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Kurzfassung 
 
In dieser Arbeit wird zuerst der heutige Kenntnisstand zur Analyse von 
Unsicherheiten/Unschärfe dargestellt. Im Bereich der Geotechnik sind aus Sicht 
der praktischen Ingenieursarbeit vor allem die non-probabilistischen oder 
unpräzisen Methoden interessant, deren Theorie in den letzten zwei Jahrzehnten 
eine rasante Entwicklung erfahren hat. Jeweils eine ausgewählte non-
probabilistische und probabilistische Methode - die beide ohne Modifikation des 
Rechenkerns mit numerischen Methoden kombiniert werden können - wird 
erläutert, um zu zeigen, welche Informationen für ingenieurgemäße 
Beurteilungen und Entscheidungsfindungen im Tunnelbau aus diesen Verfahren 
gewonnen werden können. Unter den non-probabilistischen Methoden erbrachte 
besonders die Random Set Finite Elemente Methode (RS-FEM) sehr gute 
Ergebnisse für praktische ingenieurmäßige Problemstellungen. 
 
Kapitel 3 und 4 widmen sich der weiteren Untersuchung der Vorzüge und 
Beschränkungen der RS-FEM in Hinblick auf Aufgabenstellungen des 
Tunnelbaus. Ein Vergleich zwischen Berechnung und Messungen demonstriert 
im weiteren die Effizienz der Methode in einer realen Fallstudie. In Kapitel 5 
wird die Leistungsfähigkeit des Verfahrens untersucht, die Unsicherheiten bei 
der Auswahl des Stoffgesetzes und seiner Parameter zu berücksichtigen. Dazu 
wurden zwei RS-FEM Berechnungen durchgeführt, in denen Materialmodelle 
mit dem Mohr-Coulomb und dem Hoek-Brown Versagenskriterium verwendet 
wurden. Die Unterschiede in den Berechnungsergebnissen werden erörtert und 
mit den Messergebnissen verglichen. Zum Abschluss werden die Ergebnisse 
verschiedener RS-FEM Berechnungen unter Verwendung der „Evidence 
Aggregation Method“ zusammengeführt. Im letzten Kapitel wird am Beispiel der 
gleichen Fallstudie die Punktabschätzmethode (Point Estimate Method, PEM) als 
eine der probabilistischen Methoden mit der RS-FEM verglichen. Es wird 
gezeigt, das unter bestimmten Annahmen mit PEM und RS-FEM ähnliche 
Schlussfolgerungen in Bezug auf die Bandbreite des wahrscheinliche 
Systemverhalten eines Tunnels gezogen werden können 
 



Abstract 
 
In the current study, first state-of-the-art uncertainty analysis methods are briefly 
reviewed. To deal with uncertainties involved in geotechnical problems, non-
probabilistic or imprecise probability methods whose theories have been rapidly 
developing in the last two decades are appealing in engineering practice. Two 
selected non-probabilistic and probabilistic methods with the potential of being 
combined with numerical methods –without requiring any modification to the 
core of the numerical code– are investigated to demonstrate what useful informa-
tion can be provided for more rational engineering judgments and decision mak-
ing in tunnelling. Among non-probabilistic methods, Random Set Finite Element 
Method (RS-FEM) has demonstrated its attractive results in practical geotechni-
cal problems. 
 
Chapters 3 and 4 are devoted to the further investigation of merits and limitations 
of the method, focusing on tunnel engineering problems. Moreover, a compari-
son between calculation and field measurements highlights the efficiency of the 
RS-FEM in a real case study. In Chapter 5, an attempt is made to demonstrate the 
capability of the framework in considering the uncertainty involved in the selec-
tion of material constitutive model. For this purpose, two random set analyses 
were accomplished in which the Hoek-Brown and Mohr-Coulomb criteria have 
been used as the constitutive model. Discrepancies between the results are dis-
cussed and compared to the measurements. Finally, the results obtained from 
different random set analyses are combined using evidence aggregation methods. 
In the last chapter, a comparison has been made between the Point Estimate 
Method categorised as one of the probabilistic approaches and RS-FEM, using 
the same case study. It is shown that under certain assumptions, a similar conclu-
sion regarding the range of most probable behaviour of a tunnel problem ob-
tained from both PEM and RS-FEM approaches can be drawn. 
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List of symbols and abbreviations 
 
This section lists the definition of used symbols in alphabetical order. They are 
additionally explained in the text when they first appear. Units are not included 
in this list, they will be defined in the text when they are first used.  
 

Small letters 

a  Hoek Brown model parameter 
c effective cohesion 
e  eccentricity  
ea imperfections 
f function 
fc uniaxial compressive strength of concrete 
fX joint probability density function 
g limit state function 
i index number 
j index number 
k index number 
l lower value of a closed interval 
m basic probability assignment 
mi   Hoek Brown model parameter for intact rock 
mb  Hoek Brown model parameter for rock mass 
n number of information sources 
nc number of calculations 
p probability 
pf probability of failure 
s  Hoek Brown model parameter 
u upper value of a closed interval 
ui   a standard uniform random number  
x basic variable 
x vector of basic variables 
x, y, z Cartesian coordinates 
 

Capital letters 

Ai focal element 
Bel belief function  
D   Disturbance factor in Hoek Brown model 



E  generic subset 
Ei  Elastic modulus of intact rock 
Erm   elasticity modulus of the rock mass  
Esh   Young's modulus of young shotcrete  
Es stiffness/deformation modulus  
F* lower cumulative probability distribution function / upper cumula-

tive probability distribution function 
Fs factor of safety 
H  Tunnel depth below surface 
Ko coefficient of earth pressure at rest 
L length of potential failure surface 
M bending moment 
N axial force/ number of basic variables 
Nlim  admissible normal force in shotcrete lining 
Pl plausibility function 
R random relation 
R* lower bound on element of R / upper bound on element of R  
Rf   Relaxation factor  
S   hull of a solution set 
X non-empty set 
X vector of basic variables 
 

ℑ support of random set 
ℜ support of image of random set ℑ 
 

Small Greek letters 

 
α   α-cut membership / relative sensitivity  
β   Reliability index 
γ            total unit weight of soil / statistical skewness 
ηSR sensitivity ratio 
ηSS sensitivity score 
µ mean value 
ν vertices/ Poisson’s ratio/ statistical mode 
ρ basic probability assignment of image of m 
σ standard deviation 
σ1  Minor principal effective stress 
σ3  Major principal effective stress 



σci   Unconfined compressive strength of intact rock 
σ´cm   Global rock mass strength  
ϕ effective friction angle 
ψ dilation angle 
 

Capital Greek letters 

Γ variance reduction factor 
Θ spatial correlation length 
Θy  Spatial correlation length in y direction 
Θx  Spatial correlation length in x direction 
Φ  Standard normal cumulative distribution function  
 
Abbreviation: 

 

BEM  Boundary Element Method 
CDF Cumulative Distribution Function 
COV  Coefficient Of Variation 
FE  Finite Element  
FEA   Finite Element Analysis 
FEM  Finite Element Method 
FOS Factor Of Safety 
FOSM  First Order Second Moment approximation 
FORM First Order Reliability Method 
GSI  Geological Strength Index 
HB  Hoek Brown criterion 
IFEA   Interval Finite Element Analysis 
LSF  Limit State Function 
MC  Mohr Coulomb criterion / Monte Carlo simulation  
NATM  New Austrian Tunnelling Method 
p-box A pair of CDFs which represents the imprecise probability distribu-

tion of a RV 
PDF Probability Distribution Function 
QM Quality of Model 
RFEM Random Finite Element Method 
RMR  Rock Mass Rating 
RQD  Rock Quality Designation 
RS  Random Set 
RS-FEM Random Set Finite Element Method 
RST  Random Set Theory 



RV  Random Variable 
SORM Second Order Reliability Method 
UCS  Unconfined Compressive Strength 
ZN-II  Zhou and Nowak point estimate method − II 
ZN-III  Zhou and Nowak point estimate method − III 
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1 Introduction 

1.1 Motivation 
 
In association with engineering judgement, Lacasse et al. (2004) state: 
“Engineering depends on judgment, the exercise of which depends on knowledge 
derived from theoretical concepts, experiment, measurements, observations, and 
past experience. These building blocks have to be recognized, assembled, and 
evaluated collectively before judgment can be rendered”. Specifically, in the 
tunnelling industry Wannick (2007) mentions: “Since the early 1990s, no other 
area of the construction industry has been as adversely affected by major losses 
as tunnelling. Besides property losses often in the two-digit million range, third-
party liability losses have also been high, and numerous people have lost their 
lives. The international insurance industry has made payments exceeding 
US$ 600m for large losses”. Certainly a variety of causes may be included for the 
losses such as flood, earthquake or fire. However, causes originating from 
uncertainties, lack of knowledge or insufficient data prior to tunnel construction 
cannot be overlooked. Therefore, modern concepts dealing with uncertainties 
(e.g. reliability analysis, risk management and sensitivity analysis) have to be 
introduced into common engineering practice, especially in large underground 
structures. This requires an efficient user-friendly framework to deal with 
uncertainties. It seems that there is a demand to utilise simple mathematical 
concepts regarding uncertainties in tunnel engineering and to introduce simple 
and user-friendly frameworks for analysing and designing underground 
structures.   
 
The usage of numerical methods such as the Finite Element Analysis is 
becoming more widespread, as more designers recognise the advantages of using 
such techniques in analysing complex geotechnical problems. 
 
Traditionally, there are two approaches that reflect uncertainty in the design, 
namely probabilistic and deterministic approaches. Quantities achieved by 
probabilistic and deterministic approaches, such as failure probabilities and 
safety factors respectively, play an important role in qualitative studies and 
standard codes of practice; however, they do not indicate a firm proposition 
about what takes place in reality. In addition, contrary to classical probability 
theory, the probability of failure computed in engineering practice cannot be 
interpreted as a frequency of failure (Oberguggenberger and Fellin, 2002). On the 
other hand, several authors have addressed the shortcomings of probabilistic 
methods in reliability analysis e.g. tail problems in which the failure of 
probability may vary by orders of magnitude when fitting different distributions 
to the same input data obtained from laboratory tests (Oberguggenberger and 
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Fellin, 2002). Moreover, Elishakoff (2000) has collected comments of a number 
of experts about possible shortcomings of probabilistic methods in engineering, 
in which interested readers could look into the opinions of current researchers 
about the application of probabilistic methods in practice. 
 
In the present effort, two selected non-probabilistic and probabilistic methods 
with the potential of being combined with numerical methods –without requiring 
any modification to the core of the numerical code– are investigated to 
demonstrate what useful information can be provided for more rational 
engineering judgments and decision making in tunnelling.  
 
The work presented herein is a follow-up to foregoing research on non-
deterministic approaches in numerical analysis of geotechnical problems carried 
out in the Computational Geotechnics Group at the Institute of Soil Mechanics 
and Foundation Engineering of the Graz University of Technology. First, 
Thurner (2000) made an attempt to apply probabilistic methods such as Point 
Estimate Method, Monte Carlo simulation, and FOSM using the Taylor Series 
expansion method, as well as reliability analysis using FORM/SORM methods to 
illustrate the pros and cons of these probabilistic methods by applying them on 
different types of geotechnical boundary value problems. Peschl (2004) 
accomplished a research namely “Reliability Analyses in Geotechincs with 
Random Set Finite Element Method”. A successful effort was made to integrate 
the finite element method as a powerful computational tool with an adopted non-
probabilistic method, namely the Random Set Approach to provide a procedure 
by which a reliability analysis of highly complex nonlinear geotechnical 
problems may be carried out where only scarce and incomplete data are 
available.  
 
Therefore, in the present dissertation the objective is to investigate the merits and 
shortcomings of the Random Set Method and the Point Estimate Method 
respectively, categorised in the non-probabilistic and probabilistic approach, 
which are equally applicable to the finite element analysis of geotechnical 
problems, with particular references to tunnel engineering. 
 
 
 
 
 
 



2 On approaches dealing with uncertainty 3 

2 On approaches dealing with 
uncertainty 

2.1 Uncertainty 
 
As a comprehensive reference, Walley (1991) has mathematically and verbally 
elaborated many statistical and probabilistic terms, especially regarding 
imprecise probability and type of uncertainties in general. In addition, Baecher 
and Christian (2003) have devoted one chapter to categorise uncertainty and 
clarify frequently used terms particularly in the context of risk and reliability 
analysis of geotechnical problems. In brief, two kinds of uncertainty associated 
with geotechnical problems exist, for which in the technical literature the terms 
‘aleatory’ and ‘epistemic’ are commonly used. Aleatory uncertainty represents 
the natural randomness of a property. As an important feature, this kind of 
uncertainty is irreducible and is also known as natural variability or spatial 
variability in the case of soil parameters, which vary over space (not over time). 
Epistemic uncertainty is a type of uncertainty that originates from the lack of 
knowledge. Consequently this type of uncertainty can potentially be reduced by 
means of abundant observations and collecting information. There are also other 
types of uncertainties concerning construction, manufacturing, maintenance and 
human errors (Lacasse and Nadim, 1996) that are not included in the latter 
categories and are usually not considered in models of engineering performance.  

2.2 Uncertainty model 
 
In dealing with uncertainties in any system, an uncertainty model is required. 
Figure 1 illustrates how uncertainty propagates through a mechanical system 
within an uncertainty model. An uncertainty model consists of a collection of 
input uncertainty, model uncertainty, and the technique by which the system 
response is evaluated. Thus, two main sources of uncertainty, namely model 
uncertainty and parameter uncertainty are identified. In geotechincs, the input or 
parameter uncertainties are affected by both types of uncertainty. For instance, 
the inherent variability of soil/rock materials is well-recognised as a random 
phenomenon (Lacasse and Nadim, 1996) and regarding the lack of knowledge, it 
is difficult to determine the borders of soil layers or to exactly characterise the 
loads acting on the structure. Model uncertainty concerns the degree of accuracy 
of a chosen mathematical model that is capable of describing a real physical 
behaviour of the mechanical system. This comes from our inability to exactly 
model the actual system; therefore, model uncertainty falls in the epistemic 
category. The uncertain model will lead to uncertain model responses even if 
crisp input values have been used. Accounting for such an uncertainty is of 
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interest in the area of numerical analysis when a reliability or risk analysis is 
being performed to observe the impact of model uncertainty as a mapping 
function on the system responses in any non-deterministic approach. In this 
dissertation, both sources of uncertainty are addressed and considered.  
 
Regarding the representation of system responses in terms of probability, it is 
worth mentioning that in almost all geotechnical problems, engineers face a 
mixture of both types of uncertainties and therefore the outcomes of the 
probabilistic calculations or uncertainty analyses are signifying some sort of 
degree of belief (Bayesian approach) about the obtained results rather than the 
exact value of e.g. probability of a system failure as understood in the frequentist 
approach (Baecher and Christian, 2003). This notion and perception of 
probability is more consistent with geotechnical phenomena and practice. 
 

Model of 
a mechanical system

e.g. numerical model or closed form 

solution

Parameter uncertainty

Probability

Interval

P-box

Displacement

Stress 

Model uncertainty System response

Uncertainty Model

 

 
 
Fig. 1: Uncertainty model and propagation of uncertainties through a model 
 
The uncertainty model of a mechanical system is built up for different purposes, 
mainly categorised in the following three types of analysis (Schweckendiek, 
2006):  
 

1. Uncertainty analysis, aims to estimate the extent of the system responses 
based on the uncertainties inherent in the model. In a comprehensive 
analysis a distribution is obtained, and if such a thorough analysis would 
not be feasible, at least some statistical characteristics are produced.  

 
2. Reliability analysis, is concerned with finding the reliability or the 

probability of failure of a system using defined failure criteria expressing 
the undesired events. According to US Army Corps of Engineers (1997) 
“The term ‘failure’ is used to refer to any occurrence of an adverse event 
under consideration, including simple events such as maintenance items. 
To distinguish adverse but non-catastrophic events (which may require 
repairs and associated expenditures) from events of catastrophic failure (as 
used e.g. in the dam safety context), the term probability of unsatisfactory 
performance is sometimes used.”  
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3. Risk analysis, aims to identify the hazards pertinent to a project and to 
determine the risk of one taking the potential adverse consequences of the 
hazards and its relevant probability of their occurrence into account 
(Baecher and Christian, 2003).  

 
The current dissertation is concerned with the first two purposes. In engineering, 
risk analysis relates mainly to the consequences (financially) of the uncertainty 
and is beyond the scope of this work. However, performing uncertainty and 
reliability analysis can be considered as an introduction or as primary steps for 
such an analysis. As an example, Pöttler et al. (2007) have shown the application 
of Random Set Finite Element Method in risk analysis. 
 
In the following, the techniques recently developed for analysing uncertainty in 
mechanical systems are outlined with the aim of identifying the position of the 
methods used in the current dissertation with respect to others.  

2.3 Approaches of uncertainty analysis 
 
In order to perform uncertainty analysis on a mechanical system, the uncertainty 
present in the system’s characteristics have to be mathematically quantified. 
Probability theory has a long tradition in characterising uncertainty and the 
majority of the approaches in uncertainty analyses stem from this theory. Some 
shortcomings addressed by researchers should however be overcome e.g. in 
handling all types of uncertainty or when the credibility of the probabilistic 
approach is questionable when data are insufficient (e.g. Ben-Haim, 1994). 
Contrary to classical probability theory, the probability of failure computed in 
engineering practice cannot be interpreted as a frequency of failure; and 
regarding tail problems in reliability analysis using probabilistic methods in 
which the probability of failure may vary by orders of magnitude when fitting 
different distributions to the same input data obtained from laboratory tests 
(Oberguggenberger and Fellin, 2002). Elishakoff (2000) has collected comments 
of a number of experts about possible shortcomings of probabilistic methods in 
engineering, and opinions of current researchers about the application of 
probabilistic methods in practice. Thus, to overcome the shortcomings, some 
other mathematical theories have been recently emerged to handle epistemic or 
multiple types of uncertainty such as random set theory (Kendall, 1974; 
Goodman and Nguyen, 1985), evidence theory (Dempster, 1967; Shafer, 1976), 
fuzzy set theory (Zadeh, 1965), possibility theory (Zadeh, 1978), imprecise 
probabilities (Walley, 1991), interval approach (Moore, 1966), and convex model 
(Ben-Haim and Elishakoff, 1990) among others. Therefore, regarding non-
deterministic analysis a classification can be made in which the current 
approaches for dealing with uncertainties are divided into two major methods: 1) 
probabilistic methods and 2) non-probabilistic methods (Moens and Vandepitte, 
2005). Probabilistic methods are those supported by probability theory and the 
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non-probabilistic methods incorporate the other theories or probability theory is 
only partly involved. Figure 2 depicts tree-diagram illustrating the most 
commonly used approaches stemming from probabilistic and non-probabilistic 
methods in uncertainty and reliability analysis. 
 

2.3.1 Probabilistic methods 
 
The existing probabilistic methods can be categorised in various ways from 
different points of view. For instance, in a geotechnical context, Suchomel and 
Mašín (2010) distinguish between probabilistic methods based on considering the 
spatial variability of soil parameters. Generally, one possible classification of the 
probabilistic methods is portrayed in Figure 2.  
 
 

Non-probabilisitic 
Methods

 

Non-deterministic 
Approaches

 

Probabilistic 
Methods

 

Standard 
Reliability 
Methods

 

Bayesian 
Approach

 

Random Finite 
Element Method

 

 Iterative Random 
Point Sampling 

Methods
 

Stochastic Finite 
Element Method

 

Prefixed Point 
Sampling Methods

 

Response Surface 
Method

 

 
Crude MC, Directional 
Sampling, Hypercube 

Sampling, Hasofer-Lind 
Method 

 

Point Estimate 
Methods

 

                      
Taylor Series 

Finite Difference 
Method

 

Interval Analysis
 

Imprecise 
Probability, P-box

 

Fuzzy Approach
 

Random Set 
Approach

 

 
 
Fig. 2: Classification of non-deterministic approaches  
 
There are many probabilistic methods, a selection of which is briefly mentioned 
herein. Standard reliability methods and procedures such as MC (Monte Carlo 
simulation) or First Order Second Moment approximation (FOSM), First Order 
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Reliability Method (FORM), Second Order Reliability Method (SORM), and the 
Taylor series expansion can be found in standard text books (e.g. Ang and Tang, 
1975; Harr, 1996, Haldar and Mahadevan, 2000). 
 

2.3.1.1 Bayesian approach 
 
In many cases, the required information for probabilistic analysis is missing or 
limited. Those researchers who are interested in using probabilistic methods tend 
to overcome the main disadvantage (i.e. when insufficient data are available, 
subjective assumptions should be made about the probability distribution of the 
input random variable) by applying the Bayesian theory. Thus, first a subjective 
probability is assumed and with the help of prospective observations and test 
results (whenever more data become available) using the Bayesian theory, the 
probability distribution is amended and improved. It is clear that if no reliable 
information is added to the analysis, the Bayesian method does not yield better 
results or predictions of the system response. Regarding the Bayesian approach 
in reliability analysis of geotechnical problems see Baecher and Christian (2003). 
Very recently, Stille et al. (2010) have utilized the Bayesian approach in the 
design of underground structures in combination with the observational method, 
since there is compatibility between these two methodologies and as the design 
can be modified, if necessary, as more information is obtained during the 
tunnelling progress. See also Zhang et al. (2009) in characterising geotechnical 
uncertainty models based on the Bayesian approach. 
 

2.3.1.2 Response surface method 
 
The response surface method can be considered as an uncertainty analysis 
methodology in which the impact of the input parameters and their interactions 
on the system responses are evaluated and comes up with a relationship between 
the significant factors and the desirable system response in order to reduce the 
analysis complexity of the mechanical system (Cornel, 1990). The function 
obtained by this method can replace the original model in an uncertainty analysis. 
Then one of the probabilistic methods is employed (e.g. Monte-Carlo simulation) 
in order to evaluate the system with significantly smaller analysis time, 
maintaining the same number of simulations. Zangeneh et al. (2002) have 
employed this methodology in numerical geotechnical analysis, e.g. the 
displacement analysis of slopes subject to earthquake. The idea is simple and 
attractive but from a practical point of view, it has a shortcoming because it is 
necessary to estimate the response function using regression methods for each 
individual response and it is valid only in the selected ranges of the input 
variables. For cases that many system responses are of interest a great deal of 
statistical analyses and computational efforts are required. 
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2.3.1.3 Stochastic finite element method 
 
In the stochastic finite element method (see e.g. Ghanem and Spanos, 1991) the 
‘stochastic process’ (time dependent characteristics of random variables) and 
‘random field’ (variability of a parameter over space, i.e. spatial variability) 
characteristics of input parameters are engaged in the governing partial 
differential equations, which are to be discretised and numerically solved by 
means of the finite element method. The discretisation of random fields is usually 
accomplished by means of series expansions or by Monte Carlo strategies. An 
extensive review of such strategies has been carried out by Keese (2003). All 
system responses are given in terms of random field vectors, incorporating all 
possible outcomes based on the random field characteristics of input parameters.  
The method can be considered as one of the most sophisticated probabilistic 
methods that require significant changes to a standard finite element code. This 
method has been mainly utilised in structural applications.   
 

2.3.1.4 Random field finite element method  
 
Usually in probabilistic numerical methods, the spatial variability of the soil 
parameters is not taken into account. In other words, the inherent soil 
characteristic, indicating a correlation between soil properties of an element with 
respect to the surrounding elements in a certain distance, is ignored. Instead, a 
soil layer is considered homogeneous with a relevant probability distribution 
which represents the stochastic behaviour of the layer, i.e. at each realisation 
using one of the existing sampling methods (e.g. Monte Carlo sampling) the 
respective soil property is identical within the layer’s elements. However, in the 
Random Finite Element Method (RFEM), soil parameters are modelled by 
random fields. The soil layer is divided into small elements by means of finite 
element discretisation and the sampling is implemented for each individual 
element. Considering the spatial correlation length (which depends on soil 
characteristics) the soil property of the ith element in the random field is assigned 
using the local average subdivision technique. A series of papers presented by 
Griffiths and Fenton have demonstrated the applicability of the method in several 
geotechnical problems (see Griffiths and Fenton, 2007) such as bearing capacity, 
slope stability, footing settlement, and passive earth pressure of spatially random 
soils. Phoon and Cheng (2009) used the random field finite element method for 
the uncertainty analysis of a circular tunnel, modelling the Young’s modulus of 
the soil layer as a random field. Providing the parameters required in RFEM 
needs adequate information about the soil layers which are hardly obtained from 
standard site investigation schemes. This issue reduces the popularity of the 
method in practice; however, it has accommodated a great insight into the real 
soil behaviour from a scientific point of view. 
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2.3.2 Non-probabilistic methods 
2.3.2.1 Interval Analysis 
 
Moore (1966) introduced interval analysis, interval vectors, and interval matrices 
as a set of techniques that provide error analyses for computational results. The 
interval approach is used to describe parameter uncertainties either in geometry 
and loadings or in soil model parameters as interval quantities. The uncertainty is 
assumed to be unknown, but bounded; it has lower and upper bounds without 
assigning a probability structure. 
 
One interpretation of an interval number is a random variable whose probability 
density function is unknown but non-zero in the range of the interval. Another 
interpretation includes intervals of confidence for α-cuts of fuzzy sets. In general, 
the interval concept serves as a basis of other non-probabilistic uncertainty 
models (Muhanna et al., 2007). For example, in the fuzzy set approach a 
continuous membership function of input parameters can be split into several α-
levels with corresponding intervals and the fuzzy set approach turns into several 
analyses on different α-cuts (Kaufmann and Gupta, 1991; Peschl and Schweiger, 
2003). It will also be shown in chapter 3 that in the procedure of the random set 
analysis of a system, a series of interval analyses are performed to obtain the 
worst and best case on the Cartesian product of focal elements of the system 
parameters. Accordingly, knowledge of interval arithmetic is of great 
significance in applying modern uncertainty analysis methods like the Fuzzy 
Analysis, Random Set approach and Interval Analysis in connection with 
numerical models.  
 
