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Abstract 5

Abstract

In this thesis semi-smooth Newton methods and boundaryegiemethods are developed
and analyzed for the solution of contact problems in lindéastecity of Yukawa type and
of quasistatic contact problems. First we consider the 2dh@ini contact problem in
linear elasticity of Yukawa type with Coulomb friction. TEhis approximated by a se-
guence of contact problems with given friction known as Gaggroblems. This leads to
a constrained non-differentiable minimization problemeventhe solvability is in general
problematic. But, by utilizing the Fenchel duality theottye dual formulation in terms
of contact stresses turns out to be a quadratic optimizgtioblem with a smooth func-
tional. The regularization of the dual problem motivatedtbg augmented Lagrangian
is suitable for the application of the generalized Newtorthoé. Applying the boundary
integral equation method, the problem is reduced to the danyrcurve. The correspond-
ing boundary integral equations are approximated by usi@glerkin method with the
help of B-splines on the boundary curve (BEM). This yieldsafgebraic system of linear
equations involving dense matrices but which are partigutamt. The associated entries
of circulant matrices are computed explicitly and effickgntAdditionally, the circulant
block structure enables us to develop some preconditiomiaigices for the iterative so-
lution of the linear systems at each Newton step. The methoglxarried over to the
Coulomb friction problem by means of a fixed point approagtddd, the above methods
are extended to a discrete quasistatic contact problemarticplar, the analysis of the
algorithm is presented and some numerical examples, whml a remarkable efficiency
and reliability of the semi-smooth Newton method, are given
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Zusammenfassung

In dieser Arbeit werden Newton—Methoden mit Randelemetitoten fir Kontaktpro-
bleme mit Reibung in der linearen Elastizitat und flr quasische Kontaktprobleme ent-
wickelt und analysiert.

Zuerst werden zweidimensionale Signorini—-Kontaktprot#eder linearen Elastizitats-
theorie vom Yukawa—Typ mit Coulomb—Reibung betrachtetesBiwerden durch eine
Folge von Kontaktproblemen mit gegebener Reibung, bekalsniresca—Probleme, ap-
proximiert. Dies fuhrt auf ein nicht differenzierbares Mimerungsproblem mit Neben-
bedingungen, wobei die Losbarkeit im allgemeinen probtesola ist. Aber unter Ver-
wendung der Fenchel-Dualitatstheorie stellt sich die eldarmulierung mittels Kon-
taktspannungen als ein quadratisches Optimierungsprobig einem glatten Funktio-
nal heraus. Die Regularisierung des dualen Problems, radtiurch das Konzept des
augmentierten Lagrange—Funktionals, ist geeignet furAsieendung der verallgemei-
nerten Newton—Methode. Durch den Einsatz der Randelenathtde wird das Problem
auf die Randkurve reduziert. Die entsprechenden Randadtggichungen werden mittels
einer Galerkin—Methode mit B—Splines auf der Randkurve@pmiert. Dies fluhrt auf
ein lineares Gleichungssystem vollbesetzter Matrizerg¢heejedoch teilweise zirkulant
sind. Die Eintrage der zirkulanten Matrizen werden explirid effizient berechnet. Zu-
satzlich ermdglicht die zirkulante Blockstruktur die Entlttung von Vorkonditionierern
zur effizienten iterativen Losung der linearen Gleichuggtsme jedes Newton—Schritts.
Die Methoden werden mittels einer Fixpunktiteration aufti®eme mit Coulomb—Reibung
Ubertragen.

Weiters werden die beschriebenen Methoden fur ein diskrpiasistatisches Kontaktpro-
blem erweitert. Insbesondere werden die Analyse des Alguatis und einige numerische
Beispiele, welche eine beachtliche Effizienz und Zuverlfkest der verallgemeinerten
Newton—Methode zeigen, prasentiert.
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Table of symbols

The notations, the mathematical symbols and some commae\ahtions used through-
out this thesis are listed below.

Symbol Definition
Z = setof integers,
y/m = set of positive integers,
R = set of real numbers,
R = RU{—o,+ow},
Q = opensetiRd, d=23
Q = closure of the se®
M:=0Q = boundary ofQ,
d = dimension of the domain
M = Dirichlet’s boundary,
N = Neumann’s boundary,
Mc = possible contact boundary,
n = unit outer normal td-,
IA = indicator function of a seA,
f* = convex conjugate function df,
df(x) = set of subgradients af
% = partial derivative of.),
a = (0ay,...,0n),
lal = o1+..+apandaj € Zy,
D _ olal
oxg*t...oxq"
|| = Euclidean norm,
|- 11x = the normin the spack,
()X = theinner product in the spae
a(.,.) = bilinear form,
(.,.) = duality pairing,
0, grad = gradient,
div = divergence,
A = Laplacian,
u = unknown function,
uu = first and second time derivative of
u = displacement field,

11



12 Table of Symbols
Ug, Ug = prescribed initial data fon andu,
U = tangential displacement,
Un = normal displacement,
n(u) = strain tensor,
g(u) = linearized strain tensor,
T(u) = first Piola-Kirchoff stress tensor,
o(u) = Cauchy stress tensor,
ot (u) = tangential stress,
on(u) = normal stress,
A = Lagrange multiplier,
AU = Lamé moduli,
v = Poisson ratio,
E = Young modulus,
E:=0.57721566. = Euler-Mascheroni constant,
g = given friction,
do = prescribed Dirichlet datum,
ON = prescribed Neumann datum,
o(.) = Dirac delta,
U*(x,y) = fundamental solution,
X,y = points in global coordinates,
\% = single layer operator,
K = double layer operator,
K’ = adjoint double layer operator,
D = hypersingular integral operator,
No, N1 = Newton potentials,
S = Steklov-Poincaré operator,
S = approximate Steklov-Poincaré operator,
oA = Galerkin discretization o,
Wh = Galerkin discretization of the single layer operator,
Kh = Galerkin discretization of the double layer operator,
Dy, = Galerkin discretization of the hypersingular operator,
M = mass matrix,
o) = B-spline of orderj,
), :=Sparfg” ... @})) = N-dimensional subspace of one-periodic functions,
In = modified Bessel function of first kind,
Kn = modified Bessel function of second kind,
Aij = boundary integral operator,
M(.) = Gdunter derivative of.),
Al = inverse ofA,
AT = transpose oA,
trA = trace ofA,
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axb
a®b
i.e
a.e

e.g.

entry (i, j) of matrix A,

the friction coefficient,

Fourier transform,

matrix of the discrete Fourier transform,
complex conjugate of the discrete Fourier transférm
positive measure df),

tensor of elastic moduli,

body force,

surface force,

time point on time grid,

size of time step,

mesh size,

mass density,

radius of the domain,

the gap between the rigid foundation and the body,
scalar product of vectomsandb,

cross product of vectosandb,

tensor product of vectosandb,

that is,

almost everywhere,

example given.
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1 INTRODUCTION

Contact problems are abundant in daily life and play a veqyartant role in engineering
structures and systems, for example in the design of mashimé metal forming etc. This
motivates the development of a comprehensive wellposetiensttical theory based on
fundamental physical principles and numerical algorithithret can predict reliably and
efficiently the evolution of the contact process in différenuations and under various
conditions.

Numerous studies deal with the widespread Coulomb frida@nintroduced in the eigh-
teenth century which takes into account the possibility ljf and stick on the contact
area. This model is generally coupled with a contact law, \@aTgt often one considers
the Signorini contact condition. Although simple in itsdaulation, the Coulomb friction
law shows great mathematical difficulties which have nothptea complete understand-
ing of the model yet. In the simple case of elastostatics erigtence results for a small
friction coefficient have been obtained, see, e.g. [27,BR & well as some examples of
nonuniqueness of solutions for large friction coefficigat, 45].

In the quasistatic case, that is when the inertial forcesbsaneglected, the first result
was proved by Andersson in [5] by using an incremental aggbredth the contact law
described by the normal compliance. Cocu, Pratt and Radjgfaved the existence of
a solution for a nonlocal friction law. Andersson in [7], aRdcca and Cocu in [95, 96]
extended this result to the Signorini contact conditionhwdcal friction law. A simi-
lar result was obtained in [22] by considering friction artthesion. Eck, Steinbach and
Wendland [30] obtained the existence of solutions for tlgg&iini contact condition and
a local friction law by using a symmetric boundary elemembfolation combined with a
penalty method and a regularization technique.

The dynamic case, that is when the inertial terms are coresigda certain viscous damp-
ing of the material is needed in order to establish existeasealts for a general multi-
dimensional domain [30]. The unique solvability for a vistastic material with normal

compliance was proved in [55,82]. The existence of solgtfona frictional problem with

normal compliance for a viscoplastic material can be founfr#]; and for the friction-

less case in [9], and when wear is considered on the congestirfaces in [76]. Further,
when the Signorini contact condition and the nonlocalivictaw are considered, the exis-
tence for the viscoelastic material is established in [3D, & recent substantial regularity
result for dynamic frictionless contact problems with natmompliance was obtained
in [77,78]. Eck in [29], JaruSek in [63] and Kulttler in [75]stiussed the solvability for
a viscoelastic material where the Signorini contact coonls were given in terms of the

15



16 1 Introduction

displacement velocity. But, this model turns out to be st&lionly for a short time in-
terval and for a vanishing initial gap between the body’sritary and the obstacle. This
obviously limits the applicability of these results to \ars types of problems. However,
very often mathematicians and engineers used the normatl@roe contact condition as
regularization or approximation of the Signorini contamtdition, which is an idealization
and describes a perfectly rigid surface. The Signorini derdis easy to write and math-
ematically elegant, but seems not to describe well the @atact. Indeed, this leads to
low regularity on the solutions for a dynamic viscoelastatemial [29], and makes proving
unique solvability almost impossible [73]. Therefore, #xéstence of solutions for purely
elastodynamic contact problems (hyperbolic problemsplamiwith a Signorini contact
condition in the displacement and the local Coulomb friclew up to now is still an open
problem. However, few recent results for the frictionleaseccan be found in [13, 14].

Hence, in this work we first consider the contact problemrigdir elastostatics of Yukawa
type. This is a static contact problem obtained after anigrigime discretization of the
contact problem in linear elastodynamics. For the sake dfiemaatical completeness we
utilize the Signorini contact condition together with tloedl Coulomb friction law. Note
that this problem is inherently nonlinear making the mauglanalysis and numerical re-
alization truly challenging. Moreover, a closed form ofig@ns is up to now not known.
Therefore, fast and reliable numerical techniques for #mévdtion of approximate solu-
tions are extremely important.

In literature the mostly used numerical methods to detegrapproximate solutions are the
finite element methods (FEM). With respect to the variatidoanulation of the problem
in appropriate function spaces, approximate solutionsseagched in finite dimensional
subspaces. The main idea consists to decompose the compatdbmain into finite sub-
domains called finite elements, on which finite dimensionakpaces are defined and in
which solutions are approximated by polynomials. This $eimdgeneral to algebraic sys-
tems of equations involving sparse matrices which can entiel application of efficient
tools [71,98]. But, the accuracy of approximate solutiongtee boundary curve requires
a very fine mesh or a higher order of polynomials on the boynahich leads to a higher
number of degrees of freedom.

An alternative approach to determine numerical solutidratact problems can be the
boundary element methods (BEM) [30] which are especialiabie since the nonlineari-
ties of the problem appear only on the boundaries of the ctngabodies. The main idea
Is to transform equivalently by using the Green formula tbmdin variational equation to
a boundary variational equation with a symmetric repreg@nt of the Steklov-Poincaré
operator. This operator maps a given boundary displaceta¢né corresponding bound-
ary stress of the solution of the homogeneous elasticityatgus and which can be ex-
pressed in terms of suitable boundary integral operatorsomparison to finite element
methods in which the whole computational domain needs tadmeatized, for the bound-
ary integral formulation one needs to discretize only theraary surface of the considered
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domain. The discretized problem turns out to be an algelsatem of equations having
fully dense, but symmetric and positive definite matricefisTsymmetry property can
enable the application of efficient iterative processesterminine the solutions.

In this thesis a coupling strategy of a boundary integrahigdation with a semi-smooth
Newton method is developed and analyzed for contact prablételated approaches can
be found in the work by Kunisch and Stadler [71] for the cohpaoblem or in [47,58—61]
for applications to optimal control and obstacle problefitse approach we take here con-
sists to write the problem as a sequence of contact problathgwen friction known as
Tresca problem. The variational formulation of the Tresmzbfem results into a varia-
tional inequality of second kind, see, e.g., [29, 35, 67, 6B}is leads to a minimization
problem with a non-differentiable functional which can belgematic. The Fenchel du-
ality theory [31] enables us to transform the non-differanle problem (primal problem)
into a constrained optimization problem of a smooth funaigdual problem). We ad-
ditionally derive the extremality conditions which chaexize solutions of the dual and
primal problems. But due to the lack of regularity of the uyglag function space, a
regularization technique inspired from the augmented &agjan enables us to work in
an adequate function space setting where a superlineaeiggnce of the infinite dimen-
sional version of a generalized Newton method can be olitdifie 98]. The methods are
carried over to the Coulomb friction problems by means ofedigoint approach. Second,
the above theories are extended to discrete quasistatiaatgmoblems.

This work is organized as follows:

» The frequently used results are provided in chapter 2.

 In chapter 3 we first present the mathematical model for astiel body undergoing
small deformations. Secondly, we derive the contact cardand friction law for
the contact between an elastic body and a rigid foundatioeh paesent an implicit
time discretization of the problem.

 In chapter 4 and chapter 5, the boundary integral formaadif the scalar Yukawa
problem and the linear elastostatic problem of Yukawa typepaesented and ana-
lyzed respectively.

* In chapter 6, the two-dimensional contact problem in Iredasticity of Yukawa type
is investigated and the boundary integral formulation efpnoblem is established.
Generalized Newton methods for the solution of Tresca problare analyzed, the
results of this problem are combined with a fixed point appind® determine the
solutions of the Coulomb friction problem. Finally, the Inolary element (BEM)
discretization is presented.

* In chapter 7, a quasistatic contact problem is considetes existence proof by
means of a penalty method is shown, and the coupling strafegiyoundary integral
formulation with a semi-smooth Newton method is developsd @nalyzed for the
determination of its approximate solutions.
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* In chapter 8, some numerical results are presented. Yiratimerical examples
for a non-homogeneous Dirichlet problem, a mixed Yukawélenm, and a non-
homogeneous Dirichlet elasticity problem of Yukawa type@nsidered and results
of boundary element approximations are presented. Thea#geonfirm the theo-
retical error estimates. Secondly, a numerical examplepofact problem without
friction is investigated, and a superlinear convergenakthe monotone behavior
of the semi-smooth Newton algorithm are observed. Sim#éauits are obtained
for numerical examples of a Tresca problem. The combined-seraoth Newton
method with a fixed point algorithm is successfully testadfie Coulomb problem.
The above algorithms are successfully extended to a desquegtsistatic problem.

* We end with some conclusions and comments on open probledisiaure work.



2 PRELIMINARIES

The goal of this chapter is to present some results and defisithat are relevant for the
mathematical formulation and the analysis of contact mwislin linear elasticity. These
results are essentially from convex analysis, functiomallysis, generalized derivatives
in function spaces, and circulant matrices. The results resgmt in this chapter will
be recalled in subsequent chapters at appropriate timenaadnore elaborated form as
needed.

2.1 Function spaces

The use of function spaces is essential for the mathemdticallation of contact prob-
lems. In this section we confine our attention only to thefirdigons and describe some
aspects of them which are sufficient for the understandinth@fsolution of the prob-
lems. For detailed investigations on their properties Werrdhe reader to the books by
Adams [2], Lions and Magenes [80], Duvaut and Lions [25],adsand Wendland [53],
and McLean [83].

2.1.1 Sobolev spaces in the domain

Definition 2.1. LetQ ¢ RY (d = 2,3) be an open set, let m be a nonnegative integer,
and letl < p < . The Sobolev spaceF',WQ) is defined by

W3(Q) :={veLp(Q):DhWVelLp(Q), for |a|]<m},

wherea = (a1, ...,aq) € Z4, |a| = a1+ ...+ ag, and D' u(x) :

glal "
———  __u(x) are the
Ox7t....0%g° )

distributional partial derivatives.

The Sobolev space WQ) is equipped with the following norm

1/p
a, P H
gy = (laémllD UIILD@)) if 1<p<oo,
max||DulL,q) if p=oco.
la]<m

19



20 2 Preliminaries

Remark 2.1. For p = 2 the Sobolev spaceNQ) is a Hilbert space endowed with the
inner product
_ ; / DYu(X)DV(X)dx,
la <Mg

see [2, p. 61].

Now and onward we considgr= 2. The above definition of Hilbert spaces can be ex-
tended for arbitrarg > 0.

Definition 2.2. LetQ c RY (d = 2,3) be an open set, let:s- m+ & with me Z, and
0 € (0,1). The Sobolev spaceM2) defined by

W5(Q) :i={veW"(Q): \D“v|57Q <o, for |a|=m},

1/2
. [v(x) —v(y)
V5.0 = (/ dey ;
QQ

is a Hilbert space endowed with the inner product

where

Tu(y))(Dv(x) — DV(y))

DG
(U Vwg(o) == (U V)wro a;mQ/Q/ \X—y|d+25 dxdy

and with the associated norm

, 1/2
DYu( y
lullwge) = (uévzm 2 / / | e y|d+25< ) dxdy) ,

known as Sobolev-Slobodeckii norm, see [100] and refeseimcéhere.

Next we introduceSobolev spaces ¥Q) which can be equivalent to the abo8ebolev
spaces W(Q) under some regularity assumptions@n To this end let us first introduce
the spac&(RY) of rapidly decreasing functions.

Definition 2.3.

S(RY) := {f e C*(RY) : sup|xPD?f(x)| <, for all multi-indicesa and }.
xcRd
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Further, we se$*(RY) the space of tempered distributions or the space of conilimear
maps defined oB(RY), see [2, p. 251]. By using the Fourier transform

Fu(E) == 0(8) = [ e ™ ux)dx
Rd
for u € L1(RY), we define theSobolev space HRY) for s R as follows
H(RY) := {ue S"(RY) : (1+[£%)¥0(¢) € La(R)},

see [25, p. 42]. We have th&ds(RY) = HS(RY) for all s € R, see [100, Theorem 2.14].
We can define th8obolev spaces¥{Q) as follows.

Definition 2.4. LetQ c RY (d = 2, 3) be an open and bounded set, and letR, then
H3(Q) := {v="|q : V€ HSRY)},
equipped with the norm

IVllHs@) = VGHS(HIQ):,mQ:vHVHHS(Rd)'

In addition,
H”S(Q) - WH'HHS@@),
H3@) = Cr(@) .

Furthermore, for Lipschitz domains we have the followin¢atiens betweerSobolev
spaces

Theorem 2.1.LetQ c RY (d = 2,3) be a Lipschitz domain. Fors 0 we have

W3(Q) = HXQ),
HY(Q) < H3(Q),

HS(Q) = HS(Q) for s¢ {%,g,g,}
MoreoverHS(Q) = [H~S(Q)]*, H3(Q) = [H~3(Q)]* for all s € R.
Proof. see [100, p. 33]. O
An important property ofSobolev spacess that they can be embedded in several other

spaces. Moreover, these embeddings are sometimes coripaanost important one is
the Rellich-Kondrachov theorem.
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Theorem 2.2. (Rellich-Kondrachov) Let Q ¢ RY (d = 2,3) be a Lipschitz domain and
let me Z... Then there hold the following compact embeddings

HMQ) — HI(Q) for j<m,
H(Q) — HA(Q) for j <m,

H™(Q)—Cl(Q) for m> g+j.

Proof. See [2, Theorem 6.2]. O

See [80, Corollary 9.1] for an almost similar result ®oe R ands > 0. But there the
embedding is only continuous.

2.1.2 Sobolev spaces on the boundary

In this section we assume th@atc RY (d = 2,3) is at least a Lipschitz domain and further
we setl” := dQ to be its boundary.
The spacek,(I") andH3(IM) for s€ (0, 1) are defined respectively as the closure of the set
Co(I") as follows

Lo(r) = €)',

H(r) = WH“HS(F)

In addition, the spacds(I") andH3(I") for s€ (0, 1) are Hilbert spaces endowed with the
inner products

UV = / UV s

X -V
(U,V)Hs(r) = UV|_2 —|—// |X y|d 1+)23 (y)]ds(d@

respectively, and the associated norms are defined by

1/2
e = | [ u<x>2dsK) ,
r

1/2
sy = | I+ / 2 1+ZSousKo's,)
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respectively.|.|lnsr is the Sobolev-Slobodeckiiorm, see [53, p. 172]. The above defi-
nitions for theSobolev spacesn the boundary can also be extended for the case-af,
but this requires stronger regularity assumptions for thnblary, which is more than the
Lipschitz property, for example of cla&™ with s < m+k, see, e.g. [53]. Fos< 0
the Sobolev spaces ¥I') are defined as the dual spacestbfS(I") with respect to the
Lo(I")-inner product, that is
H3(T) == [H3(M)]",
with the associated norm given by
[tllHsry:== sup M
oveH-s(r) IV IlH-s(r)

Letl g be an open subset of a sufficient smooth bounf@iary 9Q. Fors> 0 we introduce
the followingSobolev spaces

H3(Fo) = {v="V|r,: Ve HN)},
HS(Mo) = {v="|r,:¥cHSI),supp¥ C o},
where the norm
IVllnsry i=_inf [[T]|ps(ry.

VeHS(M):¥|r,=v
Fors < 0 the aboveSobolev spaceare defined by duality as follows
HS(To) := [H™S(To)]",  HS(To) := [H™(To)]".
If we assume that the bounddryis closed and piecewise smooth, i.e.
r=ul i, rinfj=0 for i#]j,
then fors > 0 theSobolev space §j(I") is defined by
How(M) == {veLa(l) :v|r, e HY(T), i=1,...,3}

) 1/2
IVIIs,r) == (i;||V|ri||ﬁS(ri)> ,

J
How(T) := .rlﬁs(ri)

with the norm

while for s < 0 we have

with the associated norm S
IVllg,(r) == i;HV\riHﬁs(ri)-

Further we have the following result.
Lemma 2.1. If w € H(I") for s < O then w|sry < Wl s,(r)-

Proof. See [100, Lemma 2.20]. O
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Trace theorem

To solve partial differential equations it is necessarydaeenboundary values, b&bbolev
spacesare in general subspaceslgfin which boundary values make no sense. However,
for Sobolev spacdsaving higher oder it is possible to define the boundary \&l(see e.g.
Theorem 2.2).

Theorem 2.3.LetQ C RY (d = 2,3) be an open and bounded domain. The interior
trace operatory* : C*(Q) — C*(I") is defined by

Mty = ulr.

If Qis of class ¢¢ 1.1, y'(')”t is then extended by continuity to a continuous linear magpin

1
VY HS(Q) — HSY2(T)  for 5 <s<k
Moreover, this extension is surjective and has a continuimld inverse mapping

£ HSY2(M) = HY(Q).

Proof. See [80, Theorem 9.4]. O

If Q is bounded and Lipschitz, that ls= 1, the above result remains then valid for
s€ (3,3), see [100, Theorem 2.21].

Remark 2.2. As a consequence of the surjectivity we have

s = inf V| s for se (0,1).
LT e QU L FREEES 0.1)

In what follows we are going to define suital8ebolev spaces represent trace operators
on the contact boundary. Since the variables ard-dimensional type, we define the
Sobolev space

d
HY(Q) := [THY(Q).
Al

In a similar way we definké 2(Q), H%(F), etc. We introduce
Vi={veHY(Q):y"v=0 onlp}

as the set of admissible deformations, whieseC I' denotes the set with given Dirichlet
data. Let us denote by :=int(I" \ I'p) the interior ofl \ 'p, by c C X the nonempty
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open region of a possible contact, andly := int(X\ I'c) the set with given Neumann
conditions. Note that if the trace operator is considerenhfy to H 2 () itis not surjective.

To avoid this inconvenience, let us assume fhat Z, and thatl'c, d% C [ are smooth
. 1
and let us define a closed subspaceiefx) by

1/2

H2(5) = (£ € Lo(X): ve VM| = £} = AYA(S).

1
For an equivalent way to defingj,(%), see [25,67]. In addition, we suppose that the
boundaryl” is more regular, that is of cla®d®l. Then a unit outward normal vector
tol, n=(n,...,ng)" exists almost everywhere dhand is Lipschitz continuous, see

1
[67, Theorem 5.4]. As a consequence we can decompose amelefhig,(>) into normal
and tangential components, which enable us to define thecsirg, continuous and linear
normal trace operator

1
W:V— HOZO(Z)

by WV = (y(‘)”ty)Tg = Vp, and the corresponding tangential trace operator

1 1
ViV —Hig(2) :={veHg(Z): wy=0;

by yrv :=v— (WwVv)n:=V;, which is also linear, continuous and surjective, see [683}.
Sincel ¢ C £ is smooth, we have

Nl

HA(Te) = {v = Ulr : ¥ € HE()).

Therefore, the trace operators on the contact bounidaare defined as the restriction of
mappingsi andyr onl ¢ as follows

(Fe),
(Fc) :={v e H3(Ic) : v =0},

ch = VN|FC:“}'_>
Vrc = W‘FC:VH

=Nl NI

H
H

which are also linear, continuous and surjective. In theigkdgf no confusion occurs, we
will set W,V := vy andyr.v :=V;. On the other hand, since we are also interested in time-
dependent problems, the following is a short overview ongjbgces of time-dependent
functions.

2.1.3 Spaces of time-dependent functions

Let X be a Banach space aXd its topological dual, and lef be a positive number.
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Definition 2.5. Let m=0,1,2, ..., and let V¥ be the K" derivative with respect to t. The
Banach space ([0, T|, X) is defined by

C™([0,T],X) := {v:[0,T] — X : v is continuous fron{0, T] to X for k< m}.
The Banach spadg@™(]0, T], X) is equipped with the norm

\% max V
Mlemo) %) zomn Ol

Definition 2.6. For 1 < p < o, Lp(0,T; X) is the space of all measurable functions v
from [0, T] to X for which
T 1/p
( / v<t>§dt) <,
0

For 1< p <, Lp(0,T;X) is a Banach space equipped with the norm

/P
Mlyor (/ vt th) -

Remark 2.3.

(i) For p =, the space L(0,T; X) is the set of all measurable functions v fré®T |
to X that are essentially bounded. Moreove(Q,T;X) is also a Banach space
equipped with the following norm

IVllLe.(0,m;x) -=ess sup [|v(t)]|x-
0<t<T

(i) For 1< p < o, the topological dual space of,[0, T; X) is defined by
% . 11
[Lp(0, T; X)]* =Lg(0, T; X*) with B+a =1
Definition 2.7. For m > 0 integer, the Banach space™0, T; X) is defined by

H™(0,T;X) :={f € Lo(0,T;X): O € L,(0,T;X), i<ml,

; il . o .
where {1 := S | are partial derivatives with respect to'.
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The Banach spadd™(0, T; X) is equipped with the norm

l
[ Fllumo.Tx) = (Z)Hf ' ||L20Tx> :

Remark 2.4. If X is a Hilbert space with inner product, .)x, then, see [40]:
(i) L2(0,T;X) is a Hilbert space with the inner product

(u(t),v(t))xdt.

(U7V>L2(O,T;X) =

O~

(i) Also HM(0,T;X) is a Hilbert space equipped with the following inner product

3

T
(U, V)HmoT;x) = / ))th
0

We also have the following embedding result.

Theorem 2.4. The embedding HO,T;X) — C([0,T];X) is continuous, that is there
exists a constants 0 such that

IVllc(oTx) < ClViliioT;x) forallve HL(0,T;X).

Proof. See [40]. O

As a consequence of the above result, farM*(0, T;X), v(0) is understood in the sense
of the embeddingd (0, T; X) < C([0, T]; X).

2.2 Convex analysis and duality theory

In this section we present some results from convex anaysisluality theory that will be

used in the following chapters. We first define convex setscanglex functions, state the
orthogonal projection onto convex sets and its charaetgoa. Further, we define convex
conjugate functions and the subdifferential of a convexfiom. We end this section with
the Fenchel duality theorem. For more detailed informaticggarding this section we
refer the reader to the following books [11, 31, 40, 68].
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2.2.1 Convex sets and convex functions

Let X be a given Banach and reflexive space (Hilbert space)Xants topological dual
space.

Definition 2.8.

(a) Let K be a subset of X. K is said to be convex if for any ¥, K and for any
8 <€ (0,1), 0x+(1-0)yeK.

(b) Consider a function fX — R, (K =RU {—oo,oo}). f is called a convex function
if (and only if)

f((1—0)x1+6x2) < (1—0)f(x1)+0f(x2) forall xi,x2€ X andB € (0,1).

2.2.2 Projections onto convex sets

LetH be a Hilbert space and |&t C H be a nonempty, closed and convex set. Then there

exists a unique mappirg: H — K such that

|V=PV||g:=inf|lv—ul|y forall veH.
ueK

The mappingP is called the orthogonal projection bf ontoK. Furtheremore, the well-
known characterization d? is given by:

Theorem 2.5. The mapping P is characterized by: for albH
(V=Pv,u—PV)pxn <0 forall uekK.
In addition, for all v, v» € H the following holds:

[PvL — P2l < [lva —Vv2[[1.

Proof. See [11, p. 79] or [68, p. 9]. O
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2.2.3 Convex conjugate functions and the subdifferential
We start this paragraph by recalling some useful definitidret us consider a function
f: X —>R.

Definition 2.9.

(@) The set defined by
dom(f) ={xe X: f(x) < oo}
is called the effective domain of f.
(b) The function f is said to be proper if d@i) # 0 and f(x) > —oo for all x € X.
(c) fis said to be lower semi-continuous (l.s.c) gifxand only if f(xg) < IinmJQf f(Xn)
holds for any sequende;), x, € X, satisfyingr!mxn = X.

(d) f is said to be weakly lower semi-continuous (weakly).at x if and only if
f(x0) < Iirr]nigf f(xn) holds for any sequenceq), X, € X, satisfying x — Xo as
n — oo,

Note that x — Xp means that x— xp weakly.

Theorem 2.6. Let f: X — R be a convex functional. If f is lower semi-continuous
(I.s.c), then f is weakly lower semi-continuous.

Proof. See [40]. O

Definition 2.10. A function g X — [0, ] is called a gauge if
(i) g(x) > 0forallx € X,
(i) 9(0) =0,

(i) gis convex, positively homogeneous, and lower sesniinuous.

Definition 2.11. Let AC X. The indicator functiona of the set A is defined by

| ] 0 if xeA,
AN=1 0 if x¢A

Further, we define the conjugate of a convex function.

Definition 2.12. Let f: X — R be a convex functional, and let“be the topological
dual of X. The convex conjugate functioh: X* — R is defined by

f*(X") = sup{{X",x) — f(x)}.

xeX
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Convex conjugate functions are useful tools in optimizapooblems. In general, these
functions permit to derive the so-called dual problems feeg optimization problems,

which often allow to gain a deeper insight into the problenucure, see [11, 31]. In

addition, the convex conjugate function is closely reldtethe subdifferential of a convex
function, which will be given in the next step.

Definition 2.13. Let f: X — R be a proper and convex function, thensX* is said to
be a subgradient of f at& dom(f) if

f(y)—f(x) > (x*,y—x) forallyeX.

Moreover, the set of all the subgradients of f at x is callebidsffierential and denoted by
df(x), where

0f(x) ={xX"eX*: f(y)—f(x) > (X",y—x) forallye X}.

Note thatf is subdifferentiable at if 0 f(x) # 0. Moreover, the sed f(x) is convex and
closed, see [31, p.21]. If € CY(RY) and convex, them f(x) = Of(x) for all x € RY,
Conversely, iff is continuous, finite and the sétf (x) has only one element atthen
f € CY(RY), see [31, p.22].

We now have a direct consequence of the above definitionighia¢ role of subdifferen-
tiation in optimization problems:

f(X) =minf(y) ifandonlyif Oc df(x).
yexX

Lemma 2.2. Let X be a Banach and reflexive space and let the mapping g [0, o]
be a gauge. Then its convex conjugate ¥* — [0, «| is defined by

«roe | O if x*e€ag(0),
g<X)_{oo else

Proof. See [40, Lemma 4.2]. O

Further, we derive the dual formulation of an optimizationlgem and state the Fenchel
duality theorem that characterizes the relation betweeptimal and dual problem.
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2.2.4 Fenchel duality theory

In this section we present the Fenchel duality theory in gdriganach spaces. For the
detailed proof of our statement we refer the reader to theteext book by Ekeland and
Témam [31].

Let X andY be Banach spaces and ¥t andY* be their topological duals respectively.
Furthermore, let\ be a linear and bounded mapping fromto Y and letf : X — R,
g:Y — R, be convex, proper and lower semi-continuous. Let us nowidenthe follow-
ing optimization problem, the so-called primal problem

(P) inf [f(X) +g(AX)].
xeX
The corresponding dual problem(®) is defined by
(P*) sup[—f*(=A\'y") —g"(y")],
yrev*

wheref* : X* — R andg* : Y* — R denote the convex conjugatesfoindg respectively,
while A" € L£(Y*,X*) is the adjoint operator td, see, e.g. [11, p.11] or [31, p.59].

Theorem 2.7.Let us assume that X is a reflexive Banach space and that tkists e
Xp € X such that fxg) < e and g/Axg) < o, and g is continuous akxg. Furthermore, we
suppose that (i) + g(Ax) — oo for ||x|| — . Then the problemgP) and (P*) admit (at
least) one solution and

inf [(X) +9g(AX)] = sup[—*(=A'Y") —g"(y")].
Xe yreY*

Proof. See [11, p.11] or [31, Theorem 4.2]. O

The next result states the extremality conditions thateedalutions of the primal and the
dual problems.

Theorem 2.8.1f (P) and (P*) admit solutions and if

inf [(X) + 9(AX)] = sup[—f*(~A'Y") g (y")], (2.2)
XE yeY*

and this number is finite, then all solutior®f () and all solutionsy* of (P*) are related
by the so-called extremality conditions

—Ny* € df(x),
(2.2)
y* € 09(AX).

Conversely, ik € X andy* € Y* satisfy (2.2), thei is a solution of P), andy* a solution
of (P*) and (2.1) holds.
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Proof. See [31, Proposition 2.4 ]. O

2.3 Generalized differentiability in function spaces

In this section we present a summary of some useful resuitstabe Newton differen-
tiability in Banach spaces that will be essential for thelmods and analysis developed in
the sequel. In the next paragraph we comment about the nethather, we give some
definitions and some important theorems.

2.3.1 Semi-smooth Newton methods

The application of semi-smooth Newton methods for nonedéitiable operators in finite
dimensions have been studied for decades [32, 33, 88, 90R@tEntly, that concept was
developed in infinite dimension spaces (Banach spacesg $ed17,47,70,101]. We will
prefer in this work instead of the terminology “slant ditatiability in the neighborhood”
as used in [17,47] the name “Newton differentiability” agi01]. It is shown in [47] that
the primal-dual active set strategy can be interpreted &staic application of the semi-
smooth Newton method to nonlinear complementarity fumstior he primal-dual active
set strategy has been successfully applied to optimala@qrivblems, see [46,58,60], and
more recently to contact and Signorini problems [48, 5476198, 99].

