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als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
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Abstract

One of the fundamental problems in the area of digital image processing is the auto-
mated and detailed understanding of image contents. This task of automated image un-
derstanding covers the explanation of images through assigning a semantic class label
to mapped objects, as well as the determination of their extents, locations and relation-
ships. Occlusions, changes of illumination, viewpoint and scale, natural or man-made
structures, shape-defined objects or formless, homogeneous and highly-textured materi-
als complicate the task of semantic image interpretation. While purely appearance-driven
approaches obtain reliable interpretation results on benchmark datasets, there is a trend
toward a compact integration of visual cues and 3D scene geometry. Accurately esti-
mating 3D structure from images has already reached a state of maturity, mainly due to
the cheap acquisition of highly redundant data and parallel hardware. Particularly, scene
information taken from multiple viewpoints results in dense 3D structures that describe
the 3D shapes of the mapped objects. This thesis therefore presents methods that utilize
available appearance and 3D information extensively. In the context of highly-redundant
digital aerial imagery we derive a holistic description for urban environments from color
and available range images. A novel statistical feature representation and efficient multi-
class learners offer the mapping of compactly combined congruent cues - composed of
color, texture and elevation measurements – to probabilistic object class assignments for
every pixel. On the basis of the derived holistic scene description, variational fusion
steps integrate highly redundant observations to form high-quality results for each modal-
ity in an orthographic view. We finally demonstrate that the holistic description, which
combines color, surface models and semantic classification, can be used to construct in-
terpreted large-scale building models that are described by only a few parameters. In
the experimental evalutation we examine the results with respect to available redundancy,
correctly assigned object classes, as well as to obtained noise suppression. For the evalu-
ation we use real-world aerial imagery, showing urban environments of Dallas, Graz and
San Francisco, besides standard benchmark datasets.





Kurzfassung

Eines der grundlegenden Probleme im Bereich der digitalen Bildverarbeitung ist das au-
tomatische und detaillierte Verstehen von Bildinhalten. Die Aufgabe der automatischen
Erklärung von Bildern umfasst die Interpretation der Bilder durch die Zuweisung einer
semantischen Bezeichnung abgebildeter Objekte, sowie die Bestimmung von deren Aus-
breitung, Positionen und Beziehungen. Verdeckungen, wechselnde Beleuchtung, Blick-
richtungen und Größen, natürliche oder vom Menschen geschaffene Strukturen, form-
definierte Objekte oder formlose, homogene und strukturierte Materialien erschweren
die Aufgabe der semantischen Interpretation von Bildern. Während rein visuell-basierte
Ansätze zuverlässige Ergebnisse auf Vergleichsdatensätzen erzielen, ist ein Trend zur
kompakten Integration von visueller Information und 3D Szenen Geometrie erkennbar.
Die exakte Schätzung der 3D Struktur von Bildern hat bereits Marktreife erreicht, vo-
rallem aufgrund der kostengünstigen Generierung von hoch-redundanten Daten und er-
schwinglicher Hardware mit Parallelberechnungsunterstützung. Besonders Szenen Infor-
mation, aufgenommen aus mehreren Blickwinkeln, ermöglicht die Berechnung vollständi-
ger 3D-Strukturen, welche die 3D-Formen der abgebildeten Objekte beschreiben. Diese
Arbeit behandelt Methoden, die das vorhandene Erscheinungsbild, sowie 3D-Information
umfassend ausnützen. Im Kontext von hoch-redundanten digitalen Luftbildern präsen-
tieren wir Ansätze für die Berechnung einer ganzheitlichen Beschreibung für urbane
Lebensräume aus Farbe und Tiefenbildern. Eine neue statistische Merkmalsrepräsenta-
tion und effiziente Klassifikatoren für mehrere Objektklassen bieten eine schnelle Pro-
jektion kongruenter Messungen von Farbe, Textur und Höhenwerten zu probabilistischen
Klassenzuweisungen für jeden Bildpunkt. Aufgrund der ganzheitlichen Szenenbeschrei-
bung können redundante Beobachtungen mittels Variationsmethoden zu qualitativ hochw-
ertigen Ergebnissen für jede Modalität in einer orthographischen Ansicht fusioniert wer-
den. Wir zeigen abschließend, dass diese ganzheitliche Beschreibung, bestehend aus
Farbe, Oberflächenmodell und semantischer Interpretation, für die großflächige Berech-
nung von Gebäudemodellen mit wenigen Parametereinstellungen herangezogen werden



kann. Mittels synthetisch erzeugter Modelle untersuchen wir in Experimenten die erziel-
ten Ergebnisse im Hinblick auf vorliegender Redundanz, korrekt zugeordneter Objek-
tklassen, sowie erzielter Rauschunterdrückung. Für die Auswertung nutzen wir neben
Vergleichsdatensätzen, reale Luftbildaufnahmen von Dallas, Graz und San Francisco.
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Chapter 1

Introduction

Three-dimensional reconstruction and object recognition are two major trends, that domi-
nate the current research in both computer vision and photogrammetry. The automatic es-
timation of the geometry of arbitrary image scenes has already reached a state of maturity,
due to highly redundant image data and increased computational power through multi-
core systems. They enable stereo or multi-view matching methods that result in highly
accurate 3D scene information, e.g., [Hirschmüller, 2006, Agarwal et al., 2009, Goesele
et al., 2010,Frahm et al., 2010,Irschara, 2011]. Although object recognition has been stud-
ied as intensively as 3D reconstruction, it is still a wide area of active research. Especially
huge inter- and intra-class variabilities, scale and illumination changes and partial occlu-
sions present research with a challenge. The semantic interpretation of high-resolution
aerial images is a particularly difficult task, since every pixel must be assigned a semantic
class label. In this thesis we face these challenges by arguing, that it is essential to inte-
grate available appearance cues, such as color and texture, and 3D information, computed
from overlapping scene observations, for the task of semantic interpretation. Combining
congruent color, 3D information and semantic knowledge about an observed scene takes
us a giant step toward a full image understanding and holistic description. We therefore
propose concepts, that utilize redundant input sources exceedingly and investigate the in-
teraction between appearance and scene geometry to improve the task of aerial image
understanding.

1.1 Aerial Photogrammetry

Aerial mapping is important to governmental and commercial organizations all over the
world. During the last two decades digital cameras have started to replace traditional
analogue cameras and took over the market of aerial photogrammetry, as a result of their
enhanced stability and resolution [Leberl et al., 2003]. Figure 1.1 demonstrates the quality

1



2 Chapter 1. Introduction

Figure 1.1: Small image patches cropped from huge digital aerial images at pixel sizes
of 8 cm and 15 cm, respectively. One can notice that fine image details, such as walking
people, vegetation or railway tracks are preserved accurately.

of digital aerial images at pixel sizes of 8 cm to 15 cm. Although these images are taken
in flight heights of approximately 1000 m, one can recognize fine details like pedestrians
and railway tracks.

Digital aerial photogrammetry today offers various applications, that permit the cre-
ation of accurate surface models, as well as the generation of eye-candy orthographic im-
ages and the construction of detailed models of urban environments, visualized efficiently
on the Internet. For example, location-aware applications, like the initiatives Microsoft
Bing Maps and Google Earth, aim at reconstructing all major cities of the world in order
to offer accurate virtual models of real urban environments. They additionally collect
meta-data about hot-spots, like touristic sights, shopping malls and churches, as well as
residential houses or single trees, and link it to the aerial data to enrich location-aware
search engines. Another big advantage of digital aerial mapping lies in the possibili-
ties it offers to Geographic Information Systems (GIS), due to low cost and efficiency.
GIS applications typically include urban planning, cartography, emergency management,
mapping of roads, railway lines, fiber-optic corridors or pipelines, and navigation. Espe-
cially car navigation has become ubiquitous, since it facilitates driving in foreign areas.
To model entire urban environments or link aerial data to existing GIS and navigation sys-
tems automatic procedures and autonomous interpretations are needed, in order to handle
the enormous amount of collected information and to understand the mapped data. These
applications thus depend on an interpretation of urban scenes, which identifies roads,
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buildings, trees, doors, windows, parking meters, sky lights and similar objects.

1.2 Photo-realistic Modeling vs. Virtual Cities

The use of highly overlapping, digital aerial photography makes the computation of 3D
scene information possible [Hartley and Zisserman, 2000, Kraus, 2004]. Purely image-
based methods offer intermediate results, like surface and terrain models. While a digi-
tal surface model (DSM) includes elevation measurements for buildings, vegetation, and
roads, as well as for the visible terrain, the digital terrain models (DTM) represent the
bare-earth surface of which elevated objects, like man-made structures and trees, get
stripped. Both models are typically represented in the form of sampled elevation mea-
surements. Associated with the points, or triangular meshes, computed from the 3D el-
evation measurements, are small patches of photo-texture information directly extracted
from the digital aerial images. From these intermediate results, one builds both high-
quality photo-textures as well as complete 3D models of urban environments. Although
two-dimensional ortho-photos provide a simpler data structure, smaller data volume and
a great ease of use and orientation, they do not inspire the observer. On the contrary,
computed photo-realistic 3D models, consisting of huge point clouds or assemblies of tri-
angular meshes with attached photo-texture indeed please the eye but need complex data
structures, and are more difficult to use and navigate. Both representations ortho-photos
and photo-realistic 3D models yet do not present any semantic knowledge that is required
for navigation, searching, data mining or GIS applications. We thus cannot query the data
according to content, nor can we derive specific thematic information of a specific object
class.

The ultimate goal must be a full explanation of all mapped objects in the scene by
attaching semantic labels to them, so that one can search through these objects or model
them according to the obtained interpretation. A virtual city [Nicklas, 2007], the visu-
alization of an urban scene, will then be created from the complete description of its
elements. Apart from this flexibility, there is an advantage of smaller data quantities that
need to be stored, retrieved and transmitted to an user. Creating the rendering from object
models additionally supports the idea of user-supportive generalization. Objects of im-
portance, like shopping malls, restaurants, leisure areas etc., might be visualized at to the
user at a level of detail (LoD) and scale, that differs from other objects of less importance.
A German initiative deals with standards based on a mark-up language CityGML1 [Kolbe
et al., 2005] and describes the virtual city by five levels, starting from a LoD-0 defined
by the DTM. LoD-1 is the simple rectangular model of buildings and city blocks with-

1 http://www.citygml.org
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Figure 1.2: A scene of Berlin rendered and visualized in Google Earth (left) and the
corresponding CityGML model (right) with overlaid buildings, represented in LoD 1 to
3. Note that both models have been generated with massive human interaction.

out any attention to photographic realism. This gets improved by a LoD-2 with building
blocks showing generalized rooftop shapes. LoD-3 is the photo-realistic full model of
each building and LoD-4 contains sufficient details to enter a building. Standardized files,
compactly representing the queried data, can be streamed efficiently over the Internet and
get rendered immediately at the users workstation. Figure 1.2 depicts a photo-realistic
visualization provided by Google Earth and a corresponding CityGML rendering of a
scene located in Berlin. Similar to the CityGML standard, procedural modeling [Parish
and Müller, 2001] aims at constructing synthetic 3D models and textures from sets of
defined rules and shape grammars.

1.3 Semantic Interpretation of Aerial Images

In order to construct semantically enriched virtual cities that support search queries or
specific information extraction, every mapped object has to be recognized and assigned
a semantic class label as a first step toward a full image understanding. The problem of
image understanding covers the interpretation of the scene with respect to mapped objects,
locations and the their relationships. Figure 1.3 shows a scene taken from two different
viewpoints. The high overlap enables an estimation of 3D scene geometry, which can be
used to improve the semantic labeling of the scene. In this thesis we treat the problem
of scene understanding as a semantic labeling process, where each pixel is assigned a
specific object class.

Due to huge variability the task of visual scene understanding is still a largely unsolved
problem. Among occlusions, illumination, viewpoint and scale changes, natural or man-
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Figure 1.3: Semantic interpretation aims at assigning class labels to mapped objects. In
this thesis we focus on a pixel-wise scene understanding by using a given set of predefined
object classes. The high redundancy in the aerial data enables an estimation of the scene
geometry as well as a semantic classification from different viewpoints.

made structures, shape-defined (things) or formless objects (stuff ), transparent or highly-
textured regions complicate the task of finding a meaningful object representation for
effective scene understanding. Visual scene understanding has been addressed by a variety
of prominent works [Shotton et al., 2007, Rabinovich et al., 2006, Verbeek and Triggs,
2007,Gould et al., 2008,Ladicky et al., 2010a] that aim at an accurate explanation of each
pixel in observed image. From these approaches, one can notice that the combination of
several intermediate results achieves improved recognition accuracies and is required to
obtain a full description of images.

Semantic image interpretation can be seen as possibly highly automatic processes for
understanding and analyzing the objects shown in arbitrary images. These processes in-
clude object detection, aiming at tagging objects of a particular target class with a bound-
ing box, but also image classification, where pixels, assemblies of pixels, parts or even



6 Chapter 1. Introduction

images are assigned a label selected from a pool of predefined object classes. Object de-
tection differs from classification in its goal. The goal of object detection is to describe,
count and find an object as a whole1, by taking into account its visual appearance and
shape, represented either in 2D or 3D.

We consider image classification as a pixel-oriented process, where a single pixel or
a pixel and its neighborhood are the input and a semantic class label for a single pixel is
the output. In addition, the task of image classification also treats the relations between
pixels within the observed image. The choice of using object classification or detection
is mainly based on a discrimination into things and stuff object classes [Forsyth et al.,
1996]. While things objects have a distinct size and shape, stuff can be rather seen as
a material that is specified by a texture and has no ascertainable form2. Distinguishing
between these two types leads to improvements for the task of full scene description as
recently shown in [Heitz and Koller, 2008, Ladicky et al., 2010a].

This thesis mainly focuses on the semantic enrichments, also referred to as land-
use classification, of mapped object points, greatly represented with high-resolution and
highly redundant aerial imagery. The image content gets separated into regions that typi-
cally describe buildings, circulation spaces, such as streets and parking areas or driveways,
vegetation, grass surfaces and water bodies. The regions are commonly defined by assem-
blies of pixels forming an ineffable amount of object variabilities and spatial extends. We
thus treat scene understanding as stuff classification, where each pixel is described by
its local neighborhood [Shotton et al., 2007, Verbeek and Triggs, 2007]. Although there
exist solely image-based interpretation approaches for aerial images [Gruber-Geymayer
et al., 2005,Porway et al., 2010], none of these concepts make considerable use of a tight
combination of appearance and 3D information. We therefore propose to utilize these
complementary cues for a semantic enrichment of digital aerial images. For instance, us-
ing a direct combination of color and height data would successfully separate gray-valued
rooftops from streets or might be useful to distinguish between grass and elevated vege-
tation, like trees and bushes. Having the semantic explanation of each pixel will have a
significant effect on many following tasks. We think of the way we search in images, how
we can compress, publish and broadcast them on the Internet or how urban scenes get rep-
resented and visualized. Moreover, assigning an object class to each object point, brings
us, together with available color and 3D information, directly to a holistic description of
aerial images scenes. This holistic collection supports the refinement of the obtained in-
terpretation toward a fine-scaled description, where building blocks, rooftop landscapes,
chimneys, trees etc. are represented individually.

1 In detection tasks the object is usually known in principle to have a certain scale, shape or appearance
2 It is obvious that the assignment of objects to the things or stuff category depends on the image acquisition,

e.g., clouds or trees might then be refer to both categories
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Figure 1.4: Overview of the proposed aerial image interpretation workflow. We utilize
highly redundant color and range images for the pixel-wise explanation. A fusion step
provides us with a holistic scene description, consisting of fused color, height and classi-
fication, that can be used to construct interpreted city models.

1.4 Contributions

In order to obtain an accurate semantic interpretation of aerial images, this thesis focuses
on utilizing highly redundant appearance and 3D information cues extensively. In partic-
ular, modern digital imaging techniques enable image acquisition with high redundancy
from significantly overlapping views without high additional costs. In this thesis we thus
study the combination of redundancy, appearance and scene geometry for tightly interact-
ing processing steps. Figure 1.4 summarizes the proposed workflow.
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1. From Appearance and 3D to Interpreted Image Pixels The first contribution deals
with large-scale semantic interpretation of single high-resolution aerial images. In order
to obtain a reliable object class assignment to each pixel in the images, we introduce a
novel region descriptor, based on statistical measurements. This descriptor enables a com-
pact and straightforward integration of appearance and 3D information without consider-
ations about normalization issues. Since the aerial imagery provides an enormous amount
of data, we exploit efficient data structures, such as integral images and fast multi-class
learners. To provide a quick descriptor calculation, the proposed supervised classifica-
tion approach mainly relies on a pixel-wise semantic interpretation by incorporating local
neighborhoods. We also exploit unsupervised segmentation, providing important spatial
support, and optimization strategies to accurately delineate the mapped objects with re-
spect to the real edges. The suggested interpretation workflow gets first evaluated on
standard benchmark datasets. For the aerial images we then demonstrate that the tight
combination of appearance and 3D information is essential for an accurate semantic in-
terpretation at the pixel level.

2. From 3D to the Fusion of Redundant Pixel Observations. The second contribu-
tion studies the fusion of redundant observations for the semantic interpretation, color
and height measurements. The generation of these congruent modalities is essential for a
holistic scene description. Due to the high geometric redundancy of the aerial imagery and
the availability of well-defined scene geometry, a projection to a common view (we em-
ploy the orthographic view) yields multiple, highly redundant pixel observations for each
involved modality. We thus make use of the range images, representing the geometry, to
align the overlapping perspective image information into a single view. Since the range
images are prone to contain many outliers we put emphasis on optimization schemes,
offering novel regularization techniques. As a first step we exploit continuous energy
minimization methods to integrate redundant scene observations for color and height.
The fusion step, defined over multiple color observations, utilizes improved image priors,
based on efficient wavelets. In contrast to the height field fusion, where a total-variation
based regularization advances sharp edges, the wavelet regularization preserves fine struc-
tures and a natural appearance. A second step yields congruent semantic interpretation
within the orthographic representation by accumulating multi-view classifications, result-
ing from the per-image explanation. Having the raw ortho-fused interpretation facilitates
an investigation of different optimization methods with respect to correctly classified pix-
els and object delineation. The experiments show that the continuous formulation of the
Potts model provides a simple way to capture object edges by incorporating appearance
or height data within the optimization procedure.
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3. From Interpreted Regions to 3D Models. The third contribution addresses the mod-
eling of the obtained semantic interpretation. We particularly discuss the construction of
fully parametrized 3D models of buildings. The proposed approach again relies on the
tight interaction between semantic classification, color and height information. In a first
step, we make use of unsupervised color image segmentation to extract and model any
type of building footprint. Established building regions, derived from the semantic in-
terpretation, are then assigned with individual geometric primitives efficiently estimated
from the corresponding height data. A clustering yields representative geometric proto-
types that are used within a final labeling procedure. This labeling strategy, defined on
a reduced adjacency graph, yields a consistent and smooth modeling of the individual
rooftops, where each rooftop gets parametrized by few parameters. Available elevation
measurements and a simple triangulation are subsequently used to extrude the final 3D
building model, efficiently described by unique ID-number, an assembly of polygons,
geometric prototypes and mean colors.

1.5 Outline

We detail the contributions in three technical chapters that describe the semantic inter-
pretation of single images, the fusion of available modalities and the modeling of the
obtained interpretation. For each of the main chapters, we discuss related work, outline
the concepts and evaluate the methods individually. The remaining part of the thesis is
thus organized as follows:

Chapter 2. In Chapter 2 we briefly describe different input modalities required for the
proposed algorithms. We present the basic information of the involved aerial imagery,
distinguish between radiometric and geometric redundancy and explain the generation of
surface and terrain models.

Chapter 3. Chapter 3 deals with the semantic interpretation of single images by tightly
integrating appearance and height information. This chapter is divided into four parts:
feature representation, feature classification, the application of unsupervised segmenta-
tion for improved object delineation and the refinement step based on energy minimiza-
tion. The experimental evaluation studies the performance of the proposed interpretation
workflow applied to standard image collections and aerial images.

Chapter 4. Chapter 4 focuses on the fusion of massively redundant image information.
While in Chapter 3 the aerial images are treated independently, this chapter aims at in-
tegrating the data from multiple perspective images. We thus highlight the generation of
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high-quality results from multiple observation for color, height and semantic interpreta-
tion. For each modality separately, optimization schemes are introduced for the fusion in
an orthographic view. The evaluation section demonstrates the benefit of using the high
redundancy provided by the aerial imagery.

Chapter 5. In Chapter 5 we address the problem of semantic modeling by incorporat-
ing the holistic scene description obtained from Chapter 4. The main part of Chapter 5
covers the extraction, parametrization and modeling of rooftop landscapes from color in-
formation, derived building regions and surface models. A detailed evaluation shows the
benefit of this interaction.

Chapter 6. Finally, Chapter 6 concludes the thesis with a summary of the obtained
outcomes and gives and ideas for future work, that could help to improve the suggested
interpretation workflow.



Chapter 2

Digital Aerial Imagery

This thesis aims for a largely automatic semantic interpretation of digitally mapped ur-
ban environments by utilizing massively redundant information of appearance and 3D
scene information. While highly overlapping color images and corresponding geomet-
ric data are assumed to be given in advance, additional products are required to achieve
the interpretation of aerial scenes. We thus outline involved modalities, ranging from
redundant color and texture information, over models, representing the surface and the
terrain, to estimated elevation measurements. Having the holistic collection of data ap-
plies to semantically describe entire virtual space, but also to automatically derive pa-
rameters individually specified for a certain task. In this thesis the proposed approaches
largely use digital aerial images produced by the high-resolution camera Microsoft Ultra-
CamD [Leberl et al., 2003]. The camera provides multi-view pixel observations, obtained
by acquiring the aerial project with high overlaps, as well as multi-spectral information
for mapped point, so that any applied algorithm can rely on highly redundant analysis.
We first describe the digital aerial imagery and highlight the process of range image gen-
eration. This chapter further outlines the generation of additional input sources, such as
the terrain model and the derivation of the elevation measurements, and discusses the or-
thographic image representation that is commonly used in aerial workflows. In addition,
we introduce the aerial project Dallas, Graz and San Francisco.

2.1 Aerial Photography

Digital aerial mapping has become feasible with the first large-format digital aerial cam-
eras in the beginning of the 21st century. To compete with at that time traditionally used
film images, these digital cameras had to offer an image width of at least of 11000 pixels
and a color band including RGB and infrared channels [Leberl et al., 2003]. The first dig-

11
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ital camera1 in use was inspired from space cameras in the form of a push-broom sensor
operating with a linear array that images a single line in the terrain at any one time. Alter-
native products2 were frame-based, but operating a rectangular instead of a square format.
A large frame format is being achieved by combining image tiles obtained through sep-
arate lenses. An additional factor is the color which in novel frame systems is obtained
at a lower geometric resolution than the panchromatic channel, and the final image is a
result of fusing panchromatic with color bands. The issue of forward motion compensa-
tion is implemented in some of the camera types to achieve longer exposure times and
thus better radiometry. Current large-format aerial cameras include multiple area charge
coupled devices (CCD) based on the Bayer-pattern color and up to eight lenses [Leberl
et al., 2003, Gruber, 2007]. They thus provide an increased stability and offer geometric
resolutions in the range of 195 MPixels at a radiometric resolution of 13 bits per pixel. A
typical pixel size (ground sampling distance (GSD)) of today’s cameras is at 8 to 15 cm.
Figure 2.1 shows several detailed views of Graz demonstrating pixel sizes of 8 cm.

On the contrary, digital satellite imagery offers pixel sizes in the 50 cm range and are
very useful to create coarse ortho-photos, but the computation of interpreted images and
the creation of accurate 3D models are first being obstructed by an insufficient resolution,
and secondly by an insufficient geometric redundancy (mainly suppressed by a projec-
tion near to the orthographic ones). Digital aerial sensing therefore offers (i) a dramatic
improvement of image quality over film images from then perhaps 7 to 8 bits per pixel
to today’s 13 bits, (ii) the no-cost option of increasing the number of images per project
and thus vastly improving the redundancy of the taken measurements, and (ii) the ability
of increasing the level of detail by reducing the pixel size in a project at almost no addi-
tional cost. The combination of these improvements in image quality and image overlaps
has favorable consequences for the degree of automation for further processing step on
standard workstations or multi-core systems.

2.2 Redundancy

Digital aerial sensors today produce highly redundant digital aerial images cost-efficiently.
With traditional analogue film images, a 150 sqkm urban space in the past was imaged
from an aircraft with a simple two-image overlap at 60% in the direction of flight and
20% across the flight direction. While the traditional film photogrammetry maps each
object point on only a stereo pair, a digital system can increase the geometric redundancy
to ten or even more without additional costs. For digital images, one can show that the
increase from two to ten or more observations per object point improves the measurement

1 www.leica-geosystems.com
2 www.intergraph.com/photo
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Figure 2.1: Geometric resolution and pixel size. The first row depicts a single image
taken from the dataset Graz with a geometric resolution of 11500 × 7500 pixels. Each
pixel describes an area of approximately 8×8 cm. The second row shows details cropped
from the huge image. Note that at this pixel size walking humans can be recognized.

accuracy by a factor of six [Ladstätter and Gruber, 2008]. It also reduces the occlusions
between high buildings and it supports mapping of facades since they will become visible
near the edges of vertical aerial images. The increased geometric accuracy particularly
enables measurements with improved precision, which is needed to obtain sharply delin-
eated object edges, e.g., in the dense matching procedure (see Section 2.3) or a multi-view
semantic interpretation workflow (see Chapter 3 and 4).

The pixel sizes obtained by scanning analogues films may have been at 25 cm on
the ground and offer RGB color channels at 24 bits, representing a data volume of 300

MBytes per aerial photograph. A 150 sqkm area today is being mapped on 3000 digital
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Figure 2.2: Sixty images taken from the dataset Dallas. The scene is taken from highly
overlapping viewpoints. In this work, we utilize the geometric redundancy to produced a
holistic description of urban scenes.

images (16 bits color) with 80%/60% overlaps and a pixel size of 12.5 cm, resulting a
data volume of approximately 1.5 GBytes. This is an increase of the data quantity by two
orders of magnitude and is at the core of achieving full automation of aerial mapping.
Figure 2.2 depicts sixty highly overlapping images taken from Dallas.

The high geometric redundancy is obtained by using forward and side overlaps, so
that every point in the terrain is imaged at least 10 times, and any algorithm can rely on
multiple analysis results that then can either reinforce or cancel one another. Figure 2.3
shows a set of redundant scene observations taken from Graz. Every point on ground is
mapped multiple times from different views. The proposed approaches make use of the
high redundancy.

The geometric redundancy additionally gets augmented by a radiometric redundancy
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Figure 2.3: Some redundant observations of a scene located in Graz. The mapped area is
shown from different camera viewpoints, which are defined by the flight direction. In our
approach we integrate overlapping information within a common orthographic view.

using four spectral bands, adding an infrared band to the classical red, green and blue color
channels. Moreover, the high-resolution color images offer sophisticated processing steps
that synthetically increase the redundancy. Many essential results, obtained from digital
aerial images, like DSM or DTM, classification maps, ortho-photos of any modality and
3D building models, are therefore derived cost-efficiently by fully automated1 processing
pipelines.

2.3 Digital Surface Model

Estimating depth information and hence 3D structure of arbitrary scenes from overlap-
ping views is essential and therefore a well-studied problem [Hartley and Zisserman,
2000, Kraus, 2004]. In this thesis we focus on purely image-based approaches, where
we extensively make use of available multi-view matching results computed from the
highly overlapping digital aerial images.

1 Note that the term fully automatic refers to an absence of manual interventions possibly required in case of
missing data or erroneous intermediate results.
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Figure 2.4: Sparse 3D structure and camera orientations computed for the datasets Graz
and Dallas by using the SfM approach described in [Irschara, 2011].

Depth information, represented in the so-called range images, of an observed scene
can be computed from at least two overlapping views, generally denoted as stereo image
pair. This technique basically determines corresponding points in images (and thus depth
information) using, e.g., correlation-based matching methods [Hartley and Zisserman,
2000]. Due to poorly-textured areas and repetitive structures in the images, such simple
methods could produce unstable results. It is obvious that the quality of the estimated 3D
scene structure will greatly improve when relying on multiple image views. Fortunately,
digital aerial images taken with the high-resolution camera, provide a high degree of
geometric overlap at no additional cost. Each point on ground is thus visible in multiple
images, enabling an improved estimation of the underlying scene geometry.

Dense scene geometry estimation is commonly performed within two processing steps.
First, Structure from Motion (SfM) also referred to as aerial triangulation (AT) in the field
of photogrammetry, recovers the camera parameters and a sparse 3D point cloud from
input images that describes determined pixel correspondences [Kraus, 2004]. As the sec-
ond step the dense matching estimates depth information for every pixel in the image
space [Scharstein and Szeliski, 2001]. In the following section we briefly discuss the
principles of SfM and dense matching.

Structure from Motion

The first processing step needed for dense 3D reconstructions, the SfM, recovers the
sparse 3D structure of an observed scene and estimates the orientations of the involved
cameras. The process of triangulation consists of the manual or automated selection of
point measurements in overlapping images (tie points and ground control points) and the
determination of unknown parameters of the camera pose and position.
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Since the exterior camera orientations are approximately known for an aerial project
due to Global Positioning Systems (GPS) and Inertial Measuring Units (IMU), the AT
can be rather seen as refinement step in order to obtain camera orientations with sub-
pixel accuracy. AT is commonly based on using bundle adjustment [Brown, 1976], which
simultaneously refines the scene geometry as well as the estimated camera parameters.
The exterior orientations of the aerial images could be achieved by an automatic process as
described in [Zebedin et al., 2006], but also by a sophisticated SfM approach as described
in [Irschara, 2011], where the camera poses are estimated fully automatically. Figure 2.4
shows the estimated camera poses and the sparse 3D geometry computed for both aerial
projects Graz and Dallas.

