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Abstract

During the evolution of a software system, a huge amount of data is generated. These data are

maintained in software repositories. This thesis aims to utilize the available software’s repositories

to provide novel techniques that facilitate the automation of various software maintenance tasks.

This thesis presents two contributions: (1) Models for effort estimation, risk estimation, and fault

prediction. (2) Multi-label classification of SCRs for impact analysis and bug triaging.

We propose an effort estimation model for open source software systems (OSS), which can be

used to estimate how much effort is required to fix a fault in source codes. Since, in case of OSS,

effort data related to the fixing of faults is unavailable, therefore, to build an effort estimation model,

we introduce a novel approach to mine the effort data from a software repository. Once we obtain

the effort data, we use it in our model as a dependent variable. For model’s independent variables,

we use a set of code and process metrics. Finally, we use the metrics and effort data to build an

effort estimation model using parametric and non-parametric regression techniques. To obtain an

effort estimation model we performed an experiment by using the data of Mozilla project. In our

experiment, the maximum obtained values of model’s correlation and MMRE (relative error) are 0.51

and 63.8% respectively, when support vector machine used to build the effort model. We also propose

a model for risk estimation, the purpose of a risk model is to estimate a risk of faults associated with

new changes in a source file. To build a risk model, we use an approach to transform the previous

history of software changes into four types, i.e., bug-fix, bug fix-introducing, buggy changes and clean

changes. Each source file has different values related to these changes. We use this information to

build a risk model.

In order to obtain a high performance fault prediction model, we performed two different exper-

iments using the project evolution data of Firefox, Apache, and GNOME. The purpose of the first

experiment was to find the best statistical or machine learning techniques for the construction of

fault prediction models. The purpose of the second experiment was to improve the fault prediction

capability of a model by using a set of predictors (metrics), which are highly correlated with the

number of faults. In the first experiment, we used two different approaches, i.e., regression and classi-

fication to build the fault prediction models. We found multiple linear regression and neural network

as the best regression based fault prediction models. Whereas, bagging, boosting and decision tree

(J48) are found as the best classification based fault prediction models. In the second experiment, we

introduced eight new metrics, which are related to the logical couplings among the source files. We

found that these metrics are highly correlated with the number of faults, and therefore, can be used

to build a fault prediction model. In case of regression the obtained value of R2 of the model (when

logical coupling metrics used as predictors) is 0.8. Similarly, in case of classification, the obtained

value of accuracy is 97%.

In the second part of this thesis, we propose two different approaches to obtain a classification based

prediction model for the impact analysis of SCRs: i) We obtain different groups of source files which
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change together. To obtain the group of source files, we use the technique of frequent pattern mining

and association rules. Once we obtain the group of source files, then each resolved SCR is labeled with

one of the appropriate groups. Afterwards we use labeled data of SCRs to build three different models

for the classification of SCRs. These models are based on support vector machine, decision tree and

naive bayes. ii) We directly label each resolved SCR with one or more impacted source files, and use

this data to build models, which are based on multi-label classifiers, i.e., Label Power set method. In

order to evaluate both the approaches, we performed experiments by using the data from three OSS

projects, i.e., Mozilla, GNOME and Eclipse. Our experimental results are promising, the obtained

maximum precision values for single and multi label classifications are 58.2% and 47.1% respectively.

Furthermore, in case of single and multi-label classification, the maximum attained precision values

for any individual label are 86.5% and 92% respectively. Finally, to obtain a Bug Triage System

(BTS), we propose two different classification models, i.e., single and multi label classification of bug

reports (SCRs). In order to build a single-label classification model for BTS, we label each resolved

bug report with the name of developers who actually resolved that bug report. After labeling, we

use labeled data to build single-label classifiers for BTS. In case of multi-label classification model

for BTS, we label each resolved bug report not only with the name of the developer but also labeled

with names of impacted source files and an estimate for the time required to resolve a given bug

report. After labeling we use the multi-labeled data to build multi-label classifiers for a BTS. In order

to evaluate our approaches, we performed experiment using project evolution data of Mozilla. In

case of single label classification, the best obtained BTS is based on support vector machine having

44.4% classification accuracy with 30% precision and 28% recall. Whereas, in case of multi-label,

we performed experiments by using Problem Transformation and Algorithm Adaptation methods of

multi-label machine learning. In our experiment, we have obtained precision levels up to 71.3% with

40.1% recall.
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Kurzfassung

Während der Entwicklung eines Software-Systems wird eine riesige Menge an Daten generiert. Diese

Daten werden in Software-Repositories gespeichert. Das Ziel der vorliegenden Dissertationsschrift

ist die verfügbaren Software-Repositories zu nutzen, um neuartige Techniken zu entwickeln, die die

Automatisierung der verschiedenen Software-Wartungsarbeiten erleichtern. Diese Arbeit behandelt

zwei Beiträge: (1) Modelle für Aufwandsschätzung, Risikoabschätzung und Fehlervorhersage. (2)

Multi-Label-Klassifikation der SCR für Impact-Analyse und Fehlersichtung.

Wir präsentieren ein Modell zur Aufwandsschätzung für Open-Source-Software-Systeme (OSS),

welches dazu dient abzuschätzen wie viel Aufwand erforderlich ist, um einen Fehler in Quellcode

zu beheben. Da im Fall von OSS der Aufwand in Bezug auf die Festsetzung von Fehlern nicht

verfügbar ist, stellen wir einen neuartigen Ansatz zur Abschätzung des Aufwands aus einem Software-

Repository vor. Nach Berechnung des Aufwands, verwenden wir diesen in unserem Modell als

abhängige Variable. Für das Modell der unabhängigen Variablen verwenden wir eine Reihe von

Code und Prozesskennzahlen. Schließlich verwenden wir die Metrik und Aufwandsdaten inAuf-

wandsschätzungsmodellen mit parametrischen und nicht parametrischen Regressionsverfahren. Um

die erhaltenen Aufwandsschätzungsmodell zu testen, machen wir ein Experiment mit Hilfe der Daten

des Mozilla-Projekts. In unserem Experiment erhalten die Maximalwerte des Modells Korrelation

und MMRE (relative Fehler) 0,51% bzw. 63,8% bei Support-Vektor-Maschine um das Aufwands-

modell zu bauen. Wir präsentieren auch ein Modell für die Abschätzung des Risikos, die mit einem

Risiko von Fehlern mit neuen Änderungen in einer Quelldatei verbunden sind. Um ein Risikomodell

abzuschätzen, benutzen wir eine Annäherung an die bisherige Historie der Software-Änderungen

durch vier Änderungstypen: Bug-Fix, Bug-Fix-Einführung, fehlerhafte Änderungen und saubere

Änderungen. Jede Quelldatei hat andere Werte in Bezug auf diese Änderungen. Wir verwenden diese

Informationen, um ein Risiko-Modell zu bauen.

Um ein hoch leistungsfähiges Fehler-Vorhersagemodell zu erhalten, führten wir zwei verschiedene

Experimente mit den Projektfortschrittsdaten von Firefox, Apache und GNOME durch. Der Zweck

des ersten Experiments war es, die besten Techniken der Statistik oder des maschinellen Lernens für

den Bau von Fehlervorhersagemodellen zu finden. Der Zweck des zweiten Experiments war es, die

Fehlervorhersagefähigkeit eines Modells mithilfe einer Reihe von Vorhersagefunktionen (Metriken) zu

verbessern, die stark mit der Anzahl den Fehlern korrelieren. Im ersten Experiment verwendeten wir

die zwei Ansätze Regression und Klassifikation, um das Fehler-Vorhersage-Modell zu bauen. Wir fan-

den multiple lineare Regressionen und neuronale Netze als beste Regression Fehlervorhersagemodelle.

Im zweiten Experiment verwendeten wir acht neue Metriken, die logische Verbindungen zwischen den

Quelldateien befreffen. Wir fanden heraus, dass diese Metriken hoch korrelierend mit der Anzahl der

Fehler sind und deshalb verwendet werden hönnen, um ein Störungsprognosemodell zu bauen. Im

Falle der Regression ist der erhaltene Wert von R2 des Modells (wenn logische Kopplung Metriken als

Prädiktoren verwendet werden) 0,8. Im Fall der Klasssifikation ist der erhaltene Genauigkeitswert 97%.
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Im zweiten Teil dieser Arbeit zeigen wir zwei verschiedene Ansätze, um ein Klassifizierungs-

Vorhersage-Modell für die Analyse der Auswirkungen SCRs zu erhalten: i) erhalten wir verschiedene

Gruppen von Quelldateien, die gemeinsam zu ändern sind. Um Quelldateien zu gruppieren, verwenden

wir die Technik der Mustererkennung und Assoziationsregeln. Sobald wir die Gruppe von Quelldateien

erhalten, wird jeder gelöste SCR mit einer der entsprechenden Gruppen gekennzeichnet. Danach ver-

wenden wir von SCR gekennzeichnete Daten um drei verschiedene Modelle für die Klassifizierung von

SCRs zu erstellen. Diese Modelle basieren auf Support-Vektor-Maschine-, Entscheidungs-Baum- und

Naive Bayes-basierten Modellen. ii) Wir ordnen jeder aufgelösten SCR ein oder mehrere beeinflusste

Quelldateien zu, und nutzen diese Daten, um Modelle zu bauen, die auf Multi-Label-Klassifikatoren

basieren, unter anderem die Label Power-Methode. Um beide Ansätze zu evaluieren, führten wir Expe-

rimente mit Hilfe der Daten aus den drei OSS-Projekten Mozilla, GNOME und Eclipse durch. Unsere

experimentellen Ergebnisse sind vielversprechend. Die erhaltenenWerte für maximale Präzision Single-

und Multi-Label Klassifikationen sind 58,2% und 47,1%. Single-und Multi-Label-Klassifikationen, er-

lauben ein Höchstmaß an Präzision bis zu 86,5% und 92% für jedes einzelne Etikett. Schließlich, um

ein Bug Triage-System (BTS) erhalten, schlagen wir zwei unterschiedliche Modelleinstufungen, d.h.

Einzel-und Multi-Label-Klassifikation von Bug-Reports (SCR). Um den Bau eines einzelnen Klas-

sifikationsmodells für BTS zu ermöglichen, markieren wir jeden aufgelösten Fehlerbericht mit den

Namen der Entwickler, die den tatsächlichen gemeldeten Fehler behoben haben. Nach der Markie-

rung verwenden wir die markierten Daten zur Klassifikationen, um ein BTS zu bauen. Im Falle von

Multi-Label-Klassifikation Modell für BTS kennzeichnen wir jeden geschlossenen Fehlerbericht nicht

nur mit den Namen der Entwickler sondern auch mit den Namen von betroffenen Quelldateien und

einer Schätzung für die erforderliche Zeit um einen bestimmten gemeldeten Fehler zu beheben. Nach

der Markierung verwenden wir die Multi-markierten Daten als Multi-Label-Klassifikatoren um eine

BTS aufzubauen. Um unsere Ansätze zu bewerten, führten wir Experimente mit Projektfortschritts-

daten von Mozilla durch. Im Fall, einer Single-lable Classification, basiert die beste erhaltene BTS auf

Support-Vektor-Maschine mit 44,4% Klassifikationsgenauigkeit mit 30% Precision und 28% Recall. Im

Falle der Multi-Label-Klassifikation hingegen führten wir Experimente mit Hilfe von Problemtrans-

formationen und Methoden zur Anpassung von Algorithmen des Multi-Label machine-learning durch.

In unserem Experiment erhielten wir Genauigkeiten bis auf 71,3% bei 40,1% Recall.
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1
Introduction

Failure is not fatal, but failure to change might be [John Wooden]

The purpose of this chapter is to give the reader an overview of this thesis. This chapter is divided

into three parts. In the first part, we present a brief introduction to the field of MSR, and discuss

its contributions to the field of software engineering. In the second part, we discuss the motivations,

goals and contributions of this thesis. Finally, in the third part, we present the layout of this thesis.

1.1 Mining Software Repositories

During the evolution of a large software system, a huge amount of data is generated. These data

are maintained by the repositories of a bug tracking system and a version control system. Software

repositories contain a wealth of valuable information for empirical studies in software engineering.

The availability of software repository data leads to a new research area called Mining Software

Repositories (MSR) [Zimmermann, 2009]. The field of MSR provides a platform for researchers to

analyze the rich data available in software repositories. The overall goal of MSR is to extract the

hidden information from the evolutionary data of software projects, and used them to build new

theories, models and define new standards for software engineering.

In case of open source software systems, the repositories of software’s evolution data are freely avail-

able. However, software repositories were used mostly for their intended activities such as maintaining

versions of the program file and tracking the status of defect reports. Today, researchers can leverage

softwares repositories data to understand the evolution of a software system. Software practitioners

and researchers are beginning to recognize the potential benefit of mining software repositories for

software maintenance and other purposes. In the recent years, research is now proceeding to find

appropriate ways in which MSR can be used to support the maintenance of software systems, improve

software design quality, and empirically validate novel approaches and methods [Hassan, 2008].

Although, MSR has several important applications in software engineering, but still, MSR facing

several challenges and difficulties. One of the main reasons of these difficulties might be software

repositories, which are not designed to support empirical understanding of a software project. Soft-

ware version control system and defect tracking systems have various irregularities and issues in their
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recorded information. Similarly, the other challenges are, building relevant theories and models of

software development that can be empirically validated using the available information in software

repositories [Hassan et al., 2005]. Moreover, there are challenges in developing new data management

and mining algorithms, or customizing existing mining algorithms for large-scale software repositories.

Besides, these difficulties and challenges, MSR has been contributed a huge amount of valuable

research works in the field of software engineering. The analysis of MSR publications shows that

80% (approx) of the published papers (from 2004 to 2008) focus on source code and bug-related

repositories [Hassan and Xie, 2010]. These repositories are mainly evolved during the maintenance

phase. Similarly, the results of a detailed survey on MSR show that the published papers on

MSR are mostly related to the software maintenance tasks like, program comprehension, origion anal-

ysis and refactoring, change comprehension, fault prediction, impact analysis, etc. [Kagdi et al., 2007].

Furthermore, MSR focus on developing tools to support software developers and empowering

software maintainers. Examples of some of the developed tools are: EROSE plugin for Eclipse

[Zimmermann et al., 2005a], EROSE is used to guide a developer, when a developer wants to change

a key then EROSE on the basis of previous change history, recommend to change some other function

also. MAPO, it is used for mining API usage from open source repositories [Xie and Pei, 2006].

BugTriage, it is used to assign a new bug report to an appropriate developer [Anvik et al., 2006].

DynaMine, it is used for mining error or usage patterns from code revision histories [Livshits and

Zimmermann, 2005]. HIPIKAT, it can be viewed as a recommender system for software developers.

HIPIKAT draws its recommendations from a project’s evolution data [Čubranić and Murphy, 2003].

1.2 Thesis Overview

The analysis given in the previous section, reveals that MSR research is more focused on soft-

ware maintenance activities. The research presented in this thesis is also focused on development of

models for software maintenance tasks. In the following sections, we present an overview of this thesis.

1.2.1 Motivation

In case of a software project life cycle, software maintenance is the last phase. Software maintenance

phase consists of several activities. Most of the maintenance activities are directly linked with the

modifications in source codes. Modifications in source codes are required to accomplish four different

types of modification tasks. If modifications are required to fix the fault, then it is called Corrective

maintenance. If modifications are performed to keep a software product alive in a changed or chang-

ing environment, then it is called Adaptive maintenance. If modifications are performed to improve

performance or maintainability, then it is called Perfective maintenance. Finally, if modifications are

performed to detect and correct latent faults before they become effective faults, then it is called

Preventive maintenance [Lientz and Swanson, 1980]. Most of the software development cost is spent

to accomplish the above mentioned maintenance tasks. The results of different surveys indicate

that software maintenance consumes 60% to 80% of the total life cycle costs. The most challenging

problems related to the software maintenance task are: identification of fault prones modules, impact
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analysis of software changes, and program comprehension [Canfora and Cimitile, 2000].

In order to reduce the cost and improve the quality of software maintenance tasks, several tech-

niques of MSR have been developed. These techniques use the software development history, and

apply machine learning techniques on it to build automation models or tools. Thomas Ball et al. [Ball

et al., 1997] gives details how to utilize version control system data to study the system evolution.

Michael Fischer and Harald Gall developed approaches to extract data from software repositories and

populate a database for logical coupling analysis [Gall et al., 2003], [Fischer et al., 2003].

The previous history of source code changes can be used to find the risk of fault associated with

the new changes in the source code. Jack and Zimmermann [Śliwerski et al., 2005b] analyzed the

CVS and the Bugzilla (a bug tracking system) repositories of Mozilla and Eclipse projects. They

used annotation and diff (file difference) commands of CVS to identify fix-inducing changes. Kim

et al. [Kim et al., 2008] introduced a technique for classifying a software change as clean or buggy.

Similarly, Mockus and Weiss [Mockus and Weiss, 2000] presented a model to predict the risk of new

changes, based on historical information. Most of the previous work used the history of software

changes to classify a source files as faulty or clean source files. Whereas, the available data of software

changes can be used to define a new set of metrics, which measures the number of different types of

changes. These, metrics can be used to build a risk model.

Bug fixing is the main task of corrective software maintenance that takes up a large amount of

software testing and maintenance effort. Particularly, software testing requires a lot of effort to verify

that the new changes are not error prone. Several works have been done to find the fault-prone

locations in software systems. The majority of this work builds prediction models using metrics that

predicts where future defects are likely to occur. Most of the developed fault prediction models used

code metrics as predictors [Nagappan et al., 2006]. The performance of the fault prediction models

can be improved if we used metrics, which are highly correlated with the number of faults. It is found

that logical coupling measures are highly correlated with the number of defects [D’Ambros et al.,

2009b, Eaddy et al., 2008a]. Therefore, logical coupling metrics can be used to build better fault

prediction models.

Bug tracking system maintained the complete history of bug fixing activities of each reported bugs.

This data can be used to mine the actual time that has been spent to fix a big. This information can

be used to build an effort estimation model. Similarly, classification of bug reports (software change

request-SCR) can be used for impact analysis and bug triaging [Canfora and Cerulo, 2005] [Anvik

et al., 2006]. In case of single label classification SCRs cannot be assigned multiple labels (i.e., source

files name) simultaneously. Whereas, in case of impact analysis of SCRs, some SCRs impacted more

than one source files. Therefore, it is required to label each SCR with multiple source files. This issue

can be resolved by using multi-label classification techniques of machine learning.

1.2.2 Problem Statement

In case of open source software system, effort data related to the fixing of faults are not available.

Therefore, there is no state of the art effort estimation model for OSS is available. This thesis
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1.2 Thesis Overview

investigates that how developer’s bug fix activity data can be used to mine the effort data. Moreover,

thesis investigates that which source code and process metrics can be used to build the effort estimation

model. Furthermore, this thesis investigates the previous history of source file changes to answer the

question how much risk of fault is associated with the new changes in a source file? The thesis also

investigates the issues related to the building of fault prediction models. Fault prediction models

are built using software metrics and machine learning techniques. The main issues addressed by this

thesis related to the fault prediction models:

❏ In case of software fault prediction model it is found that in most of the cases a set of code

metrics are used as predictors. These predictors are not highly correlated with the number of

post release defects. Consequently, the obtained models are not reliable. Therefor, in order to

construct the state of the art fault prediction model, one must have a new set of predictors,

which should have high correlation with the number of faults.

❏ To build the fault prediction models, binary classifiers are mostly used. Whereas, the class

distribution of source files, i.e., faulty and clean source files are skewed. In case of skewed class

distribution the binary classifiers results are biased. Therefore, one has to find a set of classifiers,

which perform well with skewed class distribution.

Finally, this thesis investigates the limitation of single label classification of SCRs, which are

frequently used for bug-triaging and impact analysis. The main issues addressed by this thesis related

to the single-label classification of SCRs are: how one can assign multiple labels against each SCR

and how one can improve the indexing technique of the textual data of SCR.

1.2.3 Research Hypothesis

The research work presented in this PhD thesis is for proving the following research hypothesis:

❏ H1: Activities of the developers related to the fixing of bugs are stored into a bug tracking

system. This data can be mined to build an effort estimation model.

❏ H2: The history of software changes can be used to build a risk model.

❏ H3: Logical coupling metrics are highly correlated with the number of faults. The prediction

power of software fault prediction models can be improved by using a set of logical coupling

metrics as predictors.

❏ H4: Multi-label classification technique of machine learning can be used in software engineering

for the impact analysis of software change requests, and automatic bug triaging.

1.2.4 Goals/Objectives

The main objective of this thesis is to build models for effort estimation, risk analysis, and fault

predictions. Another objective of this thesis, is to apply multi-label classification techniques to classify

SCRs for impact analysis and bug triaging.
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1.2.5 Thesis Contribution

1.2.5 Thesis Contribution

In this thesis, we made two contributions to the body of MSR research. First, we extract metrics

data from software’s repository, and build models for effort estimation, risk estimation, and faults

prediction. Second, we classify software changes requests (SCRs) using multi-label classification for

the impact analysis of SCRs and bug triaging. Parts of the work presented in this thesis have been

published in international peer reviewed journal, conferences and workshops:

I) Estimation and Prediction Models:

❏ The effort estimation model for open source software system (OSS), published in [Ahsan et al.,

2009b] and [Ahsan et al., 2010]. Effort estimation model built in two steps. In the first step, we

mined the effort data from the history of developer’s bug-fix activity. Then, in the second step,

we used the obtained effort data and the set metrics to build the effort estimation model. In

this experiment, we found that in case of OSS, bug fixing activities of developers can be used to

mine the effort data.

❏ The risk model, which estimates the risk of fault associated with the new changes in source files,

published in [Ahsan et al., 2008]. We published the results of a case study of Mozilla project.

In this case study, we found that source files, which have high probability of buggy changes are

more risky for new changes.

❏ The fault prediction models built using code metrics, published in [Ahsan and Wotawa, 2010c],

[Ferzund et al., 2008a] and [Ferzund et al., 2008b]. The published models are obtained using

regression and classification techniques of machine learning. In order to analyze the impact of

skewed class distribution on the classification results, we performed an experiment with two

different classification schema. Furthermore, to analyze the performance of different machine

learning classifiers, we performed another experiment with eight different classifiers. Classifiers

trained and tested using the metrics data of Firefox and Apache projects.

❏ The fault prediction models built using logical coupling metrics, published in [Ahsan and

Wotawa, 2010a]. We used our own heuristic approach to mine the bug fixing patterns of logi-

cally coupled source files. We used the bug-fixing coupling patterns to define a new set of logical

coupling metrics. We found that logical coupling metrics highly correlated with the number of

faults and can be used to build a fault prediction model.

II) Multi-label Classification of SCRs:

❏ Our approach to perform the impact analysis of software change requests, published in [Ahsan

and Wotawa, 2010b]. We, used two different approaches to perform the impact analysis of SCRs.

These approaches are based on single and multi-label classification of SCRs. First, we directly

labeled each SCRs with multiple impacted source files and applied multi-label machine learning

for the classification of SCRs. Second, we labeled each SCRs with a single label, i.e., a group id

of source files. We obtained different groups of source files, which frequently changed together.

For grouping of source files, we used pattern mining and association rules. Finally, In order

to overcome the issue of high dimensionality, synonymy and polysemy of vector space model

(VSM), we used latent semantic indexing (LSI).
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❏ Our approach to build an automatic bug triage system, published in [Ahsan et al., 2009a] and

[Ahsan et al., 2009c]. We used both single and multi-label classification techniques to build a bug

triage system. We, found that a bug triage system based on multi-label classification performed

well. The bug triage system based on multi-label classification, is not only capable, to assign

SCRs to the appropriate developers. But also identify the name of the suspected source files,

which are required to be modified, and estimate time, which is required to fix the SCR.

1.3 Thesis Layout

The remaining chapter of this thesis organized as follows: Chapter 2 gives an overview of different

types of machine learning techniques. These techniques have been used to accomplish various task

related to this thesis. Chapter 3 describes an approach to mine the effort data (related to the fixing

of a fault) from the developer’s bug-fixing activity. Developer’s activity data are obtained from the

repository of a bug tracking system. This chapter further shows that how effort estimation model can

be built using a set of metrics and different machine learning algorithms.

Chapter 4 introduces a light weight approach to construct a risk model using the data of source

file changes. The risk model is capable, to identify risky source files on the basis of their previous

change history. Furthermore, in this chapter it is described in detail about those approaches, which

are used to extract the change history of source files and stored into a relational database. Chapter

5 present two different approaches for the construction of fault prediction models, i.e., regression and

classification. Furthermore, this chapter describes the parametric and non-parametric approaches to

construct the fault prediction models. Different parameters, which influence the model evaluation

criteria are described in details. Chapter 6 defines eight new metrics for logical couplings, and shows

that logical coupling metrics highly correlated with the number of faults (post release defects).

Chapter 7 shows that how information search and retrieval techniques can be applied on the textual

data of software change requests (SCRs) to convert SCRs into term-to-document matrix (TDM).

This chapter also describes that how TDM data of SCRs can be classified for impact analysis using

single and multi-label classification techniques. Chapter 8 describe that how single and multi-label

classification of SCRs can be used to develop a bug triaging system.

Chapter 9 describe the previous research work, which are more related with this thesis work.

Finally, a conclusion of this thesis work and future work are given in Chapter 10.
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2
Machine Learning Techniques

In this chapter, a brief description of theories and techniques of machine learning is presented. These

theories and techniques have been used repeatedly to accomplish the experimental tasks related to

this thesis work, and discuss in Chapter 3 to Chapter 8. Since most of the experimental work is based

on machine learning techniques. Therefor, the importance of the application of machine learning

in software engineering is described in Section 2.1. Then, in Section 2.2 several supervised and

unsupervised machine learning techniques are described.

2.1 Application of Machine Learning In Software Engineering

Software engineering is concerned with the development and evolution of large and complex software-

intensive systems. It covers theories, methods and tools for the specification, architecture, design,

testing, and maintenance of software systems. Today’s software systems are significantly large, com-

plex and critical, that only through the use of automated approaches can such systems be developed

and evolve in an economic and timely manner.

The application of artificial intelligence techniques to software engineering has produced some

encouraging results [Fenton and Neil, 1999], [Gyimothy et al., 2005]. Artificial intelligence (AI)

techniques like knowledge-based approach, automated reasoning, expert systems, heuristic search

strategies, temporal logic, planning, and pattern recognition can play an important role in different

areas of software engineering. Examples are automatic fault prediction model [Khoshgoftaar and

Seliya, 2003] and automatic software debugging [Wotawa, 2002]. As a subfield of AI, Machine Learn-

ing (ML) deals with the issue of how to build computer programs that improve their performance at

some task through experience [Zhang and Tsai, February 28, 2005].

Machine learning usually refers to the changes in systems that perform tasks associated with

artificial intelligence. Such tasks involve recognition, diagnosis, planning, robot control, prediction,

etc. The changes might be either enhancements to already performing systems or ab initio synthesis

of new systems [Nilsson, November 03, 1998]. In general, Machine Learning is about learning to do

better in the future based on what was experienced in the past.

In the field of software engineering, one can use ML to solve complex and time consuming problems.

This could be possible, if a software engineer or software practitioner knows how to use ML tools.
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One has to be a clear understanding of both the problems, and the tools and methodologies utilized.

It is imperative that we know,

1. The available machine learning methods at our disposal

2. Main features of those methods

3. Possible condition under which the methods can be most effectively applied, and

4. Their theoretical understanding.

In the next section, we describe the basic functionality of some useful machine learning tools

2.2 Supervised and Unsupervised Machine Learning Techniques

Machine learning algorithms can be categorized into two main categories, i.e., supervised and unsu-

pervised. The distinction is drawn from how the learner classifies data.

Supervised Machine Learning: In case of supervised machine learning algorithms, the classes

are predetermined. Classes can be considered as a finite set (which may be discrete or continuous),

which are previously known. The goal of supervised machine learning is to build a concise model of the

distribution of class labels in terms of predictor features. Finally, the resulting classifier is then used

to assign class labels to the testing instances or examples where the values of the predictor features

are known, but the value of the class label is unknown. There are many examples of supervised

machine learning classification like decision tree induction, naive Bayes, neural network, support

vector machine etc.

