

the hair or due to self occlusions. More specifically, the scans are cut vertically behind the

ears and cut horizontally to remove the hair and shoulders. Additionally, laser scanning

artifacts, like holes or spikes, are removed manually.

We reduce the amount of vertices from about 100,000 to 10,000 for the purpose of

decreasing the computational effort in the model fitting procedure, see Section 4.3.1.2.

This simplification of the 3D data at regions with little details is performed by a structure

preserving surface simplification approach [45].

To build a generative model (Section 4.3.1.1), the individual laser scans have to be

non-rigidly registered. Blanz and Vetter [15] register their data using a modified gradient-

based optical flow algorithm. We use the more sophisticated optimal step nonrigid ICP

method [3] to establish correspondence between a pair of 3D scans. This method’s runtime

is slower compared to optical flow, but yields more robust registration results, e.g., filling

of holes due to missing data.

Model Building We create a statistical model of shape, texture and appearance similar

to [22] with the difference of using 3D laser scanner data, instead of annotated 2D images.

The laser scanner data have to be registered (Section 4.3.1.1) to allow the construction of

a generative model utilizing Principal Component Analysis (PCA).

The registered 3D shapes are composed of the 3D positions of the vertices, and the

texture consists of the intensity values of the vertices. Taking N training shape and texture

tuples with sample mean s̄ and t̄ correspondingly, they are used to build statistical models

of shape and texture by using PCA

s = s̄ + Usps (4.5)

t = t̄ + Utpt (4.6)

Here Us and Ut are shape- and texture eigenvectors, which describe the modes of

variation derived from the training set. By adjusting the parameters ps and pt, new

instances of shape s and texture t can be generated.

To remove correlations between shape and texture variations, we apply a further PCA



66 Chapter 4. Analysis of the Deviation from Frontal Pose

to the data. The shape- and texture eigenspaces are coupled through(
Wsps

pt

)
= Ucc (4.7)

to get the statistical model of appearance (combined model), where Ws is a diagonal

scaling matrix to compensate for the different measure units of shape and texture. Ws is

defined as the ratio of the total intensity variation to the total shape variation [22]. This

appearance model is controlled by parameter c to obtain new instances of facial shape and

texture

s = s̄ + UsW
−1
s Uc,sc (4.8)

t = t̄ + UtUc,tc (4.9)

Uc =

(
Uc,s

Uc,t

)
(4.10)

Figure 4.11 shows the effect of varying the shape, texture and appearance parameters of

the first and second mode by ±3 standard deviations obtained from the training set.

The pose of the appearance model in 3D can be altered by six degrees of freedom

(DOF), i.e., three angles of rotation and the three directions of translation. We map the

3D points to the 2D image coordinates by a weak perspective projection. That is, the

rendering of the 3D model to the image plane is given by the two rotation angles θpitch

and θyaw and the two translations ux and uy in the image plane. For linearity, the scaling

and the roll angle is represented as srx = (scale cos θroll − 1) and sry = scale sin θroll.

The concatenation of those single parameters yields the pose parameter vector ppose =

(srx, sry, θpitch, θyaw, ux, uy).

4.3.1.2 Model Fitting

The model is fitted iteratively in an analysis-by-synthesis approach, see Figure 4.13. A

direct optimization of the appearance model parameters c and pose parameters ppose

is computationally not feasible for real time applications. Hence, we precompute a pa-

rameter update matrix [22], which will be used to incrementally update the parameters

p = (c, ppose) in the fitting stage. The patch used for synthesizing a new input image

is restricted to an area of the head, where most of the vertices are visible for slight pose

variations (Figure 4.12).
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Figure 4.12: Patch extracted from the whole head used for synthesizing a new input image.

Starting from the 3D mean shape, we project the positions of the vertices from the 3D

patch to the 2D input image using a weak perspective projection. The texture from the

input image underlying the projected points in 2D is then warped to a shape free (mean

shape) representation. Simultaneously, the texture of the model patch is rendered also to

the same shape free representation. Now, the texture from the input image ts and the

rendered texture from the model patch tm (both in the same shape free representation)

can be subtracted to get a residual image

r (p) = ts − tm. (4.11)

A first order Taylor expansion of (4.11) gives

r (p + δp) = r (p) +
∂r

∂p
δp (4.12)

In the fitting stage, ‖r (p + δp)‖2 is minimized by computing

δp = −Rr (p) where R =

(
∂r

∂p

T ∂r

∂p

)−1
∂r

∂p

T

(4.13)

In a direct optimization scheme, the Jacobian matrix ∂r
∂p has to be recomputed in every

iteration step yielding poor runtime performance. Hence, the parameter update matrix

R is assumed to be fixed and can therefore be precomputed by numeric differentiation.

The numeric differentiation is accomplished through a perturbation scheme, i.e., each

parameter is displaced from a known optimal value. More details can be found in [22].

In the fitting stage, texture residuals are computed in the same way as in the training

stage of the parameter update matrix R. This residual in combination with the update

matrix gives the parameter update δp for driving the parameters p of the 3D model. That

is, the appearance and pose of the 3D model is iteratively fitted to the 2D input image.
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The whole fitting procedure is illustrated in Figure 4.13.

Figure 4.13: Fitting workflow

4.3.2 Experimental Results

We build a 3D-MAM (Section 4.3.1.1) and keep 90% of the eigenvalue energy spectrum

for the shape, 85% for the texture and 90% of the appearance variation to represent our

compact model. We precompute the parameter update matrix (Section 4.3.1.2) with a

resolution of the fitting patch of 60x80 pixels.

The head pose estimation is evaluated on two different publicly available datasets (USF

Human ID 3D face database and FacePix). Those data sets are independent of the data

used for model building.

The USF Human ID 3D face database [138], [15] consists of 136 individuals, which

are recorded by a CyberwareTM laser scanner. Each facial model is composed of more

than 90,000 vertices and 180,000 triangles. Images of the individuals can be rendered in

arbitrary pose. Those rendered images with arbitrary textured background added are used

as test images for our approach. First, we evaluated the head pose estimation capability
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of our approach using the rendered images of the first 50 individuals in the database by

altering only the yaw angles from −16◦ to +16◦ in steps of 4◦ while fixing the roll- and pitch

angle of the rendered test images to zero. The 3D-MAM’s 2D starting position is roughly

initialized manually. In the future, this initialization will be done by an automatic face-

and facial feature detection stage. Figure 4.14a presents the mean and standard deviation

of the absolute angular error for the single yaw rotations. Table 4.3a summarizes the error

measures for the whole range of rotations.
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Figure 4.14: Mean and standard deviation of the absolute yaw angular error for the (a)
USF Human ID 3D face database and (b) FacePix database.

Table 4.3: Mean, standard deviation, median, upper- and lower quartile of the absolute
yaw angular error by only altering the yaw angle for the (a) USF Human ID 3D face
database and (b) FacePix database. The results are compared to the 3DMM [15].

(a)

USF Human ID mean std median Q.25 Q.75

Our Approach 4.30 3.51 3.35 1.71 6.08

Absolute Error [°]

(b)

FacePix mean std median Q.25 Q.75

Our Approach 6.29 4.15 4.62 2.30 8.57
3DMM 4.89 3.15 4.48 2.15 7.06

Absolute Error [°]
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We extend the previous experiment by altering the yaw- and pitch angle by

[−16◦ 0◦ +16◦] and [−8◦ 0◦ +8◦] correspondingly. These nine angle combinations

and the 50 individuals per combination yields 450 3D-MAM fitting runs. The mean

absolute angular error of the angle combinations is shown in Figure 4.15(a,b). The

error measures are summarized in Table 4.4a. We compare our pose estimation results

with the well known 3D-Morphable Model [15]. We build a 3DMM based on the same

laser scanner data as used for our 3D-MAM (Section 4.3.1.1). To speed up the 3DMM

fitting procedure, we use only the first 10 shape- and texture modes, because we want to

estimate head pose and do not want to synthesize the test image in every detail. The

results for the 3DMM are shown in Figure 4.15(c,d) and summarized in Table 4.4a. The

3DMM exhibits slightly better head pose estimation results at the cost of a much higher

runtime per facial fit, see Table 4.4b.

Table 4.4: Evaluations for the USF Human ID 3D face database. (a) Mean, standard
deviation, median, upper- and lower quartile of the absolute yaw and pitch angular error
by altering the yaw- and pitch angle. (b) Average runtime∗ per facial fit. The results are
compared to the 3DMM [15].

(a)

USF Human ID mean std median Q.25 Q.75 mean std median Q.25 Q.75

Our Approach 5.78 4.22 4.86 2.57 7.66 5.89 4.68 4.76 2.32 8.23
3DMM 3.90 3.31 2.81 1.55 5.21 5.14 3.66 4.08 2.11 7.55

Yaw Pitch

Absolute Error [°]

(b)

Average Runtime [s]

Our Approach 3.2

3DMM 33.5

The second database, CUbiC FacePix(30) database [12, 84], consists of 30 individuals.

For each individual, three sets of images are available. The first set contains images

taken from the individuals’ right to left (only yaw angle is annotated), in one degree

increments. The second- and third set is targeted to non-uniform lighting experiments.