Dense Matching

The AT yields camera orientations and a sparse set of 3D points of the scene, but for
many practical applications, like a pixel-wise semantic interpretation or the construction
of photo-realistic 3D models, dense surface models are highly desired for further process-
ing. A dense matching process therefore estimates depth values for every sampled point
in a defined discrete image space. There exists a variety of methods addressing the prob-
lem of dense matching problem. A good survey of existing stereo matching methods is
given in [Scharstein and Szeliski, 2001]. Depending on the set of pixels on which the op-
timization of the disparity values is performed, dense matching methods can be roughly
categorized into three classes. Among them are local methods [Birchfield and Tomasi,
1998, Yoon and Kweon, 2006], semi-global [Hirschmüller, 2006, Klaus et al., 2006] and
global optimization methods [Pock et al., 2008]. Many dense stereo matching algorithms
are based on plane-sweep techniques [Cox et al., 1996, Gallup et al., 2007]. The plane
sweep concept also allows the direct accumulation of matching costs for multiple im-
ages [Hirschmüller and Scharstein, 2009].

By using the recovered camera orientation parameters, an area-based matching algo-
rithm produces a dense range image for each image in the aerial dataset. In our case the
range images are computed from a triplet of input images (a reference image and its two
immediate neighbors) with the plane sweeping approach described in [Cox et al., 1996].
Figure 2.5 shows three overlapping input images and the corresponding dense matching
result. The plane sweeping is based on the normalized cross-correlation as similarity mea-
surement and produces a 3D depth space, which contains the depth hypotheses and their
associated correlation values. In order to obtain consistent depth images, where neigh-
boring pixels have similar depth values, the final range images get refined by applying a
semi-global optimization approach as described in [Klaus et al., 2006].

In Figure 2.6 some dense matching results are shown for single images extracted from
the aerial projects. The computed range images, each with a dimension of 11500× 7500
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Figure 2.5: A dense matching result obtained for a small scene of Dallas. A triplet of
overlapping images is used to compute the corresponding range image. The first row
shows the center image and the corresponding computed range image. The images in
the second row are the direct neighbors, that are taken from different view points. The
computed range images are composed of depth values, describing the estimated distances
from the camera to the point on the surface of the observed scene for each pixel. These
depth values thus define the underlying 3D scene geometry.

pixels, provide depth information for every position in the image space. Each depth value
then represents the distance from the camera to the pixel on the estimated surface of the
observed scene. Having the depth information for each sampled image point thus enables
a pixel-wise transformation to a 3D world coordinate system forming a surface model.
Such models can then be defined in 2.5D or in the full 3D space1.

Since the range data is computed for each image in the aerial project, the high geomet-
ric redundancy offers the generation of multiple measurements for one and the same point

1 Note that we only focus on a 2.5D representation, however, the 2.5D information is sometimes referred to
as 3D height throughout this thesis.
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Figure 2.6: Dense matching results, computed for individual images of the aerial projects
of Dallas, Graz and San Francisco. Each range image provide pixel-synchronous depth
information for a corresponding color image. By taking into account the camera parame-
ters, depth values can be directly transformed to huge 3D point cloud, forming a sampled
surface model in world coordinate system. Depending on the SfM approach, this coordi-
nates system can either be a local or a global one.

of the surface model. Hence, an sophisticated handling of these, highly redundant, 3D ob-
servations can be used to improve the surface model itself (as we will show in Chapter 4),
but also to derive a terrain model, representing the bald earth. Knowing the terrain model
is essential in order to turn relative height observations into a normalized surface model,
where the corresponding values denote an elevation from the ground. In the next section
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we therefore discuss how to derive the terrain model from the DSM.

2.4 Digital Terrain Model

The dense point cloud, provided by the dense matching process, can be seen as an uninter-
preted representation of visible surfaces of observed scenes. In the literature, there exists a
variety of techniques to construct a terrain model. These techniques range from applying
local operators [Eckstein and Munkelt, 1995, Weidner and Förstner, 1995], over utilizing
surface models [Champion and Boldo, 2006,Sohn and Dowman, 2002] and different seg-
mentation [Sithole and Vosselman, 2005] or even recognition approaches [Zebedin et al.,
2006], to using hybrid methods [Baillard, 2008].

In this thesis we used a local filtering strategy and a variational strategy to separate
the available 3D points into those that describe the terrain surface and those that represent
elevated objects. By taking into account the derived range images from overlapping views
(we use an approximated median to efficiently integrate the height observations from
four neighboring views) and the available camera data, a filtering strategy detects local
minimums (defining points on ground) over different scales in the fused point cloud. A
derived probability map encodes sampled image regions, that have been formerly elevated
by buildings and trees. Similar to the approach described in [Unger et al., 2010], we make
use of a variational in-painting strategy in order to fill these areas with meaningful terrain
height values.

Subtracting the DTM from the DSM delivers the absolute elevation measurements of
the objects, which can now be used as a discriminative feature cue for the proposed se-
mantic interpretation workflow (see Chapter 3) or for the estimation of real object heights,
required for the construction of 3D models. Figure 2.7 depicts derived elevation mea-
surements for an image of Dallas. Note that these elevation maps provide absolute dis-
tance measurements, that can be easily used to distinguish between objects located on the
ground and elevated object, like trees and buildings.

2.5 Orthographic Image Representation

In aerial imaging, orthographic projections are a often used to represent the mapped infor-
mation. Web-driven initiatives, like Google Earth and Microsoft Bing Maps, frequently
offer imagery in the form of 2D ortho-photos due to efficiency. These orthographic im-
ages are commonly derived from perspective imagery by transforming the input sources
to a parallel projection, where each sampled has then a constant pixel size. Due to the
projection, vertical objects, like building facades, are represented as 2D lines in the re-
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Figure 2.7: Elevation measurements for an image of Dallas. The computed elevation
maps provide absolute height values for each pixel. Dark values denote no elevation,
while bright color defines high elevation. Such normalized surface model are widely
adopted for 3D modeling, however, in this work we extensively utilize this representation
for the generation of a full semantic interpretation.

sulting ortho-image and, thus, not visible in the resulting view. Figure 2.8 depicts both a
perspective and a resulting ortho-projected color image.

The ortho-photos are created by projecting the photo texture either onto a virtual plane
for the so-called traditional ortho-photos or onto the DSM to produce a true ortho-image.
While proposed methods largely rely on image stitching methods, we extensively con-
centrate on the redundant data fusion. Knowing the correspondences between image co-
ordinates and the 3D point (resulting from the range images), input sources, like color,
infrared, but also pixel-wise semantic knowledge, can be quickly sampled within the or-
thographic view.
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Figure 2.8: An orthographic representation for a Graz scene. While the left image shows
a perspective view, the right one depicts the ortho-photo of the same scene, where the
parallel projection yields constant pixel sizes. It is obvious that vertical structures, like
facades, disappear in the ortho-view.

In Chapter 4 we introduce efficient methods for an ortho-image generation providing
holistic knowledge about the observed scene, ranging from a fused terrain model, over
a high-quality color image, to a pixel-wise semantic explanation of each object point.
Hence, a major outcome of this work is a holistic description of aerial data with color,
surface models, and semantic interpretation within the orthographic image representation.

2.6 Datasets

In this thesis we apply the proposed methods to three challenging aerial projects, acquired
with the UltracamD at varying GSDs, namely the imageries Dallas, Graz and San Fran-
cisco. The dataset Dallas includes large building structures in a relatively flat terrain and
is mainly dominated by gray valued areas. The buildings vary from low factory halls
to skyscrapers with specular facades. The dataset San Francisco has mainly a suburban
appearance embedded in a hilly terrain with many building-tree transitions. The 155 im-
ages of Graz show a colorful characteristic with a detailed rooftop landscape. Different
types of vegetation and water areas mapped with a reduced pixel size make this dataset
challenging. Table 2.1 summarizes the basic information for the aerial datasets.
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Dataset Nb of Images GSD Color, 24 bits Range images Infrared
Dallas 68 15 cm X X X
Graz 155 8 cm X X

San Francisco 77 15 cm X X

Table 2.1: The three datasets used throughout this thesis: Dallas, Graz and San Fran-
cisco. The images are taken with the UltracamD providing an overlap of 80% in the
direction of flight and 60% across the flight direction. Each image has a geometric reso-
lution of 11500 × 7500 pixels. The required data volume per image (used for this work)
is in the range of 450 MBytes, including 24 bits color images, the DSM and the DTM.

2.7 Summary

This chapter has described the aerial information sources required for the proposed ap-
proaches. These sources range from acquired color information, over derived texture
descriptions, to computed surface models describing the geometry of the observed scene.
In this thesis we assume that highly overlapping color images, the corresponding range
images an the camera data are given in advance. These intermediate results enable an
extraction of normalized surface models or the generation of additional appearance cues
useful for, e.g., a full semantic image interpretation, but also coordinate transformations
from the 2D image space to a 3D world coordinate system. The coordinate transforma-
tions particularly allows us to sample multiple observations for color, height and assigned
object labels within a common view. Hence, we first outline a concept for a full semantic
interpretation of aerial images by compactly utilizing appearance and elevation measure-
ments. Then, the highly overlapping multi-view classification, together with color and
geometry, are ortho-projected to form an improved holistic description of urban spaces.
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Chapter 3

From Appearance and 3D to
Interpreted Image Pixels

In order to explain every visible spot on ground, mapped by the digital aerial imagery, we
introduce a novel concept for a full semantic interpretation of urban scenes. Our methods
relies on a compact integration of appearance and 3D information cues. In this chapter
we show this combination is essential to obtain a reliable semantic description for each
image in the aerial dataset. Having an accurate semantic interpretation, as well as both
the color and 3D information, then defines a holistic description of mapped aerial scenes.
The proposed pixel-wise classification utilizes multiple low-level feature cues, such as
true color, edge responses and 3D data, that derived from a variational reconstruction ap-
proach. To enable a compact integration of appearance and elevation measurements we
thus use powerful region descriptors that are derived from statistical moments. Together
with randomized forests probabilistic assignments for multiple object classes are obtained
efficiently for each pixel in the image domain. Final processing steps, based on both un-
supervised segmentation and energy minimization, additionally refine the assigned class
labeling with respect to real object boundaries. The experimental evaluation demonstrates
the proposed interpretation method on standard benchmark dataset and compares the ob-
tained rates to state-of-the-art results. We further show that our approach can be success-
fully applied to two-class problems in aerial imagery, like a building classification, but
also to distinguish between multiple object classes like building, street, tree, grass and
water.

3.1 Introduction

Due to indefinitely large variabilities in the object’s appearances and shapes, the problem
of semantic image interpretation is still an unsolved task in computer vision. Varying

25
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Figure 3.1: Highly overlapping aerial images taken from Dallas. The mainly gray-valued
areas provide a challenging task to discriminate, e.g., building structures from the street
network. We thus argue that 3D information has to be integrated for an accurate semantic
scene interpretation.

illumination, partial occlusions, viewpoint and scale changes additionally complicate the
problem. Although appearance-driven classification approaches [Shotton et al., 2007,Ver-
beek and Triggs, 2007, Gould et al., 2008] obtain reliable results on computer vision
benchmark datasets, such as the Microsoft Research Cambridge (MSRC) [Winn et al.,
2005, Shotton et al., 2007] or the PASCAL Visual Object Classes (VOC) Challenge [Ev-
eringham et al., 2007] images, full scene interpretation in a real world-scale still poses
a challenging task. Figure 3.1 shows an aerial scene of Dallas that is taken from differ-
ent viewpoints. Considering the highly overlapping color images, even for humans it is
challenging to distinguish between gray-valued building structures and regions that rep-
resenting the street network. In this work we are certainly not only interested in a reliable
explanation of building and street pixels, but also in accurately separating tree, grass, and
water object points. We claim that there is a need to incorporate 3D scene geometry into
the classification to permit an accurate semantic explanation of the image content.

In this chapter we thus propose a straightforward yet efficient approach to combine
multiple feature cues like color, edge responses and elevation measurements. For in-
stance, using a combination of color and elevation measurements would successfully sep-
arate street regions from gray-valued rooftops or would help to distinguish between grass
areas and trees. Figure 3.2 shows congruent RGB color and 3D information, extracted
from a perspective aerial image of the dataset Dallas. A segmentation of these images
into several object classes provides then a semantic knowledge of the objects on ground
and approves a specified post-processing to construct virtual cities where, e.g., each rec-
ognized object is modeled according to its obtained interpretation.

As a first step we outline a rapid semantic interpretation, based on a novel feature
representation, that is directly applicable to machine learning methods. The proposed
representation, derived from compact covariance descriptors [Tuzel et al., 2006] allows
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Figure 3.2: Corresponding color and 3D information, represented as a normalized surface
model. The proposed concept exploits both appearance and 3D height data to obtain an
accurate semantic interpretation at the level of pixels. Bright pixel values denote a high
elevation from the ground.

us to compactly integrate color values, derived filter responses or computed height in-
formation, while an arbitrary learner efficiently performs a classification task at the pixel
level. Due to efficiency and multi-class capability we make extensively use of random-
ized forest (RF) classifiers [Breiman, 2001], that have been successfully adopted to vari-
ous computer vision problems. Since the proposed interpretation mainly uses rectangular
pixel-neighborhoods we have to consider the accurate object delineation in a second step,
where unsupervised segmentation and energy minimization are applied to capture the real
boundaries. To demonstrate state-of-the-art performance we present evaluation results for
commonly used benchmark datasets by integrating appearance cues. We then apply our
proposed method to real world aerial imagery, performing large-scale semantic classifi-
cation, where the feature representation additionally integrates available 3D information.
For both benchmark images and the aerial images the classification accuracy is investi-
gated in terms of correctly classified pixels and by visual inspection.

3.2 Overview

The first processing step of the semantic interpretation workflow involves an initial classi-
fication performed on each image in the aerial dataset. We argue that a local stuff classifi-
cation [Forsyth et al., 1996] that is performed at the pixel level, is well suited for efficient
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interpretation of images. On the one hand, the aerial images provide a nearly constant
stuff object scale that is mainly defined by the GSD of the aerial project. The local inter-
pretation can be thus performed for one scale which is mainly defined by the patch size.
On the other hand, the huge variability of the mapped data and the undefined object’s
shapes make a top-down recognition strategy intractable to solve. In addition the training
sample generation does not need entirely annotated objects, but rather an efficient assign-
ing of object classes by drawing strokes. We therefore concentrate on a local explanation
of the images and introduce the exact object extraction in a later step (see Chapter 5).

We extensively exploit statistical Sigma Points [Julier and Uhlmann, 1996] features,
directly derived from the well-established covariance descriptors [Tuzel et al., 2006] in
combination with RF classifiers [Breiman, 2001] to compactly describe and classify color,
basic texture and elevation measurements within local image regions. The combination
of the derived statistical features and RF classifiers provides several advantages for large-
scale computations in aerial imagery. Since the aerial imagery consists of multiple infor-
mation sources, there is a need to reasonably combine these low-level information cues.
We therefore apply a Sigma Points feature representation to compactly describe differ-
ent channels considering a small local neighborhood. Compared to computed histograms
over multi-spectral data, these descriptors are low-dimensional and enable a simple in-
tegration of appearance and height information, that is then represented on a Euclidean
vector space. Moreover, they can be quickly computed for each pixel using integral image
structures and also support parallel computation techniques.
Randomized forests have proven to give robust and accurate results for challenging multi-
class classification tasks [Lepetit and Fua, 2006, Shotton et al., 2008]. RFs are very effi-
cient at runtime since the final decision is made on fast binary decisions between a small
number of selected feature attributes. In addition, the classifier can be efficiently trained
on a large amount of data and can handle some errors in the training data.

In the following sections we first review related work in the context of semantic image
interpretation and classification. Then, we outline the core parts of our semantic interpre-
tation, consisting of a powerful feature representation (Section 3.4), the classifier (Sec-
tion 3.5) and refinement steps to obtain an improved final class labeling (see Sections 3.6
and 3.7).

3.3 Related Work

While recently proposed approaches aim at extracting coarse scene geometry directly
from interpretation results [Hoiem et al., 2007,Saxena et al., 2008,Gould et al., 2009,Liu
et al., 2010] or try to jointly estimate classification and dense reconstruction [Ladicky
et al., 2010b], we rather focus on directly integrating available 3D data in our interpre-
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tation workflow to improve the task of semantic labeling. The tight integration of 3D
data into image classification as additional information source is still a new and upcom-
ing field of research. As shown in [Brostow et al., 2008, Sturgess et al., 2009, Xiao and
Quan, 2009], a combination of color and coarse 3D information, obtained from SfM ge-
ometry, is essential for an accurate semantic interpretation of street-level images. Leibe
et al. [Leibe et al., 2007] demonstrated that SfM improves the detection and tracking of
moving objects. In this thesis we go one step further by utilizing dense 3D reconstruction.
Several approaches in the field of photogrammetry, dealing with aerial imagery, focus on
detecting single object classes, e.g., buildings by using only LiDAR data [Matei et al.,
2008, Toshev et al., 2010] or height models [Lafarge et al., 2008], but also on exploiting
appearance cues together with elevation measurements (resulting from a combination of
a surface and a terrain model) [Rottensteiner et al., 2004, Zebedin et al., 2006]. While
these approaches focus on binary classification tasks, the presented concept handles mul-
tiple classes and can be configured to specific objects. In contrast to [Zebedin et al.,
2006], where appearance and geometry are treated separately, our approach tightly inte-
grates dense matching results and low-level cues like color and derived edge responses
within a compact yet local feature representation. In addition, we train specified object
classes directly and do not introduce prior knowledge, like, e.g., that buildings and trees
are elevated from ground, to derive the final classification.

Local classification strategies, using supervision, aim to semantically describe every
pixel by considering a small spatial neighborhood or entire image regions, provided by
unsupervised segmentation, in the image space. In fact, Bag-of-Features (BoF) models
have shown excellent performance in various recognition tasks [Winn et al., 2005,Nowak
et al., 2006, Rabinovich et al., 2006, Marszalek and Schmid, 2007, Verbeek and Triggs,
2007, Bosch et al., 2007, Pantofaru et al., 2008, Fulkerson et al., 2009, Lazebnik and Ra-
ginsky, 2009]. The BoF concept is mainly based on collecting different types of feature
vectors within given image regions. Collected features instances are then quantized into
a specified number of words by using well-established clustering procedures. Any image
region is then represented by an one-dimensional histogram of word occurrences. The
resulting histogram representations get then trained and evaluated with arbitrary classi-
fiers. Commonly, quantized feature instances are extensively composed of combinations
of Texton filter bank responses [Winn et al., 2005], SIFTs [Lowe, 2004], Histogram of
Oriented Gradients (HOG) [Dalal and Triggs, 2005] or spatial information. However
a reliable combination of different feature requires a sophisticated normalization step.
An integration of appearance and height information particularly induces problems since
height is difficult to quantize, e.g., into one-dimensional histograms if the present value
range not known in advance.

Mainly inspired by popular approaches [Viola and Jones, 2004,Tuzel et al., 2007,Shot-
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ton et al., 2008], where extracted raw features are directly processed, we build our in-
terpretation step on locally extracted feature descriptors, capable to compactly integrate
different cues, which are then trained and evaluated with fast classifiers. Most of the
proposed descriptors can be computed rapidly within rectangular image patches by uti-
lizing integral structures [Viola and Jones, 2004, Porikli, 2005, Tuzel et al., 2006] or by
directly extracting raw pixel values [Shotton et al., 2008, Gall and Lempitsky, 2009]. In
particular, integral images enable descriptor computations in constant time independently
of the considered patch size. Viola and Jones [Viola and Jones, 2004] proposed a real-
time recognition framework based on Haar-like wavelets. These wavelets are rapidly
constructed with intensity integral structure by calculating sums within rectangular image
regions. Porikli [Porikli, 2005] proposed to compute histogram-based descriptors with
integral structures. This concept was successfully applied to approximate an accelerated
construction of region descriptors based on Edge Orientation Histograms (EOH) [Levi
and Weiss, 2004] or Local Binary Patterns (LBP) [Ojala et al., 2002]. Prominent tech-
niques like SURF [Bay et al., 2006] and on-line boosting [Grabner and Bischof, 2006]
make use of the provided efficiency. Even more simply, Shotton et al. [Shotton et al.,
2008] developed an extremely fast semantic classification of small images by using RF
classifiers [Breiman, 2001] and basic intensity value differences that are evaluated in small
spatial neighborhoods. In [Yi et al., 2009] the authors applied an extended approach to
the semantic segmentation of medical data that is represented in a 3D voxel space. In our
case an extraction of pixel differences might be used to efficiently combine color and 3D
height, however, the feature extraction is prone to noisy images (dense matching results
usually contain outliers and undefined regions caused by occlusions) and does not provide
scale- and rotation-invariance implicitly.

Tuzel, Porikli and Meer [Porikli, 2005, Tuzel et al., 2006] successfully demonstrated
the power of various statistical feature representations mainly in the context of visual
object tracking. In [Wu and Nevatia, 2008], the authors showed that covariance descrip-
tors can be successfully applied to detection tasks. Especially the covariance descriptors
enable a simple integration of various information cues, like intensity values or filter re-
sponses and offer an invariance to rotation and scale. Probably the most powerful advan-
tage is the quick generation provided by an extended set of integral images.

Unfortunately, the classification of local feature descriptors, computed within rectan-
gular image regions, does not capture the real object boundaries. In order to accurately
delineate the real object boundaries, there is a trend to perform object classification by uti-
lizing conservative over-segmentation techniques. Since our workflow uses a pixel-wise
classification by considering a rectangular spatial neighborhood, we propose to introduce
an unsupervised segmentation to refine the classification results with respect to object
edges. Malisiewics and Efros [Malisiewicz and Efros, 2007] particularly showed that
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a correct spatial support, provided by unsupervised segmentation methods, significantly
improves the recognition performance over approaches using image patches. A variety
of methods, obtaining state-of-the-art performance on evaluation datasets, directly inte-
grates image partition methods into semantic or holistic scene understanding [Russell
et al., 2006, Malisiewicz and Efros, 2007, Pantofaru et al., 2008, Kohli et al., 2008, Gould
et al., 2009] or object localization and detection [Galleguillos et al., 2008,Fulkerson et al.,
2009]. Due to the missing of perfect image partitions [Unnikrishnan et al., 2007], mul-
tiple image segmentations are widely used for accurate object delineation and classifica-
tion [Russell et al., 2006, Pantofaru et al., 2008, Kohli et al., 2008]. It is obvious, that
the generation of multiple segmentations induces enormous computational complexity
and is impractical for aerial image segmentation. Recently, Fulkerson et al. [Fulkerson
et al., 2009] proposed to use super-pixels, rapidly generated by Quickshift [Vedaldi and
Soatto, 2008], for object segmentation and localization. These super-pixels accurately
preserve object boundaries and are thus suitable to describe coherent parts of mapped ob-
jects. Additionally, subsequent processing steps, such as a refined labeling, benefit from
the reduced image grid in terms of computational complexity [Ren and Malik, 2003]. It
is clear that also TurboPixels [Levinshtein et al., 2009] or the small segments provided
by [Ren and Malik, 2003] can be used to compute different image partitions.

Once a meaningful, however initial, explanation for a pixel or even for an assembly of
pixels is found, image interpretation concepts additionally integrate contextual constraints
to find a globally consistent final class labeling. These contextual constraints capture the
probability of class occurrences within an image and also provide a regularized labeling
in a spatial (pixel or region) neighborhood. Conditional Markov random field (CRF)
formulations [Boykov et al., 2001, Komodakis and Tziritas, 2007] are widely adopted to
include these contextual constraints for coherent image classification and segmentation.
The optimization, based on energy minimization, is usually performed on regular image
grids [Verbeek and Triggs, 2007, Shotton et al., 2007, Rabinovich et al., 2006, Pantofaru
et al., 2008], but also on reduced super-pixel graphs [Fulkerson et al., 2009, Gould et al.,
2009].

3.4 Feature Representation

This section highlights the construction of the powerful region-based descriptor, derived
from first (mean) and second order statistical moment (covariance matrix). Region co-
variance representations compactly combine raw pixel values, such as appearance and
filter responses, and have shown to give excellent results in object detection [Tuzel et al.,
2006, Wu and Nevatia, 2008], visual tracking [Porikli et al., 2006, Tuzel et al., 2007, Ar-
signy et al., 2007, Tyagi and Davis, 2008, Li et al., 2008] and medical image process-
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ing1 [Pennec et al., 2006, Fletcher and Joshi, 2007]. They additionally provide a lower
dimensionality than constructed histograms representations like HOGs [Dalal and Triggs,
2005] or LBPs [Ojala et al., 2002]. Wu and Nevatia [Wu and Nevatia, 2008] and Paisitkri-
angkrai et al. [Paisitkriangkrai et al., 2008] particularly showed that covariance descrip-
tors provide high discriminative power compared to the prominent HOG descriptors.

A major drawback of covariance descriptors is that these matrices do not lie on a
Euclidean vector space, which means that element-wise difference computations of two
observed matrices do not measure a valid similarity [Pennec et al., 2006]. Therefore, stan-
dard machine learning methods, that require similarity computations between attributes
or a reference instance cannot be applied directly.

In the following, we first discuss the well-studied first and second order statistical
moments. Second, we review related representations based on manifolds and introduce
the concept of our novel feature representation that approximates mean and covariances
directly on a Euclidean vector space. Additionally, we highlight the efficient construction
of the mean and the covariance matrix within rectangular shapes using integral structures,
making the descriptor interesting to computer vision problems like large-scale classifica-
tion or real-time tracking and detection.

3.4.1 Mean and Covariance Descriptors

Estimating the mean and covariance region descriptors from multiple information sources
offers a low-dimensional feature representation that simply integrates feature channels,
such as color, filter responses, 3D height information, etc., and also exploits the correla-
tion between them. The diagonal elements of the covariance matrix provide the variances
of the feature attributes in one channel, whereas the off diagonal elements capture the
correlation values between the involved low-level modalities.

In this thesis we assume that the first and second order statistics, represented by the
mean vector µ and the covariance matrix Σ, denote the standard parameterization of a
D-dimensional, multivariate normal distributionND(µ,Σ). A vector x ∈ RD is said to be
normal distributed according to x ∼ ND(µ,Σ). The resulting probability density function
is then defined as

fX(x) =
1

(2π)
D
2 |Σ| 12

e−
1
2

(x−µ)T Σ−1(x−µ), (3.1)

where µ ∈ RD and |Σ| is the determinant of the covariance matrix Σ. From (3.1) we
can observe that the quadratic term in the exponent simplifies to xTΣ−1x for zero-mean
vectors. Note for some cases the resulting covariance matrix might also be singular, if the

1 Note that in computer vision literature positive-definite covariance matrices are often denoted as tensors.
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considered samples are linearly dependent (i.e., an observed image provides substantial
homogeneous regions and edge or 3D information are directly derived from the intensity
values) or if the number of samples is less than D + 1. In these cases the resulting
distribution has no density.

Since covariance matrices can also be singular, they are symmetric and positive semi-
definite by definition with Σ ∈ SymD, where SymD denotes the space of these matrices.
In this vector space a D × D covariance matrix can be fully described by D(D + 1)/2

distinct entries. To ease the working with covariance matrices, we require that the covari-
ance matrices have to be symmetric positive-definite (SPD) matrices with Σ ∈ Sym+

D.
In order to handle singular cases, e.g., computing covariance descriptors within homoge-
neous image regions, we introduce a commonly used regularization1 with Σ = Σ + εID,
where ID is the D-dimensional identity matrix and ε = 1e-6. Σ ∈ Sym+

D is then a strictly
symmetric (Σ = ΣT ) and positive-definite matrix, satisfying yTΣy > 0 for all y ∈ RD.
These SPD matrices are also often denoted as tensor matrices [Pennec et al., 2006].

3.4.2 Working with Symmetric Positive-Definite Matrices

Since there exists no closed-form solutions for integrating the probability density function
fX(x) (see (3.1)), various methods for approximation have been proposed in the past.
The methods range from computationally expensive Monte-Carlo simulation methods,
over approximations, such as truncated Taylor series expansion, to prominent techniques,
provided by differential geometry [Boothby, 1975]. In the following section we briefly
discuss related methods in the context of feasible representations, where well-established
distance measurements can then be computed efficiently.

Computation on Riemannian Manifolds

Differential geometry based approaches are widely adopted to compute distance between
observed covariance matrices on Riemannian manifolds [Förstner and Moonen, 1999,
Goldberger et al., 2003,Arsigny et al., 2007]. In [Pennec et al., 2006,Dryden et al., 2009]
detailed summaries are given for derived metrics and methods of covariance interpolation
and filtering.

For a SPD matrix Σ ∈ Sym+
D, there exist two fundamental operations, the matrix

exponential and the logarithm, which can be easily computed by utilizing the spectral
decomposition of the considered matrix. Common Euclidean vector space operations,
such as addition and subtraction, are then represented via exponential and logarithm maps
on the Riemannian manifold.