2.3.2 Definition and properties

In this section we define the Newton differentiability as geneted in [47] and derive
some inherent results relevant to our work. etY andZ be Banach spaces and let
F :D C X —Y be anonlinear mapping with an open domain.

Definition 2.14. The mapping F is said Newton differentiable on the open setJif
there exists a mapping GJ — L(X,Z) such that

Hmo||—k11||”F<X+ h)—F(x) —G(x+h)h||=0 forall xeU.

The mappingG is called a generalized derivative. Moreov@rjs not uniquely defined,
see, e.g. [17]. We now introduce the Newton derivative ofaterfunctions that will be
frequently used in this work. To this end Etbe a space of real functions defined@n

or I and let max0,y) and mif{0,y) be the pointwise max- and min-operators respectively.
As candidates for the Newton derivatives we introduce

1 if y(x)>0, 1 if y(x) <0,
Gmax(¥) (X) :{ 0 if y(x)<0; Gmin(Y) (x) :{ 0 if y(x)>0.
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We then have the following result:

Theorem 2.9.The mappingmax(0,.) : Lq(Q) — Lp(Q) andmin(0,.) : Ly(Q) — Lp(Q)
with 1 < p < g < « are Newton differentiable onglQ) with the generalized derivatives
Gmax and Guin, respectively.

Proof. See [47]. O

Note that the above result holds fp g. It is shown in [47] thaGmax andGpin can not
serve as generalized derivatives for rfay) and min{0,y) respectively ifp > g.

We now focus on the application of the iterative processtiergeneralized Newton meth-
ods to solve a possible nonsmooth equakgr) = 0. Based on the above differentiability
concept, the solution of the problem is given by the follogvadgorithm

XL — XK GO¥)IF(X), k>0, (2.3)

whereG is a generalized derivative as defined above. The next theshews the super-
linear convergence of the above algorithm, that is

. X1 — X
im X=X _

bl

whereX is the solution of the equatidi(x) = 0. For the proof one can see [17,47].

Theorem 2.10. Let us assume thate D solves Kx) = 0 and that F is Newton differ-
entiable in an open neighborhood U ofnd that the sef||G(x) 1|/ : x € U} is bounded.
Then the Newton iteration (2.3) converges superlineat poovided that|x° — x|| is suffi-
ciently small.

Next we turn to one useful chain rule for Newton differentligowhich will be frequently
used in this work.

Theorem 2.11.(Chain rule) Let £ : Y — X be an affine mapping withy¥:= By-+ b,
B e L(Y,X), be X, and let us assume that:’X — Z is Newton differentiable on the open
subset UC D with generalized derivative G. Ilel(U) is nonempty, then BF is Newton
differentiable on E1(U) with the generalized derivative given byBy+b)B € L(Y,Z),
foryc F (V).

Proof. See [59]. O
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2.4 Circulant matrices

A circulant matrix is a special kind of Toeplitz matrix [3&irculant matrices can play an
important role in investigating the characteristics ofcdete boundary integral operators.
In addition, it can also be of great interest for solving #insystems arising from the
Galerkin discretization of boundary integral equationsr feference purposes, we point
the reader to the elegant treatment given in [92—-94] and theograph [23] devoted to the
subject.

2.4.1 Definition and characteristics of circulant matrices

Definition 2.15. A matrix Be R™" with elementgby ) is called a circulant matrix if
bri1i+1=bgr for kl=1,...,n-1,

br11=lbkn for k=1,..,n-1

Itis clear that every circulant matrix is determined unigusy its first row (or first column)
unambiguously.

Remark 2.5. The nx n-matrix

0 1 0 0

0 0 1 0
J=

0 0 o .. 1

1 0 o .. 0

is the simplest circulant matrix and can be used to define #sgslof circulant matrices.
Furthermore, we have

J"=1, where | is the identity matrix.

From the above definition it is easy to show the following tesu

Proposition 2.1. Every circulant matrix B can be represented as

B= i byd' L. (2.4)
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The formula (2.4) makes easy the examination of the speabftthe matrixB.
Lemma 2.3. The eigenvalues and eigenvectors of J are given respectyel
we=enkl  g=1

W

1
Wi

g eeny

with i = —1.

Proof. We havedet(J —wl) = (—1)™W"+ (—1)™*1. Then the eigenvalues dfare then'"
roots of unity that are the complex solutions of the equation

w'=1

On the other hand, the eigenvectors associated to the eigeswy are obtained by a
direct computation. O

Definition 2.16. A matrix F= (f(Y) ... (W) which columns are made from the eigen-
vectors ¥, k=1,...,n, is called the matrix of the discrete Fourier transform.

The matrixF is complex and symmetric (i.& = F "), and
FF* =F*F =nl,
whereF* is the complex conjugate of the matfx
Proposition 2.2. Every circulant matrix B= (bk) can be written as follows
B=n"'FAF*

with
N =diag(A1,...,An) = diag(Fb),

where(by, ...,b1n) = b' is the first row of the matrix B.
In addition, ifB is a symmetric and circulant matrix, we then obtain
B=n"'QAQ,

whereQ = Rg(F) +Im(F) andA = diag(Ay, ..., An), with Q% = nl, see, e.g., [15,92]. Note
that a circulant matriB is diagonalizable by the matrk of the discrete Fourier transform.
In addition, ifB is invertible its inverse is then easily computed.
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2.4.2 Application of circulant matrices
Given a system of linear equations

Bx=r, (2.5)
whereB s a circulant square matrix of sipeandr = (ry,...,ry) ". We can write the system
of linear equations (2.5) as a circular convolution as fefio

CxX=T,

wherec is the first column of the circulant matr. Furthermore, the vectors x and
r can be cyclically extended in each direction so that by usinegresults of the circular
convolution theorem, we can apply the discrete Fouriersfiiam to transform the cyclic
convolution into a component-wise multiplication as falo

F(cxX) :=F(c)F(x) =F(r).

This algorithm is much faster than the standard Gaussiamredtion, especially if a Fast
Fourier transform is used [15, 16,43, 94].

Hence,



3 CONTACT PROBLEMS IN LINEAR ELASTODYNAMICS AND
TIME DISCRETIZATION

In this chapter we introduce some basic equations that eifidived later by some appro-
priate numerical methods. Here we confine our attentiorcbHgion the linear elastody-
namics model problem with its static correspondence, thet@static system for the static
case and the contact problem in linear elastodynamicshé&urthe governing equations
of the considered physical problems are derived under thengstion that the changes in
the state variable such as the displacement field and tha &resor are infinitesimal in
such a way that the resulting equations are linear. Moreav@artesian coordinate system
will be used for the spatial description. The chapter is oizrd as follows: In the first
section the governing equations of linear elastodynamiesiarived. Several details as
kinematics and some balance laws are discussed. In thedsandrihird section we derive
the Signorini contact condition and the Coulomb frictiow leespectively and present the
contact problem in linear elastodynamics. In section 4 vee$mn the semi-discretization
of the contact problem.

3.1 Linear elastodynamics

In this section basic ideas for the derivation of the govegraquations of linear elastody-
namics are summarized. Details of the derivation can bedauany textbook on the basic
theory of elasticity. Special treatment of the elastodyicarmodel problem is detailed in
the book by W. Han and D. Reddy [40] and [19, 102] for the lirgasticity case.

Kinematics

Let us consider a homogeneous elastic body which occupteseit = 0 a regionQ ¢ RY

(d = 2,3) in its undeformed statedference configuration Subjected to dynamic forces
the body moves and deforms, so that at timeO it occupies a new regiof;, called the
current configurationsee Figure 3.1. Therefore, a material particle initiatlpasitionx
will be located at positio(t, x) at timet > 0 which is called the deformation.

37
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Figure 3.1: Undeformed and current configuration.

Obviously we have/(0,x) = x. Further,x € Q is called the Lagrangian coordinate while
y € Q¢ is the Eulerian coordinatg.can be written in component form as follows

Vi =Vi(t,X1,...,Xq), 1<i <d for xe Q and fort € [0, T].

For further investigation we assume to be differentiable, locally invertible and
orientation-preserving, that is the Jacobdh x) satisfies

J(t,x) = det(%) (t,x) >0 forall xeQ, t>0. (3.1)
j

It can be suitable to introduce tlksplacemenvectoru by
g(t,X) = y(t,X) —X

as the unknown primary variable. But this may not be enougtesxribe the complete
deformation of the body, since it can not give any informatdout the deformation angle
of particles. Therefore, we introduce as new variable theadledstrain tensorwhich is
used to measure the deformation. To derive this quantttyseonsider a pointe Q and
let Ax and dx be two vectors describing two fibers of material particleststg fromx.
The fiberAx is mapped to the fibeky = y(t,x+ Ax) — y(t,x) in Q. In the same way the
fiber dx corresponds to the fibéy = y(t, x+ dx) — y(t,X) in Q. Since we assumgto be
differentiable, a Taylor expansion gft,x+ Ax) in the neighborhood of yields

y(t, X+ Ax) = y(t, X) + OyAx+o(|AX]).
By usingUy = | + Ou(x), wherel is thed x d-identity tensor, one obtains

Ay = y(t, X+ Ax) — y(t,X) = Ax+ OuAx+ o(|Ax]).
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Likewise, we have
Oy = y(t,x+ 0x) — y(t,x) = dx+ Oudx+ o(|dx]).
Therefore,
Ay- 8y — AX- 5x = (OUAX) - 5x+ ((udX) - Ax+ (UuAX) - (Judx) 4 o(|AxX|? + [6x[%). (3.2)

Let us set novh = max{|Ax|, |dx|}, n = Ax/h andm = &x/h; n andm are assumed to be
fixed vectors. Further, if we divide both sides of (3.2)H8yand take the limit wheh — 0

we then obtain
im Ay - 0y — AX- OX

h—0 h2
wheren is the strain tensorassociated to the displacement figldefined by

=2n-n(u)-m (3.3)

1) = 2(0u+ (O +(0u) 0wl 34)

Notice that if the body deforms as rigid body - oy — Ax - dx = 0 which implies that
n(u) = 0 too. Moreover, under the assumption that the body underigdiaitesimal de-
formations, that is the displacement gradieéntis small enough, the nonlinear term in
(3.4) can be neglected and we obtain the so-cdiltehrized strain tensodefined by

£(u) = 5[0u+(0u) ") 35)

We now move to the investigation of the consequences of tpkeabforces on material
bodies. Let us seb to be an arbitrary subset 61 which is mapped taa in Q;, and let
us denote the mass density and the velocitylilyy) and \(t,y) = %y(t,x) = %g(t,x)
respectively. Further, we consider the following balarased.

Conservation of mass

The principle of conservation of mass is the postulate treattass of a fixed set of particles
does not change in time, that is

/[)(t,y)dy:/f)(o,x)dx:constant for all.
W w
By using the Reynolds theorem one obtains

d /. d . . )

O:a/P(t,y)dyz/ [Ep(t,y)erlvy (v(t,y)p(t,y))|dy forall a,
@ 2

which implies

%f)(t,y) +divy (v(t,y)A(t,y)) =0 (3.6)

sincew is arbitrary. This is known as continuity equation.
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Balance of linear momentum
Let f(t,y) ands,(t,y) be a volume force and the Cauchy stress vector respectivaky.

postulate of balance of linear momentum is the statementtibaate of change of linear
momentum of a fixed mass of the body is equal to the sum of aftinegs, that is

dt/ptyv.tydy_ /ftydy—i—/ i(t,y)ds, fori=1,...,d.

By using the Reynolds theorem and the conservation of maggdBe obtains

/ptydtv.tydy_ /ftydy—i—/ )i(t,y)ds, fori=1,....d.

In addition, we haves,(t,y) = o(t,y)n,, wherea(t,y) andn, denote the Cauchy stress
tensor and the unit outer normal vector to the boundany respectively. Thus, by using
the Stokes theorem we obtain

[ sittyds = [ aittynds = [divy (ai(ty)dy
w

Jdwx Jdwy

Taking this into the above equation one obtains

pit.y) Svity) = F(t.y) +divy (a(t.y) 37)

sincew is arbitrary.

Balance of angular momentum

The total moment acting o is equal to the rate of change of the angular momentum of
w given by

%/yXﬁ(t,y)y(t,y)dyz /yXE(t,y)dy+/y><§n<t,y)ds/~ (3.8)
o [0}

This implies that the Cauchy stress teng@t, y) is symmetric, that is

a(ty)=lo(ty)]". (3.9)
By using the first Piola transformation given by

T(t,X) = J(t,X)0(t,y)(Dxy)” " = J(t,x)o(t,y(t,x)) (1 +0u)~ ", (3.10)
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the equation of motion (3.7) can be rewritten in Lagrangi@ordinates as follows

p(t,x)g—;g(t,x) = f(t,x) +divy (T(t,X)), (3.11)
where the volume force density
f(t,%) =3t F(t,y) (3.12)
and the mass density
p(t,x) = J(t,x)p(t,y). (3.13)

Under the assumption that the body undergoes an infinitésief@amation we have
o(u) = 1(u),
further the distinction between the current and referemediguration is ignored and the
equation of motion (3.11) takes the form
pu(t,x) —div a(u(t,x)) = f(t,x), (3.14)
2

whereu(t,X) := Wg(

law

t,X). The stress tensor is then given by the generalized Hooke’s

o(u) =Ce(u), (3.15)
whereC is a fourth order tensor (independent of time) and satidfie$allowing symmetry
properties

Cijii = Cjiki = Gijik = Cuiij- (3.16)
In addition, we assume to be elliptic, that is
Ciji &ij ki > coéij &ij (3.17)

where ¢y is a positive constant and is any symmetric second order tensor
(&ij = ¢ji). If we assume the material to be homogeneous and isotrtpc i€, its re-
sponse to a force does not depend of its orientation), thehfarder tensolC is then
defined by two parameters as follows

Cijki = A dijda + H(dKOj + & Ojk), (3.18)

whereg;j is the Kronecker symbol, andandy are the so-called Lamé constants. Hooke’s
law is then given as follows

o(u) = A(tre(u))l +2pe(u), (3.19)

wheretr () represents the trace of the tensor, &ided x d -identity tensor. For further
investigation we assume the material to be not incompriessibd specify the dimension
of the spacal. For the three dimensional problem the Lamé constants ae by

A= EV andu = E
T arwva—zv) MHT Ty
whereE > 0 andv € (0,1/2) denote the Young modulus and the Poisson ratio respec-
tively.

(3.20)
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Plane elasticity

To describe the two-dimensional elasticity problem thewste two different methods, the
plain strain approach and the plain stress approach. Inrdteafiproach the components
of the strain tensog;j (u, x) defined by

1/0y 2du;
8j(ux) =&j =3 (a—x;-l- 0—)(:) (3.21)

depend only on the two first space coordinapesx,) and all components in the third
direction vanish, that is

8j (U, X1, X2, X3) = @j(u,xy,Xx) for i,j=1,2,
33(97)() - %i(H,X):O for I?J:17273

In addition, Hooke’s law is given in this case by

gij(u) = Adj(en(u) +ex(u))+2uej(u) for i,j=1,2,
oi3(u) = o3(u)=0 for i,j=1,2,
o33(u) = A(err(u)+exn(u)),

whereA andu are the Lamé constants given in (3.20). In the second apipytiae com-
ponentsoy1(U), 012(U) and o22(u) of the stress only depend on variablgsandx, and
013(U) = 023(U) = 033(u) = 0. Applying Hooke’s law we obtain

e&i(u) = e3u)=0 fori=12
exa(l) = —(0n(U)+oz(L).

Additionally we have, see,e.g. [26,100]

E Ev
011(u) meﬂ(!) + meﬂ(!)a
Ev E
022(U) meﬂ(!) + meﬂ(!)a
E
012(U) T+v) er2(u),

The initial boundary value problem of linear elasticitydsaFind the displacement field
ue RYfor (t,x) € (0,T) x Q such that
themotion equation

pu(t,x) —div (a(u(t,x))) = f(t,x) in (0,T)xQ, (3.22)
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theelastic constitutive law
o(u) =Ce(u) (3.23)

with the strain-displacement
£(u) = 5 (Ou+(Ou) "), (3.24)
theboundary conditions
u(t,x) =g, (t,x) on (0,T) x 'p and o (u(t,x))n(t,x) = g, (t,x) on (0,T) xn, (3.25)
theinitial conditions
u(0,X) = ug(x) and u(0,x) = uy(Xx), xe€ Q, (3.26)

are satisfied with functlongD andg which represent the given displacement and the
traction on the Dirichlet boundafyp and the Neumann boundary respectively, where
r=0Q =TpUly. Notice that, if we assume the data to be independent of timaitial
boundary value problem (3.22)-(3.26) becomes then a boynvddue problem where we
have to find the displacement fieldx) for x € Q such that the following relations are
satisfied

theequilibrium equation

div (o(u(x)))+f(x)=0 inQ, (3.27)
theelastic constitutive law
o(u) = Ce(u) (3.28)
with the strain-displacement
(W) = 5(0ut(0w)"), (3.29)
theboundary conditions
u(x) =g, (x) onTp and o(u(x))n(x) =g, (x) on M. (3.30)

Remark 3.1. The spac& of rigid motion for the elastostatics model problem is ofténi
dimension and its basis is defined as follows, see [100]:

o sl (3.9). ()

- ol ) 3) (3)(3) o

We can easily check that any member of the spaces (3.31) aB2) (@oduces a zero
strain, that is
e(u)=0 forallueRrR.
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Before we proceed, let us introduce some usuful resultsattidie frequently used in this
work. If we suppose the measure of the Dirichlet boundayyto be strictly positive, the
space of test functions is then given by:

V={veHYQ):y"v=0 on Tp},
whereH(Q) is the Sobolev space defined by:
HY(Q) = (HY(@)°

and _
Yt H(Q) — HY()

is the trace operator. In addition, if we suppose the mateside homogeneous and
isotropic we then obtain the following results:

Lemma 3.1. For w € H}(Q) we have

d
A(w, w) _1+V/ > (&ij(w

i,]=1

where A.,.) : HY(Q) x HY(Q) — R is a bilinear form defined by
Awy) = [ o) : e(v)dx

Q

Proof. This follows immediately from Hooke’s law (3.19), i.e.

Aw,w) = zu/ Z & (W dx+)\/(divv_v)2dx
i,]=1
d

E d
2u [ 3 (0w ek oy ! > (o)

Q ’

v

O

By using Lemma 3.1 we can show th&tw, w) is a norm onV. Indeed, note that because
b has a positive measure,
RNV = {0},

whereR denotes the space of all rigid motions given above. Consglyyee have then
YweV, Aww) =0=¢w) =0cweR=w=0.

Moreover, it can be shown that this norm is equivalent to thieert norm inH(Q). This
is a direct consequence of Korn’s second inequality, segl[XH.
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Theorem 3.1. (Korn's Second Inequality). Let Q ¢ RY be a bounded domain with
piecewise smooth bounddry= 9dQ. There exists a constant€0 (dependent o) such
that

/ 3 (o) i 0) > clwlyg, forall we Hi(@)
] &

3.2 Contact and Signorini conditions

In this section we recall the setting of a unilateral contamdition (Signorini contact
conditions) for linear elasticity. To this end, we considedeformable body occupying
in its reference configuration a domahc RY, d = 2,3, as in the previous section, with
boundaryl” := dQ which is divided into three disjoint subsdtg, 'y andl'c. We assume
that the displacements, the stresses, and other functsetsio this section are defined
pointwise. We consider furthermore a rigid foundation wattsurface denoted biyr.

In addition, we assume that the contact surfBgeand the rigid foundation are defined
parametrically by

X4 = D(X), x=(x,...,Xq) € ['c,
(3.33)
Xa = W(X), x=(X,....,Xd) €TF,

wherexX’= (x1,...,X4—1). In addition,® and W are assumed to be sufficiently smooth
functions. For convenience, we assume thatlies above the rigid foundatiohr as
shown in Figure 3.2, that is

P(X) > W(X).

Figure 3.2: Unilateral contact.
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Let x = (X, ®(X)) be the coordinate labels of a particle on the contact suffaci the
reference configuration. After a certain deformation oflibdy, the particlex occupies at
timet a new position denoted by Since the particle still lies ofc, its deformation must
satisfy
Vi=X+u4XPX), i=1..,d-1 (3.34)

and

Yd :=Xg + Ug(X, P(X)) = P(X) + ug (X, P(X)) > P(¥), (3.35)
wherey”= (y1,...,Yq—1) andu := (uy, ..., Uq) is the displacement field iQ. The inequality
(3.35) is the kinematic contact condition for finite dispaeents. From (3.34) we obtain

X=Vi—u, i=1..d-1
Taking this into (3.35) yields
D(y1 —Ug,...,Yd-1— Ud—1) + Ug > W(¥). (3.36)

Moreover, if we suppose that the body is displaced to itserurconfiguration by a small
amounty; fori =1,...d, then an expansion @b abouty; = x; + u; yields

F) D(Y)ug—1—Ug < DY) — W(Y). (3.37)
Yd-1

The unit outward normal vector toc at point(ys,...,Yq) in the current configuration is

given by
oD L) oM od \?
ny)=|(-—,..——,—1 — ) 4.+ +1.
n) <‘9Y1 0Yd-1 )/\/<(9Y1) <0Yd—1)

2 2
Thus, dividing both sides of inequality (3.37) @é(g_g) bt ( a?ffl) +1 we obtain

the condition

n(y)-uly) <d(y), y=(y1--Ya) €lc, (3.38)
whered(y) is the gap between the body and the rigid foundation in theeatireference
given by

DY) —W(y
d(y) = §) =¥ Y =X+ Ui(X).

2 2
24 24
\/(a—yl) to (aydfl) +1

Under the assumption of infinitesimal deformations theimiision between the reference
and current configurations is ignored and (3.38) can be appeded by

n(x)-u(x) —d(x) <0, xerc, (3.39)

wheren(x) andd(x) are the unit outward normal vectorato I'c and the gap between
the foundatior ¢ and the contact boundary: in the reference configuration respectively
(see [67]). For convenience we will use in the sequel and athwgx) = n(x) - u(x) for

all xerlc.
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Boundary stress relation

Taking into account the relation (3.39) there arises retatbetween the displacement field
uand the boundary stresgu)n onl"c. Therefore, we first decompose the boundary stress
on[ ¢ into its normal and tangential components as follows

o(u)n:= op(u)n+ai(u), (3.40)

whereoy(u) is a scalar given by, (u) :=n- (o(u)n) andag(u) := o(u)n— op(u)n is the
tangential component drc.

Normal stress relation

The relation (3.39) indicates when the body and rigid fotiotieare in contact. Indeed,
the body and the rigid foundation are said to be in contattdfinitial gap is equal to the
normal displacement, that ig, = d on "¢, otherwise we have, < d. Moreover, there is
a transfer of forces between the body and the rigid foundatiben they are in contact,
otherwise no transfer occurs. These forces exert pressuyearothe normal direction,
and they do not depend directly on the material propertidsth&se statements can be
formulated mathematically as follows:

Uy < d = op(u)=0,

(3.41)
un, = d = op(u)<O.
The above relation (3.41) can be written again in the folfagiorm
un < d andop(u) < 0 andop(u)(un—d) =0, (3.42)

which is called the classical Signorini formulation. On ttker hand, (3.42) is equivalent
to
un < d, on(u)(van—un) >0, Vv, <d. (3.43)

Indeed, we have

On(U)(Vn—Un) = 0n(U)(Vn—d)+ 0n(u)(d—un),
= 0On(U)(vh—d)+0, see(3.42),
= 0On(U)(vn—d) >0,

sinceon(u) < 0 and y—d < 0. Conversely, let us suppose that (3.43) holdsu, = d,
then

On(U)(Vn —Un) = On(U)(vn—d) > 0 Vv, <d,
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which implies thaio,(u) < 0 since y,—d < 0. Further, ifu, < d and v, = d, then
On(U)(Vn —Un) = 0n(u)(d —un) >0,

which yieldson(u)(d — un) = 0, andoy(u) = 0. The relation (3.43) is called the variational
formulation of the Signorini contact condition (3.42).

3.3 Friction law (Coulomb friction law)

In this work the Coulomb law will be used. It is the historigabldest and simplest phe-
nomenological friction law, and it states that the slidirighee body depends on the pro-
portionality of the tangential fordg to the normal forcé, with which the body is pressed
perpendicularly against the rigid foundation (see Figu83.3

Fn

Ft

L o

Figure 3.3: Tangential force.

In general, the friction coefficient depends upon differpatameters like the surface
roughness, the relative sliding velocitybetween the contacting bodies, the contact nor-
mal pressurd?, or the temperature. One of such friction laws which incoapes the
sliding velocity can be written as follows

F(||) = Fo + (Fs— Fp)e Pl (3.44)

where Fs and Fp represent the static and the dynamic friction coefficieagpectively,
and whereB is a constitutive parameter which describes how fast thic staefficient
approaches the dynamic one (see [102]). Therefore, to tdi@ccount the difference oc-
curring in practice between static and dynamic frictionfoents at least approximately,
the friction coefficient must be a function of the slidingaety. Thus the friction law for
a deformable body can take the form

U = 0, = [a(u)] < F(0)|an(u)l,
_ (3.45)
U # 0= m(g)z—f<|g|>|an<u>|§—|.
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This law describes the dependence of the tangential stpessthe normal stress and the
sliding velocity: at thesticking point x (no sliding) we havay = 0 and the Euclidean
norm of the tangential stress is bounded by the product ofritteon coefficient and the
magnitude of the normal stress. On the other hand, if the Istidgs at a poink, the
tangential stress is then equal in magnitude to the produttteofriction coefficient and
the magnitude of the normal stress. In addition, this opptse sliding velocity.

Remark 3.2. If the surface roughness is not too large or not too smooth i&rlkle
sliding velocity is neither too large nor too small, the fran coefficient can then be chosen
constant.

Proposition 3.1. The relation (3.45) is equivalent to

ot (U) - (% — L) + F (1L D[ on(W)| (%] = [G[) = 0, V. (3.46)

Proof.

() Letus suppose that (3.45) holds and show (3.46).
Foru, = 0 we havgat(u)| < F(0)|on(u)| and

0t (W) - (Ve = &) + F(|Uon(W)|(lve] = [&]) = 6r(u)-v; +F(0)[on(U)] |v]
> (=[a )]+ F(0)|on(uw)])|v| > 0.

For i # 0 we have; (u) = —(|ik)|oa(u)] & and

Gu() - (v~ )+ (s Dol - 14l) = F(lDlon(w] (v +

> (=] + %)) =0.

(i) On the other hand, let us assume that (3.46) holds and £8.d5).
Foru, = 0, (3.46) yields

0t(u) - Vi + F(0)[on(U)] [w| > 0 Vv,

that is—aot (U) - v; < F(0)|on(u)| |v;|. Further, if we sety= —ot(u), with oy (u) #0
we then obtainao; (u)| < F(0)|on(u)|. The caseg (u) = 0 follows immediately.
Foru, # 0, if we sety =2y, and y = th respectively into (3.46), this yields

Gt (U) - U+ F([U])[on(W)] || = (3.47)

This gives theng; (u) = —F(||)|on(u )| e
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The relation (3.46) is called the variational formulatiohtbe Coulomb friction law
(3.45). After the presentation of the linear elastodynangoverning equations and a
closer examination of the contact condition and the frictiaw, we can formulate now
the contact problem in linear elastodynamics, which re&dsd the displacement field
u(t,x) : (0,T) x Q — RY such that

pu—div (o) = f in (0T)xQ, (3.48)

u =g, on (0,T)xlp, (3.49)

oun = gy on (0,T) xIn, (3.50)

up <d, op(u) <0, onu)(up—d)=0 on (0, T)xTlc, (3.51)
U =0=[ai(u)] <F(O)on(u)l,

U #0= oy(u) = —F(|])lon(u)lg. » on (0,T)xTg, (3.52)
|G| (lot(u)| = F(|])|on(u)]) = O,

Uu(0.X) = Up(X), U(O0.X)=Uy(x) in (3.53)

are satisfied.

The system of equations (3.48)-(3.53) is the general foatrar of the contact problem
in linear elastodynamics with Coulomb friction. But, urtfarately up to now there is no
general proof concerning the existence and uniquenesssfliitions. However, very few
results about existence of solutions for the frictionlemseccan be found in [13,14] and a
special one dimensional frictional case in [8]. Thus, irsthiork we will base our study
on the static problem derived from the dynamic problem bynaplicit time discretization
and the quasistatic problem, i.e. the case where the bodgisraed to be deformed very
slowly so that the inertial forces are neglected in equattofh8).

3.4 Backward time discretization

In general, the analytical solution of (3.48)-(3.53) is mghilable and for this reason a
numerical approximation is required. Furthermore, ihibaundary value problems of
hyperbolic type appear so frequently in many areas of agipdic. Therefore, methods
have been developed especially to approximate them. Adimaoany of such methods
exist [65, 97], here only the well-known backward Euler sokd26, 29] is used. At first,
the time interval of interest, denoted K9, T) is subdivided intd- sub-intervals of equal
sizedt, thereby establishing the time grid

4 =15t forl=0,...L, (3.54)



3.4 Backward time discretization

51

with ot ;=

%. Note that the constant time stépis taken only for simplicity, the method

itself does not require this. Further, the approximatiorth&f unknownu, its first and

second derivatives are given by

5Ul ul—u|*1
~ | i ~~ - -:— —_
ut) ~ U, u) = =
sou S iy
) ~ oY .- Yo T+
- (ot)2° 5t (5t)2

(3.55)

respectively. Taking (3.55) into (3.48)-(3.53) yields thBowing recursive problem.

Forl =1,...,L, find u' such that
0 ou°

u’ = Up(x), T—t':gl(x) in Q, (3.56)
Su —div(ol)) = F' in Q, (3.57)
ud = g, on Tp, (3.58)
o)n = g, on Iy, (3.59)
uh <d, 0( u') <0, on(g')(u'n—d'):o on TIc, (3.60)

(8u)t = 0= |or(u)| < F(0)|on(U)], )

|

(@) #0= o) =—F (G2 jo) 22 b on re, @)

1) lon(u)1) =o.

L which are all given data to the problem (3.56)-

()l (o) -7 (155

are satisfied withr', gD, gN, d, s andu'~
(3.61). In addition, we have

/

lauy+ Lo i 1=1,
£l _ ot—t
fled@dt1-u-2) if 1>2
and
[ R __hk
ou =u—u -, 502"

Note that the recursive problem (3.56)-(3.61) is a statitact problem in linear elasto-
statics of Yukawa type. The conditions (3.61) define a fornr€otilomb friction law for
elastostatics of Yukawa type. Moreover, (3.60)-(3.61¢esghat if contact takes place at a
point onl ¢, no sliding of the point occurs if the magnitude of the tartggstress o (U')
is less than the magnitude of the normal strigsgu')| times the friction coefficientF,
whereas sliding occurs if the magnitude of the tangentiaksto; (U')| reaches a critical
value and the motion opposes the tangential Swgss).
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4 BEM FORMULATIONS FOR SCALAR MIXED BOUNDARY
VALUE PROBLEM OF YUKAWA TYPE

This chapter is devoted to the development and analysis ofiadary element method for
the solution of the scalar Yukawa problem. Yukawa problemagelmany important ap-
plications, for example it generally arises after an implime discretization of the time
dependent heat equation, time dependent diffusion equatiime dependent elasticity
equations etc. Therefore, reliable and efficient numeradgbrithms for the solution of
the scalar Yukawa equation can be of great use in many diffareas of solid mechanics.
Here we consider the nonhomogeneous mixed boundary valdelnmca two-dimensional
simply connected domaif? (in particular a two-dimensional disc). Applying the bound
ary integral equation method, the partial differential &ipns are reduced equivalently
to boundary integral equations on the boundary curve [1@DJie to the shape of the
domain, the boundary (circle) can easily be representeddnegperiodical parametriza-
tion [92,94]. Making use of this parametrization the eigestsms of the boundary integral
operators can be derived [3,4,69], which are crucial resattthe computation of eigenval-
ues of the discrete operators. The boundary integral empsatire approximated by using
Galerkin method with the help of B-splines as basis fun&ionhis yields an equivalent
algebraic linear system involving dense matrices, butrigagirculant property [15,16,23].
The entries of those matrices are computed explicitly afideftly. Furthermore, the cir-
culant property enables us to use the discrete Fourier xregrpreconditioner within an
iterative solver or the fast Fourier transform (FFT) as disolver [43, 84,92-94]. How-
ever, the boundary element formulation (BEM) loses at adiietce its attractiveness due
to the fact that the equation is nonhomogeneous which regj@in integration over the
whole domain.

During the past two decades, much effort has been devoteealind with this issue in
the BEM community. One of the most widely used methods in mewying is the dual
reciprocity method (DRM) introduced by Nardini and Breblna 982 [89]. This method
transfers the domain integrals to boundary integrals. Tammdea is to approximate the
right hand side, for example by radial basis functions (RBF], which help to determine
a particular solution of the partial differential equatidfurthermore, particular solutions
can be computed by finite difference methods or by finite efgmmethods [64] by embed-
ding the domain into an auxiliary domain and solving the rmnbgeneous equation with
homogeneous Dirichlet boundary conditions. The recergldgwent for the evaluation of
the Newton potential is the fast multipole method [81, 8D]1The main idea of this tech-
nique is based on the multipole expansion of the fundameatation in the far field of the
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evaluation point. In [87], the computational domain is dedl into the far and near field so
that in the near field the evaluation is done by using a staihdalocation approach, while
in the far field the multipole expansion is used. Additiopadin error analysis is given. In
this chapter we present and analyze a new approach for aieeffevaluation of the New-
ton potential in the boundary element method of the mixedhdauwy value problem by
using the Steklov-Poincaré operator. The technique weeptdeere is based on a special
mesh discretization of the domain (disc). First, at eachllefrefinement the disc is split
into M rings in an adaptive way. Second, a uniform mesh is definecioh Bng in such
a way that the mesh on the external ring has the same size bsuhdary mesh. Further,
on each ring the right hand side is approximated by piecewosstant functions. This
enables us to write the Newton potential vector on each nrngrims of a matrix-vector
multiplication. Moreover, the FFT can be used to speed wgtocess due to the circulant
property of the matrices on each ring [43, 84,92-94]. Thetdrds organized as follows:
In section 1 we describe the considered boundary value gmglgstablish the boundary
integral equations and derive the eigensystems of the wpsravolved. In section 2 we
are interested in the standard Galerkin procedure for t@dbry integral equations for-
mulated in section 1 with the help of one-periodical B-spéin The focus of section 3 is
the evaluation of the Newton potential by using the methoddegcribed above and the
presentation of the numerical errors analysis.

4.1 Model Problem and Boundary Integral Formulation

In this section we precisely state the model problem. Funtbee, by using Green'’s for-
mula we establish the representation formulae, derive d@dary integral equations and
the computation of the eigensystem associated to the boundagral operators.