In the interval analysis of a mechanical system, the hull of the solution set (S) is 
defined as the narrowest interval containing the results of a system response 
resulting from uncertainties available in the input system parameters. In other 
words, the hull of the solution set contains the set of the solutions. Suppose that 
by internal analysis set X has been obtained as a solution set. Set X is referred to 
as the enclosure of the solution set containing the hull of the solution set. It is 
called a sharp enclosure if the obtained solution (i.e. set X) is practically useful 
and not significantly conservative. The inner bound of the exact solution is any 
interval (i.e. excluding the endpoints of the interval) that is contained in S and the 
outer bound is any interval that contains S.  
 
The objective of interval analysis is to obtain the hull of a solution set or at least 
a rigorous sharp enclosure (outer bounds) for the ranges of system responses. 
From the mid-nineties many researchers have developed methods focusing on 
solving interval system equations for applications in Interval Finite Element 
Analysis (IFEA) including the most common ones: 
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1. Combinatorial method (e.g. Rao and Berke, 1997)  
 
2. Perturbation method (e.g. Qiu and Elishakoff, 1998)  
 
3. Sensitivity analysis method (e.g. Jasiński and Pownuk, 2000)  
 
4. Optimization method (e.g. Möller et al., 2000)  
 
5. Monte Carlo sampling method (e.g. Kulpa et al., 1998) 
 
6. Interval arithmetic FEM (e.g. Muhanna et al., 2007)  
 
Combinatorial method: If  f(x1,…,xn) denotes a monotonic function of the 
parameters within the intervals X1,…, X n, the range of f can be determined by 
considering all possible combinations of the bounds of the interval parameters.      
Let the interval parameters Xi be denoted as Xi=[ ix , ix ]=[xi

l,xi
u]. Introducing all 

possible combinations of the bounds of the interval parameters into the analysis, 
the range of function f can be represented as an interval number as: 

[ ] [ ] n
rr rffff 21:)max(,)min(, K==  (1) 

The primary advantage of this method is that it is straightforward in its 
application to interval FEA. Any existing deterministic finite element code can 
be used for evaluating the considered function f. However, it must be noted that 
the combinatorial method yields the exact response range only if the system 
response is monotonic with respect to each parameter in its interval range. The 
computational cost increases exponentially with the number of interval 
parameters. For n interval parameters, there are 2n combinations for which the 
deterministic FEA has to be performed. The exponential complexity limits the 
applicability of the combinatorial method to systems with a rather small number 
of uncertain variables.  
 
Perturbation method: This method is used when the uncertain parameters vary 
in a very small range. In fact in this method the considered function to be 
evaluated, should be expanded around the mid-point of the parameter interval 
with very small differentials. In the expanded equation higher order parts are 
neglected and other differential parts are substituted by a first-order Taylor 
series. The disadvantage of this method is that the bounds obtained are not 
guaranteed to enclose the true response range since the higher order terms are 
neglected in the equations. More details about this method can be found in Qiu 
and Elishakoff (1998).  
 
Sensitivity analysis method: The sensitivity analysis method determines the 
bounds of the structural responses based on the obtained knowledge about the 
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monotonicity of the responses with respect to the system parameters. Jasiński and 
Pownuk (2000) introduced the method to achieve not only the bounds on the 
system response of a linear interval equation, but also an algorithm in testing the 
system’s monotonicity over the entire interval ranges of the parameters. 
Although the method is able to check the monotonicity of the problem, its 
usability is limited in practice since it requires significant computational effort 
when a large number of interval variables exist. 
 
Optimization method: Another way to find the bounds of the response is to 
perform two optimizations to compute the minimal and maximal responses when 
each parameter x is constrained to belong to an interval X. Möller et al. (2000) 
developed an optimization algorithm combining the evolution strategy, the 
gradient method, and the Monte-Carlo method. The optimization algorithm was 
applied to both static and dynamic linear/nonlinear structural analyses. This also 
has a disadvantage from a practical point of view, because for each response 
quantity, the function has to be optimized twice, in order to find the minimal and 
maximal values. Thus, when a small problem with limited uncertain parameters 
is involved this method becomes more practical. 
 
Monte Carlo sampling method: The Monte Carlo sampling method involves 
sampling from intervals of input parameters expecting that the samples will fall 
sufficiently close to the values accommodating extremal system responses. If the 
number of samples is large enough, the lower and upper bounds of the solution 
set of the simulations could be a good approximation for the actual response 
range. Since the interval parameters do not contain the probability information, a 
probability distribution over the interval should be assumed for the sampling 
purpose. The distribution can be chosen arbitrarily. In practice, a uniform 
distribution over the interval is often chosen for convenience. It should be noted 
that this method, in spite of requiring a great amount of realisations always gives 
the inner bounds for system responses.  
 
Interval arithmetic finite element method: Substituting variables in system 
equations with interval quantities leads to a severe overestimation due to a 
dependence problem addressed by several publications (e.g. Moore, 1966 and 
Neimaier, 1990). Muhanna et al. (2007) enhanced the method of solving the 
interval system equations in order to improve the computational efficiency of the 
interval approach as well as overcoming the severe overestimation of the system 
response ranges using the Element-By-Element technique. This methodology is 
referred to as the “interval arithmetic FEA”. The finite element equations are 
reformulated seeking two objectives: 1) to reduce the repetition of the same 
interval variables in the computations 2) to delay the use of interval arithmetic as 
late as possible in the computations, in order to avoid overestimation in solution 
sets. In a recent development, a new formulation in IFEA has been introduced by 
Rama Rao et al. (2010) in which both primary (e.g. nodal displacements) and 
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derived unknowns (e.g. normal stress in truss elements) in the finite element 
formulation can be estimated sufficiently accurate, which are comparable with 
precise methods such as the combinatorial approach. This approach is able to 
handle a high degree of uncertainty (e.g. 10%) and find the worst case in a truss 
problem with over 10000 interval parameters efficiently and with considerably 
less computational effort in comparison with the combinatorial method. 
 
The Random Set Finite Element Method (RS-FEM) is emphasised in this study 
and as its procedure is explained in the next chapter, a combinatorial method is 
used to handle the required interval analysis. Since this method is recognized as a 
computationally expensive method, it is convenient as long as the number of 
random variables is low. On the other hand, it gives an inner bound solution if 
the system is not monotonic with respect to the input random variables (RVs). 
This issue will be addressed next. Furthermore, employing interval arithmetic 
FEM such as those used for structural problems requires manipulating 
geotechnical software codes and also demands an algorithm dealing with a non-
linear equation system, which is not such a straightforward task and seeks for an 
extensive research in this topic. Therefore it seems that the combinatorial method 
is a practical solution for carrying out the interval analysis inside the RS-FEM 
procedure. Nevertheless, the monotonic behaviour of the system should be 
checked. 
 
As a conclusion, IFEM alone has a limited usage in reliability analysis since the 
resulting computations are in a form of simple intervals lacking probability 
assignments. Thus a probability statement about the results cannot be drawn (e.g. 
probability of failure). On the other hand, the developments lately carried out and 
associated with IFEM can be used to dramatically reduce the computational 
efforts of other non-probabilistic approaches (e.g. fuzzy set analysis and RS-
FEM) that are based on interval analysis.  
 
Monotonicity check 
 
It is not a straightforward task to prove the monotonicity condition for a 
geomechanical boundary value problem, especially in large scale problems 
involving many parameters. For instance, tangential stresses surrounding a 
circular tunnel might be monotonic with respect to the variation of model input 
parameters such as the elastic modulus, cohesion and relaxation factor, while 
another system response like the crown displacement of the tunnel may not 
demonstrate monotonic behaviour. Although such results hardly happen in 
geotechnical problems, prior to performing any interval analysis using the 
combinatorial method, one should make sure that the mechanical system behaves 
monotonically. However, in the author’s opinion, from a practical point of view 
it suffices to check the monotonicity of a geotechnical boundary value problem 
with a simple sensitivity analysis (Peschl, 2004). Alternatively, a more rigorous 
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sensitivity analysis such as the monotonicity tests given by Rama Rao and 
Pownuk (2007) or an optimisation scheme (Moeller et al., 2000) could be 
employed. Of course the latter methods are more time consuming and demand   
higher computational effort.  
 
In the case of truss problems, however, it can be mathematically shown (see 
Neumaier and Pownuk, 2007) that the monotonicity properties exist only when 
the stiffness parameters are involved and vary independently. This can be proven 
because a special form of linear system of equations arises in truss modelling. In 
a highly nonlinear complex geotechnical problem the monotonicity proof 
however, is so complicated that it demands a separate investigation which is 
beyond the scope of this study.  
 
According to Pownuk (personal correspondence) many problems are monotone 
with respect to many parameters, however, unfortunately it cannot be generalised 
to all mechanical problems and their respective parameters. For instance, in the 
general case of FEA, when the stiffness matrix involves intervals, the 
monotonicity is not guaranteed (McWilliam, 2000), and the interval obtained for 
the system response is only an inner bound of the true response range. Therefore, 
prior to performing any interval analysis using the vertex method (e.g. Dong & 
Shah, 1987) one should make sure by one of the current methods (e.g. 
monotonicity test given by Rama Rao and Pownuk, 2007) that the system is 
monotone to obtain the hull of the solution set for the desired system responses. 
 

2.3.2.2 Fuzzy Method 
 
The overall approach of the fuzzy method may be subdivided into three main 
stages: 1) fuzzification 2) fuzzy analysis 3) defuzzification. The mapping of the 
fuzzy input values onto the result space is based on the extension principle in 
combination with the Cartesian product. In fuzzy analysis, the theory of 
possibility for fuzzy sets is used, which considers epistemic uncertainty. The 
fuzzy approach to uncertain problems is to mathematise the model parameters 
including geometrical, loading and soil model parameters as fuzzy quantities 
(Zadeh, 1965).  
 
A fuzzy set is defined by its membership function whose domain is ℜ while its 
range is bounded between [0,1]. The domain of the membership function is 
known as the interval of confidence and the range is known as the degree of 
membership. Therefore, each degree of membership α (α-cut membership, 
α∈[0,1]) has a unique interval of confidence Aα=[aα,bα], which is a 
monotonically decreasing function of α (Fig. 3). 
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Fig. 3: Membership function of the cohesion of a soil layer as a fuzzy 

number, constructed from a histogram 
 
The construction of a fuzzy set describing input variability may be based on an 
expert’s opinion of possible ranges of e.g. the angle of internal friction. Of 
course, in this method a subjective shape should be chosen for the membership 
function (e.g. a triangle). Another approach based on the existing data comprised 
of samples, may be utilized in the form of normalised histograms. An example of 
a triangular fuzzy number is given in Fig. 3. Assigning a membership function to 
the available data is called fuzzification. In this stage simplifications and 
approximations are introduced. In this example, it can be interpreted that the 
expert had assigned the degree of possibility 0.5 that the cohesion is in the range 
of [15, 35] and a possibility of 1 that it has the value of 22 kPa. The computation 
of the fuzzy set approach can be performed based on the rules of the fuzzy set 
theory by adopting the α-level discretisation of input variables to obtain the 
corresponding output of the same possibility level (fuzzy analysis). Finally, 
deterministic parameters of the system responses are extracted from the fuzzy 
results, which are presented in numbers (defuzzification).   
 
Some researchers have attempted to apply the fuzzy approach in reliability 
analysis but using different terminology and interpretations concerning the 
resulting reliability. For instance, Peschl and Schweiger (2003) utilise the 
possibility of failure, ΠΠΠΠf for describing the safety level of a geotechnical 
structure. Dodagoudar and Venkatachalam (2000) studied the reliability analysis 
of slopes using the term ‘fuzzy probability of failure’. Shrestha and Duckstein 
(1998) defined a kind of fuzzy reliability index and in the framework of fuzzy set 
theory, computed the probability of a fuzzy failure by introducing the fuzzy 
reliability measure that satisfies the necessary properties of the probabilistic 
reliability measures. 
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Probability of failure given by possibilistic methods e.g. Fuzzy Point Estimate 
Method (e.g. Dodagoudar and Venkatachalam, 2000) can be considered as the 
upper bound for the probability. For instance, Smith et al. (2002) exemplified a 
case in which the fuzzy membership function for a random variable is 
constructed based on the mean value and standard deviation of a random 
variable, and showed that the possibility of failure obtained by fuzzy analysis is 
1.0 while the probability of failure is only 0.5. In general, a high degree of 
possibility does not necessarily mean a high value of probability (Dodagoudar 
and Venkatachalam, 2000). On the other hand, when an event is not possible it 
also implies the event is improbable. 
 
The random set approach and fuzzy set method are similar to each other in the 
sense of their concept, although the former takes benefits of probability concepts 
and the latter is backed by possibility theory. According to Tonon (2000a) 
random sets are is able to deal with imprecise data as a special kind of 
‘ambiguity’ that is properly formalised by the concept of fuzzy sets introduced 
by Zadeh. In addition, a special case of random set, namely the consonant sets 
(discussed in Chapter 3) in which each focal element contains each other, can be 
interpreted as α-cuts of a fuzzy set and consequently, the plausibility and belief 
function in the random set conform with the possibility and necessity function in 
possibility theory respectively. 
 

2.3.2.3 Imprecise probability method based on p-box 
representation 

 
A probability-box or p-box (Ferson et al. 2003) is a pair of CDFs which represent 
the imprecise probability distribution of a random variable as depicted in Figure 
4. It is able to consider all possible distribution types that might lie within these 
two bounds. This representation of uncertainty is very similar to the random set 
representation but they are structurally different, as will be discussed in Chapter 
3. Using the p-box representation, two methods can be applied alternatively in 
combination with finite element analysis or any other computational tool for 
reliability analysis; 1) Monte Carlo-based solution (Zhang et al. 2010a) 2) 
discretised p-box (Zhang et al. 2010b). 
 
In the Interval Monte Carlo method, as graphically illustrated in Figure 4a, one 
can randomly generate intervals for each RV of the problem using a standard 
uniform random number ui.  Upon each sampling, the problem is turned into an 
ordinary Interval Finite Element Analysis. Therefore, the system responses are 
obtained in the form of intervals and after a large number of realisations, the 
frequency distribution of the response’s intervals can be plotted, which look like 
input p-boxes.   
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In the discretised p-box approach, a uniform discretisation as depicted in 
Figure 4b is employed to split the p-box structure into several sets (the 
discretisation method is arbitrary) with equally associated probability 
assignments. From this stage on, the problem is treated like a random set 
analysis. Therefore, a Cartesian product of the generated sets or intervals is to be 
constructed for obtaining input intervals for all required realisations. Obviously 
in this method, the number of realisations depends on the number of subdivisions 
carried out in the discretisation method.  
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Fig. 4: Imprecise probability method based on p-box representation              

a) discretised probability-box, A1 to A4 are the produced focal 
elements with the respective probability assignments m1 to m4          
b) Monte Carlo-based random intervals (after Zhang et al. 2010b) 

 
One of the disadvantages regarding this method is that basically imprecise 
probabilities are of interest, when scarce information is available and 
consequently two probability distributions required for upper and lower bounds 
are to be defined on the basis of subjective assumptions unless abundant set-
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based observations would have been carried out. Secondly, a large amount of 
simulation is needed like any Monte-Carlo sampling method to give a correct 
answer.  

2.4 Adopted approaches in this study 
 
In this Chapter, a short summary of common methodologies for the evaluation of 
an uncertainty model in mechanical systems has been presented along with their 
main advantages and disadvantages.  Basically the non-deterministic methods are 
divided into two main categories, non-probabilistic and probabilistic methods. In 
this work one method from each branch of the non-deterministic methods shown 
in Figure 2 has been selected. Although due to the characteristics of information 
usually available in tunnelling problems, in this study the Random Set Approach 
is proposed to deal with the uncertainties involved and the main emphasis has 
been given to this approach. On the other hand, Point Estimate Method is still 
appealing for engineering practice and therefore one chapter is devoted to 
evaluating the shortcomings and benefits of this probabilistic method in 
tunnelling. 
 
The Random Set Finite Element Method (RS-FEM) and the Point Estimate 
Method will be explained further in detail in Chapters 3 and 6. In the following, a 
summary of arguments in employing these methods are mentioned. 
 
Random Set Approach 
 
In short, in random set, set valued information (focal elements) with given 
probability measures (probability assignments) are combined together leading to 
probability bounds in terms of discrete cumulative distribution functions (CDF). 
The bounds comprise any distribution compatible with the existing data 
including the actual distribution. The Random set procedure maps the inputs onto 
the system response, also in terms of probability bounds. This approach has 
many similarities to other aforementioned non-probabilistic methods such as the 
fuzzy set and p-box approach. For instance, both random set and fuzzy set 
approaches are supported by set theory and interval analysis would be an integral 
part of their solution procedure. However, in Random Set the independence of 
the individual information sources are preserved while in the p-box approach a 
set is randomly taken by the Monte-Carlo process at each simulation. Random set 
is concerned with the probability of events while in fuzzy set, the possibility of 
events are measured.  
 
Random Set Theory provides a powerful framework in which different sources of 
information may be combined, whereas it will be shown in the next section that 
fuzzy sets can convolute different information only when special conditions exist 
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(consonant sets are available). In this respect, random sets are more general than 
fuzzy set. 
The random set is attractive in the sense that it enables engineers to consider both 
aleatory and epistemic types of uncertainty. On the other hand in tunnel 
engineering due to the linear nature of tunnel projects usually very limited 
investigation programs are available at the beginning of the design stage, which 
leads to very sparse and scarce data. Consequently, the geotechnical properties 
mostly appear in ranges without probability measures attributed across the 
ranges. In such conditions, the random set approach is proposed and preferable. 
 
Point Estimate Method 
 
Point Estimate Method is one of the probabilistic methods. In brief, the 
probability distribution of input parameters is substituted by single values and 
their respective predefined weights. The uncertainty model is evaluated with the 
predefined sampling points and as a result, the statistical moments of system 
responses that are of interest, are estimated.  
 
This method in the sense of simplicity (from a practical point of view) as well as 
its relatively low number of simulations is favourable, although there are 
disadvantages whose details are discussed in Chapter 6. Part of the study has 
been devoted to identify the possible limitations and merits of such a method in 
tunnel problems by comparison with the results of the random set approach. 
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3 Random Set Finite Element Method in 
Tunnelling 

 
The random set theory developed by several authors (e.g. Kendall 1974, 
Matheron 1975, Goodman 1985, and Dubois 1991) has provided an appropriate 
mathematical model to cope with uncertainty while overcoming some of the 
drawbacks of "classical" probability theory, which is not well suited to deal with 
imprecise data. In practical geotechnical engineering, subjective assumptions 
about the probability density function of parameters are often made because in 
many cases the results of geotechnical investigations are set valued rather than 
being precise and point valued. Tonon et al. (1996, 2000a, b) used Random Set 
Theory (RST) to deal with the uncertainty in geomechanical classification of 
jointed rock masses and reliability analysis of a tunnel lining. Peschl (2004), 
Schweiger et al. (2007) have combined Random Set Theory with the finite 
element method, developing the Random Set Finite Element Method (RS-FEM), 
which is practiced in this Chapter. They illustrated the applicability of the 
developed framework to practical geotechnical problems and showed that in 
early design phases RS-FEM is an efficient tool for reliability analysis in 
geotechnics, being complementary to the observational method.  
 
For tunnel excavation problems, numerical methods are frequently employed to 
assess both the stability and deformation behaviour. Material parameters for 
modelling the behaviour of the ground and the support measures are based on 
geotechnical investigations and frequently derived from experience. In order to 
account for uncertainties in material parameters, which are inevitable due to 
heterogeneities and the limitations of site investigation schemes, the scattering of 
in-situ behaviour is reflected in geotechnical design reports by defining values 
within a certain range. However, in numerical calculations this is commonly 
replaced by deterministic analysis with characteristic values and a limited 
variation of different parameter combinations. In order to do that, ground 
conditions are usually divided into homogeneous sections. It is shown in this 
chapter that the Random-Set-Finite-Element-Method (RS-FEM) provides a 
convenient tool to account for the scatter in material and model parameters 
(Tonon et al. 2000b) and thus can significantly increase the validity of numerical 
analyses. In addition, a comparison between calculation and field measurements 
allows an assessment of the quality of the geotechnical model whereas it has to 
be emphasized that in-situ measured values will also vary within a 
"homogeneous" section and thus are also available in ranges. The basic concepts 
of RST and RS-FEM procedures have been presented by Tonon (1996) and 
Peschl (2004), however, a summary of the most important aspects will be 
provided in the following section for continuity. 
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3.1 Concept of random set theory 
 
Random set theory provides a general framework for dealing with set-based 
information and discrete probability distributions. It yields the same results as 
interval analysis, when only range information is available and under certain 
conditions similar to result of Monte-Carlo simulations (Peschl 2004). 
Let X be a non-empty set containing all the possible values of a variable x. 
Dubois & Prade (1990, 1991) defined a random set on X as a pair (ℑ,m) where ℑ 
= {Ai : i = 1,…,n} and m is a mapping, ℑ→[0,1], so that m(Ø) = 0 and 

∑
ℑ∈

=
A

Am 1)(  (2) 

ℑ is the support of the random set, the sets Ai are the focal elements and m is the 
basic probability assignment. Each set, A∈ℑ, contains some possible values of 
the variable, x, and m(A) can be viewed as the probability that A is the range of x. 
As an example, each set Ai could be the result of an interval valued measurement 
and m(Ai)  its relative frequency in a sample (see Tonon et al. (2000a) for an 
example of such a situation in rock engineering). Alternatively, the sets Ai could 
be ranges of a variable obtained from source number i with relative credibility mi. 
Because of the imprecision, it is not possible to calculate the probability of a 
generic x∈X or of a generic subset E⊂X, but only lower and upper bounds on this 
probability. Random set theory is one of the theories that deal with imprecise 
probabilities (Walley 1991); in this case, imprecise probabilities are expressed by 
the intervals [Bel(E), Pl(E)] where the belief function, Bel, of a subset E is a set 
function obtained through the summation of basic probability assignments of 
subsets Ai included in E ; and the plausibility function, Pl, of subset E is a set 
function obtained through the summation of basic probability assignments of 
subsets Ai having a non-zero intersection with E. They are bounds for all possible 
probabilities of the event E. 
 

3.1.1 Bounds on the system response 
 
Random set theory provides an appropriate mathematical framework for 
combining probabilistic as well as set-based information, in which the extension 
of random sets through a functional relation is straightforward (Tonon et al. 
2000a). Let f be a mapping X1×…×XN →Y and x1,…,xN be variables whose values 
are incompletely known. The incomplete knowledge about the vector of basic 
variables x = (x1,…,xN) can be expressed as a random relation R, which is a 
random set (ℑ,m) on the Cartesian product X1×…×XN. The random set (ℜ,ρ), 
which is the image of (ℑ,m) through f is given by (Tonon et al. 2000b): 
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If A1,...,An are sets on X1×…×XN respectively and x1,…,xN are stochastically 
independent, then the joint basic probability assignment is given by 

∏
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If the focal set Ai is a closed interval of real numbers: Ai = {x | x ∈ [l i,ui]}, then 
the lower and upper cumulative probability distribution functions, respectively 
F

*
(x) and F*(x), can be obtained given by Equations 6 and 7 at some point x 

which are illustrated in Figure 5. 
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Fig. 5: Upper and lower bounds of random set input (after Peschl, 2004)  
 
The basic step is the calculation of the image of a focal element through the 
function f by means of Equations 3, 4. The requirement for optimisation in order 
to locate the extreme elements of each set Rj∈ℜ (Equ. 3) can be avoided if it can 
be shown that the function f(Ai) is continuous in all Ai∈ℑ and also no extreme 
points exist in this region, except at the vertices, in which case the methods of 
interval analysis are applicable, e.g. the Vertex method (Dong & Shah 1987). 
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[ ]iii ulAf ,)( =  (8) 

Assume each focal element Ai is an N-dimensional box, whose 2N vertices are 
indicated as νk, k = 1,…,2N. If the vertex method applies, then the lower and 
upper bounds Rj*  and Rj

* on each element Rj∈ℜ will be located at one of the 
vertices: 
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Thus function f(Ai), which represents a numerical model in the RS-FEM 
framework, has to be evaluated 2N times for each focal element Ai. The number 
of all calculations, nc, required for finding the bounds on the system response is: 
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Where N is the number of basic variables and n the number of information 
sources available for each variable. 
 
In order to combine these sources an appropriate procedure is required if more 
than one source of information is available for one particular parameter. Suppose 
there are n alternative random sets describing some variable x, each one 
corresponding to an independent source of information. Then for each focal 
element A∈X 
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3.1.2 Types of random set and visualisation 
 
A random set, evidence or sets of information can be represented in three 
different formats as follows: 
 

1. Random intervals with their respective basic probability weights 
2. Contour function or plausibility of singleton.  
3. Lower and upper cumulative distribution functions or p-box 

 
The first type of random set format preserves the most information in itself, 
whereas the other two formats, despite having some advantages, lose some 
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information relating to the original sets. For instance, an infinite number of 
random sets containing different focal elements can be fitted into certain Pl(E) 
and Bel(E) functions given in the format of a contour function or p-box, where E 
is an arbitrary event.  
 
An alternative to the visualisation of a random set can be presented through its 
contour function (Shafer, 1976) over the basic variable x, assigning each 
singleton x its plausibility; x → Pl({ x}). This contour function is obtained by 
summing up the probability assignments mi of those focal elements Ai to which x 
belongs. Figure 6 depicts a random set composed of 4 focal elements and the 
corresponding contour function which in some references are called the 
plausibility of singleton x. 
 
