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Abstract

With the growing customer demands the amount of satellite services and traffic
increases as well. For this reason an efficient usage of the existing resources,
i.e. geostationary arc and available frequency bands, is mandatory. Thus, it is
obvious that appropriate monitoring is of paramount importance for flawless
operation of today’s and future satellite networks.
With the rapid increase of available computational power and the benefits
of digital signal processing, it is now possible to perform tasks that were
not even thinkable a decade ago. For successful execution of the required
monitoring tasks, a blind demodulation framework is proposed which is suited
for implementation on software-defined radio (SDR) platforms.
A comprehensive overview of the developed framework is given, including
design of specific algorithms, performance assessment of the required stages
and remarks on efficient implementation. The suggested blind demodulation
structure was integrated and tested on an in-house developed SDR platform.
Moreover, it is shown on the basis of two examples, how blind demodulation
techniques can be used in applications which are beyond the capabilities of state-
of-the-art monitoring equipment. The first example demonstrates an effective
way for online estimation of the cross-polarization discrimination (XPD) and the
second application presents an enhancement of the geolocation accuracy using
time difference of arrival (TDOA) and frequency difference of arrival (FDOA)
techniques.
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CHAPTER 1
Introduction

1.1 Background

Since the launch of INTELSAT I as the first commercial geostationary earth orbit (GEO)
satellite in 1965, satellite communication has experienced an enormous evolution [1, 2].
The increase of transmission power available onboard satellites and advances in physical
layer techniques lead to an evolvement of ground terminals as well. In particular, a
reduction of terminal sizes away from huge earth stations (30m antenna diameter) to very
small aperture terminals (VSATs) (< 3 m antenna diameter) and further on to hand-held
devices was possible. A benefit resulting from this trend was a significant cut of user
terminal costs. Together with the aforementioned cost reduction, the advantage of wide
coverage and high bandwidth, satellite communication is well established for fixed services.
In this context, digital television broadcast with an enormous number of customers is the
most prominent example.
Nowadays, customer terminals are not exclusively restricted to receive only (RCVO)

stations, but feature transmission capabilities as well. This allows two-way communication
services such as interactive television, speech or broadband Internet services. It turned
out that satellite communications can not compete the terrestrial business in urban and
suburban areas. However, rural areas as well as the maritime and aeronautical market
are dominated by satellite services. With the advances in technology, the development
of new services and the increasing demands of customers, a significant traffic growth can
be expected in the future. To be capable to serve future user needs, the advantages of
satellite communications, i.e. wide area coverage, speed and rapid deployment, may be
used to establish networks, consisting of satellite and terrestrial networks [3].

1.2 Motivation and Objectives
Since the satellite communication resources, i.e. geostationary arc and available frequency
bands, are limited, an efficient usage of the latter is mandatory. For this reason, appropriate
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monitoring tools are necessary to guarantee flawless operation of satellite networks. The
availability and the quality of service (QOS) are key requirements to hold the position
on a competitive market. Thus, satellite operators are urged to identify and fix problems
quickly to satisfy the demands of their customers. Advances in technology supporting
the daily required monitoring tasks in an efficient way would be a great favor for satellite
operators.

With the rapid increase of available computational power, it is now possible to perform
operations that were not possible a decade ago. In this work it will be shown that a versatile
blind demodulation framework could be an attractive tool for carrying out state-of-the-art
monitoring tasks and aiding measurement of enhanced parameters as well. To achieve a
flexible and low-cost solution the developed framework is running on a software-defined
radio (SDR) platform [4].
Two main objectives of the enhanced monitoring approach are: (i) it relies only on

passive measurements, i.e. no active transmission of signals is necessary which may affect
the active traffic; (ii) monitoring is performed in an online manner and results are provided
close to real-time. In this context, the definition of close to real time is elastic and related
to the specific task to solve and the according complexity.

1.3 Outline of the Thesis
In Chapter 2, the used signal model for generation of multi-carrier signals and the
supported modulation schemes are introduced briefly. It is common practice to assume
that, apart from attenuation aspects, additive white Gaussian noise (AWGN) is the
dominating impairment on GEO satellite channels [5]. For this reason, propagation effects
or system-induced effects, e.g. phase noise, I/Q imbalance or nonlinearities, are not
considered.
Usually, monitoring is performed in the frequency domain by investigation of the

satellite traffic using a spectrum analyzer. This measurement procedure delivers standard
parameters such as the presence of traffic, center frequency, symbol rate and signal-to-noise
ratio (SNR). The proposed framework provides these parameters at increased accuracy in
an automated way. Additionally, information on the filter characteristics and the used
modulation scheme becomes available. In case carrier specifications are violated, alarms
could be triggered to inform the ground personnel about the situation. A comprehensive
overview of the developed blind demodulation framework is given in Chapter 3. At first,
appropriate detection of carriers in a noisy observation is discussed, followed by the
successive blind demodulation steps of the identified signals. Finally, the performance of
the blind demodulation framework is assessed in terms of the error vector magnitude (EVM)
for the remodulation stage.
In Chapter 4, two applications are presented in which the benefits of the proposed

blind demodulation framework are emphasized. Interference, caused by insufficient cross-
polarization discrimination (XPD), malfunctioning system components, unauthorized
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access of transponders or saturation of the high power amplifier (HPA), may affect the
active traffic severely. Hence, monitoring is necessary to prevent the issue at all or identify
the cause to remove it as quickly as possible.
For surveillance of the XPD it is state-of-the-art to stop services on the transponder

of interest and perform active measurements using a continuous wave signal. Since these
measurements are carried out on a weekly basis, both the interruption of services and
the required on-site ground personnel are problematic for satellite operators due to the
additional costs. It will be shown that an SDR platform acquiring co- and cross-polar
signals simultaneously can perform estimation of the XPD online and in a passive manner.
The application of blind demodulation techniques may additionally enhance the accuracy
of the result with moderate complexity.
If the interference stems from a malfunctioning terminal, the transmitting station can

be identified by using the satellite operator database. In case no information is available or
the interference is caused by satellite piracy, other measures have to be taken to determine
the source of the perturbing signal. Using time difference of arrival (TDOA) and frequency
difference of arrival (FDOA) techniques, a solution of this geolocation task is obtained.
Since adequate geolocation accuracy requires the processing of a huge amount of data, blind
demodulation techniques may be used to enhance the transmitter location significantly.

1.4 Contributions
To the best of the author’s knowledge no such detailed investigation of a comparable
blind demodulation framework is available from the open literature. Most publications
dedicated to blind demodulation deal solely on single stages, e.g. modulation classification
or symbol timing recovery, and do not span the whole spectrum from carrier detection to
symbol decision. In the presented work it is tried to assess the performance of the overall
framework by determining the EVM of the remodulation stage as well. Furthermore the
proposed algorithms were integrated and tested on a versatile in-house developed SDR
platform. So it was possible to give several remarks on implementation details and verify
that the applications in Chapter 4, which are beyond the state-of-the-art, can be performed
on a low-cost platform by using sophisticated digital signal processing techniques. In the
following the major contributions and related published work are summarized.

• Design, implementation and testing of an innovative blind demodulation framework
suited for SDR platforms. The latter can alleviate the daily monitoring tasks of
satellite operators considerably. A future publication presenting the overall blind
demodulation performance is under progress [6].

• Hardly any estimators for assessing the symbol rate of baseband filtered signals
are available from the open literature. Moreover no performance results on non-
integer oversampling ratios were published. Motivated by this, in Section 3.3,
a symbol rate estimation algorithm which significantly enhances the method by
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Kueckenwaitz [7] is introduced. The performance of the proposed scheme is verified
by numerous simulation runs, including non-integer oversampling ratios. If applicable,
the refinement step published by the author in [8] can be employed as well.

• For solving parts of the blind demodulation problem, the usage of non-data-aided
(NDA) synchronization algorithms suggests itself. For this reason an in-depth
roundup on NDA synchronization of the supported modulation schemes was carried
out, including adaptation of existing and design of new algorithms. Particular
attention was paid to the analysis of efficient algorithms for symbol timing recovery.
In Section 3.8, a very detailed discussion on powerful NDA timing recovery schemes
is presented as it is not available in the open literature. Additionally, the acquisition
behavior of the Gardner detector (GA) was examined thoroughly in [9]. The detector
characteristic of the Moeneclaey and Batsele (MB) detector and the feedforward
counterpart are derived in [10] and [11]. Moreover it was shown in [12] that Nyquist
pulses apart from raised cosines can have attractive properties for feedback timing
recovery.

• No publications have been found on a modulation classifier, capable of estimating
all the signal constellations suggested in the DVB-S2 standard [13]. Since such
a classifier is of paramount importance in future applications, in Section 3.9, an
estimation scheme is proposed for the aforementioned constellations. The introduced
method additionally supports quadrature amplitude modulation (QAM) signals
as representatives of bandwidth efficient modulation schemes. The introduced
modulation classifier was published recently in [14].

• The need for powerful SNR estimation schemes arises in satellite networks, e.g.
adaptive coding and modulation (ACM) or satellite monitoring. To achieve acceptable
SNR estimation performance for signal constellations with constant as well as non-
constant envelope, the combination of three moment-based methods operating on
baud-rate is suggested in Section 3.10. Furthermore, a moment-based scheme for
oversampled signals has been explored by the author in [15] and [16].

• In Section 3.11, a roll-off estimation scheme relying on SNR estimation at the
matched filter (MF) output is introduced and compared to the only available scheme
from the open literature.

• Finally, in Chapter 4, the advantages of the presented framework are demonstrated
by two important applications. Firstly, an online XPD measurement is proposed
instead of the cumbersome state-of-the-art method. This new innovative approach
would not be possible without the blind demodulation framework. Secondly, it
is demonstrated how blind demodulation techniques can be used to enhance the
geolocation accuracy of TDOA/TDOA or TDOA/FDOA schemes.

The complete publication list as first and co-author can be found in the Appendix.
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CHAPTER 2
Equivalent Baseband Model

For GEO communication satellites, attenuation and AWGN can be considered as the main
impairments of the transmitted signal [5]. If the nonlinear effect of the HPA, commonly of
traveling wave tube (TWT) type, is neglected, the signal transmission can be formulated
as linear time-invariant (LTI) system. In the following an overview of the used signal
model and modulation schemes is provided.

2.1 Signals and Modulation Schemes

The received multi-carrier signal r(t) can be stated as follows:

r(t) =
∑
q

uq(t) +
√
Enw(t) (2.1)

where each single carrier uq(t) can be formulated as

uq(t) =
√
Es,q e

(2πfc,qt+θq)∑
i

ci,q hq(t− iTq − τq) (2.2)

Herein q is the index of the carrier, such that fc,q denotes the center frequency of the q-th
carrier. Let w(t) be the complex zero-mean AWGN with independent real and imaginary
part. The noise power corresponds to En and the signal power for each carrier to Es,q
such that the SNR of the specific carrier is defined by γs,q = Es,q/En. Furthermore, ci,q
are the transmitted data symbols, which are assumed to be independent and identically
distributed (i.i.d.) and normalized to unit energy such that E[|ci,q|2] = 1; Tq denotes
the symbol period, which is the reciprocal value of the symbol rate, i.e. Tq = 1/fd,q; θq
expresses the phase offset with θq ∈ [−π,π) and τq, |τq| ≤ Tq/2, the symbol timing offset
of the specific carrier; hq(t) describes the baseband pulse shape of the q-th carrier and is
a function of the roll-off factor αq, with 0 ≤ αq ≤ 1. The impulse response exhibits unit
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energy such that
∞∫
−∞

|h(t)|2 dt = 1 (2.3)

It is assumed that the pulse shape coincides with the de facto standard in satellite
communications, namely the root-raised cosine (RRCOS) [13]. If this assumption does not
hold, an additional module for estimating the baseband pulse shape has to be added.
The received signal is assumed to be sampled appropriately for subsequent processing.

The carrier of interest is converted down to baseband and applied to the MF. Thus, the
sampled signal at the filter output can be formulated as

xk,q , r(t)⊗ h∗q(−t)
∣∣
t=kTs

≈ e(2πk∆fqTq/Ns,q+θk,q)sk,q +
√
Ennk,q (2.4)

with the signal component

sk,q =
√
Es,q

∑
i

ci,q gq((k/Ns,q − i− εk,q)Tq) (2.5)

In this context, ∆fq expresses the residual frequency offset which is present after down
conversion; Ts denotes the sampling period, such that the sampling rate can be stated as
fs = 1/Ts. Thus the number of samples per symbol, or the so called oversampling factor,
for the q-th carrier is given by Ns,q = Tq/Ts = fs/fd,q; nk,q is the (non-white) Gaussian
noise sample, which is shaped by the receiving filter h∗q(−t). The overall baseband pulse
shape gq(t) = hq(t)⊗ h∗q(−t) results in a raised cosine (RCOS) to guarantee absence of
inter-symbol interference (ISI), where ⊗ denotes convolution. It is common practice to
normalize the timing offset τq by the symbol period Tq, expressed by εq.

In the following the generation of the data symbols cn is briefly described for modulation
schemes considered as most important in satellite communications. For the time being,
seven signal constellations are supported by the demodulation framework.

2.1.1 M-PSK

For the most commonly used modulation scheme in satellite communications, i.e. M-ary
phase shift keying (PSK), 2-PSK, 4-PSK and 8-PSK are supported. The symbols cn for
M-PSK constellations can be generated according to

cn =
{
eπn = ±1, M = 2
eπ(2n+1)/M , M 6= 2

(2.6)

Herein, M is the order of modulation given by M = 2 ν with ν ∈ N and n = 0,1, . . . ,M − 1.
Figure 2.1 shows the supported constellations: 2-PSK (red crosses), 4-PSK (blue plus
signs) and 8-PSK (green circles).
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Figure 2.1: 2/4/8-PSK constellations

2.1.2 M-QAM

Since the requirement for more bandwidth efficient systems arises, higher order modulation
schemes have to be investigated as well. Rectangular M-ary QAM is not frequently applied
in satellite communications due to the sensitivity to nonlinear distortions. Nevertheless,
16-QAM and 64-QAM will be considered in the context of this thesis. For M-QAM the
order of modulation is calculated by M = 22ν with ν ∈ N and the symbols are defined as

cn =
√

3
2(M − 1) [(2n1 + 1−

√
M) + (2n2 + 1−

√
M)] (2.7)

with n1, n2 = 0,1, . . .
√
M − 1. The constellation is normalized to arrive at unit energy. In

Figure 2.2 both supported QAM constellations are shown.
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Figure 2.2: M-QAM constellations

2.1.3 M-APSK

Finally, 16-APSK and 32-APSK are implemented as members of amplitude phase shift
keying (APSK). They have the advantage of less sensitivity to nonlinear distortions
compared to QAM [17], due to the restricted number of signal amplitude levels. Moreover,
APSK signals exhibit a smaller peak-to-average power ratio than square QAM so that
they can be operated at less backoff of the HPA onboard the satellite. For higher order
constellations, APSK performs better than PSK in presence of noise. Despite the mentioned
advantages of APSK and the recommendation of 16-APSK and 32-APSK in the DVB-S2
standard [13], surprisingly few publications are available dealing on synchronization of the
latter.

16-APSK 16-APSK consists of a 4-PSK constellation located on the inner circle with
radius r1 and a 12-PSK scheme on the outer circle with radius r2. Using the above
assumption of unit energy yields 1/4 r2

1 + 3/4 r2
2 = 1 such that the corresponding radii can

be calculated as

r1 =
√

4
1 + 3β2

r

(2.8)

r2 =
√

4β2
r

1 + 3β2
r

(2.9)
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The ring ratio βr = r2/r1 depends on the selected code rate r; for example, with r = 4/5,
βr = 2.75, as suggested in the DVB-S2 standard [13]. Thus the symbols can be constructed
by

cn =
{
r1e

π(2n+1)/4, n = 0,1, . . . ,3
r2e

π(2n+1)/12, n = 4,5, . . . ,15
(2.10)

The red crosses in Figure 2.3 show the 16-APSK constellation.
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Figure 2.3: 16/32-APSK constellations

32-APSK This modulation scheme extends 16-APSK by an additional circle that holds a
16-PSK constellation. Since three amplitude levels exist, two ring ratios βr1 = r2/r1 = 2.72
and βr2 = r3/r1 = 4.87 have to be formed when assuming a code rate of r = 4/5. The
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ring radii can be determined according to

r1 =
√

8
1 + 3β2

r1 + 4β2
r2

(2.11)

r2 =
√

8β2
r1

1 + 3β2
r1 + 4β2

r2
(2.12)

r3 =
√

8β2
r2

1 + 3β2
r1 + 4β2

r2
(2.13)

Thus the symbols can be constructed by

cn =


r1e

π(2n+1)/4, n = 0,1, . . . ,3
r2e

π(2n+1)/12, n = 4,5, . . . ,15
r3e

π(2n)/16, n = 16,17, . . . ,31
(2.14)

It should be pointed out that the outermost PSK constellation is not offset to the real
axis like the inner and middle ones. Figure 2.3 depicts the 32-APSK constellation using
blue circles.
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CHAPTER 3
Blind Demodulation Framework

For reliable transmission of data in communication systems, it is inevitable to determine the
most important parameters of the receiving signal. The evaluation of these parameters is
termed parameter estimation and synchronization. The unknowns to be computed include
carrier frequency offset, carrier phase error, optimum timing instant and, of course, the
transmitted data symbols [18, 19]. For successful exchange of data the general framework
of the transmission has to be known at both transmitter and receiver side. Parameters such
as nominal carrier frequency, modulation scheme or symbol rate, are normally available to
solve the task of synchronization at the receiver side. However, this condition does not
hold for monitoring systems or non-cooperative demodulation where no information about
modulation parameters and even basic specifications are available. The challenge in this
field of work is the estimation of as many parameters as possible out of the received signal,
with minimum deviation from the true values.

The signal model introduced in the previous section will be used as a basis throughout
the rest of this work. The automatic blind demodulation of arbitrary carriers inside a
received signal impaired by noise is a very challenging task, since the number of possible
input signals is infinite. So it should be obvious that limitations have to be introduced to
arrive at a tractable problem. These limitations could contain the type of modulation, the
baseband pulse shape and allowed ranges of parameters. Throughout this work the linear
digital modulation schemes, presented in Section 2.1, are considered. As already mentioned,
RRCOSs are assumed for baseband pulse shaping which seems to be justified since the
latter are established as de facto standard in satellite communications. Modularity of
the developed framework is a key requirement, thus the addition of new features, e.g.
modulation schemes or synchronization algorithms, can be performed in an easy manner.
For the blind demodulation process, available synchronization algorithms that do not

rely on any prior knowledge, e.g. preambles or unique words, can be used. Such algorithms
are termed as NDA in contrast to their data-aided (DA) counterparts. Another possibility
is using so called decision-directed (DD) schemes, which incorporate the decisions of the
transmitted data symbols into the estimation process. If the probability for decision errors
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is very low, the performance of DD algorithms is comparable to that of DA methods.
Thus, it should be clear that part of the blind demodulation process is closely related to
NDA synchronization. For the framework, algorithms are selected which have satisfactory
performance and require only knowledge of the received signal that is available at the
related blind demodulation stage.
In addition to standard synchronization, accompanying algorithms have to be applied

that provide the required parameters for synchronization at the successive demodulation
stages [20]. These accompanying algorithms include schemes for estimation of the symbol
rate, classification of the modulation constellation, determination of the baseband pulse
shape and estimation of the SNR. Some of these methods are treated intensively through-
out the open literature, but some are hardly mentioned at all. Throughout this work
available algorithms will be investigated and compared to proposed schemes. If possible,
modifications are applied to improve performance of the existing methods.

An overview of the blind demodulation framework is sketched in Figure 3.1. Before any
demodulation algorithm can be started, it is crucial to detect appropriate carriers. Thus,
the received noisy observation is investigated in the frequency domain to identify possible
candidates for carriers. Pre-estimates, such as center frequency and occupied bandwidth,
are evaluated for each carrier. During this process the noise level is estimated which is
required for calculation of the SNR of each carrier. Later it will be seen that this estimate
is of paramount importance for several blocks in the demodulation procedure.
After successful carrier detection, the procedure of demodulation can be summarized

briefly as follows. Each of the carrier candidates is down-converted to baseband, filtered
appropriately and decimated according to the requirements of the subsequent stages. At
first the symbol rate has to be determined for further processing of the received signal.
The carrier is resampled to a fixed rate to fulfill the requirements of following algorithms
and to reduce computational complexity. Before applying the signal to the MF, the
excess bandwidth of the filter has to be determined. Afterwards, the signal is rescaled
to suit the subsequent stages. To recover the symbol timing, standard algorithms can be
applied which are independent of the modulation scheme. The latter has to be determined
in the following, since all successive stages require this knowledge. An additional SNR
estimator may be used to verify the success of the preceding procedure and to refine
the available pre-estimate. Apart from a possible roll-off refinement for the remaining
stages, i.e. frequency and phase offset removal, algorithms like in common systems can
be applied. Finally, based on the recovered signals, it is decided which data symbol has
been transmitted. Alternatively, the framework should be capable to decide, whether
the candidate signal was incorrectly identified as a carrier or the type of signal is not
supported at all. The estimated data symbols might be remodulated and used for the
applications detailed in Chapter 4.
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Figure 3.1: Overview of the blind demodulation framework
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3.1 Carrier Detection
The detection of possible carriers is performed in the frequency domain by applying a
method similar to the periodogram by Welch [21] for estimation of the power spectral
density (PSD). The task of finding valid carriers is a trade-off between false detection
and missing a carrier. A well-averaged periodogram of the received signal is the input
to the detection stage. In Figure 3.2 the power spectrum Rn of the received signal rk, a
discretized version of Equation 2.1, is depicted for an example scenario. The latter uses
the three supported PSK signal constellations. Increasing the number of averages reduces
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Figure 3.2: Power spectrum Rn of the example scenario using M-PSK

the jitter inherent to the spectral representation. For further reduction of fluctuations,
smoothing is applied similar to video filtering in an analog spectrum analyzer.

As mentioned above, restrictions have to be applied on the range of specific parameters
to arrive at a tractable problem. A first reasonable directive is the limitation of the range
of symbol rates. Thus the degree of smoothing can be adjusted in such a way that carriers
with the smallest symbol rate of interest are still not filtered out and fluctuations are
reduced to avoid false detections. This choice is of course dependent on the fast Fourier
transform (FFT) resolution and thus by the sampling rate and the length of the used
FFT. A second restriction is related to the signal power of the carrier candidates. If the
latter is below a pre-defined threshold, the carrier is ignored and considered as noise. The
value of this threshold is set by the capabilities of the spectral detection algorithm and
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3.1 Carrier Detection

the performance of the subsequent synchronization algorithms. If reliable detection is still
requested, smaller threshold values increase the computational effort by augmentation of
the number of averages used for power spectrum calculation. Moreover, with decreasing
SNR the effort in the following blind demodulation procedure raises as well, since increasing
of estimator lengths may be required. It can even happen that a complete exchange of
synchronization algorithms is required which are better suited to smaller SNR values.

3.1.1 Detection Procedure

The spectral detection procedure starts with the estimation of the noise floor PN of the
received signal rk, which can be estimated by evaluating the histogram of the power
spectrum Rn. The first concentration of values in the low power range of the histogram
is an easy and robust estimate P̂ ∗N for the noise floor; the asterisk indicates that it is a
pre-estimate. In Figure 3.3 the histogram of the previously introduced example scenario
is illustrated. Afterwards, the complete spectrum is scanned and it is recorded whether
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Figure 3.3: Histogram of the power spectrum Rn

the distance Rn − P̂N is below or above the defined threshold. Additionally, a kind of
hysteresis is applied such that fluctuations close to the threshold are mitigated. Finally,
several criteria, e.g. symbol rate limitations, carrier spacing or SNR restrictions, are
applied on the detected candidates to knock out possible invalid carriers. The number
and position of the detected carrier candidates are stored and can be accessed by the
subsequent pre-estimation stage.

15



Chapter 3 Blind Demodulation Framework

3.2 Pre-Estimation
Using the carrier candidates of the previous stage, a rough pre-estimation of relevant
parameters can be performed. The considered modulation types feature symmetric spectra
around the center frequency, such that following spectral methods are valid.
A power-level Pc,q can be computed for each carrier when averaging spectrum values

Rn inside the passband of the specific carrier. The number of values that can be used for
averaging is determined by the roll-off factor αq. Communication systems are getting more
and more bandwidth efficient, so the assumption of αq ≤ 0.5 seems to be appropriate.
The obtained power-level P̂ ∗c,q represents signal-plus-noise power of the q-th carrier. Now,
together with the previously computed noise level P̂ ∗N , an estimate of the SNR γs,q in
units of dB can be evaluated by

γ̂∗s,q = 10 log10(10(P̂ ∗
c,q−P̂ ∗

N )/10 − 1) (3.1)

As already mentioned, the pre-estimate of the SNR turns out to be a very important value
for the blind demodulation process. It is necessary for scaling the input signal, required
for timing, frequency and phase recovery, for modulation classification and finally for
symbol detection. When using sufficient averages for the periodogram calculation and
appropriate smoothing techniques, the error of γ̂∗s,q tends to be quite small, as will be
verified by simulations in Section 3.15.

