
BIOINFORMATICS PLATFORM FOR METABOLIC MODEL
DEVELOPMENT

STEPHAN PABINGER

DOCTORAL THESIS

Graz University of Technology

Institute for Genomics and Bioinformatics

Petersgasse 14, 8010 Graz, Austria

Graz, March 2010

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die

angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich und inhaltlich

entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Abstract

The overall goal of systems biology is the simultaneous study of all processes and dynamic in-

teractions at molecular level in order to draw conclusions which may not be apparent when only

individual components are considered. Genome-scale modeling is a promising approach to sys-

tematically analyze complex cellular systems. Metabolic models have proven to be valuable for

increasing the product yield, predicting the effect of gene deletions, improving gene annotation,

and identifying regulatory mechanisms. As models are constructed based on annotated genomes,

current advancements in next generation sequencing technologies will foster the development of

new models.

Therefore, a bioinformatics platform for the management, storage, and development of meta-

bolic models has been established. The web based Metabolic Model System (MEMOSys) sup-

ports the development of new models by providing a built in version control system which offers ac-

cess to the complete reconstruction history. Moreover, the integrated web board, the fine-grained

authorization system, and the definition of user roles allow collaborations across departments and

universities. Research on existing models is facilitated by a powerful search system, references

to external databases, and a feature-rich comparison mechanism. MEMOSys provides customiz-

able data exchange mechanisms using the SBML format to enable analysis in external tools.

The web application is based on the Java EE framework and offers an intuitive user interface. It

currently contains several well annotated and publicly available models.

In summary, the implemented bioinformatics platform provides researchers a novel application

facilitating the management and development of metabolic models.

Keywords: Metabolic models, database, SBML, Java EE

ii

Publications

This thesis was based on following publications, as well as upon unpublished work:

Pabinger S, Thallinger GG, Snajder R, Eichhorn H, Rader R, Trajanoski Z. QPCR: Application
for real-time PCR data management and analysis. BMC Bioinformatics 2009, 10:268 PMID:
19712446

Rader R, Pabinger S, Ramsauer T, Specht T, and Trajanoski Z. Integrating bioprocess and gene
expression data for optimizing industrial fermentation. submitted

Pabinger S, Rader R, Agren R, Nielsen J, Trajanoski Z. MEMOSys: Metabolic model research
and development system. in preparation

iii

Contents

1 Introduction . 1

1.1 Systems Biology . 1
1.2 Genome-scale metabolic models . 2
1.3 Objectives . 7

2 Methods . 8

2.1 Java Enterprise Edition . 8
2.2 Relational data persistence . 18
2.3 JBoss Seam . 20
2.4 Development libraries and tools . 23

3 Results . 26

3.1 MEMOSys - Metabolic Model System . 26
3.2 Implementation details . 36
3.3 Model integration . 39

4 Discussion . 40

A Bibliography . 46

B Glossary . 60

C Acknowledgments . 63

iv

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT CONTENTS

D Publications . 64

v

Chapter 1

Introduction

1.1 Systems Biology

With the assembly of the first whole genome sequences in the mid-1990s [Fleischmann et al.,

1995], it became possible to identify all gene products involved in biological processes of an

organism [Palsson, 2009]. Until then biological research was focused on the characterization

of individual components - one at a time. This reductionistic approach shifted to large-scale

studies which allow a systematical and concurrent analysis of multiple components [Snyder and

Gallagher, 2009].

Systems Biology aims at simultaneously studying all processes and dynamic interactions at

molecular level in order to define entire pathways and predict the behavior of investigated systems

[Kay and Wren, 2009]. The molecular activity of cell components is strongly interconnected and

needs to be investigated in a whole-system approach to explain physiological characteristics and

dynamic behavior [Eils and Kriete, 2005a]. Large-scale analyses allow drawing meaningful con-

clusions which may not be apparent when only individual components are considered. Since the

smallest known genome has about 450 highly connected genes [Fraser et al., 1995] and knock-

out studies have shown that in an artificial organism approximately 375 of them are essential for

life [Glass et al., 2006], it is of great importance to study the whole system instead of concentrating

on a few components to explain physiological processes. Moreover, the genome of established

model organisms such as Saccharomyces cerevisiae and Escherichia coli contain at least ten

times more genes than the artificial minimal organism which makes a whole system approach

even more essential [Westerhoff et al., 2009].

Advancements in several high-throughput technologies have given researchers the possibility

1

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT INTRODUCTION

to investigate gene and protein expressions in large-scale studies. The recent introduction of next

generation sequencing platforms considerably reduces the analysis time and financial effort which

allows even small laboratories to sequence entire genomes. The task at hand is now to integrate

the large amount of data about biological systems into models in order to gain novel insights into

their interconnected functionality [Kay and Wren, 2009].

1.2 Genome-scale metabolic models

Genome-scale modeling is a promising approach to systematically analyze multiple high-through-

put results of complex cellular systems [Selvarasu et al., 2010]. Based on the annotated genome

sequence and biochemical data a metabolic network can be reconstructed which describes the

relationship between genes and phenotypes. A metabolic network can be considered as the sum

of all chemical reactions of a particular system [Palsson, 2006]. It tries to assess the physio-

logical states of an organism and aims at identifying their biochemical implementation in terms

of metabolic fluxes. The modeled system requires that production and consumption of all sub-

strates and products are in balance and uses exchange fluxes to model the excretion and uptake

of metabolites [Durot et al., 2009]. Due to the growing number of sequenced organisms, genome-

scale metabolic models have been compiled for a large number of organisms including the model

organisms e. coli and yeast, several different microorganisms, the human organism, and almost

20 bacterial species.

In order to analyze a compiled model, it needs to be converted into a mathematical repre-

sentation where reversibility and rate limiting constraints can be employed (see figure 1.1). The

resulting stoichiometric matrix contains all metabolic reactions and comprises coefficients repre-

senting time- and condition-invariant properties of the network [Palsson, 2006]. After the initial

reconstruction step, manual fostering and systematic verification of the predictive capabilities are

performed in order to correct model inconsistencies.

Since the initial reconstruction may contain an incomplete set of reactions, gap-filling methods

[Osterman and Overbeek, 2003; Vongsangnak et al., 2008] have been developed to insert missing

reactions or link unconnected metabolites to the network. These methods are essential for the

creation of genome-scale models as they can explain differences between experimental data and

computational predictions.

Mapping high-throughput data onto the curated genome-scale model can be useful to gain

new biological insights as it provides a new way to analyze omics data against the knowledge

about the target organism. Several studies map transcriptomic data, proteomic data, or tissue-

specific expression-profiling data onto genome-scale models [Palsson, 2009]. The incorporation

2

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT INTRODUCTION

Figure 1.1: Figure (a) depicts a model system containing three metabolites (A, B, C), three exchange fluxes
(b1, b2, b3), two unidirectional internal reactions (v1, v4), and one reversible reaction (v2, v3).
(b) For each metabolite a mass balance equation is constructed which can also be represented
in matrix form where S is the stoichiometric matrix and V is the matrix of all fluxes [Kauffman
et al., 2003].

of additional constraints such as gene regulation, osmolarity, or electroneutrality will be a future

step to further expand the scope of network-based analyses. Genome-scale metabolic models

have already proven to be valuable for strain engineering which aims at improving production

yield and stability [Lee et al., 2005; Nielsen and Jewett, 2008; Wendisch et al., 2006]. Their

ability to predict the outcome of gene deletions and prognosticate the adaption of an organism

to new nutritional environments makes them a useful instrument to determine the characteristics

of alternative flux distributions [Papin et al., 2003]. Future applications of metabolic models will

contribute to the understanding of bacterial genomes and may lead to better diagnostic tests and

therapies of human diseases [Westerhoff and Palsson, 2004].

1.2.1 Simulation

The increasing number of metabolic models resulted in the development of numerous methods

and toolboxes ([Becker et al., 2007; Heino et al., 2010; Hoops et al., 2006; Klamt et al., 2006;

Sauro et al., 2003]) to analyze large-scale metabolic networks.

Elementary modes

Elementary modes are a set of vectors derived from the stoichiometric matrix that describe the

smallest sub-networks which are still functional in steady state. They are calculated by using

convex analysis and are helpful to understand cellular objectives of the metabolic model. Each

network has a unique set of elementary modes where removing any reaction from an elementary

mode would result in a non-functional unit [Schuster et al., 1999].

3

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT INTRODUCTION

Extreme Pathways

Extreme pathways represent the smallest unique set of pathways to accurately interpret the func-

tional aspects of a metabolic network [Schilling et al., 2000].

Similar to elementary modes, extreme pathways are a set of convex basic vectors derived

from the stoichiometric matrix. Each network possesses a unique set of pathways which are

essentially subsets of elementary modes. The reversibility of reactions is treated differently by

elementary modes and extreme pathways: the former uses a set of rules to include reversibility

into the elementary modes whereas the latter decouples all internal reversible reactions into two

separate, opposing reactions. As a result, certain elementary modes can be described as a linear

combination of extreme pathways which correspond to the edges of the convex solution space in

a biochemical network [Papin et al., 2004].

Minimal metabolic behaviors

A recently introduced method for the analysis of metabolic networks termed “Minimal meta-

bolic behaviors” characterizes a network by its minimal metabolic behaviors and the reversible

metabolic space. Minimal metabolic behaviors are uniquely determined by the network and are

based on an outer description of the solution space in contrast to the inner description used by

elementary modes or extreme pathways. The method uses a refined classification of reactions

according to their reversibility type, as the reversibility provides the key to explain reaction depen-

dencies. On the one hand reversible reactions define the reversible metabolic space containing

useful biological information, and on the other hand irreversible reactions completely characterize

the minimal metabolic behaviors [Larhlimi and Bockmayr, 2009].

Flux balance analysis

Growth is a fundamental principle of life that organisms fulfill by taking up nutrients and converting

them to molecules through a set of chemical reactions called metabolism. Flux balance analysis

(FBA) uses stoichiometric information about metabolic pathways to determine the theoretical ca-

pabilities of a metabolic system [Edwards et al., 2001]. It proposes a system where only metabo-

lites that leave or enter the network are considered as exchange fluxes. Thermodynamic and

capacity properties are included by constraining the flux value of both enzyme and exchange re-

actions. Since cell growth and process dynamics are typically substantially slower than metabolic

changeovers, FBA assumes a steady-state of metabolic mass balances. It is therefore required

that the production of every metabolite inside the network is equal to its consumption.

The hitherto specified properties describe a solution space that contains all feasible steady-

4

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT INTRODUCTION

state flux vectors that satisfy the imposed constraints. In order to calculate a single solution, FBA

uses linear programming to find the flux vector that maximizes or minimizes a proposed objective

function. Usually the objective function is defined as the production of biomass which equals

growth of an organism but may also be any other objective such as ATP production [Pramanik

and Keasling, 1997]. FBA is able to incorporate additional information that add new constraints to

the network to further reduce the size of the solution space. Since stoichiometric parameters can

be defined from the annotated genome sequence, FBA is particularly applicable for post-genomic

analysis.

The existence of a wide range of applications tremendously contributed to the success of

FBA as an analysis tool for metabolic networks. Flux balance analysis can be used to assist the

reconstruction of metabolic pathways by comparing predicted reaction fluxes to measured results.

It facilitates metabolic engineering by calculating the most efficient pathway through the network

in order to achieve a particular objective. Moreover, FBA is used to predict the outcome of gene

deletion studies and to investigate metabolic capabilities of cellular systems.

Although widely used, the assumption, that the evolutionary history of an organism has se-

lected the pathways with the highest biomass yield, is a source for potential errors. It is unclear

whether the organism is actually capable of achieving that optimum, and external conditions that

were present during its evolution could differ from the conditions defined by the researcher. Fur-

thermore, it is questionable whether the criterion of maximum efficiency is at all important for the

organisms under consideration [Westerhoff and Palsson, 2004].

1.2.2 Software tools

A crucial part in the construction of metabolic models based on annotated genome sequences

is the determination of gene-enzyme and enzyme-reaction relationships [Ma and Zeng, 2003].

Enzymes are proteins that catalyze chemical reactions and link genes to specific metabolic reac-

tions. In order to provide a unique and consistent representation of an enzyme, they are assigned

to an Enzyme Commission classification number (EC number). Several enzyme databases have

been published, such as the KEGG [Kanehisa, 1997], BRENDA [Chang et al., 2009], and ExPASy

enzyme nomenclature database [Gasteiger et al., 2003]. In addition to basic information they

contain descriptions about genes which are used to determine the gene-enzyme relationships.

Names of metabolites are often inconsistent between different models, which makes them

nearly impossible to compare. The ChEBI database [Degtyarenko et al., 2008] and the KEGG

Compound Database [Goto et al., 2002] assign unique identifiers to metabolites to facilitate the

comparison of different models. Moreover, they list all known synonyms of a metabolite and

provide structure and chemical information.

5

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT INTRODUCTION

The reconstruction of a new model can be supported by performing homology comparisons

with already existing networks. Several repositories have been created which provide access to

established metabolic models (e.g.: BioModels [Novère et al., 2006], BIGG [BIGG, 2010]). Ad-

ditionally, there are many databases available containing a wealth of information about specific

organisms which are helpful for assembling a new network: EcoCyc [Karp et al., 2000] for Es-

cherichia Coli ; SGD [Engel et al., 2010] for Saccharomyces cerevisiae; MetaCyc [Caspi et al.,

2010] and Dogan [Dogan, 2010] for multiple organisms.

Although a lot of databases and web applications allow researchers to download and query

metabolic models, non of them provides support for the tedious construction process. Assembling

the final version of a model is an iterative process involving many manual steps that generate

several intermediate versions. The possibility to review all changes, extract previous versions,

and use an innovative user interface to create new entries would greatly enhance the construction

of new models.

6

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT INTRODUCTION

1.3 Objectives

The aim of this thesis is to develop a web-based bioinformatics platform for managing, develop-

ing, and storing metabolic models of microbial organisms. Furthermore, it should facilitate the

collaborative construction of new metabolic models and include a modular system for easy data

exchange.

The specific goals are:

• design a database for all components of metabolic models

• build a user friendly web interface for the management of models

– implement a flexible query system

– support standardized data import and export

– provide links to external databases

• implement features for the collaborative development of models

– define fine grained user access levels

– provide a supervision mechanism

– implement an automatic version control system

• import available microbial models into the application

The software should be built using state-of-the-art software technologies to be scalable and

extensible and allow an easy adaption and extension of future requirements.

7

Chapter 2

Methods

This chapter gives insight into various methods used to develop the presented application. The

main focus has been laid on the description of frameworks, tools, and specifications of the Java

programming language. Future versions and features of the Java platform are discussed by the

Java Community Process (JCP) [JCP, 2009] where several different companies, organizations,

and individuals participate. It defines formal Java Specification Requests (JSRs) to draft and out-

line new specifications. The chapter describes several parts of the Java programming language

and concludes with the description of used programming libraries and development tools.

2.1 Java Enterprise Edition

2.1.1 Overview

The JavaTMPlatform, Enterprise Edition (Java EE) is an umbrella specification intended to facilitate

the development of powerful, robust, distributed, and highly available applications [Goncalves,

2009].

The release of the current Java EE6 (Shannon [2009]) in December 2009 marked the tenth

anniversary of the Java Enterprise Edition platform containing 28 Java Specification Requests

(JSRs). The first version J2EE 1.2 was released by Sun in 1999 and contained only ten JSRs.

With the release of J2EE 1.4 in 2003 [Shannon, 2003] the platform became widely accepted

in the Java community and was aimed at providing better support for application development

and deployment. However, due to its heavyweight component model, J2EE 1.4 is difficult to test,

deploy, and run and is usually considered as too complex and too complicated to learn.

“Simplify the development of web service applications” [Shannon, 2006] was the focus of Java

8

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

Figure 2.1: Overview of the multi-tiered platform Java EE (from Ball et al. [2006])

Enterprise Edition 5 (Java EE5) released in 2006. It represents a remarkable improvement over

the previous version by refining several different aspects. The use of annotations moved the def-

inition of metadata from external XML deployment descriptor files into the source code. A new

application programming interface (API) for the easy creation of web services supported Service-

Oriented Architecture (SOA) which is considered the “next phase in the evolution of business

automation” [Erl, 2006]. Applying the “convention over configuration” paradigm reduces the con-

figuration effort by implying intelligent default values. Therefore, the framework gains simplicity

but still provides a high level of flexibility.

The current version Java EE 6 [Shannon, 2009] continues the “ease of development” approach

by expanding the use of annotations. A major part of the new specification is the definition of

profiles that include only parts of the platform in order to be adaptable to specific requirements.

Additionally, the expert group has introduced a pruning process to remove or replace features

that are not needed anymore: the EJB 2 persistent model has been replaced by JPA which was

already introduced in Java EE5; JAX-RPC has been replaced by JAX-WS which is more robust

and easier to use.

9

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

2.1.2 Architecture

Enterprise systems using the Java EE architecture are designed as distributed multi-tiered ap-

plications. Figure 2.1 depicts the different levels and shows their interactions. The specification

defines the following tiers [Ball et al., 2006; Johnson, 2002]:

• Client Tier components are executed on the client machine by either a web client or an

application client and handle the communication with the user.

• the Java EE Tier manages Java EE components which are deployed on the Java EE server.

They are usually assigned to two sub-tiers:

– the Web Tier handles communication with web clients.

– the Business Tier manages business processes and access to the EIS tier.

• the Enterprise Information System Tier (EIS) manages data persistence by using Data-

base Management Systems (DBMS).

The Java EE architecture organizes business logic into reusable components and uses con-

tainers for providing services for each component type. The following containers are defined:

• Java EE server: contains Enterprise JavaBeans and web containers.

• Enterprise JavaBeans Container: is compliant to the EJB specification and manages data

and business model beans.

• Web Container: is responsible for the execution of web framework technologies (e.g.:

JavaServer Faces, Java Servlet).

• Application Client Container: runs on the client side and manages the execution of client

components.

• Applet Container: is responsible for the management of applets which are usually executed

in a web browser using a Java plug-in.

The Java EE specification has been implemented by several Java application servers which

differ in their consistency to the defined standard.

The most prominent representatives of application servers implementing the Java EE 5 stan-

dard are: the reference implementation Glassfish [Glassfish, 2010]; the fully certified and open

source implementation Apache Geronimo [GeronimoAS, 2010], Java Open Application Server

JOnAs [JOnAS, 2010], and JBoss Application Server [JBossAS, 2010]; the commercially avail-

able IBM WebSphere [WebSphere, 2010] and Oracle WebLogic [OracleAS, 2010]. Currently the

10

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

Java EE 6 specification is implemented only by the reference implementation Glassfish [Glass-

fish, 2010], but within the next year, several of the above mentioned application servers will be

updated.

Java EE containers support developers by providing low level services like transaction man-

agement, resource pooling, and bean handing. The most common provided services and APIs

are:

• Java Transaction API manages transactions for database connections, provides rollback

support, and an auto commit mode.