4.1.1 Problem statement

Let Q ¢ R? be an open and bounded domain (in particular a disg4nwith boundary
0Q =T divided into two mutually disjoint part§p andly, that isT :=TpUTl'y and
'oNIy =0. Onlp the boundary value is prescribed andignthe flux is given. Further-
more, we assummeasl p) > 0. We findu (in a suitable space) satisfying the following
equations

a?u(x) —Au(x) = f(x) for xe QcR? (4.1)
ux) = gp(x) forxerlp, 4.2)
ﬂ(x) = gn(x) for xerly, 4.3)

ony
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whereA denotes the Laplacian, amd> 0 is the so called generalized wave number and
Ny represents the outer unit normal to the boundary.

We now move to the Green formula of equation (4.1), to this eedassume that the
solutionu of (4.1) is sufficiently smooth, further let v be an arbitraegt function. The
first Green identity is then

/ [a®u(y) — Au(y)]v(y)dy = / [a®u(y)v(y) + Ou(y) - Ov(y)]dy— / wru(y) v v(y)dsy,
Q Q r 4.4)
du

——(y) := Ou(y) - ny. Further, if we interchange

where in this particular cagé™u(y) := o
y

and v in (4.4) we then obtain

/ [a®v(y) — Av(y)]u(y)dy= / [a®v(y)u(y) + Ov(y) - Ou(y)]dy— / V(Y)Y u(y)ds;.
r

Q Q
(4.5)

Finally, subtracting (4.4) from (4.5) results in the sec@réen identity

[lavty)—sviyluydy= [ yrumgvyds - [ v uy)ds+ [ fyviydy
r r Q

ol
(4.6)
Further, if there exists for anye Q a function \(y) := U*(x,y), such that

J1a?0" (xy) = 40" (x y)luy)dy = ux). @.7)

Q

then inserting (4.7) into (4.6) the solutiorof the partial differential (4.1) is given by the
so-called representation formula foe Q

— [ UGy WSuds - /”‘u Wumds+ (U f)dy  (48)
r Q

In (4.7) and (4.8), the operators subscripts denote thabpleeators have to be applied
with regards to their respective index onto the accordingngjties. We can notice from
the representation formula (4.8) that any solution of theigladifferential equation (4.1)

can be described if the Cauchy ddid"u(x), yi"u(x)} for x € I are known. Due to

/6oy u(y)dy for xeRY (d = 2,3), (4.9)

wheredy is the Dirac delta, the range of integration in (4.7) can hemded to be ird-
dimensional space sin€® is a subset oRY. Hence equating (4.9) and (4.7) yields the
following equation

a?U*(x,y) —AU*(xy) = do(y—x) for x,y € R (4.10)
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in the distributional sense. Any solutidh(x,y) of (4.10) is called a fundamental solution
of the partial differential equation (4.1).

Note that the existence of a fundamental solutioiix, y) is needed to establish the repre-
sentation formula (4.8), which is necessary to derive gmpste boundary integral equa-
tions to find the complete Cauchy data. Since the Yukawa tgasanvariant with respect
to translations and rotations, we can find the fundamentatiea asU *(x,y) = v(z) where
Z:=Yy—X, see [100] which yields

a®v(z) —Av(z) = &(z) for ze RY, (4.11)
We then obtain

Ako(alx—y) if d=2

V(z) :=U"(xy) = 1 e alx-yl ‘ (4.12)
ETW if d=3,
with
Ko(r) = (IN2—E—Inr)lg(r g (% %) _<r>2k],
© 1 2k
lo(r) = 1+k;W (§> )
and

n
E=lim [Z } —In n] ~ 0.57721566490.
n—oo jzl J
E represents the so-called Euler-Mascheroni constant,esge,( [1, 100]) whilelg and
Ko denote the first and the second kind of modified Bessel fungtiespectively [1]. The
derivation of the fundamental solution (4.12) follows agha case of the Helmholtz equa-
tion, see [100, p.105] we just have to replace the wave nuimpier and used the relations
between modified Bessel functions and Bessel functions fi¢hvyields (4.12). Having
derived a fundamental solution the focus of the next sedtiirbe on the establishment
of appropriate boundary integral equations.

4.1.2 Boundary integral equations

The representation formula (4.8) states thas determined uniquely for a pointe Q
if the complete Cauchy datb/'”tu Ay} and the sourcd are known. But, it turns out
that {yi"u, y\"u} are given only partially on the boundafythat is y§"u|r, := go and
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U|rN := gn. Therefore, we have to determuy@tuhN andy' tulr,. By proceeding as
|n [100], we first apply the trace operatyéj“t to (4.8) which leads to

Vtu(x) = (Vyi™u) (x) — <—%I + K) Mux) + (Nof)(x) forall xel.  (4.13)
Further, by applying the conormal derivati)/iét again to (4.8) yields

MNty(x) = (%I +K’) Mty(x) 4 (Dytu) (x) 4+ (N1 f)(x)  forall xel.  (4.14)

In (4.13) and (4.14)y"1“tu(x) and| denote the conormal derivative of i.e. j—nu(x)
X

and the identity respectively, and : H*l/z(r) — Hl/z(l') is the single layer opera-
tor, K : HY2(I") — HY/2(I") the double layer potential, the adjoint double layer péént
K’':H=Y2(I") — H-Y2(T"), the hypersingular boundary integral operdforH/2(I") —
H-1/2(T"), andNp : H=%(Q) — HY2(I") andNy : H~1(Q) — H~Y/2(I") are the Newton
potentials or volume potentials. Note that the above rgmiasions are considered on a
smooth boundary = 0Q, i.e. at least differentiable. In addition, these boundatrggral
operators are linear, bounded and defined as follows:

VH(X) = /u*(x,y)t(y)dsy for xeT,
(K = / WU (y)uiy)ds, for xer,
(K(x) = / WIU*(xY)t(y)ds, for xeT,
(DU)(X) = —1X/ YU (x y)u(y)ds, for xe T,
NN = [U(xy)fy)dy forxe,

(N F)(X) 1= '{j;/u*(x,y)f(y)dy for xe T
Q

The integral representations éfandD are understood as weakly singular and as hyper-
singular boundary integral respectively, while the inggifor K andK’ are in general
Cauchy singular integrals [53, 83].

Now, since all boundary integral operators in (4.13) anti4¥are well defined, the bound-
ary integral equations can be written in matricial form dofes

R G T ¢ Y ) BECED
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o (3K %
~\ D 31 +K’

is the so-called Calderén projection, and satisfies thetityef = C2 by what useful rela-
tions between integral operators are gained, see [100ih&unore, the single layer and
the hypersingular integral operators have the followingpprties.

Lemma 4.1.V : H-Y2(I") — HY2(I") and D: HY2(I') — H~Y2(I") are self-adjoint,
positive definite and elliptic on HY/2(I") and HY2(I") respectively, i.e.

where

VTOF > T2 4 forall TeH Y2T) with ¢ >0

(M)
and

(Du,uyr >c? || u ”|2—|1/2(r forall ueHY?(r) with & >0.

)

Proof. See [100] for the Laplace operator and use the propertigseofmodified Bessel
functions fora > 0 [1]. O

Since the single layer integral operatbis H~1/2(I")-elliptic, the unique solvability of the
boundary integral equation (4.13) with respect to the cor@bderivative follows immedi-
ately. Therefore, the conormal derivative= yi™u is given by

. 1
ti=ytu=v-1 (él +K) u—V Nof. (4.16)

But, by using the representation (4.16) in a Galerkin diszagon may lead to a non-
symmetric discrete matrix for the symmetric Dirichlet touxdeann map. To avoid such an
inconvenience, let us use the symmetric representatioohakiobtained by inserting the
representation (4.16) into the second boundary integradtsan (4.14):

1
t = (EI +K’>t+Du+N1f

(v () o e (B)vone

In the representations (4.16) and (4.17) if wefsetO, we then obtain two representations
of the Dirichlet to Neumann map in the case of homogeneouadsry values problem,
known as the Steklov-Poincaré operator. Furthermore, tieeabtained from (4.16) is
non-symmetric while the one obtained from (4.17) is symioetnd given by

S:= (; +K’)V1 (%I+K) +D, (4.18)

and satisfies the following properties.

(4.17)
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Theorem 4.1.1f Q is a bounded domain of class’Cthen for all s€ R, the Steklov-
Poincaré operator SH1/2tS(I") — H=1/2+5(") is a linear and continuous map. Moreover,
it is self-adjoint, positive definite and elliptic, that iatssfiying the following inequality

(Sutyr = ¢f || ulZuz, forall ue HY2(r)  with & >0.

Proof. By using theH/2(I")-ellipticity of the inverse single layer operatdér! we obtain

(Suu)r = (V1 (%I +K) u, <%I +K> Wr -+ (Du,u)r > (Du,u)r

for all ue HY2(I"). Therefore, the Steklov-Poincaré opera&admits the same ellipticity
estimate as the hypersingular boundary integral opeEator O

Furthermore, by equating (4.16) and (4.17) one obtains
_1 1 / -1 .
—VINgf = {Nl— (él +K )v No] f= —Nf (4.19)

and L
Ny f = (—EI + K’)VlNof

As a consequence of (4.19), the conormal derivative canttekillowing form
t:=y"u=Su—Nf. (4.20)

Let us now return to our problem where we have to find the unknBivichlet datum
you(x) for x € 'y and the Neumann datupau(x) for x € I'p. There exists a wide range of
different boundary integral formulation to solve the midxemlindary value problem (4.1)-
(4.3). However, the most frequently used in literature heedymmetric formulation, and
the formulation with the help of the Dirichlet to Neumann mapthe first formulation one
has to use the boundary integral equation (4.13xferd p while (4.14) is considered for
x e N, see, e.g. [100] for details. Here we consider the formarheltly using the Dirichlet
to Neumann map. Therefore, the problem reads: jiffd € H/?(I") such that

Mu(x) = gp(x) for xep, (4.21)
R0 = (SR - (NDK) = u(d) for xeTn. (422

Let §b € HY2(I") be a suitable extension of the given Dirichlet datgsne HY/2(I'p) and
satisfyinggb (x) = go(x) for x € ['p. Then we have to findi = y"u —gp € HY2(I'y)
such that

(S0,v)ry = (v +NTf—Sip,V)ry (4.23)
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is satisfied for all ve HY?(I'y). Since the Steklov-Poincaré opera®r HY3(I') —
H-12(I") is bounded andi¥/2(I'y)-elliptic, see [100, p.149], the unique solvability of
(4.23) is therefore shown.

Before moving to the Galerkin discretization of the problgh®?1)-(4.22), we determine
the eigensystems of different operators involved in theagquo.

4.1.3 Eigensystems of integral operators

In general it is not possible to obtain the eigenfunctiondbadindary integral operators
for arbitrary boundaries [3]. In the particular case of a-wmensional circular domain
Q = Bg(O) of radiusR and centered at the origin it is possible to give an explegpresen-
tation of the eigenfunctions of the single and double layemuaary integral operators, and
the hypersingular boundary integral operator as well. Tdrampetrization of := dBgr(O)
is given by

M= {xeR2:x(1) :R(Z?jiﬁ”) 0<T<1). (4.24)
By using the parametrization (4.24) the boundary integpairators can be written as fol-
lows:

1

V)(T) = R/ Ko(2Ra| sinTi(t —s))t(s)ds

0
1

(Ku)(t) = —aR/Kl(ZRa|sinn(r—s)|)|sinn(r—s)|u(s)ds
0

1
(Du)(1) = —az/ {RKQ(ZRCH sin(t —s)|) sirf (1 — ) +
0
Lemma 4.2. Letl be given as in (4.24). The Fourier functions
Vn(s) = eT2™S  for n=0,1,....

are eigenfunctions of the single layer boundary integrag¢mapor V, of the double layer
boundary integral operator K, and of the hypersingular bdary integral operator D,
associated to the eigenvalues

Avn = RKy(aR)Iz(aR),

K1(2Ra|sinm(T —9)|)
2aRsinT(T —S)

u(s)ds

An = —% + (aR)I (aR)Ky(aR)

= %-l- (GR)ln(aR)Kr/]<aR)a

Aon = —(aRZL(aRKA(aR)
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forn=0,1,.... respectively, wherg,land K, denote the first kind and the second kind of
modified Bessel functions respectively, whiland K, represent the first derivative of the
modified Bessel functiong &nd K, respectively.

Proof. The derivation of the eigenvalues follows as in the case®ftélmholtz equation,

see, e.g., [3,4,69], by using the wave numkeria. In addition, we used the relations

between modified Bessel functions and Bessel functionso[bptain the desired result.
O

Remark 4.1. Note that the Fourier functions,vare also eigenfunctions to the dou-
ble layer integral operato%l -+ K and the Steklov-Poincaré operator S associated to the
eigenvalues

)‘%I+K,n = (aR)l/(aR)Kn(aR),

A2 2
114Kn a?R(1/(aR))%Kn(aR)
)\Sm - )\Dn—

MNn : In(aR) — (aR?IH(aRK)(aR)

forn=0,1,... respectively.

4.2 Boundary element methods for the mixed boundary value
problem

In this section we describe the standard Galerkin boundament method to solve the
boundary integral equation (4.23) numerically with thephel one-periodic B-splines of
orderv > 0. First, we consider the one-periodic parametrizationhef houndary™ as
given in (4.24), further we divide the intervd, 1) into N > v + 1 subintervals of mesh
sizeh = 1/N and define as follows

N
01:U33+1 with g = (1-1)h forl=1,... N+1

Moreover, we introduce thi-dimensional subspadéy, of one-periodic functions, see,
e.g., [92,94], i.e.,

HY, = Sparg”)(s), ... 4} (9)),

Wheregqg")(s), k=1,...,N are the B-splines of orderdefined by the following recurrence

formulae ) )
o,, [ 1 —h/2<s<h/2,
@S = { 0 -1/2<s<-h/2, h/2<s<1/2, (4.25)
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1/2
o(g) == / " V) (s—1)dr forv=12,..., (4.26)
“1/2

a”(s) =@ (s— (k—1h) fork=1,2..,N, @ (s+m)=¢")(s) formez.
Further,(pl(") is an even function, i.e.
@) (—s) =@ (s) forall se[-1/2,1/2.

Indeed, the proof is done by induction for= 0,1, .... Forv = 0 we can easily see from
(4.25) that(pfo) iIs even. Let us assume thpiﬁ"_l) is even, further we want to show that

qa{v) is even too. From (4.26) we have

1/2
a0 = ¢ [ o Vel -t-nar
~1/2
L
— H / (p](_v_l)(T)(p](_O)(t+T>dT, ((P](_O) ever)
~1/2
%
= - / @’V (—u)@®(t — u)du, (change of variable = —1)
1/2

=+ [ @ P wet-udu (¢ even

- q”.
In addition, we will use the Fourier series representaticth® basis functionqq(v), le.,
gV () = Ezcl"(k)eizm, l=1...N, v=01,...
ke
where the Fourier coefficients are given by [92]
h if k=0,

% _
C1 (k) - Sinv+1(nkh)
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and _
o’ (k) = ¢y (k)emZ*I=Dh for | =1,....N.

Note that we have also
ci(—=k)=cj(k) forall ke Z.

The Galerkin boundary element formulation of the boundatggral equation (4.23) is to
M

find for M < N, Gn(X) = _Zlﬁiqq(l)(x) e HY, NAY2(ry) such that

i=
<SJAh,Vh>rN = <gN — @D,erN + <N f,Vh>rN for all Vh € HJM N I:I1/2(FN). (4.27)

By using Theorem 4.1 and the Lax-Milgram lemma we conclueeutiique solvability of
the Galerkin formulation (4.27). In addition, Cea’s lemmna éhe approximation property
of H3, [100, Theorem 10.9] yield the following error estimate

16— Gnl /2y < ¥ ulr), (4.28)

when assuming thate H?(I").

The boundary element formulation (4.27) is equivalent ® dlgebraic system of linear
equations
St=1,+1, (4.29)

where the stiffness matrix is defined by
S’I[Iaj] :<S(Pj(1)afﬂ(l)>FN for |7J :la"'7M7
and the right hand side

f=(on —S@D,qq(l)>rN and f,, = <Nf,qq(l)>rN fori=1,..,M.

Note thatN f =V INyf.

Note that for this particular case, the Galerkin discreitreof the Steklov-Poincaré opera-
tor can be carried out explicitly by means of its eigenfumicsidefined in Remark 4.1. This
is only possible for the scalar Yukawa case. But, since oun méerest is in the elasticity
case, we will define and use in this chapter a symmetric afpation of the continuous
Steklov-Poincaré operat& To this end let us first define the Galerkin discretizatiohs o
the boundary integral operatdrs K, K’ andD as follows:

el il = (Vo2 q%r, Dull, K= D, gVry,
Koli,K = (Kg” q%r, Khi=Ky

fori,j=1,...,Nandk,| =1,...,M. These matrices can be computed explicitly and in an
efficient way by using the following results.
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Lemma 4.3. The discrete single and double layer integral operatgrakdKy, = %Mh—i—
Kh, and the discrete hypersingular integral operatoy &e circulant matrices. Moreover,
V,, and D, are symmetric and positive definite. In addition, their eiggdues are given
respectively by

([ hRb(aR)Ko(aR) for j=1,
: Radl VOO (aR)K i _ (aR)
2v+2 (j—1+kn) (j—14kn) B
)\Vh,]- _ hR(S”;TnS) <kZO (k+S)2V+2 for j=2,....N,
++Z°° L1 j k) (AR)K(1-j 1kn) (OR)
([ h(aR)I1(aR)Ko(aR) for j=1,
: +oo |7, (aR)Ki_ (aR)
sinmsy VU2 (j—1+kn) (J=1+kn) _ \k(vp) -
Ay, = h(aR) (3%) (k_o (Kisyvrir? (—-1) for j=2,...,N,
++°° Igl—iJrkn)(alsz(l—iﬂLkn)(aR> (_1)(k+1)(v+u)
\ kgl (k—s)VHh+2
( h(aR)?I1(aR)Ky(aR) for j=1,
+oo |7 (aR)K/. (aR)
2 2u+2 (j—14kn) (j—1+kn) B
LY 1k (ORK iy (OR)

\ D

fors=(j—1)/N. I, and K, represent the first and second kind of modified Bessel fursctio
respectively while/land K| represent their first derivative respectively.

Proof. Since the kernel functions of all boundary integral opasattepend only on the
differencert — s, the Galerkin discretization of these operators resultsraulant matrices.
In addition, the symmetry o¥,, and Dy, follows immediately from the symmetry of the
kernel functions. Further, by using the eigenvalues of thenblary integral operators as
given in Lemma 4.2 and by using [92, Lemma 3.6] we can comphgeigenvalues of all
discrete boundary integral operators. Moreover, from tohp@rties of the modified Bessel
functions [1] it follows, that all eigenvalues ®f, andDy, are positive. O
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The most important property of the circulant matrices [ 22, 94] is that they are diag-
onalizable and easily invertible if the inverse exists,

1 . 1 . 1
Vh=QDvQ: Kn=5FDgF", Dh=5QboQ,
whereF € CN*N andQ € RN*N are the Fourier matrices given by
Flk 1] = 2k=D0=Dh [k 1] = cog2m(k— 1)(I — 1)h] +sin2rm(k— 1) (I — 1)h]

fork,I =1,...,NandDy, D; as well adDp are diagonal matrices which are defined by the
eigenvalues oY, Ky, andDy, respectively.

The Steklov-Poincaré operator can now be approximated by:

~ 1 1
Shi= (GMn + Ky )V, H(GMn+Kn) + D, (4.30)

whereMy[i, K] := <qq£l), gq(o)>r is the mass matrix. Remark that from Lemma 4.3 the entries
of the discrete approximate Steklov-Poincaré oper8{aman be computed explicitly and
exactly. Moreover, its eigenvalues are given by
2
ARhﬁj

)‘Sq_,- = A, +Ap,; for j=1,..,N.

The first modified discretization of boundary integral equat(4.23) can be written as
follows N
Sbi=f, +f, (4.31)

Note that for some given function @ HY?(I') the action of the symmetric Steklov-
Poincaré operatddon v is given by

= Dv+(%l +K’)V1(%I +K)V:Dv+(%l +K, (4.32)

wherey is an intermediate function which satisfigs=V~1(31 + K)v e H=Y2(I"), i.e.
Y is the unique solution of the variational problem

Ny, T)r = <(%I +K)v,T)r forall Te H™Y2(I). (4.33)

The approximate representation (4.30) of the Steklov-&o#operator can be interpreted
as the Galerkin discretization of the opera®which is defined by

S =Dv+ (51 +K ), (4.3)
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where the auxiliary functiogy, € ]HIR, is the solution of the Galerkin discretization of (4.33)
given by
1 .
<th,qq(0)>r = <(§I +K)v, qq(o))r for i=1,..,N. (4.35)

Note that the modification of the approximate Steklov-Pargmperator also changes the
computed solution of the problem. Therefore, it is requi@dnalyze the corresponding
additional error. To this end the properties of the appraterSteklov-Poincaré operator
are required.

Lemma 4.4. The approximate Steklov-Poincaré operafrHY?(I') — H=%2(I') is
linear and bounded, and¥/2(I"y)-elliptic, that is satisfying

(Suv)r > c?||v||§|l/2(r) forall ve HY2(ry). (4.36)
Moreover, it satisfies the error estimate
(8= 8Vl s2r) < © inf 1SV=Thlly w2 (4.37)
h<HN
Proof. We have from the definition ¢
- 1
[SV[[y-22ry = [[DV+ (5' +K)hllg-22ry
< P 1 4.38
< 3 |IVllgzry + (2+CZ)||wh||H*1/2(F)' (4.38)

On the other hand, using the ellipticity of the single laype@atoV we obtain

1
Sl ey < VU U = (G KOV, G

1
< (G IVl gz [ Wnllg-vzgr-

This yields,
1.1
[Whll-v2(ry < q(éﬂLCz)HVHHl/Z(r)-

Taking this into (4.38) the boundedness of the approximekl@/-Poincaré operat&@is
shown. Thed/2(Iy)-ellipticity is obtained straight from thel ~%/2(I")-ellipticity of the
single layer operatd¥ and from theH 1/Z(FN)-eIIipticity of the hypersingular operat®
as follows

(Sv,V)r = <Dv,v>r+<(%I+K’)Lph,v)r
= (V) + (U (1 KV

= (DV,V)r + Vi, Un)r = & VI oz p -
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Finally, by taking the difference, we obtain

(S—9v= (51 +K) (W),

which yields
N 1 , 1 «
1S=Vlly-2r2r) = IG + KW = n)llg-272r) < (5 + )W = thlly-vzr),

and by the use of Cea’s lemma the proof is completed. O

The Galerkin boundary element formulation of the first medifiproblem is to find
(h € HY, NHY2(Iy) such that

(S, @ Myry = (NN =S, M), fori=1,...M. (4.39)

From Lemma 4.4 we conclude the unique solvability and thbilgiaof the Galerkin
formulation (4.39). Moreover, error estimates in the cabene we assume that no modi-
fication occurs in the right hand side are given as follows:

Lemma 4.5. If u € H?(I) and Sue H},(T") we then obtain the error estimate

16— Ghll 22y < 2 Ullpzqr) + | SUla,)| -

Proof. By using the Strang lemma, see, e.g., [100, p.192] we obtain

inf )||0_Vh||H1/2(F)+||(§_ S>O||H1/2(F)] ’

a— Uh 1/2 S (o
|| ||H / (r) VhEH]MmHl/Z(rN

further by using Lemma 4.4 we obtain

a— O <c inf 0—vp + inf [|S0— 14— .
I HHl/Z(r) [vheHbmﬁl/z(rN)H HHl/Z(r) TheHR,H I 2(r)

Finally, by using the approximation property of the spdéigsandH, with the assumption
thatu € H%(I") andSue H},(T) the lemma is shown. O

Thel? estimate of the error can be given, see, e.g., [100] by

00z < €t [ulle) + ISUlhegr) -
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It remains to describe the evaluation of the veo:tglwhich results from the Newton po-
tentialNof. This will be done again by using circulant matrices whicé efficient for a
matrix-vector multiplication, and the memory storage. Ferl,...,M we have

0= (NFgP)ry = v N, )y = W)y, (4.40)
wherew =V "INy f € H=Y/2(T") is the unique solution of the variational problem
VW 2)r = (Nof,2)r forall ze H-Y2(T), (4.41)
with the Galerkin boundary element formulation which redisl w, € HY such that
(VWh, zn)r = (Nof,zp)r for all z, e HY,. (4.42)

By using standard arguments, see for example [100], we adadhe unique solvability
of (4.42), as well as the error estimates

IW—Wh[}4-1/2(r) < Ch3/2|W|H,§W(r) (4.43)

and
W —Wh|lLyr) < Chiwlpg - (4.44)
for we Hg,(1).

Note that in order to compute the vectby we need to determine which is the unique
solution of the variational equation (4.41) with the NewpmtentialNy f as the right hand
side. In particular, we have to compute fee 1,...,N

Nof ] / 4% x / U (xy)f (y)dyds: (4.45)
Q

4.3 Evaluation of Newton potential

To compute the discrete Newton potential, the order of natiégn is interchanged first. In
particular, for a B-spline of order zenp(o) we have

Noffi] = [ 1(y) [ U (xy)dsay

Q T

Further, a special volume mesh is done in the dondaiiseeAppendi) for the detailed
procedure. First, the domaf@ is split into rings, and on each ring suitable meshes are
constructed in an adaptive way. For simplicity, we assuneentlesh size of the volume
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elements near the boundary to be equal to the mesh size obthmelary elements. Ad-
ditionally, from the ring close to the boundary to the inniegs the mesh size is reduced
with a certain rate (se&ppendi}. We then obtain

Nof ] /f /u* (x,y)dsdy, (4.46)
= 1k_1-|-]k

whereM; andN are the number of rings and the number of elements on eachespgc-
tively. Note thatN is also the number of boundary elements &net U'jv':flLJE:lTjk. Then,
an approximation of (4.46) can be given by

Mr N

Roffil = 5 3 1Ml fyi) / U (xyj)dss (4.47)
j=1k=1

where|Tjk| andyjx are the volume and the center of mass of the elemMgmespectively.
Note that the remaining boundary integral correspondsealtbcretization of the single
layer potential by using the collocation method which candraputed easily. From (4.47)
the vectorNp f of the approximate Newton potential can be written in matiform as

follows
Mr

Nof := > A, (4.48)
=1

where forj =1,..., M, L. andA; represent the piecewise constant approximation of the

function f and the matrix obtained by computing the remaining bounddegral on the
jth ring respectively. Moreover, we have fpe 1, ..., M,

ij [k] = ‘Tjk‘ f(ij) for k= 1, ...,N (4.49)

and
Ajli.K ::/U*(x,yjk)ds( fori.k=1,..N. (4.50)
Ti
Since the meshes on the boundary and on each ring are unifoem,the same size)
and since the fundamental solutiori is invariant with respect to rotations, we obtain for
i=1,....M
Ajli+1,k+1 =Afi,kl forik=1,..,N, (4.51)

which means that, fof = 1,...,M, the matricesA; are circulant. This reduces the effort
to generate the matri&; from quadratic to linear, i.e. fror®(N?) to O(N) as well as the
matrix-vector multiplication effort fronD(N?) to O(Nlog(N)), see, e.g. [92].

The variational problem (4.42) can be replaced by the ungpieable perturbed prob-
lem
(VWh, Zn)r = (Nofn, zn)r for all z, € HY. (4.52)
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The Galerkin formulation (4.52) is equivalent to a lineasteyn of algebraic equations,
Vil = Ny f, (4.53)

whereV, andN, f are the Galerkin stiffness matrix of the single layer in&égperator and
the numerical approximation of the Newton potential as give(4.48) respectively. In
addition, the system of linear equations (4.53) can be dad¥kciently by performing the
FFT, see for example [23,92,94]. Moreover, the approxireatars are given as follows

Lemma 4.6. Forw e HFl,W(F) and fe HéW(Q) then the error estimates are given by
W —Wh|l-1/2r) < Cth/Z\W\H%W(r) +C2h[ flh1q) (4.54)

and
W= ]|y < CahlWipg, ) +c2n?|Flq) (4.55)

Proof. By using the triangle inequality we have
W =W | py-2/2(ry < W —Whllpy-172(0) + [Wh = Whl[1y-272r) -
Remember thaty, € ]HI% is the unique solution of the Galerkin variational problem
(VWh, z0)r = (Nof,zp)r forall z, € HY, (4.56)
while Wy, € Hﬁ is the unique solution of the pertubed problem
(MW, zo)r = (Nofh,zn)r forall z, e HY,. (4.57)

If we subtract (4.57) from (4.56), se := w, — W and use the ellipticity of the single
layer boundary integral operatdrwe then obtain

_ 1
[[Wh = Wh(l-2/2m) < aHNo(f = Tl (r)-

Further, if we use the continuity dfly and the property of the interpolation operator
fh:=Inf, see [100], we then obtain

INo(F — i)l o2y < I — flli 1) < NI~ Falliyi) < Sl

that is
[[Wh — W [ py-1/2(ry < C2h[ flp2(q)- (4.58)

Remark that instead of the interpolation, one may use.thgrojection of the functiorf,
that isf, = Q f this leads then to

INo(f — fn)llqa2(ry < I f = fhlla-1q) < e[ flnq)
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but the computation d@;, f would require the integration dfin Q. By using the estimates
(4.43) and (4.58) the proof of (4.54) is shown. On the othedhthe inverse inequality in
HY, yields,

[Wh — W |y < &Y Wh — |-z < €202 Fligaq)- (4.59)

Further, if we use the triangle inequality with respect te lth norm, and the estimates
(4.44) and (4.59) the proof of (4.55) is then shown. O

Remember that & HY/2(I'y) is the unique solution of the variational formulation
(S0,V)ry = (v — SOb +W, V), forall ve AY2(ry), (4.60)

0n € Hy NHY2(T"y) is the unique solution of the first modified Galerkin variatibprob-
lem

(S, Viry = (O — SGp +Wvn)r,  for all vy € H nAY2(Ty), (4.61)

0h € HY, N"HY?(Ty) is the unique solution of the second modified Galerkin viaietl
problem

<éih,vh>rN = <gN — é@D +Wh,Vh>rN for all v, € HJM N I:Il/Z(FN), (4.62)
and finallyw := N f =V ~INgf. Therefore the final error estimate is given by:

Lemma 4.7.1f u € H(I), Sue Hj,(M), w:=Nf=V~INof € H},(T) and fe H1(Q)
then the following estimate holds

10— Gnl| pa/z(ry < ch®/? (HUHHZ(F) +[SUng, ) + |W|ng(r)) +Ch|flhiq).  (4.63)

Proof. By using the triangle inequality we have
16— Gnll /2y < 18— Cnllpgarzgry + l18h = Gnllygazqr)-

On the other hand, if we subtract (4.62) from (4.61), and get U, — G, the ellipticity of
Syields then

16— Gnllyy1/2(ry < ClIW— Wl 172 (4.64)

Finally, if we use (4.64), (4.54) and Lemma 4.5 the lemmaéntproved. O
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If the complete Dirichlet datunoi, := 0+ gp is computed, the approximate Neumann
datumt, € HS, can then be obtained by solving the Dirichlet boundary vatablem, this
satisfies the following error estimates

It —tzhHHfl/Z(r) < ch¥/? <HUHH2(F) +[SUng, ) + |W|H,§W(r)) +Chlflhiq  (4.65)
and
it —=fllLyr) < cah (”u”HZ(F) +[SUng, )+ \W\H%W(r)> + o2 1) (4.66)

when assuming thati € H*(I), Sue H(M), w:= Nf =V INgf € HJ,(I) and
f e HY(Q).



5 BOUNDARY INTEGRAL FORMULATIONS FOR YUKAWA
TYPE LINEAR ELASTICITY PROBLEMS

This chapter is dedicated to the development of some prisiégs for the formulation
of the contact problems in linear elasticity of Yukawa typka this end, we consider a
general linear elasticity model problem of Yukawa type ima-tdlimensional simply con-
nected domaif2. We first derive the fundamental solution [51, 52, 79] whistessential
to establish a representation formula and which enables f@rmulate boundary inte-
gral equations. Moreover, we define the boundary integrataiprs, and analyze their
properties and characteristics.

The chapter is organized as follows: in section 1 we forneutaundary integral equations
and derive the eigensystems of some operators related siijle layer integral operator.
The main focus of section 2 is the regularization of the deudyer and the hypersingular
integral operators [65,66,86], while section 3 is concémih the evaluation of the vector
related to the Newton potential.

5.1 Model Problem and Boundary Integral Formulation

In this section we state the model problem in a general formu&ng Green’s formula
we derive representation formulae and compute the fundeinswiution. Further, we de-
rive boundary integral equations and the eigensystemsia$sd to the boundary integral
operators.

5.1.1 Model problem

Let Q c R? be an open and bounded domain (in particular a disR3nas already in-
troduced in chapter 4. Further, we consider the system eélfirlastostatics of Yukawa

type,
Su(x) — pAU(X) — (A +p) grad divu(x) = f(x) for xe Q C R? (5.1)
whereA denotes the Laplaciag? may come from the time discretization,

Ev B E
1+vii-2v) M7 217

73
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are the Lameé constants with> 0 andv € (0,1/2) which denote Young’s modulus and
the Poisson ratio respectively.

If we multiply (5.1) by v, integrate ovef2 and do the integration by parts, we then obtain

2 2 2 5 2 ) 5
Q/i; fi(X)Vi(X)dX-l-r/i;jZlaij(!)njVidS(:Q/i;( UiVi‘|‘jZlUij(!)0—iji> dx, (5.2)

where
o(u) := Atr(e(u)l +2ue(u)

and 1
£(u) = 5(Ou+(Du) ")

are the stress and the strain tensor respectively. By usengyimmetry of the stress tensor,
i.e. gij (u) = gji(u), one can write (5.2) as follows

2 2 2 2 2
Q/i; fi(x)Vi(x)dx+r/i;j;0ij(u)njVids( = Q/.; <52UiVi +jZlaij(Q)5ij(!)> dx,
= auy) (5.3)

which is the first Green (or Betti’s) formula. On the other tiawe have

2 2 45 2 2
a(v,u) :!i; <Szvi —j;d—xj(fij(y)> uidx+r/i;j;0ij(y)njuidsx. (5.4)

Since the bilinear forma(.,.) is symmetric, by equating (5.3) and (5.4) we obtain the
second Green (or Betti's) formula

: 2 2 9 2 2 2 2
Q/é( vi—j;d—XjUij(M)> udx = r/i;j;@j(!)njVidS(—r/i;j;Gij(y)njuids(
2
fi(x)vi(x)d (5.5)
+ Q/I; X)Vi (X)dx.