A guess for the occupied bandwidth bq of each carrier can be made by searching the
frequencies where the values Rn of the transition band enter the noise level PN . Similarly,
a rough estimate for the symbol rate fd,q can be computed by investigating the drop of
the transition band values of the carrier spectrum as well. The frequencies have to be
found, where the values Rn of the transition band excess a 3 dB difference with respect
to the power level Pc,q of the pass band. Due to the symmetry property, subtracting the
higher frequency value from the lower one delivers a rough estimate for the symbol rate.
And finally the calculation of the arithmetic mean of these two values roughly determines
the center frequency fc,q of the specific carrier. Using occupied bandwidth and symbol
rate, a pre-estimate for the excess bandwidth can be determined by

α̂∗q = b̂∗q/f̂
∗
d,q − 1 (3.2)

The estimated bandwidth b̂∗q and the center frequency f̂∗c,q are used as input for the digital
down-conversion (DDC) and decimation stage to produce a single-carrier signal, denoted
by r̃k,q. Besides spectral shifting and filtering, cascaded integrator comb (CIC) filters [22]
could be an attractive possibility for filtering out the carrier of interest and decimating it
appropriately. Since, after DDC and decimation, only one carrier is further processed, the
carrier index q and the tilde will be dropped for the sake of readability. Some of the above
pre-estimates are indicated in the multi-carrier spectrum depicted in Figure 3.2.
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3.3 Symbol Rate Estimation
Before any further synchronization algorithms can be applied to the single-carrier signal,
the symbol rate fd has to be determined with sufficient precision. Many existing symbol
rate estimation algorithms do not work properly, if baseband pulse shaping is applied as it is
common practice in satellite communications [23]. Moreover, in the open literature hardly
any simulation results are available on algorithms working with non-integer oversampling
rates. However, for monitoring systems it can not be assumed that the sampling rate is a
multiple integer of the symbol rate. An algorithm which overcomes the above mentioned
problems with acceptable computational burden consists of a modification of the scheme
explained in [7] based on a rough estimate of the symbol rate from the pre-estimation
stage. An optional refinement step using a symbol synchronizer whose output is fed back
to a resampling block can be used for fine-tuning as detailed in [8]. Both methods are
introduced in the following.

3.3.1 Estimation Stage

Standard Approach The algorithm in [7] consists of three stages, i.e. coarse, medium
and fine. A nonlinearity f(·) is applied to the received signal rk to generate a spectral line
at the symbol rate fd. Thus the periodogram of length N can be computed as

S̃1[n] = 1
2π
|
∑N−1
k=0 f(rk)wke−2πkn/N |2∑N−1

k=0 |wk|2
(3.3)

Herein w denotes the windowing function and is assumed to be a Hanning window and the
absolute value is used as nonlinearity f(·). For reduction of fluctuations, M sample blocks
overlapping by 50% or 75% are used for calculation of S̃1[n]. The resulting periodogram
contains a DC component, a contour of the processed signal and a spectral line at the
symbol rate. To remove the contour, a median filter (ordered statistic) is applied that
filters out high frequency components. The filtered result is then subtracted from the
original periodogram to arrive at a flat spectrum S1. The coarse estimate can be extracted
from the periodogram by a simple maximum search:

f̂d1 = fs
N

arg max
n

S1[n] (3.4)

The medium estimate f̂d2 is computed by performing a parabolic interpolation of the form
y = cx2 + bx+ a using the points adjacent to the maximum (see Appendix A.1).
The interpolated value is used as input for the final estimate f̂d. For this purpose, the

available sample set is zero-padded by a factor kzp, e.g. kzp = 64, to increase the resolution
of the spectrum. To save computation time and memory, only spectral values in the
vicinity of the result from the second medium estimation step are evaluated. Again, the
maximum of the calculated values is retrieved and interpolated to enhance the resolution.
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Chapter 3 Blind Demodulation Framework

The above described procedure corresponds almost to the algorithm in [7]. From the
simulation runs it is evident that the estimate is either very accurate or completely wrong,
when identifying a spectral line as maximum. The problem is that several parameters
have an impact on the significance of the spectral line at the symbol rate. Thus, it may
not be guaranteed that the spectral line at symbol rate is the global maximum. Degrading
factors are decreasing SNR γs and roll-off α, small observation intervals and non-integer
oversampling ratios Ns.

Enhanced Approach It can be summarized that the performance of the algorithm
in a standard mode is not satisfactory for monitoring systems. However, since the pre-
estimation stage extracts additional information, the latter might be used for enhancing
this stage. It can be shown that, when applying the symbol rate value (used for DDC) from
the pre-estimation stage, this effect can be mitigated and the performance of the algorithm
improves significantly. Basically, the idea is to use the symbol rate hint for prefiltering
and for limitation of the search range in the spectrum. For prefiltering a narrowband
filter is applied to the received signal to remove unwanted noise. In case of multi-carrier
scenarios such a filter has to be applied anyway to avoid interference by adjacent carriers.
It was validated in numerous simulation runs that the error of the pre-estimated carrier
bandwidth is well below 10%. Thus a filter with a bandwidth slightly larger than the
required bandwidth of the carrier can be designed. The additional limitation of the spectral
search range will speed up calculation and decrease the probability of identifying a wrong
peak as the assumed spectral line.
In the sequel, simulation results are presented to demonstrate the problems of the

standard algorithm and show the benefits of the enhanced version. When not stated
explicitly, the default parameters for all simulations are set as follows. As modulation
scheme quadrature phase shift keying (QPSK) is used, the oversampling ratio is assumed
as Ns = 4.5, the roll-off factor α = 0.2 and the prefiltering bandwidth is set to bf = 1.2b.
The FFT length for periodogram estimation is set to N = 2n = 4096, the number of
sampling blocks to M = 50 which are overlapping by 3/4N and the zero-padding factor to
kzp = 64. For each simulation point 100 iterations are performed.
In the first test run the SNR is set to γs = 0 dB and the roll-off factor to α = 0.35.

Figure 3.4 depicts the post-processed spectrum S1 for both the standard and enhanced
approach of a single simulation run. There should be a spectral line at the symbol rate,
i.e. fd = 0.2̇. It can be seen that this is not true for the standard approach at such a low
SNR. On the other hand, the spectral line is considerably pronounced when prefiltering is
applied.

In Figure 3.5 the evolution of the normalized mean square error (NMSE) over the SNR
is shown for different roll-off factors, i.e. α = 0.35 and α = 0.2. It can be seen that for
α = 0.35 the NMSE of the standard approach increases significantly below γs = 8 dB,
but remains low over the whole SNR range when applying prefiltering and search range
limitation. When reducing the roll-off factor to α = 0.2, the smallest value recommended
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Figure 3.4: Peak detection in post-processed spectrum S1

in [13], the degradation for the standard scheme occurs already below γs = 12 dB and does
not appear for the enhanced scheme at all. The rapid increase in NMSE below a specific
SNR bound is due to wrong identification of a spectral line as the supposed symbol rate
in the post-processed spectrum S1.
The effect of changing the number of averages used for calculation of the periodogram

is illustrated in Figure 3.6. It is obvious that increasing the number of processed samples
increases the accuracy of the algorithm by reducing fluctuations inside the spectrum and
thus shifting the degradation effect to lower SNR values. When using only M = 10 sample
blocks, the performance of the enhanced scheme degrades below γs = 2 dB.
In the open literature there is hardly any information available on performance results

of symbol rate estimation algorithms working with non-integer oversampling ratios. Since
monitoring systems normally operate in a non-cooperative scenario, the assumption that
symbol rates are multiple integers of the sampling frequency does not hold. The dependence
of the introduced algorithms on the oversampling ratio Ns is shown in Figure 3.7. It
can be seen that the algorithm favors integer ratios and the worst result is produced for
Ns = 4.5. According to the chosen parameters the degradation effect is not visible for the
enhanced algorithm at all.
Finally, the success rate is compared to the methods proposed in [7] (standard), [23]

(filter bank) and [24] (cyclic correlation). An estimation is termed successful, if the
estimation error is smaller than the spectral resolution. The amount of available symbols
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Figure 3.5: Evolution of the NMSE of f̂d for different roll-offs α (N = 212, M = 50,
Ns = 4.5)

is 4096; oversampling at Ns = 4 results in 16384 samples. The residual frequency offset is
set to ∆fT = 0.001. The length of the FFT is assumed to be N = 212 such that M = 13
overlapping sample blocks can be processed. The evolution of the success rate is illustrated
in Figure 3.8. It can be seen that the enhanced algorithm is considerably superior to the
standard approach and only outperformed by the filter bank method. For the sake of
completeness, it is shown that increasing the observation interval to M = 50 overlapping
blocks leads to a significant improvement of the success rate.

3.3.2 Refinement Stage

In the refinement stage a residual timing drift on the signal may be used for enhancing
the precision of the symbol rate estimate f̂d [8]. This is mainly due to the fact that
any deviation from the true value fd causes a timing drift and, hence, a timing error
accumulated in a timing tracker. The block diagram of this refinement stage is sketched
in Figure 3.9. According to the ratio of the sample rate conversion, appropriate filtering
has to be applied to avoid aliasing effects. The resampling unit converts the filtered
signal from N̂s to a lower rate, which reduces the processing complexity in the following
stages. The minimum required value is determined by the used estimator algorithms, e. g.,
N ′s = 4 for the Oerder and Meyr (OM) device [25]. If possible, the resampling module
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could be moved in front of the MF to reduce computational complexity. Resampling
techniques are presented in Section 3.4. For initial timing acquisition the OM method
and for timing tracking a modification of the prominent Gardner detector (GA) [26], the
extended Gardner detector (xGA) [27], are used. Successful tracking of signals drifting
in time necessitates a second-order loop with an appropriate filter design in terms of
damping ζ and normalized equivalent noise bandwidth BLT . The design of second-order
tracking loops is discussed in Section 3.13.3. At this point, it should be emphasized that
the procedure is only applicable for SNR values, which can be handled by the selected
acquisition and tracking algorithms. Furthermore, a trade-off between the ability to track
a drifting signal and the accuracy of the accumulated timing error τL has to be made.
Assuming an accumulated timing offset τL, given in symbol units and accumulated over
an observation interval of L samples, the refined estimate of Ns appears as

N̂ ′s = N̂s

(
1 + τL

L
N̂s

)
(3.5)

Figure 3.10 shows the performance of the refinement stage for different initial errors of the
oversampling ratio pe = |N̂s/Ns − 1| and normalized equivalent noise bandwidths BLT .
The number of processed samples is L = 216 and 1000 iterations are performed for each
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simulation point. It can be seen that for an initial error of pe = 1 % and a loop bandwidth
of BLT = 10−3, the NMSE can be decreased by 3 − 4 order of magnitudes down to an
SNR of γs = 9 dB. For BLT = 10−4 the tracking loop is not capable to handle the timing
drift produced by pe = 1 % of estimation error and thus the NMSE is large over the whole
SNR range. On the other hand, when decreasing the error to pe = 0.1 % the tracking loop
can handle the drift and a significant refinement can be achieved.
To summarize, the necessity of this refinement arises mainly, if the accuracy of the

symbol rate estimation stage is not sufficient. In general, a reasonable design of the
proposed symbol rate estimator in Section 3.3.1 allows omitting the refinement step. If the
accumulated timing error in the symbol timing tracker is small enough, then the refinement
step may be skipped at all. A possible limit could be 0.001 correcting percentage.
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Figure 3.9: Block diagram for the symbol rate refinement stage

23



Chapter 3 Blind Demodulation Framework

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0 5 10 15 20

N
M

SE

SNR [dB]

BLT = 10−3, pe = 0.01

BLT = 10−3, pe = 0.001

BLT = 10−4, pe = 0.01

BLT = 10−4, pe = 0.001

pe = 0.01

pe = 0.001

Figure 3.10: Evolution of the f̂ ′
d NMSE for different normalized equivalent noise band-

widths BLT (L = 216, α = 0.2, Ns = 4.5)

24



3.4 Resampling

3.4 Resampling
To lower the computational complexity in the subsequent stages, the oversampling ratio
Ns is reduced to the minimum required value N ′s. In the current implementation the
minimum value of N ′s = 4 is given by the OM device [25]. Basically, during resampling the
underlying continuous-time signal r(t) has to be determined for values that do not coincide
with the available samples at r(kTs). Due to the vast range of possible symbol rates,
the resampler has to be capable of processing arbitrary oversampling ratios. Standard
techniques that first interpolate by an integer factor L and afterwards decimate by an
integer M can change the sampling rate by a rational factor [28]. For non-rational rate
changes, as they arise in practical situations where symbol and sampling period are derived
from different clocks [29], or varying interpolation indices as needed for correction of the
estimated timing error, different approaches have to be selected.

3.4.1 Ideal Interpolation

If the received signal satisfies the sampling theorem

fs = 1
Ts
≥ 2BAAF (3.6)

where BAAF denotes the bandwidth of the anti-aliasing filter (AAF), then the underlying
continuous-time signal r(t) can be recovered perfectly by the interpolation formula [19]

r(t) =
∞∑

k=−∞
hI(t− k · Ts) r (k · Ts) (3.7)

where impulse response
hI(t) = sin(π t/Ts)

π t/Ts
(3.8)

is of infinite duration and any truncation would lead to a distortion of the interpolated
signal. Alternatives are to apply a window on the ideal impulse response hI(t) to allow
truncation [30] or to replace hI(t) by piecewise polynomial functions of short duration [31].
For resampling and timing correction frequently a cubic Lagrange interpolator is used,
since accuracy is sufficient for synchronization purposes.

3.4.2 Lagrange Interpolation

To determine the value of r(t) at time tn, the value tn has to be split up into the preceding
sample index ln and the remaining fractional part µn, such that tn can be written as

tn = (ln + µn)Ts (3.9)
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with
ln = int

(
tn
Ts

)
, µn = frc

(
tn
Ts

)
(3.10)

where frc(x) = x − int(x). The illustration in Figure 3.11 explains the introduced
relationships. Substitution of the above formulas into Equation 3.7 and assuming that the

t

•

(ln − 2)Ts

•

(ln − 1)Ts

•

ln Ts

•

(ln + 1)Ts

•

(ln + 2)Tstn

µn Ts

Figure 3.11: Explanation of basepoint and fractional index for Lagrange interpolation

impulse response hI(t) is limited to the range −I1 Ts ≤ t ≤ (I2 + 1) Ts yields

r(tn) =
ln+I1∑

k=ln−I2

hI((ln − k) · Ts + µn Ts) r (k · Ts) (3.11)

Finally changing the summation index to i = ln − k leads to the interpolator formula

r(tn) =
I2∑

i=−I1

hI(i · Ts + µn Ts) r ((ln − i) · Ts) (3.12)

Additionally to the supporting points r(kTs) in the range of k = ln − I2, . . . ,ln + I1, only
the fractional index µn has to be provided. Thus the coefficients ci(µn) = hI(i ·Ts +µn Ts)
of a (n− 1)-order Lagrange interpolator can be computed as

ci =
n−1∏
k = 0
k 6= i

µn − k
i− k

(3.13)

The block diagram of a cubic interpolator is depicted in Figure 3.12. The coefficients
can either be calculated online or be stored in a look up table (LUT), when discretizing
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Figure 3.12: Block diagram of the cubic Lagrange interpolator

the possible values of µn. If the input and output oversampling ratios Ns and N ′s are
incommensurate, the coefficients have to be recalculated in every step. A control unit is
used to ensure that the required samples are loaded into the shift register. Special care
has to be taken, if the fractional index exceeds µn > 1, then a sample has to be inserted
into the shift register and µn must be decremented. This process has to be repeated until
µn < 1.

In the following, simulation results show the performance of the implemented algorithm.
QPSK is used as modulation scheme, the roll-off factor is set to α = 0.2 and the SNR to
γs = 50 dB. In Figure 3.13 the time domain results (real part) using cubic interpolation for
decimation from Ns1 = 8.5 to Ns2 = 4.0 are shown. The rate change would correspond to
resampling the signal at 4/8.5 = 0.470588 of the original rate and could be accomplished by
upsampling of L = 1000 with subsequent decimation of M = 2125. It is obvious that such
high rate changes are not favorable or may even not be feasible from the computational
point of view. To gain more insight into the accuracy of the interpolator the resampled
spectrum should be investigated on a logarithmic scale, as depicted in Figure 3.14. It
can be seen that the interpolated spectrum is affected by the interpolating filter, however
the attenuation is sufficient for modem and most monitoring applications. As illustrated,
the produced images are canceled out by the following MF. If further attenuation of the
spectral images is required, an interpolation approach using the Kaiser window could be
used [30]. If the decimation ratio corresponds to an integer, the interpolation error will
vanish since the fractional index µn = 0 and the interpolated values coincide with the
supporting points in the shift register. An example is shown in Figure 3.15 for decimation
from Ns1 = 8.0 to Ns2 = 4.0.
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3.5 Roll-off Factor Estimation I
As will be shown in Section 3.6, the only parameter remaining for the design of the
receiving filter is the roll-off factor α. Thus the question arises, how to determine α to
be able to continue further in the demodulation process? Publications available in the
open literature dealing on this topic are very rare. The only paper found is [32], which
is dedicated to this task. Basically, the presented method relies on the fact that, when
inspecting the magnitude of the RCOS pulse |g(t)|, the ratio of the first side lobe to the
main lobe exhibits a dependence on the roll-off factor α. The PSD of the received signal
Pr(f) is composed of the PSDs of signal Ps(f) and noise Pn(f) as

Pr(f) = Ps(f) + Pn(f) (3.14)

Since the noise power is assumed to be constant over the whole frequency range, using
the histogram method, described in Section 3.1.1, delivers a robust estimate of the
former. Thus, the noise power can be subtracted from Pr(f) to get an estimate of Ps(f).
Furthermore applying the inverse fast Fourier transform (IFFT) on Ps(f) results in the
baseband pulse g(α,t), where α should stress the fact that the shape of the baseband pulse
depends on the roll-off. Taking the magnitude of the waveform leads to |g(α,t)|, the curve
which was used in [8] for coarse estimation of the symbol rate. The maximum of the first
sidelobe of |g(α,t)| is located in the range tmax ∈ [T,2T ). As mentioned initially, the ratio
R(α) defined as

R(α) = |g(α,tmax)|
|g(α,0)| (3.15)

is a function uniquely defined by α. The evolution of R(α) is illustrated in Figure 3.16.
Previous to the estimation process, R(α) is evaluated over the possible range α ∈ [0,1] in a
resolution of ∆α̃ = 0.01 and stored in a LUT as R(∆α̃n) with n = 0,1,2, . . . As described
above, the PSD of the received samples P̂r(f) and the noise power P̂n(f) are used for
estimation of the waveform |ĝ(α,t)|. The location of the maximum of the first sidelobe is
aided by using zero-padding for the IFFT and parabolic interpolation (see Appendix A.1),
such that an estimate R̂(α) can be calculated. The minimum distance between the stored
values R(∆α̃n) to the estimate R̂(α) is searched and delivers an estimate for the roll-off
factor. Since a resolution of ∆α = 0.05 is common practice for designing the filter roll-off,
the preliminary result is rounded to the closest value exhibiting the ∆α resolution. So the
estimator can be summarized as

α̂ =

∆α̃ arg min
n
|R̂(α)−R(∆α̃n)|
∆α

+ 1/2

∆α (3.16)

Where the operator bxc corresponds to the floor operation which rounds x to the next
smaller integer value.
In the following, simulation runs demonstrate the performance of the above estimator.
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The periodogram uses an FFT with N = 2048 points, averaged 125 times with an overlap
of 75%. This results in 65536 samples, when oversampling 16384 symbols at a rate of
Ns = 4. The zero-padding factor for the IFFT is set to kzp = 2. For each simulation
point 1000 iterations are performed. In Figure 3.17 and Figure 3.18 the mean output and
mean square error (MSE) of the estimator are depicted for several signal constellations
and a roll-off factor of α = 0.35. As expected, the performance is independent of the used
modulation scheme, which is in contrast to the SNR based roll-off estimator presented
later on in Section 3.11. The estimator mean exhibits a slight bias which grows with
decreasing SNR. Nevertheless, the achieved accuracy should be sufficient since a minor
deviation from the true roll-off results only in a small SNR degradation, as will be shown
in Section 3.6.2. This fact could be used when lacking computational power to apply
the pragmatic solution of setting the roll-off factor to a value right in the middle of the
expected range, i.e. α ∈ [0.2,0.5]. A more precise estimation could be performed later on
in the blind demodulation process. Up to now the performance of the above algorithm
was only validated for a single roll-off value α = 0.35. Hence, in the following the behavior
over the whole roll-off range is investigated. Figure 3.19 and Figure 3.20 show the mean
estimator bias and the MSE for different SNR values. As can be seen, there is a trend
towards increased bias at the edges of the simulated range. This offset is most pronounced
for small roll-off values at an SNR of γs = 0 dB. The main reason for this effect is erroneous
noise power estimation.
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Figure 3.17: Roll-off estimator output for different modulation schemes

The above simulation runs are based on the assumption of a single-carrier scenario with
constant noise. Two problems could arise for multi-carrier signals, if narrowband filters
are applied for carrier separation. First, the selection of a too large filter bandwidth may
result in performance degradation due to interference by adjacent carriers. Second, the
histogram method does not work reliably for noise power estimation, since the noise floor
is filtered out by the sharp filters. As a way out of this dilemma using the noise level
estimate from the pre-estimation stage is suggested. However, the filter characteristics
have to be considered when subtracting the noise power from P̂r(f).
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3.6 Matched Filter
The MF in the receiver should provide the maximum SNR at its output for the received
waveform. Assuming a flat spectrum of the channel, the impulse response of the MF is a
conjugate-mirrored version of the received signal [33]. Since the satellite channel can be
viewed as an LTI system with the received signal as a superposition of baseband pulses,
the impulse response of the MF can be written as

h(t) = h∗(−t) (3.17)

3.6.1 Raised Cosine Filter

For baseband filtering, RCOS pulses are established as the de facto standard in satellite
communications. The spectrum G(f) is defined as

G(f) = |H(f)|2 =

=


T, |f T | ≤ 1

2 (1− α)
T · cos2

(
π

2α

(
|f T | − 1−α

2

))
, 1

2 (1− α) < |f T | ≤ 1
2 (1 + α)

0, |f T | > 1
2 (1 + α)

(3.18)

and depicted in Figure 3.21 for different values of the roll-off factor α. The related impulse
response is

g(t) = sinc
(
t

T

) cos
(
απ t
T

)
1−

(
2α t
T

)2 (3.19)

and is illustrated in Figure 3.22. It should be pointed out that g(mT ) = 0 for m 6= 0.
Hence, the data symbols are not distorted by adjacent pulses, if the optimum timing
instant is recovered successfully. The effect when neighboring pulses are influencing each
other is termed ISI. From the above illustrations, showing G(f) and g(t), the effect of
the roll-off factor α becomes obvious. It is clear that the latter can be used to tradeoff
bandwidth efficiency and sensitivity to ISI. In practical realizations the filter is split up
into two RRCOS filters, with frequency response H(f) =

√
G(f) each, located in the

transmitter and receiver, respectively. This guarantees that the overall baseband pulse
g(t) = h(t)⊗ h∗(−t) becomes RCOS and thus is free of ISI.

3.6.2 Filter Mismatch

It turns out that a small deviation from the roll-off factor in the receiving filter to that
used in the transmitting filter results only in a minor degradation of the SNR at the filter
output. Hence, the determination of α is not as critical as one might expect. In the
following, the above stated assumptions are confirmed by simulation runs. In Figure 3.23
an example of the filtered signal at the matched output xk in the absence of noise is shown.
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Figure 3.21: Evolution of the RCOS spectrum

Therein the ideal signal, using the same roll-off for transmitting and receiving filter α = 0.2,
is compared to the signal with wrong roll-off at the receiver α = 0.35. To ease comparison
the transmitted data symbols cn are shown as well (blue dots). The mismatched signal
exhibits less overshoot between the symbols due to the smaller sidelobes of the impulse
response. In the optimum timing instant both signals seem to be quite similar, however,
when zooming in the mismatched signal deviates more from the data symbols. To show
that the impact of a minor mismatch is negligible for synchronization, an estimation of
the SNR is performed at the output of the MF. Figure 3.24 illustrates the evolution of
the estimated SNR at the MF output for mismatched receiving filters. The simulation is
repeated for different values of the transmitting excess bandwidth α ∈ {0.2, 0.25, 0.35, 0.5}.
As expected, the estimated SNR has a maximum when transmitting and receiving filters
match. The shape of the maximum is rather flat such that a small roll-off mismatch does
not affect the SNR significantly. For the estimation of the SNR, the algorithms detailed in
Section 3.10 are used, which require recovery of the symbol timing as will be explained in
the following.
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3.7 Rescaling
Rescaling of the received waveform is necessary to guarantee proper operation of most of
the subsequent stages, e.g. design of filter coefficients in the timing tracker, partitioning
used for SNR estimation, frequency and phase recovery or, finally, for the decision of
the transmitted data symbol drawn from a multi-level modulation scheme. Using the
pre-estimate γ̂s∗ for the SNR and an estimate for the second-order moment M20, an
appropriate scaling factor as can be derived. As investigated in [34], for oversampled
signals the second-order moment at the MF output is given as

M20 = E[|x2
k|] = (1− α/4)Es + En (3.20)

This shows that the signal power at the MF output can be expressed as

E′s = (1− α/4)Es (3.21)

Using the relationship for the SNR, i.e. γs = Es/En, in Equation 3.20, the signal power
ahead of the MF can be calculated as

Es = γsM20
γs(1− α/4) + 1 (3.22)

Now for proper scaling the signal has to be simply divided by as =
√
Es.

3.8 Timing Offset Estimation
From the assigned problem it is clear that only NDA methods should be considered.
Normally, timing error estimation and correction consists of two tasks: initial acquisition
and tracking. The former is usually carried out by a feedforward (FF) algorithm, e. g. the
solution proposed by Oerder and Meyr [25] or a modification thereof. The obtained result
serves as a starting value for the following tracker module, frequently implemented as a
Gardner detector (GA) [26]. A thorough analysis of the performance of the OM method
and the GA can be found in [35]. Since symbol timing recovery is a major part of the
demodulation process, a robust algorithm with low complexity and sufficient accuracy
should be used. Alternatives to well established algorithms were compared and analyzed.
A feedback solution by Moeneclaey and Batsele using only one sample per symbol is
investigated in [36], reviewed in [10] and the feedforward counterpart is presented in [11].

3.8.1 Acquisition

Oerder and Meyr Method The Oerder and Meyr (OM) algorithm [25] is independent
of modulation scheme and roll-off factor of the baseband pulse. However, it requires at least
an oversampling factor of Ns ≥ 3, for computational reasons setting Ns = 4 is frequently
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suggested. The design parameter ν is used for calculating |xk|ν , which represents the
magnitude for ν = 1 or the squared magnitude when ν = 2. For both values of ν the
resulting signal contains a spectral component at the symbol rate fd = 1/T . The discrete
Fourier transform (DFT) can be used to extract the spectral component XL by

XL =
LNs−1∑
k=0

|xk|ν e− 2π k/Ns (3.23)

The magnitude of XL is of minor interest in this context, however, the argument can be
used to extract an unbiased estimate of the timing offset using

τ̂ = − T

2π arg(XL) (3.24)

As already stated above, it becomes evident that the OM method is totally independent
of modulation scheme and baseband pulse roll-off and thus can be used at this stage of
the blind demodulation process. Figure 3.25 illustrates the usage of the OM method in a
feedforward manner to estimate and correct the timing offset. The block diagram includes
an additional delay and an interpolator which can be of Lagrange type as introduced in
Section 3.4.2.