1 Note that even a small amount of noise, added to the considered samples, might largely avoid singular
covariance matrices.
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Let Σ = LΛLT be an ordinary spectral decomposition, where L is an orthonormal
matrix, and Λ is real and diagonal. The exponential series is then given by

exp (Σ) =
∞∑
k=0

Σk

k!
= L exp (Λ)LT , (3.2)

where exp (Λ) is the diagonal matrix composed of the eigenvalue’s exponentials. As in
the scalar case, the matrix logarithm is defined as the inverse of the exponential. The
logarithm series of the matrix Σ can be thus written as

log (Σ) =
∞∑
k=1

(−1)k+1

k
(Σ− ID)k = L log (Λ)LT , (3.3)

where log (Λ) is the diagonal matrix, that defines the eigenvalue logarithms. Note that the
exponential series is defined for any symmetric matrix in SymD due to the one-to-one
correspondence between the symmetric matrix and the tensor. In contrast, the inverse
function, the matrix logarithm, is defined solely for SPD matrices. However, in our case
this might be guaranteed by the applied regularization step. Based on the specific proper-
ties of the matrix exponential and logarithm, we can now define a vector space structure
on tensors, providing a simple vectorization of SPD matrices or metrics providing valid
distance computations.

In fact, the space of SPD matrices Sym+
D lies on a connected Riemannian manifold

M describing a Lie group. A manifold can be seen as a topological space, that is locally
like an isomap to a Euclidean vector space since every point on the manifold has a neigh-
borhood for which there exists an isomorphism, mapping the neighborhood to R [Pennec
et al., 2006]. For a differentiable Riemannian manifold, we can define the derivatives of
curves on the manifold. The derivatives at a point X ∈ M, defined on the manifold,
live in a vector space, which describes the tangent space at that point. This tangent space
can be thus clearly identified by the space of SPD matrices Sym+

D. The distance between
two points d(X, Y ) with Y ∈ M is then given by the length of a curve, connecting these
points on the manifold. The minimum length is also referred to as the geodesic.

Two invariant Riemannian metrics are typically adopted to compute the geodesic be-
tween samples of SPD matrices, namely the Log-Euclidean and the affine-invariant met-
ric.

Log-Euclidean Metric. Under the Log-Euclidean Riemannian metric the Lie group
structure of SPD matrices can be extended to a Lie algebra. The Lie algebra also de-
fines a vector space on tensors, that can be then described by a Euclidean metric. The
geodesic between two SPD matrices Σ1 and Σ2 is given by
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dLE(Σ1,Σ2) = ‖ log (Σ1)− log (Σ2) ‖F . (3.4)

From (3.4) it can be seen that the Log-Euclidean metric directly corresponds to Euclidean
metrics, such as the Frobenius norm (L2 norm applied to matrices), in the domain of
matrix logarithms, since the shortest distance between the two points in the manifold
is given by straight line. As shown in [Pennec et al., 2006] this metric overcomes the
problem of computational limitations while maintaining the theoretical properties. In
addition, it is widely adopted to the exact estimation of statistics for a number of SPD
matrix samples [Pennec et al., 2006, Dryden et al., 2009].

Since log (Σ) provides a vector space structure under the Log-Euclidean metric of a
given SPD matrix Σ, we can unfold log (Σ) into a feature vector without loosing any infor-
mation. Considering a region covariance matrix Σ ∈ Sym+

D, we apply the Log-Euclidean
mapping according to (3.3). This concept has been extensively applied to learning incre-
mental subspaces in tracking [Li et al., 2008], detection [Wu and Nevatia, 2008] and even
semantic classification [Kluckner et al., 2009b].

Affine-Invariant Metric. The second metric defined on Riemannian manifolds is re-
ferred to as the affine-invariant distance [Porikli et al., 2006, Pennec et al., 2006]. Given
two SPD matrices Σ1 and Σ2, the metric dAI(Σ1,Σ2) computes the length of the geodesic
connecting these two points on the manifold with

dAI(Σ1,Σ2) = ‖ log(Σ
− 1

2
1 Σ2Σ

− 1
2

1 )‖F . (3.5)

Note that any transformation of the form Σ′ = QΣQT applied to the covariance matrix
Σ, satisfying Sym+

D, does not affect the computed distance under this metric. As shown
by Förstner and Moonen [Förstner and Moonen, 1999] Equation (3.5) can be solved in
closed-form based on generalized eigenvalues λi that are computed for Σ

− 1
2

1 Σ2Σ
− 1

2
1 . The

metric is defined as

df (Σ1,Σ2) =

√√√√ D∑
i=1

log2λi(Σ1,Σ2) . (3.6)

The definition of this metric guarantees the triangle inequality, symmetry and positiv-
ity for SPD matrices [Förstner and Moonen, 1999]. However, compared to the Log-
Euclidean metric, the affine-invariant metric involves matrix inversions, square roots, log-
arithms and exponentials, and has therefore an increased computational complexity.
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Kullback-Leibler Divergence. Both the Log-Euclidean and the affine-invariant metric
enable a similarity computation between SPD matrices that represent solely the second or-
der moments. In this work we aim to additionally consider the discriminative information
given by the mean vector.

The Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951] is a popular
method to compute similarity between two fully parametrized normal distributions. Let
f = ND(µf ,Σf ) and g = ND(µg,Σg) be two D-dimensional multivariate normal dis-
tributions, the similarity measurement between f and g, satisfying positivity, is defined
as

dKL(f, g) =
1

2

(
log
|Σg|
|Σf |

+ tr
(
Σ−1
g Σf

)
−D+

+ (µf − µg)T Σ−1
g (µf − µg)

)
. (3.7)

Note that KL divergence is not symmetric dKL(f, g) 6= dKL(g, f), however, a symmetric
similarity measurement can be obtained by using the sum with dKL(f, g) + dKL(g, f).
Since there exists no closed-form solution for computing the similarity between mixtures
of Gaussians, Monte Carlo simulation methods are widely adopted to approximate the
divergence [Goldberger et al., 2003]. Similar to the KL divergence the Bhattacharyya dis-
tance [Bhattacharyya, 1945] can be used to compute the distance between two Gaussian
distributions.

Shape of Gaussians. Another elegant way to compute distances between first and sec-
ond order statistics is described in [Gong et al., 2009], where the authors propose to utilize
a feature descriptors based on Shape of Gaussians (SOG). Based on the mean vector µ
and a decomposed covariance matrix Σ = AAT , representing a multivariate Gaussian
distribution, a positive definite lower triangular (PDLT) matrix

M =

(
AT µ

0 1

)T
(3.8)

can be constructed. Let x0 be aD-dimensional random vector drawn from a Gaussian dis-
tribution z ∼ ND(0, ID) and x1, x2 be samples corresponding to the normal distributions
x1 ∼ ND(µ1,Σ1) and x2 ∼ ND(µ2,Σ2). Then, the following mapping functions can be
defined:

(
x2

1

)
= M2

(
z
1

)
= M2M

−1
1

(
x1

1

)
, (3.9)
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where M1 and M2 denote the constructed PDLT matrices for the considered Gaussian
distributions. Since PDLT matrices are closed under matrix multiplications and inverse
computations, the resulting matrices are again PDLT matrices. Hence, it can be seen that
the mapping from x1 to x2 with M2M

−1
1 is performed with a PDLT matrix. Consider-

ing the affine-invariant metric defined in (3.5) the geodesic length between two PDLT
matrices are simply computed with

dSOG(ND(µ1,Σ1),ND(µ1,Σ1)) = ‖ log(M−1
1 M2)‖F . (3.10)

Approximation of Normal Distributions

As shown in the last sections, exponential and logarithmic mappings to Riemannian man-
ifolds can be utilized to find meaningful vector spaces, where well-established norms
measure a valid distance. Unfortunately, even Riemannian manifolds mappings do not
provide a straightforward solution for the combination of first and second order statis-
tics, which is of interest in case of semantic classification where, e.g., the mean vector
also provides an important discriminative measurement. We therefore pursue an effi-
cient technique to represent first and second order statistics directly on a Euclidean vector
space, where distance measurements can be then applied. Our concept relies on approxi-
mating the mean and covariance matrix directly on a Euclidean vector space by utilizing
the constructive definition of multivariate Gaussian distributions. While computationally
complex Monte Carlo methods are commonly exploited to accurately simulate a given
non-linear function with 1/N

∑
i xi, where xi are correlated samples and N → ∞, we

are interested in finding a more efficient, however adequate, approximation of a fully
parametrized multivariate distribution.

In the context of state prediction, Julier and Uhlmann [Julier and Uhlmann, 1996]
proposed the concept of the unscented transformation (UT), where first and second or-
der statistics are propagated through the system using non-linear transformations. Thus,
the UT can also be seen as an efficient method for approximating the statistics of a ran-
dom variable that undergoes a non-linear transformation. The concept of UT is mainly
founded on the intuition that it is easier to approximate a normal distribution than it is to
approximate an arbitrary non-linear function or transformation. Although UT is similar to
Monte Carlo methods, no random sampling is used and only a reduced set of determinis-
tically chosen points are required to approximate the source distribution. In the following
we outline the concept of Sigma Points, and show how to construct a meaningful feature
representation to integrate various low-feature cues for the task of semantic interpretation.
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3.4.3 Generating Correlated Samples

Consider an arbitrary sample vector x = [x1, x2, . . . , xD]T , where each scalar element is
normally distributed with xi ∼ N (µi, σi) and i = {1 . . . D}. Since a normal distribution
is closed under linear transformations, we can write a linear combination of the random
variables under the assumption, that the scalars xi are independent and identically dis-
tributed with

α1x1 + α2x2 + . . .+ αDxD ∼ N (
∑
i

αiµi,
∑
i

α2
iσ

2
i ). (3.11)

More generally, we can rewrite (3.11) for multivariate distributions in vector notation as

Ax ∼ ND(Aµ,AAT ), (3.12)

where A ∈ RD×D satisfies AAT = Σ. Since our computed covariance matrix Σ is SPD
we can always decompose the matrix according to Σ = LΛLT , where L ∈ RD×D is
orthogonal and Λ ∈ RD is a positive diagonal matrix.

Recall that for the univariate case the probability density function of a random variable
is symmetric around the mean µ and that a multivariate normal distribution can be seen as
a linear combination of univariate distributions. We can thus map a multivariate normal
random variable x ∼ N (µ,Σ) to the standard normal z = [z1, z2, . . . , zD]T with zi ∼
N (0, 1) and i = {1 . . . D}, and vice versa according to the constructive definition with

z = Σ−1/2(x− µ) ⇐⇒ x = Σ1/2z + µ. (3.13)

According to (3.13), a sample vector x ∼ ND(µ,Σ) can now be seen as a correlated ran-
dom vector mainly constructed over a collection of independent and normally distributed
variables drawn from z ∼ ND(0, ID). Note that the SOG concept (3.9) makes use of the
constructive definition. Figure 3.3 depicts these relations for the case with D = 2.

Moreover, from (3.13) we can see that the non-linear transformation is mainly based on
the computation of the matrix square root of Σ. Although the square root of a matrix is not
unique, we can use any square root since one root can be mapped to another by applying
an orthonormal transformation with LLT = I, where L is an orthonormal matrix. Thus,
we can decompose the SPD matrix Σ according to
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Figure 3.3: Transformation between individual samples, drawn from the standard normal,
and the correlated random vector for a 2D case. The blue dots denote arbitrary samples,
while the red points are samples defined on the unit circle. The transformation is given
for µ = [0, 0]T and Σ = [1 0.5; 0.5 1].

Σ = LΛLT

= LΛ1/2Λ1/2LT

= LΛ1/2(Λ1/2)TLT

= LΛ1/2(LΛ1/2)T

= AAT . (3.14)

From (3.14) we can observe that A = LΛ1/2, and therefore derive a formulation that
defines random normal vectors to have multivariate normal distribution x ∼ ND(µ,Σ)

with

x = Az + µ = (LΛ1/2)z + µ, (3.15)

where z ∼ ND(0, ID). Furthermore, considering both (3.14) and (3.15), we can notice
that the matrix square root computation is not restricted to roots providing an orthogonal-
ity constraints (e.g., the singular value decomposition (SVD)) which are computationally
more expensive. In fact, a stable method like the Cholesky factorization can be applied ef-
ficiently to compute the matrix square root Σ = AAT , where A is then a lower triangular
matrix.

So far, we have shown that random vectors drawn from an arbitrary normal distribu-
tions can be transformed to the standard normal and vice versa (see Figure 3.3), whereas
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the transformation clearly reflects the characteristics of the statistical moments. In partic-
ular, in this work we are interested in computing a finite set of correlated samples, that
allows us to represent the properties of available mean and covariance information.

3.4.4 Sigma Points Representation

Julier and Uhlmann [Julier and Uhlmann, 1996] proposed the unscented transform for
the approximation of individual normal distribution by deterministically sampling instead
of finding an exact, however, closed-form solution of the non-linear density function in
a manifold [Pennec et al., 2006]. As shown in [Julier and Uhlmann, 1996, Julier and
Uhlmann, 1997], the UT provides an efficient estimator for the underlying probability
distribution and was successfully applied to unscented Kalman filtering, where it over-
comes the drawbacks of truncated (second order) Taylor expansions used for extended
Kalman filtering. In the D-dimensional case the UT relies on constructing a small set of
2D + 1 specific vectors si ∈ RD, also referred to as Sigma Points [Julier and Uhlmann,
1996]. Considering the constructive definition, given in (3.15), the generation for the set
of Sigma Points is defined as follows:

s0 = µ si = µ+ α(Σ1/2)i si+D = µ− α(Σ1/2)i, (3.16)

where i = {1 . . . D} and (Σ1/2)i defines the i-th column of the required matrix square
root Σ1/2. The scalar α defines a constant weighting for the elements in the covariance
matrix and is set to α =

√
2 for Gaussian input signals [Julier and Uhlmann, 1996]. In

contrast to Monte Carlo methods, where test vectors are taken randomly from a stan-
dard normal, the construction of the Sigma Points can be seen as an efficient mapping
of a specified set of test vectors ti ∈ RD that deterministically sample the intersections
of an unit hypersphere with a D-dimensional Cartesian coordinate system. Due to sym-
metry and positive definiteness of the regularized covariance matrices, the efficient and
stable Cholesky factorization can be applied to compute the matrix square root of Σ. In
principle any method for square root factorization could be used, however, the Cholesky
decomposition requires the least mathematical operations with complexity O(n3/3).

Figure 3.4 illustrates the specified sampling of the test vectors and the mapping for a
simplified 2D case. Here, the mean vector t0 = µ represents the origin in a Euclidean
vector space. The resulting feature representation S = (s0, s1, . . . , s2D) is obtained by
concatenation of the individual Sigma Points and captures both, first and second order
statistics. Each of these generated vectors si ∈ RD describes a Euclidean space, allowing
element-wise distance computations between corresponding samples of a given distribu-
tion. The Sigma Points construction is summarized in Algorithm 3.1. From this algorithm
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Figure 3.4: Sigma Points generation for a 2D case (D = 2): The set of Sigma Points
s0,...,2D reflects the characteristic of the non-linear function f(·). The test vectors t1...2D are
the canonical bases given by the dimension D. The center point s0 directly corresponds
to the t0 and the mean vector µ, respectively, which can be seen as an offset, defining a
translation in Euclidean space.

one can observe that the construction solely consists of basic vector and matrix operations
making an implementation very simple. In [Julier and Uhlmann, 1996] the authors proved
that the computed statistics for the points si accurately capture the original information
about µ and Σ up to third order for Gaussian and up to second order for non-Gaussian
inputs.

Algorithm 3.1 Construction of the Sigma Points.
Require: Mean vector µ and covariance matrix Σ

1: Perform regularization and weighting Σ = αΣ + εI
2: Use Cholesky decomposition to compute matrix square root Σ = AAT

3: Compute si according to (3.16)
4: Construct the set of Sigma Points S = (s0, s1, . . . , s2d)

3.4.5 Feature Representation for the Semantic Interpretation

In our case we extract the statistics directly from the image content, incorporating arbi-
trary low-level feature cues. Let I ⊆ RW×H×D′ be an one- or three-dimensional intensity
image, and let F ⊆ RW×H×D be a feature image generated from I with

F (p) = Φ(I(p)), (3.17)

where p = (px, py) is a pixel position defined the image I. In our case, the feature gen-
erator function Φ(·) provides mappings, such as color space conversions, derivative and
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height field computations. Then, the feature vector F (p) ∈ RD corresponds to vector
consisting of extracted attributes at the image coordinate (px, py) in F . These vectors
are not restricted to normalized value ranges and include usually appearance, basic tex-
ture descriptions, but even spatial attributes, magnitudes or angles can be used for region
description [Porikli et al., 2006].

Given the feature image F , any extracted covariance descriptor of an arbitrary region
R ⊂ F results in a covariance matrix Σ ∈ SymD:

Σ =
1

|R| − 1

∑
p∈R

(F (p)− µ) (F (p)− µ)T , (3.18)

where |R| denotes the cardinality of considered samples in the region R and µ ∈ RD is
the sample mean vector given by

µ =
1

|R|
∑
p∈R

F (p) . (3.19)

A restriction to non-spatial attributes preserves the scale and rotation invariance because
Σ does not capture the ordering of the incorporated attribute vector in the image grid.
Applying the Sigma Points construction (see Algorithm 3.1) to µ and Σ yields a feature
vector that compactly reflects the characteristics of first and second order statistics1.

In the following we briefly outline the rapid construction of the statistics using an
extended set of integral images. The feature representation clearly can be computed for
rectangular regions as well as for areas provided by unsupervised segmentation methods.

3.4.6 Integral Image Structures

Integral image structures, also referred to as summed area tables, are simple, but powerful
representations for efficient computation of feature value sums within rectangular regions.
By exploiting the integral structure, any region sum can be computed in constant time
independently of the region dimension. Viola and Jones introduced integral images over
intensity values for rapid object detection [Viola and Jones, 2004], where each pixel of
the integral images is the sum of all pixels within a rectangle, defined by the image origin
and an investigated pixel. The integral image Int(r, c) at a coordinate (r, c) is defined as
F with

Int(r, c) =
∑
px≤r

∑
py≤c

F (px, py) (3.20)

1 We have also applied the Sigma Points, extracted from both a parametrized normal distribution [Kluckner
et al., 2009a] and generalized structure tensors [Donoser et al., 2010], to the task of visual object tracking,
where we used well-established norms to compute for similarity between extracted representations.
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for an input image. As shown in various approaches, integral structures can be extended to
handle multi-dimensional data. In our approach we exploit integral structures to compute
first and second order statistics of rectangular image regions [Tuzel et al., 2006]. Given
the feature image F , we first construct D integral images, containing the summed feature
values, with

Si(r, c) =
∑
px≤r

∑
py≤c

F (px, py, i), i = {1 . . . D} . (3.21)

In order to compute the covariance matrices we additionally construct integral images
providing us with the permuted pairs of tensors of the feature channels according to

Tij(r, c) =
∑
px≤r

∑
py≤c

F (px, py, i) F (px, py, j), i, j = {1 . . . D} . (3.22)

Since covariance matrices are symmetric, a reduced set of D(D + 1)/2 tensor integral
images are sufficient for a full construction of the second order moment.

Let R(px1, py1, px2, py2) be a region of interest with a left upper corner (px1, py1) and
a lower right corner (px2, py2), the sums and the sums for the tensors, composed over the
feature attributes can be computed with

SRi = Si(px1, py1) + Si(px2, py2)− Si(px1, py2)− Si(px2, py1), i = {1 . . . D} , (3.23)

and

TRij = Tij(px1, py1) + Tij(px2, py2)− Tij(px1, py2)− Tij(px2, py1), i, j = {1 . . . D} ,
(3.24)

respectively. Given the sums SRi and sums of tensors TRij for a regions R, we use an
unbiased estimate of the population variance to compute the covariance matrix of the
region R with

Σ(i, j) =
1

|R| − 1

(
TRij −

1

|R|
SRi S

R
j

)
i, j = {1 . . . D} , (3.25)

where |R| again denotes the number of covered pixels within the rectangular region R.
The first order statistics of a region R is defined as

µ(i) =
1

|R|
SRi (3.26)

with i = {1 . . . D}. This computation enables a construction of sample mean and co-
variance matrix with constant time consumptions. The complexity for the integral image
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computation is O(D2WH). Note that covariance descriptors can also be computed in
one pass for arbitrary region shapes, e.g., provided by an unsupervised segmentation, by
using additionally computed tensors and lists of coordinates.

3.5 Randomized Forest Classifier

The structure of the proposed Sigma Points representation S perfectly fits the concept of
RF classifiers, where the learning and evaluation strategy is mainly based on comparing
randomly selected attributes of an observed feature instances. In the case of semantic in-
terpretation, where a meaningful reference model is missing or at least costly to estimate,
similarity measurements, such as the KL-divergence [Goldberger et al., 2003], affine-
invariant [Förstner and Moonen, 1999] or Log-Euclidean [Pennec et al., 2006] metric are
intractable to use in decision trees directly. We thus outline how the Sigma Points can be
applied straightforwardly to a RF framework.

Randomized forests1, proposed by [Amit et al., 1996,Breiman, 2001], have been suc-
cessfully applied to various computer vision problems, including clustering [Moosmann
et al., 2006], visual tracking by keypoint recognition [Lepetit and Fua, 2006], object
categorization [Bosch et al., 2007] or detection [Gall and Lempitsky, 2009], semantic
classification [Shotton et al., 2008, Schroff et al., 2008, Brostow et al., 2008] and regres-
sion [Criminisi et al., 2010]. While regression forests provide an efficient mapping of
high-dimensional data to model parameters, a RF classifier projects real-valued feature
instances to probabilistic decisions.

Efficiency in both training and testing, inherent multi-class capability and accuracy
make RFs highly applicable to challenging practical problems. These classifiers addition-
ally reduce the problem of overfitting [Amit et al., 1996] and provide robustness to label
noise. The handling of label noise is particularly important since massive human inter-
action is used to generate labeled training maps and human are known to make (minor)
mistakes. Moreover, since the trees in the forest are trained and evaluated independently,
RFs can be accelerated considerably by using multi-core systems [Sharp, 2008]. This
makes them interesting for large-scale tasks or real-time problems.

An RF classifier consists of an ensemble of T binary decision trees , where the nodes
of each tree include split criteria that give the direction of branching left and right down
the tree until a leaf node in a predefined depth Z is reached. A leaf node li ∈ L then
contains the class distribution P (c|li) generated by the target labels of the visible training
examples. An averaging over all tree decisions in the forest yields the resulting accumu-
lated class distribution obtained for each evaluated feature instance according to

1 Randomized forests are also referred to as randomized tree, random forests or random decision trees.
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P (c|L) =
1

T

T∑
i=1

P (c|li) . (3.27)

A mode estimation with c∗ = arg maxc P (c|L) computes the final object class c∗.
A random tree construction proceeds from the root node top-down by splitting the

available training subset at each node into tiled left and right feature sets. To rapidly grow
each tree of the forest, the split node criteria are learned using only a subset S ′ of the
whole training data S. For the process of training each feature vector Sk ∈ S is assigned
a class label ck that is provided by the labeled ground truth maps. The learned split criteria
in the nodes then maximize the sample-weighted information gain ratio ∆H of the class
distribution in the currently available subsets of the training data:

∆H = − |Sr|
|Sl + Sr|

H(Sr)−
|Sl|

|Sl + Sr|
H(Sl) . (3.28)

Here, H(·) describes the computed Shannon entropy considering the class distribution
with H(·) = −

∑|c|
i=1 pi log pi. The terms |Sr| and |Sl| define the cardinality of the feature

vectors split to right or left branch. Typically, a greedy strategy is used to optimize the
information gain by simply comparing raw channel values [Shotton et al., 2008], linear
combinations of two or more feature values [Bosch et al., 2007], or by using sophisticated
or task-specific node test [Schroff et al., 2008, Gall and Lempitsky, 2009].

Our classifier implementation follows the learning strategy as proposed by [Bosch
et al., 2007], where linear combinations are computed for the entire feature vector in
order to estimate the split decision. We have implemented an accelerated technique by
simply taking into account the corresponding dimension {1 ≤ a ≤ D} and by randomly
selecting two weighted elements {1 ≤ i, j ≤ 2D + 1, ∀i, j i 6= j} according to

αsi(a) + βsj(a) =

{
> γ, split left

≤ γ, split right .
(3.29)

The scalar parameters α, β, and γ denote greedy-optimized values that maximize the
information gain with respect to the training labels [Shotton et al., 2008]. The optimized
split decision, defined in (3.29), can then be seen as a discrimination of projected Sigma
Points si ∈ RD in an one-dimensional space. In [Kluckner and Bischof, 2009] we have
estimated the split criteria by directly integrating the constructive definition (3.15) into
the decision nodes. Compared to the incomplete representation obtained with the Sigma
Points, this concept has considerably suffered from overfitting.

After forest construction by only using a subset of the training samples S ′ ⊂ S, each
tree is refined with the entire set of feature vectors in order to generate the final leaf node
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class distributions. This technique permits a sophisticated handling of a large amount of
data and significantly improves the generalization capability [Shotton et al., 2008].

At testing time, we evaluate the classifier at each pixel location by passing down the
extracted feature representation in the forest and accumulating the class distributions to
obtain P (c|L). It is evident that other classifiers, such as multi-class boosting [Shotton
et al., 2007], multinomial logit modeling [Ranganathan, 2009], etc., could be used instead.
For instance, in [Nguyen et al., 2010] we have shown that the Sigma Points representation
can be trained and evaluated with linear SVMs.

While learning methods, like SVMs, boosting or logistic regression, are based on
computing linear combinations, the structure of the RF classifier enables a very fast testing
procedure since the number of evaluations is directly related to the defined tree depth Z.
Ordinarily, we construct a forest with T = 10 trees, each with a depth of Z = 15,
hence, an observed feature instance is then evaluated with a low number of 10×15 binary
decisions during testing.

3.6 Introducing Segmentation for Object Delineation

So far, we have considered the semantic interpretation at the pixel level (by incorporat-
ing small rectangular image regions) due to efficient construction using integral images.
While well-defined objects like cars, pedestrians or faces can be successfully detected
with bounding boxes, e.g., with [Viola and Jones, 2004] it is obvious that real-world im-
ages include many objects in varying scales that cannot be captured with a fixed-scale
rectangular prior. In addition, running a sliding window strategy does not incorporate po-
tential relationships between evaluated locations implicitly. Figure 3.5 shows a small part
of a classification result for Graz. One can notice that the obtained result shows a high
granularity with respect to the dominant classes mainly caused by minor classification
errors or the lack of missing context information, such as derived object boundaries.

As a next step efficient unsupervised segmentation methods are thus investigated to
refine the initial classification results. Unsupervised image segmentation can be generally
seen as the task of partitioning a given image into distinct regions. These regions com-
monly consist of pixels that have a similar characteristic. Recent approaches combine the
results of different segmentation methods (by varying the parameter setting of, e.g., the
popular mean-shift algorithm [Comaniciu and Meer, 2002] or the graph-based segmenta-
tion method by Felzenszwalb and Huttenlocher [Felzenszwalb and Huttenlocher, 2004b])
in order to determine semantically coherent segments of an observed image. These co-
herent image segments are also denoted as super-pixels [Ren and Malik, 2003].

Recently, Fulkerson et al. [Fulkerson et al., 2009] used Quickshift [Vedaldi and Soatto,
2008, Fulkerson and Soatto, 2010] to compute super-pixels for the description of the im-
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Figure 3.5: An intermediate interpretation result of the proposed pixel-wise classification.
The result shows a high granularity with respect to the computed class modes. We thus
use an unsupervised segmentation step to obtain an improved semantic labeling.

age content. They showed that these super-pixels accurately preserve object boundaries of
natural as well as man-made objects and that subsequent stages benefit from the reduced
image grid. Hence, a single super-pixel segmentation offers two important advantages:
(i) computed super-pixels can be seen as the smallest units in the image space. All sub-
sequent processing steps can be performed on a reduced graph instead of incorporating
the full pixel image grid. The resulting relationships between neighboring super-pixels
are stored in an adjacency graph that can be processed efficiently. (ii) Super-pixels are
considered as homogeneous regions providing important spatial support: Due to edge
preserving capability, each super-pixel describes a coherent part of only one object class.
Aggregating data, such as the class distributions provided by the classifier, over the pixels
defining a super-pixel compensates for wrong detections and boundary effects.

In Figure 3.6 computed Quickshift super-pixels are given for a small scene of Graz.
One can notice that a single image partition captures nearly all relevant object boundaries
(i.e., transitions between buildings and trees). Additionally, one can see that the super-
pixels significantly differ from the rectangular prior which is used for to compute the
initial semantic image interpretation.

In order to accurately capture object boundaries within the semantic classification we
highlight two simple concepts that make use of the super-pixels.
The first concept relies on a direct computation of the Sigma Points representation for
each super-pixel. It involves a conservative super-pixel generation for the training pro-
cess, but feature extraction and classification can be performed on a reduced image grid.
The second method is based on extracting Sigma Points for small rectangular patches lo-
cated around each pixel. Contrary to first concept, where the trained classifier directly
yields a class distribution for an assembly of connected pixels, a super-pixel is rather
treated as a region providing important spatial support. At runtime, the classifier com-



48 Chapter 3. From Appearance and 3D to Interpreted Image Pixels

Figure 3.6: Super-pixel segmentation of a small image. Even a single image segmen-
tation (σ = 2.0, τ = 10.0) preserves important object boundaries, like the transitions
between buildings and trees.

putes confidences for each pixel considering a small rectangular neighborhood by using
a sliding window approach [Viola and Jones, 2004]. Then, an aggregation of confidences
over the super-pixel region yields an averaged class distribution for each segment. This
method does not require any segmentation during training (which significantly simplifies
the training process) and benefits from a rapid feature computation within regular patches
by using powerful integral images.