We are specifically interested in the first set for our pose estimation experiments. We

take those images annotated by −16◦ to +16◦ in steps of 4◦. The mean and standard

deviation of the absolute angular error is shown in Figure 4.14b. Table 4.3b summarizes

the error measures for the whole range of rotations and compares the results to the 3DMM
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approach. In [6], they also conducted several experiments on the FacePix(30) database

using manifold embedding methods. They show better results, ranging from a mean

absolute error of 1.44◦ to 10.41◦, but they performed the training and testing on the

same database in a cross-validation scheme, which leaves serious doubts about the general

applicability of their method on unseen data. Second, they are limited to only estimate

the yaw angle of a given test image.

(a) (b)

(c) (d)

Figure 4.15: Mean absolute error for pitch- and yaw angle on the USF Human ID 3D face
database by altering pitch- and yaw angles for the generation of the test images. (a,b)
Our approach (c,d) 3DMM

Our model fitting strategy is similar to the AAM approach [22], leading to an excellent

runtime performance. The average runtime∗ for our approach is 3.2s at an average number

∗The runtimes are measured in MATLABTM using an Intel Core 2 Duo processor running at 2.4GHz.
The resolution of the images is 60x80 pixels.
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of iterations of 14. We have a comparable implementation of an AAM in C++, which

takes about 15ms per facial fit. If we add about 5ms per iteration for a rendering of a

facial image using OpenGL, and taking the average number of iterations into account, we

would get an estimated average runtime of 85ms per facial fit with an implementation of

3D-MAM in C++. This runtime would enable the usage of our approach for real-time

head pose estimation.

Figure 4.16 shows frames from a 3D-MAM facial fit starting with the mean model.

During fitting the patch synthesizes the face and adjusts the 3D model in appearance and

pose.

Figure 4.16: Analysis-by-Synthesis fitting example. The lower row shows the adjustment
of the 3D model. In the upper row, the corresponding fitting patch is illustrated. This
model fitting converges after 17 iterations.

4.3.3 Summary

Two major shortcomings of existing model based head pose estimation approaches, the

non-robustness to viewpoint changes and the inefficient fitting procedure, motivated us to

generate a 3D-MAM. It utilizes the flexibility of a dense 3D facial model combined with

a very fast fitting algorithm in 2D. In the experiments, we show the applicability of our

approach for head pose estimation on two publicly available databases (USF HumanID

and FacePix). We compare our results to state of the art head pose estimation algorithms

in terms of accuracy and speed.



5
Occlusion Handling

The ICAO standard prohibits photographs showing occlusions, thus there is the need to

detect occluded images automatically. In Section 5.1 we present a novel algorithm for

occlusion detection and evaluate its performance on several databases. First, we use the

publicly available AR faces database which contains many occluded face image samples.

We show a straight-forward algorithm based on color space techniques which gives a very

high performance on this database. We conclude that the AR faces database is too simple

to evaluate occlusions and propose our own, more complex database, which includes, e.g.,

hands or arbitrary objects covering the face. Finally we extend our first algorithm by

an Active Shape Model in combination with a PCA reconstruction verification. We show

how our novel occlusion detection algorithm outperforms the simple approach on our more

complex database.

In the case of an occlusion, we cannot only detect an occlusion, but we also can improve

the fitting quality of an Active Appearance Model (AAM), see Section 5.2. The AAM is

a widely used method for model based vision showing excellent results. But one major

drawback is that the method is not robust against occlusions. Thus, if parts of the image

are occluded the method converges to local minima and the obtained results are unreliable.

To overcome this problem we propose a robust AAM fitting strategy. The main idea is to

apply a robust PCA model to reconstruct the missing feature information and to use the

obtained image as input for the standard AAM fitting process. Since existing methods

for robust PCA reconstruction are computationally too expensive for real-time processing

we developed a more efficient method: Fast-Robust PCA (FR-PCA), see Section 5.3. In

fact, by using our FR-PCA the computational effort is drastically reduced. Moreover,

73
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more accurate reconstructions are obtained. In the experiments, we evaluated both, the

fast robust PCA model on the publicly available ALOI database and the whole robust

AAM fitting chain on facial images. The results clearly show the benefits of our approach

in terms of accuracy and speed when processing disturbed data (i.e., images containing

occlusions).

5.1 Occlusion Detection

Starting with the standardized coordinate frame (Section 2), one can derive criteria to

define images with and without occlusions. In this section we concentrate on occlusions

due to extraordinary glasses and objects covering parts of the face (hands, hair, or other

objects). See Figure 5.3 and Figure 5.5 for some examples.

The problem of occlusions in the context of face recognition has recently been studied

in [37], where the authors show different amounts of degradation in recognition perfor-

mance depending on the location of the facial occlusion. A number of techniques have

emerged to make the recognition algorithm itself robust to occlusions. Early work in this

direction has been proposed by Leonardis and Bischof [75] who showed how to handle

occlusions in an eigenface [137] framework. Their key idea was to extract eigenspace coef-

ficients by a robust hypothesize-and-test paradigm using subsets of image points instead

of computing the coefficients by projecting the data onto the eigenimages. Li et al. [77]

presented a local non-negative matrix factorization (LNMF) to learn spatially localized

part based subspace representations from visual patterns. Their use of localization con-

straints showed good performance on the AR face database. Extending this work, Oh et

al. [104] proposed a selective LNMF technique with a partial occlusion detection step on

a number of disjoint image patches. These patches are represented by a PCA to obtain

corresponding occlusion-free patches, followed by the LNMF procedure used exclusively

on the bases of the occlusion-free image patches. A different direction was pursued by

Martinez [89] who described a probabilistic approach that compensates for imprecisely

localized, partially occluded faces under different facial expressions. He divides the face

into a number of local regions and matches them to a single prototype by a probabilistic

scheme. He demonstrates robustness in the presence of occlusion of 1/6 to 1/3 of the facial

area at the cost of only a slight decrease in accuracy. All of these presented approaches

have in common that their goal is to perform face recognition in the presence of occlusions.

However, in our task we explicitly want to detect occlusions to sort out unsuitable images

for a subsequent recognition step. This is in accordance with the ICAO specification which
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prohibits occluded facial images.

A tightly related topic is face hallucination which was made popular in work by Baker

and Kanade [4]. Here occluded parts of a face are recovered by using generative face

models. Different terms describing this area of research are face recovery and regeneration

or face image inpainting. Some examples of recent work are presented in [83, 156]. Our

face images are used for machine-readable travel documents, so we do not want to modify

given occluded images. Therefore we do not focus further on this research direction.

An obvious choice for an occlusion detection algorithm is the widely used Active Ap-

pearance Model (AAM) [22]. Here the strategy is to use the generative AAM model fitting

algorithm starting with a suitable model initialization on a face portrait image. By fitting

the model to the occluded image one could derive a quality measure (e.g., the final sum-

of-squared differences) to make a decision if an occlusion is present or not. Here, the main

problem is that the original AAM model formulation is not very robust to occlusions.

Some extensions of the AAM model in the presence of occlusions have been presented

in the literature [47, 157], however their holistic approach poses a basic difficulty during

model fitting, since the quality measure driving the fitting optimization always is influ-

enced by the occluded part to a certain degree and the non-convex optimization is prone

to get stuck in local minima. Due to their popularity and widespread availability we will

show where this class of algorithms tends to fail in our occlusion detection task.

In this section we propose a novel system to automatically detect occlusions from

tokenized facial images in Section 5.1.1. This is an important pre-processing step for the

training of face recognition/verification, but could also be used for the testing step. In

Section 5.1.1.1 we start with a straight-forward occlusion detection method based on color

space techniques and perform occlusion detection experiments on the publicly available

AR database [90]. We show why this database is not sufficient to evaluate an algorithm

for facial occlusion detection, and we present our own more challenging database which

we created specifically for this task. We extend our first algorithm and include an Active

Shape Model (ASM) [23] approach followed by a PCA based verification step described

in Section 5.1.1.2. This second method is able to solve the occlusion detection problem

on our own more difficult database. Finally, we discuss and summarize our findings in

Section 5.1.2.
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5.1.1 Methodology

We start with a simple and straight-forward approach for occlusion detection in Sec-

tion 5.1.1.1 which we refer to as Method 1. It is based on automatic color correction

techniques and on the HSV color space. It turns out that this method is already well

suited and sufficient to detect occlusions on the publicly available AR face database [90].

We created our own collection of images which extends the variations exhibited by the

AR database in terms of further illumination conditions and types of occlusions. We show

that the simple Method 1 does not perform very well on this more challenging database.

Hence, we exploit our findings of our color experiments of Method 1 and extend this first

method by an Active Shape Model [93] in combination with a projection of facial parts to

separate Principal Component (PCA) subspaces. We refer to this extension as Method 2

explained in detail in Section 5.1.1.2.

In our proposed system we make use of input images in the tokenized coordinate

frame according to the ICAO specification. In order to be able to analyze arbitrary facial

images we have to transform them first into this coordinate frame based on eye locations.

For this purpose we use a robust face and facial component detection stage followed by

a probabilistic voting scheme for the most probable face and eye position, Section 2.

The tokenized image is finally derived by warping the input image according to the eye

locations.

5.1.1.1 Method 1

Our first approach is based on automatic color correction and on the H-channel of the

HSV color space. Before transforming the image into the HSV color space an automatic

color correction is applied. It reduces the effects of global illumination and could also be

referred to as automatic white balancing based on color temperatures.