XL| . |ν

Interpolator

τ̂

xk
Delay LNs

−T arg(.)/2π

Figure 3.25: Feedforward timing recovery using OM method

Moeneclaey and Batsele In [11] the attempt is made to operate the feedback timing
recovery scheme by Moeneclaey and Batsele (MB) [36], working on only one sample
per symbol, in a feedforward manner. The main idea is to combine the advantages of
feedforward schemes with the low complexity due to baud-rate sampling. Two possible
algorithms exhibiting similar jitter performance are introduced.

Estimator 1 Using the error signal uk of the MB feedback method stated in Equa-
tion 3.38, an estimator operating on an observation interval of L symbols can be furnished
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as

U0 = 1
L

L−1∑
k=0

ukNs (3.25)

U1 = 1
L

L−1∑
k=0

ukNs−Ns/4 (3.26)

ε̂ = 1
2π arg(U1 + U0) (3.27)

To achieve a satisfactory performance two iterations of the algorithm must be carried
out with the drawback of increased computational complexity. Another deficiency of the
introduced method is, when assuming equidistant sampling, the requirement of at least an
oversampling ratio of Ns = 4. However, it should be pointed out that the algorithm is
independent of the modulation scheme and the roll-off factor of the baseband pulse.

Estimator 2 The second estimator operates on U0 and uses the threshold V0 to be able
to distinguish between |ε| ≤ 1/4 and 1/4 < |ε| ≤ 1/2. The calculation of V0 requires two
samples per symbol and can be formulated as

V0 = 1
L

L−1∑
k=0

(
|xkNs |2 − |xkNs+Ns/2|2

)
(3.28)

The expected value of V0 is proportional to cos(2πε), thus the second estimator can be
written as

ε̂ =


arcsin(2πU0/Kd)/(2π) if V0 ≥ 0
1/2− arcsin(2πU0/Kd)/(2π) if V0 < 0, U0 ≥ 0
−1/2− arcsin(2πU0/Kd)/(2π) if V0 < 0, U0 < 0

(3.29)

The estimator necessitates an oversampling ratio of Ns ≥ 2, however three iterations of
the algorithm have to be applied to achieve similar performance as the first estimator.
For evaluation of the above formula the knowledge of the detector slope Kd at the stable
equilibrium point ε = 0 is required, thus the used modulation constellation and the roll-off
factor α have to be known, as can be seen from Equations 3.39 and 3.40. Simulation
results using non-matching parameters for timing recovery are shown further below. The
oversampling ratio requirement for both MB estimators is in striking contrast to the
initial intention of baud-rate sampling, however it is necessary to generate an appropriate
detector characteristic.

3.8.2 Tracking

Gardner Detector Feedback schemes are attractive for timing tracking in many cases
because of low complexity from the computational point of view. A prominent and widely
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spread algorithm is the GA suggested in [26] which computes an error signal uk according
to

uk = Re
{

(xk − xk−1)x∗k−1/2

}
(3.30)

Figure 3.26 shows the application of the GA for feedback timing recovery using a first-order
loop. The same interpolation scheme as used for the feedforward scheme can be applied for

1/(z − 1)

Interpolator

F (z)
uk

xk

GA/xGA/MB

ǫ̂k

Figure 3.26: Feedback timing recovery using first-order loop

correction of the timing error. During timing tracking it can happen that the estimated
timing error requires the interpolation of a value which is located before or after the
current sample interval. Thus, again the importance of a control unit should be pointed
out which takes care that the correct sample interval is placed appropriately in the shift
register used for interpolation. In contrast to resampling, negative values of the fractional
index µn can occur during tracking. In this case the samples inside the shift register have
to be moved backwards to the appropriate interval.
The detector (or open-loop) characteristic, the so-called S-curve, is given by

S(α,ε) = E [uk | ∀k : ε = const, |ε| ≤ 1/2] = sin (π α/2)
π (1− α2/4) sin(2πε) (3.31)

From the above equation it can be seen that the detector characteristic depends on the
roll-off α, however, it is not affected by the SNR. The detector slope Kd at the stable
equilibrium point ε = 0 can be evaluated by

Kd = K∞ = 2 sin(π α/2)
1− α2/4 (3.32)

In case of a first-order loop the filter transfer function F (z) corresponds to a constant gain
factor KF . Using the equivalent noise bandwidth normalized to the symbol period, the
filter coefficient can be calculated according to

KF = 4BLT
(1 + 2BLT )Kd

(3.33)
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Hence, the design of the loop filter requires knowledge of the roll-off factor. The influence
of setting α to a differing value, e.g. when the roll-off estimation stage in Section 3.5 is
omitted, is discussed further below. For successful tracking of signals drifting in time, a
second-order loop is necessary with an appropriate filter design in terms of damping ζ and
normalized equivalent noise bandwidth BLT , as shown in Section 3.13.3.

Extended Gardner Detector The main drawback of the original GA is the increasing
self-noise for decreasing roll-off factors as required for bandwidth efficient communication.
Significant self-noise can even deteriorate the accuracy of subsequent SNR estimation
schemes in the high SNR range. A way out of this dilemma is to use an extended version
of the GA as proposed in [37]. In this context, a generalized polar form of xk is used to
compute the error signal as

uk = Re
{

(yk − yk−1)x∗k−1/2

}
(3.34)

where
yk = |xk|µe argxk , µ ≥ 0 (3.35)

The design parameter µ is used to optimize the performance of the algorithm. For µ = 1
the xGA coincides with the original detector. To achieve a reduced jitter variance, as well
as for computational reasons, µ = 0 seems to be an adequate choice. Unfortunately, the
advantages of the xGA do not apply for modulation schemes exhibiting a non-constant
envelope such as QAM or APSK [27]. In [37] the detector slope is developed as

Kd = K∞ =
{

2ġ(−1
2T )T + µG(α) M = 2

2ġ(−1
2T )T + 1

2(µ+ 1)G(α) M ≥ 4
(3.36)

where ġ(t0) = (∂/∂t)g(t)|t=t0 and

G(α) =
∑
M 6=0

ġ(mT )T{g[(m− 1/2)T ]− g[(m+ 1/2)T ]} (3.37)

From the above equations it gets obvious that the computation of Kd requires knowledge
of the modulation scheme which is not available at this point of the blind demodulation
process. Moreover, it should be remembered that g(t) corresponds to the baseband pulse,
which is assumed to be RCOS. The latter underlines that the xGA is dependent on the
roll-off factor as well. If no estimate for the excess bandwidth and no knowledge about
the modulation order is available, the xGA can only be operated in a suboptimal way.

Moeneclaey and Batsele A feedback scheme operating on baud-rate samples is pro-
posed in [36] and reviewed in [10]. The error signal uk is generated as

uk = Re
[
x∗k−1xk

] (
|xk|2 − |xk−1|2

)
(3.38)
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and, as shown in [11], the detector characteristic can be approximated by

S(α,ε) = E [uk | ∀k : ε = const, |ε| ≤ 1/2] ≈ Kd

2π sin(2πε) (3.39)

where Kd denotes the detector slope at ε = 0 and can be expressed by

Kd = ∂S(ε)
∂ε

∣∣∣
ε=0

= 4(2−K4) cos(πα)
Λd(1− 4α2) (3.40)

Herein K4 is the symbol kurtosis K4 = Ec[|ck|4] and Λd is a symmetry constant with
Λd = 1 for BPSK and Λd = 2 for quadrature-symmetric constellations like PSK (M ≥ 4),
QAM or APSK. The main advantages of the MB are reduced self-noise in the high SNR
range and no performance degradation with decreasing roll-off factors α as it happens
for the GA. However, similar to the xGA these benefits are only valid for modulation
constellations with constant envelope. Other modulation schemes, e.g. QAM or APSK,
lead to severe performance degradation, as recently verified in [38].

3.8.3 Comparison of Algorithms

Jitter Performance One figure of merit for estimation algorithms is the evolution
of the NMSE over the SNR. For comparison reasons it is common practice to use the
Cramer-Rao lower bound (CRLB) or its modified version (MCRLB). This fundamental
performance limit for symbol timing estimation is dependent on the SNR, estimator length
L or normalized equivalent noise bandwidth BLT , and the form of the baseband pulse.
For feedforward algorithms it can be expressed as [19]

MCRLB = 1
2L[1/3π2(1 + 3α2)− 8α2]γs

(3.41)

and for feedback schemes as

MCRLB = BLT

[1/3π2(1 + 3α2)− 8α2]γs
(3.42)

For performance comparison of the different algorithms an enormous number of simula-
tion runs was carried out. As a result the selection of the most appropriate timing recovery
scheme depending on the received input signal was achieved. A fair jitter performance
comparison of feedforward and feedback schemes is difficult due to their different nature.
Feedforward methods perform acquisition in one step and tracking as such is not feasible.
In contrast to feedback algorithms, which have to carry out acquisition successfully before
entering the tracking mode. To continue the list of differences, feedforward methods are
not able to track timing drifts, but they have a defined acquisition time and do not suffer
from stability problems as it might occur with tracking loops.
To arrive at a treatable simulation setup, the timing error is set to ε = 0.0. Hence
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3.8 Timing Offset Estimation

the tracking performance of the FB schemes is compared to the acquisition performance
of the FF schemes. The parameters of the algorithms are set in such a way that the
MCRLB of FF and FB methods coincide. Thus, the estimator length of the FF schemes
is set to L = 100 and the normalized equivalent noise bandwidth of the FB methods to
BLT = 0.005. The NMSE is specified as average value of (εk − ε̂k)2. In the first simulation
run, QPSK is used as modulation scheme and the roll-off factor is set to α = 0.35. The
result is illustrated in Figure 3.27. It can be seen that OM and GA perform conveniently
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Figure 3.27: FF and FB NMSE of ε̂ for QPSK and α = 0.35

in the low-to-medium SNR range; however, they suffer from self-noise at large SNR values.
The evolution for the xGA has a very similar shape, but with decreased NMSE. Finally,
the MB algorithm applied as FF and FB scheme is shown. Only Estimator 1 of the
FF MB method is considered, since the characteristics are nearly identically to that of
Estimator 2. It is evident that the NMSE is increased in the low-to-medium SNR range,
but both algorithms do not exhibit a noise floor for high SNR values. The performance of
OM and GA degrades significantly, if the roll-off factor is lowered to α = 0.2, as depicted
in Figure 3.28. In contrast to this, a minor degradation can be observed for the xGA
and even a slightly improvement for the MB applied as FF or FB scheme. The above
simulation results suggest use of xGA or MB regardless of the input signal. However, the
benefits of xGA and MB vanish for multi-level modulation constellations such as QAM
or APSK. Figure 3.29 shows the degradation in case of 16-APSK used as modulation
scheme and α = 0.2. The performance of GA and OM stays almost the same regardless of
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Figure 3.28: FF and FB NMSE of ε̂ for QPSK and α = 0.2

constant or non-constant envelope of the modulation scheme. Unfortunately this does not
hold true for xGA and MB. As can be seen the NMSE increases by nearly two orders of
magnitude in the high SNR range.
Since at this stage of the blind demodulation process the modulation constellation is

unknown, the optimum algorithm can not be selected. Due to its solid jitter performance
for all types of input signals, the OM method is used solely for symbol timing recovery at
this point. In later stages when the required parameters are available, a more appropriate
algorithm may be selected. Therefore, the FF MB method proposed by the author can
be an attractive alternative to established schemes in the medium-to-high SNR range for
signals exhibiting constant envelope.

Acquisition Performance As already mentioned above, feedforward schemes exhibit
a defined acquisition time in contrast to their feedback counterpart. Thus, if not using a
FF scheme to initialize the subsequent FB method, an analysis of the acquisition behavior
is inevitable. In [9] it is shown for detectors, exhibiting a sinusoidal shaped S-curve, that
the acquisition trajectory for the noiseless case can simply be written as

ηk = 1
π

arctan
(
tan(π η0) e−4 k BLT

)
(3.43)
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Figure 3.29: FF and FB NMSE of ε̂ for 16-APSK and α = 0.2

Herein η0 corresponds to the initial residual timing offset. It was verified that this trajectory
does not only apply to GA, but to xGA and MB as well. Slow acquisition behavior, as one
of the main drawbacks of feedback schemes, can be mitigated by using adaptive loop filters
as investigated in [9] and in more detail in [35] for GA. It is obvious that the decay of the
above formula is mainly determined by the normalized equivalent noise bandwidth BLT .
The requirements on the selection of BLT are in striking contrast. On the one hand, large
values favor a fast acquisition process, but, on the other hand, small values are better
suited to achieve a good steady-state jitter performance. The idea is to vary the bandwidth
over time to guarantee a fast acquisition and in the following a good tracking performance.
A simple form how to change BLT over time could be an exponential function f(t) defined
as

f(t) = 1 + b e−c t ⇔ F (t) = t+ b

c
(1− e−c t) (3.44)

Herein F (t) corresponds to the integral of f(t), which has to be evaluated due to the time
dependency of f(t) in the derivation of the acquisition trajectory. The complete derivation
is detailed in [35]. The parameter b defines the starting value of the bandwidth and c the
speed of the decay. So finally the adaptive trajectory can be stated as

ηk = 1
π

arctan
(
tan(π η0) e−4BL F (k T )

)
(3.45)
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In the following, the theoretical acquisition trajectories are verified by simulation runs.
1000 symbols are used to observe the lock-in process. The normalized equivalent noise
bandwidth is set to BLT = 0.001 and the adaptive parameters to b = 9 and c = 1. The
initial timing error is set to ε = η0 = 0.35 and QPSK is the used modulation scheme.
In Figure 3.30 the acquisition process of GA, xGA and MB can be seen for a roll-off
α = 0.35 and in the absence of noise. From the result the conclusion can be drawn that
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Figure 3.30: Acquisition performance of GA, xGA and MB for α = 0.2 without noise

the analytic trajectories coincide very well with the simulated lock-in process. As can be
seen, by usage of the mentioned adaptive filter function, the speed up can make the FB
schemes an attractive alternative for FF methods when rapid acquisition is required. For
the simulation result in Figure 3.31, the roll-off was reduced to α = 0.2 and the SNR was
set to γs = 10 dB. It can be seen that the fluctuations are more pronounced compared to
the noiseless case. Especially, due to the reduction of the excess bandwidth, this effect
can be observed for the GA most explicitly. Nevertheless, the simulated results follow the
theoretical curves very well.

Parameter Mismatch The OM and the first MB FF method are the only timing
recovery schemes that do not require any additional knowledge of the input signal. GA,
xGA and the remaining MBs may require the roll-off parameter α or even the type of
modulation. The question of the impact arises, when designing the recovery scheme
including the MF using non-matching parameters.

In Figure 3.32 the evolution of the NMSE is shown for the GA. At first, it is assumed for
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Figure 3.31: Acquisition performance of GA, xGA and MB for α = 0.2 and γs = 10 dB

α = 0.2 and α = 0.35 that the value for designing the MF and the tracking loop coincides
with the true roll-off. In the following, a wrong value is used for the design. One time the
true value is α = 0.2 and α = 0.35 is used for the design. In the second case it is just the
other way round, i.e. α = 0.2 for the design and α = 0.35 is the true value. In the first
case the jitter performance is superior to the true scenario, in contrast to the second case,
where the performance degrades. The sensitivity to mismatch of the roll-off for design of
MB FB scheme is depicted in Figure 3.33. It gets obvious that the MB FB is very robust
in the presence of roll-off mismatch. The sensitivity of the xGA to the mismatch is in
between the one of GA and MB FB. The second parameter required for setting up timing
recovery properly is the type of modulation. The sensitivity of the algorithms to mismatch
of the modulation scheme is conversely to the impact of roll-off deviation. In this case
the MB suffers from the highest degradation, especially when mismatching schemes with
constant and non-constant envelope, as can be seen in Figure 3.34.
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Figure 3.32: GA NMSE of ε̂ for mismatch of α
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3.9 Modulation Classification
The attempt to determine the modulation type of a received signal inside a noisy observation
is termed modulation classification. This process can be of cooperative or non-cooperative
nature. An example for the first category is the selection of an appropriate demodulator
in an SDR environment, whereas monitoring in commercial communication systems or
signal interception, as it arises in military communications, are prominent examples
for a non-cooperative environment. An overview of existing modulation classification
schemes can be found in [39] and, in more detail, in [40]. Two types of classifiers are
distinguished: likelihood- and feature-based methods. The main drawback of the likelihood-
based approach is both the computational effort and the sensitivity to impairments like
phase and frequency offset. In contrast, feature-based methods are suboptimal, but they
are more robust and simple.
Many of the existing algorithms rely on the assumption that modulation parameters

such as phase, frequency and timing offset are known in advance. Within this work a
feature-based modulation classifier was developed that is not limited by this restriction.
The only reasonable assumption is the knowledge of the timing offset; as shown in the
previous Section 3.8, a modulation-independent method, like the OM algorithm [25], can
be used for this task. But the samples at the MF output are still impaired by carrier
frequency and phase errors. The established estimation algorithms for determining the
latter require knowledge of the used modulation type. In [41] the attempt was made
to determine the frequency offset regardless of the used signal constellation. However,
so far no modulation-independent algorithms have been found with sufficient accuracy.
This leaves us with the requirement to use a modulation classifier that is able to operate
properly in presence of frequency and phase offset. The new algorithm, developed by
the author [14], is based on the feature-based method in [42] and especially designed to
work with modulation schemes typical for satellite communications. It consists of two
modulation classifiers in parallel and is extended by an additional SNR restriction feature.

3.9.1 Features

Normalized fourth- and sixth-order cumulants are used as features for the inter- and
the intra-modulation class discrimination to derive a hierarchical scheme similar to the
one described in [42]. The choice of the features is based on the fact that higher order
cumulants (> 2) of Gaussian noise are equal to zero [43]. Thus, these characteristics are
very robust in the presence of additive Gaussian noise. Equations for the calculation of
cumulants from moments can be found in [43] and [44], where the moments of a signal xn
are defined as

Mpq = E[xp−qn (x∗n)q] (3.46)

Thus, the theoretical values of the features can be pre-computed in the receiver by the
calculation of the ensemble averages over the ideal noise-free signal constellation. To arrive
at non-ambiguous values, it is assumed that the ideal constellation has unit variance and
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all symbols are equiprobable. The determination of the considered cumulants can be
performed by

C20 = M20 (3.47)

C21 = M21 (3.48)

C40 = M40 − 3M2
20 (3.49)

C42 = M42 − |M20|2 − 2M2
21 (3.50)

C63 = M63 − 6M20M41 − 9M21M42 + 18M2
20M21 + 12M3

21 (3.51)

Since phase rotation has an impact on cumulants which exhibit asymmetry of conjugation,
the absolute values of the cumulants are used as features. In Table 3.1 the features of
xn are listed for the considered modulation schemes. In the presence of frequency offset,

Table 3.1: Cumulants of xn (wn = 0, Es = 1)

Modulation type |C20| |C40| |C42| |C63|

2-PSK 1.00 2.00 2.00 16.00

4-PSK 0.00 1.00 1.00 4.00

8-PSK 0.00 0.00 1.00 4.00

16-QAM 0.00 0.68 0.68 2.08

64-QAM 0.00 0.62 0.62 1.80

16-APSK 0.00 0.00 0.77 2.49

32-APSK 0.00 0.00 0.61 1.65

the usage of these features would lead to significant performance degradation; thus, as
suggested in [42], the differential signal zn = x∗n−1xn could be employed to convert the
frequency offset to a fixed phase offset. This transformation was used for the suggested
classification schemes in [45] and [46] as well. Table 3.2 summarizes the features of zn.

3.9.2 Algorithm

From Table 3.1 and 3.2 it becomes obvious that the listed features are distinct for the
observed modulation schemes. Thus, a hierarchical classification scheme similar to the
one introduced in [42] can be derived. Applying the simplification that the variance
of a cumulant is the same for all modulation schemes under consideration reduces the
discrimination between two signal constellations to a threshold detector. The required
thresholds for discrimination between two different modulation (sub-)classes m and n can
be derived from |Cmuv| and |Cnuv|. An observation period of L symbols at the output of the
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Table 3.2: Cumulants of zn (wn = 0, Es = 1)

Modulation type |C20| |C40| |C42| |C63|

2-PSK 1.00 2.00 2.00 16.00

4-PSK 0.00 1.00 1.00 4.00

8-PSK 0.00 0.00 1.00 4.00

16-QAM 0.00 0.46 0.26 0.16

64-QAM 0.00 0.38 0.09 0.21

16-APSK 0.00 0.00 0.49 0.82

32-APSK 0.00 0.00 0.08 0.79

previous timing recovery stage is used to calculate a feature estimate |Ĉuv|. This leads to
the formulation of a decision step between two modulation (sub-)classes with |Cmuv| < |Cnuv|
as

|Ĉuv| <
|Cmuv|+ |Cnuv|

2

{
yes, choose m
no, choose n

(3.52)

After analyzing the features in Table 3.1, a hierarchical classification scheme based on
threshold detection can be developed. For xn as input signal, at first |C42| is used to
discriminate between 2-PSK, PSK (M > 2) and all other modulation classes. Then, |C40|
chooses among 4-PSK, 8-PSK, 16-QAM, 64-QAM and APSK. Finally, |C42| is taken
to decide between 16-APSK and 32-APSK. In a similar manner an algorithm can be
developed for the differential signal zn. The classification steps are formulated as a binary
decision tree, illustrated in Figure 3.35 for xn and in Figure 3.36 for zn as input signal.
To avoid pitfalls, it should be mentioned that appropriate scaling of the input signal, as
detailed in Section 3.7, is necessary for reasonable comparison of the estimated features
|Ĉuv| to the theoretical values |Cuv|. Otherwise, the estimated features have to be scaled
accordingly. Since the SNR estimators available from the open literature, like moment-
based methods [47], are not applicable due to the lack of knowledge of the modulation
type, the pre-estimate for γs from the former stages is taken. In [48] a scheme is presented,
which performs joint power estimation and modulation classification to circumvent this
dilemma. If no SNR estimate is available, Ĉ21 could be used as a rough solution; however
the performance of the algorithm will degrade with increasing noise.
With decreasing SNR, the number of wrong classifications raises more rapidly for the

differential scheme as for the standard scheme. This is due to the increased variance of
the differential features. It turned out that the amount of erroneous decisions between
8-PSK and APSK based on |C63| of the differential scheme can be decreased significantly
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|C40|

|C42| |C40|

|C40|

|C42|

|C42|
2-PSK

4-PSK8-PSK

16-QAM64-QAM16-APSK32-APSK

Figure 3.35: Binary decision tree (standard modulation classifier)

by applying the decision of the standard method. Observing the confusion matrices of the
differential and normal scheme, it is obvious that the normal scheme is very reliable for
distinguishing between PSK and APSK even in presence of a frequency offset. Table 3.3
shows the confusion matrix of the normal scheme at an SNR of γs = 5 dB, an estimator
length of L = 10000 symbols and 1000 performed iterations for the DVB-S2 scenario.
Thus, if the differential approach decides for APSK or PSK, the decision is cross-checked

|C42|

|C40|

|C20|

|C40|

|C63| |C40|,|C42|

32-APSK 16-APSK

8-PSK 64-QAM 16-QAM

4-PSK

2-PSK

Figure 3.36: Binary decision tree (differential modulation classifier)
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Table 3.3: Confusion matrix of normal scheme for DVB-S2 scenario

Estimated

True 4-PSK 8-PSK 16-APSK 32-APSK

4-PSK 0 1.0 0 0

8-PSK 0 1.0 0 0

16-APSK 0 0 1.0 0

32-APSK 0 0 0.001 0.999

with a normal scheme running in parallel. As mentioned in [42], the most challenging
discrimination is between 16-QAM and 64-QAM, which requires a large amount of data.
It was observed that using |C42| for this purpose at high SNR and |C40| at low SNR
outperforms a single feature over the whole SNR range. No similar SNR-dependent
selection of features was found in the open literature. Simulation results demonstrating
the performance gain are omitted due to the limited space.

3.9.3 SNR Restriction

To increase the probability of successful classification, an additional SNR restriction feature
is applied. A reliable SNR estimate is available that can be used to narrow the range
of possible signal constellations. Depending on the order of the modulation scheme, a
certain SNR is required to guarantee reasonable transmission of data. So, by inspection
of the Shannon plane [33], a threshold can be derived for each modulation scheme below
which error-free transmission is impossible. These SNR limits can be incorporated into the
proposed hierarchical classification scheme. The relationship for the capacity boundary,
i.e. the bit rate R equals the channel capacity C, can be stated as follows:

Eb
N0

= 1
R

(2R − 1) (3.53)

and is illustrated in Figure 3.37. The solid dots correspond to the Eb/N0 limits for
modulation orders ν = log2M = 1,2, . . . ,6 in the uncoded case. For the coded case
R = r log2M , r denoting the code rate. Thus, an SNR limit can be derived on

Es
N0

= Eb
N0

r log2M (3.54)

for each order of modulation, as summarized in Table 3.4 for the uncoded (r = 1) and
ideally coded (0 < r < 1) case.
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Figure 3.37: Shannon plane showing spectral efficiency

3.9.4 Simulation Results

Numerous simulation runs were performed to evaluate the performance of the proposed
algorithm. For each modulation scheme, 1000 simulations were performed. Moreover,
if not stated otherwise, it is assumed that the true SNR, required for scaling and SNR
restriction, is known. For calculation of the SNR limits the code rate is assumed to be

Table 3.4: Derived SNR limits for the uncoded and ideally coded (r = 1/2) case

Modulation order uncoded [dB] coded [dB]

1 0.00 -3.83

2 4.77 0.00

3 8.45 2.62

4 11.76 4.77

5 14.91 6.68

6 17.99 8.45
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r = 1/2. The number of available symbols for classification is set to L = 1000, 5000 and
10000. For each iteration, both frequency offset |∆fT | ≤ 0.1 and phase offset −π < θ ≤ π
are selected randomly. To be able to utilize the SNR restriction, modulation schemes are
only considered, if the pre-calculated SNR limits allow error-free transmission. Additional
simulation results can be found in the paper by the author [14].