Supervised machine learning techniques are further divided into two different categories, i.e.,

Regression and Classification. In Regression type supervised machine learning technique. Machine

learning algorithms predict continuous or numerical values. Whereas, Classification type machine

learning algorithms are used to classify each instance into a predefined discrete value or label like,

true or false. Similarly, Regression further divided into two different types of regression methods, i.e.,

Parametric Regression and Non-parametric Regression. Parametric regression is used when we have a

data set with known distribution. Whereas, non parametric regression is used when the distribution

of data is unknown [Weisberg, 2005].

Unsupervised Machine Learning: Unsupervised learners are not provided with classifications.

In fact, the basic task of unsupervised learning is to develop classification labels automatically.

Unsupervised algorithms seek out a similarity between pieces of data in order to determine whether

they can be characterized as forming a group. These groups are termed clusters, and there is a

whole family of clustering machine learning techniques. In unsupervised classification, often known

as cluster analysis the machine is not informed that how the texts are grouped. Its task is to find

some grouping of the data. In case of cluster analysis (K-means), the machine is informed in advance

how many clusters or groups it should form.

In our research work, we mostly used supervised machine learning algorithm to build a fault predic-

tion model, effort estimation model, and for the bug triage system. In the following subsections, we
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2.2.1 Artificial Neural Network (ANN)

Figure 2.1. Artificial neural network

briefly describe only those supervised machine learning algorithms, which have been used to perform

the thesis work.

2.2.1 Artificial Neural Network (ANN)

Non-parametric regression is used when we have a data set with unknown distribution. Artificial

neural networks are a useful statistical tool for non-parametric regression [Stern, 1996]. ANN has the

advantage of learning from data that exhibits either highly nonlinear relationship since the inherent

transfer functions is nonlinear in nature.

ANNs have been widely applied to solve many difficult problems in different areas, including pat-

tern recognition, signal processing, language learning, software engineering, etc. In 1962, Rosenblatt

[Rosenblatt, 1962] first introduced single layer perceptrons. The initial model was so simple and

have several limitation. Therefore, did not receive much attention. Rumelhart et al. [Rumelhart

and Williams, 1986] presented the new developments of ANN, including more complex and flexible

ANN structures and a new network learning method. Since then, ANN has become a rapidly growing

research area.

Artificial neural networks are considered as models of biological neural structures. The main unit

of a neural network is a neuron. This neuron consists of multiple inputs and a single output, as

shown in Figure 2.1. Each input is modified by a weight, which multiplies with the input value. The

neuron will combine these weighted inputs and, with reference to a threshold value and activation

function, use these to determine its output. This behavior follows closely our understanding of how

real neurons work in human brain.

How Neural Network Works:

Neural networks are composed of simple neurons operating in parallel. The connections between neu-

rons largely determine the network function. One can train a neural network to perform a particular

function by adjusting the values of the connections (weights) between neurons. Typically, neural

networks are adjusted, or trained, so that a particular input leads to a specific target output. Figure
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Figure 2.2. Example of how neural networks trained by adjusting output for some specific input. leads

to a specific target output

2.2 illustrates such a situation. There, the network is adjusted, based on a comparison of the output

and the target, until the network output matches the target. Typically, many such input/target pairs

are needed to train a network.

The Learning Process of ANN

According to learning rules, ANN can be classified into two categories, supervised-learning net-

works and unsupervised-learning networks (Lin and Lee, 1996). In case of supervised learning

networks, at each instant of time when input is applied to an ANN, the corresponding desired re-

sponse of the system is given. The network is thus told precisely what it should be emitting as output.

Neural networks consist of neurons. Figure 2.1 shows the structure of a neuron. In this model, the

kth processing element computes a weighted sum of its inputs xj (independent variable) and basis

bk as the input to the activation function, the output of the activation function is the output of the

neuron ok (dependent variable). Suppose there are m inputs, x1; x2; . . . ; xn, to the neurons and

the weights associated with these inputs are w1; w2; . . . ; wn. So the operation of the neuron can

be described as following.

Netk = bk + w1kx1 + w2kx2 + w3kx3 + ...wnkxn (2.1)

ok = f(Netk) (2.2)

Where, f(.) is the activation function neuron

Architecture of Neural Networks

Feed-forward networks: In case of feed-forward ANNs, signals are allowed to travel one way only

i.e., from input to output. There is no feedback (loops) i.e. the output of any layer does not affect that

same layer (see Figure 2.3). Feed-forward ANNs tend to be straight forward networks that associate

inputs with outputs. They are extensively used in pattern recognition. This type of organization is
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2.2.1 Artificial Neural Network (ANN)

Figure 2.3. Artificial Neural Network (Feed-forward and Feed-Backward)

also referred to as bottom-up or top-down.

Feedback networks: In case of feedback networks, signals traveling in both directions by intro-

ducing loops in the network. Feedback networks are very powerful and can get extremely complicated.

Feedback networks are dynamic; their state is changing continuously until they reach an equilibrium

point (see Figure 2.3). They remain at the equilibrium point until the input changes and a new

equilibrium needs to be found. Feedback architectures are also referred to as interactive or recurrent,

although the latter term is often used to denote feedback connections in single-layer organizations.

Backpropagation Training Algorithm

The most popular training algorithm for multilayer neural networks is Backpropagation [PDP Re-

search Group, 1986]. The training steps of Backpropagation are,

1. First, initializes the network with a random set of weights and basis, and the network trains

from a set of input-output pairs.

2. Each pair requires a two stage learning algorithm: forward pass and backward pass. The forward

pass propagates the input vector through the network until it reaches the output layer. First

the input vector propagates to the hidden units. Each hidden unit calculates the weighted sum

of the input vector and its interconnection weights.

3. Each hidden unit uses the weighted sum to calculate its activation.

4. Next, hidden unit activations propagate to the output layer. Each node in the output layer

calculates its weighted sum and activation.
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5. The output of the network is compared to the expected output of the input-output pair, and

their difference (error vector) is used to train the network to minimize the error, this is called

backward pass.

6. First the error passes from the output layer to the hidden layer updating output weights.

7. Next each hidden unit calculates an error based on the error from each output unit, the error

from the hidden units updates input weight. The training stops only when the sum of squared

error satisfies the requirement or the number of epochs passes the set point, where an epoch

means that all the training data go through the forward pass and backward pass once.

8. The least mean square algorithm computes the weight updates for each input sample and the

weights are modified after each sample. This procedure is called sample-by-sample learning.

An alternative solution is to compute the weight update for each input sample and store these

values (without changing the weights) during one pass through the training set (epoch).

9. At the end of the epoch, all the weight updates are added together, and only then the weights

will be updated with the composite value.

In our work, we used ANN for both classification and regression. We used WEKA1(weka.classifiers.

functions.MultilayerPerceptron) that uses backpropagation to classify instances. The network can

also be monitored and modified during training time. The nodes in this network are all sigmoid

(except for when the class is numeric in which case the output nodes become unthresholded linear

units).

2.2.2 RBF Network

RBF (Radial Basis Function) network is a three-layer feedback network, in which each hidden unit

implements a radial activation function, and each output unit implements a weighted sum of hidden

units outputs. RBF divides its training procedure into two stages. In the first stage, the centers and

widths of the hidden layer are determined by clustering algorithms. Whereas, in the second stage,

the weights connecting the hidden layer with the output layer are determined by Least Mean Squared

(LMS) algorithms or Singular Value Decomposition (SVD) [Kotsiantis, 2007].

In case of RBF Network, selecting the appropriate number of basis functions is an issue. Finding

optimum number of basis function plays an important role. The number of basis functions controls

the complexity and the generalization ability of RBF networks. RBF networks with very few basis

functions cannot fit the training data adequately due to limited flexibility. Whereas, RBF Netwok

with too many basis functions yield poor generalization abilities, since they are too flexible and

erroneously fit the noise in the training data.

In our work, we used RBF Network for both classification and regression. To train the model with

RBF Network, we used Weka (weka.classifiers.functions.RBFNetwork)that implements a normalized

Gaussian radial basis function network. It uses the k-means clustering algorithm to provide the basis

functions and learns either a logistic regression (discrete class problems) or linear regression (numeric

1http://www.cs.waikato.ac.nz/ ml/weka/
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Figure 2.4. An example of two dimensional linearly separable data, and the process of SVM to divide

the data using a hyperplane.)

class problems) on top of that.

2.2.3 Support Vector Machine (SVM)

Support Vector Machine supports both regression and classification tasks and can handle multiple

continuous and categorical variables. SVM performs classification tasks by constructing hyperplanes

in a multidimensional space that separates cases of different class labels. An excellent property of

SVM is that their ability to learn can be independent of the dimensionality of the feature space.

SVM’s measure the complexity of hypotheses based on the boundary with which they separate the

data, not the number of features. This means that we can generalize, even if we have a very large

number of features provided that our data is separable with a wide boundary using function from the

hypothesis space [Smola and Schölkopf, 2004].

How Support Vector Machine Work

In case of SVM, a predictor variable is called an attribute, and a transformed attribute that is used

to define the hyperplane is called a feature. The task of choosing the most suitable representation is

known as feature selection. A set of features that describes one case (i.e., a row of predictor values) is

called a vector. The task of SVM modeling is to find the optimal hyperplane that separates clusters

of vector in such a way that cases with one category of the target variable are on one side of the plane

and cases with the other category are on the other size of the plane. The vectors near the hyperplane

are the support vectors.

A simple example a vector space model is shown in Figure 2.4 that contains data belongs to two

separate target categories. One category of the target variable is represented by white circles while

the other category is represented by red circles. In this idealized example, the instances with one

category are in the lower left corner and the instances with the other category are in the upper right

corner. The instances belong to two different categories are completely separated. The SVM analysis

attempts to find a 1-dimensional hyperplane (i.e. a thick blue line) that separates the instances

based on their target categories. There is an infinite number of such possible lines. The question

is which line is better, and how do we define the optimal line. Thin black lines drawn parallel to
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the separating thick blue line mark the distance between the dividing line and the closest vectors to

the line. The distance between the thin black lines is called the margin. The vectors (points) that

constrain the width of the margin are the support vectors. An SVM analysis finds the line (or, in

general, hyperplane) that is oriented so that the margin between the support vectors is maximized.

Figure 2.4 is an example of linearly separable data belongs to two different categories. SVM can also

work with non-linearly separable and multi category data (for details read [Cristianini and Taylor,

March 28, 2000]).

In our research work, we used support vector machine for both classification and regres-

sion. We used WEKA2 tool to build regression and classification models. For regression,

we used SMOreg (weka.classifiers.functions.SMOreg). Whereas, for classification we used SMO

(weka.classifiers.functions.SMO) [S.S. Keerthi, 2001]. SMO stand for Sequential Minimal Optimiza-

tion. It is a SVM training algorithm developed by John C. Platt [Platt, 1998], who claims that SMO

is a simple and fast technique to solve the SVM’s quadratic problem (QP). The main advantage of

SMO compared to other SVM training algorithms is that it always chose the smallest QP problem to

solve at each iteration. Another advantage is that SMO does not use storage matrix, which greatly

reduces the memory usage.

2.2.4 Decision Trees

Decision Trees are commonly used in classification problems with categorical data [Ian H. Witten

and Kaufmann, 2005]. Decision trees construct a tree of questions to be asked of a given exam-

ple (instance) in order to determine the class membership by way of class labels associated with

leaf nodes of the decision tree. This approach is simple and has the advantage that it produces

decision rules that can be interpreted by a human as well as a machine. In our experiments, we

used Weka class J48, which belongs to decision trees classifiers. J48 is an implementation of C4.5 re-

lease 8(3) that produces decision trees. This is a standard algorithm that is used for machine learning.

RepTree

The Reduced Error Pruning Trees(REPTrees) was introduced by Matti et al. in 2004 [Kääriäinen

et al., 2004]. REPTree is a decision tree based machine learning algorithm. It is a fast tree learner

who uses reduced error pruning. The REPTrees use a fast pruning algorithm to produce an optimal

pruning of a given tree using information gain/variance and prunes [Ian H. Witten and Kaufmann,

2005].

Pruning of the decision tree is done by replacing a whole subtree by a leaf node. The replacement

takes place if a decision rule establishes that the expected error rate in the subtree is greater than

in the single leaf. The REP algorithm works in two phases: First the set of pruning examples S is

classified using the given tree T to be pruned. Counters who keep track of the number of examples

of each class passing through each node are updated simultaneously. In the second phase, which is a

bottom up pruning phase, these parts of the tree that can be removed without increasing the error of

2http://www.cs.waikato.ac.nz/ ml/weka/
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the remaining hypothesis are pruned away. The pruning decisions are based on the node statistics cal-

culated in the top-down classification phase. Weka provides REPTree (weka.classifiers.trees.REPTree)

algorithm to perform the task of regression through classification.

2.2.5 Naive Bayes

Naive Bayesian networks (NB) are very simple Bayesian networks which are composed of directed

acyclic graphs with only one parent (representing the unobserved node) and several children (cor-

responding to be observed nodes) with a strong assumption of independence among child nodes

in the context of their parent (Good, 1950). Thus, the independence model (Naive Bayes) is

based on estimating (Nilsson, 1965). We used Weka to perform an experiment with Naive Bayes

(weka.classifiers.bayes.NaiveBayes). For more information on Naive Bayes classifiers, see [John and

Langley, 1995].

2.2.6 Boosting and Bagging Algorithm

Classical supervised learning algorithms generate a single model such as a Decision Tree classifier or

Multilayer Perceptron (MLP) and use it to classify examples. Ensemble learning algorithms combine

the predictions of multiple base models, each of which is learned using a traditional algorithm.

Bagging and Boosting are well-known ensemble learning algorithms that have been shown to improve

generalization performance compared to the individual base models.

Bagging method was formulated by Leo Breiman. Bagging stands for bootstrap aggregating

[Breiman, 1996]. Bagging predictors is a method for generating multiple versions of a predictor and

using these to get an aggregated predictor.

Boosting It provides a general way to improve the accuracy of any given learning algorithm. The

main idea behind boosting refers to a general method of producing very accurate predictions by

combining moderately inaccurate or weak classifiers. AdaBoost is an algorithm that calls a given weak

learning algorithm repeatedly, where at each step the weights of incorrectly classified examples are

increased in order to force the weak learner to focus on the hard examples. For a detailed description

of AdaBoost reader can refer to [Freund and Schapire, 1999].

2.3 Statistical Regression Analysis

In order to construct a regression base prediction models, we used two different statistical technique,

i.e., Multiple Linear Regression (MLR) and Logistic Regression (LR). MLR is used when the cor-

relation between dependent and independent variables is linear, and the value of each variable is a

continuous number. Whereas, LR is used when the dependent variable has discrete or categorical

value and independent variables have continuous values.
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2.3.1 Multiple Linear Regression

Regression analysis is used to explain the dependence of a response variable on one or more predictors.

Furthermore, it is used for the prediction of future values of a response, discovering which predictors

are important and estimating the impact of changing a predictor on the value of the response.

Multiple linear regression belongs to the parametric class of regression, which are used when we have

a data set with known distribution [Weisberg, 2005].

In statistics, multiple linear regression (MLR) is used to model the linear relationship between

a dependent variable and one or more independent variables. The model is fit such that the sum-

of-squares of differences of observed and predicted values is minimized. The model expresses the

value of a dependent variable as a linear function of one or more predictor variables and an error term.

yi = b0 + b1x1 + b2x2 + b3x3 + .....+ bkxk + ei (2.3)

Where, b0=regression constant, xk=predictor (e.g., code metrics), bk=regression coefficient, k=total

number of predictor, yi=predictand or dependent variable (e.g., number of defects) and ei=residual

errors. The model 2.3 is estimated by least squares, which yields parameter estimates such that the

sum of squares of errors is minimized. The resulting prediction equation is,

y
′
i = b

′
0 + b

′
1x1 + b

′
2x2 + b

′
3x3 + .....+ b

′
kxk (2.4)

Where, y
′
is the estimated value. The error term in 2.3 is unknown because the true model is

unknown. Once the model has been estimated, the regression residuals are defined as,

e
′
i = yi − y

′
i (2.5)

Where, yi=Observed value and y
′
i=Predicted value. Several regression statistics are computed as

functions of the sums of square terms.

SSE =

n∑
i=1

e
′2
i (2.6)

SST =
n∑

i=1

(yi − ȳi)
2 (2.7)

SSR =

n∑
i=1

(y
′
i − ȳi)

2 (2.8)

Where, SSE=sum of squares error, SST=sum of squares total, SSR=sum of squares regression,

and n=sample size. The regression equation is estimated such that the total sum-of squares can be
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2.3.2 Logistic Regression

partitioned into components due to regression and residuals.

SST = SSR+ SSE (2.9)

Coefficient of determination (R2): The explanatory power of the regression is summarized by its

R2 value, computed from the sums-of-squares terms as,

R2 =
SSR

SST
= 1− SSE

SST
(2.10)

The multiple coefficient of determination, R2, provides the quantification of how much variability

in the fault prediction model can be explained by the regression model. R2, is often described as

the proportion of variance accounted for, explained, or described by regression. R2 also called the

coefficient of determination. The relative sizes of the sums-of-squares terms indicate how good the

regression is in terms of fitting the calibration data. If the regression is perfect, all residuals are zero,

SSE is zero, and R2 is 1. If the regression is a total failure, the sum-of-squares of residuals equals the

total sum-of-squares, no variance is accounted for by regression, and R2 is zero.

2.3.2 Logistic Regression

Logistic regression is a variation of ordinary linear regression, which is used when the dependent vari-

able is a dichotomous variable (i. e. it takes only two values, which usually represent the occurrence

or non-occurrence of some outcome event, usually coded as 0 or 1) and the independent variables are

continuous, categorical, or both.

In logistic regression, instead of predicting the value of a dependent variable Y from a predictor

variable X or several predictor variables Xs, we predict the probability of Y occurring given known

values of X or Xs. The logistic regression equation is similar to regression equations. If we have

multiple predictor variables, i.e., Xs, then the logistic regression equation from which the probability

of dependent variable, i.e., Y is predicted is given by the following equation.

P (Y ) =
1

1 + e−(C0+C1.Xi1+...+Cn.Xin )
(2.11)

In equation 2.11 P(Y)is the probability of Y occurring, e is the base of natural algorithm, Cs are

the coefficients which form a linear combination of independent variables Xs. In our experiment, the

Xis are the code metrics and P is the probability of a source file being buggy.
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2.4 Model’s Evaluation Criteria

There are several measures, which are used to evaluate the performance of a model. In this section,

these measures are categories into two categories on the basis of their applications. Those measures

which are commonly used to evaluate a regression model are described in subsection 2.4.1. Similarly,

those measures which are frequently used to evaluate a classification model are described in subsection

2.4.2. However, the evaluation measures, like absolute (MAE, RMSE) and relative error (MRE/RAE,

RRSE), which are commonly used for the evaluation of regression models, are also used to evaluate

classification models.

2.4.1 Evaluation Criteria for Regression Model

In order evaluate the performance of regression models following error measures are used. The mean

absolute error (MAE), the root mean square error (RMSE), the mean relative absolute error (MRE)

and the mean magnitude of relative error (MMRE), the root relative square error (RRSE), and the

percentage of prediction PRED(x).

MAE is a quantity used to measure how close predictions are to the eventual outcomes. The mean

absolute error is an average of the absolute errors. The absolute error is the difference between the

actual and predicted value. MSE measures the average of the square of the error, and RMSE is the

square root of MSE. It is used to measures the average magnitude of the error. Whereas, MRE,

MMRE and RRSE are relative errors. Relative error is a ratio that compared the error to the size

of the actual value. According to Conte et al [Conte and Shen, 1986], the MMRE value for effort

prediction model should be ≤0.25. PRED(x) is obtained from relative error. Mostly, PRED(0.25)

is used but PRED(0.30) is also acceptable. To be self-contained In the following definitions EACT

stands for the actual effort, EPRED for the predicted effort, n for the total number of observed values,

and m for the number of correctly predicted values.

Mean Absolute Error (MAE) =

∑ |EACT − EPRED|
n

(2.12)

Root Mean Square Error (RMSE) =

√∑
(EACT − EPRED)2

n
(2.13)

Mean Relative Error (MRE/RAE) =
|EACT − EPRED|

EACT
(2.14)

Mean Magnitude of Relative Error (MMRE) =
∑
j

MREj/n (2.15)

Root Relative Square Error (RRSE) =

√∑
(EACT − EPRED)2

EACT
(2.16)

PRED(x) =
1

n

n∑
i=1

{
1 if MREi ≤ x

0 otherwise
(2.17)
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2.4.2 Evaluation Criteria for Classification Model

2.4.2 Evaluation Criteria for Classification Model

To measures the performance of classifiers five different measures are commonly used. These measures

are, accuracy, precision, recall, F-Measure and ROC area. We explain these measures with the use of

the following confusion matrix. We consider a binary classifier, which classify a source file as a buggy

or bug-free file. We represent buggy files with Yes and bug-free files with No.

Predicted

O
b
se
rv

e
d No Yes

No n11 (TN: True Negative) n12 (FP: False Positive)

Yes n21 (FN: False Negative) n22 (TP: True Positive)

Accuracy: Accuracy is the percentage of correctly classified instances. It is the ratio of the correct

classifications to the total number of instances. Correct classifications is the sum of actual buggy files

classified as buggy and the actual bug-free files classified as bug-free. Accuracy can be calculated by

the following formula:

Accuracy =
(n11 + n22)

n11 + n12 + n21 + n22
∗ 100

Buggy file Precision: It is the ratio of actual buggy files predicted as buggy to the total number of

files predicted as buggy.

Buggy F ile Precision =
n22

n22 + n12

Buggy files Recall: It is the ratio of actual buggy files predicted as buggy to the total number of

actual buggy files. Recall represents the probability of detection of faulty/buggy modules, sometimes

denoted as PD.

Buggy F ile Recall =
n22

n22 + n21

Probability of False Alarm (PF) for Buggy Files : The probability of false alarm (PF) or False

Positive for Buggy files is the ratio of false buggy files predicted as buggy to the total number of actual

false buggy files.

Buggy F ile PF =
n12

n12 + n11

Bug-free File Precision: It is the ratio of actual bug-free files predicted as bug-free to the total

number of files predicted as bug-free.

Bug − Free F ile Precision =
n11

n11 + n21

Bug-free File Recall: is the ratio of actual bug-free files predicted as bug-free to the total number

of actual bug-free files.

Bug − Free F ile Recall =
n11

n11 + n12

Probability of False Alarm (PF) for Bug-free Files: The probability of false alarm (PF) or

False Positive for Bug free files is the ratio of false bug free files predicted as bug free to the total

number of actual false bug free files.

Bug − Free F ile PF =
n21

n21 + n22
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2.4 Model’s Evaluation Criteria

Figure 2.5. An interpretation of an ROC curve.

F-measure: F-measure is a harmonic mean of precision and recall with the weight of α. Normally,

the weight α is set to 1, which puts the same weight on precision and recall.

F −Measure =
(1 + α) ∗ Precision ∗Recall

α ∗ Precision+Recall

F −Measure =
2 ∗ Precision ∗Recall

Precision+Recall

Receiver Operating Characteristic Curve (ROC): ROC is a plot of the probability of de-

tection, i.e., recall (or PD) as a function of the probability of false alarm (PF) across all threshold

settings. In simple words, an ROC space is defined by False Positive Rate (FPR) and True Positive

Rate (TPR) as x and y axes respectively, which shows relative trade-offs between True Positive

(benefits) and False Positive (costs). In classification, Sensitivity measures the proportion of actual

positives, which are correctly identified and Specificity measures the proportion of negatives, which are

correctly identified. Therefore, TPR is equivalent with sensitivity and FPR is equal to 1 - specificity.

The ROC graph is sometimes called the sensitivity vs (1 - specificity) plot. Each prediction result or

one instance of a confusion matrix represents one point in the ROC space.

Figure 2.5 gives an interpretation of ROC curve3. The best classifier would generate a point in the

upper left corner or coordinate (0,1) of Figure 2.5, representing 100% sensitivity, i.e., no false nega-

tives, and 100% specificity, i.e., no false positives. The (0,1) point is also called a perfect classification.

Whereas, a completely random guess would give a point along a diagonal line from the left bottom

3This figure is obtained from the following website http://en.wikipedia.org/wiki/Receiver-operating-characteristic

20



2.4.2 Evaluation Criteria for Classification Model

to the top right corners. In case of good classifier, points are above the diagonal line. Whereas, if

the points are below the diagonal line, then the classifier is considered as poor classifier. The Area

Under the ROC Curve (AUC) is a numeric performance evaluation measure directly associated with

an ROC curve. Larger the value of AUC (Area Under the curve)the better the model. The value of

the AUC ranges from 0 to 1. [Ian H. Witten and Kaufmann, 2005].

A classifier who provides a large area under the curve is preferable over a classifier with a smaller

area under the curve. A perfect classifier provides an AUC that equals 1. The advantages of the

ROC analysis are its robustness toward imbalanced class distributions and to vary and asymmetric

misclassification costs [Provost and Fawcett, 2001]. Since, in case software fault prediction model, the

class distribution is skewed. Therefore, ROC is particularly well suited for software fault prediction

tasks.

ROC-Area (Area Under the ROC Curve or AUC): All the metrics (like precision, recall,

etc.) are, point measures, i.e. they are based on the TP, FP, TN, FN that corresponds to a single

threshold on the probability of the positive class (i.e. the default threshold of 0.5). However, ROC

area is not a point measure. ROC area is a ranking metric, that is computed by considering all

the test instances ranked according to the probability assigned to the positive class by the classifier.

WEKA computes AUC for each class by considering each in turn to be the positive class and all the

remaining classes are the negative class.

Kappa Statistics (KS): Kappa is a chance-corrected measure of agreement between the clas-

sifications and the true classes. It is calculated by taking the agreement expected by chance away

from the observed agreement and dividing by the maximum possible agreement. A value greater

than 0 means that classifier is doing better than chance. KS is a means of classifying agreement in

categorical data [Sands and Murphy, 1996].

KS = P (A)−P (E)
1−P (E)

Where P(A) is the proportion of times the model values are equal to the actual values and P(E) is

the proportion of times the model values are expected to agree with actual values by chance. A KS

value of 1 means a statistically perfect modeling, whereas a 0 means every model value was different

from the actual value.
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3
Mining Bug Fix Effort Data to Construct

Effort Estimation Models for OSS

The contents of this chapter has been published in the papers [Ahsan et al., 2009b] and [Ahsan et al., 2010].

The main function of the software maintenance is to keep the software alive by performing three

major tasks, i.e. customer support, update documents and perform changes in the source code. The

changes in the source code are required to remove faults, or to enhance existing features or to add

new features. Efforts are made to remove faults or to add new features in any software. Whereas,

the timely completed maintenance task makes it possible to deliver the product in time, which is the

key requirement of the today’s software industry and has to be based on an accurate estimation model.

There are several advantages of having an effort estimator. First, it provides initial knowledge about

the complexity of the product. Second, it may be used to obtain the cost of the product. Moreover,

an effort estimator allows for task assignment and resource management. Different approaches are

used to establish estimation models, like algorithmic, analogy, hybrid and machine learning. Initially

algorithmic estimation methods were used for software estimation, like Boehm’s constructive cost

model COCOMO [Boehm, 1981] and COCOMO II [Boehm et al., 1995], Albrecht’s function point

method [Albrecht and Gaffney, 1983] and Putnam’s software life cycle management (SLIM) [Putnam,

1978]. These are based on historical data of effort. These approaches involve the construction of

mathematical models from empirical data.

Recent Trends: Jai Asundi [Asundi, 2005] discussed the importance of effort estimation models

for OSS. The author identified that the current effort models are inadequate. Consequently, there is

a need for new effort models in the context of OSS development. In this regards, the author outlined

some issues that should be taken into consideration when developing an effort estimation model for

OSS. In particular, Asundi suggested an Activity Based Cost type model for effort estimation.