Spatial Support provided by Multiple Image Partitions. For the sake of complete-
ness, in [Kluckner et al., 2009b] we have shown that the second method, where super-
pixels provide spatial support for the confidence aggregation, can be applied to integrate
multiple image segmentations. We employed two different segmentation approaches (i.e.,
the graph-based method proposed by Felzenszwalb and Huttenlocher [Felzenszwalb and
Huttenlocher, 2004b] and the mean-shift approach [Comaniciu and Meer, 2002]), which
are selected due to public availability, efficiency, popularity and the use of different tech-
niques for image partitioning. A huge pool of probable connected pixels are produced
using these methods with varying parameter settings in a first step. For each segmented
region, we group the individual pixel-wise classifications yielding a final class distribu-
tion for every region. In order to select consistently classified regions, we compute the
Shannon entropy over the aggregated class distribution. Taking into account the minimum
entropy over all segmentations for each pixel, a final image partition with corresponding
class distributions is obtained by assigning the index of the corresponding region. Due to
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high computational complexity, the concept cannot be applied to aerial image interpreta-
tion. We have thus applied this approach to benchmark images only. For details we refer
to [Kluckner et al., 2009b].

3.7 Refined Labeling

Since our local semantic interpretation strategy yields class distributions for each pixel or
super-pixel in the observed image independently, we apply a commonly used refinement
step to achieve a smooth and spatially consistent class labeling over the entire image
space. The problem of obtaining a final consistent labeling of the image scene can be
seen as a task of multi-class image segmentation, where each considered pixel value is
selected from a predefined pool of class labels. In general the segmentation problem into
multiple object classes for an image domain Ω ⊂ R2 can be defined as a minimization
problem of the Potts model [Potts, 1952] with

min
ωi,li

{
λ

N∑
i=0

Per(ωi; Ω) +
N∑
i=0

∫
ωi

|g − li|2 dx

}
, (3.30)

where li is a probable assignment to the class i and
N⋃
i=0

ωi = Ω forms a valid image parti-

tion into N classes with ωi ∩ ωj = 0, ∀i 6= j. The first term of the functional incorporates
the boundary length of the segment ωi for the regularization, while the second term con-
siders the data at each point x in the segment ωi. The scalar value λ defines the trade-off
between data term and regularization.

In the discrete setting, the segmentation problem into multiple object classes can be
written as a minimization problem according to

min
c

{∑
p

D(cp) + λ
∑
p,q

V (cp, cq)

}
, (3.31)

where D(cp) denotes the data term and the pairwise interaction potential V (cp, cq). The
goal is to infer a final labeling c that assigns each defined image region p ∈ Ω (this could
be a single pixel or even a connected part of an image) a label cp ∈ c, where the labeling
is then both piecewise smooth and consistent with the observed data. While the observed
data commonly consists of initially computed parameters, like as probable assignments
to specified object classes, the pairwise potentials often describe image information or
learned class constellations within an image [Rabinovich et al., 2006].

Given the learned parameters for the CRF formulation (i.e., unary and pairwise po-
tentials), we seek for an optimized final labeling c∗ that minimize the energy defined
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in (3.32). This is also referred to as inference. Although the problem of multi-class im-
age segmentation is NP-hard (a two class problem can be solved exactly), there exists
a variety of algorithms to compute a solution approximately. In the context of discrete
optimization Boykov et al. [Boykov et al., 2001] proposed the concept of α-expansion to
simplify the problem to a set of binary labeling problems. In [Komodakis and Tziritas,
2007], the authors used linear programming to find an approximate labeling via graph
cuts.

Inference is typically performed on a four-connected neighborhood image graph, which
seems suitable for most practical applications with respect to computational complex-
ity [Verbeek and Triggs, 2007, Shotton et al., 2007, Rabinovich et al., 2006, Pantofaru
et al., 2008]. Kohli et al. [Kohli et al., 2008] proposed to directly consider multiple image
partitions within the optimization for the task of semantic image segmentation. Similar
to the labeling proposed in [Fulkerson et al., 2009], we exploit the adjacency graph, ex-
tracted from a single super-pixel segmentation, to enforce an evident final class labeling
with low computational costs.

Let G(Ω, E) be an adjacency graph with a super-pixel node ωi ∈ Ω and a pair
(ωi, ωj) ∈ E be an edge between the segments ωi and ωj , then an energy can be for-
mulated with respect to the class labels ci ∈ c. Considering an adjacency graph the
minimization problem can be defined as

min
c

∑
ωi∈Ω

D(ωi|ci) + λ
∑

(ωi,ωj)∈E

V (ωi, ωj|ci, cj)

 , (3.32)

where D(ωi|ci) expresses the unary potential of a super-pixel node. In case of classifi-
cation refinement, c represents a labeling of the adjacency graph that assigns each graph
node ωi a label ci. The unary potential D(ωi|ci) = − log(P (ωi)) denotes the class distri-
bution obtained for a super-pixel ωi, either by aggregating confidences from the pixels or
by directly estimated with the RF classifier. The scalar λ again controls the influence of
the regularization. In order to consider the region sizes in the minimization process (favor-
ing larger regions), we compute the pairwise edge term V (ωi, ωj|ci, cj) between the both
super-pixels ωi and ωj by taking into account the number of common boundary pixels
and estimated mean color distances. The pairwise potentials for ωi and ωj are computed
according to

V (ωi, ωj|ci, cj) =
b(ωi, ωj)

1 + g(ωi, ωj)
δ(ci 6= cj), (3.33)

where b (ωk, ωj) computes the number of common boundary pixels of the super-pixels,
g(ωk, ωj) defines the L2 norm of the mean color distance vector and δ(·) is the zero-one
indicator function that encodes label jumps between ci and cj .
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Inference. In this work the initial class labeling is optimized by applying α-expansion
moves [Boykov et al., 2001]. Although the primal-dual optimization [Komodakis and
Tziritas, 2007] obtains identical results much faster this concept suffers from enormous
memory requirements. Note that the energy minimization problem can be easily extended
to the corresponding graph, where each pixel denotes a node with four or eight direct
neighbors. The size of the resulting graph and thus the computational complexity drasti-
cally increases, with number of involved neighboring nodes.

3.8 Experiments on Benchmark Datasets

A first experimental setup demonstrates the proposed semantic interpretation applied to
standard benchmark datasets.

Due to the compact representation we exploit several low-level feature cues to describe
small spatial neighborhoods. In our case a single low-level feature cue might be one
of the color channels, derived filter responses or computed elevation measurements in
case of aerial image interpretation. According to the applied feature cues we construct
the required integral images for the computation of the covariance matrix descriptors.
Having both the mean vector and covariance matrix permits the construction of the Sigma
Points feature instances by following the algorithm described in Section 3.4.4. These
instances are then used for classifier construction and evaluation, where the RF classifier
maps extracted feature vectors to class distributions. The final refinement step takes the
probable class assignments as input and provides a full semantic interpretation of the
image content.

We evaluate our proposed semantic classification scheme on common benchmark
datasets, like the MSRC [Winn et al., 2005,Shotton et al., 2007] and the VOC2007 [Ever-
ingham et al., 2007] image collections, but also on the eTRIMS image database [Korč and
Förstner, 2009] to demonstrate a broad applicability. Each dataset contains many object
classes representing building, grass, tree, cow, sheep, water, book, etc. with a large intra-
class variability and challenging changes in scale and illumination. Since our approach
works in a supervised manner, labeled ground truth data is required to construct and eval-
uated the classifiers. We thus extract the target classes directly from the pixel-wisely
labeled ground truth maps that are offered with the datasets.

In contrast to the MSRC images the ground truth annotations of the VOC2007 and
eTRIMS images are provided with a higher degree of accuracy and also include a void
class, which encodes border regions between object classes, ambiguous image areas or
objects that are not in the pool of labeled object classes. Note that the void-labeled pixels
are ignored during training and testing procedures. Figure 3.7 shows some MSRC images
and the ground truth labeling. The following paragraphs outline the characteristics of the
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Figure 3.7: Some images and ground truth labels of the MSRC dataset: The first row
shows typical sample images. The second row depicts the corresponding labeling used
for training and testing. The void class is represented with black pixels is not considered
in our experiments.

benchmark datasets.

MSRCv1

The MSRCv1 dataset [Winn et al., 2005] consists of 240 images with 9 on the pixel level
labeled object classes. For the training and the testing procedure we randomly split the
dataset into 120 training and 120 test images. Due to randomness of this splitting proce-
dure, we independently repeat the experiments 20 times to obtain meaningful averaged
classification rates. An evaluation on this dataset provides results for a comparison to
state-of-the-art approaches [Schroff et al., 2008, Verbeek and Triggs, 2007].

MSRCv2

The MSRCv2 dataset is an extension of the MSRCv1 with an increased number of images
and object classes. The annotations include 21 object classes. The experiments on this
dataset are performed following the train/test splits as suggested in [Shotton et al., 2007].
A number of 276 images are used for training and the remaining 256 for testing.

VOC2007

The VOC2007 dataset [Everingham et al., 2007] provides extremely challenging images
with 20 labeled object classes and a background class. Compared to the MSRC collec-



3.8. Experiments on Benchmark Datasets 53

tions, the dataset includes more images at higher resolution. For our experiment we use
422 images for training and the remaining 210 for testing as suggested in the train/test
splitting files [Everingham et al., 2007].

eTrims

The eTrims dataset [Korč and Förstner, 2009] includes 60 challenging terrestrial images
showing various building facades that are embedded in different urban environments. We
use the labeled ground truth data for the object classes (building, ground, sky, vegeta-
tion) and repeat the interpretation for different random sets of training images in order to
determine a reliable classification accuracy.

3.8.1 Evaluation Metric

We evaluate the classification accuracy with respect to the PASCAL VOC2007 segmenta-
tion taster challenge protocol [Everingham et al., 2007]. For each pixel in the test images,
we predict the class of the object containing that pixel. The provided ground truth la-
bels are then used to evaluate the performance. The classification accuracy is computed
across the number of object classes. For each class separately, we compute the score that
gives the correct classified percentage of pixels. More precisely, for each object class
the number of correctly classified pixels is divided by the number of ground truth pixels.
We additionally compute the percentage of correctly pixels over all classes. In order to
complete the performance evaluation we give numbers for computation times1, that are
recorded for different processing steps.

3.8.2 Sigma Points and Randomized Forest

In this initial experimental setup we investigate the performance of using Sigma Points
within the powerful RF classifiers. As a first experiment different types and combinations
of feature channels are integrated by using the proposed Sigma Points representation.
Collected feature instances are then trained and evaluated with the RFs. In a second
experiment we vary the forest size in order to find a reliable trade-off between accuracy
and evaluation time. It is obvious that a short evaluation time is essential for processing
a large amount of data. For the initial experiments we use the MSRCv2 dataset with 21,
at the pixel level labeled, classes to provide results for a comparison to state-of-the-art
approaches.

1 We use a standard hardware: Dual-Core Processor with 3 GBytes of memory, GeForce GTX 9800, C++
Implementation compiled on Windows XP/Visual Studio 8.0
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In order to capture an improved invariance to shape deformations and to syntheti-
cally increase the amount of training samples we apply small artificial affine distortions
to the training images. The transformed images are then used to extract the Sigma Points
instances. Each tree in the RF is initially constructed with a set of 60000 randomly se-
lected feature vectors. During the training phase, each split decision in the nodes of the
tree is estimated by maximizing the information gain over 1000 greedy iterations. To
obtain precise split decisions near the leaf nodes, we additionally weight the number of
performed iterations according to the corresponding node’s depth in the tree. After the
initial tree construction, the class probabilities in the leaf nodes are refined by passing
down the entire set of extracted feature instances. Note that this set may consists of sev-
eral millions of extracted instances. Due to unbalanced labeling of the training data (the
number of extracted representations significantly varies for the object classes), we apply
an inverse weighting by taking into account the number of extracted instances for each
class to simulate a balanced dataset [Shotton et al., 2008]. At evaluation time we use a
symmetric content-padding for all test images in order to obtain valid class assignment
near the image borders.

Combination of Features

As commonly suggested in local or patch-based classification approaches [Shotton et al.,
2007] we extract the Sigma Points feature representation in a spatial neighborhood of
21 × 21 pixels. The training data is sparsely collected on a 5 × 5 image grid and the
corresponding target labels are extracted by considering the available ground truth images.

Due the absence of 3D information in this experiment we use different combinations
of color spaces1 and filter responses (we use Sobel filter masks). For each feature com-
bination we extract approximately 1.5 million feature instances in a first step. Due to
randomness of the classifier, we repeat the training and evaluation procedure 20 times
in order to obtain meaningful performance measurements for each parameter setup. The
highest classification accuracy (we consider the averaged class rate) is obtained for an in-
tegration of RGB-color and the absolute values for first and second order derivatives com-
puted in both horizontal and vertical direction: F (x, y) = [R G B dx dy dxx dyy ]T .
Note that the Sigma Points feature vectors have a dimension ofD(2D+1), ifD low-level
feature cues are integrated. In the specific case we thus obtain a feature vector with 105

attributes that represent the characteristics of the mean and the covariance matrix.
A summary of the obtained classification accuracies and evaluation times for a forest

size of T = 10 and Z = 15 is given in Table 3.8. We additionally compare the rates to
reported intermediate evaluation results of several state-of-the-art approaches. It can be

1 We use the OpenCV color space converter, which uses a normalization scheme to {0 . . . 255}.
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R G B L a b dx,dy dxx,dyy Pixel Avg Class Avg Eval Time
[%] [%] [s]

X 35.17 28.53 0.35
X 50.96 39.90 0.32

X 48.08 36.90 0.34
X X 56.67 45.64 0.41
X X X 59.56 45.99 0.49

[Schroff et al., 2008], only color 54.00 n.a. n.a.
[Schroff et al., 2008], color+HOG 69.90 n.a. n.a.
[Lazebnik and Raginsky, 2009], initial model 53.26 40.65 n.a.
[Shotton et al., 2008] 14.80 24.10 n.a.

Table 3.1: A quantitative evaluation of the interpretation workflow by using different
combinations of integrated low-level feature cues. Note that the given values are com-
puted for the raw classification step without using a refinement. It can be clearly seen that
RGB color in combination with first and second order derivatives obtains the best results.
In addition, a comparison to reported intermediate results of state-of-the-art approaches
demonstrates a similar performance.

clearly seen that our direct approach is able to keep up with the compared methods. A
combination of RGB and first/second order derivatives yield the best performance with an
averaged evaluation time of about 0.5 seconds per image. Figure 3.8 depicts the averaged
class accuracies as a function of varying tree depths. From Figure 3.8 we can notice that
tree depths of 15 to 20 obtain a reliable classification result for different combinations of
low-level features. Moreover, the additional integration of second-order derivatives only
slightly improves the accuracy of the overall result considering the evaluation on 21 object
classes.

Interpretation of Terrestrial Images. Mainly inspired by the recent work of Drauschke
and Mayer [Drauschke and Mayer, 2010], we apply the proposed classification to the task
of initial terrestrial facade interpretation. Similar to the MSRC and VOC images, we ex-
tract the Sigma Points feature vectors at sampled image locations by considering a spatial
neighborhood of 21 × 21 pixels. The target labels for the 4 object classes are extracted
from the ground truth images. For each run of the experiment, a total number of approx-
imately 400K feature instances is extracted for the training process. These instances are
trained with a forest, consisting of T = 10 trees, each with a maximum depth of Z = 15.
Due to a missing train/test splitting setup, we repeat the feature extraction, the training
and the testing procedure 20 times in order to obtain a meaningful evaluation. The ob-



56 Chapter 3. From Appearance and 3D to Interpreted Image Pixels

5 10 15 20
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Tree Depth

A
cc

ur
ac

y 
A

ve
ra

ge
 [%

]

 

 
R G B
L a b
Gray dx dy
R G B dx dy
R G B dx dy dxx dyy

5 10 15 20
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Tree Depth

A
cc

ur
ac

y 
A

ve
ra

ge
 [%

]

 

 
R G B
L a b
Gray dx dy
R G B dx dy
R G B dx dy dxx dyy

Figure 3.8: Obtained classification rates (we consider the averaged class specific rates)
computed for increasing tree depths Z. The evaluation is performed for tree numbers of
T = 5 (left) and T = 10 (right).

RGB dx,dy dxx,dyy Pixel Avg Class Avg Eval Time
[%] [%] [s]

X X 73.82± 1.42 76.21± 0.67 1.89
X 77.88± 1.36 79.31± 0.82 1.58
X X 86.48± 0.93 86.75± 1.04 1.72
X X X 87.54± 0.84 87.72± 1.28 2.20

Table 3.2: Pixel-wise interpretation results obtained for a set of 30 test images. Since
there exists no suggested train/test data splitting, the rates are averaged over 20 runs with
random sets of training and test images. We depict the accuracy for different combinations
of integrated low-level feature cues.

tained quantitative results for different combinations of feature cues are summarized in
Table 3.2. Figure 3.9 depicts some pixel-wise interpretation results using color, first and
second order derivative filters. Note that even an initial scene geometry, e.g., computed
with SfM might help to further increase the classification accuracy.

Forest Size

The second experiment investigates the performance of using the Sigma Points repre-
sentation together with RF classifiers by varying the forest sizes. The forest size is
defined by the number of trees in the forest T and maximum depth Z of each tree.
In this experiment we construct the Sigma Points by using low-level cues according to
F (x, y) = [R G B dx dy ]T .

The classification accuracies are determined for forest sizes of T = {1 . . . 20} and
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Figure 3.9: Pixel-wise semantic interpretation obtained for some eTRIMS facade images.
The applied classification procedure segments the test images into four different object
classes: building (red), ground (brown), sky (blue) and vegetation (green). The initial
classification is obtained by integrating color, first and second order derivatives within the
Sigma Points feature representation.

Z = {5 . . . 20}. We additionally record the required time for training and an averaged
evaluation for a single test image. Due to randomness of the RF classifier we average the
results over 5 runs. The obtained classification accuracies are given in Figure 3.10. The
performance evaluation shows that a forest size of T = 10 and Z = 15 clearly reaches
a saturation in terms of correctly classified pixel. Moreover, while the required training
time increases exponentially, one can observe that the evaluation time is linear with the
forest size since a feature vector evaluation is accomplished with T × Z binary tests.

3.8.3 Initial Interpretation of Benchmark Images

Considering the conduced experiments, a forest size of T = 10 and Z = 15 and an
integration of RGB color/first order derivatives have proven to give a reliable initial se-
mantic interpretation of the MSRCv2 test images. As a next step we use this setup to
perform a semantic interpretation on all benchmark datasets. The obtained performance
measurements are summarized in Table 3.3. One can notice that an initial interpretation
of normally-sized images (circa 0.5 MPixels) takes in the range of 2 seconds. A de-
tailed class-specific evaluation for the two MSRC image collections is given in Table 3.4,
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Figure 3.10: Computed classification accuracies depending on the forest size. The first
row depicts the classification accuracy computed over all pixel (left) and averaged for each
object class (right). A saturation of the classification accuracy is obtained for a forest size
of T = 10 and Z = 15. The recording of the training (left) and evaluation time is given
in the second row (right). The evaluation time increases linearly with the forest size and
varies between 0.3 and 0.8 seconds for a reliable classification of a MSRC image. The
training process takes about 20 minutes on a standard hardware.

where we can observe that our classification workflow successfully distinguish between
stuff object classes, such as grass, tree, water and road, by solely using color and basic
texture information. The interpretation of pixels, occupied by man-made objects, like
buildings and cars, particularly fails due to ambiguous image regions (non-textured areas)
and missing context information.

Figure 3.11 shows some interpretation results computed for MSRCv2 test images.
From the visual results, it can be clearly seen that the proposed classification workflow
does not preserve real object boundaries since the Sigma Points are compute within rect-
angular image patches. We therefore conduct additional experiments to overcome the
problem of missing object delineation.
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Dataset # Classes # Pixels Pixel Avg Class Avg Eval Time/Image
[Pixel] [%] [%] [s]

eTRIMS 4 396058 86.48 86.75 1.87
MSRCv1 9 68304 71.65 70.70 0.26
MSRCv2 21 69578 56.67 45.64 0.29
VOC2007 21 177625 17.89 16.80 0.70

Table 3.3: Performance evaluation of the proposed interpretation workflow. For each
dataset separately, classifiers are trained and evaluated with extracted Sigma Points fea-
tures. For a quantitative evaluation we use a forest size of T = 10 and Z = 15 and
an integration of RGB color and first order derivatives. Although the rates for VOC2007
seem very low (16.8 %), the averaged accuracy is considerably higher than random chance
(4.76 %).

3.8.4 Introducing Segmentation and Refined Labeling

In this section we investigate how unsupervised segmentation and the refined labeling in-
fluence the classification accuracy in terms of correctly classified pixels. In this thesis we
solely concentrate on single image partitions, however we expect that multiple segmen-
tation will further improve the accuracy with an increased computational complexity. In
the following we mainly focus on the two different concepts to improve the initial image
interpretation with respect to real object boundaries.

The first concept (we refer to it as SuperPixel) relies on a direct computation of sta-
tistical Sigma Points features for each super-pixel, provided by a Quickshift [Vedaldi and
Soatto, 2008] image segmentation. It is obvious that the integral images cannot be used
for this concept. Extracted super-pixel feature instances, together with their class labels
(taken from the available ground truth maps), are learned and evaluated with the RF clas-
sifier. This concept thus involves a conservative super-pixel segmentation for the training
process, but feature extraction and classification can be performed on reduced image data.

The second method (in the following we refer to it as SpatialSupport) is based on
extracting features within rectangular patches located around a pixel. In this case integral
structures permit an efficient construction of the feature representation. We train a classi-
fier, where each obtained feature vector is assigned the most frequent class label within the
rectangular patch analyzing the provided ground truth. Contrary to SuperPixel, where the
classifier directly yields a class distribution for an entire segment, we treat a super-pixel
more as a region providing important spatial support. At runtime, the classifier computes
confidences for each pixel. An aggregation of confidences within a super-pixel then re-
sults in an averaged class distribution for each segment. Note that this method does not
require any segmentation during training.
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Object Class MSRCv1 MSRCv2
[%] [%]

building 43.30 19.91
grass 85.66 88.78
tree 81.36 74.43
cow 67.61 49.38
sky 86.71 67.78

aeroplane 54.26 50.86
face 68.61 58.29
car 64.98 32.66

bicycle 83.51 64.24
water n.a 53.93
sheep n.a 53.51
flower n.a 60.61
sign n.a 31.60
bird n.a 13.74
book n.a 45.69
chair n.a 19.68
road n.a 53.39
cat n.a 35.49
dog n.a 26.31
body n.a 19.57
boat n.a 20.17

chance 11.11 4.76
average 70.70 45.64

Table 3.4: Computed classification results individually obtained for the available object
classes. The rates distinctly exceed the values of random chance. The obtained rates for
relevant stuff object classes, that frequently occur in aerial images (tree, grass, road, wa-
ter, building) are largely higher than the averaged classification rates and random chance,
respectively.

We compute the Sigma Points, describing a super-pixel or an image patch (21 × 21

pixels), for RGB colors and the first order derivatives yielding a feature vector with a
dimension of 55 for D = 5. As usual we train an RF with T = 10 trees, each with a
maximum depth of Z = 15.

In order to generate the super-pixels, not limited to a size or number, we apply Quick-
shift [Vedaldi and Soatto, 2008] to a five-dimensional vector consisting of image coor-
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MSRCv1 MSRCv2 VOC2007
Pixel Class Pixel Class Pixel Class
Avg Avg Avg Avg Avg Avg
[%] [%] [%] [%] [%] [%]

Pixel level 71.65 70.70 55.86 44.76 17.06 16.08
SuperPixel 68.75 67.28 53.20 42.73 17.59 16.96

SpatialSupport 74.99 74.74 62.04 50.72 22.53 19.14
Refined 79.58 79.63 69.30 58.11 29.45 21.92

[Kluckner et al., 2009b] 86.80 81.8 73.7 61.8 29.1 21.45
[Schroff et al., 2008] 87.20 n.a. 71.7 n.a. n.a. n.a.

[Pantofaru et al., 2008] n.a n.a. 74.3 60.3 n.a. n.a.
[Gould et al., 2008] 88.5 n.a. 76.5 n.a. n.a. n.a.

Table 3.5: A comparison of obtained classification rates for three benchmark datasets
(MSRCv1,MSRCv2,VOC2007). The results are evaluated at the pixel level and illustrate
the performance of the different stages of our approach: Raw pixel and super-pixel clas-
sification, introducing spatial support using the super-pixels, and the refinement step with
the CRF stage (λ = 2.0), defined on the super-pixel adjacency graph.

dinates and CIELab color values. The parameters for Quickshift are set to σ = 2.0 and
τ = 8.0. The CRF-based refinement step is performed on the super-pixel graph by using
λ = 2.0.

Note that the class distributions for the super-pixels are computed by using the meth-
ods SpatialSupport. Table 3.5 compares the initial results for the pixel-wise interpreta-
tion, both concepts SuperPixel and SpatialSupport, and the refined labeling to the rates
reported for state-of-the-art methods. We again report both the overall per-pixel classi-
fication rate (i.e., the accuracy of all pixels correctly classified) and the average of class
specific per-pixel percentages, that gives a more significant measurement due to varying
quantity of labeled pixels for each class.

Interestingly, the initial classifications, performed at the pixel level can be improved
significantly by exploiting super-pixels as spatial support for all three datasets, while the
direct classification of feature instances that are extracted within super-pixels, obtains a
slightly lower accuracy. We assume that an improved integration of local context infor-
mation due to exceeding the object boundaries and high redundancy within a super-pixel
obtained by classification at the pixel level, cause the significant increase of the overall
number of correctly classified pixels.

The CRF stage further improves the classification rates yielding a consistent final
labeling of the super-pixels. Please note, the results presented in this work do not consider,
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e.g., global context information [Pantofaru et al., 2008] or location priors [Gould et al.,
2008]. This context data would avoid impossible object constellations within an image,
like that a cow stands on a table. In [Kluckner et al., 2009b] we additionally used multiple
image segmentation and context information learned from the trainings data. Some visual
results are depicted in Figure 3.11. Figure 3.12 highlights massive failure cases obtained
for the MSRCv2 dataset.

An evaluation of computational costs at runtime shows that the generation of the
super-pixels for a MSRC image consumes most of the time (approximately 680 ms) in
both concepts, SuperPixel and SpatialSupport. Feature extraction, classification and re-
fined labeling on a reduced image grid (100 ms) runs slightly faster than evaluating all
pixels in the test image by using efficient integral structures (160 ms). A comparison
shows that our suggested concepts take about 1 second per image, which is 6 times faster
than the timings reported in [Shotton et al., 2007]. Taking into account the computational
costs and classification accuracy we conclude that the method SpatialSupport performs
better than SuperPixel. It is evident that the CRF stage could also be optimized for a four-
or eight-connected neighborhood.

3.9 Experiments on Aerial Images

So far, we have shown that our interpretation workflow, based on the Sigma Points fea-
ture representation and efficient RF classifiers, can be successfully applied to standard
benchmark image collections. In a next step the proposed method is demonstrated on
real-world aerial imagery, where we integrate appearance channels and 3D information
to obtain a interpretation into multiple object classes. In this chapter we evaluate the
proposed classification solely on single large-scale aerial images that are acquired from
different viewpoints with high overlap.

In order to demonstrate the influence of the available feature cues (i.e., color, edge
responses and elevation measurements) we compute pixel-wise interpretation results for
different combinations integrated within the Sigma Points representation.

In a first experiment we focus on the interpretation of single aerial images into two
classes, where we discriminate building structures from the background. Note that our
approach can be easily extended to handle other challenging binary classification tasks,
e.g., distinguishing between vegetation/non-vegetation or extracting water areas from the
background.

A second experiment investigates the performance of the interpretation by using an
extended set of objects classes (building, tree, water, grass and street), where we entirely
segment each aerial image into those five object classes.

Due to spectral differences, varying pixel sizes and changing landscapes we indi-
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Figure 3.11: Some visual results selected from the MSRCv2 database including 21 object
classes. The first and second row shows the original color images and the ground truth
annotation, respectively. The initial results obtained by the RF classification are given in
the third row. The fourth row shows the semantic interpretation results using a grouping of
confidences within super-pixels (SpatialSupport). The CRF-refined final interpretations
are depicted in the last row.

vidually construct the required classifiers for each aerial project (i.e., Dallas, Graz and
San Francisco) by using hand-labeled training data. For each dataset separately we thus
have to annotate images providing the training labels at the pixel level. Moreover, non-
overlapping ground truth maps are additionally generated for the evaluation procedure.

3.9.1 Manually Labeling

Since GIS information, in form of cadastral maps, and expert-labeled data are not avail-
able or out of date we have to generate ground truth maps in a rigorous process. While the
large amount of overlapping aerial images is relatively easy to acquire, the annotations for
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Figure 3.12: Some obvious failure cases selected from the MSRCv2 database including
21 object classes. Again, the first and second row show the original color images and the
ground truth, respectively. The first three columns depict massively wrongly classified
regions in the refined labeling (third row). In these cases (column 1-3), context informa-
tion in form of probable class constellation within an image (a face appears above a body,
boats and planes are generally not mounted on buildings), would significantly improve
the final interpretation. In case of the last column, additional 3D information could help
to enhance the final classification.

the buildings, water or grass areas, trees and street layer, are generally not available. Due
to spectral differences and huge variations in the landscape and the appearance, an enor-
mous amount of labeled training data is required for each aerial project. The coverage
of extended sets of object classes particularly needs a tedious and sophisticated manual
labeling effort.

