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Outline

The topic of this dissertation are developments of Waring’s Problem. In

Part A, we briefly introduce the history of Waring’s Problem. Besides, we

give a short non-detailed presentation of the Hardy-Littlewood method.

This method is the main tool in order to attack Waring’s Problem and re-

lated diophantine equations. We also mention the underlining philosophy

and motivation of this dissertation that we call “hybrid structures”.

Part B is based on a recent paper of the author [50]. Let V be a set of

pairwise coprime positive integers not containing 1 and let δ > 0 such that

the series
∑

v∈V v
−1+δ converges. We proof that for given integers with

s > 2k and k > 0 and for every sufficiently large N Waring’s equation

xk1 + . . .+ xks = N

has a solution in positive integers xi such that xi is not divisible by any

v ∈ V for all i = 1, 2, . . . , s.

Part C generalizes this results. This part is also based on a recent

paper of the author [49]. For simplicity, we take V to be the set of the

squares of all primes. Then the condition that an integer n is not divisible

by any v ∈ V can be read as µ2(n) = 1, i.e. that n is squarefree. We

denote by sq(n) the sum of digits of the q-ary representation of a non-

negative integer n. For example s10(246) = 2 + 4 + 6 = 12. The main

results of Part C is that for every sufficiently large integer N the equation

xk1+. . .+xks = N has a solution in positive integers xi such that µ2(xi) = 1

and sq(xi) ≡ hi mod mi for all i = 1, 2, . . . , s. Here, mi, hi are given non-

negative integers that fulfill certain minor conditions.

Besides the existence of such solutions, we also give asymptotic for-

mulas of the number of admissible representations. By such asymptotic

formulas, we are able to show that certain properties among the inte-

gers are in a certain sense independent. That means, that we show some

hybrid structures among the integers.
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Kurzfassung

Inhalt dieser Dissertation sind neue Resultat im Zusammenhang mit

dem Waringschen Problem. In Teil A wird das Waringsche Problem in

seinen geschichtlichen Kontext gestellt und eine kurze Einführung in die

Hardy-Littlewoodsche Methode gegeben. Es wird zudem die grundle-

gende Philosophie und Motivation der Arbeit, nämlich hybride Struk-

turen, vorgestellt.

Teil B basiert auf einem jüngst erschienenen Artikel des Autors [50].

Sei V eine Menge paarweise teilerfremder natürlicher Zahlen ohne 1 und

sei δ > 0, so dass
∑

v∈V v
−1+δ endlich ist. Es wird gezeigt, dass für alle

natürlichen Zahlen s, k mit s > 2k and k > 0 und für jedes hinreichend

große N die Waringsche Gleichung

xk1 + . . .+ xks = N

eine Lösung in natürlichen Zahlen xi hat, so dass xi von keinem Element

aus V geteilt wird.

Teil C basiert ebenfalls auf einem Artikel des Autors [49]. Sei V
die Menge der Quadrate der Primzahlen. Die Bedingung, dass n von

keinem Element aus V geteilt wird, entspricht nun µ2(n) = 1, d.h. dass n

quadratfrei ist. Sei sq(n) die Ziffersumme in der q-adischen Darstellung

einer natürlichen Zahl n. Es gilt z.B. s10(246) = 2 + 4 + 6 = 12. Das

Hauptresultat von Teil C ist, dass jedes hinreichend große natürliche N

dargestellt werden kann in der Form xk1 + . . . + xks = N mit positiven

Zahlen xi, so dass µ2(xi) = 1 und sq(xi) ≡ hi mod mi, wobei mi, hi
gegebene natürliche Zahlen sind, welche gewisse Bedingungen erfüllen.

Neben der Existenz solcher Lösungen werden auch asymptotische

Formeln für die Anzahl der zulässigen Darstellungen gegeben. Durch

diese Formeln ist ersichtlich, dass die hier untersuchten Eigenschaften

der natürlichen Zahlen in einem gewissen Sinne unabhängig sind. Damit

werden hybride Strukturen der natürlichen Zahlen aufgezeigt.
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Part A:

Introduction
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1 Notation

For abbrevation, we implicitly always assume that an integers is non-

negative. Hence the symbols N, R, and C denote the set of the integers,

the real numbers, and the complex numbers respectively. For x ∈ R with

x ≥ 0, we let bxc denote the largest integer not exceeding x. We call an

integer n squarefree if for every d ∈ N, the condition d2|n implies d = 1.

The Möbius µ–function is defined by µ(n) = 0 if n is not a squarefree

integer, µ(n) = 1 if n is a squarefree positive integer with an even number

of distinct prime factors, and µ(n) = −1 elsewhere.

Let f : N→ R and g : N→ R+. We use the expression

• f(x) = O (g(x)),

• f(x)� g(x), and

• there are C, c > 0 such that |f(x)| ≤ cg(x) holds for all integer

x > C

equivalently. Assume that the expression limx→∞ f(x)/g(x) exists. We

write f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1 and f(x) = o (g(x)) if

limx→∞ f(x)/g(x) = 0.

For abbreviation, for a real number α, we define e(α) := e2πiα. Here,

e denotes the base of the natural logarithm. We will reserve the following

special use for the symbol ε: Every expression containing an ε is to be

understood as valid if the expression holds for some ε > 0. The constants

implied by the use of the symbols O and � may depend on ε and on

absolute constants only.
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2 Waring’s Problem

2.1 History and developments

Clearly, not every integer is a square. But one might ask if an integer

is a sum of two squares. If n = x2
1 + x2

2 and m = y2
1 + y2

2, then an

easy calculation shows that mn = (x1x2 − y1y2)2 + (x1y2 + x2y1)2. Thus,

provided that every prime is a sum of two squares, every integer is a sum

of two squares. Indeed, every prime p such that p ≡ 1 modulo 4 is a sum

of two squares. A very short and elegant proof of this fact was found by

Don Zagier [84]. However, if p is a prime such that p ≡ 3 modulo 4, then

p is not a sum of two squares. Let N be an integer and let

N =
∏
p

pep(N)

be its unique prime factorization. Then N is a sum of two squares if and

only if for all p ≡ 3 modulo 4, we have 2|ep(N). This result was stated

without proof by Fermat. In 1749, it was proved by Leonhard Euler in a

letter to Edward Waring. Notice that not every integer is a sum of three

squares. This can be seen from the fact that x2 ≡ 0, 1 or 4 modulo 8 for

all x ∈ N. Thus a sum of three squares is never congruent 7 modulo 8.

However, every integer is a sum of four squares. Let N ∈ N. In 1770,

Lagrange showed that the equation

x2
1 + x2

2 + x2
3 + x2

4 = N

has a solution in integers x1, x2, x3, x4. For an account of this theorem,

we refer to [39, Chapter 20]. Actually, an exact expression for the number

of representations of an integer N as a sum of four squares is given by

8
∑
d|N

d

if N is odd and by

24
∑
d|N

d is odd

d

if N is even. This result is from 1834 and is due to Jacobi. For a short
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proof of this result, see [43] resp. [42].

In the same year, Edward Waring proposed a generalization of Lan-

grange’s Theorem. He asserted without proof that “Every integer is a

cube or the sum of two, three, ... nine cubes; every integer is also the

square of a square, or the sum of up to nineteen such; and so forth.”[78,

Page 336] More formerly, let k ∈ N and denote by g(k) the minimal

integer s such that for all integers N , there exists x1, . . . , xs ∈ N such

that

xk1 + . . .+ xks = N. (2.1.1)

Thus a weak version of Waring’s conjecture can be read as

g(k) <∞ (2.1.2)

for all k ∈ N. In this language, Langrange proved g(2) = 4. The first

proof of (2.1.2) for all k is due to Hilbert [41] in 1909. Roughly speaking,

Hilbert made use of polynomial identities of the form

6
(
a2 + b2 + c2 + d2

)2
= (a+ b)4 + (a− b)4 + (c+ d)4 + (c− d)4

+ (a+ c)4 + (a− c)4 + (b+ d)4 + (b− d)4

+ (a+ d)4 + (a− d)4 + (b+ c)4 + (b− c)4.

This is a generalization of the fact that the product of a sum of four

squares by a sum of four squares equals a sum of four squares, which is

an useful tool for the proof of Lagrange’s Theorem. However, Hilbert’s

method gives a very poor bound for g(k). Presently, we know that

g(k) = 2k + b(3/2)kc − 2 (2.1.3)

for all k ≤ 471 600 000 (see [53]).

Let N ∈ N. We denote by Rs,k(N) the number of representations of

the integer N in the from (2.1.1), where the variables xi (i = 1, . . . , s)

are assumed to be integers. However, unlike the case k = 2, s = 4, we

can not expect to get an exact formula for Rs,k(N) for arbitrary k.

Heuristically, one might conjecture that Rs,k(N) is of order of magni-

tude N s/k−1. This can be motivated by the observation that the s vari-
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ables xi are supposed to hold 0 ≤ xi ≤ N1/k (i = 1, . . . , s). Having

chosen randomly (x1, . . . , xs) ∈
{

0, 1, . . . , bN1/kc
}s

, the heuristic proba-

bility that indeed (2.1.1) holds is N−1.

Suppose that an asymptotic formula of the form

Rs.k(N) ∼ S∗(N)N s/k−1 (2.1.4)

holds, where 1 � S∗(N) � 1 is some arithmetical function that will

be specified later. Then there is an integer N0 depending on s and k

only such that Rs.k(N) > 0 for all N > N0. Thus if we can show such

a formula, we prove that (2.1.1) has a solution for all sufficiently large

integers N . Indeed, such an asymptotic formula was obtained by Hardy

and Littlewood [35] in 1920. We define G(k) as the least integer value of s

such that at most an finite amount of integers N can not be represented

in the form (2.1.1). Clearly, g(k) ≥ G(k). In [36] and [37], Hardy and

Littlewood showed

G(k) ≤ (k − 2)2k−1 + 5.

There is a large list of improvements of bounds of the function G(k)

and we refer the reader to the article [75] that gives a survey of the

history on developments of Waring’s Problem. We want to mention the

sharp estimate

G(k) ≤ k (log k + log log k + 2 +O (log log k/ log k))

for large integers k that is due to Wooley [83]. Recall (2.1.3). The number

G(k) is thus essential smaller than g(k).

However the present knowledge of the exact value for G(k) is very

poor. We only know that G(2) = 4 and G(4) = 16. The latter result is

due to Davenport [20] from 1939, while the former result is Lagrange’s

Theorem. Besides, Linnik [55] showed in 1943 that G(3) ≤ 7. This proof

has be strongly simplified by Watson [80].

But one can obtain better results if one asks if almost all integers N

can be represented in the form (2.1.1) for given integers s and k. Here, we

use the expression “almost all” in the following sense. We define G̃(k) as

the smallest number s such that the number of integers N < X such that

(2.1.1) has no solution is o(X). Davenport [19] showed that G̃(3) = 4,
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Hardy and Littlewood [38] proved that G̃(4) = 15, due to Vaughan [69],

we have G̃(8) = 32 and Wooley [82] showed G̃(16) = 64 and G̃(32) = 128.

Having shown a bound or an exact value for G(k) does not imply the

existence of an asymptotic formula for the number of solutions of (2.1.1).

The first result providing an asymptotic formula is due to Hua [45] form

1938. He showed that an asymptotic formula of the form (2.1.4) holds

if s ≥ 2k + 1. In 1995, Ford [29] verified the existence of an asymptotic

formula provided that

s ≥ k2 (log k + log log k +O(1)) .

Among others, Vaughan an Wooley [71], [72], [73], and [74] improved this

bound for smaller values of k

2.2 The Hardy–Littlewood method

The so called Hardy–Littlewood method is a useful tool to prove asymp-

totic formulas of the form (2.1.4). The basic idea of this method was

already presented in a paper by Hardy and Ramanujan [34] in 1918. We

only give a short non–detailed introduction to that method and refer the

reader to the wonderful books [68] and [21].

Let M ∈ N. The important observation is the formula∫ 1

0

e (αM) dα =

{
1 if M = 0

0 if M 6= 0.
(2.2.1)

Substituting

M = xk1 + . . .+ xks −N

and summing over all integers xi ≤ N1/k (i = 1, . . . , s) on the left hand

side of (2.2.1) yields the formula

Rs,k(N) =
∑

x1≤N1/k

· · ·
∑

xs≤N1/k

∫ 1

0

e
(
xk1 + . . .+ xks −N

)
dα

=

∫ 1

0

(f(α))s e (−αN) dα,
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where we define

f(α) :=
∑

x≤N1/k

e
(
αxk

)
.

Clearly, one can substitute M in (2.2.1) above by a big class of expres-

sions of the form F (x1, . . . , xd)−N in order attack the solubility of the

diophantine equation F (x1, . . . , xd) = N , where F is some function. For

instance, the circle method is a useful tool to attack to so called Gold-

bach’s Problem, where one ask if every large even integer can be expressed

as a sum of two primes and if every large odd integer is a sum of three

primes.

We want to mention that the formula (2.2.1) can be also deduced in

the following way. For a variable X, let

F (X) :=
∑
n≥1

Xnk .

Then

(F (X))s =
∑
n1≥1

· · ·
∑
ns≥1

Xnk1+...+nks =
∑
N≥0

Rs,k(N)XN .

Cauchy’s integral formula enables us to extract a coefficient Rs.k(N) of

the power series in the last display which again yields (2.2.1).

In order to prove (2.1.4), we need to understand the function f(α).

One subdivides the interval [0, 1) into two disjoint sets M and m, where

the former is called the major arcs and the latter is called the minor arcs.

For some sufficiently small δ > 0, we define

M :=
⋃

1≤q≤P δ
1≤a≤q
(a,q)=1

{
0 ≤ α < 1 |

∣∣∣∣α− a

q

∣∣∣∣ ≤ P−k+δ

}

and m := [0, 1)\M. Here, we take P := N1/k. Thus

Rs,k(N) =

∫
M

(f(α))s e (−αN) dα +

∫
m

(f(α))s e (−αN) dα

Notice that in the definition of M above, the union is a disjoint union of

sets. Roughly speaking, if α ∈ [0, 1) is close to an rational number with

a small denominator, then α belongs to the major arcs M and f(α) is
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well approximable. In the converse situation, we have α ∈ m and |f(α)|
is small such that such values of α contribute only to the error term in

(2.1.4).

2.2.1 The treatment of the minor arcs

In order to prove (2.1.4), we want to show that∫
m

:=

∫
m

(f(α))s e (−αN) dα = o
(
N s/k−1

)
. (2.2.2)

There are two important tools to do so.