• Java Messaging Service (JMS) API enables messaging and is used to create, send, re-

ceive, and read messages.

• Java Mail API is used to send mails.

• Java API for XML Web Services (JAX-WS) defines support for web services (see 2.1.4).

• Java Persistence API (JPA) [DeMichiel, 2009] manages persistence by using an object-

relational mapping approach. The current version has been inspired by object relational

mapping tools like Hibernate [Hibernate, 2010a] or TopLink [TopLink, 2010] and developed

into a native Java API as a standard for object persistence. EJB 3 entities (see 2.1.3) are

administered by an entity manager, which handles persistence and retrieval of objects.

The Java Persistence API consists of three areas:

– The Java Persistence core

– The JPA Query Language (JPA QL) supporting aggregate functions, grouping, joins,

and subqueries

– Object/relational mapping metadata

The JPA specification has been implemented by several different companies including Hi-

bernate, EclipseLink [EclipseLink, 2010], and TopLink, which can be used as the persistence

backend for Java EE applications. The current version JPA 2.0 adds several new features

that include mapping of collections of simple data types, maintaining a persistence order,

pessimistic locking, and orphan removal [Goncalves, 2009].

• Java Naming and Directory Interface (JNDI) is used to register and retrieve data, re-

sources, and any type of Java objects.

• Java Authentication and Authorization Service (JAAS) provides user- or group-based

authentication and authorization.

11

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

2.1.3 Enterprise JavaBeans

The Enterprise JavaBeans (EJB) [Saks, 2009] specification describes a framework which offers

a model for building server-side components in distributed business applications [Monson-Hafael

and Burke, 2006]. EJBs are portable components that encapsulate the business logic of an ap-

plication. In order to fulfill their purpose they need to run inside an EJB container, which provides

system-level services such as transactions, instance pooling, persistence, and security autho-

rization. Since developers can rely on the container to provide all these services, the framework

greatly simplifies the development of large, distributed applications.

The release of EJB 3.0 [DeMichiel and Keith, 2006] is targeted at reducing the complexity of the

framework by providing a simplified API. Through the use of annotations as metadata it reduces

the number of compulsory classes and interfaces and avoids the excessive use of deployment de-

scriptors. Moreover, the design facilitates object orientated concepts by using annotated POJOs

and dependency injection, and simplifies object persistence by specifying an object-relational

mapping facility.

EJB 3.1 [Saks, 2009] introduces an embeddable API for running EJB components within a

Java SE environment. It offers improved packaging, a simplified local view, enhanced EJB Timers,

and allows the creation of Singleton session beans.

The current specification defines three main types of enterprise beans:

• Entity Beans are used for data persistence and retrieval in relational databases. Each Entity

Bean is usually mapped to a database table where each record represents one persisted

object. Since an Entity Bean is an annotated POJO, object orientated concepts can be

applied and beans are able to exist outside the EJB container.

• Session Beans are server-side components that manage business processes and contain

most of the business logic. They access other beans to retrieve data and call business

methods.

Two types of Session Beans can be distinguished:

– Stateful Session Beans (SFSBs) maintain their conversational state across method

calls. A SFSB is assigned to one client and keeps its state in memory until the client re-

moves the bean or terminates. This allows caching of database or calculation intensive

results to the cost of an increased memory consumption.

– Stateless Session Beans (SLSBs) do not preserve a conversational state for the

client. Each method call is completely independent from its predecessors and uses

12

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

only data passed by function call parameters. Since SLSBs are not assigned to specific

clients, they offer great scalability for applications requiring a large number of clients.

• Message Driven Beans (MDBs) are enterprise beans which process messages asyn-

chronously. They expose one public method which gets executed when receiving a mes-

sage, and usually are invoked by JMS messages sent by any Java EE component. MDBs

are useful when processing long lasting business jobs that should be decoupled from the

user interface.

2.1.4 Web services

For several years Service-Oriented Architecture (SOA) has been part of day-to-day architectural

life providing the ability to connect a wide variety of heterogeneous systems to achieve open

interoperability [Pulier and Taylor, 2006]. It is an architecture based upon web service tech-

nology which can be implemented in most programming language using different technologies

[Goncalves, 2009].

Web services describe business methods of applications which use interfaces to provide a

standard way to connect diverse pieces of software over the Internet. JAX-WS [Kotamraju, 2006b]

is a technology used in Java EE for building web services and clients that communicate over the

web by using XML. Typically web service communication is encoded using an XML-based proto-

col such as the Simple Object Access Protocol (SOAP) [SOAP, 2003]. The SOAP specification

defines an envelope structure, encoding rules, and conventions for representing web service in-

vocations and responses. In order to hide the complexity of SOAP messages from the developer,

JAX-WS converts the API calls and responses to and from SOAP messages using the Java Ar-

chitecture for XML Binding (JAXB) [Kotamraju, 2006a]. JAXB provides a fast and convenient way

to marshal and unmarshal Java object trees into XML documents.

With the rise of Web 2.0 RESTful web services have gained in popularity. Java EE 6 introduced

REST with the Java API for RESTful Web Services (JAX-RS) [Hadley and Sandoz, 2009]. REp-

resentational State Transfer (REST) is an architectural style for distributed hypermedia systems

based on the HTTP protocol. Data and functions are considered as resources and are accessed

using Uniform Resource Identifiers (URIs).

2.1.5 JavaServer Faces

JavaServer Faces (JSF) [Burns, 2006b] is a user interface (UI) component framework for Java

web applications. It is designed to make the development of applications, running on a Java

application server, easier and faster. User interfaces can be easily constructed by using a set of

13

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

UI components, and custom UI components can be quickly built and re-used. JSF binds the UI

components on a web page to a server-side representation which helps managing the UI state

across server requests. Furthermore, it provides a simple mechanism to propagate events of

web clients to the server. Since the JSF APIs are layered directly on top of the Servlet API it is

easy to replace the view handler. The JavaServer Faces technology allows a clean separation of

presentation and behavior which enables interface designers and code developers to concentrate

on their respective parts.

JSF 2.0, published in July 2009 [Burns, 2009], improved many aspects of the previous speci-

fication. The most prominent ones are listed below:

• Asynchronous JavaScript and XML (AJAX) support - The request processing lifecycle

has been expanded to be aware of AJAX and partial tree traversal has been introduced.

• Partial Page Saving - Instead of saving the complete state every time, JSF 2.0 stores only

the state changes and restores the state by applying the modifications to the initial state. As

a result, state saving is more efficient and easier to use.

• Improved configuration - JSF 2.0 introduces annotation-based configuration which re-

duces the amount of XML based configuration files.

• Support for Representational State Transfer (REST) [Hadley and Sandoz, 2009]

• Bookmarkable URLs - An improved GET support allows storing of generated URLs as fully

functional bookmarks.

• Facelets - Usage of Facelets (see page 17) instead of JSP.

The JSF specification is implemented by Sun (reference implementation) [JSF RI, 2010] and

the Apache MyFaces project [MyFaces, 2010].

Request processing lifecycle

JSF requests follow a well defined lifecycle which includes several phases (illustrated in figure

2.2):

1. Restore View - the tree of the UI components is built or restored if the page has already

been requested.

2. Apply Request - components are updated to their current state using the information in-

cluded in the current request. Moreover, queued events will be delivered to subscribed

listeners.

14

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

Figure 2.2: JSF request lifecycle (from Ball et al. [2006])

3. Process Validation - components with a registered validator are controlled for their correct-

ness. If errors occur, JSF advances directly to the render response phase.

4. Update Model Values - JSF updates the server-side object properties with the submitted

values.

5. Invoke Application - JSF executes application-level events that include form submissions,

action calls, or page transitions.

6. Render Response - the state is saved for subsequent requests and the response is ren-

dered and transferred to the client.

User interface component model

JavaServer Faces components are the basic elements for building a JSF user interface. Com-

ponents are configurable and reusable building blocks ranging from simple buttons to complex

multiple component compositions such as tables or tree views. They can be linked to correspond-

ing objects in the data model of an application using value expressions (see page 16). On the

server side JSF pages are represented as a component tree where each component can be ac-

cessed by a unique identifier. Moreover, JSF allows the definition of custom flexible user interface

components which benefit from several helper APIs [Burns, 2006b]:

15

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

• Converters - Data in a web application is stored at two different locations: the server-side

model view stores data as Java objects while the presentation view is limited to a String

representation. A converter manages the conversion between these views. In addition

to the existing standard converters (for most built-in Java data types), JSF provides the

possibility to add user defined converters.

• Events and Listeners - The event and listener model is based on the design patterns

outlined in the JavaBeans specification [JavaBeans, 2010]. Events sent by UI components

are being queued by JSF and broadcasted to registered listeners.

• Validators - JSF supports a mechanism to validate client side data before the server-side

model is updated. It allows the creation of pluggable support classes which ensure that the

local value conforms to defined business rules. Validation failures generate error messages

which can be displayed during rendering. Several standard validators are included in JSF to

perform range and length checks. JSF 2.0 introduces support for Bean Validation [Bernard,

2010] that unifies validation from the persistence layer to the presentation layer.

Unified Expression Language

The Unified Expression Language allows the use of expressions in web pages in order to bind

values, objects, and actions to components. JSF relies on the Expression Language (EL) which

is part of the JavaServer Pages specification version 2.1 [Chung and Luehe, 2006]. The unified

expression language represents a combination of the EL specified by JSP 2.0 [Pelegri-Llopart

and Roth, 2003] and the EL created for JSF 1.0 [Burns, 2006a]. Since JSP has a simple lifecycle,

the EL in JSP 2.0 supports only simple expressions to dynamically read data from JavaBeans.

On the contrary, the multiphase JSF lifecycle supports conversion, update, validation, and event

handling of its UI components. In order to meet the new requirements, the EL introduced in JSF

1.0 features the following functionality: (a) deferred evaluation of expressions, (b) the ability to get

and set data, and (c) the ability to invoke methods.

The combination of existing ELs into one unified expression language enables mixing of JSP

content with JSF tags, and allows new JSP-based technologies the use of the additional JSF

features. The current version gives page authors the possibility to use expressions to perform the

following tasks [Ball et al., 2006]:

• Dynamically read application data stored in JavaBean components, various data structures,

and implicit objects

• Dynamically write data, such as user input, to JavaBean components

16

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

• Invoke arbitrary static and public methods

• Dynamically perform arithmetic operations

Facelets

Facelets is a powerful open source web framework providing a highly performant JSF view han-

dler. It is heavily inspired by the Tapestry framework [Tapestry, 2010] and uses concepts intro-

duced by Apache Tiles [Tiles, 2010]. Facelets provides full support for all JSF UI components and

builds its own component tree reflecting the view of a JSF application. Since all web pages must

be valid XML documents, Facelets fully supports namespaces and is able to auto-wire additional

artifacts to XML documents such as UIComponents, Validators, and Converters.

JSF 1.2 has been put on top of JSP and although both technologies have been improved to

complement each other, they never achieved seamless interoperability [Bergsten, 2004]. Facelets

uses JSF instead of the JSP API as the default view handler and supports templating for com-

ponents and pages as a core feature. This allows an easy definition of layouts including header,

footer, and navigation menus. Avoiding the need to compile pages into Servlets, as it is done

in JSP, greatly improves the performance of JSF web applications. The dreadful search for er-

rors in JSP pages has been improved by providing precise error reports that include line, tag,

and attribute information. Facelets fully supports EL expressions and allows developers to create

component compositions.

The current JSF specification 2.0 includes Facelets as the default view handler.

Component libraries

Component libraries provide a set of reusable components for the JavaServer Faces framework.

Since the release of JSF, a huge number of projects have been created [JSFMatrix, 2010]. Some

of the most widely know and usually very advanced and professionally designed libraries have

been created by Apache [Trinidad, 2010], ICEsoft [ICEfaces, 2010], and JBoss [RichFaces, 2010].

Component libraries allow developers to focus on top level UI design by providing support for

different web browsers and applying a consistent behavior and style for all included components.

RichFaces [RichFaces, 2010] is an open source component library by JBoss which fully inte-

grates into the JSF lifecycle. It adds AJAX capability into existing JSF components which allows

modifying the view without the need to completely reload pages. The library provides extensive

skinning support for all its components including windows, panels, data tables, and toggle con-

trols.

17

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

2.2 Relational data persistence

Persisting data in an organized and structured way is one of the basic aims of business appli-

cations. In order to achieve this goal relational database management systems (RDBMS) are

used as the persistence backend in enterprise applications. The principal ideas of RDBMS were

already introduced in 1970 by Edgar F. Codd [Codd, 1970] and are still used in today’s commer-

cial and open source database systems. A RDBMS allows administrators to create and delete

databases, define their structure, control data access, and manipulate the containing data. The

basic idea is to map data to normalized tables where attributes are stored in table fields, and in-

dividual objects are persisted as entities identified by unique keys. Tables can be connected with

each other by referencing their unique identifiers using foreign keys. This system allows the defini-

tion of one-to-one, one-to-many, and many-to-many relations. In order to guarantee data integrity

and avoid redundancy and manipulation anomalies, the concept of normalization was introduced

[Codd, 1970, 1990]. Over the course of several years, six normal forms have been stated which

describe the mathematical rules for normalized relational databases. For common databases it

is usually sufficient to apply the third normal form and informally these databases are considered

as normalized [Rob et al., 2008]. In some cases the expanding number of tables, caused by the

normalization process, may result in a considerable loss of system speed. Consequently, special

circumstances force some degree of denormalization in order to increase the performance.

In 1986 the American National Standards Institute (ANSI) introduced the Structured Query

Language (SQL) designed for managing data in a relational database. Since then the language

has undergone several update revisions and is currently available as version SQL:2008. SQL

defines three different sublanguages:

• Data Definition Language (DDL) - for defining data structures

• Data Manipulation Language (DML) - to create, insert, update, delete, and query data

• Data Control Language (DCL) - to control data access

Java provides access to a wide range of databases using the Java Database Connectivity

API [JDBC, 2010]. It allows developers to query and manipulate data by calling SQL functions.

Each supported database management system provides its own specific back-end implementa-

tion which is accessed by the JDBC interface. This allows an easy exchange of the underlying

RDBMS and hides the complexity of the individual implementations from the developer.

18

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

2.2.1 Hibernate

Although JDBC provides a comfortable and standardized way to submit SQL commands in Java,

it does not offer a mechanism to directly persist objects in database tables. Object-Relational

Mapping (ORM) describes a method that solves the discrepancies between the object-oriented

programming model and the relational database tables. Each ORM implementation needs to ad-

dress object oriented concepts and has to specify ways to map Java objects to relational database

tables [Johnson, 2002].

Hibernate [Hibernate, 2010a] is a powerful, widely spread open source ORM framework for

the Java programming language. It allows developers to design object oriented persistent classes

supporting inheritance, polymorphism, and composition. Hibernate can be configured using anno-

tations or XML based descriptor files and creates, based on the configuration, RDBMS optimized

SQL statements. It implements the JPA specification and can be used as a standalone or EJB 3

persistence provider. Due to its huge popularity in the Java community, it had strong influence on

the development of the JPA specification.

Hibernate offers a wide range of query options and optimizes object loading using advanced

fetching and caching mechanisms. In addition to supporting the retrieval of objects by their pri-

mary key the framework provides several query types:

• Native SQL queries - results are either managed entities or simple scalars.

• Hibernate Query Language (HQL) - is a fully object-oriented query language supporting

inheritance, polymorphism, and association. HQL is an extension of the Java Persistence

query language (JPQL) including additional features such as fetch joins, pagination, projec-

tion, and sorting.

• Hibernate Criteria - is a powerful and elegant alternative to HQL for dynamic query gener-

ation. The API uses the properties of a passed object to define the query parameters.

The framework is divided into several modules. Hibernate Core includes the persistence API

and the mapping of metadata stored in XML. The Hibernate Annotations module allows develop-

ers to use annotation based configuration instead of XML files. The standard Java Persistence

API is implemented by Hibernate EntityManager along with the Java Persistence Query Lan-

guage. Hibernate Annotations, Hibernate EntityManager, and the versioning framework Envers

(see page 20) will be part of Hibernate Core in the upcoming version 3.5. Validation of entity

beans is supported by the Hibernate Validator module which will be based on the Bean Validation

19

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

specification [Bernard, 2010]. Hibernate Search provides full-text indexed search functionality,

and Hibernate Shards allows the distribution of data across multiple databases.

2.2.2 Envers

Envers [JBoss, 2010], developed by Adam Warski, is a framework that allows easy versioning of

persistent classes and is seamlessly integrated into Hibernate. In addition to allowing versioning

of all mappings defined by the JPA specification, Envers supports mapping of various custom

types and collections.

For each entity, which has been marked as versioned, the framework creates an additional ta-

ble to store its revisions. Entities can be labeled as versioned using annotations or XML descriptor

files. Envers uses a unique revision number for all entities which allows retrieving a view of the

database at a certain revision. Moreover, it provides a rich API to search for archived data which

is similar to Hibernate Criteria [Hibernate, 2010b]. A drawback of the current implementation is

the missing support for relation traversing which inhibits the creation of complex queries.

Envers creates revisions of entities only at the end of successful transactions to ensure the

integrity of the persisted data.

2.3 JBoss Seam

JBoss Seam [Seam, 2010] is an open source framework which tries to integrate different tech-

nologies for creating rich web applications in Java [Allen, 2009]. Based on the Java EE platform

it ties together JSF, JPA, EJB 3.0 and Business Process Management (BPM) into a unified solu-

tion. Moreover, Seam provides useful additions to the JavaServer Faces lifecycle and the unified

expression language. It tries to reduce the complexity of developing web-based applications by

increasing the use of annotations and providing a rich set of UI components. In addition, Seam

includes a testing framework where tests can be run without starting the application server [Yuan

and Heute, 2007]. Many ideas implemented in Seam had great influence on the design of Java EE

standards, especially on the Java Context and Dependency Injection specification [King, 2009].

The essence of Seam is a unified component model for all business logic in an application.

The platform adds its own component model on top of the JSF and EJB models and collects

all of the Java EE components into a central registry. Every class can be declared as a Seam

component usually being an EJB bean, a JavaBean, or a JPA entity. Seam components have to

be generated by the Seam framework, which attaches interceptors to objects in order to apply

much of its implicit logic. Class annotations can be used to specify non-conventional behavior.

20

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

Seam enables JSF UI components to communicate directly with the EJB layer by allowing

EJB 3 components to act as JSF beans and action listeners. It makes no distinction between

presentation and business logic components and provides EJB 3 components access to web-

tier scopes. On the one hand the design avoids the need for a managed bean facade reducing

complexity and descriptor files but on the other hand loosens the stringency of the separation of

concerns between the business and the presentation layer.

Each Seam component is assigned to a scope which defines the lifetime of the component. In

addition to the application, session, and request scope specified by the Java Servlet API and the

event and page scope defined by JSF, Seam introduces three new scopes: stateless, conversa-

tion, and business process context.

The stateless scope is a hint for the container to freshly instantiate the component on each

call.