A random set is presented in terms of contour functions when it is either 
composed of a family of confidence intervals (Fetz and Oberguggenberger, 2009) 
using Tchebycheff’s inequality or all focal elements are nested. From the contour 
function, one can readily derive the possibility function or membership function 
of a fuzzy set equivalent to the random set. 
 
Four types of random set are considered from multiple sources that one might 
encounter in practice: 1) consonant sets, 2) consistent sets, 3) arbitrary sets, and 
4) disjoint sets. 
 
Consonant sets can be represented as a nested structure of sets where the 
elements of the smallest set are included in the next larger set, all of whose 
elements are included in the next larger set and so on. This can correspond to the 
situation where the information obtained over time increasingly narrows or 
refines the size of the sets. On the other hand, if the configuration of the random 
set lies within the next three categories, it is called a dissonant type of random 
set.  
 
Consistent sets insinuate that there is at least one focal element that is common 
to all sets. 
 
Arbitrary sets correspond to the situation where there is no focal element 
common to all sets, though some sets may have elements in common. One 
possible configuration has been illustrated in Figure 7. 
 
Disjoint sets imply that any two focal elements have no common elements in any 
other set. 
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Fig. 6: Types of random set visualisation: a) random interval b) contour 

function c) p-box 
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Fig. 7: Types of random set: a) consonant b) consistent c) arbitrary 
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Fig. 7: continued, Types of random set: d) disjoint 
 

3.2 Procedure of the RS-FEM 
 
The merits of numerical modelling using the Finite Element Method in 
estimating deformations and internal forces of complex geomechanical structures 
are evident. The Finite Element Method has obtained considerable reputation 
over the last decades in solving practical problems by introducing advanced 
constitutive models, which can describe the material behaviour more accurately. 
Particularly in tunnelling problems -which in this work are the main concern- a 
very limited number of closed form solutions are available. They are very 
simplified and valid only under specific conditions (e.g. unsupported circular 
deep tunnel surrounded by a single layer homogeneous material) and also they 
are not capable of considering all aspects of underground structures’ behaviour. 
Moreover, other methods such as limit equilibrium and limit analysis theorems 
have limitations in assessing all aspects of ground behaviour and accordingly 
have limited usability in reliability analysis. This study takes advantage of both 
FEM and the concepts of random set analysis to accommodate a procedure in 
which a reliability analysis can be performed. Reliability analysis is of great 
importance especially in the case of scarce data, where a sufficiently accurate 
probability distribution function cannot be provided to perform a full 
probabilistic reliability analysis. Another advantage of RS-FEM is that there is 
no need to modify the available Finite Element Codes, and any commercial FE 
software can be used for performing the required deterministic calculations. 
Figure 8 graphically illustrates the items that should be followed in the RS-FEM 
and are summarized in the steps below: 
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1. Defining the geometry or geometries of the problem, the preparation of 
the respective master files and the FE model, selecting an appropriate 
constitutive model for material and support elements. 

 
2. Selecting the input parameters that should be considered as basic variables 

in the random set analysis and providing the expected ranges from 
different sources of information (random sets).  

 
3. Uncertainty reduction over the selected random sets, which show spatial 

variability considering the length of the possible failure mechanism in the 
model. This step requires the determination of spatial correlation length as 
well as an estimation of the length of the possible failure line.  

 
4. RS-FEM has exponential complexity, which means the computational cost 

increases proportional to 2N (N is the number of basic random variables). 
This entails employing a sensitivity scheme to identify the variables that 
have negligible effect on desired results even if there is a wide uncertainty 
on them, in order to reduce the computational effort.  

 
5. Computation of the calculation matrix, which includes the defined 

parameter combinations, the preparation of deterministic FE files and the 
relevant probability share of the individual calculation considering the 
dependencies (correlation coefficients) between the basic random 
variables involved (see Peschl 2004). 

 
6. Finite element calculations and determination of results such as stresses, 

strains, displacements and internal forces in support elements in terms of 
bounds on discrete cumulative probability functions, which may be 
compared to measured data once they become available. Subsequently 
fitting the resulted CDF’s using the best-fit methods, in order to achieve a 
continuous distribution function. For this step, commercial software such 
as the package @RISK® (Palisade, 2008) can be employed. 

 
7. Definition of suitable performance functions. This definition is of 

paramount importance and is a crucial step in the analysis. For example a 
function can be defined over the critical deformations such as tunnel 
crown displacement to control the required clearance of the tunnel and/or 
maximum stresses carried by shotcrete lining. The performance function 
can be evaluated with results (bounds on continuous distribution functions 
of the evaluated system parameters) from the finite element calculations, 
in order to obtain a range for the probability of failure or unsatisfactory 
performance.  
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Fig. 8: RS-FEM procedure (Modified from Peschl, 2004) 
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Basically preparation of a master file is required to incorporate all the important 
specifications of the tunnel problem. The master file should be evaluated before 
start of the duplication in order to construct all the deterministic FE files, to be 
assured that it can numerically model the actual behaviour of the system as 
accurately as possible. Next, this master file is duplicated as required according 
to the calculation matrix. If a geometry uncertainty is involved, several master 
files must be prepared based on different geometry models. The finite element 
code Plaxis V9 (Brinkgreve & Broere, 2008) is utilised for all the random set 
finite element calculations given in this thesis. An appropriate pre- and 
postprocessor is required for the preparation of input files and retrieving the FE 
results, to minimize manual labour time. To do so, one can take benefit of the 
calculation manager and sensitivity option in the calculate menu of Plaxis, which 
facilitates performing successive calculations and extracting the desirable FE 
results for further reliability analysis. In addition, appropriate Excel files have 
been generated to prepare the calculation matrix, the material needed for input 
files and to present the results in terms of lower and upper discrete cumulative 
distribution functions.  
 
The application of RS-FEM analysis in tunnelling is illustrated through a case 
study in the following section. The objective of this chapter is to demonstrate 
efficiency, applicability and convenience of such analysis prior to tunnel 
construction. Furthermore, in combination with the observational method the 
current procedure can be considered a tool using information -that is constantly 
being updated by newer observations- to control the efficiency of support 
elements. 
 

3.3 Principles of NATM and historical background 
 
When excavating tunnels according to the principles of the New Austrian 
Tunnelling Method (NATM), it is aimed to preserve and improve the potential of 
the ground to support itself by utilising an arching effect in the surroundings of 
the tunnel as much as possible. Therefore, a certain amount of deformation of the 
tunnel cross section has to be allowed, while on the other hand, too large 
deformations that lead to the loosening of the ground have to be avoided to arrive 
at an equilibrium. 
 
Following the NATM principles in poor or difficult ground conditions, to 
provide sufficient stability at construction stage, the tunnel cross section is 
frequently divided into several phases. Various excavation sequences have been 
applied in practice to provide the required stability and to avoid excessive 
settlement and disintegration of ground material surroundings of the excavation 
area. One of the typical NATM construction sequences for middle-size cross 



30  3 RS-FEM in Tunnelling 

sections in which the tunnel’s width is not so wide, consists of three major phases 
namely top-heading, bench, and invert. 
For the first time Rabcewicz (1962) introduced a new concept and philosophy of 
tunnelling in a lecture at the Geomechanics Colloquium in Salzburg and 2 years 
later he published the English version of that in 1964 entitled “The New Austrian 
Tunnelling Method“, and emphasised the role of the surrounding rock as a part of 
the tunnel support system which is believed to be the key principle of NATM. 
Rabcewicz, Müller and Pacher are often referred to as the "fathers" of the 
NATM. Since 1972, the hypothesis of Pacher (1964) concerning the trough 
shaped ground response curve, the minimization of the rock pressure, and the 
lining thickness based upon it has become more and more central to the concept 
of the NATM (Karakus and Fowell 2004). Müller had also large contribution to 
NATM in his professional career by publishing several papers to establish the 
NATM principles, avoiding misunderstandings in NATM concepts, and 
removing the misconceptions (e.g. Müller 1978 and 1990).  
 
The three most important design principles of NATM, which can be derived from 
many references, e.g. Health and Safety Executive (1996), Müller (1990), 
Schubert et al. (2000), can be summarized in the following concepts:  
 

1. The tunnel lining and the construction sequence should be designed in 
such way that ground around the excavation could carry the overburden as 
much as possible, on the basis of arching effects and plastic stress 
redistribution, which naturally occurs due to excavation in the ground; and 
a relative light primary lining consists of sprayed shotcrete in combination 
with rock bolts (if required) should carry the rest and provide a safety 
required for performance of the tunnel structure. 

 
2. The displacements should be controlled and be kept within two limits to 

accommodate the following two purposes: 
 

� The lower limit of displacement is set in a manner to purposely 
designate the ground a major contribution of the overburden -
before the installation of the lining- in order to achieve a lighter 
retaining structure and subsequently an economical tunnelling. In 
addition, it implies that deformations should not be completely 
stopped by the support right after installation and the structure 
needs to be relatively flexible. The case of shallow tunnels situated 
in urban areas is an exception, in which even small amounts of 
displacement are not allowed to occur in order to control the 
surface settlement trough. 

 
� The upper limit of displacement is required to avoid the 

deformations going beyond a critical level, where disintegration 
(loosening) of the rock mass/soil occurs. The deformation 
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constraints regarding the performance of the structure or allowable 
surface settlement should be satisfied.  

A systematic deformation measurement is required to evaluate the assumed or 
predicted behaviour of the rock mass and the retaining system, to observe the 
stabilization process and provide information for optimisation of supports and 
measures. Despite the development of analysis tools the reliability of the 
preliminary design is still low because of 1) the existence of a number of 
uncertainties in the ground model 2) the difficulties to assess the ground 
properties in an appropriate manner. Therefore, observation during construction 
should be considered as an integral part of the method to appropriately adjust the 
excavation method and support to the ground conditions. 

3.4 Application of RS-FEM to tunnel excavation case 
study 

 
To demonstrate the applicability and efficiency of RS-FEM in geotechnical 
practice, a real case study has been chosen, namely a tunnel excavation located in 
the south of Germany. The original design has been accomplished by means of a 
conventional deterministic approach on the basis of characteristic material 
properties. Random set approach was carried out to estimate the most probable 
ranges of results considering the existing uncertainty based on the state of 
knowledge prior to the start of the construction. In this analysis, particular 
attention is given to two important issues in tunnelling; first, tunnel closure or 
convergence for the matter of maintaining the clearance of the tunnel section; 
and second, satisfactory performance of shotcrete lining regarding safety issues. 
Ultimately in this Chapter, the advantages of the current approach will be 
identified by performing these analyses and comparing them to the standard 
design approaches and the measured values. 
 
The tunnel has a cross section of 15×12.3 m width and height respectively, and 
has a total length of 460 m. The overburden along the tunnel axis varies between 
7.5 to 25 m. It is excavated according to the principles of the New Austrian 
Tunnelling Method (NATM) with three main construction phases to be 
considered in the analysis: excavation of top heading, excavation of bench and 
finally the invert. NATM principles and historical background are briefly 
introduced in the next section. In general, the tunnel is situated in a hard rock 
mass except for the portal areas (zone I) and a limited zone located about 130m 
away from the portal of the tunnel where the rock mass has been faulted (zone 
III) and weathered rocks are prevailing. Considering these differences in ground 
conditions, three homogeneous zones, indicated as I, II and III in Figure 9 can be 
identified. In this chapter focus is on zone I where ground conditions are less 
favourable and the overburden is low (7.5 m). For this section it is justified to 
consider the rock mass as homogeneous material. Due to the fact that the original 
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design has been made employing a simple Mohr-Coulomb constitutive model, 
this has been preserved in the RS-FEM analysis. 
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Fig. 9: Longitudinal profile of the tunnel 
 
The geometry and finite element mesh including some model specifications are 
illustrated in Figures 10 and 11. Approximately 670 15-noded triangular 
elements have been used.  
 
In the geotechnical report the material parameters have been specified in ranges, 
which are summarized in Table 1. The design of section BQ1 has been based on 
a deterministic finite element analysis using the parameters presented in Table 1, 
which are within the aforementioned range. Elastic beam elements and elasto-
plastic geomembrane elements were used to model the shotcrete lining and 
anchors respectively. The specifications of the structural elements are 
summarized in Table 2. 
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Fig. 10: Geometry of the tunnel 
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Fig. 11: Tunnel section BQ1 in 2D finite element mesh 
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Tab. 1: The range and reference value of MC-model parameters extracted 
from geotechnical report for zone I  

 

Parameter Zone γ Eref c ϕ K0
nc  ν 

  [MN/m3]  [MN/m2] [kPa] [°] [-] [-] 

Range I 24 75-150 50-80 20-22 0.4-0.6 0.35 

Ref. value I 24 125 70 21 0.5 0.35 

 
Tab. 2: Parameters for structural elements 
 

E-modulus Support 
element Location Type 

young old 

Plastic    
Limit 
Force 

Thickness   
/Diameter 

   [MPa] [kN] [cm] 

Shotcrete Top-heading Elastic 5000 15000 - 30 

Shotcrete Bench Elastic 5000 15000 - 30 

Shotcrete Invert Elastic 5000 15000 - 20 

Anchor T.H., B., I. Elasto-
plastic 210000 200 2.2 

  

3.4.1 Procedure for determining basic variable sets in a 
random set model 

 
In order to determine the required sets used in the random set analysis, the 
following four steps have to be considered: 

3.4.1.1 Determination of basic variables 
 
First, all model parameters and material properties that are considered to have a 
pronounced effect on the system response have to be identified by engineering 
judgement and this is not always done easily. In the present study, 6 important 
parameters were selected for further analysis, namely the angle of internal 
friction ϕ, the effective cohesion c, the coefficient lateral earth pressure K0, the 
stiffness modulus from one-dimensional compression tests Es, the Young's 
modulus of young shotcrete Esh as well as the relaxation factor Rf which takes the 
3D effects of the construction process into account in an approximate manner in 
the 2D model. The choice depends on the problem at hand and if in doubt 
whether or not a particular parameter plays a significant role, it should be 
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included at this stage because as will be shown in the section 3.4.1.3, a rigorous 
assessment of the influence of each parameter is carried out.  
 
The random sets are collected for each basic variable in form of ranges from 
reliable sources such as geotechnical reports, expert opinion, comparison of 
similar projects, and the literature. At least two sets are desirable for the basic 
variables in order to produce results in the form of reasonable probability 
distributions; otherwise the outcome will appear as a simple interval. 
 
Tab. 3: Basic variables of rock mass, relaxation factor, Rf, lateral earth 

pressure coefficient at rest, K0, shotcrete elastic modulus of young, Esh 

 
Set Probability Es c ϕ 

No. assignment MN/m² kPa ° 

1 0.5 75-150 50-80 20-22 

2 0.5 100-200 60-90 18-24 

Design value - 125 70 21 

 
Tab. 3: Continued 
 

Set Probability Esh K0
nc  Rf  

No. assignment GPa -    Phase No. 
    1 2 3 

1 0.5 3-6 0.4-0.6 0.4-0.6 0.3-0.5 0.2-0.4 

2 0.5 4-7 0.5-0.7 0.3-0.5 0.2-0.4 0.1-0.3 

Design value - 5 0.55 0.5 0.25 0.25 

 
Here, the basic variables are obtained from two sources, first, from the 
geotechnical report, which is based on a number of laboratory and in-situ tests 
and second, from expert knowledge that is derived from previous experiences of 
similar projects. They are summarised in Table 3. In principle, a different 
probability assignment to each set can be defined in case one recognises that 
some sources are more reliable in comparison with others. In this case, 
probability assignments of both sources are equal to 0.5, which means there is no 
preference and both data sources have equal influence on results. 
 
The basic variables are illustrated in Figure 12 and 13 in terms of upper and 
lower cumulative distribution for both original data sets and spatially correlated 
ones. To allow for spatial variability of the soil parameters, a modification is 
carried out on primary data sets using variance reduction technique, which is 
explained in the next section. 
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Fig. 12: Random sets of input parameters: friction angle, ϕ, cohesion, c and 

elastic modulus of rock mass, Es 
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Fig. 13: Random sets of input model parameters: earth pressure coefficient at 

rest, K0, Relaxation factor, Rf and shotcrete elastic modulus of young, 
Esh 
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3.4.1.2 Variance reduction technique 
 
It is well-known that the variance of soil properties of large specimens or in-situ 
tests that mobilise a large volume of soil is less than that of small specimens or 
in-situ tests that mobilise only a small soil volume. Accordingly, it is possible to 
reduce the uncertainty of soil properties in a boundary problem value by means 
of the variance reduction technique. Vanmarcke (1983) proposed the variance 
reduction factor which can be estimated by a simple formula leading to a relation 
between the reduction factor and the distance over which the soil parameter is 
averaged (Equ. 13). 
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Here Г = variance reduction factor; Θ = spatial correlation length; L = length of a 
potential failure surface. 
 
In this study, an alterative approach based on the Vanmarcke method, suggested 
by Schweiger & Peschl (2005) has been adopted that applies the variance 
reduction technique for the random set theory. If n sources of information are 
assumed, the function of the spatial average of the data xi,Γ can be calculated 
from the discrete cumulative probability distribution of the field data xi, using 
Γ from Equation 13 as given in Equations 14 and 15. 
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Tab. 4: Basic variables used in RS-FEM considering spatial variation 

 
Es c ϕ 

Set No. 
MN/m² kPa ° 

1 79-158 52-82 19.7-22.3 

2 96-192 58-88 18.3-23.7 

 
Typical values of spatial correlation lengths, Θ, for soils as given e.g. by Li & 
White (1987) are in the range 0.1 to 5 m for Θy and from 2 to 30 m for Θx. The 
spatial correlation length for this study is assumed to be 10 m. Applying the 
described procedure leads to a slight change in the parameters of the basic 
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variables, which are summarised in Table 4 and depicted in Figure 12 in the form 
of discrete cumulative probability distributions. 

3.4.1.3 Sensitivity analysis 
 
The main purpose of the sensitivity analysis the following:  
 

1. Identifying the most influential input parameters governing the desirable 
system responses.  

2. To investigate the monotonic behaviour of the mechanical system 
 
The reduction of the number of basic variables, which are actually considered in 
the formal RS-FEM analysis, is accomplished by means of a sensitivity analysis. 
This is essential in order to reduce the number of required finite element runs. 
For instance 1024 finite element runs are required if 5 basic variables with two 
sets each are taken into account (see Equ. 11) while this amount is decreased to 
256 runs in case of 4 basic variables.  
 
A relatively simple sensitivity method given by U.S. EPA: TRIM (1999) is used, 
which has been extended and made compatible with the random set approach by 
Peschl (2004). In this method three major coefficients, namely sensitivity ratio 
(Equ. 16), sensitivity score (Equ. 17) and relative sensitivity (Equ. 18) of each 
input variable with respect to any system response are calculated. Figure 14 
illustrates the parameters used in the formulas 16-18. The ratio of the change in 
model output per unit change of an input variable is called sensitivity ratio. In the 
process of random set analysis, sensitivity analysis is recommended to be carried 
out over both a small and a large amount of change in input variables which are 
called local and range intervals respectively (Fig. 14). For instance, in the 
calculation of range sensitivity ratio, an input variable, xR, is varied across the 
entire range of the random set. As it can be seen from Figure 14, the results can 
be also used to some extent in recognizing the monotonicity of the system 
response. The total number of 4N+1 calculations are needed to accomplish the 
sensitivity analysis. 
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When the sensitivity ratio is weighted by some characteristic of the input variable 
(e.g. standard deviation over mean, σ/µ) the sensitivity score will be obtained, 
which makes the sensitivity ratio independent from the units of the variable. In 
this work, the ratio of total range over reference value, x, is used instead of σ/µ. 
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After the calculation of the sensitivity score of each variable, ηSS,i, on respective 
results A, B,… (e.g. displacements, forces, factor of safety and etc.) the 
sensitivity matrix is constructed as shown in Table 5. The sensitivity score of 
each input variable on a system response (e.g. displacement, A) at all 
construction steps can simply be added up to be representative ηSS,Ai for the 
whole construction sequence. Then the relative sensitivity of the system response 
A is obtained as follows: 
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Finally, the total relative sensitivity, α(xi), for each input variable is given by 
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Depending on what kind of performance function is going to be evaluated, a 
respective relative sensitivity should be taken into account. For instance, the 
relative sensitivity of a certain variable, α(x1), concerning the displacement of the 
tunnel crown is negligible while the same variable has significant influence (high 
relative sensitivity) on another result e.g. the safety factor of the top-heading. 
Thus, considering merely the total relative sensitivity could be misleading in 
evaluating the influential parameters, although utilizing the sensitivity score can 
reduce the effect of input variable units. In order to make a sound decision 
concerning the parameters that are of significance, it is suggested to look at both 
the total relative sensitivity and relative sensitivity of an individual system 
response. 
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Fig. 14: An illustration of target functions with different sensitivities with 

respect to input variable x (after Peschl, 2004) 
 

Tab. 5: Sensitivity matrix 

 

Input 
variables System response results 

 Total 
sensitivity 

 A αΑ [%] B αΒ [%] … Σ α [%] 

x1 ηSS,A1 αΑ(x1) ηSS,B1 αΒ(x1) … ΣηSS,1 α(x1) 

x2 ηSS,A2 αΑ(x2) ηSS,B1 αΒ(x2) … ΣηSS,2 α(x2) 

M  M  M  M  M  M  M  M  

xN ηSS,AN αΑ(xN) ηSS,BN αΒ(xN) … ΣηSS,N α(xN) 
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The sensitivity scheme described above was applied to the tunnelling problem. 
The input parameters with the ranges given in the previous section have been 
used in evaluating the most influential parameters. The average of the lower and 
upper values of random sets serves as reference values in sensitivity analysis. It 
is quite informative to display the relative sensitivity of individual results in 
order to observe the impact of each input parameter. In such manner, the designer 
gains a better understanding of the system behaviour prior to starting a 
sophisticated probability analysis. In this case, three major system responses such 
as the factor of safety at the stage of the top-heading, tunnel crown displacement, 
and maximum normal force of the lining have been considered in the 
calculations. Figure 15 depicts the respective results along with the total relative 
sensitivity. If one wishes to select the most effective variables regarding each 
response based on a threshold value, different sets of parameters would be 
chosen. For instance, if only the safety factor of the top-heading is taken into 
account, K0, c, Es and ϕ are identified, whereas if the normal force in the lining is 
considered the set of parameters K0, c, Es, Rf, and Esh are identified as most 
influential parameters. The total relative sensitivity will help to choose a 
compromise of most important parameters. In addition, the α(Total) of Rf and ϕ are 
very close to the threshold value which makes it more difficult for the final 
decision. Each of them has the same impact on different responses (i.e. α(Normal 

force) of Rf is identical to α(FOS) of ϕ) but finally α(total) of Rf is higher than that of 
ϕ, and correspondingly Rf falls into the set of important parameters. The reason is 
the large discrepancy between the magnitude of dimensionless ηSS of FOS and 
crown displacement. This discrepancy amounts to the order of magnitude, in the 
case of ηSS,FOS and ηSS,Crown-displacement . Thus, it is reasonable to assign weights to 
sensitivity scores based on their significance, to obtain a representative total 
relative sensitivity which can equally consider all required indices for a sound 
decision making. However, in the current calculations, no weighting is involved. 
 
A threshold value has to be introduced to separate highly sensitive variables from 
low ones. Usually, depending on the problem, a threshold value between 5 to 10 
percent can be considered appropriate. Here, a threshold value of 7% was chosen. 
As depicted in Figure 15 with the acceptance of the 7% threshold value, four 
major basic variables Es, c, Ko

nc, Rf are identified and these were chosen for the 
RS-FEM analysis. From experience follows that usually 3 to 4 basic variables are 
sufficient to obtain relatively smooth cumulative probability distribution 
functions of output variables, which on the other hand maintain the number of 
calculations within acceptable limits. 
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Fig. 15: Results of sensitivity analysis 
 

3.4.2 Calculation results and system response 

3.4.2.1 Construction sequences 
 
In accordance with the actual construction sequence 8 calculation phases have 
been modelled: 
 

1. Initial stresses 

2. Pre-relaxation phase of top heading excavation 

3. Installation of anchors and primary lining in top heading 

4. Pre-relaxation phase of bench excavation  

5. Installation of anchors and primary lining in bench 

6. Pre-relaxation phase of invert excavation 

7. Completion of primary lining and anchors 

8. Application of the strength reduction technique in order to obtain a factor 
of safety after phase 3 
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Fig. 16: Position of nodes for evaluating results 
 
As elaborated in section 3.4.1.3, four basic variables have been considered for 
the RS-FEM analysis resulting in 256 different input sets for the finite element 
model. The following results of the analysis have been evaluated in terms of 
cumulative probability distributions and will be depicted in Figure 20 and 
following. 
 

1. Vertical displacement of the crown (Point A in Fig. 16) 
2. Vertical and horizontal displacement of the side wall (Point B in Fig 16) 
3. Maximum normal force in the lining 
4. Maximum moment in the lining  
5. Safety factor after the top-heading excavation 
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Fig. 17: Tunnel construction sequences: (a) Pre-relaxation of top-heading (b) 

Excavation of top-heading, anchors and shotcrete lining installation 
(c) Bench pre-relaxation (d) Bench excavation and support installation 
(e) Invert pre-relaxation (f) Invert excavation and shotcrete lining 



46  3 RS-FEM in Tunnelling 

3.4.2.2 Probability share of each deterministic FE 
realisation 

 
After the identification of input variables, the combination of different sources 
and extremes of the parameters based on a random set model have to be 
calculated. Thus, data files for deterministic finite element calculations have to 
be provided and as mentioned before, spread sheet files may facilitate the 
calculation process, which have been developed for this purpose. The concept of 
constructing a random set relation according to Tonon et al. (2000a & 2000b) for 
the case considered here is as follows. 
 
