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Abstract 1

Abstract

In this thesis we discuss the application of boundary element methods for the solution of
Dirichlet boundary control problems subject to the Stokes equations with box constraints
on the control. Starting with a model problem of the Stokes equations and a quadratic cost
functional, we set up the optimality system. The solutions of both the primal and adjoint
boundary value problems are given by representation formulae, where the state variable
enters the adjoint problem as volume density. By applying integration by parts to the
representation formula of the adjoint problem we express this Newton potential as surface
potentials. This results in a system of boundary integral equations which is related to the
Bi-Stokes equations. We analyze boundary integral representations which are based on the
use of single and double layer potentials, and which requires some additional assumptions
to ensure stability of the discrete scheme. A numerical example is considered and the
results of a boundary element approximation for the Dirichlet control problem for the
Stokes system are presented which are in conformity with thetheoretical findings. Finally
we discuss the suitable control space and comment on the choice ofH1/2(Γ) instead of the
more prevalentL2(Γ).



2 Abstract

Zusammenfassung

In dieser Arbeit diskutieren wir die Anwendung von Randelementmethoden für die Lö-
sung eines Dirichlet–Kontrollproblems mit einem quadratischen Kostenfunktional für das
Stokes–System. Die Minimierung des reduzierten Kostenfunktionals wird durch die Lö-
sung einer Variationsungleichung beschrieben. Die Lösungen der primalen und adjun-
gierten Randwertprobleme können durch Darstellungsformeln angegeben werden. Dabei
geht der unbekannte Zustand des primalen Problems als Dichte eine Volumenpotentials
in die Darstellungsformel für die Lösung des adjungierten Problems ein. Durch partielle
Integration kann dieses Volumenpotential auf Oberflächenpotentiale zurückgeführt wer-
den, welche die Fundamentallösung eines Bi–Stokes Differentialoperators enthalten. Die
Analysis des resultierenden Optimalitätssystems beruht dann auf den Eigenschaften der
auftretenden Randintegraloperatoren. Für die Stabilitätder zugehörigen Randelementdis-
kretisierung ist eine Bedingung an die verwendeten Ansatzräume zu fordern, welche auch
den Nachweis optimaler Fehlerabschätzungen ermöglicht. Ein numerisches Beispiel bestä-
tigt die theoretischen Ergebnisse. Abschliessend wird dieWahl des Funktionenraumes für
die Kontrolle diskutiert, insbesondere die in dieser Arbeit diskutierteH1/2(Γ)–Kontrolle
mit der in Anwendungen üblicherweise verwendetenL2(Γ)–Kontrolle.



1 INTRODUCTION

Flow control has had a long history since Ludwig Prandtl’s early experiments. In 1904,
at the third international mathematics congress held in Heidelberg Germany, a 10 minutes
presentation of a little–known physicist was enough to revolutionize the understanding and
analysis of fluid dynamics by his idea of boundary layer–a thin region near the surface of
an object moving through a fluid. He explains that the frictional effects were experienced
only in the boundary layer, outside which the flow was essentially an inviscid flow that had
been studied for the previous two centuries. Before Prandtlthere were much confusion
about the role of viscosity in a fluid motion, but after Prandl’s paper the picture was made
clear by the notion of boundary layer [2].

During the past years many scientists, mathematicians and engineers have given consid-
erable attention to the problems of an active control of fluidflows, see, e.g., [14, 29, 39].
This interest is motivated by a number of potential applications such as the control of flow
separation, the adjustment of mixing patterns in chemical rectors to increase the reactor
performance, or combustion, noise suppression, fluid–structure interaction problems and
super maneuverable aircrafts.

The increased concern for performance and efficiency issueshas led to the incorporation
of mathematical optimization routines into engineering design techniques. For example,
the use of heat sensitive components in spacecraft raises the question of designing systems
which are energy efficient and yet maintain feasible operating temperatures. These design
problems may be modeled by optimal control problems with state constraints. The control
of fluid flow is very important in achieving the desired designobjectives to optimize the
performance of the systems that exploit the fluid motion.

Optimal control problems with a Dirichlet boundary controlplay a vital role, for example,
in the context of computational fluid mechanics., see, e.g.,[23, 29], and the references
given therein. In [29], the cost functionalJ (u,z) = F(u) is the domain integral over the
strain tensor of the velocity fieldu satisfying the steady state Navier–Stokes equations with
a Dirichlet boundary conditionu = z∈ U ⊂ H1/2(Γ). A similar minimization problem is
considered in [23]. In both cases, the cost functionalJ (u,z) describes an energy inH1(Ω),
or equivalently, in the Sobolev trace spaceH1/2(Γ).

It is quite common among the control community to takeL2(Γ) as control space instead
of H1/2(Γ). The main difference appears in the optimality condition. In particular, as in
the case of the present study, the use of the inverse Stokes single layer potential maps the
Dirichlet control to the traction of the adjoint variable. This also accounts for a higher reg-
ularity of the control in related optimality condition. It turned out that the use ofH1/2(Γ) as
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4 1 Introduction

control space preserves the proper mapping properties. Instead, if we useL2(Γ) as control
space, the two different types of boundary data are identified with each other [53,54].

In [54], a finite element approach for Laplace Dirichlet boundary control problems was
considered, where the energy norm was induced by the so–called Steklov–Poincaré op-
erator which realizes the Dirichlet to Neumann map and the control was considered in a
closed and convex subspace of the energy spaceH1/2(Γ). The stability and error analysis
presented for the discretization of the resulting variational inequality is based on the map-
ping properties of the solution operators related to the primal and adjoint boundary value
problems and their finite element approximations.

As solving Dirichlet boundary control problems requires the unknown function–the con-
trol, to be found on the boundary of the computational domainΩ ⊂ R

n, n = 2,3, the use
of boundary integral equations seems to be a natural choice [8], but to the best of our
knowledge, there are only few results known on the use of boundary integral equations to
solve optimal boundary control problems, see, e.g., [16,74] for problems with point obser-
vations. Although, in the present work we describe the Dirichlet control problem for the
Stokes system, however, this technique can be applied to anypartial differential equation
provided the fundamental solution is known.

Recently in [53], the application of boundary element methods for the solution of Dirichlet
boundary control problems subject to the Poisson equation with box constraints on the
control was studied. The solutions of both the primal and adjoint boundary value problems
are given by representation formulae, where the state enters the adjoint problem as volume
density. The authors apply integration by parts to the representation formula of the adjoint
problem to avoid the related volume potential. This resultsin a system of boundary integral
equations which is related to the Bi-Laplacian. For the related Dirichlet to Neumann map,
they analyze two different boundary integral representations. The first one is based on the
use of single and double layer potentials only, but requiressome additional assumptions to
ensure stability of the discrete scheme. As a second approach, the authors have considered
a symmetric formulation which is based on the use of the Calderon projector and which is
stable for standard boundary element discretizations. Forboth methods, they have proved
stability and related error estimates and have presented both finite element and boundary
element discretization results. Numerical results show that all different approaches behave
almost similar.

This thesis is organized as follows. In chapter 2 we briefly describe the fundamental con-
cepts relevant to this work. We start with the introduction to boundary element methods
followed by a discussion on the most improtant function spaces required for the weak for-
mulation for Stokes Dirichlet boundary value problem. Boundary integral formulations
and the Galerkin discretization with standard error estimates forms the major part of this
chapter.

Chapter 3 begins with a short introduction to optimal control problems. We then present
a model problem for the Stokes Dirichlet control problems. After introducing the solution
operator and its adjoint, we formulate the reduced cost functional to be minimized. It
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turns out that the said minimization is equivalent to solving a variational inequality whose
unique solvability follows from standard arguments. The chapter ends by setting up an
optimality system consisting of the primal problem–the realization of the solution operator
S, the adjoint problem–another Stokes system, and the realization of the adjoint operator
S∗ with the primal variable appearing on the right hand side, and an elliptic variational
inequality of the first kind.

The boundary integral formulation of the primal and adjointproblems and the unique solv-
ability of the coupled system is covered in chapter 4. The solutions of both the primal and
adjoint boundary value problems are given by representation formulae, where the state
variable appears in the adjoint problem as volume density. We express the said volume
integral as surface potential so as to represent the controlvariablez. For this purpose
we apply integration by parts to the representation formulaof the adjoint problem. This
gives rise to a system of boundary integral equations which is related to the, so–called,
Bi–Stokes equations. We introduce the standard boundary integral operators for Stokes
and for Bi–Stokes. We end this chapter by describing the relationship among the different
boundary integral operators mentioned above. These relations are useful in proving the
unique solvability of the proposed formulation.

Galerkin boundary element approximations of the Stokes Dirichlet control problem are
analyzed in chapter 5. Due to the composition of the resulting boundary integral operator,
an additional approximation is introduced. In a similar way, an approximation of the right
hand side of the boundary integral operator equation is alsodiscussed. We use two different
meshes, one of sizeH to approximate the controlz and another of sizeh to approximate the
two tractionst andq which are related to the primal and adjoint velocities, respectively. We
prove a necessary condition on the two meshes so that the resulting approximate operator
is elliptic. Finally for the non–constrained case we set up aSchur complement system to
find the unknown controlz on the Dirichlet boundary.

In chapter 6, a numerical example for the Stokes Dirichlet control problem is considered
and results of a boundary element approximation are presented. The numerical results of
the boundary element approximations confirm the theoretical error estimates. Finally we
comment on the choice of the control spaceH1/2(Γ) instead ofL2(Γ).

The final chapter 7 deals with some conclusions and a short outlook. The purpose of the
study is described along with some future work. The thesis also contains two appendices.
AppendixAdeals with the computation of the kernel function for the Bi–Stokes system and
the corresponding traction function. AppendixB gives a short introduction to variational
inequalities along with existence and uniqueness results of the solutions.





2 BOUNDARY ELEMENT METHODS

The boundary element methods (BEM) are numerical methods for solving boundary in-
tegral equations, based on a discretization procedure. Theaim is to find approximate
solutions of boundary value problems. We need to discretizethe boundary only, instead
of a volume discretization, and as such it is an important alternative to the prevailing do-
main methods such as the finite difference method (FDM) and the finite element method
(FEM). Boundary element methods can compute solution for any interior point x ∈ Ω.
The method is highly accurate and can also handle exterior boundary value problems.
For the general references to boundary integral equations and boundary element methods,
see [37,49,63].

The basic idea of the method is to transform the original partial differential equation or
the system of partial differential equations, that define a given physical problem, into an
equivalent boundary integral equation or system of boundary integral equations with the
help of corresponding Green’s formula (such formulations is given a name known as direct
method) or in terms of continuous distributions of singularsolutions of the PDE(s) over
the boundaries of the problem domain (indirect method). In case of a direct formulation
the unknowns are the Cauchy data on the boundary whereas in the indirect case the un-
knowns are the surface densities of the singular solutions.In this way, the obtained integral
equation satisfy the governing field equation exactly and one seeks to satisfy the imposed
boundary conditions approximately.

The issue of stability and convergence is of the utmost importance when solving the bound-
ary integral equations numerically. The Galerkin methods and the collocation method are
the two most popular ones. The latter is widely used, especially in the engineering com-
munity. These methods provide, at a first glance, an easier practical implementation com-
pared with the Galerkin methods. In contrast the Galerkin methods which perfectly fit to
the variational formulation of the boundary integral equations. The theoretical study of
the Galerkin methods is now complete and provides a powerfultheoretical background for
boundary element methods. However, the stability and convergence theory for collocation
methods is available only for particular two and three–dimensional problems. Further-
more, the error analysis of the collocation methods when assuming their stability, shows
that the rate of convergence for computing the solutions of the PDE by the Galerkin meth-
ods is higher, when assuming that the solution is smooth enough.

Irrespective of the numerical method, collocation or Galerkin, applied to boundary inte-
gral equations, this leads to a linear system of algebraic equations. The matrix of this
system is in general dense, i.e., almost all of its entries are different from zero and there-
fore, have to be stored in computer memory. This is a restriction, not only to a large
problem size, but also the costs of the computation of the matrix entries are considerably
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8 2 Boundary Element Methods

high. It is a main disadvantage of the boundary element methods compared with finite
element methods which leads to sparse matrices. Hence, there is a need for so called fast
boundary element methods in order to reduce the memory requirements and the costs of
the computations. Several techniques are available for this purpose as the fast multipole
method [26], the adaptive cross approximation [7, 57], panel clustering [31], or hierarchi-
cal matrices [6,30]. Although we are not going to discuss fast boundary element methods
in this thesis, we have presented few references for the sakeof completeness.

2.1 Function spaces

In this section we discuss briefly the most important function spaces which are needed for
the weak formulation of the Stokes boundary value problem. The main reference for this
section are the text books [37] and [49]. For a further overview on the used Sobolev spaces
in the domain and on the boundary, see, for example, [1,63,66].

Definition 2.1.1. Let Ω be an open subset ofR
d(d = 2,3). For k∈ N0 the Sobolev space

Wk
2 (Ω) is defined as

Wk
2 (Ω) := {u∈ L2(Ω) : ∂ αu∈ L2(Ω) for |α| ≤ k} ,

whereα = (α1, . . . ,αd) ∈ N
d
0 is a multi–index,|α| = α1 + · · ·+ αd, is the length of the

multi–index, and∂ αu(x) = ∂ α1

∂x
α1
1

. . . ∂ αd

∂x
α1
d

u(x) are to be understood as weak partial deriva-

tives.

The Sobolev spaceWk
2 (Ω) equipped with the norm

‖u‖Wk
2 (Ω) :=

(
∑

|α|≤k

∫

Ω

|∂ αu(x)|2dx

) 1
2

forms a Hilbert space with inner product

(u,v)Wk
2 (Ω) := ∑

|α|≤k

∫

Ω

∂ αu(x)∂ αv(x)dx,

for details, see [49, page 75]. We can extend the definition ofSobolev spacesWs
2(Ω) for

any arbitrarys> 0.

Definition 2.1.2. LetΩ be an open subset ofR
d. For s= k+µ with k∈N0 andµ ∈ (0,1),

the Sobolev space Ws2(Ω) is defined as

Ws
2(Ω) :=

{
u∈Wk

2 (Ω) : |∂ αu|µ,Ω < ∞ for |α| = k
}

,

where the Sobolev–Slobodeckii semi–norm| · |µ,Ω is given by

|v|µ,Ω :=

(∫

Ω

∫

Ω

|v(x)−v(y)|2

|x−y|d+2µ dxdy

) 1
2

.
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The Sobolev spaceWs
2(Ω) for s= k+ µ with k ∈ N0 andµ ∈ (0,1) is equipped with the

norm

‖u‖Ws
2(Ω) :=

(
‖u‖2

Wk
2 (Ω) + ∑

|α|=k

|∂ αu|2µ,Ω

)1
2

.

Again,Ws
2(Ω) is a Hilbert space with respect to the inner product

(u,v)Ws
2(Ω) := (u,v)Wk

2 (Ω) + ∑
|α|=k

∫

Ω

∫

Ω

[∂ αu(x)−∂ αu(y)] [∂ αv(x)−∂ α v(y)]

|x−y|d+2µ dxdy,

see [49] for details.

So far we have considered the Sobolev spaces on a non–empty subsetΩ ⊂ R
d, in order to

relate the above defined Sobolev spaces with each other, we need some regularity assump-
tions forΓ := ∂Ω. First of all we consider the set

Ω =
{

x = (x′,xd) ∈ R
d : xd < f (x′) for all x′ ∈ R

d−1
}

, (2.1)

where f : R
d−1 → R is a bounded function which isk times differentiable, and where the

derivatives∂ α f with |α| = k satisfy

|∂ α f (x′)−∂ α f (y′)| ≤ M|x′−y′|µ for all x′,y′ ∈ R
d−1

with someµ ∈ [0,1]. Such a setΩ as defined in (2.1) is calledCk,µ hypograph [49].

Definition 2.1.3. An open setΩ ⊂ R
d is called a Ck,µ domain if its boundaryΓ is compact

and if there exist finite families
{
Wj
}

and
{

Ω j
}

with the following properties:

1. The family
{
Wj
}

is a finite open cover ofΓ.

2. EachΩ j can be transformed to a Ck,µ hypograph by a rigid motion.

3. For each j the equality Wj ∩Ω = Wj ∩Ω j is satisfied.

If Ω is aCk,µ domain, then the boundary can be parameterized byk times differentiable
functions. Therefore we call the boundary of aCk,µ domain k times differentiable. If this
property is only locally satisfied, then we call the boundarypiecewise smooth.

A C0,1 domain is called a Lipschitz domain. For instance, any polygonal bounded domain
in R

2 and any domain inR3 which is bounded by a polyhedron is a Lipschitz domain.
Note that a Lipschitz domain may be unbounded. For example, if Ω is a bounded Lipschitz
domain, then its complementR

d \Ω is also a Lipschitz domain.
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Sobolev spaces on the boundary

In the following we assume thatΩ ⊂ R
d is a Lipschitz domain. TheL2 norm on the

boundaryΓ = ∂Ω is defined by

‖u‖L2(Γ) :=

(∫

Γ

|u(x)|2dsx

) 1
2

.

Fors∈ (0,1) the Sobolev-Slobodeckii norm is defined by

‖u‖Hs(Γ) :=

(
‖u‖2

L2(Γ) +
∫

Γ

∫

Γ

|u(x)−u(y)|2

|x−y|d−1+2s dsxdsy

) 1
2

.

Definition 2.1.4. Let Ω ⊂ R
d be a Lipschitz domain with boundaryΓ = ∂Ω. The spaces

L2(Γ) and Hs(Γ) are defined as the closures

L2(Γ) := C0(Γ)
‖·‖L2(Γ) ,

Hs(Γ) := C0(Γ)
‖·‖Hs(Γ) for s∈ (0,1).

The spacesL2(Γ) and Hs(Γ) for s∈ (0,1) are Hilbert spaces equipped with the inner
products

〈u,v〉L2(Γ) :=
∫

Γ

u(x)v(x)dsx,

〈u,v〉Hs(Γ) := 〈u,v〉L2(Γ) +
∫

Γ

∫

Γ

[u(x)−u(y)] [v(x)−v(y)]
|x−y|d−1+2s dsxdsy for s∈ (0,1),

see [37, page 172].

The Sobolev spacesHs(Γ) can also be defined for the cases≥ 1, see, e.g., [37, Section
4.2]. This requires, fors> 1, strong regularity assumption for the boundaryΓ than merely
a Lipschitz property, i.e., the boundary must be of the classCk,κ and s≤ k+ κ . For
definitions and more details see [37, Section 4.2].

Sobolev spaces with negative indices

For negative indicess< 0 the Sobolev spacesHs(Γ) are defined via duality, i.e.,H−s(Γ) =
[Hs(Γ)]∗ with the norm

‖t‖Hs(Γ) := sup
06=u∈H−s(Γ)

|〈u, t〉L2(Γ)|

‖u‖H−s(Γ)

, (2.2)

see [37, page 175].
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Sobolev spaces on a part of the boundaryΓ

For an open subsetΓ0 ⊂ Γ and for a sufficiently smooth boundaryΓ we define Sobolev
spaces fors≥ 0,

Hs(Γ0) :=
{

v = ṽ|Γ0
: ṽ∈ Hs(Γ)

}
,

H̃s(Γ0) :=
{

v = ṽ|Γ0
: ṽ∈ Hs(Γ), suppṽ ⊂ Γ0

}
,

with the norm

‖v‖Hs(Γ0)
:= inf

ṽ∈Hs(Γ):ṽ|Γ0
=v

‖ṽ‖Hs(Γ) .

Fors< 0 the Sobolev spaces are defined as dual spaces

Hs(Γ0) :=
[
H̃−s(Γ0)

]∗
and H̃s(Γ0) :=

[
H−s(Γ0)

]∗
. (2.3)

Let us now consider the case ofΓ to be closed and piecewise smooth,

Γ =
J⋃

i=1

Γi , Γi ∩Γ j = φ for i 6= j.

The Sobolev spaceHs
pw(Γ) for s> 0 is defined as

Hs
pw(Γ) :=

{
v∈ L2(Γ) : v|Γi

∈ Hs(Γi), i = 1, . . . ,J
}

,

with the norm

‖v‖Hs
pw(Γ) :=

(
J

∑
i=1

∥∥v|Γi

∥∥2
Hs(Γi)

) 1
2

.

Fors< 0 we define

Hs
pw(Γ) :=

J

∏
i=1

H̃s(Γi),

with the norm

‖w‖Hs
pw(Γ) :=

J

∑
i=1

∥∥w|Γi

∥∥
H̃s(Γi)

.

Lemma 2.1.1.For w∈ Hs
pw(Γ) and s< 0 there hold

‖w‖Hs(Γ) ≤ ‖w‖Hs
pw(Γ) .

Proof. See [63, Lemma 2.20].

Remark 2.1.1. If Ω is a Lipschitz domain then for all above definitions and statements
regarding the Sobolev spaces on the subsets of the boundaryΓ we have to assume that
|s| ≤ 1. For the validity of the results for the case|s|> 1 stronger regularity conditions for
Γ needs to be assumed, see [37, Section 4.3].
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Trace operators and normal derivatives

The trace operators are used to relate the Sobolev spaces in adomainΩ to the Sobolev
spaces on its boundaryΓ = ∂Ω.

Theorem 2.1.1.Let Ω ⊂ R
d be a bounded domain. Define the interior trace operator or

the interior trace operator of order zero,γ int
0 : C∞(Ω) →C∞(Γ) by

γ int
0 u := u|Γ.