The conversation scope is applied for processes that span over several user interactions in-

cluding page requests or database transactions. Start and end points of a conversation are de-

fined by the developer using either method annotations or propagation attributes of JSF compo-

nents. Seam is able to simultaneously handle multiple conversations which avoids inconsistencies

between data view and session state when using multiple browser windows.

The business process context is used for long running business processes which are con-

trolled by the Java Business Process Management (JBPM). It can span over multiple interactions

and may last several days or weeks.

2.3.1 Dependency injection

Dependency injection (DI) is a key concept to achieve loose coupling of components. It is an

appliance of the Inversion of Control (IoC) pattern where the framework instead of the developer

is in control of the workflow. The principle of IoC is known as the “Hollywood Principle” where the

delivery of the response is out of the requestor’s hands.

In DI, the container takes care of injecting dependent objects into the target class. This system

eliminates the need for lookup logic and allows easy testing of components as injected services

can be simply substituted with mock-ups. Dependent objects are defined using annotations or

XML based descriptor files [Buckley, 2003]. Although the introduction of DI has been a great

improvement over the previous lookup mechanisms it still lacks some important features. Injected

objects are not able to propagate changes back to the context where they have been initially

retrieved from.

21

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

Bijection

Seam enhances dependency injection by introducing a mechanism termed bijection. It describes

a two-way injection and outjection interaction between Seam components and the Seam managed

context [Yuan and Heute, 2007]. Instead of injecting dependencies only at the object instantiation,

Seam uses method interceptors to continuously synchronize contexts with object variables which

allows injecting the current state of a variable on each method call. Outjecting describes the

process of propagating the value of a component to a context where it can be used again by other

components. Components can be injected and outjected by using the @In and @Out annotations.

Since bijection relies on method interceptors which generate additional workload on each method

call, it can be disabled for components to increase the performance.

2.3.2 Events

In addition to the extended dependency injection mechanism, Seam provides an event handling

method which allows components to pass messages to one another without direct interaction.

The Event API is based on the observer pattern introduced by Gamma et al. [1995] using Seam

as the messaging mediator. Events, that are generated during any page-related activity or raised

by a component, are propagated to the Seam container which looks for and notifies registered ob-

servers. The event handling method allows the development of loosely-coupled components and

supports asynchronous operations which help developers to remove tight coupling and facilitates

component testing.

2.3.3 A framework within a framework

Seam provides a collection of component templates for a variety of programming requirements,

a “framework within a framework”, which is often referred to as the Seam Application Framework

[Allen, 2009]. The Home component manages the create, read, update, and delete (CRUD) op-

erations on an entity instance and caches it for further usage. This allows entity classes to remain

POJOs which maintains the separation of concerns by introducing a loose coupling between the

domain object and the persistence framework. Since the Home component is an abstract class

acting as a template, Seam is providing implementations for JPA and Hibernate which can be

further extended by the developer to add additional features.

The Query component helps developers to manage results of performed queries. Similar

to the Home component it is only a template where Seam provides implementations for JPA and

Hibernate. The component includes several useful functions like the possibility to define restriction

parameters and supports sorting and pagination of results.

22

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

Seam-gen

To get quickly started with a new project Seam provides a utility to set up a basic Seam project

which includes the generation of actions, entities, and query stubs. Furthermore, the Ant [Ant,

2010] controlled generator is able to reverse engineer an existing database.

2.3.4 User authentication and authorization

Providing proper security mechanisms is a key criteria in a multiuser application and involves two

functions [Goncalves, 2009]:

• Authentication describes the process of verifying the user’s identity against an authentica-

tion system and assigning a role to the user

• Authorization checks if a user has the permission to access a particular resource or func-

tion

The security framework of Seam is based on the Java Authentication and Authorization Ser-

vice (JAAS) hiding most of the JAAS’s complexity and offers an own identity management system.

Authorization is built either on the rule based system JBoss Drools or on a role and permission

based mechanism.

2.4 Development libraries and tools

2.4.1 SBML

The Systems Biology Markup Language (SBML) [SBML, 2010] is a computer-readable language

based on XML for representing models of biological processes. It provides a common intermedi-

ate format that can be used to describe models in regulatory networks, signaling pathways, gene

regulation networks, and metabolic pathways. The use of SBML offers several benefits:

• one representation of a model can be used without modification in multiple tools

• models can be shared and published in a common, interdisciplinary format

• models stored in SBML are valid beyond the lifetime of the software used to create them

The first definition of SBML was assembled in 2000 when it became clear that Systems Biology

(see 1.1) needs a common model format to enable data exchange between software tools. Since

the publication of the first version in 2003 [Hucka et al., 2003], SBML has undergone several

23

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

revisions and the current stable version is available as SBML Level 2 Version 4 [Hucka et al.,

2010].

Due to the loose definition of the language, several tools specified more stringent SBML for-

mats. Amongst others, the COBRA toolbox [Becker et al., 2007], a widely spread analysis appli-

cation, defines a distinct SBML format that is required by the software.

The format developed by the consensus yeast reconstruction group [Herrgård et al., 2008]

tries to unify existing interpretations into one common format. It uses the resource description

framework (RDF) [RDF, 2010] and the “Minimum information requested in the annotation of bio-

chemical models” (MIRIAM) [Novère et al., 2005] notation to annotate species with external ref-

erences. Each MIRIAM identifier is a single unique string, which unambiguously references an

entity or object in an external resource. The consensus yeast format supports modeling of reac-

tions catalyzed by two or more isoenzymes by using separate reactions for each complex. This

allows researchers to map any Boolean combination of enzymes in the SBML format.

LibSBML

LibSBML [Bornstein et al., 2008] is an open-source programming library that allows developers to

read, write, manipulate, translate, and validate SBML files. The library is implemented in C and

C++ and provides wrappers for a number of software languages, including Java, Python, Perl, and

MATLAB.

2.4.2 JFreeChart

JFreeChart [Gilbert, 2010] is an open source chart library for the Java platform. It supports the

creation of a wide range of different chart types which can be exported to PNG and JPEG im-

ages. Moreover, the charts are highly customizable and can include tool tips and annotations.

JFreeChart can be easily extended and allows the implementation of user defined datasets and

chart types.

2.4.3 Development Tools

The development of applications can be tremendously improved by using the appropriate tools

which help developers to increase productivity and quality of their code production. Amongst

others the following tools have been used throughout the development of the application:

24

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT METHODS

Eclipse

Eclipse [Eclipse, 2010] is an open source community hosting the Eclipse Software Development

Kit (SDK) which is an integrated development environment (IDE) for Java.

The core application provides different perspectives, editors, and views and supports multi-

ple user workspaces. Additionally, it features syntax highlighting, code completion, debugging,

search, and navigation functionality. A flexible plug-in mechanism allows easy integration of cus-

tom extensions which contributed to the huge success of Eclipse. The commercial Java EE

extension MyEclipse [MyEclipse, 2010] provides several tools for the development of business

applications including additional debuggers for browsers and JSPs, a database explorer, and a

controlling mechanism for application servers. The plug-in Subclipse [Subclipse, 2010] allows

accessing Subversion code repositories.

Subversion

Subversion (SVN) [Subversion, 2010] is an open source version control system. It manages files

and resources and allows developers to track changes between revisions and revert to previous

versions. Revisions are identified by a unique number and contain additional information like

timestamps and user comments. Subversion can considerably ease the collaboration between

software developers when working on a common project. It features the definition of different de-

velopment branches and version tags and is capable of moving, renaming, copying, and merging

files with full revision history support.

MagicDraw

The visual UML modeling and Computer-Aided Software Engineering (CASE) tool MagicDraw

[MagicDraw, 2010] facilitates the analysis and design of object oriented systems and databases.

It provides database schema modeling, Data Definition Language (DDL) generation, a code en-

gineering mechanism, and reverse engineering facilities. As the tool is implemented in Java it is

platform independent and can be installed on various environments.

Oracle SQL Developer

The Oracle SQL Developer [SQLDeveloper, 2010] is a free tool for the management of databases.

It allows developers to browse databases, format SQL statements, run SQL statements and

scripts, and export query results. Additionally, the software provides reports of the database

status and supports versioning using the source control system Subversion.

25

Chapter 3

Results

3.1 MEMOSys - Metabolic Model System

The main objective of this thesis is to design and implement an application for managing, de-

veloping, and storing metabolic models of microbial organisms. A metabolic model is a set of

cross-linked reactions which describe the transition of metabolites from reactants to products.

Reactions can be assigned to subsystems and contain information about their proteins and regu-

lating genes.

In order to accomplish the outlined objectives (see 1.3) the Metabolic Model System MEMO-

Sys has been developed. It is a database centric Java EE application that includes a rich web

front-end, a version-control system, comparison functionality, and sophisticated data exchange

mechanisms. The following pages describe the main features of the application.

3.1.1 Data model

MEMOSys has been designed to map and store all properties of a metabolic model in a database.

Reactions are the essential part of a model and are characterized by their reactants and their re-

versibility. Each reactant contains a metabolite, defines a stoichiometry, and is assigned to a

compartment. A compartment is a closed part within a cell, usually surrounded by a membrane,

which allows the cell to maintain special environmental properties (such as pH or enzyme sys-

tems) to carry out different metabolic activities. Compartments are arranged in a hierarchy which

is mapped to the database using references to the parent compartment.

A reaction can be assigned to a subsystem which is a representation of a certain metabolic

pathway. To support users in the creation or adaption of reactions, MEMOSys provides a bal-

26

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT RESULTS

ance check mechanism that validates the stoichiometry equilibrium of consuming and producing

reactants (see figure 3.2).

Figure 3.1: MEMOSys supports several different layouts which allow removing the image banner at the top
and stretching the layout to use the full screen width. The depicted image shows the MEMOSys
home screen where users can select models and versions to view and edit reactions. It displays
the latest modifications of reactions and metabolites and shows the newest comments on the
web board.

In addition to general properties like name and EC number, reactions can store citations to

reference evidence in primary literature. Gene complex objects reflect the relationship of genes

and reactions by using Boolean operators and hierarchical structures (e.g.: gene1 AND [gene2

OR gene3]). For genes having a reference to the UniProt database, the system provides a mech-

anism to download the amino acid sequence of the transcribed protein.

A model is defined by its reactions, specifies an organism, and may contain references to an

image that graphically represents the metabolic map.

Compartments, metabolites, genes, and reactions provide several references to external da-

tabases using the MIRIAM notation. MEMOSys automatically transforms MIRIAM annotations to

web addresses and displays links to the external references. Moreover, the application includes

a mechanism to easily define additional external databases which can be referenced by compo-

nents.

27

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT RESULTS

Figure 3.2: The balance check mechanism uses the stoichiometry of a reaction to check the equilibrium of
production and consumption. It highlights missing or overproduced components which is helpful
for correcting the reaction.

3.1.2 Web interface

This section describes the layout and presentation design used in the application.

Layout

The MEMOSys web interface layout consists of a header, a menu, an information panel, and

a footer (see figure 3.1). The header contains an image strip and provides several useful links

to display contact information, help pages, news, or feedback options. The information panel

displays the main content and the footer contains copyright information and a link to the imprint.

MEMOSys allows users to customize the layout by providing three different options: (a) the

standard layout includes header images and uses a fixed width, (b) the second layout hides the

image strip, and (c) the full screen layout removes the width limitations and hides the images in

the header. The layout selection is persisted across sessions for registered users and is restored

as soon as the user logs in again.

Data presentation

MEMOSys uses reports and entity lists to present and query data stored in the database.

Reports are feature rich web views that display a list of queried objects and support sorting

and pagination (see figure 3.3). The result list can be customized by specifying a set of search

parameters to restrict the query and selecting the object attributes to be displayed. The use of

AJAX avoids complete page reloads when browsing the result list, changing the sort direction, or

updating the list to match new search parameters. As reports incorporate attributes from different

tables in the result list, a detailed data representation can be displayed. MEMOSys uses reports

to present data for metabolites, genes, and reactions. The implementation details of reports are

explained in section 3.2.2.

28

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT RESULTS

Figure 3.3: The reaction report allows users to browse reactions of one or more models. It displays amongst
other attributes name, abbreviation, subsystem, equation, and links to external databases.
All reports in MEMOSys are based on a common design. The display parameters panel allows
the selection of attributes which are included in the result list and is used to define the number
of items shown per page. Query parameters can be defined in the search parameters panel to
apply restrictions on the result list. Both panels can be folded by clicking on their headers. Bold
headers in the result list indicate that the list can be sorted according to the displayed attribute.
Browsing in the result list is done by using the provided slider or navigation buttons. All reports
make extensive use of AJAX to avoid whole page reloads when refreshing the result list.

Entity lists are used for displaying entities which do not require all features of reports. They

use a fixed set of displayed attributes and provide a fast but simple search mechanism.

As all entities are highly connected with each other, MEMOSys displays links to referenced

entities throughout the system and allows free navigation within and across all stored models.

Moreover, entity pages list associated objects to provide information about their connectivity.

3.1.3 Application features

This section outlines general functionality and components of the developed application.

File zone

The file zone supports all file types and provides the possibility to upload, list, and download files.

Uploaded files can be attached to components and all files are stored at a central repository to

facilitate user access control and data backup. Currently, the SBML file used to import a model

29

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT RESULTS

Figure 3.4: The webboard displays all general and specific discussions and allows users to easily create
comments on existing discussions. Threads associated with a specific component provide direct
links to the detail page of referenced entities.

and the image files containing the graphical representations of networks are stored in the file

zone.

Web board

The integrated web board contains general threads and allows researchers to simply attach dis-

cussions to stored entities (see figure 3.4). On every entity page a list of currently attached

threads is shown, and new discussions can be added to the object. The latest comments of all

discussions are displayed on the home screen to quickly update users about new topics.

Unregistered users need to fill in their name and pass a CAPTCHA 1 test to create or reply

to discussions. Administrators are able to mark threads as sticky to permanently display them on

top of the thread list.

Model selection

The home screen (see figure 3.1) of the application displays a list of all available models and

allows the selection of different versions of the models. The current selection is shown beneath

the navigation menu on the left side and is persisted across sessions for registered users. Since

each reaction belongs to a model, the system allows users to restrict reactions queries to currently

selected models and examine reactions of only one model or several models at once. The model

selection is taken into account by all reaction queries and the quick search functionality.
1 CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) tests are used to ensure

that form inputs are performed by humans and are not generated by computers.

30

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT RESULTS

Figure 3.5: The image displays the result of a quick search (input “so*”). The system queries reactions
(abbreviation, name, EC number, KEGG ID), metabolites (abbreviation, name, ChEBI ID), and
genes (abbreviation, name). For each data type a list with matching entities is shown.

Quick search

The quick search field, located beneath the navigation menu, queries for several entities at once:

• Reactions are searched for abbreviation, name, EC number, and KEGG ID.

• Metabolites are searched for abbreviation, name, and ChEBI ID.

• Genes are searched for abbreviation, and name.

For each entity type the result page (see figure 3.5) displays lists which feature page navigation

and page size adjustment. Moreover, the system provides links to referenced objects to quickly

navigate to the detail page of the selected entity.

3.1.4 Version control

The development of a metabolic model is usually an iterative task that generates several interme-

diate versions until the final model is established. Therefore, the application includes an automatic

31

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT RESULTS

version control system that stores each modification of a model as a new revision. Except for static

information like file uploads, all entities and their references are included in the version control sys-

tem. This allows researchers to retrieve the complete model at any revision and query, compare,

and export previous versions of a model. For all version-controlled entities MEMOSys provides a

function to display the history of the object (see figure 3.6). It lists the modifications between each

version allowing researchers to track the changes of an object.

The home screen (see figure 3.1) of the application lists the latest modifications for metabolites

and reactions which gives users a first overview about performed updates.

Figure 3.6: The top part of the figure lists the discussions of the selected reaction. The lower part shows its
history including the latest modifications. For each version a comment, the timestamp, the user,
and the differences from the last version are shown. The currently selected version (see 3.1.3)
is marked using a gray background color.

Supervision

Each modification of an object is at first marked as pending and needs to be confirmed by an

administrator. The system provides a clear user interface to accept pending changes and every

time an administrator approves modifications, a new version number is assigned to the model. In

addition to the internal version number provided by the auditing system, models contain a user

defined number which can be set by administrators.

MEMOSys differentiates between two access types for models controlled by administrators

(see figure 3.7):

• Public available - the model is visible to all visitors of the web application and includes only

accepted modifications.

• Restricted - the model is only visible to editors (see 3.1.7).

32

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT RESULTS

Figure 3.7: MEMOSys provides administrator an intuitive view to manage all models in the database. It
allows them to the change the access type and the user defined model version and displays the
current acceptance status of modifications.

3.1.5 Data exchange

MEMOSys features the import and export of metabolic models in the XML based format SBML. It

uses the libSBML library (see 2.4.1) to read and write SBML files.

Import

The system supports the import of models that are compliant to the SBML format defined by the

consensus yeast reconstruction group (see 2.4.1). Before importing a model into the application

the file needs to be uploaded into the system (see page 29). The import process is performed

asynchronously and a status bar informs the user about the current progress.

Export

The software architecture of the application allows exporting all available versions of a model.

It supports restricting the exported reactions by (a) including only reactions that are in certain

subsystems, or (b) using the result of a reaction query as input for the export mechanism. More-

over, the export functionality defines three different ways to assign reactions and metabolites to

compartments (compartmentalization):

• Completely Compartmentalized - reactions and metabolites are assigned to compart-

ments as they are stored in the database

• Partially Decompartmentalized - reactions and metabolites which are in sub-compart-

ments of the Cytosol are assigned to the Cytosol. All other compartments are still present

in the exported model.

• Fully Decompartmentalized - the exported model contains no compartments resulting in

an unsegregated system.

33

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT RESULTS

Figure 3.8: Depicted are the SBML export settings. They allow users to select the model and its version,
restrict the export to a certain set of subsystems, and choose the level of compartmentalization.
Currently, MEMOSys supports the export into two different SBML formats (Type) - the consensus
yeast and the COBRA toolbox format.

Currently, MEMOSys supports exporting models into SBML files that are compliant with the

consensus yeast format or with the COBRA toolbox (see figure 3.8).

In addition to the SBML export functionality, metabolite and reaction lists can be exported into

Excel or PDF files for further usage.

3.1.6 Model comparison

Great attention has been paid to the implementation of a model comparison functionality. The

application allows researchers to compare any version of two different models. Moreover, it is

possible to compare two versions of the same model to identify development changes. The fol-

lowing entities of the models are compared:

• Reactions are compared based on their KEGG ID if defined by both reactions. Otherwise

the system uses the equation (reversibility, metabolites, and their stoichiometry) for compar-

ison.

• Metabolites are compared based on their ChEBI ID, KEGG ID, and their name.

• Genes are compared based on their UniProt ID, SGD ID, and their name.

The first part of the comparison result displays a summary of the detected differences (see

figure 3.9) and shows area accurate Venn diagrams for reactions, metabolites, and genes. A

new chart type was developed to create Venn diagrams in JFreeChart (see 2.4.2) which uses a

numerical analysis approach to calculate the correct circle intersection distance.