Scenario DVB-S2 The first scenario comprises the set of modulation constellations S1
as defined in the DVB-S2 standard [13], i.e. S1={4-PSK, 8-PSK, 16-APSK, 32-APSK}.
For this purpose, the binary decision tree is modified to avoid choosing modulation types
which are not included in the problem set. The success rate Ps, i.e. the number of
successful classifications divided by the number of iterations, is depicted in Figure 3.38.
The reason for the degradation in the medium-to-low SNR range is mainly due to wrong
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Figure 3.38: Modulation classifier success rate (DVB-S2)

decisions between 4-PSK and 8-PSK. Since below the SNR limit of 8-PSK only 4-PSK
remains as valid modulation type, the success rate increases to 1 again.

To address the above mentioned problem of scaling the calculated features appropriately,
a separate simulation run was performed. The estimator length is assumed to be L = 1000
symbols. The performance degradation in the absence of an SNR estimate can be observed
in Figure 3.39. In this case Ĉ21 is used for scaling of the features, instead of the signal
power. The impact reduces with decreasing noise and vanishes for SNR values γs ≥ 15 dB.
For SNR values γs < 7 dB, it happens that Ps drops down to 0. This is due to the fact
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Figure 3.39: Modulation classifier success rate (DVB-S2, SNR mismatch)

that the estimator decides for 32-APSK although this modulation scheme is not used for
γs < 6.68 dB (see Table 3.4). Since no SNR estimate is available, the SNR restriction
feature is disabled and can not counteract this problem. Moreover, the effect of small errors
∆γ on the SNR estimate is shown, i.e. γ̂s [dB] = γs [dB] +∆γ [dB]. For ∆γ = 0 dB the
SNR estimate coincides with the true SNR. It can be seen that the impact of small offsets
is nearly negligible. Thus the pre-estimate γ̂∗s should be sufficient for scaling purposes.

Scenario Supported Modulation Schemes The second problem set S2 consists of
all supported modulation schemes, i.e. S2={2-PSK, 4-PSK, 8-PSK, 16-QAM, 64-QAM,
16-APSK, 32-APSK}. The evolution of the success rate Ps for S2 is depicted in Figure 3.40.
The degradation in the medium SNR range stems mainly from wrong decisions of 16-QAM
and 64-QAM, as can be seen from the confusion matrix in Table 3.5. The abbreviation M1
to M7 is used for 2-PSK, 4-PSK, 8-PSK, 16-QAM, 64-QAM, 16-APSK and 32-APSK due
to the limited space. It can be seen that this degradation can be mitigated by increasing
the estimator length, as shown for L = 50000.
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Figure 3.40: Modulation classifier success rate (supported modulation schemes)

Table 3.5: Confusion matrix of differential scheme

Estimated

True M1 M2 M3 M4 M5 M6 M7

M1 1.0 0 0 0 0 0 0

M2 0 1.0 0 0 0 0 0

M3 0 0 1.0 0 0 0 0

M4 0 0 0 0.834 0.166 0 0

M5 0 0 0 0.354 0.646 0 0

M6 0 0 0 0 0 1.0 0

M7 0 0 0 0 0.001 0 0.999
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3.10 SNR Estimation
From the pre-estimation stage there is already a measure for the SNR with sufficient
accuracy available. So the question arises, why to estimate the SNR again? There are
three reasons for this additional effort: (i) the accuracy of the refined SNR estimate may
be superior to the pre-estimate; (ii) a failure of the symbol timing recovery stage might be
detected by a significant drop in the estimated SNR; (iii) powerful SNR estimation can be
used to estimate the roll-off factor in alternative manner, since the SNR at the MF output
is a maximum for a properly designed receiving filter.
From the different available approaches for SNR estimation [47], it turns out that

moment-based estimators tend to fit best for the task to solve. For example, maximum
likelihood (ML) methods seem to be too complex from the computational point of view. The
drawback that moment-based estimators are suboptimal is outweighed by the advantages
that they are NDA, feature simple implementation and do not require carrier recovery.
The standard M2M4 estimator [47] exhibits good performance for signal constellations
with constant envelope such as PSK; however, it deteriorates completely for multi-level
schemes, e.g. QAM and APSK, in the medium-to-high SNR range. An attempt to extend
the usable SNR range by applying additionally the sixth-order moment M6 is made in [49].
Using partitioned subsets of the original signal constellation with equal magnitude is
presented in [50]. This approach exhibits good performance in the medium-to-high SNR
range, but it degrades for small SNR values due to wrong assignment of the symbols
to the subsets. Finally, in [51] an estimator using also the eighth-order moment M8 is
presented to achieve satisfactory performance for multi-level constellations. Moreover, the
algorithm allows tuning for specific SNR values. Thus, a combined estimator is furnished,
consisting of the standard M2M4 estimator for the low SNR range, the partitioned method
in the medium-to-high SNR range and the M8 estimator for the overlapping area when
performance is insufficient. The SNR pre-estimate is used to choose the appropriate
algorithm.
The above mentioned estimators require correction of the symbol timing offset as well

as the removal of oversampling such that the symbols, impaired by frequency and phase
offset, are applied as input. A residual timing error will lead to catastrophic behavior
of the estimator. An alternative algorithm which does not rely on timing recovery is
presented in [34]. The main drawback of this method is the limitation to the medium
SNR range for reasons of sufficient accuracy.

3.10.1 Moment-Based Estimator

An observation length of L symbols is used to estimate the second- and fourth-order
moment M2 and M4:

M2 = E [xi x∗i ] ≈ M̂2 = 1
L

L∑
i=1
|xi|2 (3.55)
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M4 = E
[
(xi x∗i )

2
]
≈ M̂4 = 1

L

L∑
i=1
|xi|4 (3.56)

Since signal and noise are zero-mean and independent, with independent real and
imaginary part of the latter, the above equations can be written as

M2 = Es + En (3.57)
M4 = K4E

2
s + 4EsEn + 2E2

n (3.58)

where K4 corresponds to the symbol kurtosis K4 = Ec[|ck|4]. Solving the above equations
for Es and En and forming the result to the ratio γs = Es/En delivers the estimator

γ̂s =

√
2M̂2

2 − M̂4

M̂2 −
√

2M̂2
2 − M̂4

(3.59)

The normalized CRLB, as a lower limit for the accuracy of this estimator, can be stated
as [50]

NCRLB = CRLB
γ2
s

= 1
L

(
1 + 2

γs

)
(3.60)

3.10.2 Partitioned Moment-Based Estimator

With increasing SNR the estimate is dominated by self noise for constellations with varying
symbol amplitude levels. So, as presented in [50], the idea is to partition the symbols in
areas with constant magnitude. For the estimation process, only symbols of one region
are considered for calculation of required moments. When keeping the number of input
symbols constant this will lead to a reduction of usable symbols according to the selected
subset. Since only symbols located on a circle with radius ri are processed, the assumption
of a constellation with unit variance does not hold anymore. This has to be taken into
account in the final estimator formula given by

γ̂s =

√
2M̂2

2 − M̂4

r2
i

(
M̂2 −

√
2M̂2

2 − M̂4

) (3.61)

16-QAM In Figure 3.41 the first quadrant of the supported QAM constellations is
illustrated. In case of 16-QAM, as shown in Figure 3.41a, it can be seen that this
modulation type exhibits three levels of different amplitudes, i.e. r1, r2 and r3. In all four
quadrants, four symbols are located on both inner and outer circle with radii r1 and r3;
the remaining eight symbols are on the middle circle with radius r2. Thus, three regions
for partitioning can be defined, i.e. χ1, χ2 and χ3. The decision borders for the regions
are assigned by radii ra and rd. An analysis on the selection of ra and rd depending on the
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Figure 3.41: Partitioning of QAM constellations for SNR estimation

SNR is given in [50] as well. A convenient choice and also the solution for the asymptotic
case γs →∞ is

ra = (r1 + r2)/2 (3.62)
rd = (r2 + r3)/2 (3.63)

Again, it should be mentioned that scaling of the received signal is necessary for correct
partitioning as described in Section 3.7. Now the question arises, which of the three defined
regions should be used for SNR estimation? In [50] the usage of region χ2 is suggested
since it exhibits the lowest NMSE in the high SNR range. It is clear that using χ2 for
large SNR values involves twice the number of symbols compared to the two remaining
regions. In Figure 3.42 the mean estimator output and in Figure 3.43 the evolution of
the NMSE are illustrated. The estimator length is set to L = 1024 symbols. Thus, in the
noiseless case and assuming equiprobable symbols, applying partitioning of regions χ1 or
χ3 results in 256 symbols used for estimation. In case of using χ2, the number is twice as
large on average, i.e. 512 symbols. By inspection of the simulation results it becomes clear
that for SNR values γs ≤ 20 dB using χ3 leads to best performance, although increasingly
biased with decreasing SNR. However, above this threshold using χ2 is superior due to
unambiguous assignment of the symbols. For comparison reasons, the standard algorithm
without partitioning is displayed as well. In the low SNR range, i.e. γs ≤ 10 dB, this
estimator works satisfactorily; however, with decreasing noise, the accuracy degrades more
and more.
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Figure 3.42: Mean SNR estimator output for different partitions (16-QAM)

64-QAM From Figure 3.41b it can be seen that for 64-QAM the magnitudes of the
symbols are aligned on nine different levels. The evolution of the estimated mean and
NMSE exhibits similar effects as for 16-QAM. To achieve best performance in the high
SNR range the symbols from region χ2 should be taken for estimation. Below a certain
SNR value, depending on the estimator length L, the usage of partition χ4 is recommended.
Since only four symbols are located in region χ4, the estimator length has to be increased
appropriately to achieve satisfying results. In Figure 3.44 and Figure 3.45 the performance
plots for 64-QAM are depicted. From both illustrations the poor performance due to the
reduced estimator length can be seen. Also, the algorithm without partitioning exhibits
insufficient accuracy in the low-to-medium SNR range. But, when increasing the estimator
length from L = 1024 to L = 8192 the performance gap can be nearly closed.

16-APSK As illustrated in Figure 3.46a, 16-APSK exhibits two different amplitude
levels. From the above results for QAM, it is clear that the recommended partition region
χ2 should contain the symbols on the outer circle. Thus, in average only one fourth of the
received symbols has to be omitted from the calculation.

32-APSK Figure 3.46b shows the signal constellation of 32-APSK. The symbols are
distributed over three circles. On the outermost circle, 16 symbols are located. So, it should
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Figure 3.43: Evolution of NMSE for γ̂s at different partitions (16-QAM)

be clear to take symbols with magnitudes larger than rd for estimation. When choosing χ2
for partitioning, one half of the symbols will be discarded on average from the calculation
process. For performance comparison, the estimator length is set to L = 1024 symbols.
In Figure 3.47 and Figure 3.48 the mean estimator output and the NMSE evolution are
illustrated for 16-APSK and 32-APSK. Again, the estimator omitting partitioning is
considered as well. Like for QAM, the latter performs satisfactorily below a certain SNR
value; however, above this value the accuracy gets increasingly worse. The partitioned
counterpart behaves the other way round.

3.10.3 Multi-level Moment-Based Estimator

From the performance analysis of the above presented algorithms, the idea arises to use
the standard estimator in the low SNR range and the partitioned method in the high
SNR range. However, in the transition section, where both algorithms are suboptimal,
the performance is not satisfactory. A scheme which has adequate performance in this
transition zone would be favorable, especially for QAM constellations. The M8 algorithm
presented in [51] seems to be appropriate, since it allows tuning of parameters for specific
SNR values. In short, the estimator relies on the fact that a weighted linear combination
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Figure 3.44: Mean SNR estimator output for different partitions (64-QAM)

of quotients of the form

f(γs) = h(m) = β
M4
M2

2
+ γ

M6
M3

2
+ δ

M2
4

M4
2

+ ε
M8
M4

2
(3.64)

is a function of the SNR. Herein the vector m = [M2 M4 M6 M8]T and β, γ, δ and ε are
the weights. It is suggested to use the normalized SNR z = γs/(1 + γs). Thus, the above
equation can be written as

F (z) = F1z
4 + F3z

3 + F2z
2 + F0 (3.65)

with the coefficients

F4 = δ(c4 − 2)2 + ε[72(c4 − 1)− 16c6 + c8] (3.66)
F3 = (γ + 16ε)(12− 9c4 + c6) (3.67)
F2 = (β + 9γ + 4δ + 72ε)(c4 − 2) (3.68)
F0 = 2(β + 3γ + 2δ + 12ε) (3.69)

where ci = E[|xk|i] are the constellation moments. So, finally the estimator can be
formulated as finding the root of the polynomial F (ẑ)− h(m̂). An iterative procedure for
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Figure 3.45: Evolution of NMSE for γ̂s at different partitions (64-QAM)

finding the root can be written as

ẑn+1 =
√

h(m̂)− F0
F4ẑ2

n + F3ẑn + F2
(3.70)

with initial value ẑ0 = 1. The selection of the weights β, γ, δ and ε is depending on
the signal constellation and on the SNR operation range. Two criteria exist: one for the
high SNR range and one for a nominal SNR value. The authors of [51] provide Matlab
and Mathematica source code for computation of the weights for both criteria [52]. The
weights for 16-APSK and 32-APSK are calculated according to Criterion 1 and for 16-QAM
and 64-QAM are tuned to nominal values in the middle SNR range by Criterion 2 (see
Table 3.6). In Figure 3.49 and Figure 3.50 the mean estimator output and the NMSE
evolution of 16-QAM is depicted. The performance characteristics of all three introduced
schemes are shown, i.e. standard, partitioned and multi-level estimator. Moreover, the
results for the combined estimator, choosing the most appropriate algorithm, can be
seen. This combined version either takes an SNR hint from the pre-estimation stage
as input or first executes the multi-level algorithm and afterwards, depending on the
result, the standard or partitioned estimator. The SNR limits in which the multi-level
algorithm is employed were derived by numerous simulation runs and are summarized in
Table 3.7. Especially, from the NMSE evolution plot it can be seen that the multi-level
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Figure 3.46: Partitioning of APSK constellations

Table 3.6: Weights for multi-level SNR estimator

Modulation type Criterion β γ δ ε

16-APSK C1 6.1331 -2.8918 -1.4676 1.0

32-APSK C1 12.0919 -3.8541 -2.7024 1.0

16-QAM C2 (15.0 dB) 7.3773 -2.5011 -2.8080 1.0

64-QAM C2 (17.0 dB) 9.0404 -3.9957 -1.6295 1.0

estimator closes the performance gap in the range from 10 to 15 dB. The most challenging
constellation in terms of SNR estimation is 64-QAM. From the above results it should be
clear that an increase of the estimator length compared to other modulation schemes is
required to achieve satisfactory performance. This observation holds true for the multi-level
method as well. In Figure 3.51 and Figure 3.52 the performance results for all three
introduced algorithms are shown for 64-QAM. In this case the estimator length was set
to L = 8192 symbols. Even with the increased observation interval, some deviation is
recognized around 20 dB. Compared to an estimator length of L = 1024, the usable range
for the multi-level approach is extended appropriately from 16 dB to 19 dB. When further
increasing the number of processed symbols to L = 32768, the limit should be set to 21 dB
and the performance is satisfactory over the whole range.
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Figure 3.47: Mean SNR estimator output (APSK)

3.10.4 Combined Estimator

Finally, the performance of the combined algorithm that selects the most appropriate SNR
estimator is depicted in Figure 3.53 and Figure 3.54 for all supported modulation schemes.
The estimator length is set to L = 1024 for all signal constellations, except for 64-QAM
which is operated with L = 8192. For this case, the asterisk should indicate that for a

Table 3.7: Limits for multi-level SNR estimator

Modulation type Lower Limit [dB] Upper Limit [dB]

16-APSK 8.0 14.0

32-APSK 7.0 14.0

16-QAM 10.0 16.0

64-QAM (L = 1024) 12.0 16.0

64-QAM (L = 8192) 12.0 19.0

64-QAM (L = 32768) 12.0 21.0
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Figure 3.48: Evolution of NMSE for γ̂s (APSK)

fair comparison among the modulation schemes the estimator length has to be adjusted
to the same values. It can be seen that the performance of the combined algorithm is
quite satisfactory over the SNR range of interest. The only case where the mean estimate
deviates from the true value is for 64-QAM around 20 dB.
To avoid pitfalls it should be pointed out that the presence of ISI can completely

deteriorate the performance of the presented SNR estimation algorithms. For the previous
simulation runs, perfect recovery of the symbol timing was assumed. But, what would
happen to the results in presence of a residual timing offset? This could occur when timing
recovery omits appropriate interpolation and instead uses selection of the ‘best sample’.
Figure 3.55 shows the mean estimator output when the symbols are impaired by residual
timing offsets. The errors used for the simulation are ε = 0, ε = 1/8, ε = 1/16, ε = 1/32
and ε = 1/64, where QPSK is chosen as modulation scheme. It is obvious that, with
increasing timing offset, the impairment gets more pronounced. This should be kept in
mind when deciding for a ‘best sample’ approach. Of course, this fact has to be considered
as well for the selection of appropriate timing recovery and interpolation schemes.
For implementation it is suggested to check the result of the square root which is

present in all estimation algorithms (see Equations 3.59, 3.61 and 3.70). It can happen
that the radicand gets negative which will lead to a complex number. The effect is
especially observed for constellations with non-constant envelope when using the standard
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Figure 3.49: Mean multi-level SNR estimator output (16-QAM)

or multi-level estimator; the number of such estimation failures accumulates with increasing
SNR.
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Figure 3.50: Evolution of NMSE for multi-level SNR estimator (16-QAM)
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Figure 3.51: Mean multi-level SNR estimator output (64-QAM)
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Figure 3.52: Evolution of NMSE for multi-level SNR estimator (64-QAM)
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Figure 3.53: Mean SNR estimator output (combined estimator)
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Figure 3.54: Evolution of NMSE for γ̂s (combined estimator)
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Figure 3.55: Mean SNR estimator output in presence of ISI
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3.11 Roll-off Factor Estimation II
At this point of the blind demodulation process, the opportunity arises to determine the
filter roll-off using a different approach compared to the one described earlier in Section 3.5.
As discussed in Section 3.6, the main purpose of the MF is to maximize the SNR at its
output. Considering this fact, the received signal can be filtered using different roll-off
factors to determine the excess bandwidth for which the output has maximum SNR. Before
applying the filtered signal to the SNR estimator, presented in Section 3.10, the optimum
timing instant has to be recovered for proper operation. This necessitates the efficient
algorithms introduced in Section 3.8 that exhibit satisfactory performance even for small
roll-offs. In Figure 3.56 the block-diagram of the proposed estimator is illustrated.

Matched Filter Timing Recovery SNR Estimator

α̃i

rk xk γ̂s,i

Figure 3.56: Roll-off determination using SNR estimation

The measurement is repeated for N different roll-off factors such that N estimates for
the SNR are available, i.e. ΓN = {γ̂s,1,γ̂s,2, . . . ,γ̂s,N}. Thus, an estimate for α can be
extracted as

α̂ = argmax
αi
{ΓN} (3.71)

An improvement of the accuracy can be achieved by applying spline interpolation on the
values of ΓN .

In the following, the performance of the SNR-based algorithm is compared to the IFFT
method described in Section 3.5. For the required timing recovery the OM algorithm
and a cubic Lagrange interpolator are used. The oversampling ratio is assumed to be
Ns = 4, so that 16384 symbols are applied to the SNR estimator. In Figure 3.57 the mean
estimator output of both approaches is depicted for QPSK and 16-APSK. For the IFFT
method only QPSK is shown, since the approach is independent of the modulation scheme.
It seems that the SNR method exhibits no bias like the IFFT approach. Interesting is
the performance degradation for 16-APSK at an SNR of γs = 15 dB. This SNR value
coincides almost with the switching threshold between multi-level and partitioned SNR
estimator, defined in Table 3.7. It seems that wrong assignments of the symbols to the
partition sets are responsible for this behavior. This kind of degradation is even more
pronounced for QAM constellations and 32-APSK. The MSE of both estimators is shown
in Figure 3.58 for all supported constellations. It is obvious that the MSE performance
of the SNR method is superior for M-PSK; however, for multi-level constellations the
previously discussed SNR estimator problems affect the estimation result. For 16-QAM
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Figure 3.57: Mean estimator output for roll-off estimators

the MSE of the SNR algorithm drops below the one of the IFFT method not before
γs = 25 dB; 32-APSK improves at γs = 17.5 dB and 64-QAM outside the simulated range.
For better understanding of this effect, the SNR estimator output versus the MF roll-off is
depicted in Figure 3.59 for 32-APSK as modulation scheme for different SNR values. The
estimator length is set to L = 8192 and the roll-off to α = 0.35. As can be seen, for an
SNR of γs = 15 dB the maximum SNR is not located at the true roll-off, but at the end of
the simulated range due to wrong partitioning. At a lower SNR of γs = 12.5 dB without
partitioning and at a higher SNR of γs = 17.5 dB with negligible partitioning errors, the
SNR estimator produces a maximum at the expected roll-off. Thus, in the range of poor
performance the use the IFFT method or increasing the estimator length and changing
the switching threshold of the multi-level SNR estimator are suggested. However, care
has to be taken since, with increasing SNR, stability issues occur more frequently for the
multi-level estimator, as discussed in Section 3.10. Another property, identified from the
simulation result, is that the SNR evolution for varying roll-off around the maximum is
shaped rather flat, which can lead to estimation errors for short estimator lengths or in
the low SNR range.
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3.12 Frequency Estimation
Algorithms for NDA estimation of the normalized carrier frequency offset ∆fT are well
established for M-PSK signal constellations [53]. The method by Rife and Boorstyn
(RB) [54] or Luise and Reggiannini (LR) [55] are prominent examples in this respect. As
described in [56], for determination of the estimate ∆f̂T , a nonlinearity is used to remove
the effects of modulation, resulting in a harmonic with constant amplitude affected by
additive noise. This sinusoid exhibits both frequency and phase that are multiples of the
true frequency and phase offsets.
The nonlinear transformation suggested by Viterbi and Viterbi (VV) [57] is widely

established. When writing the symbols, impaired by frequency and phase offset, in polar
form as xn = ρne

ϕn , the nonlinearity can be formulated as

yn = −ρµn emϕn (3.72)

The design parameter µ is usually drawn from the set µ ∈ {0,1,2}. For M-PSK signals,
m corresponds to the order M of the modulation scheme; however, this is not true for
multi-level constellations, as will be shown below.
The least squares solution and the RB algorithm, derived from the ML estimator, are

equivalent. The estimator can be written as

∆f̂T = 1
kzpLm

arg max
k

∣∣∣∣∣∣
kzpL−1∑
k=0

yk e
−2πk/kzpL

∣∣∣∣∣∣ (3.73)

Herein, L is the number of used symbols and kzp the zero-padding factor to increase
the resolution of the frequency axis. The DFT, contained in the above equation, can be
computed efficiently by using an FFT of length N = kzpL. The location of the identified
maximum is refined by means of parabolic interpolation (see Appendix A.1). Similar to
the symbol rate estimator, introduced in Section 3.3.1, the result will either be accurate
or completely wrong, when identifying the highest spectral line as estimate. This type of
error is termed as outlier in the open literature. The latter manifests itself as a significant
increase of the MSE (threshold effect). One main advantage of the RB estimator is the
wide operational range of |∆fT | < 1/(2mT ). The basic feedforward frequency offset
estimation and the correction principle is depicted in Figure 3.60. Therein, the delayed
symbols are multiplied by a complex exponential with a frequency −∆f̂T for derotation
purposes. The dashed pre-processing block performs the required partitioning, presented
in the following and necessary for several modulation schemes.

The above described procedure is working properly for M-PSK signals, however, problems
arise for multi-level constellations since no promising way for stripping off the modulation
from the symbols xn is available. A way to tackle the problem is to apply partitioning,
similar to SNR estimation in Section 3.10.2. This strategy is exemplified in [56] for
16-QAM. A similar method was already suggested in [58], although approaching the
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Pre-processing

Figure 3.60: Feedforward frequency offset recovery

problem from a different perspective. In more recent papers it is tried to find an optimal
nonlinear transformation such that the asymptotic variance of the estimator is minimized.
This approach is followed in [59] for circular QAM signals and in [60] for general QAM
constellations, including 16-QAM and 64-QAM. The optimal transformation depends on
the signal constellation as well as on the SNR. To circumvent the complex calculation of
the optimum transformation, a linear approximation is applied. The latter can be used
for a wider SNR range and turns out to be related closely to the standard partitioning
proposed in [56]. In the following, partitioning procedures will be described to support
multi-level constellations.

M-QAM The first quadrant of the 16-QAM constellation is illustrated in Figure 3.61a.
It can be seen that the symbols located on the middle circle are not spaced equidistantly
and thus usage of the VV nonlinearity would lead to adverse effects. In contrast, the data
points on the inner and outer circle form a QPSK constellation and can be considered for
the estimation procedure. As indicated in the illustration, three subsets of symbols can be
formed, i.e. χ1, χ2 and χ3, such that a partitioning procedure can be formulated as

ρn =


|xn| xn ∈ χ1

0 xn ∈ χ2

|xn| xn ∈ χ3

(3.74)

When calculating yn, the argument of xn has to be multiplied by m = 4. If assuming
equiprobable symbols, on average only half of the data is used for estimation and thus will
lead to degradation of performance.
Figure 3.61b shows the subsets χ1 to χ5 that can be formed for 64-QAM using similar
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Figure 3.61: Partitioning of QAM constellations for frequency offset estimation

considerations as for 16-QAM. The partitioning can be summarized as

ρn =



|xn| xn ∈ χ1

0 xn ∈ χ2

|xn| xn ∈ χ3

0 xn ∈ χ4

|xn| xn ∈ χ5

(3.75)

M-APSK For APSK constellations the partition subsets defined previously in Sec-
tion 3.10.2 can be used as shown in Figure 3.46. Therefore, the following procedure can
be used to compute yn:

ρn =
{

0 xn ∈ χ1

|xn| xn ∈ χ2
(3.76)

This produces a 12-PSK constellation for 16-APSK and a 16-PSK constellation for 32-APSK
residing on the outermost circle. Hence, the multiplier of the argument of xn has to be
chosen as m = 12 for 16-APSK and m = 16 for 32-APSK.