If Ω is a Ck−1,1 domain then the operatorγ int
0 has a unique extension to a bounded linear

operator

γ int
0 : Hs(Ω) → Hs−1/2(Γ) for

1
2

< s≤ k. (2.4)

This extension has a continuous right inverseE : Hs−1/2(Γ) → Hs(Ω).

Proof. See [49, Theorem 3.37].

If Ω is a bounded Lipschitz domain, i.e.,k = 1, then (2.4) implies that the interior trace
operator is a continuous linear mapping

γ int
0 : Hs(Ω) → Hs−1/2(Γ) for

1
2

< s≤ 1.

This result can be extended to1
2 < s< 3

2, see [49, Theorem 3.38].

2.2 Stokes problem

In the next four sections we very briefly describe the boundary element method for the
Dirichlet boundary value problem for the Stokes system. We begin with a short overview
of the Stokes system followed by a boundary integral formulation and the Galerkin dis-
cretization. The main reference for these sections include[37,44,56,63].

Let Ω ⊂ R
d be a bounded domain with Lipschitz boundaryΓ := ∂Ω. The linearized and

stationary equations of an incompressible viscous fluid aremodeled by the Stokes system
consisting of the equations in the form

−µ∆u(x)+∇p(x) = f(x), ∇ ·u(x) = 0, for x∈ Ω, (2.5)

i.e., the linearized stationary form of the full Navier–Stokes equations. Hereµ is the
dynamic viscosity of the fluid,(u, p) are the two unknowns, representing the velocity and
the pressure of the fluid respectively andf(x) corresponds to a given forcing term. The
model is used to describes slow viscous flow. The Stokes problem enters in biological
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applications, not for large–scale blood flow in the heart butfor small–scale movements in
capillaries. For a viscous flow with a given fluid densityρ̃ , one introduces

ν :=
µ
ρ̃
≫ 1,

which is usually known as the kinematic viscosity of the fluid. Note that the methods of
solving the linear and stationary Stokes problems play an important part, since the non–
linear and non–stationary problems can be reduced to linearand stationary ones by means
of perturbations and time–stepping procedures, see, e.g.,[22,35,65] for details.

Dirichlet boundary value problem

As model problem we consider the Dirichlet boundary value problem for the Stokes sys-
tem

−µ∆u(x)+∇p(x) = f(x), x∈ Ω, (2.6)

∇ ·u(x) = 0, x∈ Ω, (2.7)

u(x) = g(x), x∈ Γ.

A compatibility condition is obtained from (2.7) by integrating over the domainΩ and
using the Gauss integral formula, i.e.,

∫

Ω

∇ ·u(x)dx=
∫

Γ

[n(x)]⊤u(x)dsx =
∫

Γ

[n(x)]⊤g(x)dsx = 0, (2.8)

wheren(x) is the outer normal vector which is defined for allmost all x∈ Γ. Thus the
given Dirichlet datum has to satisfy this compatibility condition. Hence we introduce the
following subspace

H1/2
∗ (Γ) :=



v(x) ∈ H1/2(Γ) :

∫

Γ

[n(x)]⊤v(x)dsx = 0



 .

Due to the presence of the term “∇p(x)”, the pressure p is unique only up to an additive
constant. Thus ifp(x) satisfies the partial differential equation thenp(x)+α , whereα ∈R,
also satisfies the PDE. However, as for the Neumann boundary value problem for the
Laplace equation, see [63, Section 7.2], we can use an appropriate scaling condition to fix
this constant, e.g., ∫

Ω

p(x)dx= 0.
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Green’s first formula

In order to find Green’s first formula for the Stokes system, wemultiply (2.6) with some
test functionv(x), integrate over the domainΩ both sides and apply integration by parts to
obtain

µ
∫

Ω

d

∑
i, j=1

ei j (u,x)ei j (v,x)dx−µ
∫

Ω

div u(x) div v(x)dx−
∫

Ω

p(x) div v(x)dx

+
∫

Γ

d

∑
i=1

ti(u, p)vi(x)dsx =
∫

Ω

[v(x)]⊤f(x)dx,

where

ti(u, p)(x) := − [p(x)+ div u(x)]ni(x)+2µ
d

∑
j=1

ei j (u,x)n j(x)

is the co–normal derivative representing the boundary stress defined for almost allx ∈ Γ
andi = i, . . . ,d. For divergence–free functionsu satisfying∇ ·u = 0 we obtain, as for the
system of linear elastostatics, the following alternativerepresentation

t(u, p) = −p(x)n(x)+2µ
∂

∂nx
u(x)+ µn(x)×curlu(x). (2.9)

The symmetric bilinear form is given by

a(u,v) = a(v,u) = 2µ
∫

Ω

d

∑
i, j=1

ei j (u,x)ei j (v,x)dx−µ
∫

Ω

div u(x) div v(x)dx, (2.10)

so the Green’s first formula takes the form

a(u,v) =
∫

Ω

p(x) div v(x)dx+ 〈f,v〉Ω + 〈t(u, p),γ int
0 v〉Γ. (2.11)

Here we have introduced the strain tensor, the stress tensorand the boundary stress which
are defined as follows

ei j (u) =
1
2

(
∂

∂x j
ui +

∂
∂xi

u j

)
,

σi j (u, p) = −δi j p+2µei j (u),

ti(u, p)(x) =
d

∑
j=1

σi j (u, p)n j(x) for i = 1, . . . ,d. (2.12)



2.2 Stokes problem 15

Green’s second formula

From Green’s first formula (2.11) and by using the symmetry ofthe bilinear forma(·, ·),
we can derive Green’s second formula

∫

Ω

d

∑
i=1

[
−µ∆vi(y)+

∂
∂yi

q(y)

]
ui(y)dy+

∫

Ω

p(y) div v(y)dy=

∫

Γ

v(y)⊤t(u, p)dsy

−

∫

Γ

u(y)⊤t(v,q)dsy+

∫

Ω

f(y)⊤v(y)dy.
(2.13)

Fundamental solution and representation formulae

A solution of the partial differential equations (2.6)–(2.7) with a Dirac impulse as the right
hand side is defined to be the fundamental solution. A prior knowledge of the fundamental
solution of the underlaying partial differential operatoris essential to use boundary integral
equation methods to describe solutions of boundary value problems. At first glance this
seems to be a draw back of boundary element methods, but thereis a large class of partial
differential operators for which the existence of fundamental solutions can be ensured
even with the class of partial differential operators with constant coefficients [17, 34, 50],
the explicit computation can be a formidable task in general, see, e.g., [43,55].

To find a representation formula foruk(x) for k = 1, . . . ,d, we need to find the fundamen-
tal solution for the Stokes system which is defined by a pair ofdistributionsvk(x,y) and
qk(x,y) satisfying

−µ∆xvk(x,y)+∇xq
k(x,y) = δ (x,y)ek,

div xvk(x,y) = 0,

whereek denotes the unit vector along thexk-axis, k = 1, . . . ,d. By using the Fourier
transform we can compute the fundamental solution explicitly, see [44] for details.

Ford = 2 the matrix valued fundamental solution is

vk
ℓ = U∗

kℓ(x,y) =
1

4π
1
µ

[
− log|x−y|δkℓ +

(yk−xk)(yℓ−xℓ)

|x−y|2

]
, (2.14)

qk = Q∗
k(x,y) =

1
2π

yk−xk

|x−y|2
, with k, ℓ = 1,2.

Ford = 3

U∗
kℓ(x,y) =

1
8π

1
µ

[
δkℓ

|x−y|
+

(yk−xk)(yℓ−xℓ)

|x−y|3

]
,

Q∗
k(x,y) =

1
4π

(yk−xk)

|x−y|3
, with k, ℓ = 1,2,3.
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Recall that the fundamental solution for the two–dimensional linear elasticity system is
given by [63, page 98]

U∗
kℓ(x,y) =

1
4π

1
E

1+ν
1−ν

[
(4ν −3) log|x−y|δkℓ +

(yk−xk)(yℓ−xℓ)

|x−y|2

]
. (2.15)

Remark 2.2.1. On comparing(2.14)with (2.15)we found that forν = 1
2 and E= 3µ, the

fundamental solution for linear elasticity coincides withthe fundamental solution of the
Stokes system provided the material is incompressible. A similar observation can be made
for the case d= 3 as well.

Inserting the fundamental solutions in (2.13) we get a representation formula for the ve-
locity

uk(x) =
∫

Γ

U∗
k(x,y)

⊤t (u(y), p(y))dsy−
∫

Γ

u(y)⊤t(U∗
k(x,y),Q

∗
k(x,y))dsy

+
∫

Ω

f(y)⊤U∗
k(x,y)dy, for x∈ Ω, (k = 1, . . . ,d). (2.16)

Analogously we can get the representation formula for the pressure, forx∈ Ω

p(x) =
∫

Γ

Q∗
k(x,y)

⊤t(y)dsy−2µ
∫

Γ

u(y)⊤
∂

∂ny
Q∗

k(x,y)dsy+
∫

Ω

f(y)⊤Q∗
k(x,y)dy. (2.17)

Note that the representation forp(x) is unique up to an additive constant.

The co–normal derivativeT∗
k(x,y) is defined via (2.9), for almost ally∈ Γ, by

T∗
k(x,y) = t (U∗

k(x,y),Q
∗
k(x,y)) ,

= −Q∗
k(x,y)n(y)+2µ

∂
∂ny

U∗
k(x,y)+ µn(y)×curl U∗

k(x,y).

Remark 2.2.2. It can be shown easily, see [63, pages 7,14], that the boundary stress
represented by the co–normal derivative of the fundamentalsolution of the Stokes system
also coincides with the boundary stress of the fundamental solution of linear elasticity
when choosing the material parameters E= 3µ andν = 1

2.

2.3 Hydrodynamic potentials and boundary integral equations

The representation of the velocity for the inhomogeneous Stokes system (2.5) is obtained
from (2.16)

u(x̃) = (Ṽt)(x̃)− (Wg)(x̃)+(Ñ0f)(x̃), for x̃∈ Ω. (2.18)
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HereṼ, W and Ñ0 are the single layer, double layer and the Newton potentialsfor the
Stokes system respectively which are defined as, forx̃∈ Ω

(Ṽt)(x̃) : =
∫

Γ

U∗(x̃,y)⊤t(y)dsy, (2.19)

(Wu)(x̃) : =
∫

Γ

u(y)⊤T∗(x̃,y)dsy,

(Ñ0f)(x̃) : =
∫

Ω

f(y)⊤U∗(x̃,y)dy.
(2.20)

Applying the trace operatorγ0 and the boundary stress operatort(·, ·) to these potentials
yields

γ int
0 Ṽψ = Vψ

t(Ṽψ) = (
1
2

I +K′)ψ

γ int
0 (Wφ) = (−

1
2

I +K)φ ,

t(Wφ) = −Dφ .

almost everywhere onΓ, with the single layer potential operatorV : H−1/2(Γ)→ H1/2(Γ),
the double layer potential operatorK : H1/2(Γ)→ H1/2(Γ), the adjoint double layer poten-
tial operatorK′ : H−1/2(Γ) → H−1/2(Γ) and the hypersingular boundary integral operator
D : H1/2(Γ) → H−1/2(Γ). These boundary integral operators are continuous linear opera-
tors and admit the following representations

(Vt) j(x) =

∫

Γ

d

∑
i=1

U∗
i j (x,y)t i(y)dsy for x∈ Γ,

(Kφ) j(x) =
∫

Γ

d

∑
i=1

T∗
i j (x,y)φ i(y)dsy for x∈ Γ,

(K′t) j(x) =
∫

Γ

d

∑
i=1

T∗
ji (x,y)t i(y)dsy for x∈ Γ,

(Dφ) j(x) = p.f.
∫

Γ

D jℓ(x,y)φ ℓ(y)dsy for x∈ Γ,

whereT∗
i j (x,y), D jℓ(x,y) are the kernel functions for the double layer potential and hyper-

singular operator respectively, and p.f. denotes Hadamard’s finite part integral–the natural
regularization of homogeneous distributions and of the hypersingular boundary integral
operators. In the following lemma we describe the mapping properties of the these hydro-
dynamic potentials. The basic idea of the proof is to use the close relationship of these
potentials with that of the Lamé system.
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Lemma 2.3.1. Let Γ be the boundary of a Lipschitz domain. Ifσ ∈ R, |σ | < 1/2, then
the following basic boundary integral operators, as definedabove, are continuous linear
mappings.

V : H−1/2+σ (Γ) → H1/2+σ (Γ),

K : H1/2+σ (Γ) → H1/2+σ (Γ),

K′ : H−1/2+σ (Γ) → H−1/2+σ (Γ),

D : H1/2+σ (Γ) → H−1/2+σ (Γ).

Proof. See [37, Lemma 5.6.4] or [41, Section 6].

In equation (2.18) the boundary charges are the Cauchy datag(x) = u(x)|Γ and t(x) =
t(u, p)|Γ of the solution of the Stokes system

−µ∆u+∇p = f, ∇ ·u = 0 in Ω. (2.21)

Since the pressurep will be completely determined once the Cauchy data are known, in
what follows, it is sufficient to consider the boundary integral equations for the velocity
only. Nevertheless, we need the representation formula forp implicitly when we deal with
the stress operator.

Applying the trace operator and the boundary stress operator to both sides of the repre-
sentation formula (2.16), we obtain the overdetermined system of boundary integral equa-
tions

u(x) = (1
2I −K)u(x)+(Vt)(x)+(N0f)(x) for x∈ Γ,

t(x) = (Du)(x)+(1
2I +K′)t(x)+(N1f)(x) for x∈ Γ.

Hence, the Calderón projector can be written in operator matrix form as

C =

(1
2I −K V

D 1
2I +K′

)

HereV,K,K′ andD are the four basic boundary integral operators for the Stokes flow.
It may be noted that the Calderón projector for Stokes has thesame form as that of the
Laplacian, see [63, page 137]. As for the Laplacian the Dirichlet problem can be solved
by using the weakly singular boundary integral equation

(Vt)(x) = (
1
2

I +K)u(x)− (N0f)(x) for x∈ Γ. (2.22)

Inserting the Dirichlet data in (2.22) we get

(Vt)(x) = (
1
2

I +K)g(x)− (N0f)(x) for x∈ Γ. (2.23)
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To ensure the solvability of (2.23), we have to consider the mapping properties of the single
layer potentialV. Since the boundary integral equation (2.22) holds for any pair (u∗, p∗)
satisfying the Stokes system (2.21), when choosingu∗ = 0 andp∗ = constant we get

(Vt∗)(x) = 0 for all x∈ Γ,

in particular, when using (2.12) withp = −1 we found that

t∗(x) = n(x) for all x∈ Γ

is an eigenfunction yielding a zero eigenvalue of the singlelayer potential. Thus we note
that the boundary integral equation (2.23) is uniquely solvable modulot∗ (if t is solution
thent +αt∗, for α ∈R, is also a solution) and we have to consider (2.23) in an appropriate
factor space.

Lemma 2.3.2.Let Ω ⊂ R
d be a bounded domain with Lipschitz boundaryΓ = ∂Ω. Then

t∗ ∈ H−1/2(Γ).

Proof. See [56, Proposition 2.1].

Let

(VLt)(x) =
∫

Γ

U∗
L(x,y)t(y)dsy for x∈ Γ

denotes the single layer potential associated with the Laplace operator withU∗
L(x,y) as

fundamental solution. Note thatVL : H−1/2(Γ) → H1/2(Γ) is bounded andH−1/2(Γ)-
elliptic, for d = 2 we assume diamΩ < 1, for the proof of ellipticity, see [63, Theorem
6.23].

We now define the factor space

H−1/2
∗ (Γ) :=

{
t ∈ H−1/2(Γ) : 〈t, t∗〉VL :=

d

∑
i=1

(VLti, t
∗
i )L2(Γ) = 0

}
. (2.24)

Remark 2.3.1.For the Stokes single layer potential V , we have V: H−1/2
∗ (Γ)→ H1/2

∗ (Γ).

Note that in literature, e.g., Reference [70] the factor spaceH−1/2
∗ (Γ) is often defined with

respect to theL2 inner product. It seems that (2.24) is a more suitable choicegiving an
optimal error control.

To ensure the existence of at least one solution of (2.23) we need to have the solvability
condition for the right hand side and hence we have the following lemma.
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Lemma 2.3.3.Letb : =(1
2I +K)g(x)−N0f be the right hand side of the boundary integral

equation Vt = b. Assume furtherg∈ H1/2
∗ (Γ), then there holds the solvability condition

〈b, t∗〉Γ = 0. (2.25)

Proof. For the inhomogeneous Stokes system (2.5) the second boundary integral equation
is

(Du)(x) = (
1
2

I −K′)t(x)−N1f(x) for x∈ Γ. (2.26)

Since (2.5) holds for any pair of solutions(u, p), in particular foru = 0 andp = −1, we
get from (2.5),f = 0 andt = t∗ = n. Hence equation (2.26) becomes

0 = (
1
2

I −K′)t∗(x) for x∈ Γ, (2.27)

and therefore

〈b, t∗〉Γ = 〈(
1
2

I +K)g−N0f, t∗〉Γ

= 〈g, t∗〉Γ−〈g,(
1
2

I −K′)t∗〉Γ −〈N0f, t∗〉Γ.

The first term on the right hand side vanishes due to the solvability condition (2.8), the sec-
ond term is zero due to (2.27). We need to to show that the thirdterm is also zero. For this
we use the fact that the Newton potential is the generalized solution of the inhomogeneous
Stokes system (2.5). Letu f = N0f. Then

〈N0f, t∗〉Γ = 〈u f ,n〉Γ =
∫

Γ

u⊤
f ndsx =

∫

Ω

∇ ·u f dx= 0,

since

∇x ·u f = ∇x ·N0f = ∇x ·

∫

Ω

U∗(x,y)f(y)dy=

∫

Ω

∇x ·U
∗(x,y)f(y)dy= 0.

Hence the assertion follows.

We now establish an ellipticity estimate of the single layerpotential for Stokes through the
following lemma.

Lemma 2.3.4.LetΩ⊂R
d(d = 2,3) be a bounded simply connected domain with Lipschitz

boundaryΓ : = ∂Ω. Then, the single layer potential V is H−1/2
∗ (Γ)–elliptic, i.e.,

〈Vw,w〉Γ ≥ cV
1‖w‖2

H−1/2(Γ)
for all w ∈ H−1/2

∗ (Γ). (2.28)
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Proof. See [15].

Remark 2.3.2. For the two dimensional case an appropriate scaling condition for the
domainΩ is needed to ensure(2.28), see [36, 69]. For the single layer potential of the
Bi-Laplace this was considered in Reference [13]; then Airy’s stress function yields corre-
sponding scaling for the elastostatics problem and therefore for the Stokes system.

Remark 2.3.3. Note that here we have the ellipticity of V in H−1/2
∗ (Γ) and not in the full

space H−1/2(Γ). In the next section we will define a stabilized version of thesingle layer
potential which will ensure the ellipticity in the full H−1/2(Γ) space.

Variational formulation of the boundary integral equation

The variational formulation of the boundary integral equation (2.23) reads.

Find t ∈ H−1/2
∗ (Γ) such that

〈Vt,τ〉Γ = 〈(
1
2

I +K)g−N0f,τ〉Γ for all τ ∈ H−1/2
∗ (Γ). (2.29)

Since the single layer potentialV is H−1/2
∗ (Γ)–elliptic and bounded, the unique solvability

of (2.29) follows from the lemma of Lax–Milgram [63, Theorem3.4] and by assuming the
solvability condition (2.8).

The trial spaceH−1/2
∗ (Γ) may not be suitable for a conformal Galerkin approach, so we

will derive a formulation which allows a standard Galerkin discretization. This can be
done as in mixed finite element methods, see [10] for details.The constraints inH−1/2

∗ (Γ)
are formulated as side condition to get a saddle point problem.

Find (t,ω) ∈ H−1/2×R such that

〈Vt,τ〉Γ +ω〈τ, t∗〉VL = 〈b,τ〉Γ for all τ ∈ H−1/2(Γ),
〈t, t∗〉VL = 0.

(2.30)

We now establish the unique solvability of (2.30) with the help of the following theorem.

Theorem 2.3.1.Let Ω ⊂ R
d for d = 2 or 3 be a simply connected domain with Lipschitz

boundaryΓ. Let the solvability condition(2.8) be also valid. Then there exists a unique
solution(t,ω) ∈ H−1/2(Γ)×R of (2.30)satisfying

‖t‖H−1/2(Γ) ≤ c‖g‖H1/2(Γ),

in particular, we havet ∈ H−1/2
∗ (Γ) andω = 0.

Proof. See [56, Theorem 2.1].
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The Galerkin discretization of saddle point problems can bedone in the standard way re-
quiring some discrete stability or Babus̆ka–Brezzi–Ladyshenskaya (BBL) condition [10].
Further the resulting system of equations is symmetric but indefinite. However due to
ω = 0, instead of (2.30) we can consider a modified saddle point problem.

Find (t,ω) ∈ H−1/2×R such that

〈Vt,τ〉Γ +ω〈τ, t∗〉VL = 〈b,τ〉Γ for all τ ∈ H−1/2(Γ),
〈t, t∗〉VL −ω = 0.

(2.31)

Now we can eliminateω and we end up with a modified variational problem.

Find t ∈ H−1/2(Γ) such that

〈Vt,τ〉Γ + 〈t, t∗〉VL〈τ, t∗〉VL = 〈b,τ〉Γ for all τ ∈ H−1/2(Γ). (2.32)

Since the bilinear form in (2.32) isH−1/2(Γ)–elliptic, there exists a unique solutiont ∈
H−1/2(Γ). Moreover, if we choose the test functionτ = t∗ we find t ∈ H−1/2

∗ (Γ). Hence
the variational formulations (2.29), (2.30) and (2.32) areequivalent.