The second part allows applying restrictions on the used models to limit the results to selected

compartments and subsystems. The third part (see figure 3.10) displays detailed lists of equal

and unique entities for each model and provides tabs to switch between reactions, metabolites,

34

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT RESULTS

Figure 3.9: Displayed is the first part of a model comparison result. It shows the area accurate Venn di-
agrams for reactions, metabolites, and genes. Additionally, it provides a short quantitative de-
scription of the differences between the models. The next section is used to restrict the result to
selected subsystems or compartments.

Figure 3.10: Shown is the comparison result list for one model. Not included in this picture are the result
lists for the second model and the equal entities. The tabs on the top allow switching between
reactions, metabolites, and genes.

35

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT RESULTS

and genes. In addition, reactions, metabolites, and genes are linked to the corresponding enti-

ties which display detailed information about the components. Each list is scrollable and allows

adjusting the number of displayed entries per page.

3.1.7 User access

MEMOSys defines four different user classes to control data access:

• Users without an account - are allowed to view accepted model versions. Additionally,

only models that have been made publicly available are visible to this user class. They are

not allowed to create, update, or delete entities.

• Visitors - are granted the same rights as users without an account and certain user settings

are persisted in the database to increase the usability of the application. Furthermore,

administrators are able to grant individual visitors access to unpublished models.

• Editors - are allowed to create, update, and delete all entities in the database. Moreover,

they have access to models which are not publicly available and always see the latest ver-

sion of entities even if they have not yet been accepted. Editors are allowed to upload files

to the web server and import SBML models into the database.

• Administrators - are editors, which are able to accept modifications of entities and change

the public availability of models.

3.2 Implementation details

3.2.1 Application design and implementation

MEMOSys is a multi-tier application based on Java EE 5 and JBoss Seam. The presentation

tier uses the JSF 1.2 reference implementation by Sun Microsystems in combination with JBoss

RichFaces and Facelets. It employs institute guidelines to provide a corporate identity compliant

web design and makes use of Web 2.0 technologies for dynamic content generation. RichFaces

components are extensively used to guarantee a consistent web front-end and to provide support

for all major web browsers. The Facelets templating mechanism has been extensively used to

avoid unnecessary code redundancies.

The business tier contains Home (see 2.3.3) classes which manage entity beans to store and

retrieve data. EJB session beans provide business functionality using services offered by the EJB

container.

36

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT RESULTS

The persistence tier uses Hibernate as JPA implementation to store objects in a database and

provides version control support based on Envers.

Data security is managed by an Authentication and Authorization System (AAS) [Zeller, 2003]

which is attached to the Seam security framework. It allows the definition of fine grained user

roles and stores users, user groups, and resource permissions. The security framework is used

in the application to restrict method and page level access.

3.2.2 Seam

After finishing the definition of a database layout the reverse engineering mechanism of the Seam

framework (see 2.3.3) has been used to create a first scaffold of MEMOSys. The resulting ap-

plication components were used as a starting point to implement the required functionality. The

Seam framework has been extended with the following features.

Reports

A core requirement of the application is to provide a powerful and flexible querying tool to retrieve

desired information from the database. The Seam framework offers an EntityQuery component

which creates Hibernate queries based on a criteria entity. It allows users to specify several

criteria fields which are used as query parameters for database searches.

MEMOSys defines a new generic class used for data reports (see 3.1.2) which extends the

EntityQuery class to include display, sort, and query parameters. Queries are built by concate-

nating a set of search terms which are translated to the where clause of a HQL query. Users can

define an arbitrary number of search terms which use properties either from the main or from re-

lated entities of the report. According to the selected property the system presents input fields or

automatically filled select boxes. The final search term consists of the selected property, a query

operator (e.g: like, not like, =, >, <), and the user defined search value (see figure 3.3).

Display settings allow users to define which fields are shown in a report and are used to

specify the number of items listed per page. For each registered user the settings are stored in

the database using the user settings system (see 3.2.5).

All reports in MEMOSys are implemented as stateful session beans to maintain a consistent

state throughout a session. This design supports the use of query results in other parts of the

application.

37

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT RESULTS

Entity lists

In addition to data reports, MEMOSys uses stateless session beans based on the Seam Entity-

Query class for lists that do not need to maintain a session state. The created components

enhance the default functionality by supporting page scrolling and the definition of a default sort

order.

Version control support

Reports, Entity lists, and Home classes were extended to include a version control mechanism

and to provide support for user access roles and the public availability of models. Therefore,

all Seam generated queries had to be redesigned to support the outlined functionality. Since

the entity-manager provided by Envers did not offer all needed functionalities, Hibernate native

queries are used to fetch versioned entities.

For each version of an entity the revision number, the timestamp, a freely definable comment,

and the current user are stored in the database. Additionally, the object is marked as pending

to inform the administrator about new modifications. All fields are automatically set by the imple-

mented version-control system which allows an easy extension of the system.

3.2.3 Web board

The web board has been designed to allow simple attaching of discussions to entities. Therefore,

the created thread stores the ID and the type of the connected entity and a generic system creates

hyperlinks to the detail page of the referenced entity.

3.2.4 LibSBML

The libSBML library was modified and extended to be compliant to the consensus yeast format.

The modifications included altering the C++ source code files of the SBML writer and adapting

several SBML classes. The library was rebuild and integrated into the developed application.

3.2.5 User settings

MEMOSys offers users several settings - such as sort directions, theme layout, or model selection

- to customize the application to their needs. As a user may access the application using different

clients, these settings need to be stored in the database to persist them across sessions.

The user settings mechanism is implemented using interceptors and annotations. It allows

developers to mark properties that should be persisted as user settings by simply applying an

38

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT RESULTS

annotation on the desired fields. In order to activate the method interceptor, a class level anno-

tation has to be employed which scans the class for properties that are marked as user settings.

The interceptor loads data from the database if the field has not been initialized and persists the

setting when the value of the field is updated. If no value is stored in the database the system

uses a defined default value. For each user setting the currently logged in user, the annotated

class, and the name and value of the property are stored in the database.

Integration of Genome AAS in the Seam security framework

JBoss Seam provides a user security system that is fully integrated into the presentation and

business tiers. The Institute for Genomics and Bioinformatics uses the Genome Usermanagement

system which is a J2EE based Authentication and Authorization system (AAS) [Zeller, 2003]. In

order to include the in-house AAS system into Seam, a custom identity manager was implemented

which handles the communication between the two security systems.

3.3 Model integration

The developed application has been filled with several well-annotated reconstructions of metabolic

models. Each reconstruction was manually reviewed in accordance with the model developers

and has been improved to meet the standards of the SBML format defined by the consensus

yeast reconstruction group.

The following models are currently stored in the system:

• AORY - Aspergillus oryaze [Vongsangnak et al., 2008]

• ANIG - Aspergillus niger [Andersen et al., 2008]

• ANID - Aspergillus nidulans [David et al., 2008]

• iFF708 - Saccharomyces cerevisiae [Förster et al., 2003]

• iIN800 - Saccharomyces cerevisiae [Nookaew et al., 2008]

• ymn2 0 - Saccharomyces cerevisiae [Herrgård et al., 2008]

39

Chapter 4

Discussion

In this thesis a bioinformatics platform for the management, development, and storage of metabol-

ic models has been developed. MEMOSys is a tool aimed at the metabolic research community

to facilitate the study of existing metabolic models and ease the collaborative development of new

networks. This chapter lists the main features of the application, outlines the differences to exist-

ing software tools, and discusses the used software technologies.

Blazeck and Alper [2010] and Risso et al. [2009] state that the development of new metabolic

maps is an iterative process where the possibility to reproduce each development step is an

important prerequisite. Therefore, MEMOSys features a built-in version control mechanism that

automatically stores the complete history of a model. The system allows querying and displaying

previous versions of a model and provides the possibility to display the history of each entity.

Moreover, the system is able to list modifications of each object, including information about the

user, the time-point of a modification, and an optional comment.

A common characteristic shared by all metabolic models is the heavy interdependency of their

components, reflected for example by the larger number of reactions compared to the number

of metabolites [Kauffman et al., 2003; Lacroix et al., 2008]. The MEMOSys data model takes

this aspect into account and supports connections between all entities of a metabolic network

and allows mapping of any possible combination of genes catalyzing a reaction. Furthermore,

the application provides links to referenced entities to allow an easy navigation within and across

models.

As more and more metabolic models are being generated, the future development of genome-

scale networks will strongly rely on already existing reconstructions of related organisms. Hence,

40

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT DISCUSSION

a flexible and intuitive mechanism to assess the similarity between models will become more and

more important. For this reason, MEMOSys offers a flexible comparison tool to quickly get an

overview of the differences between two models. It features area accurate Venn diagrams which

graphically illustrate the overlap of components. Additionally, the application displays detailed lists

of equal or differing reactions, metabolites, and genes where each list entry is connected to the

information page showing properties and relations to other components. Moreover, the compari-

son can be restricted to a selection of subsystems or compartments.

MEMOSys provides sophisticated data exchange mechanisms to import and export metabolic

models. Specifically, it uses the SBML format outlined by the consensus yeast reconstruction

group which laid special emphasis on annotating components with external references using the

MIRIAM format. Due to historical reasons, different names that describe the same component are

used in biomolecular models. MIRIAM annotations allow the unique identification of components

in metabolic models which is a prerequisite for scientific collaborations and model comparability

[Krause et al., 2010].

The user interfaces for data import and export have been designed to be as lean as possible

while still providing flexibility. The system is able to export either all reactions of a model or only a

set of reactions which is useful when just a specific part of a model should be exported.

Additionally, the export mechanism supports several different ways of compartmentalization,

including partially or fully decompartmentalized models (see 3.1.5). Therefore, the exported mod-

els can be directly used in analysis tools that do not support a fine-grained distribution of reactions

into different compartments.

New biological insights drive the development of metabolic models and therefore lead to var-

ious versions of a particular network. As certain use cases demand access to specific versions

of a model, the MEMOSys export mechanism is fully integrated into the version control system

and provides researchers access to the complete history of a model. As outlined in section 1.2.1,

numerous methods are available to analyze a metabolic model. In addition to the format defined

by the consensus yeast reconstruction group, MEMOSys supports the proprietary file format of

the COBRA toolbox. Furthermore, reaction and metabolite lists can be exported into Excel or

PDF files.

MEMOSys offers a feature rich state-of-the-art web interface which provides quick search,

query, and comparison mechanisms. It stores user preferences within and across sessions, in-

cludes searchable and customizable data reports, and provides automatically filled suggestion

boxes, thus relieving users from repetitive tasks and increasing usability. As data security is an

41

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT DISCUSSION

important issue in the research community, special attention has been laid on the implementation

of an adjustable and solid security system supporting the definition of fine grained access rights.

MEMOSys defines several user types which, amongst others, allow visitors to make use of the

implemented user settings system and guarantees editors that unpublished data is only visible

within a specific group. The application includes a supervision system which enforces that modi-

fications are approved by a key researcher to maintain a high model quality.

Oberhardt et al. [2009] stated that the reconstruction of a genome-scale metabolic model

is a four-step process: (i) assembly of an initial reconstruction based on annotated gene data

and information from external databases, (ii) curation of the initial model by including references

from primary literature and conversion into a mathematical representation, (iii) validation of the

model using analysis methods to compare the predictions to the phenotypic data, and (iv) refining

the model by modifying its components and relations to narrow the gap between predicted and

phenotypic data.

MEMOSys supports researchers in all of the above mentioned steps. It includes external

references to each component of a model using the MIRIAM annotation, and provides a query

mechanism which allows a quick look-up of synonyms of a particular component to avoid in-

consistencies in the reconstruction. In addition, the system supports model curation by storing

references to primary literature and allows users to export models into formats used by analysis

tools. Due to the included version control system, all refining steps are stored in the database to

enable a transparent and traceable reconstruction process. As the refinement process involves

the comparison of predictions to experimental data, a lot of additional files need to be stored and

organized by the researchers. MEMOSys allows the upload of arbitrary files into the system and

attaching them to models in order to collect experimental data at a central repository.

The main purpose of the developed application is the management and development of met-

abolic models. The system is not intended to analyze models and therefore does not include

tools to assess their capabilities. However, the application features a highly customizable export

mechanism which can be easily extended to include file formats for new analysis tools. MEMOSys

is not restricted to a particular organism or group and is therefore able to manage any metabolic

model. It currently contains several well annotated models which have been manually curated

to be compliant with the specification defined by the consensus yeast reconstruction group (see

2.4.1).

The integrated web board facilitates the collaborative development of metabolic models. Re-

searchers can create either global threads to discuss general topics, or attach threads to individual

42

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT DISCUSSION

objects to debate specific issues of a model or its components.

To the best of our knowledge this is the first bioinformatics platform which is attached to a

highly sophisticated user management system and offers a built in version control system for all

components. Current existing systems like the BiGG Database [BIGG, 2010] or the BioModels

database [Novère et al., 2006] do not support the reconstruction of novel metabolic models by

providing an automatic auditing system and a customizable authentication and authorization sys-

tem. Moreover, the developed application features a state-of-the-art web front-end and allows

researchers to perform complex queries on the stored models. MEMOSys offers free academic

use, support of data exchange standards, and has been tested at the Institute for Genomics and

Bioinformatics, Graz University of Technology.

Technology

The application has been implemented in Java which guarantees platform and database indepen-

dence. It is based on the Java EE framework, which is a great improvement over its predecessor

J2EE introducing dependency injection and facilitating testing and bean creation. A high test

coverage is a key quality measurement in today’s software development as it guarantees correct

functionality of components when modifying or extending an application. The use of Java EE

made it possible to easily test business and persistence functions, the developed version control

system, and complex user access scenarios.

The well established Object Relational Mapping (ORM) tool Hibernate is used as the persis-

tence framework which provides good integration into the Java EE framework. The client tier is

managed by the state-of-the-art presentation framework JSF which features a component based

design and allows the creation of custom, reusable JSF templates.

JBoss Richfaces has been favored over other component libraries as it provides a rich com-

ponent set, great AJAX functionality and offers good community support. It includes a skinning

mechanism which is useful to adapt the design to corporate guidelines. The use of established

component libraries guarantees that their components are well tested and provide the same de-

sign and functionality on all major browsers.

JBoss Seam has been used in addition to Java EE and JSF, which offers a feature rich com-

ponent model tying together the different layers of the technology stack. The bijection mechanism

of Seam allows developers to inject and outject values from context variables into component at-

tributes and vice versa which poses a very flexible programming model. However, bijection may

be the reason for performance issues as it needs to inject and outject resources on each method

call, and should therefore not be used in heavily accessed components. Seam offers a reverse

engineering tool which allows the rapid creation of a prototype, including business and presenta-

43

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT DISCUSSION

tion code, based on an existing database schema. This feature relieves the developer of many

tedious coding tasks such as providing CRUD operations for entities or implementing simple lists

or detailed views of objects. As all used technologies follow the “convention over configuration”

principle, most standard properties do not need to be specified which eases the development and

improves source code readability.

Envers has been used as the basis framework for the version control system. It was originally

designed as an extension to Hibernate, but will be included into the core module of the upcoming

version. This tight integration guarantees great usability and continued improvements in the next

releases. As Envers currently does not support traversing relations in queries, workarounds had

to be implemented to provide the required functionality. Moreover, the entity manager of Envers

was not able to execute specific, advanced queries, which instead had to been modeled using

Hibernate native queries. However, Envers provides all functions for the version management of

entities and offers active community support.

Outlook

Applications in the bioinformatics field can never be considered as finished as the ongoing de-

velopment of biological and information technologies continuously change the requirements of

computational environments.

One of the next steps in the development of MEMOSys will be the integration of gene expres-

sion data into the system. As the application already stores annotated graphical model represen-

tations, transcriptomic data can easily be mapped onto the model using existing tools such as

ReMapper [Andersen, 2008] or Pathway Tools [Karp et al., 2010]. The detailed map will be en-

riched with transcription information that for example displays gene values as color-coded boxes

next to the reactions. This will allow researchers to study all gene expression profiles in context

with metabolic maps at once to get an overview of the investigated organism.

The development of a functionality to browse the provided graphical representation of a net-

work could be realized within a reasonable time frame. The integration of an image browser will

make the use of additional tools unnecessary and will enhance the usability and consistency of

the developed application. As all included images are vector graphics, unlimited scalability without

quality loss is provided.

Focus will be placed on the improvement of the version control system. The tight integration

of Envers with Hibernate in the upcoming version will facilitate the development of new features

and increase the performance of the system. Therefore, it will be possible to include additional

queries which will support an even more detailed search for components in current and archived

versions.

44

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT DISCUSSION

Another step will be the improvement of the comparison mechanism which will allow re-

searchers to compare not only models but any current or versioned entity of a particular type.

The output should highlight the differences of their attributes and provide links to affected associ-

ated entities.

Conclusion

In conclusion, the implemented application MEMOSys provides researchers a tool to store, man-

age, and develop metabolic models. The rich web interface and the included version control

system greatly facilitate the development of new metabolic models and support the study of exist-

ing networks. Furthermore, the fine-grained authorization system and the clear definition of user

roles allow collaborations across departments and universities. Due to the flexible and modular

software architecture additional tools and new methods can be easily integrated into the applica-

tion.

45

Appendix A

Bibliography

Article references

[Andersen et al., 2008] Mikael Rørdam Andersen, Michael Lynge Nielsen, and Jens Nielsen.

Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus

niger. Mol Syst Biol, 4:178, 2008. doi: 10.1038/msb.2008.12. URL http://dx.doi.org/10.

1038/msb.2008.12.

[Becker et al., 2007] Scott A Becker, Adam M Feist, Monica L Mo, Gregory Hannum, Bernhard Ø

Palsson, and Markus J Herrgard. Quantitative prediction of cellular metabolism with constraint-

based models: the COBRA Toolbox. Nat Protoc, 2(3):727–738, 2007. doi: 10.1038/nprot.2007.

99. URL http://dx.doi.org/10.1038/nprot.2007.99.

[Blazeck and Alper, 2010] John Blazeck and Hal Alper. Systems metabolic engineering: Genome-

scale models and beyond. Biotechnol J, Feb 2010. doi: 10.1002/biot.200900247. URL http:

//dx.doi.org/10.1002/biot.200900247.

[Bornstein et al., 2008] Benjamin J Bornstein, Sarah M Keating, Akiya Jouraku, and Michael

Hucka. LibSBML: an API library for SBML. Bioinformatics, 24(6):880–881, Mar 2008. doi:

10.1093/bioinformatics/btn051. URL http://dx.doi.org/10.1093/bioinformatics/btn051.