Our automatic color correction algorithm assumes that the average surface color in a

scene is gray. This means that the shift from gray of the measured averages on the three

channels corresponds to the color of the illuminant. Three scaling coefficients, one for each

color channel, are therefore set to compensate this shift [11, 18]. Every RGB-pixel value

is adjusted according to
radj

gadj

badj
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Figure 5.1: Method 1. The tokenized and color adjusted image is transformed to the HSV
color space. After binarization of the H-channel of the HSV color space, occlusion masks
are used to calculate the level of occlusion on the lower facial part and around the eyes
region.

where Y is the mean value of the luminance channel and R, G and B correspond to the

mean values of the three planes of an RGB-image.

Based on several experiments using different color spaces, e.g., RGB, YUV, LAB, XYZ,

YCbCr, we found that the H-channel (representing the hue values of the image) of the

HSV color space is best suited for occlusion detection on facial images. The H-channel

image is binarized and some morphological post-processing is applied to remove small

isolated regions. We define masks for the lower facial part and the eyes to obtain a final

value for the level of occlusion. This whole chain is illustrated in Figure 5.1. Figure 5.2

shows some examples of extracting the H-channel of an image and the final occlusion map

after binarization. Note that almost always the beards of male individuals are part of the

non-occluded facial region in the binarized H-channel image, thus they do not contribute
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to an occlusion area.

Figure 5.2: Creation of an occlusion map based on the HSV color space. (first column)
original images, (second column) H channel of HSV color space and (third column) the
corresponding maps gained after thresholding the H channel image.

Experimental results Using Method 1 we conducted experiments on the publicly avail-

able AR face database [90]. The AR face database consists of more than 3000 frontal view

facial color images of 135 people showing variations in gender, facial expression, illumina-

tion conditions and occlusions (sun glasses and scarves). The size of the images is 768×576

pixels. Those individuals wearing a scarf or sun glasses are labeled as occluded. Some

representative examples are presented in Figure 5.3. With Method 1 we reached an equal
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error rate (EER) of 4.5%. The corresponding ROC curve is shown in Figure 5.4. Note

that these results are slightly worse than the results presented in Oh et al. [104], however,

their method explicitly trains on the occlusions of the AR face database, which is rather

unrealistic, since real occlusions occur in a significantly larger variety, while our method

works completely unsupervised. Given the very restricted set of possible occlusions present

in the AR face database, we conclude that one needs a database with more variation in

order to assess the occlusion detection performance realistically.

(a) (b) (c)

(d) (e) (f)

Figure 5.3: Samples from the AR database. The images feature frontal view faces with
(a)-(b) different facial expressions, (c) several illumination conditions, (d) occlusion of the
lower facial part by a scarf, (e) occlusion of the eyes by sunglasses and (f) combinations
of these variations.
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Figure 5.4: ROC curve of Method 1 evaluated on the AR database.

5.1.1.2 Method 2

Method 1 discussed in Section 5.1.1.1 is already well suited to detect occlusions on the

publicly available AR database. We created a more challenging database of occluded and

non-occluded facial images (see Figure 5.5) where Method 1 does not perform very well.

The main reason is that the occlusion detection is exclusively based on color space tech-

niques. In our database we also have skin colored facial occlusions, e.g., hands occluding

the face. Examples are depicted in Figure 5.5a and Figure 5.5f where Method 1 would

fail.

We start by improving the color detection branch as shown in Figure 5.6. We transform

our lowpass filtered tokenized image to the HSV color space and extract the H-channel.

After binarization and some morphological operations (as used for Method 1) we obtain

the occlusion map. We define an occlusion mask for the forehead and the lower facial

part. The eyes region will be considered as the method proceeds. The forehead mask is

used to calculate the level of occlusion of the forehead. This is especially important if e.g.,

somebody wears a cap (Figure 5.5b).

If the approach at that stage claims an occlusion of the lower facial part, we validate

this claim by finding similar colors based on a given color mask, Figure 5.7. The color

mask C is defined based on the position of the tokenized image and is marked by the red

lines in Figure 5.7a. We pick up the H-pixel values hj ∈ C and form a unimodal Gaussian

model N (µ, σ2). It turns out that using only the H-values for constructing the Gaussian
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Samples from our own database. In addition to the variations exhibited by
the AR database, our own database shows some more variations, e.g. (a) occlusions by
skin-similar color of the lower facial part, (b) occlusions of the forehead, (c) variation of
the color tone of the overall image, (d) extreme lighting conditions, (e) tinted glasses in
several colors and (f) several colored occlusions of the lower facial part (also skin-similar
color).

model is superior to a multivariate Gaussian model constructed from several color queues.

Using the Gaussian model we compute the probability map (Figure 5.7b) in the facial

image domain Ω. Therefore, we calculate the probability pi, i ∈ Ω, of every pixel νi to

determine how similar it is to the marked pixels in Figure 5.7a:

pi =
1√
2πσ

exp

(
−1

2

(
νi − µ
σ

)2
)
. (5.2)
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After binarization and some morphological operations we get the final facial map (Fig-

ure 5.7c).

Figure 5.6: Method 2. The left branch of the whole approach is based on color techniques.
If there is no occlusion found by this color occlusion detection, the ASM + PCA approach
will be activated.

At the end of the color occlusion detection chain, the images showing occlusions with

colors similar to skin are still classified as non-occluded. Hence, we create a second occlu-

sion detection step based on fitting an Active Shape Model (ASM) [23], which should also

detect non-facial structures. Here we use the recently proposed STASM [93] algorithm

which is very robust against varying illumination conditions or partly occluded facial im-

ages and showed excellent performance on our data. We also performed experiments with

Active Appearance Models [22, 124] but they are by far inferior in terms of fitting accuracy

for our task compared to STASM, see Figure 5.8.

The STASM Algorithm This publicly available algorithm extends the original Active

Shape Model [23] by a number of techniques like two- instead of one-dimensional landmark
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(a) (b) (c)

Figure 5.7: Determining similar colors. (a) The H-channel pixel values marked by the red
lines are used to construct a Gaussian model. (b) Probability map of similar colors, (c)
probability map after binarization and some morphological operations.

profiles, extending the set of training landmarks and trimming the covariance matrix by

setting a large number of entries to zero. In the following we will describe this algorithm

which is an important part of our system.

The original ASM makes use of a statistical formulation to combine a set of user-

specified landmark points in a training set of annotated images into a generative model of

the object of interest. This generative model describes the variation of the object shape

from a mean object instance. The ASM relies on a specified ordering of the n landmarks

{(x1, y1), (x2, y2), . . . , (xn, yn)} in a training image. Given K suitably aligned training

images we can generate K vectors xk. These vectors

xk = (x1, . . . , xn, y1, . . . , yn)Tk

form a distribution in a 2n dimensional space, and the aim of the ASM is to generatively

model this distribution. Therefore, a Principal Component Analysis (PCA) is applied to

the training data which results in the mean and the main axes with their corresponding

variances of the cloud of points in the high-dimensional space. An approximation of any

training instance x can be calculated from

x ≈ x + Pb, (5.3)

where x is the mean of the distribution, P is the matrix formed by the t eigenvectors

of the covariance matrix of the points and b is a t-dimensional vector of weights which

resembles a set of parameters of a deformable shape model. Modifying this parameter
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creates different shapes restricted by the information from the training data. In Cootes

et al. [23] the fitting of the shape model is performed by an iterative algorithm that finds

global pose as well as model parameters b. The fitting procedure is based on the matching

of a one-dimensional profile of gray-value and edge information, derived from the training

data, to profiles extracted from the current position of the landmarks in the test image.

This procedure is very sensitive to the initialization of global pose and model parameters

and is prone to get stuck in local minima. The fitting process can be understood as

iteratively moving landmark points independently from each other to locations where the

profile match is a better one and regularizing the locations of all landmark points by the

global PCA shape model.

Figure 5.8: Comparison of the fitting quality of model based fitting. (first row) AAM,
(second row) STASM.

STASM [93] advances this basic model by a number of important extensions. First,

they increase the number of necessary landmark points to add redundancy to the model

representation and they perturb the landmarks of the training data set by random noise

to increase the number of available training data. Second, instead of one-dimensional

profiles they use two-dimensional patches at the landmarks. This increases the matching
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performance at the cost of slightly more computational work. Third, during iterative

fitting the global shape model is used with an increasing amount of variation. This means

that at lower levels in the image pyramid a small variance around the mean shape is allowed

and a more restricted set of eigenvalues is chosen for shape regularization. As fitting

proceeds and we reach the original level of the image pyramid eigenvectors are added

and the maximal variance is increased in order to loosen the regularization constraints

imposed by the shape model. Finally, the patch profile covariance matrix used for matching

is optimized by setting components resembling distant points to zero and trimming the

resulting approximated covariance in order to be positive definite again. The main purpose

of this step is to reduce matching time.

Combining STASM with a PCA sub-component model We manually annotated

n facial images and aligned the obtained facial shapes by applying Procrustes analysis for

shape registration. The mean shape is calculated from these aligned shapes. We warp

each annotated image to the mean shape representation and split every warped image

into three parts, namely the left and right part of the lower face and the eyes region, see

Figure 5.9. We construct a separate color Principal Component Analysis (PCA) subspace

Uk =
[
uk1 , . . . ,ukp

]
, k ∈ [1, 2, 3] for every part. Usually only p, p < n, eigenvectors u are

sufficient.