Remark 2.3.4. Since a bilinear form defines an operator and conversely an operator in-
duces a bilinear form, see [63, page 42] we can define

〈V̂t,τ〉Γ : = 〈Vt,τ〉Γ + 〈t, t∗〉VL〈τ, t∗〉VL for t,τ ∈ H−1/2(Γ). (2.33)

HereV̂ is, so called, the stabilized single layer potential.

Then the variational formulation of the boundary integral equation becomes to findt ∈
H−1/2(Γ):

〈V̂t,τ〉L2(Γ) = 〈(
1
2

I +K)g−N0f,τ〉L2(Γ) for all τ ∈ H−1/2(Γ). (2.34)

For further works on the Stokes system, we refer to [15,18,27,41,44,48,60,67,70].

2.4 Boundary elements

Recall that we have assumed thatΩ ⊂ R
d is a Lipschitz domain with piecewise smooth

boundaryΓ = ∂Ω. We consider a family{Γh} of decompositions of the boundaryΓ,

Γh =
nh⋃

ℓ=1

τℓ, (2.35)

with the boundary elementsτℓ. For the present discussion we restrict ourselves to plane
triangles for the choice of the boundary elements. The errors which may occur by this
approximation of the boundaryΓ are not considered here. For an overview and analysis of
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these errors, we refer to [52]. The decomposition, as definedin (2.35), is called admissible
if two neighboring boundary elements share either a node or an edge. We define the local
mesh size of a boundary elementτℓ

hℓ :=

(∫

τℓ

dsx

) 1
2

,

and the global mesh sizes of a boundary decompositionΓh

h = hmax := max
ℓ=1,...,nh

hℓ, hmin := min
ℓ=1,...,nh

hℓ.

The diameter of a boundary elementτℓ is defined by

dℓ := sup
x,y∈τℓ

|x−y|.

We assume that the family{Γh} is uniformly shape regular, i.e., there exists a constant
c > 0 which is independent of the boundary decomposition such that

dℓ ≤ chℓ for all ℓ = 1, . . . ,nh.

For the Galerkin discretization of the boundary integral operators for the Dirichlet Stokes
problems we consider finite dimensional trial spaces with respect to the boundary decom-
positionsΓh. A conforming trial space ofH−1/2(Γ) is S0

h(Γ), the space of piecewise con-
stant functions. We use

{
ψh

ℓ

}nh

ℓ=1 as basis functions ofS0
h(Γ) with respect to the boundary

decompositionΓh, whereψh
ℓ is constant one on the boundary elementτℓ and zero else-

where. The spaceS1
h(Γ) of continuous piecewise linear functions is a conforming trial

space ofH1/2(Γ). We use nodal basis functions
{

φh
j

}mh

j=1
for S1

h(Γ), where the vertices of

the boundary decompositionΓh are the nodes. Let
{

x j
}mh

j=1 be the set of vertices ofΓh,

then the basis functions ofS1
h(Γ) are given by

φ1
j (x) =





1 if x = x j ,

0 if x = xi 6= x j ,

piecewise linear elsewhere,

for j = 1, . . . ,mh. Note, in order to use vector valued test functions we use upper case
Greek lettersΨ andΦ for the piecewise constant and piecewise linear ones, respectively,
i.e.,

Ψ0
ℓ(x) =

(
ψ0

ℓ (x)
0

)
, Ψ0

nh+ℓ(x) =

(
0

ψ0
ℓ (x)

)
, ℓ = 1, . . . ,nh,

and

Φ1
j (x) =

(
φ0

j (x)
0

)
, Φ0

mh+ j(x) =

(
0

φ0
j (x)

)
, j = 1, . . . ,mh.

The trial spacesS0
h(Γ) andS1

h(Γ) have the following approximation properties.
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Theorem 2.4.1.Let σ ∈ [−1,0]. For u ∈ Hs(Γ) with some s∈ [0,1] there holds the ap-
proximation property of S0h(Γ)

inf
vh∈S0

h(Γ)
‖u−vh‖Hσ (Γ) ≤ chs−σ ‖u‖Hs(Γ) ,

with some constant c> 0.

Proof. See, e.g., [58, page 252], [63, Section 10.2].

Theorem 2.4.2.Let Γ = ∂Ω be sufficiently smooth. Forσ ∈ [0,1] and for some s∈ [0,2],
s≥ σ , we assumeu ∈ Hs(Γ). Then there holds the approximation property of S1

h(Γ)

inf
vh∈S1

h(Γ)
‖u−vh‖Hσ (Γ) ≤ chs−σ ‖u‖Hs(Γ) .

Proof. See, [63, Theorem 10.9].

Similar approximation properties also hold for an open partΓi of Γ, see [57, Theorem 2.1,
Theorem 2.3].

2.5 Boundary element methods for Dirichlet Stokes problem

Let [S0
h(Γ)]2 be some finite dimensional trial space spanned by, e.g., piecewise constant

basis functions. The Galerkin variational formulation of (2.32) reads :

Find th ∈ [S0
h(Γ)]2 such that

〈Vth,τh〉Γ + 〈th, t
∗〉VL〈τh, t

∗〉VL = 〈(
1
2

I +K)g−N0f,τh〉Γ for all τh ∈ [S0
h(Γ)]2,

or 〈V̂th,τh〉Γ = 〈(
1
2

I +K)g−N0f,τh〉Γ for all τh ∈ [S0
h(Γ)]2. (2.36)

If we takeτ = τh in (2.34) and subtract it from (2.36), we get the Galerkin orthogonality.

〈V̂(t− th),τh〉Γ = 0 for all τh ∈ [S0
h(Γ)]2. (2.37)

Since the bilinear form in (2.36) isH−1/2(Γ)–elliptic, hence by the Lax–Milgram lemma,
there exists a unique solutionth ∈ [S0

h(Γ)]2 satisfying the quasi–optimal error estimate, i.e.,
Cea’s lemma, see [63, Theorem 8.1]

‖t− th‖H−1/2(Γ) ≤ c inf
τh∈[S0

h(Γ)]2
‖t− τh‖H−1/2(Γ) .

Applying the approximation property of the piecewise constant trial space, Theorem 2.4.1,
and when assumingt ∈ H1

pw(Γ), we end up with the following estimate

‖t− th‖H−1/2(Γ) ≤ ch3/2‖t‖H1
pw(Γ) .
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The solution of the boundary integral equation (2.36) givesus an approximate solutionth,
so now we have the complete Cauchy data, i.e., we are given theDirichlet datag, and we
have computed the approximate Neumann datumth, and we can obtain an approximate
solution of the boundary value problem from the representation formula. If ũk(x̃) is the
approximate solution for̃x∈ Ω, then the corresponding representation formula reads

ũk(x̃) = (Ṽth)(x̃)− (Wg)(x̃) for x̃∈ Ω.

Also the representation formula for the continuous function is

uk(x̃) = (Ṽt)(x̃)− (Wg)(x̃) for x̃∈ Ω.

The above discussion leads to the following theorem.

Theorem 2.5.1.The pointwise error of the approximate solution can be estimated by

|uk(x̃)− ũk(x̃)| ≤ ch3‖U∗
k(x̃, .)‖H2(Γ) |t|H1

pw(Γ).

Proof. Since

uk(x̃) =

∫

Γ

U∗
k(x̃,y)

⊤t(y)dsy−

∫

Γ

uk(y)
⊤T∗

k(x̃,y)dsy for x̃∈ Ω,

also

ũk(x̃) =
∫

Γ

U∗
k(x̃,y)

⊤th(y)dsy−
∫

Γ

uk(y)
⊤T∗

k(x̃,y)dsy for x̃∈ Ω,

and subtracting the last two equations and using a duality argument, we have

|uk(x̃)− ũk(x̃)| =

∣∣∣∣∣∣

∫

Γ

U∗
k(x̃,y)

⊤ [t(y)− th(y)]dsy

∣∣∣∣∣∣
,

≤ ‖U∗
k(x̃, ·)‖H−σ (Γ) ‖t− th‖Hσ (Γ) .

As x̃∈ Ω andy∈ Γ, soU∗
k(x̃,y) is infinitely many times continuously differentiable, i.e.,

U∗
k(x̃, ·) ∈ H−σ (Γ) for anyσ ∈ R. So for the best possible error estimate of the pointwise

error, we need to have an error estimate of‖t− th‖Hσ (Γ) for a minimalσ ∈ R. The next
theorem (Aubin–Nitsche trick) will give us

‖t− th‖H−2(Γ) ≤ ch3‖t‖H1
pw(Γ) .

Theorem 2.5.2.(Aubin–Nitsche trick)Let t ∈ Hs
pw(Γ), for some s∈ [−1/2,1] be the solu-

tion of the boundary integral equation(2.34), let th ∈S0
h(Γ) be the corresponding Galerkin

approximation. Let̂V : H−1−σ (Γ)→H−σ (Γ), the stabilized single layer potential, be con-
tinuous and bijective for−2≤ σ ≤−1/2. Then there holds the error estimate

‖t− th‖Hσ (Γ) ≤ chs−σ ‖t‖Hs
pw(Γ) .

Proof. See [63, Theorem 12.3].
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Equivalent system of linear equations

Recall the Galerkin variational formulation (2.36) for theboundary integral equation reads:
Find th ∈ S0

h(Γ) such that

〈Vth,τh〉Γ + 〈th, t
∗〉VL〈τh, t

∗〉VL = 〈(
1
2

I +K)g−N0f,τh〉Γ for all τh ∈ S0
h(Γ).

In other words,
(
Vh+a ·a⊤

)
= f,

Vh [i, j] = 〈VΨ0
j ,Ψ

0
i 〉Γ,

a[i] = 〈Ψ0
i , t

∗〉VL, f [i] = 〈(
1
2

I +K)g−N0f,Ψ0
i 〉Γ,

wherei, j = 1, . . . ,dnh.

Let us definêVh : = Vh + a ·a⊤, which is symmetric and positive definite. To bound the
spectral condition number of the stiffness matrixV̂h, we state the following lemma.

Lemma 2.5.1.For all w ∈ R
dnh ↔ wh ∈ [S0

h(Γ)]d and a globally quasi uniform boundary
discretization , there hold the spectral equivalence inequalities

c1hd‖w‖2
2 ≤

(
V̂hw,w

)
≤ c2hd−1‖w‖2

2 ,

with some positive constants ci , i = 1,2.

Proof. See [63, page 269].

The approximation of right hand side

In practical computations, the given Dirichlet datumghas to be approximated by a function
gh ∈ S1

h(Γ) whereS1
h(Γ) ⊂ H1/2(Γ) is some trial space, e.g., of piecewise linear basis

functions. For example we may consider the piecewise linearinterpolation

gk,h(x) =
mh

∑
i=1

gk(xi)φ1
i (x), k = 1,2.

Lemma 2.5.2.Let v ∈ Hs(Γ), s∈
[d−1

2 ,2
]
, i.e.,v is continuous and a sufficiently smooth

boundaryΓ be given. Let Ih : Hs(Γ) → S1
h(Γ) be the linear interpolation operator, i.e.,

Ihv(xk) = v(xk) for k = 1, . . . ,dmh. Then there holds the error estimate

‖v− Ihv‖Hσ (Γ) ≤ chs−σ |v|Hs(Γ) for 0≤ σ ≤ min{1,s} . (2.38)

Proof. See [63, page 241].
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We note that on a boundary elementτk, a piecewise linear functionvh(x) is described
by the valuesvh(xki ) in the nodesxki , hence instead of (2.36) we consider the perturbed
variational formulation which reads:
Find t̃h ∈ S0

h(Γ) such that

〈V̂h̃th,τh〉Γ = 〈(
1
2

I +K)gh,τh〉Γ−〈N0f,τh〉Γ for all τh ∈ S0
h(Γ), (2.39)

and an equivalent perturbed system of linear equations is

V̂h̃th = f̂, where

f̂ =

(
1
2

Mh+Kh

)
g−N0f ⇔ f̃ [ℓ] =

dmh

∑
i=1

gi〈(
1
2

I +K)Φ1
i ,Ψ

0
ℓ〉Γ−

dmh

∑
i=1

〈N0f,Ψ0
ℓ〉Γ,

Mh[ℓ, i] = 〈Φ1
i ,Ψ

0
ℓ〉; Kh[ℓ, i] = 〈KΦ1

i ,Ψ
0
ℓ〉,

for i = 1, . . . ,dmh andℓ = 1, . . . ,dnh.

Due to the Strang lemma, see [63, Theorem 8.2], we get the following error estimate

∥∥∥t− t̃h

∥∥∥
H−1/2(Γ)

≤
1

cV
1

{
cV

2 inf
τh∈Xh

‖t− τh‖H−1/2(Γ) +cW
2 ‖g−gh‖H1/2(Γ)

}
,

using Theorem 2.4.1, we end up with

∥∥∥t− t̃h

∥∥∥
H−1/2(Γ)

≤ c1hs+1/2|t|Hs
pw(Γ) +cW

2 ‖g−gh‖H1/2(Γ) . (2.40)

L2 Galerkin projection

To prove a more general error estimate, we now consider projection operators which are
defined by some variational problem.

Lemma 2.5.3. For u ∈ L2(Γ) the L2 projection Qhu ∈ S1
h(Γ) is defined by the unique

solution of the variational formulation

〈Qhu,vh〉L2(Γ) = 〈u,vh〉L2(Γ) for all vh ∈ S1
h(Γ),

there holds the error estimate foru ∈ Hs(Γ), s∈ [0,2],

‖u−Qhu‖L2(Γ) ≤ chs|u|Hs(Γ). (2.41)

Proof. See [63, Theorem 10.2].



28 2 Boundary Element Methods

Remark 2.5.1. The above estimate can be extended to

‖u−Qhu‖Hσ (Γ) ≤ chs−σ |u|Hs(Γ),

where s∈ [0,2], −1≤ σ ≤ min{1,s} and Qh : H1/2(Γ) → S1
h(Γ) ⊂ H1/2(Γ) is a bounded

operator

‖Qhv‖H1/2(Γ) ≤ ‖v‖H1/2(Γ) ,

see, [63]. As we have defined theL2 projection (consider it asH0 projection), we can
accordingly define aHσ projection. We state the following lemma.

Lemma 2.5.4.For u ∈ Hσ (Γ) andσ ∈ (0,1], we define the Hσ projection Qσ
h : Hσ (Γ) →

S1
h(Γ) as the unique solution of the variational problem

〈Qσ
h u,vh〉Hσ (Γ) = 〈u,vh〉Hσ (Γ) for all vh ∈ S1

h(Γ), (2.42)

there hold the error estimate, foru ∈ Hσ (Γ) and s∈ [σ ,2]

‖u−Qσ
h u‖Hσ (Γ) ≤ chs−σ |u|Hs(Γ).

Proof. See [63, Section 12.1].

We are now interested to investigate the effect of the approximation of right the hand side
on the error estimate of the perturbed solution. For this we state the following lemma.

Theorem 2.5.3.For t ∈ Hs
pw(Γ), s∈ [−1/2,1] andg∈ Hσ (Γ), σ ∈ [1/2,2]. Let Qhg be

the L2 projection andσ ∈ [d−1
2 ,2] for the interpolation Ihg. Then there holds the error

estimate for the perturbed solution

∥∥∥t− t̃h

∥∥∥
H−1/2(Γ)

≤ c1hs+1/2|t|Hs
pw(Γ) +c2hσ−1/2|g|Hσ (Γ).

Proof. Applying the Strang lemma on the perturbed variational formulation and then using
the approximation property of piecewise constant basis function, (see (2.40)),

∥∥∥t− t̃h

∥∥∥
H−1/2(Γ)

≤ c1hs+1/2‖t‖Hs
pw(Γ) +cW

2 ‖g−gh‖H1/2(Γ) ,

the assertion follows by applying estimate (2.38) on the second term on the right hand side
in case ofIhg and applying Lemma 2.5.3 and Remark 2.5.1 in the case of theL2 projection
Qhg.
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Remark 2.5.2. Let us consider the optimal case, i.e., s= 1 andσ = 2,
∥∥∥t− t̃h

∥∥∥
H−1/2(Γ)

≤ ch3/2
{
|t|H1

pw(Γ) + |g|H2(Γ)

}
.

Note that we get the same order of convergence as in the non–perturbed case. This means
that an approximation of the right hand side, either by Ihg or by Qhg, has no effect on the
order of convergence of the approximate solution of the Dirichlet boundary value problem
in the energy norm, but in more negative Sobolev norms.

Theorem 2.5.4.(Aubin–Nitsche trick)For some s∈ [−1
2,1] let t ∈ Hs

pw(Γ) be the solu-

tion of the boundary integral equation(2.34), t̃h ∈ S0
h(Γ) be the solution of the perturbed

variational problem(2.39). LetV̂ : H−1−σ (Γ) → H−σ (Γ), the stabilized single layer po-
tential be continuous and bijective forσ ∈ [−2,−1

2], and let the double layer potential
1
2I +K : H1+σ (Γ) → H1+σ (Γ) be bounded. Forg∈ Hρ(Γ), ρ ∈ (1,2]. Then there holds
the error estimate

∥∥∥t− t̃h

∥∥∥
Hσ (Γ)

≤ c1hs−σ |t|Hs
pw(Γ) +c2hρ−σ−1|g|Hρ(Γ),

whereσ > −1 for gh = Ihg andσ > −2 for gh = Qhg.

Proof. See [63, Theorem 12.7].

Effect on the pointwise error by an approximation of the right hand side

Let ûk(x) be the approximation ofuk(x̃), for k = 1,2.

uk(x̃) =
∫

Γ

U∗
k(x̃,y)

⊤t(y)dsy−
∫

Γ

g(y)⊤T∗
k(x̃,y)dsy for x̃∈ Ω,

also

ûk(x̃) =

∫

Γ

U∗
k(x̃,y)

⊤th(y)dsy−

∫

Γ

gh(y)
⊤T∗

k(x̃,y)dsy for x̃∈ Ω,

and subtracting the last two equations and using a duality argument, we have

|uk(x̃)− ûk(x̃)| ≤

∣∣∣∣∣∣

∫

Γ

U∗
k(x̃,y)

⊤
[
t(y)− t̃h(y)

]
dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∫

Γ

T∗
k(x̃,y)

⊤ [g(y)−gh(y)]dsy

∣∣∣∣∣∣
,

≤ ‖U∗
k(x̃, ·)‖H−σ (Γ)

∥∥∥t − t̃h

∥∥∥
Hσ (Γ)

+‖T∗
k(x̃, ·)‖H−µ (Γ) ‖g−gh‖Hµ (Γ) .

As x̃∈ Ω andy∈ Γ, soU∗
k(x̃,y) andT∗

k(x̃,y) are infinitely many times continuously dif-
ferentiable, i.e.,U∗

k(x̃, ·) ∈ H−σ (Γ),T∗
k(x̃, ·) ∈ H−µ(Γ) for any σ ,µ ∈ R. So for the best

possible estimate of the pointwise error, we need to haves= 1,ρ = 2 andσ = −1 or−2
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depending upongh = Ihg or gh = Qhg respectively. We finally end up with following two
estimates

|uk(x̃)− ûk(x̃)| ≤ ch2
{
‖t‖H1

pw(Γ) +‖g‖H2(Γ)

}
for gh = Ihg,

≤ ch3
{
|t|H1

pw(Γ) + |g|H2(Γ)

}
for gh = Qhg.

Remark 2.5.3. For the pointwise error, we gain one order of convergence if we approxi-
mate the right hand side by using the L2 projection.



3 OPTIMAL CONTROL FOR STOKES PROBLEM

In this chapter we start with a brief introduction to the optimal control problems and their
solutions. The main references for this section are [28,33,68]. We then discuss an elliptic
optimal control model problem with a quadratic cost functional and the Stokes system
as linear constraint. The control is on the Dirichlet boundary which lie in a closed and
convex subset ofH1/2(Γ) and also satisfies a certain compatibility condition. The goal is to
reformulate the boundary control problem into an equivalent system of boundary integral
equations. With the help of the state to control mappingS, we formulate the reduced cost
functional in the control. The adjoint problem is obtained by the realization of the adjoint
operatorS∗. We end this chapter by setting up the optimality system consisting of the
primal problem, the adjoint problem and a coupling condition which turns out to be an
elliptic variational inequality of the first kind.

3.1 An introduction to optimal control

An optimal control problem is an optimization problem in which the variable to be opti-
mized admits a natural splitting into a state variable and a control variable. Thus we can
say that all optimal control problems are optimization problems but not all optimization
problems are optimal control problems.

The basic ingredients of an optimal control problem

An optimal control problem consists of the following components.

• State variables.

• Control variables or design parameters.

• An objective or a cost functional.

• Constraints (restrictions) which the state and control variables are required to satisfy.

Then an optimal control problem is:

Find the state and the control variables that minimizes (or maximizes) the objective func-
tional subject to the requirements that the constraints aresatisfied.

It may be noted that we are going to consider only the class of optimization problem which
requires the differentiability of the cost functional and of the constraints. In other words we
are not going to discuss the so called ’Non–smooth Optimization’. Further we are going

31
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to present the text within the context of fluid mechanics. Nowwe define and explain the
basic components of an optimal control problem.

Definition 3.1.1. In the fluid mechanics setting, variables describing the mechanical and
thermodynamical behavior are calledstate variables, e.g., one or more of the velocity,
velocity potential, pressure, density, temperature and internal energy can be regarded as
state variable.