In the following, simulation results will be presented which demonstrate the performance
of the introduced estimator. The MCRLB is used to compare the performance of the
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algorithms and is defined as [19]

MCRLB = 3
2π2

1
L(L2 − 1)γs

(3.77)

In Figure 3.62 the evolution of the MSE is depicted. The estimator length is set to
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Figure 3.62: Frequency MSE for different modulation schemes

L = 1024 symbols, with a zero-padding factor of kzp = 4 leading to an FFT length of 4096
points. The roll-off factor is assumed to be α = 0.35. The Viterbi parameter is set to µ = 1,
since it produces the most promising results. Finally, the frequency offset is assumed
to be ∆fT = 0.01. The aforementioned threshold effect can be observed very clearly
in the low SNR range. Moreover, the poor performance of both APSK schemes should
be emphasized, but no promising alternative algorithm was found up to now. It seems
that an SNR of at least γs = 16 dB is required for satisfactory performance of 32-APSK,
otherwise the performance is degraded by the threshold effect. Increasing the estimator
length L will shift the threshold in direction of smaller SNR values. The latter effect can be
observed in Figure 3.63 for 16-QAM and 32-APSK. It is obvious that, although increasing
L, the threshold still remains in the medium SNR range. Of course, this behavior is not
acceptable and thus future work will focus on this topic.
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Figure 3.63: Frequency MSE for different estimator lengths

3.13 Phase Estimation
As mentioned in the previous section, by applying a nonlinearity on the symbols a harmonic
with frequency and phase being multiples of the true offsets is generated. With xn = ρne

ϕn

the same nonlinearity yn as for frequency estimation, proposed by Viterbi and Viterbi [57],
can be used:

yn = −ρµn emϕn (3.78)

In the above formula the minus sign has to be removed, if BPSK or 32-APSK are applied
as modulation schemes. Thus an estimate for the phase offset can be derived as

θ̂ = 1
m

arg
(
L−1∑
k=0

yn

)
(3.79)

The basic arrangement of the above estimator in a feedforward manner is illustrated in
Figure 3.64. It is clear that multiplication of the phase ϕn by the factor m will lead to
an m-fold ambiguity. Typically, the latter will be resolved by use of a known sequence
of symbols or by application of differential encoding. This ambiguity is irrelevant for
investigation of the estimator performance and, as will be shown in Section 3.14, for the
tasks to solve in the presented demodulation framework as well.
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Figure 3.64: Feedforward phase offset recovery

The related MCRLB as the theoretical limit of the jitter variance is given by [19]

MCRLB = 1
2Lγs

(3.80)

For the subsequent simulation runs, L = 1024 symbols are processed for phase estimation.
For each simulation point, 1000 iterations are performed. It is assumed that timing recovery
is ideal and no frequency offset is present such that ∆fT = 0.0. Finally, the roll-off is set
to α = 0.35 and the Viterbi design parameter to µ = 2.
Figure 3.65 shows the evolution of the MSE of the estimate θ̂ versus the SNR for the

supported PSK modulation schemes. It can be seen that the MSE of θ̂ reaches the MCRLB
in the medium SNR range. For low SNR values the MSE is highly dependent on the order
of modulation. Basically, with increasing order M the angular and radial jitter due to
noise is more pronounced, which results in an augmented MSE.

3.13.1 M-QAM

Since the same nonlinear transformation is used as previously for frequency estimation,
the same considerations on partitioning apply. This would suggest the same procedure
given by Equation 3.74 for 16-QAM and Equation 3.75 for 64-QAM. Another estimation
scheme for 16-QAM that applies similar partitioning with an additional iteration using the
symbols located on the middle circle is presented in [61]. A promising hybrid NDA/DD
scheme for 16-QAM, denoted as two-pass (TP) estimator, is introduced in [56]. At first
an estimate θ̂ for the phase offset is derived using the previously described partitioning
approach. The result is used to correct the symbols for their phase offset by

zn = xne
− θ̂ (3.81)

The corrected symbols zn are still impaired by a residual phase offset ∆θ = θ − θ̂. A
second DD iteration tries to estimate the latter. The required decisions ĉn are derived
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Figure 3.65: FF phase MSE for M-PSK

from zn such that the estimator can be written as

∆θ = arg
(
L−1∑
k=0

znĉ
∗
n

)
(3.82)

The final estimate θ̂′ can immediately be calculated by

θ̂′ = θ̂ +∆θ̂ (3.83)

The blind demodulation framework uses the TP estimator for both 16-QAM and 64-QAM.
A performance comparison of the different approaches for QAM constellations is depicted
in Figure 3.66. It can be seen that, using the VV estimator without partitioning (denoted
by NP) leads to a significant jitter floor in the medium-to-high SNR range. By applying
the described partitioning scheme (P) the noise floor can be lowered considerably. However,
for both QAM constellations the MSE exhibits an offset to the bound even in the high
SNR range. Finally, when using the TP estimator, 16-QAM converges to the bound in
the medium and 64-QAM in the high SNR range. Thus, the TP method seems to be an
appropriate choice with reasonable complexity.
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Figure 3.66: FF phase MSE for M-QAM

3.13.2 M-APSK

Algorithms which are dedicated to APSK are surprisingly rare in the open literature. In
two recent papers, [62] and [63], feedback hybrid NDA/DD schemes working with 16-APSK
and 32-APSK are introduced. A comparison of the algorithms to the VV and power law
algorithm with and without partitioning is extensively presented in [64]. Therein it is
concluded that the performance of the hybrid algorithm does not differ significantly to
that of the VV estimator, when choosing the design parameter µ ≤ 2. Thus, it seems
convenient to choose the VV algorithm for phase recovery of APSK constellations.
For subsequent symbol decisions on the corrected signal zn, an issue arises which is

unique for APSK. The constellations are generated using Equation 2.10 and Equation 2.14.
Thus, the symbols located on the inner circle correspond to a QPSK constellation with the
symbols rotated by π/4 relative to the axis. In contrast, the outermost circle of 16-APSK
exhibits an ambiguity of β = π/6 and of 32-APSK of β = π/8. Due to this fact it is likely
that the QPSK constellation on the inner ring will remain tilted after phase recovery, which
will lead to problems during symbol decision. In Figure 3.67 the symbol constellation for
16-APSK and 32-APSK is re-illustrated for better understanding. The circles correspond
to the signal constellation as required for symbol decision. On the other hand, the red
crosses denote possible corrected symbols after perfect NDA phase recovery. It is obvious
that the symbols on the outer circle coincide with the desired constellation; however, the
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Figure 3.67: Ambiguity scenario for 16-APSK and 32-APSK constellation

QPSK constellation on the inner circle remains tilted by ∆θ. The only way to tackle this
problem is to generate a constellation that is ambiguous by β = π/2, such that the inner
QPSK star is properly aligned. For this reason a second iteration is performed on the
corrected symbols zn. After appropriate partitioning, phase estimation is performed on
the remaining QPSK constellation to obtain an estimate ∆θ̂. A subset χ1 can be formed
which includes all symbols with magnitude 0 ≤ |zn| < rd = (r1 + r2)/2, where r1 and r2
denote the radii of the first and second circle. The second subset χ2 includes all symbols
which are not part of χ1. Thus, the partitioning procedure can be stated as

ρn =
{
|zn| zn ∈ χ1

0 zn ∈ χ2
(3.84)
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Since on average only a fraction of the overall symbols, i.e. 1/4 for 16-APSK and 1/8 for
32-APSK, remains, increasing the estimator length is recommended. The symbols on the
inner circle are more sensitive to noise effects due to their small amplitude levels. Hence,
directly adding the estimated QPSK offset ∆θ̂ to the first estimate θ̂ would lead to inferior
performance. The phase corrected symbols zn exhibit negligible residual phase error when
assuming an accurate estimate θ̂. Thus, the QPSK estimate ∆θ̂ has to be a multiple of
the ambiguity β of the outermost circle. Keeping this in mind, a quantized estimate can
be generated by

∆θ̂′ =


⌊
∆θ̂
β + 1/2

⌋
β ∆θ̂ ≥ 0⌊

∆θ̂
β − 1/2

⌋
β ∆θ̂ < 0

(3.85)

In short, ∆θ̂ is divided by the ambiguity β and rounded to the nearest integer value,
thus when multiplied by β a quantized estimate is generated. In the above equation bxc
corresponds to the floor operation which rounds x to the next smaller integer value. So
the final phase estimate which aligns APSK constellations poperly for subsequent symbol
decision can be formed as

θ̂′ = θ̂ +∆θ̂′ (3.86)

Figure 3.68 shows the MSE evolution for the estimator without partitioning (NP), the
partitioned counterpart (P) and partitioned estimator plus additional alignment of the
QPSK constellation (Amb). It can be seen that the performance of all three algorithms is
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Figure 3.68: FF phase MSE for M-APSK
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nearly the same. The only differences that can be identified are a slight improvement in
the high SNR range due to partitioning and a slight degradation in the threshold region
for 32-APSK when aligning the QPSK constellation.

3.13.3 Tracking

Up to now it was assumed that the phase offset θ is constant in the interval of L symbols.
The latter is not true, if a significant residual frequency offset is present due to limited
accuracy of the frequency estimator. Problems may arise as well, if the estimator length L
is much smaller than the actual size of data that should be processed, such that even a
small frequency offset will have an impact on the phase.
A way out of this dilemma is the concatenation of a feedforward scheme and a phase

tracker. The feedforward method delivers an initial estimate which will serve the feedback
scheme as starting value. A thorough analysis of the VV detector can be found in [65].
The error signal of the detector is calculated according to

un = 1
m

arg (yn) (3.87)

A requirement for the phase tracker is to handle residual frequency offsets. Using a
first-order loop in presence of frequency errors would result in a static phase offset [19].
Thus, an additional integrator is necessary to arrive at a second-order loop which is able
to compensate for the rotation. Figure 3.69 shows the application of the phase detector
in a feedback manner using a second-order loop. As shown in Section 3.8, the transfer

A+B/(z − 1)1/(z − 1) NDA

un

ĉn

Phase DetectorLoop FilterIntegrator

e− θ̂n

xn

Figure 3.69: Feedback phase recovery using second-order loops

function F (z) corresponds to a constant gain factor KF in case of a first-order loop. For a
second-order loop, F (z) can be stated as

F (z) = A+ B

z − 1 (3.88)

Specifying the normalized equivalent noise bandwidth BLT and the damping factor ζ, the
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normalized natural frequency can be determined by

ωnT = 2BLT
ζ + 1/(4ζ) (3.89)

Reasonable values for ζ are in the range of ζ ∈ [0.6,1.0]. The determination of the detector
slope Kd depending on the design parameter µ and the SNR γs requires the evaluation of
a complex formula [65], which simplifies for µ = 2:

Kd(γs) = 6(e−γs − 1) + γs(6 + γs(γs − 3))
γ3
s

(3.90)

Using the above results, the coefficients A and B can be computed according to

A = 2ζωnT/Kd (3.91)
B = (ωnT )2/Kd (3.92)

Figure 3.70 shows the relevant symbols before and after phase recovery using first- and
second-order loops in presence of frequency error. For simulation the normalized equivalent
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Figure 3.70: Phase recovery in the presence of frequency errors

noise bandwidth is set to BLT = 0.01 and the damping factor to ζ = 1.0. QPSK is used
as modulation scheme with a roll-off of α = 0.35. The rotating red crosses correspond
to the received symbols xn, impaired by an initial phase offset θ0 = π/9 and a residual
frequency offset of ∆fT = 0.001. The magenta squares are the original transmitted data
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values cn. When using a loop of order n = 1, delivering the symbols zn1, the phase tracker
starts at the initial value of θ0; however, due to the frequency offset a residual phase shift
will remain. In case of a second-order loop, with corrected symbols zn2, the algorithm
corrects for the phase offset without being affected by the frequency offset. The tracker
requires approximately 200 symbols to reach the steady state condition.
Subsequently, simulation results of the MSE performance in the steady state case, i.e.

initial phase offset θ0 = 0, are shown. In Figure 3.71 the MSE evolution when using a
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Figure 3.71: FB phase MSE for first-order loops

first-order loop and in Figure 3.72 for a second-order loop are depicted. For comparison
reasons the MCRLB is added to the graphs as well. For feedback schemes the latter can
be stated as [19]

MCRLB = BLT

γs
(3.93)

Generally, the second-order loop exhibits increased MSE in the low SNR region. Since
the TP algorithm is not used, an offset to the MCRLB can be observed for QAM in the
medium-to-high SNR range which is more pronounced for the first-order loop. The choice
of BLT is a tradeoff between accuracy of the estimate and the ability to track changes in
the signal.
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Figure 3.72: FB phase MSE for second-order loops

3.14 Remodulation
After successful execution of the preceding stages, all required parameters for extracting
the transmitted symbols cn are available. Thus, decisions ĉn can be obtained by comparing
the ideal signal constellations to the recovered symbols. For this reason the I/Q plane
is divided into M decision regions depending on the specific modulation scheme. If a
recovered symbol is located in decision region n, the symbol associated to this partition
is assumed to be transmitted. The decision bounds are set to the mean of two adjacent
symbol phases ϕd,i = (arg (ci) + arg (ci+1))/2 and additionally, in case of multi-level
constellations, to adjacent symbol amplitude levels rd,i = (|ci|+ |ci+1|)/2. The obtained
decisions can be used to form a remodulated signal ûk as

ûk =
√
Êse

(2πkf̂cTs+θ̂)∑
i

ĉi ĥ((k/N̂s − i− ε̂)T̂ ) (3.94)

It can be seen that, when assuming ideal synchronization, the above equation corresponds
to a discrete version of the received single-carrier signal stated in Equation 2.2. This signal
is of great benefit in several applications related to satellite monitoring, as will be shown
in subsequent sections. For example, subtraction of ûk can be used to identify hidden
interfering signals or to improve SNR relationships when calculating the cross-ambiguity
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function (CAF).
For generation of the remodulated signal ûk, at first the decisions ĉn are zero-padded

to achieve a fixed rate of oversampling, e.g. Ns = 4, to keep processing complexity low.
Afterwards, the signal is multiplied by the scaling factor âs =

√
Ês. The following MF adds

the required timing offset ε̂ by modifying the impulse response appropriately. For timing
offsets ε ≥ 1/Ns the samples are shifted by multiples of 1/Ns and only the remaining offset
is integrated into the MF response as h(t− τ̂). The filter output is rotated by θ̂ to take
account for the phase offset. It should be mentioned that the m-fold ambiguity does not
influence the remodulation process. This is mainly due to the fact that the signal is now
rotated back by the estimated offset θ̂ which was corrected before decision making. In the
following, the signal is resampled to achieve the desired symbol rate f̂d. Depending on the
conversion rate either before or after the resampling an AAF is applied. Finally, the signal
is shifted to the center frequency f̂c by multiplication of a complex tone. If the above steps
are successful, an estimate of the received single-carrier signal without noise is available.
A way has to be found to evaluate the success of the remodulation stage. This can be

done by comparing the powers of the corresponding signals. Thus, the power Pr of the
received multi-carrier signal rk subtracted by the power Pu of the remodulated signal ûk
should be the power Pd of the difference signal rk− ûk. In the worst case, the power of the
difference signal Pd is not smaller than that of rk, but rather increased by the power of ûk.
A way to benchmark the remodulation is to define a threshold which will depend on the
specific application. For example a criterion for successful remodulation could be stated as

Pd < (2Pr − Pu)/2 (3.95)

This means that at least half of the expected power has to be subtracted to entitle the
remodulation process as successful.
In the following, simulation results will show the subtraction of the remodulated from

the received signal. In the first scenario a single 8-PSK carrier exhibiting an SNR of
γs = 16 dB is considered as received signal rk. The associated power spectrum Sr is
depicted in Figure 3.73a. The rate of oversampling is set to Ns = 4, the roll-off to α = 0.35
and the center frequency to fc = 0, to ease the inspection of the signal in the time domain.
The detection and synchronization algorithms described within this chapter are applied
to arrive at the remodulated signal ûk. The latter is subtracted from rk to arrive at
rd = rk − ûk with power spectrum Sd. As can be seen in Figure 3.73a, the subtraction
removes the signal component completely such that only the noise floor remains. By
inspection of Figure 3.73b it can be seen that the original received signal uk coincides with
the remodulated signal ûk.
In the next scenario it is tried to generate an example for erroneous remodulation. To

generate remodulation errors, the SNR is lowered to γs = 8 dB. The according power
spectrum Sd is shown in Figure 3.74. The signal component is only partly removed, so
that a residual carrier remains. In this case the previously introduced criterion would
identify the remodulation process as failed. For better understanding, in Figure 3.75 the
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Figure 3.73: Remodulation for 8-PSK at γs = 16 dB

ideal signal uk and the remodulated version ûk are illustrated in the time domain. For
demonstration purposes a large observation interval of N = 524288 samples was chosen
for remodulation. It can be seen from the first 200 samples that, besides from some
erroneous decisions, the remodulation procedure works as expected. However, the latter
does not hold true for samples at the end of the observation interval, which in contrast
show catastrophic behavior. This is mainly due to the fact that the estimate of the center
frequency f̂c exhibits a small error. Thus over a long period of time the remodulated
constellation rotates away from the true one. This behavior can be mitigated by applying
only chunks of appropriate size to the remodulation stage. An alternative solution could be
a refinement of the frequency estimate by applying the accumulated phase error provided
by the phase tracker.
The final scenario uses 2-PSK at an SNR of γs = 3 dB. The results of the successful

remodulation are depicted in Figure 3.76. From the spectral illustration in Figure 3.76a it
can be seen that the subtracted spectrum Sd exhibits peaks at the end of the transition
band. This suggests that the estimate of the roll-off is too small. From the time domain
representation in Figure 3.76b it becomes obvious that overshoots and wrong decisions
lead to degradation of the remodulation process. Indeed, the increased fluctuation is
caused by an error of the roll-off estimator, which delivers an estimate of α̂ = 0.15 instead
of α = 0.35.
As a parameter to determine the quality of the remodulation process the EVM Λ can

be used. The latter is usually specified in dB and defined as

Λ =
∑N−1
k=0 |uk − ûk|2∑N−1

k=0 |uk|2
(3.96)

It should be pointed out that this definition does not coincide with the one in [66], relying
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Figure 3.74: Remodulation power spectra for 8-PSK at γs = 8 dB

on symbols after the receiving filter, but is applied on the samples of the transmitted
signal. This definition enables direct assessment of the remodulation procedure, however
lacks an easy connection to the bit error rate (BER), as exemplified in [67]. For the first
scenario the EVM results in Λ1 = −33.03 dB, for the second in Λ2 = −0.71 dB and for the
final in Λ3 = −9.28 dB. Thus a significant increase of the EVM can be observed in case
of erroneous remodulation. A detailed investigation of the achievable EVM by the blind
demodulation framework is presented in the following section.
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Figure 3.76: Remodulation for 2-PSK at γs = 3 dB
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3.15 Overall Performance
In this section simulations demonstrate the capabilities of the developed blind demodu-
lation framework. It is clear that due to the unlimited number of possible input signals,
representative scenarios have to be defined to verify the functionality. Moreover, too many
parameters have to be determined such that it is unfeasible to present the estimation
performance for all in a clear manner. So mainly parameters which were not discussed in
detail in the previous sections are considered. The proper functioning of all estimation
stages is verified by investigation of the EVM, since it provides an adequate measure.

3.15.1 Single-Carrier Scenario

Error Vector Magnitude As shown previously in Section 3.14, the EVM Λ is directly
connected to the quality of the remodulated signal ûk. So, the EVM can be used for a
thorough test of the system, since a small EVM guarantees proper functioning of the
previous blind demodulation framework. Of course the question of the EVM performance
of the framework compared to a theoretical limit arises. The limit for the minimum
achievable EVM in absence of forward error correction schemes can easily be computed.
For this reason the received signal is assumed to be synchronized perfectly such that the
transmitted symbols cn remain, only impaired by Gaussian noise nn. The decisions ĉn
made on this signal are then remodulated and the EVM is calculated. It is clear that,
depending on the order of modulation, in the high SNR range the decisions ĉn correspond
almost to the true symbols cn, resulting in an EVM of almost Λ = −∞. However, with
decreasing SNR the number of wrong decisions increases and the EVM increases as well.
Figure 3.77 shows the evolution of the EVM when assuming ideal synchronization for
M-PSK signals.

To assess the remodulation performance of the blind demodulation framework, a simula-
tion is set up. For this scenario a single-carrier signal, oversampled by Ns = 4, is assumed.
The received signal is impaired by time and phase offset and the center frequency of the
carrier is chosen arbitrarily for each iteration. For each run the spectrum is scanned for
carriers, the signal parameters of found carriers are pre-estimated and then the carriers
are demodulated blindly. The decisions are remodulated and the EVM is calculated.
Each simulation point relies on 100 iterations. To guarantee proper carrier detection,
M = 75 blocks of length N = 216 overlapping by 75% are processed for generation of
a well-averaged periodogram. After successful parameter estimation a block of N = 214

samples is applied for remodulation. The EVM evolution of the proposed framework is also
included in Figure 3.77. It can be seen that in the medium SNR range the remodulation
performance is dominated by decision errors and thus very close to the ideal EVM. In
the high SNR range the EVM deviates from the ideal curve by exhibiting an error floor.
The latter is produced by small errors in the described parameter estimation process. Any
deviations from the true symbol rate fd, amplitude scaling factor as, center frequency fc,
timing offset ε and phase offset θ contribute to this error floor. For small SNR values the
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Figure 3.77: Evolution of EVM for M-PSK

EVM increases significantly. This threshold effect is produced by malfunction of the blind
demodulation framework. The main impact is due to the frequency estimator degradation
for higher order and multi-level modulation schemes, described in Section 3.12. Another
cause is the SNR restriction applied for modulation classification introduced in Section 3.9.
So, in the low SNR region the true modulation class may be eliminated by the restriction
and thus a wrong modulation scheme is used for remodulation.

The same effects can be observed for M-QAM constellations as illustrated in Figure 3.78.
The ideal curves are shifted in direction of higher SNR due to the increased probability
of false decisions. The noise floor in the high SNR region is approximately increased by
one order of magnitude. The threshold effect occurs at smaller SNR values compared to
8-PSK because of the solid frequency estimation performance of M-QAM.
Finally, Figure 3.79 shows the EVM performance for APSK signals. It is obvious that

the threshold effect is pronounced most significantly due to the poor frequency estimator
performance for APSK constellations. The noise floor remains at a similar level as for
M-QAM.

Remodulation Success Rate The introduced criterion for successful remodulation in
Equation 3.95 should be verified as well. The success rate according to the criterion is
depicted in Figure 3.80 for all modulation schemes. It can be seen, that this loose definition
for remodulation success matches the above EVM evolutions very well. Especially the
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Figure 3.78: Evolution of EVM for M-QAM

EVM threshold effect can be observed together with a significant drop in the success rate.
Thus the criterion can be used to judge whether remodulation was successful or not.

Interestingly, 16-QAM and 64-QAM exhibit the same success rate. The alert reader
may have noticed this effect already for the EVM evolution in Figure 3.78. The reasons
for this behavior are the used modulation classifier and the similarity of both signal
constellations in terms of quadrature symmetry. To further investigate this effect, a
simulation run is setup using 64-QAM at γs = 8 dB. Basically, the modulation classifier
excludes 64-QAM from the possible constellations for an SNR γs ≤ 8.45 dB (see Table 3.4).
Thus, the cumulant-based estimator decides for 16-QAM instead of 64-QAM. The blind
demodulation framework tries to demodulate the signal and remodulate the decisions,
assuming a wrong modulation scheme. The only parameter that indicates this failure is a
significant drop in the second SNR estimate. The moment-based SNR estimator evaluates
the SNR as γ̂s = 6.74 dB, in contrast to γ̂∗s = 8.00 dB of the spectral pre-estimation stage.
Then, the remodulated 16-QAM signal is subtracted from the received 64-QAM waveform.
In Figure 3.81, the spectra of the involved waveforms are depicted. It is obvious that,
although considering a wrong modulation scheme, the subtraction shows a significant
signal reduction. Additionally, in Figure 3.82 the real part of the transmitted signal uk is
compared to the remodulated version ûk. The remodulated signal ûk follows the original
uk, including a minor impact because of decision errors and offsets due to the coarser
resolution of possible symbol amplitudes.
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Figure 3.79: Evolution of EVM for M-APSK

SNR pre-estimate Since the SNR pre-estimate γ̂∗ computed in the carrier detection
stage (Section 3.1.1) is of major importance, the accuracy of the latter should be assessed.
It finds application in the rescaling stage and is used to choose appropriate algorithms,
e.g. SNR estimation, as well. For the simulation runs the previously set up single-carrier
scenario is used. In Figure 3.83, the mean estimation error of the pre-estimate (P) is
compared to the combined moment-based scheme (M) described in Section 3.10. It can
be seen that for multi-level constellations the moment-based estimator exhibits a slight
degradation in the medium and severe in the low SNR range. In contrast, the pre-estimate
tends to be robust over the entire SNR region, independent of the modulation scheme. From
Figure 3.84 it becomes obvious that the NMSE of the rough estimate is very solid and only
increases slightly in the low-to-medium SNR range. In contrast, the moment-based method
exhibits decreased NMSE in the medium-to-high SNR region. This is especially true for
PSK signals. However, in the low SNR range the moment-based method shows inferior
performance compared to the pre-estimate. The main reason for this is the increasingly
erroneous blind demodulation. So, errors in timing estimation, modulation classification
and roll-off estimation will lead to impairments on the symbols which are applied as input
to the moment-based SNR estimator. The outlier for 16-QAM at γs = 16 dB is caused by
switching between the multi-level and partitioned SNR estimator. Increasing the estimator
length L mitigates this effect. It can be summarized, that the pre-estimate γ̂∗ is a robust
and sufficiently accurate estimate of the SNR.
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Figure 3.80: Remodulation success rate

3.15.2 Multi-Carrier Scenario

Up to now the performance of the blind demodulation framework was verified by using
single-carrier scenarios. In the following it will be demonstrated that multi-carrier scenarios
can be handled as well. As for the single-carrier scenario, the carrier detection stage tries
to identify all possible carrier candidates within the observed bandwidth, however, with
the difference that the number of carriers is greater than one. After successful detection,
the blind demodulation process is executed sequentially for each carrier.