As in chapter 4, to derive a representation formula for themonentsuy, we have to
choose v=Ug(x,y) for x € Q such that

2 2
/ _zi<s2vi<y>—_zlaiyjq,-w(x,y),y)) U(y)dy=u() fork=12  (5.6)
Q'= I=

Further, if we se€f € R? the unit vector such thae|k = § for k.| = 1,2 wheredy is
the Kronecker symbol, and by using the argument that theadon@shtal solution depends
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only on the distance between the two poirandy, we can sek .=y — x and the above
equations lead then to the partial differential equations

LUi(2) — AU (2) — (A + ) grad, div, Uji(2) = &(2)€¢ for ze B2, k=1,2, (5.7)
wheredy is the Dirac function. By making the ansatz
Uk(2) == AlY(2)€] + a grad div[y(2)€] + B[Y(2)€, (5.8)
substituting (5.8) into (5.7) this yields farc R?
KA [Y(D€] — [ap+a(A + ) + (A + p)]A grad div[y(2)€] + SBlY(2)€]

+ [$a—B(A +p)] grad div[(2)€] + (8 — uB)AY(2)€] = & () (5.9)

In addition, if one sets

g A+p B—_ & |
A2 A+2u
one obtains then 1
(—A+K)(A—K\(2) = H50(z) for ze R? (5.10)
with
K = s , K= f.
A+2u u

The equation (5.10) is equivalent to
(81882 = (), (B-KW@ =@ for z R (5.11)

From the fundamental solution of the scalar Yukawa probleraamsidered in chapter 4
we obtain

11
$(2) = HZ—KO(k2|Z|) (5.12)
Further, by utilizing polar coordinates we then obtain, [4€8)]
1 1
W(2) = I [Ko(ka|Z]) — Ko(ka|Z)]- (5.13)

Taking ¢ into (5.8), one obtaingl; for k= 1,2 and therefore the fundamental solution
U*(x,y) := (U3,U5) is found with the components defined fof = 1,2 by

U 03) = 5 { (olhelz) + 1 ekl ~ kika(kulz)]) &

ﬁé([k%(kz\zw k%Ko<k1|z\>]+§|[kzrq(kz\zu_k1K1<k1\z|>])}. (5.14)
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Note that any solution of (5.1) is given by the representation formula xog Q

— [Urxyyiue)ds - /Vltu*xyv yds+ [Uxy)fy)dy.  (6.15)
r Q

where the boundary operatqwf;(.) is the boundary stress operator with respect to the
variabley defined by

W) = Ty() 1= A divy () n(y) + 20 %mun(y) < curly () foryer,

wheren(y), y € I' is the outer unit normal vector g Note that for a two-dimensional
vector v= (v1,v2) " we have

oVo ovy 0vi 0V2)—|—

n(y) x curly v = (N2 aye —ny 3y, ny 3y,

5.1.2 Boundary integral operators

We know thatu is uniquely determined fox € Q just by its boundary dat@y'“tu 7)‘,g}
and the source$. To find the complete Cauchy data, we first apply the tracead)peto
the representation formula (5.15) which leads to

gtg(x):(vy'l”tg)(x)—(—%|+K) Mtu(x)+ (Nof)(x) forall xel.  (5.16)

Second, if we apply the boundary stress operajae= y"lr‘t again to (5.15), we then ob-
tain

Mty (x) = (%I —|—K’) Ytu(x) + (DY) (x) + (N F)(x) forall xel.  (5.17)

Let us define the Sobolev spaidé’?(I") by

2
HY2(r) .= [THY2(T).
(r) J]l (r)

-1

In a similar wayH ~Y/2(I"), H~(Q) andL »(I") are defined.

Note that all the mapping properties of the boundary integparators as shown in chap-
ter 4 for the scalar Yukawa problem can be transfered to ttealfielasticity problem of
Yukawa type. We have then thet: HY/2(I") — HY/2(T") is the single layer operator,
K : HY2(F) — HY2(I") is the double layer potential, the adjoint double layer ptiad
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K': H-Y2(") — H~Y2(I"), the hypersingular boundary integral operdborHY/2(I") —
H-22(r), andNo : A~ 1(Q) — HY2(T) and Ny : A~ H(Q) — H-Y2(T") are the Newton
potentials or volume potentials. These results are alsamdd in the case the boundary is
at least Lipschitz. Moreover, they are all linear, bounded defined by

V) (x) = /U*(x,y)'g(y)dsy forxerl,
r

(KWK = [MU eyl uy)ds, for xeT,
r

(KX = /Txu*(x,y);(y)dsy for xe T,
r
(DU)(X) = —TX/[TyU*(x,y)]Tg(y)dSy for xe T,
r
(D)) == [U*(xy)f(y)dy for xeT.

Q
(NeF)(x) o= TX/U*(x,y)i(y)dy for xeT.
Q

In addition, the integral representationsvo&indD are understood as weakly singular and
as hypersingular boundary integral respectively, whike ititegrals fork andK’ are in
general Cauchy singular integrals. Note that as for thesdalkawa problem, Lemma4.1
remains true, i.e. the single layer operatoand the hypersingular integral operai»are
self-adjoint, positive definite and satisfy the followingperties

VI,0)r > o ||T)|2 1z, foral TeH V%) with cf >0

(M)
and

(Du,u)r > chHgHam(r forall ue HY?(r) with ¢ >0

)
respectively.

5.1.3 Eigensystems of boundary integral operators

In this section we are interested to derive the eigensystéis@me boundary integral op-
erators related to the single layer integral oper&toro this end we consider in particular
a two-dimensional circular domafd := Bgr(O) of radiusR and centered at the origin as in-
troduced in chapter 4. Further, we assume a one-periodiarrization of the boundary
[ :=0Q given by

CcoSs 21T

F::{XERZ:X(T):R(SinZHT

),0§r<1}. (5.18)
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Remember that the single layer integral operstas defined by

VY= [U*eyuy)ds, (5.19)
r

Remark that the single layer integral operataran be written in matrix form as follows

Vit Vo2
V = ,
<V21 sz)
so that we hav¥j = Vit +V2, whereV.! are the principal parts of the integral operatgrs
fori = 1,2. By using the parametrization (5.18) we obtain thenrfoe= x —vi, i = 1,2,
andr := [x—Y|
1

VAN = 5 | GKalen)+
r

koK1 (kor) — kiKq(ksr)]
r

]wwm%

1

R .

— 5 [ [BKo(@keRisinm(z 1))
0

koK1 (2RI SINTI(T — 1)) — ke Ky (2K R| SinTa(T —1)))]
i 2R|sinn(r1—1t)| : }Vl(t)dt’

n 2[koKy (kor) — lel(kll’)q I’%

VB0 =~ 5z [ | I€Kaller) - kolan) : yds,
r

R

1
:_?/ [[K3Ko(2kaR| SinTI(T — 1)) — K2Ko(2kyR| sinmr(T —t)|)]
0

[koK1(2koR|sINTT(T —1)|) — k1K1 (2kgR| sinmr(T —1)])]
+ .
R|sinm(T —1t)|

} sir? 7I(T +t) vy (t)dt,

n 2[k2K1(k2r) r— lel(klr)]

Na2v2)() = ~ ez | | I€Kaller) - Kolan) | 2eva)as,
r

1
_ % / [[K3Ko (2R SINTI(T — 1)) — KeKo(2kgR| sinr(T —t)])]
0

n [k2K1(2k2R| sinmi(1 —t)|) — kiK1 (2keR| sinm(t —t)m

R|sinm(t —t)| ]sinZn(Tth)vz(t)dt

= (V21v2)(X),
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(V212V2) (X) _ 2_7:;'32/ [k%Ko(klr) . [kZKl(k2r> : lel(klr)]:| Vz(y)dSy
r
1
_ S—Rz/[kao(zklR|sinn(r—t>|)
0
[k2K1(2k2R| sinr[(r — t) |) — k]_K]_(ZklR‘ sinn(r — t) D]

- 2RI SinTI(T —1)] ] v2(t)dt,

(VEv2)(x) = —(Vfiv2)(X).

Proposition 5.1. Letl" be given as in (5.18). The Fourier functions
Vn(t) = eT2™M for n=0,1,...

are the eigenfunctions of the boundary integral operatqlﬁsand \412 respectively, i.e.
1
(Vi) (1) = Z—SZ{An(kl’ k2) + 2 n-1,n+1(K1, K2) Jvn(T),

(Vavn) (1) = %{/\n(kl,kz) — 2l n-1,n41(Ke, K2) Fvn(T),

where

Fmnk(-) = (Am(k) —Ap(k2)) +% [(GAY (ko) — KEAY (K1) + (KA (k2) — kgAy (ka))]
and

An(ke, ko) = [GA (k1) +IBAY (ko))

s
A+2u’
Cmnk(Ke, ko) =T _m—n—k(K1, ko) = Tmkn(Ke, K2), An(Ke, ko) = A_n(ke, ko),

whereAY andAP for n=0,1,... stand for the eigenvalues of the single layer integral op-
erator and the hypersingular integral operator for the sma¥Yukawa problem respectively
as given in chapter 4.

for k& = ks = % In addition, the following relations hold

Proof. Note that the eigenvalues of the first part of the operatgysindV., can be com-
puted easily by using the eigenvalues of the scalar Yukaall@m (see Lemma 4.2). The
second part remains a bit challenging. To overcome thidlfi we rewrite this term by
utilizing the hypersingular boundary integral operatartfee scalar Yukawa problem. To
this end, let us first define the boundary operat$yréor j = 1,2 by

(Bive) (1 Rk,/Kl 2k;R|sinm(1 —t)])

Rsinmr_n nHdt
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From the hypersingular boundary integral operator for edas Yukawa problem (see
section 4.1.3) it follows immediately th&; can be written as follows:

1
(ijn)(r):—(ijvn)(r)—kaR/Ko(ijR| sin(T—t)|) sirf (T —t)vp(t)dt  for j=1,2,
0

whereDy, is the hypersingular boundary integral operator for théescaikawa problem,
with the wave numbesr = k;. Finally, by a direct computation we obtain

k2
(Bjvn) (1) = — (AE(kn — 2 A (k) =227 (k) +/\rY+1(kj>]> V(1) for j=1,2,

which ends the proof. O

On the other hand, the double layer and the hypersingulandayy integral operators

given in the section above are not suitable for any numetieatment. This is due to the

higher singularity of their kernel. Therefore, these nedokt regularized in order to reduce
the singularity at least to a weak one.

5.2 Regularization of the double layer and the hypersingula
operators

The regularization we present here is based on the concé&irmer derivatives [72] and
the integration by parts as given by Nédélec in the case oLdpéace equation as well
as for the Helmholtz problem [86]. Our presentation is iregpifrom the work done by
L. Kielhorn in the three-dimensional viscoelastodynanmasblem, therefore readers can
consult [65, 66] for details. Similar results can be founf39, 72, 100] for the linear elas-
ticity problem. In this section, we will mostly confine outexttion on the regularization
of the double layer operator. The case of the hypersingylarator is done in a similar
way.

Indeed, we know that the boundary stress for any vectsigiwen by

ov

(Tyw) " =Adivyn(y)+2u -

+un(y) x curly, (5.20)

wheren denotes the outer normal. Further, the so-called Glinteradie is given by

M@09)() = 2 —n(y) div ()4 n(y) x curl (). (5.21)
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M(0y,n(y))(.) can be written in matrix form as follows

Ni5—

0 nZ%—nlﬁ
M(9y.n(y)) =Oy@nly) —nly)@Oy={_ 5 __ 4 o )
dy, ~ 20y,

where® stands here for a tensor product. If we use (5.21) into (5:208hen obtain
(Tyv) " = 2u My + (A +2p) divv n(y) — p n(y) x curl v. (5.22)

We need to rearrange the last two terms of the formula (5i22),the terms with div
and curl respectively. To this end, we split the fundameswdlitionU * into two parts as
follows

1 A+u 1
Ui 00y) = 7 |BX8i = 550X | — ;KX a. (5.23)

whereg; represents the Kronecker symbol and

1 1

x(r)= e kz[KO(klf) Ko(Kar)]

is a regular function, in particular a solution of the pdrtidferential equation given by
(A—K)(A—KE)x = &(r),

whered(r) represents the Dirac delta function. Moreover, we have

Kolkor) and (A—KE)x = 9a(r) = ~—Kofkar).

(B—)x=dalr) = - =

21
where¢1(r) and ¢,(r) are fundamental solutions of scalar Yukawa problemsife k;
anda = ky respectively. By utilizing (5.22) we compute the boundargss of each part
of (5.23) and by adding them we obtain

(YUHT = 2p (MU*T +M(Ax)+ dnLW)Axl

)
— KB Ox@n(y) + K n(y) ® Oy — k& X

' on (y)

rearranging we obtain

(TyU") T =2 (MU)T + M(bx —KX) + (Ax —KEX)1 + (K — k3) Ox @n(y),

9
an(y)

thatis
¢z

2 1,2

(TyU") " =2u (MU*)T + Mg, + 3000
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Further, if the parametrization (5.18) of the bound@arng used one obtains then

" " 0¢2
(YU = pd _U}Fz U}Fl + 1 d/0  —¢; an(y) 00
nmRdt _U27_ U17_ 2nRdt ¢2 0 0 0n¢()2)

ax ax
Nge- M2
2 12 ] ]
+(k{ —k5) < 0%(1 0%?) )

May, Moy,

further reordering yields

J¢1
aT_ K d(-Up Ug 1 dfo —¢2 an(y) 0
(MU' = nRdt <—U%§ UE) * omRat <¢1 0 ) + < oy 99y )
ay; (01— 92) aiyl (61— 92)
—l—nz(y)( 6y1(¢1_¢2> diyz(fl’l—d’z) '

By utilizing integration by parts, the double layer intdgsperator can be written as fol-
lows

(Kue = [MU eyl s
r
1 1
-af(E e[ §)d

1 o1 0
+ 2mR / ("ﬂ%“” 202 )g(ym)dt

an(y(t))

(h1—92) 57 (61— 92)
92 1
i 2nR/n2 ( 7 ($1-02) G (d1- ¢2)) Uyt

Remark 5.1. We notice that the first block of the above relation can bevéerirom the
single layer operator of linear elasticity. This will enalis to compute that block matrix
for the double layer matrix in an efficient way in terms of tisice this is already stored.
The second and the third block can be computed from the slagé and the double
layer of the scalar Yukawa problem respectively whose g#&jaas are already computed
in chapter 4, see Lemma 4.3, we just have to set the wave numbdg, i = 1,2. The
fourth block is symmetric and has the same diagonal bloakd,raoreover the functions
involved are regular, therefore only two block matricesl wé computed here by the help
of Gauss quadratures.
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On the other hand, by following the same idea as above, theehil form of the hypersin-
gular integral operator can be written as follows

(Duv)r = —u// [ 62¢2 }‘!(styd&

—u// (M- V(X)) - [4pU ] (My-u(y)) ds,ds

+u / / My v(¥)) - [261]- (My - u(y)) dyds,

U / / My2)] - u(y)ds,ds,

u / / [(1& — 2)$an(x) @ n(y)] - u(y)dsyds,

+u / / ) [K3@2n(y) @ n(x)] - u(y)ds,ds

+u / / 2(k2 — K3) (O, Chyx)n(y) - N(¥)] - u(y)dsydss,

wheren denotes the unit outer normal vectorioysee, e.g. [65,66] for details. In addition,
for the two-dimensional case we have

—u// My (My$2)] - u(y)ds,ds, = u// (My-v(X)) - [$21]- (M- u(y)) dsds;,
which yields
2
(Duv)r = —p M(X)-[ang,)gz(x)l}-g(y)dsydsx

(M- V(X)) - [4pU™ — (291 + ¢2)1] - (My- u(y)) ds,dsc

v(x) - [KB2n(y) @ n(x)] - u(y)ds,ds

v(X) - [2(kE — k3) (OyOyx) n(y) - n(x)] - u(y)ds,ds..

I
/]
ey / / v(x) - [(K —2k3)¢1n(x) @n(y)] - u(y)ds,ds;
rr
/]
I
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In the next step we want to show that the integrand in themasgiral can be splitin such a
way that the singular part is evaluated by using the eigelegabf the hypersingular oper-
ator for the scalar Yukawa problem and the regular part bymrdstrd Gauss quadratures.
Indeed, remember that

X0 = i glKatkan) ~Kotkar),

Therefore we have

(1) (0,0 x) = ~ B_Z[Ko(klr)—Ko(kzr)] Wyz[Ko(klr) Ko(Kar)]
2) (Lyly 2m dy(?y [Ko(Kar) — Ko(Kar)] (;—yg[KO(klr)—Ko(kzr)]

wherer = |[x—y],

Ko(r) = (IN2—E —Inr)lo(r +§

(33) "

. © 1 /ryz . n1
with 1o(r) = Zk—(—) . and E=lm | > —Inn| ~ 057721566490,

n—oo j:1 J
and

l
_r

k 2k—1
jrk(e-marne- 3 3) |G (5

]

Utilize the following recurrence relation between the niiedi Bessel functions, see [1]

KA = —Kn-100 = ZKn(x).

one obtains forj =x —y;, i =1,2,
02K0(kjr> 2 2kj ri2 kj
Y KiKo(kjr) + —=Ka(kjr)| -5 — —Ka(kjr),
9°Ko(kjr) 2 2K rrj .,

1 : : :
Remember th%Ko(kjr) is a fundamental solution for the scalar Yukawa problem with
a positive wave numbdy; . The associated hypersingular integral operator is théneste
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forr = x—yby
Okv) (9 = 1n dx "(y)Kom iy)ds
_ Zi [ +_K1 (1) (r,n(y)?gr,D(X))V(y)dSy
i
5 r/ 1(r) 22y s,
We then obtain
_;_jT/Kl(kjr)Dy ™)y y)ds,
— (Dv) (¥ r/[k Ko(kir >+&Kl<k, )} (r,n(y):gr,n(x»\,(y)dsj.

This yields

2 .
- / Tt nly) nv(y)ds

2
_ zln / [kzmkj >+%Kl<kj ] ooy noouies
2

M h

_ Zln / [szo(k, >+%Kl<k, 0] o) noviyias
r

v(y)ds,

(5.24)
/ [k% Kir) +—K1 (kT )] (r’n(y>2§r’n(x>)v(y)d§,+(ijv) (X).
.
We also have
9%Ko(kir)
21 oy 2y 1) nOV(Y)ds

- zln/ {kZKo(kJ )Jr&Kl(kJ )} —2‘n(y) -n(x)v(y)ds,. (5.25)
r
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By utilizing (5.24) we obtain
2
jyz Ko(kar) —Kofker)]n(y) - n(0v(y)dsy

r2

5N(y) - nO)V(y)dsy

21 {leo(klr)-l-&Kl(klr) k%Ko(kzr) _ ZTszl(kzr)} (r,ﬂ(y>2§r,ﬂ(x)>v(y>d%’
r

+ (DigV) (%) = (DY) (%),

and (5.25) yields,

1 0%

27‘[r oY dyij

—_

1 2k 2k
- ZT/ |:k%KO<k1r) + TlKl(klr) — k3Ko(Kar) — TZKl(kzr)}

[Ko(kar) — Ko(ker)In(y) - n(x)v(y)ds, =

1 2k 2k: rif |
ZT/ {k%Ko(klr) + TlKl(klr) — k5Ko(kar) — TZKl(er)] r—ZJD(Y) -n(x)v(y)dsy.

Note that
2k; 2 o 1
® 1 k 1 1 [kir\%?
2 - _ . - I v b
+K; kZZ 2-|—k<E In2+In(kjr) — g I)] (kl)Z( 2) :

This yields then
2k kZ
2 . j Y
00 k 2k
1| 1 Kir
2 _E_ . il I b
+K k; [Inz E In(k,r)-i—lz1| k)2 ( > )

1 k 1 1 [kir\%*?2
é+k<E-|n2+|n(k,-r)-zll—>]W(17) : (5.26)

+k? i

K=2

The relation (5.26) shows that in the neighborhood of zerdnae
k2

2

Note that, as in the case of the double layer integral opertiie regularization of the
hypersingular integral operator above shows that the atialu can be done easily via
the single layer integral operator of the elasticity prombleand of the single layer and
hypersingular integral operator of the scalar Yukawa paobl

2k 2k k2
KEKo(kar) + =Ka(kar) — KBKo(ker) — —ZKa(ker) = 25 +0(r).  (5.27)
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5.3 Evaluation of the Newton potential

In this section our interest is to compute the vector relatehe Newton potentiaio f,
le.

(Nof) / A% (%) [Uin(xy)Tnly)dyds; for i=1,..N; 1=1,2,
Q

where(q(o) fori =1,...,N are the B-splines of order zero. First we interchange therord
of integration as follows

(Nof )i i /fm /Ulmxyds(dy fori=1,...N;1=12 (5.28)

Note that the main assumptions for the computation of (5a28)as for chapter 4, but for
the reader convenience we briefly repeat them here.

Let Q = Br(c) be a two-dimensional circular domain centerea atith radiusR. First,
Q is divided intoM, rings, second on each rirg suitable meshes are constructed (see
Appendix). Therefore, (5.28) can be written as follows

Mr N
(Nof)i Zgé/fm /U|mxyds(dy fori=1,...,N; =12 (5.29)

Tjk T

whereTjy is thek!" element on thg!" ring, andQ = U'j\":flLJE:lTjk. FurthermoreTj is an
isoparametric triangle or an isoparametric quadranglehenet is on the last inner ring or
others rings. Further, the fundamental solution can beewris follows

.U 0N, (u2 o up
v ‘(0 uz*%)+<Uf2 uz)

where forr = [x—y|, ri=x—vy;,i =12

Uii(xy) = 212 {szo(kzr) %[kZKl(er) _lel(klr)]} :

2
UiEkY) = — 5t | Kolker) — kallar)] + 2 keafler) ~ aka(kar )]
Uh(xy) = _2—7132% [[kgKo(kzr) — KiKo(Kqr)] +%[k2K1(k2r) —lel(klr)]] ,

Uss(xy) = 21 5 {leO(klr) — —[szl(kzr) lel(klr)]} :
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If we approximate functiond; and f, on each ring by piecewise constant functions re-
spectively, the approximation of the vectdgf denoted byN, f can then be written in the

matrix form as follows
1j ] 2j J
A% Ao —An f

N My
ot =3
where forj =1,..., M,

AlliK = /Uffl(x,yjk)ds( forik=1..N, |=12
T

Al K = /Uff(X,yjk)ds( fori,k=1,...,N,

Tj

ALK = /Ufz(X,yjk)dS( fori,k=1,....N

T

and
Lj [k] = |Tjk| f| (yjk) for k= l,...,N, | = 1, 2,

where|Tj| andyjk represent the volume and the center of mass of the elefergspec-
tively. Note that forj = 1,...,M, the matrlcesAiJ1 andAZJ2 are derived from the boundary
integral operator¥; andV22 respectively. Hence‘\i‘1 andA 5 are circulant matrices, see

Proposition 5.1. Finally, by using the Fast Fourier trarmf@FFT) we obtain

v (FL(FCHF(F)) + AT +ALT)

(e (e Al 1 a2
S \FHFCYF(F))) +Al,fl - 111f2

flof =

where forj =1,...,M, Q{ andgé are the first columns of the circulant matrio@% and
A fzrespectlvely

Remark 5.2. Note that on each ring the approximate Newton potential orebl, f
is given in terms of a matrix-vector multiplication like fte scalar Yukawa problem
presented in chapter 4, but the matrix in this case has a bdtreicture, the first block is
made from circulant matrlceslé\ and AQJZ, therefore the matrix-vector multiplication of
this first part can be speed up by applying the Fast Fouriensfarm (FFT), while the
second block has a symmetric structure, this permits usngpcte only two matrlceslé\

and A{z. Moreover, the error estimate for the approximation is gias in chapter 4 by
INo(t = F)llvzqry < BIE = fllarq) < T =yl < chiflysg

where_fh := Inf is the nodal interpolation of .f



6 TWO-DIMENSIONAL CONTACT PROBLEMS IN LINEAR
ELASTOSTASTICS OF YUKAWA TYPE

The previous chapters were dedicated to the formulatiodedaate boundary value prob-
lems as well as the setting of suitable function spaces andeatelopment of useful results
to ease the formulation and analysis of contact problemas;Tihe goal of this chapter is
to develop and to analyze algorithms for the solution of aonproblems with friction in
linear elastostatics of Yukawa type. The contact probleritis fiction, even in the view
of their long history, are still one of the most challengindpiects in mechanics with many
open questions. This is due to the non-monotone and non-acnsparacter of the fric-
tion functional which does not permit the application ofrgtard results from nonlinear
functional analysis [29, 67].

In literature, the most frequently used friction laws are Tmesca and Coulomb law. The
variational formulation of the first one leads to a classiaiational inequality of sec-
ond kind which is equivalent to an optimization problem arlteve the solvability can
be established easily [35, 40, 68], while the second onesléadh quasivariational in-
equality [29, 67]. This makes proving theoretical resutis €Coulomb friction problem
difficult. However, the first existence proof for the Coulofniction problem was estab-
lished by Nes&as, JaruSek and Haslinger in (1980) [85] for the very specablem of a
two-dimensional infinite strip provided the friction coefént was sufficiently small. To
overcome mathematical difficulties related to the Coulonntiibn problem, regularized
versions such as a nonlocal or a normal compliance frica@nwere considered in [67].
In [27-30, 67] the authors used another technique basediaruéaneougpenalizatiorof
unilateral conditions and @egularizationof the frictional term. This technique is power-
ful from the theoretical point of view but not very convenidor computations. Indeed,
after a discretization one obtains a system of nonlineatalgc equations which depends
on two small parameters. It turns out that the computatipnatess depends strongly
on their choice [30]. The fixed point technique is preferresvadays as a basis for the
numerical realization of the contact problems with Couldindtion. A possible way to
determine fixed points is to express the corresponding wakuiation in the form of a
generalized equation which can be solved by methods of nmeth optimization [18].
Another way which is commonly used towards the solution afilGmb frictional contact
problems is to define the solution as a fixed point of a sequehselutions to the Tresca
problem [24,27,28,30,41,42,44,67].

The Tresca friction law is frequently used instead of thel@mib friction law because it is
simpler to analyze, see [10,44,67]. Therefore, an effimenterical algorithm for contact

89



90 6 Two-dimensional Contact Problems in Linear Elastostastf Yukawa type

problems with Coulomb friction is based on fast and reliagrithms for contact prob-
lems with Tresca friction. In addition, the simplicity of@sca problems highly motivates
the development of faster solvers [71,98]. Some works aoeckwith this are [24, 41].
The authors use a dual formulation of the problem and quadretgramming methods
with proportioning and projections for the solution of thisatete 3D Tresca frictional
contact problem. But, note that the above methods are ra¢ingislow and are in general
of first order or converge at a linear rate. A different idetolowed in [71, 98], where a
second order semi-smooth Newton method and an augmenteangan approach were
proposed for the solutions of 2D contact problems with Tadsiction. This method is
generalized to 3D in [54].

In contrast to the frictionless case, where we have to demlg the normal deforma-
tions, here the tangential deformations are needed as Wa#itefore, besides the unilat-
eral contact conditions which can be handled easily viagot@n techniques, the varia-
tional formulation of contact problems with Tresca fricti@ads to a variational inequality
of second kind [67, 68], but this turns out to be a constrained-differentiable mini-
mization problem (primal problem) which is problematic. eféfore, a more subtle ap-
proach appropriately dealing with generalized derivatigenecessary to overcome this
difficulty [47, 48]. The key ingredient for these steps is aldiegularization strategy
which enables us, on one hand, to get uniqueness of the duablaand, on the other
hand, to work in an adequate function space setting whersuperlinearity of a gen-
eralized Newton method can be obtained. Therefore, by thpedidhe Fenchel duality
theorem [31, 49, 71] the corresponding dual problem is abthiwhich is a constrained
maximization problem involving a differentiable operat¥vhenever, the problems (pri-
mal and dual) are seen from optimizational point of viewjeas of considering only the
first order necessary optimality conditions, which are Ugtlae starting points of analysis,
we derive and consider as well the extremality conditiongtvicharacterize solutions of
the dual and primal problems. In addition, an important espgthis approach is that the
extremality conditions can be written as a variational folation in terms of nonlinear and
non differentiable complementarity functions [71, 98, 9lit, a regularization of the dual
problem, motivated by the augmented Lagrangian [34, 3&@B&8] turns those comple-
mentarity functions in the extremality conditions to be Nemwdifferentiable [47,71, 98].
Therefore, this can motivate the application of the sempatim Newton method in func-
tion spaces, see, e.g., [47,58-61] for their applicationsgtimal control and obstacle
problems. An immediate consequence, is that the resultgayithm in 2-D turns out to
be equivalent to an active set strategy and is observed teeggain numerical practice
regardless of the initialization and the mesh [47,50, 5P, 98

Due to the fact that the nonlinearities of the problem liefmtioundaries of the contacting
bodies, this can motivate the application of boundary irgtegquation methods [30, 100].
This reduces the extremality conditions to the boundaryeurThe boundary integral
equations involved in the extremality conditions are agpnated by using Galerkin
method with the help of B-splines on the boundary curve (BEBO) 100]. This yields
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an equivalent algebraic system of linear equations withifettnowns but involving dense
matrices and having block structure with circulant projesrf23, 92, 94] in the particular
case of a circular domain. The associated matrix entriescaarmgputed partly explicitly and
efficiently. Additionally, the circulant block structur@ables us to develop precondition-
ing matrices for a conjugate gradient method. The combiasd-smooth Newton method
with the boundary element method are then carried over t&€thdomb friction problem
by means of a fixed point approach. The chapter is organizéulaws: In section 1 the
Signorini contact problem with Coulomb friction is statewtldts variational formulation
in a framework of Hilbert spaces is given. Section 2 is comedrwith the boundary inte-
gral formulation of the problem, the introduction of the 3eca problem and the analysis
of the wellposedness is established, while section 3 isermed with the derivation of the
dual problem and of the extremality conditions for the Teepooblem. In section 4 we
derive the regularized dual and primal problems for the Gagzoblem and present the
semi-smooth Newton approach. In section 5 we present thaamed contact problem
with Coulomb friction and establish the existence proofctlea 6 is concerned with the
BEM discretization.

6.1 Signorini contact problems with Coulomb friction

In this section we present the problem in its strong formagtstate all necessary in-
gredients needed for the variational formulation. Furtiver discuss some mathematical
difficulties inherent in it.

6.1.1 Presentation of the problem

For the problem setting, we assume a deformable body to gampen and bounded
domainQ of R? with boundaryl” := dQ divided into three disjoint subsets, namely the
Dirichlet partl'p, where we assume the body to be fixEd,is the Neumann part with a
given traction, andi¢ is the part where a possible contact may occur. For conveaier
assume that the rigid foundation lies belbwas it is shown in Figure 6.1.
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ON

Figure 6.1: Deformable body with rigid foundation.

Governing Equations

Using the results from chapter 3 the strong formulation ef¢bntact problem in linear
elastostatics of Yukawa type can be stated as follows: Fiadltsplacement such that

Su—div(ou) = f in Q (6.1)

u =0 on Ip, (6.2)

own = g, on Ty, (6.3)

uh<d, 0On(U) <0, On(U)(uh—d)=0 on Tg, (6.4)

U —W =0=[at(U)| < Flon(u)|
U~ 0= 61() = ~Flon(Wl =
U — W (ot (u)| — Flon(u)|) =0

on Ig¢, (6.5)

wheren is the unit outward normal vector along the boundarg,(u) ando; (u) represent
the normal and the tangential stresses along the boumdamgspectively, whileu, anduy,

are respectively the normal and the tangential displacesredong the boundarfyc. The
functionw € HY?(I"¢c) and the scalas arise from the time discretization as described in
chapter 3, therev = U~ ands® = # Moreover, we assume the material to have an
isotropic behavior, i.e. Hooke’s law yields

o(u) := Ce(u) = (Atr(e(u))l + 2ue (),
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whereg(u) = 3(Ou+ (Ou) ) denotes the linearized strain tensiors the 2x 2-identity
tensortr(.) the trace of a tensor. Furthédr,andu are the Lamé constants given by

3 — Ev B E
T arwa—2vy T2y

whereE > 0 andv € (0,1/2) denote Young’s modulus and the Poisson ratio respec-
tively.

Before we derive the variational formulation, let us define Eobolev space

In a similar way we definé »(I), HY/2(I") and so on. We then introduce
V={veHYQ):y'v=0 on Ip},

where

B HY(Q) — HYA(T)

is the trace operator. For the reader’s convenience wd thedlwo linear, continuous and
surjective trace operators dig defined in chapter 2:

We:V—HY2(Tc), Vi ey = (6"VIr) -0

and
Vro:V—HY?(Mc), Vi yrev = Wiire — (Wev)n
with
HY2(Fc) = {v € HY2(T'¢) : yuev = 0.

In the sequel and onward, we set foeW, WV = v andyrcv = v;. By following [98],
we assume that the friction coefficieAtdoes not depend on the solution and

F e L°°(I'C).

Moreover, we assume thatis positive, and belongs to the space of factor$idr?(Ic),
that is the mapping defined by

HY2(Fe) 3 A — FA e HY3(T ),

is welldefined and bounded, see [98, p. 85].
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6.1.2 Variational formulation

The set of admissible displacements is defined by:
K={veV:v,<d on TIc}.

The crucial point to establish the variational formulati@s on the derivation of the vari-
ational formulation for the nonlinear contact conditiomslahe Coulomb friction law.
However, it can be easily proved that the following inedydtolds, see (3.43),

up <d, op(u)(vn—un) >0, Yvek. (6.6)

On the other hand, the variational formulation of the Coudniction law (6.5) is given
by

ot(U) - (vy — W) +Flon(u)|(lv; =W | — |u, —w,|) >0 forall v, orthogonalton. (6.7)

The proof of this statement is given in Proposition 3.1. Néxte multiply the equilibrium
equation (6.1) byv — u), utilize the Green formula and boundary conditions we abtai
then

[[$u-w-w+o(W:ev-u]dx- [ f-(v-udx= [o(wn:(v-uds

Q 2 /
:/9N'(M‘Q)d&JF/U(!)D-(M—g)ds(. (6.8)
'n e

The last integral ofi ¢ in the right hand side of (6.8) can be split into normal andj&mtial
components as follows

[ otwn-(v=-wdsc= [ [n(w)(vn—n) + o1(W) - (4 —w)]dse 69)
c e
If we substitute (6.9) into (6.8), ad?‘ﬂan )| (Vv — W | — |k — W |)ds, in both sides of
(6.8) and further utilize (6.6) and (6 7) we then obtainftilwing variational inequality:
Findu € K such that
auv—-u+juyv)—juu =>Ly-u) foralyvek, (6.10)
where for allu,v € K
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The equivalence of the two problems (6.1)-(6.5) and (6.4@iven by the following re-
sult.

Theorem 6.1.If u is a sufficiently smooth solution of (6.10), thegatisfies (6.1)-(6.5).
Conversely, any solution of (6.1)-(6.5) satisfies (6.10).