Definition 3.1.2. One or more of the data specified that serve to determine the state vari-
ables are termed ascontrol variables or design parameter, e.g., heat flux, temperature at
the wall, an inflow mass flow rate, parameters that determine the shape of the boundary.

Definition 3.1.3. The functional describing the ultimate goal of the optimization problem
is calledobjective or performance functional, e.g., we may be interested to see how close
is the velocity field to a given target velocity field, or the size of the drag or the lift, or
temperature variations.

Definition 3.1.4. The restrictions or the conditions that the state and control variables
must abide are called theconstraints, e.g., the main constraints governing the flow equa-
tions are Naiver–Stokes, or Euler, or potential flow equations. We also encounter the side
constraints such as minimum lift, or minimum volume, or maximum power requirements.

The structure of flow optimal control problems

The flow control optimization problem has usually three components. First we have an
objective, a reason why we want to control the flow. There may be variousobjectives
of interest in applications, e.g., flow matching, drag minimization, lift enhancement, pre-
venting separation, preventing transition to turbulence,deterring temperature variations,
enhancing mixing, deterring mixing, etc. Mathematically,such an object is expressed as
cost, or objective, or performance functional.

Next one hascontrolor design parameters at one’s disposal in order to meet the objective.
One has boundary value control such as injection or suction of the fluid and heating or
cooling or temperature control, one could have distributedcontrol such as heating sources
or magnetic fields, one could have shape control such as leading or trailing edge flaps,
movable wall rudders, propeller pitch, surface roughness,or domain design; or, one could
have combinations of numbers of controls or design parameters. Mathematically, control
or design parameters are expressed in terms of unknown data in the mathematical specifi-
cation of the problem.

Finally one hasconstraintsthat determines what type of flow one is interested in and that
place direct or indirect limits on candidate optimizer. Onemust decide, e.g., what type of
fluid model is adequate for the application in mind assuming that flow is potential flow, an
inviscid flow, a viscous flow, a compressible or incompressible flow, stationery flow, a time
dependent flow, etc. Mathematically the type of flow is expressed in terms of a specific
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set of partial differential equations. One may also impose side constraints motivated by
practical necessities, for example, one may want to minimize the drag on an airfoil subject
to the lift and/or the volume being grater than a specific value. One then puts together the
three ingredients in an optimization problem by seeking theoptimal state and the control
that satisfy the constraints and minimize the objective functional.

An abstract optimal control problem

If φ denotes the state variables,g the control variable or design parameter,J (φ ,g) the
cost or the objective functional, andF (φ ,g) = 0 are constraints. Then the optimization
problem reads.

Find the control g and stateφ such thatJ (φ ,g) is minimized subject to F(φ ,g) = 0.

It may be noted that many objective functionals, we see in practise, do not explicitly depend
on the design parameters which leads to unbounded optimal control problems. In such a
situation, we must somehow limit the size of the control. This can be achieved in two
ways:

• Restrict the size of an admissible control so that they are sought for within a bounded
set, e.g., look for an optimal control such that, for some suitable norm‖ · ‖ and a
constantκ

‖ · ‖ ≤ κ.

• Penalize the objective functional , i.e., instead of minimizing a given functionalE (φ)
that depends only on the state variables, minimize, for somesuitable norm‖ · ‖ and
constantsσ andβ , the functional

J (φ ,g) = E (φ)+σ ‖ g ‖β .

Note that in the first case we are just imposing the side constraints on the optimization
problem. This we are not going to discuss here. In the second case, we have changed the
problem, i.e., the minimizer ofJ are not, in general, minimizers of the given functional
E . However, in many if not most practical settings, limiting the size of the control through
penalization is easier to implement than through placing the explicit bound on the control
variables.

Solution of optimal control and optimization problems

There are three approaches to solve optimal control and optimization problems. These
are

• one–shot, or adjoint, or co–state, or Lagrange multipliermethods,
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• optimization methods based on the sensitivity equations and,

• optimization methods based on adjoint equations.

3.2 Unconstrained optimization problem

Our aim is to set up an optimality system which consists of thestate equation, the adjoint
equation and an optimality condition. The resulting optimality system then can be solved
by some suitable method. We set up the optimality system for our abstract example by a
Lagrange multiplier method. This method recasts the constrained optimization problem
as unconstrained optimization problem. We introduce the Lagrange multiplier or adjoint
variable or co–state variableξ and the Lagrangian functional

L(φ ,g,ξ ) = J (φ ,g)−ξ ∗F (φ ,g),

whereξ ∗F can be viewed as inner product or duality pairing. Then we pose the following
unconstrained optimization problem:
Find controls g, statesφ and co–statesξ such thatL(φ ,g,ξ ) is rendered stationary.
The first order necessary conditions then give the optimality system from which we can
find the optimal states and design parameters.

δL
δξ

= 0⇒ state equation, (3.1)

δL
δφ

= 0⇒ adjoint or co–state equation, (3.2)

δL
δg

= 0⇒ optimality condition. (3.3)

Here we consider the case that each argument ofL(φ ,g,ξ ) is independent of each other.
This was not true in the original optimization problem involving J (φ ,g) since the ar-
gumentφ andg were constrained to satisfyF (φ ,g) = 0 and thus could not be chosen
independently. The equation (3.1) can be written in an alternative way as

lim
ε→0

(
L(φ ,g,ξ + εξ̃ )−L(φ ,g,ξ )

ε

)
= 0,

where the variatioñξ in the Lagrange multiplierξ is arbitrary. Substituting forL, we
have

lim
ε→0

[
J (φ ,g)− (ξ + εξ̃ )∗F (φ ,g)− (J (φ ,g)−ξ ∗F (φ ,g))

ε

]
= 0,

ξ̃ ∗F (φ ,g) = 0.
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Since the variatioñξ in the Lagrange multiplierξ is arbitrary, we recover the state equation
F (φ ,g) = 0. Setting the first variation ofL with respect to the stateφ equal to zero is
equivalent to the condition

lim
ε→0

(
L(φ + εφ̃ ,g,ξ )−L(φ ,g,ξ )

ε

)
= 0,

where the variatioñφ in the stateφ is arbitrary. Again substituting forL, we have

lim
ε→0

[
J (φ + εφ̃ ,g)−ξ ∗F (φ + εφ̃ ,g)− (J (φ ,g)−ξ ∗F (φ ,g))

ε

]
= 0,

lim
ε→0


J (φ + εφ̃ ,g)−J (φ ,g)

ε
−

ξ ∗
(

F (φ + εφ̃ ,g)−F (φ ,g)
)

ε


 = 0. (3.4)

We assume the functionals and variables to be sufficiently smooth and introduce the Taylor
series expansion as

J (φ + εφ̃ ,g) = J (φ ,g)+ ε
(

∂J
∂φ

|(φ ,g)

)
φ̃ +O(ε2),

and a similar expansion forF (φ + εφ̃ ,g), so equation (3.4) takes the form

lim
ε→0

[(
∂J
∂φ

|(φ ,g)

)
φ̃ −ξ ∗

(
∂F
∂φ

|(φ ,g)φ̃
)

+O(ε)

]
= 0,

(
∂J
∂φ

|(φ ,g)

)
φ̃ −ξ ∗

(
∂F
∂φ

|(φ ,g)φ̃
)

= 0,

φ̃∗

((
∂J
∂φ

|(φ ,g)

)∗

−

(
∂F
∂φ

|(φ ,g)

)∗

ξ
)

= 0,

where
(

∂J
∂φ |(φ ,g)

)∗
denotes the adjoint operator of

(
∂J
∂φ |(φ ,g)

)
. Since the variatioñφ in the

stateφ is arbitrary, we get the adjoint equation

(
∂F
∂φ

|(φ ,g)

)∗

ξ =

(
∂J
∂φ

|(φ ,g)

)∗

.

Finally, setting the first variation ofL with respect tog equal to zero and proceeding in a
similar manner as above we get the following optimality condition

(
∂F
∂g

|(φ ,g)

)∗

ξ =

(
∂J
∂g

|(φ ,g)

)∗

.
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Hence the optimality system is

F(φ ,g) = 0 ⇒ state equation,(
∂F
∂φ

|(φ ,g)

)∗

ξ =

(
∂J
∂φ

|(φ ,g)

)∗

⇒ adjoint equation,
(

∂F
∂g

|(φ ,g)

)∗

ξ =

(
∂J
∂g

|(φ ,g)

)∗

⇒ optimality condition.

Note that if the state system is expensive to solve, then thiscoupled system is an even
more formidable. However, if we can solve the coupled optimality system with the help of
some computational methods, then optimal states and controls can be obtained without an
optimization iteration. Due to this specific reason, such anapproach is sometimes called a
one–shot method for optimization.

3.3 Constrained optimization problem

In the previous section we have setup the optimality system by a Lagrange multiplier
method which recasts the optimization problem with equality constraints as an uncon-
strained optimization problem. Now we consider the case where we have in addition in-
equality constraints, i.e., box constraints for the control. But before that we discuss some
basic definitions and results which can be found in most standard textbooks on functional
analysis, e.g., [1,73].

Definition 3.3.1(Dual space). The space of all continuous linear functionals on(U,‖·‖U),
denoted by U∗, is called the dual space of U.

Observe thatU∗ = L(U,R). The associated norm is given by

‖ f‖U∗ = sup
‖u‖U=1

| f (u)|.

Moreover, sinceR is a complete space, the dual spaceU∗ is always a Banach space.

Theorem 3.3.1(Riesz representation theorem). Let (H,(·, ·)H) be a real Hilbert space.
Then for any continuous linear functional F∈H∗ there exists a uniquely determined f∈H
such that‖F‖H∗ = ‖ f‖H and

F(v) = ( f ,v)H for all v ∈ H.

Proof. See [63].
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Definition 3.3.2 (Bidual and reflexive spaces). Let U denote a real Banach space with
associated dual space U∗. We fix an arbitrary u∈U, let f vary over U∗, and consider the
mapping Fu : U → R induced by u,

Fu : f → f (u).

Clearly, Fu is linear, and its continuity is a consequence of the simple estimate

|Fu( f )| = | f (u)| ≤ ‖u‖U ‖ f‖U∗ .

Hence, the functional Fu induced by u belongs to the dual space(U∗)∗ =: U∗∗ of U∗.
Since the mapping u→ Fu turns out to be injective, we may identify u with Fu, thereby
interpreting u∈U as an element of U∗∗.

The space U∗∗ is called the bidual space of U. In light of the above identification, it is
always true that U⊂U∗∗. The mapping u→ Fu from U into U∗∗ is called the canonical
embedding or canonical mapping. If this mapping is surjective, i.e., if U= U∗∗, then U is
called a reflexive space. In the case of reflexive spaces, taking the dual twice leads back
to the original space. In particular, we infer from the Rieszrepresentation theorem that
Hilbert spaces are always reflexive.

Definition 3.3.3 (Weak convergence). Let U be a real Banach space. We say that a se-
quence{un}

∞
n=1 ⊂U converges weakly to some u∈U if

lim
n→∞

f (un) = f (u) for all f ∈U∗.

We denote weak convergence by the symbol⇀, i.e., we write un ⇀ n as n→ ∞. The limit
u is uniquely determined and is called the weak limit of the sequence.

Remark 3.3.1. If a sequence{un}
∞
n=1 ⊂U converges strongly (that is, with respect to the

norm of U) to some u∈U, then it also converges weakly to u, i.e.,

un → u⇒ un ⇀ u as n→ ∞.

Definition 3.3.4 (Weakly sequentially continuous mappings). Let U and V denote real
Banach spaces. A mapping F: U →V is said to be weakly sequentially continuous if the
following holds: whenever a sequence{un}

∞
n=1 ⊂U converges weakly in U to some u∈U,

its image{F(un)}
∞
n=1 ⊂V converges weakly to F(u) in V ,i.e.,

un ⇀ u⇒ F(un) ⇀ F(u) as n→ ∞.

Definition 3.3.5(Weakly sequentially closed/compact set). Let M be a subset of a real Ba-
nach space U. We say that M is weakly sequentially closed if the limit of every weakly con-
vergent sequence{un}

∞
n=1 ⊂ M lies in M. We say that M is weakly sequentially relatively

compact if every sequence M contains a weakly convergent subsequence; if, in addition,
M is weakly sequentially closed, then M is said to be weakly sequentially compact.
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Remark 3.3.2. Every strongly convergent sequence also converges weakly.The converse
is not true in general.

Every weakly sequentially closed set is also (strongly) closed; however, not every strongly
closed set must be weakly sequentially closed.

Theorem 3.3.2.Every bounded subset of a reflexive Banach space is weakly sequentially
relatively compact.

Proof. See [42] or [72].

Definition 3.3.6(Convex set). A subset C of a real Banach space U is said to be convex if
for any pair u,v∈C and anyλ ∈ [0,1] the convex combinationλu+(1−λ )v also lies in
C.

Definition 3.3.7 (Convex and strictly convex functionals). Let U be a real Banach space
and C⊂U. A functional f: C→ R is said to be convex if

f (λu+(1−λ )v) ≤ λ f (u)+(1−λ ) f (v) for all λ ∈ [0,1] and for all u,v∈C. (3.5)

The functional f is said to be strictly convex if the above inequality (3.5)holds with< in
place of≤, whenever u6= v andλ ∈ (0,1).

Theorem 3.3.3.Every convex and closed subset of a Banach space is weakly sequentially
closed. If the space is reflexive and the set is in addition bounded, then it is weakly sequen-
tially compact.

Proof. The first assertion of the theorem is an easy consequence of Mazur’s theorem,
which states that the weak limit of a weakly convergent sequence is at the same time
the strong limit of a sequence consisting of suitable convexcombinations of the terms of
the sequence. This part of the assertion is already true in normed spaces; see [5] and [71].
The second assertion follows from Theorem 3.3.2.

Theorem 3.3.4.Every continuous and convex functional f: U → R on a Banach space U
is weakly lower semicontinuous, i.e., for any sequence{un}

∞
n=1 ⊂ U such that un ⇀ n as

n→ ∞ we have

lim inf
n→∞

f (un) ≥ f (u).

Proof. See [5] or [72].

Remark 3.3.3. In the literature, the notions of weak compactness and weak closedness
in the sense of the weak topology are often used in place of weak sequential compactness
and weak sequential closedness, respectively. It should benoted, however, that in reflexive
Banach spaces the two concepts are equivalent [12].

Theorem 3.3.5.Let U and V are two real Banach spaces. A linear operator A: U →V is
continuous if and only if it is bounded.

Proof. See [73].
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Reduced minimization problem

We can define the solution operator for a given control problem as

u = S(z),

wherez is the control andu is the associated state. By using this control to state operator
S, the general minimization problem can be written as following

J (z) :=
1
2
‖S(z)−u‖2

U +
ρ
2
‖z‖2

Z . for z∈ Z,

which is the reduced quadratic minimization problem in the control spaceZ. We can use
Theorem 3.3.4 to establish weakly lower semicontinuity of the functionalJ (z), but still
we need to prove the continuity and the convexity of this functional. To this end we state
the following lemma.

Lemma 3.3.1.Let (Z,‖·‖Z) and (U,‖·‖U) denote two real Hilbert spaces, let S: Z → U
be a continuous linear operator andu∈U. Then the quadratic functional

J (z) :=
1
2
‖S(z)−u‖2

U +
ρ
2
‖z‖2

Z . for z∈ Z

is convex forρ ≥ 0 and strictly convex forρ > 0.

Proof. The given functional can be written as

J (z) :=
1
2
‖S(z)−u‖2

U +
ρ
2
‖z‖2

Z = f1(z)+ f2(z).

It is easy to show thatf1(z) is convex forρ ≥ 0 and f2(z) is strictly convex forρ > 0.
Hence the sumJ (z) is convex forρ ≥ 0 and strictly convex forρ > 0. This completes the
proof.

Remark 3.3.4. If for the bounded linear operator S with S(u) = 0, we get u= 0, then the
functionalJ is also strictly convex forρ ≥ 0.

Theorem 3.3.6.Let(Z,‖·‖Z) and(U,‖·‖U) denote two real Hilbert spaces, and let a non–
empty, closed, bounded, and convex set Zad ⊂ Z, as well as someu ∈ U and a constant
ρ ≥ 0 be given. Moreover, let S: Z → U be a continuous linear operator. Then the
quadratic Hilbert space optimization

min
z∈Zad

J (z) :=
1
2
‖S(z)−u‖2

U +
ρ
2
‖z‖2

Z ,

admits an optimal solutionz. If ρ > 0 or S is injective, then the solution is uniquely
determined.

Proof. See [68, Theorem 2.14].
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Definition 3.3.8(Gâteaux derivatives). Let(U,‖·‖U) and(V,‖·‖V) are real Banach spaces.
LetU be a non–empty and an open subset of U. Let F denotes a mapping fromU into V.
Suppose that the first variationδF(u,h) at u∈ U exists, and suppose there exists a contin-
uous linear operator A: U →V such that

δF(u,h) := lim
t↓0

1
t
(F(u+ th)−F(u)) = Ah for all h∈U.

Then F is said to be Gâteaux differentiable at u, and A is referred to as the Gâteaux
derivative of F at u. We write A= F ′(u).

It follows from the definition that Gâteaux derivatives can be determined as directional
derivatives. Note also that in the case whereV = R, i.e., if a functional f : U → R is
Gâteaux differentiable at a pointu∈ U , then f ′(u) is an element of the dual spaceU∗.

Definition 3.3.9 (Fréchet derivatives). Let (U,‖·‖U) and (V,‖·‖V) are two real Banach
spaces. LetU be a non–empty and an open subset of U. A mapping F: U ⊂U →V is said
to be Fréchet differentiable at u∈U if there exists an operator A∈L(U,V) and a mapping
r(u, ·) : U →V with the following properties: for h∈U such that u+h∈ U , we have

F(u+h) = F(u)+Ah+ r(u,h),

where the so–called remainder r satisfies the condition

‖r(u,h)‖V

‖h‖U
→ 0 as ‖h‖U → 0.

The operator A is called the Fréchet derivative of F at u and wewrite A= F ′(u). If A is
Fréchet differentiable at every point u∈ U , then A is said to be Fréchet differentiable inU .

Remark 3.3.5. In order to avoid confusion, we denote the Gâteaux derivative of F by
F ′

G(u) and not by F′(u). If the Fréchet derivative exists, then so does the Gâteaux derivative
and we have F′G(u) = F ′(u). The converse is false, in general.

Definition 3.3.10(Hilbert space adjoint). Let real Hilbert spaces(U,(·, ·)U) and(V,(·, ·)V)
as well as an operator A∈ L(U,V) be given. An operator A⋆ is called the Hilbert space
adjoint or adjoint of A if

(v,Au)V = (A⋆v,u)U for all u ∈U, for all v ∈V.

Quadratic optimization in Hilbert spaces

In order to prove the existence of optimal controls, we transformed the control problems
under investigation into a reduced quadratic optimizationproblem in terms ofz, namely

J (z) :=
1
2
‖S(z)−u‖2

U +
ρ
2
‖z‖2

Z . (3.6)

For the minimization problem (3.6), the following fundamental result can be applied. It is
the key to the derivation of first–order necessary optimality conditions in the presence of
control constraints.
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Lemma 3.3.2.Let Z be a real Banach space, M⊂ Z is a given convex set and f: M →R is
real–valued Gâteaux differentiable functional on M. Ifz∈ M is a solution to the problem

f (z) = min
z∈M

f (z) (3.7)

then it solves the variational inequality

f ′G(z)(z−z) ≥ 0 for all z∈ M. (3.8)

Conversely, ifz∈ M solves the variational inequality(3.8) and f is convex, thenz is a
solution to the minimization problem(3.7).

Proof. See [68, page 63].

Theorem 3.3.7.Suppose that real Hilbert spaces Z and H, a non–empty and convex set
Zad ⊂ Z, someu∈ U, and a constantρ ≥ 0 are given. Moreover, let S: Z → U denote a
continuous linear operator. Thenz∈ Zad is a solution to the minimization problem(3.6) if
and only ifz solves the variational inequality

(S⋆(Sz−u)+ρz,w−z)Z ≥ 0 for all w ∈ Zad. (3.9)

Proof. The gradient of the functional (3.6) is given by ( [68, page 60])

f ′(z) = S⋆(Sz−u)+ρz

The assertion is thus a direct consequence of Lemma 3.3.2.

In many instances it is advantageous to write the variational inequality (3.9) in the equiva-
lent form

(Sz−u,Sw−Sz)U +ρ(z,w−z)Z ≥ 0 for all w∈ Zad.

which avoids the adjoint operatorS⋆.

3.4 Dirichlet Boundary control for Stokes Problem

Let Ω⊂R
d(d = 2,3) be a bounded domain with Lipschitz boundaryΓ := ∂Ω. The bound-

ary control of Stokes flows can be stated as following boundary control model problem.

Minimize J (u,z) =
1
2

∫

Ω

[u(x)−u(x)]2dx

︸ ︷︷ ︸
tracking

+
ρ
2
‖z‖2

H1/2(Γ)︸ ︷︷ ︸
control cost

, (3.10)
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subject to the elliptic boundary value problem (state equations)

−µ∆u(x)+∇p(x) = f(x) for x∈ Ω,

∇ ·u(x) = 0 for x∈ Ω,

γ int
0 u(x) = z(x) for x∈ Γ,

(3.11)

whereu ∈ H1(Ω) is the velocity field (the state variable),p is the pressure, and the control
z satisfies the box constraints

z∈ U : =
{

w ∈ H1/2
∗ (Γ) : ga(x) ≤ w(x) ≤ gb(x)

}
. (3.12)

Note thatz∈ U ⊂ H1/2
∗ (Γ) satisfies the solvability condition (2.8). We assumef ∈ L2(Ω),

u ∈ L2(Ω) is the given target,ρ ∈ R+ is a fixed parameter which penalizes the cost of

the control or some regularization parameter andga,gb ∈ H1/2
∗ (Γ). The aim is to find the

velocityu as close as possible to a given (the desired state) target velocity field u.

