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Abstract 1

Abstract

In this thesis we discuss the application of boundary eleémmathods for the solution of
Dirichlet boundary control problems subject to the Stokagsa¢ions with box constraints
on the control. Starting with a model problem of the Stokasa¢igns and a quadratic cost
functional, we set up the optimality system. The solutiohbath the primal and adjoint
boundary value problems are given by representation faeywhere the state variable
enters the adjoint problem as volume density. By applyirtggration by parts to the
representation formula of the adjoint problem we expreissNiBwton potential as surface
potentials. This results in a system of boundary integrabéqns which is related to the
Bi-Stokes equations. We analyze boundary integral reptagens which are based on the
use of single and double layer potentials, and which requ@ioene additional assumptions
to ensure stability of the discrete scheme. A numerical @tans considered and the
results of a boundary element approximation for the Digtldontrol problem for the
Stokes system are presented which are in conformity witththeretical findings. Finally
we discuss the suitable control space and comment on theechf# /(") instead of the
more prevalenk,(I").



2 Abstract

Zusammenfassung

In dieser Arbeit diskutieren wir die Anwendung von Randedetmethoden fiir die LO-
sung eines Dirichlet—Kontrollproblems mit einem quad@tien Kostenfunktional fur das
Stokes—System. Die Minimierung des reduzierten Kostektfanals wird durch die L6-
sung einer Variationsungleichung beschrieben. Die Losorder primalen und adjun-
gierten Randwertprobleme kdnnen durch Darstellungsfbrmegegeben werden. Dabei
geht der unbekannte Zustand des primalen Problems alseDethé Volumenpotentials
in die Darstellungsformel fur die Losung des adjungiertesbems ein. Durch partielle
Integration kann dieses Volumenpotential auf Oberflachesrgiale zurtckgefihrt wer-
den, welche die Fundamentalldsung eines Bi—Stokes Diffeleperators enthalten. Die
Analysis des resultierenden Optimalitatssystems beraht cuf den Eigenschaften der
auftretenden Randintegraloperatoren. Fur die Stabdgézugehdrigen Randelementdis-
kretisierung ist eine Bedingung an die verwendeten Angatme zu fordern, welche auch
den Nachweis optimaler Fehlerabschatzungen ermdgliahthunerisches Beispiel besta-
tigt die theoretischen Ergebnisse. Abschliessend wird\gibl des Funktionenraumes fur
die Kontrolle diskutiert, insbesondere die in dieser ArlaiskutierteH/2(I")—Kontrolle
mit der in Anwendungen ublicherweise verwenddte( )—Kontrolle.



1 INTRODUCTION

Flow control has had a long history since Ludwig Prandt'dyeexperiments. In 1904,
at the third international mathematics congress held inélberg Germany, a 10 minutes
presentation of a little—known physicist was enough to ligianize the understanding and
analysis of fluid dynamics by his idea of boundary layer—a tkegion near the surface of
an object moving through a fluid. He explains that the fricéibeffects were experienced
only in the boundary layer, outside which the flow was esaéin@n inviscid flow that had
been studied for the previous two centuries. Before Prahdte were much confusion
about the role of viscosity in a fluid motion, but after Prasmghper the picture was made
clear by the notion of boundary layer [2].

During the past years many scientists, mathematicians agitheers have given consid-
erable attention to the problems of an active control of filodss, see, e.g., [14, 29, 39].
This interest is motivated by a number of potential appioet such as the control of flow
separation, the adjustment of mixing patterns in chemetiors to increase the reactor
performance, or combustion, noise suppression, fluidetsire interaction problems and
super maneuverable aircrafts.

The increased concern for performance and efficiency idsae$ed to the incorporation
of mathematical optimization routines into engineeringige techniques. For example,
the use of heat sensitive components in spacecraft raisegigstion of designing systems
which are energy efficient and yet maintain feasible opegaemperatures. These design
problems may be modeled by optimal control problems wittestanstraints. The control
of fluid flow is very important in achieving the desired desapjectives to optimize the
performance of the systems that exploit the fluid motion.

Optimal control problems with a Dirichlet boundary contptdy a vital role, for example,

in the context of computational fluid mechanics., see, §8.,29], and the references
given therein. In [29], the cost functiondl(u,z) = F(u) is the domain integral over the
strain tensor of the velocity field satisfying the steady state Navier—Stokes equations with
a Dirichlet boundary condition = z € &/ ¢ HY2(I"). A similar minimization problem is
considered in [23]. In both cases, the cost functigh@l, z) describes an energy K (Q),

or equivalently, in the Sobolev trace spat&?(I").

It is quite common among the control community to takél ) as control space instead
of HY2(I"). The main difference appears in the optimality conditiamparticular, as in
the case of the present study, the use of the inverse Stalgs fayer potential maps the
Dirichlet control to the traction of the adjoint variablehi$ also accounts for a higher reg-
ularity of the control in related optimality condition. litned out that the use bfl/z(r) as
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control space preserves the proper mapping propertiegalhsf we use.»(I") as control
space, the two different types of boundary data are idedtifieh each other [53, 54].

In [54], a finite element approach for Laplace Dirichlet bdary control problems was

considered, where the energy norm was induced by the sedcateklov—Poincaré op-

erator which realizes the Dirichlet to Neumann map and therobwas considered in a

closed and convex subspace of the energy sblalé%(r). The stability and error analysis
presented for the discretization of the resulting varraionequality is based on the map-
ping properties of the solution operators related to themakiand adjoint boundary value
problems and their finite element approximations.

As solving Dirichlet boundary control problems requires tinknown function—the con-
trol, to be found on the boundary of the computational donfain R", n = 2, 3, the use

of boundary integral equations seems to be a natural ch8i¢cé(it to the best of our
knowledge, there are only few results known on the use of agnintegral equations to
solve optimal boundary control problems, see, e.g., [Idof4roblems with point obser-
vations. Although, in the present work we describe the Digtcontrol problem for the
Stokes system, however, this technique can be applied tpanial differential equation
provided the fundamental solution is known.

Recently in [53], the application of boundary element mdthor the solution of Dirichlet
boundary control problems subject to the Poisson equatitm hox constraints on the
control was studied. The solutions of both the primal andiatlpoundary value problems
are given by representation formulae, where the statesttteradjoint problem as volume
density. The authors apply integration by parts to the sr&tion formula of the adjoint
problem to avoid the related volume potential. This resaoléssystem of boundary integral
equations which is related to the Bi-Laplacian. For thetegldirichlet to Neumann map,
they analyze two different boundary integral represeniati The first one is based on the
use of single and double layer potentials only, but requcese additional assumptions to
ensure stability of the discrete scheme. As a second agprtiecauthors have considered
a symmetric formulation which is based on the use of the Cafdprojector and which is
stable for standard boundary element discretizationsb&thr methods, they have proved
stability and related error estimates and have presentiddfinde element and boundary
element discretization results. Numerical results shawdh different approaches behave
almost similar.

This thesis is organized as follows. In chapter 2 we briefgcdbe the fundamental con-
cepts relevant to this work. We start with the introductiorbbundary element methods
followed by a discussion on the most improtant function sgaequired for the weak for-
mulation for Stokes Dirichlet boundary value problem. Bdary integral formulations

and the Galerkin discretization with standard error est®&rms the major part of this
chapter.

Chapter 3 begins with a short introduction to optimal conproblems. We then present
a model problem for the Stokes Dirichlet control problem#ieAintroducing the solution
operator and its adjoint, we formulate the reduced costtional to be minimized. It



turns out that the said minimization is equivalent to sajvavariational inequality whose
unique solvability follows from standard arguments. Thaptler ends by setting up an
optimality system consisting of the primal problem—thdizagion of the solution operator
S, the adjoint problem—another Stokes system, and the atializof the adjoint operator
S* with the primal variable appearing on the right hand sidel an elliptic variational
inequality of the first kind.

The boundary integral formulation of the primal and adj@irdblems and the unique solv-
ability of the coupled system is covered in chapter 4. Thatswis of both the primal and

adjoint boundary value problems are given by represemdtomulae, where the state
variable appears in the adjoint problem as volume densitg. eXpress the said volume
integral as surface potential so as to represent the covdr@blez. For this purpose

we apply integration by parts to the representation fornofitdne adjoint problem. This

gives rise to a system of boundary integral equations wlsatelated to the, so—called,
Bi—Stokes equations. We introduce the standard boundsegrid operators for Stokes
and for Bi—-Stokes. We end this chapter by describing theiogiship among the different
boundary integral operators mentioned above. Theseaetatire useful in proving the
unique solvability of the proposed formulation.

Galerkin boundary element approximations of the StokegBlet control problem are
analyzed in chapter 5. Due to the composition of the respltimundary integral operator,
an additional approximation is introduced. In a similar way approximation of the right
hand side of the boundary integral operator equation istchésmissed. We use two different
meshes, one of sizé¢ to approximate the contraland another of sizketo approximate the
two tractiong andq which are related to the primal and adjoint velocities, eetpely. We
prove a necessary condition on the two meshes so that thémgsapproximate operator
is elliptic. Finally for the non—constrained case we set §rhur complement system to
find the unknown contrat on the Dirichlet boundary.

In chapter 6, a numerical example for the Stokes Dirichleittiab problem is considered
and results of a boundary element approximation are predeiihe numerical results of
the boundary element approximations confirm the theoleticar estimates. Finally we
comment on the choice of the control sp&t¥?(I") instead ofL,(I").

The final chapter 7 deals with some conclusions and a shddasutThe purpose of the

study is described along with some future work. The thesis ebntains two appendices.
AppendixA deals with the computation of the kernel function for the&ibkes system and

the corresponding traction function. Appendigives a short introduction to variational
inequalities along with existence and uniqueness restitteesolutions.






2 BOUNDARY ELEMENT METHODS

The boundary element methods (BEM) are numerical methadsdleing boundary in-
tegral equations, based on a discretization procedure. ailrhes to find approximate
solutions of boundary value problems. We need to discrétiedboundary only, instead
of a volume discretization, and as such it is an importaetradtive to the prevailing do-
main methods such as the finite difference method (FDM) aeditite element method
(FEM). Boundary element methods can compute solution fgriaterior pointx € Q.
The method is highly accurate and can also handle exteriondary value problems.
For the general references to boundary integral equatimh®aundary element methods,
see [37,49,63].

The basic idea of the method is to transform the originaligladifferential equation or
the system of partial differential equations, that definavargphysical problem, into an
equivalent boundary integral equation or system of bounddegral equations with the
help of corresponding Green’s formula (such formulati@gven a name known as direct
method) or in terms of continuous distributions of singdalutions of the PDE(S) over
the boundaries of the problem domain (indirect method).asecof a direct formulation
the unknowns are the Cauchy data on the boundary whereas indiect case the un-
knowns are the surface densities of the singular solutiortkis way, the obtained integral
equation satisfy the governing field equation exactly anel seeks to satisfy the imposed
boundary conditions approximately.

The issue of stability and convergence is of the utmost ingpa@e when solving the bound-
ary integral equations numerically. The Galerkin methau$the collocation method are
the two most popular ones. The latter is widely used, es|heamthe engineering com-
munity. These methods provide, at a first glance, an easaetipal implementation com-
pared with the Galerkin methods. In contrast the Galerkithoas which perfectly fit to
the variational formulation of the boundary integral equas. The theoretical study of
the Galerkin methods is now complete and provides a powtréaretical background for
boundary element methods. However, the stability and agevee theory for collocation
methods is available only for particular two and three—disi@nal problems. Further-
more, the error analysis of the collocation methods whenrasgj their stability, shows
that the rate of convergence for computing the solutione@BRDE by the Galerkin meth-
ods is higher, when assuming that the solution is smoothginou

Irrespective of the numerical method, collocation or Gaferapplied to boundary inte-
gral equations, this leads to a linear system of algebraiatans. The matrix of this
system is in general dense, i.e., almost all of its entriegddédferent from zero and there-
fore, have to be stored in computer memory. This is a restricihot only to a large
problem size, but also the costs of the computation of theixnatries are considerably
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high. It is a main disadvantage of the boundary element nastiiompared with finite
element methods which leads to sparse matrices. Hence,ithemeed for so called fast
boundary element methods in order to reduce the memoryresgants and the costs of
the computations. Several techniques are available ferpihiipose as the fast multipole
method [26], the adaptive cross approximation [7,57], palestering [31], or hierarchi-
cal matrices [6, 30]. Although we are not going to discusslfasindary element methods
in this thesis, we have presented few references for thefadl@mpleteness.

2.1 Function spaces

In this section we discuss briefly the most important funcépaces which are needed for
the weak formulation of the Stokes boundary value problehe main reference for this
section are the text books [37] and [49]. For a further ove@mon the used Sobolev spaces
in the domain and on the boundary, see, for example, [1, 43,66

Definition 2.1.1. LetQ be an open subset & (d = 2,3). For k € N the Sobolev space
WK(Q) is defined as

WK(Q) :={ueLx(Q): 0% e Ly(Q) for |a| <k},
wherea = (01,...,04) € Nd is a multi-index,|a| = a1+ --- + dg, is the length of the
multi—index, and?u(x) = "al ..gxc?l u(x) are to be understood as weak partial deriva-
. d
tives.

The Sobolev spadélz"(Q) equipped with the norm

1
2
lulagiay = (5[ 10%u00ex)
lal<kg

forms a Hilbert space with inner product
(u,v) Wk ; /d“ X) 0% v(
\a <kg

for details, see [49, page 75]. We can extend the definiticBadiolev spaced/s(Q) for
any arbitrarys > 0.

Definition 2.1.2. LetQ be an open subset &°. For s=k+ u with ke Ngandu € (0,1),
the Sobolev spaceQ) is defined as

WE(Q) = {u e WK(Q) 1 |09U] 4.0 < oo for |a| = k},

where the Sobolev—Slobodeckii semi—norip q is given by

1
._ V(X) —v(y)|? ?
Vo = <Q/Q X y[2 dxdy) .
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The Sobolev spacds(Q) for s= k+ p with k € Ng andu € (0,1) is equipped with the
norm

. 2 aa 2 2
gy = (IlZge+ 3 10%UBg

laj=k
Again,W;(Q) is a Hilbert space with respect to the inner product

[0%u( 29v(x) —0“

=kg 0

see [49] for detalils.

So far we have considered the Sobolev spaces on a non—enysst@u- RY, in order to
relate the above defined Sobolev spaces with each other,adesoene regularity assump-
tions forl” := 9Q. First of all we consider the set

Q:{x:(x’,xd)eRd:xd<f(x’)forallx’eRdfl}, (2.1)

wheref : R9-1 — R is a bounded function which Istimes differentiable, and where the
derivativeso? f with |a| = k satisfy

109F(X)—3%F(Y)| <M]X —y|* forallX,y e R
with somey € [0,1]. Such a sef as defined in (2.1) is called* hypograph [49].

Definition 2.1.3. An open sef) ¢ RY is called a ¢“¥ domain if its boundary is compact
and if there exist finite familiefw; } and {Q;} with the following properties:

1. The family{V\/j} is a finite open cover df.
2. EachQj can be transformed to a® hypograph by a rigid motion.
3. For each j the equality Wh Q = W; N Q;j is satisfied.

If Q is aCkH domain, then the boundary can be parameterizek tayes differentiable
functions. Therefore we call the boundary of'%a# domain k times differentiable. If this
property is only locally satisfied, then we call the boundaigcewise smooth.

A C%! domain is called a Lipschitz domain. For instance, any paty bounded domain
in R? and any domain ifR3 which is bounded by a polyhedron is a Lipschitz domain.
Note that a Lipschitz domain may be unbounded. For exanfleig a bounded Lipschitz
domain, then its complemeR€ \ Q is also a Lipschitz domain.
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Sobolev spaces on the boundary

In the following we assume th& C RY is a Lipschitz domain. Thé&, norm on the
boundaryl = 9Q is defined by

lully(r = ( / |u<x>|2d&> .
r

Forse (0,1) the Sobolev-Slobodeckii norm is defined by

1
2
lullyeqry = (nuuLz + / 2 1+25ds<ds/> .

Definition 2.1.4. Let Q c RY be a Lipschitz domain with boundafy= dQ. The spaces
Lo(I) and H¥(T") are defined as the closures

Lo(r) = T 0,
HSr) = o) "0 forse (0,1).

The spaced (") andH3(I") for s € (0,1) are Hilbert spaces equipped with the inner
products

L) = / (Vs

X J—
UV = UV +// |X y|d IMX) VW)l 4545, for se (0,1),

see [37, page 172].

The Sobolev spacdd3(I") can also be defined for the case 1, see, e.g., [37, Section
4.2]. This requires, fos > 1, strong regularity assumption for the boundarhan merely
a Lipschitz property, i.e., the boundary must be of the c@s$ ands < k+ k. For
definitions and more details see [37, Section 4.2].

Sobolev spaces with negative indices

For negative indices< 0 the Sobolev spacé$®(I") are defined via duality, i.eH (") =
[HS(T)]* with the norm

(Ut
[ty == sup 2l

; (2.2)
02ueH-s(r) [IUllH-s(r)

see [37, page 175].
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Sobolev spaces on a part of the boundarly

For an open subséty C I and for a sufficiently smooth boundaFywe define Sobolev
spaces fos > 0,

HS(Tg) = {v:\7|r0:\7€Hs(F)},
H3(Fo) = {v="Vr,:VeH3T), suppV C lo},
with the norm
Wlhasrgy == 00t [Fhysr

VeHS(F):V|r0=v

Fors < 0 the Sobolev spaces are defined as dual spaces

HS(Io) == [H*S(ro)r and HS(Mo) := [H (o))" (2.3)

Let us now consider the caseloto be closed and piecewise smooth,

T, TinTj=¢ fori#j.