Motivation: It may be observed that most of the research work on effort estimation models is

related to the closed-software system [Albrecht and Gaffney, 1983, Boehm et al., 1995], while very

few attempts have been made to develop an effort estimation model for OSS [Koch, 2008b, Yu,

2006a, Weiss et al., 2007]. Reasons may be the inherent complexity of OSS, the large number of

software developers or contributors and the absence of effort data. The role of previous history of
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effort data is indispensable to build an automatic effort estimation model. But unfortunately most

of the Open Source Software does not maintain effort data. Whereas, the recent trend in software

engineering shows that even commercial organization like IBM and SUN have developed OSS prod-

ucts, or have made the code of their proprietary product publically available. The consequences

of this trend may impact various software engineering methodologies and project management ac-

tivities. Especially planning and delivery for OSS will be one of the greatest challenges [Asundi, 2005].

Our Goals: In this chapter we employ the idea of mining effort data to answer three research

questions:

1. How can we mine effort data from the history of developer’s bug-fix-activity and construct the

developer’s activity log-book?

2. How can we use the bug-fix-activity data to estimate developer’s contribution measures?

3. How can we build an effort estimation model using mined effort data?

Our Approach: In order to tackle these three research questions, we present an approach to

mine effort data from software repositories and use them to build an effort estimation model for OSS.

For this purpose, we propose to construct a developer activity log-book to manage the development

activities of developers and contributors. We assume that the actual time spent to fix a bug is an

effort. Furthermore, we describe and elaborate different applications of bug fix effort data.

Our Contributions: The work present in this chapter comprises the following contributions:

1. We propose a method for building a developer’s log-book that maintains the developer’s bug fix

activity records. We use the log-book data to calculate the actual time spent to fix a bug and

assume it as an effort.

2. We also show how to discover the expertise level of developers from their bug fix activity data

and use these information to define a set of developer contribution measures.

3. We developed statistical andML based regressionmodels for effort estimation. We, used different

evaluation techniques to measure the performance of the developed estimation models.

4. We present empirical results obtained when applying our method for effort estimation on the

software evolution data of Mozilla project.

Chapter Layout: The rest of the chapter is organized as follows: In Section 3.1 we describe our

approach and explain that how we obtained the data from the software repositories. Furthermore, we

explain the used program file change metrics. In Section 3.2 we describe the different application of

effort data in OSS. In Section 3.3 we discuss the estimation models and analyze the obtained results.

In Section 3.4, threats to validity is described. Finally, in Section 3.5 we summarize this chapter.

3.1 Our Approach

To develop an effort estimation model, we use a set of code and process metrics as estimators (or

independent variables) and the bug fix effort data as a dependent variable. Whereas, we obtain the
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3.1.1 Obtaining Data From Software Repositories

Figure 3.1. Classification Approach

bug fix effort data from the developer activity log book. To obtain the log book, we process the

developer bug fix activity data. To perform experiments, we selected the Mozilla open source project

and downloaded bug fix reports along with bug fix activity data from the corresponding bugzilla

server. We also downloaded source files revisions and CVS log data from CVS repository. Figure 3.1

depicts the overall process involved in extracting the data from software repository.

3.1.1 Obtaining Data From Software Repositories

To perform the experiment, we selected the Mozilla open source project as our source for the version

control system and the bug database. For this purpose, we downloaded developers’ bug fix activity

data where the bug activities have been reported and fixed between Nov-1999 and Dec-2007. We also

obtained the list of bug ids from the MSR 2007 data repository [Weiss et al., 2007]. We used the wget

tool to extract the data from the Bugzilla web site. We preprocessed the downloaded html files and

extracted the developers’ bug fix activity data. Furthermore, we connected to the Mozilla CVS server

and downloaded CVS log data and source file revisions. Unfortunately, in case of OSS bug databases

are not directly linked with a version control system. Therefore, there is no direct mapping between

the fixed bug reports and the name of the fixed/updated source files. However, in recent years, a

number of techniques have been developed to relate bug reports to fixes in source files. To establish a

link between a bug report and the list of fixed source files, we used an approach similar to M. Fischer’s

approach [Fischer et al., 2003]. Once, we obtained all the required data. We used this data to build

an effort estimation model as explained in the next subsection in detail.
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3.1.2 Obtaining Metrics Data

For obtaining the metrics, we downloaded the selected revisions of the C++ program files and bug

reports from the Mozilla CVS and bugzilla repositories and stored them on a local disk. In the fol-

lowing paragraph, we describe the process which we used to extract the metrics data. The complete

list of metrics with a description is shown in Table 3.1.

First we identify those revisions of program files where bugs were fixed. To accomplish this task,

we parsed the CVS log comments of each source file revision. If the comment contains a word like

Bug, Fix or Fixed followed by some integer value, which is similar to any of the existing bug reports

id. Then it means that revision is a bug fixed revision. After identifying all the bug fixed revisions,

we extracted all those lines of code from bug fixed revisions, which have been changed to fix the bug.

To perform this task, we take the differences between two consecutive revisions, i.e., the revision

where the bug has been fixed and its immediate predecessor. Program files difference data are further

processed to obtain a set of metrics related to a program file changes, i.e. TCLOC , TDELTA and

TCOPE . We also processed all those program file revisions, which are the immediate predecessor

of the bug fix revisions and extracted the set metrics related to whole program file, i.e. TLOC ,

TFUNC , TELINE, TFINC , TCY CLO, TPCOUNT , and TRPOINT . We also obtained the total number

of previous revisions TPREV , the total number of program files, which are changed to fix a bug, i.e.

SFCOUNT and the total number of previous bug fix revisions TPFREV of each bug fixed revision of a

source file.

Finally, we processed bug reports and developer’s activity data which are related to the bug fixing

activities, and obtained the two measures i.e. developer counts (DCOUNT ) and developer’s expertise

(DEXP ). The DCOUNT is the count of developers or contributors who were involved in fixing a bug.

The DEXP is obtained by adding the rank values of all those developers who were involved in fixing

a bug. We rank the developers according to their number of bugs fix count. To perform this task, we

downloaded 93,607 bug reports together with the bug fix history from the bugzilla repository.

3.1.3 Role of Developers and Contributors in OSS

The main development difficulties in OSS systems are the managing and monitoring of development

activities. In OSS development environments thousands of software contributors provide manpower

for developing the OSS system. Usually, the contributors are spread throughout the world, spend

tremendous amounts of time and effort in writing and debugging software, and most often with no

direct monetary rewards [Joseph, Dec 2001]. In OSS development developers are those who have the

right to commit the changes in the version control system, whereas the software contributors have

no such rights. Instead the contributors are allowed to submit the solution in the form of patches

to the developers. Usually, there are a small number of developers compared to the number of

contributors [Alonso et al., 2008]. When a bug is reported, normally developers (who are working as

software quality assurance personals) validate the reported bug, and assigned it to any appropriate

contributor. Alternatively, sometimes contributors voluntarily take a challenge to fix new reported

bugs. After resolving the bug, contributors submit patches providing a solution. These patches are

then validated and committed by developers into a version control system. These bug-fix-activities

are stored into a version control system and a bug tracking system. Because of this process of bug
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Table 3.1. List of Metrics

Metrics Description

SFCOUNT Number of source files which are changed to fix the bug.

DCOUNT Number of developers who are involved in fixing a bug.

DEXP Developer’s Expertise

TPREV Total Source File Age: Adding all the previous revisions of the

source files which are involved in fixing the bug.

TPFREV Total previous fix revisions of source files.

TLOC Total line of source code.

TCLOC Total changed line of code.

TDELTA Total number of change location in source files. Delta is change

hunk pair, we have at least one delta whenever a file is changed.

TFINC Total number of included source files/packages.

TFUNC Total number of function.

TELINE Total number of executable lines.

TCY CLO Total cyclomatic complexity metrics.

TPCOUNT Total number of parameter count.

TRPOINT Total number of return points.

TCOPE Total number of changed operators.

fixing one can argue that a person committing a change is not necessarily an expert. It reveals that

in case of OSS measuring effort and expertise is not trivial. In the following section, we describe the

data extraction process and describe how we used the extracted bug-fix-activity data to construct an

effort estimation model.

3.1.4 Mining Bug Fix Effort Data

The conventional maintenance effort estimation process involved three steps. In the first step, it

is required to extract maintenance effort data along with other related measures from the previous

maintenance records. Then in the second step, it is required to build the model using the data

obtained in the first step. While, in the third and final step the model may be used to predict the

future maintenance effort [Yu, 2006a]. Unfortunately, most of the OSS system does not maintain

actual effort data and consequently, it becomes more difficult to develop an accurate effort estimation

model. However, software repositories contain a lot of maintenance related data. In the previous

section, we have described in detail how we have extracted all the maintenance related measures from

these repositories. Now in this section we describe our approach and method which we have used to

extract the actual bug fix effort data from a bug repository.

The most frequently used maintenance effort measure is the total number of man-hours required to

accomplish the maintenance task. Therefore, we focus to extract the actual time spent by developer

to fix the bugs, and we considered that time as an estimated actual bug fix effort.

Bug reporting systems are used in open source software to store the software maintenance records.
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Figure 3.2. (a) A GUI interface of Bugzilla bug tracking system. (b) A complete bug life cycle of

Bugzilla, each rectangle represents a unique status of a bug.

Mozilla (http://www.mozilla.org) and lots of others OSS uses Bugzilla (http://bugzilla.mozilla.org),

as a bug tracking system. Bugzilla maintained the complete history of a bug life cycle of all the

reported bugs. Each reported bug in bugzilla has a complete life cycle. Figure 3.2 shows the bug life

cycle. According to this life cycle, a bug starts as UNCONFIRMED. It immediately moves to the

status NEW, after that the bug is validated by the quality assurance (QA) person. Then it is moved

to ASSIGNED status, which is then followed by the RESOLVED status. Finally, a bug may reach a

status of VERIFIED, which is then followed by CLOSED. In some cases after the VERIFIED status,

a bug may go to REOPEN status, and the cycle is repeated.

Let us now go into more detail of the bug life cycle. If a bug is said to be NEW, the QA person

assigns the bug to any relevant developer/contributor in order to find a solution. Hence, the real

work for fixing a bug starts when a bug is moved to the ASSIGNED status. The bug is solved when

the developer or contributor provides a solution and moves the status to RESOLVED. The duration

between ASSIGNED and RESOLVED is the actual period where effort spent on source code changes

to fix the bug. Hence, we assume that this time period is the actual bug fix time and thus the only

time to be considered as an effort. Note that in some cases a QA person reassigns the same bug to

another developer or in some cases the previously assigned developer assigns the bug to some other

developer, which makes the computation of the overall effort even more difficult. Since no information

regarding the distribution of effort among the different developers is available, we assume that all

developers contribute. Thus we calculate the sum of all time periods for each developer or contributor

to come up with a single total bug fix effort.

For a single developer, we compute the effort required to provide a solution to a bug report as

follows: We start with the bug reports assigned to the developer. Subsequently, we compute the

effort assigned to a bug report for each month of the year using the given dates for ASSIGNED

and RESOLVED. The time span between ASSIGNED and RESOLVED cannot be directly used to
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Table 3.2. Classification of bug reports on the basis of bug severity level and developer defined bug

priority.

Bug Sever-

ity Level

Severity

Weight

(SW)

Number

of Bugs

Avg.

Bug-Fix

Time

(days)

Std. Dev

Bug-Fix

Time

Priority

(Assigned

by Devel-

oper)

Severity

Factor

blocker 7 412 11 0.4434 P1,P3 1

critical 6 1413 20 0.2660 P1,P2,P3 1

major 5 1071 103 25.362 P1 1

normal 4 7005 45 0.6571 P3,P4 2

trivial 3 152 58 28.388 P4 3

minor 2 314 50 25.959 P4 3

enhancement 1 326 119 31.015 P4,P5 3

compute the effort. The reason is that a developer works on several bug reports in parallel, but it

is impossible to spend more than all days of a month in working. Hence, the time spent has to be

multiplied by a factor. This factor takes into account the limited number of days available for working

within a particular month. Therefore, we have to multiply the duration of bug fix with a common

multiplication factor (Mk). We obtain the multiplication factor by dividing the total working days of

a month (Tw) with the sum of all the assigned working days for all the assigned bugs, i.e.,

Mk = Tw /
∑

Days (3.1)

Ei =
∑

(Bug fix duration for bugi)k × Mk. (3.2)

Where, Ei is the estimated bug fix effort of bugi, which is the sum of the bug fix duration that is

spent in k months. If a bug is fixed in more than one month, then the bug fix duration for the first

month is obtained by subtracting the bug assigned day from the last day of the month, and for the

last month, the bug fix duration is obtained by subtracting the first day of the month from the bug

resolved day. We consider the whole days of a month as bug fix duration for all of the intermediate

months. We multiply each month’s bug fix duration with the respective multiplication factor. Finally,

we add all the obtained values to get an estimated time spent to fix a bug, which we assume as the

estimated effort value. But, during this experiment we found that the bug severity level affects a bug

fix time. Therefore, we further improve our effort estimation model by taking into account the bug

severity level. The bug severity level is defined by a user at the time of submitting a new bug to the

bug database. On the basis of severity level, a developer assigns a priority level to each assigned bug

report. In our experiment, we found that high severity and high priority bugs are fixed in less time

compared to low severity and low priority bugs. The average bug fix time related to different severity

level is listed in Table 3.2. From the data of Table 3.2, one may conclude that the bug fix time is

dependent on the severity level. In the following paragraph, we elaborate the relation between a bug

severity level, and bug priority levels.

In case of OSS, developers or contributors do not treat bugs equally. Rather bugs are treated

on the basis of their severity level. In case of the Mozilla project, bug reports have seven different
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3.1 Our Approach

Figure 3.3. The frequency distribution of different priority levels i.e., P1, P2, P3, P4 and P5, which are

assigned to different bug severity level.

severity levels, namely critical, blocker, major, normal, trivial, minor and enhancement. At the time

when a user reports a new bug, an appropriate severity level is associated with the bug report. Before

fixing any bug report, developers, first assign a priority level to the bug report. In case of Mozilla,

there are five different type of priority level, i.e., P1, P2, P3, P4 and P5 [Herraiz et al., 2008]. During

the experiment, we found that it is not necessary for a developer to assign any fix priority to any

severity level. However, it should be mentioned that a developer not necessarily treats a bug of critical

or blocker severity level at a high priority i.e., P1 (see Table 3.2). Table 1 shows that developer

assigned different priority levels to the same severity level. Hence, there is no one-to-one mapping

between severity and priority levels. Figure 3.3 shows the frequency distribution of different priority

levels associated to each severity level. A plot comparing the bugs of different severity level and their

bug fix time is shown in Figure 3.4, which depicts that less time is spent to fix high severity level bugs.

In order to find the impact of bug severity level on a bug fix effort, we determine the correlation

between the bug severity levels and a set of source file metrics. We use those set of source file’s

metrics, which measure the degree of complexity in source files. The results are shown in Table 3.3,

which shows that there is no significant correlation between the bug severity levels and the source

file metrics. Therefore, we may conclude that bug severity levels are not related to the complexity

of source files. However, developers spend less time to fix high severity level bugs, not because they

are less complex and therefore, need less time or effort to fix. But in fact high severity level bugs

should be fixed in short time. Similarly, less severity bugs, which take a longer time to be fixed, are

not necessarily less complex. In order to treat all of the bugs equally, and to nullify the impact of a

biased attitude of developers from the bug fixing time, we divided the estimated effort, obtained in

Equation 1 by the time scaling factor Severity Factor (SFj). Where, SFj has three values, i.e., SF1

=1 for critical, blocker and major severity level, SF2 =2 for normal severity level, and SF3 =3 for

trivial, minor and enhancement severity level (see Table 3.2).

Ei = [
∑

(Bug fix duration for bugi)k × Mk]/SFj . (3.3)
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3.1.4 Mining Bug Fix Effort Data

Figure 3.4. A plot between the bugs of different severity level and the number of days spent to fix them.

Each bug is represented by a dot where the color of the dot represents its severity level.

Table 3.3. Person and Spearman’s Correlation of bug severity level with a set of source file metrics.

Corr.

of Bug-

Severity

Total

Pointers

Total

Logical

Opera-

tor

Total

Rela-

tional

Opera-

tor

Total

Function

Call

Total

Assert

Total

Arrays

Total

Function

Declara-

tion

Pearson 0.026 0.031 0.026 0.014 0.031 0.004 0.018

Sig. level 0.068 0.038 0.065 0.205 0.036 0.419 0.154

Spearman’s -0.033 0.002 -0.036 0.009 0.035 0.001 0.014

Sig. level 0.029 0.450 0.018 0.293 0.022 0.490 0.205
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3.2 Application of Developer’s Bug Fix Activity Data in OSS

Figure 3.5. Classification Approach

To understand, how we estimate the bug fix effort from bug reports, consider an example, in which

a developer fixed four bugs in February, 2008. All of the bugs were critical, i.e., SFij =1. The

example data is shown in Figure. 3.5. The gray bar represents the durations in which the developer

fixed those bugs. We obtain these durations from bug reports by subtracting the bug assigned

date from the bug resolved date. In this example, we assume that during some days of the month,

the developer worked in parallel on multiple bugs, now we apply our model to estimate the effort value.

Mk = 24/47 = 0.51

Now, the bug fix effort (Ei) for bug i, and k is the number of months spent to fix a bug. In this

example k=1.

E1 = (6 × 0.51)/1 = 3.06

Similarly, we estimate the effort for other bugs, E2=5.1, E3=10.7, and E4=5.1. We built a program

that automatically performs all of the mentioned steps to obtain the effort value and store it into a

database.

3.2 Application of Developer’s Bug Fix Activity Data in OSS

In the previous section, we described our approach to mine effort data from the history of the devel-

opers’ bug-fix-activities. In this section we describe some applications of developer bug-fix-activity

data.

3.2.1 Developer Activity Log Book

In commercial software organization, different tools and techniques are available to monitor and con-

trol the developer’s monthly development activities. One of the techniques is to store and maintain

each developer’s activity logs in the developer’s log-book. The developer activity log provides past

and present development history related to the developer. In OSS there is no such system, which

logs the developer or contributors development activities. However, this information can be mined

from the developer bug fix activity records stored in bug tracking systems. The developer’s log-book

contains useful data, which can further be processed intelligently to obtain the following information.

1. Development work done by each developer in any month of a year. This may be used to analyze

the developer’s performance and the development load on each developer in any month of a year.
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3.2.1 Developer Activity Log Book

Figure 3.6. An example of developer bug fix activity log-book

2. Time spent by each developer to resolve the assigned development task. This may be used to

analyze the developer efficiency and expertise.

3. Total time spent by one or more developers to fix a bug. This may be considered as bug fix

efforts in days.

We use the log-book data to calculate the bug fix effort data. The Log-book contains the complete

history of each bug and the name of developers whoever have been involved in bug fixing. An

example of the automatically generated log-book is shown in Figure 3.6. Besides its main advantage

of providing the effort data, there may be several other advantages of log-books. For example, a

log-book may be used for the analysis of developer’s activity patterns. It is shown in the pop up

window of Figure 3.6 that the developer Neil is more active during the last months of the year 2001

as compared to the initial months of the same year. Similarly, we can use this log-book to analyze

the month wise or year wise effort distribution of developers.

For the Mozilla project, we used the developer’s activity log-book data to obtain the average bug

fix efforts in days. We added all the bug fix days during any year and divided it by the number of

bugs fixed in that year. Figure 3.7) shows a comparison between the total number of bugs fixed in

a year and the corresponding average bug fix efforts. It is observed from that figure that during the

initial years of the project, small effort was required to fix a large number of bugs. However, as the

time advances the count of bug fixed per year decrease, while the average effort to fix bug increases.

Figure 3.8) shows the relationship between the bug fix days with the frequency of bug’s occurrence in

that period. It is observed that for Mozilla project, the frequency of the bugs that needs small effort

(actual bug fix days) is much larger as compare to those which need more efforts.
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3.2 Application of Developer’s Bug Fix Activity Data in OSS

Figure 3.7. Mozilla project average bug fix effort per bug related to the number of bugs fixed per year.

Figure 3.8. Number of bug counts as function of the number of bug fix days.
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3.2.2 Developer’s Contributions Measures to Identify Expertise

Figure 3.9. A list of top 10 Mozilla developers on the basis of the contribution metrics. The pop up

window shows the details of the metric DCM-WNBFixed.

3.2.2 Developer’s Contributions Measures to Identify Expertise

During the evolution of large software systems, it is essential to identify those individuals who are

expert in some specific part of the product. The current approaches for expertise recommender

systems are mostly based on variations of the Line 10 Rules. According to the Line 10 Rule, de-

velopers who changed a file most often do have the most expertise for implementation. The name

Line 10 Rule is come from a version control system that stores the author who did the source file

change commit, in line 10 of the commits’ log message [Schuler and Zimmermann, 2008]. In short,

developers who commit changes in source files are considered to have expertise in changing those

source files. In order to identify the expertise level, we need to measure the developer’s contributions

during the evolution of software. One can discuss the contribution in different contexts. However,

a contribution is commonly related to the developer’s productivity or developer’s activities [Gousios

et al., 2008]. In our experiment, we used the developers’ bug fix activity data to measure a set of devel-

opers’ contribution metrics. These contributions metrics are used to list the name of expert developers.

We propose three different metrics for measuring a developer’s contributions. Let DCM stand

for Developer’s Contribution Measure. The first metric DCM-NBFixed, is the sum of bugs fixed

by a developer. The second metric, i.e., DCM-WNBFixed is the weighted sum of bugs fixed by a

developer. The third metrics DCM-NFFixed is the sum of source files fixed by a developer. The

weighted bug fixed is obtained by multiplying each fixed bug with a weighting factor. The weighting

factor (SW) represents the severity level of the fixed bug. The severity level was defined in Section

3.3 (see severity weight column of Table 3.2)). The formal representations of developer’s contribution

metrics are given below,

DCM-NBFixedi =
∑

j Bug-Fixed-Idi(j) (3.4)

DCM-WNBFixedi =
∑

j Bug-Fixed-Idi(j)×SW(j) (3.5)

35



3.2 Application of Developer’s Bug Fix Activity Data in OSS

Figure 3.10. Distribution of five different contribution metrics of the top 20 Mozilla developers.

DCM-NFFixedi =
∑

j Fixed-Source-File-Idi(j) (3.6)

Where, i represent developer’s id, and j represents bug id. In order to obtain the defined set of

contribution measures. We further processed the developer activity log-book, and obtained a metrics

value for each developer. We performed this experiment on a sample data set comprising 10,693 bug

reports. 410 different developers fixed these bug reports. Figure 3.9, shows the contribution measures

of the top 10 developers. Figure 3.10 depicts the metrics distribution of the top 20 developers, and

Figure 3.11 shows the relation between the percentages of bug fixed and the developer who fixed the

bugs. It is clear from the figure that only 4.9% developers fixed 71.5% bugs. In our experiment, we

found that the most expert developer in Mozilla project is ’bzbarsky@mit.edu’.

3.2.3 Visualization of Developer Bug Fix Activity

Software evolution needs to handle a huge amount of data, which is the major problem and a strong

reason for doing research in this field. The huge amount of data comes from analyzing several

versions of the same software in parallel. A technique, which may be used to reduce this complexity,

is software visualization that allows researchers to study multiple aspects of complex problems in

parallel [Lanza and Ducasse]. In our experiment, we figured out that the developer’s bug fix activ-

ity data could be used to visualize the developer’s interactions. Therefore, we developed a visual

tool using Java API. This tool may be used to explore interesting patterns among the developers

and the corresponding source files. We use the bug fix activity data to visualize the interaction

between two or more developers, and the interaction of developers with their assigned source files.

The main features of our visualization tool are shown in Figure 3.12 and Figure 3.13 . The upper

part of the figure shows the connection between developers. Each circular node represents a developer.

The size of the circle represents the developers total bug fix activity. The number inside the circle

is the developer’s id. The lower part of the figure represents the relationship between source files

and developers. Squares represent source files, and circles represent developers. If developers have

36



3.2.3 Visualization of Developer Bug Fix Activity

Figure 3.11. Plot between the percentage of fixed bugs and the percentage of developers who fixed

them.

Figure 3.12. A visualization of the developer’s bug fix activity data. Interaction among developers.
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3.3 Effort Estimation Model

Figure 3.13. Interaction between source files and developers.

performed one or more changes in any source file, then there is an edge between the developer and

the source file in the graph. The thickness of the edge represents the number of times a developer has

changed a source file. The label attached with each link depicts the names of connected developer

and source file. The number inside the square is the source file’s id. Developers are represented

by red circles, and the source files are represented by red squares. The different size of the circle

represents the developer bug fix activity count. From the analysis of Figure 3.13 and Figure 3.13, we

can conclude that in case of Mozilla very few developers have fixed large number of bugs, whereas a

majority of the developers has fixed very few bugs. Another interesting finding is that some source

files are connected with a large number of developers. This means that multiple developers have

changed these source files. Therefore, these types of source files are risky to modify.

3.3 Effort Estimation Model

One of most important contribution of our research work is the development and comparison of

different models for extracting an effort estimator from the obtained metrics and effort data. To

build the model five different regression based machine learning algorithm have used. These models

are trained and tested using metrics and effort data which we have obtained in section 3.1.4. Finally

models are evaluated using five different evaluation criteria of machine learning.
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3.3.1 Regression Based Machine Learning Algorithm

3.3.1 Regression Based Machine Learning Algorithm

Supervised Machine Learning considers the problem of approximating a function that gives the

value of a dependent or targets variable y (in our case effort), based on the values of a number of

independent or input variables (in our case metrics) x1, x2,...., xn. If y takes real values, then the

learning task is called regression, while if y takes discrete values then it is called classification. Since,

in case of a prediction or estimation model one has to predict or compute a real value. Therefore, a

regression based models are used to construct estimation models. In the following, we list the name

of regression based statistical and machine learning algorithm used in our experiments:

1. Multiple Linear Regression

2. Support Vector Machine (SVMreg),

3. Neural Network (Multilayer Perceptron),

4. Classification Rule (M5Rules)

5. Decision Tree (REPTree) and

6. Decision Tree (M5P).

MLR is a statistical method commonly used for numerical prediction. We used MLR because it is

a simple tool and most commonly used for effort estimation purpose [10]. Support vector machines

(SVM) belong to the class of supervised learning methods, which are used for classification and

regression. SVM algorithms are also used for regression or numerical prediction. One example is

SVMreg. They generate a model that can be expressed in terms of a few support vectors and may

be used in non-linear problem solving using the kernel function. Neural networks are commonly

used for numerical prediction and effort estimation. We used multilayer perceptrons, which belongs

to the feedforward class of networks. In feedforward type of network the output only depends on

the current input instances and there are no cycles. M5Rules generates a decision list for regression

problems. It builds a model tree using M5 and makes the best leaf into a rule. Decision trees classify

input instances by sorting them according to feature values. Each node in a decision tree represents

a feature, and each branch represents a feature value. REPTree is a decision tree based machine

learning algorithm. It is a fast tree learner who uses reduced error pruning. M5P is the model tree

learner. Model tree combines decision tree with the possibility of linear regression function at the

leaves. This algorithm is used twice, one for the production of a model tree and one for the production

of a regression tree [Ian H. Witten and Kaufmann, 2005].

For the comparison, we use the data obtained from the Mozilla project repositories. Moreover, the

comparison is based on the following error measures. The mean absolute error (MAE), root mean

square error (RMSE), the mean relative absolute error (MRE) and the mean magnitude of relative

error (MMRE), the root relative square error (RRSE), the Pearson correlation coefficient R, and the

percentage of prediction PRED(x). The formal representation and further details related to all the

above mentioned model evaluation measures are given in Chapter 2 (see 2.4).

To perform the experiment we used freely available Java based machine learning tool known as

WEKA [Ian H. Witten and Kaufmann, 2005]. WEKA contains a large number of Java libraries of
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3.3 Effort Estimation Model

machine learning algorithms.