Optimal control problems, such as above, belong to a class ofPDE constrained optimiza-
tion problems, which appear in many areas of science and engineering, e.g., see [33]. Since
the control variable is on the boundary, the idea is to reformulate the boundary control
problem into an equivalent system of boundary integral equations.

Suppose there exists an equivalent norm‖·‖A in H1/2
∗ (Γ) which is induced by an elliptic,

self–adjoint and bounded operatorA : H1/2
∗ (Γ) → H−1/2

∗ (Γ), i.e.,

〈Aw,w〉Γ ≥ γA1 ‖w‖2
H1/2
∗ (Γ)

; ‖Aw‖
H−1/2
∗ (Γ)

≤ γA2 ‖w‖
H1/2
∗ (Γ)

for all w∈ H1/2
∗ (Γ).

For example the operatorA can be the inverse single layer potential for Stokes.

3.5 The solution of the Stokes system

To find a particular solution with homogeneous Dirichlet boundary condition we first con-
sider the system

−∆u f (x)+∇pf (x) = f(x) for x∈ Ω,

∇ ·u f (x) = 0 for x∈ Ω,

γ int
0 u f (x) = 0 for x∈ Γ.

It remains to consider the homogeneous Dirichlet boundary value problem

−∆uz(x)+∇pz(x) = 0 for x∈ Ω,

∇ ·uz(x) = 0 for x∈ Ω,

γ int
0 uz(x) = z(x) for x∈ Γ.

(3.13)

From (3.13) we can say that the solutionuz, of the homogeneous Dirichlet boundary value

problem defines a control to state mapS : H1/2
∗ (Γ) → H1(Ω) ⊂ L2(Ω) asuz = Sz.
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If u f is the particular solution of the homogeneous Dirichlet boundary value problem then
the solution of (3.11) is defined asu = uz+u f or u = Sz+u f .

The functional to be minimized is

J (u,z) =
1
2

∫

Ω

[u(x)−u(x)]2dx+
ρ
2
〈Az,z〉Γ

=
1
2
〈u−u,u−u〉Ω +

ρ
2
〈Az,z〉Γ,

by usingu = Sz+u f we have

J̃ (z) =
1
2
〈Sz+(u f −u),Sz+(u f −u)〉Γ +

ρ
2
〈Az,z〉Γ

=
1
2
〈Sz,Sz〉Γ +

1
2
〈Sz,u f −u〉Γ +

1
2
〈u f −u,Sz〉Γ +

1
2
〈u f −u,u f −u〉Ω

+
ρ
2
〈Az,z〉Γ

=
1
2
〈S∗Sz,z〉Γ + 〈u f −u,Sz〉Γ +

1
2

∥∥u f −u
∥∥2

Ω +
ρ
2
〈Az,z〉Γ

=
1
2
〈S∗Sz,z〉Γ + 〈S∗(u f −u),z〉Γ +

1
2

∥∥u f −u
∥∥2

Ω +
ρ
2
〈Az,z〉Γ. (3.14)

We now consider the problem to find the minimizerz ∈ U ⊂ H1/2
∗ (Γ) of the reduced

cost functional (3.14). To characterize this minimiserz ∈ U , we introduce a self adjoint,
bounded andH1/2

∗ (Γ)–elliptic operator (later on we will prove these propertiesof such an
operator, sayTρ , involving boundary integral operators).

Tρ : = ρA+S∗S : H1/2
∗ (Γ) → H−1/2

∗ (Γ) (3.15)

satisfying, see, e.g., [53]

〈Tρz,z〉Γ ≥ c
Tρ
1 ‖z‖2

H1/2
∗ (Γ)

;
∥∥Tρz

∥∥
H−1/2
∗ (Γ)

≤ c
Tρ
2 ‖z‖

H1/2
∗ (Γ)

for all z∈ H1/2
∗ (Γ).

Let S∗ : L2(Ω)→ H−1/2
∗ (Γ) be the adjoint operator ofS : H1/2

∗ (Γ) → L2(Ω), i.e.,

〈S∗ψ,φ〉Γ = 〈ψ,Sφ〉Ω =

∫

Ω

ψ(x)(Sφ)(x)dx for all ψ ∈ L2(Ω), for all φ ∈ H1/2
∗ (Γ).

Moreover we define

g := S∗(u−u f ) ∈ H−1/2
∗ (Γ). (3.16)

As the setU ⊂ H1/2
∗ (Γ) is closed and convex, and sinceTρ is self adjoint andH1/2

∗ (Γ)–
elliptic, the minimization of the reduced cost functional (3.14) is equivalent to solving the
variational inequality to findz∈ U such that

〈Tρz,w−z〉Γ ≥ 〈g,w−z〉Γ for all w ∈ U . (3.17)
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Since (3.17) is an elliptic variational inequality of the first kind, we can use standard ar-
guments as given, e.g., in [9, 24, 40, 45, 46] to establish theunique solvability of the vari-
ational inequality (3.17). For a short overview of variational inequalities and the relevant
theorems, see Appendix B.

Note that the variational inequality (3.17) can also be written in the following way

〈Tρz−g,w−z〉Γ ≥ 0,

〈ρAz+S∗Sz−S∗(u−u f ),w−z〉Γ ≥ 0,

〈ρAz+S∗(Sz−u+u f ),w−z〉Γ ≥ 0,

〈ρAz+S∗(u−u),w−z〉Γ ≥ 0,

〈ρAz+ τ,w−z〉Γ ≥ 0, (3.18)

whereτ = S∗(u−u).

3.6 Realization of the adjoint operator

We want to see which boundary value problem corresponds to the application of the adjoint

operatorS∗ : L2(Ω)→ H−1/2
∗ (Γ). Forτ = S∗(u−u) ∈ H−1/2

∗ (Γ) and forg∈ H1/2
∗ (Γ), we

consider the following duality pairing

〈τ,g〉Γ = 〈S∗(u−u),g〉Γ = 〈u−u,Sg〉Ω = 〈u−u,m〉Ω, (3.19)

wherem = Sg, i.e.,

−µ∆m(x)+∇pm(x) = 0 for x∈ Ω,

∇ ·m(x) = 0 for x∈ Ω,

γ int
0 m(x) = g(x) for x∈ Γ.

(3.20)

Consider the general forward problem (later adjoint problem)

−µ∆w(x)+∇r(x) = f(x), ∇ ·w(x) = 0 x∈ Ω, γ int
0 w(x) = 0, x∈ Γ.

Using Green’s first formula we have

a(w,v) =

∫

Ω

r(x)divv(x)dx+ 〈f,v〉Ω + 〈t(w, r),γ int
0 v〉Γ.

In particular forv = m we obtain

a(w,m) =

∫

Ω

r(x)divm(x)︸ ︷︷ ︸
=0

dx+ 〈f,m〉Ω + 〈t(w, r),γ int
0 m〉Γ,

a(w,m) = 〈f,m〉Ω + 〈t(w, r),γ int
0 m〉Γ.
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Takef = u−u, this gives

a(w,m)−〈t(w, r),g〉Γ = 〈u−u,m〉Ω. (3.21)

From (3.19) and (3.21) we can write

〈τ,g〉Γ = a(w,m)−〈t(w, r),g〉Γ. (3.22)

Now the symmetry of the bilinear forma(·, ·) and the Green’s first formula gives us

a(w,m) = a(m,w) =
∫

Ω

pm(x) div w(x)︸ ︷︷ ︸
=0

dx+ 〈t(m, pm),γ int
0 w︸ ︷︷ ︸
=0

〉Γ,

so (3.22) becomes

〈τ,g〉Γ = −〈t(w, r),g〉Γ for all g∈ H1/2
∗ (Γ),

τ = −t(w, r) =: −q.

Hence the adjoint problem takes the form

−µ∆w(x)+∇r(x) = u−u for x∈ Ω,

∇ ·w(x) = 0 for x∈ Ω,

γ int
0 w(x) = 0 for x∈ Γ.

3.7 Optimality (Karush–Kuhn–Tucker) system

For the solution of the Dirichlet boundary control problem (3.10)–(3.11) we therefore ob-
tain the following system. Findz∈ U ⊂ H1/2

∗ (Γ):
Primal Problem

−µ∆u(x)+∇p(x) = f(x) for x∈ Ω,

∇ ·u(x) = 0 for x∈ Ω,

γ int
0 u(x) = z(x) for x∈ Γ.

(3.23)

Adjoint Problem
−µ∆w(x)+∇r(x) = u−u for x∈ Ω,

∇ ·w(x) = 0 for x∈ Ω,

γ int
0 w(x) = 0 for x∈ Γ.

(3.24)

Variational inequality

〈Tρz,v−z〉Γ ≥ 〈g,v−z〉Γ or

〈ρAz+ τ,v−z〉Γ ≥ 0 for all v ∈ U , whereτ = −t(w, r).
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Remark 3.7.1.Since the unknown controlz∈U ⊂H1/2
∗ (Γ) is considered on the boundary

Γ = ∂Ω, the use of boundary integral equations to solve both the primal and the adjoint
boundary value problem seems to be the natural one. In what follows we will describe and
analyze boundary element methods to solve the variational inequality(3.17)numerically.
This will be based on the use of appropriate boundary integral operators representation of
Tρ andg as introduced above.



4 BOUNDARY INTEGRAL EQATIONS FOR THE PRIMAL AND
THE ADJOINT PROBLEMS

This chapter deals with the formulation of boundary integral equations to solve the primal
and the dual problems. It turns out that the representation formula for the adjoint problem
involves the primal variable as a volume density. We need to express this as a surface
potential so as to represent the control variable. This computation leads to the Bi–Stokes
system. The detailed calculation of the kernel function, i.e., the fundamental solution
V∗(x,y) for the Bi–Stokes system is given in Appendix A.

In order to prove the unique solvability of the proposed operator equation we need relations
among the boundary integral operators. For this we setup a Calderón projection and discuss
its properties. By using the invertibility of the single layer potential̂V of the Stokes system
we formulate the operatorTρ and the corresponding right hand side in terms of boundary
integral operators. We end this chapter by proving the unique solvability of the proposed
formulation.

4.1 Boundary integral equations for the primal problem

For simplicity we takeµ = 1 and recall the primal problem is

−∆u(x)+∇p(x) = f(x) for x∈ Ω,

∇ ·u(x) = 0 for x∈ Ω,

γ int
0 u(x) = z(x) for x∈ Γ.

The corresponding representation formula, forx∈ Ω andk = 1, . . . ,d, is

uk(x) =

∫

Γ

U∗
k(x,y)

⊤t (u(y), p(y))dsy−

∫

Γ

u(y)⊤T∗
k(x,y)dsy +

∫

Ω

f(y)⊤U∗
k(x,y)dy.

Applying the Dirichlet trace operator to the above representation formula we get the bound-
ary integral equation for the primal problem

(V̂t)(u, p) := (V̂t)(x) = (
1
2

I +K)z(x)−N0f(x) for x∈ Γ, (4.1)

whereV̂ andK are the boundary integral operators as defined in (2.33) and (2.20) respec-
tively, andN0 is the related Newton potential.

47
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4.2 Boundary integral equations for the adjoint problem

Recall the adjoint problem is

−∆w(x)+∇r(x) = u−u for x∈ Ω,

∇ ·w(x) = 0 for x∈ Ω,

γ int
0 w(x) = 0 for x∈ Γ.

The corresponding representation formula, forx∈ Ω andk = 1, . . . ,d, is

wk(x) =
∫

Γ

U∗
k(x,y)

⊤t(w(y), r(y))dsy−
∫

Γ

w(y)⊤︸ ︷︷ ︸
=0

T∗
k(x,y)dsy +

∫

Ω

(u(y)−u(y))⊤U∗
k(x,y)dy,

and therefore

wk(x) =

∫

Γ

U∗
k(x,y)

⊤t(w(y), r(y))dsy+

∫

Ω

u(y)⊤U∗
k(x,y)dy−

∫

Ω

u(y)⊤U∗
k(x,y)dy. (4.2)

Again by applying the Dirichlet trace operator, we have the first boundary integral equation
for the adjoint problem,

(V̂t)(w, r) := (V̂q)(x) = (N0u)(x)− (N0u)(x) for x∈ Γ. (4.3)

Remark 4.2.1. While the boundary integral equation for the primal problem(4.1)can be

used to determine the unknown Neumann datumt ∈ H−1/2
∗ (Γ), the corresponding traction

for the adjoint Dirichlet boundary value problem is given asthe solution of the boundary

integral equation(4.3). Then by usingτ = −q the controlz∈ H1/2
∗ (Γ) is determined from

the variational inequality(3.18). However , since the solutionu of the primal Dirichlet
boundary value problem enters the volume potential N0u in the boundary integral equation
of the adjoint problem, so in this case we have to solve a coupled system of domain and
boundary integral equations, which still would require some domain mesh. Instead we will
describe a system of only boundary integral equations to solve the adjoint boundary value
problem. In the next section we describe how to express this volume density as surface
potential.

4.3 Expressing the volume potential as a surface potential

For smooth(u, p) and(v,q), interchangeu andv in the Green’s first formula (2.11), with
∇ ·v = 0, to obtain

a(v,u) =
∫

Ω

q(x) div u(x)dx+ 〈−∆v+∇q,u〉Ω + 〈t(v,q),γ int
0 u〉Γ.
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From the symmetry of the bilinear form (2.10) we have

〈−∆u+∇p,v〉Ω + 〈t(u, p),γ int
0 v〉Γ = 〈−∆v+∇q,u〉Ω + 〈t(v,q),γ int

0 u〉Γ (4.4)

by requiring
−∆V∗

k(x,y)+∇Q∗
k(x,y) = U∗

k(x,y),

∇ ·V∗
k(x,y) = 0

(4.5)

with k= 1,2. HereV∗(x,y) can be calculated by considering the case of linear elastostatics
and by choosing a suitable ansatz, i.e.,

V∗(x,y) =

(
V∗

11(x,y) V∗
12(x,y)

V∗
21(x,y) V∗

22(x,y)

)
,

where

V∗
11(x,y) =

4
{
(y1−x1)

2+3(y2−x2)
2
}

log|x−y|−7(y1−x1)
2−17(y2−x2)

2

128π
,

V∗
12(x,y) = V∗

21(x,y) = −
(y1−x1)(y2−x2){(4log|x−y|−5}

64π
,

V∗
22(x,y) =

4
{

3(y1−x1)
2+(y2−x2)

2
}

log|x−y|−17(y1−x1)
2−7(y2−x2)

2

128π
.

For the detailed computation ofV∗(x,y) see Appendix A.

Now the expression for the volume potential in terms of surface potentials is given by
∫

Ω

u(y)⊤U∗
k(x,y)dy= 〈t(u, p),γ int

0 v〉Γ−〈t(v,q),γ int
0 u〉Γ +

∫

Ω

f(y)⊤V∗
k(x,y)dy, (4.6)

where the remaining volume potential includes given functions only.

Using (4.6) in (4.2), we obtain, so called, the modified representation formula for the
adjoint problem

wk(x) =
∫

Γ

U∗
k(x,y)

⊤t(w(y), r(y))dsy+
∫

Γ

V∗
k(x,y)

⊤t(u(y), p(y))dsy

−
∫

Γ

u(y)⊤T∗
k(x,y)dsy +

∫

Ω

f(y)⊤V∗
k(x,y)dy−

∫

Ω

u(y)⊤U∗
k(x,y)dy. (4.7)

We can now formulate the first boundary integral equation anda hypersingular bound-
ary integral equation for the adjoint problem by applying the trace operatorγ int

0 and the
boundary stress operator (2.12) to the representation formula (4.7)

(V̂q)(x) = (K1z)(x)− (V1t)(x)− (M0f)(x)+(N0u)(x) for x∈ Γ, (4.8)

q(x) = (
1
2

I +K′)q(x)+(K′
1t)(x)+(D1z)(x)

+(M1f)(x)− (N1u)(x) for x∈ Γ. (4.9)
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We have introduced the four basic boundary integral operators for the Bi–Stokes system.
V1, K1, K′

1 andD1 are the single layer, the double layer, the adjoint double layer and the hy-
persingular boundary integrals operators respectively for the system represented by (4.5),
where

(V1t)(x) =
∫

Γ

V∗(x,y)⊤t(u(y), p(y))dsy for x∈ Γ

is the Bi–Stokes single layer potential operatorV1 : H−3/2(Γ) → H3/2(Γ). Moreover,

(K1u)(x) =

∫

Γ

Ty(V∗(x,y))⊤u(y)dsy for x∈ Γ

is the Bi–Stokes double layer potential operatorK1 : H−1/2(Γ) → H3/2(Γ). Also

(K′
1u)(x) =

∫

Γ

Tx(V∗(x,y))⊤u(y)dsy for x∈ Γ

is the adjoint Bi–Stokes double layer potential operatorK′
1 : H−3/2(Γ) → H1/2(Γ) and

(D1u)(x) = −Tx





∫

Γ

(T′(V∗
k (x,y))⊤



u(y)dsy for x∈ Γ

is the Bi–Stokes hypersingular operatorD1 : H−1/2(Γ) → H1/2(Γ) In addition, we have
introduced another Newton potential which is related to thefundamental solution of Bi–
Stokes,

(M0f)(x) =

∫

Ω

f(y)⊤V∗(x,y)dy for x∈ Γ.

Remark 4.3.1.We have enough regularity of V∗(x,y) so that K1 and K′
1 do not involve any

jump terms.

The modified representation formula for the inhomogeneous adjoint problem is now given
by

wk(x) =
∫

Γ

U∗
k(x,y)

⊤t(w(y), r(y))dsy+
∫

Γ

V∗
k(x,y)

⊤t(u(y), p(y))dsy−
∫

Γ

u(y)⊤T∗
k(x,y)dsy

−
∫

Ω

w(y)⊤T∗
k(x,y)dsy +

∫

Ω

f(y)⊤V∗
k(x,y)dy−

∫

Ω

u(y)⊤U∗
k(x,y)dy. (4.10)

For the four basic boundary integral operators of the Bi-Stokes system (4.5), the following
hold.
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Lemma 4.3.1.The single layer potential V1 : H−3/2(Γ) → H3/2(Γ) is bounded, i.e.,

‖V1t‖H3/2(Γ) ≤ cV1
2 ‖t‖H−3/2(Γ) for all t ∈ H−3/2(Γ). (4.11)

Lemma 4.3.2.The double layer potential K1 : H−1/2(Γ) → H3/2(Γ) is bounded, i.e.,

‖K1z‖H3/2(Γ) ≤ cK1
2 ‖z‖H−1/2(Γ) for all z∈ H−1/2(Γ). (4.12)

Lemma 4.3.3.The adjoint double layer potential K′1 : H−3/2(Γ) → H1/2(Γ) is bounded,
i.e.,

∥∥K′
1t
∥∥

H1/2(Γ)
≤ c

K′
1

2 ‖t‖H−3/2(Γ) for all t ∈ H−3/2(Γ).

Lemma 4.3.4.The hypersingular boundary integral operator D1 : H−1/2(Γ) → H1/2(Γ)
is bounded, i.e.,

‖D1z‖H1/2(Γ) ≤ cD1
2 ‖z‖H−1/2(Γ) for all z∈ H−1/2(Γ).

Proof. See [37].

4.4 Calderón projector

Applying the trace operatorγ int
0 and the boundary stress operator (2.12) to both sides

of equations (4.10) and (2.16), we end up with the following overdetermined system of
boundary integral equations. Forx∈ Γ

γ int
0 w(x) = (

1
2

I −K)γ int
0 w(x)+ (V̂q)(x)− (K1γ int

0 u)(x)+ (V1t)(x)− (N0u)(x)+ (M0f)(x),

q(x) = (Dγ int
0 w)(x)+ (

1
2

I +K′)q(x)+ (D1γ int
0 u)(x)+ (K′

1t)(x)− (N1u)(x)+ (M1f)(x),

γ int
0 u(x) = (V̂t)(x)+ (

1
2

I −K)γ int
0 u(x)+ (N0f)(x),

t(x) = (
1
2

I +K′)t(x)+ (Dγ int
0 u)(x)+ (N1f)(x).

The above system of boundary integral equations can be written in a compact way, includ-
ing the so called Calderón projectionC,




γ int
0 w
q

γ int
0 u
t


=




1
2I −K V̂ −K1 V1

D 1
2I +K′ D1 K′

1
0 0 1

2I −K V̂
0 0 D 1

2I +K′







γ int
0 w
q

γ int
0 u
t


+




M0f−N0u
M1f−N1u

N0f
N1f


 . (4.13)

Here we state the following lemma.
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Lemma 4.4.1. If

C =




1
2I −K V̂ −K1 V1

D 1
2I +K′ D1 K′

1
0 0 1

2I −K V̂
0 0 D 1

2I +K′


 ,

thenC = C2, i.e.,C is a projection.