[Caspi et al., 2010] Ron Caspi, Tomer Altman, Joseph M Dale, Kate Dreher, Carol A Fulcher,

Fred Gilham, Pallavi Kaipa, Athikkattuvalasu S Karthikeyan, Anamika Kothari, Markus Krum-

menacker, Mario Latendresse, Lukas A Mueller, Suzanne Paley, Liviu Popescu, Anuradha

Pujar, Alexander G Shearer, Peifen Zhang, and Peter D Karp. The MetaCyc database of

metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases.

46

http://dx.doi.org/10.1038/msb.2008.12
http://dx.doi.org/10.1038/msb.2008.12
http://dx.doi.org/10.1038/nprot.2007.99
http://dx.doi.org/10.1002/biot.200900247
http://dx.doi.org/10.1002/biot.200900247
http://dx.doi.org/10.1093/bioinformatics/btn051

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT BIBLIOGRAPHY

Nucleic Acids Res, 38(Database issue):D473–D479, Jan 2010. doi: 10.1093/nar/gkp875. URL

http://dx.doi.org/10.1093/nar/gkp875.

[Chang et al., 2009] Antje Chang, Maurice Scheer, Andreas Grote, Ida Schomburg, and Dietmar

Schomburg. BRENDA, AMENDA and FRENDA the enzyme information system: new content

and tools in 2009. Nucleic Acids Res, 37(Database issue):D588–D592, Jan 2009. doi: 10.1093/

nar/gkn820. URL http://dx.doi.org/10.1093/nar/gkn820.

[Codd, 1970] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Commun.

ACM, 13(6):377–387, 1970.

[David et al., 2008] Helga David, Ilknur S Ozçelik, Gerald Hofmann, and Jens Nielsen. Analysis

of Aspergillus nidulans metabolism at the genome-scale. BMC Genomics, 9:163, 2008. doi:

10.1186/1471-2164-9-163. URL http://dx.doi.org/10.1186/1471-2164-9-163.

[Degtyarenko et al., 2008] Kirill Degtyarenko, Paula de Matos, Marcus Ennis, Janna Hast-

ings, Martin Zbinden, Alan McNaught, Rafael Alcántara, Michael Darsow, Mickaël Guedj, and

Michael Ashburner. ChEBI: a database and ontology for chemical entities of biological interest.

Nucleic Acids Res, 36(Database issue):D344–D350, Jan 2008. doi: 10.1093/nar/gkm791. URL

http://dx.doi.org/10.1093/nar/gkm791.

[Durot et al., 2009] Maxime Durot, Pierre-Yves Bourguignon, and Vincent Schachter. Genome-

scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev,

33(1):164–190, Jan 2009. doi: 10.1111/j.1574-6976.2008.00146.x. URL http://dx.doi.org/

10.1111/j.1574-6976.2008.00146.x.

[Edwards et al., 2001] J. S. Edwards, R. U. Ibarra, and B. O. Palsson. In silico predictions of

Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol,

19(2):125–130, Feb 2001. doi: 10.1038/84379. URL http://dx.doi.org/10.1038/84379.

[Engel et al., 2010] Stacia R Engel, Rama Balakrishnan, Gail Binkley, Karen R Christie, Maria C

Costanzo, Selina S Dwight, Dianna G Fisk, Jodi E Hirschman, Benjamin C Hitz, Eurie L Hong,

Cynthia J Krieger, Michael S Livstone, Stuart R Miyasato, Robert Nash, Rose Oughtred, Julie

Park, Marek S Skrzypek, Shuai Weng, Edith D Wong, Kara Dolinski, David Botstein, and

J. Michael Cherry. Saccharomyces Genome Database provides mutant phenotype data. Nu-

cleic Acids Res, 38(Database issue):D433–D436, Jan 2010. doi: 10.1093/nar/gkp917. URL

http://dx.doi.org/10.1093/nar/gkp917.

[Fleischmann et al., 1995] R. D. Fleischmann, M. D. Adams, O. White, R. A. Clayton, E. F. Kirk-

ness, A. R. Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, and J. M. Merrick. Whole-genome

47

http://dx.doi.org/10.1093/nar/gkp875
http://dx.doi.org/10.1093/nar/gkn820
http://dx.doi.org/10.1186/1471-2164-9-163
http://dx.doi.org/10.1093/nar/gkm791
http://dx.doi.org/10.1111/j.1574-6976.2008.00146.x
http://dx.doi.org/10.1111/j.1574-6976.2008.00146.x
http://dx.doi.org/10.1038/84379
http://dx.doi.org/10.1093/nar/gkp917

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT BIBLIOGRAPHY

random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223):496–

512, Jul 1995.

[Fraser et al., 1995] C. M. Fraser, J. D. Gocayne, O. White, M. D. Adams, R. A. Clayton, R. D.

Fleischmann, C. J. Bult, A. R. Kerlavage, G. Sutton, J. M. Kelley, R. D. Fritchman, J. F. Weidman,

K. V. Small, M. Sandusky, J. Fuhrmann, D. Nguyen, T. R. Utterback, D. M. Saudek, C. A. Phillips,

J. M. Merrick, J. F. Tomb, B. A. Dougherty, K. F. Bott, P. C. Hu, T. S. Lucier, S. N. Peterson,

H. O. Smith, C. A. Hutchison, and J. C. Venter. The minimal gene complement of Mycoplasma

genitalium. Science, 270(5235):397–403, Oct 1995.

[Förster et al., 2003] Jochen Förster, Iman Famili, Patrick Fu, Bernhard Ø Palsson, and Jens

Nielsen. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network.

Genome Res, 13(2):244–253, Feb 2003. doi: 10.1101/gr.234503. URL http://dx.doi.org/

10.1101/gr.234503.

[Gasteiger et al., 2003] Elisabeth Gasteiger, Alexandre Gattiker, Christine Hoogland, Ivan Ivanyi,

Ron D Appel, and Amos Bairoch. ExPASy: The proteomics server for in-depth protein knowl-

edge and analysis. Nucleic Acids Res, 31(13):3784–3788, Jul 2003.

[Glass et al., 2006] John I Glass, Nacyra Assad-Garcia, Nina Alperovich, Shibu Yooseph,

Matthew R Lewis, Mahir Maruf, Clyde A Hutchison, Hamilton O Smith, and J. Craig Venter.

Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A, 103(2):425–430, Jan 2006.

doi: 10.1073/pnas.0510013103. URL http://dx.doi.org/10.1073/pnas.0510013103.

[Goto et al., 2002] Susumu Goto, Yasushi Okuno, Masahiro Hattori, Takaaki Nishioka, and Minoru

Kanehisa. LIGAND: database of chemical compounds and reactions in biological pathways.

Nucleic Acids Res, 30(1):402–404, Jan 2002.

[Heino et al., 2010] Jenni Heino, Daniela Calvetti, and Erkki Somersalo. Metabolica: A statistical

research tool for analyzing metabolic networks. Comput Methods Programs Biomed, 97(2):

151–167, Feb 2010. doi: 10.1016/j.cmpb.2009.07.007. URL http://dx.doi.org/10.1016/j.

cmpb.2009.07.007.

[Herrgård et al., 2008] Markus J Herrgård, Neil Swainston, Paul Dobson, Warwick B Dunn,

K. Yalçin Arga, Mikko Arvas, Nils Blüthgen, Simon Borger, Roeland Costenoble, Matthias Heine-

mann, Michael Hucka, Nicolas Le Novère, Peter Li, Wolfram Liebermeister, Monica L Mo,

Ana Paula Oliveira, Dina Petranovic, Stephen Pettifer, Evangelos Simeonidis, Kieran Small-

bone, Irena Spasic, Dieter Weichart, Roger Brent, David S Broomhead, Hans V Westerhoff,

Betül Kirdar, Merja Penttilä, Edda Klipp, Bernhard Ø Palsson, Uwe Sauer, Stephen G Oliver,

48

http://dx.doi.org/10.1101/gr.234503
http://dx.doi.org/10.1101/gr.234503
http://dx.doi.org/10.1073/pnas.0510013103
http://dx.doi.org/10.1016/j.cmpb.2009.07.007
http://dx.doi.org/10.1016/j.cmpb.2009.07.007

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT BIBLIOGRAPHY

Pedro Mendes, Jens Nielsen, and Douglas B Kell. A consensus yeast metabolic network re-

construction obtained from a community approach to systems biology. Nat Biotechnol, 26(10):

1155–1160, Oct 2008. doi: 10.1038/nbt1492. URL http://dx.doi.org/10.1038/nbt1492.

[Hoops et al., 2006] Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jürgen Pahle,

Natalia Simus, Mudita Singhal, Liang Xu, Pedro Mendes, and Ursula Kummer. COPASI–a

COmplex PAthway SImulator. Bioinformatics, 22(24):3067–3074, Dec 2006. doi: 10.1093/

bioinformatics/btl485. URL http://dx.doi.org/10.1093/bioinformatics/btl485.

[Hucka et al., 2003] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P.

Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles,

M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J-H. Hofmeyr, P. J. Hunter, N. S.

Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. Le Novère, L. M. Loew, D. Lucio, P. Mendes,

E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff,

B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner,

J. Wang, and S. B. M. L. Forum. The systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics, 19(4):524–531,

Mar 2003.

[Kanehisa, 1997] M. Kanehisa. A database for post-genome analysis. Trends Genet, 13(9):375–

376, Sep 1997.

[Karp et al., 2000] P. D. Karp, M. Riley, M. Saier, I. T. Paulsen, S. M. Paley, and A. Pellegrini-Toole.

The EcoCyc and MetaCyc databases. Nucleic Acids Res, 28(1):56–59, Jan 2000.

[Karp et al., 2010] Peter D Karp, Suzanne M Paley, Markus Krummenacker, Mario Latendresse,

Joseph M Dale, Thomas J Lee, Pallavi Kaipa, Fred Gilham, Aaron Spaulding, Liviu Popescu,

Tomer Altman, Ian Paulsen, Ingrid M Keseler, and Ron Caspi. Pathway Tools version 13.0: in-

tegrated software for pathway/genome informatics and systems biology. Brief Bioinform, 11(1):

40–79, Jan 2010. doi: 10.1093/bib/bbp043. URL http://dx.doi.org/10.1093/bib/bbp043.

[Kauffman et al., 2003] Kenneth J Kauffman, Purusharth Prakash, and Jeremy S Edwards. Ad-

vances in flux balance analysis. Curr Opin Biotechnol, 14(5):491–496, Oct 2003.

[Kay and Wren, 2009] Emily Kay and Brendan W Wren. Recent advances in systems microbi-

ology. Curr Opin Microbiol, 12(5):577–581, Oct 2009. doi: 10.1016/j.mib.2009.08.007. URL

http://dx.doi.org/10.1016/j.mib.2009.08.007.

[Klamt et al., 2006] Steffen Klamt, Julio Saez-Rodriguez, Jonathan A Lindquist, Luca Simeoni,

and Ernst D Gilles. A methodology for the structural and functional analysis of signaling and

49

http://dx.doi.org/10.1038/nbt1492
http://dx.doi.org/10.1093/bioinformatics/btl485
http://dx.doi.org/10.1093/bib/bbp043
http://dx.doi.org/10.1016/j.mib.2009.08.007

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT BIBLIOGRAPHY

regulatory networks. BMC Bioinformatics, 7:56, 2006. doi: 10.1186/1471-2105-7-56. URL

http://dx.doi.org/10.1186/1471-2105-7-56.

[Krause et al., 2010] Falko Krause, Jannis Uhlendorf, Timo Lubitz, Marvin Schulz, Edda Klipp,

and Wolfram Liebermeister. Annotation and merging of SBML models with semanticSBML.

Bioinformatics, 26(3):421–422, Feb 2010. doi: 10.1093/bioinformatics/btp642. URL http:

//dx.doi.org/10.1093/bioinformatics/btp642.

[Lacroix et al., 2008] Vincent Lacroix, Ludovic Cottret, Patricia Thébault, and Marie-France Sagot.

An introduction to metabolic networks and their structural analysis. IEEE/ACM Trans Comput

Biol Bioinform, 5(4):594–617, 2008. doi: 10.1109/TCBB.2008.79. URL http://dx.doi.org/

10.1109/TCBB.2008.79.

[Larhlimi and Bockmayr, 2009] Abdelhalim Larhlimi and Alexander Bockmayr. A new constraint-

based description of the steady-state flux cone of metabolic networks. Discrete Applied

Mathematics, 157(10):2257 – 2266, 2009. ISSN 0166-218X. doi: DOI:10.1016/j.dam.

2008.06.039. URL http://www.sciencedirect.com/science/article/B6TYW-4TDBM62-7/2/

8f90eb51c8f65d680c8da49ca177a04e. Networks in Computational Biology.

[Lee et al., 2005] Sang Yup Lee, Dong-Yup Lee, and Tae Yong Kim. Systems biotechnology for

strain improvement. Trends Biotechnol, 23(7):349–358, Jul 2005. doi: 10.1016/j.tibtech.2005.

05.003. URL http://dx.doi.org/10.1016/j.tibtech.2005.05.003.

[Ma and Zeng, 2003] Hongwu Ma and An-Ping Zeng. Reconstruction of metabolic networks from

genome data and analysis of their global structure for various organisms. Bioinformatics, 19(2):

270–277, Jan 2003.

[Nielsen and Jewett, 2008] Jens Nielsen and Michael C Jewett. Impact of systems biology

on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res, 8(1):122–131,

Feb 2008. doi: 10.1111/j.1567-1364.2007.00302.x. URL http://dx.doi.org/10.1111/j.

1567-1364.2007.00302.x.

[Nookaew et al., 2008] Intawat Nookaew, Michael C Jewett, Asawin Meechai, Chinae Tham-

marongtham, Kobkul Laoteng, Supapon Cheevadhanarak, Jens Nielsen, and Sakarindr Bhu-

miratana. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and

its validation: a scaffold to query lipid metabolism. BMC Syst Biol, 2:71, 2008. doi:

10.1186/1752-0509-2-71. URL http://dx.doi.org/10.1186/1752-0509-2-71.

[Novère et al., 2005] Nicolas Le Novère, Andrew Finney, Michael Hucka, Upinder S Bhalla,

Fabien Campagne, Julio Collado-Vides, Edmund J Crampin, Matt Halstead, Edda Klipp, Pe-

50

http://dx.doi.org/10.1186/1471-2105-7-56
http://dx.doi.org/10.1093/bioinformatics/btp642
http://dx.doi.org/10.1093/bioinformatics/btp642
http://dx.doi.org/10.1109/TCBB.2008.79
http://dx.doi.org/10.1109/TCBB.2008.79
http://www.sciencedirect.com/science/article/B6TYW-4TDBM62-7/2/8f90eb51c8f65d680c8da49ca177a04e
http://www.sciencedirect.com/science/article/B6TYW-4TDBM62-7/2/8f90eb51c8f65d680c8da49ca177a04e
http://dx.doi.org/10.1016/j.tibtech.2005.05.003
http://dx.doi.org/10.1111/j.1567-1364.2007.00302.x
http://dx.doi.org/10.1111/j.1567-1364.2007.00302.x
http://dx.doi.org/10.1186/1752-0509-2-71

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT BIBLIOGRAPHY

dro Mendes, Poul Nielsen, Herbert Sauro, Bruce Shapiro, Jacky L Snoep, Hugh D Spence,

and Barry L Wanner. Minimum information requested in the annotation of biochemical mod-

els (MIRIAM). Nat Biotechnol, 23(12):1509–1515, Dec 2005. doi: 10.1038/nbt1156. URL

http://dx.doi.org/10.1038/nbt1156.

[Novère et al., 2006] Nicolas Le Novère, Benjamin Bornstein, Alexander Broicher, Mélanie Cour-

tot, Marco Donizelli, Harish Dharuri, Lu Li, Herbert Sauro, Maria Schilstra, Bruce Shapiro,

Jacky L Snoep, and Michael Hucka. BioModels Database: a free, centralized database

of curated, published, quantitative kinetic models of biochemical and cellular systems. Nu-

cleic Acids Res, 34(Database issue):D689–D691, Jan 2006. doi: 10.1093/nar/gkj092. URL

http://dx.doi.org/10.1093/nar/gkj092.

[Oberhardt et al., 2009] Matthew A Oberhardt, Bernhard Ø Palsson, and Jason A Papin. Ap-

plications of genome-scale metabolic reconstructions. Mol Syst Biol, 5:320, 2009. doi:

10.1038/msb.2009.77. URL http://dx.doi.org/10.1038/msb.2009.77.

[Osterman and Overbeek, 2003] Andrei Osterman and Ross Overbeek. Missing genes in

metabolic pathways: a comparative genomics approach. Curr Opin Chem Biol, 7(2):238–251,

Apr 2003.

[Palsson, 2009] Bernhard Palsson. Metabolic systems biology. FEBS Lett, 583(24):3900–3904,

Dec 2009. doi: 10.1016/j.febslet.2009.09.031. URL http://dx.doi.org/10.1016/j.febslet.

2009.09.031.

[Papin et al., 2003] Jason A Papin, Nathan D Price, Sharon J Wiback, David A Fell, and Bern-

hard O Palsson. Metabolic pathways in the post-genome era. Trends Biochem Sci, 28(5):

250–258, May 2003.

[Papin et al., 2004] Jason A Papin, Joerg Stelling, Nathan D Price, Steffen Klamt, Stefan Schuster,

and Bernhard O Palsson. Comparison of network-based pathway analysis methods. Trends

Biotechnol, 22(8):400–405, Aug 2004. doi: 10.1016/j.tibtech.2004.06.010. URL http://dx.

doi.org/10.1016/j.tibtech.2004.06.010.

[Pramanik and Keasling, 1997] J. Pramanik and J. D. Keasling. Stoichiometric model of

Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition

and mechanistic energy requirements. Biotechnol Bioeng, 56(4):398–421, Nov 1997. doi:

3.0.CO;2-J. URL http://dx.doi.org/3.0.CO;2-J.

[Risso et al., 2009] Carla Risso, Jun Sun, Kai Zhuang, Radhakrishnan Mahadevan, Robert De-

Boy, Wael Ismail, Susmita Shrivastava, Heather Huot, Sagar Kothari, Sean Daugherty, Olivia

51

http://dx.doi.org/10.1038/nbt1156
http://dx.doi.org/10.1093/nar/gkj092
http://dx.doi.org/10.1038/msb.2009.77
http://dx.doi.org/10.1016/j.febslet.2009.09.031
http://dx.doi.org/10.1016/j.febslet.2009.09.031
http://dx.doi.org/10.1016/j.tibtech.2004.06.010
http://dx.doi.org/10.1016/j.tibtech.2004.06.010
http://dx.doi.org/3.0.CO;2-J

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT BIBLIOGRAPHY

Bui, Christophe H Schilling, Derek R Lovley, and Barbara A Methé. Genome-scale compari-

son and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer

Rhodoferax ferrireducens. BMC Genomics, 10:447, 2009. doi: 10.1186/1471-2164-10-447. URL

http://dx.doi.org/10.1186/1471-2164-10-447.