Let Xx∈  be a vector of set value parameters, in which: ),,,( fRKcEx =  , and a 

random relation is defined on the Cartesian product RKCE ×××  . As a result, 
according to combination calculus, the pairs generated by the Cartesian product 
are given in the following vector: 

 
}),,,(,...,),,,(

,),,,(,),,,{(

16222231121

2111211111

RKCERKCE

RKCERKCERKCE =×××
 (20) 

Here the index of parameters denotes the relevant set number and the index of 
pairs signifies one combination of basic variables. Because there are two sets for 
each basic variable, 16 combinations will be produced. For each combination, an 
interval analysis is required, by which the deterministic input parameters of the 
worst and the best case of each combination are being realised. As an example, 
the deterministic input values of such analysis for the case of (E1,C1,K1,R1) are 
presented in Table 6. 
 

Tab. 6: Inputs relating to (E1,C1,K1,R1) variables used in deterministic finite 
element calculations 

 

Run number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
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0.5 E† 1 79 79 79 79 79 79 79 79 158 158 158 158 158 158 158 158 

0.5 C 1 52 52 52 52 82 82 82 82 52 52 52 52 82 82 82 82 

0.5 K 1 0.4 0.4 0.6 0.6 0.4 0.4 0.6 0.6 0.4 0.4 0.6 0.6 0.4 0.4 0.6 0.6 1
-1

6
 

0.5 Rf 1 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 

* L denotes the lower extreme of a random set variable and U denotes the upper extreme.  
† units of E, MPa ; c, kPa ; ϕ, degree 
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Similarly the construction of all 256 required realisations (see Equ. 11) and 
relevant input files for a deterministic finite element analysis are accomplished. 
The next step is to determine the probability of the assignment of each 
realisation. Assuming that the random variables are stochastically independent 
with reference to Tonon et al. (2000b), the joint probability of the response focal 
element obtained through function f(x) (in this case, the finite element model) is 
the product of the probability assignment m of input focal elements by each 
other. For instance, in the above case since the mass probability of each set 
equals to 0.5 it results in: 

0625.0

5.05.05.05.0

)()()()()),,,(( 11111111

=
×××=

⋅⋅⋅= RmKmCmEmRKCEfm

 (21) 

3.4.3 Validity of the model 
 
Construction of the random set results in the form of p-box: 
 
To construct the Belief and Plausibility distribution function (i.e. lower and upper 
bounds) of a required response from deterministic FE calculations, the following 
procedure is pursued. Suppose that it is required to build up the p-box of the 
tunnel crown displacement. The crown displacement values pertinent to all 16 
realisations, given in Table 6, are sorted out to obtain the minimum and 
maximum of crown displacements which determine the focal element extremes 
of crown displacements corresponding to the combination (E1,C1,K1,R1). The 
displacement values of those realisations between the extremes are discarded. 
According to Equ. 21, the probability assignment of this focal element is 0.0625, 
which constitutes one step in the cumulative distribution function depicted in 
Figure 20. Similarly, this process is repeated for other combinations e.g. 
(E1,C2,K2,R1),… to calculate the extremes of all focal elements of crown 
displacement. Finally, the left and right extremes of all focal elements are 
arranged in ascending order to obtain the upper and lower bounds for Uy-A 
respectively. 
 
As depicted in Figure 18, measured values of a series of cross sections within an 
assumed homogeneous region can be expressed in terms of a discrete cumulative 
distribution in which the probability assignments of individual sections are equal. 
In this way, measurements are comparable with the results of the random set 
bounds. A single value measurement similar to Figure 20 is illustrated with the 
vertical line because only one observation is available within the considered 
region.  
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Fig. 18: Representation of the measurement in terms of a cumulative 

distribution function within a homogeneous region 
 

 
 
Fig. 19: Range of most likely values, F* and F* denote upper and lower 

probability for respective system response, respectively 
 
Figures 20 and 21 illustrate upper and lower bounds of the cumulative 
distribution function for the selected points A and B respectively. The results 
obtained from the deterministic design analysis as well as measured values have 
been overlaid on the figures for comparison. RS results can be generated for any 
desirable target value at any construction stage; for instance, Figure 20 compares 
vertical crown displacement at two different stages 1) after top-heading and 2) 
after completion of the shotcrete lining. It displays almost the same trend for 
bounds of result at both stages with a slight difference in the absolute values.  
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Fig. 20: Lower and upper bounds on vertical displacement of the tunnel crown 

for two construction stages, a) after top heading excavation b) after 
completion of the invert 

 
Generally, the most likely values are defined as values with the highest 
probability of occurrence, where the slope of the corresponding cumulative 
distribution function is steepest. For the purpose of simplification, it is assumed 
that the most likely results are those values, whose measure of their belief degree 
are less than 50% and their corresponding plausible likelihood of occurrence are 
larger than 50% as shown in Figure 19.  
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Fig. 21: Lower and upper bounds on vertical and horizontal displacement of 

the tunnel side wall after the final excavation stage 
 
For instance, the most likely settlement of the tunnel crown at the final stage is in 
a range from 8 to 46 mm. In the same way, the most probable values of the side 
wall displacement in the vertical and horizontal direction are in a range 
approximately [9, 42] mm and [2, 9] mm, respectively. 
 
Mean value of the true system response: 
 
The mean value of the true system response obtained by random set bounds is 
within the following range given by Tonon et al. (2000a): 
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where inf(A) and sup(A) denote lower and upper extremes of focal element A, 
respectively. The intervals obtained from both the most likely range definition 
and those calculated from Equ. 22, indicate a good conformity and they have 
been tabulated below (Tab. 7). 
 

Tab. 7: Lower and upper mean values of true system response 

 

Uy-A Uy-B Ux-B 
FOS              
T.H. 

Max 
Moment 

Max 
Normal 
Force 

 
Results 

 
[cm] [cm] [cm] [-] [kN.m/m] [kN/m] 

Lower 0.85 0.87 0.1 1.46 14.5 462 Interval of true mean 
values (Equ. 22) Upper 4.95 4.5 0.9 1.82 38.1 787 

Lower 0.8 0.9 0.2 1.46 14.4 461 Interval of most likely 
values Upper 4.6 4.2 0.9 1.80 38.5 779 

 
Interpretation: 
 
One can demonstrate the validity of the numerical calculations against the 
observations using the quality indicator shown in Figures 20 and 21. The quality 
indicator consists of three parts: first in the middle, the green colour shows the 
area of the most likely values of the system response. The full red colour 
identifies the theoretical zone of an unlikely system response. Outside the most 
likely values zone, the green colour zone in the quality indicator starts to fade 
and convert into the red one. This transition zone can be called an alarm zone 
because it indicates that the actual ground condition is gradually moving away 
from the assumed conditions invoked in the RS analysis. It should be noted that 
this alarm zone is different than that alarm threshold value used in the 
observational method (see e.g. Olsson and Stille, 2002). In that context, defining 
the alarm value is very difficult and controversial. It varies from case to case and 
depends on the significance of the project, range of the absolute values, the 
extent of the expected uncertainties involved in the problem, and many other 
indices that are defined based on engineering judgment. However, the results 
generated by RS-FEM along with the quality indicator defined in this manner can 
be considered as a useful tool for decision making. In addition, when the 
measured displacements of the tunnel lining are within the acceptable predicted 
range (e.g. green zone) one can assume (at least from a practical point of view) 
that the design of the support elements are also reliable albeit the internal forces 
of tunnel structure have not been monitored. 
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Strictly speaking if the numerical model is appropriate and the parameters chosen 
cover the "true" uncertainty in-situ measured values must fall inside the range of 
RS-FEM results, if not, this would be a clear indication that either the model 
itself (e.g. assuming a continuum for a jointed rock mass) is not appropriate or 
the range of parameters is not representative for the ground conditions. 
 
Figures 20 and 21 indicate that the predicted vertical displacements at tunnel 
crown and side wall comply with the lower bound of the RS-FEM results, while 
the horizontal displacement of the side wall lies within the range of the most 
likely values. The measured value of Uy-A is slightly outside the random set 
range but from a practical point of view this can be considered to be within an 
error tolerance.  
 

3.4.4 Determination of performance function 
 
The performance function is selected to numerically characterise a mode of 
performance of the tunnel structure. For each performance mode one or more 
performance functions may be considered. For instance, possible performance 
modes considered for a tunnel design would be: 
 

1. Shotcrete failure (large cracks or complete damage) 
2. Failure of the temporary footing at the top-heading excavation stage 
3. Over-break of the surrounding rock mass 
4. Face instability during construction  

 
To evaluate the potential for rock-fall or over-break a discrete element code is 
required and the current finite element model is not appropriate for assessing this 
type of failure mode. The problem of face stability is also not discussed here 
because a 3D analysis would be required. The presented example is concerned 
with shotcrete failure and the likelihood of footing damage only, but in a 
complete design procedure the other possible failure mechanisms have to be 
taken into account as well. Figure 22 shows the possible failure mechanism at the 
stage of top-heading excavation by means of incremental shear strain contours 
using the so called strength reduction technique. It indicates that the failure 
mechanism can take place due to inadequate bearing capacity of the temporary 
lining footing. Assuming that the safety factor of the ground failure at the top 
heading stage should be higher than 1.3, a performance function is set and by 
using the random set results, the probability of a safety factor below 1.3 is 
estimated. According to the normal distribution fitted to the lower bound of the 
RS result, the upmost probability of the safety factor being less than 1.3 is 
approximately 0.0005 (Fig. 24).  
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Possible failure zone, length of 18m in average

 
 
Fig. 22: Contour plot of incremental shear strain illustrating possible failure 

mechanism at top-heading excavation 
 

 
 
Fig. 23: Top-heading failure mechanism and deformed mesh 



54  3 RS-FEM in Tunnelling 

 
 
Fig. 24: p-box representation of safety factor after top-heading excavation 
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Fig. 25: Bounds of maximum and minimum of safety factor in terms of 

vertical crown displacement 
 
The lower and upper probability values of top-heading FOS being less than 1.0 
are almost zero. It has to be acknowledged that this value is not very accurate 
because it depends considerably on the type of distribution fitted to the discrete 
data but it is sound enough as an estimate from a practical point of view. The 
most probable values of the safety factor are in a range of approximately 1.46 up 
to 1.8. 
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The minimum and maximum of safety factors given in Figure 24 can be plotted 
versus the vertical displacement of the tunnel crown since such a result depicted 
in Figure 25 can be used for assessing the behaviour of the tunnel structure 
including soil-structure interaction (ductile or brittle behaviour). Two points can 
be inferred from Figure 25. Firstly, when the measured values of vertical tunnel 
crown displacement are about entering the range between 12 and 20 cm a failure 
mechanism can be expected and secondly, due to the current measurement status 
the actual safety after the excavation of the top-heading is more than 1.85. Figure 
25 provides helpful information, for instance, the range of displacement in which 
the failure can be expected. This can be considered as a warning range or alert 
value required for the Observational Method (Nicholson et al., 1999). 
 

3.4.5 Evaluating the serviceability limit state of the 
shotcrete lining 

 
To illustrate the applicability of RSM in reliability analysis, a serviceability limit 
state function was considered. The serviceability limit state of the shotcrete 
lining is based on the damage of the lining due to cracking after the tensile 
capacity of the material is exceeded. The admissible value of the normal force 
Nlim as a function of the eccentricity e(x) as given by Schikora & Ostermeier 
(1988) is: 








 +−=
dF

exe

F

df
N

s

a

s

c )(
21lim  (23) 

Where  
fc uniaxial strength of shotcrete 
ea imperfection 
d thickness of lining 
e(x) eccentricity M/N 
M   bending moment  
N   axial force 
Fs  factor of safety 
 
The x indicates the position of the point in the shotcrete lining whose moment 
and normal force is considered. 
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(a)

(b)
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Fig. 26: Tunnel internal forces results of RS-FEM analysis in terms of 

cumulative distribution functions 
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Thus, the serviceability limit state function which should be evaluated is defined 
in Equation 24. 

NNxg −= lim)(  (24) 

A Monte Carlo simulation was executed using the Latin Hypercube sampling 
technique and employing @Risk® (Palisade, 2008) software to carry out a 
reliability analysis for serviceability conditions of the shotcrete lining at the final 
stage of construction. The uncertainty of uniaxial strength of shotcrete and 
thickness of the lining as well as the eccentricity of the internal forces were 
considered. For the shotcrete a C20/25 with a uniaxial strength of about 17.5 
MPa is used and its uncertainties are modelled assuming a Lognormal 
distribution for the strength as LN(17.5,0.25) MPa and for the thickness as 
LN(0.25,0.017) m. To cover imperfections an eccentricity of ea = 2.0 cm and for 
the serviceability limit state a factor of safety of Fs = 2.1 is considered according 
to Schikora & Ostermeier (1988). Based on the fitted cumulative distribution 
functions of the normal force, the bending moment and the respective 
eccentricity illustrated in Figure 26, the limit state function has to be evaluated 
four times in order to obtain bounds on the probability of exceeding the 
admissible normal force in the lining, leading to the four distributions shown in 
Figure 27. The range of the probability of exceeding the admissible normal force 
in the lining, N>Nlim, where cracking takes place, is given in Table 8. 
 

 
 
Fig. 27: Cumulative distribution of g(x) obtained from four eccentricity 

functions 
 
The value of the probability of failure indicates that the shotcrete satisfies the 
serviceability criteria and it is expected not to observe major cracks in the lining. 
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Tab. 8: Range of probability that N/Nlim (Fs=2.1) 

 

Fitted distribution max Pf min Pf Construction 
Phase Nmax Nmin Mmax Mmin   

Final stage Log-logistic Beta Beta Beta 3E-4 1.4E-5 

 
Alternatively, it is possible to compute the performance function, g(x), directly 
from random set analysis results. The advantage is that the performance function 
is evaluated over all elements of the tunnel cross section with the normal force 
and its corresponding bending moment and in contrast to the previous method, 
the coincidence of maximum normal force and maximum moment is avoided in 
the calculation. For each individual deterministic calculation, eccentricity e(x), 
normal force and thickness of shotcrete are known at any section of the lining. 
Thus, Equation 23 can be evaluated assuming the other required parameters such 
as shotcrete strength and thickness values are constant. In this way, g(x), is 
evaluated like other primary system responses (e.g. normal force) and can be 
presented in terms of discrete cumulative probability with upper and lower 
distribution. Figure 28 depicts such results for the current example for both 
eccentricity and serviceability limit state functions. Obviously, the latter method 
results in a narrower band for g(x) than the first method. The range obtained by 
the first method varies between 400 and 1600 while in the respective result 
yielded by the latter method, varies between 580 and 1220. The Lognormal 
distribution fitted to the discrete upper and lower distribution of the results (Fig. 
28) indicates that the likelihood of g(x) being less than zero is almost zero.  
 
The disadvantage of this method is that it is not possible to take the existing 
uncertainty in the thickness and strength of the shotcrete into account. Although 
the first method of evaluating g(x) is simple and capable to consider the 
uncertainty existing in shotcrete strength, variation of shotcrete thickness and so 
on, but it results in a conservative reliability assessment. Therefore, in the cases 
that the performance function is sufficiently distant from failure conditions, the 
result of the first method is acceptable and can be applied, if not, the second 
method should be used to check whether the performance is satisfactory or not. 
According to US Army Corps of Engineers (1997) qualitative evaluation of 
performance level based on reliability index and probability measure obtained 
from reliability analysis has been given in Table 9. On the basis of this table the 
level of shotcrete performance is assessed as good performance.  
 
In addition, if in the Equation 23 Fs is set to zero, the serviceability limit state 
function is converted to the ultimate limit state function. Thus, simultaneously 
both types of performance functions can be assessed. 
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Tab. 9: Expected performance level 

 

Expected Performance 
Level 

Reliability index 
(β) 

Probability of Unsatisfactory 
Performance 

Hazardous 1.0 0.16 

Unsatisfactory  1.5 0.07 

Poor 2.0 0.023 

Below average 2.5 0.006 

Above average 3.0 0.001 

Good 4.0 0.00003 

High 5.0 0.0000003 

 

 
 
Fig. 28: The p-boxes of both the eccentricity and the shotcrete limit state 

function obtained directly from RS-FEM results 
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3.5 Summary and conclusion  
 
The application of an RS-FEM analysis to a real tunnel project has been 
presented. Based on engineering judgement, important model parameters have 
been identified and their influences on results have been evaluated quantitatively 
by means of a sensitivity analysis. Based on the sensitivity, the basic variables 
for the RS-FEM calculations have been chosen. The RS-FEM results for the 
selected responses were given in form of lower and upper probability bounds. 
One of the important features of Random Set analysis is that once in-situ 
measurements are available, the quality of the numerical model can be judged. 
The measurements that fall outside the range of calculated displacements imply 
that either the numerical model itself was not appropriate or the range of 
parameters did not reflect the in-situ behaviour. This result may have important 
consequences in cases where e.g. the ground investigation programme was 
insufficient and therefore design and construction has been based on incorrect 
assumptions. A review process of the design based on a random set model is 
depicted in Figure 29. For a management review process of a typical tunnel 
monitoring the readers are referred to CIRIA report 185 presented by Nicholson 
et al. (1999). 
 

 
 
Fig. 29: Process of design based on random set model 
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Advantages of applying RS-FEM were demonstrated in this chapter and are 
summarized as follows: 
 

1. RS-FEM provides a user-friendly and practice-oriented framework that 
can take advantage of the advanced constitutive models available in FE 
programmes. Complex tunnel geometry, subsurface conditions, nonlinear 
structural elements and etc. can be taken into account in order to predict 
the behaviour of an underground structure within the ranges of upper and 
lower probability distributions without assuming subjective distributions 
of input model parameters. In other words, all advantages of a complex 
numerical model are preserved. 

 
2. With relatively small number of simulations (in this example, 256 

realisations) relatively smooth bounds on the system responses were 
obtained, and as a result, a satisfactory reliability analysis was 
accomplished. The application of RE-FEM requires less computational 
effort as compared to fully probabilistic methods such as the Monte-Carlo 
simulation. 

 
3. Applicability of the RS-FEM was demonstrated by a tunnel example in 

which the field measurements were in reasonable agreement with the 
primary RS-FEM results without any updated data and information during 
construction.  

 
4. When providing all required FE calculations, the p-box of any desirable 

result in any construction phase can be generated and the serviceability 
and ultimate limit states can be evaluated with the same model.  

 
5. It provides a framework by which it is possible to check the validity of the 

numerical model and corresponding design. In tunnel projects constructed 
corresponding to NATM principals, displacement measurements of at 
least 3 points in the cross section are recorded regularly. Thus, the 
required measurements are available at each construction stage. As it was 
shown in this Chapter, the results of a random set model can be provided 
in all construction stages. When finishing the first construction phase (e.g. 
top-heading), the random set model can be validated against the 
measurements. If the measurements are in the predefined acceptable 
range, construction proceeds to the next phase, otherwise the obtained 
information from the first stage is used to update the uncertainty model. 
The whole procedure is repeated and the required design variations are 
applied for the next construction phase. The design revision can be carried 
out within the lagging time available between different construction stages 
(e.g. top heading and bench). Therefore, RS results of the intermediate 
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construction stages accommodate a chance for early stage recognition of a 
model error.  
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4 Limitations of RS-FEM 
 
In the foregoing chapter, the procedure of the RS-FEM was reviewed and 
application of RS results in reliability analysis was demonstrated for a tunnel 
problem. As it was shown, all the required deterministic finite element 
calculations should be performed to construct the lower and upper bounds of the 
desired system responses. If some of the calculations would have failed e.g. due 
to non convergence of the finite element analysis, it would have been impossible 
to determine the probability bounds on the system response because result points 
would have been missing. Therefore, applying RS-FEM for such cases would be 
problematic. In addition, in cases where the range of displacements is very large 
the results would become meaningless and a reliability analysis based on those 
results would not provide any help for decision making. Therefore some 
shortcomings of the method will be addressed in this chapter. This issue will be 
illustrated by an example and possible solutions are discussed in the next 
sections.  
 

4.1 Tunnel example in faulted zone 
 
For the purpose defined above, a section with an overburden of 25 m within in 
the faulted zone (zone III-Figure 9) of the tunnel described in Chapter 3 was 
selected to apply the random set method. The tunnel geometry and its relevant 
2D finite element model mesh including some model specifications are depicted 
in Figures 30 and 31 respectively. Approximately 900 15-noded triangular 
elements were employed in the model. 
 
Due to similarities in rock mass characteristics of the portal area (zone I) and the 
faulted zone (Zone III) the random sets for zone III adopted the same parameters 
as given in Chapter 3 for zone I. The range of MC-model parameters derived 
from the site investigation report and values used in design have been 
summarised in Table 10. All the required steps for performing the RS-FEM 
procedure have been followed in the same manner as those for section BQ1 in 
Chapter 3. Therefore, four basic variables, K0, elasticity modulus of the rock 
mass Erm, cohesion and relaxation factor, considered in the random set analysis 
of section BQ3 are given in Table 12. In addition, the construction sequence 
followed is similar to section BQ1 including top-heading, bench and invert. The 
only difference between section BQ1 and BQ3 is the amount of overburden and 
support elements used in the design. The specifications of the structural elements 
are given in Table 11. 
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Bolt l=6.0m, e=1.3m

Bolt l=4.0m, e=1.3m
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Fig. 30: Specifications of the tunnel geometry and bolts 
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Tunnel section: BQ3 Zone: III

Bolt SB 200 kN - L=6 m, e=1.3m

Bolt SB 200 kN - L=4 m, e=1.3m

7.5 m

 
 
Fig. 31 The 2D finite element mesh of the tunnel section BQ3 with 25m 

overburden 
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Tab. 10: The range of MC-model parameters extracted from the geotechnical 
report for zone III and the representative values used in design 

 

 Zone γ Erm c ϕ K0
nc  ν 

  [MN/m3]  [MN/m2] [kPa] [°] [-] [-] 

Geotechincal 
report III 24 100-200 60-90 21-23 0.4-0.6 0.35 

Design-K6-1 III 24 200 90 23 0.6 0.35 

 
Tab. 11: Parameters for structural elements used in design section K6-1 
 

E-modulus Support 
element Location Type 

young old 

Plastic    
Limit 
Force 

Thickness   
/Diameter 

   [MPa] [kN] [cm] 

Shotcrete Top-heading Elastic 5000 15000 - 25 

Shotcrete Bench Elastic 5000 15000 - 20 

Shotcrete Invert Elastic 5000 15000 - 15 

Anchor T.H., B., I. Elasto-
plastic 210000 200 2.2 

 
Tab. 12: The random sets used in section BQ3 considering spatial 

autocorrelation  
 

Set Probability Erm c K0
nc Rf 

No. assignment MN/m² kPa - T.H. Bench Invert 

1 0.5 79-157 52-82 0.4-0.6 0.4-0.6 0.3-0.5 0.2-0.4 

2 0.5 96-192 58-88 0.5-0.7 0.3-0.5 0.2-0.4 0.1-0.3 

 

4.1.1 Random set finite element results 
 
Figures 32 and 33 show upper and lower bounds of the cumulative distribution 
function for typical responses of a tunnel structure including the tunnel crown 
and side-wall displacements and the maximum moment of internal lining. The 
position of the points A and B are those depicted in Figure 16 of Chapter 3. The 
results obtained from the deterministic analysis for design (Type K6-1) are 
indicated in Figures 32 and 33 for comparison.  
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Fig. 32: p-box of RS results, based on random sets given in Table 3, a) vertical 

displacement of the tunnel crown, b) & c) vertical and horizontal 
displacement of point B respectively 
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Fig. 33: P-box of the maximum moment in the lining, based on random sets 

given in Table 12 
 
The model assumptions for the deterministic design have been given in Table 10. 
It follows from the figures that deformations and internal forces of the design 
values are very close to the lower bound, which could be envisaged because 
nearly all the input parameters have been chosen corresponding to the optimistic 
extremes of the random sets.  
 

Plastic points

Mohr-Coulomb point Tension cut-off point  
 
Fig. 34: Illustration of the plastic points in the model for the cases, a) one of 

the worst cases of the RS-FEM calculations, b) design analysis 
 
When comparing the design values with the RS results, it appears that there are 
certain combinations of the input parameters that mobilise large plastic zones and 
a failure mechanism (as depicted in Fig. 34) will develop around the tunnel 
structure resulting in large displacements. This clearly proves the advantages of 
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the RS-FEM that it can systematically detect the pessimistic combination of the 
uncertain input parameters leading to the worst case system behaviour but on the 
other hand shows the disadvantage of the method in the sense that results show a 
very wide range which is of limited practical use.  
 
When the results are sorted in the form of a bar chart as in Figure 35, a large 
difference in the results is obtained from cohesion set 1 and 2. In this way the 
most influential parameters can be identified. If it is not possible to narrow the 
range of possible values for this parameter by means of additional investigations, 
the extreme range in results cannot be reduced. 
 

 
 
Fig. 35: Discrete upper bound values of RS results in terms of input set 

number, a) maximum moment in the lining b) vertical displacement of 
the tunnel crown. Each digit of a 4-figure number represents the set 
number of E-modulus, cohesion, K0 and relaxation factor from left to 
right respectively. 
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4.1.2 Scenarios concerning the unsuccessful random set 
results 

 
The result of the random set method would be unsatisfactory if either one of the 
followings takes place:  

1. The RS results show a considerably large range between the lower and 
upper bounds. For instance in the case shown in the previous section, the 
range of vertical displacement at the tunnel crown varies between a few 
centimetres up to 2.5 metres, which is not admissible from a design point 
of view.  

2. Among the realisations required for the random set analysis, some FE-
calculations remain incomplete because parameter combinations lead to 
ground or structural failure. As a result, the bounds on the system 
responses cannot be obtained. 

 
The rest of the chapter attempts to show how the cases mentioned above can be 
dealt with and turned into a successful result.  
 