First, when α ∈ m, we need a non–trivial bound for |f(α)|. Let α ∈ R
and suppose a and q are coprime integers such that |α− a/q| ≤ q−2.

Notice that this approximation is always possible due to Dirichlet’s ap-

proximation theorem (see e.g. [9, Satz 6.4.2]). In 1916, Hermann Weyl

[81] proved that

f(α)� P 1+ε

(
P−1/K + q−1/K +

(
P k

q

)−1/K
)

(2.2.3)

holds for every ε > 0. Here we define K := 2k−1. Notice that this is better

than the the trivial estimate |f(α)| ≤ P provided that P δ ≤ q ≤ P k−δ

for some δ > 0. This motivates the definition of major and minor arcs

above. Indeed, for all α ∈ m, the estimate (2.2.3) is non–trivial. The

proof of Weyl’s result (2.2.3) makes use of an ingenious application of

the Cauchy–Schwarz–Bunyakovsky inequality.

We want to assume that s > 2k. Taking absolute values of the inte-

grand in (2.2.2) we get∫
m

�
(

sup
α∈m
|f(α)|

)s−2k ∫ 1

0

|f(α)|2
k

dα.

As already mentioned, the supremum can be bounded non trivially by

Weyl’s Inequality (2.2.3). In order to prove (2.2.2), we have to bound the

integral in the last display non–trivial which is the matter of the next

paragraph.
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The second tool is known as Hua’s Lemma. Recall that for any com-

plex c, we have |c|2 = cc̄. With this in mind and (2.2.1), one can easily

see that ∫ 1

0

|f(α)|2
k

dα

equals the number of solutions of

xk1 + . . .+ xk2k−1 = xk2k−1+1 + . . .+ xk2k

in integers xi ≤ P for i = 1, 2, . . . , 2k. In 1938, Loo-keng Hua [45] showed

by induction on k that for every ε > 0, we have∫ 1

0

|f(α)|2
k

dα� P 2k−k+ε. (2.2.4)

This estimate together with Weyl’s result yields (2.2.2). Improvements

on the upper bound for G(k) are mostly due to refinements of the result

(2.2.4). However, if we have only a poor version of Weyl’s Inequality in

the form f(α) = o(P ) for α ∈ m, then we need a strong version of (2.2.4)

with ε = 0 which is true due to Vaughan [70]. However, the exponent 2k

in (2.2.4) is essential in Vaughan’s strong version of Hua’s Lemma. Later,

we will pose certain restrictions to the variables xi in (2.1.1). In this case

we only have f(α) = o(P ) for α ∈ m and the bound G(k) ≤ 2k + 1 can

not be improved, since Vaughan’s results has not been refined yet.

2.2.2 The treatment of the major arcs

To show an asymptotic formula of the form (2.1.1), we need to prove∫
M

:=

∫
M

(f(α))s e (−αN) dα ∼ S∗(N)N s/k−1.

Now, suppose that α ∈ M. Then there are coprime integers a, q with

1 ≤ a ≤ q ≤ P δ such that |α − a/q| ≤ p−k+δ|. That means that α

is well approximable by a/q. Let β := α − a/q. The first idea of the

treatment of the major arcs is to make a transformation of the form

f(a/q + β) ∼ f1(a/q)f2(β) in order to decouple a/q and β. This can

be done due to the condition that q is not too large by using partial

summation. For the sake of simplicity, we do not define the function f1
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and f2 in this introduction. Roughly speaking, we have

f1(a/q) ∼ f(a/q) ∼ P

q

q∑
x=1

e

(
axk

q

)
.

The sum in the last display is called a Gauss–sum and is usually denoted

by S(q, a). With this strategy, we raise f1(a/q)f2(β) to the power of s,

multiply by e (−(a/q + β)N), integrate over β and sum over a, q accord-

ing to the definition of the major arcs M. Very approximately speaking,

this procedure yields ∫
M

∼ CN s/k−1S(N),

for some C > 0. Here, CN s/k−1 is a result of the integration over β as

described above. The arithmetic function S(N) results form the contri-

butions of f(a/q). More precisely, the method yields

S(N) =
∑
q≥1

T (q,N),

where we define

T (q,N) :=

q∑
a=1

(a,q)=1

(
S(a, q)

q

)s
e

(
−a
q
N

)
.

In order to show (2.1.1), we need to show that S(N) > 0. To do so, one

verifies that T (q,N) is multiplicative in q. Thus we obtain

S(N) =
∏
p

T (p,N).

Notice
q∑

a=1
(a,q)=1

e

(
ab

q

)
=

{
q if b ≡ 0 mod q

0 else,

the discrete analogue of (2.2.1). With this in mind, we recall the definition

of S(q, a). Thus, one can argue that the final task in order to prove an

asymptotic formula is to show that for all all prime p, the equation

xk1 + . . .+ xks ≡ N mod pη (2.2.5)
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has a solution with p - x1. As a consequence, we obtain S(N) > 0. Here,

η is can be defined dependent on p and k. To prove that (2.2.5) has a

solution with p - x1, one makes use of generalization of a Theorem of

Augustin Cauchy [13] from 1813. He proved that for a given prime p

and non–zero integers u, v, w the equation ux2 + vy2 + w ≡ 0 mod p

has solution. This theorem was used by Lagrange in order to establish

his four squares theorem. Cauchy’s result was reproved and extended by

Harold Davenport [18] in 1935. He proved that for A,B ⊂ Z\(pZ) with

α := #A and β := #B, we have

{a+ b mod p | a ∈ A, b ∈ B} ≥ min{p, α + β − 1}.

In 1936, Inder Chowla [14] extended this result to composite moduli.

This results are interesting for itself and they are an useful tool in order

to conclude the proof of the asymptotic formula (2.1.4).
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3 Hybrid structures

A central topic in number theory is the question if certain properties

among the integers are in some sense independent or not. A first easy

example is the following application of the so called Chinese remainder

theorem. For coprime integers a, b and v, w ∈ N, we define

A := {n ∈ N : n ≡ v mod a} ,

and

B := {n ∈ N : n ≡ w mod b} ,

Clearly, #{n ≤ X : n ∈ A}/X ∼ 1/a and #{n ≤ X : n ∈ b}/X ∼ 1/b.

By the Chinese remainder theorem, we get

# {n ≤ X : n ∈ A ∩B}
X

∼ 1

ab
.

Abusing the language of probability theory, the probability that a random

integer n is an element of A respectively B is 1/a respectively 1/b. The

Chinese remainder theorem yields that the probability for n ∈ A ∩ B is

1/(ab). Hence, the events a ∈ A and b ∈ B are in this sense independent.

An other example of such independent or hybrid structures are square-

free integers. Let p be a prime. Notice that

# {n ≤ X : p2 - n}
X

∼
(

1− 1

p2

)
.

Let p1, p2 be two distict given prime numbers. If we assume that for a

random integer n the events p2
1 - n and p2

2 - n are independent in the

sense suggested above, we conclude for the density of squarefree integers

lim
X→∞

# {n ≤ X : n is squarefree }
X

=
∏

all primes p

(
1− 1

p2

)
=

6

π2
.

This heuristic statement is indeed true.

As a last famous example of such hybrid results, we want to mention
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the Siegel–Walfisz theorem [77] that shows that for a integer n, the events

n is prime and n is an element of a given arithmetic progression are in a

certain sense independent. More precisely, one has

# {p ≤ X : p prime and p ≡ a mod q} ∼ 1

ϕ(q)

X

logX
,

where a, q are given coprime integers.

Here, such results show that certain properties among all integers are

independent. The purpose of this work is to generalize this approach of

studying such hybrid structures. We want to investigate if among solu-

tions of Waring’s Problem certain properties are independent. Assume

that C ⊂ N is a set of positive density c. That is that

c := lim
X→∞

# {n ≤ X : n ∈ C}
X

exists and is positive. Notice that for instance the set⋃
n≥1

{
22n−1, 22n−1 + 1, 22n−1 + 3, . . . , 22n − 1

}
does not have a density. However, we want to focus on sets that do have

a densty. Recall the definition of Rs,k(N) on page 12. Let RC;s,k(N) be

the number of solutions of (2.1.1) with xi ∈ C for i = 1, 2, . . . , s. The

statement that the events (x1, . . . , xs) ∈ As and (x1, . . . , xs) ∈ Ns is a

solution of (2.1.1) are independent can be formulated as

RC;s,k(N) ∼ csRs,k(N).

Clearly, this is in general not true. For example the set of even integers

has density 1/2. But if N is odd, than N can not be represented as a

sum of powers of even integers. However, one can often show that besides

such trivial exceptional cases results of independence indeed hold.

3.1 Dense sets

We want to recall Hilbert’s result mentioned on page 12 that for any

given k, one finds some integer s such that for any integer N , the equation
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(2.1.1) has at least one solution in integers xi for i = 1, 2, . . . , s. Notice

that this result does not imply an asymptotic formula. This result can be

generailzed in the following way that gives some weak but general insight

on hybrid structures as introduced in Section 3. For details we refer the

reader to Remark 3.4 of a paper of Thuswaldner and Tichy [65].

Assume that A ⊂ N has positive density. Let k ∈ N. Under the

condition that for all primes p there are integers ap, bp ∈ A such that

p|ap and p - bp, there is some integer s such that for all N ∈ N equation

(2.1.1) has a solution with xi ∈ A for i = 1, 2, . . . , s.

Notice that this approach does only give a poor bound for the size of

s. Besides, no asymptotic formula is obtained.

Our results presented in this work also deal with some dense sets

B ⊂ N. But the condition that for all primes p there are integers ap, bp ∈ B
such that p|ap and p - bp does not hold in the cases of the set B that we

are interested in. We pose some multiplicative conditions to the set B
that imply the existence of primes that do not divide any element of B.
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Part B:

Waring’s Problem and convergent sieve sequences
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4 Results and context

4.1 Convergent sieve sequences

Many sequences in number theory arise from a sieving process. One of the

fundamental invariants associated with a sieve is its dimension, usually

denoted by κ. Here, we want to investigate the case κ = 0, i.e. convergent

sieves. With applications in mind, we consider a slightly more general

situation.

Let V be a set of pairwise coprime integers not containing 1. We

assume that there is some 0 < δ < 1 such that∑
v∈V

1

v1−δ <∞. (4.1.1)

This generates a sifted sequences whose characteristic function is given

by

χV(n) :=

{
1, if v - n for all v ∈ V ;

0 , otherwise.
(4.1.2)

If V is a set of primes, we shall also use the letter P .

The notion of the set {n ∈ N : χV(n) = 1} has been introduced by

Erdös [25]. The distribution of this set in residue classes has been studied

by Jancevskis [48]. Alkan and Zaharescu [2] investigated the problem of

finding integers n in short arithmetic progressions such that χV(n) = 1.

An integer n satisfying χV(n) = 1 is also called a V-free number (e.g. in

[2]).

One of the most prominent examples of such a convergent sieve se-

quence is the set of k numbers with an integer k ≥ 2. In this case,

V = { pk : p prime }, and (4.1.1) holds with δ = (k − 1)/k + ε. Among

others, the distribution of squarefree numbers (k = 2) in arithmetic pro-

gressions has been studied by Prachar [61], Hooley [44], Warlimont [79],

and Blomer [8].

For another example, fix an elliptic curve E/Q without complex mul-
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tiplication, and let fE(z) =
∑

n a(n)e(nz) be the associated modular

form. Then the sequence of those squarefree indices n with a(n) 6= 0 is

again a convergent sieve sequence (see e.g. [1]). Indeed, up to finitely

many primes, V is here the set of primes p such that the reduction of E

mod p is supersingular, together with the squares of the remaining primes;

it is known (see [24]) that in this case (4.1.1) holds with δ = 1/4− ε.

For an overview over convergent sieves, in particular with respect to

binary additive problems, see Brüdern’s work [10]. For example, if P is

a set of primes such that
∑

p∈P 1/p <∞, a special case of [10, Theorem

1.10] states ∑
n≤X

χP(n) ∼
∏
p∈P

(
1− 1

p

)
X.

This formula can be also motivated by an heuristic approach. The so

called heuristic probability that a randon integer is divisible by a prime

p is (1− 1/p). If for a random integer n and two distinct primes p1 and

p2 the heuristic events p1|n and p2|n are supposed to be independent, the

formula in the last display is motivated.

The result in the last display was generalized to residue classes by

Jancevskis [48, Theorem 1]. In particular, for a set P of primes satisfying∑
p∈P 1/p <∞ and for all a, q ∈ N with (a, q) = 1 and

(log q)(log log q) = o(logX)

one has ∑
n≤X
n≡a (q)

χP(n) ∼
∏
p∈P
p-q

(
1− 1

p

)
X

q
.

In this generality we cannot expect to get an explicit error term. However,

it is interesting to note that the uniformity in q is much larger than in

the classical theorem of Siegel-Walfizs.

It often gives useful information on a sequence an if one can under-

stand the correlations of the type
∑
anan+h for fixed values of h. Let

ε > 0, 0 < δ < 1, q ∈ N and P be a set of prime numbers satisfying

(4.1.1). Let li for i = 1, 2, ..., r be integers with li ≤ L and q|li. For any
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prime p we define

u(p) := #{ li mod p : i = 1, 2, ..., r }.

and

P(q) := P ∪ { p prime : p|q }.

For

S(X) :=
∑
n≤X

(n,q)=1

χP(n+ l1) · ... · χP(n+ lr)

Jancevskis [48, Theorem 3] showed that one has

S(X) ≤
∏

p∈P(q)

(
1− u(p)

p

)
X +Or

(
(qL)εX1−δ/(2−δ)+ε)

and

S(X) ≥
∏

p∈P(q)

(
1− u(p)

p

)
X

+Or

(
min

{
(qL)εX1−δ/(3−δ)+ε + LX−1/(3−δ),

(qL)εX1−δ2+ε + LX−δ

})
.

The O-constants depend upon r but are independent on L. For every

δ > 0 and L� X is this result nontrivial. One of the main features here

is the uniformity in L. It generalizes once again [10, Theorem 1.10] since

our estimates are uniform in the shifts. Tsang [67] proved a similar result

in the special case of squarefree numbers.

4.2 Waring’s Problem

Waring’s Problem with multiplicatively restricted variables has been wi-

dely studied. The most famous example is the so called Waring–Goldbach

Problem, in which one asks if an integer can be represented as a sum of k–

th powers of prime numbers. Among others, this problem has been stud-

ied by Hua [46], [47]; Kawada and Wooley [51]; Thanigasalam [63]; and

Vinogradov [76]. Among others, Waring’s Problem with smooth numbers

has been explored by Balog and Sárközy [5] and Harcos [33]; Brüdern and

Fouvry [11] showed Lagrange’s Four Square Theorem where the variables

are almost prime.
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In this chapter we want to present results of Waring’s Problem where

the variables are restricted to a sifted sequences whose characteristic

function is defined as in (4.1.2) above for a set V of coprime integers not

containing 1 that such that (4.1.1) holds.