[Sauro et al., 2003] Herbert M Sauro, Michael Hucka, Andrew Finney, Cameron Wellock,

Hamid Bolouri, John Doyle, and Hiroaki Kitano. Next generation simulation tools: the Sys-

tems Biology Workbench and BioSPICE integration. OMICS, 7(4):355–372, 2003. doi:

10.1089/153623103322637670. URL http://dx.doi.org/10.1089/153623103322637670.

[Schilling et al., 2000] C. H. Schilling, D. Letscher, and B. O. Palsson. Theory for the systemic

definition of metabolic pathways and their use in interpreting metabolic function from a pathway-

oriented perspective. J Theor Biol, 203(3):229–248, Apr 2000. doi: 10.1006/jtbi.2000.1073. URL

http://dx.doi.org/10.1006/jtbi.2000.1073.

[Schuster et al., 1999] S. Schuster, T. Dandekar, and D. A. Fell. Detection of elementary flux

modes in biochemical networks: a promising tool for pathway analysis and metabolic engineer-

ing. Trends Biotechnol, 17(2):53–60, Feb 1999.

[Selvarasu et al., 2010] Suresh Selvarasu, Iftekhar A Karimi, Ghi-Hoon Ghim, and Dong-Yup Lee.

Genome-scale modeling and in silico analysis of mouse cell metabolic network. Mol Biosyst, 6

(1):142–151, Jan 2010. doi: 10.1039/b912865d. URL http://dx.doi.org/10.1039/b912865d.

[Snyder and Gallagher, 2009] Michael Snyder and Jennifer E G Gallagher. Systems biology from

a yeast omics perspective. FEBS Lett, 583(24):3895–3899, Dec 2009. doi: 10.1016/j.febslet.

2009.11.011. URL http://dx.doi.org/10.1016/j.febslet.2009.11.011.

[Vongsangnak et al., 2008] Wanwipa Vongsangnak, Peter Olsen, Kim Hansen, Steen Krogs-

gaard, and Jens Nielsen. Improved annotation through genome-scale metabolic modeling

of Aspergillus oryzae. BMC Genomics, 9:245, 2008. doi: 10.1186/1471-2164-9-245. URL

http://dx.doi.org/10.1186/1471-2164-9-245.

[Wendisch et al., 2006] Volker F Wendisch, Michael Bott, and Bernhard J Eikmanns. Metabolic

engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological produc-

tion of organic acids and amino acids. Curr Opin Microbiol, 9(3):268–274, Jun 2006. doi:

10.1016/j.mib.2006.03.001. URL http://dx.doi.org/10.1016/j.mib.2006.03.001.

[Westerhoff and Palsson, 2004] Hans V Westerhoff and Bernhard O Palsson. The evolution of

molecular biology into systems biology. Nat Biotechnol, 22(10):1249–1252, Oct 2004. doi:

10.1038/nbt1020. URL http://dx.doi.org/10.1038/nbt1020.

52

http://dx.doi.org/10.1186/1471-2164-10-447
http://dx.doi.org/10.1089/153623103322637670
http://dx.doi.org/10.1006/jtbi.2000.1073
http://dx.doi.org/10.1039/b912865d
http://dx.doi.org/10.1016/j.febslet.2009.11.011
http://dx.doi.org/10.1186/1471-2164-9-245
http://dx.doi.org/10.1016/j.mib.2006.03.001
http://dx.doi.org/10.1038/nbt1020

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT BIBLIOGRAPHY

[Westerhoff et al., 2009] Hans V Westerhoff, Catherine Winder, Hanan Messiha, Evangelos Sime-

onidis, Malgorzata Adamczyk, Malkhey Verma, Frank J Bruggeman, and Warwick Dunn. Sys-

tems biology: the elements and principles of life. FEBS Lett, 583(24):3882–3890, Dec 2009.

doi: 10.1016/j.febslet.2009.11.018. URL http://dx.doi.org/10.1016/j.febslet.2009.11.

018.

Book references and manuals

[Allen, 2009] Dan Allen. Seam in Action. Manning Publications, 2009.

[Ball et al., 2006] J. Ball, D. Carson, I. Evans, S. Fordin, K. Haase, and E. Jendrock. The JavaTMEE

5 Tutorial. Sun Microsystems, 9 edition, 06 2006. URL http://java.sun.com/javaee/5/docs/

tutorial/doc/JavaEETutorial.pdf.

[Codd, 1990] E. F. Codd. The relational model for database management: version 2. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990. ISBN 0-201-14192-2.

[Eils and Kriete, 2005] Roland Eils and Andres Kriete. Computational Systems Biology. Academic

Press, 2005a.

[Erl, 2006] Thomas Erl. Service-Oriented Architecture (SOA): Concepts, Technology, and Design,

volume 6. Prentice Hall PTR, 2006.

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional,

1995.

[Goncalves, 2009] Antonio Goncalves. Beginning JavaTMEE 6 Platform with GlassFishTM3: From

Novice to Professional. Apress, 2009.

[Johnson, 2002] R. Johnson. Expert One-on-One J2EE Design and Development. Wrox Press

Ltd, 2002. ISBN 1-86100-784-1.

[Monson-Hafael and Burke, 2006] Richard Monson-Hafael and Bill Burke. Enterprise JavaBeans

3.0. O’Reilly, 2006.

[Palsson, 2006] Bernhard O. Palsson. Systems Biology: Properties of Reconstructed Networks.

Cambridge University Press, 2006.

[Pulier and Taylor, 2006] Pulier and Taylor. Understanding Enterprise SOA. Manning Publications,

2006.

53

http://dx.doi.org/10.1016/j.febslet.2009.11.018
http://dx.doi.org/10.1016/j.febslet.2009.11.018
http://java.sun.com/javaee/5/docs/tutorial/doc/JavaEETutorial.pdf
http://java.sun.com/javaee/5/docs/tutorial/doc/JavaEETutorial.pdf

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT BIBLIOGRAPHY

[Rob et al., 2008] Peter Rob, Carlos Coronel, and Keeley Crockett. Database Systems. Design,

Implementation and Management. Cengage Learning Services, 2008.

[Yuan and Heute, 2007] Michael Yuan and Thomas Heute. Jboss R©Seam: Simplicity and power

beyond Java™ EE. Prentice Hall Press, Upper Saddle River, NJ, USA, 2007. ISBN

013241273X.

Specifications

[Bernard, 2010] JSR 303: Bean Validation. Last visited on 2010-02-11, 2010. URL http://jcp.

org/en/jsr/detail?id=303.

[Buckley, 2003] JSR 175: A Metadata Facility for the JavaTMProgramming Language. Last visited

on 2010-02-18, 2003. URL http://jcp.org/jsr/detail/152.jsp.

[Burns, 2006] JSR-127: JavaServer Faces. Last visited on 2010-01-19, 2006a. URL http:

//www.jcp.org/jsr/detail/127.jsp.

[Burns, 2006] JSR-252: JavaServer Faces 1.2. Last visited on 2010-01-19, 2006b. URL http:

//www.jcp.org/en/jsr/detail?id=252.

[Burns, 2009] JSR-314: JavaServer Faces 2.0. Last visited on 2010-01-12, 2009. URL http:

//www.jcp.org/en/jsr/detail?id=314.

[Chung and Luehe, 2006] JSR 245: JavaServerTMPages 2.1. Last visited on 2010-01-19, 2006.

URL http://jcp.org/jsr/detail/245.jsp.

[DeMichiel, 2009] JSR 317: JavaTMPersistence 2.0. Last visited on 2010-01-15, 2009. URL

http://jcp.org/jsr/detail/317.jsp.

[DeMichiel and Keith, 2006] JSR 220: Enterprise JavaBeansTM3.0. Last visited on 2010-02-18,

2006. URL http://jcp.org/jsr/detail/220.jsp.

[Hadley and Sandoz, 2009] JSR-311: JAX-RS: The JavaTMAPI for RESTful Web Services. Last

visited on 2010-02-14, 2009. URL http://jcp.org/jsr/detail/311.jsp.

[King, 2009] JSR 299: Contexts and Dependency Injection for the JavaTMEE platform. Last visited

on 2010-01-27, 2009. URL http://jcp.org/en/jsr/detail?id=299.

[Kotamraju, 2006] JSR 222: JavaTMArchitecture for XML Binding (JAXB) 2.0. Last visited on

2010-02-09, 2006a. URL http://jcp.org/en/jsr/detail?id=222.

54

http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/jsr/detail/152.jsp
http://www.jcp.org/jsr/detail/127.jsp
http://www.jcp.org/jsr/detail/127.jsp
http://www.jcp.org/en/jsr/detail?id=252
http://www.jcp.org/en/jsr/detail?id=252
http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=314
http://jcp.org/jsr/detail/245.jsp
http://jcp.org/jsr/detail/317.jsp
http://jcp.org/jsr/detail/220.jsp
http://jcp.org/jsr/detail/311.jsp
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=222

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT BIBLIOGRAPHY

[Kotamraju, 2006] JSR 224: JavaTMAPI for XML-Based Web Services (JAX-WS) 2.0. Last visited

on 2010-02-09, 2006b. URL http://jcp.org/en/jsr/detail?id=224.

[Pelegri-Llopart and Roth, 2003] JSR 152: JavaServerTMPages 2.0. Last visited on 2010-02-18,

2003. URL http://jcp.org/jsr/detail/152.jsp.

[Saks, 2009] JSR 318: Enterprise JavaBeansTM3.1. Last visited on 2010-01-27, 2009. URL

http://jcp.org/jsr/detail/318.jsp.

[Shannon, 2003] JSR-151: JavaTM2 Platform, Enterprise Edition 1.4 (J2EE 1.4) Specification.

Last visited on 2010-02-21, 2003. URL http://jcp.org/jsr/detail/151.jsp.

[Shannon, 2006] JSR-244: JavaTMPlatform, Enterprise Edition 5 (Java EE 5) Specification. Last

visited on 2010-01-13, 2006. URL http://jcp.org/jsr/detail/244.jsp.

[Shannon, 2009] JSR-316: JavaTMPlatform, Enterprise Edition 6 (Java EE 6) Specification. Last

visited on 2010-01-12, 2009. URL http://jcp.org/jsr/detail/316.jsp.

Unpublished references

[Andersen, 2008] Mikael Rørdam Andersen. Systems Biology Studies of Aspergilli - From Se-

quence to Science. PhD thesis, Technical University of Denmark, November 2008.

[Bergsten, 2004] Hans Bergsten. Improving JSF by Dumping JSP. URL http://www.onjava.

com/pub/a/onjava/2004/06/09/jsf.html. Last visited on 2010-01-21, 09 2004.

[Zeller, 2003] Dieter Zeller. Design and development of a user managment system for molecular

biology database systems. Master’s thesis, Graz University of Technology, 2003.

Web link references

[Ant, 2010] Apache Ant. Last visited on 2010-01-26, 2010. URL http://ant.apache.org/.

[BIGG, 2010] BIGG Database. Last visited on 2010-02-09, 2010. URL http://bigg.ucsd.edu/.

[Dogan, 2010] Database Of the Genomes Analyzed at NITE. Last visited on 2010-03-09, 2010.

URL http://www.bio.nite.go.jp/dogan/.

[Eclipse, 2010] Eclipse Integrated Java Development Environment. Last visited on 2010-01-27,

2010. URL http://www.eclipse.org/.

55

http://jcp.org/en/jsr/detail?id=224
http://jcp.org/jsr/detail/152.jsp
http://jcp.org/jsr/detail/318.jsp
http://jcp.org/jsr/detail/151.jsp
http://jcp.org/jsr/detail/244.jsp
http://jcp.org/jsr/detail/316.jsp
http://www.onjava.com/pub/a/onjava/2004/06/09/jsf.html
http://www.onjava.com/pub/a/onjava/2004/06/09/jsf.html
http://ant.apache.org/
http://bigg.ucsd.edu/
http://www.bio.nite.go.jp/dogan/
http://www.eclipse.org/

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT BIBLIOGRAPHY

[EclipseLink, 2010] Eclipse Persistence Services Project (EclipseLink). Last visited on 2010-01-

18, 2010. URL http://www.eclipse.org/eclipselink/.

[GeronimoAS, 2010] Apache Geronimo Application Server. Last visited on 2010-01-18, 2010.

URL http://geronimo.apache.org/.

[Gilbert, 2010] JFreeChart. Last visited on 2010-01-29, 2010. URL http://www.jfree.org/

jfreechart/.

[Glassfish, 2010] Glassfish. Last visited on 2010-01-18, 2010. URL http://glassfish.dev.

java.net/.

[Hibernate, 2010] Hibernate Persistence Framework. Last visited on 2010-01-22, 2010a. URL

http://www.hibernate.org/.

[Hibernate, 2010] Hibernate Criteria. Last visited on 2010-01-14, 2010b. URL http://docs.

jboss.org/hibernate/stable/core/reference/en/html/querycriteria.html.

[Hucka et al., 2010] SBML Level 2 Version 4. Last visited on 2010-01-27, 2010. URL http:

//sbml.org/Documents/Specifications/SBML_Level_2/Version_4.

[ICEfaces, 2010] ICEsoft Technologies Inc. ICEfaces. Last visited on 2010-01-21, 2010. URL

http://www.icefaces.org.

[JavaBeans, 2010] JavaBeans. Last visited on 2010-01-20, 2010. URL http://java.sun.com/

javase/technologies/desktop/javabeans/index.jsp.

[JBoss, 2010] Envers. Last visited on 2010-03-03, 2010. URL http://www.jboss.org/envers/.

[JBossAS, 2010] JBoss Application Server. Last visited on 2010-01-18, 2010. URL http://www.

jboss.org/jbossas/.

[JCP, 2009] Java Community Process. Last visited on 2010-02-18, 2009. URL http://jcp.org/.

[JDBC, 2010] JDBC. Last visited on 2010-01-22, 2010. URL http://java.sun.com/javase/

technologies/database/.

[JOnAS, 2010] JOnAS Application Server. Last visited on 2010-01-18, 2010. URL http://jonas.

objectweb.org/.

[JSF RI, 2010] JSF Reference Implementation. Last visited on 2010-01-19, 2010. URL http:

//java.sun.com/javaee/javaserverfaces/.

56

http://www.eclipse.org/eclipselink/
http://geronimo.apache.org/
http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/
http://glassfish.dev.java.net/
http://glassfish.dev.java.net/
http://www.hibernate.org/
http://docs.jboss.org/hibernate/stable/core/reference/en/html/querycriteria.html
http://docs.jboss.org/hibernate/stable/core/reference/en/html/querycriteria.html
http://sbml.org/Documents/Specifications/SBML_Level_2/Version_4
http://sbml.org/Documents/Specifications/SBML_Level_2/Version_4
http://www.icefaces.org
http://java.sun.com/javase/technologies/desktop/javabeans/index.jsp
http://java.sun.com/javase/technologies/desktop/javabeans/index.jsp
http://www.jboss.org/envers/
http://www.jboss.org/jbossas/
http://www.jboss.org/jbossas/
http://jcp.org/
http://java.sun.com/javase/technologies/database/
http://java.sun.com/javase/technologies/database/
http://jonas.objectweb.org/
http://jonas.objectweb.org/
http://java.sun.com/javaee/javaserverfaces/
http://java.sun.com/javaee/javaserverfaces/

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT BIBLIOGRAPHY

[JSFMatrix, 2010] JSF AJAX Component Library Feature Matrix. Last visited on 2010-01-21,

2010. URL http://www.jsfmatrix.net/.

[MagicDraw, 2010] MagicDraw, UML modeling and CASE tool from. Last visited on 2010-01-27,

2010. URL http://www.magicdraw.com.

[MyEclipse, 2010] MyEclipse - Java EE plugin for Eclipse. Last visited on 2010-01-27, 2010. URL

http://www.myeclipseide.com/.

[MyFaces, 2010] Apache MyFaces Project. Last visited on 2010-01-19, 2010. URL http://

myfaces.apache.org/.

[OracleAS, 2010] Oracle Application Server. Last visited on 2010-01-18, 2010. URL http://www.

oracle.com/appserver.

[RDF, 2010] RDF/XML Syntax Specification. Last visited on 2010-02-11, 2010. URL http://www.

w3.org/TR/REC-rdf-syntax/.

[RichFaces, 2010] JBoss RichFaces. Last visited on 2010-01-21, 2010. URL http://www.jboss.

org/jbossrichfaces/.

[SBML, 2010] Systems Biology Markup Language. Last visited on 2010-01-26, 2010. URL http:

//sbml.org/.

[Seam, 2010] The Seam Framework. Last visited on 2010-01-25, 2010. URL http://

seamframework.org/.

[SOAP, 2003] W3C Specification for SOAP Version 1.2. Last visited on 2010-03-03, 2003. URL

http://www.w3.org/TR/soap12.

[SQLDeveloper, 2010] Oracle SQL Developer. Last visited on 2010-01-27, 2010. URL http:

//www.oracle.com/technology/products/database/sql_developer/.

[Subclipse, 2010] Subclipse. Last visited on 2010-01-27, 2010. URL http://subclipse.tigris.

org/.

[Subversion, 2010] Subversion Code Version Management System. Last visited on 2010-01-27,

2010. URL http://subversion.tigris.org/.

[Tapestry, 2010] Apache Tapesty Framework. Last visited on 2010-01-21, 2010. URL http:

//tapestry.apache.org.

[Tiles, 2010] Apache Tiles Framework. Last visited on 2010-01-21, 2010. URL http://tiles.

apache.org/.

57

http://www.jsfmatrix.net/
http://www.magicdraw.com
http://www.myeclipseide.com/
http://myfaces.apache.org/
http://myfaces.apache.org/
http://www.oracle.com/appserver
http://www.oracle.com/appserver
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.jboss.org/jbossrichfaces/
http://www.jboss.org/jbossrichfaces/
http://sbml.org/
http://sbml.org/
http://seamframework.org/
http://seamframework.org/
http://www.w3.org/TR/soap12
http://www.oracle.com/technology/products/database/sql_developer/
http://www.oracle.com/technology/products/database/sql_developer/
http://subclipse.tigris.org/
http://subclipse.tigris.org/
http://subversion.tigris.org/
http://tapestry.apache.org
http://tapestry.apache.org
http://tiles.apache.org/
http://tiles.apache.org/

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT BIBLIOGRAPHY

[TopLink, 2010] Oracle TopLink. Last visited on 2010-01-18, 2010. URL http://www.oracle.

com/technology/products/ias/toplink/index.html.

[Trinidad, 2010] Apache Myfaces Trinidad. Last visited on 2010-01-21, 2010. URL http://

myfaces.apache.org/trinidad/.

[WebSphere, 2010] WebSphere Application Server. Last visited on 2010-01-18, 2010. URL

http://www.ibm.com/software/websphere/.