Therefore, we have developed an approach to extract representative training labels.
In a first step the corresponding camera centers get clustered spatially in order to select a
representative collection of perspective images for the ground truth generation. The num-
ber of expected clusters is chosen according to the dimension of the described bounding
box in the world coordinate system. The cluster centers then determine the nearest neigh-
bors as probable candidates for the labeling procedure. Note that this concept only selects
a basic set of potential images. A trivial manual interaction step involves an additional
visual selection to gather special observations for the training process.
According to the quantity, the assembly and the shown landscape characteristics of the
available images we then generate corresponding ground truth maps for each aerial project
in a second step. It is obvious that the generation of training labels demands attention with
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Figure 3.13: Manually labeled ground truth information for Graz. The objects in the
images are annotated by using brush strokes. We commonly assign labels for the classes
building, water, grass, tree and street. The color coding for the object classes is illustrated
in the last row.

respect to the mapped objects. For instance, one has to distinguish between swimming
pools and natural water areas. Thus, we rather assign pools a building class label than a
water label. Moreover, it is not trivial to assign the training labels for elevated circulation
spaces, like bridges or overpasses. In these ambiguous cases no labels are assigned to
those image regions. In addition, street-related objects, such as cars, trucks and trams,
are assigned with the street label. Please note that an interpretation at a country-scale
requires additional object classes, e.g., for the discrimination of different types of agricul-
turally used areas or mountains.

For the experimental evaluation quantities of 8 (Dallas), 15 (Graz) and 13 (San Fran-
cisco) images have been largely labeled to provide the ground truth information. The
number of labeled pixels for each aerial project varies in the range of 300 MPixels to 350

MPixels. Figure 3.13 shows ground truth labels generated for images of Graz.

3.9.2 Binary Building Classification

To investigate the influence of the available low-level feature cues we collect Sigma Points
vectors for different combinations of input sources. For the binary classification procedure
we utilize the color images and elevations measurements, resulting from the DSM and the
DTM. In addition, we again apply Sobel filter masks to gray-value converted color images
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to compute elementary texture information. In this experiment we compute binary build-
ing classification results for combinations of elevation measurements, color, color/edge
responses, and color/edge responses/elevation measurements. The feature vector then
consists of 78 attributes, if RGB color, edge responses and elevation measurements are
combined by using the Sigma Points representation. The dimension of the spatial neigh-
borhood is set according to the provided datasets GSDs with 9 × 9 pixels (Dallas, San
Francisco) and 13×13 pixels (Graz), respectively. During the training and the evaluation
procedure we collect the feature representation at a full image resolution (11500 × 7500

pixels). For each dataset separately, RF classifiers with T = 8 trees and maximum depths
of Z = 15 are trained in a first step. Note that the size of the forests has given a re-
liable trade-off between computation time and accuracy. Due to a significant reduction
of expensive computation time, the trained RFs are evaluated at each pixel location us-
ing a third of the full image resolution. The final classification results, composed of the
class-specific confidence maps, are then up-sampled to form a dimension-corresponding
interpretation result.

The building classification rates obtained for the datasets Dallas, Graz and San Fran-
cisco are summarized in Table 3.6. A mix of color, edge responses and 3D information
results in averaged rates of 92% (Dallas), 96% (Graz), and 90% San Francisco. For
instance, using solely color yields low classification accuracies of 83% (Dallas), 83%

(Graz), and 79% (San Francisco). In Figure 3.14 a building classification for San Fran-
cisco is shown by using different combinations of available input sources. It is evident that
color only cannot successfully separate all building structures from the background since
some image regions are massively covered by shadows. In these cases even for humans
it is hard to distinguish between building and background. Figure 3.15 illustrates some
building classifications obtained for Graz scenes. The tight combination of RGB color,
first order derivatives and elevation measurements obviously yields the best interpretation
results. Furthermore, one can notice that even the challenging bluish building structure
(Kunsthaus) can be successfully separated from the background.

3.9.3 Semantic Interpretation into Five Object Classes

As a next step we treat the semantic interpretation as a five-class segmentation problem,
where each pixel of the aerial images is assigned a label representing one of the classes for
building, tree, water, grass or street. Similar to the building classification we individually
train RF classifiers (T = 8 trees, depth Z = 15) for different combinations of feature
cues.

The size of the considered neighborhood is again set according to 9 × 9 pixels for
Dallas and San Francisco) and 13 × 13 pixels for Graz. Table 3.7 summarizes the ob-
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Dallas
RGB Texture Height Pixel Avg building background

[%] [%] [%]
X 65.01 69.45 60.57

X 82.65 89.47 75.85
X X 84.96 90.18 79.74
X X X 91.46 85.37 97.53

Graz
RGB Texture Height Pixel Avg building background

[%] [%] [%]
X 62.04 66.59 57.68

X 82.68 82.78 82.58
X X 87.20 83.65 90.60
X X X 96.05 94.04 97.98

San Francisco
RGB Texture Height Pixel Avg building background

[%] [%] [%]
X 57.68 72.33 42.70

X 74.85 83.29 66.23
X X 78.67 82.42 74.85
X X X 90.44 87.02 93.92

Table 3.6: Binary building classification results obtained for the three aerial datasets.
The rates are given for different feature cues and combinations in terms of correctly as-
signed labels. It can be clearly seen that an integration of appearance and 3D information
significantly improves the interpretation at the pixel level.

tained classification results in terms of correctly classified pixels. We can observed that
a combination of color, edge responses and 3D information significantly improves the
classification accuracy. Moreover, it is interesting to notice that especially height only
successfully separates the water object class from the remaining classes. We assume that
the high reconstruction errors, caused by motion, yield high variances in the statistics es-
timation. For the RF classifier it is thus rather easy to select discriminative attributes in
the provided Sigma Points feature vector.

In Figure 3.16 computed confusion matrices are shown for color as feature cue, and
the combination of color, basic texture and 3D height information. Figure 3.17 shows
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Figure 3.14: A building interpretation result for a scene of San Francisco using only
color and the entire set of available feature cues (color, edge responses, elevation mea-
surements). Color and available 3D information are shown in the first column. In the
middle, the obtained building classification is given for the use of RGB color information
(we depict the raw building confidences and the dominant object class. The last column
illustrates the corresponding results obtained for color, basic texture and elevation mea-
surements. Red colors denote the building class, while cyan describes background areas.

a semantic interpretation into the five object classes by using different combinations of
appearance and elevation measurements. One can observe that the use of height only
produce many water areas. Similar to moving water areas, regions occupied by spec-
ular or occluded facades result in uncertain range information. A tight integration of
appearance and color information within the proposed interpretation workflow signifi-
cantly overcomes these problems. Moreover, it is obvious that a regularization scheme
would further improve the final assignment of the object classes. Figure 3.18 shows an
interpretation results for overlapping images of Dallas. These images clearly show that
frequently occurring crossovers are largely assigned with the building class. Note that
a labeling of these structures as street would considerably worsen the final classification
accuracy. Thus, context information in form of web-based GIS data may be exploited to
adapt these problems. In Figure 3.19 the raw confidences for each object class, directly
evaluated with RF classifiers, are shown for some images of Graz.

3.9.4 Improving the Initial Classification Result

Until now the semantic explanation of the aerial scenes has been performed at the pixel
level without consideration of the spatial neighborhood information. As shown in Fig-
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Figure 3.15: A building classification computed for two Graz scenes by using different
combinations of low-level feature cues. The color information, represented in a perspec-
tive view is given in the first row. The second row depicts the raw confidences and the
dominant object class for the use of color. A result by utilizing color and basic texture
is shown in the third row. From the last row, it can be clearly seen that an integration of
color, texture and elevation measurements yields the best interpretation result.
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Dallas
RGB Texture Height Pixel Avg building water grass tree street

[%] [%] [%] [%] [%] [%]
X 42.75 35.15 67.52 58.71 71.73 28.87

X 77.65 72.10 94.67 88.73 91.97 73.42
X X 81.49 78.15 92.10 91.00 92.92 75.57
X X X 89.36 84.02 94.16 94.59 96.08 93.57

Graz
RGB Texture Height Pixel Avg building water grass tree street

[%] [%] [%] [%] [%] [%]
X 40.05 38.36 80.68 38.97 31.76 44.03

X 73.68 64.25 77.99 61.42 86.56 85.49
X X 79.53 71.73 88.40 66.97 93.14 86.36
X X X 91.55 93.23 96.11 75.56 92.91 89.81

San Francisco
RGB Texture Height Pixel Avg building water grass tree street

[%] [%] [%] [%] [%] [%]
X 28.73 29.89 84.26 65.43 51.50 0.00

X 65.04 62.37 91.87 69.44 74.38 59.32
X X 70.69 71.87 95.74 69.66 82.14 59.38
X X X 82.98 81.20 96.32 71.71 81.52 84.52

Table 3.7: The results obtained for a semantic interpretation into five object classes for
the three aerial datasets. The rates are given for different feature cues and combinations
in terms of correctly assigned labels.

ure 3.20, the interpretation shows a high granularity with respect to the dominant class
label. Similar to the refinement step, that is applied to the benchmark images, super-pixel
segmentation and the CRF stage are subsequently used to obtain a smooth and consistent
class assignment. In this experiment we utilize a CRF stage defined over a four-connected
neighborhood, and the one computed for a super-pixel generated adjacency graph. The
optimized class assignments are summarized in Figure 3.20. For both optimization strate-
gies the smoothing parameter is set to λ = 10.0. In addition, the available color image
provides the weights for the graph edges, where we either calculate simple color distances
between neighboring pixels or the deviation between the mean colors of computed super-
pixels. We estimate the weighted color distance by using a exponential normalization
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Figure 3.16: Computed confusion matrices for the three datasets. It is obvious that an
integration of color, texture and 3D information (right column) drastically improves the
classification accuracy rates compared to use color only (left colomn). This combination
particularly benefits the discrimination between the building and the street class.

function with exp(−κ| · |). The weights κ = {0.1 . . . 10.0} are adjusted according to a
visual inspection of the results.
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Figure 3.17: A five-class semantic interpretation result computed for a Dallas scene by
utilizing appearance and elevation measurements. The first row presents both the original
color image and the derived DSM. The second row shows the pixel-wise interpretation re-
sult obtained by using height only, color/texture, and color/texture/3D information. From
a visual inspection one can notice that an integration of appearance and elevation yields
the best results.

An optimized labeling is given in Figure 3.21 for a small San Francisco scene. In
Figure 3.22 the original color image is overlaid with both a raw building classification and
the optimized binary labeling. One can notice that the explanation of building structures,
in particular the facade elements, can be improved by applying the CRF stage. However,
although the refinement would partly improve the intermediate interpretation, we skip
the optimization procedure within our workflow due to enormous computational effort.
Refining an image with a dimension of 800 × 700 pixels takes approximately 5 seconds.
Thus, an optimization of an aerial image at full resolution requires in the range of 15

minutes, which would scale to hours for an entire aerial project. We rather optimize the
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Figure 3.18: Initial semantic interpretation obtained for huge aerial images (11500 ×
7500) showing the environment of Dallas. The classification procedure segments every
test images into five classes by integrating color, first and second order derivatives within
the Sigma Points feature representation. Note that a single image can be processed within
few minutes.

labeling for the fused classification results within an orthographic view as shown in the
next chapter.

3.10 Discussion and Summary

This chapter has extensively focused on initial semantic interpretation of individual (aerial)
images by integrating multiple types of modalities, such as appearance, edge responses,
and 3D height information. In this work the semantic classification, together with the
available color and geometry information, is an indispensable part of a holistic descrip-
tion of the image content. We thus have presented the Sigma Points features, a novel
representation in the context of semantic image classification. They are efficiently de-
rived from statistical region descriptors and enable a low-dimensional, straightforward
and tight integration of multiple low-level cues and also exploits the correlation between
them. Due to the representation on a Euclidean vector space, the Sigma Points can be
easily applied to fast multi-class randomized forest classifiers.

In the experimental evaluation, we have shown state-of-the-art performance on stan-
dard benchmark datasets, like the MSRC or the VOC2007 image collections, without uti-
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Figure 3.19: Initial semantic interpretation obtained for two images extracted from the
aerial project of Graz. From the top to the bottom we depict the raw confidences for
building, water, grass, tree and street, the dominant object class and the corresponding
color image. We use appearance and elevation to compute the semantic interpretation.
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Figure 3.20: A refined labeling for a Graz scene (800× 700 pixels). The first row shows
the color image and the raw interpretation result, where the dominant object classes are
evaluated at the pixel level. The second row depicts the optimized labeling obtained for
the refinement on a four-connected and a super-pixel graph, respectively. While the super-
pixel based optimization appears fringed, especially in facade regions, the image-graph
refinement considerably discards small objects, like isolated trees and small courtyards.
In addition, shadows cause large areas of wrongly assigned water labels. To reduce these
problems, we propose to use a multi-view classification as a next step (see Chapter 4).

lizing derived location priors or global context cues, that handle valid class constellations
within a test image. Moreover, we have demonstrated that an integration of unsupervised
segmentation and energy minimization techniques improves the accuracy significantly by
taking into account the initial pixel-wise classifications.
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Figure 3.21: A refined labeling for San Francisco (800 × 700 pixels). The color image
and the corresponding raw interpretation are depicted in the first row, while the second
row shows an optimized class assignment using four-connected and a super-pixel graph,
respectively.

In case of the aerial image interpretation we have shown that a combination of ap-
pearance and 3D height information is essential for an accurate explanation of each pixel.
We have thus applied our method to the prominent task of building classification and to
the multi-class problem, where we distinguish between objects representing the classes
building, water, grass, tree and street. Our approach can be easily extended to handle
additional object classes, such as different types of agriculturally used areas or moun-
tains. The experiments have shown that the compact integration of appearance and 3D
information yields an initial interpretation accuracy of more than 90% for the building
classification and 81% to 93% for the pixel-wise multi-class explanation.

Until now we have considered the initial interpretation of single aerial images. Ap-
plying the interpretation to every image in the dataset provides us with a highly redundant
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Figure 3.22: A building classification result computed for a Dallas scene. From left to
right: the building confidences, the background probabilities, the color image overlaid
with the raw classification result, and the color image masked with the refined interpreta-
tion using a four-connected image grid.

holistic collection of appearance, surface models and semantic interpretation. In fact, we
are rather interested in generating a high-quality land-cover map within a meaningful de-
scription that makes extensively use of redundant image information. In aerial imagery,
this representation is the orthographic view. Due to the availability of the scene geometry,
the highly redundant results can be combined within this orthographic view. In the next
chapter we therefore discuss the mapping and the multi-view fusion of color, height and
semantic interpretation.
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Chapter 4

From 3D to the Fusion of Redundant
Pixel Observations

This chapter addresses the problem of aerial data fusion with many redundant observa-
tions for color, 3D information and the derived semantic interpretation. In particular, we
present approaches for image fusion within an orthographic view, since this is a com-
monly used representation an aerial imagery workflow to integrate overlapping yet per-
spective images. Hence, the obtained fusion results for the available modalities, given in
corresponding perspective view, can then be seen as a compact holistic description of the
observed scene within the common view.
As a first step, the available range images and the camera data are extensively used to align
multiple source modalities, such as appearance, height and classification results. For each
modality individually, we present efficient methods, defined over redundant input images,
to compute an improved fusion result. Next, we propose a variational formulation for the
integration of redundant 3D height data, which then forms a consistent surface model.
Furthermore, this formulation is extended with a wavelet regularization in order to enable
a natural-appearing recovery of fine details in the images by performing joint inpainting
and denoising from a given set of redundant color observations. Besides, we discuss an
exemplar-based inpainting technique for an integrated removal of non-stationary objects,
like moving cars. Finally, we additionally introduce a variational refinement step to make
the semantic interpretation, aggregated from initial multi-view classification consistent
and smooth with respect to real object boundaries. In the experimental section we show
that the redundancy significantly helps to increase the image quality and the classification
accuracy.

79
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4.1 Introduction

The image fusion from digital aerial images poses a challenging problem for many rea-
sons. In case of high-resolution color images, the fusion step must maintain fine details
and complex textures. In addition, the fused images should provide natural appearance
without outliers and erroneously assigned or missing regions. In contrast to a color image
fusion, where object edges should appear naturally, the integration of redundant height
information must preserve sharp edges and capture the 3D shape of objects in order to
accurately describe and model, e.g., the mapped rooftops. Moreover, the fusion has to
handle large areas with missing or noisy data caused by moving cars, flowing water bod-
ies or large areas of occlusion.

In general, image fusion integrates information of several images, taken from the same
scene, in order to generate an improved image with respect to noise, outliers, illumina-
tion changes etc. Nevertheless, the efficient fusion of multiple observations for various
modalities, ranging from scalar values [Zach et al., 2007, Carlavan et al., 2009], over
vector-valued data, like color [Fitzgibbon et al., 2003,Agarwala et al., 2006,Strecha et al.,
2008], to intermediate recognition results provided by various types of classifiers [Xiao
and Quan, 2009,Leibe et al., 2007] is a hot topic in current research since scene informa-
tion can be taken from different view points without additional costs.

In particular, modern aerial imaging technologies provide multi-spectral images, that
map every visible spot of urban environments from many overlapping camera viewpoints.
Typically, a point on ground is at least visible in 10 cameras. Figure 4.1 shows the re-
sulting camera positions of the aerial project of Graz. Each camera location provides
multi-spectral information about the observed scene.

The provided, highly redundant data (several observations for a considered point)
enables efficient techniques for height field generation [Hirschmüller, 2006], but also
methods for resolution and quality enhancement [Fitzgibbon et al., 2003,Agarwala et al.,
2006, Strecha et al., 2008, Goldluecke and Cremers, 2009].

One the hand, initially derived range images, mainly computed in 2.5D from a stereo
setup [Hirschmüller, 2006] or even from many input images [Irschara, 2011] can also be
exploited to geometrically align data, such as the corresponding color information and
semantic interpretation, within a common coordinate system. On the other hand, taking
into account redundant observations of corresponding points in a common 3D world,
the localization accuracy can be significantly improved using an integration of redundant
range data for a full 3D reconstruction [Zach et al., 2007] or for a generation of improved
2.5D surface models [Zebedin, 2010].

In our approach we extensively utilize the alignment of many overlapping images
within a common view. The available range images (see Chapter 2) are used to com-
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Figure 4.1: The aerial project of Graz. Each of the 155 camera locations provides multi-
spectral information about the observed scene on ground from varying viewpoints. We
fuse the perspective information of color, height and semantic interpretation into a com-
mon (orthographic) view.

pute pixel-wise geometric transformations between the original perspective images and
an orthographic view, which is also related to novel view synthesis [Fitzgibbon et al.,
2003, Woodford et al., 2007]. Since the range information is available for each image in
the dataset, a transformation to a common view produce many redundant scene obser-
vations. Figure 4.2 depicts an aerial scene taken from different camera positions and a
corresponding set of range images, that enable a geometric projection to a common view.
Due to occlusions, specular and moving objects some of the range image tiles show large
areas of missing information and erroneously assigned pixel information.

Thus, our task can also be interpreted as an information fusion from multiple input
observations of the same scene by joint inpainting and denoising. While inpainting fills
undefined areas, the denoising removes strong outliers and noise by exploiting the high
redundancy in the input data. In our case, these outliers can be strong reconstruction
errors included in the initial range maps, but also inconsistently transformed color values
or wrongly assigned semantic class labels mainly caused by classification uncertainty or
inaccurate object delineation. In this chapter we therefore concentrate on methods which
account for these issues.

In literature, there exists a variety of methods to obtain improved fusion image results
from multiple measurements. The methods differ in the used modalities, concepts and
aims. Intuitively, considering scalar-valued modalities, like height and infrared data, a
pixel-wise mean or even a median computation would produce a meaningful final result
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Figure 4.2: An aerial scene taken from different camera viewpoints and a correspond-
ing set of computed range images, that enable a pixel-wise geometric transformations,
together with the camera data, of image data to a common view. Occlusions, specular and
moving objects cause large areas of missing information (white areas) and erroneously
assigned pixel values.

with low computational complexity. In case of robustly fusing vector-valued data, such as
the color information, a set of random projections of the entire vector onto 1D lines could
be used to detect the median of high-dimensional information [Tukey, 1974]. Related,
one could also use a clustering technique to find reliable color values for an improved
texture generation [Zebedin et al., 2006]. In contrast to estimating a representative model
of the given data, the classification result fusion is frequently performed by simply accu-
mulating the provided confidences since the class confidences are in general normalized
and produced from a single classifier.

Nevertheless, these fusion techniques provide low computational complexity, how-
ever, every pixel in the image domain is processed separately and, thus, the results are
prone to be noisy and may contain outliers. To overcome these issues, energy mini-
mization techniques with different types of regularizations are widely adopted to inverse
problems [Tikhonov, 1943]. Those methods are based on the minimization of a given
energy functional by considering both the deviation between the solution and an observed
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input data and the smoothness of the solution, also referred to as regularization. In this
chapter we investigate optimization schemes, formulated in the continuous domain to ro-
bustly integrate the available modalities. In particular, different types of regularizations
are investigated.

In order to obtain fused information from multiple observations we first propose to use
an extended formulation of the popular denoising model proposed by [Nikolova, 2004] to
perform a tight integration of multiple intensity images, like color images or height fields.
For clarity, we derive our model for scalar-valued images, however the formulation can be
easily extended to vector-valued data. In addition, we show that this model is also useful
to generate improved surface models and that a novel extension of the regularization term
(we replace total-variation (TV) norm by an efficient wavelet based regularization) will
lead to a natural-appearing fusion of multiple color images. Further, we again exploit the
pixel-wise transformation to aggregate the computed class distributions, resulting from
the initial semantic classification, into the common view. In order to regularize the ag-
gregated interpretation result, we use a continuous formulation of the Potts model [Pock
et al., 2009] to obtain a spatially coherent semantic labeling.

The experimental evaluation investigates the influence of redundancy on modalities,
such as color and height, and presents qualitative and quantitative results. In addition, we
show that the classification accuracy can be improved by collecting redundant probabil-
ities for each object class from multiple view points. Moreover, we compare the refined
labeling results obtained for different types of optimization strategies.

4.2 Introducing a Common View

As a first step, the required source images for modalities representing color, height and
semantic interpretation need to be aligned within a common view. To obtain the required
range data for each input image we use a dense matching similar to the method proposed
in [Hirschmüller, 2006]. By taking into account the corresponding ranges images (see
Figure 4.2) and the available camera data, each pixel in the images can be transformed
individually to 3D world coordinates (the system can be either a local or a global one)
forming a large cloud of points, where each point is then defined by a 3D coordinate, the
color information and a class distribution, that encodes a probable object class assignment.

As commonly used in photogrammetry, we transform the data to orthographic view
representation. Since we are interested in a large-scale holistic description of the scene
within the image space, we introduce virtual orthographic cameras with a specified pixel
resolution (we use a similar sampling distance as provided by the original images) in
order to sample the information in a common 3D coordinate system. This enables a col-
lecting of corresponding images tiles, out of the generated point cloud that is projected
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to the ground plane (we simply set the height coordinate to a fixed value). Hence, a col-
lection of multiple sampled points results in a highly redundant pool of image candidates
for the different modalities. In Figure 4.3, the corresponding image patches, transformed
to a common (orthographic) view, are given for color, height and semantic classification,
where we only display the most dominant object class. Due to missing data in the individ-
ual height fields (e.g.caused by non-stationary objects or occlusions) the initial alignment
causes undefined areas, artifacts or outliers in the novel view.

In the following various regularized approaches, individually adapted to the consid-
ered modality, are introduced to improve the final result with respect to these problems.

4.3 Fusion of Redundant Intensity Information

This section highlights our fusion model, that allows us to efficiently fuse redundant color
and height field observations into a single, high-quality result. Note that an integration
of multiple images at a city-scale demands fast and sophisticated methods, we thus make
use of energy minimization techniques defined in the continuous domain. These methods
provide a high parallelization capability and obtain in general a globally optimal solution.
The basic concept of energy minimization methods is to formulate the solution of a given
problem as an optimum of an functional, by taking into account of both the distance
of the solution to the observed data and the smoothness itself. First, we briefly discuss
related work. Then, we derive our fusion model, which is based on TV-L1 denoising
model [Nikolova, 2004], capable to handle multiple input observations. In order to exploit
the particular characteristics of the involved modalities we individually adapt the fusion
model for color and height information. In case of color we replace the TV-norm by a
wavelet-based regularization, capable to preserve fine image structures and produces a
natural fusion result.

4.3.1 Background

The challenging task of reconstructing an original image from given (noisy) observa-
tions is known to be an inverse ill-posed problem. In order to solve such optimization
problems, additional assumptions, such as the smoothness of the solution, have to be con-
sidered. The optimization problem can be generally formulated as the minimization of
the functional

min
u
{ R(u) + λ D(u, f) } , (4.1)

where u is the sought solution, the functionR(u) denotes the regularization, which forces
a smooth solution. Depending on the problem R(u) can be defined for different types
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Figure 4.3: Perspective scene observations transformed to a common orthographic view
by using the corresponding range image information (see Figure 4.2). Our approaches
take redundant observations for color (first row), height (second row) and semantic classi-
fication (last row) as input data and generate an improved fused image without undefined
areas and outliers. Note that the individual observations include many undefined areas
(white pixels) caused by occlusions, sampling effects and non-stationary objects.

of potential functions. The term D(u, f) expresses the data term, which measures the
deviation between solution and one or even more observations f of the data. The scalar
value λ controls the trade-off between data fidelity and the smoothness of the solution.

Although fast mean or median computation over multiple pixel observations will sup-
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press noisy or undefined areas, each pixel in the image is treated independently (the
image reconstruction is thus performed without spatial regularization). A variety of
algorithms for fusion of redundant information is based on image priors [Fitzgibbon
et al., 2003, Woodford et al., 2007], image transforms [Pajares and de la Cruz, 2004],
Markov random field optimization procedures [Agarwala et al., 2006] and generative
models [Strecha et al., 2008]. Variational formulations are well-suited for finding smooth
and consistent solutions of the inverse problem by exploiting different types of regular-
izations [Tikhonov, 1943, Rudin et al., 1992, Nikolova, 2004, Carlavan et al., 2009, Zach
et al., 2007].

The quadratic model [Tikhonov, 1943] uses the L2 norm for regularization, however,
causes smoothed edges. Introducing a TV-norm instead leads to the edge preserving de-
noising model proposed by Rudin, Osher and Fatemi (ROF) [Rudin et al., 1992]. The
authors in [Nikolova, 2004] proposed to also use a L1 norm in the data term in order to
estimate the deviation between sought solution and input observation. Thus, compared
to the ROF model, the resulting TV-L1 model is more effective in the removal of speckle
noise [Nikolova, 2004] and for shape denoising due to the contrast invariance provided
by the L1 norm [Nikolova et al., 2006]. Zach et al. [Zach et al., 2007] applied the TV-L1

to robust range image integration from multiple views. Although TV-based methods are
well-suited for tasks, like range data integration, in texture inpainting the regularization
produces results that look unnatural near recovered edges, since regions are largely recov-
ered by piece-wise constant solutions. In the last years a lot of effort has been put into the
development of more suitable image priors.

To overcome the problem of the so called cartoon-like appearance caused by the TV-
regularization, natural image priors based on multi-level transforms, like wavelets [Se-
lesnick et al., 2005,Portilla and Simoncelli, 2000,Fadili et al., 2009] or curvelets [Candés
et al., 2006], can be used within the optimization model [Starck et al., 2004,Carlavan et al.,
2009]. These transforms provide a compact yet sparse image representation obtained with
low computational costs. Inspired by [Carlavan et al., 2009], we utilize a wavelet trans-
form for natural regularization within our proposed variational fusion framework capable
to handle multiple input observations for color.

In the following the fusion model, defined over multiple input observations, is derived
from well-established TV-L1 denoising model. In a first step we use the model to integrate
several observations for height information. Secondly, for the color image fusion the
regularization is extended with a linear wavelet transform, that provide improved image
priors yielding natural appearing fusion results.
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4.3.2 The Proposed Model

We consider a discrete image domain Ω as a regular grid of size W × H pixels with
Ω = {(i, j) : 1 ≤ i ≤ W, 1 ≤ j ≤ H}, where the tupel (i, j) denotes a pixel position in
the domain Ω.

Our fusion model, taking into account multiple input observations can be seen as an
extension of the TV-L1 denoising model proposed by Nikolova [Nikolova, 2004]. Es-
pecially the TV-L1 denoising model will enable a reliable removal of outliers, that are
caused by the geometry-driven alignment (we expect that the range images contain some
errors). In the discrete setting the minimization problem of the common TV-L1 model for
an image domain Ω is then formulated as

min
u∈X

{
‖∇u‖1 + λ

∑
i,j∈Ω

|ui,j − fi,j|

}
, (4.2)

where X = RWH is a finite-dimensional vector space provided with a scalar product
〈u, v〉X =

∑
i,j ui,jvi,j , u, v ∈ X . The first term ‖∇u‖1 denotes the TV of the sought

solution u and reflects the regularization in terms of a smooth solution. The gradient ∇u
normally results from finite difference calculations with Neumann boundary conditions
and is defined in the vector space RWH × RWH . Moreover we also need the divergence
operator div : RWH × RWH → RWH . This operator defines the adjoint of the gradient
operator with div = −∇∗. The second term accounts for the summed errors between u
and the (noisy) input data f . The scalar λ controls the fidelity between data fitting and
regularization, whereas a low value of λ leads to smoother solutions. In following we
derive our model for the task of image fusion from multiple observations.