Error Vector Magnitude The simulation setup is the same as for the single-carrier
setup, but instead of a single carrier, seven carriers are spaced consecutively in the
bandwidth of interest. Each carrier features a different modulation scheme, such that all
supported constellation types are represented. The oversampling factor is set to Ns = 12
for all carriers. The simulation starts at an SNR of γs,q = 30 dB and is reduced down
to γs,q = 0 dB. For each simulation point 100 iterations are performed. It should be
mentioned that the detection algorithm exhibits solid performance, since no detection
failure occurred over the simulated SNR range. The evolution of the EVM is depicted in
Figure 3.85. The solid lines correspond to the ideal EVM limits, derived in the previous
section. It can be seen, that the EVM performance coincides with the results from the
single-carrier scenarios shown in Figures 3.77, 3.78 and 3.79.
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Figure 3.81: Remodulation power spectra for 64-QAM at γs = 8 dB

Remodulation Success Rate In Figure 3.86 the evolution of the remodulation success
rate, according to the criterion defined in Equation 3.95, is illustrated. When comparing
the success rate to the EVM evolution, it becomes obvious that the introduced criterion
reliably identifies the threshold effect due to deficient synchronization capabilities.
Finally, the output of the remodulation stage is examined in the frequency domain.

Figure 3.87 shows the spectrum Sr of the received signal at an SNR of γs,q = 16 dB. From
left to right, the carriers are modulated using 2-PSK, 4-PSK, 8-PSK, 16-QAM, 64-QAM,
16-APSK and 32-APSK. Moreover, the spectra Sd that remain after subtraction of the
remodulated signals ûk,q are displayed. It can be seen, that at such high SNR the carrier
subtraction works successfully. For some carriers a peak at the edge of the transition
band can be observed due to erroneous roll-off estimation. The fifth carrier from the left,
which corresponds to the 64-QAM constellation, exhibits a decrease of the noise floor after
subtraction.
When decreasing the SNR further down to γs,q = 6 dB, it is clear that the remodula-

tion will produce erroneous results. The according spectral representation is shown in
Figure 3.88. As expected from the EVM performance and the remodulation success rate,
the remodulation procedure fails for 8-PSK, 16-APSK and 32-APSK. Both QAM carriers
are subtracted and feature a decreased noise floor. Again it should be mentioned that the
64-QAM carrier is removed although 16-QAM is applied for remodulation. Still, flawless
subtraction can be observed for 2-PSK and 4-PSK.
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Figure 3.82: Remodulation waveforms for 64-QAM at γs = 8 dB

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 5 10 15 20 25 30

γ̂
s
−
γ
s

[d
B

]

γs [dB]

4-PSK P
16-QAM P
16-APSK P
4-PSK M
16-QAM M
16-APSK M

Figure 3.83: Mean SNR estimation error (spectrum- and moment-based)

102



3.15 Overall Performance

1e-05

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30

N
M

SE

γs [dB]

4-PSK P
16-QAM P
16-APSK P
4-PSK M
16-QAM M
16-APSK M

Figure 3.84: SNR NMSE (spectrum- and moment-based)

-60

-50

-40

-30

-20

-10

0

10

0 5 10 15 20 25 30

E
V

M
[d

B
]

γs [dB]

2-PSK
4-PSK
8-PSK
16-QAM
64-QAM
16-APSK
32-APSK

Figure 3.85: EVM evolution for multi-carrier scenario

103



Chapter 3 Blind Demodulation Framework

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

R
em

od
ul

at
io

n
su

cc
es

s
ra

te

γs [dB]

2-PSK
4-PSK
8-PSK
16-QAM
64-QAM
16-APSK
32-APSK
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CHAPTER 4
Applications

4.1 Cross-Polarization Discrimination Measurement

4.1.1 General Remarks

The polarization of an electro-magnetic wave is defined by the direction of the electric field
component [1]. When using orthogonal polarizations, the same frequency can be used twice
at the same location. Whereby orthogonal polarizations can either be horizontal/vertical
or left-/right-hand circular. In Figure 4.1, the principle of using two orthogonal linear
polarizations simultaneously is illustrated. At the transmitter, the electric field components
E1 and E2 (in blue) are properly aligned in the vertical and horizontal direction. When
assuming ideal conditions, the whole power transmitted in one polarization is received in the
same polarization plane at the receiver. However, this behavior changes when transmitting
and receiving antenna are not properly aligned. In this case, the field components E1 and
E2 (in red) are received as E1,c and E2,c in the co-polar plane and as interference E1,x
and E2,x in the cross-polar plane. When a signal is transmitted in one polarization plane,
cross-polarization discrimination (XPD) is then defined as the ratio between the power
received in this polarization to that received in the opposite (orthogonal) polarization.
Typically, the XPD is expressed in units of dB and thus can be stated as

XPD [dB] = 20 log10

(
E1,c
E1,x

)
(4.1)

Unfortunately, misalignment of the transmitting antenna is not the only reason for
degradation of the XPD. Antennas which can operate two different polarizations exhibit
finite isolation between both planes. So it is clear that there will be interference between
both polarization planes. The imperfection of dual polarization antennas is tolerable due
to the advantage that a single antenna can handle twice the bandwidth. To mitigate the
effects due to finite isolation, the transponders of horizontal and vertical polarization are
offset to each other in frequency, as sketched in Figure 4.2.
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Moreover, propagation effects, such as precipitation or Faraday rotation, can lead to
decreased XPD by depolarization of the transmitted wave. However, it is assumed that
these effects are small compared to the impairment by antenna alignment.
Before a satellite terminal can be put into service, a line-up procedure has to be

performed. By this means, it should be guaranteed that no interference occurs for the
present traffic. Typically, a continuous wave signal has to be transmitted which is inspected
by the provider control station. To avoid possible interference on the opposite polarization
plane, the transmitting antenna is adjusted until maximum XPD is achieved. After
successful line-up, the terminal can be put into operation using the assigned frequency
slot. From this point on it is not possible to repeat the above XPD measurement in an
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easy way with state-of-the-art techniques. The latter would again require the transmission
of a continuous wave signal, to re-run the described measurement procedure. It is obvious
that the insertion of such a signal would deteriorate the active traffic and thus requires a
stop of service. According to Eutelsat, such a measurement procedure has to be performed
once a week.
The proposed correlation approach, implemented on a software-defined radio (SDR)

platform, can perform the XPD measurement online without interruption of the active
services. A ground terminal, which can acquire signals from both polarization planes
simultaneously is a prerequisite for applying the proposed methods. For this purpose, a
dual polarization receive antenna with subsequent orthogonal mode transducer (OMT) is
required. The latter splits up the received signals according to their polarization, such
that co- and cross-polar signal are available on separate signal paths.

4.1.2 Proposed Estimator

Coarse Method

In absence of noise, an intuitive approach for estimation of the XPD, or the inverse thereof,
can be formulated. The inverse corresponds to the factor ac, by which the co-polar signal is
scaled to arrive at the cross-talked signal. At first, the auto-correlation Rl,cc of the co-polar
signal rk,c is calculated. The maximum of the auto-correlation Rm,cc corresponds to the
co-polar signal power Pc. Afterwards, the cross-correlation Rl,cx of co- and cross-polar
signal, rk,c and rk,x, is computed, whereby the maximum Rm,cx delivers the cross-talked
power acPc. Auto- and cross-correlation are calculated according to [68]

Rl,cc =
L−1∑
k=0

r∗k,crk+l,c (4.2)

Rl,cx =
L−1∑
k=0

r∗k,crk+l,x (4.3)

Herein L denotes the number of processed samples. The time lag l is set to l = 0, for
the auto-correlation, whereas for cross-correlation it is set to a value, depending on the
expected timing offset between the co- and cross-polar signals. Since the time lag can only
be selected in units of samples, interpolation is applied to receive a refined estimate of the
cross-correlation maximum (see Appendix A.1). The ratio of the maxima of cross- and
auto-correlation corresponds to the estimate of the scaling factor ac:

âc = Rm,cx
Rm,cc

≈ acPc
Pc

= 1
XPD (4.4)
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As initially defined, the inverse of âc delivers the estimate of the XPD. The attenuation
factor in dB is denoted by ξc and obviously given by

ξ̂c = 20 log10(âc) (4.5)

Unfortunately, this method will only work properly in absence of noise, which is, of course,
not the case in practice.

Considering again the above estimation algorithm, the impact of noise becomes obvious.
The problem is that the auto-correlation Rl,cc calculates the power of the received signal
rk,c, which actually includes signal power Pc plus noise power Pnc, i.e. Rm,cc = Pc + Pnc.
In contrast, the cross-correlation Rl,cx delivers the power of the signal component common
to both polarization planes. As shown, the latter can be formulated as a scaled version
of the co-polar signal power Pc, i.e. Rm,cx = acPc. It should be added that this does
only hold true, if the noise contributions of the horizontal and vertical polarization are
independent. Finally, the correlation ratio develops to

âc = Rm,cx
Rm,cc

≈ ac
Pc

Pc + Pnc
(4.6)

So it should be clear that, with increasing noise, the estimate âc will be increasingly biased
as well. For this reason, the introduced method can be applied in the high SNR range
reliably, otherwise it only serves as a coarse estimate.
Typically, the mixers for the transponders on opposite polarization planes onboard

the satellite and the mixers in the monitoring station, derive their frequency from the
same local oscillator. Thus, it can be assumed that the frequency offset between co-
and cross-polar signal is negligible. The presence of a frequency offset would degrade
the correlation performance. In such a case, standard correlation has to be replaced by
calculation of the cross-ambiguity function (CAF) [69], as will be discussed very detailed
in Section 4.2.2. The CAF exhibits a maximum at the corresponding frequency and time
offset, which will be used instead of the above cross-correlation peak Rm,cx.
The described correlation algorithm is implemented in such a way that the carrier

under consideration is converted down to baseband and filtered according to the carrier
bandwidth bc. If possible, the signal is decimated appropriately to reduce computational
complexity of the following correlation stage.

Effective SNR The required number of samples L that has to be processed for generation
of a proper correlation peak depends on the actual scenario. According to [70], the effective
SNR γs,o of the correlation peak can be evaluated by

γs,o = 2BTL
γs,cγs,x

γs,c + γs,x + 1 (4.7)
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where γs,c denotes the SNR of the co-polar carrier and γs,x of the cross-talk signal. The
latter depends on the XPD and the noise floor of the cross-polar plane, whereby any
cross-polar traffic can be viewed as additional noise contribution. The factor 2BTL is
termed as processing gain of the correlation and consists of the noise bandwidth B and
the observation interval TL. As stated in [70], an effective SNR of approximately 20 dB is
necessary for unique identification of the correlation peak. Hence, the above equation allows
computation of the required number of samples for producing a significant correlation
peak according to the specific scenario.

Refined Method

The result of the previously described algorithm is mainly impaired by the contribution of
noise in the auto-correlation Rl,cc. An obvious solution for this problem, is the correction
of Rm,cc by the noise power Pnc. An estimate for the noise power over the entire co-polar
bandwidth is computed during the carrier detection procedure, described in Section 3.1.1.
The latter can be used to derive Pnc, the noise power inside the bandwidth bc. By this
means, a refined estimate for the attenuation factor can be calculated according to

ξ̂′c = 20 log10

(
Rm,cx

Rm,cc − P̂nc

)
(4.8)

Simulation Results In the following, the performance of the coarse and refined method
will be compared by simulation runs. For this reason, the knowledge of all relevant
parameters required for XPD estimation is available. In the first scenario, a single QPSK
carrier is generated. The attenuation from the co- to cross-polar plane is set to ξc = −25 dB.
For both methods, the mean estimator output versus the SNR is depicted in Figure 4.3.
It can be seen that the coarse method (C) increasingly deviates from the true value with
smaller SNR values. In contrast, the refined algorithm (R), applying the noise power
estimate P̂nc, delivers an output close to the true value over the whole SNR range. When
assuming an oversampling rate of Ns = 4 and an estimator length of L = 262144 samples,
the processing gain becomes 51.18 dB. This results in an effective SNR γs,o = 23.16 dB
at an SNR γs,c = 0 dB and γs,o = 56.16 dB for γs,c = 30 dB. Hence, the estimator
length is sufficient to guarantee proper peak estimation over the whole SNR range. As
mentioned above, any traffic on the opposite polarization can be considered as further
noise contribution. So, when adding cross-polar traffic with an SNR γs,x = 15 dB, the
effective SNR evaluates as γs,o = 8.16 dB for an SNR γs,c = 0 dB and as γs,o = 41.17 dB for
γs,c = 30 dB. The reduced effective SNR will lead to increased jitter of the correlation peak.
In the low SNR range the post correlation SNR becomes even significantly smaller than the
suggested limit γs,l. From the evolution of the mean estimator output in Figure 4.3 for both,
the coarse (CT) and refined (RT) method, a tendency to increased error can be observed
with decreasing SNR. The augmented jitter, due to the changed SNR relationship, is
recognized best from the NMSE evolution, depicted in Figure 4.4. Increasing the estimator
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Figure 4.3: Coarse/refined mean XPD estimator output

length will increase the post correlation SNR and thus mitigate the degradation.
Finally, the mean error of the estimator output versus the attenuation factor ξc is

investigated. The SNRs of the co- and cross-polar traffic, are set to γs,c = γs,x = 15 dB.
This results in an effective SNR γs,o = 55.64 dB for an attenuation ξc = −10 dB and
γs,o = 36.02 dB for ξc = −30 dB in absence of cross-polar traffic. In presence of the latter,
it amounts to γs,o = 41.03 dB and γs,o = 21.04 dB respectively. From the simulation result,
illustrated in Figure 4.5, it can be seen that the refined method (R, RT) delivers results as
expected and the coarse approach (C, CT) exhibits a bias depending on the co-polar noise
power. Moreover, in presence of cross-polar traffic, both methods (CT and RT) exhibit an
increased jitter over the whole simulated XPD range.

Fine Method

As discussed above, the systematic bias, depending on the noise inherent to the co-polar
signal, can be mitigated by using an estimate of the noise power. Moreover, it was shown
that this refined method produces satisfying results at low complexity. So the question
may arise, why to develop an additional algorithm? The problem is that up to now only
cross-talk from the co- to cross-polar side was assumed. Thus any influence from the cross-
to co-polar side is neglected. When considering this influence as well, the correlation ratio
has to be completed as

Rm,cx
Rm,cc

≈ acPc + axPx
Pc + Pnc + a2

xPx
(4.9)

112



4.1 Cross-Polarization Discrimination Measurement

1e-05

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25

N
M

SE

γs,c [dB]

C
R
CT
RT

Figure 4.4: Coarse/refined XPD estimator NMSE

Auto- and cross-correlation are extended by scaled versions of the power Px of the cross-
polar signal, whereby ax considers the amplitude scaling of the cross-polar signal. As can
be seen, the extraction of the parameter of interest, i.e. ac, becomes an intricate problem.
The above correlation ratio will only deliver the true value in the absence of a cross-polar
signal and co-polar noise.
To find a way out of this dilemma, the benefits of the introduced blind demodulation

framework can be brought into play. As demonstrated in Section 3.14, it is possible
to generate a remodulated version ûk of the received carrier rk. Assuming perfect re-
modulation, a version of the received carrier, free of noise and impairments from the
opposite polarization plane is available. The obtained signal ûk can be used to compute
the maximum of the auto-correlation Rm,uu = Pu and cross-correlation Rm,ux = acPu,
resulting in a correlation ratio of

Rm,ux
Rm,uu

≈ acPu
Pu

= ac (4.10)

Herein Pu denotes the power of the remodulated signal. The obtained ratio can be used
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Figure 4.5: Coarse/refined mean XPD error versus attenuation

to generate a fine estimate of the attenuation factor ξc by

ξ̂′′c = 20 log10

(
Rl,ux
Rl,uu

)
(4.11)

It is clear that erroneous remodulation will lead to degradation of the proposed algorithm.
In the following, the performance of the introduced methods, considering the complete
model, will be verified by simulation runs. For this reason, a cross-polar carrier with an
SNR of γs,x = 15 dB is generated, however, with the difference that the isolation between
cross- to co-polar plane is finite, i.e. ξx = −20 dB. The overspill from co- to cross-polar side
is still assumed to be ξc = −25 dB. Figure 4.6 shows the evolution of the mean estimator
output for the coarse (CX), refined (RX) and fine (FX) algorithm. Now it becomes obvious
that neither the coarse nor the refined approach work properly in the presence of significant
influence from the opposite polarization. In contrast to this, the fine scheme (FX) shows
solid performance over the entire SNR range. Up to now, ideal synchronization and prior
knowledge of all parameters were assumed. The performance of the fine algorithm, relying
solely on the estimates of the proposed blind demodulation framework (BX), is illustrated
as well. The output of the ideally (FX) and blindly synchronized (BX) estimator coincides
in the medium-to-high SNR range. As expected, in the low SNR region the blind scheme
increasingly deviates from the ideal curve. This is mainly due to erroneous remodulation,
which is additionally affected by the overspilled signal. The remodulation performance
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Figure 4.6: Mean XPD estimator output considering the complete model

by means of EVM is investigated thoroughly in Section 3.15. The observed behavior is
confirmed by the evolution of the NMSE, as shown in Figure 4.7. Finally, the evolution
of the mean estimation error versus the co-polar attenuation ξc is depicted in Figure 4.8.
The simulation setup is the same as before with a co-polar SNR of γs,c = 15 dB. For this
scenario, the error for the coarse and refined method is in the range from 2 dB up to 12 dB.
So the additional effort for remodulation seems to be justified without doubts.
Another capability of the blind demodulation framework could be used to improve the

fine method. As previously stated, the post correlation SNR γs,o depends on the specific
SNR relationships. In presence of cross-polar traffic, remodulation may be applied to
remove the according carriers from the opposite polarization plane. Successful subtraction
will result in an increased effective SNR γs,o and thus in less samples required for XPD
estimation or improved accuracy. However, from Equation 4.9 it becomes obvious that it is
not possible to remove the entire impact of the cross-polar signal. By applying subtraction,
solely the term axPx vanishes in the cross-correlation. Unfortunately, the term a2

xPx,
considering the cross-talked signal in the auto-correlation, will still affect the estimate.
Figure 4.9 compares the evolution of the mean estimator output for the refined (RX),
fine (FX) and blind fine (BX) method to their counterparts (RS, FS and BS), additionally
performing subtraction of the cross-polar carrier. It can be seen that the refined method
benefits mostly from the traffic removal, but is biased by the above mentioned factor a2

xPx
in the low SNR range. Due to the increased effective SNR, an improvement can be observed
for the fine as well as for the blind fine method. Especially for the blind algorithm, the
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Figure 4.7: XPD NMSE considering the complete model

degradation due to malfunction of the remodulation stage can be shifted towards smaller
SNR values. The gain in accuracy is best verified by the evolution of the NMSE, which is
illustrated in Figure 4.10. Besides the considerable improvement of the refined method,
the NMSE is decreased by more than one order of magnitude for both, the fine and the
blind scheme. Finally, the mean error is plotted versus the attenuation ξc in Figure 4.11.
In this case, the co-polar SNR is assumed to be γs,c = 15 dB. It can be seen that in this
scenario the subtraction leads to acceptable performance for all methods over the entire
simulated range. The only exception is an outlier for an attenuation of ξc = −10 dB. The
reason for this, is the strong overspill of the co-polar signal to the cross-polar plane. As a
result, the affected cross-polar signal is not remodulated properly and thus the benefit by
subtraction can not be utilized.
Since the performance of the fine method is strongly affected by the quality of the

remodulated signal, alternative approaches functioning properly for small SNR values
are desirable. The parameters that form Equation 4.9 could be determined in a different
way. As described, the co-polar noise power Pnc is estimated by using the carrier detector.
Additionally, the signal powers Pc and Px could be delivered by the rescaling stage,
described in Section 3.7. Hence, after calculation of auto- and cross-correlation, two
equations are obtained, containing the two unknowns ac and ax. The proposed method
might work satisfactorily for single carriers on the cross-polar plane. Unfortunately, in
presence of multiple cross-polar carriers, exhibiting different XPD values ξx,i, the problem
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Figure 4.8: Mean XPD error versus attenuation considering the complete model

becomes complicated as well.

4.1.3 Hardware Testing

An in-house developed SDR platform is available for testing the introduced algorithms.
The application of this platform enables the verification of the simulation framework and
search of errors in the assumed models. Moreover, the devised algorithms can be tested
with real signals, additionally impaired by hardware effects, e.g. quantization and phase
noise.

Demonstrator Platform

In the following, the used hardware, illustrated in Figure 4.12, will be described briefly.
The SDR platform features a sample rate of fs = 192 MHz at a resolution of 12 bit and a
bandwidth of bo = 36 MHz. All analog components, including power supply, are separated
in an external box for electromagnetic compatibility (EMC) reasons. The digitized data
are provided to the Gidel PCI card via LVDS. The latter includes a field-programmable
gate array (FPGA) (Altera Stratix) and 512MB of memory for storing the acquired data
before transmission over the PCI bus. Inside the FPGA, the samples are decimated by a
factor of 4 to arrive at a sample rate of fs = 48 MHz. After storing the samples in the
RAM of the PC, further processing is performed by the introduced blind demodulation
framework implemented in C++ by two Intel Xeon processors. In Figure 4.13, an image
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Figure 4.9: Mean XPD estimator output using cross-polar subtraction

of the demonstrator front side is shown. The two sampling units for co- and cross-
polar polarization can be seen on top of the industrial PC case. The backside, depicted
in Figure 4.14, shows the LVDS connections and the cable for synchronization of the
analog-to-digital converter (ADC) clocks.

Testbed

To be able to perform testing of the algorithms, similar to the pure software environment,
the testbed sketched in Figure 4.15 was developed. The co- and cross-polar input signals,
at an intermediate frequency (IF) fIF = 70 MHz, are generated by an in-house developed
satellite modem (L*IP) and a vector signal generator (Agilent ESG E4438C). The wave-
forms for the latter are created using the ADS software and downloaded to the generator.
By this means arbitrary multi-carrier scenarios can be realized. A switch matrix consisting
of attenuators (by Mini-Circuits) permits the adjustment of cross-talk signals. The noise
for the co-polar path is produced by a noise generator (Micronetics Nod 5107) and for the
cross-polar plane by a self-developed satellite emulator, which is capable of adding time
and frequency offset as well. Finally, both signal paths are digitized using the synchronized
sampling units. It should be mentioned that the satellite modem, the satellite emulator
and the monitoring platform are based on the same flexible SDR platform. Besides the
different software, only slight modifications in the hardware are required to allow this
reuse.
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Figure 4.10: XPD NMSE using cross-polar subtraction

Measurement

For the following scenarios, the co-polar traffic consists of a single 1MSymb/s QPSK
carrier, produced by the satellite modem. On the other signal path, four carriers with
different symbol rates are generated by the vector signal generator. In the first scenario,
there is no traffic on the opposite signal path within the bandwidth of the investigated
carrier (see Figure 4.16). To check the proper functioning of the developed XPD estimation
algorithms, the attenuation ac of the cross-talked signal is varied by using the dip switches
on the attenuators, with the attenuation of the used dip switches assessed by measurement
using a spectrum analyzer, since unsatisfying accuracy of the variable attenuators was
observed. The XPD estimation is repeated for different SNR values of the co-polar carrier,
i.e. γs,c = 13.8 dB and γs,c = 10.1 dB. An isolation from the cross- to the co-polar plane
of roughly ξx = −28 dB is adjusted. The number of acquired samples is L = 524288 for
each signal path. Moreover, it should be pointed out that the input of the ADC has to be
well scaled to avoid effects of quantization noise or clipping.

In Figure 4.17, the results for the first scenario using the hardware testbed are shown. It
can be seen that the performance of the fine estimation method (F HW) features a slight
bias of approximately 0.3 dB over the whole XPD range. There may be several reasons
for this effect: (i) measurement errors, induced by the determination of all adjusted XPD
values using a spectrum analyzer; (ii) the design of the used anti-aliasing filter (AAF) is
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Figure 4.11: Mean XPD error versus attenuation using cross-polar subtraction
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Figure 4.12: SDR demonstrator block diagram

of Chebyshev type, which exhibits considerable ripple in the passband. In the following,
the affected noise floor will be applied for estimation of the scaling factor inside the blind
demodulation framework and could lead to a constant offset. Keeping this in mind will
help to interpret the results of the coarse method (C HW). For an SNR of γs,c = 13.8 dB,
the coarse method shows outstanding performance. Nevertheless, it should be clear that
the estimates deviate from the true values. The impact of the co-polar noise contribution
decreases the mean estimator output, as can be seen more explicitly for an SNR of
γs,c = 10.1 dB.
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Figure 4.13: SDR demonstrator front side

In the second scenario, the cross-talk signal is influenced by opposite traffic, as depicted
in Figure 4.18. The SNR of the interfering cross-polar 4MSymb/s carrier was measured
as γs,x = 12.0 dB. Previous to the fine method, no subtraction of the cross-polar traffic is
applied, since the data generated by the signal generator is not continuous. The reason for
this is that the cross-polar samples, stored on a hard disk inside the generator, are of finite
length. Thus, the data record will repeat every N samples, e.g. N = 1000000. This will
lead to non-continuous data and moreover the generator leaves a small gap before repeating
the data stream. It should be clear that such a behavior would lead to problems for the
blind demodulation process. Nevertheless such a scenario will not appear in an operational
environment. The result for the second scenario is illustrated in Figure 4.19. The fine
method shows the same solid behavior as for the first scenario. In contrast, the coarse
scheme exhibits an increasing deviation from the ideal curve with decreasing co-polar
attenuation ξc. It can be summarized that the results using the hardware environment
verify the behavior, as expected from the pure software simulation.
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Figure 4.14: SDR demonstrator backside
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Figure 4.15: Overview of the testbed for XPD measurement
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4.1 Cross-Polarization Discrimination Measurement

Figure 4.16: Testbed Scenario 1 (no cross-polar traffic)
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Figure 4.17: Testbed Scenario 1 (mean XPD estimator output)
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Figure 4.18: Testbed Scenario 2 (with cross-polar traffic)
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Figure 4.19: Testbed Scenario 2 (mean XPD estimator output)
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4.2 Geolocation
On satellites, interference caused by misaligned antennas, satellite piracy or damaged
oscillators, can affect the present satellite traffic seriously. Thus, the source of interference
has to be identified as quickly as possible to be shut down. In case the perturbing carrier
can not be determined from the provider database, the transmitting station has to be
located by alternative means. Hence, with the increasing amount of satellite services and
customers, the need for accurate passive geolocation systems arises.