In the occlusion detection with this ASM + PCA approach we first fit the ASM to the

input image. We warp the texture, enclosed in the found landmarks, to the mean shape

representation. This texture is split as in the training stage of the PCA. The advantage of

the split is the increased robustness to bad illumination conditions compared to the whole

face. Every obtained facial part tk is projected into the corresponding subspace obtaining

the PCA coefficients ck which correspond to distances from the mean on the axes spanned

by the subspace:

ck = UT
k

(
tk − tk

)
. (5.4)

We measure the Mahalanobis distance dk in every partial subspace and thus determine

which part of the face is occluded:

dk =
√

cTkΣ−1
k ck, (5.5)

where Σk = diag (λk) is the diagonal covariance matrix consisting of the eigenvalues λk

obtained from the construction of the PCAs.
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Figure 5.9: ASM + PCA for occlusion detection.

A further nice property of this ASM + PCA approach is that we can measure the

fitting quality of the ASM, which is an unresolved question in the literature. If the ASM

fit is poor, the warped and projected texture will lead to a large Mahalanobis distance in

the subspace, because this texture is not represented in the facial subspace. On the other

hand a good ASM fit will result in a good reconstruction of the facial parts. Hence, that

combined approach is a good indicator for the fitting quality of the ASM.

Experimental results We performed experiments on our own database which consists

of 4930 color facial images and is more challenging compared to the AR database used

in our first experiments. In addition to the variations of the AR database, our database

exhibits further illumination conditions and more types of occlusions, see Figure 5.5. The

size of the images is 480× 640 pixels.

For our ASM + PCA approach, we manually annotated 427 facial images taken from

the Caltech face database [19] and our own collection (disjoint from our test database).



5.1. Occlusion Detection 87

Taking also the mirrored versions of those images doubles the amount of data. For the

PCA model we keep 98% of the eigenvalue energy spectrum for each of the three subspaces.

Method 2 gives a significant increase in performance compared to Method 1 on our

own database. The EER is decreased from 30.9% to 6.6%. The corresponding ROC curves

are depicted in Figure 5.10. In Figure 5.11 some typical failure cases of our approach are

shown. The algorithm is very fast, mostly depending on the runtime of the STASM. The

average runtime∗ to analyze a facial image is 0.3s.
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Figure 5.10: ROC curve of Method 1 and Method 2 evaluated on our own dataset.

5.1.2 Summary

Occlusion detection is an important part of the ICAO specification for assessing suitability

of facial images for machine readable travel documents. We presented two approaches

which detect occlusions on facial portrait images. The first approach is straightforward

and is based on color techniques using the H-channel of the HSV color space. It turns out

that this first method is already well suited to sufficiently detect occlusions on the publicly

available AR database. We created a more challenging database where the first method

showed significant shortcomings. Hence, we improved our first method with a combination

of an Active Shape Model (ASM) and a component based PCA subspace reconstruction.

This algorithm proved to be very successful on our more difficult database. Furthermore,

we can use the combination of ASM and PCA reconstruction as a measure of ASM fitting

∗The runtime is measured using an Intel Core 2 Duo processor running at 2.4GHz.
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: Typical failure cases resulting from (a)-(c) skin-similar occlusion of the fore-
head, (d) larger deviations from frontal pose, (e) extreme facial hair and (f) slight specu-
larities exhibited on the glasses.

quality.
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5.2 Active Appearance Model Fitting Under Occlusion

In the previous section we showed how to detect an occlusion. In the case of an occluded in-

put image, we can also improve the fitting quality of an Active Appearance Model (AAM).

Generative model-based approaches for feature localization have received a lot of attention

over the last decade. Their key advantage is to use a priori knowledge from a training

stage for restricting the model while searching for a model instance in an image. Two

specific instances of model-based approaches, the Active Appearance Model (AAM) [22]

and the closely related 3D Morphable Model (3DMM) [15], have proven to show excellent

results in locating image features in applications such as face detection and tracking [91],

face and facial expression recognition [16], or medical image segmentation [7, 94].

Despite its large success, the AAM model has one main limitation. It is not robust

against occlusions. Thus, if important features are missing the AAM fitting algorithm

tends to get stuck in local minima. This especially credits for human faces since the large

variability in the image data such as certain kinds of glasses, makeup, or beards cannot

totally be captured in the training stage. Similar difficulties also arise in other areas of

model-based approaches (e.g., in the medical domain [7]).

In the recent years some research was dedicated to generative model-based approaches

in the presence of occlusions by investigating robust fitting strategies. In the original

AAM approach [22] fitting is treated as a least squares optimization problem, which is,

of course, very sensitive to outliers due to its quadratic error measure (L2 norm). To

overcome this problem, the work of [35] extended the standard fitting method (a) by

learning the usual gray-value differences encountered during training and (b) by ignoring

gray-value differences exceeding a threshold derived from these values during fitting. But

the main drawback of this method is that the required threshold depends on the training

conditions, which makes it improper for real-life situations. In contrast, in [32] a RANSAC

procedure is used for the initialization of the AAM fitting in order to get rid of occlusions

due to differing poses. However, since the AAM fitting remains unchanged this approach

has still problems with appearance outliers.

Another direction of research was dedicated to replacing the least-squares error measure

by a robust error measure in the fitting stage [47]. Later this approach was further refined

by comparing several robust error measures [131]. The same strategy is also used in [116]

and was adapted to a statistical framework in [157]. But the latter approach is limited

in several ways: (a) a scale parameter is required, which is hard to determine in general,

(b) the framework around the inverse compositional algorithm is specifically tailored to
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tracking, and (c) the face models are built from the tracked person, which limits its

applicability for general applications.

In the context of medical image analysis a robust AAM fitting approach was presented

in [7]. In their method, which is based on the standard AAM fitting algorithm, gross

disturbances (i.e., outliers) in the input image are avoided by ignoring misleading coef-

ficient updates in the fitting stage. For that purpose, inlier and outlier coefficients are

identified by a Mean Shift based analysis of the residual’s modes. Then, an optimal sub-

set of modes is selected and only those pixels covered by the selected mode combination

are used for actual residual calculation. The Robust AAM Matching (RAAM) approach

shows excellent results on a number of medical data sets. However, the mode selection

is computationally very complex. Thus, this method is impractical for real-time or near

real-time applications.

To overcome these drawbacks we introduce a new efficient robust AAM fitting scheme.

In contrast to existing methods the robustness (against occluded features) is not directly

included in the fitting step but is detached. In fact, we propose to run a robust pre-

processing step first to generate undisturbed input data and then to apply a standard

AAM fitting. Since the robust step, which is usually computationally intensive, has to be

performed only once (and not iteratively in the fitting process), the computational costs

can be reduced.

In particular, the main idea is to robustly replace the missing feature information from

a reliable model. Thus, our work is somehow motivated by [101] and [33], where beards and

eye-glasses, which are typical problems when applying an AAM approach, are removed. In

[33] a PCA model was built from facial images that do not contain any eye-glasses. Then,

in the removal step the original input images are reconstructed and the regions with the

largest reconstruction errors are identified. These pixels are iteratively replaced by the

reconstruction. But this approach can only be applied if the absolute number of missing

pixels is quite small. In contrast, in [101] two models are computed in parallel, one for

bearded faces and one for non-bearded faces. Then, in the removal step for a bearded face

the detected beard region is reconstructed from the non-bearded space.

Since both methods are restricted to special types of occlusion or limited by a pre-

defined error level, they cannot be applied for general tasks. Thus, in our approach we

apply a robust PCA model (e.g., [13, 75, 114]) to cope with occlusions in the original

input data. For that purpose, in the learning stage a reliable model is estimated from

undisturbed data (i.e., without any occlusions), which is then applied to robustly recon-
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struct unreliable values from the disturbed data. However, a drawback of these methods

is their computational complexity (i.e., iterative algorithms, multiple hypothesis, etc.),

which hinders practical applicability. Thus, we developed a more efficient robust PCA

method (FR-PCA, see Section 5.3) that overcomes this limitation.

Even though the proposed robust AAM fitting is quite general, our main interest is to

apply it to facial images. Thus, this application is evaluated in the experiments in detail.

However, we also note that it is necessary that the image patch, where the robust PCA is

applied has to be roughly aligned with the feature under consideration. In the case of our

face localization this can be ensured by using a rough face and facial component detection

algorithm inspired by the Viola-Jones algorithm [142]. Moreover, the applied PCA model

can handle a wide variability in facial images.

In Section 5.2.1 we introduce our robust AAM fitting algorithm that is based on our

novel FR-PCA (Section 5.3) scheme. To demonstrate its benefits, we present experimental

results on facial images. Finally, we discuss our findings and summarize our work in

Section 5.2.3.

5.2.1 Robust AAM Fitting

Since the parameter updates for the fitting process are estimated from the texture’s resid-

ual, the standard AAM is not robust against occlusions. To overcome this limitation, we

propose to use our FR-PCA, introduced in Section 5.3, as a pre-processing step to remove

disturbances in the input image and to perform the AAM fitting on the thus obtained

reconstruction, see Figure 5.12. Occlusions cannot only be of artificial spatially coherent

nature, which were taken for the quantitative evaluation of the FR-PCA (Section 5.3),

but also in case of facial images, beards or glasses. Those disturbances of facial images

influence the quality of the fitting process of AAMs. Thus, for the pre-processing step we

trained the FR-PCA using facial images which do not exhibit any disturbances, i.e., no

beards and no glasses.