As a first modification of the TV-L1 model defined in (4.2), we extend the convex
minimization problem to handle a set of K input observations (f1, . . . , fK). Introduc-
ing multiple input images can be accomplished by summing the deviations between the
sought solution u and available observations fk, k = {1 . . . K} according to

min
u∈X

{
‖∇u‖1 + λ

K∑
k=1

∑
i,j∈Ω

|ui,j − fki,j|

}
. (4.3)

As the L1 norm in the data term is known to be not optimal for Gaussian noise (we
expect a small amount), we use the robust Huber norm [Huber, 1981] to estimate the error
between sought solution and observations instead. The Huber norm is quadratic for small
deviations (this is appropriate for handling normal distributed noise) and linear for larger
errors, which corresponds to median-like behavior. The Huber norm is defined as
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|t|ε =

{
t2

2ε
: 0 ≤ t ≤ ε

t− ε
2

: ε < t
. (4.4)

Because of the range image driven alignment of the source information, undefined ar-
eas can be simply determined in advance for any geometrically transformed image fk.
Therefore, we support our formulation with a spatially varying term wki,j ∈ [0, 1]WH ,
which encodes the inpainting domain. The choice wki,j = 0 corresponds to pure inpaint-
ing at a pixel location (i, j). Note that in our case we only consider a binary case {0, 1},
however, the strength of inpainting can be easily supported, e.g., by incorporating the an-
gle between an orthographic and real camera viewing direction. This context information
would prefer objects, captured near to an orthographic view point, within the fusion step.
Considering the encoded inpainting domain and the Huber norm, our modified energy
minimization problem for redundant observations can now be formulated for the image
domain Ω as

min
u∈X

{
‖∇u‖1 + λ

K∑
k=1

∑
i,j∈Ω

wki,j|ui,j − fki,j|ε

}
. (4.5)

In the following we highlight an iterative strategy based on a first-order primal-dual algo-
rithm to minimize the non-smooth problem defined in (4.5).

4.3.3 Primal-Dual Formulation

Note that the minimization problem given in (4.5) poses a large-scale (the dimensionality
directly depends on the number of image pixels, e.g., for a small color image tile: 3 ×
16002 pixels) and non-smooth optimization problem. Following recent trends in convex
optimization [Nemirovski, 2004,Nesterov, 2005], we apply an optimal first-order primal-
dual scheme [Chambolle and Pock, 2010,Esser et al., 2009] to minimize the energy. Thus
we first need to convert the formulation defined in (4.5) into a classical convex-concave
saddle-point problem. The general minimization problem is written as

min
x∈X

max
y∈Y
{〈Ax, y〉 + G(x) − F ∗(y)} (4.6)

where A is a linear operator, G and F ∗ are convex functions and the term F ∗ denotes
the convex conjugate of the function F . The finite-dimensional vector spaces X and Y
provide a scalar product 〈·, ·〉 and a norm ‖ · ‖ = 〈·, ·〉

1
2 . By applying the Legendre-

Fenchel transform to (4.5), we obtain an energy with the dual variables p ∈ P and q ∈ Q
as follows
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min
u

max
p,q

{
〈∇u, p〉 − δP (p) +

K∑
k=1

(〈
u− fk, qk

〉
− δQk(qk)− ε

2
‖qk‖2

) }
. (4.7)

In our case, the convex sets Q and P are defined as follows

Qk =
{
qk ∈ RWH : |qki,j| ≤ λwki,j, (i, j) ∈ Ω

}
, k = {1 . . . K} , (4.8)

P =
{
p ∈ RWH × RWH : ‖p‖∞ ≤ 1

}
, (4.9)

where the norm of the vector space P is defined as

‖p‖∞ = max
i,j
|pi,j| , |pi,j| =

√
(p1
i,j)

2 + (p2
i,j)

2 . (4.10)

Considering (4.7), we can first identify F ∗ = δP (p) +
∑K

k=1

(
δQk(qk) + ε

2
‖qk‖2

)
. The

functions δP and δQk are simple indicator functions of the convex sets P and Q defined as

δP (p) =

{
0 if p ∈ P
+∞ if p /∈ P δQk(qk) =

{
0 if qk ∈ Qk

+∞ if qk /∈ Qk . (4.11)

Since a closed form solution for the sum over multiple L1 norms cannot be implemented
efficiently, we additionally introduce a dualization of the data term with respect to G

yielding an extended linear term with 〈Ax, y〉 = 〈∇u, p〉+
∑K

k=1

〈
u− fk, qk

〉
. According

to [Chambolle and Pock, 2010], the primal-dual algorithm can be summarized as follows:
First, we set the primal and dual time steps with τ > 0, σ > 0. Additionally, we construct
the required structures with u0 ∈ RWH , ū0 = u0, p0 ∈ P and qk0 ∈ Qk. Following
the solution presented in [Chambolle and Pock, 2010], the basic iterative scheme is then
given by 

pn+1 = projP (pn + σ∇ūn)

qkn+1 = projQk

(
qkn+σ(ūn−fk)

1+σε

)
, k = {1 . . . K}

un+1 = un − τ
(
−div pn+1 +

∑K
k=1 q

k
n+1

)
ūn+1 = 2un+1 − un .

(4.12)

In order to iteratively compute the solution of (4.7) using the primal-dual scheme, point-
wise Euclidean projections of the dual variables p and q onto the convex sets P and Q are
required. The projection of the dual variable p is defined as

projP (p̃i,j) =
p̃i,j

max(1, |p̃i,j|)
(4.13)
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Figure 4.4: The result of decomposing an input image using the DTCWT. The magni-
tudes of computed filter coefficients are shown at two different levels of decomposition.

and the corresponding projections for the dual variables qk with k = {1 . . . K} are given
by

projQk(q̃ki,j) =
q̃ki,j

min(+λwki,j,max(−λwki,j, |q̃ki,j|))
. (4.14)

Note that the iterative minimization scheme mainly consists of simple point-wise opera-
tions, therefore it can be considerably accelerated by exploiting parallel hardware. The
proofs for convergence and details can be found in [Chambolle and Pock, 2010].

4.3.4 Extension to a Wavelet-based Regularization

Since an orthographic image generation from color information with sampling distances
of 8 to 15 cm requires an accurate recovery of fine details and complex textures, we
extend our model by replacing the TV-based regularization (the simplest choice for struc-
tured sparsity) with a dual-tree complex wavelet transform (DTCWT) [Selesnick et al.,
2005, Fadili et al., 2009]. The DTCWT is nearly invariant to rotation, which is important
for a sophisticated regularization, but also invariant to translations and can be computed
efficiently by using separable filter banks. The transform is based on analyzing the sig-
nal with two separate wavelet decompositions, where one provides the real-valued part
and the other one yields the complex part. Figure 4.4 depicts the absolute values of the
obtained filter coefficients at different levels of decomposition. Due to the redundancy
in the proposed decomposition, the directionality can be improved, compared to standard
discrete wavelets [Selesnick et al., 2005].

In order to include the wavelet based regularization into our generic formulation we
replace the gradient operator ∇ by the linear transform Ψ : X → C. The space C ⊂ CD

denotes the complex- and real-valued transform coefficients c ∈ C. The dimensionality of
CD directly depends on parameters, like the image dimensions, the number of levels and
orientations. The adjoint operator of the transform Ψ, required for signal reconstruction,
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is denoted as Ψ∗ and is defined through the identity 〈Ψu, c〉C = 〈u,Ψ∗c〉X .
Taking into account the TV-regularized energy minimization problem defined in 4.5,

we can simply rewrite the functional for the image domain Ω as

min
u∈X

{
‖Ψu‖1 + λ

K∑
k=1

∑
i,j∈Ω

wki,j|ui,j − fki,j|ε

}
, (4.15)

since the wavelet transform corresponds to a linear operation. According to the primal-
dual scheme described in Section 4.3.3, we obtain a slightly modified iterative solution,
where we now have to update the dual variable c ∈ C. Again, we construct the required
structures with u0 ∈ RWH , ū0 = u0, c0 ∈ C and qk0 ∈ Qk. The iterative scheme is defined
as 

cn+1 = projC (cn + σΨūn)

qkn+1 = projQk

(
qkn+σ(ūn−fk)

1+σε

)
, k = {1 . . . K}

un+1 = un − τ
(

Ψ∗cn+1 +
∑K

k=1 q
k
n+1

)
ūn+1 = 2un+1 − un ,

(4.16)

where the point-wise Euclidean projections of the dual variable c onto the convex sets C
is given according to

projC(c̃i,j) =
c̃i,j

max(1, |c̃i,j|)
. (4.17)

Note that an extension of the TV-L1 formulation to vector-valued data, such as color
information, is straightforward and requires only slight modifications in the implementa-
tion. So far, we have shown how multi-view information, such as color and height maps,
sampled within a common view, can be fused efficiently by using energy minimization
schemes. To round up a meaningful holistic description of the aerial imagery in the ortho-
graphic representation we finally focus on the fusion of redundant semantic classifications
in order to accurately explain every gathered point on ground.

4.4 Fusion of Redundant Classification Information

As extensively described in Chapter 3, the first processing step of our semantic interpre-
tation workflow involves a rapid pixel-wise explanation, performed on each image in the
aerial dataset. In our case we use either a binary building classification, where we separate
building structures from the background, or a full image explanation into the elementary
object classes representing building, water, tree, street and grass. In addition, in the last
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chapter we have shown that a combination of appearance and 3D cues is essential for a
reliable classification at the level of images.

Since we are interested in a large-scale semantic interpretation of whole urban envi-
ronments, we again fuse the intermediate results (now we have a probable class assign-
ment) obtained for the original images within an orthographic view. Figure 4.3 depicts
some redundant scene classifications projected to a common view point. Note that the
dominant object class assignment is shown without a regularization procedure. It can be
clearly seen that depending on the perspective camera view the mapped objects are clas-
sified with varying accuracy. Thus, we propose to fuse the raw confidences obtained from
multiple view point in order to compute an improved interpretation result. In addition, a
regularization may help to smooth the labeling with respect to the real object boundaries
and to reduce the problem of wrongly assigned class labels. The used color coding for
these object classes is given in Figure 3.13.

4.4.1 Accumulation of the Classifier Output

In order to estimate a class-specific probability for each pixel in the orthographic view,
computed class distributions (the multi-class RF, constructed as a supervised classfier,
provides class distributions for every observed feature instance) from different view points
are accumulated and then normalized for the number of multi-view interpretations. Note
that compared to standard classifiers such, e.g., SVMs, where the outputs are distances
to an estimated decision boundary, RFs inherently provide an efficient mapping of high-
dimensional data to a probabilistic output (forming a normalized class distribution). There-
fore, an aggregating of multi-view results is straightforward. Figure 4.5 depicts the pixel-
wise accumulation result obtained by the proposed classification and fusion workflow.
Due to classification and projection at the pixel level, the individual results shows a high
granularity with respect to the dominant class confidences (first three rows), while the last
row shows an improved semantic labeling. Nevertheless, the fusion step is performed at
the level of pixels without considerations of important object boundaries and connected
image regions. Thus, we introduce a regularization step to obtain a consistent final se-
mantic labeling.

4.4.2 Refined Labeling Within the Orthographic View

Although our proposed feature representation considers some local context information,
collected within a small spatial neighborhood, each pixel in the original images and espe-
cially in the fused case are explained almost independently. The problem of obtaining a
smooth and spatially consistent labeling of the whole image scene can be again seen as the
task of multi-class image segmentation (see Chapter 3), where each pixel value is selected
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Figure 4.5: Semantic classification results projected to an orthographic view. The first
three rows show the results obtained for redundant image tiles, while the last row depicts
the aggregated confidences. The columns from left to right describe the confidences for
building, water, grass, tree and street. The last column highlights a pixel-wise computa-
tion of the most dominant object class. Note that the pixel-wise fusion step considerably
compensates for areas, where no interpretation is available (white pixels). In addition, the
raw collection of multiple classification results significantly improves the final interpreta-
tion with respect to consistent assignment of object classes.

from a predefined pool of class labels. In our case the labeling procedure is supported by
fused class distributions. In general, a segmentation problem into multiple object classes
can be defined as a minimization of the Potts model [Potts, 1952], which was originally
introduced to model phenomena of solid state physics. Recall that Ω defines an arbitrary
image domain in RWH , then the continuous formulation of the Potts model for a partition
into N distinct object classes can be written as
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min
si

{
λ

N∑
i=1

Per(si; Ω) +
N∑
i=1

∫
si

lidx

}
,

s.t.
N⋃
i=1

si = Ω, si ∩ sj = ∅ ∀i 6= j ,

(4.18)

The first term incorporates the length of the boundary of the segmentation si, while the
second term considers the data at each point in the segment si. In turn, the scalar value
λ defines the fidelity between data term and regularization (length of the boundary). The
term li ∈ RWH with i = {1 . . . N} are the fused confidence maps for each object class and
si is the resulting image partition for the object class i. In our case the confidence maps
li are directly obtained by accumulation and normalization of corresponding multiple
observations of the interpretation for different object classes.

In Chapter 3 we have largely applied minimization schemes, defined in discrete set-
tings, to refine the semantic labeling. While discrete graph-based optimization techniques
are in general hard to accelerate for a large amount of data, in this section we addition-
ally suggest to use the continuous formulation of the Potts model. Recently, several so-
lutions of the continuous formulation have been proposed [Chan and Vese, 2001, Pock
et al., 2009, Olsson et al., 2009]. While Level-Sets [Chan and Vese, 2001] suffer from
non-optimality, recent approaches are able to find globally optimal solutions of the Potts
model. Olsson et at. [Olsson et al., 2009] proposed to reformulate the α-expansion
moves [Boykov et al., 2001] in a continuous setting. Differently, Pock et al. [Pock et al.,
2009] used a convex relaxation based on a primal-dual formulation of the TV functional.
More importantly, they showed that their efficient primal-dual projected gradient algo-
rithm enables a fast implementation on GPUs. Thus, in this section we additionally use
the convex relaxation to minimize the energy defined in (4.18). According to [Pock et al.,
2009], the minimization of the segmentation problem can be rewritten as a TV functional

min
ui

{
λ

N∑
i=1

∫
Ω

√
∇ui(x)Tdiag(g(x))∇ui(x) dx+

N∑
i=1

∫
Ω

ui(x)li(x) dx

}
, (4.19)

where ui : Ω → {0, 1} is a binary labeling function with ui(x) = 1, if x ∈ si and
ui(x) = 0 else. The first term denotes the TV of the functions ui and describes the
corresponding anisotropic length of the segment si. The term g ∈ RWH describes the
edge penalty function, which enables a smooth labeling by taking into account strong
edges, extracted from, e.g., available color or height information (see Section 4.3). The
approximated metric tensor diag(g(x)) is used to incorporate the edge information into
the energy functional. For each pixel the stopping function g is computed according to
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Figure 4.6: A computed penalty function for an arbitrary aerial scene. We derive the
edge image either from color or height data. In particular for elevated objects the penalty
terms, computed from height, will give an improved object delineation, since shadows
and color changes may produce irrelevant edges.

g(x) = e−α|·|. (4.20)

The scalar α defines the smoothness and ‖ ·‖ is the pixel-wise magnitude, computed from
simple color or height value distances. Figure 4.6 illustrates the stopping function, either
resulting from color information or fused 2.5D height data. These functions are easily
derived by using a standard Sobel mask filtering. The second term defines the data term,
provided by the class confidence maps.

Since the space of binary functions ui forms a non-convex set, the functional cannot
be directly minimized using a convex optimization strategy, such as the efficient primal-
dual algorithm. Pock et al. [Pock et al., 2009] proposed to relax the set of binary functions
to a set of functions ui : Ω → [0, 1], which can take values between zero and one. They
showed that this relaxation scheme yields globally optimal solutions for most practical
problems. For the implementations details and proofs we refer to [Pock et al., 2009].

In the experiments we compare the results obtained for optimization schemes defined
in the continuous and the discrete setting and show that the suggested refinement step ide-
ally fits our holistic workflow and significantly improves the final semantic classification
accuracy in terms of a qualitative and a quantitative evaluation.

4.5 Experiments

In this section we evaluate the described fusion approaches for color, height and semantic
interpretation.

In a first step, the fusion models, based on energy minimization schemes taking into
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account multiple scene observations for color and height information are investigated in a
testing environment with artificially added noise and known ground truth data. The syn-
thetic experiments focus on the image reconstruction capability in terms of the improved
peak signal-to-noise-ratio (PSNR) by using an increasing number of input observations.
The PSNR, computed for a ground truth image I1 and a recovered or noisy image I2, is
defined as

PSNR = 10 log

(
(max I1)2

1/|I1|
∑

(I1 − I2)2

)
, (4.21)

where the considered images are assumed to be normalized for the interval [0, 1]. Then,
for both models we present real-world results obtained for aerial images, where we fuse
multiple redundant image tiles showing urban environments. Since there exits no ground
truth information, the evaluation is mainly performed by visual inspection.

Second, we show how the use of redundant semantic classifications influences the
fused interpretation within an orthographic view. A final refinement step based on opti-
mization schemes exploits both the corresponding color and height data to obtain a high-
quality semantic interpretation, collected from multiple views.

4.5.1 Experiments on Height Data Fusion

In this section we first apply the described TV-L1 fusion model (Equation (4.5)), capable
to handle multiple input observations, to synthetically generated height data in order to
evaluate the obtained results quantitatively. The synthetically constructed surface pro-
vides the ground truth information, that allows us to measure the deviation between the
real height values and those obtained with our fusion model. In a second experiment we
use our fusion model to fuse real-world aerial data, where we integrate redundant height
field observations to form an improved representation of the mapped surface. Note that
our holistic scene description also include a fused terrain model, however, the evaluation
focuses on the surface model only.

Synthetic Experiments

In order to evaluate the performance of the proposed model we selected an arbitrary scene
from the web and constructed a synthetic test image consisting of an isolated building with
a complex gabled rooftop and a some simplified tree-like structures. Our synthetic model
is represented as an intensity image with a dimension of 400 × 400 pixels. The height
values are normalized to the full range of 216 available intensity values. Figure 4.7 shows
our synthetically generated height model, the color information and the corresponding
rendering.
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Figure 4.7: A synthetically generated height model to evaluate the performance of our
fusion model. From left to right: the height model, texture information and a rendering of
the synthetic setup. We add artificial noise to the height field in order to produce multiple
input observations. Since the ground truth is provided by the original model a quantitative
evaluation can be performed in terms of the PSNR. We use a small amount of Gaussian
noise, impulse noise and varying percentages of undefined pixel information.

For the quantitative evaluation we add different types of artificial noise to the syn-
thetic model: First, a small amount of Gaussian noiseN (0, 0.01) and impulse noise (1%)
is applied for all experiments. In addition, in order to evaluate the required inpainting
capability of the fusion model defined in (4.5) a random set of a certain quantity of pix-
els is set to undefined. Thus, we run experiments with 10%, 25%, 50% missing pixel
information. This simulates the real case for the aerial imagery, where undefined areas
are caused by occlusions and moving objects. In order to investigate the influence of
the redundancy the experiment is repeated for an increasing number of distorted input
observations and a different quantities of undefined pixels. Table 4.1 summarizes the
quantitative evaluation for 1, 5 and 10 input observations. In addition, we also calculate
the PSNR for a mean and median computation, that do not provide a spatial regulariza-
tion. From Table 4.1 we can observe that the result obtained with these simple methods
improves with the number input observations. Nevertheless, the proposed fusion model
significantly outperforms the mean and the median computation with more than 10 dB in
all noise levels. The ratios are computed for the optimal parameter setup with ε = 1.0,
λ = 1.0, τ = 0.01, and σ = 1/8/τ , which has given the best result in a cross-validation
framework. Some visual results are shown in Figure 4.8, where we use a number of 10

input observations. Although the tops of the mapped object cannot be reconstructed per-
fectly, the TV-regularization improves the quality of the fusion result with respect to the
noise model. In addition, one can see that the result computed with TV-L1 slightly suf-
fers from stair-casing effects. To overcome these problems a Total Generalized Variation
(TGV) regularization [Bredies et al., 2010] would further improve the quality of a height
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# Observations # Observations # Observations
1 5 10

Undefined Pixels 10 % 25 % 50% 10% 25% 50% 10 % 25 % 50 %
Noisy image 14.1 10.7 8.0 14.1 10.7 8.0 14.1 10.7 8.0

Median 14.1 10.7 8.0 26.4 24.9 18.5 29.4 28.5 25.9
Mean 14.1 10.7 8.0 25.2 24.1 18.4 28.0 27.2 25.0
TV-L1 29.0 27.1 21.2 36.8 36.0 34.1 39.3 38.6 37.2

Table 4.1: Quantitative evaluation of the height field fusion with multiple observations
and a different amount of noise level. The evaluation is given in terms of the PSNR [dB].
The TV-L1 model obtains the best noise suppression.

(a) Ground truth (b) 14.08 dB (c) 29.44 dB (d) 39.39 dB

(e) Ground truth (f) 14.08 dB (g) 29.44 dB (h) 39.39 dB

Figure 4.8: Some visual results computed from 10 distorted synthetic height observa-
tions. The first row shows the height model in the image space, while the second row
depict the corresponding rendering. From left to right: the original height model, a noisy
input observations, a result obtained with a median estimation and the fusion result of the
TV-L1 model. One can see that both the median and TV-L1 model successfully reduces
the outliers. However, we can notice that a regularization is essential for a reliable fusion
of multiple height maps.

map fusion since the model better supports piecewise affine image structures.
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Experiments on Real Height Data

Next, we apply our TV-L1 model to real-world height maps extracted from the large-
scale aerial imagery. Since no ground truth data is available for the three datasets Dallas,
Graz and San Francisco we mainly concentrate on a visual inspection of the computed
fusion results. Note that an quantitative evaluation could be performed by, e.g., comparing
the result to a point cloud taken with LiDAR. In Figure 4.9 computed image tiles for
Dallas are depicted. In order to handle the large amount of available data we divide
the fusion into 1600 × 1600 pixels image patches. The 2.5D fusion result is computed
from an average of 10 input observations. One can see that although the proposed model
works fine for the majority of the challenging building structures, specular facades and
insufficient overlap between the aerial images, causes massive artifacts (bottom of the
third image), which cannot be recovered completely. Although an increased strength of
regularization would account for such massive outliers, the structures of the remaining
objects then get over-smoothed. The real-world height models given in this thesis are
computed for λ = 1.0.

Figure 4.10 illustrates the fusion result obtained for a single scene of Graz. The images
provide a pixel size of approximately 8 cm. From the rendering one can see that fine
details, such as dormers, are nicely preserved, while the major rooftop structures are
correctly delineated. Compared to the Dallas scene, the isolated high-rise building is
captured entirely since there are no neighboring building structures, which annoy the
correspondence computation in the dense matching process.

A computed strip for San Francisco, consisting of 10×3 individually processed image
patches, is shown in Figure 4.11. Although San Francisco is embedded in a hilly terrain
the surface model can be reconstructed nicely. A tight fusion of a single image patch,
representing color and height information, requires less than 2 minutes on a standard
graphics card. Note that our large-scale workflow can be applied to process any quantity
of input images due to the block-processing in smaller image tiles.

4.5.2 Experiments on Color Fusion

The next step of our holistic interpretation workflow aims at fusing the available color in-
formation into an orthographic view. We therefore apply our convex fusion model, includ-
ing the wavelet-based regularization, to generate high-quality real-world ortho-images. In
this section we again apply our models (Equation (4.5) and (4.15)) to synthetic data, then
we use it for integrating redundant color observations. To show the benefit of the wavelet-
based regularization, we compare the obtained results to those of the TV-L1 model, the
non-regularized mean and median fusion.
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Figure 4.9: Some orthographic color and height fusion results for Dallas. The first row
shows the fused color information computed with the wavelet-based approach presented
in 4.3. The second row depicts the corresponding height fields with a pixel size of ap-
proximately 15 cm.

Synthetic Experiments

In order to evaluate the quality of our joint inpainting and denoising model, we first apply
our formulation to the task of color image recovery using a single input observation only,
where parts of the test images are replaced by black (undefined) pixels. To simulate the
occlusions in the aerial imagery, caused by the transformation of perspective images to
an orthographic view, we thus artificially set a certain amount of pixel to undefined by
using randomly generated line structures. Figure 4.12 depicts an image distorted with 20
random lines, and the results obtained for recovery using the TV-L1 and the DTCWT-
regularized model. Although the structures are not recovered completely, the TV-norm in
the smoothness term yields cartoon-like results compared to the improved wavelet-based
regularization. The results for a quantitative evaluation are summarized in Table 4.2. Due
to the randomness of this experiment we compute the statistics for the PSNR over 10

runs. One can see that the model with the wavelet-based regularization performs best for
different numbers of random lines.

To show the performance with respect to recovered fine details, our second experiment
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Figure 4.10: An orthographic view of a Graz scene. The first row shows the color and
height fusion result for a 8 cm pixel size, while the second row depicts a rendering of
the fused height field. Note that fine details, like structures on the rooftop, are preserved
accurately.

Number of lines Noisy Image [dB] TV-L1 [dB] Wavelet [dB]
10 17.32± 0.98 31.20± 0.50 32.08± 0.41

20 14.35± 0.75 30.26± 0.65 31.26± 0.57

40 12.04± 0.41 28.82± 0.69 29.81± 0.41

Table 4.2: Quantitative evaluation of the image recovery from a single input observa-
tion. We average the PSNR over 10 runs and compute the ratios for different numbers of
random lines. The wavelet-based regularization obtains the best noise suppression.

investigates the denoising and inpainting capability of our proposed model using multiple
images with synthetically added noise. Here, we take the Barbara and the Lenna gray-
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Figure 4.11: A computed strip of San Francisco with a GSD of 15 cm. A number of 10×3

patches are combined to from a holistic description of the mapped area. The depicted
image covers an area of approximately 2500 × 700 meters. The interpretation results
from a refinement procedure using the continuous formulation of the Potts model [Pock
et al., 2009].

valued images. These 512 × 512 pixels test images contain fine structures and highly
textured areas. In order to imitate the expected noise model, we add a small amount
of Gaussian noise N (0, 0.01) and again replace a specified percentage of pixels with
undefined areas (we use 10%, 25% and 50%). In Figure 4.13 distorted Barbara images
are shown for a different amount of undefined pixels.

An evaluation in terms of the PSNR for different amounts of undefined pixels and
quantities of input observations is summarized in Figure 4.14. We compare our model to
the TV-L1 formulation, the mean and the median computation. For the TV-L1 and our
model we present the plots computed for the optimal parameters determined by an ex-
haustive search over meaningful parameter settings. One can see that our joint inpainting



4.5. Experiments 103

Figure 4.12: Image recovery from a single input observation, which is distorted with
random lines. Form left to right: the noisy image, the inpainting result computed with the
TV-L1 model and the result obtained with the wavelet-based model.

Figure 4.13: Gray-valued Barbara images with artificially augmented noise. We use a
small amount of Gaussian noise N (0, 0.01) and different percentages of undefined pixel
information (10%, 25%, 50%).

and denoising model, using the parameter setting τ = 0.05, σ = 1/8/τ , ε = 0.1, λ = 0.8

(Lenna), λ = 1.2 (Barbara) and 3 levels of wavelet decomposition (we use (13, 19)-tap
and Q-shift 14-tap filter kernels, respectively), performs best in all noise settings. More-
over, it is obvious that an increasing number of input observations significantly improves
the result. Compared to the TV-L1 model, the wavelet-based regularization improves the
PSNR by an averaged value of 2 dB. In addition, we can observe that the plot, computed
for the Lenna image, improves slightly faster with the number of input observations since
this image contains less high-frequency textured areas than the Barbara image.

Fusion of Real Color Images

Our next experiment focuses on the fusion of aerial color images in order to produce
high-quality ortho-photos. Due to resource limitations in the processing, we collect the
huge amount of provided information within smaller image patches (1600× 1600 pixels).
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Figure 4.14: Quantitative results for the Barbara and the Lenna image: the PSNR de-
pending on synthetically added noise and a varying number of input observations. The
first column depicts the plots obtained for the Barbara image, while the second column
the results for Lenna. The proposed model using the DTCWT-based regularization yields
the best noise suppression for both test images.



4.5. Experiments 105

As shown in Figure 4.3, the high overlap in the aerial project yields redundant scene
observations, represented in the RGB color space. Depending on the provided overlap
in the aerial imagery, e.g., 60% and 80%, the mapped area provides up to 15 redundant
observations for the same scene.

Figure 4.15 depicts four redundant details for Graz, where large regions are missing
(black pixels) due to occlusions or sampling effects. One can see that both the TV-L1 and
the wavelet-based model fill these areas successfully by exploiting the redundant color
information. However, the wavelet-based regularization preserves fine image structures
with an improved natural appearance.

Figure 4.16 shows the fusion result generated for three observations of a low-rise
building embedded in a suburban environment. The ortho-projected images contain only
a small amount of undefined pixels mainly due to low-height structures and sufficient
coverage of the perspective images. Both models yield suitable fusion results, however,
in vegetation-occupied regions the result appears over-smoothed. This is mainly caused
by small 3D reconstruction in these areas caused by natural movements of the vegetation,
e.g., caused by the wind. To overcome the problem of smoothed areas, an integrated
combination of semantic interpretation and image fusion would give improved results.
Figure 4.17 shows a generated ortho-photo for a region with a size of 128 × 128 meters.
In Figure 4.18 and 4.19 large-scale results are given. Note that a computation within
smaller image patches enables a quick computation of the ortho-photos with multiple
cores.