Proof. See [67, Theorem 10.1]. O

Unfortunately, there are major mathematical difficultiggsarent in the variational inequal-
ity (6.10). On the one hand, the functional

j(ww = [ Floww) | - wlds,

is not monotone. In addition, it is neither convex nor diffietiable, and can not be ana-
lyzed by the standard theories from nonlinear functionallysis. Thus, the question of
existence of solutions to the general problem (6.10) isagtién. However, there are avail-
able existence proofs for some very special cases in whechdhtact pressures happen to
be very smooth, see [85]. To overcome these difficulties, dpproaches are frequently
used in literature, the first one is the nonlocal or the noroahpliance friction law [67],
and the second one, which is of our interest, is a reducedbwvens$ (6.10) that represents
a contact problem in which it is assumed that the contactspress known. This is also
known as contact problem with Tresca friction law [24,41,21. Before we introduce
that, let us reformulate (6.10) by using boundary integparators.

6.2 Boundary integral formulation

Since the unknowns we are interested in deriving lie on thenfary it can be beneficial
or attractive to reformulate (6.10) by using the boundagmeint method. This is moti-
vated by its better approximation of data on the boundarpmpgarison to the traditional
finite element method [30, 100]. Therefore, if the Cauch)adgltu and y"u = g (u)n
are known, then the solution of the differential equatiodid) is given by the so-called
representation formula fore Q,

u(x) = / U*(x,y)] " u(y)ds, — / MU (%) ]y u(y)dsy + / U*(x,y)] f(y)dy, (6.11)
Q

r r

whereU* is the fundamental solution of linear elastostatics of Yukaype given by
(5.14). Our goal in this section is to write the boundary srm terms of the symmet-
ric Steklov-Poincaré operator. To this end, by following game procedure as given in
section 4.1.2, we then obtain
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o(un:=y"u=Sy"u—Nf (6.12)
where the operatdd f is given by

-V INof = [Nl— (%I +K) 1N0} f =: —Nf,

andSis the symmetric Steklov-Poincaré operator, i.e. it maps@gooundary displace-
ment to the corresponding boundary stress of the solutidheohomogeneous elasticity
equations. Furthermore, it is defined by

1 1
S=(Z1+K' |V ZI+K)+D

with V, K, K’ andD which represent the single layer integral operator, thebtiolayer
integral operator, the adjoint double layer integral ofrand the hypersingular integral
operator respectivelyNg andN; are the Newton potentials. All these operators are given
in section 5.1.2. In addition, as for the scalar Yukawa pFohlTheorem 4.1 remains valid
here, i.e. the Steklov-Poincaré operakis bounded, self-adjoint, positive definite and
satisfying
2 2

(Suur > c?llulZez, forall ue HYZ(r)
with the same constant of eIIipticit;? as in the case of the hypersingular integral operator.
Next, by using the Green formula, we then obtain

—/i'(y—u)dx = /0(u>n-(y—u)d&,
Q

r

_ /(S_u— Nf)- (v— u)dsx. (6.13)
r

By substituting (6.13) into (6.10), we then obtain the baamnydsariational inequality: Find
u € K such that

/Su (v— uds<+/]—“\on (v, — W | — |u —w)ds > L(v—u) forall veK (6.14)

with
— [Nf-vdsc+ [ g -vds
/

and where the séf is defined by

K:={veV:vy,<d}

with V given by _
Vi={veHY?():y"v=0 on p}.
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Proposition 6.1. The domain variational formulation (6.10) and the boundaayia-
tional formulation (6.14) are equivalent.

Proof. If uis a solution of (6.10), the trao@’“g is then a solution of the boundary vari-
ational formulation (6.14). On the other hand,y'é;?‘g is a solution (6.14), the boundary
stress is then given by the relation (6.12u)n := yi"u = Syi"u— Nf. Hence, having the
Cauchy data/(')”tg and y"l’“g the solution of the domain variational (6.10) is given by the
representation formula (6.11). O

After suitable reformulation of the domain variationalrfarlation (6.10) to the boundary
variational problem (6.14), the next paragraph is conakaimut the Tresca problem.

6.2.1 Signorini contact problem with Tresca friction

As we have mentioned above, the contact problem with Tregteoh is the contact prob-
lem with given friction. This is widely accepted in practiaed it is known to be not only
manageable from the mathematical and computational pburtw but can form as well a
step in an iterative process for obtaining numerical sohgito the general problem (6.14)
when such solutions exist [29, 30,42, 67], see the next@ectn addition, contact prob-
lems with Tresca friction can be associated to an optimongtroblem for which standard
a priori estimates would guarantee existence or uniquefessolution. To give the weak
formulation of the problem with Tresca friction we assumatttime friction is given and
set

lon(W)| =g K" :={ge H Y2(I'c) 1 (g, V), >0 WeHY2(I'c) with v >0}
The variational formulation is then given by: Find: /C such that
(Suv—ur+jg(v) — jg(u) > L(v—u) forallveK, (6.15)

where

jg(v) = /]:g‘yt—V_Vt|dS<-
e

The variational inequality (6.15) is equivalent to the mirgation problem

min J(v), (P) (6.16)

velkl

whereJ(v) = Jo(V) + jg(V) with Jo(v) := 3(Sv,v)r —L(v). Indeed, let us assume that
is a solution of the minimization problem (6.16), note tha¢ functionaly is Gateaux
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differentiable and convex whereggis not differentiable at v= w but, sincejq is convex
we have

im jglu+a(v—u)) — jg(u)

< — . .
lim p < Jjg(v) —jg(u) Va €(0,1), WeK (6.17)

We have then

EL“OJ(M 0’(!;9)) —J(u) (sinceu is a minimizer ofJ)
jim U+ a(v—u) —Jo() . Je(Uta(v—u)) — jo(u)
a>0 a a>0 a
(DJo(U),v —u) + jg(v) — jg(u) (by using (6.17)

= (Suv—u)r —L(v—u)+ jg(v) — jg(u).

0

IA

IA

Henceu solves (6.15). On the other hand, iebe a solution of the boundary variational
problem (6.15). Sincéy is also convex applying the relation (6.17) yields for a#t ¥C

(Suv—ur—L(v—u) := gino‘lo(g‘i‘a(!;!))—\lo(u)

< Jo(V) — Jo(u). (6.18)

Finally, by addingjg(v) — jg(u) in both sides of inequality (6.18) and by using (6.15) end
the proof.

Some abstract results for variational inequalities

In this paragraph, we will limit ourselves to an abstracipélt variational inequality of
the second kind which is the main interest of this sectiorvebeless, we will derive an
elliptic variational inequality of the first kind as a patrtlar case of the second kind. In
addition, some results concerning the existence and thgraness of their solutions are
presented.

In the followingV will denote a real Hilbert spac¥,* its topological dual space with the
duality pairing(.,.)v+xv. The norm orV will be denoted byj|.||v. LetA:V — V* be a
linear and bounded operatd,is said to beV-elliptic if there exists a positive constant
a such that/Av,v)y:«wy > allv||Z forallv € V. LetL:V — R be a linear and bounded
functional, K a closed convex and nonempty subse¥ofand letj(.) :V — R =RU
{—00, 400} be a convex lower semi-continuous (I.s.c) and proper foneti

Definition 6.1. The elliptic variational inequality to find & V such that
(AU V—U)y+xy +j(V)— j(u) > L(v—u) forallveV (6.19)

is said to be of second kind.
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In addition, if A is symmetric, i.e.(Au,V)y+xv = (Av,U)y+v, the variational inequality
(6.19) is then equivalent to a minimization problem

min 7 (v), (6.20)

veV

where7 :V — R is a functional defined by:

J(v) = %(AV,V>V*><V +j(v) —L(v). (6.21)

If j =Ilk, wherelk is the indicator function oK defined by

I (V) = 0 if vek,
KW= » elsewhere

the variational inequality (6.19) is then equivalent to
(AU V—U)y+xy > L(v—u) forallveK (6.22)

and it is said to be of first kind. W\ is symmetric, (6.22) is then equivalent to a minimiza-
tion problem
min 7 (v), (6.23)

veK
where7 :V — R is a quadratic functional (Ritz functional) defined by

! AV, V)ys vy —L(V). (6.24)

TW) =5

Theorem 6.2. (Lions and Stampacchia) The elliptic variational inequalities of first
kind and of second kind (6.22) and (6.19) respectively havei@ue solution.

Proof. See [29, 35, 40,67, 68]. O

Note that if we set
o [ glv) if vek,
J(V>_{ o elsewhere

and A = Sthe existence of a unique solution of the Tresca problenbjd&dllows then
from Theorem 6.2. Moreover, the unique solutig= u € K depends continuously on
the given frictiong and satisfies the a priori estimate

H!HHl/Z(r) < Co,

where the constam is independent of the given stragssee, e.g. [29, p.30].
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6.2.2 Weak formulation of the contact problem with Coulomb fiction

After showing the unique solvability of the contact problesith Tresca friction, the ques-
tion that one may ask is the relation between the solutjpof the Tresca problem (6.15)
and a solutioru of the contact problem with Coulomb friction (6.14). To amswhis
guestion we consider the following mapping

oL —=K*

defined by®(g) := [on(Uy)|. Note that® is welldefined since for a giveg € £* the
Tresca problem (6.15) has a unique solution. It is then a&tbaty, is a weak solution
of the contact problem with Coulomb friction (6.14) if andyif |on(uUg)| is a fixed point

of the mapping®. In [29, 42, 85] much effort was done to fulfill some requirensethat
guarantee the existence of a fixed pointipfi.e. the existence of a solution of the contact
problem with Coulomb friction. In general it is said that t@ntact problem with Coulomb
friction (6.14) has a weak solution if the friction coeffioteF is sufficiently small. To be
more precise, it is shown in [29, 30] that a weak solution se@oulomb frictional contact
problem exists if for alk € I'c,

3-dv if d=2,
F(X) < (6.25)
-4V jf d=3,

wherev denotes the Poisson ratio addhe dimension of2.

The authors in [28-30] used another technique based on dtaimaaus penalization of
unilateral conditions and a regularization of the fricabterm. This turns out to be pow-
erful from the theoretical point of view but not very attigetfor computations. Indeed,
after a discretization one obtains a system of nonlineatalgjc equations which depends
on two small parameters. Moreover, the efficiency of the rdigm strongly depends on
their choice [30].

We can remark that the development of fast algorithms fotaszimproblems with Coulomb
friction depends on the efficiency of the solvers for the Taeproblem. But, since the
functional jg in (6.15) is non-differentiable this becomes problematiberefore, a more
subtle approach appropriately dealing with generalizet/ateves becomes necessary for
the variational inequality (6.15), see, e.g., [17,47, TQ]1 The fixed point technique
presented above is rather slow and is typically of first omtezonverges at a linear rate.
In [71,98,99] and [46, 57, 58, 60] generalized Newton meshwtich are in general of
second order methods were proposed for contact problenss opfimal control problems
respectively. The key ingredient for these steps is a dgailagization.
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6.3 Dual problem and extremality conditions for the Tresca poblem

The main tools of this section will be about the convex analjal ] presented in chapter 2,
but for the reader’s convenience let us briefly repeat themm. Mge now recall the Fenchel
duality theorem in infinite dimensional spaces in a form thabnvenient for our work.

In the following, X andY will denote Banach spaceX,;” andY* their topological duals
respectively. Lef\ : X — Y be a linear and bounded operator, i< £(X,Y), and let

F:X —RandG :Y — R be convex, proper and lower semi-continuous (I.s.c) fometis.

Moreover, there existsowe X such thatf(vg) < o, G(Avg) < «. Then we have

inf [F(v) +G(AV)] = sup [-F*(~N'a)-G"(a)] , (6.26)

whereN\ € L(Y*,X*) is the adjoint ofA, F* andG* denote the Fenchel convex conjugate
for the functionald® andG respectively, defined by
F*(v*) = sup[(v,v")xx- = F(v)].
veX

The left and the right hand sides of (6.26) are called prinmal dual problems respec-
tively. In addition, if ve X andq € Y* are the solutions of the primal and dual problems
respectively, they are then characterized by the extrég@iinditions

~Nq € OF(v),
(6.27)
q € dG(Av),

wheredF anddG denote the subdifferentials of the convex functiorfalsnd G respec-
tively, defined by

OF(v) ={v e X" :F(u) > F(v)+ (u—v,vi)x x» Vue X}.

If we set nowX :=V andY :=V x HY?(I'¢), we have ther\ € £(V,V x HY?(I¢)) and
defined by
AY) = (V).

Further, we usé& : V x HY2(I'¢) — R, which is defined by
1 .
Gv, ) 1= 5{S,V) + jg(v),

wherejg(v) := /]—“g|yt —w|dsandF : V — R is defined by
lc

Fw={ Y Gt
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It can be easily verified tha, F andG satisfy the above properties of the Fenchel duality
theorem. Therefore, the minimization problem (6.16) cawh#en as follows

min[F(v) +G(Av)], (6.28)

vey

with the corresponding dual problem

sup  [-F (=N (p.) -G (p.p)] . (6.29)
(p)EVFxHY2(T¢)

Next, we are going to evaluate the above convex conjugates

G*(p7H> - sup |:<p7¥>r+<“7¥t>rc_G(yayt)]
(Vv eVxHY2(r¢)

1
= sup [(D,wr —§<S\_/,y>r+<g,yt>rc— (F9, v —V_Vt|>rc}
(V,v)eVxHY2(T¢)

— sup[<p,y>r—%<s_/,y>r]+ sup [<g,yt>rc—<f9,\Mt—V_Vt\>rc}

vey yteHl/Z(rc)

= Sup[(D,y)r—%<Sl,¥>r]+ sup [<Ha¥t—V_Vt>Fc_jg(¥>}

vey MtEHl/z(rc)

+ sup (U, W)re
!tEHl/Z(rC)

= sup{<p,y>r—%<9_/,y>r}+i3<ﬂ>+ sup (K W)re,

vev weH2(re)

where j4 is the convex conjugate of the functiongl Since jq is a gauge, Lemma 2.2
yields

Lo [0 i (FO v~ W) re — (Ve —We)re > O forall v, € HY2(T'¢),
Jg(H) = o else N

Further, the first order necessary condition for the conygrozation yieldsp := Sy, and
we then obtain

1 1
sup| (p.v)r 3 (Suvlr | = 5(5 .

vey

Hence, the convex conjugate @fis given by

ooy d 2STRPr W i (FO v W) re — (v —W)re 20 Yy,
<p7u)_ 00 else
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On the other hand, we have

F(~N(p,p)) = sup|[(~A'(p,p),¥)r ~F(v)|

vey - -

_ sup_<—(p7ﬂ)7/\(¥)>r+l‘(y)}

vep t

- sup_—<p,¥>r — (K Vy)re + L(y)}

vey -

= sup —<p—NLy>r—<gayt>rc+<gN,y>rN}

vek -

= SUp_—<pn—<Nj)n,vn>rc—<pt—(NDt+g,yt>rc

vek -

+{=(p—NT)+gy, V|

andF*(—A'(p, u)) is equal too unless

p—Nf=g, ae on Tyandu+p—(Nf)y=0inHY2(c). (6.30)

Further, for
pn— (NF)n <0, in HY2(r¢), (6.31)

we then obtain

F* (=N (p,p)) =

—<pn—(NDn,d>rC if (6.30) and (6.31) hold,
00 else

Hence, the dual problem is given as follows

1
sup 35 PPl — (e + (o= (N v )
(p,p)eV xH2(¢),
s.t. (6.30) and (6.31),
(F O Ve =W [)re — (MYt —We)r >0
Vv eHY2(T¢).

Note that the cost functional in the dual probléRi") is differentiable. The existence of a
solution follows from the standard theorem of duality thesee Theorem 2.7. Moreover,
the uniform convexity guarantees the uniqueness.

The next theorem summarizes the uniquely characterizagbmeen the unique solution
u € K of the primal problem (6.16) and the unique solutignu) € V* x H‘l/z(rc) of

the dual problen{P*) in general forg € H;l/z(rc), where

H2(Me) = {ge HY2(Te) 1 (@.V)re 2 0 forall ve HY(Tc) with v 0}.
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Theorem 6.3. The solution_ue K of the primal problem (6.16) and the solution
(p, 1) € V* x H"Y2(T'¢) of the dual problen{P*) are characterized by Su= p and by

the existence of a multiplier € H=1/2(I'¢) such that

(Suv)ir —L(v) + (K, V)rc +{A,vn)re = 0 forall veV, (6.32)
(A Vn)re < 0 forall v,<O, (6.33)

A,up—dyr. = 0, (6.34)

(FG, [ —W[)re — (% —W)re > O forall v eHY*(Tc), (6.35)
(FQ [U —We|)re — (U, —We)re = O (6.36)

Proof. Since the primal problen(i?) and the dual problern({P*) have each a unique so-
lution, the extremal relations are given by, 1) € dG(Au) and—A'(p, 1) € dF(u), see
Theorem 2.8. Indeedp, i) € dG(Au) implies

G(AU) = G(AV) < (p,u—V)r + (4, — Vi)re,

that is for all ve V
1
2

In the above inequality let us assume thatw,, we then obtain

1
(SUl)r = (0, V)r +(F0, [ —wi| = [V =W |)re < (p,U—=V)r + (K, U —Vy)rc. (6.37)

%(S_umr —(p,u)r < %(S_/,wr —(p.V)r.

We can notice that is the minimizer of the above functional {v € V : v, = u; }. More-
over, the first order necessary condition for the above magdtion problem yields

p:=Su (6.38)

On the other hand:-N\'(p, 1) € dF(u) implies

Fu)-F() < (-N(p,p),u—v)r foral veV

= (—pu-V)r+(-H,u-Vvyr, foral veV,
which yields
(Pp,V—UWr—L(v—u)+ (4, —U)r >0 forall veV. (6.39)
By using (6.38) we obtain

(Suv—ur—L(v—u)+ (Vv —U)rc =0 forall ve.
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Further, if we set v=v — u, we then obtain
(Suv)r —L(v) + (4, Vi)rc =0 forall veV,
which yields
(Suv)r —L(v) + (K, V)rc + (A, Vn)rc =0 forall veV, (6.40)
for someA € H-Y2(T'¢) such that
(AVn)re <0 forall veV, (6.41)

which shows (6.32) and (6.33).
Let us substituting now (6.38) into (6.37), this yields

%(S(u—y),u—wr — (79 |u — | — [y —Wi[)re + (4, —Vyrc 20 forall veV.

(6.42)
If we set vi=u+t(v* —u) into (6.42) fort € (0,1) and for an arbitrary Vin V, further,
use the positivity ofFg and the convexity of the Euclidean noiryy we then obtain

t2
2
If we divide (6.43) byt and lett — 0, we then obtain

(S(U=V"),u—V)r —t{Fg, | —W| — [V{ =W [)rec +t(H, % —V{)rc >0.  (6.43)

(FO, u —We[)re — (B, U —We)re < (FQ, [Vf —We[)re — (K, ¥ —W)re  forall  vieV.
(6.44)
If we choose V¥ such that {f = w;, (6.44) yields then

(FY, [ — W [)re — (K, U —Wi)re < 0. (6.45)

By using (6.45), and the following inequality from the calasted dual probleni?P*)
given by

(FO Vi —W[)re — (M, Vs —We)re >0 forall veV, (6.46)
we obtain
(F9, |, — Wi [)re — (U, U — We)re = 0. (6.47)
O
Remark 6.1.

* By using (6.30), (6.38) and (6.12), we obtain
H=—[p— (Nf)] :=—[(Su=Nf)] = —[at(u)], (6.48)

that is p is the negative tangential stress.
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* On the other hand, if we use (6.32), the definition of theadimaap L, (6.38) and
(6.12) we then show

A = =[pn— (Nf)n] := —[(Su=NT)n] = —0n(u), (6.49)

thatisA is the negative normal boundary stress.

« If A € LY(T¢) and uc K, the constraints (6.33) and (6.34) can then be written
equivalently in terms of a complementarity function asofol

A =max0,A +c(up—d)) forall c>0, (6.50)
see, e.g., [59,61,71,98,99].
Next we investigate the influence of the regularity of theegifrictiong on the dual prob-
lem and the associated extremality conditions.
Assumption 6.1. We suppose thatg L2 (I'c) = {f € Ly(I'c) : f > 0}.

Under Assumption 6.1 the spakié’/?(I"c) in the definition ofG andA can be replaced by
L,(I¢). Sincel 5(I¢) is identified with its dual, the duality product betweet(I'¢) and
H~1/2(I'¢c) can be replaced by tHey(I'c)-scalar products. This shows that the Lagrange
multiplier p belonging to the non-differentiability of the cost functad is more regular,

that isy € L»(Ic). Moreover, constraints (6.35) and (6.36) of the extremalnditions
take the following forms.

Proposition 6.2. Forg € LEF(I'C) the constraints (6.35) and (6.36) are equivalent to

|u| < Fgae.onlc, (6.51)
and
u—-w=0 or
_ (6.52)
U — W
U—w#0 anduy=7g ;
T = - w
respectively.
Proof. If u € L>(I'c), (6.35) becomes then
(F9, [Vt =W |)re — (K, Vs —Wi)re > 0 forall v, € Lo(Tc). (6.53)

Therefore, we have to verify that (6.53) is equivalent t&{9. Indeed, from the inequality

(FO, M =W [)re — (K,V —Wo)re > (FQ, [V —We|)re — (M5 Ve — Wi e
= (Fg—|ul,Iv; —w|)r forallv, € L*(Tc),
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(6.51) implies (6.53). Conversely, we assume that (6.5&sdmt hold, that is
S:={xelc:Fg—|u|<0ae}
has a positive measure. Further, we chodse k,(I'c) defined by

s . | HX)+Ww(X) onS,
M(X)':{ L (X) t onlc\S.

=3

This leads to
(FO, IV —Wi)re — (LY —W)re = (Fg— ||, |H])s
= —(F9—|H[,Fg—I|u|)s+ (min(0,Fg—|U]),FQ9)s

< —/(fg— |u])%dsc <0,
S

which contradicts (6.53). The proof of the equivalence o8& and (6.52) is done in a
similar way, one can check [98] for details. O

Proposition 6.3. Under the above assumptions, (6.51) and (6.52) are equivate
FO(OU+u —wW,) —max(Fgo,|op+u —w|)u =0 forall o > 0. (6.54)

Proof. From (6.54) it follows that
OH+ U — W
- fg — I
max(7go, O + U — W)

=
|

which immediately implies (6.51). Further, to prove (6.%& distinguish two cases as
follows

Fgo = |op+U —W| and Fgo < [Op + Ll — W|.
In the first case, we obtain from (6.54) that— w;, = O which is the upper condition of

(6.52). In the second case, we obtgjn-w; # 0, otherwise we gefg < |u| which is a
contradiction. Furthermore, from (6.54) we have

FY(OU+U — W) = [OH+ U — W[, (6.55)

and this yields

Fo(w—w) = (|oH+U —W| — Fgo)u = B, (6.56)
wheref = |ou + U, — W, | — Fgo > 0. Thus, by considering the norms of the two expres-
sions (6.55) and (6.56) yielg = |u, —w;|. Therefore, we have shown that (6.54) implies
(6.51) and (6.52). The vice versa can be checked easily, stehave to distinguish two
cases for (6.52). O
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By utilizing the conditionSu:= p and (6.49) into the cost functional of the dual problem
(P*) together with the simplification (6.51), we obtain the fellag dual problem by
transforming sup to min

1
— min =(Sy, ,,u + (1, W)+ (A, d :
A>0 in H-Y2(rg), 5 (S > U )t + (K Wjre + (A, djre
|u|<Fg a.e. onlc (6.57)

whereu, , satisfies
(SU V) —L(V) + (U, Ve)re + (A, Vn)re =0 forall ve V,

where the primal variable, , appears here as an auxiliary variable, since it is detemnine
for givenA andp. In addition, the extremality conditions (6.32)-(6.36pdze written as a
system of nonlinear equations by the help of complemenmtantctions as follows

Proposition 6.4. The extremality conditions (6.32)-(6.36) can be writtenieglently
as

(Suvir —L(v) + (4, %)rc +{A,Va)rc = 0 forall veV, (6.58)
A —max0,A +c(u,—d)) = 0 forall c>0, (6.59)
FY(OU+U —W,) —maxFgo,|op+u —w[)u = 0 forall o >0. (6.60)

Proof. Use (6.50) andPropositions 6.2,6.3 O

Next we are going to solve the minimization problem (6.5%is vell known that solving
an optimization problem is nothing else than solving thamality conditions, that is
solving the extremality conditions (6.58)-(6.60), see dieen 2.8. But, the system of
equations (6.58)-(6.60) is nonlinear. Therefore, the atstmpt which comes in mind
will be to use the Newton method. But, it turns out that the makfunction is not
differentiable in the usual sense, which makes the apphcatf the traditional Newton
method impossible. Nevertheless, the ihax function is Newton differentiable under
certain constraints, see [17,47,101]. This motivates pipdi@ation of generalized Newton
method (semi-smooth Newton method) for the system of egus(i6.58)-(6.60), see, e.g.,
[48,61,71,98,99].

We can remark from Theorem 2.9 that the max-operator is Newifferentiable from
Lp(l) to Lo(I") if p> 2. But, for the system of equations (6.58)-(6.60) if we cdasu,

u andA to be independent variables, we can then obtain the negessaithing require-
ment for the semi-smooth Newton methods for the varialilge to the trace theorem. But
we lack the smoothing property with respect to the variaplaadA respectively. To over-
come this difficulty, a regularization technique inspireshfi the augmented Lagrangian is
necessary, see, e.g., [58,59,61,71,98,99].
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6.4 Regularization of dual and primal Tresca problems

The regularization technique we present in this sectionaivated from the augmented
Lagrangian [61, 71,98, 99] and can enable us to apply a semmoth Newton method on
the system of optimality conditions (6.58)-(6.60). To thisd, we assum# to be more
regular, that isA € Ly(I'¢), further we define fona, y» > 0 and for givenx € Lo(Fe),

U € Lo(I¢c) the regularized version of the dual problem by

(

. . 1
- Lz(rg;;r}\zo, ‘JV]_,)Q(A7E) = é(S_Lb\,[,Ug)\,PJr+(E7V_Vt>rc+(A7d>rc

|u|<Fgae.onlc
1 3112 1 =112
(P;;L)/z) + 2_)’1”)\ _)\”rc—i_ﬂHﬁ_H”rc
10 17y
— 5 I — 25 1 BIIE, |

where u, , satisfies
((SY s V)r = L(V) + (A, vn)re + (B, V)re =0 forall ve.

The corresponding regularized primal problen(®), ,,) is an unconstrained minimiza-
tion problem defined by

) 1 1 ~
(Puy)  mindy, y(u) = §<S_U!>F —L(u) + o Imax(0,A + ya(un—d)) ||,

uey

n é r/ Foh(u —w) (), A(X)dsx |

whereh(,) : R? x R? — R is the local regularization defined by
lyx+yl—3Fg i [lypx+yl > Fg,
h(x,y) :=

275l VX + 12 if - [lyax+yll < Fg.

This can be verified by using the Fenchel duality theory, Werre [98, p. 22] for the
detailed derivation. Note that the regularization turresghimal problem into the uncon-
strained minimization of a differentiable functional, \whihe dual problem is still the con-
strained minimization of a quadratic functional. Moregwmath(Py, ,,) and(Py, ,,) admit
unique solutionsl,, ,, and Q\Yl’y27HV17Y2) respectively, see [29, p.163] and [67, p.37].

From now onward for the sake of the clarity of the presentatad variables of the regu-
larized problem will be marked only byinstead ofys, y». We then obtain the following
results.



110 6 Two-dimensional Contact Problems in Linear Elastostastf Yukawa type

Lemma 6.1. The solutions piand ()\V,Hy) of the regularized problemgPy, \,) and
(Py,.y,) respectively, are characterized by the extremality coont
(SY,V)r —LW) + (K, Wrc + (Ay;n)re = 0 WveV, (6.61)

Ay—max0,A +i((up)y—d)) = 0 on T¢, (6.62)
FO(a(l — W)y + [1) —max(Fg, || va( — W)y +H[)p, = 0 on Tc. (6.63)

Proof. See [98]. O

6.4.1 Convergence of the regularized Tresca problem

In this section we investigate the convergence of the swistof the regularized prob-
lems to the solution of the original problem, that is we shbattu,, Ay, 4 ) converge to

=y
(U,A, 1) asyi, y» go to infinity.

Theorem 6.4.Forall i € L»(¢), Ae L2(I¢c) and for a given friction ge Lo(I'c). We
have that y — u strongly inH/2(I") and(Ay, ) — (A, ) weakly in HY2(I'c) x La(Tc)
asyi, y2 — .

Proof. The proof presented here is similar to those presented i®f9Recall that, both
(gy,)\y,ﬁy) and (u,A, 1) satisfy equation (6.58). In additioriy,A) satisfy (6.59) and

(uy,Ay) satisfy
Ay =max(0,A + ya((un)y—d)). (6.64)

By setting v:=u, —uin (6.61) this yields
(SY,, (Uy —w)r — L(uy —w) + (A, (Uy = U)n)rc + (K, (Uy—U)rc =0.  (6.65)
Let us estimate

(Ays (Uy—=Wn)re = (Ay, (Uy)n—d)re — (Ay,Un —d)r¢

1 ~ 1 ~
> —ApA +y((Uy)n—d))re — — Ay, A )re,
i Vi
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where(Ay,un — d)r. < 0 was used, (it is obtained from (6.64) amng—d < 0). Then we
have

Ay, (Uy=U)n)re > %()\y,max(oﬁ+y1((uy)n_d)>)rc_il ~

Vi ()‘W)\)rc
1 1 ~
= EHAVHEC—E(AV,MQ (6.66)

1 ~ 1 1 -
= A AR AR — A2
eIy =M+ 5 I = 1A e
1

_2_;/1”)‘”%6‘ (6.67)

v

On the other hand, we have
(K, (Uy—=Uore < (F0,[(Uy—U)))re
< ClegHrc”gy_Q”Hl/Z(rC)- (6.68)

By using (6.66) and (6.68) into (6.65) we obtain

1 1 ~
(S—L%!y>rc+ﬁ||/\yllﬁc < (S_l{/,!)rc-l-ﬁ()\y,)\)rc—l—L(gy—g)
+ il Fllrelluy —ullyuzry- (6.69)

Now by using the ellipticity (with constar® > 0), the continuity (with constards > 0)
of Sand the continuity oL we obtain

1
Rl + AR < Sty g Iz +
1 ~
(1Ll el i) Nty Ul Ayl Rl

Finally, we obtain that

1
CE)H!yHHl/Z(r) + ﬁ [Aylire

is uniformly bounded with respect tg > 1. Thereforey,, is bounded ir1—|1/2(r) andAy

in H=1/2(Tc). As consequence there existA) € HY?(I") x H=Y2(I'¢) and a sequence
Yk with lim y = o such that

k—o0

u, ~0 weaklyin HY2T) and A, —A weaklyin H™Y2(I'c), (6.70)

=%

where the last convergence follows from (6.61) where we,set@for all v e Hl/z(l').
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On the other hand, sin¢EV| < Fgalmost everywhere olic for all y4, y» > 0, there exists
[ e L(I) and a subsequengg of y, such that

M, —nu weaklyin Lo(lc). (6.71)
R4

Furthermore, since the sét € Lo(I'c) : |v| < Fg} is convex and closed, therefore it is
weakly closed and we havgl| < Fg almost everywhere. In the sequel let us drop the
subscripk andk; ony. Then we have from the definition af,

1 1~
EHAVHEC = y1||max(0, EA + (uy)n—d)||Z.. (6.72)

This yields,
]_A
| max(0, 7/\ + (uy)n—d)|[E. — 0 asy, — oo, (6.73)
1

since% H/\VHEC is uniformly bounded with respect {g. On the other handuy), converges

to (U), almost everywhere ofic, sinceH2(I'¢) is embedded compactly inta(Ic) and
(6.73) implies theriu), — d < 0 almost everywhere drc. Now if we subtract (6.61) from

(6.58) and set = u,—uwe then obtain

(S(gy_g)7 (gy_g))r = _<)\V_)\ ) (uV_ u)ﬂ)Fc - (EV_E7 (QV—!)t)rC- (674)
Let us estimate the term

— 1, (Uy)e — W) (6.75)

—(K, = H: Uy —Wore = (B, — K U —We)re — (K, — H

We obtain from (6.36) that

(HV_H’L&_V—Vt)rC - (Hy’gt_v—vt)rc_(ﬂ79t_V_Vt)rc
< (/=79 |u —wW[)rc <O.

Note that for the estimate of the second term of (6.75) weidenswo cases, the first one
is

[Va((Uy)e —w) + H| > Fg which impliesp — Fgﬁgiﬁ: :ii; i%
We have then,
-
T 1 F9
(E_Hy) ((gy)t _V_Vt) - E (E_ ‘W((uy)t —V_Vt) _|_u| ()Q((Uy)t _Wt) ‘HJ))
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For the second case we have
[Ve((Uy)e —w) + H| < Fg which impliesp = yo((uy)t — W) + H.
This yields then

(=) (U —w) = (1= ya((Uy)—we) — 1) ((uy) —w)

1 ~ ~
= —Yol(uy) —w| +E(E_H)T<y2(<gy)t_V_Vt)"‘ﬂ_ﬂ)
1 ~ ~
< —|U—U|(Fg+|U|).
o L HIFg+ 1)
Hence, combining the above estimates we obtain
1 ~
—(Hy = B Uy = Ure < S KK 1), (6.76)

WhereK(H,E) is independent of4, y». By utilizing the ellipticity of S, (6.67) and (6.76)
into (6.74) yield

o~

1 1 -~
0 < limsupc?||u, — ul? < lim [{A, (uy— ~K —|IA|?
S e 1ty =tz <, im,, | A (y u)n>rC+V2 <u’u)+2yl” IFe
= y17|£/2nl>oo [<)‘ ) (Uy)n - d>rc - <)‘7uﬂ - d>rc]
= lim <A,(Uy)n—d>rc (<A,Un—d>rC:0)
i,Yo—®

= (A, (Un—d)r, <0 (from(6.73)).