3.3.2 Multiple Linear Regression Model

To develop an effort estimation model using statistical multiple linear regression (MLR), we used a

set of metrics as set of estimators for the model, and effort as a dependent variable. The set of metrics

is shown in Table 3.4. Beside the used metrics, Table 3.4 also comprises the Pearson and Spearman

correlation of the metrics with the effort. The obtained MLR model is given below,

E = −13.8×DCOUNT − 1.09×DEXP + 5.8× SFCOUNT − 0.01× TPREV +

0.02× TPFREV + 0.001× TLOC + 0.02× TCLOC − 0.035× TDELTA −
0.03× TFUNC + 0.004× TELINE − 0.025× TCY CLO + 0.02× TPCOUNT − 12.9 (3.7)

The correlation data in Table 3.4 shows that SFCOUNT , DCOUNT , and DEXP are positively

correlated with the effort data. The metrics DCOUNT , and DEXP are related to developers while

SFCOUNT is the total numbers of source files, which are changed to fix a bug. Whereas the metrics

which are directly related to the source code like line of code TLOC , cycloramic complexity TCY CLO,

etc. are positively correlated with the effort value, but their correlation with the effort is not high.

It shows that in case of OSS, metrics related to developers are more correlated with the effort as

compared to the source code metrics. The obtained Pearson’s correlation coefficient value of the

model is 0.53. This indicates that the predicted effort value using MLR model is highly correlated

with the actual effort values. While R2 and adjusted R2 values are 0.289 and 0.291 respectively. The

further results of model accuracy estimation are shown in Table 3.5.

3.3.3 Machine Learning Models

In order to develop an accurate effort estimation model, we have analyzed several machine-learning

(ML) algorithms using WEKA tool [Ian H. Witten and Kaufmann, 2005]. All the selected ML

algorithms belong to the class of supervised learning methods, which are commonly used for classifi-

cation and regression. To obtain a better model, we used 10 fold cross-validation. It is an important

technique to avoid over-fitting models on training data, as over-fitting will give low accuracy on

validation. It actually divides the data set into 10 equal parts and randomly selects 9 parts for

training and 1 part for testing and repeats it for 10 times. In the following paragraph, we discuss

each model and its performance.

To obtain the support vector machine (SVM) based model. We used SVMreg algorithm, and we

used the filter data type, i.e. normalized training data. While to obtain a neural network based

model, we used multilayer perceptron, which belongs to the feed forward class of networks. We

designed multiple neural networks using 1, 2, and 3 hidden layers with 2, 4-2 and 6-4-2 perceptron

per hidden layer, and set the number of learning steps between 500-1000. For M5Rules method,

we used two classification rules on the basis of the DCOUNT metrics value. We also used the deci-

sion tree M5P and fast decision tree learner method REPTree with the pruning option. Table 3.5

40



3.4 Threats To Validity

Table 3.4. Correlation of Metrics With Effort

Sr
.

Metrics
Correlation With Effort

Mean Std. Deviation
Pearson Spearman

1 SFCOUNT 0.32 0.51 01.8 01.6

2 DCOUNT 0.41 0.43 02.2 01.5

3 DEXP 0.36 0.36 15.2 10.6

4 TPREV 0.19 0.24 224.4 289.4

5 TPFREV 0.18 0.28 144.1 199.5

6 TLOC 0.20 0.27 2472.0 2799.3

7 TCLOC 0.18 0.30 39.4 85.5

8 TDELTA 0.22 0.23 10.0 20.9

9 TFINC 0.21 0.32 52.8 59.7

10 TFUNC 0.21 0.28 103.3 115.3

11 TELINE 0.19 0.27 2200.8 2425.9

12 TCY CLO 0.20 0.26 424.1 482.9

13 TPCOUNT 0.21 0.27 179.4 200.1

14 TRPOINT 0.18 0.24 171.3 215.4

15 TCOPE 0.13 0.24 29.M
”
r 67.4

For all metrics p-value=0.00 at significance level 0.001

depicts the obtained results. We see that each model has a good correlation value. The highest

correlation value is for the classification rule M5Rules i.e., 0.56, while its MMRE value is 74%. In

case of SVMreg the correlation value is 0.51, and the MMRE value is 63 %, which is the lowest.

Therefore, in our experiment the best model is the support vector machine SVMreg, although the

value of MMRE is acceptable, while PRED(0.25) = 0.20 and PRED(0.5) = 0.45, which is not very

close to the ideal value. There are several reasons of MMRE value being so high. One may be

the presence of noise or outlier in the data set. The other may be the quality of the effort data

set because we don’t get it from Mozilla project rather we extract it by our own heuristic method.

Another big issue with the MMRE is its value strongly influenced by a few very large MRE values [10].

3.4 Threats To Validity

The computation of effort spent to correct a bug described in a bug report assumes that the real effort

is distributed evenly. This might not be the case, but since there is no other information available, it

is the best we can do. This assumption as well as the others introduce some errors in the resulting

data. But given the huge amount of data available in the repositories we expect that there is no error

inherently built in this system of computing the effort. Hence, there might be a decrease of reliability

in the data but there should always be an upper bound.

We also assumed that developers spend a whole assigned period in fixing the bug, but this might

not be the case, because in OSS only some experienced developers are doing as a full paid job, while

most of the contributors are volunteers, and they may be involved in some other jobs during bug
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Table 3.5. Evaluation Measures of Different Machine Learning Based Effort Estimation Model

Sr
.

Method Name R MAE RMSE MMRE RRSE
PRED(x)

(%) (%) 0.25 0.50

1 Multiple Linear Re-

gression

0.54 11.88 23.5 81.0 84.7 0.09 0.17

2 Support Vector Re-

gression (SVMreg)

0.51 9.36 26.7 63.8 95.8 0.20 0.45

3 Neural Network (Mul-

tilayer Perceptron)

0.54 29.2 58.2 93.6 86.3 0.10 0.22

4 Classification Rule

(M5Rules)

0.56 10.8 23.0 73.6 82.5 0.18 0.28

5 Decision Tree (REP-

Tree)

0.51 10.8 23.9 74.23 86.0 0.10 0.23

6 Decision Tree (M5P) 0.55 10.6 22.9 77.7 82.5 0.13 0.26

assigned period. Also one cannot completely rule out the existence of any outliers. However, we have

almost removed most of them from our dataset.

3.5 Summary

In this chapter, we presented the result obtained from different effort estimation models for OSS

system. These models are based on statistical methods as well as machine-learning methods. All the

models are based on the same underlying metrics and effort data and trained with the same number of

instances, i.e. 7027. Since most of the OSS system does not maintain the bug fix effort data, therefore

we developed a novel method for deriving this information from bug repositories. We processed

the developer’s activity log data and obtained the bug fix effort values in terms of bug fix days.

Furthermore, we presented several applications of developer bug fix activity data. The experimental

results obtained shows that the regression based statistical and machine learning algorithm can be

used to construct effort estimation models. Our obtained models have correlation values between 0.51

and 0.56. Similarly, the MMRE values lie between 63% and 93%. This shows that the performance

of our models is satisfactory.
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4
Prediction of Risky Program Files

The experimental results discuss in this chapter have been published in [Ahsan et al., 2008].

The term Software Evolution is commonly used in the field of software engineering to refer to the

process of developing software initially and then subsequently changing it to incorporate the change

requirements. According to the Lehman laws of software evolution, software must continually evolve

or grow according to user needs or other external factors otherwise it might become useless [Lehman

and Ramil, 2001]. This shows that software that is really in use must go for change to become and

stay alive.

Mostly changes in the source code are made to add new features or to enhance the existing features

of software or sometimes to fix the bugs. The change in source code is an essential and routine activity

of development and maintenance. When a programmer makes changes to accomplish a specific change

requirement, it is observed that this activity might result in faults that might harm the use of the

software. Therefore, it is always useful for software managers and programmers to identify those

program files which are risky or at least sensitive to changes. Software developers also need to know

the bug introducing change patterns, so that they can avoid program changes from introducing faults.

In order to find such patterns or to classify risk, previous knowledge like contained in a software repos-

itory is might of help. To obtain the the previous change history data of a program source file, one has

to take the difference between the two consecutive revisions of a source file. The difference may give

one or more set of source code lines, which are added or modified or deleted in the new revision of a

source file. Each set of these source code lines is called hunk [Thomas Zimmermann, May 23-28, 2004].

Research Trends: In the recent years several research works have been performed to analyze

the different types of changes in the program source files and build models for the classification of

program file change data. Porter and Selby [Porter and Selby, 1990] used classification trees based on

metrics from previous releases to identify components having high-risk properties. Mockus and Weiss

[Mockus and Weiss, 2000] presented a model to predict the risk of new changes, based on historical

information. The authors modeled the probability of causing failure of a change made to software,

using properties of a change as model parameters. Jack and Zimmermann [Śliwerski et al., 2005b]

analyzed the CVS repository of Mozilla and Eclipse together with the information stored in the cor-

responding Bugzilla bug reporting system to identify fix inducing changes. Livshits and Zimmermann

[Livshits and Zimmermann, 2005] combined revision history mining and dynamic analysis techniques

for discovering application specific patterns and for finding errors. They discovered 56 application
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specific-patterns and found 263 pattern violations by mining history data of Eclipse and jEdit. Kim

et al. [Kim et al., 2006b] built bug fix memories by extracting change data from bug fixing changes.

They developed a tool named BugMem, which learned from previous bug fix change data. They only

considered bug fixing changes and left other changes like bug introducing and bug fix-introducing

changes. Kim et al. [Kim et al., 2008] introduced a technique for classifying a software change as clean

or buggy. The authors trained a machine learning classifier using features extracted from revision

history of a software project. The features used, include all terms in the complete source code the

lines modified in each change (delta), change metadata such as author, change time, and complexity

metrics. The proposed model could classify changes as clean or buggy with 70 percent accuracy and

60 percent buggy change recall on average.

Motivations: The change history (i.e., hunk data sets) of source files are useful to analyze the

previous change patterns of source files. The previous change patterns might be used for the analysis

of risky program files for new changes.

Our Goals: One of our thesis objective is to extract the software change data from the

open source software repository of Mozilla project and build a model for the source code change

analysis. The overall goal of our research work present in this chapter is to perform the following tasks,

❏ Device a method to extract the data of software changes from software repository.

❏ Construct a model to measure the risk value, which is associated with the new changes in a

program file.

Our Approach: We extract the change history data of program files from the software repository

of Mozilla Project. We apply an approach on the extracted data that allows us to identify the

different types of change transactions like bug fixing, clean, bug introducing, and bug fix-introducing

transactions (A change transaction is a process in which developers made changes in the program

files and commit those changes into a version control system). Furthermore, we use the probability

of bug introducing and bug fix-introducing changes to identify the source file as being risky or not

for further changes. We also estimate the impacts of a faulty change in terms of their introducing

number of new faults. Finally, to obtain an estimated risk value, we multiply the probability of faulty

change with its impact value. In order to validate our approach, we performed an experiment, we

downloaded 9552 program source files (C++), extracted the CVS log data, and extracted the Mozilla

bugs information from the Bugzilla database.

Our Contribution: Our main contribution is we used the change history of program files, and

constructed a risk model. The defined risk model can be used to find the risk associated to the

new changes in source files. Such information is not only useful for developers but also for software

managers in order to assign resources, e.g., for testing. Furthermore, we performed an experiment by

extracting data from the freely available Firefox and Apache project repository.

Chapter Layout: The rest of the chapter is organized as follows. Section 4.1 presents our

approach to measure the risk value associated with the new changes in a source file. In Section 4.2

we describe the experimental setup and discuss results. In Section 4.3 we discuss some application of
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hunk metrics, and finally in Section 4.4 we present the summary of this chapter.

4.1 Risk of Faults Associated with the New Changes in a Program

Source File

The change in source code is an essential and routine activity of development and maintenance. When

a programmer makes changes to accomplish a specific change requirement, it is observed that this

activity might result in faults that might harm the use of the software. Therefore, it is always useful

for software managers and programmers to identify those program files which are risky or at least

sensitive to changes.

We used an approach to divide all the previous changes of a program source file into four different

types of changes, i.e., clean, bug introducing, bug fix and bug fix-introducing changes [Sliwerski et al.,

2005]. Then, count the different types of changes and obtain the probability of source file change,

which are related to bug and bug fix-introducing change. Finally, we use this data as input to our

risk model and measure the risk value of a source file.

4.1.1 Data Collection

In software systems program files are created to perform some required functionality. During the

whole life of any software system, program files are frequently changed by developers to accomplish the

required maintenance or development task. A change in a program file is occurred, when developers

made a change transaction into a CVS system (version control system). In a change transaction,

developer made changes in a single or in multiple source files and commit (save) those changes in a

version control system like CVS or Subversion. Therefore, the repository of version control system

contains a huge amount of program file change data; the challenge is to properly identify all those

changes according to their types.

In the following sub sections, we first describe our approach to extract the data from the software

repository. Then we describe our database schema that store all the extracted data into different

database entities. Finally, we describe our approach to use the stored data and identify the different

types of software changes.

A Database to Store the Extracted Data

One focus of this section is to introduce a database that stores program file change data, program

file change meta data together with the existing program change patterns and bug reports data.

To accomplish this task first we extracted the data from source code repositories and bug tracking

systems and stored into a relational database. Therefore, in order to store the extracted data, we

developed an appropriate database schema. The database schema description is given in Table 4.1

and database entity relationship diagram (ERD) is shown in Figure 4.1. In Figure 4.1, the set of

tables in light green color are base tables for CVS log and bug reports data. The set of tables in dark

45



4.1 Risk of Faults Associated with the New Changes in a Program Source File

green color are base tables for revision difference and annotation data. While, the set of tables with

gray color are used to store the processed data of different base tables. The set of tables with yellow

color contains the metrics data related to each revision of source file.

In order to perform the experiment and to populate the database tables, we downloaded all the

revisions of initial 1000 Mozilla C++ source files. We selected these files according to the alphabetic

order of their files names. The total number of downloaded source files was 9552. Furthermore, we

used wget tool to download the bug reports data in html format. We used CVS difference and CVS

Annotate command in a script to automatically download source file revisions, difference between two

consecutive revisions of source files, and the annotation of each revision of source file. The coding is

shown in Script 1.

Script 1 A script to extract the source file difference and annotation data from a CVS server of

Mozilla project. Same script may be used to extract data from the CVS repository of other projects.
#!/bin/bash

# First login to CVS server

export CVSROOT=:pserver:anonymous@cvs-mirror.mozilla.org:/cvsroot

cvs login

IFS=’,’

# Read a text file FileName.txt line by line in which F_COLUMN1 contains file name,

# F_COLUMN2 contains file paths and F_COLUMN3 contains filecode values

FileName="/path/FileName"

while read F_COLUMN1 F_COLUMN2 F_COLUMN3

do

FLAG=0

for I in $F_COLUMN2 # for each file path, I contains file path

do

FileRevisions="/path/FileRevision"

# Read another file FileRevision.txt line by line in which R_COLUMN1 contains file

# paths, R_COLUMN2 contains file revisions and R_COLUMN3 contains filecode values

while read R_COLUMN1 R_COLUMN2 R_COLUMN3

do

for J in $R_COLUMN2 # for each file revisions, J contains file revisions

do

if ["$I" = "$R_COLUMN1" ] #Check file path are same

then

DNAME=$R_COLUMN3’:’$F_COLUMN1’:’$J # FileCode:FileName:FileRevision

cvs checkout -r $J -d $DNAME $I

# It will checkout revision J of source file I in a local directory DNAME

if [ $FLAG == "1" ]

then

diff $TEMP $DNAME’/’$F_COLUMN1 >$F_COLUMN3’:’$F_COLUMN1’:’$L’-’$J’.txt’

cvs annotate -r $J $DNAME’/’$F_COLUMN1 > $F_COLUMN3’:’$F_COLUMN1’:’$J’-anot.txt’

else

cvs annotate -r $J $DNAME’/’$F_COLUMN1 > $F_COLUMN3’:’$F_COLUMN1’:’$J’-anot.txt’

FLAG=1

fi

TEMP=$DNAME’/’$F_COLUMN1

L=$J

fi

done

done <"$FileRevisions"

done

done < "$FileName"

The downloaded data are source code files, text files or html files. Therefore, to extract the textual

information from the downloaded files and to extract the metrics data from the source code, we used
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different parsers which extract all the relevant information and metrics data, and inserted into the

database entities. The following list of steps describes the key activities, which have been followed

during the data extraction process:

1. We logged in to the Mozilla CVS server and obtained CVS log data, which we stored in a text

file. We processed the log file to extract CVS log data. The CVS log contains all information

regarding the revision of each source file. The bug report data of Mozilla project are available

on the Bugzilla website. The bug report is in xml format. We used an approach [Fischer et al.,

2003] to parse and extract the bug report data of Mozilla project. We have collected all the

bugs reports which have been reported till 2007.

2. We downloaded all the required program files into our local disk from CVS repository, by using

a shell script (see Script1).

3. We used a program which parse each revision of downloaded program file, and obtain a set of

source code metrics.

4. We used the GNU diff tool to find the difference between two consecutive revisions. To obtain

the difference between two consecutive source file we executed a script, which uses GNU diff

for all downloaded source file and stores the output in text files. We scanned these text files to

extract file difference data.

5. We used the CVS annotation command to find the annotation for each downloaded program

file. The output of annotation command is again stored in a text file. We processed this text

file to extract all annotation information and insert it into corresponding database table.

4.1.2 Types of Program File Changes

In the previous sub section we have extracted and stored all the relevant data related to the program

file changes. Now, in this section we describe that how we use these data to obtain the different types

of program file changes.

1. Bug Fixing Change: A bug fixing change is a type of program file change in which pro-

grammers change a program source file to fix the reported bugs. To identify bug fixing changes

there are two popular approaches. In the first approach a link is established between a change

log messages of CVS to the bug report data. The link is established when the bug id, which

is found in the bug report data, matches with log message of CVS that contains a word fix or

bug followed by the similar integer number, which has found in bug report, see [Zimmermann,

2006]. This type of CVS log message is used in identifying a bug fix. The second approach does

not only establish a link but also uses two independent levels of confidence, i.e., syntactic and

semantic level of confidence. The syntactic level is used to infer the link between change log

messages and bug reports whereas the semantic level is used to validate the link by matching

the bug report data, see [Śliwerski et al., 2005b]. We used the second approach and defined each

link with syntactic and semantic level of confidence.
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Table 4.1. Description of database schema

Project Contains the project record like Mozilla or Eclipse and other collected data

from the CVS log

FileDirectory Contains file directory information

FileDetails Contains source file metadata

FileRevision Contains file revision metadata, like revision LOC, revision id etc

BugReport Contains bug report data.

FileRevisionDelta Contains metadata of revisions differences. The difference is between two con-

secutive revisions of each source file.

HunkData Contains revision difference change data of source file.

LineAnnotation Contains the annotation data of each source file.

Transaction Contains the summary of each change transaction. To obtain the data we

processed log comments and identified those changed source files, which are

committed by the same developer with the same log message on the same

date with small difference of time (less than 200 sec). We used a sliding time

window approach Fischer et al. [2003]. We identified all those changes as single

transaction and assigned a unique transaction id to each change transaction.

BuggyFiles To find the bug introducing revision, we process FileRevisionDelta table, and

select those line numbers of a revisions, which are changed to fix the bugs.

Then we used the LineAnnotation table to find the last revision in which the

selected sets of lines were changed. The last revision in which the set of selected

lines were changed is the actual bug introducing revision [Sliwerski et al., 2005].

FunctionMetrics Contains the function level metrics data. To obtain metric data we scanned

each revision of a source file

Author Contains the author name, with author id and author address

ClassMetrics Contains the class level metrics data. To obtain metric data we scanned each

revision of a source file.

BugFixed Contains bug fix transaction id with bug Id.

Boundary Table It contains data about how many times a function or method has been changed.

If the change line number lies between the boundaries of any function or class,

then we consider this function or class as a change function. We scan source

file to find the starting and end line number of each function and class.
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Figure 4.1. An ERD of a database for program file change analysis
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2. Bug Introducing Change After identifying that the change is a bug fix it is required to

identify those changes which actually introduced the bug. We used the approach proposed by

Sliwerski, Zimmermann, and Zeller known as SZZ algorithm [Sliwerski et al., 2005]. According to

this approach we first compute the difference between the fix revisions and its previous revision

using the GNU diff tool. The diff tool gives a set of lines from previous revisions which are

changed in the new revision to fix the bug. This is in the form of hunk pairs set. Hunk pair

format details are given in Table 4.2. The hunk pair set provides information about the set

of buggy lines in the previous revision. To find out the revision in which these buggy lines

were introduced, CVS annotation is used. CVS annotation provides information about the last

change revision of each code line. CVS annotation also gives the information about the author

name that changed the line and the date of change. The last revision in which the set of buggy

lines were last changed are identified as bug introducing change.

Example: Consider an example as shown in Figure 4.2. It describes two different types of

change transactions, which are committed or checked in at different times in the CVS repository.

Transaction 1762 is a bug fixed transaction, in which two files are changed. File-A changed

from revision 1.11 to 1.12 and File-C changed from revision 1.7 to 1.8. The GNU diff of the two

successive revisions of File-A and File-C gives 3 hunk pair set (add, delete, modify). The anno-

tation of these two files shows that the buggy code line of File-A revision 1.11 was last modified

in revision 1.4 having transaction id 762 and similarly the buggy line in File-C were last changed

in revision 1.3 of transaction 567. Therefore change transaction id 1762 is a bug fixed transac-

tion while transaction id 567 and 762 are bug introducing transaction. Similarly the associated

hunk pair set with each transaction may be identified as bug fixed or bug introducing hunk pairs.

We also process each hunk pair set to identify the set of actual hunk pairs which introduced the

bug. Figure 4.2 shows that not all the hunk pairs of bug introducing transactions are involved

in introducing the bugs. The hunk pairs which are marked with a rectangle in a bug introducing

transaction are responsible to introduce the bugs.

3. Bug Fix-Introducing Change: If program file changes are identified as a bug fix change and

also identified as a bug introducing change, then this type of change is recognized as Bug Fix-

Introducing Change. It happens when a developer introduces a new bug while fixing a previous

bug.

4. Clean Program Change: For sets of change, which are not identified as bug fix or bug

introducing or bug fix-introducing, are identified as clean change.

At this point, we have identified the different types of software changes, now in the next section we

describe our risk model.

4.1.3 Model Building

In order to build the risk model we use the following standard definition of risk, An expression of the

impact and possibility of a mishap in terms of potential mishap severity and probability of occurrence

(MIL-STD-882-D, IEEE 1483). In engineering risk corresponds to the costs in case of an accident
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Figure 4.2. Example of bug fixing and bug introducing transaction
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Table 4.2. Hunk pair format description

Example Summary

9a10 Line or comma separated range of lines of previous file revision

> #include ”XYZ.h” concatenated with a single character (a/c/d), again concatenated

52,53c53,54 with line or comma separated range of line of current release.

<* if a used for line addition

<foo==1*/ c used for modification and

> foo==1 d used for line delete

128d145

<*/

[Pressman, 2001] [Hall, February 28, 2005]. Hence, formally risk can be defined as

Risk = (Probability of an accident)× (Expected costs) (4.1)

Riskj = pFAULT × Cj (4.2)

Where, Riskj is the risk that a change in a source file could be a faulty change, and it could intro-

duce j number of faults. pFAULT is the probability that a new change could be a faulty change,

and Cj represent the expected impact of that faulty change. Cj represent the impact in term

of an estimated cost that needs to be spent in fixing the introducing number of faults. A faulty

change in a program file may introduce j number of faults into a software system. Cj is the cost

of fixing j faults. Therefor, the risk that a faulty change may introduce j faults is given by equation 4.2.

The probability of a change to lead to a fault (or accident) i.e., pFAULT can be obtained from the

previous history of bug introducing and bug fix-introducing changes of a source file. For this purpose,

the number of bug introducing (nI) and bug fix-introducing changes (nFI) has to be divided by the

number of all changes (nC), e.g.,

pFAULT =
nI+ nFI

nC
(4.3)

Now, to find the risk value for a program file we have to know the expected costs of the fault/faults

that could be generated. Let, pj be the probability of introducing j fault/faults by a faulty change,

and cj is the cost of fixing j fault/faults.

Cj = pj × cj =
nj
nC

× cj (4.4)

Riskj =
nI+ nFI

nC
× nj

nC
× cj (4.5)

52



4.1.3 Model Building

Where, nj is the number of changes that introduced j fault/faults per change. Its value can be

obtained from the previous history of a source file. If we consider the cost of each fault as a constant

value i.e., c, then 4.5 can be written as,

Riskj =
nI+ nFI

nC
× nj

nC
× j× c (4.6)

In case of OSS, there is no information regarding the costs for correcting a fault in terms of amount

of work necessary, and moreover there is no information available about costs related to the fault

when the program is executed. Hence, we might assume unit costs for each fault i.e., c=1.

Riskj =
nI+ nFI

nC
× nj

nC
× j (4.7)

Equation 4.7 can be used to find the risk associated with source files, which could generate j faults.

Every change might lead to several faults. Hence, the expected costs can be estimated by averaging

the costs of correcting k faults multiplied with the probability that a change causes k faults, i.e.:

Riskavg(j) =
nI+ nFI

nC
× 1

k

k∑
j=1

nj
nC

× j (4.8)

Riskavg(j) =
nI+ nFI

nC
× 1

k
× 1

nC
×

k∑
j=1

(nj × j ) (4.9)

Where,

k∑
j=1

(nj × j) = nB, and nB is the number of bugs introduced. Its value is obtained by adding

the value of bug counts nBI which is generated by bug introducing changes and bug count value nBFI

which is generated by bug fix-introducing changes (nB=nBI+nBFI).

Riskavg(j) =
nI+ nFI

nC
× 1

k
× nB

nC
(4.10)

Where, k is the maximum number of faults introduced by a single change in a source file. Furthermore,

equation 4.10 can be used to obtain the total or maximum risk instead of an average risk.

Riskmax(j) =
nI+ nFI

nC
× nB

nC
(4.11)

Equation 4.11 may be used to measure the maximum risk associated with the new changes in a source

files. In equation 4.11, nB

nC
is the average number of faults per change. It may be written as Cmax(j).

In our experiment we used equation 4.11 to measure the risk value. In equation 4.11, we considered

unit cost i.e., c=1, if we don’t consider unit cost then equation 4.11 may be written as,

53



4.2 Experimental Setup

Table 4.3. Mozilla project program file change history (only 8251 C++ source files revisions).

Change

Type

Transaction

Count

Change

or Re-

vision

Count

Revision/

Transac-

tion

Hunk

Count

Hunk/

Transac-

tion

Hunk/

Revi-

sion

Change

LOC

Change

LOC/

Trans-

action

Change

LOC/

Revi-

sion

Bug Fix-

ing

589

(15.80%)

1034

(12.50%)

1.75 2874

(7.30%)

4.88 2.78 5904

(9.40%)

10.0 5.7

Bug In-

troducing

676

(18.2%)

1812

(22.00%)

2.68 11456

(29.00%)

16.9 6.32 15752

(25.20%)

23.3 8.7

Bug Fix

Introduc-

ing

1405

(37.8%)

3154

(38.20%)

2.24 16945

(42.80%)

12 5.37 29174

(46.60%)

20.76 9.2

Clean 1046

(28.10%)

2251

(27.30%)

2.15 8289

(21.00%)

7.9 3.68 11754

(18.80%)

11.23 5.2

Total 3716 8251 2.2 39564 13.6 4.8 62584 15.84 7.58

Riskmax(j) =
nI+ nFI

nC
× nB

nC
× c (4.12)

4.2 Experimental Setup

We performed an experiment by using the data which we have obtained in Section 4.1.1. We used

these data sets to extract the total number of changes and their types. Furthermore, we assumed that

changes with more than 100 lines changed as an outliers (this may be the point where branches were

merged). When a change has occurred in a file, then its new revision is introduced. After removing

all the outliers’ revision, we have 8251 source revisions out of 9552 revisions.

Our experiment result is shown in Table 4.3. The average changed LOC (line of code) per transac-

tion is more in case of bug introducing transactions. It means that whenever large numbers of code

lines are changed then it may introduce new bugs. A hunk represents a change location in the source

code, therefore large number of hunk mean larger number of different change locations in the source

code. Table 4.3 shows that the hunk value is high in case of bug fix- introducing change, it means

that whenever a source file is changed from multiple locations, then the probability of bug creation

will be increased. Table 4.3 also shows that the change transaction for bug fix-introducing change is

high as compared to other transaction.