-
gch

The Sobolev spadey,(I") for s> 0 is defined as

HSw(T) == {ve Lo(N) v, e H3(T),i=1,...,3},

Wiy i= (3 o )

with the norm

Fors < 0 we define

with the norm |
Wl = i;HW\ri sy
Lemma 2.1.1.For w € H,(I") and s< O there hold

Wils(ry < IWllkg,r) -

Proof. See [63, Lemma 2.20]. O

Remark 2.1.1. If Q is a Lipschitz domain then for all above definitions and stegsts
regarding the Sobolev spaces on the subsets of the bouhdas have to assume that
|s| < 1. For the validity of the results for the cag® > 1 stronger regularity conditions for
I needs to be assumed, see [37, Section 4.3].
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Trace operators and normal derivatives

The trace operators are used to relate the Sobolev spacedoima@nQ to the Sobolev
spaces on its boundafy= 0Q.

Theorem 2.1.1.LetQ c R9 be a bounded domain. Define the interior trace operator or
the interior trace operator of order zergi™ : C*(Q) — C*(I') by

Mty = ulr.

If Q is a & 11 domain then the operato,%)nt has a unique extension to a bounded linear
operator

Y HS(Q) — HSY2(T)  for % <s<k (2.4)
This extension has a continuous right invefseHS Y/2(I") — HS(Q).
Proof. See [49, Theorem 3.37]. O

If Q is a bounded Lipschitz domain, i.& = 1, then (2.4) implies that the interior trace
operator is a continuous linear mapping

Y HS(Q) — HSY2(T)  for % <s<1l

This result can be extended %0< s< %’ see [49, Theorem 3.38].

2.2 Stokes problem

In the next four sections we very briefly describe the boup@dement method for the
Dirichlet boundary value problem for the Stokes system. \@imwith a short overview
of the Stokes system followed by a boundary integral fortnutaand the Galerkin dis-
cretization. The main reference for these sections ind8dgt4, 56, 63].

Let Q ¢ RY be a bounded domain with Lipschitz boundéry= dQ. The linearized and
stationary equations of an incompressible viscous fluidravdeled by the Stokes system
consisting of the equations in the form

—pAu(x)+0Op(x) =f(x), O-u(x)=0, forxeQ, (2.5)

i.e., the linearized stationary form of the full Navier—&s equations. Herg is the
dynamic viscosity of the fluidu, p) are the two unknowns, representing the velocity and
the pressure of the fluid respectively affd) corresponds to a given forcing term. The
model is used to describes slow viscous flow. The Stokes @molanters in biological
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applications, not for large—scale blood flow in the heartfbusmall-scale movements in
capillaries. For a viscous flow with a given fluid densityone introduces

v::g>>1,
P

which is usually known as the kinematic viscosity of the fluMbte that the methods of

solving the linear and stationary Stokes problems play gromant part, since the non—
linear and non—stationary problems can be reduced to lar@hstationary ones by means
of perturbations and time—stepping procedures, see[22335, 65] for details.

Dirichlet boundary value problem

As model problem we consider the Dirichlet boundary valusbfem for the Stokes sys-
tem

—pAu(x)+0Op(x) = f(x), xe€Q, (2.6)
O-u(x) = 0, xeQ, (2.7)
uix) = g(x), xer.

A compatibility condition is obtained from (2.7) by integreg over the domairQ and
using the Gauss integral formula, i.e.,

/D-u(x) /[ ()] Tu(x ds(/ x)ds; = 0, 2.8)
Q

wheren(x) is the outer normal vector which is defined for allmost akkX. Thus the
given Dirichlet datum has to satisfy this compatibility citon. Hence we introduce the
following subspace

1/2(F) { e HY2(r / X)dsc = O}
/

Due to the presence of the termifj(x)”, the pressure p is unique only up to an additive
constant. Thus ip(x) satisfies the partial differential equation th&ix) + o , wherea € R,
also satisfies the PDE. However, as for the Neumann bounddng \problem for the
Laplace equation, see [63, Section 7.2], we can use an apgpcaling condition to fix

this constant, e.g.,
/p(x)dx: 0.
Q
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Green'’s first formula

In order to find Green’s first formula for the Stokes systemmuatiply (2.6) with some
test functionv(x), integrate over the domai both sides and apply integration by parts to
obtain

u/.i eij(u,x)aj(v,x)dx—u/ div u(x) divv(x)dx—/p(x) div v(x)dx

0 i,]=1

Q Q
d
+f 3 (1. P (s~ w601 G0dx
r'= Q

where
d
ti(u, p)(x) :=—[p(x) + div u(x)] ni(x) +2u _Zlaj (u,x)n;(x)
J:

is the co—normal derivative representing the boundargstdefined for almost ak € I
andi =i,...,d. For divergence—free functiomssatisfyingl]- u = O we obtain, as for the
system of linear elastostatics, the following alternateresentation

t(u, p) = —p(x)n(x) + 2udinu(x) + un(x) x curlu(x). (2.9)

The symmetric bilinear form is given by
d
a(u,v) =a(v,u) :2u/ Z eij(u,x)aj(v,x)dx—u/ div u(x) divv(x)dx,  (2.10)
o =1 o)

so the Green's first formula takes the form

a(u,v):/p(x) div v(X)dx+ (f,V)o + (t(U, p), YV)r (2.11)
Q

Here we have introduced the strain tensor, the stress tansdhe boundary stress which
are defined as follows

j(u) = = iu'—i—iu-
= 2\ T ax )
gij(u,p) = —&jp+2ue;(u),

ti(u,p)(x) = %aij(u,p)nj(x) fori=1,...,d. (2.12)
=1
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Green’s second formula

From Green'’s first formula (2.11) and by using the symmetrthefbilinear forma(-,-),
we can derive Green’s second formula

d %
/3, i (y) + )| wdy-+ [ py) divuidy= [Vt pisy
Q' Q r (2.13)
- [uy v ds + [ 1) Tvy)ay
Q

r

Fundamental solution and representation formulae

A solution of the partial differential equations (2.6)-{Rwith a Dirac impulse as the right
hand side is defined to be the fundamental solution. A priontedge of the fundamental
solution of the underlaying partial differential operatessential to use boundary integral
equation methods to describe solutions of boundary valabl@ms. At first glance this
seems to be a draw back of boundary element methods, butisheetarge class of partial
differential operators for which the existence of fundataésolutions can be ensured
even with the class of partial differential operators witimstant coefficients [17, 34, 50],
the explicit computation can be a formidable task in genses, e.g., [43,55].

To find a representation formula fag(x) for k=1,...,d, we need to find the fundamen-
tal solution for the Stokes system which is defined by a paitistiibutionsv¥(x,y) and

o(x,y) satisfying

DV (X Y) + Ok (xy) = 8(x,Y)e",
divka(x,y) = 0,

where ek denotes the unit vector along thg-axis, k = 1,...,d. By using the Fourier
transform we can compute the fundamental solution exjylicee [44] for details.

Ford = 2 the matrix valued fundamental solution is

* 11 — X — X
= Uplxy) = g |~loglyigg - BN (210
. 1 yk— .
o = Qk(x,y>:§TH, with k(=12
Ford=3
. _ 110 0 (k%) —X)
Uké(xay) - 87-[[.1 |:|X_y‘ |X_y‘3 ’
Qu(xy) = L k=X iy k(=123

ar x—y’
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Recall that the fundamental solution for the two—dimenaidimear elasticity system is
given by [63, page 98]

1114v (Vi — %) (Ve — X¢)
AnE1_y |4V —3)l0g[x—y[0¢ + X3P

Remark 2.2.1. On comparing2.14)with (2.15)we found that fow = % and E= 3y, the
fundamental solution for linear elasticity coincides witte fundamental solution of the
Stokes system provided the material is incompressiblenfasiobservation can be made
for the case d= 3 as well.

Inserting the fundamental solutions in (2.13) we get a gm&ation formula for the ve-
locity

/ U (x,y) Tt (uly), p(y)) sy — / u(y) t(UE (% y), Qi (% y))ds,

/
+/f(y)TU§(x,y)dy, forxcQ, (k=1,...,d). (2.16)

Analogously we can get the representation formula for tessure, fox € Q

/ Qilxy) "ty)ds,— 24 / 2 Quxy)ds+ /f ) Quxy)dy. (2.17)

Ny

Note that the representation fpfx) is unique up to an additive constant.

The co—normal derivativE(x,y) is defined via (2.9), for almost afic I, by

Te(xy) = t(Up(xy), Qc(xy)),
,
= —Q(xy)n(y) +2uau’£(x,y) + un(y) x curl Ui(x,y).

Remark 2.2.2. It can be shown easily, see [63, pages 7,14], that the boyndaess
represented by the co—normal derivative of the fundamesatation of the Stokes system
also coincides with the boundary stress of the fundamewiakisn of linear elasticity
when choosing the material parametersE3u andv = %

2.3 Hydrodynamic potentials and boundary integral equations

The representation of the velocity for the inhomogeneookest system (2.5) is obtained
from (2.16)

u® = (VH)(x) — (Wg)(®) + (Nof) (%), forxeQ. (2.18)
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HereV, W and N, are the single layer, double layer and the Newton potenfialshe
Stokes system respectively which are defined as{ £

(Vt)(%) /U (Xy) "t(y)ds, (2.19)

Wu)®): = / u(y) ' T (%y)ds,

(2.20)
(Nof) (%) /f ) TU* (X y)d

Applying the trace operatgg and the boundary stress operattOr-) to these potentials
yields

WV = Vg

W) = (GI+K)w
WiWe) = (—51 K)o,
t(Wg) = —Do.

almost everywhere oh, with the single layer potential operatdr. H—%/2(I") — HY/2(I"),

the double layer potential operatér. H/?(I") — H1/2(T"), the adjoint double layer poten-
tial operatorK’ : H—l/z(r) — H~Y2(I") and the hypersingular boundary integral operator
D:HY2(Ir) — H-Y/2(T"). These boundary integral operators are continuous lingenae
tors and admit the following representations

Vt)j(x) = /ZiU,Jth. y)ds, forxer,
(Kp)j(x) = /ZiT” xy)@i(y)ds forxeT,

K't)jx) = /ZlTj,xy y)ds, forxeTl,
09)x) = pi. [Duxy)ey)ds forxer,

whereT;; (%,Y), Dj¢(x,y) are the kernel functions for the double layer potential ayyeh-
singular operator respectively, and p.f. denotes Hadamande part integral-the natural
regularization of homogeneous distributions and of theehsipgular boundary integral
operators. In the following lemma we describe the mappiogerties of the these hydro-
dynamic potentials. The basic idea of the proof is to use tbgecrelationship of these
potentials with that of the Lamé system.
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Lemma 2.3.1.Let " be the boundary of a Lipschitz domain. dfe R, |g| < 1/2, then
the following basic boundary integral operators, as defiabdve, are continuous linear
mappings.

Vo H_1/2+0(r)—>H1/2+0(r),
K - H1/2+G(F)HH1/2+O'(F),

K' - H—1/2+J(r)_>H—1/2+a(r),
D : H1/2+0(r)—>H_1/2+0(r).

Proof. See [37, Lemma 5.6.4] or [41, Section 6]. O

In equation (2.18) the boundary charges are the Cauchygfigta= u(x)|r andt(x) =
t(u, p)|r of the solution of the Stokes system

—pAu+Op=f, O-u=0 inQ. (2.21)

Since the pressurp will be completely determined once the Cauchy data are knawn
what follows, it is sufficient to consider the boundary inedgequations for the velocity
only. Nevertheless, we need the representation formula iimplicitly when we deal with
the stress operator.

Applying the trace operator and the boundary stress opet@tooth sides of the repre-
sentation formula (2.16), we obtain the overdeterminetesy®f boundary integral equa-
tions

ux) =1 —Kux) + Vt)(x)+(Nof)(x)  forxer,

t(x) = (Du)(X)+ (31 +KNt(X)+ (Naf)(x) ~ forxeT.

Hence, the Calderdn projector can be written in operatoririarm as

c_ (3K vV
“\ D lI+K

HereV,K,K’ andD are the four basic boundary integral operators for the Stdlosv.

It may be noted that the Calderdn projector for Stokes hasanee form as that of the
Laplacian, see [63, page 137]. As for the Laplacian the Dieicproblem can be solved
by using the weakly singular boundary integral equation

(V) (x) = (%I FK)ux) — (Nof)(x) forxer. (2.22)

Inserting the Dirichlet data in (2.22) we get

(Vt)(x) = (%I +K)g(x) — (Nof)(x) forxerl. (2.23)
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To ensure the solvability of (2.23), we have to consider thpping properties of the single
layer potentialV. Since the boundary integral equation (2.22) holds for aaiy (u*, p*)
satisfying the Stokes system (2.21), when choosing 0 andp* = constant we get

(Vt")(x)=0 forallxeTl,
in particular, when using (2.12) with= —1 we found that
t*(x) =n(x) forallxel

Is an eigenfunction yielding a zero eigenvalue of the sithayer potential. Thus we note
that the boundary integral equation (2.23) is uniquely &lole modula* (if t is solution
thent + at*, for a € R, is also a solution) and we have to consider (2.23) in an ap@ie
factor space.

Lemma 2.3.2.LetQ ¢ RY be a bounded domain with Lipschitz boundars: dQ. Then
t e H7Y/2(T).

Proof. See [56, Proposition 2.1]. O

Let

(VH) () :/U[‘(x,y)t(y)dsy forxel
r

denotes the single layer potential associated with thedcapbperator withJ*(x,y) as
fundamental solution. Note that-: H-%2(I") — HY2(I") is bounded andd ~/2(I")-
elliptic, for d = 2 we assume diar® < 1, for the proof of ellipticity, see [63, Theorem
6.23].

We now define the factor space

d
HY2(r) = {t eHY2(M): {tt) = Zi(VLthti*)Lz(r) = 0} : (2.24)
Remark 2.3.1. For the Stokes single layer potential V/, we haven, /(") — H/%(").

Note that in literature, e.g., Reference [70] the factocemafl/z(r) is often defined with
respect to thed, inner product. It seems that (2.24) is a more suitable chgiag an
optimal error control.

To ensure the existence of at least one solution of (2.23)eeel 0 have the solvability
condition for the right hand side and hence we have the fatigyemma.
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Lemma 2.3.3.Letb: = (31 +K)g(x) — Nof be the right hand side of the boundary integral

equation M = b. Assume furtheg H*l/z(r), then there holds the solvability condition

(b,t*)r =0. (2.25)

Proof. For the inhomogeneous Stokes system (2.5) the second bguntiggral equation
is

(Du)(x) = (%I —KNt(x) = Nif(x) forxeT. (2.26)

Since (2.5) holds for any pair of solutiofis, p), in particular foru =0 andp = —1, we
get from (2.5)f = 0 andt =t* = n. Hence equation (2.26) becomes

0= (%I —KNt*(x) forxerl, (2.27)

and therefore

(b = {(G1+K)g—Nof. )

= (@) (8,51 Kt — (NG,

The first term on the right hand side vanishes due to the sitityatondition (2.8), the sec-

ond term is zero due to (2.27). We need to to show that the tiind is also zero. For this
we use the fact that the Newton potential is the generaliakdisn of the inhomogeneous
Stokes system (2.5). Lety = Nof. Then

<N0f,t*>r:<Uf,n>r:/UIndS(:/D-deXIO,
r Q

since

Oy-us = Ox- Nof = DX-/U*(x,y)f(y)dy: /DXU*(x,y)f(y)dy:O.
Q Q

Hence the assertion follows. O

We now establish an ellipticity estimate of the single lgyetential for Stokes through the
following lemma.

Lemma 2.3.4.LetQ c RY(d = 2,3) be a bounded simply connected domain with Lipschitz
boundaryl : = dQ. Then, the single layer potential V is[ﬁ(z(r)—elliptic, ie.,

Vw,w)r > ¢ w2y, forallwe H YA, (2.28)

(N
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Proof. See [15]. O

Remark 2.3.2. For the two dimensional case an appropriate scaling cooditior the
domainQ is needed to ensur@.28) see [36,69]. For the single layer potential of the
Bi-Laplace this was considered in Reference [13]; then Biggress function yields corre-
sponding scaling for the elastostatics problem and theecfior the Stokes system.

Remark 2.3.3. Note that here we have the ellipticity of V irjllfz(r) and not in the full
space HY2(I"). In the next section we will define a stabilized version ofsingle layer
potential which will ensure the ellipticity in the full H/2(I") space.

Variational formulation of the boundary integral equation

The variational formulation of the boundary integral edgua(2.23) reads.
Findt H*_l/z(r) such that
1 ~1/2
Vt,T)r = <(§I +K)g—Nof, T)r forall Tt e H, 7°(I). (2.29)

Since the single layer potentidlis H*_l/z(l')—elliptic and bounded, the unique solvability
of (2.29) follows from the lemma of Lax—Milgram [63, Theor&w] and by assuming the
solvability condition (2.8).