It follows from the above estimate thaj — u strongly in HY2(r") and we haves = T.
Passing now to the limitin

(SY, V)r —L(¥) + (Ay,Vn)re + (B, V)rc =0 forall veV,
this yields
(Suv)r —L(v) + (A, Vn)re + (H,%)r. =0 forall veV. (6.77)

Comparing (6.77) and (6.58) yields= A andi = U. Hence, every sequengg with
Yh — oo for n — oo contains a subsequenmgl such that

u

u, —u in HY2r), A, —A in HY%(T¢) and g, —p in La(c).
K K| —yﬂk| —

Due to the uniqueness of the solution varialiles , 1), this implies that, the whole family
{(uy. Ay, )} converges. O
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Linearization of the extremality conditions

In this paragraph we are interested to linearize the equébi®3),
Fo(ye((U)y — W) + H) — max(Fg, |[y2((U)y—w) +E[)k, =0 on Tc,  (6.78)

in such a way that it is suitable for the application of a semboth Newton method. In the
particular case of a two-dimensional domé&lrthe expression (6.78) can be significantly
simplified. Indeed, we can eliminate the Euclidean norm &edininer product between
(W)y andHy. In plane elasticity, all the tangential variables can betem as follows

(Ur)y = (up)yt, Ey:IJyt, E:ﬁt, andw; = wt

wheret denotes the unit outward tangential vector rotated in théhemaatically positive
direction, (u)y,w € HY2(I'¢), andpy, i € Ly(I'c). By using this, (6.78) can be written
again

Fo(ya((w)y — W) + [) — max(Fg, |ya((u)y — W) + H|) pty =0, (6.79)
where the symbol.| here stands for the absolute value. Hence, (6.79) can beemvrit
equivalently as follows

Vo((Ut)y — W) 4+ — pty — max(0, yo((u)y — W) + H — FQ)
—min(0, y(()y — W) + H + Fg) = 0. (6.80)

Indeed, this is easily shown if we distinguish the cases

~ ~ | >Fg,
() ~w) + Bl < g and yal(wy-w+i{ 278

Furthermore, if we introduce the Lagrange multipigre L>(I'c) associated to the con-
straint|uy,| < Fg, (6.80) is then equivalent to

§y—maxO0,&y+ o (py — Fg)) —min(0, &y + o (Hy+Fg)) =0 '

for arbitraryo > 0. Note that (6.80) is obtained from (6.81) by settmg- % and substi-
tuting the above line of (6.81) into the lower. Hence, thedinzed extremality conditions
for the regularized problem are written as
(SY,V)r —L(V) + (Hy,;Vi)re + (Ay,Va)re = 0 forall veV, (6.82)
Ay—max(0,A +i((un)y—d)) = 0 on I, (6.83)

{ VZ(EV—(Ut)y—i-Wt)—HJy—ﬁ:O, (6 84)
Sy —max0,éy+ o (py — Fg)) —min(0, &y + o (py + Fg)) = 0. '
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6.4.2 The semi-smooth approach for the linearized extremay conditions

In this section, for the sake of clarity of our presentatiom @vop the subscript on the
variablesu, A andu. Considering in (6.83) and (6.84) the variahlas a function ofA and
U, we observe that, andu; are smoother thah andu. This property is necessary for the
semi-smoothness of the max-function and min-function {desorem 2.9). In the origi-
nal problem (6.59) and (6.60) due to the explicit appeararfide and u inside the max-
function we could not expect the smoothness required folNewton differentiability.
We now focus on the presentation of the generalized Newigori#hm for the solutions
(uA, 1) € HY2(M) x La(Tc) x Lo(Tc) of the regularized problem (6.82)-(6.84). Since
(6.82) is linear, the derivation of the algorithm for thisuatjon is obvious. Therefore, we
confine our attention here on the second and third equatto@&3)(and (6.84) respectively.
To this end, let us define the mappiRg Lo(I'c) x Lo(I'c) — La(I¢c) x Lo(I¢) such that

A— maX(O,)\ + Vl(un()\ ) “) - d))
F(A, )= (w(utm,m — W)+ [ — 1 — max(0, ya(u (A, 1) —wt>+ﬁ—fg>) :
—min(0, yo( (A, 4) — W) + U + FQ)

(6.85)
whereu(A, u) € HY2(I") is the unique solution of (6.82) for giveh, u € Ly(Ic). We
haveun(A, u) € HY2(T'c) andw (A, 1) € HY2(I'¢). In addition,H/?(T'¢) imbeds contin-
uously and compactly inthg(I'c) for all g < « whenQ C R2. Thus,un(A, 1) € Lg(Tc),
andu (A, 1) € Lg(lc) for someq > 2, and we obtain the requirement for Newton dif-
ferentiability of the max-function and min-function (seb€e€brem 2.9). The generalized
derivative ofF is defined as follows

GO\, ) (6)\) :: ( OA — ViXacOUn(A, 1) )
T\ ou —OU + V20U (A, 1) — YoXag, OUL(A, 1) — VoXae_OU (A, 1))

(6.86)
wherexa., Xa-, andxa._ are the characteristic functions of the sets
Ac = {X€Tc: A () +n(un(A, 1) —d)(x) >0},
Ary = {x€Tc:a(X)+ (ya(w(A, 1) —w) — Fg)(x) > 0},
and
Ap— = {xeTc: i)+ (va(u(A, u) —w) + Fg)(x) < 0},
respectively. Thus, the Newton step is then
G(AN, 1)(8A,8u) T = —F (A%, "), (6.87)

which yields

)\k-O-l _ /)\\ + yl(uﬁ—i-l _ d) on k+1, )\k-O-l —0 on I(l_(j+17
pktl = Fg on ASL UM = _Fg on AL

P — 1 — (U —w) = 0 on IET,
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where
AT = xeTe: A+ (W) —d(x) >0}, 15 =Tc\ Ak
AT = {xeTc I + (ya(uf —we) — Fg)(x) > O},
A = {xeTe: (X + (va(uf —w) + Fg)(X) < O},
IE = e\ (ASUAEY,
and (AL g u(A KL Dy = yk+ gre solutions to
(S V)r —L(v) + A vp)re + (L v)r. =0 forall veV. (6.88)

The semi-smooth approach for the system of equations (§6324) turns out to be the
active set strategy algorithm if we set= % , see, e.g., [61,71,98], and given as follows:

Algorithm : (SSN)

(1) Choose(&9,A% 1O w0) € Lo(Ic) x La(Te) x La(Fe) x HY2(T) satisfying (6.82),
o > 0and sek:=0.

(2) Determine active and inactive sets
AL = {xeTe: AX) + () —d(x) > 0},

K+ = o)\ AR
ASE = {xeTc: &) +a(u—Fg)(x) > 0},
AT = {xeTc: & +o (U +Fg)(x) <0},
1K1 = e\ (AFLUAKTD).

(3) fork>1if AST = AL, AT = Ak andAftt = AX  stop, else
(4) solve
(S v)r —L(wv) + A v + (L v)r. =0 forall ve,
Akt )y + V1(Uﬁ+1 —d) on k+17 A1 _0 on |(I§+1,
uk+1 = Fg on Alléjjrl7 “k+1 = —Fg on Al,étl,

k+1 k+1
u _

— = yo(uftt —w) =0 on IEH,

(5) set
(Ut —we+ I(f+ Fg) on AT

gl = utk+1—wt+%(ﬁ—}"g) on AL,

| 0 on IE
and sek :=k+ 1 and go to Step (2).

)
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Remark that the system at Step (4) is uniquely solvable esints the necessary and
sufficient optimality condition for the following minimiz@an problem

A:ormnlk*l A1),
p=Fg on AL = —7Fg on AL

which has a unique solution. The advantage of this algoriththat it solves both for
contact and friction simultaneously.

The properties of the semi-smooth Newton method or equitiglef the primal dual active
set strategy are analyzed next.

Proposition 6.5. If the algorithm (SSN) stops, that issA = A, AStt = AX . and

ATt = AK_, then  is the solution tq Py, ,) and (A, uk) are solutions tqP;; ).

Proof. Note that all the iterategu’, A¥, i¥) satisfy (6.82). IfAS™ = AK, AKTL = Ak
and AS'1 = AKX we then obtain from the uniqueness of the solution for theéesysat
Step (4) that*t1 = uk, Ak+1 = )k andu"Jrl pk. 1t follows from Ak+1 = AK thatAk > 0
on ASHL = AK and)\" 0 onl&™ =15 and hence

AX = max(0,A%) = max0,A + y1(uk —d)),

this shows tha(u" AK) also satisfy (6.83). On the other hapd;t! = X yields u* = Fg

onASt = AK k= —Fgon At = AL | ik~ i — (Ul —wp) = 0 onlIE™ = 1K and
(UK —wi+ (0 +Fg) on AS=AE
g=1¢ d-w+i(i—-Fg) on AST=AL
| 0 on IFt =1k,
which yield the complementarlty condition (6.84). O

On the other hand, the local superlinear convergence oflgweigom is ensured by the
following results:

Theorem 6.5. If there exists a constantyg> O such thatFg > gp, further for all
vi,yo > 0if 0 > % and if [|A9— Ay ||r. and || u® — py||r. are sufficiently small. Then for

all A € Lo(T'c) andfi € Ly(T'c), (UK, AK, K, £) converge ta(uy, Ay, ty, &) superlinearly
in HY2(M) x La(Me) x La(Me) x La(Te).

Proof. See [98, Theorem 5.8]. O
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6.5 Regularization of contact problems with Coulomb friction

The regularized contact problem with Coulomb friction reed in this section is similar
to the one given in [28—-30]. Moreover, the regularized peaid with given friction cor-
respond tq Py, ,) and(Py, ,,) respectively. The variational problem is: Findg: V' such
that

(SUV —U)r + (Max(0,A + i (Un—d)), (Vn— Un))re — L(V—u) +

[ Fmax.3 + (o — ) (h((v ). B) ~ i(w —w), ))dsc > OV €V, (6.89)
l'c

whereh(,) : R? x R? — R is the local regularization defined by

- F
X+l =z 7o i x>,
h(x,y) =
2 |x+ L2 it |x+ %] <28
279 y2 y2 y2

Furthermore, the normal contact stress is given joy max(O,X +vi(up—d)). Due tothe
fact thath(., .) is differentiable with respect to the first variable if we get test function in
(6.89)V:=u+ayv, further divide (6.89) byxr and leta — 0, we then obtain the variational
equality: Findu € V such that for all v« V

(SUV)r + (Max(0, A + y1(Un —d)), Vn)re +

[ Fmax©.3 +ya(un — d))Dh(( ~w). By ds = L(v) (6.90
lc

whereDh(., .) is the derivative oh with respect to the first variable. On the other hand, we
have

DA((U W), 1) (v~ ) = yLnOWHt—V_vt>+a<yt—uct¥>,g>—h<<gt—v_vt>@
= h<(yt_V—Vt)vg)—h((!t—V_Vt),E)a (691)

sinceh is convex. Conversely, if we set the test function in (6803 v — u and utilize the
relation (6.91), we then obtain the variational inequaly89) and the following result.

Lemma 6.2. The variational inequality (6.89) is equivalent to the \&ibnal equality
(6.90).
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6.5.1 Existence of solutions for the regularized contact mblem with Coulomb
friction

Solutions of the regularized contact problem with Coulomttibn (6.89) or (6.90) can
be obtained similarly as in the original contact problem éct®n 2 by the means of a
sequence of regularized Tresca friction problems. To thislet us introduce the cone of
non-negativé.,-functions

L2(Fc):={geLy(lc):g>0ae}
and define the mapping, : L2 (Fc) — L2 (I'c) by @y(g) = Ay, where

Ay =max0,A + yi((uy)n—d)),

and u, is the unique solution of the regularized contact problerthvgiven friction
g. Naturally, a fixed point of®, solves (6.89) or equivalently (6.90). Furthermore,
the mapping®, can be written as the composition of three mappings as fstlow

®y = YoO@o W, whereW, : L2(Fc) — HY2(T) is defined byWy(g) = u,, ©:
HY2(F) — Ly(l¢) is defined byo(u,) = (uy)n, andY: Lo(Tc) — L2 (I'¢c) is defined by
Y((uy)n) = max(0, A + y1((uy)n —d)). We then obtain the following results:

Lemma 6.3. For all y1,y» > 0O, andA ¢ Lo(Tc), E € Lo(I'c) the mapping¥, defined
above is Lipschitz-continuous with constant

[ Fllec

L
5]
C1

, (6.92)

where||F || denotes the essential supremungfc? the ellipticity constant of S. More-
over, L is independent of the regularized parametgrss.

Proof. Let us fix y1, » > 0 and choose the given frictiong, go € Li(rc). Further, let
(U, A1, ;) and (Up, A2, ) be solutions associated t and g, respectively. Taking
(U, A1, 4,) and(up, A2, 4,,) respectively into (6.61), subtracting and setting=vu; — u,
yields

(S(Uy = Up), Uy — Up)r + (M, — My, (U — Up)t)re + (A1 — A2, (Us — U2)n)re = 0. (6.93)

SinceA = max(O,X + y1(up—d)), we obtain
1

s (A1=22.0 ()~ d) = A+ ya((w)n—d))) >0

(A1—A2, (U1 —U2)n)re .
C

As immediate consequence we obtain

(S(Ug = Up), Uy — Up)r < (M, — H,, (Up — Up)t)rc. (6.94)
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Furthermore, we have

17 (91 = g2) I (Uy — W)t

(Hl _H27 (92 _gl)t)rc S
< il Flollos— Gl Iy — Ul

see [98, p.118]. By using this and the ellipticity®the lemma is proved. O

Lemma 6.4. For all y1,y» > 0, and ¢ Lo(Fc), H € Lo(Tc) the mappingd, defined
above is compact and Lipschitz-continuous with the constan

yiC
£=L517 )
1

Proof. Since we have for aly1,n2 € Lo(I'c),

Imax(0,A +y1(n1—d)) —max(0,A +ya(n2—d))|lrc < vallmi—nallre,  (6.95)

the mappingY is Lipschitz continuous with constapt. Further, it is easy to check that
the mappind® is compact and linear. Therefore, it is Lipschitz continsiaith a constant
Cz. By using Lemma 6.3, and the fact tf@atandY are Lipschitz continuous we conclude
that®, := Yo @o Wy is Lipschitz continuous with the constant

1C1C2
£:=Y 5
C1

1 -

Since® is compact, the composition & and¥, is compact too. Further, from inequality
(6.95), anyL,-convergent sequence remainsconvergent under the mappingwhich
ends the proof. O

We can easily obtain the existence of the fixed poirbjaas follows.

Proposition 6.6. The mappingP, admits at least one fixed point. Further,||iF ||« is
sufficiently small, the fixed point is then unique.

Proof. We apply the Leray-Schauder fixed point theorem [12] to theppiray
®,: L2 (Fc) — L2(I¢). By using Lemma 6.4 it suffices to show thatis bounded in
L2(Tc) independently of. This is clear if one takes in account the dual problg?))
Indeed,

w):

min  J; (A <minJ} ., (A,0) < oo.
)‘ZO7|H‘S-7:Q Vl,YZ( 7H)_)\20 Vl:y?( ) )

Note that the second minimization problem leads to a comgaattlem without friction,
sincey = 0, and it admits a solution independent frdrg. Thus, the Leray-Schauder fixed
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point theorem yields the existence of the fixed point for tlepping®,. Furthermore, if
the friction coefficientF satisfies

L:

A%
~— D

1

[ Fleo <1,

the mapping®y is then a contraction and has a unique fixed point. Therefloesiegular-
ized contact problem with Coulomb friction has a unique 8ofu O

6.5.2 Algorithm for the solution of the regularized Coulombfriction problem
(RCF)

The fixed point idea presented in Proposition 6.6 can be @rpldor the numerical im-
plementation for the solution of the regularized Coulombtion problem. Similar idea
are frequently used by a sequence of Tresca friction prablemard the solution of the
Coulomb friction problem, see, e.g., [29, 30, 41]. The fixeihpalgorithm can be pre-
sented as follows:

Algorithm : (RCF-FP)

(1) Choosey, . > 0, A andg. Initialize g° € Li(l‘c), and sein:=0.

(2) Determine the solutio®@™, u™) to problem(7Py, ,,) with given frictiong™.

(3) Updateg™?!:=A™ m:=m+1 and, unless an appropriate stopping criterion is met,
go to Step (2).

Theorem 6.6. Provided that|| F || is sufficiently small, the Algorithm (RCF-FP) con-
verges regardless of the initialization.

Proof. The proof follows immediately from the fact that|ifF || is sufficiently small, the
mapping®y is then a contraction and the fixed point is unique. O

6.6 BEM discretization

In this section we describe the standard Galerkin procdadws@ve the system of equations
at Step (4) of the active set strategy algorithm numericaity the help of one-periodic
B-splines of orderw > 0. The description of the Galerkin procedure in this secisotme
same we presented in chapter 4, we then refer the readertionsé@.
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But, note that the Steklov-Poincaré operator defined agvisl!

1 1
S:=(5+ K’)V‘l(él +K)+D:HY?(M) — HY2(T) (6.96)
IS not suitable for a Galerkin discretization. This is duehe explicit appearance of the
inverse single layer operator, which is not available extyi As an alternative we define
a symmetric approximation of the continuous Steklov-Paiéwmperator as follows, for
some given function & HY/2(I")
1

1 1
v = (5 +K')V*1(§| +K)¥+Dy = (51 +K)w-+Dy,

wherew € H~Y2(T") is the unique solution of the variational problem
1
(Vw.1) = {(5 +K)v,1),vT € HY2(T).

The associated Galerkin variational formulation is: figgd= (Spar{(q?}{z‘:l)z cHY2()
such that

(VWp, T,) = <(%I +K)v,1),V1, € (Spadfn?}ﬁ':l)z,

Whereqf represent the B-splines basis functions of order zero. efber the approxima-
tion of the Steklov-Poincaré operator can be given by

~ 1
S =Dv+ (5 + K" )W,

Note that the results of Lemma 4.4, for the scalar Yukawalprolare still valid here, i.e.
the approximatiors of the Steklov-Poincaré operator is spectrally equivaler@in the
sense that for all & HY/2(T") we have:

D y!12 & Siiv12
CL [[V[| a2 ) < (S1,v) < Cz||¥||H1/2(r

()
and furthermore, we have the consistency estimate:

)

||(é—3)y||H,1/2(r)gch“+1/2||s_/||Ha(r) forall veVq,

whereVy :={veH):v=0 on [Ip} an~d% < a < 1. The Galerkin discretization
of the approximated Steklov-Poincaré oper&@ now given by

~ 1
Shi= (GMn +Kp)VH(GMn+Kn) +Dn, (6.97)

whereMy, is the so-called mass matrix [30], given by

M 0
Mh:(o M)’
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M(/(pjl-(nods) .
r ij=1

On the other hand, the single layer operator can be writtemainix form as follows

V — (Vll VlZ) .
Var Va2
Therefore, the matrix of the discrete single layer operdfipr= A is a square matrix of
size 2N whereN is the number of points of discretization. Moreov&rhas the following

block structure
A (An A1.2)
Apr App)’

Ak|[i7j]:<vk|¢jv7gqv>r fori?j:]-?"'?N; k7| =12

By utilizing the one-periodic parametrization of the boandl’, the definitions of the
boundary integral operatokg, k,1 = 1,2 given in section 5.1.3 and Proposition 5.1 the
entries of the block structure matricAg for k,1 = 1,2 are given by the following propo-
sition.

where

where

Proposition 6.7. The matrices\y for k,| = 1,2 can be written:

All“?” = AO['?”"‘AC[I?J]? Al?_[i?”EAZl“?]]:AS[i?”a
Agali,j] = Aoli, j] —Aci, j],

where
Adfi.j] = §{§A0<c§”><0>>2+ zOAp<c§”><p>>2coszr[p<j—i)h]},
p>
1
2

Adii] = {ro,1,1<c§”><0>>2+2 S o 1p1(@” (p))2cog2mp(] —i)h]}

p>0
+ A%l['? 1]7
and cﬁ")(.) are the Fourier coefficients defined in section 4.2.
Remark 6.2.

* The matrixAg and the first part of the matri¥\; are symmetric and circulant
[23,92,94].
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* The matricesz&%l and A are also symmetric, and are derived from the regular part
of the operato11 and of the operato¥ 12 respectively by

A%lﬁ? J] = <V%1g0jv7cgv>r7 AS[L J] = <V12cpjv7gqv>r for I?J = 17N

Hence, they can be computed by utilizing a Gauss quadrature.

Moreover, the eigenvalues of the circulant matkixare given as follows:

Proposition 6.8. The matrixAg is circulant, symmetric and positive definite, and its
eigenvalues are given by:

aNo(Ka, ko) if m=1,
Am={ N (sinns’>2"+2 < Amipn-1) (Kis ko) i Npnt1-m) (K, ko)
252 T o (p+ Sl>2V+2 (p o S/)2V+2
S,:mTil7 |f m:2,...,N7
where
An(ke, ko) = K2AY (ki) +K2AY (ko) and AY (k) = Ri(kR)Kn(kR), |=1,2.

Moreover,A is diagonalizable and can be written as follows

1
AO - N Q/\Q7

whereA = diag(A1, ...,An), and Q is the so-called discrete Fourier matrix defined as fol
lows

Q[i, j] =cog2n(i—1)(j — 1)h|+sin2mn(i—1)(j —1)h] fori,j=1,...,N
and satisfies QQ = NI, where | is the Nx N-identity matrix.

Proof. The proof is similar to Lemma 4.3. O

Finally, the matrice«, andDy, of discrete double layer and hypersingular operators are
computed via the regularization technique as given inse&iof chapter 5 respectively.



7 TWO-DIMENSIONAL QUASISTATIC CONTACT PROBLEMS

In this chapter we consider a quasistatic elastic body inamrwith a rigid foundation.
That is when the volume and surface forces are applied sdystbat the inertial forces
can be neglected. The problems of this kind were first treayethdersson [5] by using an
incremental approach and by considering the contact laermg of normal compliance.
Cocu, Pratt and Raous [21] proved the existence of a soltdioa nonlocal friction law.
But, by using the so-called Signorini condition of the namngtration and the Coulomb
friction law one encounters considerable mathematicdblpros and very few results are
known for this case without any form of regularization of finetion or any relaxation
of the impenetrability condition. The first existence pof this approach were given
by Andersson [7] by the penalization of the Signorini coiaglitand the regularization of
the friction term. Similar results were obtained in [95,.96tk, Steinbach and Wendland
[30] obtained the existence of solutions by using a symméioundary element method
combined with a penalty method.

Here, for the simplicity of the model, we consider the Sigmiarontact condition together
with the local Coulomb friction law. The weak formulation thfe problem is given in
terms of a variational inequality. By penalizing the Signbcontact condition and per-
forming the time discretization we obtain a discrete varal inequality. Further, by
using a certain smoothing of the friction law this yields guigalent variational equality.
Results on the convergence of the solutions of the apprdgiprablems to a solution of
the quasistatic contact problem with Coulomb friction arailable in [7, 29].

Hence, the aim of this chapter is to develop and analyze eifi@nd reliable algorithms
for the approximate solutions of the discrete problems, 8iate the nonlinearities of the
problem appear only on the boundary of the contacting bodieghen transform equiv-
alently with the help of Green’s formula the domain variaibequation to a boundary
variational equation by using a symmetric representatidheoSteklov-Poincaré operator.
If the Galerkin method is used for the discretization of tle@itdary integral equations,
we then obtain a system of linear equations with a symmetiffaesss matrix. This can

motivate the application of efficient solution strategi€se development of efficient algo-
rithm to determine the numerical solutions of these digdoeundary variational equalities
strongly depends in a fast and reliable algorithm for sohsiof the Coulomb frictional

contact problem at each time step. But, the discrete coptablem at each time step is
similar to the static problem we treated in chapter 6 anddarsmotivate the application
of all theories we have developed there. Therefore, instédlkde Coulomb friction law

at each time step, we consider a sequence of contact prolblgmgiven friction known

125
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as the Tresca problem, since this law is simple to analyzeadtition, the solution of
contact problem with Coulomb friction at each time step cauléfined as a fixed point of
a sequence of solutions to the Tresca problem. This appmashused for the first time
in [62, 85]. Hence, the crucial requirement to obtain an iefficand reliable algorithm for
the Coulomb frictional contact problem at each time step ilethe fast numerical algo-
rithm to determine the solution of the Tresca problem. Th@egch taken here is to large
extent based on writting the Tresca problem under condidaras optimization problem.
Further, by using the Fenchel duality theory [31] we derive dual problem. Whenever,
the problems are seen from the optimizational point of viestead of just using the first
order necessary optimality conditions, which are usuakydtarting points of analysis, we
also use alternately the primal and the dual formulatiorhefgroblem for our investiga-
tion. Another important aspect of this work is to write themg@ementarity conditions in
terms of non-smooth méx.) and mir{.,.) operators which allows the application of the
generalized Newton method in infinite-dimensional funcgpaces [71,98]. The chapter is
organized as follows, in section 1 the Signorini quasistatntact problem with Coulomb
friction is stated in is strong formulation and its varia# formulation in a framework
of Hilbert spaces. In section 2 we discussed the existentleeopenalized problem via
a discrete problem, while section 3 is concerned with thendaty element formulation
of the problem. In section 4 we present the algorithm for tiserdte problem and anal-
ysis. Finally, in section 5 we present a BEM discretizationd special two-dimensional
circular domain.

7.1 Quasistatic contact problems with Coulomb friction

In this section we state the problem of determining the dheédion of a quasistatic linear
elastic body subject to a frictional contact. We start byrgivthe strong formulation of the
problem, state all necessary ingredients needed for tliatizaral formulation.

7.1.1 Presentation of the problem

The main assumptions in this section are as for the chapbert@or reader’s convenience
let us recall them again here. We assume that, the body axapi open and bounded
domainQ of R? with C11 boundaryl” := dQ divided into three disjoint subsdts, 'y and
'c. We suppose the body to be fixed Ibp, onl"y the boundary tractions are given while
c is a potential contact part. The strong formulation of thaggstatic contact problem
with Coulomb friction state as follows: Find a displacemiiti u: (0,T) x Q — R? with
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T > 0 such that the following relations are satisfied:

—div(ou) = f in (0,T)xQ, (7.2)

u =0 on (0,T)xIp, (7.2)

oun = g, on (0,T)xIn, (7.3)

up <d, op(u)<0, onu)(un—d)=0 on (O, T)xTIgc, (7.4)
U =0=[ai(u)] < Flon(u)|,

4 #0= Gi(W) = ~Flon(Wl g on (OT)xTe, (7.5)
[l (ot()] - Flon(w)]) =0,

9(07 X) = QO(X) in Q, (7.6)

wheren is the unit outward normal vector along the boundarg,(u) ando; (u) represent
the normal and tangential stresses along the bourigargspectively. On the other hand,
un := U-n andy, represent the normal displacement and the tangential iteloe c
respectively.F is the friction coefficient where we suppose to be solutialependent and
Ug is the initial displacement. We assume the material to bedy@meous and isotropic so
that Hooke’s law is applied. Let us set the space of admissiispblacements by:

K={veV:v,<d on TI¢},

where _
V={veHYQ):y"v=0 on TIp}.

Further, let us assume thate H((0,T); V*) andg,, € HX((0,T); (HY?("'n))*), where
V* and(HY?(I'y))* denote the topological dual of spadéandHY?(I"y) respectively.

7.1.2 Variational formulation

The variational formulation of the contact condition (7iglyjiven by
up <d, op(u)(va—un) >0 forall vek, (7.7)
while the variational formulation of the Coulomb frictioaw/ (7.5) is given by
a(u) - (vf — W)+ Flon)|(lvi| —|u]) >0 forall vi orthogonal ton. (7.8)

The proofs are given in (3.43) and in Proposition 3.1 respelgt By using the usual
procedure, we first multiply the differential equation (7b¥ (v — u), second utilize inte-
gration by parts and the boundary conditions yields
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If we splitthe integral in the right hand side of (7.9) intarmal and tangential components
we then obtain

/U(Q)D-(y—u>d&:=/[Gn(g>(vn—un)+0t(u)-((Mt—ut +0) —U)]ds.  (7.10)
lc

lc

If we substitute (7.10) into (7.9), ad}[]-"|an(g)|(|yt — U + 4| — |U|)dsc in both sides
l'c

of (7.9) further employ VY= v —u+ U, and utilize (7.7) and (7.8), the variational for-

mulation of the quasistatic contact problem is then giveriolisws: Find a function

uc HY((0,T); V) with u(t,.) € K for almost everyt € (0, T) such that for all v= K there

holds

Auv-U)+ [ FlonWl(lv - u+G| - [0)ds> L0-w,  (7.11)
Fc

where the bilinear formd\(.,.) : V x V — R is defined by

A(u,v) = / o(u) : g(v)dx

Q
and the linear functionaf : V — R given by

L) = [ f-vdx+ [ g, vds.
Q NN

Before we show the existence of a solution of the variatiéomhulation (7.11), note that
the bilinear formA(.,.) defined a norm iV and this norm is equivalent to the Hilbert
norm in Hl(Q), see Lemma 3.1 and Theorem 3.1 respectively. The existaood qf
solutions for the variational problem (7.11) is a cumbersdask. The fact is that the
friction functional is neither convex nor differentiabbd, therefore, can not be analyzed
by the results from nonlinear functional analysis. In ortietreat this problem, we use
the penalty method. This approach was used to investigatedivability of the frictional
contact problem in [7,29]. We then replace the normal sivedhe contact part by

—0n(u) = max(0,A + i (un — d)) (7.12)

for y1 > 0 and for givenX € Lo(IF'c). Note that more general relations of the type
—0n(U) = @(uy —d) with ¢ > 0 and small are possible too. Such functions are used
in the normal compliance model to describe contact conditaee, e.g., [5, 6] where

@ (x) = (max0,x))Pwith p> 1. The resulting penalized problem is then obtained from the
variational inequality (7.11) by replacing the set of adsibte functionsK by V, adding

the penalty functional

/max(o,X + Vi(Un— d)) (Ve — Un)ds,
l'c



7.2 Existence of solutions for penalized problem 129

to the left-hand side, and by substitutifag (u)| in the friction term by maéO,X + ya(un—
d)). Further, if we replace the test function by~ v+ u— U we then obtain the following
variational inequality.

Find a functionu € H((0, T); V) such that for all ve V there holds

ALY -0)+ [ maxO.2 + s (th— ) (v — Un)ds,
e

(7.13)

+ [ Fmax0.2 + (v~ d)(1u] - l)ds > £(v - b,
e

7.2 Existence of solutions for penalized problem

The solvability of (7.13) will be proved by using a time distization. Let us consider
a partition of the time interva{O, T) with uniform time stepsdt := T/L. Further for

| =0,...,L, we sett) :=13t, u' an approximation fou(t;) anddu' := u' —u'~?* the time
difference operator. We then obtain the time discretizetiem from (7.13) by replacing
uwith u' andd' with &u' /3t. Next if we multiply the result by the time steli we then
obtain the following variational inequality:

Find a functiond' € V such that for all v= V there holds

AWy —ou)+ [ max(0. A+ (uh - d))(vn — ub)ds:
lc

(7.14)
+ [ Fmax0.3 + yu(ch - d)(u] — |oul s> £ (v - o).
l'c

In order to obtain a variational equation it is necessary nmah the friction func-
tional by replacing the non-differentiable tern@u}| and |v;| by differentiable approxi-
mations. To this end fop > 0 we define a local convex and differentiable regularization
h(,) : R? x R? — R such that for somg, |h(x,y) — |X|| < % with C(y) a constant indepen-
dent ofy, butgependent of. The smoothing penalized problem reads then/oy, > 0

and for givenA € Lo(I'¢), i € La(I'¢): Find a functionu' € V such that for all ve V
there holds N

A v—au) + / max(0, A + y (U — d)) (v — 5Ul)ds;
e
(7.15)

+ [ Fmax0.2 + y(th— (v, &) ~ (ol B)dsc > £ (v - ).
c
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Due to the fact thath(.,.) is differentiable if we set the test function in (7.15)
— ou + av, next divide the result byr € (0,1) and leta — 0, we then obtain the
varlatlonal equality: Findl' € V such that for all ve V there holds

AW W)+ [ max0.] +ya(th— d))veds,
(7.16)
+ [ Fmax0.3 + (v d))Ph(ou, Ay dsc= £'(v),
whereDh(.,.) is the derivative oh with respect to the first variable. Conversely, we have
h(dul + a (v, — dul), i) —h(du, i
Dh(od, F) (v — ) = lim (Ou +a(v, —ow), 1) —h(ow, 1)

a—0 a
< h(v, @) —h(3u, ), (7.17)

sinceh is convex, if we set the test function in (7.16)»= v — du' and utilize the relation
(7.17), we then obtain the variational inequality (7.15) #me following result.

Lemma 7.1. The variational inequality (7.15) is equivalent to the \&ional equality
(7.16).

Problems (7.14) and (7.16) have the same forms as the conaisyg versions of the static
contact problem. The existence of a solution to (7.16) ivgdaas in the static case, see,
e.g. chapter 6. An a priori estimate for its solutidtas been investigated in [7,29]. There
the following results have been obtained.

Assumption 7.1. Let the domai2 be bounded and connected, let its boundarye
Lipschitz and be composed of the closures of the mutualjginigarts'p, My and '
which are open with respect to the surface topology, and k=isfip > 0 with ['c € CK,
k> 2. The bilinear form A.,.) is symmetric, bounded and-elliptic. Let f € V¥,

gl € HY3(Iy), d e HY2(Ic) with d > 0 a.e. onlc. For a setQc C Q satisfying

[c C dQc there holds e H=Y/2(Q¢). The norms of these functions in the correspond-
ing spaces are independent of |, i.e. uniformly bounded.cbedficient of frictionF shall

be non-negative with its support in a det C 'c having a positive distance 0\ I'c.
Moreover,F shall be bounded by

[ FlLa(r ) <Cr

where the admissible constant-@s given in [29, p. 208].
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Theorem 7.1.Under the Assumption 7.1, foreverg K1,....L}, y1 > 0, y» > 0, and for
givenA € La(lc), U € L2(I¢c) the semi-discrete problem (7.16) has a solutibrvhich
satisfies

Uy <€ (7.18)
and
I e ) + o) Ly < C2 (7.19)
with constants cand ¢ independent of ly; and y». For every fixed | y; there exists a
sequences x — o such that a corresponding sequerlttenﬂsolutions to (7.16) converges

in Hl(Q) to a solution Ui of the penalized problem (7.14). This solution also satigfie
a priori estimates (7.18) and (7.19).

The a priori estimate (7.18) faf' is a crucial step to show the existence of a solution to
the penalized problem (7.13).

Theorem 7.2. Let the Assumption 7.1 be valid, and Igtele((O,T);V*) and

g, € HY((0,T); (H"Y2(T'y))"). If the coefficient of friction is solution independent and
satisfies

||f||H—1/2(r]__)_)H—l/2(r]__) < C}", (720)
where the norm ofF
IFla-22r py—h-12(r ) == sup | FVllg-1zr
veH Y2(T x)
HVHH71/2<FF>S1

Is a Sobolev multiplier norm. Then there exists a sequentienefstepdty — 0 and a
corresponding sequence of solutions af the time-discretized problem (7.14) such that

their extensions denoted again by eonverge strongly in4((0,T); H1(Q)) to a solution

of the penalized quasistatic problem (7.13). In additimnsbme)\A € Lo(I¢) the following
a priori estimate holds

||g||H1((07T);H1(Q)) + ||!||Lm((o,T);Hl(rf)) + | max(O,X + Y1 (Un — ) [l Lo (0.T)iLa(F 2))
(7.21)

<c

+[max0,A + yi(un—d)) HHl((o,T);(Hé/z(Fc))*) -

with a constant ¢ independent of the penalty parameter aadpace Ié/z(rc) define by

Ho'?(Tc) i= {ve HY2(r) :v=0onp}.
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Proof. See [29, p. 215]. O

After showing that the discrete problem (7.14) convergdbeaontinuous problem (7.13)
we then focus our investigation on the solvability of (7.b4)the help of a semi-smooth
Newton approach. But, since the nonlinearities of the mnobappear only on the bound-
aries of the contacting bodies it can be suitable to coupgesibproach with the boundary
element method [29, 100].