In the case of square-free numbers, Esterman [28] investigated if an

integer can be represented as a sum of squares of squarefree integers;

Baker and Brüdern [3], [4] proved that almost all integers can be repre-

sented as a sum of four cubes of squarefree integers. Our purpose is to

generalize this results to our sifted sequences for arbitrary k–th powers.

Let s, k ∈ N. We denote by RV(N) the number of solutions of

xk1 + . . .+ xks = N (4.2.1)

with χV(x1) = . . . = χV(xs) = 1.

In this chapter, the number of summands is only of secondary interest.

Thus we assume for the sake of simplicity that s > 2k. This bound is not

best possible and the techniques of the present paper yield also results

for smaller s. The range of s depends on the current state of results

improving Hua’s Lemma (for a survey, see e.g. [75]). Here, we only make

use of the original form of Hua’s Lemma (see e.g. [68, Lemma 2.5]). Our

first result is the following:

Theorem 4.2.1. Let V be a set of pairwise coprime integers not con-

taining 1 such that (4.1.1) is finite for some δ > 0. Then there is some

ρ > 0 such that

RV(N) = JSV(N)N s/k−1 +O
(
N s/k−1−ρ) ,

where J > 0 is defined in (5.2.18) below and only depends on s, k.

The arithmetic function SV(N), called the singular series, is defined in

Lemma 5.2.6. The implicit O–constant only depends on s, k, δ, and ρ.

Unfortunately, we could not determine whether SV(N) > 0 for an

arbitrary set V of pairwise coprime integers. The difficulty lies in the

fact that the function D associated with the singular series SV(N) =∑
q≥1D(q) might not be multiplicative if V is not a set of prime powers

(see Remark 5.3.2 after Lemma 5.3.1).
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However, if we restrict V to be a set of prime powers, we are able to

provide a lower bound for SV(N). In this case we write

W =: {pep | p ∈ P} , (4.2.2)

instead of V , where P is a subset of the prime numbers and (ep) is a

sequence of positive integers. Recall that we assume∑
p∈P

1

(pep)1−δ <∞ (4.2.3)

for some δ > 0 arbitrarily small. Without loss of generality, we can assume

that ep ∈ {1, 2} for all pep ∈ W , since a solution with the variables not

divisible by p2 implies a solution with the variables not divisible by pr

with r ≥ 2.

Next, we define a condition that is necessary for SW(N) > 0 to hold.

We define τ by pτ ||k and let σ = τ+1 if p 6= 2 and σ = τ+2 if p = 2. For

an integer N , we say that (W , N) satisfies Condition C if the following

two conditions holds:

• For all p prime such that p ∈ W (i.e. ep = 1) with p ≤ (k−1)4 +8k

there is a solution of

xk1 + . . .+ xks ≡ N mod pσ

with p - x1 · · ·xs.

• If k = 2 and 4 ∈ W , there is a solution of

x2
1 + x2

2 + x2
3 + x2

4 ≡ N − 1 mod 8

such that 4 - xi for i = 1, 2, 3, 4.

Theorem 4.2.2. Let a set of prime powers W be defined by (4.2.2). If

(4.2.3) and Condition C hold, we have

SW(N) > 0.

If we take W as the set of the squares of all primes, we obtain the

following corollary.
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Corollary 4.2.3. Let s > 2k. Assume that k ≥ 3. Then every sufficiently

large integer can be represented as a sum of s k–th powers of squarefree

integers. If k = 2, the same holds if there is a solution of x2
1+x2

2+x2
3+x2

4 ≡
N − 1 mod 8 with 4 - xi for i = 1, 2, 3, 4.

If we sieve with primes, we have to be aware that the first part of

Condition C does not hold in general. For example, if k − 1 = p ∈ W ,

then xk ≡ 1 mod p for all p - x. Thus N ≡ s mod p is necessary for

Condition C. If 2k + 1 = p ∈ W , then xk ≡ ±1 mod p for p - x and

Condition C cannot hold if s is even and N ≡ 0 mod p. We illustrate

this for the case k = 2. In this case, we have to check Condition C for

p ≤ 17 by an easy computation.

Corollary 4.2.4. Let P be a set of prime numbers and assume that there

is some δ > 0 such that ∑
p∈P

1

p1−δ

converges. Let N ∈ N and assume N ≡ 5 mod 8 if 2 ∈ P and N ≡ 2

mod 3 if 3 ∈ P. If N is sufficiently large, it can be represented as a sum

of five squares of integers not being divisible by any prime of P.

To prove Theorem 4.2.1, we make use of the classical circle method.

The main part of this paper is the proof of Theorem 4.2.2 which is mo-

tivated by a work of Baker and Brüdern [3].
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5 Proofs

5.1 Preliminary considerations

Let P := N1/k and let V be a set of pairwise coprime positive integers

not containing 1. Throughout this section, we define

f(α) =
∑
x≤P

χV (x)=1

e(αxk).

Recall that e(θ) stands for e2πiθ. Remember that RV(N) is the number

of solutions of (4.2.1) with χV(x1) = . . . = χV(xs) = 1. Applying the

fundamental formula (2.2.1) as described in Section 2.2 yields

RV(N) =

∫ 1

0

f(α)se(−αN)dα. (5.1.1)

We define

Π (V) :=

{
n =

∏
v∈V ′

v : V ′ is a finite subset ofV

}

and

µV(n) :=

{
(−1)#V ′ , ifn ∈ Π (V) withn =

∏
v∈V ′ v,

0 , otherwise,

a variant of the well known Möbius µ-function. Notice that 1 ∈ Π (V),

since we define the empty product as 1.

Lemma 5.1.1. For an integer n, we have

χV(n) =
∑

m∈Π(V)
m|n

µV(m).

Proof. The proof of this convolution formula is very similarly to the well

know identity µ2(n) =
∑

d2|n µ(n). We first assume that χV(n) = 1 for

n ∈ N. In this case, the right hand side of the last display simplifies to
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µV(1) = 1, since for all 1 6= v ∈ Π (V), we have v - n. Now, we assume

that χV(n) = 0. Let Ṽ ⊂ V be defined via m ∈ Ṽ ⇔ m|n. Thus

∑
m∈Π(V)
m|n

µV(m) =
∑

m∈Π(Ṽ)

µV(m) =

#Ṽ∑
j=1

(−1)j
(

#Ṽ
j

)
= 0,

and the statement is proved.

Lemma 5.1.2. Let 0 ≤ δ < 1. If∑
v∈V

1

v1−δ

is finite, then ∑
d≥1

dξ∈Π(V)

1

d1−δ � 1

holds uniformly for all ξ ∈ N.

Proof. For arbitrary ξ ∈ N we define

ξ0 :=
∏
v∈V

(v,ξ)>1

v

(v, ξ)

and

Vξ := {v ∈ V|(v, ξ) = 1} ∪ {ξ0} .

Let d ≥ 1. If dξ ∈ Π (V), there is a finite subset V ′ of V such that

dξ =
∏
v∈V ′

(v,ξ)=1

v
∏
v∈V ′

(v,ξ)>1

v. (5.1.2)

Since V is a set of pairwise coprime integers, one has∏
v∈V ′

(v,ξ)>1

v =
∏
v∈V

(v,ξ)>1

v = ξ
∏
v∈V

(v,ξ)>1

v

(v, ξ)
= ξ ξ0.
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Hence we get by (5.1.2) that

d = ξ0

∏
v∈V ′

(v,ξ)=1

v.

Thus dξ ∈ Π (V) implies d ∈ Π (Vξ) and consequently∑
d≥1

dξ∈Π(V)

1

d1−δ ≤
∑
d≥1

d∈Π(Vξ)

1

d1−δ . (5.1.3)

One has ∑
v∈Vξ

log

(
1 +

1

v1−δ

)
≤
∑
v∈Vξ

1

v1−δ ≤
∑
v∈V

1

v1−δ + 1. (5.1.4)

By our assumption, the right hand side of (5.1.4) is finite. Thus

exp

∑
v∈Vξ

log

(
1 +

1

v1−δ

) =
∏
v∈Vξ

(
1 +

1

v1−δ

)
=

∑
d∈Π(Vξ)

1

d1−δ

is finite and the lemma follows from (5.1.3).

Lemma 5.1.3. Let 0 ≤ δ < 1. If∑
v∈V

1/v1−δ

is finite, then ∑
d≤Y

d∈Π(V)

1� Y 1−δ,
∑
d>Y

d∈Π(V)

1

d
� Y −δ, (5.1.5)

and ∑
d∈Π(V)

µV(d)

d
=
∏
v∈V

(
1− 1

v

)
(5.1.6)

holds.
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Proof. The first statement of (5.1.5) follows from

∑
d≤Y

d∈Π(V)

1 ≤
∑
d≥1

d∈Π(V)

Y 1−δ

d1−δ

and Lemma 5.1.2 with ξ = 1. The proof of the second statement of (5.1.5)

is similar. Formula 5.1.6 is due to Euler’s Product Formula (see [40, §
17.2]).

5.2 Asymptotic formula

Let η > 0 be sufficiently small and be specified later. As in the classical

case of Waring’s Problem (see e.g. [21, page 15 ff.] and Chapter 2.2), let

the major arcs M be the union of the major arcs

M(q, a) :=

{
α ∈ [0, 1] :

∣∣∣∣α− a

q

∣∣∣∣ ≤ P−k+η

}
with 1 ≤ a ≤ q ≤ P η and (a, q) = 1, and let m := [0, 1]\M be the minor

arcs.

5.2.1 Minor arcs

Our next aim is to show that the integral in (5.1.1) restricted to the minor

arcs m is O(N s/k−1−ρ). To do so, we need a variant of Weyl’s inequality.

Lemma 5.2.1. Let X, Y, α ∈ R such that X ≥ 1, Y ≥ 1, α > 0 and

|α − a/q| ≤ q−2, where a and q are positive coprime integers. Then we

have∑
x≤X

min
{
XY x−1, ||αx||−1

}
� XY

(
1

q
+

1

Y
+

q

XY

)
log(2Xq).

Proof. See e.g. [68, Lemma 2.2].

For coprime integers a, q let α ∈ R satisfy |α − a/q| ≤ q−2. Let
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K = 2k−1. By Weyl’s classical inequality (see e.g. [68, p. 12]), we get∣∣∣∣∣∣
∑
x≤P/d

e
(
αdkxk

)∣∣∣∣∣∣
K

� (P/d)K−k+ε

(P/d)k−1 +
∑

h≤k!(P/d)k−1

min
{

(P/d)k h−1, ‖αdkh‖−1
} .

We substitute y := dkh in the h-sum above and extend the summation.

Thus, the h-sum is less than∑
y≤k!Pk

min
{
P ky−1, ‖αy‖−1

}
� P k+ε

(
1

q
+

q

P k

)
,

where we made use of Lemma 5.2.1 with Y = 1 and X = k!pk. Thus we

showed

∑
x≤P/d

e
(
αdkxk

)
�

(
PK−k+ε

(
P k−1d−K + P k+ε

(
1

q
+

q

P k

)))1/K

� P 1+ε

(
1

P
+

1

q
+

q

P k

)1/K

(5.2.1)

Notice that the implicit O–constant does not depend on d. Now, we are

able to prove the next lemma by following [3, Lemma 1].

Lemma 5.2.2. Suppose that s > 2k. Then there is some ρ > 0 only

dependent on η, s and k such that∫
m

f(α)se(−αN)dα� N s/k−1−ρ.

Proof. Notice that Lemma 5.1.1 yields

f(α) =
∑
d≤P

d∈Π(V)

µV(d)
∑
x≤P/d

e
(
αdkxk

)
. (5.2.2)
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Since s > 2k, one has∫
m

f(α)se(−αN)dα ≤
(

sup
α∈m
{|f(α)|}

)s−2k ∫ 1

0

|f(α)|2
k

dα. (5.2.3)

We have further∫ 1

0

|f(α)|s dα

≤ # {x1, y1 . . . , x2k−1 , y2k−1 |x1 + . . .+ x2k−1 = y1 + . . .+ y2k−1}
� P 2k−k (5.2.4)

by [70, Theorem 2]. Recall formula (5.2.2).

Let α ∈ m. By Dirichlet’s Approximation Theorem, there exists co-

prime integers a, q with q ≤ P k−η and |α−a/q| ≤ 1/qP k−η. Since q ≤ P η

implies α ∈M(a, q), we have P η < q ≤ P k−η.

Let β > 0 such that βδ < η/K. By (5.2.1), we have∑
d≤Pβ
d∈Π(V)

∑
x≤P/d

e
(
αdkxk

)
�

∑
d≤Pβ
d∈Π(V)

P 1−η/K+ε

� P 1−η/K+βδ+ε. (5.2.5)

For the last estimation, we made use of Lemma 5.1.3. On the other hand∑
d>Pβ

d∈Π(V)

∑
x≤P/d

e
(
αdkxk

)
� P 1−δβ (5.2.6)

by trivial estimates and again Lemma 5.1.3. Recall βδ < η/K. Thus the

estimates (5.2.5), and (5.2.6) together with (5.2.2) vields

f(α)� P 1−ρ′

for some ρ′ > 0. By this and (5.2.4), and (5.2.3) the lemma follows.
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5.2.2 Major arcs

By applying (5.2.2), we verify that the integral in (5.1.1) restricted to

the major arcs M equals∑
d1,...ds≤P

d1,...ds∈Π(V)

µV(d1) · · ·µV(ds)

∫
M

fd1(α) · · · fds(α)e(−αN) dα (5.2.7)

with

fd(α) :=
∑
x≤P/d

e(αdkxk).