The trial spaceH*_l/z(F) may not be suitable for a conformal Galerkin approach, so we
will derive a formulation which allows a standard Galerkisatetization. This can be
done as in mixed finite element methods, see [10] for defais.constraints ilh-l*_l/z(l')

are formulated as side condition to get a saddle point pnoble

Find (t,w) € H=1/2 x R such that

(Vt, T)r + (T, 1)y = (b, T)r forall T e H7Y2(I), (2.30)
(t,t*)yL =0. '
We now establish the unique solvability of (2.30) with théoraf the following theorem.

Theorem 2.3.1.Let Q c RY for d = 2 or 3 be a simply connected domain with Lipschitz
boundaryl". Let the solvability conditiori2.8) be also valid. Then there exists a unique
solution(t,w) € H-1/2(I") x R of (2.30)satisfying

HtHHfl/Z(r) < C”g”Hl/Z(F)7

in particular, we have € H*_l/z(r) andw = 0.

Proof. See [56, Theorem 2.1]. O
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The Galerkin discretization of saddle point problems candrge in the standard way re-
quiring some discrete stability or Bagka—Brezzi—Ladyshenskaya (BBL) condition [10].
Further the resulting system of equations is symmetric hdéfinite. However due to
w = 0, instead of (2.30) we can consider a modified saddle poattlem.

Find (t,w) € H~Y/2 x R such that

(Vt,T)r + (T, t*) = (b, T)r forall T e H™Y2(I),

(t,t )1 — = 0. (2.31)
Now we can eliminateo and we end up with a modified variational problem.
Findt € H-Y/2(T") such that
(Vt, T + (6, )W (T, = (b, T)r  forall T e H-Y2(I). (2.32)

Since the bilinear form in (2.32) i ~1/2(I")—elliptic, there exists a unique solutiore

H~1/2(I"). Moreover, if we choose the test function= t* we findt € H;l/z(r). Hence
the variational formulations (2.29), (2.30) and (2.32) egeivalent.

Remark 2.3.4. Since a bilinear form defines an operator and conversely avaipr in-
duces a bilinear form, see [63, page 42] we can define

Vt,T)r: = (VE, T + (4, ) (T,th fort,T e HTY2(). (2.33)

HereV is, so called, the stabilized single layer potential.

Then the variational formulation of the boundary integrgi@ion becomes to fintde
H=Y2(r):

~ 1
V1)L, = (51 +K)g—Nof 1)) foraliTe H=Y2(r). (2.34)

For further works on the Stokes system, we refer to [15, 1812,44,48,60,67, 70].

2.4 Boundary elements

Recall that we have assumed ti§at- RY is a Lipschitz domain with piecewise smooth
boundaryl = dQ. We consider a family'y} of decompositions of the boundalry

N
=T, (2.35)
(=1

with the boundary elements. For the present discussion we restrict ourselves to plane
triangles for the choice of the boundary elements. The mdrich may occur by this
approximation of the boundafyare not considered here. For an overview and analysis of
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these errors, we refer to [52]. The decomposition, as defmgi35), is called admissible
if two neighboring boundary elements share either a node edge. We define the local
mesh size of a boundary elemeant

1

2

hy = (/d&) ,
T

and the global mesh sizes of a boundary decompodition

h=hnax:= max hy, hpin:= min h,.
(=1,....,ny (=1,....ny

The diameter of a boundary elemanis defined by

dy ;= sup|x—yl.

XYET
We assume that the famil§f ,} is uniformly shape regular, i.e., there exists a constant
¢ > 0 which is independent of the boundary decomposition suah th
d <ch, forall/=1,...,n,.

For the Galerkin discretization of the boundary integragrapors for the Dirichlet Stokes
problems we consider finite dimensional trial spaces wispeet to the boundary decom-
positionsIy. A conforming trial space ol ~1/2(I") is Sﬂ(r), the space of piecewise con-
stant functions. We us{stp?}?“:l as basis functions & (I") with respect to the boundary
decompositior, WhereLpQ is constant one on the boundary elemenaind zero else-

where. The spac&}(I") of continuous piecewise linear functions is a conformirigl tr
m
space oHY/2(I"). We use nodal basis functior{sp?}_ ) for S(I), where the vertices of

the boundary decompositidr, are the nodes. Le{[xj }']Til be the set of vertices dfy,
then the basis functions & (") are given by

1 if x = Xj,
@H(x) =40 if X = % # X;,
piecewise linear elsewhere

for j =1,...,m,. Note, in order to use vector valued test functions we usesupase
Greek lettersV and @ for the piecewise constant and piecewise linear ones, cagely,

le.,
WP (x) = <Lp?éx)) W0 = (w?ax)) , L=1,...,np,

and

P (x) = (COjOC()X)), @9, . (X) = <¢?(()X)>, j=1,...,m.

The trial space%(r) andSﬁ(l‘) have the following approximation properties.
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Theorem 2.4.1.Let o € [-1,0]. For u € H3(I") with some s [0, 1] there holds the ap-
proximation property of ﬁr)

inf  {Ju—vVp|luor <9 ullysiy
" (r)” hllHo(r) < [ulls(r

with some constants O.

Proof. See, e.g., [58, page 252], [63, Section 10.2]. O

Theorem 2.4.2.Letl" = 0Q be sufficiently smooth. Far € [0,1] and for some & [0, 2],
s> o, we assume € H3(I"). Then there holds the approximation property MFS

inf  |lu—vh|lgor < ch® 9 |lullys -
vhesg(r)H hllHo(r) < [ulls(r

Proof. See, [63, Theorem 10.9]. O

Similar approximation properties also hold for an open padf I', see [57, Theorem 2.1,
Theorem 2.3].

2.5 Boundary element methods for Dirichlet Stokes problem

Let [ﬁ(r)]2 be some finite dimensional trial space spanned by, e.g.ewise constant
basis functions. The Galerkin variational formulation »132) reads :

Findt, € [S2(I")]2 such that

(Vth, Thir 4 {th, 1)yt (Th, Uyt = <(%| +K)g—Nof, tp)r  for all Ty € [S)(M)]?,
or  (Vth, Tp)r = <(%I +K)g—Nof, Th)r  forall T, € [S2(I")]2. (2.36)
If we takeT = 11, in (2.34) and subtract it from (2.36), we get the Galerkimogonality.
(V(t—tn),Th)r =0 forall T, € [S)(M)]2 (2.37)

Since the bilinear form in (2.36) H*l/z(l')—elliptic, hence by the Lax—Milgram lemma,
there exists a unique solutidpe [Sﬂ(r)]2 satisfying the quasi—optimal error estimate, i.e.,
Cea’s lemma, see [63, Theorem 8.1]

t—th!l - <c inf | .
It=tlyvey <€ it lt=Thlhy-sz

Applying the approximation property of the piecewise canstrial space, Theorem 2.4.1,
and when assumirige Héw(l'), we end up with the following estimate

B 3/2
It thHH—l/Z(r)SCh ”t”H,%W(r)'
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The solution of the boundary integral equation (2.36) givean approximate solutidp,

so now we have the complete Cauchy data, i.e., we are giveitiohlet datag, and we
have computed the approximate Neumann datiginand we can obtain an approximate
solution of the boundary value problem from the represemtgbrmula. If Ux(X) is the
approximate solution fox € Q, then the corresponding representation formula reads

k(%) = (Vtn) (%) — (WQ)(X) for Xe Q.
Also the representation formula for the continuous funcig
(%) = (Vt)(®) — (Wg)(X) forxe Q.
The above discussion leads to the following theorem.
Theorem 2.5.1.The pointwise error of the approximate solution can be estiah by

[U(R) = ()| < S [UR(X.) g [tlgcr)

Proof. Since
U /uk %.y) Tt(y)ds, — / () Ti(Xy)ds forxeQ,
r
also
i /u (%y) th(y)ds — / udy)TTi(Xy)ds, forgeQ,

.
and subtracting the last two equations and using a duafiynaent, we have

W®-G®| = | [UEY) 1)~ tn(y)]ds
r

< [JUk(X ')HH*U(F) It _th”HU(F)

AsX e Qandy e I, soUg(X)y) is infinitely many times continuously differentiable, j.e.
Ui(X,-) e H79(T") for any o € R. So for the best possible error estimate of the pointwise
error, we need to have an error estimate{f ty |0 1) for a minimalo € R. The next
theorem (Aubin—Nitsche trick) will give us

3
[t =thlly-2(r) < A7 {[tlya,
U

Theorem 2.5.2.(Aubin—Nitsche trick)Lett € Hg,,(I), for some s= [-1/2, 1] be the solu-
tion of the boundary integral equatid@.34) letty, € Sﬂ(r) be the corresponding Galerkin
approximation. LeV : H —1-9(") = H~9(I), the stabilized single layer potential, be con-
tinuous and bijective for-2 < 0 < —1/2. Then there holds the error estimate

It =thllpo(r) < b Itllys,

Proof. See [63, Theorem 12.3]. O
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Equivalent system of linear equations

Recall the Galerkin variational formulation (2.36) for theundary integral equation reads:
Findt, € S)(I") such that

(Vth, Th)r + (th, Yy (Th, tHyL = <(%I +K)g—Nof, Th)r  forall Ty, € S(I).
In other words,
(Vh—i—a-aT) = f,
Vhli,j] = (v, W,
all] = (W00, Tl = {(G1+K)g—Nof, 90,
wherei, j=1,....dm,.

Let us definé/y: =Vh+a-a', which is symmetric and positive definite. To bound the
spectral condition number of the stiffness malfx we state the following lemma.

Lemma 2.5.1.For all w € RI™ s wy, € [S)(I")]9 and a globally quasi uniform boundary
discretization , there hold the spectral equivalence irsdigjes

cah? [wif < (Viw,w) < o w3,
with some positive constantsic=1,2.

Proof. See [63, page 269]. O

The approximation of right hand side

In practical computations, the given Dirichlet datgmas to be approximated by a function
oh € SH(T) whereSH(I) € HY2(T") is some trial space, e.g., of piecewise linear basis
functions. For example we may consider the piecewise limgarpolation

Okh(X) = Elgk(xi)@il(x), k=12

Lemma 2.5.2.Letv € H5(IN), se [%,2], l.e.,Vv is continuous and a sufficiently smooth
boundaryl” be given. Lety: H() — S}(T") be the linear interpolation operator, i.e.,
Inv(x) = V(X¢) fork=1,...,dn,. Then there holds the error estimate

IV =ThV|[o(ry < 7 |V|ysr)y for0< o <min{l,s}. (2.38)

Proof. See [63, page 241]. O
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We note that on a boundary elemeamnt a piecewise linear functiom,(X) is described

by the values/y(x ) in the nodesq, hence instead of (2.36) we consider the perturbed
variational formulation which reads:

Findth € S(I") such that

(Vnth, Th)r = ((%I +K)gh, Th)r — (Nof, Th)r for all T, € SX(T), (2.39)

and an equivalent perturbed system of linear equations is

Wi = f, where
s (1 £ UL | I O 0
f= (éMh+Kh)g—N0f<=> f[f] = i;gi<(§|+K>¢i,wg>r—i;<N0f,LP£>r,
Mn[£,i] = (DL, WD), Knlt,i] = (KOF W),

fori=1,....dmyand/=1,...,dmn,.

Due to the Strang lemma, see [63, Theorem 8.2], we get thenfmly error estimate

- 1(y. W
Ht_thHHl/Z(r) < a {Cz Ti:g‘;(h||t—Th||H*1/2(r)+Cz ||9—9h||H1/2(r)},

using Theorem 2.4.1, we end up with

= s11/2 W
Ht_thHHl/Z(r) < ¢h®Y gy +C2 19— 0nllhu2r)- (2.40)

L, Galerkin projection

To prove a more general error estimate, we now consider girojeoperators which are
defined by some variational problem.

Lemma 2.5.3. For u € Lp(I") the L, projection Qu € SH(I") is defined by the unique
solution of the variational formulation

(QnU, Vi) Ly(ry = (U, Vi), forall vy € Sy(I),
there holds the error estimate fare HS(I"), s€ [0, 2],

lu—Qnullyry < chPlulis(r).- (2.41)

Proof. See [63, Theorem 10.2]. O
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Remark 2.5.1. The above estimate can be extended to
lu=QnUlljory < ch™fulnsr),

where 2 [0,2], —1< 0 <min{1,s} and Q,: H¥2(I") — SK(I") c HY¥2(T") is a bounded
operator

HQhV”Hl/Z(r) < HVHHl/Z(r),
see, [63]. As we have defined the projection (consider it asi® projection), we can
accordingly define &9 projection. We state the following lemma.

Lemma 2.5.4.Forue H°(I") ando < (0, 1], we define the A projection  : H?(I') —
St() as the unique solution of the variational problem

(QRU,Vh)Ho(ry = (U, Vh)o(ry forall vy € Sy(I), (2.42)
there hold the error estimate, fore H°(I") and se [0, 2]

lu—=Qfullyory < ™ uls(r)-
Proof. See [63, Section 12.1]. O

We are now interested to investigate the effect of the appratxon of right the hand side
on the error estimate of the perturbed solution. For thistateshe following lemma.

Theorem 2.5.3.For t € Hg, (), s€ [-1/2,1] andg € H?(T"), 0 € [1/2,2]. Let Qg be
the Ly projection ando € [%,2} for the interpolation 4g. Then there holds the error
estimate for the perturbed solution

s S+1/2 ~1/2
Ht—thHHl/z(r)SClh /|t|H,§W(r)+Czha /|9|H0(r)-

Proof. Applying the Strang lemma on the perturbed variational idation and then using
the approximation property of piecewise constant basistfan, (see (2.40)),

iy s+1/2 Wiy
I ) < O g )+ S 19— Gl
the assertion follows by applying estimate (2.38) on thesdderm on the right hand side
in case ofipg and applying Lemma 2.5.3 and Remark 2.5.1 in the case df:tpeojection

Qng. 0
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Remark 2.5.2. Let us consider the optimal case, i.e=4 ando = 2,

"t—Th" < Chs/z{\t|HgW(r)+|9|H2(r)}~

H-1/2(I)

Note that we get the same order of convergence as in the ndo#ped case. This means
that an approximation of the right hand side, either hy or by Q,g, has no effect on the
order of convergence of the approximate solution of thedbigt boundary value problem
in the energy norm, but in more negative Sobolev norms.

Theorem 2.5.4.(Aubin—Nitsche trick)For some s [—3,1] lett € Hpw(l) be the solu-
tion of the boundary integral equatiq@.34) ty, € sﬂ(r) be the solution of the perturbed
variational problem(2.39) LetV : H=1-9(I") — H=9(T"), the stabilized single layer po-
tential be continuous and bijective far € [—2, —%], and let the double layer potential
21+ K: HM9(r) — H¥*9(I") be bounded. Fog € HP(T"), p € (1,2]. Then there holds
the error estimate

T — —0-1
Ht_thHHU(F) < C1h® 7 tlns, ) + €207 glhe (),
whereo > —1for g, =Ipgando > —2 for g, = Qng.

Proof. See [63, Theorem 12.7]. O

Effect on the pointwise error by an approximation of the right hand side

Let Ux(x) be the approximation af(X), fork =1,2.
W® = [Uiy) t)ds - [o) TiXyds forxeQ,
r r

also

G = [Uixy) " ty)dy— [ o) Ti(Ry)ds forgeQ,
r r
and subtracting the last two equations and using a duafitynaent, we have

u(X) — Gk(X)| < +

/u;(xyf [t(y) —Yh(y)} ds
/

[Ty (o) - sy ds.
)

< YRR h-ogey [[E 0]y, ITEE ) 19— Gl

AsX e Q andy eI, soUg(X,y) andTg(X,y) are infinitely many times continuously dif-
ferentiable, i.e. U (X,-) e H79(IN),T(X,-) e H7H(T") for any o, u € R. So for the best
possible estimate of the pointwise error, we need to Isavd, p =2 ando = —1 or —2
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depending upogy, = Ing or gn = Qng respectively. We finally end up with following two
estimates

U(X) — (3| < Ch2{||t||HgW(r)+||9||H2(r)} for - gn=1Ing,
< Ch3{|t|HF1,W(F)+|g|H2(F)} for gh=Qng.

Remark 2.5.3. For the pointwise error, we gain one order of convergenceafapproxi-
mate the right hand side by using thg frojection.



3 OPTIMAL CONTROL FOR STOKES PROBLEM

In this chapter we start with a brief introduction to the ol control problems and their
solutions. The main references for this section are [2&8]3,We then discuss an elliptic
optimal control model problem with a quadratic cost funcéiband the Stokes system
as linear constraint. The control is on the Dirichlet bougdahich lie in a closed and
convex subset dfl 1/Z(I') and also satisfies a certain compatibility condition. Thal ggoto
reformulate the boundary control problem into an equiviadgstem of boundary integral
equations. With the help of the state to control map@ngve formulate the reduced cost
functional in the control. The adjoint problem is obtaingctive realization of the adjoint
operatorS*. We end this chapter by setting up the optimality system isting of the
primal problem, the adjoint problem and a coupling conditighich turns out to be an
elliptic variational inequality of the first kind.

3.1 An introduction to optimal control

An optimal control problem is an optimization problem in whithe variable to be opti-
mized admits a natural splitting into a state variable andrarol variable. Thus we can
say that all optimal control problems are optimization peofis but not all optimization
problems are optimal control problems.