7.3 Boundary element formulation

In this section, by proceeding as in section 6.2, the boynstaess is given by

o(un:=y"u=Sy5"u—Nf, (7.22)

where the symmetric Steklov-Poincaré oper&and the Newton potential f are defined
as in section 6.2. But, note that in this section the funddataolution of the differential
equation (7.1) is given by the Kelvin tensor as follows:

1 11+4v (X —¥i)(Xj —Y;j)

Uij(x’y)4n(d—l)'E1—v (3—4v)Bo(xy) 8 + |x—y|d
with
—log|x—y| if d=2
EO(X7y) - 1
if d=3
X—=Y

Moreover, the symmetric Steklov-Poincaré operator satigfie following properties.

Lemma 7.2. Letl" be bounded and Lipschitz. For aIIEr(—%, %) the symmetric Steklov-

Poincaré operator S HY?"(I) — H~Y2*(I") is a linear and continuous mapping.
Moreover, it is self-adjoint, positive semidefinite andsfging

<S_L!!>r > C?”gHal/Z(r)? VQ € Hl/z(r) \ Ker<D)7

where Ke(D) and (f represent the kernel and the constant of ellipticity of thpdrsin-
gular integral operator D respectively.

Proof. See [30]. O
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In order to derive boundary integral formulations of thedidiscrete contact problem we
use the Green formula in terms of the Steklov-Poincaré opera

A(u,v) —/j-ydx = /G(Q)D-Md&,
Q r
_ /(S_u— Nf)-vds. (7.23)
.
By using the relation (7.23) into (7.14), with the test fuontv* = v — u'~1, the discrete

variational inequality (7.14) can be written as the follogzboundary variational inequal-
ity: Findu € V:={ve HY?("): {"v =0 on Mp} such that for all \e V

/S_d-(y—g')ds(-i-/max(O,X+y1(u'n—d))(vn—u'n)ds(
r lc
+ [ Fmax0.2 + ya(h - (10w - [3d])dsc > (7.24)
e
/Nj' -(y—u'>d&+/gL,-(y—u')d&
r (N

with dv; = v, —g{fl. In a similar way the variational equality (7.16) can be sfanmed
equivalently to the following boundary variational eqgali
Findu € V:={ve HY2("):v=0 on p} such that there holds

/S_d -yds<+/max(O,Xerl(u'n—d))vnds(
r Fo

+/J—“max(0,x+V1(U|n—d))Dh(5£'{,E)'¥tdS<= (7.25)
e

/Ni'-yds(—i—/g',\l-yds( forall ve V.
r 'n

Remark 7.1. The boundary variational formulations (7.24) and (7.25 aquivalent to
the domain variational problems (7.14) and (7.16) respetyi. This is valid in the follow-
ing sense: if Lis a solution of (7.14), thepou' is a solution of the boundary variational
problem (7.24). Conversely, yfu' is a solution of (7.24), the boundary traction is given
by o(u)n:= Sypu' —Nf' and the solution uof the domain variational inequality (7.14) is
then given by a representation formula, see, e.g. (6.119.sBme relation is valid for the
variational equations (7.16) and (7.25).

From now onward for convenience we will ugbinsteadyog'. As an immediate conse-
guence of the above remark we have the following result.
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Lemma 7.3. Under the Assumption 7.1, for everg 1,....L}, y» > 0, y» > 0, and for
givenA € La(¢), g € Lo(T'c), the semi-discrete problem (7.25) has a solutibavhich
satisfies

16 2y + 14 s + 100 ) < C (7.26)

with a constant C independent ofyh, and y». For every fixed | y; there exists a sequence
Y2k — % such that a corresponding sequerl(te)fjsolutions to (7.25) convergesFrhl/Z(F)

to a solution Ui of the penalized problem (7.24). This solution also satidfie a priori
estimate (7.26).

Proof. Use Theorem 7.1 with the trace theorem. O

After showing the existence of solutions of the discretéjm (7.25), in the next section
we are going to present the method to determine these swdutio

7.4 Algorithms for the regularized discrete problem

The development of an efficient numerical algorithm to detee solutions of the regu-
larized discrete problem (7.25) relies on a fast and rediabyorithm for the solution of
the Coulomb frictional contact problem at each time stept iBturns out that the fric-
tion functional at each time step is non-monotone. This mdkath a theoretical analysis
as well as an efficient numerical realization truly chalieg Therefore, instead of the
Coulomb law at each time step we consider the frequently Tisesta friction law, since
this law is simple to analyze. Moreover, the solution of thmul@mb frictional contact
problem at each time step can be defined as a fixed point of @iseguwf solutions for
the Tresca problem. Thus, the crucial requirement to olatdast and reliable algorithm
for the Coulomb frictional contact problem at each time stgpngly depends on the ef-
ficiency of the numerical algorithm to determine the solutod the Tresca problem. The
approach we use here consists to write the Tresca probleivadsgntly to a minimization
problem. Further, by using the Fenchel duality theory [3&] derive the dual problem.
Whenever the problems are seen from the optimizationakpbdwiew, instead of just us-
ing the first order necessary optimality conditions, whioh@asually the starting points of
analysis, we also consider the extremality conditions Wingdate the solutions of primal
and dual problems. Another important aspect in this se¢tida write the complemen-
tarity conditions in terms of non-smooth n{ax) and mir{.,.) operators which allow the
application of the generalized Newton method [71, 98].A§fm*e, for fixed € {1,...,L}

we consider the problem: fgg > 0, y» > 0 and for somé&\ € L»(I'c), i € L2(I¢), find
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u' € V such that there holds

/S_d -yds<+/max(O,X-i—yl(u'n—d))vnds(
r Fo
+ [ Fmax0.3 + (v~ d))Dh(oU, ) -y ds = (7.27)
c
/NiI -yd&—i—/g'l\l-yds( forall ve V.
r Iy

Since the friction functional in (7.27) is non-monotone, eansider the contact problem
with given friction, the so-called Tresca problem, i.e. givreng e Li(rc) with

L2(Tc):={fely(lc): f>0 ae. onlc},

we setg' = max0,A + y1(u}, — d)) in the friction functional which yields: fop > 0,
y> > 0 and for some\ € Lp(I'c), g € L2(T'¢), find u' € V such that there holds

/S_d 'de(‘i‘/maX(O,X+V1(u|n_d))VndS(+/-7:ngh(5£'{aE)'YtdS(:
r e e

(7.28)

/Ni' -ydsx—i-/g'N-yds( forall veVy
r I

with |
X+ hl =g Fd i x> 5

h(x,y) :== |

i X+ 517 it x+2| <.

The problem (7.28) is equivalent to the minimization praoble

, 1 1 ~
(Pa) (U Inp0)i= | 58000 —L 0+ 5 [maXOA + (v~ ),
(7.29)

+ [ Fdn((v —w) (0. 209)ds,
c

with
L'(M)z/Nj'-yd&+/gL,-yd&
r N
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andw := U 1. Indeed, let! be a solution of the optimization problem (7.29). Since the
functionaldy, \,(.) is differentiable, by performing the limits

0< Iim Iy (U Eav) — Iy, 1 (U)
T a—0 a

for veV and a € (0,1),

we show that!' is a solution of the variational equality (7.28). On the othand, let us
suppose that' is a solution of the variational equality (7.28). Sinke,,(.) is differen-

tiable and convex, if we set the test function in (7.28rw* — u' with v* € V and use the
relation

| * | * |
<D‘JV17V2(Q ),V —u)r < JYLVZ(M ) _JYLVZ(Q ),

we then show that' is a minimizer of the functionaly, ,,(.). With this we then conclude
the equivalence of problems (7.28) and (7.29). Next we hav&hbw the existence of
a solution to (7.28). To this end, we decompose the functias&ollows Jy, y,(V) =
J(V) + jg (v) with

Jv) = %&u%—Uu%
lg(0) = o max0.X + (v — ) + [ (v~ w) (0 () dc

l'c

We can easily check thady, , :==J+ jg. .V — R is strictly convex and continuous, thus
from Theorem 2.6 it is weakly lower semi-continuous. Sirtoe $teklov-Poincaré opera-
tor is elliptic and the linear map' is bounded, the functiondl.) is then coercive. This
then shows that the functiond), \, := J + jy is coercive sincgy (v) > 0 forallv € V.

According to [29, Theorem 1.5.3] the variational equalify28) has a unique solutian.

A solution of the Coulomb problem (7.27) can be defined as al fpant of the foIIAow-
ing mapping®, : L2 (Fc) — L2 (Ic) defined by®,(g') = A, whereA, = max(0,A +
y1(ul, —d)) andd' is the unique solution of the variational equality (7.28)wgiven fric-
tion g'. The mappingd, is well defined since for a given frictiog, u' is unique. By
Proposition 6.6, the mappirg, has a fixed point and therefore, the contact problem with
Coulomb friction (7.27) has a solution. After showing thesgance of solutions for the
Coulomb frictional problem (7.27) and for the Tresca prabl&.28), next we present and
analyze algorithms to determine these solutions. We syathé Tresca problem (7.28)
which is equivalent to the minimization problem (7.29). Bwttead to consider only the
first order optimality conditions, which are usually therstay points of the analysis, we
consider here the corresponding dual problem to the prinodllem (7.29) defined by: for
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vi, ¥ > 0 and for giverﬂ €La(Fc), Hela(lc)

p

: 1
o Lz(rgg}\zo, V1 Vg()\ U) 2<S_l'h7u7gA7u>r+(H?Wt)rc+(A7d)rC

|u|<Fg a.e.onlc
A=A — 1|2
@i ) + A = RIR + - R,
1 ~
S AR - AR,

where u, , satisfies
\ (St > W)r —L' (V) + (A, Vn)re + (U, V)re =0 forall veV.

The dual problem(Py, \,) has also a unique solutlo(n\',u ) € La(Tc) x Lo(Tc), see
[67, p.37]. Next, if we consider the two-dimensional case éxtremality conditions
which relate the solutions of the primal probleR,, ,,) and the solutions of the dual
problem(Py, ,,), are then given by:

(Suv)r —L' W)+ (U, v)re + (A, Va)re = 0O forall veV, (7.30)

A —max0,A+y(u—d)) = 0 on T, (7.31)

{ Vo(& —u +w)+pu— =0, (7.32)
§ —max0,& + o (u—Fg')) —min(0,& +o(u+Fd)) =0, '

whereu, € HY2(T'c) andu € Ly(I¢), see section 6.4.1. Moreover, the system of nonlinear
equations (7.30)-(7.32) is suitable for the applicatiorth&f generalized Newton method
and the algorithm is given as follows:

Algorithm : (SSN)

(1) Choose(£% A% 10 w0 e Ly(Ie) x Lo(Te) x La(Me) x HY2(I) satisfying (7.30),
o > 0and sek:=0.

(2) Determine active and inactive sets

AL = {xeTc:A(X) +y(u(x) —d(x) > 0},

|(I§+1 - rC\AEH,

AT = {xeTci 8 +o(u~Fd)(x) > 0},
AT = {xeTc: 8 +o (K +Fd)(x) <0},
1K1 = Te\ (AL UAKTD),

(3) fork>1if AS™ = AL, AT = Ak andAf™ = AL stop, else
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(4) solve

(SUv)r —L' W) + A v e + (K ) =0 forall ve,
Ak+1:X—|—y1(Uﬁ+l—d) on k+1, A1 0 on |(I_<:+17
P = Fgoon AL il = 7gl on Ak

F4
k+1 k+1 k+1
H - F -

—H—=y(u"—w) =0 on |

(5) set
(Ut —we+ (B Fg) on AT

Ek+l — u[k+l_vvt+é(ﬁ_~/fgl> on Alléj»l7

k+1
[ 0 on I,

and sek:=k+ 1 and go to Step (2).

Note that the system at Step (4) is uniquely solvable, siris¢he necessary and sufficient
optimality condition for the following minimization probim
min J5 (A, 1),

A=0 on 15, nye
p=7rg on AL p=—7d on AL

which has a unique solution. The advantages of this algardie that it is of second
order and the convergence is locally superlinear, see €heér5. In addition, it solves
both for contact and friction problem together. On the otiaerd, since the solution of the
Coulomb problem (7.27) is a fixed point of the mappthgdefined above, the algorithm
to determine this solution can be defined as follows:

Algorithm : (RCF-FP)

(1) Choosen, y > 0,2 and. Initialize oh € L2(T'c), and setn:= 0.
(2) Determine the solutiofm, i) to problem(Py, ,,) with given friction o

3) Updateg'rn+1 = Am, M:=m+ 1 and, unless an appropriate stopping criterion is met,
go to Step (2).

Provided thaf|.F || is sufficiently small, the Algorithm (RCF-FP) convergesastjess
of the initialization since the mappin@, is a contraction, see Theorem 6.6. Note that
we determingAm, 1) at Step (2) of algorithm (RCF-FP) by performing the semi-stho

Newton algorithm (SSN). By Lemma 7.3 the discrete probler@fyhas a solution and an
algorithm to determine this solution can be given by:
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Algorithm : (RSDP)

(1) Computes, and set the time step= 0.
(2) Start of time step and compute the linear mappihy
(3) Choosey, y» > 0, A andi. Initialize oh € L2(I'c), and set:= 0.

(4) Determine the solutionS\y, ! ) andup, to problems(P;, ) and (Py, ,) respec-
tively with given frictiong...

(5) (a) If AR — Gmllrc
[Afllre

— (al) and ifl =lyax:= L stop,

— (a2) else updatgh"* := A!, computeL'*1, setl =1 41 and go to Step (3).

1At — Gmllre

IAmllre
Note that(A', u') andu' are solutions of Py, ) and(Py, ) respectively at time stelp In
addition, the Step (4) of the algorithm (RSDP) is also realiby the semi-smooth Newton
algorithm (SSN).

< Tol

(5) (b) Else, if > Tol, updateg),,, ; := Af, m:=m+1 and go to Step (4).

7.5 BEM discretization

In this section we apply a Galerkin procedure to solve theéesyf equations at Step
(4) of the active set strategy algorithm (SSN) for a paracdase of a two-dimensional
circular domainQ := Br(0) of radiusR and centered at the origin. It turns out that this
approach is the same as described in section 6.6. We theritrefieeader there for details.
Moreover, since the Steklov-Poincaré operator defined by

1 1
S:= (51 +K)V (G +K) + D HY(T) — H-V3(r) (7.33)
is not suitable for a Galerkin discretization, by followitige same idea as in section 6.6,
we then define a symmetric approximation of the continuoe&l&t-Poincaré operator
denoted byS Note that the results of Lemma 4.4 for the scalar Yukawalprotare still
valid here, i.eSis spectrally equivalent t8in the sense that for all@ H'/?(I") we have

D lyI2 & Siiv12
CeIVI[Ga/2 ) = (S0:V) < BlIVI[Fa/2

(r

and in addition, we have the consistency estimate:

)

15—Vl -1z < N2 Su|jpnry  forall veVy,
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whereV, :={ve HT(I:v=0 on Ip} an~d% <n < 1. The Galerkin discretization
of the approximated Steklov-Poincaré oper& then given by

1
(éMh—l—Kh)—l—Dh. (7.34)

Note thatM, is the mass matrix given in section 6.6. On the other handeifundamental
solution of the differential equation (7.1 ) is written afdas

Shi= (GMp +Kp)Vy?

X
U*(xy) = aloglx—y|I + % |y>_(y|2y) |
where 1114v
T ATE1-v’ a=pav=-3),

| is a 2x 2-identity tensorE > 0 andv € (0,1/2) the Young modulus and the Poisson
ratio respectively, the single layer operator can then ligemrin matrix form as follows

V11 VlZ)
V= .
(V21 Va2
In addition, if we use the one-periodic parametrizationref boundary, the boundary
integral operator¥y, for k,| = 1,2 take then the following forms

o 2
Va9 = [ (atogix-yl+ B2 Yy,

X
.

1
_ 27TR/(ang(2R|sinn( —t)]) + BSIF (T +1)) va(t)dt

(V12v2) (X) X— y|2

= —ZHRB/smn T+1t)cosm(T +t)vo(t)dt,

_ 2
) = [ (alogix-y+ B2 ) vayias,
r
1

= ZHR/ (czrlog(2R|sin7T(r—t)|)+BCos2 (T +1)) va(t)dt.
0

By using the above results the matrix of the discrete singyer operatol}, := A is a
square matrix of sizel whereN is the number of points of discretization. In additién,
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has the following block structure

A1 A
A= ,
(AZl Azz)
where the entries of matricég, for k,| = 1,2 are given by the following lemma.

Lemma 7.4. The entries of matrices;A Aj2 and A are given by

(0)
A1fi,j] = 2nRalog(R)h?—2nRa Z)L(k))z cog2mk(i — j)h]
k> |k|
+7RBh? + % [cog27(aj + 2h)] — 2 cog2m(aj + h)] + cog 2maij) ] ,
Avoli, j] = Anfi,j] = % [sin2rt(ayj + 2h)] — 2sin2m(a;j + h)] + sin(2ma;;) |,
” ’ () (K)? -
Axfi,j] = 2mRalog(R)h®—2nRa %7coq2nk(|—j)h]
k> |k|
+nRBh? — % [cog2m(aj + 2h)] — 2 cog2m(aj + h)] + cog 27} |

with gj = 1; +t; , T and t; are parameters of elements number i and j respectively.

Proof. UseAyli, j] = (Vi (pjo, @)rfori,j=1,..,N; k| = 1,2 and the Fourier representa-
tion of the B-spliney’. O

From the above lemma the matriokg, A1> andAy, can be written as follows

A1 =A0+Ac, Aio=As, Apo=~Ap— A,

where

(0)
Ali,j] = 2nR(ang(R)+%B)h2—2nRa %wcoﬂnk(i—j)h],
k>

K
Adivi] = 5 [cos2n(a + 2) - 2cog2n(ay + h)] + cog2mmy)].
Adi,j] = R—ﬁ [sin[2rt(ayj + 2h)] — 2sin2m(a;j + h)] + sin(27a;;)] -

Lemma 7.5. The matrix 4 is circulant, and if the radius of the disc Rexp(ss;) it
Is then positive definite. Moreover, its eigenvalues aremivy:

2nR(alog(R) + 3B)h m=1

i . 2 ( sin(7s) 20+2 2 1 1
Am={ —nRah? () PR rewsier R ] L

1
s="n> h=x
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where q is the order of the B-splin#. Hence, the matrix fis diagonalizable and can be
written as follows

1

whereA = diag(A1, ...,An), and Q is the so-called discrete Fourier matrix defined as fol
lows

Q[i, j] = cod2m(i — 1)(j — Dh] +sin2m(i — 1)(j — DA, i,j=1,..,N

and satisfies QQ = NI, where 1 is the identity matrix.
Proof. As Lemma 4.3. O

We can easily check that the matridkg Ac: andAg are all symmetric and the entries can
be computed explicitly and exactly.
Proposition 7.1. There hold
y3BQ,  for j=2,
AQj=¢ y3BQn for j=N,
0 else
yYBQn  for j=2,
AQj=14 —y3BQ, for j=N,
0 else

where Q is the f" column of discrete Fourier matrix Qy,= —mRB(c{(1))? and B is the
matrix defined by

o o0 o .. 1
o o0 o .. O
B = 1 ,
O 1 O 0
1 0 O 0

which were verified by experiments.
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From Proposition 7.1 we obtain immediately that

N
ACQ = VEBQDQ

(7.35)
N
ASQ - VEBQD&
where
0 0 0 0 0 0 0 0
0 1 o .. 0 0 0 o .. -1
D, — 0 0 o .. | b= |- . . 0
0 ) ) 0 0 0 o .. 0
0 0 o .. 1 0 1 o .. 0

Both matriceD. andDs have only two entries different from zero. If we multiply bdhe
left and right hand side of (7.35) 9, and use the propert® - Q = NI, we then obtain

Ac = 2BQDQ,
(7.36)
As = %BQﬁsQ.

Since the matrice8. andAs are symmetric, if we first transpose both sides of (7.36) and
multiply the result byQ- Q, we then obtain

ly
Ac = 1 5QDQBQQ,
(7.37)
_ Yo
As = 15Q0:QBQRQ.

Further computations show that

cNeoNe)
|
O T O
=
o O o
2 o

Dc = (DeQBQ) = R

oo OO

Ds=(D.QBQ=| = T,

o
o
o
o

o
o
pd
o
I
2
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where

N

an=) Q2[JJOn[N—j+1] = On[j]QIN—j+1],
=1 ]

=z

[l
=

Q2[j]Q2[N—j+1],

M=

N
by = Z ON[JJONIN—j+1] = —
=1

andQj is the jt" column of the discrete Fourier mati@ Therefore, the matrice&; and
As can be written as follows

_1ly _ 1y
Ac=55Q0Q, As=-QDQ (7.38)

Remark 7.2. We can notice that the matriceg Bnd Ds are symmetric and have at most
four entries different from zero. Furthermore, numeric potations show that

e forN=4,ay=0and hy =4,
e for N =8, ay = by = 5.65685
e forN > 8, ay — N and y — 2.

By using Lemma 7.5 and (7.38), the matAof the discrete single layer operator can be
written as follows

_1/Q 0\ /A+3Dc YD Q ©
e o) (M AT o)

where/ := diag(A1, ..., An) is the diagonal matrix defined by the eigenvalues of the €ircu
lant matrixAg andy = —niRB(c}(1))? with ¢j(1) which is the Fourier coefficient given in
section 4.2. We remark that
Q O
5 o

can be utilized as a preconditioning matrix for the matkixf the discrete single layer
operator. Moreover, if we set

o — (Nt 5De s \ (AL A
~\ ¥Ds N=¥Dc) ~ \Ay  Ag)’

with A; = A+ ¥D¢, A, = $Ds andAg = A — §D¢, the matrixkC can then be written again

as follows .
B I 0 Aq 0 | AI Ao
K= <A2A;1 |> <o S) <o | )
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whereS = A3 —A2A1*1A2 andl is the(N x N)-identity matrix. Since the matrices, Ay,
Az andS are sparse, the inverse of the matkixcan be computed easily and it is given

by
1o (U AR (ALY 0 | 0
0 | 0 S \-mAT 1)
where
0 0 o .. 0
0 —(ab+Bc) O —bB+ac
B AlA— |- . L 0 |
0 0 0 0
0 —(ac+Bdy) O —Bc+ad;
£ 0 0 0 0
1
0 b 0 C
_ o o L .0 .
Bo=Al= A3 :
1
0 0 . N 0
0 C 0 dl
£ 0 0 0 0
1
0 b1 0 C1
1
By 51— o o 4+ .0 s
0 0 . 1 0
0 C1 0 d2
0 0 o .. 0
0 —(ab+Bc) 0 .. —(ac+Bd)
By=—AA = ' 0
0 0 o .. 0
0 ac—Bb o .. —Bc+ad;
with
_ Y _Y _ _
a = san, B—ébN7 lo=2A2—-B, IN=A2+B,
IN a |2
b = I2IN—a2’ C__|2|N—8.27 dl_lle—aZ’
L, = In—(a’b+2aBc+B%d;), Ly=I»—B?b+2aBc—a’dy,
D = a[B(d;—b)—1]+c(a®—B?),
L D L
bh = — N = d> 2

LoLy — D2’ " LLy— D2 ~ LoLy—D?
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Hence, the inverse of the matixof the discrete single layer is then given by

w8 96 NE O 6 Y

On the other hand, the matricks, andDy, of discrete double layer and hypersingular op-
erators are computed respectively by performing a requaian technique and integration
by parts, see, e.g., [39, 65, 66, 72,100]. We have then

(WU T =2u(MWU) T+ My(Ayx) + Axl (7.39)

9
an(y)
with | the 2x 2-identity matrix, and

9 9

My = 0 Moy — Moy,

y d d )

N2 —ny-Z- 0
9y2 oy1

__ 12 e
X(r)= 8_nr log(r) with r=|y—x|,

as well as 1
Byx = (1) = =5 log(r).

We remark thatp is the fundamental solution of the Laplace equation. By gitie one-
periodic parametrization of the bounddryve obtain then

y1(t) =Rcos2mt, y»(t) =Rsin2it, te(0,1),
which yields

oy
pd/-Us U 1d/o -\, (> 0
TunT = £ 9 12 11y, = = n(y) . (74
T <_U52 Uf2)+2rert (L,U o) | o a‘z—t’;) (7:40)

By utilizing integration by parts, the double layer intdgsperator can then be written as
follows

r
/ U, Ui\ du : 0 L,U du
= 12 T¥11) == du
) 2uo/<U52 —Ufz) dtdt+o/ (—w 0) gt (74D

1 oY 0
+ 2mR / <‘?“<Cy)<t>> o )g(y(t))dt.
0 on(y(t))
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In a similar way, the bilinear form of the hypersingular &l operator can be written as
follows

%Y

(Duv)r = —u r/!(x)' [ml} u(y)dsds;

Te—

(7.42)

—p [ [ (M%) - [4pU" — 391] (Myu(y)) dsds

T—
T—

From (7.41) it can be seen that the matKky of the discrete double layer operator can
be computed by using the matiix= V}, of the discrete single layer operator of the lin-
ear elasticity equation, and the matrices of the discretglesilayer operator and the dis-
crete double layer operator for the Laplace equation reésedg while from (7.42) the
matrix Dy, of the discrete hypersingular operator can be realized mgueEso the matrix
A=V}, and the matrices of the discrete single layer operatortandiscrete hypersingular
operator for the Laplace equation respectively.

Lemma 7.6. LetQ := Br(0) be a two-dimensional circular domain and let us consider
a one-periodic parametrization of its bounddry The matrices of the discrete single layer
operator, the discrete double layer operator and the dikcieypersingular operator for
the Laplace equation are all circulant and given respedyiees follows:

Vali,j] = —R / / % 1) log|2Rsinm(t — 7)|¢? () dtdr,
00
1 11
- 1 1
Kliil = 5[4V WeP -3 [ [P 0a matar,
0 00
11

. 1 1 .
Dali,j] = —ﬁ//wj(p)(t)rqq(p)(r)dtdr, ij=1,..,N.
00
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Moreover, their eigenvalues are given by

( —Rlog(R)h m=1
v ) Lgpp(snm)\ 22 O 1 1 S
)\mA - Zha( T ) kZO (k—i— S>(2q+3) + (k—i— 1_5)(2q+3) m=2,
—m1 LK1
\ S= N » - N>»
(0 m=1,
, 00 —1)k(@+p) —1)k@@+p)
o _ ) ap(sm)\ TP S| (2D (-1) N
Am® = Zh( m ) kZO (k+s)(a+p+2) + (k41— s)(atp+2) mz2,
\ S= mTil’ h= %’
( O — ,
Dpn 1 ( sin(rs) 2p+2 2 1 1
)‘mA - 2R ( m ) s (k+ S)(2p+1) + (k_|_ 1— S)(2P+1) m2 2’
\ S= m—_17 h= %?
respectively.
Proof. See [92]. O

Remark 7.3. By using Lemma 7.4 and Lemma 7.6, the ma{gjof the discrete double
layer operator and the matri®y, of the discrete hypersingular operator can be computed
exactly and efficiently.
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In this chapter Galerkin boundary element methods (BEMetigped in previous chapters
are applied to some numerical examples. In the first part,amsider the domai@ =
Br(c) to be a two-dimensional disc of radiBs= 1.0 and centered at= (1.0,1.0). For the
boundary element discretization the trial functions fa gpproximation of the unknown

functionu or the displacement will be B-splines of order onec,q(l)), while the Neumann
data will be approximated by B-splines of order zeqqf)o)).

The chapter is organized as follows, in the first section wesg@nt some numerical re-
sults for scalar Yukawa problems, we consider in partictiiamon-homogeneous Dirich-
let and the mixed boundary value problems. The second segiibbe about the non-
homogeneous Dirichlet linear elasticity problem of Yukae, while the third section
will be about the application of the combined generalizedvtéa method with BEM for
the solution of contact problems in linear elastostaticsu®awa type. Finally, the com-
bined generalized Newton method with BEM will be applied tasjstatic contact prob-
lems.

8.1 Numerical results for scalar Yukawa problems

Here both the non-homogeneous Dirichlet and the non-honemges mixed boundary
value problem are considered. For the mixed boundary vall@gm given in (4.1)-(4.3),
that is

a?u(x) —Au(x) = f(x) for xe QcR? (8.1)
ux) = go(x) forxerlp, (8.2)
j—nu(x) = on(x) forxely, (8.3)

we assume that the boundary is divided into two disjointgsuich thal :=Tp Ul N, See
Figure 8.1.

149
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(N
)

Figure 8.1: Disc of centar and radiusR.

Further we setr = 1.0, the test solutiom(x) = x3 + X3, the functionf (x) = —4+ x2 +

X3, gp(X) = X2 + x5 andgn(X) = ag(“x). The boundary element discretization of the non-
homogeneous Dirichlet problem is equivalent to the follogvalgebraic system of linear
equations

1 .
Vit = (éMh-i-Kh)g—%fa (8.4)

whereVy, andKy, are the matrices of the Galerkin discretization of the sn@yer and dou-
ble layer operators respectively, whig, is the mass matri%f is the vector computed
from the Newton potential, see Appendochere is the piecewise linear interpolation of
the Dirichlet data, but one can also utilize theprojection (see e.g. [100]). Sind4 is
symmetric, positive definite and circulant [15, 16, 92], $getem (8.4) is solved efficiently
by performing the Fast Fourier transform (FFT). In addifitre pointwise evaluation is
done at the point = (1.0,1.0) ', see Table 8.1 for results.

refinement | Approx.Sol., ptwise errof L, Error, eoc., CPU time
Level N up(X) [u(X) — up(X)| [t —tnll2r) eoc Tot.time (sec)
3 32 | 2.00121| 0.00120914 | 0.284098 0.01

4 64 | 2.0003 | 0.000303272| 0.142071 | 0.99978 0.03
5 128 | 2.00008| 7.57068e-05| 0.0710384| 0.99994 0.13
6 256 | 2.00002| 1.88993e-05| 0.0355196| 0.99998 0.53
7

512 2.0 4.72057e-06 | 0.0177598 1 1.98
8 1024, 2.0 1.17956e-06 | 0.00887992 1.00000 8.24
Theory 2.0 1

Table 8.1: The approximate solutiow,, the pointwise error, the, error of the conormal
derivative, the order of convergence and the CPU time foDiinehlet problem by using
the FFT.

On the other hand, the non-homogeneous mixed boundary pedidem is equivalent to
the linear system N
Su=f, (8.5)
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where§, = Dp + (3M{] + K/ )V; 1 (3My + Kp). Since the Galerkin discretization of the
approximate Steklov-Poincaré operafgiis symmetric and positive definite we solve the
linear system (8.5) by using the preconditioned conjugasglignt algorithm, with the
preconditioning matrix

Cp =MV M,

see [100], wheré andV are the mass matrix and the discrete single layer matrixetesp
tively, define by B-splines of order one as follows:

M[i, i = (g, q)r VL= ve g, =10

Moreover,V is circulant symmetric and positive definite and its eigémea are given by
Lemma 4.3 where we have to set= 1. ThereforeV is diagonalizable and has the form

= 1
vV =2-0ADQ.
n
In addition, the action 0§, on any vectop is given in two steps as follows

~ 1 4.1 1
Spi= Dh£)+(§MhT—|—KhT)Vh 1(§Mh+Kh)E: DhE+(§Mr1T+KrT)V_V,

wherew is the unique solution of the linear system
1

note that (8.6) is solved efficiently by utilizing the FastuFer transform (FFT), see
Table 8.2 below for the results.

N Iterations L, Erroru, eoc. Lo Error %, eoc., CPU time
Precond. CG| [|u— || 2(r) eoc [t —tnllL2(r) eoc | Tot. time (sec)

32 04 0.0122801 0.270957 0.00

64 08 0.00304241| 2.0130{ 0.13543 | 1.0001 0.02
128 12 0.00075676| 2.0073| 0.067736 | 1.0000 0.08
256 12 0.000188689 2.0038| 0.0338679| 1.0000 0.34
512 12 4.,71083e-05 2.0020| 0.0169339| 1.0000 1.36
1024 12 1.1769e-05| 2.0010| 0.00846697 1.0000 5.71
Theory 2 1

Table 8.2: The L, error of the solutioru, the L, error of the conormal derivative, the
order of convergence and the CPU time for the mixed boundaiyevproblem by using
the preconditioned CG method.

The results presented in Table 8.1 are in agreement withrther of convergence for a
Dirichlet problem, see, e.g. [100], while the Table 8.2 coné the error estimates we
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obtained in (4.63) and (4.66). In Table 8.3 below we comphesnumber of iterations
for the CG method, and preconditioned CG method and giveuh#er of rings we used
for the computation of the Newton potential for the Diridhdend mixed boundary value
problem.

refinement | Nb. Ite. for CG and Precond. CG methods, and Nb. rings
Level N Preconditioned CG@ CG without Precond Nb. rings

3 32 04 04 08

4 64 08 08 16

5 128 12 16 32

6 256 12 20 64

7 512 12 28 128

8 | 1024 12 42 256

9 | 2048 12 61 512

Table 8.3: Comparison between the number of iterations for the CG aadgmditioned
CG algorithms and the number of rings.

8.2 Numerical results for linear elasticity of Yukawa type

Here we consider the non-homogeneous Dirichlet problemtla@diomainQ is still as
above a disc of center= (1.0,1.0) and radiuRR:= 1.0,

s2u(x) — uAu(x) — (A + p) grad divu(x) = f(x) forxeQ, (8.7)
ux) = g(x) forxonT. (8.8)
Our goal here is to investigate the reliability of the al¢fum we presented in section 3 of
chapter 5 for the computation of the Newton potential. Te #nd we set

A :=1153846,u := 76.9231 ands:= 10.0. To test the algorithm, we utilize the func-
tions

(XX _ (2 =4+ FE+ %) _ (Kt
u() = (xé-xl)’ ) = (—ZA —4u+s2<x§—xl>)’ 9 = (x%—xl) |

The boundary element discretization of the non-homogen@&richlet problem (8.7)-
(8.8) yields the following algebraic system of linear edoias

1 ~
Vit = (éMh-i-Kh)g—%fa (8.9)
whereV;, is the matrix of the discrete single layer operator with s2ke SinceV, is

symmetric and positive definite we solve (8.9) by using ther@&hod and the solutions
are given in Table 8.4 and Table 8.5 below.
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refinement | Nb. rings, Nb. Ite| L, Error, and eoc
Level N Nb.rings| Nb.lte. | [t —thll.2(r) eoc
3 32 08 08 137.499
4 64 16 08 68.7058 | 1.0009
5 128 32 07 34.3466 | 1.0003
6 256 64 06 17.1724 | 1.0001
7 512 | 128 06 8.58611 | 1.0000
8 1024 | 256 06 4.29304 | 1.0000
Theory 1

Table 8.4: The Number of rings and iterations, thgerror for the boundary stress and the
order of convergence for the Dirichlet problem by using tit& iGethod.