Let γ > 0 sufficiently small. We defer the choice of y. We split (5.2.7)

into a part where d1, . . . , ds ≤ P γ and a remaining part U where there is

at least one 1 ≤ i ≤ s such that di > P γ. Now, we want to bound |U |.
We have

U � P s−2k−1
∑
d>P γ

d∈Π(V)

P

d

∫ 1

0

∣∣∣∣ ∑
d≤P

d∈Π(V)

∑
x≤P/d

e
(
αdkxk

) ∣∣∣∣2kdα.
The integral is bounded by the number of solutions of

(d1x1)k + . . .+ (d2k−1x2k−1)k = (d2k−1+1x2k−1+1)k + . . .+ (d2kx2k)
k(5.2.8)

with dixi ≤ P . Notice that there are O(P ε) possibilities to write an

integer y ≤ P as a produkt of two integers. Hence the number of solutions

of (5.2.8) is bounded by O(P ε) times the number of solutions of

yk + . . .+ yk2k−1 = yk2k−1+1 + . . .+ yk2k

Applying Hua’s Lemma, the number of solutions of (5.2.8) is thus at

most of order P 2k−k+ε. Recall that by Lemma 5.1.3, we have∑
d>P γ

d∈Π(V)

1

d
� P δγ.
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Thus we have U � N s/k−1−ρ for some ρ > 0. Now, by this and Lemma

5.2.2, we obtain the following lemma.

Lemma 5.2.3. Let γ > 0. Then there is some ρ > 0 such that

RV(N) =
∑

d1,...ds≤P γ
d1,...ds∈Π(V)

µV(d1) · · ·µV(ds)

∫
M

fd1(α) · · · fds(α)e(−αN) dα

+ O
(
N s/k−1−ρ) .

Let 1 ≤ a ≤ q ≤ P η with (a, q) = 1 and α ∈ M(a, q). Define β :=

α− a/q,

S(q, b) :=

q∑
m=1

e

(
bmk

q

)
,

and

I(β) :=

∫ P

0

e
(
βuk

)
du.

Lemma 5.2.4. With the defintions above, we have

fd(α) =
S(q, adk)

qd
I(β) +O

(
P 2η
)

(5.2.9)

uniformly in all integers d.

Proof. We want to generalize formula∑
x≤P

e
(
αxk

)
=
S(q, a)

q
I(β) +O

(
P 2η
)

which is well known (see e.g [21, Lemma 4.2]).

First, we assume that β = 0 and collect those values of the summa-

tions variable in f(a/q) which are in the same residue class modulo p.
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Hence

fd(a/q) =

q∑
z=1

e

(
a

q
dkzk

) ∑
`≤P/d
`≡z(q)

1.

The inner sum is P/(qd) + O(1). Recall that q ≤ P η and the definition

of S(q, adk). Thus

fd(a/q) =
S(q, adk)

qd
P +O (P η) . (5.2.10)

Now, we assume that β 6= 0. We have

fd(a/q + β) =
∑
x≤P/d

e

(
a

q
dkxk

)
e
(
βdkxk

)
.

Summation by parts yields

fd(α) = e
(
βP k

)
fd(a/q)

− 2πiβdkk

∫ P/d

0

ξk−1e
(
βdkξk

)∑
x≤ξ

e

(
a

q
dkxk

)
dξ.

(5.2.11)

The sum in the integral is

S(q, adk)
ξ

q
+O(q).

The error term O(q) = O(P η) in the last display causes an error term in

(5.2.11) of the form

O

(
|β|dkP η

∫ P/d

0

ξk−1dξ

)
= O

(
P 2η
)
,

as |β| ≤ P−k+η, since α ∈ M(a, q). Note, that the error term does not
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depent on d. By this and (5.2.10), we obtain

fd(α) =
S(q, adk)

qd(
e
(
βP k

)
P − 2πiβdk−1k

∫ P/d

0

ξke
(
βdkξk

)
dξ

)
+O

(
P 2η
)
.

Notice, that by a simple substitution ξ 7→ ξ/d, the integral in last display

simplifies to

dk−1

∫ P

0

ξke
(
βξk
)
dξ.

Hence, the lemma follows if we can show

I(β) = e
(
βP k

)
P − 2πiβk

∫ P

0

ξke
(
βξk
)
dξ.

But this can by verified via integration by substitution.

Now introduce

Sd1,...,ds (P η, N) :=
∑
q≤P η

q∑
a=1

(a,q)=1

S(q, adk1)

qd1

· · · S(q, adks)

qds
e

(
−a
q
N

)
,

and

J (P η) :=

∫
|β|<P η

(∫ 1

0

e(βuk) du

)s
e(−β) dβ. (5.2.12)

Our next lemma is generalization of [21, Lemma 4.3]

Lemma 5.2.5. With the definition above, we have∫
M

fd1(α) · · · fds(α)e(−αN) dα = Sd1,...,ds (P η, N) J (P η)N s/k−1

+ O
(
P s−k−(1−5η)

)
(5.2.13)

uniformly in all integers d1, . . . , ds.
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Proof. Let α ∈ M(a, q) for 1 ≤ a ≤ q ≤ P η with (a, q) = 1. Let β :=

α − a/q. For s intgers d1, . . . , ds ≤ P , we multiplpy the right hand side

of (5.2.9) together and obtain

fd1(α) · · · fds(α) =

(
S(q, adk1)

qd1

· · · S(q, adks)

qds

)
I(β)s +O

(
P s−1+2η

)
,

as S(q, adki )/(qdi) ≤ 1 for all i = 1, 2, . . . , s and I(β) ≤ P . Recall that

we have |β| ≤ P−k+η. Hence∫
α∈M(a,q)

fd1(α) · · · fds(α)e (αN) dα

=

(
S(q, adk1)

qd1

· · · S(q, adks)

qds
e

(
−a
q
N

))∫
|β|≤P−k+η

I(β)se (−βN) dβ

+O
(
P s−k−1+3η

)
.

Now, we can argue as in [21, p. 19 ff]. In particular, we sum over all

coprime integers a, q with 1 ≤ a ≤ q ≤ P η and replace in the integrand

N by P k at the cost of a neglible error term. Finally. we substitute

ξ 7→ Pξ and β 7→ P−kβ in order to obtain the stated formula.

Lemma 5.2.6. The singular series

SV(N) :=
∑
q≥1

q∑
a=1

(a,q)=1

 ∑
d∈Π(V)

µV(d)
S(q, adk)

dq

s

e

(
−a
q
N

)

is absolutely convergent.

Proof. We go along the lines of [3, p. 5]. First, we need a bound for

|S(q, b)|, where b, q are not necessarily coprime. One has

S(q, b) = (a, q)S

(
q

(a, q)
,

b

(a, q)

)
.

Since (q/(b, q), b/(b, q)) = 1, we have

S

(
q

(b, q)
,

b

(b, q)

)
�
(

q

(a, q)

)1−1/k
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by [21, Lemma 6.4] and consequently

S(q, b)� q1−1/k(b, q)1/k. (5.2.14)

Let

Sq,a :=
∑

d∈Π(V)

µV(n)
S(q, adk)

qd
.

One has

Sq,a ≤
∑

d∈Π(V)

|S(q, adk)|
qd

=
∑
ξ|q

∑
d∈Π(V)
(d,q)=ξ

|S(q, adk)|
qd

=
∑
ξ|q

∑
d̂≥1

d̂ξ∈Π(V)

(d̂,q/ξ)=1

|S(q, ad̂kξk)|
qd̂ξ

. (5.2.15)

Let j ∈ N. Notice that{
j
qd̂

ξ
+ xd̂ |x = 1, 2 . . . ,

q

ξ

}

is a complete set of residues modulo (q/ξ) if ξ|q and (d̂, q/ξ) = 1. Thus

S(q, ad̂kξk) =

ξ−1∑
j=0

q/ξ∑
x=1

e

(j qd̂
ξ

+ xd̂

)k
aξk−1

q/ξ


= ξS(q/ξ, aξk−1)

= S(q, aξk).

Hence by (5.2.15),

Sq,a ≤
∑
ξ|q

|S(q, aξk)|
ξq

∑
d̂≥1

d̂ξ∈Π(V)

(d̂,q/ξ)=1

1

d̂
.
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Applying (5.2.14) and Lemma 5.1.2, we get

Sq,a � q−1/k
∑
ξ|q

(q, ξk)1/k

ξ
� q−1/k+ε. (5.2.16)

Now, the lemma follows. In particular, we have

∑
q≥Q

q∑
a=1

(a,q)=1

 ∑
d∈Π(V)

µV(d)
S(q, adk)

dq

s

e

(
−a
q
N

)
� Q2−s/k+ε

(5.2.17)

for any Q > 0, which will be useful later.

5.2.3 Proof of Theorem 4.2.1

Recall (5.2.12). We define the singular J like J(P η), but with outer in-

tegration over the whole real line, i.e. J := J(∞). This object has been

well studied. One has

J =
Γ(1 + 1/k)s

Γ(s/k)
> 0 (5.2.18)

and

J − J(P η)� P−(s/k−1)η (5.2.19)

by [21, p. 21].

We multiply both sides of (5.2.13) by µV(d1) · · ·µV (ds) and sum over

d1, . . . , ds ≤ P γ, d1, . . . , ds ∈ Π (V), and obtain by Lemma 5.2.3 that

R(N) equals a main term

J (P η)
∑
q≤P η

q∑
a=1

(a,q)=1

 ∑
d≤P γ
d∈Π(V)

µV(d)
S(q, adk)

qd


s

e

(
−a
q
N

)
N s/k−1(5.2.20)

and an error term O
(
P s−k−(1−5η−sγ)

)
. The error term is of the form stated
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in the lemma if

5η + sγ < 1. (5.2.21)

Next, we want to complete the d–sum in (5.2.20). Recall the estimates

(5.1.5). Since |S(q, adk)| ≤ q, we have

∑
d>Nγ

d∈Π(V)

|S(a, qdk)|
qd

� P−γδ.

Hence the completion of the d–sum engenders an additional error term

O
(
P s−k−(γδ−2η)

)
which is of the form stated in the lemma if

2η < γδ (5.2.22)

holds. Thus we choose η and γ small enough so that both (5.2.21) and

(5.2.22) are fulfilled, and deduce from (5.2.20) that there is some ρ > 0

such that

RV (N)

= J (P η)
∑
q≤P η

q∑
a=1

(a,q)=1

 ∑
d≥1

d∈Π(V)

µV(d)
S(q, adk)

qd


s

e

(
−a
q
N

)
N s/k−1

+ O
(
N s−k−ρ) .

By (5.2.17), the completion of the singular series, e.g. the completion

of the q–sum, creates an additional error which is negligible. Finally, by

(5.2.19), replacing J (P η) by J yields a neglible error term, too.

5.3 The singular series

In this section, we restrict V to be a set of prime powers and use the

symbol W instead.

We consider a more general singular series and generalize the proce-

dure presented in [3] and [60]. We go along the lines of [3, Section 5]. For

shortness, bold symbols are reserved to denote an element in Ns, e.g. we
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write n = (n1, . . . , ns) for an s-tuple of integers. Let ϕ ∈ Z[x]. We write

ϕh(x) := ϕ(h1x1, . . . , hsxs),

hx := (h1x1, . . . , hsxs),

and further

µW(h) := µW(h1) · · ·µW(hs)

for x = (x1, . . . , xs) and h = (h1, . . . , hs). For the sake of a short notation,

if we use the index j in an expression, it is understood that j ranges over

1, . . . , s. For instance xj ∈ A means x1 ∈ A, . . . , xs ∈ A for A ⊂ N. The

symbol j is reserved for this usage only.

Besides, introduce

T (ϕ, q) :=

q∑
xj=1

e

(
ϕ(x)

q

)
=

q∑
xj=1

· · ·
q∑

xs=1

e

(
ϕ(x1, . . . , xs)

q

)

and

A(d, q) :=

q∑
a=1

(a,q)=1

T (aϕd, q).

We fix ϕ ∈ Z[x] to be the polynomial

ϕ(x1, . . . , xs) := xk1 + . . .+ xks −N.

With this definitions, it is easy to see that we have

SP (N) =
∑
q≥1

1

qs

∑
dj∈Π(W)

µW(d)

d1 · · · ds
A(d, q), (5.3.1)

where the singular series has been defined in Lemma 5.2.6.
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5.3.1 Factorization

For every q ∈ N, we subdivide W into two disjoint sets

W+
q := { v | v ∈ W and (v, q) > 1 }

and

W−q := { v | v ∈ W and (v, q) = 1 } .

We omit the proof of the following lemma, which is trivial.

Lemma 5.3.1. Let q, q1, q2 ∈ N with (q1, q2) = 1.

• Every integer g ∈ Π (W) can be factorized uniquely in the form

g = dt with d ∈ Π
(
W+

q

)
and t ∈ Π

(
W−q

)
. In particular, we have

(d, t) = 1 and (t, q) = 1.

• Every integer g ∈ Π
(
W+

q1q2

)
can be factorized uniquely in the form

g = dt with d ∈ Π
(
W+

q1

)
and t ∈ Π

(
W+

q2

)
. One further has (d, t) =

1, (d, q2) = 1 and (t, q1) = 1.

Remark 5.3.2. Note that the second part of this lemma is not valid if

W is replaced by a set V of arbitrary coprime integers. For instance, let

V = {6}, then 6 ∈ Π
(
V+

6

)
does not factorize over Π

(
V+

2

)
∪Π

(
V+

3

)
. This

is the reason why we restrict ourselves to W .

Lemma 5.3.3. Let q ∈ N. One has

∑
dj∈Π(W)

µW(d)

d1 · · · ds
A(d, q) = C

∏
v∈W+

q

(
1− 1

v

)−s
B(q), (5.3.2)

where

B(q) :=
∑

dj∈Π(W+
q )

µW(d)
A(d, q)

d1 · · · ds
,

and C > 0 is a constant only depending on the set W.

Proof. This lemma is a generalization of [3, Lemma 7]. By the first part
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of Lemma 5.3.1, the left hand side of (5.3.2) equals∑
dj∈Π(W+

q )

∑
tj∈Π(W−q )

µW(dt)

d1 · · · ds t1 · · · ts
A(dt, q). (5.3.3)

Since (dj1 , tj2) = 1 for all j1, j2 ∈ {0, 1, . . . , s}, we have µW(dt) =

µW(d)µW(t) and A(dt, q) = A(d, q) by the definition of A(d, q) and

since (tj, q) = 1 by the first part of Lemma 5.3.1. Hence (5.3.3) simplifies

to ∑
dj∈Π(W+

q )

µW(d)
A(d, q)

d1 · · · ds

∑
tj∈Π(W−q )

µW(t)

t1 · · · ts
.

The inner multiple sum is the s–th power of

∑
t∈Π(W−q )

µW(t)

t
=
∏
v∈W

(v,q)=1

(
1− 1

v

)
= C1/s

∏
v∈W

(v,q)>1

(
1− 1

v

)−1

with

C1/s =
∏
v∈W

(
1− 1

v

)
> 0.

Lemma 5.3.4. The function B(q) defined in Lemma 5.3.3 is multiplica-

tive.