58

http://www.oracle.com/technology/products/ias/toplink/index.html
http://www.oracle.com/technology/products/ias/toplink/index.html
http://myfaces.apache.org/trinidad/
http://myfaces.apache.org/trinidad/
http://www.ibm.com/software/websphere/

List of Figures

1.1 Mathematical representation of a metabolic model (from Kauffman et al. [2003]) . 3

2.1 Overview of the multi-tiered platform Java EE (from Ball et al. [2006]) 9

2.2 JSF request lifecycle (from Ball et al. [2006]) . 15

3.1 MEMOSys: home screen . 27

3.2 MEMOSys: reaction balance check . 28

3.3 MEMOSys: reaction report . 29

3.4 MEMOSys: webboard . 30

3.5 MEMOSys: quick search . 31

3.6 MEMOSys: entity history . 32

3.7 MEMOSys: manage models . 33

3.8 MEMOSys: export . 34

3.9 MEMOSys: model comparison - part 1 . 35

3.10 MEMOSys: model comparison - part 2 . 35

59

Appendix B

Glossary

AAS Authentication and Authorization System

AJAX Asynchronous JavaScript and XML

ANSI American National Standards Institute

API Application Programming Interface

AS Application Server

CAPTCHA Completely Automated Public Turing test to tell Computers and Humans Apart

CASE Computer-Aided Software Engineering

ChEBI Chemical Entities of Biological Interest

CRUD Create, Read, Update, and Delete

CSV Comma Separated Value

DBMS Database Management Systems

DCL Data Control Language

DDL Data Definition Language

DML Data Manipulation Language

DI Dependency Injection

Dogan Database Of the Genomes Analyzed at NITE

EC-Number Enzyme Commission classification number

EIS Enterprise Information System

EJB Enterprise Java Beans

EL Expression Language

ERP Enterprise Resource Planning systems

ExPASy Expert Protein Analysis System

60

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT GLOSSARY

FBA Flux balance analysis

GUI Graphical User Interface

HQL Hibernate Query Language

HTTP Hypertext Transport Protocol

IDE Integrated Development Environment

IoC Inversion of Control

IT Information Technology

J2EE Java 2 Enterprise Edition

JAAS Java Authentication and Authorization API

Java EE Java Enterprise Edition

JAXB Java Architecture for XML Binding

JAX-RPC Java API for Remote Procedure Calls

JAX-RS Java API for RESTful Web Services

JAX-WS Java API for XML-Web Services

JBPM Java Business Process Management

JCP Java Community Process

JDBC Java Database Connectivity

JMS Java Messaging Service

JMX Java Management Extension

JNDI Java Naming and Directory Interface

JPA Java Persistence API

JPQL Java Persistence query language

JSF Java Server Faces

JSP JavaServer Pages

JSR Java Specification Request

JTA Java Transaction API

KEGG Kyoto Encyclopedia of Genes and Genomes

MEMOSys Metabolic Model System

MIRIAM Minimum information requested in the annotation of biochemical models

MDB Message Driven Bean

ORM Object/Relational Mapping

POJO Plain Old Java Object

QL Query Language

RDBMS Relational Database Management System

RDF Resource Description Framework

61

BIOINFORMATICS PLATFORM FOR METABOLIC MODEL DEVELOPMENT GLOSSARY

REST Representational State Transfer

RI Reference Implementation

RMI Remote Method Invocation

SFSB Stateful Session Bean

SGD Saccharomyces Genome Database

SLSB Stateless Session Bean

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSO Single Sign On

UI User Interface

UML Unified Modeling Language

62

Appendix C

Acknowledgments

This work was supported by the Christian Doppler Research Association (CDG). I would like to

thank my supervisor, Zlatko Trajanoski, for his support, scientific guidance, vision, and belief in

me.

Further thanks go to the members of the “Institute for Genomics and Bioinformatics” for their

fruitful discussions, help, and friendship. Furthermore, I want to thank Jens Nielsen and the

members of his lab for their helpful input and for giving me the opportunity to spend some time

in Gothenburg. Special thanks go to Rasmus Ågren, Liming Liu, Intawat Nookaew, and Wanwipa

Vongsangnak for providing the metabolic models and for their help with the database design.

I would also like to acknowledge Timo Hardiman, Rudolf Mitterbauer, and Thomas Specht of

Sandoz corporation for their conceptional input and testing effort.

I am indebted to my family for their unfailing support, encouragement, and understanding.

Stephan Pabinger

Graz, Austria, March 2010

63

Appendix D

Publications

Pabinger S, Thallinger GG, Snajder R, Eichhorn H, Rader R, Trajanoski Z. QPCR: Application for real-time
PCR data management and analysis. BMC Bioinformatics 2009, 10:268 PMID: 19712446

64

BioMed Central

Page 1 of 10
(page number not for citation purposes)

BMC Bioinformatics

Open AccessSoftware
QPCR: Application for real-time PCR data management and
analysis
Stephan Pabinger1,2, Gerhard G Thallinger1, René Snajder1, Heiko Eichhorn3,
Robert Rader2 and Zlatko Trajanoski*1,2

Address: 1Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria, 2Christian Doppler
Laboratory for Genomics and Bioinformatics, Petersgasse 14, 8010 Graz, Austria and 3Development Anti-Infectives Microbiology, Sandoz GmbH,
Biochemiestrasse 10, 6250 Kundl, Austria

Email: Stephan Pabinger - stephan.pabinger@tugraz.at; Gerhard G Thallinger - gerhard.thallinger@tugraz.at;
René Snajder - rene.snajder@tugraz.at; Heiko Eichhorn - heiko.eichhorn@sandoz.com; Robert Rader - robert.rader@tugraz.at;
Zlatko Trajanoski* - zlatko.trajanoski@tugraz.at

* Corresponding author

Abstract
Background: Since its introduction quantitative real-time polymerase chain reaction (qPCR) has
become the standard method for quantification of gene expression. Its high sensitivity, large
dynamic range, and accuracy led to the development of numerous applications with an increasing
number of samples to be analyzed. Data analysis consists of a number of steps, which have to be
carried out in several different applications. Currently, no single tool is available which incorporates
storage, management, and multiple methods covering the complete analysis pipeline.

Results: QPCR is a versatile web-based Java application that allows to store, manage, and analyze
data from relative quantification qPCR experiments. It comprises a parser to import generated data
from qPCR instruments and includes a variety of analysis methods to calculate cycle-threshold and
amplification efficiency values. The analysis pipeline includes technical and biological replicate
handling, incorporation of sample or gene specific efficiency, normalization using single or multiple
reference genes, inter-run calibration, and fold change calculation. Moreover, the application
supports assessment of error propagation throughout all analysis steps and allows conducting
statistical tests on biological replicates. Results can be visualized in customizable charts and
exported for further investigation.

Conclusion: We have developed a web-based system designed to enhance and facilitate the
analysis of qPCR experiments. It covers the complete analysis workflow combining parsing, analysis,
and generation of charts into one single application. The system is freely available at http://
genome.tugraz.at/QPCR

Background
Amongst other high throughput techniques like DNA
microarrays and mass spectrometry, qPCR has become
important in many areas of basic and applied functional

genomics research. Due to its high sequence-specificity,
large dynamic range, and tremendous sensitivity it is one
of the most widely used methods for quantification of
gene expression. Moreover, due to the adoption of robotic

Published: 27 August 2009

BMC Bioinformatics 2009, 10:268 doi:10.1186/1471-2105-10-268

Received: 2 March 2009
Accepted: 27 August 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/268

© 2009 Pabinger et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

BMC Bioinformatics 2009, 10:268 http://www.biomedcentral.com/1471-2105/10/268

Page 2 of 10
(page number not for citation purposes)

pipetting stations and 384-well formats, laboratories gen-
erate a huge amount of qPCR data demanding a central-
ized storage, management, and analysis application.

Most software programs provided along with the qPCR
instruments support only straightforward calculation of
quantification cycle (Cq) values from the recorded fluo-
rescence measurements. However, in order to get biologi-
cal meaningful results these basic calculations need to
undergo further analyses such as normalization, averag-
ing, and statistical tests [1].

To this end, a variety of different methods have been pub-
lished describing the normalization of Cq values. The
simplest model (termed ΔΔ-Cq method) was developed
by Livak and Schmittgen [2] which assumes perfect ampli-
fication efficiency by setting the base of the exponential
function to 2 and uses only one reference gene for normal-
ization. The model proposed by Pfaffl [3] considers PCR
efficiency for both the gene of interest and a reference
gene and is therefore an improvement over the classic ΔΔ-
Cq method. Nevertheless, it still uses only one reference
gene which may not be sufficient to obtain reliable results
[4]. Hellemans et al. [5] proposed an advanced method
which considers gene-specific amplification efficiencies
and allows normalization of Cq values with multiple ref-
erence genes based on the method proposed by Vandes-
ompele et al. [4]. It should be noted that these methods
could differ substantially in their performance, because of
the different assumptions they are based on.

Available software tools often cover only single steps in
the analysis pipeline compelling researchers to use multi-
ple tools for the analysis of qPCR experiments [5-8]. How-
ever, these tools do not share a common file format
making it difficult to analyze the experimental data. Addi-
tionally, no standardization of methodology has been
established that would be needed for relatable compari-
son between laboratories [9]. Recently, the Minimum
Information for Publication of Quantitative Real-Time
PCR Experiments (MIQE) guidelines [10] were published
which are intended to describe the minimum information
necessary for evaluating and comparing qPCR experi-
ments. Based on a subset of these guidelines the XML-
based Real-Time PCR Data Markup Language (RDML)
[11] was proposed which tries to facilitate the exchange of
qPCR data and related information between qPCR instru-
ments, analysis software, journals, and public repositor-
ies. These efforts could allow a more reliable
interpretation of qPCR results if they were accepted in the
qPCR community.

The lack of complete or partial assessment of error propa-
gation throughout the whole analysis pipeline may result
in an underestimated final error and could therefore lead

to incorrect conclusions. Moreover, the analysis of experi-
ments using tools that make invalid biological assump-
tions can cause significantly wrong results as reported in
[8].

To the best of our knowledge, there is no single tool avail-
able which integrates storage, management, and analysis
of qPCR experiments. Hence a system enabling compari-
son of results and providing a standardized way of analyz-
ing data would be of great benefit to the community. We
have therefore developed QPCR, a web-based application
which supports: a) technical and biological replicate han-
dling, b) the analysis of qPCR experiments with an unlim-
ited number of samples and genes, c) normalization using
an arbitrary number of reference genes, d) inter-plate nor-
malization using calibrators, e) assessment of significant
gene deregulation between sample groups, f) generation
of customizable charts, and g) a plug-in mechanism for
easy integration of new analysis methods.

Implementation
The QPCR system was implemented in Java, a platform
independent and object-oriented programming language
[12]. The application is based on the Java 2 Enterprise Edi-
tion (J2EE) three-tier architecture consisting of a presenta-
tion-, business -, and database-layer. A relational database
(PostgreSQL or Oracle) is used as the persistence backend.
The business layer consists of Enterprise Java Beans (EJB)
and is deployed on a JBoss [13] application server. The
presentation layer is based on the Model-View-Controller
(MVC) framework Struts [14] and uses Java Servlets and
Java Server Pages.

In order to enhance usability current web technologies
have been extensively used in this application. AJAX func-
tionality has been incorporated into the application using
the open-source library DWR [15]. This technology allows
asynchronous loading of data without the need to reload
the page thus providing a desktop like application behav-
ior. Multiple JavaScript libraries (Prototype [16], JQuery
[17]) have been used that allow executing functions on
the client side and therefore remarkably improve the usa-
bility of the application. Charts are generated using the
open-source Java library JFreeChart [18] and all charts are
created either in the lossless PNG format or as a scalable
vector graphic (SVG).

All algorithms, calculation methods, and data file parsers
used by the application are integrated through a plug-in
mechanism which allows simple extension with addi-
tional qPCR data formats and analysis approaches. For
each class that uses the plug-in mechanism a specific inter-
face needs to be implemented in order to support another
vendor or implement an additional analysis method. The

BMC Bioinformatics 2009, 10:268 http://www.biomedcentral.com/1471-2105/10/268

Page 3 of 10
(page number not for citation purposes)

new Java classes are then automatically detected by the
QPCR application.

Currently the data file parsers support files generated by
Applied Biosystems (ABI 7000, ABI 7500, ABI 7900) and
Roche LightCycler (LightCycler 2.0, LightCycler 480) [19]
systems as well as a generic file format based on comma
separated values (CSV). Since not all fluorescence meas-
urements can be extracted from data files created by the
qPCR instrument systems, additional export files are
required to parse all relevant data.

Analysis methods that calculate Cq and amplification effi-
ciency values are computationally expensive and are
therefore executed asynchronously and do not interfere
with the QPCR web interface. They are designed to oper-
ate on a per well basis and report the current progress of
the calculation. Normalization methods and statistical
tests are not time consuming processes and are therefore
executed in real time.

The QPCR application has been designed using the Uni-
fied Modeling Language (UML) [20]. The use of a UML
representation improves maintainability as the applica-
tion architecture is outright visible and provides an
important part of the system documentation. We used the
AndroMDA framework [21] to create basic EJB and pres-
entation tier source code as well as configuration files
based on the UML model. AndroMDA minimizes repeti-
tive coding tasks, allows to easily extend or edit the archi-
tecture of the application, and helps maintaining the
consistency between design and implementation.

The stored data is secured by a user management system
which allows the definition of several fine grained user
access levels and offers data sharing and concurrent access
in a multi-centric environment [22]. Moreover, the appli-
cation provides two configurations which assign the own-
ership of objects either to the submitter or to the
submitter's institute. The latter setup provides the possi-
bility to edit and analyze experiments by all users of an
institute without the need to explicitly share objects.

Results
QPCR is an application which integrates storage, manage-
ment, and analysis of qPCR experiments into one single
tool. Implemented as a web application it can be accessed
by a web browser from every network connected compu-
ter and therefore supports the often decentralized work of
biologists. It parses files generated by qPCR instruments,
stores data and results in a database, and performs analy-
ses on the imported data. Moreover, it allows conducting
of statistical tests and provides several ways to visualize
and export the calculated results (Figure 1).

Parsing files and calculation of Cq/efficiency values
Data files are uploaded into the application using a single
file upload dialog or an integrated Java applet which sup-
ports uploading of multiple files at once. An upload zone
lists all available files and allows querying and download-
ing of data previously uploaded. All files are stored in a
user defined directory facilitating the backup of project
critical files.

After uploading the exported files into the QPCR applica-
tion, a list of all files which have not yet been processed is
shown. The user can select single or multiple files for pars-
ing. Moreover, Cq and amplification efficiency values can
be automatically calculated after the files have been
parsed using one or several different methods.

During parsing all relevant data is extracted, including
plate setup, fluorescence measurements, and qPCR instru-
ment specifications and stored in the database. In contrast
to many available analysis tools the application is able to
import qPCR data files without the need for additional
file manipulations and therefore reduces error-prone and
cumbersome manual work. In addition to the already
existing data file parsers the application can be easily
extended to support other vendors due to the modularity
of the platform and the used plug-in mechanism.

Once the data is parsed and stored in the database, Cq and
amplification efficiency values are calculated based on the
fluorescence measurements. Several published and
widely-used algorithms were implemented; two different
algorithms to calculate Cq together with efficiency values,
three different algorithms to calculate solely the amplifi-
cation efficiency, and one method to calculate the Cq
value are available (see Table 1).

The progress of all active parser or analyzer background
tasks is displayed on a view that automatically updates the
current status. As soon as a process has finished a message
is shown at the top of the page. For each process a log file
is created which informs the user about the outcome of
the performed job. A color scheme helps to quickly iden-
tify the jobs that have not finished successfully.

During parsing of uploaded files a Run is created in the
application which is a direct representation of the per-
formed qPCR run. It stores information about the hard-
ware, software, thermocycler profile, and category.

Each Run contains a plate which consists of multiple wells
that store information about the sample, target, passive
reference, task, and omitted status. The plate layout can be
displayed in a list and each well can be edited to correct
inconsistencies or to omit it from further analysis.

BMC Bioinformatics 2009, 10:268 http://www.biomedcentral.com/1471-2105/10/268

Page 4 of 10
(page number not for citation purposes)

Additionally, QPCR provides a graphical representation
of the plate layout by showing a grid which displays sam-
ple, target, and status information of each well. By select-
ing an arbitrary number of wells, charts of amplification
(raw and background subtracted) and dissociation (raw
and derivative) curves are displayed (Figure 2). This view
is helpful to evaluate the performance of the PCR for each
well and is useful to perform a quick quality check of the
conducted qPCR run.

Analysis of experiments
After Cq and efficiency values have been determined,
experiments consisting of one or multiple runs are sub-
jected to subsequent analysis steps. Several plates can be
combined into one experiment. In order to support a flex-
ible and adaptable analysis of experiments, the applica-

tion allows selecting of specific samples and genes to be
used in subsequent analysis steps. Moreover, the Cq calcu-
lation method, the efficiency method, and the reference
genes can be defined.

Four different ways to consider amplification efficiencies
in the analysis have been implemented: (1) setting a sin-
gle efficiency value for all targets, (2) manually defining
the efficiency for each target, (3) using efficiencies derived
from dilution series for each target, and (4) using calcu-
lated efficiencies for each well. Several different efficien-
cies values for a target, calculated by serial dilution series,
can be stored in the database.

Normalization of experiments is based on a method pro-
posed by Hellemans et al. [5] and includes averaging of

Analysis pipelineFigure 1
Analysis pipeline. This figure illustrates the analysis pipeline implemented in the QPCR application.

BMC Bioinformatics 2009, 10:268 http://www.biomedcentral.com/1471-2105/10/268

Page 5 of 10
(page number not for citation purposes)

Table 1: Algorithms used in the QPCR web application

Name Description Author Cq Efficiency

Cy0 The method operates on raw fluorescence data and fits a five parameter Richard's curve.
Next it calculates the tangent of the inflection point and intersects it with the abscissa axis
which results in the Cq value.

Guescini et al. [27] ✓ -

LinReg The method operates on background corrected data and uses log transformed values to
construct a slope with the highest correlation to the original curve. The parameters of this
slope are used to calculate the amplification efficiency.

Ramakers et al. [8] - ✓

Miner The method operates on raw fluorescence data and fits a four-parameter logistic curve to
determine the Cq value by using the second derivative maximum. The efficiency is
calculated by using a weighted average of a fitted exponential curve.

Zhao et al. [28] ✓ ✓

RutledGene The method operates on raw fluorescence data and fits a four-parametric sigmoid function
to calculate efficiency values.

Rutledge et al. [29] - ✓

SoFar The method operates on raw fluorescence data and fits exponential or sigmoid function on
smoothed data to calculate Cq and efficiency values.

Wilhelm et al. [30] ✓ ✓

TAQ The method operates on raw fluorescence data and performs a linear regression on log
transformed data to determine the efficiency values.

Ostermeier et al. [31] - ✓

Graphical representation of the plate layoutFigure 2
Graphical representation of the plate layout. The tabbed bar at the top is used to switch between different chart types.
The chart itself features tool tips and provides a legend. Beneath the chart is a representation of the plate layout that is adapted
to the plate size (96/384 wells, linear layout). Selected wells are colored in red, omitted and empty wells in blue.