4.2.1 Principle

The location of the interferer might be estimated by using both the time difference of
arrival (TDOA) and the frequency difference of arrival (FDOA) of two adjacent satellites,
as described in [70] and the according patent in [71]. In typical geolocation problems, the
emitted signal is directly acquired by several receivers to compute position and velocity
of the transmitter. However, this is not the case for the task to solve, since the signal
is relayed by satellites and thus complicates the problem. The principle of the applied
approach is sketched in Figure 4.20.
The signal r1(t) of the transmitter rI is relayed over the main satellite rS1 to the

monitoring site r0. Due to the finite transmitter antenna size, power will not only be
radiated to the main satellite, but to others as well. The way how power is radiated can
be characterized by the antenna pattern. From this it should be clear that an attenuated
version r̃1(t) of the signal r1(t) might be relayed by an adjacent satellite rS2. By deploying a
second antenna at the monitoring station r0, the signal r2(t), which includes the overspilled
signal r̃1(t), can be received. This assumption is only valid, if the adjacent satellite has a
transponder in the same frequency band as the transmitted signal.

At the monitoring site r0, a TDOA between r1(t) and r̃1(t) can be observed. The latter
is mainly caused by the different path lengths and additionally influenced by propagation
effects and the differential transponder delay. Moreover, an FDOA can be observed,
which stems from the differential Doppler and is directly affected by oscillator mismatches
onboard the satellites. Any errors in the monitoring equipment are neglected, since proper
calibration is assumed. By using a TDOA/FDOA pair, an estimate of the signal source
may be obtained. Alternatively, by performing an additional TDOA measurement on a
third satellite rS3, the geolocation task can be solved by using a TDOA/TDOA pair as
well.

It is obvious that the task to solve is a very complex one, such that in worst case an
estimation of the transmitter location might be impossible. An example could be that
the satellites exhibit no relative motion observable from the monitoring site leading to
no measurable FDOA. On the other hand, for the TDOA/TDOA technique transmitters
close to the equator are problematic as will be shown later on. Moreover, the measurement
principle includes many input parameters that have a direct impact on the accuracy of the
result, e.g. satellite ephemeris data and ground station coordinates. The main tasks [70]
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Figure 4.20: Basic configuration for TDOA/FDOA techniques

to solve are summarized in the following:

• At first, the CAF has to be evaluated for r1(t) and r2(t) to obtain a correlation
peak and in the following an accurate TDOA/FDOA pair. The overspill from
the main to the adjacent satellite may be very weak, depending on the actual
geometrical constellation and the antenna characteristic. From the recommendations
of the international radio consultative commitee (CCIR) for antenna patterns at
14.25GHz, the attenuation at 3 degree from boresight is in the range of -30 dB to
-42 dB, depending on the size of the transmitting antenna.

• The estimated TDOA/FDOA pair has to be converted to a transmitter location by
applying suitable numerical methods.

• If input parameters, e.g. satellite positions or velocities, contain significant errors,
the latter should be determined to get an improved geolocation accuracy.
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4.2.2 Evaluation of the Cross-Ambiguity Function

To estimate TDOA/FDOA pairs, it is common practice to process the cross-ambiguity
function (CAF)

A(ν,τ) =
TL∫
0

r1(t) r∗2(t+ τ)e− 2πνtdt (4.12)

The task is to find τ and ν so that |A(·)| becomes a maximum. The pair of values that
satisfies this condition are the estimates for TDOA and FDOA. As already mentioned, the
overspilled signal r̃1(t) embedded in r2(t) depends on the sidelobe characteristics of the
interferer antenna and on the spacing between the two satellites. It is clear that sufficient
processing gain is necessary to obtain a pronounced correlation peak, since the power level
of r̃1(t) is usually far below the noise floor of the adjacent transponder. For this reason,
long integration times TL are required and thus a huge amount of data has to be processed.
Similar as in the previous section, the post-correlation SNR can be obtained by

γs,o = 2BTL
γs,1γs,2

γs,1 + γs,2 + 1 (4.13)

Herein γs,1 denotes the SNR of r1(t) on the main satellite and γs,2 the SNR of r̃1(t) on
the adjacent satellite.
Assuming that the signals are impaired by AWGN, lower bounds for the maximum

achievable accuracy can be derived. The fundamental bound for TDOA can be assessed
by [69]

σ2
τ ≥

3T 2

π2γs,o
(4.14)

It can be seen that στ ∼ T = 1/fd and with BTL ∼ L, στ ∼ 1/
√
L. The effective output

SNR γs,o includes the processing gain 2BTL and as such is dependent on the number of
samples L. The limit for FDOA can be stated as

σ2
ν ≥

3
π2L2T 2

s γs,o
(4.15)

Thus, σν ∼ 1/Ts and σν ∼ 1/L3/2. It can be seen that the requirements for small στ
and σν are in contrast to each other and thus an appropriate choice of integration time
and bandwidth is necessary. The FDOA estimate benefits most from an increase of the
observation time and a decrease of the sampling rate. More samples for processing do
not increase the accuracy of the TDOA estimate that significantly, but broadband signals
should be applied to the estimator.

Basically, a very similar task was solved for XPD estimation in Section 4.1. However, to
achieve acceptable geolocation accuracy an increased amount of data has to be used for
computation. Due to this data requirement, the library developed for XPD estimation is
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not suited for this problem. For this reason, an optimized CAF library was built from
scratch, based on the algorithm described in [69]. An example implementation of the
latter can be found in [72] and a detailed comparison of efficient methods in [73].

The estimation of the accurate position of the correlation peak in the CAF surface in a
single step is not possible from the computational point of view. Thus the search is split
up in two steps: (i) a coarse step that uses small amounts of data and FFT correlation to
detect the desired peak in the CAF plane; (ii) a fine step that uses huge amounts of data
to track the peak until the required accuracy is achieved.

Coarse Method

The aim of the first step is to detect correlation peaks located in a defined time/frequency
region. For this purpose, the ranges for time and frequency are set according to the actual
scenario. Center and range of the time offset τ are selected by geometrical considerations
and the maximum expected runtime differences. Similarly, the search region for the
frequency offset ν is determined by the maximum Doppler and oscillator mismatch. It is
obvious that the choice of the time/frequency search range determines the computational
effort and the probability of detecting the appropriate correlation peak.
The CAF can be formulated in digitized form as [74]

Ak,m =
L−1∑
i=0

r1,ir
∗
2,i+me

−2πik/L (4.16)

This leaves us with a computational load in the order of O(L3). The correlation of the
signals r1 and r2 is calculated using an FFT-based convolution which is suited for large
search areas and small block lengths. Using the respective DFTs, denoted by R1,l and
R2,l, the CAF is equivalently given by

Ak,m = 1
L

L−1∑
l=0

R1,l+kR
∗
2,le
−2πml/L (4.17)

Using the FFT for implementation of the DFTs, it can be shown that the computational
effort is in the order of O(L2 log2 L). To search over a specified frequency search range, the
DFT R1 is shifted in frequency by k instead of multiplying r1 with a complex exponential.
If the time domain search range is set to the whole region of L samples, the outer sum
can be implemented as an IFFT as well. Since an FFT-based convolution is circular,
zero-padding has to be used to avoid aliasing in the time domain. The output of a linear
convolution of two sequences of length L and M is of length P = L+M − 1; in contrast
to P = L of the circular convolution. Thus, it is obvious that in our case, where M = L,
zero-padding of at least kzp = 2 has to be applied.

After successful CAF computation, all peaks located within the specified search region
are identified as trial peaks. Then the noise floor within the search area of the CAF plane
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is calculated. In the following, only trial peaks that exhibit a significant SNR are treated
as valid correlation peaks. The selection of the SNR threshold is a tradeoff between false
detection and false rejection. For example, trial peaks with an SNR below 15 dB are
rejected. Besides of spurious peaks caused by noise, additional peaks may occur because
of multi-path effects.
If no peaks are found in the search region, the estimator length L is incremented to

achieve a larger processing gain. However, it is clear that the estimator length L can
not be incremented arbitrarily, since the computation time would raise out of bounds.
Additionally, several CAFs can be combined non-coherently to obtain a flattening of the
noise floor and thus avoid detection of spurious peaks. It is important to average the
magnitude or squared magnitude of the CAFs and not the complex correlation samples.
The magnitude is independent of phase, but complex correlation samples include phase
information as well. Thus, depending on the FDOA it might be possible that each sample
block starts at a different phase angle, resulting in a smaller correlation peak or even in
disappearance of the peak.
In the following a simple scenario demonstrates the correlation peak detection in the

CAF surface. For this reason, a single QPSK carrier oversampled at Ns = 2 and an SNR
of γs = 15 dB is generated. It is assumed that the overspilled signal r̃1 is attenuated
by 50 dB compared to signal r1. Using a block length of L = 262144 samples for CAF
computation, results in an effective output SNR of γs,o = 19.05 dB. The zero-padding
factor is set to kzp = 2. Finally, a time offset of τ = 0.3 Ts and a frequency offset of
ν = 0.3 bins is adjusted. Figure 4.21 shows the resulting CAF without applying averaging.
The correlation peak can be identified, however the fluctuations of the noise floor might lead
to detection of spurious peaks. To reduce the probability of false detection, non-coherent
averaging of 16 sample blocks is applied such that a total of 4194304 samples are processed.
The obtained CAF plane is depicted in Figure 4.22. The correlation peak becomes very
pronounced, since the jitter floor is flattened by the averaging process. The main drawback
of averaging is the additional computational load by the increased amount of data.

Fine Method

After successful detection of a correlation peak using an estimator length Ld, the size
of the time/frequency search area will be reduced dramatically to a 3 × 3 region. The
CAF is evaluated according to Equation 4.16. The correlation of r1 and r2 for the 3 time
delays τ of interest is calculated using the Intel performance primitives (IPP) library 1.
To evaluate the correlation at the designated frequency offset ν, the signal r2 is multiplied
by an appropriate complex exponential. This type of CAF evaluation is suited for very
narrow search areas and huge block lengths.
The maximum of the correlation peak is set as the new center of the following CAF

calculation. The initial estimator length of the fine method is set to Ln = 2Ld and the

1 http://software.intel.com/en-us/intel-ipp/
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Figure 4.21: CAF without averaging

frequency resolution to ∆ν = fs/Ln. Then the maximum of the CAF snippet is determined
and set to the center of the next iteration using twice the input data Ln+1 = 2Ln. This
procedure is repeated until the requested accuracy or the number of all acquired samples
is reached. Subsequently, parabolic interpolation (see Appendix A.1) is applied to get a
refined value for time and frequency offset, since it is clear that the true values in general
do not coincide with multiples of the sampling period or spectral resolution.

One major challenge is to handle the huge amount of data which is necessary to achieve
the desired accuracy of the TDOA/FDOA pair. Depending on the specific scenario, the
number of required input samples can be up to some hundred million samples. It is
obvious that a powerful computing platform is necessary to process such an amount of
data. Moreover, a 64-bit operating system is suggested to be able to allocate more than
2GB of memory per application.

Simulation Results

In the following, the accuracy of the implemented CAF evaluation is compared to the
theoretical limits, provided by the CRLBs in Equations 4.14 and 4.15. For this reason,
it is assumed that the signal from the main satellite consists of a single QPSK carrier
with an SNR of γs,1 = 15 dB and a symbol rate of fd = 12 MBaud. The sample rate of
the receiving hardware is assumed to be fs = 48 MHz, such that the oversampling factor
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Figure 4.22: CAF with averaging

becomes Ns = 4. The number of samples used for CAF computation is set to L = 2097152.
For each simulation point 100 iterations are performed with randomly selected values for
TDOA and FDOA. The overspill to the adjacent satellite is varied in the range from
−10 to −50 dB. The evolution of the standard deviation for the TDOA estimate τ̂ is
plotted versus the overspill in Figure 4.23. For comparison reasons the according CRLB
is illustrated as well. In the first simulation run no traffic is generated on the adjacent
satellite (No TX). It can be seen that the standard deviation follows the CRLB except for
large effective SNRs, for which a jitter floor can be observed. The latter stems mainly
from the error introduced by interpolation. If the TDOA value coincides with a multiple
of the sampling period Ts, the jitter floor will vanish completely. Different interpolation
techniques or sampling periods could be used to reduce this sort of degradation. In the
second simulation run, traffic with an SNR of γs = 15 dB is present on the adjacent
transponder (TX). Of course, this will lead to a reduction of the effective output SNR and
thus to an increase of the standard deviation when not augmenting the estimator length
appropriately. Using the subtraction capability of the blind demodulation framework,
the traffic present on the adjacent satellite could be removed to increase the accuracy of
the estimate. The performance evolution is shown for ideal (TXS Ideal) and real (TXS)
carrier subtraction. It is obvious that the impact of the perturbing traffic can be removed
entirely. For a strong overspill of -10 dB, the adjacent traffic is severely interfered by the
main carrier. So, the adjacent traffic can not be subtracted successfully and an increase
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Figure 4.23: Evolution of the TDOA standard deviation

of the standard deviation can be observed. It should be mentioned that such a strong
overspill should not occur in real life applications.
In Figure 4.24 the results for the FDOA estimate ν̂ are shown. It can be noticed

that no jitter floor is present in this case, since frequency resolution is increased when
augmenting the estimator length. As detailed for the TDOA estimate, the application of
the subtraction capability can significantly improve the performance of the CAF evaluation
in presence of adjacent traffic.

4.2.3 Analytical Model for Geolocation

Standard Approach

For both, TDOA and FDOA, a line of position (LOP) can be drawn on the surface of
the Earth ellipsoid. The intersection of the LOPs corresponds to the estimate of the
interferer location. Using the illustration in Figure 4.20, the LOP for the TDOA can be
characterized by following nonlinear vector equation.

TDOA
f1(rI) = lI1 + l10 − (lI2 + l20)− c · TDOA + c ·∆t12 = 0 (4.18)
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Figure 4.24: Evolution of the FDOA standard deviation

Commonly the uplink time difference TDOAup = TDOA− TDOAdown is normalized by
the propagation speed c to arrive at the differential slant range (DSR). The term ∆t12
considers a possible differential delay inside the satellites. Therefore, by rearranging the
terms in Equation 4.18, we have that

f1(rI) = lI1 − lI2 − (c · TDOA− (l10 − l20)) +∆s12

= lI1 − lI2 − c · (TDOA− TDOAdown) +∆s12

= lI1 − lI2 −DSR +∆s12 = 0
(4.19)

In similar manner, an equation for the FDOA can be formulated.

FDOA

f̃2(rI) = f

c
vS2 · eI2 + f − fT2

c
vS2 · e20

− f

c
vS1 · eI1 −

f − fT1
c

vS1 · e10 − FDOA +∆f12 = 0
(4.20)

Herein, eI1 is the unit vector pointing from the interferer to the main satellite. If vS1
is the velocity vector of the main satellite, then vS1 · eI1 considers the radial velocity of
the main satellite observed from the interferer. Furthermore, f is the frequency of the
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transmitted signal and the translation frequency of the main satellite is denoted by fT1.
The factor ∆f12 accounts for the differential oscillator mismatch onboard the satellites.
Finally, the normalized frequency difference in the uplink is designated as differential slant
range rate (DSRR). The meaning of the remaining terms can be identified by the indices
easily so that, by rearranging the terms in Equation 4.20, we obtain

f2(rI) = vS2 · eI2 − vS1 · eI1 −
c

f
· (FDOA− FDOAdown) +∆ν12

= vS2 · eI2 − vS1 · eI1 −DSRR +∆ν12 = 0
(4.21)

Since the location of the transmitter can only be described uniquely by three coordi-
nates, an additional relationship is required. For this reason the surface of the Earth is
approximated by an ellipsoid.

Ellipsoid

f3(rI) = x2
I

R2
A

+ y2
I

R2
A

+ z2
I

R2
B

− 1 = 0 (4.22)

whereby RA is the major and RB the minor semi-axis of the ellipsoid.
Assuming that ∆s12 and ∆ν12 are negligible, three nonlinear equations are available to

estimate the location of the interferer. Since these equations are not solvable in closed
form, an appropriate numerical approach has to be applied. The input parameters to the
numerical method are the estimated TDOA/FDOA pairs, the geometrical parameters, i.e.
position and velocity vectors of main and adjacent satellites, ground station coordinates
and system-dependent parameters (oscillator frequencies, uplink frequency, differential
time and frequency offset between both transponders). As already mentioned, the solutions
of f1(·) and f2(·) produce LOPs that can be mapped on the Earth to find the transmitter
location. A graphical representation of TDOA/FDOA LOPs in Europe can be seen in
Figure 4.25. In this scenario, the transmitter is assumed to be in Lisbon and the monitoring
site in Vienna. The first satellite is located at an azimuth of φS1 = 10 ◦, an elevation
of βS1 = 0 ◦ and a radius of rS1 = 42164.537 km when assuming a geocentric coordinate
system. The coordinates of the adjacent satellite differ only in the azimuth by φS2 = 7 ◦.

In the second scenario, the monitoring site is located in Rio de Janeiro and the transmitter
in Rio Branco. The main satellite exhibits an azimuth of φS1 = −61 ◦ and the adjacent
satellite of φS2 = −63 ◦. The Brazilian scenario is illustrated in Figure 4.26.

The problem of this approach becomes obvious immediately. Up to now it was assumed
that ∆t12 as well as ∆f12 are negligible. Usually, the differential transponder delay ∆t12
is very small and thus does not degrade geolocation accuracy. However, this does not hold
true for the differential oscillator mismatch ∆f12, which can be in the order of several kHz,
leading to arbitrarily wrong results. The estimation of this mismatch can be carried out by
a separate measurement or be incorporated into the geolocation process as demonstrated
in the following.
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Figure 4.25: Evolution of TDOA/FDOA LOPs in Europe

Differential Approach

For determining the differential oscillator mismatch and transponder delay, which are not
known in advance, additional to the monitoring station a reference station is needed [70].
In this case, a carrier with known origin, e.g. from the operator database, on the main
transponder is used as reference signal. The differential method cancels out effects that are
common to interferer and reference signal, i.e. satellite imperfections (differential oscillator
mismatch and transponder delay), propagation effects on the downlink and impairments
by the monitoring station equipment. Two additional benefits of the differential method
are: (i) better numerical stability of the equation system; (ii) reduction of errors in satellite
ephemeris data that have common impact on TDOA/FDOA for interferer and reference
station. For the sake of completeness it should be mentioned that, if the interferer is
located at the reference site, effects on the uplink will cancel out as well. The according
TDOA equation for the reference station can be set up as follows:

f1(rR) = lR1 + l10 − (lR2 + l20)− c · TDOAR + c ·∆t12 (4.23)

Herein the subscript R denotes values belonging to the reference station. Subtraction of
Equation 4.23 from 4.18 leads to the requested differential TDOA relationship.
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Figure 4.26: Evolution of TDOA/FDOA LOPs in Brazil

TDOA

f1(rI) = lI1 − lI2 − (c · (TDOA− TDOAR) + lR1 − lR2)
= lI1 − lI2 −DSR = 0

(4.24)

In a similar manner the differential approach can be formulated for the FDOA.

FDOA

f2(rI) = vS2 · eI2 − vS1 · eI1 −
( c
f
· (FDOA− FDOAR)

+ fR
f

vS2 · eR2 −
fR
f

vS1 · eR1

− (f − fR
f

vS2 · e20 −
f − fR
f

vS1 · e10)
)

= vS2 · eI2 − vS1 · eI1 −DSRR

(4.25)

Since basically two TDOA/FDOA measurements are necessary for differential processing,
twice the jitter is introduced into the equation system. The main error contribution stems
from uncertainty in the FDOA estimate. Another source of degradation are errors in the
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available satellite ephemeris data, however, this issue will be discussed in more detail in a
subsequent section.

4.2.4 Numerical Solution

The above equation system is solved by an iterative Gauss-Newton scheme, requiring the
Jacobi matrix of the three nonlinear relationships. There are two reasons why not to use
the Newton method directly [75]: (i) an exact solution may not exist, since the measured
TDOA/FDOA pairs are superimposed by noise and the satellite ephemeris data may be
erroneous as well; (ii) the Newton scheme is only suited for systems where the number of
measurements coincides with the number of unknowns. Instead it is suggested to apply the
Gauss-Newton method that uses a Newton scheme to minimize a nonlinear least squares
problem f(x) with m equations:

f(x) = 1
2

m∑
i=1

(fi(x))2 (4.26)

Herein x = rI = (xI ,yI ,zI)T denotes the unknown vector holding the interferer position.
When defining the equation vector f(x) = (f1,f2,f3)T , the (k+1)-th iteration step of the
Gauss-Newton method can then be formulated as

xk+1 = xk − (J(xk)TJ(xk))−1 · J(xk)T f(xk) (4.27)

Herein J denotes the according Jacobi matrix. The definition of the latter can be found in
Appendix A.3.1; the starting point x0 can be determined by a coarse search algorithm or
is set to the location of the monitoring station r0 since the algorithm converges very fast.
The termination of the iteration procedure relies on the following criteria∣∣∣∣1− |xk+1|

|xk|

∣∣∣∣ < ε (4.28)

with ε, for example, set to ε = 10−9.

Simulation Results

For the following simulation scenario it is assumed that the monitoring site is located in
Vienna, the reference station in Paris and the interfering station in Lisbon. The SNR of
interfering and adjacent traffic is set to γs = 15 dB. Oversampling the main carrier at a rate
of Ns = 4 and using L = 225 samples results in a processing gain of 72.25 dB. The overspill
from the main to the adjacent satellite is assumed to be −50 dB. The effective SNR is
then γs,o = 22.11 dB. The two GEO satellites are located at an azimuth of φS1 = 10 ◦ and
φS2 = 7 ◦. The satellite velocities and the Ku-band frequencies are set to values occurring
in practice. For each of the 1000 geolocation attempts the true TDOA/FDOA pair is
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superimposed by Gaussian noise N (0,σ2
τ ) and N (0,σ2

ν) with standard deviations according
to Equations 4.14 and 4.15. The geolocation errors in direction of azimuth and elevation
are depicted in Figure 4.27 (red crosses). It is obvious that the jitter in North/South
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Figure 4.27: European scenario (accuracy improvement by blind demodulation)

direction is much larger than in East/West direction. This is mainly caused by the large
jitter of the FDOA estimate, with a standard deviation in the order of σν ≈ 0.1 Hz. An
estimation of the shape of the geolocation uncertainty can be given by the so-called error
ellipse [70, 76].

The jitter in the FDOA estimate could be reduced by increasing the observation length L.
However, further increasing the acquisition time will lead to stringent requirements on
processing power and memory. Moreover, up to now it was assumed that the key parameters,
i.e. satellite positions and velocities, are constant. With increasing observation time, this
assumption might get more and more invalid, leading to a distortion of the CAF peak [77].
An enhancement of the geolocation accuracy using the same observation length could be
possible by applying the subtraction capability of the blind demodulation framework on the
adjacent traffic. In the above scenario, the transmitted signal r1(t) is buried 50 dB below
signal-plus-noise on the adjacent signal path. The removal of the adjacent traffic could
improve this relationship up to 35 dB, resulting in an effective SNR of γs,o = 37.11 dB.
The performance of the geolocation approach using adjacent traffic subtraction (green
crosses) is shown in Figure 4.27 as well. It becomes obvious that successful carrier removal
leads to a significant improvement of the geolocation accuracy.

Since the FDOA estimate seems to be a critical factor for the geolocation accuracy, an
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approach using only TDOA estimates could be an attractive alternative [78, 79]. For this
reason, a third satellite is required which relays the transmitted signal r1 to the monitoring
station. The above iterative procedure can be used with the Jacobi matrix J described in
Appendix A.3.2. The results for the TDOA/TDOA approach with (magenta squares) and
without (blue stars) adjacent traffic subtraction are also illustrated in Figure 4.27. The
third GEO satellite is located at an azimuth of φS3 = 13 ◦ and the overspill from the main
satellite is assumed to be attenuated by −55 dB. The TDOA/TDOA method, especially
with additional carrier removal, exhibits outstanding performance. However, the latter
approach features disadvantages as well: (i) a need of three satellites; (ii) additional costs
at the monitoring site, including a third antenna; (iii) close to the equatorial region the
TDOA LOPs are almost parallel, such that finding an accurate intersection might become
a problem. An example for such a scenario is illustrated in Figure 4.28 with Libreville as
transmitting station.

Vienna

Libreville

FDOA
TDOA 1
TDOA 2

Figure 4.28: Evolution of TDOA/FDOA LOPs close to the equator

Numerical Aspects

A measure for the numerical stability of an equation system of the form Ax = b is the
condition number [80], which is defined as

κ = cond (A) =
∣∣∣∣smaxsmin

∣∣∣∣ (4.29)
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where smin is the smallest and smax the largest singular value of A. For a condition number
close to 1 the problem is well-conditioned, but with increasing condition numbers it gets
more and more ill-conditioned. The latter leads to a behavior where a small perturbation
of the measurement vector b or the coefficient matrix A results in a large variation of the
solution vector x [81]. For the above scenario, the condition number is in the order of
κ1 = 106 for the TDOA/FDOA approach and of κ2 = 102 for the TDOA/TDOA method.
It is obvious that κ2 is in a moderate range compared to the significant larger κ1 which
may lead to stability problems.