Proof. Let

H(q, a) :=
∑

dj∈Π(W+
q )

µW(d)

d1 · · · ds
T (aϕd, q).

Suppose we can show that

H(q1q2, a1q2 + a2q1) = H(q1, a1)H(q2, a2) (5.3.4)

holds for coprime integers q1, q2 and (a1, q1) = (a2, q2) = 1; then it follows
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from the definition of B(q) that

B(q1, q2) =

q1∑
a1=1

(a1,q1)=1

q1∑
a1=1

(a1,q1)=1

H(q1q2, a1q2 + a2q1) = B(q1)B(q2).

Thus it suffices to prove (5.3.4). By the second part of Lemma 5.3.1, we

have

H(q1q2, a1q2 + a2q1)

=
∑

dj∈Π(W+
q1)

µW(d)

d1 · · · ds

∑
tj∈Π(W+

q2)

µW(t)

t1 · · · ts
T ((a1q2 + a2q1)ϕdt, q1q2) .

Notice (dj1 , tj2) = 1 for all j1, j2 ∈ {0, 1, . . . , s}. Hence to prove (5.3.4) it

suffices to show

T ((a1q2 + a2q1)ϕdt, q1q2) = T (a1ϕd, q1)T (a2ϕt, q2) .

By the definition of T , the left hand side equals

q1q2∑
xj=1

e

(
a1q2 + a2q1

q1q2

(
(d1t1x1)k + . . . (dstsxs)

k −N
))

= e

(
−a1

q1

N

)
e

(
−a2

q2

N

) s∏
i=1

(
q1q2∑
x=1

e

((
a1

q1

+
a2

q2

)
(ditix)k

))
.

By a standard trick, we replace x ≤ q1q2 by zq1 + yq2 with 1 ≤ z ≤ q2,

1 ≤ y ≤ q1. Thus it is straightforward to verify that the x–sum simplifies

to

q1∑
y=1

e

(
a1

q1

(ditiy)k
) q2∑

z=1

e

(
a2

q2

(ditiz)k
)

=

q1∑
y=1

e

(
a1

q1

(diy)k
) q2∑

z=1

e

(
a2

q2

(tiz)k
)

since (ti, q1) = 1, (di, q2) = 1. Now the lemma follows easily.

Recall that by Lemma 5.2.6 the singular series SW(N) is absolutely
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convergent. By (5.3.1) we get

SW(N) = C
∑
q≥1

D(q)

with

D(q) =
1

qs

∏
v∈W+

q

(
1− 1

v

)−s
B(q). (5.3.5)

On account of the second part of Lemma 5.3.1 and Lemma 5.3.4, the

function D(q) is multiplicative and we can apply the well known product

formula due to Euler to obtain

SW(N) = C
∏

p prime

(∑
n≥0

D(pn)

)
. (5.3.6)

We have to distinguish two cases in order to determine the value of the

factor
∑

n≥0D(pn). If p - v for all v ∈ W , then P+
pn = ∅ and Π(P+

pn) = {1}.
Consequently

D (pn) =

pn∑
a=1

(a,p)=1

(
S (a, pn)

pn

)s
e

(
− a

pn
N

)
,

and
∑

n≥0D(pn) equals the factor usually denoted by χ(p) associated

with the singular series S =
∏

p χ(p) of the classical Waring’s Problem

(for a definition of χ(p), see e.g. [21, p. 26]). Thus we rewrite the formula

(5.3.6) as

SW(N) = C
∏

p prime
p-v ∀v∈W

χ(p)
∏

p prime
∃v∈W : p|v

∑
n≥0

D(pn).

It is well known that 0 <
∏

p χ(p) � 1 (see e.g. [21, Lemma 5.2 and

Lemma 5.6]) and it is easy to see that

0 <
∏

p prime
∀v∈V : p-v

χ(p)� 1.
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We define

κ(p) :=
∑
n≥0

D(pn).

For an integer p. we use the abbreviation p ∼ W if p divides some v ∈ W .

We have proved the following lemma.

Lemma 5.3.5. If ∏
p∼W

κ(p) > 0,

then

SW(N) > 0.

Let p ∼ W and let vp ∈ W denote the unique prime power inW such

that p|vp. Recall (5.3.5). Notice that for n ≥ 1, we have

∏
v∈W+

pn

(
1− 1

v

)−s
=

(
1− 1

vp

)−s
.

Hence

κ(p) = 1 +
∑
n≥1

D(pn)

= 1 +

(
1− 1

vp

)s∑
n≥1

p−snB(pn).

Let n ≥ 1. By the definition of B(pn) and (5.2.16) we have

p−snB(pn)� p−n(s/k−1−ε).

Hence

κ(p) = 1 +O
(
p−s/k+1+ε

)
,

and consequently (see e.g. [21, Corollary to Lemma 5.2]) there is a p0
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depending only on s, k such that

1

2
≤
∏
p>p0

κ(p) ≤ 3

2
.

Therefore, Lemma 5.3.5 yields the following lemma.

Lemma 5.3.6. There is some p0 ∈ N, depending only on s, k, such that

if

κ(p) > 0

for all p ∼ W with p ≤ p0, then

SW(N) > 0.

5.3.2 Properties of κ(p)

For the remainder of the paper, we assume p ∼ W . We have D(1) = 1

and

D(pn) =

pn∑
a=1

(a,p=1)

Υs(a, pn)e

(
− a

pn
N

)

for n ≥ 1, where

Υ(a, pn) := p−n
(

1− 1

vp

)−1 ∑
d∈{1,vp}

µW(d)

d

pn∑
x=1

e

(
adkxk

pn

)
.

Lemma 5.3.7. Let p ∼ W. Suppose vp = pr. One has

κ(p) =

(
1− 1

vp

)−s
lim
l→∞

M(p`)

p`(s−1)
,

where ` = 2r(k− 1)− 1 and M(p`) is defined as the number of solutions

of

xk1 + . . .+ xks ≡ N mod p` (5.3.7)
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with vp - xj and 0 < xj < p`.

Proof. We follow the proof of [3, Lemma 10]. Let ` ≥ r. For d ∈ Ns let

M(d, p`) denote the number of solutions modulo p` of (5.3.7) with dj|xj.
Recall that µW(1) = 1 and µW(v) = −1 for all v ∈ W . Thus

M(p`) =
∑

dj∈{1,vp}

µW(d)M(d, p`) (5.3.8)

by the inclusion-exclusion principle. For dj ∈ {1, vp}, let

L(d, p`) :=

p`∑
y=1

p`∑
xj=1

e

(
y

p`
ϕd(x)

)
.

On the one hand,

L(d, p`) = d1 · · · ds
p`∑
y=1

p`/dj∑
zj=1

e

(
y

p`
(
(d1z1)k + . . .+ (dszs)

k −N
))

= d1 · · · ds p`M(d, p`);

(5.3.9)

on the other hand,

L(d, p`) =
∑̀
n=0

pn∑
a=1

(a,p)=1

p`∑
xj=1

e

(
ap`−n

p`
ϕd(x)

)

=
∑̀
n=0

pn∑
a=1

(a,p)=1

(
p`−n

)s pn∑
xj=1

e

(
a

pn
ϕd(x)

)
.

(5.3.10)

Combining (5.3.9), (5.3.10) and (5.3.8), we deduce

M(p`)

=p`(s−1)
∑̀
n=0

p−ns
∑

dj∈{1,vp}

µW(d)

d1 · · · ds

pn∑
a=1

(a,p)=1

pn∑
xj=1

e

(
a

pn
ϕd(x)

)
. (5.3.11)
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Recall that Π
(
P+
pn

)
= {1, vp}. If n ≥ 1, we have

p−ns
∑

dj∈{1,vp}

µW(d)

d1 · · · ds

pn∑
a=1

(a,p)=1

pn∑
xj=1

e

(
a

pn
ϕd(x)

)

=

(
1− 1

vp

)s
Υs(a, pn)e

(
− a

pn
N

)
.

(5.3.12)

The summand corresponding to n = 0 in the n–sum of (5.3.11) equals

∑
dj∈{1,vp}

µW(d)

d1 · · · ds
=

s∑
y=1

(
−p−1

)y (s
y

)
=

(
1− 1

vp

)s
.

By this, togheter with (5.3.12) and (5.3.11), we get

M(p`) = p`(s−1)

(
1− 1

vp

)s(
1 +

∑̀
n=1

Υs(a, pn)e

(
− a

pn
N

))

= p`(s−1)

(
1− 1

vp

)s∑̀
n=0

D(pn)

and the lemma follows.

5.3.3 Proof of Theorem 4.2.2

Lemma 5.3.8. Let p ∼ W with p2 = vp.

• If p - k, one has κ(p) > 0.

• If p|k, define τ by pτ ||k and let σ = τ + 1 if p 6= 2 and σ = τ + 2 if

p = 2. Then κ(p) > 0 whenever

xk1 + . . .+ xks ≡ N mod pσ

has a solution with p - x1 and p2 - xi for i = 2, . . . , s.

Proof. By Lemma 5.3.7, it is sufficient to show that M(p`) > Cp p
`(s−1)

for ` > 2 + σ, where Cp > 0 is some constant depending only on p.
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Let p - k. It is known (see e.g. [68, Lemma 2.15]) that for every integer

N there are integers 1 ≤ xj ≤ p with p - x1 such that

xk1 + . . .+ xks ≡ N mod p.

Clearly, p2 - xi for i = 2, . . . , s. By [21, Lemma 5.4] there is an integer x

such that

xk + xk2 + . . .+ xks ≡ N mod p2,

where x ≡ x1 (p) and hence p - x. As in [3, page 20], we can obtain

by Hensel’s Lemma (see e.g. [58, page 87]) the existence of p(s−1)(`−2)

solutions of

yk1 + . . .+ yks ≡ N mod p` (5.3.13)

with p - y1, p2 - yi for i = 2, . . . , s and the lemma follows in the case p - k.

If p|k, we assume a solution of xk1 + . . . xks ≡ N mod pσ with p - x1

and p2 - xi for i = 2, . . . , s. We can lift this solution as in [21, Lemma

5.5] and obtain p(s−1)(`−σ) solutions of (5.3.13).

The following lemma is useful to prove an analog to Lemma 5.3.8

when p ∈ W , i.e. vp = p.

Lemma 5.3.9. Let p, n ∈ N with p prime and p - n. Then

xk + yk ≡ n mod p (5.3.14)

has a solution with p - xy whenever p > (k − 1)4 + 8k.

Proof. Denote by ω the number of solutions modulo p of (5.3.14) having

p - xy, and let Ω stand for the number of solutions modulo p of (5.3.14)

with x, y arbitrary.

By [54, Theorem 6.37], one has

Ω ≥ p− (k − 1)2√p.

Since the number of (x, y) ∈ {0, . . . , p − 1}2 such that xk + yk ≡ N (p)

and p|xy is at most 2k, we have

ω ≥ p− (k − 1)2√p− 2k.
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By a short computation we get that ω > 0 if p > (k − 1)4 + 8k.

Lemma 5.3.10. Let p ∈ W.

• If p > (k − 1)4 + 8k, then κ(p) > 0.

• If p ≤ (k − 1)4 + 8k, then κ(p) > 0 whenever

xk1 + . . .+ xks ≡ N mod pσ

has a solution with p - x1 · · ·xs, where σ is as in Lemma 5.3.8.

Proof. Notice that p > (k − 1)4 + 8k implies p - k. First we show that

xk1 + . . .+ xks ≡ N mod p (5.3.15)

has a solution with p - x1 · · · xs for all p with p - k and p > (k− 1)4 + 8k.

For all i ≥ 4 we take xi = 1 and have to find a solution of

xk1 + xk2 ≡ N − (s− 3)− xk3 mod p,

such that p - x1x2x3. By Lemma 5.3.9, such a solution is guaranteed if

there is some x3 not divisible by p such that

N − (s− 3)− xk3 6≡ 0 mod p. (5.3.16)

It is known that the number of k–th power residues modulo p is

p− 1

(k, p− 1)
≥ (k − 1)4 + 8k

k
≥ 3.

Thus there are integers a 6≡ b (p), both not divisible by p such that a ≡ xk

mod p and b ≡ xk mod p have a solution. Thus (5.3.16) has a solution

with p - xk3.

It remains to show that a solution of

xk1 + . . .+ xks ≡ N mod pσ

with p - x1 · · ·xs implies the existence of p(s−1)(`−σ) solutions of

yk1 + . . .+ yks ≡ N mod p`
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with p - y1 · · · ys for all ` > σ. Similarly to the proof of Lemma 5.3.8, this

is a consequence of [21, Lemmas 5.4 and 5.5].

Now from Lemmas 5.3.6, 5.3.8 and 5.3.10, we deduce that SW(N) > 0

if the following conditions hold:

C1: For all p2 ∈ W with p|k there is a solution of

xk1 + . . .+ xks ≡ N mod pσ (5.3.17)

with p - x1 and p2 - xi for i = 2, . . . , s.

C2: For all p ∈ W with p ≤ (k− 1)4 + 8k there is a solution of (5.3.17)

with p - x1 · · ·xs.

Lemma 5.3.11. If p2 ∈ W with p - k, then Condition C1 holds unless

pk 6= 4.

Proof. Let pk 6= 4. It suffices to detect a solution of (5.3.17) with p - x1

and p2 - xi for i = 2, . . . , s. Notice that 0 ≡ xk mod pσ has a solution

x = p if σ ≤ k. By the definition of σ, the condition σ ≤ k holds unless

k = p = 2.

Notice that s > pσ unless k ≤ 4. Thus if k ≥ 4, we can construct a

solution of (5.3.17) by taking x1 = 1 and xki ∈ {0, 1}, i.e. xi ∈ {1, p},
suitable for i = 1, . . . s.

It remains to investigate p = k = 3. A solution of (5.3.17) is found

since xk ≡ 1,−1 (9) for 3 - x and xk ≡ 1,−1, 0 (9) for 9 - x.

Notice that the case k = p = 2 was investigated by Esterman [28].

Since x2
1 ≡ 1 (8) if 2 - x1, Condition C1 is reduced to Condition A if

k = 2 and 4 ∈ W . Now, Theorem 4.2.2 follows.
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Part C:

Waring’s Problem, squarefree numbers, and digital

restrictions
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6 Results and context

6.1 Sum–of–digits function

Let q ≥ 2 be an integer. It is well known that every positive integer n

admits an unique representation

n =
∑
j≥0

ajq
j

in the q–adic numeration system, where 0 ≤ aj < q for all j ∈ N. Let

sq(n) :=
∑
j≥0

aj

be the sum-of-digits function. Its basic property – called q-additivity – is

that sq(nq
h +m) = sq(n) + sq(m) holds for all n,m, h ∈ N with m < nh.