Figure 5.13, which was taken from the Caltech Faces data set [19], demonstrates the

whole processing chain for robust AAM fitting under occlusion. Figure 5.13(b) shows the

initialization of the AAM on the occluded input image. The rough initialization of the

AAM is done using a Viola-Jones face detection approach [142], several AdaBoost-based

classifiers for locating eyes and mouth, and a face candidate validation scheme to robustly

locate the rough face position as described in Section 2.1.

Figure 5.13(c) demonstrates the converged fit of the AAM on the occluded image
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Figure 5.12: Robust AAM fitting chain

which failed totally. In contrast, using the FR-PCA as a pre-processing step results in the

converged fit exhibited in Figure 5.13(d). In Figure 5.13(e), the shape from the fitting

process on the reconstructed image is overlaid on the original input image. It can be clearly

seen that the AAM cannot handle occlusions directly whereas the fit on the reconstructed

image is well defined.

5.2.2 Experimental Results

We trained a hierarchical AAM for facial images on three resolution levels (60x80, 120x160,

240x320). Our training set consists of 427 manually annotated face images taken from

the Caltech face database [19] and our own collection. Taking also the mirrored versions

of those images doubles the amount of training data. For model building we keep 90% of

the eigenvalue energy spectrum for the lower two levels and 95% for the highest level to

represent our compact model.

As described in Section 5.2.1, we use the FR-PCA as a pre-processing step and per-

form the AAM fitting on the reconstructed images. Hence, we trained the FR-PCA

(Section 5.3.2.1) using facial images which do not exhibit any disturbances, i.e., no beards
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(a) (b) (c) (d) (e)

Figure 5.13: Handling of occlusions for AAM fitting. (a) Test image. (b) Initialization of
the AAM on the occluded image. (c) Direct AAM fit on occluded image. (d) AAM fit
on reconstructed image. (e) Shape from (d) overlaid on the test image. Image taken from
Caltech Faces data set [19].

Table 5.1: Point-to-Point error. Comparing the direct fit of the AAM on the test image to
the AAM fit utilizing the FR-PCA pre-processing (point errors are measured on 240x320
facial images).

Occlusion
  mean std mean std mean std mean std mean std

AAM 4.05 5.77 12.06 11.25 15.19 12.78 18.76 14.89 18.86 13.94
AAM + FR‐PCA 5.47 4.97 5.93 5.41 6.06 5.27 9.31 8.75 11.33 9.25

Point‐Point Error
0% 10% 20% 30% 40%

and no glasses. The variance retained for the whole subspace and for the sub-subspaces

is 95%.

A 5-fold cross validation is performed using the manually annotated images, resulting

in 80% training- and 20% test data per iteration. For each level of occlusion, 210 AAM fits

are executed. Table 5.1 shows the point-to-point error (Euclidean distance of converged

points to the annotated points) comparing the direct AAM fit on the occluded image to

the AAM fit utilizing the FR-PCA pre-processing. Starting from 0% occlusion, the error

for the AAM + FR-PCA is slightly larger than the direct fit, because of the unavoidable

reconstruction-blur resulting from the FR-PCA reconstruction. When increasing the size

of the occlusion, the big advantage of the FR-PCA pre-processing can be seen.

Up to now, to have a steerable environment, we used artificial spatially coherent oc-

clusions. To show the advantage of FR-PCA pre-processing also on natural occlusions

such as tinted glasses, occlusions caused by wearing a scarf or by disturbances like beards,

Figure 5.14 depicts some AAM fits on images taken from the AR face database [90]. In

addition, Figure 5.15 shows an illustrative result on our own database. The FR-PCA
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pre-processing step takes around 0.69s per image (150x200) measured in MATLAB using

an Intel Xeon processor running at 3GHz.

Figure 5.14: Examples of AAM fits on natural occlusions like tinted glasses or wearing a
scarf. (First column) Test images with AAM initialization. (Second column) Direct AAM
fit on the test images. (Third column) AAM fit utilizing the FR-PCA pre-processing.
Images are taken from the AR face database [90].

5.2.3 Summary

We presented a robust method for AAM fitting. In contrast to existing approaches the

robustness is not included in the fitting step but is detached in a pre-processing step. The

main idea is to robustly reconstruct unreliable data points (i.e., occlusions) in the pre-
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Figure 5.15: Examples of AAM fits on natural occlusions like beards.

processing step and to use the thus obtained undisturbed images as input for a standard

AAM fitting. To speed up this robust pre-processing step, we developed a novel fast robust

PCA method, see Section 5.3. The whole process chain (robust pre-processing and AAM

fitting) was demonstrated in the field of face normalization in the presence of artificial

and natural occlusion noise. The results show that our robust approach can handle such

situations considerably better than a non-robust approach. Moreover, due to the very

efficient robust pre-processing, the proposed robust AAM fitting method is applicable in

practice for real-time applications.

5.3 Fast-Robust PCA

Principal Component Analysis (PCA) is a powerful and widely used tool in Computer

Vision and is applied, e.g., for dimensionality reduction. But as a drawback, it is not ro-

bust to outliers. Hence, if the input data is corrupted, an arbitrarily wrong representation

is obtained. To overcome this problem, various methods have been proposed to robustly

estimate the PCA coefficients, but these methods are computationally too expensive for

practical applications. Thus, in this section we propose a novel fast and robust PCA

(FR-PCA), which drastically reduces the computational effort. Moreover, more accurate

representations are obtained. In particular, we propose a two-stage outlier detection pro-

cedure, where in the first stage outliers are detected by analyzing a large number of smaller

subspaces. In the second stage, remaining outliers are detected by a robust least-square

fitting. To show these benefits, in the experiments we evaluate the FR-PCA method for

the task of robust image reconstruction on the publicly available ALOI database. The

results clearly show that our approach outperforms existing methods in terms of accuracy

and speed when processing corrupted data. We apply our FR-PCA algorithm to recon-

struct missing feature information and to use the obtained image as input for the standard

AAM fitting process, see Section 5.2.
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5.3.1 Preface

Principal Component Analysis (PCA) [61] also known as Karhunen-Loève transformation

(KLT) is a well known and widely used technique in statistics. The main idea is to re-

duce the dimensionality of data while retaining as much information as possible. This is

assured by a projection that maximizes the variance but minimizes the mean squared re-

construction error at the same time. Murase and Nayar [97] showed that high dimensional

image data can be projected onto a subspace such that the data lies on a lower dimen-

sional manifold. Thus, starting from face recognition (e.g., [64, 137]) PCA has become

quite popular in computer vision∗, where the main application of PCA is dimensionality

reduction. For instance, a number of powerful model-based segmentation algorithms such

as Active Shape Models [23] or Active Appearance Models [22] incorporate PCA as a

fundamental building block.

In general, when analyzing real-world image data, one is confronted with unreliable

data, which leads to the need for robust methods (e.g., [48, 55]). Due to its least squares

formulation, PCA is highly sensitive to outliers. Thus, several methods for robustly learn-

ing PCA subspaces (e.g., [118, 123, 134, 136, 152]) as well as for robustly estimating the

PCA coefficients (e.g., [13, 36, 75, 114]) have been proposed. We are focusing on the latter

case. Thus, in the learning stage a reliable model is estimated from undisturbed data,

which is then applied to robustly reconstruct unreliable values from the unseen corrupted

data.

To robustly estimate the PCA coefficients Black and Jepson [13] applied an

M-estimator technique. In particular, they replaced the quadratic error norm with a

robust one. Similarly, Rao [114] introduced a new robust objective function based on the

MDL principle. But as a disadvantage, an iterative scheme (i.e., EM algorithm) has to

be applied to estimate the coefficients. In contrast, Leonardis and Bischof [75] proposed

an approach that is based on sub-sampling. In this way, outlying values are discarded

iteratively and the coefficients are estimated from inliers only. Similarly, Edwards and

Murase introduced adaptive masks to eliminate corrupted values when computing the

sum-squared errors.

A drawback of these methods is their computational complexity (i.e., iterative algo-

rithms, multiple hypotheses, etc.), which limits their practical applicability. Thus, we

develop a more efficient robust PCA method that overcomes this limitation. In particular,

∗For instance, at CVPR 2007 approximative 30% of all papers used PCA at some point (e.g., [74, 129,
144]).
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we propose a two-stage outlier detection procedure. In the first stage, we estimate a large

number of smaller subspaces sub-sampled from the whole dataset and discard those values

that are not consistent with the subspace models. In the second stage, the data vector is

robustly reconstructed from the thus obtained subset. Since the subspaces estimated in

the first step are quite small and only a few iterations of the computationally more com-

plex second step are required (i.e., most outliers are already discarded by the first step),

the whole method is computationally very efficient. This is confirmed by the experiments,

where we show that the proposed method outperforms existing methods in terms of speed

and accuracy.

This section is structured as follows. In Section 5.3.2, we introduce and discuss the

novel fast-robust PCA (FR-PCA) approach. Experimental results for the publicly avail-

able ALOI database are given in Section 5.3.3. Finally, we discuss our findings and sum-

marize our work in Section 5.3.4.