Proof. Let φ , φ̃ ∈ H1/2(Γ) andψ, ψ̃ ∈ H−1/2(Γ) are arbitrary, but fixed. For̃x∈ Ω, define

w(x̃) := (
˜̂Vψ)(x̃)− (Wφ)(x̃)+(Ṽ1ψ̃)(x̃)− (K1φ̃)(x̃),

u(x̃) := (
˜̂Vψ̃)(x̃)− (Wφ̃)(x̃).

Apply the Dirichlet trace operatorγ int
0 and the boundary stress operator (2.12), we have the

following system. Forx∈ Γ

γ int
0 w(x) = (

1
2

I −K)φ(x)+(V̂ψ)(x)− (K1φ̃)(x)+(V1ψ̃)(x),

q(x) = (
1
2

I +K′)ψ(x)+(Dφ)(x)+(D1φ̃)(x)+(K′
1ψ̃)(x),

γ int
0 u(x) = (

1
2

I −K)φ̃(x)+(V̂ψ̃)(x),

t(x) = (Dφ̃)(x)+(
1
2

I +K′)ψ̃(x),

or



γ int
0 w(x)
q(x)

γ int
0 u(x)
t(x)


=




1
2I −K V̂ −K1 V1

D 1
2I +K′ D1 K′

1
0 0 1

2I −K V̂
0 0 D 1

2I +K′







φ(x)
ψ(x)
φ̃(x)
ψ̃(x)


 . (4.14)

Also the homogeneous form of equation (4.13) is



γ int
0 w(x)
q(x)

γ int
0 u(x)
t(x)


=




1
2I −K V̂ −K1 V1

D 1
2I +K′ D1 K′

1
0 0 1

2I −K V̂
0 0 D 1

2I +K′







γ int
0 w(x)
q(x)

γ int
0 u(x)
t(x)


 , (4.15)

using (4.14) on both sides of (4.15), we have

C




φ(x)
ψ(x)
φ̃(x)
ψ̃(x)


= C2




φ(x)
ψ(x)
φ̃(x)
ψ̃(x)


 .

and thereforeC = C2 holds. Hence the lemma is proved.
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As a direct consequence of the Calderón projection, we statethe following lemma.

Lemma 4.4.2.For all boundary integral operators, there hold the relations

V̂K′ = KV̂, K′D = DK, V̂D =
1
4

I −K2, DV̂ =
1
4

I −K′2, (4.16)

K1V̂ −V1K′ = V̂K′
1−KV1, (4.17)

K′D1−D1K = DK1−K′
1D, (4.18)

DV1+D1V̂ +K′K′
1 +K′

1K′ = 0, (4.19)

V̂D1+V1D+KK1+K1K = 0. (4.20)

Proof.

Let C =




1
2I −K V̂ −K1 V1

D 1
2I +K′ D1 K′

1
0 0 1

2I −K V̂
0 0 D 1

2I +K′


=

(
W T
O W

)
,

where

W =

(
1
2I −K V̂

D 1
2I +K′

)
; T =

(
−K1 V1

D1 K′
1

)
and O =

(
0 0
0 0

)
.

SinceC is a projection, i.e.,C = C2, so
(

W T
O W

)
=

(
W T
O W

)(
W T
O W

)
=

(
W2 WT+TW
O W2

)
.

Now,W = W2 gives
(

1
2I −K V̂

D 1
2I +K′

)
=

(
(1

2I −K)2+V̂D 1
2V̂ −KV̂ + 1

2V̂ +V̂K′

1
2D−DK + 1

2D+K′D DV̂ +(1
2I +K′)2

)
.

Equating the entry in the first row on both sides, we have

1
2

I −K = (
1
2

I −K)2 +V̂D,

V̂D =
1
4

I −K2 = (
1
2

I −K)(
1
2

I +K).

Similarly on equating the entries in the first row and second column on both sides, we have

V̂ =
1
2
V̂ −V̂K+

1
2
V̂ +V̂K′,

V̂K′ = KV̂,

V̂−1V̂K′ = V̂−1KV̂,

K′ = V̂−1KV̂,

K′V̂−1 = V̂−1KV̂V̂−1,

K′V̂−1 = V̂−1K,
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the other two results can be proved by equating the corresponding entries on both sides.

Again the last four results can be proved by takingT = WT+TW and equating the corre-
sponding entries, i.e.,

−K1 = −K1 +KK1 +V̂D1 +K1K +V1D,

V̂D1 +V1D+KK1 +K1K = 0.

Similarly, the other three results can be proved easily.

Remark 4.4.1. All results presented in lemma 4.4.2 are well known for the Laplace oper-
ator, see, e.g., [63] and for the Bi–Laplace operator, see also [59].

4.5 Non–symmetric form of the coupled problem

Formulation

The first boundary integral equations for the primal problemand that of the adjoint problem
is the following system

(V̂t)(x) = (
1
2

I +K)z(x)− (N0f)(x) for x∈ Γ,

(V̂q)(x) = (K1z)(x)− (V1t)(x)− (M0f)(x)+(N0u)(x) for x∈ Γ.
(4.21)

As the single layer potential̂V is invertible, we have from the first equation of system
(4.21)

t = V̂−1(
1
2

I +K)z−V̂−1N0f, (4.22)

by the same argument as above, the second equation of the system (4.21) gives

q = V̂−1K1z−V̂−1V1t−V̂−1M0f +V̂−1N0u

= V̂−1K1z−V̂−1V1

[
V̂−1(

1
2

I +K)z−V̂−1N0f
]
−V̂−1M0f +V̂−1N0u,

and therefore,

q = V̂−1K1z−V̂−1V1V̂
−1(

1
2

I +K)z+V̂−1V1V̂
−1N0f−V̂−1M0f +V̂−1N0u. (4.23)

Usingq = ρAz and rearranging the terms, we have

ρA−V̂−1K1z+V̂−1V1V̂
−1(

1
2

I +K)
︸ ︷︷ ︸

Tρ

z = V̂−1V1V̂
−1N0f−V̂−1M0f +V̂−1N0u︸ ︷︷ ︸

g

.
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By replacingτ = −q in (3.18) we therefore obtain a boundary integral representation of
Tρ as defined in (3.15),

Tρ := ρA−V̂−1K1+V̂−1V1V̂
−1(

1
2

I +K), (4.24)

and the corresponding right hand side as defined in (3.16), is

g := V̂−1V1V̂
−1N0f−V̂−1M0f +V̂−1N0u. (4.25)

Unique solvability

In order to prove the ellipticity of the boundary integral operatorTρ as defined in (4.24),
we need to prove the following result.

Lemma 4.5.1.For anyt ∈ H−1/2
∗ (Γ) there holds the equality

‖Ṽt‖2
L2(Ω) = 〈V1(

1
2

I +K′)t, t〉Γ −〈K1V̂t, t〉Γ,

where

(Ṽt)(x) =
∫

Γ

U∗(x,y)⊤t(y)dsy for x∈ Ω.

Proof. First note that̂Vt = Vt for t ∈ H−1/2
∗ (Γ). For the homogeneous Stokes system, the

equation (4.4) reads

〈t(u, p),γ int
0 v〉Γ = 〈−∆v+∇q,u〉Ω + 〈t(v,q),γ int

0 u〉Γ. (4.26)

Note that ( See [63], page 100 )

T∗
k(x,y) : = γ int

1,yV
∗
k(x,y),

= λ divyV∗
k(x,y)n(y)+2µ

∂
∂ny

V∗
k(x,y)+ µn(y)×CurlyV∗

k(x,y).

Ford = 2, we make use of the following relation

divyV∗
k(x,y) =

1
E

1+ν
1−ν

2(2ν −1)
1

4π
y2−x2

|x−y|2

=
1
E

1+ν
1−ν

2(2ν −1)Q∗
k(x,y)

On using the divergence free property of the Bi–Stokes system (4.5), we findQ∗
k(x,y) = 0,

so (4.5) becomes
−∆V∗

k(x,y) = U∗
k(x,y), ∇ ·V∗

k(x,y) = 0.
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Further forv = Ṽ1t we see

−∆xv(x)+∇q(x) = −∆x(Ṽ1t(x))+0,

= −∆x

∫

Γ

V∗
k(x,y)

⊤t(y)dsy,

= −
∫

Γ

∆xV∗
k(x,y)

⊤t(y)dsy, (x∈ Ω, y∈ Γ)

=
∫

Γ

U∗
k(x,y)

⊤t(y)dsy = (Ṽt)(x) for x∈ Ω.

Since the single layer potential is a solution of the homogeneous Stokes system, so for
u = Ṽt andv = Ṽ1t the equation (4.26) reads

〈Ṽt,Ṽt〉Ω =

∫

Γ

[
1
2

t(y)+(K′t)(y)
]
(V1t)(y)dsy−

∫

Γ

(K′
1t)(y)(V̂t)(y)dsy,

‖Ṽt‖2
L2(Ω) = 〈

1
2

t +K′t,V1t〉Γ −〈K′
1t,V̂t〉Γ,

‖Ṽt‖2
L2(Ω) = 〈V1(

1
2

I +K′)t, t〉Γ −〈t,K1V̂t〉Γ,

which proves the desired result.

Now we are able to state the mapping properties of the boundary integral operatorTρ as
defined in (4.24), see also the properties ofTρ as defined in (3.15)

Theorem 4.5.1.The composed boundary integral operator

Tρ := ρA−V̂−1K1+V̂−1V1V̂
−1(

1
2

I +K) : H1/2
∗ (Γ) → H−1/2

∗ (Γ)

is self–adjoint, bounded and H1/2
∗ (Γ)–elliptic, i.e.,

〈Tρz,z〉 ≥ c
Tρ
1 ‖z‖2

H1/2
∗ (Γ)

for all z∈ H1/2
∗ (Γ).

Proof. We note that the mapping properties of the composed boundaryintegral operator
Tρ : H1/2

∗ (Γ) → H−1/2
∗ (Γ) will follow from the boundedness of all used boundary integral

operators. Further, we have the compact embedding of theH3/2
∗ (Γ) in H1/2

∗ (Γ).

Next we will show the self–adjointness ofTρ . We note that̂V,V̂−1 andV1 are all self

adjoint. Foru,v ∈ H1/2
∗ (Γ) we have

〈Tρu,v〉Γ = 〈ρAu,v〉Γ−〈V̂−1K1u,v〉Γ +
1
2
〈V̂−1V1V̂

−1u,v〉Γ + 〈V̂−1V1V̂
−1Ku,v〉Γ

= 〈u,ρAv〉Γ −〈u,K′
1V̂

−1v〉Γ +
1
2
〈u,V̂−1V1V̂

−1v〉Γ + 〈u,K′V̂−1V1V̂
−1v〉Γ

= 〈u,ρAv〉Γ +
1
2
〈u,V̂−1V1V̂

−1v〉Γ + 〈u,
(

K′V̂−1V1V̂
−1−K′

1V̂
−1
)

v〉Γ.
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Now on using the relations (4.16) and (4.17)

K′V̂−1V1V̂
−1−K′

1V̂
−1 = V̂−1KV1V̂

−1−K′
1V̂

−1

= V̂−1
[
KV1−V̂K′

1

]
V̂−1

= V̂−1
[
V1K′−K1V̂

]
V̂−1

= V̂−1V1K′V̂−1−V̂−1K1V̂V̂−1

= V̂−1V1K′V̂−1−V̂−1K1.

We finally get

〈Tρu,v〉Γ = 〈u,ρAv〉Γ +
1
2
〈u,V̂−1V1V̂

−1v〉Γ + 〈u,
(
V̂−1V1K′V̂−1−V̂−1K1

)
v〉Γ

= 〈u,ρAv〉Γ + 〈u,

(
V̂−1V1V̂

−1(
1
2

I +K)−V̂−1K1

)
v〉Γ

= 〈u, [ρA+V̂−1V1V̂
−1(

1
2

I +K)−V̂−1K1]v〉Γ,

〈Tρu,v〉Γ = 〈u,Tρv〉Γ.

HenceTρ is self–adjoint. Moreover, forz∈ H1/2
∗ (Γ) we have, by using (4.16),t = V̂−1z,

and by Lemma 4.5.1

〈Tρz,z〉Γ = 〈ρAz,z〉Γ + 〈V̂−1V1V̂
−1(

1
2

I +K)z,z〉Γ−〈V̂−1K1z,z〉Γ

= 〈ρAz,z〉Γ + 〈V1V̂
−1(

1
2

I +K)z,V̂−1z〉Γ −〈K1z,V̂−1z〉Γ

= 〈ρAz,z〉Γ + 〈V1(
1
2

I +K′)V̂−1z,V̂−1z〉Γ −〈K1V̂V̂−1z,V̂−1z〉Γ

= 〈ρAz,z〉Γ + 〈V1(
1
2

I +K′)t, t〉Γ−〈K1V̂t, t〉Γ

= 〈ρAz,z〉Γ +
∥∥∥Ṽt

∥∥∥
2

L2(Ω)
,

〈Tρz,z〉Γ ≥ ρ ‖z‖2
A ,

i.e., theH1/2
∗ (Γ)–ellipticity of Tρ , due to the fact that‖.‖A defines an equivalent norm in

H1/2
∗ (Γ). Hence the theorem is proved.
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In this chapter we describe a Galerkin boundary element discretization of the boundary
integral equations. Due to the composition of the boundary integral operatorTρ as defined
in (4.24), we are unable to apply a direct boundary element discretization. Instead we in-
troduce a suitable boundary element approximation of the operator. Necessary estimates
for the boundedness and the error of the approximated operator follow next. We also
discuss the boundary element approximation of the right hand side along with the error
estimate caused by this approximation. Finally we discuss the perturbed Galerkin varia-
tional formulation for the non–symmetric case and setup theSchur complement system in
the control variable for this perturbed system. We use two different meshes to discretize
the controlz and the tractionst andq. We describe the necessary condition on the two
meshes so that the resulting approximate Schur complement system is positive definite.

5.1 Galerkin boundary element discretization

Let

S1
H(Γ) = span{Φi}

M
i=1 ⊂ H1/2(Γ),

be some boundary element space, i.e., piecewise linear and continuous basis functionsΦi
which are defined with respect to a globally quasi–uniform and shape regular boundary
element mesh of sizeH. Define the discrete convex set

UH :=



wH ∈ S1

H(Γ) : ga(xi) ≤ wH(xi) ≤ gb(xi) for all nodesxi ∈ Γwith
∫

Γ

n⊤wHdsx = 0



 .

The Galerkin discretization of the variational inequality(3.17) is to findzH ∈ UH such
that

〈TρzH ,wH −zH〉Γ ≥ 〈g,wH −zH〉Γ for all wH ∈ UH . (5.1)

Theorem 5.1.1.Letz∈ U andzH ∈ UH be the unique solutions of the variational inequal-
ities (3.17)and (5.1), respectively. If we assumez,ga,gb ∈ Hs(Γ) for some s∈ [1/2,2],
then there hold the error estimates

‖z−zH‖H1/2(Γ) ≤ cHs−1/2‖z‖Hs(Γ) , (5.2)

and

‖z−zH‖L2(Γ) ≤ cHs‖z‖Hs(Γ) . (5.3)

59
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Proof. The error estimate (5.2) in the energy norm follows from the general abstract theory
as presented, e.g., in [11, 21], see also [24]. The error estimate (5.3) follows from the
Aubin–Nitsche trick for variational inequalities, see [51] for the caseUH ⊂U , and [64] for
the more general caseUH 6⊂ U .

Although the error estimates (5.2) and (5.3) seem to be optimal, the operatorTρ , as con-
sidered in the variational inequality (5.1), does not allowa practical implementation. This
would require the discretization of the operatorTρ as defined in (4.24), which is not possi-
ble in general due the presence of an inverse operator. Hence, instead of (5.1) we need to
consider a perturbed variational inequality to findz̃H ∈ UH such that

〈T̃ρ z̃H ,wH − z̃H〉Γ ≥ 〈g̃,wH − z̃H〉Γ for all wH ∈ UH , (5.4)

whereT̃ρ andg̃ are appropriate approximations ofTρ andg, respectively. The following
theorem, see, e.g., [53], presents an abstract consistencyresult, which will later be used
to analyze the boundary element approximation of both the primal and adjoint boundary
value problems.

Theorem 5.1.2.Let T̃ρ : H1/2
∗ (Γ) → H−1/2

∗ (Γ) be a bounded and S1
H(Γ)–elliptic approxi-

mation of Tρ satisfying

〈T̃ρzH ,zH〉Γ ≥ c
T̃ρ
1 ‖zH‖

2
H1/2(Γ) for all zH ∈ S1

H(Γ),

and
∥∥∥T̃ρz

∥∥∥
H−1/2(Γ)

≤ c
T̃ρ
2 ‖z‖H1/2(Γ) for all z∈ H1/2

∗ (Γ).

Let g̃ ∈ H−1/2
∗ (Γ) be some approximation ofg. For the unique solutioñzH ∈ UH of the

perturbed variational inequality(5.4) there holds the error estimate

‖z− z̃H‖H1/2(Γ) ≤ c1‖z−zH‖H1/2(Γ) +c2

[∥∥∥(Tρ − T̃ρ)z
∥∥∥

H−1/2(Γ)
+‖g− g̃‖H−1/2(Γ)

]
(5.5)

wherezH ∈ UH is the unique solution of the discrete variational inequality (5.1).

5.2 Boundary element approximation of Tρ

For an arbitrary but fixedz∈ H1/2
∗ (Γ), the application ofTρz reads

Tρz = ρAz+V̂−1V1V̂−1(
1
2

I +K)
︸ ︷︷ ︸

tz

z−V̂−1K1

︸ ︷︷ ︸
qz

z,

Tρz = ρAz+qz,
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whereqz, tz∈ H−1/2
∗ (Γ) are the unique solutions of the boundary integral equations

V̂qz = V1tz−K1z, V̂tz = (
1
2

I +K)z. (5.6)

Now, to define a Galerkin approximation of (5.6), let

S0
h(Γ) = span{Ψk}

N
k=1 ⊂ H−1/2(Γ)

be some boundary element space, e.g., of piecewise constantbasis functionsΨi which
are defined with respect to a second globally quasi–uniform and shape regular boundary
element mesh of sizeh. Now, tz,h ∈ S0

h(Γ) is the unique solution of the Galerkin formula-
tion

〈V̂tz,h,τh〉 = 〈(
1
2

I +K)z,τh〉 for all τh ∈ S0
h(Γ). (5.7)

Moreover,̃qz,h ∈ S0
h(Γ) is the unique solution of the Galerkin formulation

〈V̂q̃z,h,τh〉 = 〈V1tz,h−K1z,τh〉 for all τh ∈ S0
h(Γ). (5.8)

Hence we can define an approximationT̃ρ of the operatorTρ by

T̃ρz: = ρAz+ q̃z,h. (5.9)

Now we describe some properties of the approximate operatorT̃ρ , as defined in (5.9).

Lemma 5.2.1.The approximate operator

T̃ρ : H1/2
∗ (Γ) → H−1/2

∗ (Γ)

as defined in(5.9) is bounded, i.e.,

‖T̃ρz‖H−1/2(Γ) ≤ c
T̃ρ
2 ‖z‖H1/2(Γ) for all z∈ H1/2

∗ (Γ).

Proof. Takeτh = tz,h in (5.7), we have

〈V̂tz,h, tz,h〉 = 〈(
1
2

I +K)z, tz,h〉,

further use theH−1/2(Γ)–ellipticity of the single layer potential̂V and the boundedness of
the double layer potential, see [63, page 72 ff]

‖tz,h‖H−1/2(Γ) ≤
1

cV̂
1

‖(
1
2

I +K)z‖H1/2(Γ) ≤
cK

2

cV̂
1

‖z‖H1/2(Γ).

Again from (5.8), takeτh = q̃z,h, and use the same argument as above , we have

‖q̃z,h‖H−1/2(Γ) ≤
1

cV̂
1

‖V1tz,h−K1z‖H1/2(Γ),
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use the triangle inequality and the factH3/2(Γ) →֒ H1/2(Γ)

‖q̃z,h‖H−1/2(Γ) ≤
1

cV̂
1

{
‖V1tz,h‖H3/2(Γ) +‖K1z‖H3/2(Γ)

}
. (5.10)

Now using (4.11) and (4.12) in (5.10), we have

‖q̃z,h‖H−1/2(Γ) ≤
1

cV̂
1

{
cV1

2 ‖tz,h‖H−3/2(Γ) +cK1
2 ‖z‖H−1/2(Γ)

}
.

The assertion now follows fromH1/2(Γ) ⊂ H−1/2(Γ) andH−1/2(Γ) ⊂ H−3/2(Γ).

Lemma 5.2.2.There holds the error estimate

∥∥∥Tρz− T̃ρz
∥∥∥

H−1/2(Γ)
≤

cV̂
2

cV
1

inf
τH∈S0

h

‖qz− τh‖H−1/2(Γ) +
cV1

2

cV̂
1

‖tz− tz,h‖H−3/2(Γ), (5.11)

where Tρ : H1/2
∗ (Γ) → H−1/2

∗ (Γ) is given in (4.24) and T̃ρ is defined by(5.9), qz, tz ∈

H−1/2
∗ (Γ) are defined in(5.6)and tz,h ∈ S0

h(Γ) is the unique solution of the Galerkin vari-
ational problem(5.7).

Proof. Let z ∈ H1/2
∗ (Γ) be arbitrary but a fixedly chosen element of the control space.

Then by definition

Tρz = ρAz+qz,

T̃ρz = ρAz+ q̃z,h,

and therefore
∥∥∥Tρz− T̃ρz

∥∥∥
H−1/2(Γ)

=
∥∥qz− q̃z,h

∥∥
H−1/2(Γ)

.