One of the first investigating the sum of–digits function is Bush [12].

For a fix integer base q he proved in 1940 the asymptotic formula∑
n≤X

sq(n) ∼ q − 1

2 log q
X logX. (6.1.1)

For a fix integer a and a real number x such that |x| < 1, Bellman and

Shapiro [6] made use of identities of the form∏
k≥0

(
1 + ax2k

)
=
∑
n≥0

as2(n)xn

in order to deduce asymptotic formulas (6.1.1) with explicit error terms.

Refinemends on the error term are due to Mirsky [57] and Drazin and

Griffith [23]. Generalizing a first result of Trollope [66], Hubert Delange

[22] proved an explicit error term for the asymptotic formula (6.1.1) in

1975. He showed that

1

X

∑
n≤X

sq(n) =
q − 1

2 log q
logX + F

(
logX

log q

)
,

where F is some periodic continuous function with period 1 and is defined
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in [22, p. 32]. The more general case of digit representation with respect

to linear recurrences has been studied by Pethö and Tichy [59].

Let h,m, q with m > 1, q ≥ 2 be integers such that (m, q− 1) = 1. In

1967, Gelfond [32, Théorème 2] showed that for an integer n the condition

that n is squarefree, i.e.

µ2(n) = 1, (6.1.2)

and the condition

sq(n) ≡ h mod m (6.1.3)

are in a certain sense independent, i.e. the density of integers n such that

(6.1.2) and (6.1.3) holds is
1

m

6

π2
,

as one expects, since we recall that the density of squarefree numbers is

6/π2. We want to mention that the condition (m, q− 1) = 1 is necessary

since sq(n) ≡ n mod (q− 1). Under this condition, it is very easy to see

that the density of integers fulflilling (6.1.3) is 1/m.

Geflond also conjectured that for given coprime bases q1, q2 and in-

tegers m1,m2, `1, `2 such that (m1, q1 − 1) = 1 and (m2, q2 − 1) = 1, one

has

1

N
# {n ≤ N | sq1(n) ≡ `1 mod m1 and sq2(n) ≡ `2 mod m2}

∼ 1

m1m2

as N tends to infinity. In 1972, Bésineau [7] proved this conjecture. An ex-

plicit error term and a generalization of the result was given by Kim [52].

For a short survey of this results we refer also to a paper of Thuswaldner

and Tichy [64].

An other very prominent example of such hybrid results related to

the sum–of–digits function in the question, if there are infinitely many

primes p such that (6.1.3) holds with p in place of n. The first results

in this direction did show that there are infinitely almost prime numbers

fulfilling this condition. More precisely, for an integers r ≥ 1 the set Pr
is defined as the set of all integers having at most r prime factors. We
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mention (see e.g. [62]) the result

# {n ≤ X |n = p1 · · · pr for some primes p1, . . . pr} ∼
X(log logX)r−q

(r − 1)! logX
.

Fouvry and Mauduit [30], [31] proved that for all integers q,m, a with

m, q ≥ 2 and (m, (q − 1)) = 1, on has

# {n ≤ X | sq(n) ≡ a mod m and n ∈ P2} > c
X

logX

for some constant c depending on q and m. We also want to mention

the works of Dartyge, Mauduit and Tenenbaum [15], [16], [17] where

the distribution of almost primes with such digital restrictions has be

investigated. Only recently, Mauduit and Rivat [56] proved that there

are infinitely many primes p such that (6.1.3) holds with p in place of n.

Even more, they showed that for given intgers q,m, a with m, q ≥ 2 and

(m, (q − 1)) = 1 one has

# {p ≤ X | sq(p) ≡ a mod m} ∼ 1

m

x

logX
.

Indeed, an explicit error term is given in their paper.

We want to remain to Section 3 and recall that such results show

that certain properties among the integers are independent. We also want

to mention that – besides the presented results concerning the sum–of–

digits function – there are further interesting question concerning digital

restriction. For instance, one can suppose that the q–ary representation

of an given integer n contains only digits of a set D ( {0, 1, . . . , q − 1}.
Among others, Hybrid results in this direction have been obtain by Erdös

et al. [26], [27]; and Dartyge and Mauduit [15]. However, we have not been

able yet to prove results concerning Waring’s Problem with variables with

missing digits. In particular, this might be due to the fact that the sets

of integers that do not contain a given digit d ∈ {0, 1, . . . , q − 1} in it’s

q–ary representation are not dense.
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6.2 Waring’s Problem

The purpose of this chapter is to study the independence of the conditions

(6.1.2) and (6.1.3) among the set of solutions (x1, . . . xs) ∈ Ns of

N = xk1 + · · ·+ xks , (6.2.1)

where s, k ∈ N and N is a given integer.

On the one hand, we want to recall Corollary 4.2.3 that we stateted

at page 29 and proofed in the previous chapter of this work. We also want

to reformulate the relevant condition. As always, let s and k be intgers.

A: Let (N, s) be said to satisfy Condition A if

x2
1 + . . .+ x2

s ≡ N mod 32

has a solution with 4 - xj for j = 1, . . . , s.

Condition A holds for all N if s ≥ 8. Hence Corollary 4.2.3 can be read

as the following: Denote by Rk,s,µ2(N) the number of solutions of (6.2.1)

where the variables xj (j = 1, . . . , s) are assumed to be squarefree. For

s > 2k, there is some ρ > 0 such that

Rk,s,µ2(N) = Sk,s,µ2(N)N s/k−1 +O
(
N s/k−1−ρ) (6.2.2)

holds. One has Sk,s,µ2(N) > 0 if k ≥ 3 or Condition A holds.

One the other hand, Thuswaldner and Tichy [65] investigated War-

ing’s Problem where the digit sums of the variables xj (j = 1, . . . , s)

are assumed to be in a certain residue class. Denote by Rk,s,h,m(N) the

number of solutions of (6.2.1) where for all j = 1, . . . , s, the variables xj
are assumed to fulfill

sqj(xj) ≡ hi mod mi

for given integers hj,mj, qj with mj, qj ≥ 2 and (qj − 1,mj) = 1.
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For s > 2k, Thuswaldner and Tichy proved that

Rk,s,h,m(N) ∼ 1

m1 . . .ms

rk,s(N) (6.2.3)

holds. Indeed, an explicit error term is given in their paper. The proof of

this result as well as our main result of this chapter makes use of ideas

of auto–correlation results of the sum–of–digits function. Related results

can be found in the works of Bésineau [7] and Kim [52]. Recall that

in the language of Section 3, Thuswaldner’s and Tichy’s result shows

that the condition that an s–tuple of integers is a solution of (6.2.1)

is asymptotically in a first-order approximation independent from the

condition that its elements fulfill (6.1.3).

As already mentioned, we want to show that one can combine the

results presented above. We prove that among the solutions of (6.2.1),

the conditions (6.1.2) and (6.1.3) are independent. We thus show that for

sufficient large N the equation (6.2.1) has a solution where the variables

meet conditions (6.1.2) and (6.1.3).

Theorem 6.2.1. Let s, k ∈ N with s > 2k, hj,mj, qj ∈ N satisfying (qj−
1,mj) = 1, qj > k for all j = 1, . . . , s. Furthermore, for all j = 1, . . . , s,

the integer qj has the following property: for all integers 0 < bj < qj,

there are integers 0 < `j, zj < qj such that

bj`j ≡ zj mod qj with 0 < zj ≤ qj − k. (6.2.4)

Let Rk,s,h,m,µ2(N) be the number of solutions of (6.2.1) with xj squarefree

and

sqj(xj) ≡ hi mod mj

for all j = 1, . . . , s. Then the asymptotic formula

Rk,s,h,m,µ2(N) =
1

m1 · · ·ms

Sk,s,µ2(N)N s/k−1 +O

(
N s/k−1

(log logN)A

)
(6.2.5)

holds for all non negative A ∈ R.

Recall that Sk,s,µ2(N)� 1 if k ≥ 3 or Condition A holds. Note that

condition (6.2.4) is fulfilled for qj prime with qj − k ≥ 1.

Our method of proof does not permit the derivation of a better error
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term (see Remark 7.1.4 at the end of Section 7.1). Although the condition

s > 2k can be weakened as in the classical Waring’s Problem if one only

assumes that the variables meet (6.1.3), the assumption s > 2k is essential

in the proof of Theorem 6.2.1 (see Remark 7.1.2 after Lemma 7.1.1).

At the very beginning (see formula (7.1.4)) of the proof of Theorem

6.2.1, we make use of the convolution formula µ2(x) =
∑

d2|x µ(d). The

only difficulty caused by the condition that the variables in (6.2.1) are

assumed to be squarefree is that sq(x) ≡ h mod m must be changed

into sq(xd
2) ≡ h mod m. Hence, one can adopt literally the proof of

Theorem 6.2.1 if the condition (6.1.2) is generalized as follows:

Let V be a set of pairwise coprime integers not containing 1 and

assume that there is some δ > 0 such that∑
v∈V

1

v1−δ

converges. Theorem 6.2.1 remains valid if one replaces the condition

µ2(xj) = 1 by χV(xj) = 1 on the variables xj in (6.2.1) for all j = 1, . . . , s.

We refer the reader to the previous chapter for a definition of χV . Notice

that if V is the set of the squares of all primes, we have χV = µ2. One

also finds in the previous chapter an asymptotic formula for the num-

ber of solutions of (6.2.1) where the variables xj meet χV(xj) = 1 for

j = 1, . . . , s.
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7 Proofs

The proof of Theorem 6.2.1 is organized as following. In Subsections 7.1

and 7.2 we show that Theorem 6.2.1 can be deduced from Proposition

7.2.1 that is stated in Subsection 7.3. The remainder of this chapter is

devoted to the proof of Proposition 7.2.1. At the end of Subsection 7.3 we

say a few words about the method we utilize in order to prove Proposition

7.2.1.

7.1 Preliminaries - the circle method

We fix A ∈ R arbitrarily large. Thus

Rk,s,h,m,µ2(N) =

∫ 1

0

(
s∏
i=1

ui(P, θ)

)
e (−Nθ) dθ, (7.1.1)

where we define

ui(P, θ) :=
∑
ni<P

sqi (ni)≡hi (mi)

µ2(ni)e
(
nki θ
)

and P := bN1/kc. In order to remove the congruence condition sqi(ni) ≡
hi mod mi in ui(P, θ), we write

ui(P, θ) =
1

mi

mi−1∑
l=0

∑
n<P

µ2(n)e

(
l
sqi(n)− hi

mi

)
e
(
θnki
)

by following Gelfond [32]. We insert this into (7.1.1) and split the ob-

tained expression into a part where all li = 0 (i = 1, . . . s) and a remain-
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ing part. This yields

Rk,s,h,m,µ2(N)

=
1

m1 · · ·ms

∫ 1

0

∑
n1<P

µ2(n1) · · ·
∑
ns<P

µ2(ns)e
(
θ
(
nk1 + · · ·+ nks −N

))
dθ

+
1

m1 · · ·ms

m1−1∑
l1=0

· · ·
ms−1∑
ls=0︸ ︷︷ ︸

l1+···+ls 6=0

∫ 1

0

(
s∏
i=1

Si,li(P, θ)

)
e (−Nθ) dθ

(7.1.2)

with

Si,li(P, θ) :=
∑
ni<P

e

(
θnki + li

sqi(n)− hi
mi

)
µ2(ni).

Note, that the first integral in (7.1.2) equals Rk,s,µ2(N) and we can utilize

(6.2.2).

Let l := (l1, . . . ls) with 0 ≤ li ≤ mi−1 (i = 1, . . . , 2) and l1+· · ·+ls 6=
0, and we define

Ll :=

∫ 1

0

(
s∏
i=1

Si,li(P, θ)

)
e (−Nθ) dθ.

Theorem 6.2.1 follows if we prove that Ll = O(N s/k−1/(log logN)A). Let

lj be an entry of l that is not equal to 0. Then

|Ll| ≤ sup
θ∈[0,1)

{ ∣∣Sj,lj(P, θ)∣∣} max
i∈{1,...,s}

{∫ 1

0

|Si,li(P, θ)|
s−1 dθ

}
. (7.1.3)

Since s > 2k, we have∫ 1

0

|Si,li(P, θ)|
s−1 dθ

≤ P s−1−2k
∫ 1

0

Si,li(P, θ)
2(k−1)

Si,li(P, θ)
2(k−1)dθ

≤ P s−1−2k

#
{
n1, . . . , ns < P : nk1 + · · ·+ nk2k−1 = nk2k−1−1 + · · ·+ nk2k

}
� P s−k−1,
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where we utilized Vaughan [70, Theorem 2], a strong version of Hua’s

Lemma. We deduce from (7.1.3) that

Ll = O

(
sup
θ∈[0,1)

{ ∣∣∣Sj,lj(P, θ)s−2k
∣∣∣}P s−k−1

)
.

Hence, the following lemma yields Theorem 6.2.1.

Lemma 7.1.1. Let l,m, k, q be positive integers with m ≥ 2, q ≥ 2 and

m - l(q − 1). Then

Ω(N) :=
∑
n<N

e

(
θnk +

l

m
sq(n)

)
µ2(n)� N

(log logN)A

holds uniformly in θ ∈ [0, 1).

Remark 7.1.2. Above, we made use of Vaughan [70, Theorem 2] where the

condition s > 2k is necessary. If s > 2k does not hold, relevant version’s

of Hua’s Lemma imply an additional factor P ε for an upper bound which

is too big since we can not improve the bound Ω(N) � N/(log logN)A

in Lemma 7.1.1.

Applying the convolution formula µ2(n) =
∑

z2|n µ(z), we have

Ω(N) =
∑
z≥1

µ(z)
∑

n<N/z2

e

(
z2kθnk +

l

m
sq(nz

2)

)
. (7.1.4)

We split up the sum into a part with z ≥ (log logN)2A and a part with

z < (log logN)2A. Therefore

Ω(N)

�
∑

z≥(log logN)2A

N

z2

+
∑

z<(log logN)2A

|µ(z)|

∣∣∣∣∣∣
∑

n<N/z2

e

(
z2kθnk +

l

m
sq(nz

2)

)∣∣∣∣∣∣
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and thus

Ω(N)

� N

(log logN)A

+(log logN)2A max
z<(log logN)2A

µ2(z)=1


∣∣∣∣∣∣
∑

n<N/z2

e

(
z2kθnk +

l

m
sq(nz

2)

)∣∣∣∣∣∣
 ,

by using the trivial bound N/z2 for the inner sum of (7.1.4) in the case

of z ≥ (log logN)2A.