5.3.2 Derivation of the Algorithm

Given a set of n high-dimensional data points xj ∈ Rm organized in a matrix X =

[x1, . . . ,xn] ∈ Rm×n, then the PCA basis vectors u1, . . . ,un−1 correspond to the eigenvec-

tors of the sample covariance matrix

C =
1

n− 1
X̂X̂

T
, (5.6)

where X̂ = [x̂1, . . . , x̂n] is the mean normalized data with x̂j = xj − x̄. The sample mean

x̄ is calculated by

x̄ =
1

n

n∑
j=1

xj . (5.7)

Given the PCA subspace Up = [u1, . . . ,up] (usually only p, p < n, eigenvectors are

sufficient), an unknown sample x ∈ Rm can be reconstructed by

x̃ = Upa + x̄ =

p∑
j=1

ajuj + x̄ , (5.8)

where x̃ denotes the reconstruction and a = [a1, . . . , ap] are the PCA coefficients obtained

by projecting x onto the subspace Up.

If the sample x contains outliers, (5.8) does not yield a reliable reconstruction; a robust

method is required (e.g., [13, 36, 75, 114]). But since these methods are computationally
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very expensive (i.e., they are based on iterative algorithms) or can handle only a small

amount of noise, they are often not applicable in practice. Thus, in the following we

propose a new fast robust PCA approach (FR-PCA), which overcomes these problems.

5.3.2.1 FR-PCA Training

The training procedure, which is sub-divided into two major parts, is illustrated in Fig-

ure 5.16. First, a standard PCA subspace U is generated using the full available training

data. Second, N sub-samplings sn are established from randomly selected values from each

data point (illustrated by the red points and the green crosses). For each sub-sampling

sn, a smaller subspace (sub-subspace) Un is estimated, in addition to the full subspace.
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Figure 5.16: FR-PCA training: A global PCA subspace and a large number of smaller
PCA sub-subspaces are estimated in parallel. Sub-subspaces are derived by randomly
sub-sampling the input data.

Since occlusions are mainly considered to be spatially coherent the sub-sampling is done

in a smart way. In addition to the random sampling over the whole image region, further

random samplings are also restricted to image slices (vertical, horizontal and quadrant).

This is illustrated in Figure 5.17.
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.

.. ...

. ..

Figure 5.17: Random sampling restricted to image slices (vertical, horizontal and quad-
rant).

5.3.2.2 FR-PCA Reconstruction

Given a new unseen test sample x, the robust reconstruction x̃ is estimated in two stages.

In the first stage (gross outlier detection), the outliers are detected based on the recon-

struction errors of the sub-subspaces. In the second stage (refinement), using the thus

estimated inliers, a robust reconstruction x̃ of the whole sample is generated, see Fig-

ure 5.18.

InputInput 
Image with 
Outliers

RefinementStage

Local |   Global
Outlier Detection

Result: 
Outliers Removed

Gross Outlier Detection

Outlier Detection

Figure 5.18: Reconstruction pipeline

In the gross outlier detection, first, N sub-samplings sn are generated according to the

corresponding sub-subspaces Un, which were estimated as described in Section 5.3.2.1. In

addition, we define the set of “inliers” r as the union of all selected pixels: r = s1∪ . . .∪sN ,

which is illustrated in Figure 5.20(a) (green points). Next, for each sub-sampling sn a

reconstruction s̃n is estimated by (5.8), which allows to estimate the error-maps

en = |sn − s̃n| , (5.9)

the mean reconstruction error ē over all sub-samplings, and the mean reconstruction errors

ēn for each of the N sub-samplings.

Based on these errors, we can detect the outliers by local and global thresholding.

The local thresholds (one for each sub-sampling) are defined by θn = ēnwn, where wn is

a weighting parameter and the global threshold θ is set to the mean error ē. Then, all
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points sn,(i,j) for which

en,(i,j) > θn or en,(i,j) > θ (5.10)

are discarded from the sub-samplings sn obtaining ŝn. Finally, we re-define the set of

“inliers” by

r = ŝ1 ∪ . . . ∪ ŝq , (5.11)

where ŝ1, . . . , ŝq indicate the first q sub-samplings (sorted by ēn) such that |r| ≤ k; k is

the pre-defined maximum number of points. The thus obtained “inliers” are shown in

Figure 5.20(b).

The gross outlier detection procedure allows to remove most outliers. Thus, the ob-

tained set r contains almost only inliers. To further improve the final result in the re-

finement step, the final robust reconstruction is estimated similar to [75]. Starting from

the point set r = [r1, . . . , rk], k > p, obtained from the gross outlier detection, repeat-

edly reconstructions x̃ are computed by solving an over-determined system of equations

(Figure 5.19) minimizing the least squares reconstruction error

E(r) =
k∑
i=1

xri − p∑
j=1

ajuj,ri

2

. (5.12)

Thus, in each iteration those points with the largest reconstruction errors can be discarded

from r (selected by a reduction factor α). These steps are iterated until a pre-defined

number of remaining points is reached. Finally, an outlier-free subset is obtained, which

is illustrated in Figure 5.20(c).

.

.. ...

. ..

≈a1 + a2 + a3 + ∙∙∙1 2 3

≈a1 + a2 + a3 + ∙∙∙

∙∙∙

≈a1 + a2 + a3 + ∙∙∙

Figure 5.19: Refinement step. Solve an over-determined system of equations.

A robust reconstruction result obtained by the proposed approach compared to a non-

robust method is shown in Figure 5.21. One can clearly see that the robust method

considerably outperforms the standard PCA. Note, the blur visible in the reconstruc-
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(a) (b) (c)

Figure 5.20: Data point selection process: (a) data points sampled by all sub-subspaces,
(b) occluded image showing the remaining data points after applying the sub-subspace
procedure, and (c) resulting data points after the iterative refinement process for the
calculation of the PCA coefficients. This figure is best viewed in color.

tion of the FR-PCA is the consequence of taking into account only a limited number of

eigenvectors.

(a) (b) (c)

Figure 5.21: Demonstration of the insensitivity of the robust PCA to noise (i.e., occlu-
sions): (a) occluded image, (b) reconstruction using standard PCA, and (c) reconstruction
using the FR-PCA.

In general, the robust estimation of the coefficients is computationally very efficient. In

the gross outlier detection procedure, only simple matrix operations have to be performed,

which are very fast; even if hundreds of sub-subspace reconstructions have to be computed.

The computationally more expensive part is the refinement step, where repeatedly an

overdetermined linear system of equations has to be solved. Since only very few refinement

iterations have to be performed due to the preceding gross outlier detection, the total

runtime is kept low.



102 Chapter 5. Occlusion Handling

5.3.3 Experimental Results

To show the benefits of the proposed fast robust PCA method (FR-PCA), we compare it

to the standard PCA (PCA) and the robust PCA approach presented in [75] (R-PCA).

We choose the latter one, since it yields superior results among the presented methods in

the literature and our refinement process is similar to theirs.

In particular, the experiments are evaluated for the task of robust image reconstruction

on the “Amsterdam Library of Object Images (ALOI)” database [46]. The ALOI database

consists of 1000 different objects. Over hundred images of each object are recorded under

different viewing angles, illumination angles and illumination colors, yielding a total of

110,250 images. For our experiments we arbitrarily choose 30 categories (009, 018, 024,

032, 043, 074, 090, 093, 125, 127, 135, 138, 151, 156, 171, 174, 181, 200, 299, 306, 323, 354,

368, 376, 409, 442, 602, 809, 911, 926), where an illustrative subset of objects is shown in

Figure 5.22.

Figure 5.22: Illustrative examples of ALOI database objects [46] used in the experiments.

In our experimental setup, each object is represented in a separate subspace and a

set of 1000 sub-subspaces, where each sub-subspace contains 1% of data points of the

whole image. The variance retained for the sub-subspaces is 95% and 98% for the whole

subspace, which is also used for the standard PCA and the R-PCA. Unless otherwise

noted, all experiments are performed with the parameter settings given in Table 5.2.

A 5-fold cross-validation is performed for each object category, resulting in 80%

training- and 20% test data, corresponding to 21 test images per iteration. The

experiments are accomplished for several levels of spatially coherent occlusions and
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Table 5.2: Parameters for the FR-PCA (a) and the R-PCA (b) used for the experiments.

(a)

FR‐PCA R‐PCA

Number of initial points k  130p Number of initial hypotheses H 30
Reduction factor α 0.9 Number of initial points k 48p

Reduction factor α 0.85
K2 0.01

Compatibility threshold 100

(b)

FR‐PCA R‐PCA

Number of initial points k  130p Number of initial hypotheses H 30
Reduction factor α 0.9 Number of initial points k 48p

Reduction factor α 0.85
K2 0.01

Compatibility threshold 100

several levels of salt & pepper noise. Quantitative results for the root-mean-squared

(RMS) reconstruction-error per pixel for several levels of occlusions are given in Table 5.3.

In addition, in Figure 5.23 we show box-plots of the RMS reconstruction-error per pixel

for different levels of occlusions. Analogously, the RMS reconstruction-error per pixel

for several levels of salt & pepper noise is presented in Table 5.4 and the corresponding

box-plots are shown in Figure 5.24.