BMC Bioinformatics 2009, 10:268 http://www.biomedcentral.com/1471-2105/10/268

Page 6 of 10
(page number not for citation purposes)

technical replicates, normalization against reference
genes, inter-run calibration, and calculation of quality
control parameters. Technical replicates are averaged
either within one plate or over all plates of the experiment
depending on the analysis setting. In the next step all sam-
ples of one gene are referenced to the arithmetic mean Cq
value across all samples for this gene. Thereafter the user
selected type of efficiency is considered for each target and
the samples are normalized to the selected reference
genes. If reaction specific efficiency has been selected the
efficiency is averaged for each target. Depending on the
analysis setting the application supports spreading of ref-
erence genes across multiple runs or uses reference genes
for each run independently. Finally, inter-run calibrators
are automatically detected and are used to normalize
results between different qPCR runs.

Quality control parameters for reference genes are calcu-
lated based on a method described by Vandesompele et al.
[4]. When multiple reference genes are selected the coeffi-
cient of variation and the gene stability value M are calcu-
lated. These parameters are helpful for selecting and
evaluating reference genes. Additionally, QPCR performs
outlier detection by calculating the difference in quantifi-
cation cycle value between technical replicates and allows
highlighting those that have a larger difference than a user
defined threshold. Moreover, quality control checks are
performed to test if a no template control (NTC) is present
for each target.

Fold change ratios of the calculated normalized Cq values
can be calculated by referencing them to one or multiple
samples. All analysis setup parameters are automatically
stored in the database and are loaded when the experi-
ment is analyzed again. Additionally, each analysis setup
can be stored under a user defined name. Throughout the
whole analysis process proper error propagation is per-
formed using methods described in [5,23].

During the development of the QPCR application special
attention was laid on the accurate and user-friendly visu-
alization of calculated results. Therefore, the application
allows to display and export results of every important
analysis step. The generated figures are highly customiza-
ble and are designed to be usable in publications without
further manipulation. Among other parameters QPCR
allows to define color, labeling, sort sequence, and data
type to be used in histogram charts. Cq values normalized
by reference genes and calibrators are presented as histo-
grams displaying results of one gene or multiple genes at
once (Figure 3). Every result throughout the analysis pipe-
line can be exported in tab-delimited or spreadsheet for-
mat (txt, csv, xls) to be used in external applications.

Conducting statistical tests
The final step in the analysis pipeline is the comparison of
samples using statistical tests (e.g.: biological replicates,
samples of a time series). The application allows to group
samples into an arbitrary number of classes which are
tested for their significant difference against one defined
reference class. QPCR includes several statistical tests to
compute p-values such as ANOVA, student's t-test, and a
permutation based test which makes no assumption on
the distribution of the data. Tests can be conducted on
either untransformed or log2 transformed values. The
application allows adjusting the calculated p-value by
supporting several established correction methods for
multiple testing [24].

Calculated test results are displayed for each class and can
be exported for further analysis. Moreover, the fold
changes of samples are displayed in histogram charts in
which samples of each class are grouped together. Every
class is assigned to a specific user defined color or shape
that is used in different shades to group the samples of
one class (Figure 4).

General data entry and query
The application provides views of every entity to (1) man-
ually enter data and (2) list available items. Entry views
consist of mandatory and optional fields and use drop
down selection lists to specify references to other entities.
Entered data is checked for validity and the user is
informed about erroneous inputs. List views present the
data in tabular form and support paging, sorting, and que-
rying for any combination of the available attributes.
Moreover, queries can be stored in the database for later
use.

Discussion
We have developed an integrated platform for the analysis
and management of qPCR experiment data using state-of-
the-art software technology. The uniqueness of the appli-
cation is defined by the support of various qPCR instru-
ments, multiple data analyzers, and statistical methods, as
well as the coverage of the complete analysis pipeline
including proper error propagation. Moreover, it provides
a flexible plug-in mechanism to incorporate new parsers
and methods and allows generation of highly customiza-
ble charts. A comparison of features between QPCR and
several other popular qPCR analysis tools is provided in
Table 2.

The capability to import and parse data without the need
for further file manipulations is an integral part of the
application which avoids errors during the analysis and
reduces the time to analyze the experimental data. As
most of the available qPCR software tools rely on special
formatted input files it was a prerequisite of the platform

BMC Bioinformatics 2009, 10:268 http://www.biomedcentral.com/1471-2105/10/268

Page 7 of 10
(page number not for citation purposes)

to be able to directly parse files generated by the qPCR
instruments software suits. Moreover, the system is not
confined to a specific manufacturer and can therefore be
used in laboratories equipped with qPCR instruments
from different vendors.

QPCR includes established and widely used methods for
the calculation of Cq and amplification efficiency values
and supports an easy integration of new algorithms. This
framework does not limit the researcher to one specific
approach and allows incorporation of newly developed
analysis methods. Furthermore, it is of great value as dif-
ferent experimental situations need to be considered sep-
arately and it remains up to individual researches to
identify the method most appropriate for their experi-
mental conditions [25]. QPCR allows to store several dif-
ferent analysis settings for each experiment and calculates
quality control parameters which help to evaluate the per-
formed analysis. Incorporating several different methods
to include the amplification efficiency enhances the flexi-

bility of the application and allows adapting the analysis
to the experimental conditions or laboratory practices.
Particularly, supporting the widely used calculation of
efficiency based on serial dilution series increases the
acceptance in the qPCR community.

An often underestimated drawback of using multiple
tools to analyze qPCR experiments is the lack of support
for assessment of error propagation. Therefore the final
error is often based solely on the standard deviation of
biological replicates which can lead to false biological
interpretations. The QPCR application addresses this
problem and includes assessment of error propagation
throughout the whole analysis pipeline covering technical
replicate handling, normalization, inter-run calibration,
referencing against samples, and biological replicate han-
dling. The implemented method is based on Taylor series
expansion which allows direct calculation of the full prob-
ability distribution and is in contrast to Monte Carlo
based methods computationally inexpensive [26].

Visualization of normalized relative quantitiesFigure 3
Visualization of normalized relative quantities. The tabbed bar is used to switch between views that display multiple tar-
gets at once, one target at a time (displayed), or quality control parameters. On the left side the user can define various param-
eters including the displayed target, the specific result, the presented error, and the reference samples. The list of displayed
samples can be reordered using drag and drop, samples may be excluded from the chart, and for each sample an alternative
name and an individual color can be assigned.

BMC Bioinformatics 2009, 10:268 http://www.biomedcentral.com/1471-2105/10/268

Page 8 of 10
(page number not for citation purposes)

Special focus was laid on the presentation of analysis
results. QPCR provides an interface which uses state-of-
the-art software technologies to generate highly customiz-
able charts that are designed to be ready for publication.
Since many available tools do not provide a suitable
graphical representation of the calculated results, Micro-
soft Excel is often used to create figures which require
manual import and/or conversion of data. QPCR com-
bines the calculation and presentation of results into one
single tool which reduces analysis time and avoids addi-
tional potential error-prone steps. A flowchart displaying
each analysis step and its suggested method is included
into the user guide.

The recent developments of data exchange formats
(RDML) and guidelines describing the minimum infor-
mation about qPCR experiments (MIQE) could become
an important part in standardizing qPCR experimental
data. QPCR already integrates the suggested nomencla-
ture and RDML support will be implemented as soon as
the relevant Java libraries are available. Once established
in the qPCR community these initiatives will allow a
standardized exchange of data between software tools and
facilitate the comparison of qPCR experiments.

Using three-tier software architecture that separates the
presentation, the business, and the database layer enables
not only easy maintenance but also allows distribution of

the computing load to several servers. As more and more
data needs to be analyzed this design may be very valuable
in the future.

The use of a database allows easy querying and comparing
of data and guarantees data integrity. The implemented
plug-in framework, which is used for including data file
parsers, analysis methods, and statistical algorithms,
ensures that the application is adaptable to new develop-
ments and allows the effortless integration of innovative
scientific methods.

Conclusion
We have developed QPCR, a system for the storage, man-
agement, and analysis of qPCR data. It integrates the com-
plete analysis workflow, ranging from Cq determination
over normalization and statistical analysis to visualiza-
tion, into a single application. The analysis time is signif-
icantly reduced and complex analyses can now be
compared within a single or across multiple laboratories.
Optimal usability has been ensured by involving biolo-
gists throughout the entire development process and by
extensive tests in a laboratory setting. Given the incorpo-
ration of several analysis methods and the flexibility due
to the use of standard software technology and plug-in
mechanism, the developed application could be of great
interest to the qPCR community.

Visualization of a statistical test resultFigure 4
Visualization of a statistical test result. The statistical test was used to test two classes of biological replicates for their
significant differences, whereas class "fasted m" was used as reference class. The table shows the calculated p-Value and param-
eters. Samples of each class are grouped together and marked in different colors or shapes.

BMC Bioinformatics 2009, 10:268 http://www.biomedcentral.com/1471-2105/10/268

Page 9 of 10
(page number not for citation purposes)

Availability and requirements
• Project name: QPCR

• Project home page: http://genome.tugraz.at/QPCR

• Operating system: Solaris, Linux, Windows, Mac OS X

• Programming language: Java

• Other requirements: Java JDK 1.6.x, Oracle™ 9i or Post-
greSQL™ 8.0.x, a server with at least 1 GB of main memory
(2 GB are recommended) available to the application

Table 2: Comparison of qPCR analysis tools

Feature QPCR StatMiner 3.0
(Integromics) [32]

qBase 1.3.5 [5] qBasePlus 1.1 (Biogazelle) [33] GenEx 4.4.2
(MultiD) [34]

qPCR-DAMS [6]

Import
(Applied Biosystems,
Lightcycler, BioRad, Excel)

✓1/✓2/-
/✓

✓/-/-/✓ ✓/✓/✓/✓ ✓/✓/✓/✓ -/-/-/✓ -/-/-/✓

Absolute/relative
quantification

-/✓ ✓/✓ -/✓ -/✓ ✓/✓ ✓/✓

RDML compliant -3 - - ✓ - -

Calculate Cq ✓ - - - - ✓

Calculate reaction specific
efficiency

✓ - - - - -

Calculate target specific
efficiency

✓ ✓ ✓ ✓ ✓ -

Includes geNorm, Normfinder ✓/- ✓/✓ ✓/- ✓/- ✓/✓ -/-

Normalization ✓ ✓ ✓ ✓ ✓ ✓

Inter-run calibration ✓ - ✓ ✓ - ✓

Calculate fold change ratios ✓ ✓ ✓ ✓ ✓ ✓

Quality control ✓ ✓ ✓ ✓ - ✓

Statistical tests ✓ ✓ - - ✓ -

Clustering - ✓ - - ✓ -

Correlation - - - - ✓ -

Error propagation ✓ - ✓ ✓ - -

2D, 3D, Scatter, Bar plots ✓/-/-/✓ ✓/-/-/✓ -/-/-/✓ -/-/-/✓ ✓/✓/✓/✓ -/-/-/-

Multi-user functionality ✓ - - - - -

Database storage ✓ ✓ - - - ✓

Web/Standalone/Plugin ✓/-/- -/✓/- -/-/✓4 -/✓/- -/✓/- -/-/✓5

Freely available ✓ - ✓ - - ✓

(1) ABI 7000, ABI 7500, ABI 7900; (2) LightCycler 2.0, LightCycler 480; (3) Uses the suggested nomenclature; (4) Microsoft Excel based tool: (5)
Microsoft Access based tool

BMC Bioinformatics 2009, 10:268 http://www.biomedcentral.com/1471-2105/10/268

Page 10 of 10
(page number not for citation purposes)

• License: IGB-TUG Software License

• Any restrictions to use by non-academics: IGB-TUG Soft-
ware License

Installation of the application is provided through an
installer and should be completed within one hour pro-
vided the necessary database access rights are granted. We
recommend installing the application on a central server
by a system administrator. Step-by-step instructions are
provided at the projects web site together with the
installer file. The reference installation of QPCR is run-
ning on a SUN Fire™ X4600 M2 6 × dual core Opteron
server (Sun Microsystems Ges.m.b.H, Vienna, Austria)
with 24 GB of memory running Solaris and using a dedi-
cated Oracle 10 g database server. Attached is a Storage
Area Network (EVA 5000, Hewlett-Packard Ges.m.b.H.,
Vienna, Austria) with 9.5 TBytes net capacity.

Authors' contributions
SP designed the application and drafted the manuscript.
He was responsible for implementation of the database,
the development the data presentation and many parts of
the business logic. GGT contributed to conception and
design of the application and helped drafting the manu-
script. RS improved the data file parsers and analysis
methods. HE gave valuable input regarding the usability
of the platform. RR participated in the design and imple-
mentation of the application and helped drafting the
manuscript. ZT was responsible for the overall project
coordination. All authors gave final approval of the ver-
sion to be published.

Acknowledgements
This work was supported by the Austrian Ministry of Science and Research,
GEN-AU program (project Bioinformatics Integration Network) and the
Christian-Doppler Society. We thank Anne Krogsdam and Andreas Proke-
sch for valuable discussions and Roman Fiedler for implementing the initial
file parser.

References
1. Wong ML, Medrano JF: Real-time PCR for mRNA quantitation.

Biotechniques 2005, 39:75-85.
2. Livak KJ, Schmittgen TD: Analysis of relative gene expression

data using real-time quantitative PCR and the 2(-Delta Delta
C(T)) Method. Methods 2001, 25:402-408.

3. Pfaffl MW: A new mathematical model for relative quantifica-
tion in real-time RT-PCR. Nucleic Acids Res 2001, 29:E45.

4. Vandesompele J, De P, Pattyn F, Poppe B, Van R, De P, Speleman F:
Accurate normalization of real-time quantitative RT-PCR
data by geometric averaging of multiple internal control
genes. Genome Biol 2002, 3:RESEARCH0034.

5. Hellemans J, Mortier GR, De P, Speleman F, Vandesompele J: qBase
relative quantification framework and software for manage-
ment and automated analysis of real-time quantitative PCR
data. Genome Biol 2007, 8:R19.

6. Jin N, He K, Liu L: qPCR-DAMS: a database tool to analyze,
manage, and store both relative and absolute quantitative
real-time PCR data. Physiol Genomics 2006, 25:525-527.

7. Simon P: Q-Gene: processing quantitative real-time RT-PCR
data. Bioinformatics 2003, 19:1439-1440.

8. Ramakers C, Ruijter JM, Deprez RH, Moorman AF: Assumption-
free analysis of quantitative real-time polymerase chain
reaction (PCR) data. Neurosci Lett 2003, 339:62-66.

9. Bustin SA: Quantification of mRNA using real-time reverse
transcription PCR (RT-PCR): trends and problems. J Mol
Endocrinol 2002, 29:23-39.

10. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M,
Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer
CT: The MIQE Guidelines: Minimum Information for Publi-
cation of Quantitative Real-Time PCR Experiments. Clin
Chem 2009, 55:611-622.

11. Lefever S, Hellemans J, Pattyn F, Przybylski DR, Taylor C, Geurts R,
Untergasser A, Vandesompele J: RDML: structured language and
reporting guidelines for real-time quantitative PCR data.
Nucleic Acids Res 2009, 37:2065-2069.

12. Gosling J, Joy B, Steele G, Bracha G: The Java(TM) Language Specifica-
tion 3rd edition. Boston: Addison-Wesley Professional; 2005.

13. JBoss Group: JBoss Application Server. 2008 [http://
www.jboss.org/jbossas/].

14. Apache Software Foundation: Apache Struts. 2006 [http://
struts.apache.org/].

15. Getahead: DWR: Easy AJAX for JAVA. 2008 [http://directwebre
moting.org].

16. Prototype Core Team: Prototype: JavaScript Framework. 2009
[http://www.prototypejs.org/].

17. John Resig and jQuery Team: jQuery. 2009 [http://jquery.com/].
18. Gilbert David: The JFreeChart Class Library. 2008 [http://

www.jfree.org/jfreechart/].
19. Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis UJ:

The LightCycler: a microvolume multisample fluorimeter
with rapid temperature control. Biotechniques 1997, 22:176-181.

20. Booch G, Rumbaugh J, Jacobson I: The Unified Modeling Language User
Guide 2nd edition. Boston, MA, USA, Addison-Wesley Professional;
2005.

21. AndroMDA Core Team: AndroMDA. 2007 [http://
www.andromda.org/].

22. Maurer M, Molidor R, Sturn A, Hartler J, Hackl H, Stocker G, Proke-
sch A, Scheideler M, Trajanoski Z: MARS: microarray analysis,
retrieval, and storage system. BMC Bioinformatics 2005, 6:101.

23. Larionov A, Krause A, Miller W: A standard curve based method
for relative real time PCR data processing. BMC Bioinformatics
2005, 6:62.

24. Dudoit S, Shaffer JP, Boldrick J: Multiple Hypothesis Testing in
Microarray Experiments. U C Berkeley Division of Biostatistics
Working Paper Series Working Paper 110 2002
[http:www.bepress.cocgviewcontent.cgi?article=1014&context=uci-
ostat].

25. Bustin SA, Benes V, Nolan T, Pfaffl MW: Quantitative real-time
RT-PCR – a perspective. J Mol Endocrinol 2005, 34:597-601.

26. Gerards BM: Error Propagation In Environmental Modelling With GIS Bris-
tol, PA, USA, Taylor & Francis; 1998.

27. Guescini M, Sisti D, Rocchi MB, Stocchi L, Stocchi V: A new real-
time PCR method to overcome significant quantitative inac-
curacy due to slight amplification inhibition. BMC Bioinformatics
2008, 9:326.

28. Zhao S, Fernald RD: Comprehensive algorithm for quantitative
real-time polymerase chain reaction. J Comput Biol 2005,
12:1047-1064.

29. Rutledge RG: Sigmoidal curve-fitting redefines quantitative
real-time PCR with the prospective of developing auto-
mated high-throughput applications. Nucleic Acids Res 2004,
32:e178.

30. Wilhelm J, Pingoud A, Hahn M: SoFAR: software for fully auto-
matic evaluation of real-time PCR data. Biotechniques 2003,
34:324-332.

31. Ostermeier GC, Liu Z, Martins RP, Bharadwaj RR, Ellis J, Draghici S,
Krawetz SA: Nuclear matrix association of the human beta-
globin locus utilizing a novel approach to quantitative real-
time PCR. Nucleic Acids Res 2003, 31:3257-3266.

32. Integromics: RealTime StatMiner. 2009 [http://www.integro
mics.com/StatMiner.php].

33. Biogazelle: qBasePlus. 2009 [http://www.biogazelle.com/site/prod
ucts/qbaseplus].

34. MultiD: GenEx. 2009 [http://www.multid.se/genex.html].

	Introduction
	Systems Biology
	Genome-scale metabolic models
	Objectives

	Methods
	Java Enterprise Edition
	Relational data persistence
	JBoss Seam
	Development libraries and tools

	Results
	MEMOSys - Metabolic Model System
	Implementation details
	Model integration

	Discussion
	Bibliography
	Glossary
	Acknowledgments
	Publications