Theorem 7.1.3. Let B,D > 0 and let q, d ∈ N satisfying q - d ∨ (q2|d ∧
q3 - d). Then one has

∑
n<N/d

e

(
θnk +

l

m
sq(nd)

)
� N

(logN)B

uniformly for θ ∈ R and d ≤ (log logN)D.

Theorem 6.2.1 is proved by applying Theorem 7.1.3 with d = z2 and

D = 4A. Notice, that the condition µ2(z) = 1 implies q - d∨(q2|d∧q3 - d)

and N(log logN)2/(logN)B � N/(log logN)A. The proof of Theorem

7.1.3 is the objective of the remaining paper.

Remark 7.1.4. The bound of Theorem 7.1.3 is stronger than necessary.

However, we can not achieve a better error term in Theorem 6.2.1 since

the condition d ≤ (log logN)D in Theorem 7.1.3 is necessary and forces

us to bound the summands in (7.1.4) with z ≥ (log logN)2A trivially by

N/z2. Therefore, we are not able to improve the error term

O
(
N s/k−1/(log log)A

)
in (6.2.5).
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7.2 Weyl’s inequality

Let k ∈ N, ρ : N → C and n, h1, h2, . . . ∈ N. We define the higher

difference operators ∆k recursively by

∆1(ρ(n);h1) := ρ(n+ h1)− ρ(n)

and

∆j+1 := ∆1(∆j(ρ(n);h1, . . . , hj);hj+1)

for j ∈ N. Notice, that ∆k(n
k;h1, . . . , hk) is independent on n.

We define I ⊆ N to be an interval of integers if I := {n ∈ N : a ≤
n < b} for certain a, b ∈ N. The aim of this section is to show that the

following proposition implies Theorem 7.1.3.

Proposition 7.2.1. Let B,D > 0 and let d, k,m, h, q,N be positive in-

tegers such that m ≥ 2, q ≥ 2 and m - h(q − 1). Let further U1, . . . Uk, J

be intervals of integers with
√
N/d < |Ui| for all i = 1, . . . , k. Assume

|J | ≤ N . We further define

Y (U1, . . . , Uk, J)

:=
∑
h1∈Ui

· · ·
∑
hk∈Uk

∣∣∣∣∣∑
n∈J

e

(
h

m
∆k (sq(dn);h1, . . . .hk)

)∣∣∣∣∣
2

.
(7.2.1)

Then

Y (U1, . . . , Uk, J)� |U1| · · · |Uk||J |2
1

(logN)B

holds uniformly for all d ≤ (log logN)D satisfying q - d ∨ (q2|d ∧ q3 - d).

We can argue literally as in Section 8 of [65] to prove that Theorem

7.1.3 can be deduced from Proposition 7.2.1. Therefore, we only give

short sketch of this statement.

Proof of (Proposition 7.2.1 ⇒ Theorem 7.1.3). For abbreviation, we de-

fine M := bN/dc. Using the classical version of Weyl’s Lemma (see e.g.
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[68, Lemma 2.3]), we get∣∣∣∣∣∑
n<M

e

(
θnk +

l

m
sq(dn)

)∣∣∣∣∣
2k

≤ (2M)2k−k−1
∑

|h1|,...,|hk|<M

∣∣∣∣∣∣
∑

n∈Hk(h1,...hk)

e

(
l

m
∆k (sq(dn);h1, . . . , hk)

)∣∣∣∣∣∣ ,
where Hk(h1, . . . hk) is an interval of integers depending linearly on the

parameters h1, . . . , hk. We remove this dependence by splitting up the

sums into parts of reasonable size. Besides, we make use of the Cauchy-

Schwarz inequality in order to get a square of the modulus of the inner-

most sum. Now, we can apply Proposition 7.2.1.

In order to prove Proposition 7.2.1, we refine a method which has

been developed in the work of Thuswaldner and Tichy [65] that we men-

tioned in Subsection 6.2. Very roughly speaking, the main idea is to split

up the intervals U1, . . . , Uk, J in (7.2.1) such that Y (U1, . . . , Uk, J) can be

bounded by a sum of elements having the same shape as Y (U1, . . . , Uk, J).

This process will be applied iteratively until two summands V1 and V2

can be bounded non trivially. In the next Subsection, we give prelimi-

nary definitions and construct sequences V1 and V2 that will indicate the

summands V1 and V2. In Subsection 7.4 we perform the iternations. In

Subsection 7.5 we simply make use of the inequality (1− σ)t < e−tσ that

is valid for all 0 < σ < 1 and t > 0 in order to conlcude the proof of

Proposition 7.2.1 that yields Theorem 6.2.1.

7.3 Auto-correlation functions

Let d always denote a positive integer with q - d ∨ (q2|d ∧ q3 - d). Let

Q := {0, 1, 2, . . . , q − 1},
M := {1, 2, . . . , k},
M ′ := {0, 1, 2, . . . , k + d},

and

F := {f : P(M)→M ′} ,
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where P(M) denotes the set of all subsets of M . For r = (r1, r2, . . . , rk) ∈
Qk, i ∈ Q and S ⊆M we define

Ξr,i(f)(S) :=

⌊
di+

∑
t∈S

rt + f(S)

⌋
q

,

with bxcq := bx/qc. Notice that f ∈ F implies Ξr,i(f) ∈ F . Let F0, F1 ∈
F be defined by

F0(S) := 0

for all S ⊆M and

F1(M) := 1, F1(S) := 0

for all S ( M . Further, we define iterates of Ξr,i by

Ξ{rl,i`}1≤`≤L := ΞrL,iL ◦ · · · ◦ Ξr1,i1 ,

where the composition is defined by

(Ξr2,i2 ◦ Ξr1,i1) (f)(S) := Ξr2,i2 (Ξr1,i1(f)) (S)

for f ∈ F , S ⊆M . For the sake of a simple notation, let Ξ{r`,i`}`∈∅(f) :=

f , where ∅ denotes the empty set.

Let L ∈ N, ` ≤ L and r` ∈ Qk, i`1, i`2 ∈ Q. Let further f1, f1, g1, g2 ∈
F . We define

(f1, f2)
(r`,i`1,i`2)1≤`≤L−−−−−−−−−→ (g1, g2)

to be an equivalent expression for

Ξ{r`,i`1}1≤`≤L(f1) = g1 ∧ Ξ{r`,i`2}1≤`≤L(f2) = g2.

Lemma 7.3.1. There is a sequence (r̂`, î`1, î`2)1≤`≤L′ with

L′ := b log(d(k + d))

log q
c+ 1

such that for any (f1, f2) ∈ F2 one has

(f1, f2)
(r̂` ,̂i`1 ,̂i`2)1≤`≤L′−−−−−−−−−−→ (F1, F0).

We denote this sequence the (F1, F0)–sequence with length L′.
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Proof. Given a sequence (r`, i`1, i`2)1≤`≤L′′ , we define for all integers n ≥ 1

Gn, Hn ∈ F such that

(F0, F0)
(r1,i11,i12)−−−−−−→ (G1, H1)

(r2,i21,i22)−−−−−−→ (G2, H2)
(r3,i31,i32)−−−−−−→ (G3, H3)

...−→ . . .

holds.

We first show that there is a sequence (r`, i`1, i`2)1≤`≤L′′ such that

(F0, F0)
(r`,i`1,i`2)1≤`≤L′′−−−−−−−−−−→ (F1, F0) (7.3.1)

with L′′ < log d/ log q. In that what follows, we define this sequence

recursively.

The following frequently used trick is to define r = (r1, . . . , rk) such

that
∑

t∈S rt only peaks the critical value q − 1 if S = M .

We choose i`2 := 0 for all 1 ≤ ` ≤ L′′ and i`1 := 0 for all 2 ≤ ` ≤ L′′.

For S ⊆M we have

G1(S) =

⌊
di11 +

∑
t∈S

r1t

⌋
q

.

We need to distinguish two cases. Let d = αq + β with integers α, β and

β ∈ Q.

• If β 6= 0, we make use of the condition (6.2.4). We thus camn choose

a non–negative integer i11 ∈ Q such that i11β ≡ z mod q with

0 < z ≤ q − k. Thus i11β = γq + z with γ ∈ N and consequently

di11 = qα1 + z with 0 ≤ α1 = αi11 + γ ≤ d. We take r1 :=

(q − k − z + 1, 1, 1, . . . , 1). Hence,∑
t∈S

r1t < q − z

if S ( M and ∑
t∈M

r1t = q − z.
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Thus, we obtain

G1(S) = α1 +

⌊
z +

∑
t∈S

r1t

⌋
q

= α1 + F1(S).

Since
∑

t∈S rt1 < q for all S ⊆M and i12 = 0, we have

H1(S) =

⌊∑
t∈S

r1t

⌋
q

= F0(S).

If α1 = 0, we take L′′ := 1 and (7.3.1) is shown if β 6= 0. If α1 > 0,

we have to go on and get

G2(S) =

⌊∑
t∈S

r2t + α1 + F1(S)

⌋
q

.

Recall that we defined i`1 = i`2 = 0 if ` ≥ 2. We define the integers

α2, β2 via α1 = qα2 + β2 with β2 ∈ Q. By taking r2 := (q − β2 −
1, 0, 0, . . . , 0) we have

G2(S) = α2 +

⌊
β2 +

∑
t∈S

r1t + F1(S)

⌋
q

= α2 + F1(S)

and H2 = F0. We repeat this procedure until αj = 0 for the first

time. We take L′′ := j and (7.3.1) follows in the case β 6= 0 since

j < log d/ log q.

• If β = 0, we take i11 := 1. We set r1 := (q − k, 2, 1, . . . , 1) and get

G1(S) = α +

⌊∑
t∈S

r1t

⌋
q

= α + F1(S).

However, we have

H1(S) =

⌊∑
t∈S

r1t

⌋
q

= F1(S).

Since q|d, we have q|α and q2 - α by our assumption q - d∨(q2|d∧q3 -
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d). Hence, α = qα2 with an integer α2 with q - α2. Hence, α2 6= 0.

Take r2 := (q − k, 1, 1, . . . , 1), thus

G2(S) = α2 +

⌊∑
t∈S

r2t + F1(S)

⌋
q

= α2 + F1(S)

and

H2(S) =

⌊∑
t∈S

r2t + F1(S)

⌋
q

= F1(S).

Since q - α2, we have α2 = qα3 + β3 with 0 6= β3 ∈ Q. We take

r3 := (q − 1− β3, 0, 0, . . . , 0) and obtain

G3(S) = α3 +

⌊
β3 +

∑
t∈S

r3t + F1(S)

⌋
q

= α3 + F1(S).

Since
∑

t∈S r3t < q − 1 for all S ⊆M , it follows

H3(S) =

⌊∑
t∈S

r3t + F1(S)

⌋
q

= F0(S).

If α3 = 0, we get (7.3.1) by choosing L′′ := 3. If α3 > 0, we can now

proceed as in the case β 6= 0 and define L′′ as the smallest index

j ≥ 3, where αj = 0. Again, L′′ < log d/ log q holds and (7.3.1) is

proved.

Secondly, it is easy to see that

(f1, f2)
(0,0,0)1≤`≤L′′′−−−−−−−−→ (F0, F0)

holds for all L′′′ ≥ log(k + d)/ log q. Thus we take

L′′′ := L′ − L′′ ≥ log(k + d)

log q

with L′ := b log(d(k+d))
log q

c+1 as stated in the lemma and define the (F1, F0)–
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sequence by

(r̂`, î`1, î`2) := (0`, 0, 0) for 1 ≤ ` ≤ L′′′,

(r̂`+L′′′ , î(`+L′′′)1, î(`+L′′′)2) := (r`, i`1, i`2) for 1 ≤ ` ≤ L′′.

Let

r∗ := (q − k, 1, 1, 1, . . . , 1) ∈ Qk. (7.3.2)

Notice that the sum of the entries of r∗ equals q− 1. Thus, the equations

Ξ(r∗,0)(F0) = F0,

Ξ(r∗,0)(F1) = F1,

Ξ(0,0)(F1) = F0,

Ξ(0,0)(F0) = F0,

(7.3.3)

are easily proved. Let

L := L′ + 2, (7.3.4)

where L′ is as in Lemma 7.3.1.

We now define two sequences

V1 = (rl, il1, il2)1≤l≤L

and

V2 = (r̃l, ĩl1, ĩl2)1≤l≤L

that play an important role in the proof of Theorem 6.2.1. For 1 ≤ l ≤ L′

let

(rl, il1, il2) := (r̂l, îl1, îl2) and

(r̃l, ĩl1, ĩl2) := (r̂l, îl1, îl2),

where (r̂l, îl1, îl2) are the entries of the (F1, F0)–sequence with length L′
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defined in Lemma 7.3.1. Let further

rl := (0, 0, . . . , 0), r̃l := r∗ for l = L− 1,

rl = r̃l := (0, 0, . . . , 0), for l = L,

il1 = il2 = ĩl1 = ĩl2 := 0 for l = L− 1 or l = L.

(7.3.5)

Thus we conclude by (7.3.3) and Lemma 7.3.1 that

(f1, f2)
(F1,F0)–sequence//

V1

55
(F1, F0)

(0,0,0)// (F0, F0)
(0,0,0)// (F0, F0) (7.3.6)

and

(f1, f2)
(F1,F0)–sequence//

V2

55
(F1, F0)

(r∗,0,0)// (F1, F0)
(0,0,0)// (F0, F0) (7.3.7)

holds for all (f1, f2) ∈ F2.

Later, the following lemma will be of use. Its proof is straightforward.

Lemma 7.3.2. Let G be a finite set and A := (aij)i,j∈G be a matrix with

non negative real entries. For y ∈ N, let
(
a

(y)
ij

)
i,j∈G

:= Ay. Let X > 0

with
∑

k∈G aik ≤ X, for all i ∈ G. One has∑
k∈G

a
(t)
ik ≤ Xy

for all i ∈ G.

7.4 Iterations

Recall that our aim is to show Proposition 7.2.1. Let B,D > 0 and

d ≤ (log logN)D.

Let I be an interval of integers, i.e. I := {n ∈ N : a ≤ n < b} for

certain integers a < b. For c ∈ N we define cI := {n ∈ N : cn ≤ n < cb}.
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For f1, f2 ∈ F and I1, . . . , Ik, J intervals of integers let

Φ (h1, . . . , hk; J, f1)

:=
∑
n∈J

e

(
h

m

∑
S⊆M

(−1)k−|S|sq

(
dn+

∑
t∈S

ht + f1(s)

))
.