Two scenarios might exist regarding the above mentioned issues: 
 
Scenario 1: 

 
On the one hand, the system response range is the reflection of the input 
intervals, and on the other hand the selection of the input parameter sets is 
prone to error. It means that a very conservative choice of input parameters 
involved in the uncertainty analysis may be a main cause of the unsuccessful 
RS results. As demonstrated in the previous example, design has been carried 
out on the basis of the most optimistic combination of parameters, and the 
design outcome was satisfactorily conforming to the construction feasibility 
and other design criteria. On the contrary, the pessimistic bounds (or belief) 
of the RS-FEM results are far away from acceptable, and raise doubts 
whether the design is robust. It is therefore imperative to use reliable sources, 
and in cases where too conservative assumptions have been made, the 
selected sets must be corrected and/or rectified. Thus, scenario 1 put a 
question mark on validity of input parameter sets. 

 
Scenario 2: 
 

It is likely that the scenario 1 is rejected which means that the ranges of input 
parameters reflect the actual uncertainty of subsurface conditions. Therefore, 
the large scatter of the results or failure of some realisations is a natural 
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consequence of the degree of the existing uncertainty in the input data. This 
implies that considering the existing state of knowledge, the current design is 
not appropriate. Scenario 2 suggests modifying the current support design 
since the current state of knowledge cannot be reduced unless more 
investigation is carried out. So the master model employed in the RSM should 
be modified by applying additional support measures. 

 
In the following sections the two scenarios are practiced using the introduced 
tunnel project.  In section 4.2, scenario 1 is followed in which the input 
parameters are revised and new random sets are derived which represent the 
actual ground conditions. Section 4.3 follows scenario 2 assuming that the 
current conservative random sets represent the actual subsurface condition. 
However, a new class of support should be provided in order to obtain a 
reasonable RS result. 

4.2 Scenario 1: Revision of input random set according 
to Hoek-Brown parameters 

 
Assuming that the first scenario mentioned above is adopted, in this section an 
attempt will be made to extract the MC parameters directly from test results 
performed on rock samples, which have been given in the site investigation 
report. It follows that in the faulted zone III mainly the rock type comprises 
Andesite and Rhyolithe and the characteristic parameters of the rock mass can be 
quantified by Hoek-Brown parameters summarised in Table 13. 
 
Tab. 13: The rock mass characteristics of zone III derived from the site 

investigation report 
 

Parameter 
Description 

Rock 
Quality 
Designation 

Elastic 
modulus 
of intact 
rock 

Rock 
mass 
rating 

Geological 
strength 
index 

Unconfined 
compressive 
strength of 
intact rock 

HB 
parameter 

Symbol RQD Ei RMR GSI σci mi 

Unit - GPa - - MPa - 

Value/Range <25% 19-25 25-35 30-40 10-50 15-25 

 

4.2.1 Rock mass strength parameters 
 
For the purpose of underground structure design, many researchers have 
developed characterisation and classification methods by which rock mass 
behaviour can be distinguished and categorised into some classes based on 
related criteria. Based on that empirical classification, relevant support and 
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excavation methods are recommended. Another philosophy is based on 
evaluating the rock mass behaviour and determining the appropriate support 
based on site specific evaluations and experience in similar conditions. Goricki 
(2007) has developed a hierarchical design procedure for rock mass 
characterisation and classification based on rock mass behaviour. He has 
discussed the shortcomings of empirical classification systems and a summary of 
well-known classification systems has been presented.  
 
Above all, in evaluating any underground system behaviour an estimate of the 
rock mass strength is necessary and a failure criteria is commonly used to 
quantify the capability of the rock mass in bearing the applied load. A 
comprehensive review of failure criteria associated with intact rock materials and 
rock mass (e.g. Hoek & Brown 1980, Ramamurthy 1985, Shoerey 1989, Yoshida 
1990) has been presented by Edelbro (2003). Among others, the most two 
common criteria in engineering practice are Mohr-Coulomb (MC) and Hoek-
Brown (HB) for evaluating the homogeneous rock mass strength. There are a 
number of corresponding empirical correlations, experienced by practitioners as 
well as tables and graphs, which provide values for rock mass parameters 
according to rock type and quality. The correlations are valid provided that the 
rock mass does not exhibit significant anisotropy in strength and deformability 
(e.g. rock mass contains a dominant joint set) and the probable failure 
mechanism has a shear failure mode. For instance, other failure modes like 
buckling, ravelling, rock burst, sliding or falling of kinematically free blocks and 
so on cannot be evaluated by means of this criterion and should be separately 
checked by the respective criteria (Goricki, 2007; Steiner, 2005). Moreover, it is 
possible to calculate the equivalent MC parameters from HB ones (and vice 
versa) over a certain stress range. Both MC and HB models are classified as 
elasto-perfectly-plastic constitutive models with different failure criteria. Mohr-
Coulomb failure criterion relates the major and minor principal stresses linearly. 
However, the strength of the rock mass is usually better expressed by a parabolic 
function which may comply more appropriately with the real behaviour of rock 
(e.g. Brown 1970). 
 

4.2.1.1 Hoek-Brown criterion 
 
At failure, the generalized HB criterion (Hoek et al. 2002) relates the maximum 
effective stress σ1 to the minimum effective stress σ3 through the equation: 
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where σci is the uniaxial compressive strength of the intact rock, and s and a are 
model constants. The relationships between mb/mi, s, a, and the geological 
strength index (GSI) are as follows: 
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Hoek et al. (1995) introduced the Geological Strength Index, as a complement to 
their generalised rock criterion and as a way to estimate the parameters s, a, and 
mb in the criterion. This GSI estimates the reduction in rock mass strength for 
different geological conditions. The GSI value can be empirically estimated 
either from rock classification systems (e.g. Q-system given by Barton et al., 
1974, and RMR introduced by Bieniawski, 1976) or directly from a table given 
by Hoek et al. (1995) that practically varies over a range between 10 to 100. By 
definition, GSI values close to 10 correspond to very poor quality rock mass, 
while GSI values close to 100 correspond to excellent quality rock masses. The 
GSI takes the geometrical shape of intact rock fragments as well as the condition 
of joint faces into account. Finally, D is a factor that quantifies the disturbance of 
rock masses. It varies from 0 (undisturbed) to 1 (disturbed) depending on the 
amount of stress relief, weathering and blast damage. 
 

4.2.1.2 Equivalent Mohr-Coulomb parameters 
 
As mentioned above it is possible to estimate the equivalent MC strength 
parameters from HB parameters with various methods. The choice of the method 
for determining equivalent cohesion and friction angle is largely a matter of 
experience (Merifield et al., 2006). Several ways have been proposed to match 
the HB and MC strength parameters (Sjöberg, 1997). In general, there are two 
options to derive equivalent cohesion and friction angle from HB parameters; 
First, by fitting the MC failure line to the HB failure curve tangentially at a 
specific minor principal stress or normal stress. Second, a regression method can 
be applied over a dominant stress range of the problem, to obtain average values 
of MC strength parameters. However, this may lead to an underestimate of the 
strength for low stresses and an overestimate for high stresses. Nevertheless, the 
latter is the most frequently used method and is typically performed by fitting a 
linear relationship to the curve generated by Equation 25 for a range of minor 
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principal stress values defined in Equation 29 given by Hoek et al. (2002). This 
formula has been suggested for shallow and deep tunnel applications. 
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where σ´cm is the global rock mass strength and a function of HB parameters 
calculated by Equation 30, γ is the unit weight of the rock mass, and H is the 
tunnel depth below the surface. 
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This fitting procedure results in the following equations for the equivalent MC 
strength parameters:  
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where σ3n= σ´3max / σci  

It is noted that σ´3max should be determined for each case individually; the 
stresses are likely to vary within the rock mass, which makes it more difficult to 
select a representative value of σ´3max (Merifield et al., 2006). For general 
geotechnical applications, another suggestion proposed by Hoek and Brown 
(1997) is to match the MC failure line with HB over the range 0 < σ´3 < 
σ´3max=0.25σci. Here both suggestions are used to obtain the new random sets for 
MC strength parameters. 
 
It is aimed to derive two sets for each MC strength parameter from HB strength 
parameters given in Table 13 using Equations 25-32. When constructing the first 
set, lower values of mi and σci are taken into account while the upper values are 
used to make up a second set. To compute the lower bound of each set for c and 
ϕ the lower value of both D and GSI are used and for the upper bound the higher 
values are taken. Thereby, considering two different assumptions about the range 
of σ3 in the fitting procedure results in two different random sets, which are 
illustrated in Figure 36. In the computation the depth of the tunnel has been 
assumed equal to 30 meters. 
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Fig. 36: Random set of MC strength parameters drawn from HB model 

parameters, unit of cohesion is kPa 
 
Obviously, alternative 2 gives higher friction angles than alternative 1 because 
the corresponding σ´3max is lower and the regression line is fitted in a lower range 
of σ´3 stress. Consequently, the fitted line becomes steeper and the corresponding 
cohesion is decreased. Furthermore, the random sets (alternative 1 or 2) obtained 
in this method give higher rock mass strength with respect to the previous 
random set given in Tables 10 and 12 both in terms of friction angle and 
cohesion. 
 

4.2.2 Revised deformability modulus of the rock mass 
 
For different reasons, it is often difficult to obtain specific design parameters 
directly from tests and as an alternative, empirical correlations are used. To 
obtain realistic values of rock mass deformation modulus (Erm), in-situ tests, such 
as plate bearing, flat jack, pressure chamber, borehole jacking and dilatometer 
tests, need to be conducted. The in-situ tests, however, are time-consuming, 
expensive and, in some cases even impossible to carry out. Therefore, a number 
of empirical methods have been developed that correlate various rock quality 
indices or classification systems to the deformation modulus of rock masses. The 
correlations are mostly between the deformation modulus and RQD (Rock 
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Quality Designation), RMR (Rock Mass Rating), Q (Q-System) and GSI 
(Geological Strength Index). The frequently used correlations are summarized in 
Table 14. All of these classifications are based on the assumption of isotropy and 
homogeneity. This means that a rock mass must contain a sufficient number of 
discontinuities sets so that the real deformations could be expected to exhibit 
sufficiently isotropic behaviour. 
 
The scatter of the rock mass stiffness values obtained from the empirical 
correlations is considerable and therefore, taking all the correlations into account, 
the difference in results would be one order of magnitude. For the purpose of 
determining the new random set for the deformability parameter a choice has to 
be made which correlations are used. Hoek and Diederichs (2006) evaluated the 
common correlations against large field data and they pointed out, for instance, 
the Erm calculated by correlation 12 has shown just 5% error in comparison with 
the Serafim and Pereira (1983) relation, whose error reaches 50% since 
correlation 12 does not consider the damage factor (D). Zhang (2005) also found 
that the equation given by Serafim and Pereira (1983) overestimates the rock 
mass deformation modulus for poor quality rocks. Some equations use only 
classification indices that have not been directly in access for this project or they 
don’t consider any characteristics of the intact rock. Therefore, correlation 11 has 
been used as a basis for deriving the two sets since it is consistent with those 
given for strength parameters in the previous section.  
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Tab. 14: Empirical correlation equations for determining rock mass 
deformability 

 

Correlation equation Development/comment Author 

1) 1002 −= RMRErm  [GPa] • Drawback: It gives 
negative values for 
RMR<50 

• Data of seven projects 
involved in the equation 

Bieniawski, 1978 

2) )40/)10((10 −= RMR
rmE  [GPa] • It estimates well for good 

quality rocks, highly 
overestimated for poor 
rock quality 

Serafim and Pereira, 
1983 

3) RMR
rm eE 0755.00736.0=  

   GSI
rm eE 0654.01451.0=  [GPa] 

• Obtained from 115 in situ 
plate loading and 
dilatometer tests,  

• Only RMR or GSI index 
is involved 

Gokceoglu et al., 
2003 

4) )9.00028.0( 82.22/2 RMR
irm eRMREE +=  • For general use Nicholson and 

Bieniawski, 1990 

5) 2/))100/cos(1( RMREE irm ×−= π  • For general use Mitri et al., 1994 

6)

3/1

100
10 







= ci
rm QE

σ
 

•  σci in MPa and Erm in 
GPa 

• For general use 

Barton, 2002 

7) Lower bound: QErm log10=   

8) Upper bound: QErm log40=  

9) Mean: QErm log25=  

• Erm in GPa 

• Only applicable to Q>1 
and generally for hard 
rocks 

Barton et al., 1980 

10) GSI
rm eE 064.033.0=  [GPa] • For general use Hoek, 2004-for the 

reference see Zhang, 
2005 

11) )40/)10((10
100

)2/1( −−= GSIci
rm DE

σ
[GPa] 

•  σci <100 MPa Hoek et al., 2002 

12) 








+
−+= −+ )11/)1560((1

2/1
02.0

GSIDirm e

D
EE  

• Based on 494 in situ tests 
and back analyses 
comprising wide range of 
rock types and 
0<GSI<100 

Hoek and 
Diederichs, 2006 

13) 








+
−= −+ )11/)2575((1

2/1
100

GSIDrm e

D
E  [GPa] 

• where only GSI data are 
available  

Hoek and 
Diederichs, 2006 

14) 91.10186.010 −×= RQD
irm EE  • RQD is significantly 

dependent on borehole 
orientation; to reduce the 
dependency of RQD see 
treatment given in Zhang 
2005 

Zhang and Einstein, 
2004 

15) iErm EE α=  

      15.032.1)(0231.0 ≥−= RQDEα  

• Adopted by ASSHTO, 
1989 

Gardner, 1987 
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Considering the ranges of GSI and σci presented in Table 15, one is able to infer 
two sets of parameters for the geological condition of the rock mass assuming 
that the lower value of UCS combined with the range of GSI makes up the first 
set and similarly the upper value of UCS forms the second set. Consequently, in 
this manner two random sets given in Table 15 are derived for the elastic 
modulus of rock mass using correlation 11 of Table 14. 
 
Tab. 15: Input random sets of elastic modulus of rock mass  
 

Parameters Probability of 
assignment 

σci (UCS) GSI Erm (modulus 
of rock mass) 

Units - MPa - MPa 

Set No. 1 0.5 10 30-40 1000-1770 

Set No. 2 0.5 50 30-40 2230-3970 

 

4.2.3 Basic variables for the random set model 
 
As described in section 4.2.1.2, assuming two different ranges for fitting MC 
strength parameters along the HB failure line, results in two different sets of 
parameters with a large discrepancy. Thus, these two alternatives are included in 
the following RS-FEM analyses in order to observe the differences. The random 
set model and procedure described in Chapter 3 was followed separately 
considering the two alternatives. The number of basic variables was maintained 
as four. Therefore, the number of FE calculations required for RSFEM remains 
256 realisations. The spatial variability was taken into account for the rock mass 
parameters using the reduction technique except for the strength parameters of 
alternative 2 since the change in the set limits due to the reduction factor is 
negligible. To compute the variance reduction factor (Г), the spatial correlation 
length (Θ =10 m) was taken similar to the amount used for zone I in the previous 
tunnel example with 7.5 meters overburden. The length of a potential failure 
surface (L) has been estimated about 30 meters from one of the calculations using 
the strength reduction method.  
 
The final random set input variables utilized in further analyses are summarised 
in Tables 16 and 17 corresponding to alternatives 1 and 2 for strength parameters 
respectively. It is noted that both sets chosen for the stress relaxation factor are 
based on expert’s opinion and the lower values are matched to the set with lower 
strength and deformability modulus values. In addition, the values for different 
stage constructions are correlated to each other, i.e. in any realisation the left or 
right extreme of Rf for the top-heading, bench and invert are used simultaneously. 
Moreover, it should be noted that high values of cohesion sets in alternative 1 
have been reduced to 75% (suggestion advised by Hoek and Brown, 1997). The 
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values given in Tables 16 and 17 have been rounded after applying the variance 
reduction factor.  
 
Tab. 16: Revised random set parameters (alternative 1) 
 

Var. m(A) 
Erm (rock 

mass 
modulus) 

Rf      
T.H. 

Rf  

Bench 
Rf  

Invert ϕ c 

Units - [MPa] - - - [°] [kPa] 

Set 1 0.5 1300-2300 0.4-0.6 0.3-0.5 0.2-0.4 22-32 450-750 

Set 2 0.5 1900-3400 0.3-0.5 0.2-0.4 0.1-0.3 24-34 1000-1600 

 
Tab. 17: Revised random set parameters (alternative 2) 
 

Var. m(A) 
Erm (rock 

mass 
modulus) 

Rf      
T.H. 

Rf  

Bench 
Rf  

Invert ϕ c 

Units - [MPa] - - - [°] [kPa] 

Set 1 0.5 1300-2300 0.4-0.6 0.3-0.5 0.2-0.4 37-47 80-130 

Set 2 0.5 1900-3400 0.3-0.5 0.2-0.4 0.1-0.3 53-60 160-280 

 
Extracting the input parameters directly from basic parameters, test results and 
observations reflected in the site investigation report has significantly changed 
the input random sets, and demonstrates that the primary sets had been chosen as 
too conservative. 
 

4.2.4 Validity of the RSFEM results 
 
Considering the two alternatives for the revised random set basic variables, the 
bounds on selected results are illustrated in terms of discrete cumulative 
probability in Figures 37 to 40. To evaluate the quality of the input variables as 
well as the random set model a comparison has been made with available 
displacement measurements. The measurement points A and B have been 
considered at the tunnel crown and its side wall respectively, whose positions 
have already been depicted in Figure 16. Since two observations were available 
within the faulted zone (section BQ3), measurements can be presented in terms 
of discrete cumulative probability that comprise two steps corresponding to those 
measurements as depicted in Figures 37 and 39. 
 
The new random set results not only show a significant decrease in tunnel 
displacements but also a success in estimating and encompassing the 
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measurements within its bounds. The primary random set results showed a very 
wide range of displacements from millimetres to meters whereas by revising the 
values of the sets, the displacements dropped considerably to a reasonable range. 
For instance, regarding the results of alternative 1, Figure 37 shows that the 
measured values of the vertical displacement of the tunnel crown have been 
located within the green zone of the quality indicator, or in other words, they lie 
within the range of the most likely values predicted by the random set model. 
Part of the measurements of the horizontal displacement at point B falls outside 
the most likely range; however, it is still within the green indicator. The vertical 
displacement at point B shows partial disagreement with the random set model 
although from a practical point of view it can be neglected. However, it 
theoretically implies that the numerical model cannot represent all aspects of 
ground behaviour perfectly. For instance, one hypothesis is that the rock mass 
behaves heterogeneously and therefore an anisotropic model should be employed 
instead. A second hypothesis is that the sets of strength parameters do not 
properly represent the rock mass behaviour. The results of the second alternative 
strengthen the correctness of the latter hypothesis. Figure 39 illustrates the 
random set results of alternative 2, which demonstrate almost a full agreement 
between measured values and the predicted random set range. The only 
difference between alternatives 1 and 2 is the equation by which the Mohr 
Coulomb parameters were derived. Considering the success of alternative 2 in 
estimating the reasonable range for all responses, one can confirm that Equation 
29 used for obtaining the MC parameters of alternative 2 could be appropriate for 
tunnel applications.  
 
Another example of the random set results is the safety factor of the top heading 
excavation after installing the shotcrete lining. The lower and upper bounds of 
the safety factor have been depicted in Figures 38 and 40 for alternatives 1 and 2 
respectively. In an average, the factor of safety obtained in alternative 1 is twice 
that of alternative 2 which would be expected considering the differences in 
strength parameters. In addition the p-box of the internal forces of the tunnel 
lining is illustrated. There is a slight difference between the responses of the two 
alternatives.  
 



80  4 Limitations of RS-FEM 

Ux-B [mm]

0.0 0.5 1.0 1.5 2.0

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

RSFEM
Measurement

Uy-B [mm]

0 1 2 3 4 5

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

RSFEM
Measurement

Uy-A [mm]

0 1 2 3 4 5 6 7

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

RSFEM 
Measurement

Quality indicator

Most likely
 values

Quality indicator

Quality indicator

Most likely
 values

(a)

(c)

(b)

Most likely
 values

 
 
Fig. 37: RSFEM prediction from alternative 1, a) vertical displacement at point 

A, b & c) vertical and horizontal displacement at point B  
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Fig. 38: RSFEM results from alternative 1, a) factor of safety after top-heading 

excavation, b) maximum normal force c) maximum moment in the 
lining 
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Fig. 39: RSFEM prediction from alternative 2, a) vertical displacement at point 

A, b & c) vertical and horizontal displacement at point B 
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Fig. 40: RSFEM results from alternative 2, a) factor of safety after top-heading 

excavation, b) maximum normal force c) maximum moment in the 
lining 
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4.2.5 Evaluation of lining performance function  
 
Having the random set results of the internal forces of the shotcrete lining, it is 
possible to assess the satisfactory performance of the lining against cracking. To 
do so, again the relationship given by Equations 23 and 24 is utilised. According 
to the design value, a thickness of shotcrete depending on the position of the 
element is varied between 15 to 25 centimetres.  
 

 
 
Fig. 41: RSFEM results from alternative 1 and 2, a) eccentricity in the lining 

cross section, b) serviceability performance function of the shotcrete  
 
For the shotcrete a C20/25 with a uniaxial strength of 17.5 MPa is used. To cover 
imperfections an eccentricity of ea = 2 cm and safety factor of Fs = 2.1 to 
consider the serviceability condition are taken. Here, serviceability limit state 
function, g(x), is evaluated directly from the results of each FE calculations as 
described in Chapter 3.  The p-box of the g(x) in terms of cumulative probability 
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for both alternatives 1 and 2 at the end of construction are presented in Figure 41. 
The most probable values of the performance function resulting from alternative 
1 ranges from 900 up to 1200 approximately. This range is slightly increased for 
alternative 2 from 1150 to 1350. The lower and upper probability distribution 
functions indicate that the probability of exceeding admissible normal force in 
the lining, Nlim < N, where cracking takes place, is negligible. Hence, the revision 
of the input random sets maintains a high performance level of the lining and 
major cracks are not anticipated. 

4.3 Scenario 2: Change of construction sequence and 
reconsidering the tunnel design 

 
At the beginning of the chapter it was shown that random set analysis regarding 
the tunnel section in the faulted zone exhibited unsuccessful results including 
large tunnel displacements and a wide range of uncertainty in the system 
response as well as difficulties in numerical convergences. In section 4.1.2 two 
scenarios were discussed for treatment. In this section the results of the second 
scenario are presented and discussed. The objective is to demonstrate that if 
scenario one is rejected, by changing the construction sequences and a new 
tunnel design, satisfactory RS results can be obtained. The tunnel geometry and 
design specifications have been shown in Figure 42 and the corresponding 2D 
finite element mesh has been depicted in Figure 43.  
 
To control the large displacements predicted by primary random set analysis, a 
possible solution may be the closure of the tunnel right after the top heading 
excavation. The temporary bench lining will prevent the lateral displacements 
and consequently leads to a smaller amount of total displacement.  In accordance 
with the actual construction sequence 5 calculation phases have been modelled: 
 

1. Initial stresses 

2. Pre-relaxation phase of top heading excavation (Fig. 44a) 

3. Installation of anchors and primary lining in top heading, temporary invert 
(Fig. 44b) 

 
4. Pre-relaxation phase of  bench and invert excavation (Fig. 44c) 

5. Destruction of the temporary invert and the excavation of the bench and 
invert along with the completion of the primary lining and anchors (Fig. 
44d) 
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Tab. 18: The range of MC-model parameters extracted from the geotechnical 
report for zone III and the representative values used in design K6-4A 

 

Parameters Eref c ϕ K0
nc  ν Rf 

Units [MN/m2] [kPa] [°] [-] [-] T.H. B & I 

Geotechincal 
report 100-200 60-90 21-23 0.4-0.6 0.35 - - 

Design-K6-4A 75 50 20 0.55 0.35 0.5 0.25 

 
Tab. 19: Parameters for structural elements used in design K6-4A 
 

E-modulus Support 
element Location Type 

young old 

Plastic    
Limit 
Force 

Thickness   
/Diameter 

   [MPa] [kN] [cm] 

Shotcrete Top-heading Elastic 5000 15000 - 30 

Shotcrete Temp. Bench Elastic 5000 15000 - 20 

Shotcrete Invert Elastic 5000 15000 - 30 

Anchor T.H., B., I. Elasto-
plastic 210000 200 2.2 

 
Tab. 20: The random sets used in design K6-4A for section BQ3 considering 

spatial autocorrelation  
 

Set Probability Es c ϕ Rf 

No. assignment [MN/m²] [kPa] [°] T.H. B & I 

1 0.5 79-157 52-82 20-22 0.4-0.6 0.2-0.4 

2 0.5 96-192 58-88 21-23 0.3-0.5 0.1-0.3 

 
The material parameters for the rock mass considered in the new design (K6-4A) 
along with the ranges of the basic variables given by the geotechnical report for 
zone III have been summarized in Table 18. In the random set model, four basic 
variables with two sets each are involved, which are given in Table 20. For the 
deformability of the rock mass, Erm, and cohesion the random sets are taken 
similar to the primary random set given in Table 12. Instead of the earth pressure 
coefficient at rest, the friction angle of the rock mass is taken as a third basic 
variable. The chosen random set for these parameters are based on the range 
given by the site investigation report and a small variation suggested by expert 
opinion. The 3D effects of the tunnel face are treated by introducing the 
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relaxation factor. The random set of Rf has been constructed according to 
Kielbassa and Duddeck (1991) and also expert’s opinion and engineering 
judgement have been regarded. 
 