Removal of Non-Stationary Objects

So far, we have shown that redundant color information can be successfully fused to a sin-
gle image without undefined areas. However, non-stationary objects, such as moving cars,
disturb in orthographic image generation. Thus, we additionally use our fusion model to
remove cars by simultaneous inpainting. Car detection masks for aerial images can be
obtained efficiently by various approaches to choice, e.g., [Viola and Jones, 2004, Grab-
ner et al., 2008, Mauthner et al., 2010]. Figure 4.32 shows some car detections results
obtained for scene of Graz. In a first step we apply a trained car classifier (we use an
efficient approach described in [Mauthner et al., 2010]) to some overlapping perspective
intensity images. Then, the acquired confidence maps (we treat the car detection as a
binary detection task), together with the color information, are transformed to a common
view by using the available range and camera data (as described in Section 4.2). A com-
bination by simply aggregating the confidences and thresholding for a suitable activation
threshold yields the final car detection mask. Then, having the mask defines an extended
inpainting domain within the fusion model. It is obvious that the detected cars produce
large regions of undefined pixels, where even the high redundancy of the images do not
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Figure 4.15: Obtained fusion results for a detail of Graz. The first rows shows redun-
dant scene observations with many undefined pixels, mainly caused by occlusions and
sampling effect. Both the TV-L1 (left, second row) and the wavelet-based fusion model
(right, second row) obtain accurate results, however the image-priors provided by the
wavelet decomposition shows an improved appearance.

provide useful color information. Hence, we estimate an individual color prior for each
car detection or a group of recognized cars, by computing the median over color samples
collected along individual computed car masks. Besides that moving cars are inherently
removed due to the high redundancy (see Figure 4.20), parking vehicles can be success-
fully removed from the ortho-images by using the estimated, however constant, color
value priors. In order to obtain an improved filling of the detected car areas we outline
an improved strategy, that is mainly inspired by the work of Hays and Efros [Hays and
Efros, 2007].

The main idea is based on performing scene completion with respect to the computed
detection mask by using a pool of potential exemplars. Thus, we randomly collect im-
age patches (the dimension is adapted for a common car length) and apply basic image
transformations, including rotation and translation, in order to synthetically increase the
pool of candidates. To find the best matching candidate for each detected car we compute
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Figure 4.16: A fusion results for a country residence, located in the surroundings of Graz.
The first rows shows three scene observations with a relatively low number of undefined
pixels. Although the fusion works fine for both models, the vegetation regions appear
over-smoothed.

a sum of weighted color distances between a masked detection and each exemplar. The
weighting additionally prefers pixel locations near the mask boundary and is mainly de-
rived by using a quick distance transform [Felzenszwalb and Huttenlocher, 2004a]. The
detection mask with overlaid exemplars is then used as an additional input observation
within the color fusion model. Obtained removal results are shown in Figure 4.31. Note
that this approach works only for isolated car detection results and if potential inpainting
candidates are possible to extract.

4.5.3 Experiments on Classification Fusion

In Chapter 3 we have extensively investigate how the tight use of appearance and 3D
height information can be utilized to compute an initial semantic interpretation of aerial
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Figure 4.17: A wavelet-based fusion result for a larger region (128 × 128 meters). We
integrated a total number of 8 redundant scene observation. Note that the fusion step
successfully removes moving objects, such as cars.

images. The experimental evaluation showed that the combination of both is essential
for an image classification. However, the semantic explanation is treated separately for
each image in the aerial dataset. Figure 4.22 shows computed classification results into
the five object classes for some overlapping aerial images, which can be also interpreted
as a multi-view large-scale semantic interpretation since each single image provides a
number of 11500 × 7500 interpreted pixels. Note that due to relevance we only consider
the interpretation results obtained for a tight combination of appearance and elevation
measurements.

In this section, we mainly focus on demonstrating the benefit of exploiting the redun-
dancy for the generation of a final semantic interpretation within an orthographic view.
Similar to the last chapter, we consider an interpretation into the two object classes (build-
ing and background) and into the five classes, where the image content is separated into
building, water, tree, grass and street.

We first investigate how the fusion from multiple interpretation results influences the
final classification in terms of correctly classified pixels. Then, we compare different
optimization methods to refine the results by taking into account derived object bound-
aries. Finally, we compare obtain classification accuracies to the ones obtained with an
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Figure 4.18: Some wavelet-based fusion results obtained for the inner city of Graz. We
compute the fusion for image patches with a size of 1600 × 1600 pixels. Every pixel in
the image patches represents a point on ground with a size of approximately 8× 8 cm.
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Figure 4.19: Some wavelet-based fusion result computed for a small part of San Fran-
cisco, where every pixel describes a point on ground with a size of 15 cm.

existing land-use classification workflow [Gruber-Geymayer et al., 2005]. Figure 4.21
summarizes the intermediate results of our fusion and refinement procedure. The first
row depicts several corresponding semantic interpretation results, that are initially trans-
formed to a common view. Then, a pixel-wise accumulation of the class probabilities
yields the input for the refinement step. The results, before and after the refinement, are
shown in the second row. Additionally, we exploit color or height information to enable a
consistent final class labeling with respect to real object boundaries.

In order to perform a quantitative evaluation of our classification and fusion strategy
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Figure 4.20: Car inpainting by using constant color priors. From left to right: The orig-
inal perspective image, the fusion result without using a car detection mask and the in-
painting result obtained and for the wavelet-based model.

to obtain a final interpretation, we have to additionally generate ground truth information
for an orthographic view. Due to a balanced existence of the five considered object classes
10 × 6 image tiles (each tile covers an area of 128 × 128 meters) are largely labeled by
different operators to provide ground truth data at the pixel level. However, bordering and
transition regions are not assigned with one of the object classes. Clearly an interactive
labeling scheme, as the strategy described in [Santner et al., 2010], would account for
an improved quantitative evaluation of our proposed approach. For the remaining aerial
projects Dallas and San Francisco, sets of 6×6 and 6×5 ground truth maps are generated
by a rigorous procedure of manual labeling, respectively. In Figure 4.21, the labeled
ground truth image is shown for the Kunsthaus scene.

The Fusion of Redundant Classifications

The first experiment investigates how redundancy influences the interpretation accuracy
in terms of undefined pixels and correctly classified pixels. In order to determine the
classification accuracy in the orthographic view, we extract a subset of labeled ground
truth maps (25 image patches for the Graz dataset), covering an area of approximately
500× 500 meters. Due to a varying number of occluded pixels, we repeat the fusion step
20 times (shown as blue dots) with random sets of selected observations. It is obvious
that the percentage of undefined pixel significantly decreases with the number of involved
observations. Note that the remaining undefined pixels could be entirely eliminated by
an additional refinement step. This experiment also shows that the challenging task of
distinguishing between water and street regions, covered with shadows, benefits from
aggregating multiple redundant classifications. In addition, the classification rate of small
grass-covered areas can be improved by using multi-view observations.
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Figure 4.21: A semantic interpretation result for the Kunsthaus scene: The first row
shows redundant semantic classifications projected to a common orthographic view. Note
that these images include many undefined regions (white pixels) caused by occlusions
and varying viewpoints. The raw accumulation over redundant image patches and the
final refined classification result are given in the second row. The third row shows a
corresponding fused color image, 2.5D height information and the hand-labeled ground
truth map.

Refinement of the Semantic Interpretation

For practical applications it is essential to obtain an accurate semantic classification results
with respect to real object boundaries. We therefore compare the results obtained for the
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Figure 4.22: Overlapping aerial images: We exploit color (first column) and dense match-
ing results (second column) to derive a highly redundant semantic classification (third
column). Each image has a dimension of 11500×7500 pixels and was processed in a few
minutes.

differently introduced refinement methods. In particular, we compare the results of a dis-
crete optimization strategy defined on a four-neighborhood connected graph, a refinement
procedure performed on an adjacency graph by incorporating the available super-pixel
segmentation and the multi-class segmentation approach highlighted in Section 4.4, that
is formulated in the continuous domain. For both the four-connected neighborhood and
the super-pixel graph we minimize the energy functional by using the well-established α-
expansion [Boykov et al., 2001]. Note that these methods are computed on a conventional
single-core machines, since a parallel computation is hard to achieve. In contrast, the con-
tinuous formulation of the Potts model (4.19) can be minimized efficiently by exploiting,
e.g., multiple cores of a GPU. For the binary labeling case - the building classification -
the refinement strategies yield globally-optimal solutions, while in the multi-class prob-
lem only an approximation is achieved in a worst-case scenario.
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Figure 4.23: Fusion of redundant semantic classifications: The first plot shows the per-
centage of undefined pixels as a function of involved observations. The second plot de-
picts the obtained accuracy in terms of correctly classified pixels for an increasing quantity
of involved semantic classifications. Due to varying occlusion, we average the rates over
20 runs. It can be clearly seen that the classes water and grass benefit from a fusion of re-
dundant classifications. Due to high reconstruction errors (mainly composed of undefined
depth values) in strongly moving water areas the interpretation workflow yields uncertain
or missing class decisions (see e.g.the amount of white (undefined) pixels in the first row
of Figure 4.21). Hence, the integration over multiple classification results in an improved
interpretation, and therefore in an increased accuracy.

Table 4.3 compares the computed classification rates for the three datasets. Note that
we skip the evaluation of the water class for the aerial dataset Dallas and San Francisco
since there are no representatively large enough water areas available in the test region.
Figure 4.27 represents these results as confusion matrices. It is perfectly clear that also
a single interpretation, performed on fused color and height information could be used
instead of using redundant classification. While such an approach would only provide an
interpretation of structures that are clearly visible in the ortho-view, the proposed work-
flow also offers an initial classification of vertical objects such as house walls. This in-
formation could be utilized to derive accurate GIS information or to determine the exact
location of the brickwork.

Figure 4.24 illustrates the refinement result obtained for a San Francisco scene by
using different optimization strategies. In the case of the multi-class interpretation the
edge information, required for the object delineation, is directly derived from the color
information. Considering (4.20), the smoothing parameter is set to α = 1.0 for all ex-
periments performed for the five-class problem. The trade-off between data fidelity and
regularization is set to λ = 10.0 for both discrete optimization schemes, while we used
λ = 0.5 for the minimization of the continuous formulated functional. Note that feeding
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the CRFs with the negative logarithms of the class probabilities has given an improved
interpretation result in terms of correctly labeled image regions.

Taking into account the quantitative evaluation and the visual inspection of the ob-
tained results for the fusion of the semantic interpretation, we can conclude that the con-
tinuous formulation of the Potts model yields a reasonable refined labeling with nearly no
parameters to adjust within an attractive computation time of approximately 20 seconds
per image tile with a size of 1600 × 1600 pixels. Compared to the method of Boykov
et al. [Boykov et al., 2001] (16 seconds), the refined labeling on a super-pixel neighbor-
hoods can be performed quickly (3 seconds), however the super-pixel generation itself
introduces a significant loss of computation time. In addition, from a practical point of
view a time-consuming parameter tuning is required for both discrete methods in order to
achieve comparable refinement results. A full semantic interpretation obtained for a strip
of Dallas is shown in Figure 4.26. The applied continuous formulation of the Potts model
largely preserves objects boundaries, like building edges, by using a color-driven stopping
function. Figure 4.21 summarizes the different steps of our refinement procedure.

Some observed special cases are illustrated in Figure 4.25. One can see that even
the final labeling cannot entirely compensate large classification errors. These errors are
mainly caused by wrongly generated elevation measurements with coincidentally similar
appearance to the street class. Obscured image regions are sometimes classified as water
since the wavelength of mapped water regions is very similar to the ones of shadows.
Although a higher radiometric resolution would account for these problems, the avail-
able image timestamps together with the known 3D scene geometry could be utilized to
predict shadowed areas and to improve the final interpretation result. Furthermore, from
Figure 4.25 we can observe that the tight integration of appearance and 3D height enables
a correct assignment of the building class, even if the rooftops are covered with grass,
provided that these special cases are trained with the classifier.

For the binary building classification task, averaged final rates of more than 90.0%

are obtained for Dallas (building: 97.9% and background: 96.2%), Graz (94.7% and
95.2%) and San Francisco (91.6% and 96.5%). These rates are computed by comparing
the refined results (we use the energy minimization scheme defined in the continuous
domain (4.18)) to the ground truth labeling. Compared to the five-class problem, where
we distinguish between building, water, grass, tree and street, one can observe that the
binary classification yields slightly increased rates of the building class. However, for the
two-class case, mainly an elevated object class, namely the building class, is discriminated
from background. This allows us to exploit edge information, derived from the fused
2.5D height data, as penalty function. Such a penalty function, applied to the five-class
interpretation, would destroy, e.g., the transitions between grass and street regions since
there is no appreciable deviation in the computed elevation measurements. The effect
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Figure 4.24: A visual comparison of various refinement strategies. The first row depict
the color image, the corresponding height field and the raw classification result without
a refinement step. The refinement results are given for the continuous version of the
Potts model, the discrete optimization formulation using a four-connected graph and the
optimization on a super-pixel neighborhood graph.

of using color- and height-driven stopping function within the continuous Potts model is
shown in Figure 4.28. Due to different value ranges of the height data the smoothing
parameter is set to α = 20.0. It can be clearly seen that the height-driven refinement
step obtains improved results concerning the real building edges. In particular, shadowed
areas benefit from the regularization with a height-driven penalty function.

Comparison to an Existing Workflow

Finally, we compare the results produced with the proposed workflow to the available
land-use classification for Graz, computed with the method described in [Gruber-Geymayer
et al., 2005]. This method is mainly based on three processing steps: Without considera-
tion of the 3D height information, in a first step the raw aerial images are coarsely divided
into initial object classes, like solid, shadow, water and vegetation, by using SVM clas-
sifiers, that are trained in a supervised manner. Once the corresponding range data is
computed from the overlapping perspective images, these initial land-use classifications
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Figure 4.25: Some special (failure) cases. Even the refinement step cannot compensate
large classification errors, caused by an erroneous DTM extraction and similar spectral
wavelength. The spectral range of shadowed regions is very similar to the ones of the
water class. The rightmost sample shows that even grassed rooftops can be assigned a
correct class label.

are aligned within an orthographic view by means of the camera data and provided depth
values. As a second step, static prior information is used to separate the initial vegetation
classification into grass and tree or to split the solid areas into street and building. Third,
and similar to our approach, a multi-class segmentation based on an optimization scheme
is applied in order to refine the final class labeling.

In order to compare the performance of the very different workflows, we first align
both results into a common world coordinate system with a corresponding GSD at 8 cm.
Figure 4.29 shows an aligned strip of Graz including five object classes. Note that the
original color coding of the method presented in [Gruber-Geymayer et al., 2005], is ad-
justed according to our class colors. In addition, we replace the uncertainty regions by
an additional class that encodes undefined (white pixels). Table 4.3 summarizes a quan-
titative evaluation in terms of correctly classified pixels. One can notice that our ap-
proach provides improved classification results for grass, tree and street. Due to the large
amount of building pixels the method in [Gruber-Geymayer et al., 2005] obtains a slightly
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Figure 4.26: A semantic classification obtained for a strip of Dallas. The Potts model
largely preserves objects boundaries, like building edges, by using a color-driven penalty
function. To handle the enormous amount of redundant data we collect the data in 1600×
1600 pixels image patches.
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Figure 4.27: Computed confusion matrices for the aerial projects. We obtain classifica-
tion rates of approximately 90% for the three challenging datasets. The low gray-valued
buildings in Dallas are sometimes mixed with the street class which could be caused by an
inaccurate terrain models. Due to similar spectral ranges small shadow regions covering
the class street are classified as water (Graz). Many small trees inside of courtyards and
the hilly terrain in San Fransisco explain the relatively low classification rates obtained
for the tree class.

increased averaged accuracy. Aware that the evaluation is far from a fair comparison,
we can observe that both methods perform nearly equally although they entirely differ
in the used methods and used training data. However, although the methods presented
in [Gruber-Geymayer et al., 2005] performs slightly better, our approach provides several
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Dallas building water grass tree street Pixel Avg
[%] [%] [%] [%] [%] [%]

Raw 96.20 n.a. 90.57 95.58 96.19 95.61
Potts model 96.91 n.a. 92.81 96.73 97.21 96.64

CRF 4-connected 96.99 n.a. 92.60 96.23 97.08 96.54
CRF super-Pixel 97.19 n.a. 92.86 96.53 96.92 96.61

San Francisco building water grass tree street Pixel Avg
[%] [%] [%] [%] [%] [%]

Raw 86.67 n.a. 87.91 91.68 95.39 89.62
Potts model 90.10 n.a. 90.45 94.50 97.11 92.47

CRF four-connected 90.06 n.a. 89.69 94.25 97.10 92.34
CRF super-Pixel 89.61 n.a. 91.81 94.90 96.89 92.32

Graz building water grass tree street Px Avg
[%] [%] [%] [%] [%] [%]

Raw 92.98 98.95 93.87 98.00 97.35 95.37
Potts model 93.14 99.29 94.77 98.64 98.59 95.95

CRF four-connected 93.15 99.27 94.62 98.48 98.52 95.90
CRF super-Pixel 93.15 99.50 94.79 98.50 98.61 95.95

[Gruber-Geymayer et al., 2005] 96.54 99.38 88.95 95.66 97.37 96.34

Table 4.3: A comparison of different refinement strategies: We skip the water class for
Dallas and San Francisco due to a missing water areas in the test images. The refinement
step successfully improves the final interpretation in terms of correctly classified pixel. In
addition, we compare the rates to the ones obtained by a workflow proposed in [Gruber-
Geymayer et al., 2005].

advantages. First, our approach provides an interpretation into predefined object classes
that are directly learned from the training data annotation. This is useful if e.g.training
data is automatically derived from web-based GIS systems. In addition, the set of object
classes is not limited to a certain group of objects. Second, we directly combine appear-
ance and 3D information, and exploit redundant classifications of perspective input im-
ages. This information could be additionally used for different application ranging from
automated GIS data derivation to full 3D facade description. Third, our workflow does
not introduce static information like that the building or tree class can be separated from
street or grass by means of the available elevation. It is evident that such an information
could be used to improve the final results of our workflow.
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Figure 4.28: Building classification for scenes of Dallas and San Francisco. We use
the edge information, either extracted from the color or the 3D height data, to refine the
classification. One can see that 3D height information significantly improves the final
building delineation.
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Figure 4.29: A visual comparison between the results obtained with our workflow and
the one described in [Gruber-Geymayer et al., 2005]. The first row shows the color image
tiles. The results computed with [Gruber-Geymayer et al., 2005] are given in the second
row, while our interpretation is depicted in the last row. Note that the refined classification
results have been aligned to a common world coordinate system in a first step. In addition,
we only compare corresponding object classes, the remaining, mainly uncertainty classes,
are skipped for the evaluation procedure and are denoted as white pixels. From a visual
inspection one can notice that our approach yields a similar interpretation result without
undefined regions.

4.6 Discussion and Summary

This chapter has discussed how to obtain congruent image tiles, represented within a
common view. for color, surface models and semantic interpretation. This can be clearly
seen as a holistic collection of various scene descriptions. As commonly used in pho-
togrammetry, we utilize the available range information to transform highly overlapping
scene observations to an orthographic view. Due to the provided high overlap in the aerial
project, redundant measurements for different source modalities are available for each
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sampled point on ground. In this chapter the modalities are handled individually to obtain
improved fusion results.

We have presented variational approaches for color and height data integration, which
can be accelerated using parallel computation. These methods are essential for large-scale
computations due to the enormous amount of data. In the experimental section, we have
showed that optimization strategies including different types of regularization are impor-
tant for maintaining the high quality of aerial images within the various fusion steps. In a
first step we used the TV-L1 energy functional, defined over multiple input observations,
to form an 2.5D height map of the observed scene. Moreover, we have presented a novel
variational method to fuse redundant gray and color images by using wavelet-based pri-
ors for regularization. To compute the solution of our large-scale optimization problems
we exploit an optimal primal-dual algorithm. We have shown that our fusion method is
well-suited for synthetic view generation in high-resolution aerial imagery, but also for an
integrated exemplar-based inpainting to remove, e.g., non-stationary objects, like cars.

In order to complete the holistic scene description, we have also aggregated the avail-
able multi-view semantic interpretation within the corresponding orthographic view. In
the evaluation framework we have investigated how highly overlapping semantic clas-
sification into different object classes influences the final result and how optimization
techniques can be applied to improve the final class labeling in terms of correctly classi-
fied pixels. In particular for the refinement of the accumulated interpretation results, edge
penalty functions derived from fused color or height information are utilized within the
energy minimization to assign the correct class labels with respect to real object bound-
aries. Compared to the rates obtained for single images (see Chapter 3), the fusion of re-
dundant initial classifications and a sophisticated refinement stage significantly increase
the final percentage of correctly explained pixels to more than 92%. Especially for the
building classification we have shown that an integration of 3D information into the re-
finement step successfully separates the elevated structures from the background.

From this chapter we conclude that redundant scene observations of any modality help
to improve the final result concerning noise suppression, the amount of undefined pixels
and classification accuracy. Especially, variational methods providing sophisticated reg-
ularization techniques, are essential for the processing of aerial imagery due to accuracy,
well-defined formulations and efficiency. Moreover, the potential parallelization schemes
fit the multi-core technology and enable extremely low computation times, which is im-
portant in case of handling immense amount of collected input data.
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Figure 4.30: A holistic description of Graz represented within an orthographic view with
a GSD of 8 cm. The proposed workflow provides the fused color data, the surface and
terrain model (we only depict the DSM), and a semantic interpretation of the mapped
environment by utilizing 155 highly overlapping aerial images. A number of 20 × 10

patches are combined into individual image structures, each with more than 450 MPixels.
The mapped regions shows the inner-city of Graz and covers an area of approximately
3.3 sqkm.
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Figure 4.31: Inpainting results using a car detection mask. We compute the car mask
with the approach described in [Mauthner et al., 2010]. From left to right: The car de-
tection mask, the fusion result computed without using a car detection mask, the result
obtained by pure inpainting and the inpainting with supporting exemplars. The car areas
are successfully removed in both cases, however the exemplar-based inpainting appears
more naturally.
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Figure 4.32: Car detection and inpainting from overlapping images. The first row shows
some overlapping perspective input images overlaid with the car detection mask. By us-
ing the available range images and camera data we project the information to a common
orthographic view (the second row shows the color information, while the third row de-
picts the projected car detection. The fused color image without using the car detection
and the inpainting result is given in the last row.
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Chapter 5

From Interpreted Regions to 3D Models

In the previous chapters we have highlighted a workflow for digital aerial images, that
provide us with a holistic description of urban environments. The processing steps yield
many corresponding image tiles, representing color information, surface and terrain mod-
els and semantically interpreted regions. This collection of data can be used to generate
large-scale synthetic or realistic models of environments in a next step. While photo-
realistic city models mainly consist of uninterpreted meshes with assigned texture infor-
mation, we rather focus on semantic modeling, where the model is constructed according
to an available interpretation. These models enable fast search queries and can be effi-
ciently streamed over the Internet or easily applied to procedural modeling. We particu-
larly focus on an efficient and purely image-driven reconstruction of the roof landscape
by exploiting the holistic scene description. However, in a similar way the image tiles
can also be used to generate a complete street network or to recreate vegetation with
compactly parametrized models of trees and bushes. Our approach again extensively in-
tegrates both appearance cues and height data to accurately extract building regions and
to model complex rooftops. The main processing steps rely on fast color segmentation
techniques based on super-pixels, the estimation of suitable geometric prototypes and a
quick modeling procedure, where each super-pixel is extruded to 3D by using the avail-
able height information. Considering the super-pixels as smallest units in the image space,
these regions offer important spatial support for an information fusion step and enable a
generic geometrically modeling and a simple description of arbitrary building footprints
and rooftop shapes. Again we apply our approach to three different datasets showing
environments of Dallas, Graz and San Francisco.

127
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5.1 Introduction

Methods for building detection, extraction and 3D modeling from aerial imagery have
become very popular, especially in remote sensing, due to a rapidly increasing number of
applications, like urban planning and monitoring, change detection, navigation support,
cartography or photogrammetric survey. Large areas of the world are now being mapped
at human-scale detail to support these applications. A central task is the detection and
3D modeling of building structures. A comprehensive survey of building detection from
aerial imagery is given in [Mayer, 1999]. In recent years an intense research on auto-
matic methods for building modeling at a city-scale has been undertaken [Vosselman and
Dijkman, 2001, Parish and Müller, 2001, Werner and Zisserman, 2002, Zebedin et al.,
2008, Lafarge et al., 2010]. Nowadays, useful approaches need to be fully automated al-
lowing large-area mapping at low cost. Nevertheless, the enormous amount of collected
data requires fast methods and sophisticated processing pipelines, getting by with a mini-
mum of human interaction.

In the case of large-scale datasets the process of building extraction and modeling
from urban environments becomes very difficult for many reasons. Buildings are complex
objects with many architectural details and shape variations. Buildings are located in
urban scenes that contain various objects from man-made to natural ones. Many of those
are in close proximity or overlapping and occluding each other, such as parking lots,
vehicles, street lamps, trees, etc. Some objects are covered with shadows or cluttered.
For instance, Figure 5.1 depicts typical urban scenes taken from three different datasets
showing some of these properties. These variations make the task of a general building
extraction and modeling challenging.

We therefore propose an approach, which greatly utilizes the available holistic de-
scription of scenes, ranging from color and texture, to 3D information and a full semantic
interpretation of the pixels. As shown in the Chapters 3 and 4, a sophisticated combina-
tion of appearance cues and 3D data provides a reliable detection of building structures
in aerial images. Having an accurate knowledge about the land-use enables a model con-
struction according to the corresponding interpretation by simultaneously using available
color and height observations.

Additionally, we again introduce an unsupervised color segmentation technique based
on super-pixels [Vedaldi and Soatto, 2008] for a generic construction of entire rooftop
landscapes. Super-pixels are coherent images regions, describing the smallest unit in
the image space and are not limited to predefined sizes or shapes. Hence, in the opti-
mal case a set of super-pixels enables a composition of any building footprint. Together
with an estimated plane (here we additionally exploit the congruent height information),
each super-pixel is used to form a geometric part of a rooftop. A final refinement step
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Figure 5.1: Typical color images of complex urban scenes taken from the dataset Graz,
Dallas and San Francisco. Note that each dataset provides an immense amount of build-
ing types and variations. In order to handle this challenging data we first propose to utilize
elevation measurements in combination with color information and secondly we use color
segmentation based on super-pixels to model any type of building shape.

yields a piece-wise planar approximation by taking into account the extracted geometric
parametrization of adjacent super-pixels. Therefore, our approach exceedingly exploits
the redundancy in the data, mainly given by color, height and building classification, in
order to reconstruct the rooftop landscape. Apart from some human interaction to label
training maps for learning the classifiers (this has been addressed in the previous chap-
ters), the proposed method runs automatically with a low number of parameters to adjust.
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5.2 Related Work

Recent approaches heavily differ in the use of data sources, extracted feature types and the
applied models. A couple of recently proposed methods exploit 3D information provided
by LiDAR data [Matei et al., 2008,Poullis and You, 2009], but already earlier approaches
[Bignone et al., 1996, Cord et al., 1999] used a combination of 2D and 3D information
for building extraction and modeling. Matei et al. [Matei et al., 2008] proposed a large-
scale building segmentation for densely classified urban environments. Their approach
accurately preserves object boundaries and enables an accurate modeling of rooftops,
however the approach requires a fine parameter tuning. Poullis and You [Poullis and
You, 2009] employed a three-staged approach, including preprocessing, segmentation and
modeling, for a fully automatic yet large-scale construction of polygonal 3D city models
from LIDAR data. They evaluated the approach on a variety of datasets.

Due to improvements in the field of stereo and multi-view matching (see [Hirschmüller,
2006, Irschara, 2011]), an increasing number of methods directly utilize DSMs, that are
extracted from redundant images. Lafarge et al. [Lafarge et al., 2008] detected rectan-
gular building footprints in the surface models and used symmetry criteria to roughly
estimate the geometry of rooftops. In [Lafarge et al., 2010] the authors extended this
approach with a library of 3D blocks for improved building generalization from single
DSMs. These blocks can be seen as pieces sticked together for building construction and
have to be given in advance. A coarse estimation of the rooftop landscape can then be
used to detect structures at a finer scale [Dornaika and Bredif, 2008]. In contrast, to ex-
ploit a given number of designed models, we rather consider individual image regions,
provided by super-pixel segmentation, as the smallest units representing generic building
parts.

While Taillandier [Taillandier, 2005] exploited cadastral maps, aerial images and a
DSM for a generic modeling, Vosselman and Dijkman [Vosselman and Dijkman, 2001]
reconstructed rectangular shaped buildings from point clouds and given ground plans by
detecting line intersections and discontinuities between planar faces. Baillard and Zis-
serman [Baillard and Zisserman, 2000] proposed an automatic method to generically
construct a piecewise planar model from multiple images. More generally, Zebedin et
al. [Zebedin et al., 2008] proposed a concept based on fusion of feature and area informa-
tion for building modeling. The method relies on directly extracting geometric prototypes,
such as planes and surfaces of revolution, taking into account height data, 3D lines and an
individual building mask. A CRF-based optimization procedure refines the final result to
form consistent and piecewise planar rooftop reconstructions.

Our modeling approach is mainly based on the availability of a semantic interpreta-
tion, where building regions can be easily extracted. Related methods involve classifi-
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cation techniques to automatically distinguish between mapped objects. Matikainen et
al. [Matikainen et al., 2007] employed a DSM segmentation and a color-driven classifi-
cation to discriminate buildings from trees. In [Zebedin et al., 2006] the authors fused
information from redundant multi-spectral aerial images within a multi-stage approach to
generate orthographic images for color, 3D height and land-use classification.

5.3 Overview

This chapter outlines an approach for efficient, fully image-driven building extraction and
synthetic 3D modeling in large-scale aerial imagery, by using an available holistic scene
description consisting of color, surface models and semantic interpretation. Our entire
modeling concept is summarized in Figure 5.2.

We consider highly overlapping color aerial images and two types of derived height
fields as input sources: As described in Chapter 2, a dense matching approach [Klaus
et al., 2006] provides us with corresponding range information for each pixel in the input
images. Note that the range information defines a DSM in a 3D coordinate system. A
DTM, representing the bald earth, is computed in advance from the DSM by using a
similar approach as described in [Unger et al., 2010].