Also

qz = V̂−1 [V1tz−K1z] , tz = V̂−1(
1
2

I +K)z,

in particulartz ∈ H−1/2(Γ) is the unique solution of the variational problem

〈V̂tz,τ〉 = 〈(
1
2

I +K)z,τ〉 for all τ ∈ H−1/2(Γ),

andqz ∈ H−1/2(Γ) is the unique solution of the variational problem

〈V̂qz,τ〉 = 〈V1tz,τ〉−〈K1z,τ〉 for all τ ∈ H−1/2(Γ).
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By using the definition of̃Tρz, we note that̃qz,h is the unique solution of the variational
formulation

〈V̂q̃z,hτh〉 = 〈V1tz,hτ〉−〈K1z,τh〉 for all τh ∈ S0
h(Γ),

andtz,h is the unique solution of the variational problem

〈V̂tz,hτh〉 = 〈(
1
2

I +K)z,τh〉 for all τh ∈ S0
h(Γ).

By applying Cea’s lemma, we first get the error estimate

‖tz− tz,h‖H−1/2(Γ) ≤
cV̂

2

cV̂
1

inf
τh∈S0

h(Γ)
‖tz− τh‖H−1/2(Γ).

Let us further defineqz,h ∈ S0
h(Γ) as the unique solution of the variational problem

〈V̂qz,h,τh〉Γ = 〈V1tz,τh〉−〈K1z,τh〉 for all τh ∈ S0
h(Γ). (5.12)

Again by using Cea’s lemma, we have

‖qz−qz,h‖H−1/2(Γ) ≤
cV̂

2

cV̂
1

inf
τh∈S0

h(Γ)
‖qz− τh‖H−1/2(Γ). (5.13)

We obtain a perturbed Galerkin orthogonality after subtracting (5.8) from (5.12)

〈V̂(qz,h− q̃z,h),τh〉Γ = 〈V1(tz− tz,h),τh〉Γ for all τh ∈ S0
h(Γ).

From this perturbed Galerkin orthogonality, we further conclude the stability estimate

‖qz,h− q̃z,h‖H−1/2(Γ) ≤
1

cV̂
1

‖V1(tz− tz,h‖H1/2(Γ)

≤
1

cV̂
1

‖V1(tz− tz,h‖H3/2(Γ)

≤
cV1

2

cV̂
1

‖tz− tz,h‖H−3/2(Γ). (5.14)

Here we have used the factH3/2(Γ) →֒ H1/2(Γ) and the boundedness ofV1. Now by using
the triangle inequality, the estimates (5.13) and (5.14), we have

‖qz− q̃z,h‖H−1/2(Γ) = ‖(qz−qz,h)− (q̃z,h−qz,h)‖H−1/2(Γ)

≤ ‖qz−qz,h‖H−1/2(Γ) +‖q̃z,h−qz,h‖H−1/2(Γ)

≤
cV̂

2

cV̂
1

inf
τh∈S0

h(Γ)
‖qz− τh‖H−1/2(Γ) +

cV1
2

cV̂
1

‖tz− tz,h‖H−3/2(Γ).

Hence we get the required estimate.
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Remark 5.2.1. By using the approximation property of the trial space S0
h(Γ) and the

Aubin–Nitsche trick, we can conclude the following error estimate from(5.11), when as-
suming some regularity onqz and tz

Corollary 5.2.1. We assumeqz, tz∈ Hs
pw(Γ) for some s∈ [0,1]. Then there holds the error

estimate

‖Tρz− T̃ρz‖H−1/2(Γ) ≤ c1hs+1/2‖qz‖Hs
pw(Γ) +c2hs+3/2‖tz‖Hs

pw(Γ). (5.15)

5.3 Boundary element approximation of the right hand side

As we have defined an approximation of the operatorTρ , on similar lines we can also
define an approximation of the right hand sideg as defined in (4.25),

g := V̂−1N0u−V̂−1M0f +V̂−1V1V̂
−1N0f

In particular,g∈ H−1/2(Γ) is the unique solution of the variational problem

〈V̂g,τ〉Γ = 〈N0u−M0f +V1V̂
−1N0f,τ〉Γ = 〈N0u−M0f,τ〉Γ + 〈V1t f ,τ〉Γ

for all τ ∈ H−1/2(Γ), wheret f = V̂−1N0f ∈ H−1/2(Γ) solves the variational problem

〈V̂t f ,τ〉Γ = 〈N0f,τ〉Γ for all τ ∈ H−1/2(Γ).

Hence we define the boundary element approximationg̃h ∈ S0
h(Γ) as the unique solution

of the Galerkin variational problem

〈V̂g̃h,τh〉Γ = 〈N0u−M0f +V1V̂
−1N0f,τh〉Γ = 〈N0u−M0f,τh〉Γ + 〈V1t f ,h,τh〉Γ (5.16)

for all τh ∈ S0
h(Γ), wheret f ,h ∈ S0

h(Γ) is the unique solution of the Galerkin problem

〈V̂t f ,h,τh〉Γ = 〈N0f,τh〉Γ for all τh ∈ S0
h(Γ). (5.17)

Lemma 5.3.1.Letg be the right hand side as defined by(4.25)and letg̃h be the boundary
element approximation as defined in(5.16). Then there holds the error estimate

‖g− g̃h‖H−1/2(Γ) ≤
cV̂

2

cV̂
1

inf
τh∈S0

h(Γ)
‖g− τh‖H−1/2(Γ) +

cV1
2

cV̂
1

‖t f − t f ,h‖H−3/2(Γ). (5.18)

Proof. In addition to (5.16), let us consider the Galerkin formulation to find gh ∈ S0
h(Γ)

such that

〈V̂gh,τh〉Γ = 〈N0u−M0f,τh〉Γ + 〈V1t f ,τh〉Γ for all τh ∈ S0
h(Γ). (5.19)
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Again by using Cea’s lemma we have

‖g−gh‖H−1/2(Γ) ≤
cV̂

2

cV̂
1

inf
τh∈S0

h(Γ)
‖g− τh‖H−1/2(Γ). (5.20)

We obtain a perturbed Galerkin orthogonality after subtracting (5.16) from (5.19), i.e.,

〈V̂(gh− g̃h),τh〉Γ = 〈V1(t f − t f ,h),τh〉Γ for all τh ∈ S0
h(Γ).

Forτh = gh− g̃h, using theH−1/2
∗ (Γ)–ellipticity of V̂, the boundedness estimate ofV1 and

the factH3/2(Γ) →֒ H1/2(Γ) , we get

‖gh− g̃h‖H−1/2(Γ) ≤
1

cV̂
1

‖V1(tf − t f ,h)‖H1/2(Γ),

≤
1

cV̂
1

‖V1(t f − t f ,h)‖H3/2(Γ),

≤
cV1

2

cV̂
1

‖tf − t f ,h‖H−3/2(Γ). (5.21)

By the triangle inequality we have

‖g− g̃h‖H−1/2(Γ) ≤ ‖g−gh‖H−1/2(Γ) +‖g̃h−gh‖H−1/2(Γ) . (5.22)

By using (5.20) and (5.21) in (5.22), the assertion follows.

Remark 5.3.1. By using the approximation property of the trial space S0
h(Γ) and the

Aubin–Nitsche trick, we can conclude the following error estimate from(5.18)when as-
suming some regularity ong andt f .

Corollary 5.3.1. We assumeg, t f ∈ Hs
pw(Γ) for some s∈ [0,1]. Then there holds the error

estimate

‖g− g̃h‖H−1/2(Γ) ≤ c1hs+1/2‖g‖Hs
pw(Γ) +c2hs+3/2‖t f ‖Hs

pw(Γ). (5.23)

5.4 Approximate variational inequality

We consider the variational inequality (3.18) withτ = −q to find z∈ U such that

〈ρAz−q,w−z〉Γ ≥ 0 for all w ∈ U , (5.24)

whereq ∈ H−1/2
∗ (Γ) is the unique solution of the boundary integral equation

(V̂q)(x) = (K1z)(x)− (V1t)(x)− (M0f)(x)+(N0u)(x) for x∈ Γ,
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andt ∈ H−1/2
∗ (Γ) is the unique solution of the boundary integral equation

(V̂t)(x) = (
1
2

I +K)z(x)− (N0f)(x) for x∈ Γ.

The Galerkin boundary element approximation of the variational inequality (5.24), and
therefore the boundary element discretization of the perturbed variational inequality (5.4)
is to find z̃H ∈ UH such that

〈ρAz̃H −qh,wH − z̃H〉Γ ≥ 0 for all wH ∈ UH , (5.25)

whereqh ∈ S0
h(Γ) is the unique solution of the Galerkin formulation

〈V̂qh,τh〉Γ = 〈K1̃zH −V1th−M0f +N0u,τh〉Γ for all τh ∈ S0
h(Γ), (5.26)

andth ∈ S0
h(Γ) solves

〈V̂th,τh〉Γ = 〈(
1
2

I +K)z̃H −N0f,τh〉Γ for all τh ∈ S0
h(Γ). (5.27)

The Galerkin formulation (5.26) is equivalent to the linearsystem

V̂hq = K1,hz−V1,ht + f1,

and (5.27) is equivalent to

V̂ht = (
1
2

Mh+Kh)z̃− f2,

where

V̂h [ℓ,k] = 〈V̂Ψk,Ψℓ〉Γ, Kh [ℓ, i] = 〈KΦi ,Ψℓ〉Γ, V1,h [ℓ,k] = 〈V1Ψk,Ψℓ〉Γ,

K1,h [ℓ, i] = 〈K1Φi ,Ψℓ〉Γ, AH [ j, i] = 〈AΦi ,Φ j〉Γ, Mh [ℓ, i] = 〈Φi ,Ψℓ〉Γ,

and

f1,ℓ = 〈N0u−M0f,Ψℓ〉Γ, f2,ℓ = −〈N0f,Ψℓ〉Γ,

for k, ℓ = 1, . . . ,2mh andi, j = 1, . . . ,2nh. Recall that we have used vector valued piecewise
linear basis functionsΦi and piecewise constant basis functionsΨk.

The matrix representation of the variational inequality (5.25) is then given by the discrete
variational inequality

(ρAH z̃−M⊤
h q,w− z̃) ≥ 0 for all w ∈ R

M ↔ wH ∈ UH ,

or

(T̃ρ,H z̃− g̃,w− z̃) ≥ 0 for all w ∈ R
M ↔ wH ∈ UH , (5.28)
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where

T̃ρ,H = ρAH +M⊤
h V̂−1

h V1,hV̂
−1
h (

1
2

Mh+Kh)−M⊤
h V̂−1

h K1,h (5.29)

defines a non–symmetric Galerkin boundary element approximation of the self–adjoint
boundary integral operatorTρ as defined in (4.24). Moreover,

g̃ = M⊤
h V̂−1

h (f1−V1,hV̂
−1
h f2)

is a boundary element approximation ofg as defined in (4.25), where

f1 := N0u−M0f, f2 := −N0f.

Theorem 5.4.1.The approximate Schur complementT̃ρ,H as defined in(5.29) is positive
definite,i.e.,

(
T̃ρ,Hz,z

)
≥

1
2

c
T̃ρ
1 ‖zH‖

2
H1/2(Γ)

,

for all z∈ R
M ↔ zH ∈ S1

H(Γ), if h ≤ c0H is sufficiently small.

Proof. For an arbitrary, but fixedz ∈ R
M, let zH ∈ S1

H(Γ) be the associated boundary
element function. Then we have(

T̃ρ,Hz,z
)

= 〈T̃ρzH ,zH〉Γ = 〈(Tρ − (Tρ − T̃ρ))zH ,zH〉Γ,

= 〈TρzH ,zH〉Γ−〈(Tρ − T̃ρ))zH,zH〉Γ,

≥ c
Tρ
1 ‖zH‖

2
H1/2(Γ)−

∥∥∥(Tρ − T̃ρ)zH

∥∥∥
H−1/2(Γ)

‖zH‖H1/2(Γ) .

We note thatzH ∈ H1(Γ) aszH ∈ S1
H(Γ) is a continuous function. Hence we find from

equations (5.7) and (5.8) that bothtzH andqzH are inL2(Γ). Therefore we can apply the
error estimate (5.15) fors= 0 to obtain

‖TρzH − T̃ρzH‖H−1/2(Γ) ≤ c1h1/2‖qzH‖L2(Γ) +c2h3/2‖tzH‖L2(Γ) ≤ c3h1/2‖zH‖H1(Γ) .

Now by applying the inverse inequality forS1
H(Γ) we get

‖zH‖H1(Γ) ≤ cI H
−1/2‖zH‖H1/2(Γ) ,

so we get
∥∥∥TρzH − T̃ρzH

∥∥∥
H−1/2(Γ)

≤ c3cI

(
h
H

)1/2

‖zH‖H1/2(Γ) .

Hence, we finally get

(
T̃ρ,HzH ,zH

)
≥ c

Tρ
1 ‖zH‖

2
H1/2(Γ)−c3cI

(
h
H

)1/2

‖zH‖
2
H1/2(Γ) ,

≥

[
c

Tρ
1 −c3cI

(
h
H

)1/2
]
‖zH‖

2
H1/2(Γ) ≥

1
2

c
Tρ
1 ‖zH‖

2
H1/2(Γ) ,

if c3cI
( h

H

)1/2
≤ 1

2c
Tρ
1 is satisfied.
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Now we are in a position to apply Theorem 5.4.1 to ensure the unique solvability of the
perturbed variational inequality (5.25), and to derive related error estimates.

Corollary 5.4.1. When combining the error estimate(5.5)with the approximation property
of the ansatz space S1

H(Γ), and with the error estimates(5.15)and(5.23), we finally obtain
the error estimate

‖z− z̃H‖H1/2(Γ) ≤ c1Hs+1/2‖z‖H1+s(Γ) + c2hs+1/2‖qz‖Hs
pw(Γ) +c3hs+3/2‖tz‖Hs

pw(Γ)

+c4hs+1/2‖g‖Hs
pw(Γ) +c5hs+3/2‖t f ‖Hs

pw(Γ),

when assumingz∈ H1+s(Γ) andqz, tz, g, t f ∈ Hs
pw(Γ) for some s∈ [0,1]. For h≤ c0H we

therefore obtain the error estimate

‖z− z̃H‖H1/2
∗ (Γ)

≤ c(z,u, f)Hs+1/2. (5.30)

Further, we are able to derive an error estimate in L2(Γ), i.e.,

‖z− z̃H‖L2(Γ) ≤ c(z,u, f)Hs+1, (5.31)

when applying the Aubin–Nitsche trick.

In the particular case of a non–constrained minimization problem, instead of the discrete
variational inequality (5.28) we have to solve the linear system

T̃ρ,H z̃ = g̃,

which is equivalent to the system




V1,h V̂h −K1,h

V̂h 0 −(1
2Mh+Kh)

0 −M⊤
h ρAH






t
q
z̃


=




N0u−M0f
−N0f

0


 . (5.32)

Remark 5.4.1. The error estimates(5.30)and (5.31)provide optimal convergence rates
when approximating the controlz by using piecewise linear basis functions. However,
we have to assume h≤ c0H to ensure the unique solvability of the perturbed Galerkin
variational inequality(5.25), where the constant c0 is in general unknown. Moreover,
the matrix T̃ρ,H defines a non–symmetric approximation of a self–adjoint operator Tρ .
As an alternative to the non–symmetric approach presented in this work one can use the
symmetric boundary element method which is stable without an additional constraints on
the choice of the boundary element trial space. In contrast,the use of the non–symmetric
formulation does not require the use of hypersingular boundary integral operators, further
it allows us the use of collocation instead of Galerkin.



6 NUMERICAL EXAMPLES

In this chapter we present some numerical results for the boundary element approxima-
tion of the Dirichlet boundary control for the Stokes problem (3.10)–(3.12). The nu-
merical results presented confirm the theoretical findings.Consider a square domain
Ω = (0,0.5)2 ⊂ R

2. For simplicity take bothρ = 1 andµ = 1. We take a pre–described
solution(w, r) of the adjoint problem (3.24) where the pressurer = 0 andw, which is
divergence free and vanishes on the boundary, is given by

w(x,y) =
[
(x−2x2)2(y−2y2)(4y−1),(x−2x2)(y−2y2)2(1−4x)

]⊤
.

For the boundary element discretization we introduce a uniform triangulation of the bound-
ary Γ = ∂Ω on several levels. Since the minimiser of the cost functional (3.10) is not
known in advance in this case, we use the boundary element solution of the 9–th refine-
ment level as reference solution. The boundary element discretization is done by using
the trial spaceS0

h(Γ) of piecewise constant basis functions, andS1
h(Γ) of piecewise linear

and continuous functions. We use two different boundary element meshes, one to approx-
imate the controlz, of sizeH, by a piecewise linear approximation, and another space of
piecewise constant approximations for the tractionst andq with sizeh. Note that we have
h = H/2 in this case, and therefore by Theorem 5.4.1, we may ensureS1

h(Γ)–ellipticity
of the non–symmetric boundary element approximation. Further, the numerical example
shows stability. In Table 6.1, we have presented the errors for the controlz and the traction

level #ite(BiCGStab) ‖z−zh‖L2(Γ) eoc ‖q−qh‖L2(Γ) eoc
0 1 4.03E-04 – 7.89E-03 –
1 2 5.71E-05 2.82 3.62E-03 1.12
2 4 2.39E-05 1.26 1.78E-03 1.03
3 6 5.92E-06 2.01 8.83E-04 1.01
4 7 1.41E-06 2.07 4.41E-04 1
5 12 3.34E-07 2.08 2.20E-04 1
6 17 8.03E-08 2.06 1.10E-04 1
7 25 1.97E-08 2.03 5.50E-05 1
8 38 5.45E-09 1.86 2.75E-05 1

Theory 2 1

Table 6.1: Convergence analysis for the Dirichlet control and the traction.

q in the L2(Γ) norm along with their estimated order of convergence (eoc).The result
for the controlz corresponds to the error estimate (5.31) of the non–symmetric boundary
element approximation.
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Figure 6.1:Plot of the controlz in H1/2(Γ) andL2(Γ) settings.

In Figure 6.1 we have plotted the control when considering both the energy norm and the
L2 norm. It is clear from the figure that when using theL2 norm the controlz is zero on
the corner points independent of the value of the target function u. This is not seen in
the energy norm setting as the use of the inverse single layerpotentialV̂−1 preserves the
mapping properties. This also justifies the use ofH1/2(Γ) as the control space instead of
L2(Γ).

The fact which we have highlighted graphically can also be verified analytically. As al-
ready pointed out that the effect of choice of the control space can be seen in the optimality
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condition, so we start from the optimality condition for thenon–constrained case

τ +ρAz = 0.

Forτ = −q andA = I , we have

−q+ρz = 0.

By definition, see [37, Section 2.3],

q := T ′(w) = t(w,−r) = r n+ µ(∇w+∇w⊤)n. (6.1)

Sincew = 0 on Γ, this means(∇w)n = 0 in the each corner point. So (6.1) takes the
form

q = ρz = r n.

As z is continuous and since we consider the case of a square domain, we can write

ρz = r

(
0
1

)
and ρz = r

(
1
0

)
,

z1 = 0 and z2 = 0,

and thereforez = 0 at each corner point.

In the case of an arbitrary domain with a corner between two normal vectorsn1 andn2,
we can write

ρz = rn1 and ρz = rn2,

ρz·n1 = r and ρz·n2 = r,

and thereforeρz· (n1−n2) = 0, at each corner point,

which gives a necessary condition for the controlz to vanish at each corner point of an
arbitrary domain.

One last comment on the choice of the control space. The use ofL2(Γ) as control space
is quite common in the engineering community instead ofH1/2(Γ). The effect is clearly
visible in the optimality condition in a way that mapping properties are lost and in fact the
two pieces of boundary data are identified with each other. Instead, if we useH1/2(Γ) as
control space it not only preserves the corresponding mapping properties from Dirichlet
control to the traction of the adjoint variable but also accounts for some higher regularity
of the control in the related optimality condition.

In Table 6.2, we have computed theL2 distance of the statẽu from the desired stateu for
the different refinement levels in the energy and theL2 settings. We have found that the
values in both the cases are very close to each other. Sinceu is fixed so the approximate
statẽu tends to some exact stateu.
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‖ũ−u‖L2(Ω)

Level A = V̂−1 A = I
0 0.0630781 0.0617194
1 0.0617038 0.0591016
2 0.0617217 0.0590576
3 0.0617214 0.0590387
4 0.0617213 0.0590373
5 0.0617213 0.0590372
6 0.0617213 0.0590372

Table 6.2: TheL2 distance of the tracking term.



7 CONCLUSION AND OUTLOOK

In this final chapter we, very briefly, give few conclusions ofthis work along with some
future outlook.

7.1 Conclusions

In this thesis, we have shown that one can use boundary element methods to solve Dirichlet
boundary control problems for the Stokes system. The numerical results presented are in
conformity with the theoretical findings. The clear advantage of the boundary element
methods lies in the fact, that only the boundary of the computational domain needs to be
discretized. For given smooth data we can prove, with respect to the used lowest order trial
spaces, the best possible order of convergence for the boundary element approximation for
the controlz. In addition to that, optimal control problems subject to partial differential
equations as constraints in an unbounded exterior domain can be treated in a similar way.

7.2 Future work

Symmetric formulation

As already pointed out in Remark 5.4.1, we have presented a non–symmetric formula-
tion which requires some condition on the two meshes. Further the matrixT̃ρ,H defines a
non–symmetric approximation of a self–adjoint operatorTρ . We can derive a symmetric
formulation which is stable witout any further condition onthe two meshes. For this we
can use a second boundary integral equation for the adjoint boundary value problem to
obtain an alternative representation for the tractionq and therefore the adjoint operator
S∗ [53].