The basic ingredients of an optimal control problem

An optimal control problem consists of the following compois.
 State variables.
» Control variables or design parameters.
« An objective or a cost functional.
« Constraints (restrictions) which the state and contrakdes are required to satisfy.

Then an optimal control problem is:

Find the state and the control variables that minimizes @ximizes) the objective func-
tional subject to the requirements that the constraintsaiisfied.

It may be noted that we are going to consider only the clasptirinization problem which
requires the differentiability of the cost functional arfdiee constraints. In other words we
are not going to discuss the so called 'Non—smooth Optinoizat Further we are going

31
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to present the text within the context of fluid mechanics. Nesvdefine and explain the
basic components of an optimal control problem.

Definition 3.1.1. In the fluid mechanics setting, variables describing thehmaeal and
thermodynamical behavior are callestiate variables, e.g., one or more of the velocity,
velocity potential, pressure, density, temperature arnedrimal energy can be regarded as
state variable.

Definition 3.1.2. One or more of the data specified that serve to determine #te @ari-
ables are termed asontrol variables or design parameter, e.g., heat flux, temperature at
the wall, an inflow mass flow rate, parameters that deternhieeshape of the boundary.

Definition 3.1.3. The functional describing the ultimate goal of the optirtimaproblem

is calledobjective or performance functional, e.g., we may be interested to see how close
is the velocity field to a given target velocity field, or theesof the drag or the lift, or
temperature variations.

Definition 3.1.4. The restrictions or the conditions that the state and cdntariables
must abide are called theonstraints, e.g., the main constraints governing the flow equa-
tions are Naiver—Stokes, or Euler, or potential flow equagioWe also encounter the side
constraints such as minimum lift, or minimum volume, or mmaxn power requirements.

The structure of flow optimal control problems

The flow control optimization problem has usually three comgnts. First we have an
objective a reason why we want to control the flow. There may be varahjsctives
of interest in applications, e.g., flow matching, drag mization, lift enhancement, pre-
venting separation, preventing transition to turbulertgerring temperature variations,
enhancing mixing, deterring mixing, etc. Mathematicadlych an object is expressed as
cost, or objective, or performance functional.

Next one hagontrol or design parameters at one’s disposal in order to meet fleetoe.
One has boundary value control such as injection or suctidheofluid and heating or
cooling or temperature control, one could have distribataatrol such as heating sources
or magnetic fields, one could have shape control such asnigaxitrailing edge flaps,
movable wall rudders, propeller pitch, surface roughnesdpmain design; or, one could
have combinations of numbers of controls or design parasiekdathematically, control
or design parameters are expressed in terms of unknownrdéita mathematical specifi-
cation of the problem.

Finally one hasonstraintshat determines what type of flow one is interested in and that
place direct or indirect limits on candidate optimizer. Omest decide, e.g., what type of
fluid model is adequate for the application in mind assumiivag low is potential flow, an
inviscid flow, a viscous flow, a compressible or incomprdsdibw, stationery flow, a time
dependent flow, etc. Mathematically the type of flow is expeésin terms of a specific
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set of partial differential equations. One may also impade sonstraints motivated by
practical necessities, for example, one may want to mirerttiz drag on an airfoil subject
to the lift and/or the volume being grater than a specific@aldne then puts together the
three ingredients in an optimization problem by seekingapggmal state and the control
that satisfy the constraints and minimize the objectivefiomal.

An abstract optimal control problem

If ¢ denotes the state variablesthe control variable or design parametér( @, g) the
cost or the objective functional, aril(¢,g) = 0 are constraints. Then the optimization
problem reads.

Find the control g and state such that7 (¢, g) is minimized subject to Fp,g) = 0.

It may be noted that many objective functionals, we see iotfg@, do not explicitly depend
on the design parameters which leads to unbounded optimaiot@roblems. In such a
situation, we must somehow limit the size of the control. sTt&n be achieved in two
ways:

 Restrict the size of an admissible control so that they augist for within a bounded
set, e.g., look for an optimal control such that, for soméatlé norm|| - || and a
constanik

-1 <
 Penalize the objective functional , i.e., instead of mizing a given functionaf ()
that depends only on the state variables, minimize, for sauntable norn| - || and
constantsr andp, the functional

T(@.g) =E@+alglP.

Note that in the first case we are just imposing the side caingsron the optimization
problem. This we are not going to discuss here. In the secasel, eve have changed the
problem, i.e., the minimizer Qff are not, in general, minimizers of the given functional
£. However, in many if not most practical settings, limitifmgtsize of the control through
penalization is easier to implement than through placimgetkplicit bound on the control
variables.

Solution of optimal control and optimization problems

There are three approaches to solve optimal control andn@atiion problems. These
are

» one-shot, or adjoint, or co—state, or Lagrange multiphethods,
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* optimization methods based on the sensitivity equatiowls a

 optimization methods based on adjoint equations.

3.2 Unconstrained optimization problem

Our aim is to set up an optimality system which consists ofstiaée equation, the adjoint
equation and an optimality condition. The resulting optitpyaystem then can be solved
by some suitable method. We set up the optimality systemudomlbstract example by a
Lagrange multiplier method. This method recasts the cam&d optimization problem

as unconstrained optimization problem. We introduce thgrérage multiplier or adjoint

variable or co—state variabfeand the Lagrangian functional

L(9,9,¢)=JT(9,9)—&F(9,9),

whereé*F can be viewed as inner product or duality pairing. Then wepbs following
unconstrained optimization problem:

Find controls g, stateg and co—state§ such thatC (¢, g, &) is rendered stationary.

The first order necessary conditions then give the optisnalistem from which we can
find the optimal states and design parameters.

oL

5E = 0= state equation (3.1)
oL - .

5—g0 = 0= adjoint or co—state equatipn (3.2)
oL L "

5—9 = 0= optimality condition (3.3)

Here we consider the case that each argument(gf,g, £) is independent of each other.
This was not true in the original optimization problem inxal 7 (¢,g) since the ar-
gument@ and g were constrained to satisfy (¢,g) = 0 and thus could not be chosen
independently. The equation (3.1) can be written in anéiere way as

lim
e—0

(ﬁ(fp,g,ﬂs«?)—ﬁ(rp,g,ﬂ) o

&

where the variatior{ in the Lagrange multiplie€ is arbitrary. Substituting foC, we
have

im [m,g) — (E+EE)°F 09 (709 ~EF <<p,g>>] o

&*F (@,9) =0.
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Since the variatioﬁ in the Lagrange multiplief is arbitrary, we recover the state equation
F (¢,g) = 0. Setting the first variation of with respect to the stat@ equal to zero is
equivalent to the condition

lim
e—0

<£((p+£5,gaf)—ﬁ(¢,g,f)> _0

&

where the variatio@ in the statep is arbitrary. Again substituting fof, we have

im | J(@0+€0.9)—EF (9+£0.9) - (J(0.9-EF(09)| _
e—0 & ’
0 — | F + ~7 -F ) |
i | Z(@+¢0.9 709 & (Flo 84”89) wa)| 3.4

We assume the functionals and variables to be sufficientbosimand introduce the Taylor
series expansion as

~ 0 ~
J(@+ep,9)=J(9,9) +¢€ <Tg|(w7g)) @+0(&?),

and a similar expansion fét (@ + s?p, g), So equation (3.4) takes the form

. N ~ _,(0F ~
lILnO l(a—(pk(p,g)) P-4 <%|((p,g)¢) +O(£)} =0,
07 ~ . [0F ~
<a—(p|(cp7g)> ¢p—2< (a—(p|(<p7g)4’) =0,

~ ([T * /OF *
v ((Gglen) - (Ggle0) €) 0

where(%—gk@g)) *denotes the adjoint operator ()%Wg))' Since the variatiofp in the

stateg is arbitrary, we get the adjoint equation

oF ' aJ :
ﬁpkqxg) ¢= a—(p|(<p7g) -

Finally, setting the first variation of with respect tay equal to zero and proceeding in a
similar manner as above we get the following optimality datod

oF i N .
a_g‘(co,g) {= d—g|(¢’79) '
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Hence the optimality system is

F(p,9) = O = state equatian

oF * N * . .
<%‘(¢,g)) ¢ = <a—(pl(¢7g)> = adjoint equation

oF * N * o .
<a—g\(¢,g)) ¢ = <0—g|(¢7g)) = optimality condition

Note that if the state system is expensive to solve, thencthupled system is an even
more formidable. However, if we can solve the coupled oplitjmaystem with the help of
some computational methods, then optimal states and ¢ectan be obtained without an
optimization iteration. Due to this specific reason, suclhgporoach is sometimes called a
one—shot method for optimization.

3.3 Constrained optimization problem

In the previous section we have setup the optimality systgnma hagrange multiplier
method which recasts the optimization problem with eqgualiinstraints as an uncon-
strained optimization problem. Now we consider the caseraviae have in addition in-
equality constraints, i.e., box constraints for the cdntBut before that we discuss some
basic definitions and results which can be found in most sta@htéxtbooks on functional
analysis, e.g., [1,73].

Definition 3.3.1(Dual space) The space of all continuous linear functionals(@h |||, ).

denoted by U, is called the dual space of U.

Observe that)* = £L(U,R). The associated norm is given by

Iflly- = sup [f(u)].

lully=1
Moreover, sinceR is a complete space, the dual splceis always a Banach space.

Theorem 3.3.1(Riesz representation theorentet (H, (-,-)n) be a real Hilbert space.
Then for any continuous linear functionaldeH* there exists a uniquely determined H
such that|F ||y = || f||4 and

F(v)=(f,v)y forallveH.

Proof. See [63]. O



3.3 Constrained optimization problem 37

Definition 3.3.2 (Bidual and reflexive spaceslet U denote a real Banach space with
associated dual space'UWe fix an arbitrary u= U, let f vary over U, and consider the
mapping G : U — R induced by u,

Fo: f— f(u).
Clearly, R, is linear, and its continuity is a consequence of the simplerate
IFu(H)] = [fU)] < lully I Flly- -

Hence, the functional fFinduced by u belongs to the dual spagé™)* =: U** of U*.
Since the mapping & F, turns out to be injective, we may identify u with, Ehereby
interpreting ue U as an element of U.

The space U is called the bidual space of U. In light of the above iderdifian, it is
always true that UC U**. The mapping v F, from U into U** is called the canonical
embedding or canonical mapping. If this mapping is sunegti.e., if U=U** then U is
called a reflexive space. In the case of reflexive spacesigdake dual twice leads back
to the original space. In particular, we infer from the Rigspresentation theorem that
Hilbert spaces are always reflexive.

Definition 3.3.3 (Weak convergence).et U be a real Banach space. We say that a se-
quence{un},,_; C U converges weakly to some=lJ if

rI]im f(uy) = f(u) forall f eU™.
We denote weak convergence by the symbgale., we write y — n as n— . The limit
u is uniquely determined and is called the weak limit of theusace.

Remark 3.3.1.1f a sequencdun},,_; C U converges strongly (that is, with respect to the
norm of U) to some & U, then it also converges weakly to u, i.e.,

Uy — U= Uy —uas nNn— oo.

Definition 3.3.4 (Weakly sequentially continuous mappingget U and V denote real
Banach spaces. A mapping:®) — V is said to be weakly sequentially continuous if the
following holds: whenever a sequeniag },,_, C U converges weakly in U to somewJ,

its image{F (un) },_, C V converges weakly to(&) inV ,i.e.,

Up — U= F(uy) — F(u) as n— oo.

Definition 3.3.5(Weakly sequentially closed/compact sét¢t M be a subset of a real Ba-
nach space U. We say that M is weakly sequentially closed lirtiit of every weakly con-
vergent sequencitin}n_, C M lies in M. We say that M is weakly sequentially relatively
compact if every sequence M contains a weakly convergesegubknce; if, in addition,
M is weakly sequentially closed, then M is said to be wealdueetially compact.
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Remark 3.3.2. Every strongly convergent sequence also converges weghdyconverse
is not true in general.

Every weakly sequentially closed set is also (stronglygexip however, not every strongly
closed set must be weakly sequentially closed.

Theorem 3.3.2.Every bounded subset of a reflexive Banach space is weaklgrsiajly
relatively compact.

Proof. See [42] or [72]. O

Definition 3.3.6 (Convex set) A subset C of a real Banach space U is said to be convex if
for any pair uv € C and anyA < [0, 1] the convex combinatiohu+ (1— A )v also lies in
C.

Definition 3.3.7 (Convex and strictly convex functionald)et U be a real Banach space
and CC U. A functional f: C — R is said to be convex if

fAu+(1—-2A)v) <Af(u)+(1—A)f(v) forall A €[0,1] and foralluveC. (3.5)

The functional f is said to be strictly convex if the aboveyuredity (3.5) holds with< in
place of<, whenever y£¢ v andA € (0,1).

Theorem 3.3.3.Every convex and closed subset of a Banach space is weaklgraely
closed. If the space is reflexive and the set is in additiomded, then it is weakly sequen-
tially compact.

Proof. The first assertion of the theorem is an easy consequence niriddheorem,
which states that the weak limit of a weakly convergent seqedas at the same time
the strong limit of a sequence consisting of suitable corm@xrbinations of the terms of
the sequence. This part of the assertion is already truermetbspaces; see [5] and [71].
The second assertion follows from Theorem 3.3.2. O

Theorem 3.3.4.Every continuous and convex functionald — R on a Banach space U
is weakly lower semicontinuous, i.e., for any sequeigg,,_; C U such that y — n as
n — oo we have

liminf f(un) > f(u).

N—oo

Proof. See [5] or [72]. O

Remark 3.3.3. In the literature, the notions of weak compactness and wézdedness
in the sense of the weak topology are often used in place df segguential compactness
and weak sequential closedness, respectively. It shoutdteel, however, that in reflexive
Banach spaces the two concepts are equivalent [12].

Theorem 3.3.5.Let U and V are two real Banach spaces. A linear operatot)A—V is
continuous if and only if it is bounded.

Proof. See [73]. O
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Reduced minimization problem

We can define the solution operator for a given control prokds

u= S(Z)v
wherez is the control andi is the associated state. By using this control to state tqrera
S the general minimization problem can be written as foltogvi

gy g2 P
J(@) =582 -ul5+5 ;. forzez,

which is the reduced quadratic minimization problem in thetml spaceZ. We can use
Theorem 3.3.4 to establish weakly lower semicontinuityhef tunctional 7 (z), but still
we need to prove the continuity and the convexity of this fiomal. To this end we state
the following lemma.

Lemma 3.3.1.Let(Z,||-||;) and (U, ||-||,) denote two real Hilbert spaces, let & — U
be a continuous linear operator ane U. Then the quadratic functional
1 2 L P2
J@:=5I82 -ulf+ 523, forzez

is convex forp > 0 and strictly convex fop > 0.

Proof. The given functional can be written as

(@)= 5152 -l + 51212 = 1(2) + 12(2).

It is easy to show thaf;(z) is convex forp > 0 and f2(z) is strictly convex forp > 0.
Hence the sun¥ (z) is convex forp > 0 and strictly convex fop > 0. This completes the
proof. O

Remark 3.3.4. If for the bounded linear operator S wit{l§ = 0, we get u= 0, then the
functional 7 is also strictly convex fop > 0.

Theorem 3.3.6.Let(Z, ||-||;) and(U, ||-||,) denote two real Hilbert spaces, and let a non—
empty, closed, bounded, and convex sgtZZ, as well as soma € U and a constant
p > 0 be given. Moreover, let SZ — U be a continuous linear operator. Then the
guadratic Hilbert space optimization

: 1 _ P
min 7 (2) := 5 1IS(2) ~ [ + 5 |12l

26244

admits an optimal solutioz. If p > 0 or S is injective, then the solution is uniquely
determined.

Proof. See [68, Theorem 2.14]. O
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Definition 3.3.8(Gateaux derivatives) et(U, ||-||,) and(V, ||-||/) are real Banach spaces.
Leti/ be a non—empty and an open subset of U. Let F denotes a mapming/finto V.
Suppose that the first variatiadF (u, h) at u € U exists, and suppose there exists a contin-
uous linear operator AU — V such that
1

oF (u,h) := ltI[Q T (F(u+th)—F(u)) =Ah forallheU.
Then F is said to be Gateaux differentiable at u, and A is retéto as the Gateaux
derivative of F at u. We write A F'(u).

It follows from the definition that Gateaux derivatives cam determined as directional
derivatives. Note also that in the case wh¥re- R, i.e., if a functionalf : U — R is
Gateaux differentiable at a poiate U/, thenf’(u) is an element of the dual spaoé.

Definition 3.3.9 (Fréchet derivatives)Let (U, |-||,) and (V,||-|ly) are two real Banach
spaces. Lel/ be a non—empty and an open subset of U. A mapping EU —V is said
to be Fréchet differentiable at@U if there exists an operator A £(U,V) and a mapping
r(u,-) : U — V with the following properties: for k U such that u+ h € ¢/, we have

F(u+h)=F(u)+Ah+r(u,h),
where the so—called remainder r satisfies the condition

Ir(u,h)ly
Illy

The operator A is called the Fréchet derivative of F at u andwrge A= F'(u). If Ais
Fréchet differentiable at every pointai/, then A is said to be Fréchet differentiablein

—0 as|h|y—0.

Remark 3.3.5. In order to avoid confusion, we denote the Gateaux derieabivF by
F&(u) and not by F(u). If the Fréchet derivative exists, then so does the Gatearixative
and we have E(u) = F’(u). The converse is false, in general.