Bolt l=6.0m, e=1.0m

Bolt l=4.0m, e=1.0m
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Top-Heading

Bench & Invert

+/-0.00
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Fig. 42: Specifications of the tunnel geometry and anchors in design K6-4A 
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7.5 m

 
 
Fig. 43: The 2D finite element mesh of the alternative design K6-4A for 

section BQ3, 25m overburden 
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Fig. 44: Stage constructions of the new tunnel design (K6-4A) for section 

BQ3, a) pre-relaxation of the top heading, b) top heading excavation, 
temporary invert and anchors, c) pre-relaxation of the bench and 
invert, d) excavation of the bench and invert, completion of shotcrete 
and anchors 

 

4.3.1 Calculation results 
 
The lower and upper bounds on the desirable system responses such as tunnel 
displacements, internal forces and the evaluated performance function of the 
shotcrete lining are depicted in Figures 45 and 46. A comparison made with the 
primary random set results shows a significant decrease in tunnel displacements 
in the range of few centimetres instead of a few meters.  
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Fig. 45: RSFEM results from new design (scenario #2), a) vertical 

displacement at point A, b & c) vertical and horizontal displacement at 
point B 
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Fig. 46: RSFEM results from new design (scenario #2), a) maximum normal 

force, b) maximum moment in the lining, c) serviceability of the 
shotcrete performance function  
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In Figures 45 and 46 besides the random set bounds, result of a deterministic FE 
calculation based on characteristic values (design value) given in Table 18 has 
been illustrated. As it is expected, the design values fall within the random set 
bounds.  
 
Likewise Scenario 1 concerning the shotcrete performance function, g(x), the 
probability of unsatisfactory performance (i.e. probability of failure) should be 
assessed. Three different well-known distribution functions namely Normal, 
general Beta and shifted Weibull have been fitted to the discrete cumulative 
probability function obtained in random set analysis. Probability of failure of g(x) 
for respective distributions has been summarized in Table 21. The pf obtained 
directly from random set results is zero because the line of g(x) = 0 does not 
intercept the discrete CDF. It follows that the probability of failure ranges from 
almost zero to the maximum value of 1.48 × 10-2. Thus, in reference to Table 9 
the level of expected performance is described as below to above average.  
 
Tab. 21: Probability of failure obtained from different distributions fitted to the 

lower and upper bounds of g(x) 
 

Distributions Reliability 
parameters Normal Beta Weibull Discrete CDF 

Pf-max 1.15 × 10-2 1.8 × 10-4 1.48 × 10-2 0.0 

Pf-min ≈0.0 ≈0.0 ≈0.0 0.0 

 
It follows from scenario 2 that in cases where a proportion of the FE calculations 
show failure, random set results can be improved to a reasonable range by a 
modification of the tunnel design. This can be considered as an advantage of RS-
FEM, which is capable of demonstrating the inefficiency of the design 
(considering the current state of knowledge of input parameters), while a 
deterministic calculation with characteristic input values at first sight shows an 
adequacy of tunnel supports and a successful design.  

4.4 Summary and conclusion 
 
As can be seen, the tunnel displacement predicted by RSFEM based on the new 
design and primary random set input parameters are in the range of several 
centimetres. However, this design was not executed in practice and the 
measurement showed a good agreement with the range predicted by the revised 
random set. Therefore, it is concluded that the first scenario has been correct and 
the primary source of information has given too conservative parameters. 
Moreover, random set analysis contributed to identifying the most influential 
input parameters. In addition it was demonstrated that in cases where a 
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proportion of the FE calculations show failure and consequently the random set 
bounds cannot not been constructed or result in too wide ranges which are not 
acceptable from a practical point of view, random set results imply the 
inefficiency of the tunnel design. By revising the tunnel design, a reasonable 
range for results can be obtained. Therefore, also in the mentioned cases RS-
FEM shows the ability to evaluate a tunnel design considering uncertainties 
available in input parameters. 
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5 On the effects of constitutive model 
change 

5.1 Problem statement 
 
Besides the uncertainties in input parameters, loading and geometry, employing 
different material constitutive models causes different system responses in a 
numerical model. The objective of the chapter is to assess the uncertainty 
reflected in the results of a tunnel problem due to the change of the rock model 
used in the numerical analysis within a probabilistic framework of the Random 
Set Finite Element Method. 
 
At the beginning of a numerical analysis, a decision has to be made regarding the 
constitutive material model employed. In a tunnel project when a reliability 
analysis is to be accomplished, the system response variations caused by this 
issue become more important and might significantly affect the probability of 
unsatisfactory performance of the tunnel. There are many factors that are 
involved in model selection. For instance, some practitioners choose a model like 
Mohr-Coulomb (MC) for simplicity because it requires fewer input parameters in 
comparison to an advanced soil model. It may also be difficult to derive the 
parameters for an advanced soil model due to time limitations, unreliable sources 
of information, or absence of proper test results. In this chapter, the RS-FEM is 
employed as a framework to allow for a model variation in a numerical analysis 
and investigating the consequences of a model change on the results of a 
reliability analysis. To demonstrate the applicability of the random set model in 
considering model uncertainty in a reliability analysis, two simple rock/soil 
models, namely the Hoek-Brown (HB) model and the Mohr-Coulomb (MC) 
criterion are used. 

5.2 A tunnel example in rock with 25m overburden 
 
To illustrate the differences in the outcomes of a numerical analysis resulting 
from selecting the two above mentioned material models, the master model of the 
tunnel example given in Section 4.1 was chosen maintaining the layout of the 
tunnel geometry, support specifications, excavation sequences, and the relevant 
finite element mesh (using approximately 900 15-noded triangle elements) which 
have been shown in Figures 30 and 31. No water table is present and 
consequently all calculations have been performed under drained conditions. 
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5.2.1 Random set input parameters 
 
Similar to Section 4.2 four basic variables are considered for the MC-model 
including two strength parameters of the rock mass namely cohesion and friction 
angle, elasticity modulus of the rock mass, Erm, and the relaxation factor, which 
are presented in Table 22 and 23. The random sets with respect to Erm and the 
relaxation factor are common between the HB-model and the MC-model. Figures 
47 and 48 illustrate the random set strength parameters in terms of p-box 
corresponding to MC and HB model respectively. 
 
Tab. 22: Input random set of both MC and HB strength parameters 
 

 HB Parameters MC Parameters 

Var. m(A) mi σci D GSI ϕ c 

Units - - [MPa] - - [°] [kPa] 

Set 1 0.5 15 10 0-0.5 30-40 37-47 80-130 

Set 2 0.5 25 50 0-0.5 30-40 53-60 160-280 

 
Tab. 23: Common input random set for MC and HB model 
 

Var. m(A) Erm (rock mass modulus) Relaxation Factor 

Units - [MPa] T.H. Bench Invert 

Set 1 0.5 1300-2300 0.4-0.6 0.3-0.5 0.2-0.4 

Set 2 0.5 1900-3400 0.3-0.5 0.2-0.4 0.1-0.3 

 
Recalling Section 4.2.1.2 in which the procedure of obtaining the equivalent MC 
strength parameters from the HB-model parameters has been described, 
alternative 2 is adopted for the MC strength parameters used in this section. The 
main reason is that alternative 2 considers a range of minor principal stresses 
(Equ. 29) in its fitting procedure, which corresponds approximately to the stress 
state in the vicinity of the tunnel elevation. Consequently the system responses 
obtained by both HB and MC-models are expected to be close and comparable to 
each other. 
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Fig. 47: Set-based input random variables of MC-model, a) cohesion b) 

friction angle 
 
In fact in the HB-model there is only one interval for GSI and D but by 
combining it with two constant values of mi and σci two sets are made in the 
respective random set model. The strength parameters of the HB model are given 
in Table 22. It should be noted that the GSI and D are dependent parameter sets 
such that the lower limit of D is used with the upper value of GSI in the 
calculations and vice versa to represent the best and the worst geological 
conditions respectively. The input for individual deterministic FE calculations 
resulted from the random set model for the case of the HB-model is summarized 
in Table 24. 
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Fig. 48: Set-based input random variables of HB-model, a) geological strength 

index b) Damage factor 
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Tab. 24: Input parameters of 64 FE deterministic calculations used for the HB-
model 

 

Run   
No.

m(Ai)
Set 
No.

LLL LUL LLU ULL UUL LUU ULU UUU

GSI 30 30 30 40 40 30 40 40

D 0.5 0.5 0.5 0 0 0.5 0 0

mi 15 15 15 15 15 15 15 15

σci 10 10 10 10 10 10 10 10

0.50 Rf Top_Heading 1 0.4 0.6 0.4 0.4 0.6 0.6 0.4 0.6

0.50 1 1300 1300 2300 1300 1300 2300 2300 2300

GSI 30 30 30 40 40 30 40 40

D 0.5 0.5 0.5 0 0 0.5 0 0

mi 15 15 15 15 15 15 15 15

σci 10 10 10 10 10 10 10 10

0.50 Rf Top_Heading 2 0.3 0.5 0.3 0.3 0.5 0.5 0.3 0.5

0.50 1 1300 1300 2300 1300 1300 2300 2300 2300

GSI 30 30 30 40 40 30 40 40

D 0.5 0.5 0.5 0 0 0.5 0 0

mi 15 15 15 15 15 15 15 15

σci 10 10 10 10 10 10 10 10

0.50 Rf Top_Heading 2 0.3 0.5 0.3 0.3 0.5 0.5 0.3 0.5

0.50 2 1900 1900 3400 1900 1900 3400 3400 3400

GSI 30 30 30 40 40 30 40 40

D 0.5 0.5 0.5 0 0 0.5 0 0

mi 15 15 15 15 15 15 15 15

σci 10 10 10 10 10 10 10 10

0.50 Rf Top_Heading 1 0.4 0.6 0.4 0.4 0.6 0.6 0.4 0.6

0.50 2 1900 1900 3400 1900 1900 3400 3400 3400

GSI 30 30 30 40 40 30 40 40

D 0.5 0.5 0.5 0 0 0.5 0 0

mi 25 25 25 25 25 25 25 25

σci 50 50 50 50 50 50 50 50

0.50 Rf Top_Heading 1 0.4 0.6 0.4 0.4 0.6 0.6 0.4 0.6

0.50 2 1900 1900 3400 1900 1900 3400 3400 3400

GSI 30 30 30 40 40 30 40 40

D 0.5 0.5 0.5 0 0 0.5 0 0

mi 25 25 25 25 25 25 25 25

σci 50 50 50 50 50 50 50 50

0.50 Rf Top_Heading 1 0.4 0.6 0.4 0.4 0.6 0.6 0.4 0.6

0.50 1 1300 1300 2300 1300 1300 2300 2300 2300

GSI 30 30 30 40 40 30 40 40

D 0.5 0.5 0.5 0 0 0.5 0 0

mi 25 25 25 25 25 25 25 25

σci 50 50 50 50 50 50 50 50

0.50 Rf Top_Heading 2 0.3 0.5 0.3 0.3 0.5 0.5 0.3 0.5

0.50 1 1300 1300 2300 1300 1300 2300 2300 2300

GSI 30 30 30 40 40 30 40 40

D 0.5 0.5 0.5 0 0 0.5 0 0

mi 25 25 25 25 25 25 25 25

σci 50 50 50 50 50 50 50 50

0.50 Rf Top_Heading 2 0.3 0.5 0.3 0.3 0.5 0.5 0.3 0.5

0.50 2 1900 1900 3400 1900 1900 3400 3400 3400
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The RS-FEM procedure is applied separately for each constitutive model. The 
number of realisations required to accomplish the RS-FEM in which the HB and 
the MC model have been used, based on Equation 11 are 64 and 256 FE 
calculations respectively. 
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5.2.2 Calculation results 
 
Displacements and internal forces in structural elements obtained from both MC 
and HB constitutive models are plotted in Figures 49 and 50 along with the in-
situ measurements in terms of the lower and upper discrete cumulative 
probability distribution bounds. It should be noted that the random variables have 
been assumed stochastically independent, which is generally not correct; but for 
the sake of simplicity and from a practical point of view it is admissible. Since 
the measurements of only two sections of the tunnel with similar conditions to 
the model were available, the measurement values are illustrated in the plot with 
two steps in form of a discrete cumulative distribution. 
The cumulative distributions of the bound of results given by the HB-model are 
generally more inclined than the MC bounds; consequently, the HB-model 
indicates more uncertainty in the system response. As a result, HB results could 
encompass the measurements within its most likely predicted values. For 
instance, from Figure 49b it can be seen that the upper limit of the measured 
value lies at the end of the upper bound of the MC-model, whereas in the HB-
model it is situated within the most likely values. Nevertheless, it follows that the 
results of the calculated bounds from both models are in good agreement with the 
measurements. It maintains the capability of the RS-FEM in capturing the 
uncertainties involved in the basic random variables, although the displacements 
are small in the sense of absolute values. Despite the fact there was not a 
possibility to measure the internal forces of the lining, it is anticipated that like 
the crown displacement, actual moments and normal forces in the lining fall 
inside the range shown in Figure 50. Table 25 presents the most likely values of 
obtained system responses based on the definition given in Chapter 3. 
 

Tab. 25: The range of most likely values obtained from HB and MC random set 
model 

 

Uy-A Uy-B Ux-B 
FOS              
T.H. 

Max 
Moment 

Max 
Normal 
Force 

 
Results 

 
[mm] [mm] [mm] [-] [kN.m/m] [kN/m] 

lower 1.8 1.2 0.5 2.07 6.7 262 
HB-model 

upper 5.3 3.4 1.3 3.50 16.3 574 

lower 1.7 1.0 0.5 2.39 3.9 170 
MC-model 

upper 4.3 2.5 0.9 3.70 14.5 477 
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Fig. 49: Comparison between RS-FEM predictions obtained from HB and MC 

models and the measurement a) vertical displacement at the tunnel 
crown, b & c) vertical and horizontal displacement at point B, 
respectively 
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Fig. 50: RS-FEM results for both HB and MC constitutive models, a) factor of 

safety after top-heading excavation, b) maximum normal force, and c) 
maximum moment in the lining at the end of construction 
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Fig. 51: Yield curve and direction of plastic flow in both MC and HB-model 
 
From a modelling point of view, the observed differences between the two 
models might have originated from minor differences existing in the constitutive 
models that are discussed next. 
 
In the theory of plasticity, the yield function is defined as being a scalar function 
of stress. In MC and HB models their respective failure line acts as a yield 
function (denoted by f in Fig. 51), which is regarded as a criterion for the onset of 
plastic straining (Potts and Zdravkovic, 1999). Another issue is to determine the 
direction of plastic straining at every stress state. This is carried out by means of 
a flow rule using a potential function (denoted by g in Fig. 51) that can be the 
same as the yield function and is then called an associated flow rule. For MC 
type yield functions, the theory of associated plasticity overestimates dilatancy 
and results in unrealistic volume changes. Commonly the potential functions 
contain the dilatancy angle ψ, which controls plastic volumetric strains. Thus, in 
a non-associated flow rule, at every stress state an angle exists between the yield 
function and the plastic potential function, which is a function of the dilatancy 
angle. 
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Fig. 52: Illustration of stress points of FE calculations in principal stress space 

for the given equivalent HB and MC strength parameters 
 
The difference in the potential functions used in the MC and HB models is the 
most influential factor for the differences of the results between the two models. 
For the MC model two potential functions have been chosen: a non-associated 
flow rule in the deviatoric part and an associated one on the tension cut-off line. 
As a limiting case the dilatancy angle is selected equal to +90 at the tension cut-
off line (the plastic strain vector has no component in the vertical direction) and 0 
for the deviatoric line as depicted in Figure 51 (the plastic strain vector has no 
component in the horizontal direction).  
At the apex point of the HB failure line the dilatancy angle is equal to ψmax. As 
depicted in Figure 51, ψ decreases linearly from ψmax to 0 within the range of 
minor principal stresses between uniaxial tensile strength (σt) and σψ. The value 
of σψ is equal to zero which is a default value for rock material. 
 

HB parameters 

GSI 40 

D 0 

mi 15 

σci 10 MPa 

 

MC parameters 

ϕ 47 

c 130 kPa 
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After the tunnel excavation, stress points around the tunnel follow stress paths 
that are deviating from the initial stress state (on the K0-line). It can be seen from 
Figure 52 that most of the stress points that are not affected by the excavation are 
concentrated near the K0-line. Figure 52 shows the stress state in the whole 
model after the final construction stage. Furthermore, two observations can be 
made: firstly, the range of σ3 over which HB and MC failure lines are fitted 
together (Equ. 29) encompasses all the stress points that are close to the failure 
line. It implies that Equation 29 gives a reasonable estimation for σ3max (see 
Figure 52 showing the position of σ3max). The second observation is that the 
majority of the stress points hit the failure line in a range of minor principal stress 
between σt and σ3max/2. They are especially concentrated around the apex and the 
tension cut-off line. It follows that the discrepancy depicted in Figures 49 and 50 
between the two constitutive models is most likely due to the natural 
consequences of the difference between the corresponding yield and potential 
functions in the range of low minor principal stresses. 
 

5.2.3 Serviceability limit state 
 
Finally, the serviceability limit state of the shotcrete lining at the final stage will 
be assessed based on the primary results taken directly from the random set 
model FE calculations. On the basis of the results obtained from the original 
design calculation a shotcrete thickness of about 30 cm is required for the top-
heading and bench. This amount is decreased to 20 cm for the invert. The limit 
state function following Equation 23 given by Schikora and Ostermeier (1988) is 
considered. The serviceability limit state of the shotcrete lining is defined by 
exceeding the admissible stress, which is based on the potential for damage of 
the lining due to cracking when the tensile capacity of the material is exceeded. 
The following assumptions were made regarding other variables involved in the 
Equation, i.e. for the shotcrete a uniaxial strength of about 17.5MPa is assumed, 
and to cover the imperfections an eccentricity of ea = 2.0cm, and for the 
serviceability limit state a safety factor of Fs = 2.1 is considered. Figure 53 
depicts the range of the evaluated limit state function using RS-FEM results in 
terms of CDF. For fitting a density and cumulative distribution function over the 
discrete data, @RISK® (Palisade, 2008) employs only the Root-Mean Squared 
Error method. This is the same quantity that @RISK minimized to determine the 
distribution parameters during its fitting process. It is a measure of the “average” 
squared error between the input and fitted curve. This statistic measures how well 
the distribution fits the input data and how confident one can be that the data was 
produced by the distribution function. It turned out that Beta distribution ranks 
first among the others and has been fitted to all the discrete CDF of g(x). The 
lower and upper values of the probability of exceeding the admissible normal 
force in the lining, N>Nlim, where cracking takes place, corresponding to lower 
and upper fitted distributions over g(x) for both HB and MC models are zero and 
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3.19×10-5 respectively. The values of the probability of failure indicate that the 
shotcrete satisfies the serviceability criterion and major cracking is not expected 
to occur in the lining. 
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Fig. 53: Bounds of the random set results of shotcrete serviceability limit state 

function 
 

5.3 Merging of RS-FEM results obtained from 
different constitutive models 

 
Model uncertainty is distinguished from parametric uncertainty, which is the 
uncertainty of the value(s) of a particular variable. In fact, the system response of 
any mechanical system is affected by both parameter values and the relationships 
that tie the parameters together. These relationships are expressed in models. 
This means that model uncertainty could be just as crucial as parametric 
uncertainty. In general, this source of uncertainty is neglected. Model 

uncertainty is also referred to uncertainties concerning statistical 

parameters used in an uncertainty model e.g. uncertainty relating to the 

distribution family (Oberguggenberger and Fellin, 2008), and dependencies 

among basic variables (Berleant and Zhang, 2004) for which distribution 

envelope approaches have been developed, but these are not discussed 

herein.  

 

To perform a comprehensive reliability analysis and risk assessment it is 
recommended to examine various scenarios, different theories and constitutive 
models in the context of the numerical method. Afterwards, an approach is 
needed to merge all the results for a rational decision-making. The objective of 
the aggregation of the two model results is to reasonably simplify and unify the 
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information obtained on the system response for subsequent reliability analysis. 
In this regard, many operations have been developed recently to combine 
different sources of information that basically fall in three main categories: 
conjunctive (based on set intersection), disjunctive (based on set union), and 
trade-off (an integration of foregoing operations) operations (Sentz and Ferson, 
2002). A conjunctive operation is appropriate when the sources are considered 
reliable, and in situations where only one of the sources is probably reliable a 
disjunctive operator is recommended.  
 
An extensive review has been carried out by Ferson et al. (2003) regarding the 
aggregation methods and their respective advantages and disadvantages, 
discussing how different evidence or sources of information can be combined 
together in order to consider the model uncertainty. Although they use these 
methods to combine different sources for the input parameters of a model, the 
same notion is adopted here to combine the RS-FEM outcomes obtained from 
two different constitutive models in order to come up with one solution for the 
system response. The most commonly and widely used aggregation methods 
consist of: Intersection, Envelope, Dempster’s rule, Zhang’s rule, Bayes’ rule, 
Mixing, and Convolutive averaging. In the following sections, Envelope, Mixing, 
and Convolutive averaging, which are more appropriate for the objective 
mentioned before, are going to be discussed. For instance, Dempster’s rule 
ignores and excludes the conflicting focal elements in the aggregation process, 
which is not favourable when it is applied for the aggregation of results of 
various constitutive models. 
 

5.3.1 Intersection  
 
The intersection operator is acted over a collection of focal elements of various 
random set structures. For computational purposes, random set results in the form 
of p-boxes are discretised into e.g. 100 redundant focal elements, each with a 
mass of 0.01. The aggregation outcome is simply obtained by intersecting the 
respective focal elements from the discretisation of the random set results (e.g. of 
both the MC-model and the HB-model), and then the masses of new focal 
elements are accumulated to construct the merged random set structure.  
 
From the mathematical point of view, the intersection result holds the true 
response only when the RS results of each individual model contain the true 
response. This type of aggregation is only reasonable as long as the mentioned 
condition regarding the involved models is assured. Since each constitutive 
model has its own shortcomings and merits, one cannot generally claim that the 
actual behaviour is thoroughly captured by all of the models. Therefore in the 
current case, an envelope of the results would be a more logical solution and 
more conservative.  
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5.3.2 Envelope  
 
Similar to the Intersection method, the random set structures in the form of p-
boxes are descretised, but instead of the intersection operation, the union is used. 
Contrary to the intersection method, enveloping is commonly employed in the 
situation where the reliability of individual system responses is uncertain. In 
other words, since each constitutive model can usually characterise only specific 
aspects of the material behaviour, the true response might fall either within or 
outside the range predicted by each model. Therefore, choosing the Envelope 
method would be a reasonable and cautious strategy.  
 

5.3.3 Mixing 
 
The general form of the Mixing method takes different weights for each estimate 
(i.e. source of information) into account, as follows. Suppose that there are n p-
boxes [F1

*, F*1], [F2
*, F*2], …, [Fn

*, F*n], with their associated weights w1, w2, 
…, wn, and the resulting p-box from the Mixing process gives [F*, F*] where, 
 

 F*(x) = (w1F1
*(x) + w2F2

*(x) +…+ wnFn
*(x))/Σ wi (33) 

F*(x) = (w1F*1 (x) + w2F*2 (x) +…+ wnF*n (x))/Σ wi (34) 

 
If the estimates are in terms of n finite random set structures with masses m1, m2, 
…, mn the resulting weighted mixture has the basic probability assignment m*(A):  
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=∗  (35) 

For example, the unweighted mixture of two random set structures: F1 = {([2, 6], 
0.4), ([3, 7], 0.6)}, and F2 = {([1, 4], 0.5), ([2, 8], 0.5)} results in F = {([2, 6], 
0.2), ([3, 7], 0.3), ([1, 4], 0.25), ([2, 8], 0.25)}. 
 
Unlike Convolutive averaging, the Mixing method maintains the disagreement 
between the estimates or rather summarizes it into a single distribution. In 
addition, according to Sentz and Ferson (2002) it is reasonable to use the Mixing 
method when the disagreement between the various estimates represents actual 
variability. 
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5.3.4 Convolutive averaging 
 
Convolutive averaging of n given random set structures (ℜ1, m1), …, (ℜn, mn) 
with their respective focal elements A1, …, An results in the random set (ℜ*, m*) 
whose focal elements (A) are obtained on the Cartesian product of A1×…× An. 
Aassuming the respective random set structures are independent, then the 
associated masses are defined by:  

∑ ∏
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ii AmAm
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* )()(  (36) 

where wi is the weight concerned with i th random set structure such that Σwi =1 
and wi>0.  
 
From Equation 36 it follows that all of the focal elements of one random set 
structure are convolved with those of the other (that is, all possible pairs are 
considered). In fact, the relationship mentioned above is nothing but a random set 
analysis with a simple arithmetic averaging as its mapping function. For the 
purpose of illustration, a numerical example is given in Table 26.  
 
As an advantage, the Convolutive averaging is applicable to those random set 
structures between which conflicting and disjoint focal elements exist. Both the 
Mixing and Convolutive averaging operations possess the property of 
commutativity but not associativity; therefore, special care should be taken when 
these operators are acting on multi-arguments. In addition, it can readily be 
shown that the Mixing operation is idempotent; however, Convolutive averaging 
does not possess this algebraic property.  
 
Tab. 26: Combination of the random set variable A and B using the 

Convolutive averaging 

Set (A1), m(A1) Set (A2), m(A2) 
 

[3, 5], 0.4 [4, 6], 0.6 

Set (B1), m(B1) [1, 3], 0.5 [2, 4], 0.2 [2.5, 4.5], 0.3 

Set (B2), m(B2) [2, 4], 0.5 [2.5, 4.5], 0.2 [3, 5], 0.3 
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5.4 Calculation and results 
 
In section 5.2.2, the difference in the results obtained from two constitutive 
models in the framework of random sets has been shown. Here an attempt will be 
made to aggregate the results of the two separate random set analyses (i.e. one 
with the HB and the other with the MC model) to come up with the final bounds 
enclosing the uncertainty in the material model selection. The random set result 
of each material model is considered as one source. The bounds created by the 
above mentioned methods have been shown in Figures 54 and 55 for the results 
of the crown displacement and the maximum moment of the tunnel lining. As it 
can be seen, the envelope of the bounds results in a conservative solution, 
whereas the Convolutive averaging and the Mixing method yield almost a 
compromise between the bounds obtained by both constitutive models. The 
measured values of the tunnel crown displacement (Fig. 54) lie within the most 
likely values region of both the HB and MC random set results and still remain in 
the corresponding most likely value regions when applying various aggregation 
methods. The Intersection method makes the resulting bandwidth of the 
aggregation narrower and it contains the drawback mentioned in the previous 
section.  
 