Figure 4.3 shows that, in 1998, the number of clear change transactions was high, the reason

may be the earlier development phase of the project. While from 1999 to 2007 the number of bug

fix-introducing change transactions is high as compared to other changes transactions.

4.2.1 Results and Discussion

To obtain the results we used the relations which we have described in section 4.1.3. Table 4.4 depicts

the obtained results of risk associated with 10 different C++ source files of Mozilla project. For

example consider file BrowserView.cpp from Table 4.4. The number of fix-introducing changes is 31.
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Figure 4.3. Distribution of source file changes per year (Mozilla 1000 C++ files).

Hence, the probability of a change to introduce at least one bug in this example is,

pBUG = (nI + nFI) / nC = (9+31)/59= 0.67.

From the data of Table 4.4, we can compute the expected cost of fixing faults in source file

BrowserView.cpp , which is Cmax(j) =nB

nC
= 151

59 = 2.56. From this the risk of the file is given as

follows:

Rmax(j) = pBUG × C = 0.67 × 2.56 = 1.715

The risk can be computed for all files in the same way. The results of this computation are given

in Table 4.4. Figure 4.4 shows the distribution of different types of program file changes. To perform

this experiment we randomly selected all the changes/revisions of 10 C++ source files. Figure 4.4

shows that the bug fix-introduce change is high in all the files as compare to other changes

4.2.2 Threats To Validity

In this section we presented our approach to analyze the hunk data set, and presented the results

obtained from Mozilla projects. We have processed the log comments to identify bug fix revisions,

some bugs may not be captured by log comments. Some comments are marked bug fix but actually

they may be enhancements. The quality of log comments may affect the results.
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Table 4.4. Source files change distribution (randomly selected 10 C++ files from Mozilla project) and

calculation for Risky Program File for new changes.

File Name (.cpp)
Change Type Total

Change

Bugs Count Total

Bug

Total

Buggy

Change

pBUG
Cmax(j) Riskmax(j)

= pBUG

×
Cmax(j)

nI Clean nFI Fix nC nBI nBFI nB nI+nFI

BackwardAdapter 5 15 19 8 47 8 36 44 24 0.51 0.94 0.48

bytecodegen 22 16 40 13 91 77 103 180 62 0.68 1.98 1.35

BrowserView 9 8 31 11 59 25 136 161 40 0.67 2.73 1.83

calICSService 9 1 57 6 73 44 187 231 66 0.9 3.16 2.84

CBrowserShell 13 10 46 15 84 32 169 201 59 0.7 2.39 1.67

ActiveScriptSite 2 1 3 1 7 5 14 19 5 0.71 2.71 1.92

epimetheus 21 26 22 12 81 31 36 67 43 0.53 0.83 0.44

DeleteRangeTxn 22 8 22 11 63 80 72 152 44 0.7 2.41 1.69

Dlldeps 35 32 92 44 203 63 176 239 127 0.63 1.18 0.74

edtbuf 14 13 27 8 62 35 142 177 41 0.66 2.85 1.88

Figure 4.4. Change history of 10 C++ source file of Mozilla project.
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4.3 Application of Hunk Data as Hunk Metrics

The hunk data of source files may be used to measure a set of metrics. These metrics are known as

hunk metrics. The hunk metrics may be used for the classification of new changes as clean or buggy.

Furthermore, the hunk data may be used to identify the bug inducing language constructs. Therefore,

in order to explore the applications of hunk data. Two different experiments have been performed.

In the following paragraph we briefly describe the experimental results of both the experiments (for

details see [Ferzund, 2009])

In an experiment we classify a program source file change (hunk) as buggy or clean. We classify

individual hunks as buggy or bug-free, thus we provide an approach for bug prediction at the smallest

level of granularity. We introduce a set of hunk metrics and build classification models based on these

metrics. Classification models are built using logistic regression and random forests. We evaluated

the performance of our approach on seven different open source software projects. Our classification

approach can classify hunks as buggy or bug free with 81 percent accuracy, 77 percent buggy hunk

precision and 67 percent buggy hunk recall on average. Most of the hunk metrics are significant pre-

dictors of bugs but the set of significant metrics varies among different projects [Ferzund et al., 2009a].

Furthermore, we empirically investigate the language constructs which frequently contribute to

bugs. Revision histories of eight open source projects developed in multiple languages are processed

to extract bug-inducing language constructs. Twenty six different language constructs and syntax

elements are identified. We find that most frequent bug-inducing language constructs are function

calls, assignments, conditions, pointers, use of NULL, variable declaration, function declaration and

return statement. These language constructs account for more than 70 percent of bug-inducing

hunks. Different projects are statistically correlated in terms of frequencies of bug-inducing language

constructs. Quality assurance developers can focus code reviews on these frequent bug-inducing

language constructs before committing changes [Ferzund et al., 2009b].

4.4 Summary

In this chapter, we presented our approach to extract the program file change data from software’s

repository. From the extracted data, we defined a hunk as a set of changed source code lines, and

classified hunks or software changes into four different type of changes. Like bug free, bug introducing,

bug fixing and bug fix-introducing. Sometimes bug introducing are also called bug inducing hunk.

After extracting and identifying hunk data sets, we performed an experiment. In our experiment,

we used Mozilla project data. We used this data to find four different types of program file changes

and showed how these changes are distributed during the evolution of a source file. Moreover, we

presented a way for calculating the risk value for a file. The files which have higher risk values are

more risky when applying the next change and thus should be tested more thoroughly.

These findings can be helpful for the analysis of program file changes, and maybe used to construct

a tool for the automation of prediction risk associated with the new changes in source codes.
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5
Software Fault Prediction Models

Parts of the contents of this chapter have been published [Ahsan and Wotawa, 2010c], [Ferzund et al., 2008a]

and [Ferzund et al., 2008b].

In software engineering, faults and failures in software is accounts for a significant amount of any

project budget as activities related to faults detection and faults correction often correspond to 30-50%

of the budget [Sommerville, 2006]. Moreover, a major part of today’s software industries involved in

the development of mission and safety critical complex software systems. These systems are heavily

dependent on reliability of their underlying software applications. An early software fault prediction

is a proven technique in achieving high software reliability. To evaluate the quality of software, source

code metrics provides ways to construct fault prediction models. Prediction models based on software

metrics can predict numbers of faults in software modules or classify software modules as faulty or non

fault modules. Timely predictions of such models can be used to direct cost-effective quality enhance-

ment efforts to modules that are likely to have large numbers of faults [Khoshgoftaar and Seliya, 2003].

Research Trends: A software fault is a defect that causes software failure in an executable

product. Fixing software defects is one area that takes up a large amount of software testing and

maintenance effort. Particularly, software testing requires a lot of effort and resources. To effi-

ciently utilize the available resources for testing, it is better to schedule these resources to those

parts of the source code where the likelihood of bugs is greater. An extensive body of work has

focused on finding the fault-prone locations in software systems. They identify software subsystems

(modules, components, classes, or files) which are likely to contain faults. These subsystems, in

turn, receive additional resources for verification and validation activities. The majority of this

work builds prediction models using metrics that predicts where future defects are likely to occur.

Most of the studies indicate a relationship between the obtained metrics and the number of bugs

[Gyimothy et al., 2005] [Ostrand et al., 2005]. The research relies on software configuration manage-

ment systems and bug databases hold important information related to bugs and changes made to files.

In order to predict the number of bugs or to provide a predictor with regard to a classifica-

tion schema, there are two possible approaches. The first approach uses statistical methods like

multiple linear regression, logistic regression, and principal components analysis [Nagappan et al.,

2006]. Linear regression can be successfully used if the dependent variables change linearly with

the independent variables. As most of the metrics normally correlates with each other, there is a

strong need to overcome the multicollinearity problem. Principal component analysis is used in this
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CHAPTER 5. SOFTWARE FAULT PREDICTION MODELS

respect to reduce the multicollinearity effect. Logistic regression can be used for binary classifications.

The second approach relies on machine learning techniques like decision tree induction, support

vector machine, artificial neural networks, k-nearest neighbors to mention some of them. Machine

learning techniques have the ability to learn from past data and these techniques can be employed

in a variety of complex situations (see [Ian H. Witten and Kaufmann, 2005]). Zhang [Zhang, 2000]

showed the application of machine learning techniques in tackling software engineering problems. He

suggested that machine learning algorithms can be used to build tools for software development and

maintenance tasks as well as can be incorporated into software products to make them adaptive and

self-configuring. Koru et al. [Koru and Liu, 2005b] combined static software measure with defect

data at class level and applied different machine learning techniques to develop fault predictor models.

Motivation: It is observed that as the time goes by fault prediction models are becoming more

and more complex. New studies are investigating more aspects that may help improve prediction

accuracy, which leads to more metrics (i.e., independent variables) being input to the prediction

models. Although adding more metrics (i.e., independent variables) to the prediction models may

increase the overall prediction accuracy, it also introduces some negative side effects. First, it makes

the models more complex and therefore, makes them less desirable to adopt in practical settings.

Second, adding more independent variables to the prediction model makes determining which inde-

pendent variables actually produce the effect (i.e., impact) on post-release defects more complicated

(due to multicollinearity). The aforementioned problems turn the complex prediction models into

black box solutions that can be used to know where the defects are, but do not provide insight into

the underlying reasons for what impacts the defects. The black-box nature of such models, bug

prediction is a major hurdle in the adoption of these models in practice [Ball and Siy, 1997]. Another

challenge in the construction of reliable fault prediction models is, labeling of program files with the

exact number of bugs. In case of open source software (OSS), the labeling of program files with the

exact number of fixed bugs depends on the link between the revision control system (like CVS) and

the bug tracking system (like Bugzilla). Unfortunately, there are no direct ways to establish such

links. However, parsing of CVS check in comments are used to identify the number of bugs fixed in

a revision of a source files [Śliwerski et al., 2005b]. Since, parsing of CVS comments is not a reliable

way. Therefore, there are chances that one can label source files with the wrong number of fixed bugs,

which ultimately lead to unreliable fault prediction model.

Our Goals: To overcome the above mentioned issues, we are motivated to build a prediction

model with a small number of predictors (code metrics), which are highly correlated with the number

of post release defects. Our main objective is to apply two different techniques i.e., regression and

classification on the code metrics data, and construct a fault prediction model for software modules.

Furthermore, our aim is to investigate the fault prediction capability of the constructed model using

several statistical and machine learning models’ evaluation criteria.

Our Research Approach: We used two different approaches to construct a fault prediction

model. In the first approach, we work with the different techniques, commonly used for the construc-

tion of regression based fault prediction models. The best examples of such techniques are, Multiple

Linear Regression and Neural Network. The first step, is to map each source file with the number

of its post release defects. Then, source files are processed to extract the code metrics data. Code
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metrics data are also known as raw metrics data [Khoshgoftaar and Seliya, 2003]. The next step,

is to transform the raw metrics data into principal components. Finally, raw metrics and principal

components both are used to construct regression based fault prediction model. Whereas, in the

second approach, instead of labeling of source files with the exact number of its post release defects,

we classify source files according to a predefined classification schema. We compare two classification

schemes. The first schema allows classifying files as being buggy or not. The second schema is

called bug level classification where files are classified as low buggy, medium buggy, or highly buggy

respectively. Once the source files are classified according to the classification schema, then files

are processed to extract code metrics and principal components. The code metrics data (both raw

metrics and principal components) and different classification techniques of machine learning are used

to construct fault predictor models, which classify source files according to a predefined classification

schema. Finally, different model evaluation criteria are used to evaluate the fault prediction capability

of the obtained models. Our approach makes use of code metrics, which are highly correlated with

the number of bugs and have small correlation among each other.

Furthermore, we performed an experiment to answer the question whether bug predictors obtained

from one project can be applied to a different project with reasonable accuracy. Two open source

projects Firefox and Apache HTTP Server (AHS) are used for this study. Static code metrics

calculated for both projects using in house software and the bug information is obtained from bug

databases of these projects. The source code files are classified as clean or buggy using a Decision

Tree classifier. The classifier is trained on metrics and bug data of Firefox and tested on Apache

HTTP Server and vice versa. The results obtained vary with different releases of these projects and

can be as good as 92% of the files correctly classified and as poor as 68% of the files correctly classified

by the trained classifier.

Our Contributions: The main contributions are,

1. Construction and evaluation of five different regression based fault prediction models using data

set of four releases of Firefox project.

2. Construction and evaluation of five different classification based machine learning models. We

used different techniques of classification to classify source files according to a predefined classi-

fication schema.

3. We evaluated each model by training and testing on different project data, e.g., we trained our

fault prediction model on Firefox and tested on Apache HTTP Server.

Chapter Layout: The rest of the chapter is organized as follows. Section 5.1 presents our ap-

proach for the construction of fault prediction models. In Section 5.2, we describe regression approach

to construct a prediction model. Whereas, in Section 5.3, we describe our approach to construct fault

prediction models using machine learning classification techniques. In Section 5.4, we discuss the

results of a case study in which we evaluate the performance of our bug predictor models by applying

them on different project’s data. Finally, in Section 5.5 we summarize the chapter.
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5.1 Approach to Build Fault Prediction Models

5.1 Approach to Build Fault Prediction Models

This study presents a comparative evaluation of predictive accuracy of different fault prediction mod-

els. These models are based on two different approaches, which are commonly used for the construction

of fault prediction models. These approaches are:

1. Regression based Fault Prediction Models: Predictors (metrics) are used to predict the

expected number of faults in a module/source file,

2. Classification based Fault Prediction Models: Classification are used to predict whether

a module/source file will have at least one fault reported.

In order to obtain a state of the art fault prediction model, we used both the approaches and

constructed different fault prediction models. In case of regression, we used two different types of

regression techniques i.e., parametric regression (Multiple Linear Regression) and non-parametric

regression (Artificial Neural Network). Similarly, in case of classification, we used logistic regression

and different machine learning techniques. An overview of all these techniques briefly described in

Chapter 2. We used all these techniques and build different models. With the help of these models,

we performed a comprehensive analysis, which led us to select an appropriate fault prediction model.

Our approach, in a nutshell:

1. Data Preprocessing: We, first extracted the code metrics data from the source files and also

extracted the defect or fault information from the bug tracking system. Finally, we mapped

the two data i.e., source file’s code metrics and number of fault by using an approach give by

[Thomas Zimmermann, May 23-28, 2004].

2. Correlations: The first step to build the model is to find the correlation between the predictor

(code metric) and the number of faults. In case of regression based model we, used both pearson

and spearman’s correlation techniques. Whereas, in case of classification based models we used

point-biserial correlation.

3. Remove Multicollinearity: We, used principal component analysis to remove the multi-

collinearity from the data.

4. Model Building: Regression and Classification techniques are used to build the model

5. Selecting Models: Different evaluation criteria of statistics and machine learning are used to

select an appropriate model.

6. Model’s Validation: Firefox Releases 0.8, 1.0, 1.5, and 2.0 are used as test data sets to evaluate

the prediction accuracy of the selected models. Furthermore, we trained the model on Firefox

project data and tested on Apache project data. We, used 10-fold cross validation techniques

to evaluate each model.

In the next sections, we describe the tasks that had been carried out in order to obtain the empirical

results related to the fault prediction models. The motivation is to provide background information.

We start with a discussion of how to obtain the data collection. Afterwards, we introduce the concepts

behind the metrics calculation. Finally, we briefly describe the used machine learning techniques.

Figure 5.1 represents a schematic diagram of our approach.
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5.1.1 Collecting Data

Figure 5.1. Classification Approach

5.1.1 Collecting Data

We downloaded Firefox source code (Release 0.8, 1.0, 1.5 and 2.0) on a local drive using the ftp server.

We obtained the bug information related to Firefox from Bugzilla1. Wget2 tool can be used to retrieve

bug reports from Bugzilla server. We also processed the CVS log output to find the revisions of files

in which bugs were fixed. Whenever a developer makes a change to a file and commits it to the CVS

repository, he records a message explaining the cause for change. These comments by developers hold

important information regarding bugs. The bugs reported in Bugzilla as well as the CVS comments

were used to map bugs to individual revisions of files. We calculated for each file the number of

bugs that occurred between two consecutive releases of Firefox. A database was designed to hold the

information regarding bugs and metrics. We processed the following number of cpp, header, and c

files in each release of Firefox:

File Type Firefox 0.8 Firefox 1.0 Firefox 1.5 Firefox 2.0

cpp 3913 4017 4216 4276

5.1.2 Computing Code Metrics

We used our own software to calculate the source code metrics. We performed static analysis of

downloaded source code files and calculated individual metrics for functions and classes. Metrics then

aggregated on files getting total and maximum values of each metrics for each file. We used the

following function metrics for our study:

1https://bugzilla.mozilla.org/
2http://www.gnu.org/software/wget/
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5.2 Fault Prediction Models Using Regression Techniques

Metrics Description

CC Total Cyclomatic Complexity

MCC Maximum Cyclomatic Complexity

CD Total Control Density

MCD Maximum Control Density

PC Total Parameter Count

MPC Maximum Parameter Count

RPC Total Return Point Count

MRPC Maximum Return Point Count

LVC Total Local Variable Count

MLVC Maximum Local Variable Count

ND Total Nesting Depth

MND Maximum Nesting Depth

FLOC Function Lines Of Code

MLOC Maximum Function Lines Of Code

File metrics include the following along with the aggregated metrics for functions and classes:

Metrics Description

NOF Total Number Of Functions

NOIF Number Of Included Files

LOC Lines Of Code

NOGIF Number of global if

5.2 Fault Prediction Models Using Regression Techniques

Regression based fault prediction models are built using statistical regression and machine learning

techniques. The most commonly used methods for the regression based fault prediction models are

multiple linear regression (MLR) and neural network (NN). We used both MLR and NN. Moreover,

to perform a comparative study, we used three other techniques of machine learnings, which are

commonly used for numerical prediction. The names of these techniques are, support vector machine

(SVM), naive bayes (NB), and radial basis function (RBF). We built these models from the computed

metrics data of Firefox. The independent variables in our prediction models are the set of metrics

under study for each source/class file, while the dependent variable is the number of post-release

faults. In the following subsections, we describe in details about our methodology, which we used

to construct the regression based fault prediction model. Our methodology is based on an approach

proposed by Nagappan et al. [Nagappan et al., 2006].

5.2.1 Metrics Correlation

In Statistics, correlation is a measure of association between two variables. Like, in our case these

variables are the number of bugs (post release defects) and the code metrics. The value of the

correlation coefficient varies between +1 and -1. When the value of the correlation coefficient lies

around ± 1, then it is said to be a perfect degree of association between the two variables. As the
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5.2.2 Metrics Scatter Plot

value goes towards 0, the relationship between the two variables will be weaker.

Usually, in statistics, we measure two types of correlations, i.e., Pearson’s correlation and Spear-

man’s rank correlation. In case of Pearson’s correlation, we compute the degree of the relationship

between the linear related variables, and both variables should be normally distributed. Therefore,

Person’s correlation belongs to parametric statistics, where sample distribution is known. Whereas,

Spearman’s rank correlation coefficient is nonparametric that does not assume any assumptions

related to the distributions of correlated variables. Therefore, for Spearman’s rank correlation it is

not necessary that both the variable should have linear relationships. Spearman’s rank correlation can

be used if the relation between the two variable is non-linear [Breu, 2006]. Furthermore, Spearman’s

rank correlation is the correlation between the ranks of the measures of attributes, rather than on the

magnitude of their measures, and is not sensitive to outliers.

In our experiment, we used both technique of correlation i.e., pearson and spearman rank correla-

tion. We, find the correlation between the code metrics and the number of post release bugs. Table

5.1 list the correlation results of four different releases of Firefox project. Correlation significant at

the 0.01 level.

Table 5.1, shows that FLOC (function line of code) is highly correlated with the number of post

release bugs. The correlation value of FLOC is 0.653 (Pearson), similarly we found that NOF (number

of function), control density, and cyclomatic complexity are also highly correlated with the number of

post release defects. Theoretically, correlation above 0.5 is considered as strong correlation. However,

in case of fault prediction models, correlations over 0.4 are considered as strong correlation [Ohlsson

and Alberg, 1996, Zimmermann and Nagappan, 2008]. Furthermore, Table 5.1, depicts that the

correlation patterns are similar, among all projects and code metrics are positively correlated with

each other.

5.2.2 Metrics Scatter Plot

Scatter graph is a graph, which help to plot the information on two related variables. It consists of

plotted points, which are scattered all around the X-Y grid. The main use of the scatter graph is to

visualize the strength of the co-relation between the two metrics. Therefore, we decided to draw a

scatter plot of each metric with the number of post release defects. The results are shown in Figure 5.2

Figure 5.2 depicts that NOF, FLOC, MFLOC, CC, PC and LOC are highly correlated with the

number of post release defects.

5.2.3 Principle Component Analysis (PCA)

It is shown in Table 5.2 that some code metrics correlated with each other, which means that our met-

ric data has multicollinearity issues. Multicollinearity occurs when predictors (dependent variables)

are so highly correlated with each other that it is difficult to come up with reliable estimates of their

individual regression coefficients. Multicollinearity does not reduce the predictive power or reliability

of the model as a whole; it only affects calculations regarding individual predictors. A multiple
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5.2 Fault Prediction Models Using Regression Techniques

Table 5.1. Source code metrics correlation with the number of faults

Metrics
Firefox 0.8 Firefox 1.0 Firefox 1.5 Firefox2

Pearson Spareman Pearson Spareman Pearson Spareman Pearson Spareman

NOF 0.520* 0.449* 0.518* 0.531* 0.585* 0.407* 0.491* 0.280*

FLOC 0.536* 0.477* 0.525* 0.551* 0.653 0.429* 0.542* 0.290*

MFLOC 0.309* 0.411* 0.341* 0.460* 0.369* 0.372* 0.308* 0.260*

CD 0.504* 0.444* 0.503* 0.517* 0.606* 0.411* 0.495* 0.264*

MCD 0.255* 0.393* 0.283* 0.464* 0.234* 0.336* 0.182* 0.224*

CC 0.503* 0.450* 0.487* 0.513* 0.608* 0.413* 0.499* 0.265*

MCC 0.293* 0.397* 0.307* 0.439* 0.322* 0.358* 0.259* 0.229*

PC 0.471* 0.451* 0.476* 0.550* 0.595* 0.407* 0.495* 0.264*

MPC 0.271* 0.365* 0.309* 0.465* 0.294* 0.329* 0.247* 0.226*

RPC 0.462* 0.457* 0.481* 0.503* 0.551* 0.424* 0.427* 0.242*

MRPC 0.202* 0.343* 0.223* 0.312* 0.214* 0.313* 0.153* 0.146*

LVC 0.515* 0.434* 0.465* 0.476* 0.563* 0.397* 0.455* 0.260*

MLVC 0.274* 0.376* 0.267* 0.407* 0.292* 0.348* 0.234* 0.238*

NDh 0.512* 0.458* 0.495* 0.532* 0.630* 0.412* 0.532* 0.286*

MND 0.294* 0.358* 0.260* 0.368* 0.308* 0.351* 0.243* 0.216*

NOIF 0.526* 0.475* 0.562* 0.546* 0.612* 0.433* 0.517* 0.288*

NOGIF 0.073* 0.125* 0.117* 0.166* 0.159* 0.189* 0.147* 0.110*

LOC 0.496* 0.467* 0.520* 0.536* 0.632* 0.398* 0.503* 0.271*

Correlation is significant at the 0.01 (2 tailed)

Figure 5.2. Scatter plot between code metrics and number of faults.
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5.2.4 Fault Prediction Models Using Multiple Linear Regression

regression model with correlated predictors can indicate how well the entire bundle of predictors

predicts the outcome variable, but it may not give valid results about any individual predictor, or

about which predictors are redundant with others.

The presence of multicollinearity is not a favorable condition to construct a predictor model. To

overcome the multicollinearity problem, we used a standard statistical approach, namely principal

component analysis (PCA) [Jackson, 2003]. Principal component analysis is appropriate when we

have obtained measures on a number of observed variables and wish to develop a smaller number of

new variables (called principal components) that will account for most of the variance in the observed

variables. With PCA, a smaller number of uncorrelated linear combinations of metrics that account

for as much sample variance as possible are selected for use in regression. These principal components

are independent and free from multicollinearity. The principal components may then be used as

predictors in fault prediction models.

To transform the metrics (raw) data into principal components, statistical tool, SPSS is used.

Using SPSS, we obtained all the principal components for each of the four releases of Firefox project

that account for a cumulative sample variance greater than 96%. Table 5.3 shows, top 10 principal

components, which accounts 97% of the total variance in Firefox (Release 0.8) project. After trans-

forming the raw metrics data into principal components, the next step is to use them and build models.

5.2.4 Fault Prediction Models Using Multiple Linear Regression

To perform our experiments, we built four MLR models. These models are trained using metrics

data of four different releases of Firefox, i.e., Rel. 0.8, 1.0, 1.5, and 2.0. We used both raw met-

rics and principal components to construct the models. The built MLR models have the following form,

y = b0+b1x1+b2x2+.....bnxn

Where, y is the dependent variable and xn are the set of n predictor (code metrics) variables and

bn are n different coefficients. For each model, y represents the number of faults in a subsystem or

module. MLR is formally described in chapter 2. We used the techniques of MLR and performed

two different experiments to build the fault prediction models. In the first experiment, we used the

principal components as the predictors (independent) variable and the post-release defects as the

dependent variable. In the second experiment, we used raw metrics data as the dependent variable.

We evaluated our models with the help of metrics, which are most commonly used for the evaluation

of regression models.

For each model, we present the R, R2, Adjusted R2 and F-ration value. Where R is the correlation

between the actual and the predicted value. R2 is the ratio of the regression sum of squares to the

total sum of squares. As a ratio, it takes values between 0 and 1, with larger values indicating more

variability explained by the model and less unexplained variation. In simple words, the higher the

R2 value, the better the predictive power. The adjusted R2 measure also can be used to evaluate

how well a model will fit a given data set. Adjusted R2 are commonly used to explain for any

bias in the R2 measure by taking into account the degrees of freedom of the independent variables
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5.2.4 Fault Prediction Models Using Multiple Linear Regression

Table 5.3. The top ten Principal components obtained from the transformation of raw metrics data of

Firefox (Rel. 0.8) project.