Definition 3.3.10(Hilbert space adjoint)Let real Hilbert spacegJ, (-,-)y) and(V, (-, )v)
as well as an operator & £(U,V) be given. An operatorAis called the Hilbert space
adjoint or adjoint of A if

(v,Au), = (A*v,u), forallueU, forallveV.

Quadratic optimization in Hilbert spaces

In order to prove the existence of optimal controls, we tiamsed the control problems
under investigation into a reduced quadratic optimizapiblem in terms ok, namely

1
J(@):=5 152 -l + 2 122 (3.6)

For the minimization problem (3.6), the following fundanediresult can be applied. It is
the key to the derivation of first—order necessary optimpaknditions in the presence of
control constraints.
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Lemma 3.3.2.Let Z be a real Banach space, VZ is a given convex setand M — R is
real-valued Gateaux differentiable functional on Mz i M is a solution to the problem

f(z) = minf(z) (3.7)

zeM

then it solves the variational inequality
f5(2)(z—2) >0 forallze M. (3.8)

Conversely, iz € M solves the variational inequalit{8.8) and f is convex, them is a
solution to the minimization proble(B.7).

Proof. See [68, page 63]. O

Theorem 3.3.7.Suppose that real Hilbert spaces Z and H, a nhon—empty andegoset
Zag C Z, somel € U, and a constanp > 0 are given. Moreover, let SZ — U denote a
continuous linear operator. Thene Z,q is a solution to the minimization problef8.6) if
and only ifz solves the variational inequality

(S(Z—u)+pzw—2), >0 forallw e Zy. (3.9)

Proof. The gradient of the functional (3.6) is given by ( [68, pag$ 60
f'(2) = S (Z—1) +pz

The assertion is thus a direct consequence of Lemma 3.3.2. O

In many instances it is advantageous to write the variatioeguality (3.9) in the equiva-
lent form

(Z—0,SW— )y +p(zw—2)z >0 forallw e Zyq.

which avoids the adjoint operat&r.

3.4 Dirichlet Boundary control for Stokes Problem

LetQ c RY(d = 2,3) be a bounded domain with Lipschitz boundary= dQ. The bound-
ary control of Stokes flows can be stated as following boundantrol model problem.

Minimize J(u,z) = 2/ 2dx-|——||z||H1/2 (ry (3.10)
%,_/

< control cost

tracklng
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subject to the elliptic boundary value problem (state equaj

—pAu(x)+0p(x) = f(x) forxeQ,
O-u(x) = 0 forxeQ, (3.11)
Wtu(x) = z(x) forxer,

whereu € H1(Q) is the velocity field (the state variablg)js the pressure, and the control
z satisfies the box constraints

zcU: = {W € H*l/z(r): ga(x) <w(x) < gb(x)}. (3.12)

Note thatz e U C H*l/z(r) satisfies the solvability condition (2.8). We assuingeL,(Q),

u € Lp(Q) is the given targetp € R, is a fixed parameter which penalizes the cost of
the control or some regularization parameter gaady, € H*l/z(r). The aim is to find the
velocity u as close as possible to a given (the desired state) targetitydiield U.

Optimal control problems, such as above, belong to a claBP& constrained optimiza-
tion problems, which appear in many areas of science ande@gng, e.g., see [33]. Since
the control variable is on the boundary, the idea is to retdate the boundary control
problem into an equivalent system of boundary integral eqos.

Suppose there exists an equivalent ndfjy in H*l/z(l') which is induced by an elliptic,
self—adjoint and bounded operatdr. H*l/z(r) — H*_l/z(r), ie.,

1/2
(Aw,wr >y w2, /

- | AW 12 ) < 3wz, forallwe HIE(T).

For example the operatot can be the inverse single layer potential for Stokes.

3.5 The solution of the Stokes system

To find a particular solution with homogeneous Dirichlet bdary condition we first con-
sider the system

—Au (X) + Ops (X) = f(X) forxe Q,
O-us(x)=0 forxe Q,
Ytus(x) = 0 forxer.

It remains to consider the homogeneous Dirichlet boundalyevproblem

—Auz(X) + Opz(x) =0 forxe Q,
O-uz(x) =0 forx e Q, (3.13)
Muy(x) =z(x)  forxerl.

From (3.13) we can say that the solutiaf) of the homogeneous Dirichlet boundary value

problem defines a control to state m&p H*l/z(r) — HY(Q) C L(Q) asu, = Sz.
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If us is the particular solution of the homogeneous Dirichletrimary value problem then
the solution of (3.11) is defined a&s= u;+us oru = Sz+ us.

The functional to be minimized is

J(u,z) = 2/ 2dx-i—p<Az 2)r

= —<u—u,u U>Q+p<Az 2)r,

by usingu = Sz+u; we have
1
J@) = —<8z+<u —0), 82+ (ur —W)r + 5 (Az.2)r

1 1 1
= (Sz Sz)r+ - (Sz us —u)r + 2<Uf —U,Sz>r+§(uf —0O,us —U)g

+%<AZ,Z>r
1 1
_ é(S*Sz,z>r +(uf =0, S2)r + > |us —UHé-&— %(Az,z)r
1 1
= Q(S*Sz,z>r +(S*(us =), 2)r + 5 |us —UHé—i— B(Az,z)r. (3.14)

We now consider the problem to find the minimizze U C Hl/z( ) of the reduced
cost functional (3.14). To characterize this minimiget I/, we introduce a self adjoint,

bounded ancH-Ii/Z(l')—eIIiptic operator (later on we will prove these propertiésuch an
operator, sayl,, involving boundary integral operators).

= pA+S'S: HYA() — HYA() (3.15)
satisfying, see, e.g., [53]
forall z e Hl/z( r).

T 2 T
Toz.2r 2 &P [2ny Mol ooy < oz,

"’ (n

LetS*: Lo(Q) — H, 1/2( ) be the adjoint operator & : H, 1/2 (M —L2(Q), i.e.,

(S, or =(U,S)a = /l,U(x)(Sgo)(x)dx for all ¢ € Lo(Q), for all g € HY?(I).

Moreover we define
g:=S*(U—us) € HYA(T). (3.16)

As the set/ C Hl/z( ) is closed and convex, and sin€g is self adjoint ancH 1/2( M-
elliptic, the minimization of the reduced cost functiondll4) is equivalent to solving the
variational inequality to fin@ € I/ such that

(Tozzw—2)r > (g,w—2z)r forallwel. (3.17)



44 3 Optimal Control for Stokes Problem

Since (3.17) is an elliptic variational inequality of thesfikind, we can use standard ar-
guments as given, e.g., in [9, 24,40, 45, 46] to establislutigue solvability of the vari-
ational inequality (3.17). For a short overview of variatbinequalities and the relevant
theorems, see Appendix B.

Note that the variational inequality (3.17) can also betemitin the following way
(Toz—g,W—2Z)r

)
(pAz+S8*Sz—S*(U—u;s),w—2)r
(pAz+S*(Sz—U+us),w—2z)r

)

)

(pAz+S*(u—u),w—2z)r
<pAZ+T7W_Z r

OO0 o0 oo

VvV IV IV IV IV

(3.18)

wheretr = §*(u—1).

3.6 Realization of the adjoint operator

We want to see which boundary value problem correspondgtagplication of the adjoint

operatorS* : Lp(Q) — H*_l/z(l'). Fort=8*(u—u) e H*_l/z(l') and forg € H*l/z(l'), we

consider the following duality pairing
(1,9)r =(S"(u-1),g)r = (U-U,59)o= (U—U,M)q, (3.19)

wherem = Sg, i.e.,

—pAm(x) + Opm(x) =0 forx e Q,
O-m(x)=0 forxe Q, (3.20)
Mm(x)=g(x)  forxerl.

Consider the general forward problem (later adjoint protf)le
—puAW(X) +0r(x) =f(x), O-w(x)=0 xeQ, y'w(x)=0, xeT.

Using Green'’s first formula we have

a(w,v) = /r(x)divv(x)dx+ (£ V) -+ (W, 1), Y
Q

In particular forv = m we obtain

aw,m) = /r(x)divm(x)dxjL (f,m)q + (t(w,r), 6”tm)r,
Q =0

aw,m) = (f,m)g—+ t(w,r),y"m)r.
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Takef = u —T, this gives
a(W7m)_ <t<W,r),g>r = <U_U7m>Q~ (321)

From (3.19) and (3.21) we can write

<T79>r:a(W,m>—<t(W7r>ag>r- (322)

Now the symmetry of the bilinear fori-, -) and the Green’s first formula gives us

a(w,m) = a(m,w) — / Pm(X) div W(X) dx+ (t(M, Pm), YW,
o an hy

S0 (3.22) becomes

(T.o)r = —(tw,r),g)r forallgeHY (),
T = —t(w,r)=:—q.

Hence the adjoint problem takes the form

—UAW(X)+0r(X) =u—1 forxe Q,
O-w(x)=0 forxe Q,
Mtw(x) =0 forxer.

3.7 Optimality (Karush—Kuhn—Tucker) system

For the solution of the Dirichlet boundary control probleBnl(0)—(3.11) we therefore ob-

tain the following system. Finde U/ C Hi/z(r):
Primal Problem

—pAu(x) + Op(x) = f(x) forxe Q,

O-u(x)=0 forxe Q, (3.23)
z(X) forxerl.
Adjoint Problem

—UAW(X)+0r(X) =u—1 forxe Q,
O-w(x)=0 forxe Q, (3.24)
ftw(x) =0 forxer.
Variational inequality
(Tozv—2)r > (g,v—2z)r or
(pAz+1,v—2)r > 0 forallveld, wheret=—t(w,r).
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Remark 3.7.1. Since the unknown contrak U C H*l/z(r) is considered on the boundary
I = 0Q, the use of boundary integral equations to solve both thengkiand the adjoint
boundary value problem seems to be the natural one. In wHatf®we will describe and
analyze boundary element methods to solve the variatioegjuality(3.17)numerically.
This will be based on the use of appropriate boundary integparators representation of
Tp andg as introduced above.



4 BOUNDARY INTEGRAL EQATIONS FOR THE PRIMAL AND
THE ADJOINT PROBLEMS

This chapter deals with the formulation of boundary intégomations to solve the primal
and the dual problems. It turns out that the representationdla for the adjoint problem

involves the primal variable as a volume density. We needxfmess this as a surface
potential so as to represent the control variable. This egatipn leads to the Bi—Stokes
system. The detailed calculation of the kernel functioe,, ithe fundamental solution
V*(x,y) for the Bi—-Stokes system is given in Appendix A.

In order to prove the unique solvability of the proposed apmrequation we need relations
among the boundary integral operators. For this we setubcef@m projection and discuss
its properties. By using the invertibility of the single Enpotentia}? of the Stokes system
we formulate the operatdi, and the corresponding right hand side in terms of boundary
integral operators. We end this chapter by proving the wngplvability of the proposed
formulation.

4.1 Boundary integral equations for the primal problem

For simplicity we takeu = 1 and recall the primal problem is

—Au(x) + Op(x) = f(x) forxe Q,
O-u(x)=0 forxe Q,
z

int

0 u(x) = z(x) forxerl.

The corresponding representation formulaXerQ andk=1,...,d, is
/U (x,y) "t (u y))ds, — / TTkxydsy—i—/f ) TUE(x,y)dy.

Applying the Dirichlet trace operator to the above représigon formula we get the bound-
ary integral equation for the primal problem

(Vt)(u, p) == (V1)(x) = (%I +K)z(x) —Nof(x) forxeT, (4.1)

whereV andK are the boundary integral operators as defined in (2.33)280)respec-
tively, andNy is the related Newton potential.

47
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4.2 Boundary integral equations for the adjoint problem

Recall the adjoint problem is

—Aw(X)+0Or(x)=u—u forxe Q,
O-w(x)=0 forxe Q,

Mtw(x) =0 forxer.

The corresponding representation formula XerQ andk=1,....d, is

N——

Wi (X) = /U§<x,y)Tt<W(y),r(y))dS/—/W(y)TT’&(X,y)dSﬁ/<U<y>—U(y))TU’&(x,y)dy,
r r =0 Q

and therefore

Wi (X) = / Ui(x,y) "t(w(y),r(y))ds,+ / u(y) "Ui(x y)dy— / u(y) 'Ug(x,y)dy. (4.2)
r Q Q

Again by applying the Dirichlet trace operator, we have thst boundary integral equation
for the adjoint problem,

A~ A~

(Vt)(w,r):=(Vg)(X) = (Not)(x) — (Nou)(x) forxerT. (4.3)

Remark 4.2.1. While the boundary integral equation for the primal probléfl) can be

used to determine the unknown Neumann datarhl*_l/z(r), the corresponding traction
for the adjoint Dirichlet boundary value problem is giventas solution of the boundary
integral equation(4.3). Then by using = —q the controlz € H*l/z(r) is determined from

the variational inequality(3.18) However , since the solutiam of the primal Dirichlet

boundary value problem enters the volume potentyal iN the boundary integral equation
of the adjoint problem, so in this case we have to solve a esugystem of domain and
boundary integral equations, which still would require sodomain mesh. Instead we will
describe a system of only boundary integral equations teesitle adjoint boundary value
problem. In the next section we describe how to express tiisne density as surface

potential.

4.3 Expressing the volume potential as a surface potential

For smooth(u, p) and(v,q), interchanger andv in the Green’s first formula (2.11), with
0-v =0, to obtain

a(v,u) = /q(x) div u(x)dx+ (—Av + 0g, u)q + (t(v,q), yu)r.
Q
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From the symmetry of the bilinear form (2.10) we have

<—AU + Dp7V>Q + <t(U, p>7 (:)ntv>r - <_AV+ qu U>Q + <t(V7 q>7 (:)ntu>r (44)
by requiring
—AV;;(X,y) + DQﬁ(X,Y) = Ult(X,Y),
0-Vi(xy) =0

with k=1,2. HereV*(x,y) can be calculated by considering the case of linear elasicst
and by choosing a suitable ansatz, i.e.,

oo (VEY) Vis(XY)
VH(x,y) = (ngi(x,y) vg(x,y))

(4.5)

)

where
g 4{(y1—x)*+3(y2 =)} log|x—y| = 7(y1 —x1)? = 17(y2 — X2)°
Via(xy) = o |
: * y1—X1)(Y2 —X2) {(4log|x—y| =5
Via(xy) = Vai(xy) = - 2 =) giﬁr | | —5} ,

4{3(y1 —x1)?+ (Y2 —X2)2} log|x — y| — 17(y1 — X1)? — 7(Y2 — X2)?

128
For the detailed computation df*(x,y) see Appendix A.

V?ikZ(X7 y) -

Now the expression for the volume potential in terms of stgfaotentials is given by
/U(y)TUi(x,wdy: (t(u, p), "V)r — (v, @), Y u)r +/f(y)TV§(x,y)dy, (4.6)
Q Q

where the remaining volume potential includes given fuorionly.

Using (4.6) in (4.2), we obtain, so called, the modified rgprgation formula for the
adjoint problem

W) = [Uixy) twly)riy)ds + / Vidxy) THuy). py)dsy
r

—/ u(y) ' Ty (Xyds/+/f ) TVik(x y)dy— / u(y) ' Ui(x,y)dy. (4.7)

r Q

We can now formulate the first boundary integral equation arypersingular bound-
ary integral equation for the adjoint problem by applying thace operatoy'ont and the
boundary stress operator (2.12) to the representatiorular(d.7)

Va)(x) = Klz)() (Vit) () — (Mof) (x) + (NoUi)(x)  forxel, (4.8

t)
q(x) = 2|+K’)OI()+( )(%) +(D12)(x)

(
( it
+(M1f) (X) — (N1U) (X) forxerl. (4.9)
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We have introduced the four basic boundary integral opesdto the Bi—Stokes system.
V1, K1, K] andD1 are the single layer, the double layer, the adjoint doulylerland the hy-
persingular boundary integrals operators respectivelyhi® system represented by (4.5),
where

(Vat)( /V (xy) "t(u(y),p(y))ds, forxerl

is the Bi—Stokes single layer potential operatpr H=%/2(") — H%2(I"). Moreover,

(Kau)( /Ty (x,y)) "u(y)ds, forxeTl

is the Bi-Stokes double layer potential operatpr H~/2(I") — H3/2(I"). Also

(K1u)(x /T V*(x,y))Tu(y)ds, forxerl

is the adjoint Bi-Stokes double layer potential oper#tprH3/2(I") — HY/2(I") and

r

(D1u)(X) = —Tx {/(T'(vk*(x,y))T} uly)ds, forxer

is the Bi-Stokes hypersingular operafy : H=Y2(I') — HY2(T") In addition, we have
introduced another Newton potential which is related toftmelamental solution of Bi—
Stokes,

(Mof) (X /f )TV (x y)dy forxer.

Remark 4.3.1. We have enough regularity of'¥&,y) so that i and K; do not involve any
jump terms.