Satellite Ephemeris Error Up to now it was assumed that the available satellite
ephemeris data, i.e. satellite position and velocity vectors, coincide with the true values.
The accuracy of the ephemeris data is depending on the specific satellite operator. It
may be available in data base form, relying on occasional measurements, orbit models
or even both. Nevertheless, it is clear that any errors in satellite positions directly affect
TDOA estimates and errors in satellite velocities influence FDOA estimates. In Figure 4.29
the geolocation accuracy is shown in presence of ephemeris errors. The position vectors
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Figure 4.29: European scenario (geolocation accuracy impaired by ephemeris errors)

rS1, rS2 are superimposed by Gaussian noise with standard deviation σr = 1 km and
the velocity vectors vS1, vS2 with standard deviation σv = 0.1 m/s. It can be seen that
TDOA/FDOA geolocation is dominated by ephemeris errors such that even subtraction of
the adjacent traffic does not improve the catastrophic result. Moreover, it is obvious that
satellite position errors have a significant impact on TDOA/TDOA as well. In this case,
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removal of the adjacent traffic can reduce the geolocation jitter, however, it still remains
at an unsatisfactory level. For this reason a scheme to refine the available ephemeris data
would be favorable and is presented in the following.

4.3 Satellite Ranging

The refinement of the satellite ephemeris data was already requested in [70], later a
procedure relying on TDOA/FDOA measurements was patented [82]. Figure 4.30 shows
an example of the ephemeris data provided by a satellite operator. In the example, the
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Figure 4.30: Satellite position ephemeris data (Eutelsat W1)

satellite position is predicted for two weeks in intervals of 30 minutes. In order to estimate
position and velocity vectors unambiguously, seven TDOA/FDOA measurements are
required. For this reason seven carriers with known origin have to be present on the
main satellite. Moreover, an appropriate overspill to the second satellite is necessary for
detection of a correlation peak within the CAF plane.
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4.3.1 Standard Approach

TDOA The equation set for the differential time delay ∆t12 and both satellite positions
rS1 = (xS1,yS1,zS1)T and rS2 = (xS2,yS2,zS2)T can be stated as

fi,T (rS1,rS2,∆t12) = li,1 + l10 − (li,2 + l20)− c · TDOAi + c ·∆t12 (4.30)

with i identifying the index of the corresponding base station. The unknown vector
can be formulated as x = (xS1,yS1,zS1,xS2,yS2,zS2,∆t12)T and the equation vector as
f = (f1,T , . . . ,f7,T )T , resulting in the Jacobi matrix as J = ∂f/∂x. The definition of J can
be found in Appendix A.3.3.

FDOA The equation set for the differential frequency offset ∆f12 and both satellite
velocities vS1 = (ẋS1,ẏS1,żS1)T and vS2 = (ẋS2,ẏS2,żS2)T is provided by

fi,F (vS1,vS2,∆f12) = vS2 · ei,2 + fi − fT2
fi

vS2 · e20 − vS1 · ei,1

− fi − fT1
fi

vS1 · e10 + c

fi
·∆f12 −

c

fi
· FDOAi

(4.31)

The unknown vector can be formulated as ẋ = (ẋS1,ẏS1,żS1,ẋS2,ẏS2,żS2,∆f12)T and the
equation vector as ḟ = (f1,F , . . . ,f7,F )T , resulting in the Jacobi matrix as J = ∂ ḟ/∂ẋ.
More details on J are given in Appendix A.3.3.

4.3.2 Differential Approach

For reasons of stability it is suggested to use the differential approach for ranging as well.

TDOA For the positions of main and adjacent satellite six differential TDOA equations
can be established according to

fi,T (rS1,rS2) = li,1 − li,2 − c · TDOAi − (lR1 − lR2 − c · TDOAR) (4.32)

FDOA The differential FDOA equation system for both velocity vectors is given by

fi,F (vS1,vS2) = vS2 · ei,2 + fi − fT2
fi

vS2 · e20 − vS1 · ei,1

− fi − fT1
fi

vS1 · e10 −
c

fi
· FDOAi

− fR
fi

[vS2 · eR2 + fR − fT2
fR

vS2 · e20 − vS1 · eR1

− fR − fT1
fR

vS1 · e10 −
c

fR
· FDOAR]

(4.33)
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In Appendix A.3.4 the Jacobi matrices J for TDOA and FDOA are listed.

4.3.3 Numerical Aspects

The standard approach tends to suffer from severe numerical problems caused by possible
inversion of a singular matrix. The differential method reduces the large condition numbers
by more than one order of magnitude to 106 or 107. However, still problems due to the
mentioned inversion remain.

Singular Values Decomposition The singular value decomposition (SVD) is used to
determine the numerical stability of the equation system [83]; but the approach might be
applied as well for effective matrix inversion or the decision on equations to be taken into
account for further computation. With SVD, the M ×N matrix A can be decomposed as

A = USVT (4.34)

where U is an M ×M and V an N × N orthogonal matrix; S is an M × N diagonal
matrix with elements si denoted as singular values. The inversion is then given by

A−1 = VS−1UT (4.35)

with

S−1 =


1/s1 0 · · · 0

0 1/s2 · · · 0
...

... . . . ...
0 0 · · · 1/sm

 (4.36)

The closer the singular values are to zero, the more linearly dependent the related equations
are. If singular values are equal to zero (or close to machine precision), the matrix can not
be inverted.

Regularization

Truncated Singular Values Decomposition A possible approach to avoid singularity
of a matrix is to define a threshold for the smallest allowable singular value and set the
corresponding inverted singular value 1/si in S−1 to zero, which will provide the closest
solution in the least square sense. This regularization method is termed truncated singular
value decomposition (TSVD). For satellite ranging using 6 base stations, the maximum
number of reduced equations should not exceed 3. Based on numerous simulation runs,
it turned out that a reduction number of 2 for satellite position estimation and of 1 for
satellite velocity estimation is probably the best choice as trade-off between stability and
offset.
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Iterative Regularized Gauss-Newton The TSVD permits only a very coarse selection
of the degree of regularization, i.e. taking an equation into account or not. A finer selection
of regularization may be provided by the Levenberg-Marquardt or the iterative regularized
Gauss-Newton (IRGN) method [81, 84]. The latter uses Tikhonov regularization for
stabilization of the problem. Thus, an iteration step of the IRGN can be stated as

xk+1 = xk − (J(xk)TJ(xk) + λkI)−1[J(xk)T f(xk) + λk(xk − x∗)] (4.37)

Herein λk denotes the regularization parameter which can be adjusted in each iteration
step. Since for large values of λk the solution tends to stay close to x∗, prior knowledge
may be incorporated, which for satellite ranging would be the available ephemeris data.
The appropriate selection of the regularization parameter λk is a major challenge.

In [80] several methods to choose λk are described. After numerous simulation runs and
comparison of different schemes, it turned out that the TSVD performance is equal or
even better, regardless the used selection scheme. For this reason, it is suggested to use
the TSVD as long as no better parameter selection is found.

4.3.4 Simulation Results

For assessment of the impact of additional ranging on the geolocation accuracy proper
scenarios have to be defined.

European Scenario The geolocation setup remains as introduced previously with
monitoring in Vienna, reference in Paris and interferer in Lisbon. The geographic setup
can be viewed in Figure 4.31. The six base stations are assumed to be located in Istanbul,
Berlin, Stockholm, Moscow, Munich and Harlow, with precise coordinates available. For
all base stations the SNR relationships are assumed to be equal to the previously defined
interferer setup. In short, the SNR on the main satellite is γs,1 = 15 dB, the overspill
from the main to the first adjacent satellite −50 dB, to the second adjacent satellite
−55 dB and a traffic signal with an SNR of 15 dB is assumed to be present on the adjacent
transponder. Thus the overspilled signal r̃1(t) exhibits an SNR of γs,2 = −50 dB on the first
and of γs,2 = −55 dB on the second adjacent satellite. As introduced in Section 4.2.4, the
available ephemeris data correspond to the true values superposed by Gaussian noise, i.e.
N (0,σ2

r ) with σr = 1 km for satellite positions and N (0,σ2
v) with σv = 0.1 m/s for satellite

velocities. The ephemeris data are updated using the above differential TSVD approach
before solving the geolocation problem. In Figure 4.32 the geolocation improvement using
satellite ranging and adjacent carrier subtraction is depicted. It can be seen that for both,
TDOA/FDOA and TDOA/TDOA, the increase in geolocation accuracy is almost one
order of magnitude. In contrast to TDOA/TDOA, TDOA/FDOA shows still a significant
jitter around the true transmitter position.

144



4.3 Satellite Ranging

Reference station
Base stations

Monitoring station
Interfering station

Figure 4.31: European ranging and geolocation scenario

Brazilian Scenario The second scenario is located on the southern hemisphere with
monitoring in Rio de Janeiro, reference in Manaus and interferer in Sao Paulo. The
geographic setup is illustrated in Figure 4.33. The six required base stations are Brasilia,
Recife, Porto Alegre, Fortaleza, Belo Horizonte and Rio Branco. Again it is assumed
that the exact location of these base stations is known. The main satellite is located at
an azimuth of φS1 = −61 ◦, the first adjacent satellite at φS2 = −63 ◦ and the second at
φS3 = −59 ◦. The geolocation results for the second scenario are shown in Figure 4.34. It
can be seen that without ranging and adjacent traffic subtraction TDOA/FDOA suffers
from severe localization errors. This is mainly due to the changed setup including geometry
and velocity vectors. Nevertheless, when updating ephemeris data and removing perturbing
adjacent carriers, a considerable increase in accuracy can be achieved. The performance
of TDOA/TDOA geolocation shows expected results, since the distance of the interferer
from the equator is sufficient.
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Figure 4.32: European scenario (overall geolocation performance)
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Figure 4.33: Brazilian ranging and geolocation scenario
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Figure 4.34: Brazilian scenario (overall geolocation performance)
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CHAPTER 5
Conclusion and Future Work

5.1 Conclusion

A main objective of satellite operators is an efficient usage of the available resources.
Appropriate monitoring is inevitable to allow reliable operation of satellite networks. For
supporting the daily work of the providers, an innovative blind demodulation framework
is suggested. To arrive at a flexible and low-cost solution, the algorithms should be suited
for implementation on a software-defined radio (SDR) platform. The whole framework
was integrated and tested on a versatile in-house developed SDR platform. This allows
the received signal to be sampled at the intermediate frequency (IF), so that all further
signal processing can be performed in the digital domain. Therefore, this work does not
only treat the blind demodulation task from a theoretical perspective, but incorporates
advices from a practical point of view as well.

After setting the stage by definition of the related signal model, an in-depth overview of
the proposed blind demodulation platform is given. For each of the successive demodulation
stages, possible procedures are introduced, including adaptation of existing and design of
new algorithms. The latter are compared in terms of accuracy and complexity. Additionally,
pitfalls that might occur during implementation of the suggested framework are pointed
out as well. Topics that were given special attention are summarized in the following.
Only few algorithms on blind estimation of the symbol rate are available in the open

literature. Moreover, no performance results exist on non-integer oversampling ratios,
which are the case for monitoring systems. It is shown that the performance of the
algorithm in [7] can be enhanced significantly by applying narrow band pre-filtering and a
symbol rate hint available from the carrier detection stage. Additionally, a timing tracking
algorithm might be applied for refinement [8], if the used symbol rate estimator exhibits
poor performance.
Established algorithms for non-data-aided (NDA) recovery of the symbol timing are

thoroughly compared to recent extensions and a self-developed method in terms of jitter
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variance and acquisition performance, since such a comprehensive roundup is not available
from the open literature. Representatives of feedforward schemes are the Oerder and
Meyr (OM) [25] method and the scheme proposed by the author in [11]. The examined
feedback methods include the Gardner synchronizer [26], an extended version [37] and
the reinvestigated algorithm by Moeneclaey and Batsele (MB) using only one sample per
symbol [36, 10]. It turns out that the OM method delivers the best overall performance,
independent of modulation scheme and roll-off factor. When both are available, the
most appropriate estimation scheme can be selected to reduce the contained jitter. For
signal constellations exhibiting a constant envelope the algorithm proposed by the author
outperforms the established methods in the medium-to-high SNR range. Moreover the
author verified recently that the S-curve of the MB detector exhibits a sinusoidal shape [11].
Therefore the acquisition trajectories of the MB as well as of the extended Gardner detector,
can be described by the analytical model introduced by the author in [9]. This statement
is verified by numerous simulation runs.
After successful recovery of the optimum timing instant, the knowledge of the used

modulation scheme is necessary to determine the SNR, frequency/phase offset and finally
the transmitted data symbols. Since no modulation classification scheme from the open
literature supports all the constellations of present and upcoming satellite networks or
relies on assumptions that do not hold for non-cooperative demodulation, a classifier [14]
is proposed by the author for this purpose. It is demonstrated that the introduced
feature-based method provides sufficient performance and the required computational
effort remains at an acceptable level.

Although a reliable SNR estimate is available from the spectral pre-estimation procedure,
an additional SNR estimation exhibits advantages for several reasons. Three moment-based
schemes [47, 50, 51] are combined to obtain reasonable performance for all modulation
schemes over the whole SNR range. In this context, multi-level constellations need special
treatment by using the SNR pre-estimate to select the appropriate estimator according
to SNR level and signal constellation. The performance of the combined estimator is
demonstrated by simulations in terms of estimator mean output and normalized mean
square error (NMSE).
Surprisingly less publications have been found on NDA synchronization of APSK

constellations in the open literature, although the latter exhibit considerable advantages
compared to QAM on satellite channels. For this reason an in-depth roundup on this topic
is provided within this work.

To assess the performance of the proposed blind demodulation framework, an appropriate
measure has to be defined, since evaluation of each stage separately is not suitable due to
the large number of parameters. Therefore, the demodulated symbols are remodulated and
compared to the original transmitted signal in terms of error vector magnitude (EVM). It
is shown that the performance of the framework coincides with the theoretical curve in
the medium SNR range. Apart from a jitter floor in the high SNR range, the performance
deviates for small SNR values due to remodulation failures. This effect is most pronounced
for amplitude phase shift keying (APSK) constellations because of the poor frequency

150



5.1 Conclusion

estimation performance. This motivates further research on this topic.
Two applications are described where the capabilities of blind demodulation techniques

can be exploited.
Insufficient cross-polarization discrimination (XPD) may lead to impairments of satellite

traffic and thus has to be monitored by appropriate means. Instead of the standard
method, which requires stop of service and transmission of a continuous wave signal, an
online scheme relying only on passive measurements is introduced. It could be shown that
application of blind demodulation techniques leads to a very elegant estimation method
with a significant increase in accuracy. Moreover, the proposed algorithms are verified on
a demonstrator SDR platform using an elaborate testbed.
Interference may also stem from a ground terminal due to malfunction or by intention.

Geolocation schemes relying on TDOA/TDOA [78] or TDOA/FDOA [70] techniques exist
for estimation of the source of interference. First of all, the accuracy of the geolocation
result depends on TDOA and FDOA estimates. It is shown, that the huge amount of
data required for acceptable geolocation accuracy can be decreased by applying blind
demodulation techniques. Secondly, errors in the available ephemeris data directly affect
the geolocation result. Using a satellite ranging approach and blind demodulation in
addition, these errors might be mitigated significantly.

Up to now no statement regarding the execution time of the blind demodulation proce-
dure was made. All the signal processing was performed using a personal computer (PC).
Scanning the whole transponder for carriers and performing extraction of the according
signal parameters can be accomplished within several seconds. Of course, the execution
time depends on the number of present carriers. The above timing requirement is valid for
approximately up to 10 carriers. Additional evaluation of the current XPD relationships
would raise the necessary time up to few minutes. It is clear that these time requirements
are considerably superior to state-of-the-art techniques. The time required for geoloca-
tion including satellite ranging should be below 30 minutes. Herein the cross-ambiguity
function (CAF) computation is the most time consuming part and depends on the observa-
tion length L. A reduction of the execution time could be achieved by using chips dedicated
for digital down-conversion (DDC), e.g. GC4016 or GC5016 by Texas Instruments1. The
latter are available as application-specific integrated circuits (ASICs) on various acquisition
cards. Moreover, time consuming tasks might be performed in FPGAs on the digitizer
board after DDC. The main drawback of the suggested accelerations is the increasing
dependence on a specific platform. Relying on the PC as processing platform remains the
most flexible solution. With the increasing number of processing cores, allowing simple
parallel computing, the latter becomes more and more attractive from the computational
point of view.

1 http://www.ti.com
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5.2 Future Work

It is obvious that the large number of possible input signal scenarios makes automated
blind demodulation a very challenging task. Several simplifications were introduced in this
work to arrive at a tractable problem. Since modularity is a key point of the developed
framework, new features might be implemented in an easy way allowing simplifications to
be revoked.
In a first approach, it was considered that signals are continuous and not of the time-

division multiple access (TDMA) type. By appropriate power measurements, TDMA
signals may be identified. For bursts of short duration, synchronization using NDA
algorithms might get problematic. However, if it is detected that signals rely on a
usual communication standard, appropriate synchronization algorithms can be imple-
mented including data-aided (DA) methods as well. Furthermore, suggested forward error
correction (FEC) schemes could be added to allow successful remodulation also at very
low SNR values.

Although root-raised cosines (RRCOSs) are well established for baseband pulse shaping,
other pulses may exhibit interesting properties too [12]. Anyhow, to achieve the most
general solution, a stage for estimation of the baseband impulse response could be added.
In Section 3.12 it turned out that the performance of the Rife-Boorstyn algorithm

delivers poor results for APSK constellations. Basically, the algorithm only delivers
reasonable results above a certain threshold SNR value, which tends to be quite large for
APSK signals. An alternative algorithm with satisfactory performance would alleviate the
synchronization process significantly.

The accuracy of the geolocation problem directly depends on the quality of the ephemeris
data. Thus refining the latter before geolocation might be necessary. It was shown in
Section 4.3 that the satellite ranging approach may suffer from stability problems, especially
when applying FDOA techniques. Regularization by using truncated singular value
decomposition (TSVD) is required to mitigate numerical problems. Since reliable initial
values for satellite positions and velocities are available by the operators ephemeris data, this
knowledge should be used in some way. By using a Baysian approach for satellite ranging,
this prior information could be incorporated in a very elegant manner. Moreover, no
error due to linearization would be introduced as well. With the increasing computational
power, Baysian inference could be an attractive alternative to the implemented iterative
procedure.
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APPENDIX A

Implementation Issues

A.1 Polynomial Maximum Interpolation

With data analysis problems, it is often required to determine the position of a maximum
of a continuous function available only at discrete points. Since the maximum may be
situated between the available data points, interpolation has to be applied to estimate the
location and the according data value. For this reason a simple polynomial interpolation
algorithm is used [83]. The maximum y0 is located at x = 0 with the adjacent data points
y1 and y−1 at x = 1 and x = −1 respectively. A second-order polynomial

y = cx2 + bx+ a (A.1)

can be fit to the data points with coefficients according to

a = y0 (A.2)

b = y1 − y−1
2 (A.3)

c = y1 + y−1
2 − y0 (A.4)

Setting the first derivative of Equation A.1 to zero delivers then the required location

xmax = − b

2c (A.5)
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Inserting this result into Equation A.1 yields the according data value ymax.

A.2 Random Numbers

A.2.1 Generation of Uniform Random Numbers

A uniformly distributed random variable denotes numbers which occur with equal proba-
bility between two limits, e.g. 0 and 1. The so-called Wichman-Hill algorithm [85] relies on
a vector x0, y0 and z0 for initialization, usually termed as seed. When using the same seed
for repeated calls of the random generator, the same pseudo-random sequence is generated.
It is common practice to derive the seed from the local PC clock to avoid successive use of
the same pseudo-random sequence. The seed is chosen according to

x0, y0, z0 ∈ {1, 2, . . . , 3 · 104} (A.6)

The integers xi, yi and zi are generated by the following recursive procedure:

xi ≡ 171 · xi−1 mod(30269)
yi ≡ 172 · yi−1 mod(30307)
zi ≡ 170 · zi−1 mod(30323)

(A.7)

With the above generated values the uniformly distributed random variable Ui is calculated
according to

Ui ≡
(

xi
30269.0 + yi

30307.0 + zi
30323.0

)
mod(1.0) (A.8)

Since uniform random number generation experienced a considerable advance in the last
decade, newer schemes with longer periods should be used in future implementations [86].

A.2.2 Generation of Gaussian Random Numbers

The prominent Box-Muller transform [85, 83] requires two uniformly distributed random
variables 0 ≤ U1,U2 < 1 as input. The transform of the two uniformly distributed
random variables U1 and U2 to two independent random variables X and Y with normal
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distribution is performed by

X = µx + σn

√
−2 ln(U1) cos(2π U2)

Y = µy + σn

√
−2 ln(U1) sin(2π U2)

(A.9)

Herein µx and µy denote the means and σn the standard deviation which is set to
σn = σx = σy for convenience. A detailed overview of Gaussian random number generators
is provided in [87].

A.3 Jacobi Matrices

A.3.1 Geolocation TDOA/FDOA

The equation vector is defined as f(x) = (f1,f2,f3)T . Herein f1 is the TDOA Equation 4.18
for the standard and 4.24 for the differential approach, f2 the FDOA Equation 4.21 for
the standard and 4.25 for the differential approach, respectively, and f3 the Earth ellipsoid
given by Equation 4.22. The Jacobi matrix can then be set up as

J =


∂f1
∂xI

∂f1
∂yI

∂f1
∂zI

∂f2
∂xI

∂f2
∂yI

∂f2
∂zI

∂f3
∂xI

∂f3
∂yI

∂f3
∂zI

 =

gT1
gT2
gT3

 (A.10)

with the vectors g1, g2 and g3 defined as

g1 =


xS2−xI
lI2

− xS1−xI
lI1

yS2−yI
lI2

− yS1−yI
lI1

zS2−zI
lI2

− zS1−zI
lI1

 (A.11)

g2 =


ẋS1
lI1
− (xS1−xI) vS1·eI1

l2I1
−
(
ẋS2
lI2
− (xS2−xI) vS2·eI2

l2I2

)
ẏS1
lI1
− (yS1−yI) vS1·eI1

l2I1
−
(
ẏS2
lI2
− (yS2−yI) vS2·eI2

l2I2

)
żS1
lI1
− (zS1−zI) vS1·eI1

l2I1
−
(
żS2
lI2
− (zS2−zI) vS2·eI2

l2I2

)

 (A.12)
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g3 =


2xI

R2
A2yI

R2
A2zI

R2
B

 (A.13)

Herein rS1 = (xS1,yS1,zS1)T and rS2 = (xS2,yS2,zS2)T correspond to the position vectors
of main and adjacent satellite. The velocity vectors are given by vS1 = (ẋS1,ẏS1,żS1)T and
vS2 = (ẋS2,ẏS2,żS2)T respectively.

A.3.2 Geolocation TDOA/TDOA

The Jacobi Matrix of the TDOA/TDOA approach is very similar to the one of the
TDOA/FDOA method. The difference is that the second FDOA line is replaced by an
additional TDOA line considering a third satellite. Thus, the vector g2 can be formulated
as

g2 =


xS3−xI
lI3

− xS1−xI
lI1

yS3−yI
lI3

− yS1−yI
lI1

zS3−zI
lI3

− zS1−zI
lI1

 (A.14)

A.3.3 Ranging TDOA/FDOA Standard

Satellite Position According to the Equation Set 4.30 the 7× 7 Jacobi matrix can be
established by

J = ∂f/∂x =


gT1
gT2
...

gT7

 (A.15)

with the vectors gi for each base station defined as

gi =



xS1−xB,i

li,1
+ xS1−x0

l10
yS1−yB,i

li,1
+ yS1−y0

l10
zS1−zB,i

li,1
+ zS1−z0

l10
xS2−xB,i

li,2
+ xS2−x0

l20
yS2−yB,i

li,2
+ yS2−y0

l20
zS2−zB,i

li,2
+ zS2−z0

l20

1


(A.16)
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A.3 Jacobi Matrices

Satellite Velocity From the Equation Set 4.31 the 7×7 Jacobi matrix can be established
by

J = ∂ ḟ/∂ẋ =


ġT1
ġT2
...

ġT7

 (A.17)

with the vectors ġi defined as

ġi =



−xS1−xB,i

li,1
− fi−fT 1

fi

xS1−x0
l10

−yS1−yB,i

li,1
− fi−fT 1

fi

yS1−y0
l10

− zS1−zB,i

li,1
− fi−fT 1

fi

zS1−z0
l10

xS2−xB,i

li,2
+ fi−fT 2

fi

xS2−x0
l20

yS2−yB,i

li,2
+ fi−fT 2

fi

yS2−y0
l20

zS2−zB,i

li,2
+ fi−fT 2

fi

zS2−z0
l20

c
fi


(A.18)

A.3.4 Ranging TDOA/FDOA Differential

Satellite Position According to the Equation Set 4.32 the 6× 6 Jacobi matrix can be
established by

J = ∂f/∂x =


gT1
gT2
...

gT6

 (A.19)

with the vectors gi defined as

gi =



xS1−xB,i

li,1
− xS1−xR

lR1
yS1−yB,i

li,1
− yS1−yR

lR1
zS1−zB,i

li,1
− zS1−zR

lR1
xS2−xB,i

li,2
− xS2−xR

lR2
yS2−yB,i

li,2
− yS2−yR

lR2
zS2−zB,i

li,2
− zS2−zR

lR2


(A.20)
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Satellite Velocity From the Equation Set 4.33 the 6×6 Jacobi matrix can be established
by

J = ∂ ḟ/∂ẋ =


ġT1
ġT2
...

ġT6

 (A.21)

with the vectors ġi defined as

ġi =



−xS1−xB,i

li,1
− fi−fT 1

fi

xS1−x0
l10

+ fR
fi

xS1−xR
lR1

+ fR−fT 1
fi

xS1−x0
l10

−yS1−yB,i

li,1
− fi−fT 1

fi

yS1−y0
l10

+ fR
fi

yS1−yR
lR1

+ fR−fT 1
fi

yS1−y0
l10

− zS1−zB,i

li,1
− fi−fT 1

fi

zS1−z0
l10

+ fR
fi

zS1−zR
lR1

+ fR−fT 1
fi

zS1−z0
l10

xS2−xB,i

li,2
+ fi−fT 2

fi

xS2−x0
l20

− fR
fi

xS2−xR
lR2

− fR−fT 2
fi

xS2−x0
l20

yS2−yB,i

li,2
+ fi−fT 2

fi

yS2−y0
l20

− fR
fi

yS2−yR
lR2

− fR−fT 2
fi

yS2−y0
l20

zS2−zB,i

li,2
+ fi−fT 2

fi

zS2−z0
l20

− fR
fi

zS2−zR
lR2

− fR−fT 2
fi

zS2−z0
l20


(A.22)
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