The pointwise evaluations are carried out at the priat(1.0,1.0)", and the results are
given in the Table 8.5.

refinement | Approx.sol.uyn, pt-wise error| Approx.sol.us, pt-wise error
Level N Ugh(X) [ug(R) — uzn(X)| Uzh(X) [uz(R) — Uzn(X)|
3 32 | 1.9984 0.00160395 -0.000769031 0.000769031
4 64 | 1.99964 0.000363557 | -0.000149874 0.000149874
5 128 | 1.99991 8.62953e-05 -3.22676e-05 3.22676e-05
6 256 | 1.99998 2.09998e-05 -7.41494e-06| 7.41494e-06
7 512 | 1.99999 5.178e-06 -1.77191e-06| 1.77191e-06
8 1024, 2.0 1.28549e-06 -4.32717e-07| 4.32717e-07
Theory 2.0 0.0

Table 8.5: The pointwise evaluation of the approximate solutions d&edpointwise error
for the Dirichlet problem.

Note that in Table 8.4 we observe a linear convergence of diadeary stress while in
Table 8.5 we obtain a factor of four for the pointwise evaluatvhich are expected from
the theory.

8.3 Numerical results for the linear elastostatic contact ppblems of
Yukawa type

In this section we present the feasibility of the primaldcacive set strategy, and the fixed
point algorithm we developed in chapter 6. These resultpeesented in three parts as
follows, in the first part we present some numerical examfaeghe frictionless contact
problem, the second part is concerned with the contact enoltith given friction, the
so-called Tresca problem, and the last part will be on théambproblem with Coulomb
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friction via the fixed point concept. For all tests, we usertbanal to the contact boundary
of the body and the normalized gap function

2
d(x) = xz/\/<ag°)ff)) L1

Additionally, we assume that the elastic body occupies a cistered at1.0,1.0) with
radiusR = 1.0 and its boundary is divided into three mutually disjoint parf$ where
we assume the body to be fixed in the horizontal directignywhere the traction is given
andl ¢ the potential contact part, see Figure 8.2. For the materiglerties we choose the
Young modulus = 2000, the Poisson ratie = 0.30. For the boundary conditions we
assume the following Dirichlet conditions on both sideshaf discu; = 0.0, but a vertical
load is applied on the top given ly= —20 furthermore we set = 0, ands:= 10.0.
Remark, that the Dirichlet boundary condition differenkinandx, direction is still valid
for the model.

\ t=-20
X2
SRRNES
Id + d
| | M -~
ol X1

Figure 8.2: Geometry for numerical test.

In this section we will always initialize our algorithm witthe solution of the contact
problem where we have assumed that a symmetric part of thactdyoundary is already
in contact. Furthermore, the system at Step (4) of the semigh Newton method will
be solved by utilizing the CG and the preconditioned CG mdtho

8.3.1 Numerical example for the frictionless contact prok#m

In this part we assume the friction to be negligible, thapiys= 0.0. Further, for the

initialization of the algorithm we set = 0.0 and all the graphics are done at level 8 of
refinement. The semi-smooth Newton algorithm always caesafter a few number of
iterations. We first investigate the influence of the penadtsameter; on the solutions.
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Normal Stress for different values of penalty parametersy
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Figure 8.3: (a) Deformations, and (b) Stresses for diffevatues ofy;.

In Figure 8.3 we can observe that the solutions strongly mjp@ the penalty parameter
y1. Furthermore, foy; = 1074, although the algorithm converges, we have a small pen-
etration, see Figure 8.3 (a), but fgr > 10"° we can observe a quite nice resolution as
expected from the theory.

Complementarity conditions for y=1.E+7 at level 7 of refinement Complementarity condiiions for y = LE+5
T T T T T
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Figure 8.4: (a) Non penetrability, and (b) Complementardpditions.

The above Figure 8.4 represents the non penetrability tiondifor y; > 1077 and the
complementarity conditions fgr = 107 both at the level 7 of refinement. Furthermore,
in the Figure 8.4 (b) the normal displacement, deformatiwhtae gap (rigid foundation)
are multiplied by 100. Next, we comment about the perforreariche semi-smooth New-
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ton method and CG methods. Table 8.6 and Table 8.7 show theerhiterations needed
for the algorithm to converge at level 5, 6, 7 and 8 for diffénealues of the penalty param-
etery;, when the CG without preconditioner and preconditioned G&hwods are applied
on the system at Step (4).

refinement Vi

Level | N 10* 10° 10’ 108
5 128 | 3/49 | 3/52 | 3/52 | 3/53
6 256 | 3/69 | 4/79 | 4/79 | 4/65
7 512 | 5/89 | 4/114| 4/107| 4/95
8 |1024|5/115|6/158| 6/156| 6/ 140

Table 8.6: Number of iterations with respect {@ and the level of refinement, the first
number is the number of iterations for the Newton method hedéecond for the CG
without preconditioner.

refinement Vi

Level | N 10 10° 107 108
5 128 | 3/29|3/36| 3/44 | 3/48
6 256 | 3/33| 4/46| 4/61 | 4/62
7 512 | 5/32| 4/ 54| 4/ 83 | 4/85
8 |1024|5/32|6/66| 6/110| 6/ 125

Table 8.7: Number of iterations with respect {@ and the level of refinement, the first
number is the number of iterations for the Newton method hedsecond for the
preconditioned CG.

We observe that the semi-smooth Newton method converge®viorterations, and in
addition, the number of iterations depends very little oa plenalty parameten, and
stay even constant fan > 10™°, see Table 8.6 and Table 8.7. But, we can notice the
influence of the penalty parametgr on the number of iterations for the CG methods.
When the preconditioned CG is used we observe a consideeghletion of the number of
iterations for the small parameters while the reductioruisedittle for bigger parameters.
On the other hand, the semi-smooth Newton method deperulgaike little on the mesh
refinement.

We now investigate the superlinear convergence of the semibth Newton method, the
Table 8.8 below represents the values
k+1
k. Ay =A""
gy =—————— for k=12.. (8.10)
AT Iy = AK

at level 8 of refinement.
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Superlinear convergence variables
i B P B 7

A A A A
10° | 0.4606| 0.4183] 0.2126] 0.0
10 | 0.4676| 0.4296| 0.2178| 0.0
108 | 0.4705| 0.4367| 0.2258| 0.0

Table 8.8: Variables for superlinear convergence\gf

We observe that decreases close to the solutippindicating the local superlinear con-
vergence of the semi-smooth Newton method. The Table 8.8ates$ the application of
a continuation procedure with respect to the refinement (eveested iteration strategy),
that is one solves the problem at the coarse level, andasitlze solution as the initializa-
tion for the fine level. As can be seen from Table 8.9 belowdtietegy reduces the number
of iterations and makes the semi-smooth Newton method almesh-independent.

refinement Vi

Level | N 10° 10’ 108
5 128 | 2/36| 2/44 | 2/48
6 256 | 3/46| 3/61 | 3/62
7 512 | 3/53| 3/83 | 3/85
8 | 1024 | 4/66 | 4/110| 4/120

Table 8.9: The first number is number of iterations for the Newton methiod the
second is the number of iterations for preconditioned CGhotit

In addition, we observe also a monotone behavior of the semoieth Newton method,
that is the size of the active set decreases in every iterétfp > AS™), see Table 8.10.

refinement size of active setyq = 10°,107,10°,10'0)
Level | N 0 1 2 3 4 5 6
5 128 17 13 11 11
6 256 33 25 21 19 19
7 512 65 51 43 39 39
8 1024 | 129 101 87 81 77 75 75

Table 8.10: Size of active set at each iteration of the Newton method.

Furthermore, we notice that the size of the active set doeslefmend upon the penalty
parametes; as we observe in the case of the contact problem in lineatostasics.
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8.3.2 Numerical examples for contact with Tresca friction

In contrast to the above subsection, here the tangentesssis too large to be neglected.
Further, we assume it to be known and all other assumpti@nstdirvalid in this subsec-
tion.

Example 8.1. For this first example, we consider the given friction
g(x) = 50exp —20(x; — 1.0)?)

and the friction coefficienft = 0.10. Here we first investigate the influence of the parame-
tersyi, y» on the convergence of the solutions. Second, we discussittogmpance of our
algorithms with respect tgy, y» and report on the number of iterations of the semi-smooth
Newton method and CG method.

The following figures show the depicted solutions we obtaitha level 7 of refinement.

Deformations for sifferent values of parameters y, and y, Normal stresses for different values ofy, and y,
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Figure 8.5: (a) Deformations, and (b) Stresses for diffevatues ofy; andys.

Tangential complementarity conditions fory, =y,=1.e+8 Complementarity conditions for the normal variables fory,=y, =1.e+8
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(a) (b)
Figure 8.6: Complementarity conditions fpr= y» = 10*2.
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Results for Example 8.1

We now summarize the results of example 1. In Figure 8.5 (@etlare depicted the
deformations, i.e.u, — d for different valuesy, y». Although the semi-smooth Newton
algorithm stop fory; = y» = 10* after a few iterations, i.e. 05, we can observe that there
is a small penetration for that case, see Figure 8.5 (a). @unfy, > 10° the algorithm
converges and we can observe a quite nice resolution whenincrease. In addition, for

¥1 = y» > 10’ no change occurs and the solution is obtained, see Figu(a)gahd (b). On
the other hand, fop; = y» = 10° the complementarity conditions are depicted in Figure
8.6 (a) and (b). The dual variabjg, (solid), the corresponding boundsFg (dotted) and
the tangential displacement (multiplied by?1@ashed) are presented in Figure 8.6 (a),
while the normal complementarity conditions are given igufe 8.6 (b) with the variable
Ay (solid), rigid foundation, i.e.—d (multiplied by 1@, dotted) and the negative normal
displacement, i.e—u, (multiplied by 1&, dashed). One can observe from the graphs in
Figure 8.6, (a) and (b) that the complementarity conditiomid. Remember that the active
sets(Ar,Ar_) for friction correspond to parts of the boundary where theiding in

the tangential direction while the inactive detcorresponds to sticking regions, that are
sets wherguy); = 0.

Let us now comment about the performance of our algorithnmwhe preconditioned CG
and CG without preconditioner are used. The following talsleow the number of itera-
tions needed to reach the solutions, at level 6 and level éfofement, and for different
values of parametens, y».

Vo i
104 10° 107 108 1010

10* | 5/68 | 5/85]| 5/81 | 5/ 72| 5/57
10° | 4/84 | 4/80 | 4/90 | 4/ 81| 4/61
10’ | 4/101| 4/110| 4/ 74 | 4/ 87| 4/70
108 | 4/107| 4/ 116| 4/100| 4/ 66| 4/ 70
100 | 4/116| 4/ 127| 4/113| 4/ 95| 4/ 51

Table 8.11: The first number represents the number of iterations for gastbin method,
the second for the CG method with respecyt@ndy, at level 6.
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Y2

i

10t

10°

107

108

100

10*
10°
107
108
1010

5/ 90
5/114
5/138
5/144
5/154

5/120
5/114
5/170
5/182
5/195

5/117
5/137
5/108
5/152
5/170

5/104
5/122
5/133
5/97

5/146

5/80
5/97
5/105
5/107
5/73

Table 8.12: The first number represents the number of iterations for gagthin method,
the second for the CG method with respecyt@andy, at level 7.

When the preconditioned CG method is used we obtain thedoilpresults:

Vo Y1

104 10° 107 108 1010
10% | 5/34| 5/47| 5/68 | 5/72 | 5/66
10° | 4/58| 4/50 | 4/75 | 4/80 | 4/70
107 | 4/58| 4/ 74 | 4166 | 4178 | 4/81
10° | 4/68| 4/86 | 4/84 | 4/68 | 4/81
1010 | 4/83| 4/109| 4/118| 4/ 114| 4/ 63

Table 8.13: The first number represents the number of iterations for gaetbih method,
the second for the preconditioned CG method with respegt amdy, at level 6.

Vo Y1

10t 10° 107 108 1010
10* | 5/34 | 5/57 | 5/95 | 5/102| 5/90
10° | 5/69 | 5/56 | 5/107| 5/115| 5/106
10’ | 5/69 | 5/96 | 5/88 | 5/119| 5/134
10® | 5/80 | 5/119| 5/114| 5/90 | 5/130
100 | 5/104| 5/159| 5/188| 5/172| 5/89

Table 8.14: The first number represents the number of iterations for gaetbih method,
the second for the preconditioned CG method with respegt amdy, at level 7.

One can observe from Tables 8.11-8.14 that the number aties for the semi-smooth
Newton approach does not depend on the paramgieasdy». Nevertheless, this has a
little dependency on the mesh grid. For the CG methods werebsgleat the number of

iterations is less whep = y», further, the number of iterations for the preconditionésl C

are reduced whep, y» < 10°.
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Remark 8.1. To obtain convergence of the algorithm independently oirtii@lization,
we notice that we have to choose the parametéparameter for the friction active sets)
large enough, that ig" = 1 (which we use for our computation). By settimg- % as sug-
gested by the interpretation of the algorithm as infinitexdnsional semi-smooth Newton
approach, we encounter some difficulties related to the @gance of the algorithm. For
example, on a coarse level our algorithm converges but &ibs fine level. To overcome
this problem one may initialize the algorithm as suggestgd1, 98]. Therefore, by using
o =1, the method converges for all initializations and furthersy we observe locally
fast convergence.

In addition, as in the case of pure contact without frictios, also observe a monotone
decreasing for the active sets of contact conditj%ﬁ11> AE“) during the iteration process,
see Table 8.15 below. But, we do not observe the same beHavithie active sets of
friction condition. Therefore, this example is said to esgly contact dominant [98].

refinement | size of active sefc (1 = y» = 10°,107,10°, 10%0)
Level | N 0 1 2 3 4 5

6 256 33 25 21 19 19
7 512 65 51 43 39 37 37

Table 8.15: Size of active set at each iteration of the Newton method.

We now turn to the investigation of the local superlinean@wgence of the algorithm, the
following table represents the values of

1/2
i (S 0y N A A eyl e
R CTRTINTRTS [T X TR VT PR

fork=1,2....
. Superlinear convergence variables (leve| 7)
Vl - y2 1 2 3
) N )
10’ 2.3681 0.88112 | 0.0
108 2.3681 0.88154 0.0
1010 2.3682 0.88102 0.0

Table 8.16: Variables for superlinear convergence for different pagarsy; = .
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We also observe a decreasinggbfclose to the solutionu, Ay, Ly) indicating the local
superlinear convergence of the algorithm. Therefore, shiggests to utilize the nested
iteration strategy, that is the continuation procedurdnwéspect to the refinement level
where one solves the problem at the coarse level, and ussslthi®ns as the initialization
for the fine level. As one can notice in the Table 8.17, thixess reduces the number of
iterations. In addition, this makes the algorithm almossmi&dependent.

refinement ="y

Level | N | 10° | 107 | 108 | 10%
5 (128 3 | 3| 3| 3
6 |256| 3 | 3| 3] 3
7 |512| 4 | 4 | 4| 4

Table 8.17: Number of iterations for the nested process.

Example 8.2. The aim of this example is to investigate the influence ofithendriction
on the deformation, the stress and on the performance ofifegithm, that is the number
of iterations. To this end, we keep all the boundary condgjahe friction coefficient
F = 0.10 and the initialization the same as for the example 1. But, etettse given
friction g(x) = 50.

The following Figure 8.7 represents the results we obtaatd¢ie level 7 of refinement and
after 6 iterations.

Tangential complementarity conditions iury1:v2:1,e+8 Normal complementarity conditions for ylzyzzl e+8
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Figure 8.7: Complementarity conditions far= y» = 10*2.



8.3 Numerical results for the linear elastostatic contasbfems of Yukawa type 163

Results for Example 8.2

For this example we observe the same behavior as in the psevase, however, we notice
that for various regularization parameters the algoritiomverges for few iterations. But,
some more iterations are needed than in example 1, for exaiimpsemi-smooth Newton
method converges after 05 and 06 iterations at level 6 andr&fiolement respectively.
We observe that the dual varialig and the tangential displacement really depend on the
given frictiong, this can be seen by comparing Figure 8.6 (a) and Figure B.Th(the last
figure we can see that the size of the inactive set of frictsdaniger compared to the first
one.

8.3.3 Numerical examples for contact problem with Coulombriction

Example 8.3.Here we use the same data and initialization as in the exaatpee and
set
0°(x) = 50exp(—20(x; — 1.0)?).
Further, we report on the performance of algorithm (RCF-Rd the influence of the
friction coefficient on the solutions variables. To this gnd then examine the convergence
of the algorithm forF = 0.1,0.5,1.0. The outer iteration (i.e., the fixed point iteration) is
terminated if the following tolerance is reached

g™ — g™ |re
19 re

Tol := <, (8.12)

wheree ;= 107

The solution variables are obtained after few outer iteregtiand are shown in Figures 8.8,
8.9 and 8.10 foy, = y» = 10’ respectively.

Tangential Complementarity conditions iory1:y2:1ve+7, F=0.1 Normal Complementarity conditions for y1:v2:1.e+7, F=0.1
T

T T T T T T T ;i ;i
— — —tangential displ __ Normal stress )\v
tangential stress |-{ — — — Normal displ

A 201 / \ rigid foundation |4
/ \

! I | l |
P S T - - T T

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

o

\

\

|
I

L L L L L L L _ L L L L L L L
2 0.4 0.6 0.8 1 12 14 16 18 0.2 0.4 0.6 0.8 1 12 14 16 18
X, X,
1 1

(a) (b)
Figure 8.8: Complementarity conditions fpr= y» = 10t/ andF = 0.1.
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Tangential Complementarity conditions iory1:y2:1ve+7, F=0.5

Normal complementarity conditions for ylzyzzl e+7, F=0.5

15 T T 30 T T T
— — —tangential displ e — ~ ____ Normal stress )\y
tangential stress / \ — — — Normal displ
10 N FA 20/ / \ rigid foundation ||
/ / \
5 / 10
of —m8 ————/ [ W — 0 P
fo _ - S-o L
5 -10
10 -20
15 . =30
0.2 0.4 0.6 0.8 1 12 14 16 18 0.2 0.4 0.6 0.8 1 12 14 16 18
X1 1
(@) (b)

Figure 8.9: Complementarity conditions far= y» = 10*” andF = 0.5.

Normal complementarity conditions for y,=y,=1.e+7, F=1

30 T T T
Tangential Complementarity conditions for Coulomb pb, F=1,y,=y,=1.e+7 / — \ — Normal stress A,
* ; / \ — — —Normal displ
201 /[ \ rigid foundation |
20
10+
10+
0 S
o —————————— T - - - 4| e S~ __
10+
10+
_20l
20
_30 . . 1 . L L . -30 . . . ; . . .
0.2 0.4 0.6 08 1 12 14 16 18 02 0.4 0.6 0.8 1 12 14 16 18
X
1

Figure 8.10: Complementarity conditions figr= y» = 10t” andF = 1.0.

Results for Example 8.3

In Figures 8.8, 8.9, 8.10 (a) we have the dual varighlésolid), the bounds-A, (dotted)
and the tangential displacement(multiplied by 1&, dashed), while in Figures 8.8, 8.9,
8.10 (b) the normal stresk, (solid), the normal displacementu, (multiplied by 16,
dashed) and the rigid foundationd (multiplied by 1, dotted). The first observation
we can notice out of these figures is that the complementemitglitions expected from
theory hold. Second, we notice that the dual variahlelepends on the boundsA,, that

is the friction coefficient as in the case of the Tresca prmoblEurther, we observe that the
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sticking zone or the friction inactive zone increases whté friction coefficient which is
expected from physics.

Let us now comment about the performance of the fixed poiwtrdign, we notice that the
algorithm converges quite fast (few iterations) for smagitfon coefficient but the number
of iterations increases as the friction coefficient becolmgger, see the table below.

refinement Coef of frictionF, y1 = y» = 107, 10
Level N 0.1 0.5 0.7 1.0
6 256 5 8 9 11
7 512 5 9 9 11

Table 8.18: Number of fixed point iterations for different coefficientfattion.

8.4 Numerical examples for quasistatic contact problems \ih
Coulomb friction

We consider the domai€f? := Br(c) to be a two-dimensional disc of radi&&s= 0.4 and
centered at = (0.4,0.4), see Figure 8.2. In this section, to avoid the rigid motioadour,
the semi-smooth Newton algorithm will be initialized witls@lution of a contact problem
where we have assumed a symmetric part of the contact bouhgao be inactive, i.e. in
. In addition, we assume the Young modukis- 5000, the Poisson ratie = 0.4 and
the coefficient of frictionF = 0.5. We set the volume forcé = 0.0, assume the body to

be fixed in the horizontal direction, i.e3 = 0.0 onl"p and seth — [ =0.0.

Example 8.4. For the first example we consider the Neumann data to be consta
gg = (0.0,—50.0) in addition, we use a uniform time stép= 0.1. The problem is solved
on a uniform grid with 512 nodes, the solutions are obtainéerafew iterations. In
Figures 8.11,8.12 and Figures 8.13, 8.14 the tangentialmoieinal complementarity con-
ditions are depicted respectively for four time steps amdfo= y» = 10*”.
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— _ _slip=1. E*A‘(ulfwl)
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Figure 8.11: Tangential complementarity conditions firel aecond time step.
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Figure 8.12: Tangential complementarity conditions tlaindl fourth time step.

In Figures 8.11-8.12 the tangential streggas given in solid line, the dashed represents
the slip velocityw —w; which is multiplied by 16 in the first time step and by $@n other
time steps, while the dotted represents the bound7i.
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Figure 8.13: Normal complementarity conditions first anchsel time step.
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Figure 8.14: Normal complementarity conditions third aadrth time step.

In Figures 8.13-8.14 the normal stressgis given solid line, the dashed represents the
normal displacementu, which is multiplied by 16, while the dotted represents the gap,
l.e. —d.
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Example 8.5. For the second example we consider the same assumptiongaanmple
8.4, but we assume the Neumann data to be time depeg@eﬁt(g.o, —100.0t — 50.0)
again the solutions are depicted in the Figures 8.15-8.18dor time steps.

J— ,sllp:l.ew*(u‘—w[)
—W
bound= F* A
Y

-250

L L L
0.1 0.2 0.3 0.4

-250

- = sllp:l.e+4‘(u‘-w[)
—H
bound= F* Av

L
0.2

L
0.3

L
0.4

(b)

L L L
0.5 0.6 0.7 0.8

Figure 8.15: Tangential complementarity conditions firel aecond time step.

_ slip=le+d(uw)

— M
bound= F* A
v

=250

0.1 0.2 0.3 0.4

(@)

300 - -
~_ _slip=Le+a*(u-w)
—H
200 bound= F* A
100}
7\
[\
[\
ob====— -/ N
N
|
|
\/
-100[ \/
-200-
_300 . . . . .
0.1 0.2 03 0.4 05 0.6 0.7 0.8

Figure 8.16: Tangential complementarity conditions tlaindl fourth time step.

Again the tangential stresgg is given in solid line, the dashed represents the slip vgloci
U — W Which is multiplied by 16, while the dotted represents the bound, i7&,. We
can also notice that, this value increases from one timetstapother which is due to the
increasing of the magnitude of the Neumann dag_;,{pat each time step.
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Figure 8.18: Normal complementarity conditions third aadrth time step.

From Figures 8.17-8.18, due to the increasing of the madeaitf the Neumann datum
g, We observe that the normal strégancreases from one time step to another one. Note
that the complementarity conditions hold at each time skepther, we observe that our
algorithm is faster from one time step to another, that isninaber of iterations for the
fixed point approach reduces from one time step to the nexwvbineh is the advantage of
the semi-smooth Newton method.
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uniform time step|
112|3|4] 5
Iterations| 7 |4 4| 4| 3

Table 8.19: Number of iterations for the fixed point for uniform time step

Instead of the uniform time step if we consider a non-unifime step so that this reduces
from one time step to the next this number of iterations reduben considerably. For
example for the time discretization definedtQy; :=th+ (%)”6t, wheren represents the
number of step we obtain

uniform time step
112|345
Iterations| 7 | 4|22 1

Table 8.20: Number of iterations for the fixed point for non-uniform tirsep.

Further, for 50 time steps we compute the tangential stsesbe slip velocity, the
normal stresses and the normal displacement in the lowesit pd the disc for
gg = (0.0,—100.0t —50.0). The results are depicted in the figures below:

Tangential stress

. . . . . . . . . . . . . . . . . .
5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time Time

(a) (b)

Figure 8.19: Tangential stress (a) and the slip velocitygbuniform time step.
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Tangential stress
Velocity u-w,

_ S S _ L
o 5 10 15 20 25 30 35 40 45 50 o 5 10 15 20 25 30 35 40 45 50
Time Time

(a) (b)

Figure 8.20: Tangential stress (a) and the slip velocitygbhon-uniform time step.
The tangential stress and slip velocity at the lowest pditii@ disc compute by using the
uniform time discretization Figure 8.19 are very noisy. Beigure 8.20 shows that the

tangential stress and slip velocity at the lowest point efdisc are more regular than the
first one.
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400 . . . . . . . . . . . . . . . . . .
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Figure 8.21: Normal stress (a) and the normal displacengiol uniform time step.
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Figure 8.22: Normal stress (a) and the normal displacengid non-uniform time step.

Figures 8.21, 8.22 show that the normal stress and the nalishacement in the lowest
point of the disc are more regular with respect to time.

Note that in this section for the solution of the linear sullppems at Step (4) of the semi-
smooth Newton method, a preconditioned conjugate gradieihod were used. As a
preconditioner for the Steklov-Poincaré operator we emphe discretization/ of the
single layer operator as in equation (7.5). In order to reathe multiplication of the
coefficient matrix§, with a vector, a linear equation like (7.6) must be solvedisT
realized by using the discrete Fourier matrix

Q O

0 Q
as a preconditioner for the matri, of the discrete single layer operator or by using
directly the inverse of the matrk%,, see section 7.5.



9 CONCLUSIONS

In this chapter we review the main contributions of this wa@kur goal in this thesis was
to develop and analyze efficient and reliable numerical odHor the solution of contact
problems in linear elasticity of Yukawa type and quasistatintact problems.

After an introductory chapter (chapter 2) on various resunéicessary for the analysis and
the simulation of the problem, we focus in chapter 3 on the@fation of the mechanics
of continua including the derivation of the state equatiohignear elasticity under the as-
sumption of infinitesimal deformations. Further, gene@atlmear contact conditions and
the Coulomb friction law for an elastic body coming into cacttwith a rigid foundation
were given.

In chapter 4 and chapter 5 the scalar Yukawa problem and #tie stasticity problem
of Yukawa type are considered respectively. Further, we gne boundary integral for-
mulations of both problems and derive eigenfunctions of es@perators related to the
problems.

In chapter 6 which is the backbone of this thesis, the apjdicaof the new combined
boundary integral methods and the semi-smooth Newton rdsttm the contact prob-
lems in linear elasticity of Yukawa type with Coulomb frimti have been analyzed. The
approach taken here consists to approximate the problenséguence of auxiliary prob-
lems, the so-called Tresca problems. Note that each Tresbéem is equivalent to a non-
differentiable minimization problem (primal problem). Bby using the Fenchel duality
theorem [31] the non-differentiable minimization problerransformed into an inequal-
ity constrained maximization of a smooth functional (duallgem). Instead of using only
the first order necessary conditions of the optimizatiorbf@m, which are usually the
starting points of the analysis, we consider as well theeexality conditions which char-
acterize the solutions of primal and dual problems for ouestigation. Another important
aspect of this work is the introduction of non-linear maxd amn- operators which enable
us to write the complementarity conditions as non-linearafor equations. But, due to
the lack of regularity of function spaces the regularizatibthe dual and primal problems
motivated by the augmented Lagrangian turns out to be deitabthe application of the
generalized Newton method. We then show that the solutibtieeaegularized problems
converge to the solutions of the original problems as tharpaters of the regularization
tend to infinity. Instead of the original problems we thensider a sequence of regular-
ized problems for the analysis of our algorithm. Additidpalve prove the existence of a
fixed point for the sequence of regularized problems, thidtaexistence of a solution for
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the regularized Coulomb friction problem. The uniquenssshown provided the friction
coefficient is sufficiently small.

In chapter 7 we extend the theories we developed in chapter éhé resolution of a
guasistatic contact problem with Coulomb friction.

In chapter 8 some comprehensive numerical examples aiedaut for our algorithms.
The combined semi-smooth Newton approach and the bountamest methods turns
out to be suitable for the contact with and without frictior2D. This yields a remarkable
efficiency and reliability, the algorithms always detect @#olution after few iterations
(usually 3-6). In addition, we investigated in our numelriests the dependence of our
algorithms on the regularization parameters and the mastthérmore, when the nested
iteration principles is used we can also confirm the supealitonvergence of the semi-
smooth Newton algorithm.

In the future the algorithm will be extended into two diffetelirections: on the one hand
to time dependent problems with wear calculation, and omther hand to more realistic
three-dimensional problems.



A APPENDIX

A.1 Computation of Newton potential

In this section we present the detailed procedure for thkiatian of the vector related to
the Newton potentialg f

Nof ] :/(,q(o)(x)/f(y)U*(x,y)dyds( fori=1,..N,
r Q

assuming the B-spline of order zeg()o) for basis functions.
First, we interchange the order of integration as follows
Nof[i]:/f(y)/u*(x,y)ds(dy fori=1,..,N. (A1)
Q Ti

Here, we consider the particular case of a two-dimensidnailer domainQ = Br(c) of
radiusR and centered at the poiat

Figure A.1: Volume and boundary meshes.
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Note that an efficient evaluation of (A.1) requires a sugabscretization of the domai

and the boundary := 0Q. To this end, we start by dividing the domain into rings. This
is done in such a way that the thickness of the ring near thadeny is equal to the mesh
size at the boundary, thatiig = H. Further, the thickness of the inner ring is reduced at
the rateq < 1 when we are leaving from the boundary to an inner pointrj.e. = qr; for
j=1,...,(M;—1), whereM, is the number of ring. Next, a uniform mesh is constructed on
each ring in such a way that elements on the ring near the laoynaatch with boundary
elements, see Figure A.1.

The next step consists to find the valuegj@ndM;, for a given value of a boundary mesh
21R

sizeH = 5, whereN is the number of elements on the boundary as well as in eagh rin
Note that
Mr (Mr—]-) i 1_ qu
Ri=5rj= IH=H for g1
;l j ]ZO q 1 g q#1,

which yields the following equation

Mr_ﬁ JrN—27T
g 2nq 211

=0 withgq# 1 (A.2)

The equation (A.2) can be solved by performing the NewtorhRap method for giveN
andM;, the results are given in Table A.1 below.

Level of refinement N | minimum value of\V; q
0 04 impossible impossible
1 08 02 0.27324
2 16 03 0.840328
3 32 06 0.934003
4 64 11 0.9845
5 128 21 0.996951
6 256 41 0.999686
7 512 82 0.999845
8 1024 163 0.999998
9 2048 326 0.999999
10 4096 653 0.999995

Table A.1: Values ofq for given values olN andM;.

Remark that in the table above the valuedwfare the minimum values for which the
equation (A.2) is solvable. In addition, for any value\yf greater than its minimum value
the equation (A.2) is still solvable.
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Having all the necessary data we can proceed to the evaiu@Et{@.1). Then we have, for
i=1,..,N,

M N
Nofli] = [ f(y) [ U"(xy)dsdy= f(y) [ U™ (x,y)dsdy, (A.3)
o= 1] 22w

=1k=1
Tik

whereTjy is an isoparametric quadrangle, or isoparametric trianbken we are on the last
inner ring, see Figure A.1. Next,is approximated on each ring by a piece-wise constant
functions, we obtain therefore

N My N
Noffif =% > \Tjk\f(ij)/U*(X,ij)d& fori=1,.,N, (A.4)

=1kt .

whereyjx and|Tj| represent the center of mass and the volume of elemergspectively.
Note that, (A.4) can be written in a matrix form as follows,

Mr
Kiof = ,-;A‘L" (A.5)

where forj = 1,...,M;, matricesA; and vectorsij are given by
ij [k] = ‘Tjk‘f<yjk) for k= 1,...N (A.6)
and
Ajfi.K ::/U*(x,yjk)ds( for i,k=1,...N, (A7)
Ti

respectively. On the other, we have

Ajli+1k+1]:= /U*(X,yjm)d&. (A.8)
Tit1
We remark that the boundary element; and the center of masgy,, are the images

of the boundary element and the center of maggy respectively by the affine rotation
Rot(c) with the center at the center of the disc and the associated matrix given by

oo - (8 S, ws

where = f, andN the number of boundary element as well as in each ring. Since
the fundamental solutiob* is invariant with respect to rotations, we then obtain for
j — l, ceey Mr

Ajli+1k+1] = /U*(X,yjk+1)ds(:/U*(X,yjk)ds(:Aj[i,k] (A.10)

Ti+1 T
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fori,k=1,...,N. This implies that the matrice%; are all circulant [23].

Note that since the matricég are circulant [23,92-94], we do not need to compute all the
entries. The first row (or first column) is enough to deterntireematrix. Further, we have
to show how to compute the center of mass of each element whedsential to perform
the computation of the matri&; and the vecto[j. To this end, we consider for a simple

illustration a circular sector centeredatwith central angle 2 (in radians), and radius
and having only two elements, see Figure A.2.

Figure A.2: The center of mass.

The coordinates of the center of m&3sf the circular sectofcA1Ay) are given by

— T sin23
= _— ) A.11
cG 3B ((1—0052{3)) ( )
In a similar way the coordinates of the center of m@g®f the elemenfcAsA3) are given
by
— I sin2B
cGl_@ ((1—00528))' (A.12)

By utilizing the relation
—_— —_— —
MGG +mpGG = O,

where my and mp represent the masses of the elemé&niyAz) and of the element
(A4A1A2A3) respectively. By using the fact that the circular sectorasnbgeneous we
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obtain then the coordinates of the center of nfagsf element AjAxAzAs)

— 1244 (r')? sin2B
@ =g (1 coom) i

We also remark that to compute the entries of the vettand the entries of the matrix

Aj, we need only to compute the center of masses of elements firghcircular sector of
the domain, the others are computed by applying the affirstiootRof(c) with centerc
and the associated matrix given by

—— <cos XB  —sinXkpB

ROk(©) =  gin g coslﬁ) for k=0,...,(N—1), (A.14)

wherek+ 1 is the position of element in the ring.

Note that since the matricég for j = 1,...,M; are circulant the vectdjof in (A.5) can
be written as the circular convolution as follows

My My
Nof = j;A,-L. — j;gj i (A.15)

whereC; is the first column of matrix;. By applying the discrete Fourier transfoffron
(A.15) and by using its linearity this is transformed intargonent-wise multiplication as
follows

My
F(Nof) = > F(C)F(T)- (A.16)
=1

Further, if we apply the inverse discrete Fourier transfam(A.16) and use again the
linearity we then obtain

My
Nof =y FTHF(C)F(f))). (A.17)
=1
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