The modified representation formula for the inhomogenedj@ra problem is now given
by

() = / Uixy) "t w(y),r(y))dsy + / Vixy) "t(uly), py))dsy— [ u(y) ' Tixy)dsy

r

/W TTk<><ydsy+/f ) TVik(x y)dy— /(y)TUk<x,y)dy- (4.10)
Q

For the four basic boundary integral operators of the Bk&system (4.5), the following
hold.
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Lemma 4.3.1. The single layer potential H=3/2(I") — H32(I") is bounded, i.e.,
IMitla2r) < S Ity 92y forallte H-¥2(T). (4.11)

Lemma 4.3.2. The double layer potential & H~Y/2(I") — H%2(T") is bounded, i.e.,
IKaZllsr2(ry < S5t |22z forall ze H-Y2(T). (4.12)

Lemma 4.3.3. The adjoint double layer potentialk H=3/2(") — HY/2(T") is bounded,
le.,

K! B
HKitHHl/z(r) <Gt HtHH—S/z(r) forall t e H3/2(I").

Lemma 4.3.4. The hypersingular boundary integral operatog DH~Y/2(I") — HY/2(T")
is bounded, i.e.,

ID12l[4a/2ry < " |2l y-1/2ry  forallze HTYA(T).

Proof. See [37]. O

4.4 Calderodn projector

Applying the trace operator;’é,nt and the boundary stress operator (2.12) to both sides
of equations (4.10) and (2.16), we end up with the followingradetermined system of
boundary integral equations. Foe I

(%l — KW W) + (V@) () — (Kay u) () + (Vat) () — (NoT) () + (Mo ) (),

A0 = DWW+ (51 +K)a00 + Dayfu) 3+ (KED () — (Na)(6) + (Mef) ().
P = (V000 + (51— K U0+ (Nef) (),

(51 + K0 + (D) () + (Naf) ().

int
0

4
=
I

The above system of boundary integral equations can beswiiita compact way, includ-
ing the so called Calderdn projectiGn

ity -k VvV —Ki Vi ity Mof — NoT
q |_| D 3l+K' D1 K] q Maf — NyT
t 0 0 D I+K t Ny f

Here we state the following lemma.
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Lemma 4.4.1.1f
-k VvV K v
c—| D 3K Di K1
0 0 3-K Vv [
0 0 D dI+K

thenC = C?, i.e.,C is a projection.
Proof. Let g, € HY2(I") andy, i € H-Y2(I") are arbitrary, but fixed. Fotc Q, define

W) = (V) - W)X+ (PR - (Kip)(R),
u® = V)R- W)

Apply the Dirichlet trace operat(y[lf)nt and the boundary stress operator (2.12), we have the
following system. Fox € '

Pwe) = (Gl —K)o) + (V) ~ (Kad) () + (V) (),
a0 = (51 +K)W()+ (DG (x) + (D19) () + (K4P)(X),
Pu) = (51K + (T5) (1),

0 = (D@ + (21 +K)P(X),

2
or
Vintw(x) -k Vv —Kj Vi @(X)
glux) | | o 0 3-K V o) | '
t(x) 0 0 D JI+K/ \JKx)
Also the homogeneous form of equation (4.13) is
Yintw(x) -k Vv ~Ki Wi Vintw(x)
qx | | D 3I+K' D K/ q(x) (4.15)
gru) [ | o 0 3I-K V grux) | '
t(x) 0 0 D lI+K t(x)
using (4.14) on both sides of (4.15), we have
®(x) @(x)
ol e | _ o [ w0
9(x) 9(x)
P(x) P(x)

and therefor€ = C? holds. Hence the lemma is proved. O



4.4 Calderdn projector 53

As a direct consequence of the Calderdn projection, we gtat®llowing lemma.
Lemma 4.4.2. For all boundary integral operators, there hold the relai®

_ ~ ~ 1 ~ 1
VK' =KV, K'D=DK, VD:ZI—KZ, DV:ZI—K’Z, (4.16)
KiV —ViK' = VK] —KVy, (4.17)
K'D;—D;K = DKji—K]D, (4.18)
DVi+D1V +K'K] +K/K' = 0, (4.19)
VD1 +ViD+ KKy +KiK = 0. (4.20)
Proof.
-k ) V.  Ki Vi
D l+K D K W T
Let C= 2 AL =
0 0 31-K V (o W)’
0 0 D 3I+K
where

. _
-k Vv K1 Vg 00
— [ 2 . — 0=
W ( D %I-{—K’)’ T (Dl Ki) and _<o o)'

SinceC is a projection, i.e.¢ = C?, so
w T\ /W T\/W T\ /W WT4+TW
ow) \ow/\o w) \o W2 '
Now, W = W? gives
-k VvV \ ([ G1-K?+VD IV-KV+IV4VK
D 31+K/) \JD-DK+3D+K'D  DV+(3l+K)?
Equating the entry in the first row on both sides, we have

1 2 &
=K = (51 =K)*+VD
> (51 =K)*+VD,

1 1

~ 1
VD = Z1—-K2=(ZI—K)(=I +K).
7 (2 )(2+ )

Similarly on equating the entries in the first row and secarldran on both sides, we have

~ 1~ & 1~ .,
AV = é\i—VKJr§V+VK,
VK = KV,

VWK = VvV,
K' = V1KV,

KVl = V- kw1

KVl = VI,
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the other two results can be proved by equating the correlpgentries on both sides.

Again the last four results can be proved by takingg W T+ TW and equating the corre-
sponding entries, i.e.,

—Ky = —K1 + KK +VD; + KK +V1D,
VD1 +WiD + KK; + KiK = 0.

Similarly, the other three results can be proved easily. O

Remark 4.4.1. All results presented in lemma 4.4.2 are well known for thplaee oper-
ator, see, e.g., [63] and for the Bi—-Laplace operator, sed59].

4.5 Non-symmetric form of the coupled problem

Formulation

The first boundary integral equations for the primal probéd that of the adjoint problem
is the following system

(V)(x) = (%| +K)z(x) — (Nof)(x) forxeT,
(V) (x) = (K12)(X) — (V1t)(X) — (Mof) (X) + (NoT) (x)  forxeT.

(4.21)

As the single layer potentiad is invertible, we have from the first equation of system
(4.21)

s 1 .
t:V*l(El +K)z—VINdf, (4.22)

by the same argument as above, the second equation of tleensfgsR1) gives

A~

q = VKiz—V it =V IMof +VINoT

A~

I
<

~ ~ 1 —~ ~ ~
1K1 z—V vy V*l(él +K)z—VINof | =V IMof +VINo,

and therefore,
~ ~ ~ 1 ~ ~ ~ ~
q= V_lKlz—V‘lvlv_l(él +K)z+V WV INgf =V IMof +VINoT.  (4.23)

Usingq = p.Az and rearranging the terms, we have

~ ~ ~ .1 ~ ~ ~ ~
PA=V Haz+V VIV (ST +K) 2=V ViV INof — V" Mof +V Nl
’ 9

Tp
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By replacingt = —q in (3.18) we therefore obtain a boundary integral repredent of
Tp as defined in (3.15),

AN AN AN 1
Tp = pA-V K+ VWV (1 4K), (4.24)

and the corresponding right hand side as defined in (3.16), is

g:=V ViV INof =V IMof +V INgu. (4.25)

Unique solvability

In order to prove the ellipticity of the boundary integraleogtorT, as defined in (4.24),
we need to prove the following result.

Lemma 4.5.1.For anyt € H*_l/z(r) there holds the equality

~ 1 ~
IVtIE, ) = M5!+ KNt ) — (KyVt, tr,

where

(Vt)(x) :/U*(x,y)Tt(y)dsy forx e Q.
r

Proof. First note thaV/t =Vt fort ¢ H;l/z(r). For the homogeneous Stokes system, the

equation (4.4) reads
(t(u, p), Y§"V)r = (—Av+0g, U)o + (t(v, ), 18" u)r- (4.26)
Note that ( See [63], page 100)
Th(xY) 1 = WWVi(xy),

= AdivyVi(xy)n(y) + Zumvk(x, y) + un(y) x CurhVi(x,y).

Ford = 2, we make use of the following relation

11+v 1y,—x
=T o0y—1)—22""2
El-v ( )47T|x—y\2
11+v

= £1,22v-1Qixy)

divyV§(x, y) =

On using the divergence free property of the Bi—Stokes sy§#e5), we findQ; (x,y) =0,
so (4.5) becomes
—AV&(X, y) - Ui(xv y>7 0- Vi(xa y) =0.
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Further forv = V;t we see
—AV(X)+0q(x) = —Ax(Vat(X))+0,
= b [ Vixy) Tty s,
r

= /Uf;(x,y)Tt(y)dsy:(Vt)(x) forx e Q.

Since the single layer potential is a solution of the homeges Stokes system, so for
u =Vt andv = Vit the equation (4.26) reads

Weita = [ |50+ K00 0anmds - [Kinm THmds,
r

r

~ 1 .
IVt = (Gt+KtVtr — (Kat, Vtr,
- 1 .
IVt = MGH+KOLEr = LKV,
which proves the desired result. O

Now we are able to state the mapping properties of the boyridagral operatofl, as
defined in (4.24), see also the propertied phs defined in (3.15)

Theorem 4.5.1.The composed boundary integral operator

%I FK) T HY2m) - HIYAn

is self—adjoint, bounded andﬂ#(r)—elliptic, ie.,

Tp = pA-V K +V VY

T 2 1/2
(Toz.2) > ¢ |20, Torall zeH: 2(r).

Proof. We note that the mapping properties of the composed bouniggyral operator
Tp:H 1/2( N — H_l/z( ") will follow from the boundedness of all used boundary ineggr

operators. Further, we have the compact embedding dﬂfﬁ%(r in Hl/z( ).

Next we will show the self-adjointness @j. We note thaV/,V—! andV; are all self
adjoint. Foru,v € Hl/z( ) we have

~ 1~ g S
(Tou,V)r = <pAu,v)r—<V_1K1u,v>r+E(V‘1V1V‘1u,v)r+(V_1V1V_1Ku,v)r
-1 1 g-1,0-1 K-y G—1
= (u,pAv)r —(u,Kv v>r+§<u,v ViV V) r + (U, KV VIV Hv)r

1 —~ —~ —~ —~ —~
= (UpAV)r +5(uV NV )+ (u (K’V*lvlwl - KiV*1> Vir.
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Now on using the relations (4.16) and (4.17)

e VAV A Vi
-1 [Kvl —\7K1] vl

KV V1KV =

< <)

A~

— gyt [le’ _ K1\7} vl

= Viykv1_v-ikt
= ViykvV1_v-i,.

We finally get

1 ey ~ I
(Tou,V)r = (u,pAv>r-|—é(u,v_lvlv_lv)r-i—(u,(V_lle’V_l—V_1K1>v)r

= (u,pAV)r + (u, (\7—1v1\7—1(%| +K) —\7—1K1) V)r

~ ~ 1 A
= (u, [pA+v—1v1v—1(§| +K) =V K v)r,
<TpU7V>F = <U7TpV>r~
1

HenceT, is self-adjoint. Moreover, for € H;
and by Lemma 4.5.1

/2(I') we have, by using (4.16),= V 1z,

Moz2r = (pAz2)r+ (0 NG +K)2.2)r — (U Haz 2)r
= (pAzZ)r + <V1\7‘1<%' +K)ZV12)r — (K1z.V~*2)r
= (PAZZ)r + <V1(%I +KWZV12)r — (KW 1,V 1)
= (pAz,Z)r + <V1(%I + KNt — (Kt tyr

— (pAz,Z)r + Hvt

)

2

L2(Q)
2

(Toz,)r = pllZl|%,

ie., theH*l/z(F)—eIIipticity of Tp, due to the fact thaf.|| , defines an equivalent norm in

H*l/z(l'). Hence the theorem is proved. O






5 BOUNDARY ELEMENT METHODS FOR OPTIMAL CONTROL

In this chapter we describe a Galerkin boundary elementetigation of the boundary
integral equations. Due to the composition of the boundasgrral operatof, as defined
in (4.24), we are unable to apply a direct boundary elemesareiization. Instead we in-
troduce a suitable boundary element approximation of thezadpr. Necessary estimates
for the boundedness and the error of the approximated apeidtow next. We also
discuss the boundary element approximation of the rightilsae along with the error
estimate caused by this approximation. Finally we dischegerturbed Galerkin varia-
tional formulation for the non—-symmetric case and setuBittaur complement system in
the control variable for this perturbed system. We use tviferdint meshes to discretize
the controlz and the tractions andq. We describe the necessary condition on the two
meshes so that the resulting approximate Schur complerypsteis is positive definite.

5.1 Galerkin boundary element discretization

Let
SH(T) = spa{®i 1, c HY%(T),

be some boundary element space, i.e., piecewise linearaatithgous basis functions;
which are defined with respect to a globally quasi—uniforrd ahape regular boundary
element mesh of sizd. Define the discrete convex set

Un = {WH € (M) ga(x) < Wh (%) < go(x)for all nodesx; € I with /.nTdesA = 0} :

r
The Galerkin discretization of the variational inequali8y17) is to findzy € Uy such
that

(ToZH,WH — ZH)r > (9,WH —2zH)r  forall wy € Un. (5.1)

Theorem 5.1.1.Letz € U4 andzy € Uy be the unique solutions of the variational inequal-
ities (3.17)and (5.1), respectively. If we assunzega,gp € HS(I") for some s [1/2, 2],
then there hold the error estimates

||Z—ZH||H1/2(r) < CHS_l/ZHZHHS(r)v (5.2)
and

2= 241l Ly < CH 12l - (5.3)

59
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Proof. The error estimate (5.2) in the energy norm follows from tbeeagal abstract theory
as presented, e.g., in [11, 21], see also [24]. The erromasti (5.3) follows from the
Aubin—Nitsche trick for variational inequalities, see [5dr the casé/y C U, and [64] for
the more general casé; ¢ U. O

Although the error estimates (5.2) and (5.3) seem to be @ptitine operatof,, as con-
sidered in the variational inequality (5.1), does not allopractical implementation. This
would require the discretization of the operatgras defined in (4.24), which is not possi-
ble in general due the presence of an inverse operator. Herstead of (5.1) we need to
consider a perturbed variational inequality to fipde U/ such that

<fp§H,WH —§H>r > <g,WH _EH>F for all wy € Uy, (5.4)

where'IN'p andg are appropriate approximations §f andg, respectively. The following
theorem, see, e.g., [53], presents an abstract consistesalf, which will later be used
to analyze the boundary element approximation of both tiregdrand adjoint boundary
value problems.

Theorem 5.1.2.Letfp : H*l/z(r) — H;l/z(r) be a bounded and!3I)—elliptic approxi-
mation of |, satisfying

~ T,
(Tozr,zu)r = ¢ |zullfuz ) forall zy € Si(r),
and

HszHHm(r) <o |Zyuzr  forall ze HY(r).
Letg e H;l/z(r) be some approximation @f For the unique solutiozy € Uy of the
perturbed variational inequality5.4) there holds the error estimate

12— Zulhyzgr < Callz—2m oz +c2 U](Tp—fp)ZH o, 19Tl a2 | (69)

H-1/2

wherezy € Uy is the unique solution of the discrete variational ineqtya(b.1).

5.2 Boundary element approximation of T,

For an arbitrary but fixed € Hi/z(r), the application off,z reads

o~ s 1 ~
Tz = pAz+V*1v1V*1(§| +K)z—V 1Kz,

——
tz

v~

az
Toz = pAz+0q,
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whereqz,t; € H*_l/z(l') are the unique solutions of the boundary integral equations

N ~ 1
Now, to define a Galerkin approximation of (5.6), let

(M) = spar{Wylily C HA(T)

be some boundary element space, e.g., of piecewise comsist functions¥; which
are defined with respect to a second globally quasi—unifarchshape regular boundary
element mesh of size Now,t,, € () is the unique solution of the Galerkin formula-
tion

(Vtzh, Th) = <(%| +K)z, 1) forall Th € SY(T). (5.7)
Moreover,gzh € $(F) is the unique solution of the Galerkin formulation
(VAzh, Th) = (Mitzn—Kiz, 1) forall Th € SUT). (5.8)
Hence we can define an approximatl'f)ﬂof the operatoil, by
Tpz: = pAZ+Qgp. (5.9)

Now we describe some properties of the approximate opefgtcas defined in (5.9).

Lemma 5.2.1. The approximate operator
~ 12 ~1/2
T, HY2(M) = Y3
as defined ir{5.9) is bounded, i.e.,
1Tzl 172y < €3 I2Zlrory  forall ze HYA(r).

Proof. Taketh =t in (5.7), we have

~ 1
<Vtz,h7tz,h> = <(§| + K>Zatz,h>7
further use théd —1/2(F)—ellipticity of the single layer potentiéﬁ and the boundedness of
the double layer potential, see [63, page 72 ff]

1 cK

1
[tznlly-12m) < C_\7|’(§I +K)Zl[ /2y < C—\ZA,HZHHl/Z(ry
1 1

Again from (5.8), takery = Q. n, and use the same argument as above , we have

~ 1
HqZ,hHHfl/Z(r) < C—\7Hvltz,h - Klz”Hl/Z(r),
1
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use the triangle inequality and the fat#/2(") — HY2(I")

~ 1
[Genlly ) < 5 {atenlls + IKeZlhese) }- (5.10)
1

Now using (4.11) and (4.12) in (5.10), we have

_ 1 (v K
JGenll-ver) < 5 {5 tanlla-ver) + G2l
1

The assertion now follows from/2(") ¢ H=Y2(I") andH~Y2() c H=3/2(I"). O

Lemma 5.2.2. There holds the error estimate

- < cy!