Table 5.3: Comparison of the reconstruction errors of the standard PCA, the R-PCA and
the FR-PCA for several levels of occlusion showing RMS reconstruction-error per pixel
given by (a) mean and standard deviation and (b) median, lower- and upper quartile.

(a)

Occlusion

  mean std mean std mean std mean std mean std mean std

PCA 10.06 6.20 21.82 8.18 35.01 12.29 48.18 15.71 71.31 18.57 92.48 18.73
R‐PCA 11.47 7.29 11.52 7.31 12.43 9.24 22.32 21.63 59.20 32.51 94.75 43.13
FR‐PCA 10.93 6.61 11.66 6.92 11.71 6.95 11.83 7.21 26.03 23.05 83.80 79.86

70%

Error per Pixel

0% 10% 20% 30% 50%

(b)

Occlusion

  median Q.25 Q.75 median Q.25 Q.75 median Q.25 Q.75 median Q.25 Q.75 median Q.25 Q.75 median Q.25 Q.75

PCA 9.37 5.34 14.32 21.82 16.85 26.49 34.93 27.86 42.47 48.14 38.10 58.77 71.44 58.43 84.45 92.28 78.68 106.59
R‐PCA 10.57 6.03 16.20 10.59 6.20 16.37 11.13 6.43 16.67 14.59 8.16 27.44 64.01 31.13 82.96 91.00 73.28 109.31
FR‐PCA 10.23 6.13 15.34 11.11 6.71 16.37 11.15 6.74 16.29 11.08 6.69 16.64 17.37 9.35 36.82 76.70 57.02 96.14

Error per Pixel

0% 10% 20% 30% 50% 70%

From Table 5.3 and Figure 5.23 it can be seen – starting from an occlusion level of 0% –

that all subspace methods exhibit nearly the same RMS reconstruction-error. Increasing

the portion of occlusion, the standard PCA shows large errors whereas the robust methods

are still comparable to the non-disturbed (best feasible) case, where our novel FR-PCA

presents the best performance. In contrast, as can be seen from Table 5.4 and Figure 5.24,
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Table 5.4: Comparison of the reconstruction errors of the standard PCA, the R-PCA and
the FR-PCA for several levels of salt & pepper noise showing RMS reconstruction-error
per pixel given by (a) mean and standard deviation and (b) median, lower- and upper
quartile.

(a)

Salt&Pepper Noise

  mean std mean std mean std mean std mean std

PCA 11.77 5.36 14.80 4.79 18.58 4.80 27.04 5.82 36.08 7.48
R‐PCA 11.53 7.18 11.42 7.17 11.56 7.33 11.63 7.48 15.54 10.15
FR‐PCA 11.48 6.86 11.30 6.73 11.34 6.72 11.13 6.68 14.82 7.16

Error per Pixel

10% 20% 30% 50% 70%

(b)

Salt&Pepper Noise

  median Q.25 Q.75 median Q.25 Q.75 median Q.25 Q.75 median Q.25 Q.75 median Q.25 Q.75

PCA 10.87 7.49 15.30 14.17 11.11 17.66 18.03 15.17 21.25 26.40 23.02 30.17 35.51 30.69 40.09
R‐PCA 10.74 6.19 16.28 10.56 6.17 16.25 10.70 6.32 16.27 10.56 6.18 16.23 13.99 7.98 21.03
FR‐PCA 10.99 6.37 16.22 10.71 6.37 15.97 10.77 6.47 15.84 10.47 6.31 15.49 14.69 10.11 19.18

Error per Pixel

10% 20% 30% 50% 70%

all methods can generally cope better with salt & pepper noise. However, also for this

experiment FR-PCA yields the best results.

Finally, we evaluated the runtime† for the applied different PCA reconstruction meth-

ods, which are summarized in Table 5.5. It can be seen that for the given setup compared to

R-PCA for a comparable reconstruction quality the robust reconstruction can be speeded

up by factor of 18! This drastic speed-up can be explained by the fact that the refinement

process is started from a set of data points mainly consisting of inliers. In contrast, in

[75] several point sets (hypotheses) have to be created and the iterative procedure has

to be run for every set resulting in a poor runtime performance. Reducing the number

of hypotheses or the number of initial points would decrease the runtime, but, however,

the reconstruction accuracy gets worse. In particular, the runtime of our approach only

depends slightly on the number of starting points, thus having nearly constant execution

times. Clearly, the runtime depends on the number and size of used eigenvectors. Increas-

ing one of those values, the gap between the runtime for both methods is even getting

larger.

†The runtime is measured in MATLAB using an Intel Xeon processor running at 3GHz. The resolution
of the images is 192x144 pixels.
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Figure 5.23: Box-plots for different levels of occlusions for the RMS reconstruction-error
per pixel. PCA without occlusion is shown in every plot for the comparison of the robust
methods to the best feasible reconstruction result.

Table 5.5: Runtime comparison. Compared to R-PCA, FR-PCA speeds-up the computa-
tion by a factor of 18.

Occlusion 0% 10% 20% 30% 50% 70%

PCA 0.006 0.007 0.007 0.007 0.008 0.009

R‐PCA 6.333 6.172 5.435 4.945 3.193 2.580
FR‐PCA 0.429 0.338 0.329 0.334 0.297 0.307

Mean Runtime [s]
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Figure 5.24: Box-plots for different levels of salt & pepper noise for the RMS
reconstruction-error per pixel. PCA without occlusion is shown in every plot for the
comparison of the robust methods to the best feasible reconstruction result.

5.3.4 Summary

We developed a novel fast robust PCA (FR-PCA) method based on an efficient two-stage

outlier detection procedure. The main idea is to estimate a large number of small PCA

sub-subspaces from a subset of points in parallel. Thus, for a given test sample, those sub-

subspaces with the largest errors are discarded first, which reduce the number of outliers

in the input data (gross outlier detection). This set – almost containing inliers – is then

used to robustly reconstruct the sample by minimizing the least square reconstruction
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error (refinement). Since the gross outlier detection is computationally much cheaper

than the refinement, the proposed method drastically decreases the computational effort

for the robust reconstruction. In the experiments, we show that our new fast robust

PCA approach outperforms existing methods in terms of speed and accuracy. Thus, our

algorithm is applicable in practice and can be applied for real-time applications such as

robust Active Appearance Model (AAM) fitting. Since our approach is quite general,

FR-PCA is not restricted to robust image reconstruction.





6
Conclusion

The analysis of facial images is not an exact science, but rather subjective depending on

biological factors like gender, race, facial hair or age, and extrinsic factors like occlusion,

noise, lighting and pose variations. Even for humans it is difficult to interpret facial

expressions, especially with different cultural background.

In this thesis we presented a facial analysis system for ICAO compliant facial analysis.

The ICAO standard provides a bunch of requirements to assess facial photographs as

suitable or improper for biometric applications to prepare automated face verification or

identification. Motivated by the needs of our facial analysis system we developed several

novel algorithms to address the huge variety of facial appearance and also many extrinsic

image factors. We started with a procedure called tokenization to bring arbitrary input

images to a standardized coordinate frame. Therefore we need a robust face and facial

component detection. All subsequent facial analysis steps rely on the tokenization. The

tokenization procedure is very robust when processing near frontal images. If the deviation

from the frontal pose is too large, then the tokenization fails. In our case, the system would

state that the facial image is not suitable according to the ICAO specification. The cause

for the failure could be a large deviation from the frontal pose but it could also be a large

occlusion. In that case we cannot state the reason for the non-compliance. But that is ok

for our purpose, because we have to determine suitability. To advance the tokenization

we could use a robust multi-view face detector. Then it would be easier to determine the

reason for non-compliant facial images.

After the detection of the eyes and mouth components, they are assessed if they show

an open or closed state. To be robust, we propose to fuse several classifiers to utilize

the strengths of the single classifiers. Our algorithm shows very good results, but can be

109
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further improved by adding additional complementary classifiers and fusion schemes.

The ICAO standard prohibits faces differing from the frontal pose. Therefore, we

propose three algorithms determining the pose of the head. Still an unsolved issue is the

estimation of the pose in case of occluded facial images.

The last criterion we have to deal with is occlusion. We show how to detect occlusions

in a facial image. Furthermore, we propose a robust AAM fitting strategy, which is based

on our novel Fast-Robust PCA approach. We will think about, how to incorporate the

findings of our occlusion handling to our algorithms and to non-robust algorithms found in

the literature. An immediate idea is the investigation of how to incorporate the FR-PCA

approach directly into the AAM fitting procedure.

All the approaches were evaluated extensively on several databases and compared to

state-of-the-art methods. Some parts of our work have also found the application in a

commercial product.

6.1 Future Work

All the algorithms are evaluated on several databases. But still, in the future work we in-

tend to perform more experiments to test the methods on additional challenging databases.

Furthermore, we want to extend our facial analysis system to check additional ICAO cri-

teria.

Tokenization To advance the tokenization procedure we could use a robust multi-view

face detector. In combination with a head pose estimation approach, all the facial images

with a large deviation from the frontal pose could be determined.

In the experiments it turned out that the Active Appearance Model (our own imple-

mentation and the publicly available version from Stegmann [124]) does not work very

satisfactory in terms of accuracy. It often got stuck in a local minimum and thus the fit-

ting was bad. In the future the recently proposed STASM [93] algorithm should be taken

under consideration. Experiments showed that the STASM is very robust against varying

illumination conditions or partly occluded facial images and showed excellent performance

on our data.