Metrics
Principal Component

1 2 3 4 5 6 7 8 9 10

NOF 0.90 0.13 0.09 0.08 0.25 0.08 0.08 0.12 0.08 -0.06

FLOC 0.89 0.22 0.04 0.11 0.11 0.12 0.07 0.12 0.25 0.07

MFLOC 0.89 0.09 0.04 0.06 0.18 0.14 0.05 0.13 0.02 0.31

CD 0.88 0.32 0.12 0.14 0.08 0.12 0.07 0.16 0.13 -0.07

MCD 0.87 0.10 0.05 0.09 0.08 0.28 0.05 0.13 0.07 0.23

CC 0.86 0.32 0.15 0.15 0.12 0.09 0.08 0.10 0.16 -0.18

MCC 0.85 0.09 0.40 0.08 0.09 0.08 0.02 0.12 0.04 -0.05

PC 0.84 0.33 0.13 0.13 0.10 0.13 0.09 0.18 0.10 -0.05

MPC 0.84 0.18 0.12 0.35 0.06 0.09 0.05 0.12 0.15 -0.22

RPC 0.31 0.82 0.22 0.22 0.07 0.14 0.07 0.20 0.16 0.02

MRPC 0.33 0.77 0.27 0.19 0.19 0.11 0.07 0.03 0.26 -0.02

LVC 0.24 0.31 0.90 0.08 0.11 0.05 0.02 0.06 0.04 0.00

MLVC 0.31 0.32 0.10 0.85 0.13 0.13 0.04 0.08 0.13 0.01

ND 0.29 0.16 0.12 0.11 0.90 0.19 0.04 0.09 0.09 0.01

MND 0.34 0.17 0.06 0.13 0.21 0.88 0.08 0.10 0.08 0.01

NOIF 0.12 0.07 0.02 0.03 0.03 0.06 0.98 0.08 0.03 0.00

NOGIF 0.46 0.18 0.08 0.09 0.11 0.11 0.12 0.83 0.07 0.01

LOC 0.33 0.44 0.05 0.17 0.12 0.11 0.04 0.08 0.79 0.00
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5.2 Fault Prediction Models Using Regression Techniques

Table 5.4. Fault prediction models using multiple linear regression

Firefox Metrics Data R R2 Adj. R2 F-test* MAE RMSE RAE% RRSE%

0.8
Without PCA 0.65 0.43 0.42 161.23 2.59 5.87 78.99 79.71

With PCA 0.60 0.36 0.36 223.69 2.59 6.41 78.70 86.89

1.0
Without PCA 0.63 0.40 0.40 148.12 2.85 6.62 73.67 80.69

With PCA 0.61 0.37 0.37 236.32 3.00 7.03 77.73 85.64

1.5
Without PCA 0.74 0.54 0.54 276.29 3.11 6.95 73.79 71.57

With PCA 0.71 0.51 0.50 431.01 3.33 7.57 79.07 77.98

2.0
Without PCA 0.64 0.41 0.41 165.31 2.35 6.02 89.83 81.66

With PCA 0.61 0.37 0.37 251.32 2.41 6.34 92.25 86.06

* significant at p<0.001

and the sample population. The adjusted R2 tends to remain constant as the R2 measure for large

population samples. Whereas, F-ratio are commonly used to assessing the models. It is a measure of

how much the model has improved the prediction of the outcome compared to the level of inaccuracy

of the model. In short a good model must have a large F-ratio (at least F-ratio should be greater

than 1) [Field, 2004]. Furthermore, to analyze the presence of errors in the prediction results of

models, we used the metrics MAE, RMSE, RAE and RRSE. We formally described all these metrics

in chapter 2. In the following paragraphs we discuss the obtained results of model’s evaluation metrics.

Table 5.4 shows the evaluation results of MLR models. These results show that the models built

with raw metrics have little larger values of evaluation metrics (i.e., R, R2, and Adjusted R2) as

compared to the models built with principal components. This difference in the results of two different

types of models are not prominent. However, the results of Table 5.4 also show that the value of

F-ratio is higher for those models which are built using principal components. Therefor, we can

conclude that, although the value of R, R2, and Adjusted R2 of PCA based models is smaller as

compared to those models which are built with raw metrics, but still we can consider PCA based

model as better models because its F-ratio value is higher.

Table 5.4, shows that the value R range between 0.63 to 0.74 (without PCA) and 0.60 to 0.71 (with

PCA). The corresponding values of R2 range between 0.40 to 0.54 and 0.36 to 0.51 respectively. The

R2 values of two different types of models indicate that our raw metrics explained 54.0% (maximum)

of the variance. Principal components explained 51.0% (maximum) of the variance. The R2 indicates

the efficacy of the built regression models. The adjusted R2 values indicate the lack of bias in our

R2 values. We used the techniques of 10-fold cross validation to evaluate the predictive power of our

models. Ten fold cross validation is a technique which is used to divide the whole data set into ten

parts, and train the model using only one part of the data set, while the rest of the nine parts of the

data used for testing. This process repeats 10 times. Each time model is trained with differnt part of

the data and tested on the rest of the data. Since, the value of R > 0.7 and R2 > 0.5 is considered

as a good value for any model, therefore, we can conclude that our regression models are robust. Till

now we discuss the regression power of our MLR models. Now in the next paragraph we discuss the
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5.2.5 Fault Predictor Model Using Machine Learning Algorithms

accuracy of our prediction models.

In order to measure the prediction accuracy of our models, we used four different metrics, which

are commonly used to measure the accuracy of a prediction model. The metrics belongs to the two

different classes of error, i.e., Absolute Error and Relative Error. In case of Absolute Error, error

in prediction value may be represented by the actual amount of error. Therefor, the absolute error

of the prediction model shows how large the error actually is. The Relative Error is a ratio that

compared the error to the size of the actual value. In short, Relative Error shows how large the error

is in relation to the correct value.

To measure the Absolute Error we used two different metrics i.e., the mean absolute error (MAE)

and the root mean square error (RMSE). Whereas, to measure the relative error of the models, we

used the metrics, relative absolute error (RAE) and the root relative square error (RRSE). The formal

description of error metrics described in Chapter 2.

The absolute and relative errors of our models are characterized in the last four columns of Table

5.4. It is shown in the table that the prediction accuracy of models trained with raw data (without

PCA) and principal components are almost equal. Table 5.4 shows that the models trained with the

raw metrics have different values for each error metrics. Like, MAE lies in the range 2.35 to 3.11.

RMSE lies in the range 5.87 to 6.95. RAE lies in the range 73.67% to 89.83% and RRSE lies in

the range 71.57% to 81.66%. Similar pattern are observed when models are trained with principal

components, i.e., MAE lies in the range 2.41 to 3.33. RMSE lies in the range 6.34 to 7.57. RAE lies

in the range 77.3% to 92.25% and RRSE lies in the range 77.98% to 86.89%. The obtained values of

MAE and RMSE are small, but the value of relative error, i.e., RAE and RRSE are large. The big

issue with the MMRE is its value is strongly influenced by a few very large MRE values [Conte and

Shen, 1986].

5.2.5 Fault Predictor Model Using Machine Learning Algorithms

The scatter plots of code metrics (see Figure 5.2) show that most of the code metrics not linearly

correlated with the post release defects. Moreover, the distribution of metrics data is also unknown.

When the distribution of data is not known, then non-parametric regression commonly used to

construct the regression models [Stern, 1996]. Therefor, in this section we described our regression

models, which are built using different non-parametric regression methods. The name of these meth-

ods: neural networks (NN) or multi layer perceptron, radial basis function (RBF), support vector

machine (SMOreg) and REPTree. A brief description about these methods given in Chapter 2.

Each model trained with the source file’s metrics data of four different releases of Firefox project.

Before training, we transformed the source file’s metrics data (also called raw metrics data) into prin-

cipal components and trained the model with both raw metrics and principal components. Therefore,

each model actually trained with eight different data sets. Four of them are raw metrics data and the

rest four of them are principal components. We, used Weka tool to perform the experiment. Table 5.5

shows that five different evaluation measures used to evaluate the non parametric regression models.

The names of these metrics are, R, MAE, RMSE, RAE and RRSE. In the following paragraph, we
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5.2 Fault Prediction Models Using Regression Techniques

describe these models.

Neural Network (NN): First, we used neural network back-propagation method to classify in-

stances. The first step is to train the neural network. The main goal of the training process is to find

the set of weight values that will cause the output from the neural network to match the actual target

values as closely as possible. There are several issues involved in designing and training a multilayer

perceptron network. Some of the important issues are given below,

1. Selecting how many hidden layers to use in the network: In most of problems, one hidden

layer is sufficient. Using two hidden layers rarely improves the model, and it may introduce a

greater risk of converging to a local minima (a point on error space, for details read [Bishop,

First Edition, October 2007]).

2. Deciding how many neurons to use in each hidden layer: One of the most important

characteristics of a perceptron network is the number of neurons in the hidden layer(s). If an

inadequate number of neurons used, the network will be unable to model complex data, and

the resulting fit will be poor. If too many neurons are used, the training time may become

excessively long, and worse, the network may over fit the data. When over fitting occurs, the

network will begin to model random noise in the data. The result is that the model fits the

training data extremely well, but it generalizes poorly to new, unseen data. Validation must be

used to test for this.

3. Avoids Local Minima: To find a globally optimal solution one should avoid the presence of

local minima. Several methods have been tried to avoid local minima. The simplest is just to

try a number of random starting points on the error surface and use the one with the best value.

A more sophisticated technique called simulated annealing improves on this by trying widely

separated random values and then gradually reducing (cooling) the random jumps in the hope

that the location is getting closer to the global minimum. For details read the following book

[Bishop, First Edition, October 2007].

4. Converging Time: Another design issue is to design a neural network, which converge to an

optimal solution in a reasonable period of time. Mostly conjugate gradient algorithm is used for

this purpose, which optimize the weight values in numbers of cycles or iterations. Each cycle or

iteration is called an epoch.

5. Learning Rate: The training of neural network using an algorithm such as in our case error

back-propagation usually requires a lot of time on large and complex problems. Such algo-

rithms typically have a learning rate parameter that determines how much weights can change

in response to an observed error on the training set. The choice of this learning rate can have a

dramatic effect on generalization accuracy as well as the speed of training [Wilson and Martinez,

2001].

In order to design an optimal neural network for our experiment, we considered all the above

mentioned issues. We used back-propagation method of neural network and designed multiple neural

networks using one and two hidden layers. In each NN, we used different combinations of perceptrons

per hidden layer. In case of single hidden layer, we designed two different neural networks. In the

first neural network, we used 4 perceptron in the single hidden layer, whereas, in the second designed
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5.2.5 Fault Predictor Model Using Machine Learning Algorithms

Figure 5.3. Training of fault prediction model using single hidden layer neural network. The training

data set is labeled with isbuggy (isbuggy=yes or isbuggy=no) criteria.

we used eight perceptrons in the single hidden layer. Similarly, we designed two more neural networks

with two hidden layers. In the first, two hidden layers neural network, we used four perceptrons in

the first hidden layer and two perceptrons in the second hidden layer. Whereas, in case second, two

hidden layers neural networks, we used eight perceptrons in first hidden layer, and four perceptrons

in second hidden layer. Furthermore, for each neural network, we set number of epoch 500 and used

different values for learning rate i.e., 0.3, 0.2, 0.1 and 0.01. Figure 5.3 shows the designed of single

hidden layer neural network, while Figure 5.4 is an example of two hidden layer perseptron.

Once we designed the four different neural networks, then we trained each of them using eight data

sets. We found the best performance of a neural network when we used a single hidden layer with

eight perceptron (see Figure 5.3). The evaluation measures of neural network (single layer with eight

perceptrons) is shown in Table 5.5, which shows that the maximum value of R ( prediction correlation

with the actual value) is 0.68 or 68%, whereas the associated error values are 3.29 MAE, 7.11 RMSE,

78.17% RAE and 73.26% RRSE. These metrics values are obtained when NN trained with the raw

metrics data. When the same NN trained with principal component the maximum obtained value

of R is 0.6166 or 61.66%, and the associated value error metrics are 3.28 MAE, 7.65 RMSE, 78.07%

RAE and 78.81% RRSE. The minimum value of R is 0.564 or 56.4% (when trained with raw metrics

data), and 0.483 or 48.3% (when trained with principal components). It is also shown in Table 5.5,

that the variation in the evaluation measures is not very large, when models are trained with raw

metrics or principal components. Its means that most of the predictors used in our models have

small correlation with other predictors, and therefore, pca is less significant in our experiment. This

is the main reason, that the value of evaluation measures of pca based model is almost equal to

the evaluation measures of the models which are trained with raw metrics data. Another possibel

reason is, the estimated evaluation measures of our model may be over estimated by those models
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5.2 Fault Prediction Models Using Regression Techniques

Figure 5.4. Training of fault prediction model using double hidden layers of neural network. The

training data set is labeled with isbuggy (isbuggy=yes or isbuggy=no) criteria.

which are trained with the raw metrics data. The estimated measure relaibel, when models are

trained with principal components. Finally, on the basis of the high value of R and the small ab-

solute errors, we can conclude that neural network can be used as a fault prediction model for software.

Radial Basis Function (RBF) Network: A Radial Basis Function (RBF) Network is a

feedforward network. It has an input layer, a hidden layer and an output layer. The neurons in

the hidden layer contain Gaussian transfer functions whose outputs are inversely proportional to

the distance from the center of the neuron. To build the model using RBF, we used WEKA that

implements a normalized Gaussian radial basis function network. It uses the k-means clustering

algorithm to provide the basis functions and learns a linear regression on top of that. To design an

optimal RBF network, we set the input parameter i.e., number of clusters = 12 for each model.

The evaluation measures of RBF network are shown in Table 5.5. First we trained the RBF

Network models using raw metrics data. The obtained value of R range from 0.464 to 0.59, MAE

range from 2.15 to 3.09, RMSE range from 6.25 to 7.85, RAE range from 73.38% to 82.41% and

RRSE range from 80.94% to 88.68%. The evaluation measures when models are trained with principal

components are, R range from 0.477 to 0.61, MAE range from 2.11 to 3.02, RMSE range from 6.47

to 7.71, RAE range from 71.55% to 80.83% and RRSE range from 79.42% to 87.90%. From these

results, it is observed that models performed well when trained with principal components.

Support Vector Machine (Sequential Minimal Optimization SMOreg): To build the

regression model using support vector machine we used WEKA tool, which provides SMOreg algo-

rithm to implement the support vector machine for regression. Furthermore, WEKA provides various
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algorithms to learn the parameters. To design the SMOreg model for our experiment, we selected

RegSMOImproved algorithm for RegOptimizer (For more details, read [Ian H. Witten and Kaufmann,

2005]).

The evaluation measures of SMOreg are shown in the fifth column of Table 5.5. First we trained

the models using raw metrics data. The obtained value of R range from 0.55 to 0.67, MAE range

from 1.65 to 2.56, RMSE range from 6.6 to 8.06, RAE range from 59.74% to 63.31% and RRSE range

from 83.03% to 97.53%. The obtained evaluation measures when models are trained with principal

components are, R range from 0.51 to 0.63, MAE range from 1.64 to 2.65, RMSE range from 6.81

to 8.63, RAE range from 60.01% to 68.72% and RRSE range from 88.47% to 99.0%. From these

results, we can conclude that the support vector machine (i.e., SMOreg) can be used to build the

fault prediction model with 67% correlation.

Reduced Error Pruning Trees(REPTrees): In order to analyze the prediction capability

of decision tree learner algorithm, we used REPTrees to build the fault prediction models. It is a

fast tree learner that uses reduced error pruning. REPTree is actually a mixture of decision tree

and linear regression, where each leaf node corresponds to a linear regression algorithm. REPTree

algorithm is available in WEKA. In order to design an optimal model using REPTree, we used

different combinations of the input parameters of the models. Finally, we selected a set of input

parameters, which built an optimal REPTree model for fault prediction. An example of two folds

REPTree is shown in Figure 5.5. Following is the list of important parameters, which were changed

to train the model.

1. We used 2, 4,and 6 numbers of instances per leaf.

2. The number of folds for reduced error pruning set to 2,3,4 and 5.

3. The number maximum tree depth set to 2, 4, and 6.

The last column of Table 5.5 depicts the value of the model evaluation measure. First, we trained

the models using raw metrics data. The obtained value of R range from 0.46 to 0.67, MAE range from

2.03 to 2.86, RMSE range from 6.31 to 7.35 RAE range from 67.81% to 79.35% and RRSE range

from 83.86% to 97.53%. The obtained evaluation measures when models are trained with principal

components are, R range from 0.3716 to 0.63, MAE range from 1.64 to 2.65. RMSE range from 2.75

to 8.04, RAE range from 72.43% to 86.68% and RRSE range from 82.89% to 86.68%. Since, the

maximum obtained value of R is 0.67, its mean that the correlation between the actual and predicted

values is large. Therefore, we can conclude that REPTree can be used to build the fault prediction

models.

5.2.6 Comparison of Regression based Fault Prediction Models

In order to evaluate the performance of regression models, we used both parametric and non-

parametric regression techniques. We, built five different models using the raw metrics data and the

principal components. The evaluation metrics of each model has been computed. The comprehensive

analysis of these computed metrics leads to the following conclusions:
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Table 5.5. Evaluation of fault predictor models obtained using raw metrics data i.e., without PCA

Firefox Eval. Measures Metrics Data
Fault Prediction Models

NN RBF SMOreg REPTree

Rel. 0.8
R

Without PCA 0.6423 0.5308 0.5503 0.4681

With PCA 0.523 0.5247 0.5127 0.4157

MAE
Without PCA 2.4712 2.6131 2.1016 2.609

With PCA 2.6383 2.5649 2.0877 2.7544

RMSE
Without PCA 5.6989 6.2579 6.6906 6.5555

with PCA 6.2907 6.2952 6.8117 6.7698

RAE
Without PCA 75.16% 79.47% 63.92% 79.35%

With PCA 80.24% 78.01% 63.49% 83.77%

RRSE
Without PCA 77.28% 84.86% 90.72% 88.89%

With PCA 85.30% 85.36% 92.37% 91.80%

Rel. 1.0
R

Without PCA 0.5681 0.494 0.5938 0.5465

with PCA 0.5148 0.5278 0.5446 0.4517

MAE
Without PCA 2.9926 3.0747 2.5658 2.8404

With PC 3.0729 3.0239 2.6566 3.0922

RMS
Without PCAE 6.8024 7.1399 6.9534 6.8846

With PCA 7.0407 6.9764 7.2631 7.5162

RAE
Without PCA 77.42% 79.54% 66.38% 73.48%

With PCA 79.49% 78.23% 68.72% 79.99%

RRSE
Without PCA 82.86% 86.97% 84.69% 83.86%

With PCA 85.76% 84.97% 88.47% 91.55%

Rel. 1.5
R

Without PCA) 0.6887 0.5905 0.6784 0.6748

With PCA 0.6166 0.6083 0.6346 0.5615

MAE
Without PCA 3.2938 3.0918 2.5172 2.8573

With PCA 3.2895 3.0145 2.5285 3.0517

RMSE
Without PCA 7.114 7.8594 8.0623 7.3013

With PCA 7.653 7.7114 8.6353 8.0484

RAE
without PCA 78.17% 73.38% 59.74% 67.81%

With PCA 78.07% 71.55% 60.01% 72.43%

RRSE
Without PCA 73.26% 80.94% 83.03% 75.19%

With PCA 78.81% 79.42% 88.93% 82.89%

Rel. 2.0
R

Without PCA 0.564 0.4643 0.5552 0.5277

with PCA 0.4837 0.477 0.5234 0.3716

MAE
Without PCA 2.1763 2.1581 1.658 2.0278

With PCA 2.2087 2.1166 1.6403 2.27

RMSE
Without PCA 6.1169 6.5376 7.1897 6.3103

with PCA 6.4572 6.4795 7.2981 6.8761

RAE
Without PCA 83.11% 82.41% 63.31% 77.43%

With PCA 84.34% 80.83% 62.64% 86.68%

RRSE
Without PCA 82.98% 88.68% 97.53% 85.60%

With PCA 87.59% 87.90% 99.00% 93.27%
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Figure 5.5. Training of fault prediction model using REPTree with two folds. The tree is built with

metrics data, where nof=NOF, numberOfIncludedfiles=NOIF, totalrpoints=RPC, maxi-

mumcdensity=MCD, totallocvar=LVC and loc=LOC (line of codes)

1. In our experiment, the prediction results of PCA based models are almost same as compared to

the results of non-PCA based models. The possible reasons are: principal components normally

perform well when the large number of predictors used to build the model, and most of the

predictors are correlated with each other. Whereas, in our experiment, we used small numbers

of predictors, i.e., 18, and only few of them are found to be correlated with other predictors

(see Table 5.2 and Table 5.3). Therefore, we can conclude that, if the numbers of predictors are

in small numbers, and have a weak correlation with other predictors, then one can build the

fault prediction models without using principal components. Moreover, in our experiment, we

also observed that the difference in the evaluation measure is almost same, when the models are

trained with raw metrics and principal components, therefor, it would be better to use principal

components to build the prediction models. Because, principal components are used to avoid

over estimation from the prediction result, which is normally present when the prediction models

have correlated predictors.

2. From the results of Table 5.5 and Table 5.4, it may be observed that the maximum value

of correlation coefficient (i.e., R) is 0.74, which is obtained when the model is trained using

MLR (multiple linear regression) technique. Whereas, the other maximum values of R are 0.68

(NN), 0.678 (SMOreg), 0.674 (REPTree), and 0.59 (RBF). The mean absolute error values i.e

MAE in ascending order are 1.65 (SMOreg), 2.02 (REPTree), 2.11 (RBF), 2.17 (NN), and 2.35

(MLR). The RMSE values in ascending order are, 5.69 (NN), 5.87 (RMSE), 6.31 (REPTree),

6.47 (RBF), and 6.69 (SMOreg). The relative absolute error values in ascending order are,

59.74% (SMOreg), 67.81% (REPTree), 71.55% (RBF), 73.67% (RAE), and 75.16% (NN). The

RRSE values in ascending order are, 71.52 (MLR), 73.26% (NN), 75.19% (REPTree), 79.42%
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SMOreg and 83.03%. From these observations the minimum MAE value is 1.65 (SMOreg).

The mimimum value of RMSE is 5.69 (NN). The mimimum relative error, i.e., RAE is 59.74%

(SMOreg). The minimum RRMSE value is 71.57 (MLR). On the basis of these results, we can

conclude that the best regression models in desending order are, MLR, NN, SMOreg, REPTree

and RBF.

5.3 Fault Prediction Models Using Classification Techniques

In this section, we describe our approach to construct a fault prediction model using classification

techniques of machine learning. In case of classification based fault prediction model, a classification

schema is used to build the model. Therefore, in order to provide a predictor to classify source

files according to a pre-defined classification schema, we compare two classification schemes. The

first schema allows classifying files as being buggy or not. The second schema is called bug level

classification where files are classified as low buggy, medium buggy, or highly buggy respectively.

❏ isBuggy: If a file contains no bugs, its isBuggy value is set to “no”, otherwise the value is set to

“yes”.

❏ bugLevel: We define three bug levels based on the number of bugs in each file as follows:

Number of Bugs Bug Level

0-10 low

10-30 medium

30 and above high

In our work, we used different machine learning techniques. The name these techniques are logistic

regression (LR), decision tree J48 (DT), support vector machine (SMO), radial basis function (RBF),

naive bayes (NB), boosting and bagging. The approach is to use these techniques for automatically

obtaining a classifier from one version of a program. In order to judge the quality of the obtained

classifier, we used other versions of the same program in order to test the classifier. In particular, we

used the code metrics data of Firefox 0.8 for extracting the classifier, and versions 1.0, 1.5, and 2.0

to test them. We used principal components to train the classifiers, built using classification schema

isBuggy and bugLevel. Furthermore, to perform a comparative study, we also used raw metrics data

(without PCA) to train the classifiers, built using classification schema isBuggy. In the following

subsection, we describe our methodology which we used to build the fault prediction model.

5.3.1 Point Biserial Correlation

The first step to build the software fault prediction model is to find the correlation between the

predictors (like code metrics) and the dependent variable (number of faults). In Section 5.2.1, we

obtained the sparemann and pearson correlation between the predictors and the number of faults.

The correlation results shows (see Table 5.1) that most of the predictors are highly correlated with

the number of faults. Now, in this section we find the point biserial correlation, because in case

of classification the number of faults, i.e., dependent variable is discrete variable. If the dependent
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Table 5.6. Point Biserial Correlation between Code Metrics and bug level

Code Metrics Firefox Rel 0.8

NOF 0.437*

FLOC 0.466*

MFLOC 0.401*

CD 0.431*

MCD 0.385*

CC 0.438*

MCC 0.386*

PC 0.439*

MPC 0.357*

RPC 0.447*

MRPC 0.335*

LVC 0.421*

MLVC 0.365*

ND 0.444*

MND 0.341*

NOIF 0.462*

NOGIF 0.115*

LOC 0.459*

Correlation is significant at the 0.01 (2 tailed)

variable is discrete (i.e., true or false) then we cannot use traditional correlation techniques, i.e.,

sparemann and pearson correlation. Whereas, point biserial correlation coefficient is a correlation

technique, used when one variable is discrete or dichotomous. It measures the association between a

continuous variable and a discrete variable [Field, 2004]. It can take values between -1 and +1. In

the following paragraph, we describe the formal description of point biserial correlation.

Assuming X as a continuous variable and Y as categorical with values 0 and 1, point biserial

correlation can be calculated using the following formula,

r =
(X̄1 − X̄0)

√
p(1− p)

Sx
(5.1)

Where X̄1 is the mean of X when Y=1 , X̄0 is the mean of X when Y=0, Sx is the standard

deviation of X, and p is the proportion of values where Y=1. Positive point biserial correlation

indicates that large values of X are associated with Y=1 and small values of X are associated with

Y=0. In our experiment, the results of point biserial correlation is shown in Table 5.6. The re-

sults of Table 5.6 show that, correlation value range from 0.115 to 0.466. In case of software fault

prediction model, correlations over 0.4 are considered as strong correlation [Ohlsson and Alberg, 1996].
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5.3 Fault Prediction Models Using Classification Techniques

5.3.2 Experimental Setup to Build The Models

We used WEKA (a Machine Learning tool developed in JAVA)3 and SPSS tool (statistical tool) [Field,

2004] for obtaining a classifier for source files based on the number of bugs and the obtained complex-

ity metrics. Eight different machine learning approaches are used to obtain different classifiers. The

selection was based on the research literature available about the performance of these approaches. We

selected eight approaches for our study in order to find the most suitable classifier. The brief descrip-

tion of all these models is given in Chapter 2. All the selected classifiers were trained on metrics and

bug data of Firefox Release 0.8 according to both the isBuggy and the bugLevel criteria. After training

of classifiers WEKA can store models in the form of Java serializable objects holding different op-

tions. These models were afterwards tested in order to classify the source files of later Firefox releases.

In order to perform the experiment using machine learning classifiers, the first step is to design

the classifiers model using input parameters. The optimum value of all these parameters, are not

known. Therefore, one has to use different combinations of these parameters to find the optimum

design of the model. In the following paragraph, we describe some of the designed parameters of our

classification models.

In case of Decision Tree (J48) WEKA provides a class i.e., weka.classifiers.trees.J48 for generating

a pruned or unpruned C4.5 decision tree. Some of the important input parameters of J48 are confi-

denceFactor, numFolds, minNumObj and unpruned. By setting the different value of confidenceFactor,

we can control the degree of pruning i.e., minimal to aggressive. numFolds specifies the number of

subsets into which the training data is divided. One fold is reserved as a validation set and the

remaining folds are used for training/building a tree. By changing the number of folds, we can control

the portion of the data used for training. A small number of folds make the validation set larger,

whereas, a large number of folds make the validation set smaller. The parameter minNumObj is used

to set the minimum number of instances per leaf. unpruned is used to set the pruning option true or

false.

For logistic regression (LR) WEKA provides a class, i.e., weka.classifiers.functions.Logistic. To

train the LR classifiers, we used different values of parameter maxIts, which is used to set the

value of maximum number of iteration. To train the classifier with boosting algorithm, we used

WEKA class AdaBoostM1 (weka.classifiers.meta.AdaBoostM1). In case of AdaBoostM1 the param-

eter classifier is used to provide the name of base classifier. We used the following base classifiers

DecisionStump, RandomForest and REPTree. For bagging algorithem, we used WEKA class Bagging

(weka.classifiers.meta.Bagging). Bagging need a base classifier, we used DecisionStump, Random-

Forest and REPTree as base classifier. Similarly, in case of neural network, we used WEKA class

MultilayerPerceptron (weka.classifiers.functions.MultilayerPerceptron). In case of MultilayerPercep-

tron, we used different combinations of numbers of the hidden layers and the number of perceptrons

per hidden layers. Furthermore, we set different values of learning rate, i.e., 0.3, 0.2, 0.1 and 0.01.

Figure 5.6 illustrate an example of neural network, which is designed to classify a source file on the

basis of bugLevel. After obtaining optimal parameters of each classifier, we trained and tested all

the classifiers using optimal parameters. The obtained results of each classifiers are discussed in the

3http://www.cs.waikato.ac.nz/ml/weka/
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5.3.3 Classification Results and Discussion

Figure 5.6. Training of fault prediction models using Neural Network. The training data set is labeled

with buglevel (low, medium and high) criteria.

Table 5.7. Class distribution for the classification schema isBuggy (only C++ source files)

isBuggy Firefox 0.8 Firefox 1.0 Firefox 1.5 Firefox 2.0 Total Avg.