HTPZ_TPZHHl/Z(r) < qr:;];ﬁ”qz_ Thlly-12(r) + g”tz—tz,hHHS/Z(ry (5.11)
where  : H*l/z(r) — H;l/z(r) is given in(4.24) and 'fp is defined by5.9), qz,t; €
H*_l/z(l') are defined ir(5.6) andt, € S(I") is the unique solution of the Galerkin vari-
ational problem(5.7).

Proof. Let z € H*l/ 2([‘) be arbitrary but a fixedly chosen element of the control space

Then by definition

Tz = pAz+qs,
fpz = pAZ+aZ,h7

and therefore

HT""Z_T""ZHHl/z(r) - qu_az’hHHfl/z(F)'
Also
/1 7 —1 1

in particulart; € H*l/z(r) Is the unique solution of the variational problem
v 1 ~1/2
Vt,, 1) = <(§I +K)z,r) forallteH (M),

andg, € H~Y2(I") is the unique solution of the variational problem

V2, T) = (Vity, T) — (Kaz,T)  forall T € H-Y2(I).
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By using the definition ofpz, we note thafj,, is the unique solution of the variational
formulation

(VOznTh) = MitznT) — (Kaz, 1) for all Tp € S(I),

andt;, is the unique solution of the variational problem

<\A/tz7hrh> = <(%I +K)z, 1) forall th e ().

By applying Cea’s lemma, we first get the error estimate

[tz—tznlly-v2r) < v igr)”tz_ThHH*l/z(r)'

Y
&
C} TheSK(

Let us further defing,n € Sﬂ(l‘) as the unique solution of the variational problem

(Vdzh, Thir = (Vity, Th) — (K1z,T)  for all T € SX(I). (5.12)
Again by using Cea’s lemma, we have

v
- B <2 nf — Thllb—1/2/mr. 5.13
HqZ qz,hHH 2(ry = C\l/ rheﬁ(r)nqz h|||-| 2(r)y ( )

We obtain a perturbed Galerkin orthogonality after sultiingq5.8) from (5.12)

V(Azh — Gzn)s Thir = (Va(tz—tzn), Th)r forall Th € S(T).

From this perturbed Galerkin orthogonality, we further dade the stability estimate

~ 1
|dzh — Ozl H-12(r) S C_\7 [Va(tz —tznl| H1/2(T)
1

1

< _\7||Vl(tz—tz,h|||-|3/2(r)
G

e

< 2tz tznllg-azry. (5.14)

C1

Here we have used the fadf/2(I") — HY2(") and the boundedness\éf. Now by using
the triangle inequality, the estimates (5.13) and (5.14) have

laz— az,h”Hfl/Z(F) = |[(az—0dzh) — (Azh — Azh) HHfl/Z(r)
< ”qZ_qZ,h”Hfl/Z(r) + |’az,h—qz,h|]H,1/2(r)
\27 C\Z/l
< =< inf il L2t . .
< C\l/ e (F)HQZ hlly 1/2(r) C\l/ Itz —tznlly 32(r)

Hence we get the required estimate. O
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Remark 5.2.1. By using the approximation property of the trial spacﬂ-:{l’S and the
Aubin—Nitsche trick, we can conclude the following erratiraate from(5.11) when as-
suming some regularity ogy, andt;

Corollary 5.2.1. We assuma, t; € Hg,,(I") for some sz [0, 1]. Then there holds the error
estimate

Toz— Tzl < C1h® 2| Hgw(M) T Ch* 32|ty Hu(F) - (5.15)

5.3 Boundary element approximation of the right hand side

As we have defined an approximation of the operdigron similar lines we can also
define an approximation of the right hand sglas defined in (4.25),

g:=V " INgu =V IMof + V-V ~INof
In particular,g € H*l/z(l') Is the unique solution of the variational problem
(Vg, T)r = (Noll — Mof + V1V " INof, T)r = (Notl — Mof, T)r + (Vit¢, T)r
for all T € H=Y/2(I"), wherets =V ~INof € H-Y/2(I") solves the variational problem
(Vts, T)r = (Nof, 70 forall T € H=Y2(T).

Hence we define the boundary element approximaijpa sﬂ(r) as the unique solution
of the Galerkin variational problem

(VGh, Th)r = (Noli — Mof + V1V "*Nof, ) = (Noli — Mof, Tn)r + (Vatt p, Th)r (5.16)
for all T, € S)(T"), wherets , € S(I') is the unique solution of the Galerkin problem
(Vtsn Thir = (Nof, ) for all T, € S(I). (5.17)

Lemma 5.3.1.Letg be the right hand side as defined (@y25)and letg, be the boundary
element approximation as defined(;116) Then there holds the error estimate

cy o'
19—0nhllg-172(y < = i [|g—Thllg-120y + = [ItF =t nlly-3/2) - (5.18)
nen S ety H-9/2(r)

Proof. In addition to (5.16), let us consider the Galerkin formigatto find g, € sﬂ(r)
such that

(Vah, Th)r = (Noi— Mof, Tp)r + (Vate, Tp)r  forall h e ). (5.19)
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Again by using Cea’s lemma we have

Sk,

lg— gh”Hfl/Z(r) <

x|

2 inf lg9—Thlly-1/2(r)- (5.20)
cy TheS(I) HTHE0)

We obtain a perturbed Galerkin orthogonality after subtngq5.16) from (5.19), i.e.,

(V(gh—0n), Thir = (Va(ts —tep), Thir  forall T € SX(T).

For T, = gn — Gh, USINg thel—|§1/2(r)—ellipticity of V, the boundedness estimatesgfand
the factH3/2(I") — HY/2(T") , we get

1Gh = Ohlly-22ry < g”vl(tf =t )z
< C—VHVl(tf—tf,h)HHS/z(r),
1
0\2’1
< St —tenllp-szr)- (5.21)
Cc
1
By the triangle inequality we have
9 —§h||Hfl/2(r) <llg— thH*l/Z(r) +1Gh — 9h||H71/2(r) . (5.22)
By using (5.20) and (5.21) in (5.22), the assertion follows. O

Remark 5.3.1. By using the approximation property of the trial spadr%{IS and the
Aubin—Nitsche trick, we can conclude the following errotiraate from(5.18) when as-
suming some regularity apandts.

Corollary 5.3.1. We assumg, tt € Hy,(I") for some s [0, 1]. Then there holds the error
estimate

19— Onllyy-172r) < Clhs+1/2||9||H,§w(r) +Coh™3/2 ¢ IHs(r)- (5.23)

5.4 Approximate variational inequality

We consider the variational inequality (3.18) with= —q to find z € &/ such that

(pAz—q,w—2z)r >0 forallwel, (5.24)

whereq € H*_l/z(l') is the unique solution of the boundary integral equation

(Va)(¥) = (Kaz)(x) = (Vat) () = (Mof) () + (Noli) (x)  forx e T,
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andt € H*_l/z(r) Is the unique solution of the boundary integral equation

(Vt)(x) = (%| +K)z(x) — (Nof)(x) forxeT.

The Galerkin boundary element approximation of the vaal inequality (5.24), and
therefore the boundary element discretization of the peed variational inequality (5.4)
is to findzy € Uy such that

(pAZy — Qh,WH —Z4)r >0 forallwy € Uy, (5.25)
whereq, € () is the unique solution of the Galerkin formulation
<\//\qh, Th)r = <K1§H —Vith — Mof +NotU, p)r  for all Ty, € ﬁ(r), (5.26)

andty € (") solves

A 1 _
Vin, Tn)r = (51 +K)Zn —Nof, T)r forall 7y € (). (5.27)
The Galerkin formulation (5.26) is equivalent to the linegstem
Vhd = K1 hz —Vint -+,

and (5.27) is equivalent to

Vhl6,K = (VW Wor, Knlf,i] = (K, Wor, Vipll K = MWk, Wor,
Kinlli] = (Ka®i,Wo)r, Anlj,i] = (AP, ®j)r, My[l,i] = (P, Wy)r,

and
f10=(Nou—Mof,Wo)r, fa,=—(Nof,Wo)r,

fork,/=1,...,2myandi,j=1,...,2n,. Recall that we have used vector valued piecewise
linear basis function®; and piecewise constant basis functitihs

The matrix representation of the variational inequality28 is then given by the discrete
variational inequality

(PARZ—Myq,w—2) >0 forallw e RM « wy € U,
or

(TpHZ—Gw—2)>0 forallweRM & wy €Uy, (5.28)
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where
~ o~ ~ .1 ~
Ton = PAH +MIV IV 1(§Mh+ Kn) —Mi Vi *K1h (5.29)

defines a non—-symmetric Galerkin boundary element apputiom of the self—adjoint
boundary integral operatdyp, as defined in (4.24). Moreover,

g =MV, (fr = VoY, o)
is a boundary element approximationgas defined in (4.25), where
f1:=Nou—Mof, f5:=—Nof.

Theorem 5.4.1.The approximate Schur compleméiayh as defined in(5.29)is positive
definite,i.e.,

~ 1T
(Torz.2) = 5er l12ulZaer:
forall ze RM — zy4 € Sﬁ(r), if h < coH is sufficiently small.

Proof. For an arbitrary, but fixea € RM, let zy4 € S,(I") be the associated boundary
element function. Then we have

(Towz.z) = (Toz,zur = ((To — (To —To))zw.2u)r.
= (Tozn,zn)r — ((Tp = Tp))ZH,ZH)r,

T, 2 =~
> o zulfuer ~ [T =Ty,

2(r ||ZH||H1/2 (r)-

We note thaty € HY(I") aszy € §4(IM) is a continuous function. Hence we find from
equations (5.7) and (5.8) that bath andqz, are inL,(I"). Therefore we can apply the
error estimate (5.15) fa= 0 to obtain

ITozn —Tozu ly-var) < Can™2)[0tz, llLy(r) + 20> 2tz lly(ry < ™2 [|zu ey
Now by applying the inverse inequality f&, (") we get
12u ) < 0 H Y2 |20z

so we get

_ h\ Y2
HszH —Tpzy HH1/2(r) < C3Cj (ﬁ) |2+ ”Hl/Z(r)-

Hence, we finally get

1/2
_ T h
<Tp,HZH72H) > ¢ HZHHﬁl/z(r) —C3Ci (ﬁ) HZHHal/z(r),

T, h 1/2 2 l
e G B X ST ey

if csc (1) 2 e ' is satisfied. O
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Now we are in a position to apply Theorem 5.4.1 to ensure thguernsolvability of the
perturbed variational inequality (5.25), and to derivatedl error estimates.

Corollary 5.4.1. When combining the error estimgte5)with the approximation property
of the ansatz spacé,§"), and with the error estimatd§.15)and (5.23), we finally obtain
the error estimate

12— 2|z < cHS ™2zl ysry + €™ 2]z, r) + €0 ¥ ?|lta]ls,ir)

+Cah® 72 gl s, ) + ™2t g, )

when assuming € H*S(I") andqy, t,, g, ts € How(I") for some s= [0, 1]. Forh < coH we
therefore obtain the error estimate

12=2ull, 172 ) < c(z,T,f)HSTY/2, (5.30)
Further, we are able to derive an error estimate (L), i.e.,
1Z=Z Iy < c(z,T,F)H, (5.31)

when applying the Aubin—Nitsche trick.

In the particular case of a non—constrained minimizatiabfam, instead of the discrete
variational inequality (5.28) we have to solve the lineasteyn

fp,Hz - g?
which is equivalent to the system
Vin —Kan t Noti — Mof
Vo 0 —GMh+Kn) [ (9] =( -Nof . (5.32)
0 —MJ PAH z 0

Remark 5.4.1. The error estimate§s.30)and (5.31) provide optimal convergence rates
when approximating the contra by using piecewise linear basis functions. However,
we have to assume < cgH to ensure the unique solvability of the perturbed Galerkin
variational inequality(5.25) where the constantpds in general unknown. Moreover,
the matrixfpyH defines a non—symmetric approximation of a self-adjointaipe Tp.

As an alternative to the non—symmetric approach presemeiis work one can use the
symmetric boundary element method which is stable withoaidalitional constraints on
the choice of the boundary element trial space. In contthstuse of the non—symmetric
formulation does not require the use of hypersingular b@udéntegral operators, further

it allows us the use of collocation instead of Galerkin.



6 NUMERICAL EXAMPLES

In this chapter we present some numerical results for thexdemy element approxima-
tion of the Dirichlet boundary control for the Stokes prahl€3.10)—(3.12). The nu-
merical results presented confirm the theoretical findin@onsider a square domain
Q = (0,0.5)? c R?. For simplicity take bottp = 1 andu = 1. We take a pre—described
solution (w,r) of the adjoint problem (3.24) where the pressure 0 andw, which is
divergence free and vanishes on the boundary, is given by

w(xy) = [(x—28)2(y—22) (4y— 1), (x— 2&)(y— 2)%(1— 4x)] .

For the boundary element discretization we introduce aoumitriangulation of the bound-
ary ' = 0Q on several levels. Since the minimiser of the cost functig®d.0) is not
known in advance in this case, we use the boundary elemantigobf the 9—-th refine-
ment level as reference solution. The boundary elementedization is done by using
the trial space’(I") of piecewise constant basis functions, &d") of piecewise linear
and continuous functions. We use two different boundamnel& meshes, one to approx-
imate the controk, of sizeH, by a piecewise linear approximation, and another space of
piecewise constant approximations for the tractioasdq with sizeh. Note that we have
h=H/2 in this case, and therefore by Theorem 5.4.1, we may erﬁ%(lfe—ellipticity

of the non—symmetric boundary element approximation. Hauytthe numerical example
shows stability. In Table 6.1, we have presented the erooithé controk and the traction

level | #ite(BiCGStab)| ||z—zn|| ) | €oc | [[d—0nll,r | €0C
0 1 4.03E-04 - 7.89E-03 -
1 2 5.71E-05 | 2.82| 3.62E-03 |1.12
2 4 2.39E-05 | 1.26| 1.78E-03 |1.03
3 6 5.92E-06 | 2.01| 8.83E-04 |1.01
4 7 1.41E-06 | 2.07| 4.41E-04 1
5 12 3.34E-07 | 2.08| 2.20E-04 1
6 17 8.03E-08 | 2.06| 1.10E-04 1
7 25 1.97E-08 | 2.03| 5.50E-05 1
8 38 5.45E-09 | 1.86| 2.75E-05 1
Theory 2 1

Table 6.1: Convergence analysis for the Dirichlet contral the traction.
g in the L»(I") norm along with their estimated order of convergence (edd)e result

for the controlz corresponds to the error estimate (5.31) of the non—synimiundary
element approximation.

69
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0 control in energy norm
15 I I I

controlin L2 norm
0,015 I I I

0.01

0.005

-0.005

-0.01

-0.015
0

Figure 6.1:Plot of the controk in HY?(I") andL,(T") settings.

In Figure 6.1 we have plotted the control when considerini lee energy norm and the
L, norm. It is clear from the figure that when using thenorm the controk is zero on
the corner points independent of the value of the targettiom@. This is not seen in
the energy norm setting as the use of the inverse single faytentialV ~! preserves the
mapping properties. This also justifies the uséidf?(I") as the control space instead of

Lz(r).

The fact which we have highlighted graphically can also béfiee analytically. As al-
ready pointed out that the effect of choice of the controtspzan be seen in the optimality
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condition, so we start from the optimality condition for then—constrained case
T+pAz=0.
Fort = —qandA =1, we have
—q+pz=0.
By definition, see [37, Section 2.3],
q:=T'(w)=t(w,—r) =rn+4u(Ow+0Ow')n. (6.1)

Sincew = 0 onT, this meang[Ow)n = 0 in the each corner point. So (6.1) takes the
form

q=pz=rn.

As z is continuous and since we consider the case of a square Wloneacan write

z—rO and z—r1
p— 1 p_ 07

z17=0 and z =0,
and therefore = 0 at each corner point.

In the case of an arbitrary domain with a corner between tweabvectorsn! andn?,
we can write

pz=rn' and pz=rn
pz-n*=r and pz-n’=r,

and thereforgz- (n! —n?) = 0, at each corner point

which gives a necessary condition for the contzab vanish at each corner point of an
arbitrary domain.

One last comment on the choice of the control space. The ulsg(bj as control space
is quite common in the engineering community insteadié‘fz(l'). The effect is clearly
visible in the optimality condition in a way that mapping pesties are lost and in fact the
two pieces of boundary data are identified with each otheteh, if we us¢i/2(I") as
control space it not only preserves the corresponding mappioperties from Dirichlet
control to the traction of the adjoint variable but also agus for some higher regularity
of the control in the related optimality condition.

In Table 6.2, we have computed thg distance of the stafé from the desired stafe for
the different refinement levels in the energy andlthesettings. We have found that the
values in both the cases are very close to each other. Birecéxed so the approximate
stateu tends to some exact staie
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6 Numerical Examples

[U—dll,0

)

Level

A=Vl

A=

OOk, WNEO

0.0630781
0.0617038
0.0617217
0.0617214
0.0617213
0.0617213

0.0617213

0.0617194
0.0591016
0.0590576
0.0590387
0.0590373
0.0590372

0.0590372

Table 6.2: Thd., distance of the tracking term.



7/ CONCLUSION AND OUTLOOK

In this final chapter we, very briefly, give few conclusionstwt work along with some
future outlook.