Ferson et al. (2003) argue that when the estimates to be aggregated represent 
variability (aleatory uncertainty) the Mixing method is more justifiable to be 
applied, and if it is appropriate to ignore the variability (i.e. the estimates 
represent an epistemic type of uncertainty) as well as the dependency between 
the estimates, employing the Convolutive averaging method would be more 
suitable. The constitutive model uncertainty basically lies in the epistemic 
category and it cannot be considered as a real variability in the model selection. 
Therefore, the latter aggregation method would be more reasonable to be adopted 
for the current case. 
 
On the other hand, the Envelope ensues more conservative values, albeit the 
Convolutive results in some locations are outside of the envelope bounds (Fig. 54 
and 55). Ferson et al. (2003) have also pointed out that if many independent p-
boxes having similar scatter are combined by means of the Convolutive 
averaging, the results tend to become an interval whose band reflects the overall 
incertitude. This phenomenon can be seen in the presented results because the 
scatter of the resulting bounds has been considerably reduced although only two 
p-boxes have been involved. On the contrary, the Mixing method has resulted in 
a larger scatter even with respect to each input p-box.  
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Fig. 54: Illustration of different aggregation methods applied on the random 

set results of the vertical tunnel crown displacement, a) Envelope, b) 
Intersection, c) Convolutive averaging and Mixing 
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Fig. 55: Illustration of different aggregation methods applied on the random 

set results of the maximum lining moment, a) Envelope, b) 
Intersection, c) Convolutive averaging and Mixing 
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Evaluation of serviceability limit state function 
 
To show the effects of different aggregation methods on reliability analysis of a 
tunnel system, a performance function relating to the tunnel crown deformation 
is considered. The simplest form of such performance function is assumed 
below: 

yAyA Ug −= 6)(U  (37) 

where UyA is the vertical displacement of the tunnel crown downwards, and 6 mm 
is the criterion adopted in this example.  
 
CDF of the upper bound of UyA results illustrated in Figure 54 are used to obtain 
the probability of failure (or probability of unsatisfactory performance) using the 
following Equation: 

 uuu
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=≤=  (38) 

The upper values of the probability of ‘failure’ (meaning in this context that the 
limiting value for crown displacement is exceeded) have been summarized in 
Table 27 regarding various aggregation methods. It follows that for a certain 
performance function, the adoption of an aggregation method could result in a 
considerable discrepancy in the calculated probability of unsatisfactory 
performance. As expected, the Envelope has produced a conservative value in 
contrary to the Intersection method. 
 
Tab. 27: Maximum probability of unsatisfactory performance of Equation 37 

considering various aggregation methods 
 

Aggregation 
method Envelope Intersection Convolutive 

avg. Mixing 

Probability of 
failure 0.25 0.0 0.0599 0.125 
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5.5 Conclusion and summary 
 
In this chapter an extension of the RS-FEM was presented that enables the 
Random Set model to consider the uncertainty of the constitutive model used in 
numerical analysis by using evidence aggregation methods. By using the existing 
method of combining different sources of information the results of two separate 
RS-FEM analyses are merged to come up with the bounds that take the 
uncertainty in model selection into account. Among the four applied merging 
methods, namely Intersection, Mixing, Envelope and Convolutive averaging only 
the later two are suitable for the aggregation of the two models’ results. The 
Mixing method is appropriate when the differences between results come from 
actual variability. However, in model uncertainty there is no inherent variability 
and in fact the differences between results are a type of epistemic uncertainty. 
The Envelope method yields conservative bounds of results.    
 
Two separate Random Set Finite Element Analyses were performed in which 
common constitutive models, namely the Hoek-Brown and the Mohr-Coulomb 
model were employed. The range of the predicted results of the tunnel 
displacements extracted from both models was compared to the measurements 
available in the project and good agreement was observed. The HB-model 
requires less finite element realisations as compared to the MC model 
maintaining the quality of the random set model, which can be seen as an 
advantage from a practical point of view.  
 
The differences between HB and MC results originate from two main reasons. 
First, despite the suitable fitting procedure, there is a difference between the two 
failure criteria, which results in different numbers of failure points in each model, 
leading to different plastic strains and consequently internal forces in the lining. 
Secondly, different flow rules are adopted for the two models, which has some 
influence on element results in particular at low stress levels and tensile stresses. 
 
 



6 Comparison of RS-FEM and PEM  113 

6 Comparison of RS-FEM and Point 
Estimate Method 

 
This chapter aims to compare the results of two uncertainty models, namely the 
Point Estimate Method (PEM), and the Random Set Method having different 
theoretical backgrounds, against the measurements of the tunnel problem 
presented earlier. The Point Estimate Method is supported by probability theory, 
while the Random Set Method is categorized in the imprecise probability group 
and is backed by random set theory. PEM has been first introduced by 
Rosenblueth (1975). In simple words, PEM as uncertainty model defines each 
random variable by two numbers. The mean value of these two numbers gives 
the magnitude of the variable, and the difference is a measure of the uncertainty. 
In the original form of PEM the calculations were made for all combinations of 
input data. For instance, for n numbers of variables this will lead to 2n numbers 
of calculations. RSM and PEM are similar from the two following aspects:  
 

• PEM does not care about the mapping function of a mechanical system 
that maps the input variables from a domain into the space of the system 
response. Therefore it is applicable to a probabilistic evaluation of a 
mechanical system whose solution is given by a number of empirical 
graphs or the required calculation is carried out by a non-accessible 
computer code, or in other words, there are no explicit equations 
characterizing the problem. However, only the statistical moments of 
target values are yielded by PEM, and no information about the type or the 
shape of the distribution can be obtained.  

 
• Reliability analysis of a mechanical system in connection with numerical 

models can be broken down into a limited number of deterministic finite 
element calculations based on the number of predetermined points given 
by the method. In this sense Point Estimate Method is similar to the 
Random Set Finite Element Method.  

 
The accuracy and precision of the two methods are not comparable but it is 
anticipated that random set results encompass the distribution of the system 
response obtained from PEM. By comparing the measurements both methods can 
be evaluated against each other and their limitations are pointed out. 
 
Schweiger et al. (2001) demonstrated the applicability of PEM to determine the 
low-order statistical moments of the considered limit state function (LSF) in 
geotechnical problems. PEM would be rather used in the reliability analysis of 
complex problems, since commonly used reliability methods such as FORM 
(First Order Reliability Method) or SORM (Second Order Reliability Method) 
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require an extra code coupled with a Finite Element tool to numerically calculate 
the partial derivatives of the implicit LSF (Schweckendiek, 2006). For each LSF 
a modification should be performed to the code due to the existing partial 
derivatives. Furthermore, it seems that PEM is still appealing and has been 
satisfactorily applied in some civil engineering applications (e.g. Tsai and 
Franceschini, 2005). 
 

6.1 Point estimation method 
 
In reliability analysis it is favourable to estimate the actual distribution of the 
system response or the desired limit state function and subsequently the 
corresponding failure probability of the system. However, for most geotechnical 
problems this is a very difficult task and normally impractical. Thus an 
assortment of approaches have been proposed to simplify the issue and among 
others the most commonly used method in engineering practice is the first order 
reliability method (FORM) using the notion of reliability index (β), (according to 
Ang, 2009) first suggested by Cornell (1969) and subsequently improved by 
Hasofer and Lind (1974). To compute the reliability index it is only essential to 
obtain the low order moments of the limit state function G(X). The exact k-th 
moment of G(X), E[Gk(X)], is obtained by the solution of the multiple integral 
given in the following: 
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where fx(X) is the joint PDF of the random vector X = (X1, X2,…, Xn). When a 
closed-form solution for such a limit state function G(x) is not available, 
approximate solutions are used. A common approach to solving this problem is 
to expand the limit state function in a Taylor series (Harr, 1996), in which only 
the linear terms are considered. In terms of the solution process, the method is 
very similar to PEM but should not be confused with each other. The accuracy of 
their results, depending on the form of the limit state function is however less 
than that of the point-estimation method (Thurner, 2000). 
 
In the Point Estimate Method (PEM), the continuous joint distribution density 
function fx(x) is replaced by specially defined discrete probabilities which are 
supposed to model the same low-order moments of fx(x). The determination of 
these moments is done by adding up the weighted discrete realisations. In Figure 
57 this relationship is simplified by the two realisations at x+ and x- represented 
with the corresponding weights w+ and w-. This method implicitly allows input 
random variables to have any distribution, provided the mean, variance and 
skewness (at least first two moments) are known.  
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Fig. 56: Notion of PEM in representing a random variable (after Thurner, 

2000) 
 
There are two main distinguishable approaches for the point estimate method: 
first, Rosenblueth’s approach for the point estimate method (for the first time 
introduced by Rosenblueth, 1975) and its modified method given by his 
followers (e.g. Lind 1983, Harr 1989, Hong 1998) that attempted to save 
computational cost by reducing the number of prefixed sampling points; however 
in the case of large numbers of variables some pre-determined sampling points 
lie outside the range of PDF of the respective variable or give negative values 
which have non-physical meaning for some specific variables. This issue has 
been addressed by Christian and Baecher (2002). Second, the approach proposed 
by Zhou and Nowak (1988) including three different integration rules, namely 
n+1, 2n, 2n2+1(n is the number of basic variables involved in the analysis) and 
the latter is used in this chapter since from the investigation accomplished by 
Thurner (2000), it turned out that the 2n2+1 integration rule results in an 
optimum compromise between accuracy and computational effort. Theory, 
procedure and the accuracy of this method are going to be briefly presented and 
discussed in the next sections. 
 

6.2 Approach proposed by Zhou & Nowak (1988) 
 
Zhou and Nowak (1988) have presented a general procedure to numerically 
approximate Equ. 40, considering various possibilities (e.g. with and without a 
known joint distribution function, a correlation between variables, any type of 
distribution) using the Gauss-Hermite quadrature formula. Basically this method 
has been established for a multivariate case in standard normal space, which 
gives the approximation of the Equ. 40 as follows: 
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where n is the number of variables, m is the number of considered points, zj are 
typical predetermined points and wj are the respective weights given in Table 28. 
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Therefore the required number of realisations is presented in the first column, the 
formulas for the calculation of the required points in the second column, and the 
corresponding weights in the third column. The sum of the weights is always 1.0 
and the number of required calculations thus depends on the integration rule. In 
their original paper formulas for three rules known as n+1, 2n, and 2n2+1 have 
been presented and only the two latter are given in Table 28 and hereafter they 
are designated as ZN-II and ZN-III respectively. The effects of different 
integration rules on the accuracy of the results have been discussed by Thurner 
(2000). The case of a single, normally distributed variable Z and a non-linear 
limit state function G(Z) is graphically illustrated in Figure 57. 
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Fig. 57: Illustration of Gauss-Hermite quadrature Integration using 3 points  
 
For a non-normally distributed variable X the same principle applies, only a 
transformation from the standard normal space to the x-space is necessary:  
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where Φ(z) is the cumulative distribution function of standard normal variable Z.  
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Fig. 58: Transformation of a random variable from normal to non-normal 

space  
 
Figure 58 depicts how the transformation is carried out by setting the value of the 
cumulative distribution function Fx(x) at the point xj equal to the value Φ(zj). 
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Tab. 28: Evaluation points and respective weights in PEM after Zhou and 
Nowak (1988) 

 
Formulas 
m 

Points 
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1

+
=

n
w j  

a Points include all possible permutations of coordinates. 

 
The difficulties that may arise in numerical operations and respective 
approximations are not discussed here, and interested readers are referred to the 
original paper of Zhou and Nowak for more details; but in summary, in the 
general case of correlated, non-normally distributed variables, the following 
process determines the required input data for the individual realisations in the 
original space (Thurner, 2000): 
 
Step 1: Setting up the correlation matrix � C 
Step 2: Transforming the correlation coefficients (ρij) from the original 

space to the correlated normal space Y using a Nataf-
transformation � C0 

Step 3: Determining the lower triangular matrix using the Cholesky-
decomposition of C0 � L0 

Step 4: The predefined uncorrelated integration points Z (given in Tab. 28) 
are correlated to each other based on the correlation matrix L 0 and 
are accordingly transformed into the correlated normal space 
 � Y = L 0Z  and in matrix form: 
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 (42) 

Step 5: Mapping the variables from the correlated normal space to the 
original space with "arbitrary" marginal distributions   
 � X = Fx

-1(Φ(Y)) and in matrix form: 
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Step 6: Computing the low-order moments of G using Equ. (41) as follows: 
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The formula expressing the skewness in terms of the non-central moment E[X3] 
can be expressed by expanding the definition formula as follows: 
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323 3)(
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where µG and σG are the mean and variance of G(X) respectively.  
 

6.3 Accuracy of the PEM 
 
The accuracy of the PEM generally varies from exact to approximate statistical 
parameters of a target value depending on the complexity of the mapping 
function and the number of points included in the calculations. The result of 
Rosenblueth’s PEM is precise for sums of uncorrelated or correlated variables 
(Alén, 1998) while in the case of more complex functions the degree of accuracy 
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drops. However, it can be sufficiently accurate in many practical situations (Harr, 
1996; Baecher and Christian, 2003). According to Alén (1998) the more linear 
the function is, the more accurate the method probably is, also the error given by 
the PEM-approximation is on the safe side. Then again, the latter comment is not 
true for all types of limit state function (especially in association with 
Rosenblueth methods; see work of Eamon et al. (2005)).  Yet Baecher and 
Christian (2003) state “The method is reasonably robust and is satisfactorily 
accurate for a range of practical problems, though computational requirements 
increase rapidly with the number of uncertain quantities of interest”. 
 
In the case of Zhou and Nowak (1988), the error due to the nonlinearity of a 
function can be reduced by using integration rules with more points (e.g. 
integration rule with 2n2+1 instead of n+1 points). Thurner (2000) has found the 
2n2+1 integration rule given by Zhou and Nowak (1988) to be an optimum 
compromise between accuracy and computational effort.  
 
Zhou and Nowak (1988) provide no evaluation as to the expected effectiveness 
or limitations of the method; however, their assumptions in deriving the method 
are clear. They made an attempt to approximate the integral required for the 
reliability analysis. Such an approach has been basically developed concerning 
polynomial functions using the Gauss-Hermite integration method. An m-point 
Gaussian quadrature integration method is exact for polynomials of a degree up 
to 2m−1. It should be noticed that by definition, a polynomial is an expression of 
finite length constructed from variables and constants, using only the operations 
of addition, subtraction, multiplication, and non-negative whole-number 
exponents. That means PEM might result in a biased response, especially when 
the considered LSF is related to a specific input variable with a non-polynomial 
expression along with a significant sensitivity to the variation of that particular 
input random variable. On the other hand, Thurner (2000) demonstrated the 
applicability of PEM in the reliability analysis of a classical bearing capacity 
problem with sufficient accuracy. 
 
Assessment of the reliability index of numerous commonly used limit state 
functions in the context of structural engineering have been investigated by 
Eamon et al. (2005) comparing the accuracy and efficiency of the number of 
simulations and sampling methods including e.g. ZN-I and II, Latin Hypercube 
(LH) and Importance Sampling (IS). Unfortunately the ZN-III method, which is 
expected to have higher precision with respect to the other Zhou-Nowak 
methods, has not been considered in their survey scheme. It turned out that in 
estimating the reliability index PEMs should be utilized with care in the context 
of structural reliability calculations, since its results vary significantly in terms of 
accuracy and precision. The accuracy limits of PEMs applied on various types of 
limit state functions in terms of linearity, number of random variables, 
distribution type and variance of input variables have been quantified. 
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Considering all major influential factors affecting the reliability analysis, the 
mean value of the error ratio (calculated β/ exact β) using the ZN-I method is 0.8 
with a COV of 15%, and using ZN-II is 0.88 with a COV of 15%. It implies that 
in an extreme case, assuming that the error is normally distributed the ratio 
amounts to 0.35 in ZN-I. Thus, a nearly high COV of the error indicates that the 
precision of the PEMs in calculating the reliability index is low. PEMs are ideal 
methods and give perfect answers for functions that have normally distributed 
random variables, are linear and/or have low variance. Also according to this 
study PEM shows unsatisfactory results in comparison with Monte-Carlo based 
sampling methods in computing the failure probability than the reliability index. 
Recently Russelli (2008) modified Rossenblueth’s PEM and called it the 
Advanced Point Estimate Method (APEM) in order to cope with the shortcoming 
of the Point Estimate method in assessing small values of the failure probability. 
Also according to her findings, the bearing capacity of strip footings as an LSF 
can be characterised well enough with a shifted lognormal distribution function 
provided one may be able to evaluate the skewness of the target function or the 
considered LSF reasonably accurate.  
 
Next, the accuracy of ZN-III in estimating low-order statistical moments is 
investigated over several basic functions of X that typically arise in geotechnical 
reliability analyses and are similar to those carried out by Baecher and Christian 
(2003) which is a reference to compare Rosenblueth’s Point Estimate Method; 
furthermore, their exact statistical moments are not difficult to obtain. The 
functions are namely, tan(X), exp(X), 1/X, ln(X), X3, and a polynomial function 
with two variables Y=X1

3+X2. To evaluate the accuracy of PEM with regard to 
the distribution type of the variable, Normal and Uniform distribution have been 
considered. The effects on the number of random variables have been examined 
in the case of polynomial functions. In addition, the influence of the absolute 
mean value on the accuracy has been assessed in the case of tan(X). The results 
of the investigation are illustrated in Figures 59 to 61 in terms of the error 
produced by PEM and given by the following Equation:  

100
)(

)()(
% ×−=

exacty

PEMyexacty
Error

k

kk

 (48) 

where yk(exact) is the exact value of k-th statistical moment of function Y. More 
details about statistical specifications of each function have been given on each 
individual graph. The following observations can be inferred from Figures 59 to 
61: 
 

• In all cases, the error in the estimate of the standard deviation is almost 
half of the variance. In addition the mean values are always accurate or 
very close to the exact value. In general ZN-III has given more 
satisfactory results in the case of polynomials. 
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• Normally it is expected that the larger the COV, the higher the error in the 

estimate of the moments; for instance, see the results of the first two 
moments in Figure 59a and all of the moments calculated in Figure 61. 
Surprisingly however, it is not always the case, for example, in the reverse 
function (Fig. 59b) ZN-III yields the exact mean and variance at COV = 
0.27 (probably by coincidence) while for higher and lower COV values 
the method respectively overestimates and underestimates the low-order 
moments. For the function ln(X), the corresponding COV value by which 
the method would yield the exact mean and variance, is about 0.5, which 
is a relatively high value for the coefficient of variation. 

 
• From Figure 60 it follows that the absolute mean value of a random 

variable slightly affects the trend of the error although tan(X) with the 
specifications given in Figure 60b is the only function that does not 
exhibit error variation with the change of COV. 

 
• In the ZN-III method 2n2+1 integration rule is used which means in a 

single variable function like X3 as mentioned before, the results of PEM 
will be exact for polynomials of order 5 or less. Thus, the mean of Y of 
order 3 is computed exactly, while in estimating its variance and skewness 
that are of order 6 and 9 respectively, some error is anticipated.  

 
• From Figure 61 it can be seen that the error is slightly reduced when the 

number of variables increase; it should be noted that the added term (X2) 
does not dramatically influence the value of the function. The reduction in 
error takes place because more integration points are used when the 
random variables increase and consequently the results of the integral tend 
to be more accurate. Furthermore, in contrast to other types of functions, 
skewness in the case of polynomials can be evaluated with an admissible 
accuracy in practical cases and especially in the range of normal COVs in 
geotechnical engineering since, based on Phoon and Kulhawy (1999), the 
mean value of COVs of most soil properties are less than 35%. 

 
• A conclusive statement cannot be made as to whether the statistical 

moments computed by ZN-III are always overestimated or 
underestimated. The results show the accuracy depends highly on the type 
of distribution and the range of COV.  



122                                                     6 Comparison of RS-FEM and PEM 

Y=ex , X~N(1,σ)

COV of X

0.0 0.1 0.2 0.3 0.4 0.5

E
rr

or
%

-100

-80

-60

-40

-20

0 Mean
Standard deviation
Variance
Skewness

Y=1/X , X~Uniform, µ=20

COV of X

0.0 0.1 0.2 0.3 0.4 0.5

E
rr

or
%

-120

-100

-80

-60

-40

-20

0

20

40
Mean
Standard deviation
Variance
Skewness

Y=ln(X) , X~Uniform, µ=2

COV of X

0.0 0.1 0.2 0.3 0.4 0.5

E
rr

or
%

-140

-120

-100

-80

-60

-40

-20

0

20
Mean
Standard deviation
Variance
Skewness

(a)

(b)

(c)

 
 
Fig. 59: Error in the estimate of the statistical moments for functions: a) ex b) 

1/x c) ln(x), using the ZN-III method 
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Fig. 60: Error in the estimate of the statistical moments for function tan(x) with 

different mean values, using the ZN-III method 
 
All above evaluations consider only explicit LSFs, and no particular PEM 
accuracy assessment in complex geotechnical boundary value problems with 
implicit LSFs has been found in the literature. A practical example of the above 
functions would be a specific LSF in which soil stiffness is an uncertain random 
variable and the displacement of a tunnel is evaluated by knowing the fact that 
there is an inverse relationship between these variables. The accuracy of the 
method strongly depends on the type of LSF, and before applying such an 
approach it should be verified against a reference method such as the MC 
simulation approach. It should be noted that the objective of the present study is 
to compare the range of system responses obtained by the two selected methods 
(PEM and RSFEM) with each other rather than calculating a precise failure 
probability. 
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Fig. 61: Error in the estimate of the statistical moments for two polynomial 

functions: a) x3 b) x3
1+x2, using the ZN-III method 

 

6.4 Limitations and advantages  
 
Regarding the Point Estimate Method, particularly ZN-III, the following 
advantages are pointed out: 
 

1. The simplicity of the method, which allows engineers to benefit from it 
with limited knowledge of probability.  

 
2. Correlations between random variables can be considered. 

 
3. It gives reasonable accuracy in the estimate of the mean (the most accurate 

result) and variance of polynomials and most complex functions.  
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4. It is a favourable method in terms of the number of FE calculations 
comparing to the Random Set Finite Element Method. Random set 
analysis with the total number of calculations (4n) −given 2 sources of 
information for each basic variable− leads to a significantly larger 
computational effort in comparison with that of ZN-III (2n2+1) in cases 
where the number of basic variables is more than 3 (see Fig. 62). 
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Fig. 62: Comparison of RS-FEM with ZN-III in terms of the number of 

realisations 
 
Despite many appealing points regarding PEM, based on the above discussion 
there are some disadvantages as follows: 
 

1. PEM yields only the statistical parameters of the system response but no 
information concerning the shape of the response distribution. Therefore a 
subjective assumption is needed in this regard, which may affect the 
amount of Pf obtained by this method. 

 
2. The method has severe limitations in handling large numbers of variables 

because if the case, difficulties may arise in the determination of 
meaningful points in the x-space. 

 
3. According to Baecher and Christian (2003), approximating statistical 

moments higher than second have less accuracy in the Rosenblueth 
method (for instance, the computed skewness is less reliable). However, 
based on the investigation above, ZN-III may result in a reasonably 
accurate skewness in the case of polynomial functions. 

 
4. Low accuracy will be achieved when the functions of the variable X to be 

integrated, are largely disparate from a polynomial form. 
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6.5 Evaluating PEM against RS-FEM for tunnel 
example 

 
In this section, an uncertainty analysis of a tunnel structure whose random set 
results are already in hand, is performed by means of PEM using ZN-III and are 
compared with each other. For this purpose, a section with an overburden of 25 
m described in Chapter 4 was selected. The tunnel geometry and its relevant 2D 
finite element model mesh including the model specifications are depicted in 
Figures 30 and 31 respectively. The material properties are those adopted for 
alternative 1 in section 4.2.3 and given in Table 16 and are not repeated here.  
 

6.5.1 Providing distribution functions equivalent to 
random sets 

 
In order to apply PEM, it is necessary to have a probability distribution function 
for each random variable.  To determine the distribution function for a particular 
soil property, more than 40 data points are needed (Carter et al., 2000). In fact 
due to the lack of test results and limited sampling, it was not feasible to build an 
exact PDF of the considered random variables. In addition, in order to be able to 
compare PEM results with those of RS-FEM, the uncertainty of the input should 
be matched with each other; although it cannot be yielded perfectly, it is 
achievable to some extent. The following three alternatives are discussed to 
properly match the random set input variable given in the Table 16 with a 
corresponding PDF used in the prospective PEM calculations. At the end, one 
alternative is selected for this purpose. 
 