Robust similarity measures could be easily incorporated in the congealing algorithm.

This may further improve the alignment quality.

Eyes and Mouth Analysis Based on our findings, further work is necessary to evaluate

additional, complementary classifiers and fusion schemes to further improve the overall

classification results for both criteria.
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Analysis of the Deviation from Frontal Pose The algorithms should also be im-

proved in case of an occluded input image. For the 3D Morphable Appearance Model,

the range of possible fittings and thereof the limited pose estimation can be extended to

multi-view fitting to cover a larger range of head pose. To get rid of the assumption of the

linear relationship between the texture residual and the parameter update, further fitting

algorithms should be considered, e.g., the inverse compositional algorithm.

We reproduced the published results on the FacePix database using the Biased Mani-

fold Embedding technique. The algorithm works very well on this database, but it turned

out that the algorithm is not useful when processing other databases. One direction for

future work would be to get rid of the crucial learning step (the learned relationship be-

tween the manifold and a new test sample) or to find a way of a direct mapping of a test

sample to the manifold.

In the head pose estimation by non-linear regression, we try to learn a relationship

between the images, (in our case, the HOG descriptor) and the corresponding annotated

angles using a Support Vector Regression. We will also try different regression strategies,

like Gaussian Process regression, k-nearest neighbor regression, linear regression and linear

ridge regression. First experiments with these regression schemes surprisingly showed a

very good performance of k-nearest neighbor regression. The reason might be the dense

distribution of different angles in our training database, created by 2D-renderings from

faces from a 3D database.

Occlusion Handling We will think about, how to incorporate the findings of our occlu-

sion handling to our algorithms and to non-robust algorithms found in the literature. An

immediate idea is the investigation of how to incorporate the FR-PCA approach directly

into the AAM fitting procedure.

The occlusion detection algorithm makes some decisions based on thresholds evaluated

on a validation dataset. In the future the thresholds should be adapted automatically

depending on the test dataset.

The AAM + FR-PCA approach shows slightly worse results compared to the direct

fit if there is no occlusion in the image, because of the unavoidable reconstruction-blur

resulting from the FR-PCA reconstruction. Thus, the occlusion should be detected first.

Only in case of an occlusion, the FR-PCA should be taken as a preprocessing step.





A
Acronyms

List of Acronyms

3D-MAM 3D Morphable Appearance Model

3DMM 3D Morphable Model

AAM Active Appearance Model

AdaBoost Adaptive Boosting

ASM Active Shape Model

BME Biased Manifold Embedding

DOF Degree of Freedom

EER Equal Error Rate

FAR False Acceptance Rate

FR-PCA Fast-Robust PCA

FRR False Rejection Rate

GPR Gaussian Process Regression

GRNN Gaussian Regression Neural Network

HOG Histogram of Oriented Gradients

HPES Head Pose Estimation System

HSV Hue Saturation Value

ICAO International Civil Aviation Organization

LE Laplacian Eigenmaps

LGO Localized Gradient Orientation

LNMF Local Non-Negative Matrix Factorization
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MAP Maximum a Posteriori

MDL Minimum Description Length

PCA Principal Component Analysis

POSIT Pose from Orthography and Scaling with Iterations

RANSAC Random Sample Consensus

RMS Root Mean Squared

ROC Region of Convergence

SSD Sum of Squared Differences

SVM Support Vector Machine

SVR Support Vector Regression



B
Active Appearance Model

The Active Appearance Model (AAM) [22] describes the variation in shape and texture

of a training set representing an object. From a mean shape and a mean texture, defined

in the coordinate frame of the mean shape, the modes of shape and appearance variation

are calculated by applying principal component analysis (PCA) to the geometrically and

photometrically aligned training examples. Training examples are manually annotated

with respect to their shape (commonly defined as corresponding landmark points) and

are required to cover the types of variation present in the images one wants to analyze.

Formally, from shape representations x and texture representations g a statistical model is

built given N training examples (i.e., tuples (xn,gn)). The statistical model is based on the

interpretation of this representation as a high-dimensional feature vector. A dimensionality

reduction is performed by applying PCA to generate the more compact model

x ≈ x + Psbs

g ≈ g + Ptbt

where shapes and textures are represented by the means x,g and the matrices Ps,Pt

containing the eigenvectors of the training data. bs and bt are the parameters of this

parametric deformable model. By discarding eigenvectors that correspond to small eigen-

values an approximated model is formed. This is feasible since the discarded eigenvectors

contribute to the lowest variance in the training data. The AAM model incorporates an-

other dimensionality reduction on the concatenated model parameters b = (Wsbs,bt)
T

with Ws being a weighting matrix to relate shape and texture representations. The com-
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bined appearance model b ≈ Paa is finally used to generate synthetic model instances by

adjusting the appearance parameters a.

AAM model fitting makes use of a learned regression model that describes the relation-

ship between parameter updates and texture residual images. Optimization takes place

in a gradient descent scheme using the L2 norm of the intensity differences (between the

synthetic model instances and the given test image) as its cost function and the learned

regression model for efficiently approximating the Jacobian of the cost function. The pa-

rameters of the cost function are the unknown global pose parameters and the combined

appearance parameters (which implicitly define shape and texture parameters). A local

minimum of the cost function corresponds to a model fitting solution. Since the mini-

mum is local and the parameter space is very large, multi-resolution techniques have to

be incorporated and the fitting requires coarse initialization. Despite the multi-resolution

approach, the need for proper initialization marks one of the major drawbacks of this

method, with the other drawback being its high sensitivity to image occlusions.



C
Boosting

AdaBoost [43, 120] is a well studied technique for supervised learning tasks. It has recently

shown to be tremendously successful in a variety of object localization and classification

applications.

In machine learning AdaBoost [43] is a supervised classification technique to establish

a complex nonlinear strong classifier

HM (x) =

∑M
m=1 αmhm(x)∑M

m=1 αm

where x is a pattern to be classified, hm(x) ∈ {−1,+1} are the M easily constructible,

weak classifiers, αm ≥ 0 are the combining coefficients, and
∑M

m=1 αm is a normalizing

factor. HM (x) is real-valued, however classification is done using the signum function

y(x) = sign[HM (x)].

The AdaBoost learning algorithm establishes a sequence of best weak classifiers hm(x)

and their corresponding weights αm. Confronted with N training examples of the form

{(x1, y1), . . . , (xN , yN )}, where yi ∈ {−1,+1} are the class labels, a distribution of the

training examples is calculated and updated during learning. After each iteration, exam-

ples which are harder to separate are investigated to put more emphasis on these examples.

It is sufficient that weak classifiers are able to separate a training set better than simple

guessing, i.e. it needs a classification rate larger than 50%. The trained weak classifiers

determine the features that have to be evaluated in a new image.

In the original object detection framework [142] the weak classifiers are formed from the

thresholded responses of simple Haar wavelet like features, see Figure C.1. By calculating

Haar features using a so-called integral image representation, it is possible to achieve high
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evaluation efficiency. The integral image at position (x, y) is the sum of all pixel values

above and on the left (Figure C.2(a)). Computing the sum of pixel values within the

specified rectangle, only three basic computations, P4 − P3 − P2 + P1 (Figure C.2(b))

are needed. The accuracy comes from the large number of features that are combined

by the boosting approach and from the necessity to evaluate features at different scales

and locations. Another important advantage of the Viola and Jones approach is their

cascaded structure of multiple strong classifiers, which is ideally suited for sliding window

processing in object detection. Earlier cascade stages remove a large number of non-object

windows, while it is necessary to traverse the whole complex cascade only for a window of

the object class.

(a)

Figure C.1: Haar wavelet-like features [142]

(a) (b)

Figure C.2: Integral image representation [142]



D
Annotation Tool

For our quantitative evaluation of our congealing algorithm, we manually annotated all

frontal images of the CVL face database [109]. Therefore we created an annotation tool to

annotate facial feature points illustrated in Figure 2.8. The corresponding GUI is shown in

Figure D.1. The left pane of the tool is used to select a facial landmark to annotate. The

annotated landmark points are displayed in a color coding scheme for easier checking if the

landmarks are selected correctly. After the annotation of all visible facial landmarks, the

pose of the head can be calculated using a combination of a 3D facial model and the POSIT

algorithm [30]. In the right pane, the 3D facial avatar is illustrated after automatically

calculating the pose of the head. This avatar can be overlaid on the original input image,

see Figure D.2. The whole annotation procedure for a profile face is shown in Figure D.3.

After the estimation of the head pose, the points can be back-projected onto the input

image, thus showing the quality of the pose estimation (Figure D.3c). When switching to

the next image to annotate, the landmark coordinates and the three angles of rotation of

the head are saved to a text file. The annotation tool can be controlled with predefined

shortcuts to allow an easy usage.
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Figure D.1: Screenshot of our annotation tool. The visible facial feature points are anno-
tated.

Figure D.2: Screenshot of our annotation tool. In the right pane, the 3D facial avatar
is illustrated after automatically calculating the pose of the head. This avatar can be
overlaid on the original input image.
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(a) (b) (c)

Figure D.3: Annotation procedure. (a) Annotated landmarks, (b) pose estimation, (c)
back-projected landmark points
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