In order to compute the building classification we utilize the results of the approach
as described in Chapter 3. We perform a binary classification by using the Sigma Points
feature representation within RF classifiers in order to obtain an initial interpretation at
the pixel level for each image in the dataset. Note that our modeling approach can be fed
with any computed semantic interpretation, either the five-class interpretation (building,
water, tree, grass and street), where we finally extract building regions, or the pure binary
building classification. Due to the high overlap in the aerial imagery, each mapped point
on the ground provides class distributions computed from different viewpoints. Then,
a pixel-wise fusion step of multiple views into a common 3D coordinate system gener-
ates redundant image tiles for various source modalities, like image interpretation, color
and height information (see Chapter 4). This fusion step provides corresponding image
patches for color, height and semantic (building) classification in an orthographic view. In
addition a terrain model enables a direct computation of elevation measurements required
for the modeling procedure. Figure 5.3 shows two neighboring sets of the required input
data (color, height and building class confidences), represented in an orthographic view.

The main step of our approach involves the generic rooftop construction taking into
account the computed super-pixels. A generation of super-pixels provides footprints for
any object in an observed color image. Taking into account the refined building classifica-
tion and additional height information, 3D geometric primitives, describing the smallest
unit of a building rooftop, can be extracted efficiently. Then, estimated rooftop hypotheses
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Figure 5.2: Overview of the proposed building extraction and modeling approach: We
again utilize color images and height information to detect and construct 3D building
models. Note that the building classification and the fusion processing steps are described
in detail in the Chapters 3 and 4, respectively.

for each super-pixel in a building (we simply extract connected components on the adja-
cency graph) are collected and clustered in order to find representative rooftop prototypes.
In our case we use a spectral clustering step [Frey and Dueck, 2007] to detect represen-
tative geometric prototypes. Finally, a CRF optimization consistently assigns the found
prototypes to each super-pixel in building considering the resulting reconstruction error
and the neighborhood segments. To show the performance of our modeling approach we
apply the method to the datasets Dallas, Graz and San Francisco.
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Figure 5.3: Two neighboring sets of input patches of Graz used in the modeling pipeline:
we use a holistic collection of fused orthographic image tiles consisting of color (first col-
umn), height (second column) and raw building confidences (last column). Additionally,
we exploit the available terrain model to generate the final building models.

5.4 Building Modeling based on Super-Pixels

A variety of modern methods integrate unsupervised image segmentation methods into
the processing workflow in order to accurately detect real object boundaries. Several ap-
proaches utilize multiple segmentations [Malisiewicz and Efros, 2007, Pantofaru et al.,
2008]. However, the generation of many image partitions induces enormous computa-
tional complexity and is thus impractical for aerial image segmentation. Fulkerson et
al. [Fulkerson et al., 2009] proposed recently to use super-pixels, rapidly generated by
Quickshift [Vedaldi and Soatto, 2008]. These super-pixels accurately preserve object
boundaries of natural and man-made objects. Figure 5.4 depicts a super-pixel segmenta-
tion result obtained for different parameter settings.

Applying a super-pixel segmentation to our approach offers several benefits: First,
computed super-pixels can be seen as the smallest units in the image space. All subse-
quent processing steps can be performed on a reduced adjacency graph instead of incorpo-
rating the full pixel image grid, thus reducing the data volume. Furthermore, we consider
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(a) Original 256x256 (b) 309 Super-pixels

(c) 151 Super-pixels (d) 88 Super-pixels

Figure 5.4: A super-pixel segmentation obtained with Quickshift [Vedaldi and Soatto,
2008] for a small scene of Graz. The image partitions are computed for different parame-
ter settings (τ = 2.0, σ = {8.0, 10.0, 12.0}) and result in a different quantity of segments.
Note that for all parameters the real boundaries are almost captured completely. In our
experiments we keep the parameters fixed for all three datasets.

super-pixels as homogeneous regions, providing important spatial support: Due to edge
preserving capability, each super-pixel describes a part of only one class, namely building
or background. Aggregating data, such as the building classification or height informa-
tion, over the pixels defining a super-pixel compensates for outliers and erroneous pixels.
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Figure 5.5: A rendering of a small scene of Graz. The left image shows the original point
cloud rendering using available color and height information. The right figure depicts the
rendering overlaid with the Quickshift super-pixel segmentation (τ = 2.0, σ = 10.0).
In our approach we exploit the super-pixel regions to determine representative geometric
primitives.

For instance, an accumulation of building probabilities results in an improved building
classification for each segment. A color averaging within small regions synthesizes the
final modeling results and significantly reduces the amount of data. More importantly, we
exploit super-pixels, which define parts of the building footprints, for the 3D modeling
procedure. Taking into account a derived polygon approximating of the boundary pixels
and corresponding height information, classified building footprints can be extruded to
form any type of geometric 3D primitives. Thus, introducing super-pixels for footprint
description allows us to model any kind of ground plan and in the following the rooftop
landscape. In addition, extracted polygons together with determined color and geometric
prototypes can be efficiently stored and streamed over the Internet. In Figure 5.5 a point
cloud rendering is overlaid with the obtained super-pixel segmentation. Our approach
yields a representative geometric primitive for each building super-pixel.

5.4.1 Prototype Extraction

Let S be a set of super-pixels Si = {s1, . . . , sK}, classified as parts of a building i, we
initially fit geometric primitives to the available corresponding point clouds provided by
the fused digital surface model. Due to the fact that a super-pixel is a list of 2D coordi-
nates and that the surface model provides corresponding height information at the pixel
level, a terrain model gets directly used to extract a point cloud Pk = {p1, . . . ,pN} in the
world coordinate system for each super-pixel sk ∈ Si with k = {1 . . . K} and |sk| = N

individual points. In this work we only consider planes as geometric primitives, however,
the prototype extraction process can be extended to any kind of primitives. Due to ro-
bustness we apply Random Sample Consensus (RANSAC) [Fischler and Bolles, 1981]
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over a fixed number of iterations to find those plane, minimizing the distance to the point
cloud, for each super-pixel representing a part of a building. Note that even least square
estimates or a fitting with a huge set of pre-defined prototypes could be used instead. This
procedure yields an initial rooftop hypothesis hk = (qk,nk) for each super-pixel defined
by a 3D single point qk ∈ R3 on the estimated plane and a normal vector nk ∈ R3. The
set of hypothesis Hi for a building i is denoted as Hi = {h1, . . . , hK}. Figure 5.7 shows
a color-coded assignment of individually extracted geometric prototypes.

5.4.2 Prototype Clustering

As a next step, we introduce a clustering of the geometric hypotheses Hi for two reasons:
Since the optimization step can be seen as a prototype labeling problem, similar 3D prim-
itives should provide same labels in order to result a smooth reconstruction of a rooftop.
Second, the clustering significantly reduces the number of probable labels, which bene-
fits the efficiency of the subsequent optimization procedure. In addition, the space of the
possible parametrization can be reduced in advance.

In our approach we use affinity propagation [Frey and Dueck, 2007] to efficiently
determine a reduced set H ′i ⊆ Hi of representative exemplars of 3D primitives. Affinity
propagation takes as input a distance matrixD of pairwise similarity measurements. Note
that the number of exemplars has not to be defined beforehand, but is estimated from the
input exemplars. We construct the similarity matrix as follows: For each 3D primitive
hk ∈ Hi, which consists of a normal vector nk and a single 3D point qk in space, we
estimate the reconstruction error by taking into account the current prototype hypothesis
hk and a random set of points Pj extracted from an adjacent super-pixel of sk. Let be l =

pn + t[0, 0, 1]T the equation of a perpendicular line with t ∈ R and let be qk ·nk + dn = 0

the equation of a plane, we can compute a distance dn between the point pn and the point
p′n projected onto the plane according to

dn = ‖pn − p′n‖2 = ‖
(
pn + t[0, 0, 1]T

)
− pn‖2 = ‖t[0, 0, 1]T‖2 , (5.1)

with

t =
nk · (qk − pn)

nk · [0, 0, 1]T
. (5.2)

Figure 5.6 shows an illustrative example. For each hypothesis hk we compute a normal-
ized reconstruction error over a randomly sampled point cloud to additionally speed up
the computation of the distance matrix required for the clustering procedure. An element
(j, k) in the distance matrix, which corresponds to the reconstruction error between two
super-pixels j and k is then computed with
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Figure 5.6: An illustration of a distance computation between a geometric primitive de-
fined by a plane (qk,nk) and a point cloud Pk. We use a random subset of points to
estimate a reliable geometric primitive representation of the point cloud provided by each
super-pixel.

D(j, k) = 0.5

(
1

|n1|
∑
n1

djn1
+

1

|n2|
∑

dkn2

)
, (5.3)

where n1 and n2 are indexes of randomly selected points. Since affinity propagation sup-
ports sparse similarity matrices [Frey and Dueck, 2007], we consider only adjacent image
regions, which additionally reduces computational costs for constructing the distances.
The clustering procedure yields a set of representative geometric primitive prototypes,
which are used to approximate a rooftop shape with respect to the available height in-
formation. Assigned clusters are shown in Figure 5.7 for the Kunsthaus scene. One can
see that geometrically similar structures (represented within a super-pixel) are assigned
a representative geometric prototype. As a next step we use an optimization based on a
CRF formulation to obtain a consistent prototype labeling for each individual building.

5.4.3 Prototype Refinement

Although extracting geometric prototypes by using super-pixels captures some local in-
formation, the super-pixel regions in the image space, assigned with geometric primitives,
are handled nearly independently. In order to incorporate spatial dependencies between
nodes defined on the image grid, CRF formulations [Boykov et al., 2001] are widely used
to enforce an evident and smooth assignment of probable label candidates. In contrast to
minimizing the energy on a full four- or eight-connected image grid we apply the CRF
stage defined on the super-pixel neighborhoods similar as proposed in [Fulkerson et al.,
2009]. This optimization provides a consistent labeling of the geometric prototypes in
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Figure 5.7: Intermediate results for the Kunsthaus scene in Graz. The first column depicts
the computed super-pixels overlaid with the building mask (see Section 5.4 and 5.4.1).
Note that each super-pixel is assigned an individual geometric prototype. The second
column shows the assignment after clustering the geometric prototypes. The result of
the CRF-based refinement step, which groups super-pixels by taking into account the
geometric primitives, is given in the last column.

order to obtain piecewise planar rooftops.
In our case c represents a labeling of the adjacency graph that assigns each super-pixel

sk in a building i a final label ck ∈ H ′i, where H ′i is the set of representative geometric
prototypes obtained by the clustering process. In this case a label is a possible assignment
to a specific geometric primitive.

Let G(S,E) be an adjacency graph with a super-pixel node sk ∈ S and a pair
(sk, sj) ∈ E be an edge between the segments sk and sj , then an energy can be defined
with respect to the class labels c. Generally, the energy can be defined as

E(c|G) =
∑
sk∈S

D(sk|ck) + λ
∑

(sk,sj)∈E

V (sk, sj|ck, cj) , (5.4)

where D(sk|ck) expresses the unary potential of a super-pixel node. Similar as proposed
in [Zebedin et al., 2008], the unary potential D(sk|ck) denotes the costs, in terms of
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summed point-to-plane distance measurements, of sk being assigned a geometric proto-
type. For each geometric primitive in hj ∈ H ′i we compute the unary potential for a
super-pixel sk with

D(sk|ck) =
1

|n1|
∑
n1

djn1
. (5.5)

where n1 is a random subset of points and djn1
is the point-to-plane distance as defined

in (5.1). In order to obtain a smooth geometric prototype labeling within homogeneous
building areas, we compute the pairwise edge term V (sk, sj|ck, cj) between the super-
pixels sk and sj with

V (sk, sj|ck, cj) =
b(sk, sj)

1 + g(sk, sj)
δ(ck 6= cj). (5.6)

The function b (sk, sj) computes the number of common boundary pixels of two given
segments, g(sk, sj) is the L2 norm of the mean color distance vector and δ(·) is a sim-
ple zero-one indicator function. The scalar λ controls the influence of the regularization
and is estimated by using cross validation. In this work we again minimize the energy
defined in (5.4) by using α-expansion moves [Boykov et al., 2001]. A refined labeling of
prototypes is shown in the right column of Figure 5.7.

5.4.4 Rooftop Modeling

So far, the footprint of each building consists of a set of defined super-pixels in the im-
age space. In order to obtain a geometric footprint modeling of each super-pixel, we
first identify common boundary pixels between adjacent building super-pixels. For each
super-pixel, this procedure extracts a specific set of boundary fragments, which can be
individually approximated by straight line segments. A pairwise matching of collected
line segments yields a closed yet simplified 2D polygon. Note that we assume convexity
of these polygon in order to obtain a quick triangulation. Taking account of the DTM and
the refined geometric primitive assignment, the footprint polygons defined by a number of
vertexes are then extruded to form small units of a rooftop: distinctive 3D rooftop points
are determined by intersecting the plane (given by the geometric primitive) with a line,
directed to [0, 0, 1]T , going through the corresponding vertex on ground. For the purpose
of visualization, we simply use a 2D Delaunay triangulation1 to generate the models of
the buildings. An individual 3D building model of our approach can now be seen as a
collection of composed building super-pixels having identical building and rooftop proto-
type indexes, respectively. It is obvious that a hierarchical grouping of super-pixels could

1 CGAL, Computational Geometry Algorithms Library, www.cgal.org
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Figure 5.8: The resulting 3D model for the Kunsthaus and a neighboring building. Each
building consists of a collection of super-pixels, represented as polygons, with an assigned
mean color value and a geometric prototype. It can be noticed that the red rooftop in the
foreground is reconstructed accurately. The optimization process results in 4 dominant
geometric prototypes. In the case of the complex bluish structure, it is obvious that the
resulting model is composed of many (planar) geometric primitives.

be used to further simplify the resulting building model. Figure 5.8 displays the result of
our modeling procedure, obtained for the Kunsthaus scene.

5.5 Experiments

This section evaluates our proposed concept on a large amount of real world data. Thus,
we present results of our building generalization and perform quantitative and visual in-
spection of the constructed models for the three datasets Dallas, Graz and San Francisco.
Due to limitations in memory the building model is computed for image tiles with a size
of 1600× 1600 pixels. Table 5.1 summarizes the basic information for the three datasets
used in the evaluation.

In our performed experiments, Quickshift is applied to a five-dimensional vector, con-
sisting of pixel location and CIELab color. The parameters for Quickshift are set to
τ = 2.0 and σ = 8.0. It turned out that these parameters capture nearly all object bound-
aries in some observed test images. In addition, this parameter setting has given a reliable
trade-off between generating sufficiently small regions in order to accurately reconstruct
curved shapes at low computational costs. For a 1600 × 1600 pixel image tile we obtain
approximately 4800 super-pixels with nearly constant regions sizes.

In order to obtain a quantitative evaluation, the root mean squared error (RMSE) over
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Dataset Image tiles Area # of Buildings # Pixels
Dallas 11× 11 7 sqkm 1160 76.81e6
Graz 24× 14 5.5 sqkm 2572 298.6e6

San Francisco 11× 11 7 sqkm 1927 113.91e6

Table 5.1: Basic information for the evaluation. We perform the experiments on the full
area covered by the provided perspective aerial images. Due to high redundancy in the
imagery an image tile includes information from up to 15 perspective views and has a
dimension of 1600 × 1600 pixels, which corresponds to a real size of 240 × 240 meters
for Dallas and San Francisco, and 128× 128 meters for Graz, respectively.

all building pixels is computed between the DSM values and the heights obtained by our
3D modeling procedure. Since there exists no ground truth data, e.g., in form of separately
generated LiDAR point cloud we have to assume that the original point cloud, provided
by the fused digital surface model, provides us with ground truth heights. Clearly, image
regions with large reconstruction errors caused by partial occlusions or specular facades
will distort the error measurements to some extent. For each building separately we deter-
mine the RMSE between the 3D points, resulting from the dense matching and the fusion
step, and the corresponding (refined) geometric primitive. To obtain a meaningful error
computation we compute median, first and second order statistics over all buildings in a
dataset. In addition, we repeat the experiments for different λ, which controls the trade-off
between model simplification and data fidelity. Table 5.2 summarizes the obtained results
of our quantitative evaluation. We can observe that our modeling approach obtains an ac-
ceptable small deviation for Graz and San Francisco with lower than 1.5 m. Taking into
account the obtained results for Dallas, one can notice that reconstruction errors caused
by specular facades and huge areas of occlusions drastically corrupt the accuracy of our
modeling process in terms of an increased RMSE and high standard deviation. Moreover,
it is obvious that the intensity of the regularization introduces higher deviations between
the real and geometrically refined point cloud. In addition, it is evident that the strength
of regularization controls the model simplification, and thus, the number of residual ge-
ometric prototypes. While no regularization yields an averaged number of 24 extracted
geometric candidates per building block (Graz), a λ = 1.0 reduces to a quantity of 11

prototypes. Figure 5.9 depicts a scene of Graz from two viewpoints for different values
of regularization. Furthermore, it is obvious that the model computed with λ = 0.01

shows high granularity with respect to the extracted prototypes, while the result obtained
with λ = 5.0 appears too simplified. Therefore, we choose values, ranging from 0.1 to
1.0, to construct the building models. Note that even an adaptive value can be used by
incorporating the original point cloud into an efficient feedback loop.
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Dallas Graz San Francisco
λ Median Mean Std Median Mean Std Median Mean Std

[m] [m] [m] [m] [m] [m] [m] [m] [m]
0.001 1.159 2.016 3.404 0.963 1.047 0.688 1.212 1.452 1.136
0.01 1.178 2.024 3.423 0.960 1.051 0.690 1.197 1.449 1.137
0.1 1.153 2.028 3.404 0.960 1.056 0.692 1.220 1.455 1.130
1.0 1.398 2.213 3.395 1.097 1.191 0.708 1.423 1.649 1.140
5.0 2.113 2.835 3.508 1.720 1.773 0.939 1.868 2.082 1.320

Table 5.2: Statistics of the error measurements between the (real) DSM values and re-
constructed heights using our modeling approach. We calculate the deviations in meters
over all buildings in datasets for different strengths of regularizations.

Average processing time
per image tile (1600× 1600 pixels) 65 s

Segmentation 25.3 %
Extract super-pixel information 6.2 %

Prototype Extraction 19.4 %
Prototype Clustering 47.7 %
Prototype Refinement 0.6 %

Rooftop Modeling 0.7 %

Table 5.3: Time consumption of the individual processing steps for a single image patch.
The super-pixel segmentation, the prototype extraction and clustering consume most of
required computation time. These values can be significantly reduced by, e.g., implement-
ing the proposed steps on a GPU.

In Figures 5.10, 5.11, 5.12 and 5.13, computed 3D models are shown for Dallas, Graz
and San Francisco. For efficiency and large-scale capability, these models are sticked
together in tiles of 1600 × 1600 pixels. Given the fused color, height and classification
images, the entire 3D model of Graz can be computed within a couple of hours using
a standard dual-core machine. Table 5.3 outlines an assembly of the time consumption
for each processing step. Super-pixel segmentation, prototype extraction and clustering
consume most of the required computation time.
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Figure 5.9: 3D building models of the Griesplatz (located in Graz) shown from two
different viewpoints. The model is computed for different intensities of regularization.
From top to bottom: point cloud provided by the DSM, model refined with λ = 0.01

(the model appears very rough) and λ = 5.0 (the model seems over-smoothed). Thus, we
choose the regularization between 0.1 and 1.0.
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Figure 5.10: 3D building models of Dallas. The full model of Dallas (first row) cov-
ers an area of approximately 7 sqkm and can be constructed within a couple of hours
on a standard machine. In particular, computed building models of skyscrapers suffer
from reconstruction errors, caused by massive occlusions and large specular facades. To
be optimistic, an improved multi-view matching method [Irschara, 2011] will overcome
problems, like an inconsistent prototype assignment. Moreover, one can see that elevated
circulation spaces, such as highways, are classified as building structures and therefore
modeled with the proposed pipeline.

5.6 Discussion and Summary

In this chapter we have described an efficient, purely image-driven approach for construct-
ing semantic 3D models of buildings by utilizing an available holistic scene description
consisting of color, 3D height information and a corresponding semantic interpretation.
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Figure 5.11: The 3D building models of Graz covers an area of approximately 5.5 sqkm.
The model is depicted from different viewpoints. Note that even complex building struc-
tures are preserved accurately.

In particular, involving a super-pixel segmentation enables a generic 2D modeling of any
building footprint and in the following a modeling of complex rooftop shapes. Since the
super-pixels describe the smallest units in the image space, processing steps, like geo-
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metric prototype extraction and refinement, benefit from a reduced image grid and thus
significantly reduce the computational complexity. Hence the holistic description within
the orthographic view is extended with super-pixel segmentation results in order to en-
able efficient processing steps, like the street network extraction or an alignment with
web-based GIS data, on an adjacency graph. We have applied our approach to differ-
ent aerial projects and have demonstrated large-scale capability with low time consump-
tion. In contrast to photo-realistic mesh-based models, building models at a city-scale,
constructed with the proposed methods, are comprised of a huge collection of uniquely
identified building blocks, where each block is composited as an assembly of grouped
pixels (in our case super-pixels). Each super-pixel is assigned with derived properties,
like a geometric primitive, a mean color, an approximated boundary, etc., which can be
efficiently represented in a hierarchical data structure. This hierarchical structure can be
easily exploited to efficiently generate models at different levels of detail with CityGML1

or to provide input sources for grammar-based or procedural visualization methods, such
as CityEngine [Parish and Müller, 2001]. It is obvious that an optimization strategy would
additionally reduce the complexity of the generated building models by collecting sets of
super-pixels that describe basic 2D shapes, like rectangles or circles.

1 http://www.citygml.org
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Figure 5.12: 3D building models of Graz. We additionally overlaid the 3D visualization
with a triangulated DTM. One can observe that this background information improves the
impression of the model nicely. Note that every building is identified by an unique key
and fully described with a few parameters.
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Figure 5.13: 3D building models of a part of San Francisco. The model of San Francisco
covers an area of 2500 × 2500 meters. Since our holistic collection also offers a fused
terrain model, the building block can be placed according to the provided real height
values.



Chapter 6

Conclusion

This thesis has addressed the problem of semantic image interpretation of large-scale
aerial images, utilizing redundancy, appearance and 3D information. The redundancy
in the aerial data, which results from the highly overlapping image acquisition, enabled
image-based methods for the estimation of dense and pixel-synchronous 3D scene infor-
mation.

Based on a novel statistical descriptor and a fast classifier, we have derived a semantic
interpretation workflow that compactly combines redundant measurements for each pixel,
consisting of color, derived edge responses and height values. The experiments have
shown that the compact integration of these measurements improves the classification
accuracy significantly. This has also confirmed to use sophisticated image representations,
which tightly integrate appearance and 3D information. Applying the workflow to every
image in the aerial data has obtained a redundant image interpretation and can thus be
seen as a large-scale multi-view classification strategy.

Since the full scene geometry is given by the 3D reconstruction, a fusion step has
been introduced to integrate the highly overlapping and therefore highly redundant infor-
mation into a common view. A projection to this common view has permitted the fusion
of multiple observations for color, height and semantic classification by using powerful
energy optimization methods. In particular, energy optimization methods, defined over
multiple observations, have yielded spatially consistent and noise-reduced results. Un-
defined regions, mainly caused by moving objects or occlusions, are successfully filled
by considering highly redundant image data. From the experiments we can conclude that
task-specific regularization strategies, such as total variation, wavelets or the Potts model,
are essential to integrate multi-view information for color, object class assignments and
height values.

The derived holistic scene description has finally enabled a computation of parametrized
building models - a step towards a fully interpreted virtual city. The building models, in
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turn, have been computed through utilizing the interchange between appearance and 3D
information cues.

By using the three challenging datasets of Dallas, Graz and San Francisco, we have
demonstrated a high generalization capability. Additionally, only a few parameters, mainly
chosen from reasonable value ranges, are required to control the entire workflow. In the
following section we summarize the proposed methods and outline some ideas for future
research.

6.1 Summary

The presented workflow in this thesis takes as input redundant color and range images
and generates a set of congruent images. They consist of fused color information, surface
models and a refined semantic labeling, which assigns a specific object class to each
pixel. In this work we have addressed the problem of building classification, as well as
the multi-class case, where we distinguish between the classes building, street, tree, grass
and water. In order to obtain a reliable semantic labeling we propose to use available
appearance and 3D information cues extensively.

In Chapter 3 we have worked out the advantages of digital aerial mapping and have
described the required source modalities, like the generation of redundant range images
and the computation of terrain models. Additionally, this chapter has outlined the ortho-
graphic representation and the characteristics of the applied real-world aerial projects.

In Chapter 3 we have introduced the semantic interpretation of single high-resolution
aerial images. To obtain a reliable object class assignment for each pixel, we have out-
lined a novel region descriptor which is based on Sigma Points features. This represen-
tation allows us to integrate appearance and 3D information compactly, without consid-
ering normalization issues. The use of efficient data structures, such as integral images
and fast multi-class learners, offers low computation times. In addition, we have out-
lined the utilization of unsupervised segmentation, providing important spatial support
and optimization strategies to accurately delineate the mapped objects with respect to the
real boundaries. The per-image interpretation workflow has been evaluated on standard
benchmark datasets and huge aerial images. On aerial images we have demonstrated that a
tight combination of appearance and 3D information is essential for an accurate semantic
interpretation at the level of pixels.

Chapter 4 has studied the fusion of redundant observations for the obtained semantic
interpretation, color and height information. Due to the high geometric redundancy of
the aerial imagery and the availability of well-defined scene geometry, a projection to a
common view has provided highly redundant measurements for each involved modality.
We have thus demonstrated that available range images, representing the scene geometry,
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can be successfully used to align the overlapping perspective image information into a
common view. In a first step energy optimization has been used to integrate redundant
scene observations for color and height. We have applied the well-established TV-L1

model, as well as an extended fusion model that uses improved wavelet-based image
priors. To obtain a congruent semantic interpretation in the orthographic view, the highly
redundant multi-view classification has been projected to the orthographic view and then
been aggregated. An optimization based on the Potts model has offered a simple way
to capture object edges by incorporating appearance or height data. The evaluation has
clearly shown that the geometric, but also the radiometric redundancy, is important for
the generation of a holistic scene description composed of color, height and semantic
interpretation.

Finally, in Chapter 5 we have addressed the modeling of the obtained semantic in-
terpretation. In contrast to photo-realistic modeling, where the models usually consist
of textured meshes, we have focused on virtual modeling providing semantic knowledge
about the underlying content. We have particularly discussed the construction of fully
parametrized 3D building models. The proposed approach has again relied on an inter-
action between semantic classification, available color and height information. Our ap-
proach has obtained fully parametrized building models. The estimated parameters have
then been used for 3D visualization, consisting of a data-efficient assembly of polygons,
geometric prototypes and mean color values.

6.2 Outlook

This thesis has described an approach with a high degree of automation to derive a holistic
description of aerial images. Although we have presented the work in the context of
aerial imagery, it is evident that the proposed concepts could also be applied to terrestrial
images or any other scale of image acquisition. In some points, there is still room for
improvements in further research.

6.2.1 Training Data

A big step towards an automatic image understanding must be the reduction of massive
human interaction that is required to generate training maps providing the object labels.
While web-based photo communities on the Internet, like Flickr, Google Images, etc.,
which offer multiple images from nearly every hot-spot in the world, are usually ex-
ploited to improve the 3D reconstruction for free, the acquisition of labeled data for a
semantic classification can be accomplished by playfully contributing a lot of manual
interaction, such as with LabelMe [Russell and Torralba, 2009] or by simply using ex-
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pensive paid services, like Amazon Mechanical Turk [Sorokin and Forsyth, 2008]. One
goal must therefore be to take advantage of GIS resources, in form of publicly available
user-annotated Internet data, in order to reduce the manual intervention and to improve
the semantic classification. The OpenStreetMap1 initiative particularly offers a rapidly
growing amount of vector-based data that contains GPS locations of buildings, sights and
trees, courses of rivers and streets. Taking into account this information, annotations for
object classes, like buildings, trees, streets, etc. might be extracted, forming an enormous
set of training labels at the pixel-level for each dataset without considering the coverage
and landscape characteristics.

6.2.2 Joint Estimation of 3D and Semantic Interpretation

In this thesis we have assumed that 3D scene structure is computed in advance from
overlapping source images. Although we have proposed to compactly combine available
appearance and 3D information for an accurate semantic interpretation, one might think
that classification and 3D reconstruction might be estimated jointly, since these problems
are mutually informative. On the one hand, height data can be a very informative cue to
discriminate between object classes, like building and streets, or to distinguish between
different types of vegetation. On the other hand, information about the objects yields a
strong prior about the underlying 3D structure and can improve dense matching results
in regions, where photo-consistency computation is challenging due to low-textured ar-
eas, changing lighting conditions and reflections. A very interesting method has recently
introduced by Ladicky et al. [Ladicky et al., 2010b], where the authors tried to estimate
a pixel-wise classification and dense reconstruction jointly in a discrete optimization set-
ting. They demonstrated attractive results on street-level images for a number of object
classes, however, this concept might also work in the context of aerial imagery.

6.2.3 Virtual Cities and GIS Enrichment

While triangulation techniques offer an efficient representation for the visualization of un-
interpreted large-scale 3D models, there is still a lack of ways to represent class-specific
semantic information. Future work should therefore focus on the concept of a virtual city,
where efficient data representations permit a thematic 3D visualization, but also the han-
dling of search queries and user-specific data extraction. In particular, extracted data could
then be used to refine and update GIS data in terms of accuracy, as well as to automat-
ically increase the dimensionality of the existing systems from two to three dimensions.

1 http://www.openstreetmap.org
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