We further define

Ψ (I1, . . . , Ik−1; Ik, J, f1, f2)

:=
∑
hk∈Ik

Φ (h1, . . . , hk; J, f1) Φ (h1, . . . , hk; J, f2)

and

X (I1, . . . , Ik; J, f1, f2)

:=
∑
h1∈I1

· · ·
∑

hk−1∈Ik−1

Ψ (h1, . . . , hk−1; Ik, J, f1, f2) .

Since

∆k (sq(dn), h1, . . . , hk) =
∑
S⊆M

(−1)k−|S|sq

(
dn+

∑
t∈S

dht

)
,

we have

Y (U1, . . . , Uk, J)

=
∑
h1∈U1

· · ·
∑
hk∈Uk

∣∣∣∣∣∑
n∈J

e

(
h

m

∑
S⊆M

(−1)k−|S|sq

(
dn+

∑
t∈S

dht

))∣∣∣∣∣
2

≤
∑

h1∈dU1

· · ·
∑

hk∈dUk

∣∣∣∣∣∑
n∈J

e

(
h

m

∑
S⊆M

(−1)k−|S|sq

(
dn+

∑
t∈S

ht

))∣∣∣∣∣
2

= X (I1, . . . , Ik; J, F0, F0) ,

where Ii := dUi. Thus
√
N < |Ii|. Note that we substitute in the inner

sum dhi by hi since we extend the intervals Ui to Ii = qUi. This is the
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essential trick of this paper. Our aim is now to show

X (I1, . . . , Ik; J, f1, f2)� |I1| · · · |Ik||J |2
1

(logN)2B
(7.4.1)

for arbitrary f1, f2 ∈ F ,

√
N < |Ii| and |J | ≤ N. (7.4.2)

Recall d ≤ (log logN)D. Provided that we can show (7.4.1), we take

f1, f2 = F0 and obtain

Y (U1, . . . , Uk, J) ≤ X (I1, . . . , Ik; J, f0, f0)

� |I1| · · · |Ik||J |2
1

(logN)2

� |U1| · · · |Uk||J |2(log logN)kD
1

(logN)2B

� |U1| · · · |Uk||J |2
1

(logN)B
.

Thus, to prove Proposition 7.2.1 and consequently to prove Theorem

6.2.1, it suffices to show (7.4.1). The proof of (7.4.1) is the matter of the

remaining paper. To do so, we need the following technical lemma which

is similar to [65, Proposition 5.1].

Lemma 7.4.1. For f1, f2 ∈ F , L ∈ N we have

X
(
qLI1, . . . , q

LIk; q
LJ, f1, f2

)
=

∑
r1,...,rL∈Qk

∑
i1,...iL∈Q2

L∏
`=1

α
(
Ξ{rj ,ij1}1≤j≤`−1

(f1),Ξ{rj ,ij2}1≤j≤`−1
(f2), r`, i`1, i`2

)
(7.4.3)

X
(
I1, . . . , Ik, J ; Ξ{r1,i`1}1≤`≤L ,Ξ{r1,i`2}1≤`≤L(f1)

)
,

where

α (f1, f2, r, i1, i2)

:= e

(
h

m

∑
S⊆M

(−1)k−|S| (b(f1, S, r, i1)− b(f2, S, r, i2))

)
,
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and b(f, S, r, i) ∈ Q is defined via

di+
∑
t∈S

rt + f(S) = zq + b(f, S, r, i)

with z ∈ N.

Remark 7.4.2. Note that z = Ξr,i(f)(S) = bdi+
∑

t∈S rt + f(S)cq.

Proof. Note that for an interval of integers I, we have

qI = {qh+ r : h ∈ I, r ∈ Q}.

We first prove the case L = 1. Therefore, we consider

Φ (qh1 + r1, . . . , qhk + r1; qJ, f1)

=
∑
i∈Q

∑
n∈J

e

(
h

m

∑
S⊆M

(−1)k−|S|

+sq

(
q

(
dn+

∑
t∈S

ht

)
+ di+

∑
t∈S

rt + f1(s)

))
.

Since

di+
∑
t∈S

rt + f1(s) = qΞr,i(f1)(S) + b(f1, S, r, i),

we get due to the q-additivity of the sum-of-digits function

sq

(
q

(
dn+

∑
t∈S

ht

)
+ di+

∑
t∈S

rt + f1(S)

)

= sq

(
dn+

∑
t∈S

ht + Ξr,i(f1)(S)

)
+ b(f1, S, r, i).

By the definition of X (I1, . . . , Ik; J, f1, f2), the lemma is proved in the

case L = 1. Repeating the procedure L− 1 times yields the result.
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Lemma 7.4.3. One has

α(F0, F0,0, 0, 0) = 1,

α(F1, F0,0, 0, 0) = e

(
h

m

)
and

α(F1, F0, r
∗, 0, 0) = e

(
(1− q) h

m

)
,

where r∗ is defined in (7.3.2).

Proof. Let

Υr,i(f)(S) := di+
∑
t∈S

rt + f(S).

The remainder occurring at the division of Υr,i(f)(S) by q is b(f, S, r, i).

Since Υ0,0(F0)(S) = 0 for all S ⊆M , the first statement of the lemma is

valid. We have further Υ0,0(F1)(S) = 0 for all S ( M and Υ0,0(F1)(M) =

1, thus α (F1, F0,0, 0, 0) = e (h/m).

It remains to prove the last statement of the lemma. For all S ( M

we have Υr∗,0(F1)(S) = Υr∗,0(F0)(S) and consequently b(F1, S, r
∗, 0) =

b(F0, S, r
∗, 0). Hence

α(F1, F0, r
∗, 0, 0) = e

(
h

m
(b(F1,M, r∗, 0)− b(F0,M, r∗, 0))

)
.

We have Υr∗,0(F1)(M) = q and Υr∗,0(F0)(M) = q − 1. Hence

b(F1, S, r
∗, 0)− b(F0, S, r

∗, 0) = q − 1,

and the lemma follows.

Recall that we need to show (7.4.1) in order to proof Theorem 6.2.1.

Lemma 7.4.4. Let L := L′+2, where L′ as in Lemma 7.3.1. Let further

m - h(q − 1), and f1, f2 ∈ F . Then the inequality∣∣X(qLtI1, . . . , q
LtIk, q

LtJ ; f1, f2)
∣∣

≤
(

1− π2

(4m2q(k+2)L)

)t (
qLt|I1|

)
· · ·
(
qLt|Ik|

) (
qLt|J |

)2
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holds for all t ∈ N.

Proof. We extract two summands V1 and V2 from (7.4.3) that correspond

to the sequences V1 and respectively V2 defined in (7.3.5). Thus Lemma

7.4.1 yields

X
(
qLI1, . . . , q

LIk; q
LJ, f1, f2

)
=V1 + V2

+
∑

Γ

L∏
`=1

α
(
Ξ{rj ,ij1}1≤j≤`−1

(f1),Ξ{rj ,ij2}1≤j≤`−1
(f2), rl, i`1, i`2

)
X
(
I1, . . . , Ik, J ; Ξ{r1,i`1}1≤`≤L ,Ξ{r1,i`2}1≤`≤L(f1)

)
,

(7.4.4)

where Γ denotes the set off all (r1, . . . , rL, i1, . . . iL) ∈ (Qk)L×(Q2)L apart

from the two elements corresponding to V1 or V2. Thus |Γ| = q(k+2)L− 2.

We use the abbreviation

A(f1, f2) :=
L−2∏
`=1

α
(
Ξ{rj ,ij1}1≤j≤`−1

(f1),Ξ{rj ,ij2}1≤j≤`−1
(f2), r`, i`1, i`2

)
.

We obtain by (7.3.6) and (7.3.7) that

V1 = A(f1, f2)α(F1, F0,0, 0, 0)α(F0, F0,0, 0, 0)

X (I1, . . . , Ik, J ;F0, F0)

and

V2 = A(f1, f2)α(F1, F0, r
∗, 0, 0)α(F1, F0,0, 0, 0)

X (I1, . . . , Ik, J ;F0, F0) .

By 7.4.3, we thus get

V1 + V2 = A(f1, f2)e

(
h

m

)(
1 + e

(
(1− q) h

m

))
X (I1, . . . , Ik, J, F0, F0) .

For given functions f1, f2, g1, g2 ∈ F , let Ef1,f2,g1,g2 denote the set of
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all (r1, . . . , rL, i1, . . . iL) ∈ Γ satisfying

X
(
I1, . . . , Ik, J ; Ξ{r1,i`1}1≤`≤L ,Ξ{r1,i`2}1≤`≤L(f1)

)
= X (I1, . . . , Ik, J, g1, g2) .

We define

a′(f1, f2, g1, g2) :=
∑

Ef1,f2,g1,g2

α (f1, f2, r, i1, i2) .

Recall that |Γ| = q(k+2)L − 2. The absolute value of the function α is at

most 1. Hence, for all f1, f2 ∈ F one has∑
(g1,g2)∈F2

|a′(f1, f2, g1, g2)| ≤ q(k+2)L − 2.

We rearrange the sum (7.4.4) and get

X
(
qLI1, . . . , q

LIk; q
LJ, f1, f2

)
=

∑
(F0,F0)6=(g1,g2)∈F

a′(f1, f2, g1, g2)X (I1, . . . , Ik, J, g1, g2)

+

(
a′(F0, F0) + A(f1, f2)e

(
h

m

)(
1 + e

(
(1− q) h

m

)))
X (I1, . . . , Ik, J, F0, F0) .

Let

a(f1, f2, g1, g2) := a′(f1, f2, g1, g2)

if (g1, g2) 6= (F0, F0) and let

a(f1, f2, F0, F0)

:= a′(f1, f2, F0, F0) + A(f1, f2)e

(
h

m

)(
1 + e

(
(1− q) h

m

))
.

We have∣∣∣∣e( hm
)(

1 + e

(
(1− q) h

m

))∣∣∣∣ ≤ ∣∣∣∣1 + e

(
1

m

)∣∣∣∣ ≤ 2−
( π

2m

)2

,



81

by our assumption m - h(q − 1). We therefore obtain∑
(g1,g2)∈F2

|a(f1, f2, g1, g2)|

≤ q(k+2)L −
( π

2m

)2

= q(k+2)L

(
1− π2

(4m2q(k+2)L)

)
.

(7.4.5)

Now, we define an |F2| × |F2| matrix Z by

Z := (|a(f1, f2, g1, g2)|)(f1,f2)∈F2,(g1,g2)∈F2 .

We get the inequality(
|X(qLI1, . . . , q

LIk, q
L; f1, f2)|

)
(f1,f2)∈F2

≤Z (|X(qI1, . . . , qIk, q; f1, f2)|)(g1,g2)∈F2

(7.4.6)

which is meant componentwise.

Let t ∈ N. Due to (7.4.5), we are able to apply Lemma 7.3.2 and we

obtain by the t–fold iterations of the inequality (7.4.6) together with the

trivial bound

|X(I1, . . . , Ik, J ; f1, f2)| ≤ |I1| · · · |Ik||J |2

the inequality∣∣X(qLtI1, . . . , q
LtIk, q

LtJ ; f1, f2)
∣∣

≤
(

1− π2

(4m2q(k+2)L)

)t (
qLt|I1|

)
· · ·
(
qLt|Ik|

) (
qLt|J |

)2
.

7.5 Conclusion

Let D,B > 0. We assume N ≥ k. We take

t :=

⌊
logN

8D log log logN

⌋
.
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Since d ≤ (log logN)D, we have

L ≤ log(d(k + d))

log q
+ 3 ≤ 2D

(
log log logN

log q
+ 1

)
and

qLt ≤ N1/4+log q/(4 log logN)

for all N ∈ N with (log logN)D ≥ k. Thus there is an integer N0 and

some ε > 0, depending only on q, k and D such that for all N ≥ N0 we

have
√
N

qLt
≤ N−ε. (7.5.1)

For any 0 < σ < 1 one has (1− σ)t < e−tσ. Thus we get(
1− π2

(4m2q(k+2)L)

)t
� e−c logN/(log log logN(log logN)(2D+1)(k+2)),

where c = π2/(36Dm2). Hence(
1− π2

(4m2q(k+2)L)

)t
� (logN)−c logN/(log log logN(log logN)(2D+1)(k+2)+1)

� (logN)−2B.

(7.5.2)

Now, we are able to show (7.4.1) which yields Proposition 7.2.1 and

concludes the proof of Theorem 6.2.1. We need to estimate

X (I1, . . . , Ik; J, f1, f2)

where the intervals satisfy (7.4.2). For 1 ≤ j ≤ k+ 1, the integers aj and

bj are defined by Ij = [aj, bj] and J = [ak+1, bk+1]. Besides the integers

uj, vj, rj, sj with 0 ≤ rj, sj < qLt are uniquely defined by

aj = qLtuj + rj, bj = qLtvj + sj

for all 1 ≤ j ≤ k + 1. Notice that uj 6= vj by (7.4.2) and (7.5.1). We
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finally define

Ĩj := [uj, vj], J̃ := [uk+1, vk+1]

for 1 ≤ j ≤ k. It is a straightforward exercise to verify

X(I1, . . . , Ik, J ; f1, f2)

= X(qLtĨ1, . . . , q
LtĨk, q

LtJ̃ ; f1, f2) +O

(
|I1| · · · |Ik||J |2

√
N

qLt

)
.

By Lemma 7.4.4, we finally get

X(I1, . . . , Ik, J ; f1, f2)

�

((
1− π2

(4m2q(k+2)L)

)t
+

√
N

qLt

)
|I1| · · · |Ik||J |2.

Proposition 7.2.1 is proved by applying (7.5.1) and (7.5.2).
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[11] J. Brüdern and É. Fouvry, Lagrange’s four squares theorem

with almost prime variables, J. Reine Angew. Math., 454 (1994),

pp. 59–96.

[12] L. E. Bush, An asymptotic formula for the average sum of the digits

of integers, Amer. Math. Monthly, 47 (1940), pp. 154–156.

[13] A. Cauchy, Recherches sur les nombres, J. Ecole polytech, 9

(1813), pp. 99–123.



85

[14] I. Chowla, A theorem on the addtion of residue classes: Application

to the number γ(k) in waring’s problem, The Quarterly Journal of

Mathematics, 8 (1936), pp. 99–102.

[15] C. Dartyge and C. Mauduit, Nombres presque premiers dont
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[25] P. Erdős, On the difference of consecutive terms of sequences de-

fined by divisibility properties, Acta Arith, 12 (1966/1967), pp. 175–

182.



86
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