7.1 Conclusions

In this thesis, we have shown that one can use boundary elene¢inods to solve Dirichlet
boundary control problems for the Stokes system. The nwalaesults presented are in
conformity with the theoretical findings. The clear advgetaf the boundary element
methods lies in the fact, that only the boundary of the comartal domain needs to be
discretized. For given smooth data we can prove, with reéspeice used lowest order trial
spaces, the best possible order of convergence for the boualkment approximation for
the controlz. In addition to that, optimal control problems subject totjgé differential
equations as constraints in an unbounded exterior domaibetaeated in a similar way.

7.2 Future work

Symmetric formulation

As already pointed out in Remark 5.4.1, we have presentechasymmetric formula-
tion which requires some condition on the two meshes. FuttieematrixT, 4 defines a
non—symmetric approximation of a self—adjoint operdior We can derive a symmetric
formulation which is stable witout any further condition thre two meshes. For this we
can use a second boundary integral equation for the adjoumidary value problem to
obtain an alternative representation for the tractioand therefore the adjoint operator
S* [53].

Preconditioning and fast methods

The main goal of this study was to solve an optimal controbpm for Stokes by bound-
ary element methods and as such we have shown the stabititg afethod and presented
some error analysis. Further research can be done for areffsolution of the resulting
discrete system. Special emphasis will be on efficient emiuhethods for solving the dis-
crete variational inequalities. This can be done by constrg efficient preconditioners,
as well as by the use of fast boundary element methods.
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A APPENDIX

In this appendix we give the detailed computation of the &kfunction for the Bi—Stokes
system represented by (4.5).We also give the boundarydnefctr this kernel function.

Computation of V*(x,y)

The system of linear elastostatics is
—HAuU — (A + p)grad divu(x) = f(X),

Let us make following ansatz

(A+H)
u(x) = Aw — =

By this transformation and on simplification we get

grad divw(x).

—uD>w(x) =f(x).
If U3j(x,y) is the fundamental solution of linear elastostatics, themwst have
—pAYUI(X,Y) — (A + p)grad, divy U1 (x,y) = &o(y — X)er,
analogously, we make the following ansatz

(A+u)
(A +2u)

Ui(X, y) = Ale(X7 y) - grac!/ diVy Wl(X7 y>7

where

W)\ e Un(xy)) '
i = (W) + o0 = (GE0)

Again by this transformation, we end up having the followBigLaplace equation

1
~HEPWa(x) = Bly—X)e = &uly ) (o)
Equating the components on both sides gives the followistesy

—pAWA(X,Y) = Go(y—X),
—uAWip(x,y) = O.
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Now consider
—HAPWy (X, Y) = So(y —X)

which is the Bi—Laplace equation whose solution, with sglechoice of the constant, is
given by

_ e Ly @A)
W12(X7y) = 0.
Also
0? 9
AWh = dy2W11(X \Y) + (3y§W11(X’y)’
B 1 (A+pu)
= 9 i )
The fundamental solution is given by
A+ 0
Uni(xy) = AWa(XY) — <(/\ Iﬁ) ay: divy W1(x,y),
1 (A+p\[ A+3u (Y2 —x1)?
B 47w()\+2u){ T v x=y]2 |’
A+p) ) 0
Uia(xy) = AWaa(XY) — AT 21) s —— divy Wy (X, y),
L (A —x) (2 — %)
Amp \ A +2u x—yl2

The system of linear elastostatics is

—uAYVI(XY) — (A + p)grad, divy Vi(xy) = Ui(X,y),

on making the following ansatz we have

(A+p)

V(X y) = AZ1(X,Yy) — (A +2u)

grad, divy Z1(X,y).
By this transformation we get

—uD?Z1(x,y) = Uj(x,y),

which results in the form of the following system

—pNSZaa(xy) = Uni(xy),
—uAﬁle(X,y) = Up(xy).
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First we consider

—UNGZ15(%y) = Ua(xy),

(3A +7u)

(22 +6u) |

A+ 9
— d|v W (X,
_ A+ ii (X,Y),
A T 21 By, ayy %
_ A+ 119 0 f enogix—yl—
(A +2p) p8mdy; oy, Hylogh
With the ansatz
A+pu) 112 0 0
- _ Ay L1 0
12(X,Y) ()\ _1_2“) y28n0y20y15( Y)
D
we obtain
, N TR < ey /)
ADS(xy) = DDX y|“{log|x -yl (2/\4’6/»1)}7
sy — bl vy BT
DAJS(x,y) = D{‘X y|“{log|x—y]| (2/\4—6#)}7
e — vlogx vl TR
AS(xy) = [x—Y]| ['Og‘x yl (2A +6u) |
We still have to solve
(32 +7p)

A2S(x.y) = By (ByS(X.Y)) = [x— yi? {log\x—w -

T(xy)

AYB,SXY)) = K=y [Iog|x—y| -
——

T(xy)
so the resulting system is

(22 +6p)

(3A +7u)

3A+7
BT () = k-2 logy — (2 s Sixy) =
Consider first
3A+7
BT () = k-2 log i~ (it .

using the polar form of the Laplace equation we have

1d [ dT] (3A +7u
Farar) = [0 e

dr

)
)
il ar] =~ G|

|

(2A +6u)

|
J

T(X,y).
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Separating the variables and integration two times, we get

dT _ 1[4 M+7u, 1,
ra_4[r (1 _2)\+6u>_4r}’
dr 4 2\ + 64 4 |
_ 114 AAN+7u, 1,
T(r)—l—6{r ( 2/\+6u) o ]

23\ 157

10 3\ +7u 1]
AS(XY) =T(Xy) = 16 r4(|ogr — EZ)\ +6u;) _ §r4 7
P (BA+7H), 1,4
AyS(x,y)—16_r (logr (2)\+6u)) St
1d ][ dS B 1 _4 (3A +7u) 1 4'
Fa{ra} _16_r (logr (2)\+6H)) St K
d[dS] 15 (3A +7u) 1]
a{ra} _16_r (logr (2)‘+6H)) S
LN [T A8 e
:’S(X7y>—576[\x y[>log|x—Y| Ao x—y[®|.
Now
92 92
BySXY) = S5SY) +o5SxY),
yS(X.Y) 0%5( ) 0y%S( )
_ Y gy - (A5
ASxY) = 5 |loglx—y] |
As
11 A+ 2
1 A+u )
Z12(%,Y) 23042 \ A +2u (y1—X1) (Y2 —*2)|[x—y|“|12log|x —y| —

A +3u
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Now the solution of

—pUNIZ3a(xy) = Uui(xy),

= Ale1<X7 y)

(A+p) o
(A +2u) o divy W1(x,y),

(A+p) 02
(A+2u)0y2 11( ) )
B (A+p) 92

= Gz )

S RN
- 8mu (A +2u) ay?

— Ale1<X7 y)

(3 +7u)
(22 +6p)’

]\ _yi2(log|x—y] -

is determined by the ansatz

Z11(X,Y) Zw[Ay (()\)\J:r 212) j;}s( v
This gives us
A2DS(xy) = D[‘X—Y|2{|09|X_y‘_%}}
DAZS(xy) = D{\x—wz{logix—y“%}}

The solution of this Bi—Laplace equation is already obtdine

7A +18u x— |6} .

6
(%) = g7 | X~ iologix-yl - GGk

Now

le(X, ) =

1 {A (A+u) 02
gmu2 | ()\+2u)(9y1

_ 1 [(_p

Inserting the values of the second order partial derivat@rel on simplification, we have

}S( ),

_ x=Y|
460812 (A +21)(A +3u)

600+ 30 { (3 + 7)1~ )7 + (5 -+ 110) 2~ x)? gl

—a(yr —x1)%—b(y, — Xz)z} 7
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where
a=1312+118u) +213u?,
b =592 +278uA + 327u°.
Recall
\ _ (At :
Vi(xy) =AZ1(X,Y) (/\+2u)grad,dlvy21(x,y),
. (A+H) (02 9° )
V. =7y — Zi+ —Z
11(%Y) 11 (A 120) \ 9y2 11+ 35 3y2 12 |
YA 92 A+pu) 02
=720 )3 5211+t 5541 7 12.
u) ay; ay5 (A +2u) dy10y-

Replacing the partial derivatives and on simplification

c(yr —x1)2+d(y2—X2)2 — 4(A +3u) {e(yr —x1)? + f (y2 — x2)?} log[x— yl
1282 (A +21)2(A +3u)

*
V11: -

analogously we can show that

C(y2 —X2)?2+d(y1 —x1)? — 4(A +3) {e(y2 — x2)2 + f(y1 — x1)?} log|x — Y|

V= —

22 128rmu?(A +2u)%(A +3u)

where
C = 7AS4+45uA2+113u%A +107u°,
d = 17A3+107uA2+ 2312 + 17348,
e = A244ur 4742,
f = 3A2412u) +13u%

Again,

. _ (A P 9°
Vio(xy) = AZso A r2m \ay, aylzll+ 0y2212

_9, +( H )0_22 _ A o*
T2 P \ A t2u ) 02T (A +2p) dy20nn

Z11,

so inserting the corresponding partial derivatives angsfying, we have

(Y1 —X1)(Y2—%2) (A + 1) {—5A — 11 +4(A + 3u) log|x—y|}
64TTUZ (A + 21)2 '

V]ik?_(xa y) = -

In a similar manner we can show

(Y1 —X1)(Y2—%2) (A + 1) {—5A — 11 +4(A + 3u) log|x -y}
642 (A +2U)? '

VZ*ZL(X: y) - -
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The Stokes case will follow by taking the limit¥,— o, u — 1, i.e.,

V* = (Vl*l(x7y) V1*2<X7y))
V2*1(X7y) V2*2(X7y)

Y

where
. 4{(y1—X1)%+3(y2 —x2)?} log|x —y| — 7(y1 — X1)? — 17(y2 — X2)?
Vii(xy) = 1281 ,
. ~ . — X —X2){(4log|x—y|—5
Visxy) = Vi) = - @02 {AI0gkYZ5)
. 4{3(y1 —x1)?+ (Y2 —X2)?} log|x — y| — 17(y1 — X1)? — 7(Y2 — X2)?
Voo(X,y) = 1287 :

Further it is easy to verify that*(x,y) satisfy the divergence free property, i.e.,

0\« 0\,
V11X, y) + 5—Via(xy) =0,

dy1 Y2
2 V3y(xy) + 2 Vslxy) = 0
0y1 21\ N 0y2 22\ .

Computation of boundary stress

The boundary stresB;(x,y) of the fundmental solutiok); (x,y) is given for allmost all
yel as

TEoy) s = YVixy),

= AdivyVi(xy)n(y) + 2ua—nvk(x,y) + un(y) x curh Vi (x,y).
y

SinceV(x,y) is divergence free and if for simplicity we take= 1, we get

0
Tr(xy) = ZEV’&(& y) +n(y) x curh Vi (x,y), (A1)

withk=1,2.
If we define, for a two dimensional vector fieldthe rotation as

curhv(y): = diylvz(y)—diyzvl(y) and if we declare

vxa: = a(jg%),
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wherev € R2 anda € RL. By using such a representation we can write

n2(y) ) .

n(y) x curhVi(x,y) = curl Vi (x,y) ( m(y)

So we need to compute ciM; (x,y) and curfV5(X,y).

« o . 0
curhVi(x,y) = d—y1V12(y) oy ——V11(Y),

_ (y2—%2)(log[x—y| - 1)

am ’
SO
n(y) x curbVi (x.y) = — 2= XZ)“Z?T'X_ =D (fﬁ%) . (A2)
Also

d 2 V() 2V 06Y)N(Y) + 32 Vi (X, Y)n2(y)
—Vixy) =" pe y2 , (A3
an, 1(xY) <_a‘?1yvl*2(x,y) VYY) + 552 Vi506Y)n2(Y) (A.3)

so using (A.2) and (A.3) in (A.1), we have
. (lel(x y)nl(y)Jrasz1l 2(Y) _ (Y2—xp) logIX yi=1) no(y)
T1(X,Y) - V (X )n ( >+ AV X (y2—x2)( |og‘x y|— 1) )
ayy V12\%Y)Nily) T+ 5y, 12( y 2(Y) ny(y)
2 Vll(x y)nl(y)-i—{Zay Vi (X y) — (Y2—%2) |og\x yl- 1)}n2(y)
= ) | ) )
{za—ylvu( ) + Qe () 4+ 2.8 Vi (. y)na(y)

On inserting the partial derivatives and doing similar comagions for the cask = 2,
we finally get the boundary traction operator correspontire Bi—Stokes fundamental

solution
N 1 T T (X,
T 0= gy (Tt Ty
where
Thxy) = (yi—x1) {4x—yl*log|x—y| —5(y1 —x1)* — (Y2 —X2)*} na(y)
+ (Y2 x2) {4Ix—y[?log[x—y| = 7(y1 —x1)* = 3(y2 — X2)?} n2(),
Ti(xy) = (Y2a—%2) {4x—y/?log|x—y| — 7(y1 —x1)% — 3(y2 — %2)?} m(Yy)
— (y1—x1) {4x—y*log|x—y| = 5(y1 — X1)* — (Y2 — X2)*} n2(y).
Taxy) = —(y2—x2) {4x—y|*log|x—y| — (y1—x1)* = 5(y2—X2)*} na(y)
+ (yl—xl ) {4lx—y[?log|x—y| — 3(y1 — x1)® — 7(y2 — %2)?} n2(y).
To(xy) = (yi—x1) {4x—yl*log|x—y| —3(y2 —x1)* = 7(y2—X2)*} na(y)

+ (Y2—x2) {4Ix—y[*log|x—y| — (y1 —X1)® — 5(y2 — X2)*} ()



B APPENDIX

In this appendix we present some introduction to variatiomequalities along with ex-
istence and uniqueness results of solutions. The mainergfes for this section are
[19, 20, 40].

Variational inequalities

The theory of variational inequalities has its roots in ta&glus of variations associated
with the minimization of infinite—dimensional functionalBhe study of the subject began
in the 1960’s with the seminal work of Guido Stampacchia anidig"Hartman, who used
the variational inequality as an analytic tool for studyfree boundary problems defined
by nonlinear partial differential operators arising fromilateral problems in elasticity and
plasticity theory and in mechanics.

Some of the earliest papers on variational inequalitief32&6,47,61,62]. In [61] the first
theorem of existence and uniqueness of the solution ofti@mel inequalities was proved.
The books by Baiocchi and Capelo [3] and Kinderlehrer andhtecchia [40] provide a
thorough introduction to the application of variationaqualities in infinite—dimensional
function spaces; see also [4]. The lecture notes [38] treaiplementarity problems in
abstract spaces. The book by Glowinski, Lions, and Trem®|[5] is among the earliest
references to give a detailed numerical treatment of sughti@al inequalities. There is
a huge literature on the subject of infinite—dimensionalatamal inequalities and related
problems. For the study of the finite dimensional variatiemaqualities and complemen-
tarity problems see [19, 20].

In the following, letH be a real Hilbert spacd* its dual with duality pairing-, ) -
The norm orH will be denoted by|- ||y and the dual norm by-||-. Leta: H* xH — R
be a (real) bilinear form which defines an operatoH — H*

(AU, V) ooy = a(U, V).

Definition B.0.1. LetKK be a given nonempty, closed and convex subset of H ard*,
then the variational inequality problem is to fimde K such that

(AU,V—U) ey > (Fv—U)pye,y  forallvek. (B.1)
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Lemma B.0.1.LetK be a closed convex subset of a Hilbert space H. Then forxeadH
there is a unique € K such that

X =yl = inf [x—n]. (B.2)
nek
The pointy satisfying(B.2) is called the projection af on K and we write it as

y := Proj x.
Proof. See [40, Lemma 2.1]. O

Next we characterize the projection by the following theore

Theorem B.0.1.LetK be a closed convex subset of a Hilbert space H. TherProj x,
the projection ok onK, if and only if

YEK: (V,N=Yuxn = XN —Y)uxn forallnek.

Proof. See [40, Theorem 2.3]. O

Corollary B.0.1. LetK be a closed convex subset of a Hilbert space H. Then the piajec
operatorProjy is nonexpensive, i.e.,

|Projg X — Proje x*|| < || x —x*||  for all x,x* € H.
Proof. See [40, Corollary 2.4]. O

To prove the existence and the uniqueness of the solutidreafdriational inequality (B.1)
first we give few definitions followed by a theorem.

Definition B.0.2. A bilinear form is symmetric if
a(u,v) =a(v,u) forallu,veH.

Definition B.0.3. A bilinear form gu, v) is coercive on H if there exists a positive constant
o such that

a(v,v)>alv|®> forallveH.

Theorem B.0.2.Let &u,V) be a coercive bilinear form on HK C H closed and convex
andf € H*. Then there exists a unique solution of the variational uradiy (B.1). In
addition iff is Lipschitz, i.e., iu1, u, are two solution of the variational inequali$3.1)
corresponding tdq,fo € H*, then

lug —uzllyy < (1/a) [[f1 —Faf -
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Proof. See [40, Theorem 2.1]. O

We present another characterization of the solution of #r&tional inequality (B.1). If
the operatoA is symmetric then the problem (B.1) is equivalent to thediwlhg mini-
mization problem. Let

u=argMin7(v),

vek

whereJ : H — R is the quadratic functional
1
j(V) = 2 <AV7V>H*><H - <f7V>H*><H :
Thenu solves the variational inequality (B.1), if and only if it mimizes.7 (v) overK.

Proof. See [40]. O
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