Preconditioning and fast methods

The main goal of this study was to solve an optimal control problem for Stokes by bound-
ary element methods and as such we have shown the stability ofthe method and presented
some error analysis. Further research can be done for an efficient solution of the resulting
discrete system. Special emphasis will be on efficient solution methods for solving the dis-
crete variational inequalities. This can be done by constructing efficient preconditioners,
as well as by the use of fast boundary element methods.
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A APPENDIX

In this appendix we give the detailed computation of the kernel function for the Bi–Stokes
system represented by (4.5).We also give the boundary traction for this kernel function.

Computation of V∗(x,y)

The system of linear elastostatics is

−µ∆u− (λ + µ)grad divu(x) = f(x),

Let us make following ansatz

u(x) = ∆w−
(λ + µ)

(λ +2µ)
grad divw(x).

By this transformation and on simplification we get

−µ∆2w(x) = f(x).

If U∗
1(x,y) is the fundamental solution of linear elastostatics, then we must have

−µ∆yU∗
1(x,y)− (λ + µ)grady divy U∗

1(x,y) = δ0(y−x)e1,

analogously, we make the following ansatz

U∗
1(x,y) = ∆yW1(x,y)−

(λ + µ)

(λ +2µ)
grady divy W1(x,y),

where

W1(x,y) =

(
W11(x,y)
W12(x,y)

)⊤

; U∗
1(x,y) =

(
U∗

11(x,y)
U∗

12(x,y)

)⊤

.

Again by this transformation, we end up having the followingBi–Laplace equation

−µ∆2W1(x,y) = δ0(y−x)e1 = δ0(y−x)

(
1
0

)
.

Equating the components on both sides gives the following system

−µ∆2W11(x,y) = δ0(y−x),

−µ∆2W12(x,y) = 0.
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Now consider
−µ∆2W11(x,y) = δ0(y−x)

which is the Bi–Laplace equation whose solution, with special choice of the constant, is
given by

W11(x,y) = −
1

8πµ
|x−y|2

[
log|x−y|−

(3λ +7µ)

(2λ +6µ)

]
,

W12(x,y) = 0.

Also

∆yW11 =
∂ 2

∂y2
1

W11(x,y)+
∂ 2

∂y2
2

W11(x,y),

= −
1

2πµ

[
log|x−y|−

(λ + µ)

(2λ +6µ)

]
.

The fundamental solution is given by

U11(x,y) = ∆yW11(x,y)−
(λ + µ)

(λ +2µ)

∂
∂y1

divy W1(x,y),

=
1

4πµ

(
λ + µ

λ +2µ

)[
−

λ +3µ
λ + µ

log|x−y|+
(y1−x1)

2

|x−y|2

]
.

U12(x,y) = ∆yW12(x,y)−
(λ + µ)

(λ +2µ)

∂
∂y2

divy W1(x,y),

=
1

4πµ

(
λ + µ

λ +2µ

)
(y1−x1)(y2−x2)

|x−y|2
.

The system of linear elastostatics is

−µ∆yV∗
1(x,y)− (λ + µ)grady divy V∗

1(x,y) = U∗
1(x,y),

on making the following ansatz we have

V∗
1(x,y) = ∆Z1(x,y)−

(λ + µ)

(λ +2µ)
grady divy Z1(x,y).

By this transformation we get

−µ∆2Z1(x,y) = U∗
1(x,y),

which results in the form of the following system

−µ∆2
yZ11(x,y) = U11(x,y),

−µ∆2
yZ12(x,y) = U12(x,y).



77

First we consider

−µ∆2
yZ12(x,y) = U12(x,y),

= −
(λ + µ)

(λ +2µ)

∂
∂y2

divy W1(x,y),

= −
(λ + µ)

(λ +2µ)

∂
∂y2

∂
∂y1

W11(x,y),

=
(λ + µ)

(λ +2µ)

1
µ

1
8π

∂
∂y2

∂
∂y1

[
|x−y|2{log|x−y|−

(3λ +7µ)

(2λ +6µ)

]
.

With the ansatz

Z12(x,y) = −
(λ + µ)

(λ +2µ)

1
µ2

1
8π

∂
∂y2

∂
∂y1︸ ︷︷ ︸

D

S(x,y),

we obtain

∆2
yDS(x,y) = D

[
|x−y|2{log|x−y|−

(3λ +7µ)

(2λ +6µ)
}

]
,

D∆2
yS(x,y) = D

[
|x−y|2{log|x−y|−

(3λ +7µ)

(2λ +6µ)
}

]
,

∆2
yS(x,y) = |x−y|2

[
log|x−y|−

(3λ +7µ)

(2λ +6µ)

]
.

We still have to solve

∆2
yS(x,y) = ∆y(∆yS(x,y)︸ ︷︷ ︸

T(x,y)

) = |x−y|2
[

log|x−y|−
(3λ +7µ)

(2λ +6µ)

]
,

∆y(∆yS(x,y)︸ ︷︷ ︸
T(x,y)

) = |x−y|2
[

log|x−y|−
(3λ +7µ)

(2λ +6µ)

]
,

so the resulting system is

∆yT(x,y) = |x−y|2
[

log|x−y|−
(3λ +7µ)

(2λ +6µ)

]
⇐⇒ ∆yS(x,y) = T(x,y).

Consider first

∆yT(x,y) = |x−y|2
[

log|x−y|−
(3λ +7µ)

(2λ +6µ)

]
,

using the polar form of the Laplace equation we have

1
r

d
dr

[
r
dT
dr

]
= r2

[
logr −

(3λ +7µ)

(2λ +6µ)

]
,

d
dr

[
r
dT
dr

]
= r3

[
logr −

(3λ +7µ)

(2λ +6µ)

]
.
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Separating the variables and integration two times, we get

r
dT
dr

=
1
4

[
r4(logr −

3λ +7µ
2λ +6µ

)−
1
4

r4
]
,

dT
dr

=
1
4

[
r3(logr −

3λ +7µ
2λ +6µ

)−
1
4

r3
]
,

T(r) =
1
16

[
r4(logr −

3λ +7µ
2λ +6µ

)−
1
2

r4
]
.

Separating the variables and integrating once again, we get

∆yS(x,y) = T(x,y) =
1
16

[
r4(logr −

(3λ +7µ)

(2λ +6µ)
)−

1
2

r4
]
,

∆yS(x,y) =
1
16

[
r4(logr −

(3λ +7µ)

(2λ +6µ)
)−

1
2

r4
]
,

1
r

d
dr

[
r
dS
dr

]
=

1
16

[
r4(logr −

(3λ +7µ)

(2λ +6µ)
)−

1
2

r4
]
,

d
dr

[
r
dS
dr

]
=

1
16

[
r5(logr −

(3λ +7µ)

(2λ +6µ)
)−

1
2

r5
]
,

⇒ S(x,y) =
1

576

[
|x−y|6 log|x−y|−

7λ +18µ
3λ +9µ

|x−y|6
]
.

Now

∆yS(x,y) =
∂ 2

∂y2
1

S(x,y)+
∂ 2

∂y2
2

S(x,y),

∆yS(x,y) =
|x−y|4

16

[
log|x−y|−

(2λ +5µ)

(λ +3µ)

]
.

As

Z12(x,y) = −
1

µ2

1
8π

(λ + µ)

(λ +2µ)

∂ 2

∂y2∂y1
S(x,y),

Z12(x,y) = −
1

2304πµ2

(
λ + µ

λ +2µ

)
(y1−x1)(y2−x2)|x−y|2

[
12log|x−y|−

23λ +57µ
λ +3µ

]
.
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Now the solution of

−µ∆2
yZ11(x,y) = U11(x,y),

= ∆yW11(x,y)−
(λ + µ)

(λ +2µ)

∂
∂y1

divy W1(x,y),

= ∆yW11(x,y)−
(λ + µ)

(λ +2µ)

∂ 2

∂y2
1

W11(x,y),

=

[
∆y−

(λ + µ)

(λ +2µ)

∂ 2

∂y2
1

]
W11(x,y),

= −
1

8πµ

[
∆y−

(λ + µ)

(λ +2µ)

∂ 2

∂y2
1

]
|x−y|2(log|x−y|−

(3λ +7µ)

(2λ +6µ)
,

is determined by the ansatz

Z11(x,y) =
1

8πµ2

[
∆y−

(λ + µ)

(λ +2µ)

∂ 2

∂y2
1

]
S(x,y).

This gives us

∆2
yDS(x,y) = D

[
|x−y|2{log|x−y|−

(3λ +7µ)

(2λ +6µ)
}

]
,

D∆2
yS(x,y) = D

[
|x−y|2{log|x−y|−

(3λ +7µ)

(2λ +6µ)
}

]
,

∆2
yS(x,y) = |x−y|2

[
log|x−y|−

(3λ +7µ)

(2λ +6µ)

]
.

The solution of this Bi–Laplace equation is already obtained

S(x,y) =
1

576

[
|x−y|6 log|x−y|−

7λ +18µ
3λ +9µ

|x−y|6
]
.

Now

Z11(x,y) =
1

8πµ2

[
∆y−

(λ + µ)

(λ +2µ)

∂ 2

∂y2
1

]
S(x,y),

=
1

8πµ2

[(
µ

λ +2µ

)
∂ 2

∂y2
1

S(x,y)+
∂ 2

∂y2
2

S(x,y)

]
.

Inserting the values of the second order partial derivatives and on simplification, we have

=
|x−y|

4608πµ2(λ +2µ)(λ +3µ)

[
6(λ +3µ)

{
(λ +7µ)(y1−x1)

2 +(5λ +11µ)(y2−x2)
2
}

log|x−y|

−a(y1−x1)
2−b(y2−x2)

2
]
,
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where

a = 13λ 2+118µλ +213µ2,

b = 59λ 2+278µλ +327µ2.

Recall

V∗
1(x,y) = ∆Z1(x,y)−

(λ + µ)

(λ +2µ)
grady divy Z1(x,y),

V∗
11(x,y) = ∆Z11−

(λ + µ)

(λ +2µ)

(
∂ 2

∂y2
1

Z11+
∂ 2

∂y2
2

Z12

)
,

=

(
µ

λ +2µ

)
∂ 2

∂y2
1

Z11+
∂ 2

∂y2
2

Z11−
(λ + µ)

(λ +2µ)

∂ 2

∂y1∂y2
Z12.

Replacing the partial derivatives and on simplification

V∗
11 = −

c(y1−x1)
2+d(y2−x2)

2−4(λ +3µ)
{

e(y1−x1)
2+ f (y2−x2)

2
}

log|x−y|

128πµ2(λ +2µ)2(λ +3µ)
,

analogously we can show that

V∗
22 = −

c(y2−x2)
2+d(y1−x1)

2−4(λ +3µ)
{

e(y2−x2)
2+ f (y1−x1)

2
}

log|x−y|

128πµ2(λ +2µ)2(λ +3µ)
,

where

c = 7λ 3+45µλ 2 +113µ2λ +107µ3,

d = 17λ 3+107µλ 2 +231µ2λ +173µ3,

e = λ 2 +4µλ +7µ2,

f = 3λ 2+12µλ +13µ2.

Again,

V∗
12(x,y) = ∆Z12−

(λ + µ)

(λ +2µ)

(
∂ 2

∂y2∂y1
Z11+

∂ 2

∂y2
2

Z12

)
,

=
∂ 2

∂y2
1

Z12+

(
µ

λ +2µ

)
∂ 2

∂y2
2

Z12−
(λ + µ)

(λ +2µ)

∂ 2

∂y2∂y1
Z11,

so inserting the corresponding partial derivatives and simplifying, we have

V∗
12(x,y) = −

(y1−x1)(y2−x2)(λ + µ){−5λ −11µ +4(λ +3µ) log|x−y|}
64πµ2(λ +2µ)2 .

In a similar manner we can show

V∗
21(x,y) = −

(y1−x1)(y2−x2)(λ + µ){−5λ −11µ +4(λ +3µ) log|x−y|}
64πµ2(λ +2µ)2 .
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The Stokes case will follow by taking the limits,λ → ∞,µ → 1, i.e.,

V∗ =

(
V∗

11(x,y) V∗
12(x,y)

V∗
21(x,y) V∗

22(x,y)

)
,

where

V∗
11(x,y) =

4
{
(y1−x1)

2+3(y2−x2)
2
}

log|x−y|−7(y1−x1)
2−17(y2−x2)

2

128π
,

V∗
12(x,y) = Ṽ∗

21(x,y) = −
(y1−x1)(y2−x2){(4log|x−y|−5}

64π
,

V∗
22(x,y) =

4
{

3(y1−x1)
2+(y2−x2)

2
}

log|x−y|−17(y1−x1)
2−7(y2−x2)

2

128π
.

Further it is easy to verify thatV∗(x,y) satisfy the divergence free property, i.e.,

∂
∂y1

V∗
11(x,y)+

∂
∂y2

V∗
12(x,y) = 0,

∂
∂y1

V∗
21(x,y)+

∂
∂y2

V∗
22(x,y) = 0.

Computation of boundary stress

The boundary stressT∗
k(x,y) of the fundmental solutionV∗

k (x,y) is given for allmost all
y∈ Γ as

T∗
k(x,y) : = γ int

1,yV
∗
k(x,y),

= λ divyV∗
k(x,y)n(y)+2µ

∂
∂ny

V∗
k(x,y)+ µn(y)×curlyV∗

k(x,y).

SinceV∗
k(x,y) is divergence free and if for simplicity we takeµ = 1, we get

T∗
k(x,y) = 2

∂
∂ny

V∗
k(x,y)+n(y)×curlyV∗

k(x,y), (A.1)

with k = 1,2.

If we define, for a two dimensional vector fieldv, the rotation as

curlyv(y) : =
∂

∂y1
v2(y)−

∂
∂y2

v1(y) and if we declare

v×α : = α
(

v2(y)
−v1(y)

)
,
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wherev ∈ R
2 andα ∈ R

1. By using such a representation we can write

n(y)×curlyV∗
k(x,y) = curlyV∗

k(x,y)

(
n2(y)
−n1(y)

)
.

So we need to compute curlyV∗
1(x,y) and curlyV∗

2(x,y).

curlyV∗
1(x,y) =

∂
∂y1

V∗
12(y)−

∂
∂y2

V∗
11(y),

= −
(y2−x2)(log|x−y|−1)

4π
,

so

n(y)×curlyV∗
1(x,y) = −

(y2−x2)(log|x−y|−1)

4π

(
n2(y)
−n1(y)

)
. (A.2)

Also

∂
∂ny

V∗
1(x,y) :=

( ∂
∂ny

V∗
11(x,y)

∂
∂ny

V∗
12(x,y)

)
=

(
∂

∂y1
V∗

11(x,y)n1(y)+ ∂
∂y2

V∗
11(x,y)n2(y)

∂
∂y1

V∗
12(x,y)n1(y)+ ∂

∂y2
V∗

12(x,y)n2(y)

)
, (A.3)

so using (A.2) and (A.3) in (A.1), we have

T∗
1(x,y) = 2

(
∂

∂y1
V∗

11(x,y)n1(y)+ ∂
∂y2

V∗
11(x,y)n2(y)

∂
∂y1

V∗
12(x,y)n1(y)+ ∂

∂y2
V∗

12(x,y)n2(y)

)
+

(
−

(y2−x2)(log|x−y|−1)
4π n2(y)

(y2−x2)(log|x−y|−1)
4π n1(y)

)
,

=


2 ∂

∂y1
V∗

11(x,y)n1(y)+
{

2 ∂
∂y2

V∗
11(x,y)−

(y2−x2)(log|x−y|−1)
4π

}
n2(y){

2 ∂
∂y1

V∗
12(x,y)+

(y2−x2)(log|x−y|−1)
4π

}
n1(y)+2 ∂

∂y2
V∗

12(x,y)n2(y)


 .

On inserting the partial derivatives and doing similar computations for the casek = 2,
we finally get the boundary traction operator correspondingto the Bi–Stokes fundamental
solution

T∗(x,y) =
1

32π|x−y|2

(
T∗

11(x,y) T∗
12(x,y)

T∗
21(x,y) T∗

22(x,y)

)
,

where

T∗
11(x,y) = (y1−x1)

{
4|x−y|2 log|x−y|−5(y1−x1)

2− (y2−x2)
2}n1(y)

+ (y2−x2)
{

4|x−y|2 log|x−y|−7(y1−x1)
2−3(y2−x2)

2}n2(y),

T∗
12(x,y) = (y2−x2)

{
4|x−y|2 log|x−y|−7(y1−x1)

2−3(y2−x2)
2}n1(y)

− (y1−x1)
{

4|x−y|2 log|x−y|−5(y1−x1)
2− (y2−x2)

2}n2(y),

T∗
21(x,y) = −(y2−x2)

{
4|x−y|2 log|x−y|− (y1−x1)

2−5(y2−x2)
2}n1(y)

+ (y1−x1)
{

4|x−y|2 log|x−y|−3(y1−x1)
2−7(y2−x2)

2}n2(y),

T∗
22(x,y) = (y1−x1)

{
4|x−y|2 log|x−y|−3(y1−x1)

2−7(y2−x2)
2}n1(y)

+ (y2−x2)
{

4|x−y|2 log|x−y|− (y1−x1)
2−5(y2−x2)

2}n2(y).
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In this appendix we present some introduction to variational inequalities along with ex-
istence and uniqueness results of solutions. The main references for this section are
[19,20,40].

Variational inequalities

The theory of variational inequalities has its roots in the calculus of variations associated
with the minimization of infinite–dimensional functionals. The study of the subject began
in the 1960’s with the seminal work of Guido Stampacchia and Philip Hartman, who used
the variational inequality as an analytic tool for studyingfree boundary problems defined
by nonlinear partial differential operators arising from unilateral problems in elasticity and
plasticity theory and in mechanics.

Some of the earliest papers on variational inequalities are[32,46,47,61,62]. In [61] the first
theorem of existence and uniqueness of the solution of variational inequalities was proved.
The books by Baiocchi and Capelo [3] and Kinderlehrer and Stampacchia [40] provide a
thorough introduction to the application of variational inequalities in infinite–dimensional
function spaces; see also [4]. The lecture notes [38] treat complementarity problems in
abstract spaces. The book by Glowinski, Lions, and Tremoliere [25] is among the earliest
references to give a detailed numerical treatment of such variational inequalities. There is
a huge literature on the subject of infinite–dimensional variational inequalities and related
problems. For the study of the finite dimensional variational inequalities and complemen-
tarity problems see [19,20].

In the following, letH be a real Hilbert spaceH∗ its dual with duality pairing〈·, ·〉H∗×H .
The norm onH will be denoted by‖·‖H and the dual norm by‖·‖H∗. Let a : H∗×H → R

be a (real) bilinear form which defines an operatorA : H → H∗

〈Au,v〉H∗×H = a(u,v).

Definition B.0.1. Let K be a given nonempty, closed and convex subset of H andf ∈ H∗,
then the variational inequality problem is to findu ∈ K such that

〈Au,v−u〉H∗×H ≥ 〈f,v−u〉H∗×H for all v ∈ K. (B.1)
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Lemma B.0.1.LetK be a closed convex subset of a Hilbert space H. Then for eachx ∈ H
there is a uniquey ∈ K such that

‖x−y‖ = inf
η∈K

‖x−η‖ . (B.2)

The pointy satisfying(B.2) is called the projection ofx onK and we write it as

y := ProjK x.

Proof. See [40, Lemma 2.1].

Next we characterize the projection by the following theorem.

Theorem B.0.1.Let K be a closed convex subset of a Hilbert space H. Theny = ProjK x,
the projection ofx onK, if and only if

y ∈ K : 〈y,η −y〉H×H ≥ 〈x,η −y〉H×H for all η ∈ K.

Proof. See [40, Theorem 2.3].

Corollary B.0.1. LetK be a closed convex subset of a Hilbert space H. Then the projection
operatorProjK is nonexpensive, i.e.,

‖ProjK x−ProjK x∗‖ ≤ ‖x−x∗‖ for all x,x∗ ∈ H.

Proof. See [40, Corollary 2.4].

To prove the existence and the uniqueness of the solution of the variational inequality (B.1)
first we give few definitions followed by a theorem.

Definition B.0.2. A bilinear form is symmetric if

a(u,v) = a(v,u) for all u,v ∈ H.

Definition B.0.3. A bilinear form a(u,v) is coercive on H if there exists a positive constant
α such that

a(v,v)≥ α ‖v‖2 for all v ∈ H.

Theorem B.0.2.Let a(u,v) be a coercive bilinear form on H,K ⊂ H closed and convex
and f ∈ H∗. Then there exists a unique solution of the variational inequality (B.1). In
addition if f is Lipschitz, i.e., ifu1,u2 are two solution of the variational inequality(B.1)
corresponding tof1, f2 ∈ H∗, then

‖u1−u2‖H ≤ (1/α)‖f1− f2‖H∗ .
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Proof. See [40, Theorem 2.1].

We present another characterization of the solution of the variational inequality (B.1). If
the operatorA is symmetric then the problem (B.1) is equivalent to the following mini-
mization problem. Let

u = argMin
v∈K

J (v),

whereJ : H → R is the quadratic functional

J (v) =
1
2
〈Av,v〉H∗×H −〈f,v〉H∗×H .

Thenu solves the variational inequality (B.1), if and only if it minimizesJ (v) overK.

Proof. See [40].
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