Alternative 1, averaging random set bounds 
 
The objective is gaining a distribution, which supposedly represents the true PDF 
of a random variable as well as covering the whole extent of the random set. One 
possible approach might be to average the probability distributions fitted to the 
lower and upper bounds of the random set input variable. Figure 63 illustrates an 
example of this alternative applied to the random set of the friction angle. Fitting 
a curve to the discrete cumulative random set bounds can be accomplished by the 
best fitting procedure or just assuming various typical well-known distributions 
as it has been carried out in the example. For the purpose of illustration, the 
Pareto distribution (@Risk®, 2008) has been fitted to the left bound and a 
Lognormal type was fitted to the right bound. Multiple combinations of various 
distribution types have been tried out and the respective PDF and CDF of the 
resulting averaging have been illustrated in Figure 63. Irrespective of what 
distribution type one chooses for lower and upper bounds, the mean distribution 
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does not properly cover the whole range of the random variable. Therefore, this 
approach is ruled out since it is not able to appropriately fulfil the purpose. 
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Fig. 63: Input PDF of the friction angle obtained by alternative 1 (averaging) 

assuming various PDFs fitted to the lower and upper bounds of the 
random set of ϕ 

 
 Alternative 2, the “three-sigma” rule 
 
In probability theory Tchebysheff's inequality asserts that in any data sample or 
probability distribution, no more than 1/k2 of the distribution's values can be 
more than k standard deviations away from the mean, which can be expressed in 
terms of the following mathematical equation: 

2

1
)(

k
kXP ≤≥− σµ  (49) 

where X is a random variable with the expected value µ and finite variance σ2 and 
k is any positive real number. In fact, (1−1/k2)×100 indicates the level of 
confidence that the random variable is within the abovementioned interval. This 
confidence level for the case of X being an N(µ,σ2) normally distributed variable 
increases to about 99.7% since for any real number k>0, P(|X−µ|<kσ) = 2Φ(k) 
−1, where Φ(.) is the standard normal cumulative distribution function. In a 
particular case k = 3, it follows that P(µ−3σ<X<µ+3σ) = 0.9973. Based on the 
relationship held for a normally distributed variable, as a rule of thumb, an event 
is considered to be “practically impossible” if it falls away from its mean by 
more than 3 times the standard deviation. This is known as the "three-
sigma" rule. For non-normal distributions the 3-sigma rule possesses 95% 
confidence level, provided the distribution X is uni-modal in the sense that 
having a mode ν, its density function f(X) is non-decreasing on (−∞,ν) and non-
increasing on (ν,+∞) (Pukelsheim, 1994). Duncan (2000) has applied the ‘3-σ 
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rule’ to estimate COVs of most commonly used soil parameters and extended the 
method to a graphical procedure in geotechnical engineering. In addition, 
Schneider (1999) proposed the relationships given below implicitly using the 3-
sigma rule to determine the true mean and standard deviation of soil parameters 
when no test values are in hand: 
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νµ

σνµ
46

4
 (50) 

where xl is the estimated minimum value, xr the estimated maximum value, and ν 
is the most likely value or mode. 
 
As an example, Figure 64 shows an application of 3-σ rule to a random set of the 
friction angle using the relationship given by Schneider. The most probable value 
is obtained by averaging all random set extreme values. The estimated extreme 
values (xl,xr) would be the most outer values of the random set bounds as 
depicted in the Figure with red dashed lines. This method can be used but it 
could pose a drawback that the probability measure of the values around the 
random set bounds is very low. Therefore, this approach may underestimate 
some values around the edge of the random set. It might be more reasonable to 
use an approach that can allow for a more appropriate probability share for 
extreme values in the random set to provide a better match between the RS and 
PEM input variable. 
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Fig. 64: Distribution of the friction angle equivalent to the random set using 

the ‘three-sigma’ rule  
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Alternative 3, the selection of a best fit to a uniform distribution 
 
In this alternative, first a uniform distribution is constructed whose left and right 
extreme values are respectively medians of left and right random set bounds 
(green distribution in Fig. 65). Then, typical and well-known distributions are 
fitted to the obtained distribution and depending on the shape of the random 
bounds and the variable itself, one can judge to select an appropriate distribution 
for further analysis. For instance, the approach was applied again to the friction 
angle using Triangular, Normal and Lognormal distributions as depicted in 
Figure 65. In this particular case where the CDF of the variable is very coarse, a 
considerable discrepancy between the different distribution types occurs and 
engineering judgment is necessary. Selecting a Normal distribution seems to be 
very conservative with large dispersion, which there is no need for since the 
random set is wide enough itself. Although the random set exhibits some kind of 
symmetry on the right and left bounds, the selection of Lognormal looks more 
reasonable since it covers the whole range of random set values and it is also a 
commonly used distribution for the friction angle in the literature because it 
always gives positive values. When there is abundant information and the 
random set bounds are smoother, the appropriateness of this alternative emerges. 
Thus, this alternative is chosen for providing the equivalent probability 
distribution for further point estimate analysis.  
 
The approach has been applied to other random variables of the problem whose 
results are illustrated in Figure 66.  
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Fig. 65: Distribution of friction angle equivalent to the random set using 

alternative 3 
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Fig. 66: Equivalent distribution to the random set using alternative 3 for 

variables, a) cohesion b) elastic modulus c) relaxation factor  
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For each random parameter some judgment has been carried out as follows: 
 
Elasticity modulus: Lognormal distribution shows skewness to the left inspired 
by the random set; it also covers the entire range of the random set rather well. 
Triangular and Uniform distributions do not entirely cover the random set.  
 
Cohesion: Normal distribution is chosen since it has a better coverage on the 
whole random set than the others, and also shows no skewness or predisposition 
to the left or right just like the corresponding random set.  
 
Relaxation factor: Normal distribution is adopted since there is no evidence that 
the relaxation factor has any sort of skewness. On the other hand, Normal 
distribution covers the range of the random set quite well and takes some values 
out of the range into account (but with a very small probability value), which 
places the results on the safe side.  
 
According to the above discussion, detailed information about the probability 
distribution of the four basic random variables selected for PEM analysis is given 
in Table 29. 
 
Tab. 29: Basic random variables and the respective PDF details 
 

Basic variable Unit Distribution 
type 

Mean 
Standard 
dev. COV % 

Friction angle, ϕ degree Lognormal 28 5 17.8 

Elasticity modulus, E MPa Lognormal 2256 631 28 

Cohesion, c kPa Normal 950 205 21.6 

Relaxation factor, Rf - Normal 0.45 0.09 20 

 

6.5.2 Calculation results 
 
The Point Estimate procedure described in section 6.2 using the ZN-III 
integration rule is applied. The input parameters are given in Table 29. No 
correlations between basic random variables have been taken into account. 
According to the integration rule the numerical model of the tunnel based on the 
sampling points summarised in Table 30 has to be evaluated 33 times. Eight 
realisations can be left out since the respective weights are zero; therefore, the 
number of calculations decreases to 25 realisations. The number of calculations 
in comparison with the random set carried out in Chapter 4 is dramatically lower 
and can be considered as an advantage of the PEM.  
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Tab. 30: Value of variables of sampling points and respective weights 
 

φ E R f C

1 27.8 2172.9 0.45 949.6 0.33333
2 42.9 2172.9 0.45 949.6 0
3 18.0 2172.9 0.45 949.6 0
4 27.8 4256.8 0.45 949.6 0
5 27.8 1109.1 0.45 949.6 0
6 27.8 2172.9 0.67 949.6 0
7 27.8 2172.9 0.23 949.6 0
8 27.8 2172.9 0.45 1451.4 0
9 27.8 2172.9 0.45 447.8 0
10 37.8 3495.8 0.45 949.6 0.02778
11 37.8 1350.6 0.45 949.6 0.02778
12 20.5 3495.8 0.45 949.6 0.02778
13 20.5 1350.6 0.45 949.6 0.02778
14 37.8 2172.9 0.61 949.6 0.02778
15 37.8 2172.9 0.29 949.6 0.02778
16 20.5 2172.9 0.61 949.6 0.02778
17 20.5 2172.9 0.29 949.6 0.02778
18 37.8 2172.9 0.45 1304.4 0.02778
19 37.8 2172.9 0.45 594.8 0.02778
20 20.5 2172.9 0.45 1304.4 0.02778
21 20.5 2172.9 0.45 594.8 0.02778
22 27.8 3495.8 0.61 949.6 0.02778
23 27.8 3495.8 0.29 949.6 0.02778
24 27.8 1350.6 0.61 949.6 0.02778
25 27.8 1350.6 0.29 949.6 0.02778
26 27.8 3495.8 0.45 1304.4 0.02778
27 27.8 3495.8 0.45 594.8 0.02778
28 27.8 1350.6 0.45 1304.4 0.02778
29 27.8 1350.6 0.45 594.8 0.02778
30 27.8 2172.9 0.61 1304.4 0.02778
31 27.8 2172.9 0.61 594.8 0.02778
32 27.8 2172.9 0.29 1304.4 0.02778
33 27.8 2172.9 0.29 594.8 0.02778

Input variables
Analysis 

No.
Weigths 

 
 
The following results similar to those considered in Chapter 3 have been selected 
for comparison:  
 

1. Vertical displacement of the tunnel crown (Point A in Fig. 16) 
2. Vertical and horizontal displacement of the side wall (Point B in Fig 

16)  
3. Maximum normal force and moment in the lining 
4. Safety factor after the top-heading excavation 
5. The serviceability limit state of the shotcrete lining based on Equation 

24 
6. The eccentricity of the normal force acting on the cross section of the 

shotcrete lining, e(x), which is a function of both normal force and 
moment of the lining (see Equ. 23) 
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The first three statistical moments of the results have been tabulated below (Tab. 
31) and graphically illustrated in Figures 67 to 70 with the overlaid 
corresponding RS-FEM p-boxes. For each result, two commonly used 
distributions, namely Normal and Lognormal have been assumed corresponding 
to the estimated statistical moments given in Table 31 and if possible, a shifted 
lognormal distribution recommended for some geotechnical application by 
Russelli (2008) has also been considered. It should be noted that shifted 
lognormal can be used only when the skewness of the distribution is known and 
positive. Therefore, it was impossible to use shifted lognormal for displacement 
results with negative skewness. In addition, it turned out that in the cases in 
which skewness γ < 1 the difference between Lognormal and shifted Lognormal 
is negligible. For instance, as Figure 68a depicts the maximum normal force 
having a skewness of 0.7, the modal values of both distributions are close to each 
other and have been captured by the range of the most likely values given by RS-
FEM. 
 
Tab. 31: Statistical moments of some results and the range of the most likely 

values given by RS-FEM 
 

Response Uy-A Ux-B Uy-B FOS
Normal 
Force

Moment e(X) g(X)

Unit mm mm mm - kN.m/m kN/m m kN/m

PEM results Average (µ) 2.5 0.58 1.5 6.7 264 12.2 0.158 966

Stan. dev. (σ) 0.8 0.14 0.4 1.3 78 2.6 0.047 307

Skewness (γ) -0.79 -0.58 -0.78 0.10 0.71 0.56 1.10 -1.61

µ+1.8σ 3.9 0.83 2.2 9.0 405 16.9 0.243 1519

µ-1.8σ 1.2 0.33 0.7 4.5 124 7.5 0.073 412

RS-FEM Upper limit 3.9 0.77 2.2 8.6 407 16.8 0.174 1239

most likely values lower limit 1.6 0.44 1.0 5.2 164 7.3 0.068 897  
 
Based on the mean (µ) and standard variation (σ) of the results, Table 31 gives 
the extremes of the 86% confidence interval (µ±1.8σ), regardless of distribution 
type (Pukelsheim, 1994). They show a good conformity with the range of the 
most likely values (see section 3.3.4 for the definition) given by RS-FEM except 
for target variables e(x) and g(x). The range, ±1.8σ, has been identified for the 
PEM results because it can have the same functionality as the range of the most 
likely values given by RS-FEM for the quality indicator, which is discussed later. 
As it can be seen in Figures 67 and 68 primary responses such as displacements 
and internal forces show a good conformity with the RS-FEM results in the sense 
that PEM’s results are supposed to present the ‘true’ distribution of the system 
response and should not exceed the random set bounds. However, the secondary 
responses, which are obtained from the primary answers show a larger scatter 
than random set bounds (Fig. 69) which is inadmissible because RSs are 
supposed to give the boundaries of the real response and the answers outside 
these bounds are theoretically not allowable. In the case of g(x) a large 
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proportion of the distribution given by PEM falls outside the random set answers. 
The inadequate accuracy of PEM in estimating the variance of the limit state 
functions that are not the direct FE results, should be proven by further 
investigation. 
 
Recalling from Chapter 3 a quality indicator was employed in order to evaluate 
the probabilistic results obtained by RS-FEM against the measurement, and 
assess the validity of the calculation method. A quality indicator analogous to 
that used for the RSFEM is established for interpreting the results of PEM 
providing more or less the same validity concepts and zone. The concept of the 
quality indicator is explained by illustrating the cumulative distribution of tunnel 
displacements calculated by PEM along with the in-situ measurement in Figure 
70. The quality indicator consists of three zones: a) most likely zone (in green) b) 
warning zone (green and red) and c) unlikely zone (red), which are quantified by 
the intervals: {−1.8σ<x<+1.8σ}, {±1.8σ<x<±3.0σ}, and {+3.0σ<x & x<−3.0σ}, 
respectively. From probability theory (Pukelsheim, 1994) it is known that the 
interval, ±1.8σ, represents the 86% confidence interval irrespective of what 
distribution the target variable has, on condition that the distribution is unimodal. 
As it was shown before in Figures 67 and 68 this interval either conforms to the 
most likely zone given by RSFEM or presents a larger range than that. Therefore, 
this range is chosen for the PEM results to represent the most likely range (green 
zone) for the expected measurement values. Outside the most likely values zone, 
the green colour zone in the quality indicator starts to fade and convert into the 
red one. This transition zone can be called an alarm zone because it indicates that 
the measured value is gradually moving away from the expectation value 
calculated by the PEM analysis and the validity of the results is gradually 
decreasing. If it goes beyond 3σ, a very small probability of the occurrence of 
such an event is expected, or in other words, it should be practically ‘unlikely’ 
since the interval ±3.0σ theoretically encompasses at least 95% of the expected 
results. Finally, Figure 70 shows a relatively good conformity between the RS-
FEM quality indicator and that proposed for PEM from a practical point of view.  
 
In a tunnel, as soon as the reflectors are installed on the shotcrete lining, the 
measurable displacements are recorded and they develop further as the tunnel 
face progresses. In practice if a designer provides such results (i.e. Fig. 70) the 
measurements can be easily checked against the calculation. In any case, the 
measured value lies within one of above mentioned zones and probably changes 
with the progress of the tunnel. So the inspector can make an appropriate 
decision if the measured value in a special section deviates significantly away 
from the expected results. Thus accommodating such results may be helpful in 
the context of the ‘Observational Method’. 
 
Furthermore, the concept of the quality indicator can be also utilised in setting 
the warning and alarm values required for monitoring the tunnel deformations. 
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For instance, it is suggested that ±1.8σ be considered as the warning values and 
±3.0σ as the alarm values. 
 
The two-step discrete cumulative probability distribution of the measurements 
implies that only the measurements of two tunnel cross sections were available. 
As it can be seen from Figure 70a, both measured values of the tunnel crown 
could be captured by the interval ±1.8σ. However, concerning the side wall 
displacement, the measurement of one of the cross sections falls outside of ±3σ. 
Since the absolute values are small, this deviation from the predicted result may 
be neglected in practice. 
 
As depicted in Figure 70c, one of the measured values falls outside the 3σ-range, 
while the RS-FEM results covers that in its warning zone. Obviously the two 
discrete cumulative steps on the right side of the measured value indicate that the 
two combinations involved in the random set analysis result in higher values. 
Although the discrepancy between random set analysis and PEM results in terms 
of absolute displacement value is not of importance, it shows that these two 
extreme values have distinctly higher values relative to other upper bound values 
of RS-FEM. The reason is that a certain combination of RS input parameters 
result in a larger plastic zone around the tunnel in comparison to the rest of the 
combinations. Higher deformations are the consequence. On the other hand, the 
predetermined point estimate samples have a certain distance from the mean 
value, depending on the number of basic variables involved. Also it is known that 
the more basic variables are involved, the farther the sampling points get from 
the respective mean value.  In the current example, by reviewing the sampling 
points in Table 30, one can realise that the sampling points of the cohesion 
(which is one of the most influential rock parameters on displacement, see 
Chapter 3 sensitivity analysis) are inside the respective random set input p-box. 
Therefore, all the FE calculations of the prefixed combination of the sampling 
points result in relatively limited plastic zones, and accordingly lower horizontal 
displacement at point (B). Actually, this issue does not lead to significantly 
different results between both the methods, but it might happen in a higher 
nonlinear problem that the discrepancy between PEM and RS-FEM becomes 
considerably larger. In addition, this finding affirms that alternative 2 (three-
sigma rule) is not a good choice for matching the random set input p-boxes with 
the PEM input distributions. 
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Fig. 67: Comparison of PEM with RS-FEM results in terms of displacement 

at, a) tunnel crown b) point B-horizontal direction c) point B-vertical 
direction 
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Fig. 68: Comparison of PEM with RS-FEM results in terms of tunnel internal 

forces, a) maximum normal force b) maximum moment, and c) safety 
factor of top-heading excavation  
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Fig. 69: Comparison of PEM with RS-FEM results, a) eccentricity of normal 

force in the lining b) shotcrete limit state function g(x)  
 
In the context of reliability analysis it is of interest to compare the probability of 
unsatisfactory performance of the shotcrete lining (i.e. using the limit state 
function, g(x)) obtained from the two methods. The upper bound probability of 
failure, calculated based on the RS-FEM results is 1.0E-9, which is considerably 
less than 8.5E-4 obtained by PEM assuming a Normal distribution for the 
function g(x). As discussed above, this is due to the high standard deviation 
calculated by PEM. Nevertheless, PEM yields a conservative answer on the safe 
side. Basically, a level three method of reliability analysis is required to calculate 
the value of Pf accurately enough, such as Monte-Carlo based simulation 
methods that need many FE realisations and have not been considered in this 
work. 
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Fig. 70: Comparison of tunnel displacements obtained by PEM and RS-FEM 

with measurement at, a) tunnel crown b) point B-horizontal direction 
c) point B-vertical direction 
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6.6 Summary and conclusion 
 
The limitations and advantages of PEM were discussed. In particular, the 
accuracy of PEM in estimating the statistical moments of some basic functions 
(section 6.3) using the ZN-III integration rule was investigated. It was shown that 
the first two moments of functions can be estimated with reasonable accuracy 
while the skewness may be accompanied by a large error except in the case of 
polynomial type functions. The PEM was applied to a real case tunnel problem. 
A process of obtaining a probability distribution consistent with the 
corresponding random set p-box was proposed. The results of PEM in 
comparison with RS-FEM were satisfactorily consistent, in particular, in the case 
of the primary FE results.  
 
The standard deviation of the secondary target variables (e.g. Limit State 
Functions) -calculated based on the primary FE results- is overestimated by 
PEM. Consequently, the estimated probability distribution of the LSF 
considerably exceeded random set bounds. Although this overestimated scatter is 
on the safe side, it might be too large from a practical point of view. Thus, it can 
be considered as a shortcoming of the PEM. On the other hand, the number of FE 
calculations required by PEM is significantly lower than those in the random set 
method especially when the number of basic random variables increases. 
Furthermore, it was found that in all results the range of ±1.8σ with respect to the 
mean value encompasses the range of most likely values estimated by RS-FEM. 
This range theoretically represents an interval at least with 86% confidence. A 
range in terms of the standard deviation of the results obtained by PEM was 
established as a quality indicator similar to those discussed in Chapter 3 for the 
RS-FEM by which the validity of the probabilistic FE results can be checked 
against the measurement. When the “observational method” is used, setting up 
warning values is beneficial for decision-making. 
 
It should be noted that the main objective of the chapter was to estimate the most 
likely range of system responses resulted from the uncertainty available in the 
current state of knowledge, rather than calculating a precise probability of failure 
(Pf). A practical aspect of providing a most probable range is that the inspecting 
engineer, design team, and client would be more capable of making a timely and 
rational decision when the measurements exceed the anticipated values. 
Measurements are commonly carried out in tunnel projects, but what is more 
crucial is to interpret them and make the engineering decisions in the appropriate 
time. The essential decision making tool is proper calculations, which enables 
one to determine the nonconformity between the designing engineer’s 
understanding of the tunnel environment and the reality. This research work 
illustrated that from a practical point of view, PEM succeeds to provide such 
information with reasonable calculation effort. 
 



6 Comparison of RS-FEM and PEM  141 

RS and PEM methods both produce a common range of results, although their 
input and assumptions are clearly different, and thus difference in results have to 
be expected. Depending on each case, the quantity and quality of the required 
input data of a system could determine which method is favoured. When the 
soil/rock data parameters are abundantly available, their probability distributions 
are definable with sufficient accuracy, thus applying PEM is advantageous in this 
case. However, in practice the results of geotechnical investigations are set 
valued rather than being precise and point valued. Often the value of the required 
parameters exists in form of ranges with no probability assignment across the 
interval from various independent sources e.g. based on engineering judgement, 
expert opinion or experience from neighbouring projects. In this case it is 
advisable to combine the sources of information according to the RS method.  



142                               7 Conclusions and further research 

7 Conclusions and further research 

7.1 Summary and achievements 
 
In uncertainty and reliability analysis of tunnel problems involved in this work 
two methods from two different underlying mathematical backgrounds were 
selected, namely, the random set approach and the point estimate method. The 
Random set approach is categorised as a non-probabilistic method and PEM 
originates from probabilistic approaches. 
 
The main focus was on the RS-FEM method, since at the beginning of the tunnel 
projects usually there is a lack of sufficient information and thus a probability 
distribution for input parameters is not available. The required data are derived 
from different independent sources which are to be combined. This data also 
suffers from ambiguity and imprecision. According to these conditions, previous 
researchers had already recognized RS-FEM as an appropriate mathematical 
framework to deal with such kind of information.  When a large number of 
uncertain variables exists and each are estimated from several sources (numerous 
focal elements), the computational effort of the random set approach increases 
exponentially, which is not favourable. However, it is fortunately not the case in 
the majority of tunnel projects and insignificant input variables are identified in 
order to reduce the number of the underlying uncertain variables by performing a 
sensitivity analysis scheme. 
 
This work demonstrates the merits of applying the Random Set approach as a 
beneficial tool in the context of engineering judgment and decision making. For 
instance: 1) the wide range of uncertainty in the system response may lead to 
different classes of tunnel section design, 2) RS-FEM results simplify the 
interpretation of the numerical results against measurements, and 3) the RS-FEM 
framework can be placed within the observational method design procedure as a 
supplementary analysing tool.  
 
It was illustrated that the RS-FEM not only takes uncertainty of input parameters 
into account, but also has the capacity in considering constitutive model 
uncertainty or combining the numerical results of different soil/rock constitutive 
models. 
 
From a practical point of view RS-FEM has provided a simple framework to 
predict the system response within a range. This range is in the form of a p-box 
which incorporates imprecise probabilities concepts. Working with a range of 
probabilities seems to be more acceptable for geotechnical engineers in practice. 
Furthermore, employing the RS-FEM framework helps increasing the credibility 
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of numerical analysis results since its computational results -shown in a real 
project- could successfully capture the range of the ground behaviour.  
 
The spatial variability of the soil/rock parameters cannot be allowed for in 
rigorous manner; although, the two approaches proposed in Chapter 3 are 
consistent with the RS-FEM procedure.  
 
When only one set (the focal element) is available for each basic random 
variable, the random set approach converts into an Interval Analysis and results 
in merely an interval for each system response and consequently no reliability 
analysis can be carried out. On the other hand, in the case of abundant sources of 
information (many focal elements) and a large number of uncertain basic 
variables, a rather high computational effort is indispensable in RS-FEM. In the 
latter case, an alternative approach (i.e. PEM) can be employed that not only 
requires considerably less calculations, but also results in a reasonable agreement 
with the random set approach almost with comparable benefits. However, the 
secondary results (e.g. the limit state function of the tunnel shotcrete) obtained by 
PEM tends to show a higher scatter than the corresponding results obtained by 
the random set approach. This finding needs to be confirmed by further studies.    
 

7.2 Further research 
 
Throughout the study it is assumed that the system on which the random set 
approach is performed has a monotonic behaviour with respect to the considered 
uncertain parameters. However, it is not a straightforward task to prove the 
monotonicity condition for a geomechanical boundary value problem. In the 
examples presented herein, the monotonicity property has been roughly 
examined by the sensitivity analysis (U.S. EPA: TRIM 1999) which is acceptable 
from a practical point of view. The monotonicity behaviour should be 
investigated with an appropriate mathematical framework such as efficient 
optimization methods in a more rigorous manner. This has been addressed in 
Chapter 1.  
 
The accuracy of the Point Estimate Method using the Zhou-Nowak 2n2+1 
integration rule should be verified and assessed against fully probabilistic 
methods such as the Crude Monte Carlo simulation method in uncertainty and 
reliability analysis of tunnel problems, which are missing in geotechnical 
literature, since most of the validations and studies available in the literature have 
been conducted in simple geotechnical problems considering mostly linear 
performance functions. The range of problems can vary from tunnel problems 
having closed form solutions (e.g. deformation behaviour of circular deep tunnels 
in an elasto-plastic material) to the numerical analysis of non-circular shaped 
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tunnels in multi-layered subsurface conditions with advanced constitutive 
material models.  
 
In the current RS-FEM all the input random variables are assumed to be 
independent. This assumption is mostly conservative regarding soil/rock 
parameters and also logical when little knowledge exists concerning the 
dependency among the parameters. However for future work, the influence of 
dependency between soil parameters can be investigated on the results of RS-
FEM in tunnel problems. In this regard two approaches are available:  
 
1. Computing the envelope on the Random Set bounds assuming no specific 
dependency. The developments have been lately carried out, for instance one 
may refer to the computational algorithms given by Berleant and Goodman-
strauss (1998) and Berleant and Zhang (2004).  
 
2. Using the notion of copulas or Pearson correlation coefficients, which 
quantitatively describe the dependency between the parameters, and obtaining 
the corresponding joint probability of the basic random variables. In this context 
Ferson et al. (2004), and Williamson and Downs (1990) provide a good 
guidance.  
 
3. A comprehensive study can be conducted for a real tunnel project in which the 
results and the current accomplishments obtained by RS-FEM provide the 
primary computational steps required for subsequent essential uncertainty 
analysis associated with the cost and time estimate of the tunnel project up to a 
risk analysis.  
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