YES 1053 (26.91%) 2296 (57.15%) 842 (19.97%) 1036 (24.22%) 5227 31.83%

NO 2860 (73.08%) 1721 (42.8%) 3374 (80.02%) 3240 (75.77%) 11195 68.17%

Total 3913 4017 4216 4276 16422

following section.

5.3.3 Classification Results and Discussion

The class distribution of each release of Firefox is shown in the Table 5.7. This distribution is

obtained using classification schema isBuggy. It is shown in the table that in case of Firefox release

0.8, the percentage of the faulty source files is 26.91% and the percentage of the clean source files is

73.08%. Moreover, the average class distribution of four releases shows that 31.83% of the source files

are faulty and 68.17% of the source files are clean or bug free. Similarly, Table 5.8 shows the class

distribution according to the classification schema bugLevel. It is shown in the Table 5.8 that in case

of Firefox 0.8, the percentage of the class distribution i.e., LOW, MEDIUM, and HIGH are 93.43%,

04.06% and 02.50% respectively. Whereas, the average class distributions of four different releases

are 88.51% LOW, 04.32 MEDIUM, and 07.16% HIGH.

These results show that in our data set the class distribution is skewed in both the cases, i.e.,
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5.3 Fault Prediction Models Using Classification Techniques

Table 5.8. Class distribution for the classification schema bugLevel (only C++ source files)

bugLevel Firefox 0.8 Firefox 1.0 Firefox 1.5 Firefox 2.0 Total Avg.

LOW 3656 (93.43%) 3437 (85.56%) 3885 (92.15%) 3558 (83.12%) 14536 88.51%

MEDIUM 159 (04.06%) 240 (05.97%) 217 (05.15%) 94 (02.19%) 710 04.32%

HIGH 98 (02.50%) 340 (08.46) 114 (02.70%) 624 (14.59%) 1176 07.16%

Total 3913 4017 4216 4276 16422

when we used classification schema isBuggy or bugLevel. In case of machine learning classification

problems, the metrics Accuracy can be used as a reliable evaluation metrics, if the class distribu-

tion among examples (data instances) is not skewed. However, in the real world this is rarely the

case that class distribution equal or uniform. It is observed that the unusual and interesting class

is rare among the general population [Provost and Fawcett, 1997]. Since, in our experiment the

class distribution is skewed. Therefore, we cannot evaluate machine learning classifier only on the

basis of evaluation measure Accuracy. In order to evaluate each class, following evaluation metrics

have been used: Precision, Recall, Fmeasure and ROC Area. Moreover, to evaluate the overall

prediction accuracy of each classifier, following metrics have been used: absolute error (MAE and

RMSE), relative error (RAE and RRSE), Kappa statistics (KS) and Accuracy. In the following, we

first discuss the obtained results of the classifiers, trained with isBuggy classification schema. Then,

we discuss the obtained results of the classifiers, which are trained with bugLevel classification schema.

Classification of Source Files Using Classification Schema isBuggy

Table 5.9 shows the results of different classifiers, when classifiers trained and tested using the data set

of Firefox 0.8, whose instances are distributed using isBuggy criteria. This is shown in the table that

in case of raw metrics data (non PCA), the evaluation measures for the class isBuggy=yes have the

following values: precision range from 57.4%(DT) to 72.3%(SMO), recall range from 19.4%(DT) to

56.1%(AdaBoost), Fmeasure range from 30.6%(DT) to 57.0%(AdaBoost), and ROC area range from

0.583(SMO) to 0.831(Bagging). Whereas, in case of principal components (with PCA), the evaluation

measures for the class isBuggy=yes have the following values: precision range from 55.8%(DT) to

70.2%(SMO), recall range from 15.0%(DT) to 60.6%(AdaBoost), Fmeasure range from 24.7%(DT)

to 56.9%(AdaBoost), and ROC area range from 0.563(SMO) to 0.803(NN). The evaluation measures

i.e., precision, recall and Fmeasure for the class isBuggy=no are ranged from 76.6% to 97.7%. In

our experiment our interest is to find those classifiers which can classify faulty source files with high

precision and recall. Therefore, in this experiment, classifiers are compared on the basis of their ability

to classify the class isBuggy=yes (faulty source files). Furthermore, In our experiment the evaluation

measures are almost same when classifiers trained with raw metrics or principal components. But, the

results which are obtained using principal components are considered as more reliable, because PCA

based classification results are not overestomated. Therefore, in order to compare the performance of

the classifiers, we considered only PCA based evaluation measures.

From the obtained results of Table 5.9, the list of classifiers according to the high precision, high
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recall, and high precision and high recall values are given below,

Classifier’s Name High Precision Recall

Support Vector Machine (SMO) 70.2% 15.0%

Logistic Regression (LR) 65.2% 35.0%

Naive Bayes (NB) 62.7% 27.4%

Neural Network (NN) 61.2% 36.5%

Radial Basis Function (RBF) 59.6% 36.7%

Bagging 56.0% 45.9%

Decision Tree (J48) 55.8% 46.0%

Boosting (AdaBoost) 53.7% 60.6%

Classifier’s Name Precision High Recall

Boosting (AdaBoost) 53.7% 60.6%

Decision Tree (J48) 55.8% 46.0%

Bagging 56.0% 45.9%

Radial Basis Function (RBF) 59.6% 36.7%

Neural Network (NN) 61.2% 36.5%

Logistic Regression (LR) 65.2% 35.0%

Naive Bayes (NB) 62.7% 27.4%

Support Vector Machine (SMO) 70.2% 15.0%

Classifier’s Name High Precision High Recall

Boosting(AdaBoost) 53.7% 60.7%

Bagging 56.0% 45.9%

Decision Tree (J48) 55.8% 46%

The above distribution of the classifier’s evaluation results, shows that the highest value of precision

is 70.2% when support vector machine (SMO) is used as classifier. But, this precision is achieved at

the cost of very low recall and Fmeasure i.e., 15% and 24.7% respectively. Furthermore, the value of

ROC area is 0.563, which is close to 0.5. When, ROC area equal to 0.5, then classifier is considered as

a random classifier, because its predictions are random. Therefore, in our experiment SMO cannot be

considered as a good classifier for fault predictions. The highest recall value is 60.6% when AdaBoost

is used as classifier. At this recall value, the precision value of AdaBoost is equal to 53.7. Whereas,

the value of Fmeasure and ROC area are 56.9% and 0.79 respectively. Although the precision of

AdaBoost classifier is not very high but its recall value is very high. Furthermore, its ROC area

and Fmeasure are also acceptable. Therefore, we can consider AdaBoost, as good classifier for fault

prediction. Finally, on the basis of high-precision and high recall values, the top three classifiers are

Boosting, Bagging and Decision Tree (J48). The Fmeasure values of these top three classifiers are

ranged from 50.4 to 56.9, and the values of ROC area are ranged from 0.742 to 0.796.
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Table 5.9. Evaluation measures (Precision, Recall, F-measure, and ROC Area) of different classifiers.

These classifiers are trained and tested using the source files metrics and fault data of Firefox

Release 0.8

Classifier Class

Precision Recall Fmeasure ROC Area

Without With Without With Without With Without With

PCA PCA PCA PCA PCA PCA PCA PCA

LR no 80 79.5 92.6 93.1 85.9 85.8 0.819 0.818

yes 65 65.2 37.1 34.9 47.3 45.5 0.819 0.818

Avg 76 75.7 77.7 75.5 75.5 75 0.819 0.818

DT no 83.6 81.3 85 86.6 84.3 83.9 0.723 0.742

yes 57.4 55.8 54.8 46 56 50.4 0.723 0.742

Avg 76.6 74.4 76.9 75.6 76.7 74.9 0.723 0.742

SMO no 76.6 75.7 97.3 97.7 85.7 85.3 0.583 0.563

yes 72.3 70.2 19.4 15 30.6 24.7 0.583 0.563

Avg 75.5 74.2 76.3 75.4 70.09 69 0.583 0.563

RBF no 79.9 79.6 90.1 90.8 84.6 84.8 0.796 0.8

yes 58.5 59.6 34.9 36.7 43.7 45.4 0.796 0.8

Avg 73.6 74.2 75.8 76.3 73.6 74.2 0.796 0.8

NN no 81.1 79.6 91.4 91.5 86 85.2 0.824 0.803

yes 64 61.2 42.2 36.5 51 45.7 0.824 0.803

Avg 76.6 74.7 78.2 76.7 76.5 74.5 0.824 0.803

Naive Bayes no 79.2 77.9 91.6 94 85 85.2 0.795 0.764

yes 60.4 62.7 34.9 27.4 42.2 38.1 0.795 0.764

Avg 74.2 73.8 76.3 76.1 74 72.5 0.795 0.764

AdaBoost no 84 84.8 85 80.8 84.5 82.7 0.809 0.79

yes 57.9 53.7 56.1 60.6 57 56.9 0.809 0.79

Avg 77 76.4 77.2 75.3 77.1 75.8 0.809 0.79

Bagging no 82.9 81.3 89.6 86.7 86.1 83.9 0.831 0.796

yes 63.8 56 49.8 45.9 55.9 50.4 0.831 0.796

Avg 77.8 74.5 78.9 75.7 78 74.9 0.831 0.796
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5.3.3 Classification Results and Discussion

Figure 5.7. Precision-Recall values of individual labels (yes, no), obtained when classifiers trained with

different machine learning algorithms
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Figure 5.7, depicts the precision and recall values of each class, when the class distribution is based

on isBuggy. Furthermore, Figure 5.7 depicts the overall, i.e., weighted average of precision and recall.

The red color markers at the center of the figure represent the precision and recall values of class

isBuggy=yes (faulty source file). The green color markers at the top right corner represent the class

isBuggy=no. Whereas, the markers lies in between green and red markers are the aggregated average

of both the class. From Figure 5.7, one can conclude that the isBuggy=yes, has small precision and

recall value as compared to class isBuggy=no. This difference is because our class distribution is

skewed. The ideal condition for any classifier is, both classes (i.e., isBuggy=no and isBuggy=yes)

should have their precision and recall values at the top right corner. It is shown in the Figure 5.7

that the classifiers bagging, boosting, neural network and decision tree more closed to the top right

corner as compared to the other classifiers.

Furthermore, the performances of the classifiers can be compared directly by visualizing Precision-

Recall curve and Receiver Operating Characteristics (ROC) curve. Moreover, the metrics accuracy,

kappa statistics and error metrics, i.e., MAE, RMSE, RAE and RRSE can be used to evaluate the

prediction accuracy of each classifier. Now, in the following paragraph we first discuss the Precision-

Recall curve and ROC curve of each classifier, and then discuss the prediction accuracy of each

classifiers.

A Precision-Recall (PR) curve captures the trade off between accuracy and noise as the detector

threshold varies. The curve is hyperbolic in shape and the desired operating point is near the upper

right. In our experiment, the obtained Precision-Recall curves of all the classifiers are shown in Figure

5.8. Each curve is obtained at different threshold value. Figure 5.8 depicts that all the classifiers

follow the same patterns. Initially, classifiers have high precision values at low recall values, and then

precision value start decreasing as the recall value start increasing at different threshold. The ideal

situation is that, precision and recall should have direct relation, but empirical studies of retrieval

performance have shown a tendency for precision to decline as recall increases[Buckland and Gey,

1994]. It is shown in the figure that at different recall values the precision values of boosting, decision

tree (J48), RBF and NB are smaller than the precision values of LR, SMO, NN and Bagging.

The ROC curve is used to characterize the trade-off between true positive rate and false positive

rate. A classifier, which has a large area under the curve is preferable over a classifier with a smaller

area under the curve. A perfect classifier provides an AUC or ROC area that equals 1. The advantages

of the ROC analysis are its robustness toward imbalanced or skewed class distributions. Furthermore,

ROC provides a way of looking at the performance of a classifier, which is independent of any

particular decision threshold. Since, in our experiment the class distribution is skewed (see Table 5.7

and Table 5.8), therefore we obtained the value of AUC or ROC area to evaluate the performance

of different classifiers. Figure 5.9 depicts the ROC curves of different classifiers. It is shown in the

figure that all classifiers have almost similar ROC curve. In our experiment, the classifiers LR, NN

and Bagging, have a larger ROC area, i.e., ≥ 0.8, as compared to other classifiers.

The classification evaluation measures, i.e., Accuracy and Kappa Statistics are given in Table 5.10.

The value Accuracy lies in the range 75.4%(SMO) to 77.5%(LR), which shows that all the classifiers

have high prediction accuracy. In case binary classifiers, if the class distribution is skewed, then it is
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5.3.3 Classification Results and Discussion

Figure 5.8. Precision-Recall Curve of different classifiers at different threshold value of the classifier.

Figure 5.9. Receiver Operating Characteristic Curve (ROC) of different classifiers.
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Table 5.10. Evaluation measures of different fault prediction models, trained with the source files (cpp)

of Firefox Release 0.8

Classifier
Accuracy MAE RMSE RAE(%) RRSE (%) KS

No With No With No With No With No With No With

PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA

LR 77.7 77.5 0.2927 0.2991 0.3846 0.3881 74.40 76.02 86.73 87.50 0.344 0.33

DT 76.9 75.64 0.2806 0.3257 0.4266 0.4076 71.32 82.79 96.20 91.91 0.404 0.345

SMO 76.3 75.4 0.2369 0.2458 0.4867 0.4958 60.21 62.49 109.75 111.80 0.213 0.167

RBF 75.8 76.3 0.3042 0.3041 0.3937 0.3921 77.31 77.30 88.78 88.41 0.295 0.313

NN 78.2 76.7 0.2911 0.3199 0.3813 0.3957 73.98 81.30 85.99 89.23 0.377 0.321

NB 76.3 76.1 0.2365 0.2386 0.4771 0.4797 60.10 60.65 107.59 108.16 0.305 0.260

Boosting 77.2 75.3 0.2964 0.3019 0.3877 0.3957 75.35 76.72 87.41 89.23 0.356 0.397

Bagging 78.9 75.7 0.2767 0.2963 0.3758 0.3997 70.33 75.32 84.74 90.12 0.423 0.346

found that accuracy is always biased toward that class, which has large numbers of instances. Since,

our data is skewed therefore, in our experiment, we gave least weightage to accuracy. Furthermore, we

computed the value of Kappa Statistics, the value of KS lies in the range 0.167(SMO) to 0.346(Bag-

ging). KS value ≥ 0.2 is considered as good for any classifier. Therefore, on the basis of kappa

statistics the top three classifiers are boosting(KS=0.397), bagging(KS=0.346) and DT(0.345). Fur-

thermore, the data of Table 5.10 shows that MAE value lies in the range 0.2386(NB) to 9.3257(J48).

RMSE value lies in the range 0.3881(LR) to 0.4958(SMO). RAE value lies in the range 62.49% to

82.79(J48), and RRSE value lies in the range 87.50(LR) to 111.8(SMO). From the obtained results

of different absolute and relative metrics, it can be concluded that in our experiment SMO has not

performed well because its RRSE value is highest, i.e., 111.8%. Whereas, NN, LR, bagging, boosting,

DT and NB have almost similar values for absolute and relative error metrics. Furthermore, NB

has the smallest value of RAE, i.e., 60.65%, but have high value of RRSE, i.e., 108.16%. In case of

prediction models, relative error is considered as more important as compared to the absolute error.

Therefor, we can conclude that on the basis of accuracy, kappa statistics and error measures, the top

five classifiers are LR, DT, NN, Boosting and Bagging.

Until now we have described the classification of source files using classification schema isBuggy.

Now, in the following section it will be described that how classification schema bugLevel can be used

for the classification of source files.

Classification of Source Files Using Classification Schema bugLevel

The results of the classification are shown in the Table 5.11. These results are obtained when

classifiers trained and tested using classification schema bugLevel and principal components. It is

shown in the Table 5.11 that for the class bugLevel=Medium, the evaluation measures have the

following values: precision values range from 0.0%(SMO) to 27.8%(Bagging), recall values range

from 0.0%(SMO) to 35.2%(NB), Fmeasure values range from 0.0%(SMO) to 24.4%(NB), and ROC

values range from 0.566(SMO) to 0.879(NN). Whereas, the class bugLevel=High has the following

values: precision values range from 0%(SMO) to 44.4%(Bagging), recall values range from 0%(SMO)

to 23.5%(NB), Fmeasure values range from 0%(SMO) to 24.3%(NB), and ROC area range from

0.497(SMO) to 0.734(bagging). The evaluation measures i.e., precision, recall and Fmeasure for the

class isBuggy=low are ranged from 94% to 100%. In our experiment, our interest is to find those
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Table 5.11. Classification of cpp files of Firefox Release 0.8 using bugLevel criteria.

Classifier Class Pre. Recall F-m. ROC Acc. MAE RMSE RAE % RRSE % KS

LR Low 94.3 99.2 96.7 0.815

Medium 19 5 8 0.866

High 5 11.2 18.3 0.666

Wt. Avg 90.1 93.2 91.1 0.813 93.2 0.0714 0.1934 85.50 94.8295 0.154

DT Low 94.7 98.5 96.5 0.606

Medium 27.6 13.2 17.9 0.564

High 33.3 11.2 16.8 0.497

Wt. Avg 90.4 92.8 91.3 0.602 92.8 0.0716 0.2102 85.74 103.06 0.211

SMO Low 93.4 1 96.6 0.5

Medium 0 0 0 0.566

High 0 0 0 0.497

Wt. Avg 87.3 93.4 90.3 0.5 93.4 0.2425 0.3072 290.47 150.62 0.0

RBF Low 94.2 99 96.5 0.766

Medium 26.3 6.3 10.2 0.811

High 37.5 12.2 18.5 0.634

Wt. Avg 90 93 91.1 0.765 93.1 0.0711 0.1991 85.11 97.64 0.15

NN Low 94 99.6 96.7 0.826

Medium 11.1 1.3 2.3 0.879

High 40 8.2 13.6 0.712

Wt. Avg 89.3 93.4 90.8 0.825 95.36 0.0787 0.1908 94.31 93.54 0.107

NB Low 95.5 92.4 94.1 0.804

Medium 18.7 35.2 24.4 0.803

High 24.4 23.5 24.3 0.661

Wt. Avg 91 88.4 89.6 0.801 88.37 0.0778 0.2699 93.16 132.36 0.2515

Boosting Low 94.1 99.2 96.6 701

Medium 25.7 5.7 9.3 717

High 40.9 9.2 15 0.663

Wt. Avg 90 93.2 91 0.701 93.15 0.0457 0.2113 54.71 103.61 0.1307

Bagging Low 94 99.5 96.7 0.815

Medium 27.8 3.1 5.6 0.858

High 44.4 12.2 19.2 0.734

Wt. Avg 90.1 93.4 91 0.815 93.4 0.0736 0.1916 88.16 93.95 0.123

classifiers which can classify faulty source files with high precision and recall. Therefore, in this ex-

periment, classifiers are compared on the basis of their ability to classify the class bugLevel=Medium

and bugLevel=High. Now, from the obtained results of Table 5.11, the list of classifiers according to

the high precision and high recall values are given below,

Classifier’s Name Precision (bugLevel=Medium) Precision (bugLevel=High)

Bagging 27.8% 44.4%

Decision Tree (J48) 27.6% 33.3%

Radial Basis Function (RBF) 26.3% 37.5%

Naive Bayes (NB) 18.7% 24.4%

Classifier’s Name Recall (bugLevel=Medium) Recall (bugLevel=High)

Naive Bayes (NB) 35.2% 23.5%

Decision Tree (J48) 13.2% 11.2%

Radial Basis Function (RBF) 6.2% 12.2%

Bagging 3.1% 12.2%
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From the above distribution, it can be concluded that in case of bugLevel class distribution, Naive

Bayes (NB), Decision Tree (DT) and Bagging have high precision and recall values as compared to

other classifiers. However, the attained value of classification evaluations are not very high. One

reason to have small values of precision and recall is that the data set related to the bugLevel is

very skewed. Table 5.11 also depicts that the classifiers have small absolute errors. Whereas, the

value of RAE range from 54.7%(Boosting) to 290.47%(SMO) and RRSE range from 94.82%(LR)to

150.62%(SMO). The value of Kappa statistics (KS) range from 0.0(SMO) to 0.2515(NB). KS measures

the agreement between two observers. KS values near 1 indicate good agreement and negative values

indicate that the two observers agreed less than would be expected just by chance. Finally, the value

of ROC area range from 0.497(SMO) to 0.866(LR). ROC value close to 1 is acceptable, whereas, ROC

area close to 0.5 is not acceptable.

Figure 5.10, depicts the precision and recall values of each class, when the class distribution is

based on bugLevel (i.e., Low, Medium and High). Figure 5.10 also depicts the weighted average of

precision and recall. The red markers near left corner of the figure represent the precision and recall

values of class bugLevel=HIGH. The yellow markers at the bottom left corner represent the class

bugLevel=MEDIUM. Whereas, the markers that lies at the top right corner are the precision and

recall values of the class bugLevel=HIGH.

From Figure 5.10, one can conclude that the bugLevel=High and bugLevel=Medium have small pre-

cision and recall as compared to class bugLevel=Low. This difference is because our class distribution

is skewed. The ideal condition for any classifier is, classes (i.e., bugLevel=High and bugLevel=Medium)

should have their precision and recall values at the top right corner.

Comparison of Classification Models

In any release of a software, the number of faulty source files always in small numbers as compared

to the clean source files. Therefore, the distribution of clean and faulty source files is highly skewed

in any release of a software. Whereas, to construct a fault prediction model to classify a faulty and

non faulty source files, classifier has to train with the source files data, which are related to a specific

release of a software. Since, the aggregated classification evaluation measures (like accuracy, average

precision and average recall) is highly influenced by skewed class distribution. Therefore, to avoid

the biased impact of skewed class distribution from the evaluation measures, one has to evaluate

each classifier on the basis of their individual class level performance. Therefore, in this experiment,

classifiers are evaluated on the basis of individual class level performance. Furthermore, to see

the performance of a classifiers at different class distribution, two different experiments have been

performed using two different classification schema, i.e., isBuggy and bugLevel. In each experiment

the class distribution is skewed. The class distribution is more skewed when bugLevel scheme has used.

Multiple classifiers have been used to train and test with each type of classification schema. The

classifiers that performed well when trained and tested with isBuggy class distribution are, bagging,

boosting and decision tree (J48). Whereas, in case of classification schema bugLevel only naive bayes

performed well, while the rest of the classifiers attained very small precision and recall values. These

results guide us to conclude that in case of binary classification the best classifiers are bagging,

boosting and J48. Whereases, if the number classes are more than two and the distribution are highly
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Figure 5.10. Precision-Recall curve of different models. When models are trained using bugLevel crite-

ria.
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skewed then, naive bayes perform well.

5.4 Case Study: Analyzing Bug Prediction Capabilities of Static

Code Metrics

Open Source Software provides a rich resource of empirical research in software engineering. Static

code metrics are a good indicator of software quality and maintainability. In this work, we have tried

to answer the question whether bug predictors obtained from one project can be applied to a different

project with reasonable accuracy. Two open source projects Firefox and Apache HTTP Server (AHS)

are used for this study. Static code metrics are calculated for both projects using in-house software

and the bug information is obtained from bug databases of these projects. The source code files are

classified as clean or buggy using a Decision Tree classifier. The classifier is trained on metrics and

bug data of Firefox and tested on Apache HTTP Server and vice versa.

5.4.1 Study Approach

In this section, we describe the steps followed to obtain the results. We first describe the data

extraction process and the related tasks. Then, we describe the static code metrics used in this study

and the calculation of metrics. Finally, we discuss how to obtain the bug prediction model and related

concepts.

Data Extraction

We checked out source code of Apache HTTP Server (AHS) version 1.3.x and 2.0.x using Subversion

(SVN) client. Subversion is a software versioning system used to maintain versions of files including

source code and documentation. A collection of bug reports related to AHS was obtained from

Bugzilla. To find the files in which these bugs were fixed, we also obtained log information from SVN

repositories. The SVN log records revision number, author, date and time, lines modified and the

comment by the developer. If a problem was fixed, the developer also mentions the Problem Report

number. We filtered the comments for the occurrence of bugs using the regular expression, e.g. if a

comment contained the keyword fix or Fix or PR: or Fixed, we marked that revision as buggy. To

assign numbers of bugs to individual files, we selected two dates for each version and counted the

numbers of bugs that were fixed between these two dates.

❏ For AHS 1.3.x 15-08-2002 to 15-08-2005

❏ For AHS 2.0.x 01-12-2003 to 31-12-2005

We downloaded source code of Firefox Releases 0.8, 1.0, 1.5 and 2.0 using the ftp server. Bug

information related to Firefox was obtained from Bugzilla4. To find the files in which these bugs were

fixed, we also obtained log information from CVS repositories. We processed the comments in CVS

4http://www.bugzilla.org/
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Figure 5.11. Percentage of Buggy Files

log output to find the revisions of files in which bugs were fixed. Each file was assigned a bug count

indicating the number of bugs that occurred between two consecutive releases of Firefox. As AHS

source code mainly consists of C files and Firefox source code contains C, C++ and JAVA files as

well, we selected C files from both projects. We processed the following number of C files in different

releases of both projects:

Project Release No. of C Files

AHS 1.3.x 155

AHS 2.0.x 191

Firefox 0.8 1389

Firefox 1.0 1387

Firefox 1.5 1522

Firefox 2.0 1527

AHS releases contain more buggy files than Firefox releases. AHS 2.0.x has a highest %age of

buggy files with 92% buggy files followed by AHS 1.3.x having 76% buggy files. Firefox 0.8 and 2.0

have the lowest %age of buggy files with less than 2% buggy files. Figure 5.11 compares the buggy

files in all releases of both projects.

Metrics Calculation

We used our own software to calculate the static code metrics. As C is a procedural language, we

calculated individual metrics for functions and aggregated these metrics on files getting total and

maximum values of each metrics for each file. We used the following function metrics for our study:
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Table 5.12. Function Metrics of AHS files

Metrics
AHS 1.3.x AHS 2.0.x

Max Min Avg Max Min Avg

NEL 642 2 29 744 2 31

CD 43 0 12 60 0 11

CC 143 1 6 154 1 6

PC 21 0 2 21 0 2

RP 92 0 2 56 0 2

LVC 74 0 2 79 0 3

ND 86 1 2 52 1 3

❏ NEL(Number of Executable Lines). The NEL is number of lines of code in a function excluding

the blank and comment lines.

❏ CD(Control Density). The CD is the ratio of control lines and executable lines in a function.

❏ CC(Cyclomatic Complexity). The CC is the number of linearly independent paths through a

function.

❏ PC(Parameter Count). The PC is the number of arguments a function receives.

❏ RP(Return Points). The RP is the number of return statements in a function.

❏ LVC(Local Variable Count). The LVC is the number of variables locally defined in a function.

❏ ND(Nesting Depth). The ND is the maximum depth of the nested scope in a function.

We also calculated following file metrics in addition to the aggregated metrics:

❏ LOC(Lines Of Code). The LOC is the total number of lines in a file.

❏ NOF(Number Of Functions). The NOF is the total number of functions in a file.

❏ NOIF(Number Of Included Files). The NOIF is the number of files included in a file using the

include statement.

❏ NOGC(Number Of Global Conditions). The NOGC is the number of conditional statements

globally defined in a file.

Table 5.12 and 5.13 show the maximum, minimum and average values for the function metrics

discussed above. Table 5.14 shows the maximum, minimum and average values for the file metrics

discussed above.

If we compare both projects, the average and minimum values for the metrics are almost similar.

However, there are differences in maximum values. In Firefox 14% of the functions have more

than 50 executable lines, whereas in AHS 16% of the functions contain more than 50 executable

lines. Functions having cyclomatic complexity greater than 20 are 4% in Firefox and 5% in AHS

respectively, whereas functions having parameter counts greater than 5 are 4.5% in Firefox and 3%
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Table 5.13. Function Metrics of Firefox files

Metrics
Firefox 0.8 Firefox 1.0 Firefox 1.5 Firefox 2.0

Max Min Avg Max Min Avg Max Min Avg Max Min Avg

NEL 7616 2 29 1931 2 29 12026 2 29 1759 2 30

CD 58 0 11 58 0 11 85 0 11 100 0 11

CC 401 1 5 398 1 5 508 1 5 583 1 6

PC 22 0 2 22 0 2 22 0 2 22 0 2

RP 206 0 2 90 0 2 249 0 2 276 0 2

LVC 191 0 3 191 0 3 191 0 3 282 0 3

ND 302 1 2 302 1 2 302 1 2 302 1 2

Table 5.14. File Metrics

Project
LOC NOF NOIF NOGC

Max Min Avg Max Min Avg Max Min Avg Max Min Avg

AHS 1.3.x 4981 7 589 138 1 13 38 0 6 87 0 3

AHS 2.0.x 4801 29 734 111 1 15 34 0 9 43 0 3

Firefox 0.8 9301 13 596 284 1 13 39 0 5 372 0 3

Firefox 1.0 9353 13 592 291 1 13 39 0 5 372 0 3

Firefox 1.5 12677 13 639 312 1 14 40 0 5 372 0 3

Firefox 2.0 9338 13 641 220 1 14 39 0 5 372 0 3

in AHS respectively. Firefox and AHS contain 4.2% and 8.5% of functions having more than 5

return points respectively. 1.8% of the functions in Firefox and 4% of the functions in AHS have

more than 10 nesting depth. Figure 5.12 shows the average values of function metrics for both projects.

Average file sizes are comparable in both projects with slight differences. AHS 2.0 has the

highest average file size and AHS 1.3 has the smallest average file size. 15% of files in Firefox

0.8 and Firefox 1.0, 17% of files in Firefox 1.5 and Firefox 2.0, 18% of files in AHS 1.3 and 27% of

files in AHS 2.0 have more than 1000 LOC. Figure 5.13 compares the average file sizes in both projects.

Average number of functions/file is similar in both projects. However, 18% of files in Firefox 0.8

and Firefox 1.0, 19% of files in Firefox 1.5 and Firefox 2.0, 16% of files in AHS 1.3 and 48% of

files in AHS 2.0 contain more than 20 functions. In Firefox 5% files contain more than 10 globally

defined conditions, whereas in AHS 6% files contain more than 10 globally defined conditions. Firefox

contains 14 % files having more than 10 files included using the #include statements, whereas in

AHS 1.3 and AHS 2.0 this amount is 12% and 34% respectively. This indicates AHS 2.0 has highly

correlated files. Figure 5.14 compares the file metrics of both projects.

Obtaining the Bug Predictor

We stored the information obtained from previous two steps into relations. Each relation consisted

of files as entities. The relations consisted of file attributes including the static code metrics and the
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Figure 5.12. Average Function Metrics

Figure 5.13. Average File Sizes

96



5.4.1 Study Approach

Figure 5.14. Average File Metrics

bugs related to each file. We trained a decision tree classifier on this data using WEKA5 (a Machine

Learning tool developed in JAVA) to classify files as clean or buggy. We selected decision tree for our

study due to its strong classification capabilities. We trained the classifier on four releases of Firefox

and tested each model obtained on two versions of AHS. Alternatively, we also trained the classifier

on two releases of AHS and tested each model obtained on four releases of Firefox. After training

of classifier WEKA stored models in the form of Java serializable objects holding different options,

which later on can be applied to the test data.

A major proportion of time required to obtain a bug predictor is involved in data preparation.

Metrics calculation and extraction of bug information requires much time which depends on the

project size, and it may take hours even using a high speed processor. Once the data is prepared,

weka classifiers take few seconds to learn and produce outputs. Weka classifiers hold multiple options

to be used during training and testing. Following is a brief summary of these options.

❏ -t <name of training file >. Sets training file.

❏ -T <name of test file >. Sets test file. If missing, a cross-validation will be performed on the

training data.

❏ -c <class index >. Sets index of class attribute (default: last).

❏ -x <number of folds >. Sets number of folds for cross-validation (default: 10).

❏ -s <random number seed >. Sets random number seed for cross-validation (default: 1).

❏ -l <name of input file >. Sets model input file.

5http://www.cs.waikato.ac.nz/ml/weka/
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Figure 5.15. Predictions for individual files

❏ -d <name of output file >. Sets model output file.

❏ -i. Outputs detailed information-retrieval statistics for each class.

❏ -k. Outputs information-theoretic statistics.

❏ -p <attribute range >. Only outputs predictions for test instances, along with attributes (0 for

none).

During training -t and -d options can be used to train on an input file and store the model obtained

into a model file which later can be used. For predictions or testing -T and -l options can be used

to mention test and model files. For getting output statistics -i and -k options are used. In order to

get output predictions for individual instances -p option is used. It displays the actual and predicted

values for each instance. Figure 5.15 displays a screen shot of the predictions, the values in each

line are separated by a single space. The fields are the zero-based test instance id, followed by the

predicted class value, the confidence for the prediction (estimated probability of predicted class), the

true class and the values of selected attributes.

5.4.2 Results and Discussion

In this section, we discuss the results obtained by applying the Decision Tree (J48) classifier. We

obtained the number of correctly classified instances (CCI), the Kappa statistics (KS), the mean

absolute error (MAE), and the root mean squared errors (RMSE). KS is a means of classifying

agreement in categorical data.
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Table 5.15. Classification of Firefox files using the predictor obtained from AHS

Predictor Release CCI KS MAE RMSE

AHS 1.3.x

Firefox 0.8 92% 0.0586 0.18 0.28

Firefox 1.0 68% -0.036 0.36 0.51

Firefox 1.5 84% -0.003 0.24 0.37

Firefox 2.0 91% 0.097 0.19 0.30

AHS 2.0.x

Firefox 0.8 92% 0.01 0.12 0.29

Firefox 1.0 70% 0.04 0.31 0.52

Firefox 1.5 86% 0.02 0.16 0.36

Firefox 2.0 92% -0.02 0.12 0.29

Table 5.16. Classification of AHS files using the predictor obtained from Firefox

Predictor Release CCI KS MAE RMSE

Firefox 0.8
AHS 1.3.x 78% 0.0 0.22 0.45

AHS 2.0.x 92% 0.0 0.09 0.28

Firefox 1.0
AHS 1.3.x 68% 0.0 0.34 0.52

AHS 2.0.x 78% 0.09 0.29 0.45

Firefox 1.5
AHS 1.3.x 77% 0.04 0.23 0.46

AHS 2.0.x 92% 0.09 0.12 0.29

Firefox 2.0
AHS 1.3.x 79% 0.0 0.22 0.45

AHS 2.0.x 92% 0.09 0.09 0.27

Using the predictor obtained from AHS 1.3.x, we correctly classified 92% of the files in Firefox 0.8

and Firefox 2.0. However, for Firefox 1.0 the predictor could correctly classify 68% of the files. The

results for Firefox 1.5 were inbetween with a value of 84% correctly classified files. The results were

almost similar using the predictor obtained from AHS 2.0.x. Table 5.15 shows that MAE values are

below 0.4, indicating fair accuracy of results. In most cases RMSE values are near 0.4, which further

validates the results.

Using the predictors obtained from Firefox 0.8 , Firefox 1.5 and Firefox 2.0, we correctly classified

92% of the files in AHS 2.0.x. However for AHS 1.3.x the predictors could classify 78% of the files.

The predictor obtained from Firefox 1.0 showed poor results with 78% and 68% of the files of AHS

2.0.x and AHS 1.3.x correctly classified respectively. Table 5.16 shows that MAE values in most cases

are below 0.3 indicating good accuracy of results. The RMSE values are slightly higher in some cases,

which indicate poor accuracy.

We have also calculated the True Positive rate, False Positive rate, Precision, Recall and F-Measure

for the predictions obtained by applying each model. Tables 5.17-5.22 show the values of these

measures for each predictor. Class “yes”indicates the buggy files whereas class “no”indicates the

clean files. For Firefox predictions, precision and recall are high for clean file predictions but its poor

for buggy file predictions. However for AHS predictions, precision and recall are high for buggy file

predictions and its poor for clean file predictions. The reason may be the high percentage of buggy
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Table 5.17. Using AHS 1.3.x as predictor

Release TP Rate FP Rate Precision Recall F-Measure Class

Firefox 0.8
0.85 0.95 0.98 0.85 0.95 no

0.05 0.15 0.01 0.05 0.01 yes

Firefox 1.0
0.83 0.91 0.70 0.83 0.76 no

0.09 0.17 0.17 0.09 0.12 yes

Firefox 1.5
0.88 0.64 0.94 0.88 0.91 no

0.36 0.12 0.22 0.36 0.27 yes

Firefox 2.0
0.86 0.96 0.98 0.86 0.92 no

0.04 0.14 0.01 0.04 0.01 yes

Table 5.18. Using AHS 2.0.x as predictor

Release TP Rate FP Rate Precision Recall F-Measure Class

Firefox 0.8
0.93 0.90 0.98 0.93 0.96 no

0.1 0.07 0.02 0.1 0.03 yes

Firefox 1.0
0.94 0.91 0.73 0.94 0.82 no

0.1 0.06 0.37 0.09 0.15 yes

Firefox 1.5
0.94 0.91 0.92 0.94 0.93 no

0.08 0.06 0.11 0.08 0.09 yes

Firefox 2.0
0.93 1.0 0.98 0.93 0.96 no

0 0.01 0 0 0 yes

files in AHS and high percentage of clean files in Firefox. In AHS more than 70% files are buggy

whereas in Firefox less than 10% files are buggy except Firefox 1.0 in which 28% files are buggy, as

depicted in Figure 5.11.

5.5 Summary

In this chapter, we presented different fault prediction models. These models are obtained using

regression and classification techniques. To build the model, we used multiple code metrics as pre-

dictors, and to avoid the collinearity among metrics, we used the technique of principal component

analysis. The results of the obtained models have shown that software complexity metrics can be

Table 5.19. Using Firefox 0.8 as predictor

Release TP Rate FP Rate Precision Recall F-Measure Class

AHS 1.3.x
1.0 1.0 0.76 1.0 0.86 yes

0 0 0 0 0 no

AHS 2.0.x
1 1 0.92 1 0.96 yes

0 0 0 0 0 no
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Table 5.20. Using Firefox 1.0 as predictor

Release TP Rate FP Rate Precision Recall F-Measure Class

AHS 1.3.x
0.82 0.81 0.76 0.82 0.79 yes

0.19 0.18 0.25 0.19 0.21 no

AHS 2.0.x
0.82 0.67 0.93 0.82 0.87 yes

0.33 0.18 0.13 0.33 0.19 no

Table 5.21. Using Firefox 1.5 as predictor

Release TP Rate FP Rate Precision Recall F-Measure Class

AHS 1.3.x
0.97 1 0.76 0.97 0.85 yes

0 0.02 0 0 0 no

AHS 2.0.x
0.99 0.93 0.93 0.99 0.96 yes

0.07 0.01 0.33 0.07 0.11 no

efficiently used for prediction of faults.

This Chapter is divided into three parts. In the first part, regression based fault prediction model

are described in details. Both, parametric and non-parametric techniques are described to build the

models. It is found that multiple linear regression and neural network can be used to build a high

performance regression based fault prediction model.

In the second part of this chapter, machine learning classification techniques described in details

to construct different fault prediction models. It is discussed that skewed class distribution generate

biased results. Furthermore, it is described in details that in case of skewed class distribution, the best

way to evaluate a classifier is to measure precision and recall of each class. Two different classification

schema have used to construct the fault prediction models. Multiple classifiers have been used to

train and test with each type of classification schema. The classifiers that performed well, when

trained and tested with isBuggy class distribution: bagging, boosting and decision tree (J48). In case

of classification schema bugLevel, naive bayes performed well.

In the third part of this chapter, results of a case study are discussed. These results have shown

that predictions vary with different releases, however bug predictor obtained from one project can be

applied to a different project with a reasonable accuracy. The results obtained vary with different

releases of these projects, and accuracy can be as good as 92 % of the files correctly classified and as

Table 5.22. Using Firefox 2.0 as predictor

Release TP Rate FP Rate Precision Recall F-Measure Class

AHS 1.3.x
1 1 0.76 1 0.86 yes

0 0 0 0 0 no

AHS 2.0.x
1 1 0.92 1 0.96 yes

0 0 0 0 0 no
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poor as 68 % of the files correctly classified by the trained classifier. The performance of classifier

on the basis of individual class is poor, which shows that although we have high accuracy but the

predicted accuracy is biased to that class, which have large numbers of instance. Factors other than

static code metrics can be considered for more accurate predictions.
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6
Fault Prediction Capability of Program Files

Logical Coupling Metrics

Parts of the contents of this chapter have been published in paper [Ahsan and Wotawa, 2010a].

In the recent years several research studies reveal that the presence of logical couplings makes the

structure of the software system unstable, and any new changes in the coupled source files become

more error prone. Hence, logically-coupled source files are strong candidates for restructuring. Soft-

ware metrics and visualization techniques are used to identify source files, which are logically coupled

with other source files.

Research Trends: Recently, many research works have been done on logical coupling, which

extracted coupling information of source files from software’s repository and used them to obtain a

set of coupling metrics and to visualize the structural complexity of the software systems [Breu, 2006,

D’Ambros et al., 2009b, Lanza and Ducasse, 2003]. Most of the research work has been performed,

which discussed the significance of logical coupling [Gall et al., 2003, D’Ambros et al., 2009b, Eaddy

et al., 2008a]. The recent research trends in software engineering, reveals that logical coupling mea-

sures are highly correlated with the number of defects [D’Ambros et al., 2009b, Eaddy et al., 2008a].

M. Eaddy et al. and D’Ambros et al. have addressed this issue in separate attempts, M. Eaddy et

al. correlated cross-cutting concerns with defects, and D’Ambros et al. link logical coupling measures

with the number of bugs. D’Ambros results, reveals that logical coupling metrics highly correlated

with the number of bugs as compared to others classical set of metrics, i.e., LOC, Chindamber and

Kemerer metrics suite etc.

Motivations: Software corrective maintenance, restructuring and reengineering are costly en-

deavor, because it is nontrivial and time consuming to identify the causes which induce defects into

software systems. Therefore, before releasing a new version of a software product huge effort (e.g.,

code inspections, program analysis, pre-release testing) goes to ensure that there are no bugs remain

in the release products of a software. These efforts might be better and well directed if we had a

better understanding of what causes, make the system unstable and generate defects [Breu, 2006].

One major cause of frequently generating faults in software is modifying a program source file

without prior analysis of its previous change-coupling patterns. The development scenario became
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worst, when developers made changes in program source files, which is logically coupled with other

source files, and programmer unintentionally forget to made changes in all the related coupled source

files. Consequently, system became unstable. The possible remedy to reduce the frequent occurrence

of such scenarios, is to equip software developers with tools and techniques that provide information

related to the logical coupling nature of source files. Formally, logical coupling is defined as, the

implicit dependency relationship between two or more software artifacts that have been observed to

be frequently changed together during the evolution of the system [Bieman et al., 2003a]. Logical

coupling information helps to understand how the system has evolved and provides support in system

restructuring.

Our Goals and Approach: The goal of our research work is to find a set of logical coupling

metrics using bug fix patterns of coupled source files. Furthermore, find the metrics correlation with

the number of bugs. Therefore, in this chapter we propose an approach to obtain a set of logical

coupling patterns, which are related to the fixing of bugs. We obtain these patterns by mining bug-fix

transaction’s data of source files, and use them to define a set of metrics.

Research Hypothesis: Our research hypothesis are,

1. The history of coupled source file’s bug-fix patterns can be used to obtain a set of coupling

metrics, which are more correlated with the number of bugs. Consequently, metrics can be used

to identify those source files which are candidates for restructuring.

2. Logical coupling metrics can be used to construct a regression based fault prediction models.

Furthermore, logical coupling metrics can be used for the classification of source files as low,

medium or high level of complexity.

Our Contributions: The main contributions of our research work are, we defined eight different

metrics to measure the logical coupling tendency of a source file. We also performed an experiment

by extracting the bug-fix transaction data from the software repository of GNOME OSS project,

and obtained a set logical coupling metrics. We used statistical technique, i.e., spearman’s rank

correlation to find the correlation between logical coupling metrics and number of bugs. We found

that logical coupling metrics set is highly correlated with numbers of bugs. The maximum obtained

correlation value is 97%. We also obtained the correlation between source files level metrics (i.e., LOC,

cyclomatic complexity, etc.,) and the number of bugs, and compared its value with the correlation

values of logical coupling metrics. We, found that logical coupling metrics out-class the classical

source file level metrics. In order to analyze the bug prediction and classification capabilities of the

logical coupling metrics, we used statistical regression and classification techniques of statistics and

machine learning. In case of statistical regression, we used Stepwise Linear Regression Model and

Regression Model based on PCA (Principal Component Analysis). The obtained R-Square values

for the two models are 95.5% and 80% respectively. Similarly, in case of machine learning based

classification, we used J48 classifier and obtained 97% accuracy.

Chapter Layout: The remaining part of the chapter is organized as follows: In Section 6.1 we

describe our approach to obtain the data from software’s repository, and also describe our approach

to extract the coupling patterns and define a new set of logical coupling metrics. In the next section
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i.e., 6.2, we describe in details the experimental setup and discuss results. In Section 6.3 we discuss

some threats to validity. Finally, in section 6.4 we summarize the chapter.

6.1 Our Approach

We obtain a set of metrics for logical-couplings. These metrics are based on the history of coupled

source file’s bug-fix patterns. To achieve the goal, we first extract the data from software’s repository.

Then, we process the extracted data of source files to obtain the different sets of logical-coupling

patterns, which are related to the fixing of bugs. We use these patterns to define a set of metrics.

6.1.1 Data Extraction and Filtering

The logical coupling’s data are obtained from software change transactions. These transactions are

accumulated during the evolution of any large software system, and stored into a CVS/Subversion

repository. In each software change transaction, developer’s made changes in one or more source files

and commit these changes into CVS/Subversion. From these set of software change transactions data,

one can easily extract the set of source files, which are committed together, and call them Coupled

Source Files. Developers made software change transactions, whenever a software change request

is reported into a bug tracking system like Bugzilla. Therefore, the first step is to extract the raw

data from the software repository, i.e., CVS/Subversion and bug tracking system, i.e., Bugzilla. We,

therefore, downloaded Subversion log files and Bugzilla bug reports from the software repositories

of Gnome open source project. The downloaded data are in html, xml or text format. Therefore,

we parsed each data file and stored them into a relational database, by using an approach gave by

Fischer [Fischer et al., 2003].

After obtaining the data, filtering and mapping are required. In the first step, we established a

link between the bug reports and the associated check-ins (commit) in the version control system

e.g. Subversion. In each check-in, developers make changes in the source files and save those changes

into Subversion. We obtained these links by processing the log data of Subversion, and received the

number of check-in transactions that are related to bug fix changes. To identify the bug fix transac-

tion, we parsed the developer’s check-in comments. If comments contain any of the following words

bug fix, bug fixed, or fixed, or any bug-id, and followed by 6-8 integer numbers, then we considered

this transaction as a bug fix transaction [Fischer et al., 2003]. We also used two independent levels

of confidence, i.e., syntactic and semantic level of confidence. The syntactic level is used to infer the

link between change log messages and bug reports, whereas the semantic level is used to validate the

link by matching the bug report data, see [Thomas Zimmermann, May 23-28, 2004]. We used this

approach and defined each link with syntactic and semantic level of confidence. After identifying all

the bug fix transactions and linked them with bug reports, the second step is to find the names of the

source files, which have been modified in each transaction. In case of Subversion all those files, which

committed together have the same revision number. Therefore, in case of Subversion one can easily

obtain the list of source files, which are changed in a single transaction.

105



6.1 Our Approach

6.1.2 Program Files Coupling Patterns and Coupling Measures

In this section, we first describe the method which we used to obtain a set of bug-fix patterns of source

files. Then, we formally describe a set of metrics, which we used to measure the logical-coupling

tendency of source files.

Logical-Coupling Patterns

In the field of software engineering pattern mining are very common. Patterns are obtained by ana-

lyzing the history data and found that how the things have evolved. To obtain the bug-fixing patterns

of coupled source files, we use our own heuristic approach, which process the bug-fix transaction

data related to each source file, and obtain a set of coupling patterns. These patterns are the set

of source files, which have been fixed in one or more transactions. Each unique set of source files is

considered as a unique pattern. Whereas, the number of transactions in which a same unique pattern

has observed, is considered as the frequency of that pattern. In the following paragraph, we formally

describe our method which we used to obtain logical coupling patterns.

Let, F be the set of source files and T be the set of bug-fix transactions. A transaction ti is a

set of transactions {t1,t2,..,tk} such that fj ∈ F i.e., each fj is a source file changed in transaction

ti. Let, file fp is changed in the transactions t1,t2,..,tq ∈ Tc, where Tc be the set of coupling

transactions such that Tc ⊆ T. In order to find the set of source files, which have been changed

together with fp in one or more transactions, we have to take the intersection of each possible

combination of transactions Tc. The possible number of combinations are 2q-1, which is used to find

the patterns. Consider PT={pt1,pt2,pt3,..pti..ptr} be the set of patterns, where pti⊆F and r is the

number of distinct pattern. Now, in order to compute patterns from transactions T of source files

F, let |Tc| = |2T -1| be the possible combinations of transactions. A pattern from Tc is given as follows:

{ fi | fi ∈ F ∧ ∀ t ∈ T → fi ∈ t}.

Figure 6.1 depicts an example, which shows that how the patterns are obtained from bug-fix

transaction data of a source file f1.

Logical Coupling Metrics

Metrics are commonly used in software engineering for basic understanding and obtain higher level

views of the software. Furthermore, metrics are used for finding of design violations. In case of

software evolution, metrics can be used to identify those parts of the software, which are unstable

and candidate for refactoring [Mens et al., 2002]. In our experiment, we defined 8 different metrics,

which measures the coupling tendency of source files, and may be used to identify those set of source

files, which are candidates for refactoring or restructuring.

Before formally describe the set coupling measures, once again consider the set of source files F

such that fp∈F, represent a source file whose logical-coupling patterns are needs to be determined.

Whereas, fc⊆F, represents the set of logically-coupled source files with fp. Now, in our experiment an
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Figure 6.1. An Example to obtain a set of logical-coupling patterns for source file f1, which were fixed

3-times in the past, and logically coupled with source files f2,f3,f4,f5,f6. The obtained set

of logical-coupling patterns of source file f1 with maximum frequency is shown in the right-

most column.

event, i.e., software change transactions t, is defined as,

Fc(fp, fc) = { t | t∈T ∧ fp ∈ t ∧ fc ∈ t }.

Count of Coupled Source Files (COCSF): In case of COCSF metrics, we count the element

of fc, where each element of fc is a source file which has been fixed with a source file fp. In simple,

COCSF counts the total number of source files coupled with a source file fp i.e.,

| fp | = k, (6.1)

where k is the cardinality of fc.

Coupling Patterns Count (CPC): CPC count the distinct number of coupling patterns. In the

previous section, we described how to obtain the number of distinct coupling patterns. A pattern is

obtained when we take the intersection of two or more transactions. If PT={pt1,pt2,pt3,..ptj ....,ptr}
be the set of obtained patterns for source file fp, where r is the number of distinct pattern or cardinality

of PT. Therefore,

| CPC(fp) | = r. (6.2)

Sum of Coupling Pattern Frequency (SCPF): Each pattern associated to a source file have

some frequency of occurrence. Frequency is the count of the same pattern, that occurred in one or

more transactions. SCPF simply adds all those frequencies. If ptj ∈PT, then SCPF is given as,

SCPF(fp) =
∑

ptj∈PT∧fp∈ptj

Frequency(ptj) (6.3)

Average of Coupling Pattern Frequency (ACPF): ACPF adds all the pattern frequency of

source file fp, and divide it by the total number of patterns r. Where r > 0.
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ACPF(fp) =
∑

ptj∈PT∧fp∈ptj

Frequency(ptj) / r (6.4)

Maximum of Coupling Pattern Frequency (MCPF): It represents the frequency value of a

pattern, which is the most frequently occurred pattern of a source file fp,

MCPF(fp) = Maximum(Frequency(ptj)) (6.5)

Sum of Coupling Conditional Probabilities (SCCP) SCCP measure the sum of the condi-

tional probabilities of each pattern associated to a source file fp,

SCCP(fp) =
∑

ptj∈PT∧fp∈ptj

p(PT=ptj , F=fp) /p(F=fp ) (6.6)

Weighted Sum of Coupled Source Files having Same Parent Folder (WCSFSPF) :

WCSFSPF add all the coupled source files (fc) frequency (number of time fc coupled with fp), such

that both fc and fp belongs to the same directory or same parent folder.

WCSFSPF(fp) =
∑
k

Frequency(fk ∈ fc) (6.7)

where, parent folder of fp = parent folder of fk

Weighted Sum of Coupled Source Files having Different Parent Folder (WCSFDPF) :

WCSFDPF add all the coupled source files (fc) frequency (number of time fc coupled with fp), such

that both fc and fp belongs to the different directory or different parent folder.

WCSFDPF(fp) =
∑
k

Frequency(fk ∈ fc) (6.8)

where, parent folder of fp 
= parent folder of fk

Interpretation of Logical Coupling Metrics :

In the previous section, we formally defined a set of logical coupling metrics. In this section, we

discuss some of the important interpretation of the defined set of metrics.

The set of logical coupling metrics can be categorized into three main categories, like the fol-

lowing metrics set i.e., COCSF, CPC, SCPF, ACPF and MCPF, belongs to the category that

measures coupling patterns of a source file. Whereas, metric SCCP belongs to the category, which

measures the probabilistic value of coupling patterns. Finally, the metrics set WCSFSPF and

WCSFDPF belongs to the category of metrics, which exploits the cross cutting concerned nature of a

source file. To understand the semantic of logical coupling’s measure, consider the following examples,

Example-1: Let we have two source files, A and B. Both the source files have been changed 10

and 20 times respectively. Suppose that file A is coupled with file C in 4 transactions, whereas file

B is coupled with file D in four transactions. Now, we compute their logical coupling metrics values

using the relations which we have discussed in previous section, i.e., COCSF(A)=COCSF(A)=1,
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CPC(A)=CPC(B)=1, SCPF(A)=SCPF(B)=4, ACPF(A) = ACPF(B)=4 and MCPF(A) =

MCPF(B)=4. These metrics values show that both source files have same logical coupling mea-

sures, but the values of SCCP(A)=4/10=0.4 is different from SCCP(B)=4/20=0.2.

Example-2: Now, consider the example of Figure 2. Let FP={f1} has been changed 10 times,

out of which 3 times f1 were changed to fix the bug with five other source files i.e., FC={f2,f3,f4,f5,f6}.
The number of all the possible combination of bug fix transaction is 23-1=7. Let source files f2,f3 and

f4 have different parent folder as compared to the parent folder of f1. Similarly, f5, f6 and f1 have the

same parent folder. Now, the calculated set of metrics according to the relation given in Section 4.2

are, COCSF(f1)=5(total number of coupled files is 5), CPC(f1) = 3 (From Figure 2. the obtained

number of frequent pattern), SCPF(f1) = 3+2+1=6, ACPF(f1) =6/5, MCPF(f1) =3, SCCP(f1)

=3/10+2/10+1/10=0.6, WCSFSPE(f1) =2 and WCSFDPE(f1) =3

Source File Metrics Set

In order to perform a comparison, we also computed a group of metrics, which may be used to mea-

sure the coupling tendency of C files. We selected only those metrics, which are valid for source files

written in C-language. Because, we performed this experiment on GNOME project data. Whereas,

GNOME is mainly developed in C-language. Following, are the set of classical metrics, which we

used in our experiment for comparison purpose.

1. LOC : Line of Code, which count all the executable lines of source code present in a source files.

FINC : File included, which simply count the syntax include present in a source file.

2. TFUNC : Total function count, which count all the functions belongs to an individual source

file.

3. TFPC : Total function parameter count, which count all the function’s parameters presents in

a source file.

4. TRP . Total return point, which count all the returns point of each function present in a source

file.

5. TCYCLO : Total cyclomatic complexity, it add all the cyclomatic complexity related to each

function present in a source file.

6. FINC : File included, which simply count the syntax include present in a source file.

7. TFUNC : Total function count, which count all the functions belongs to an individual source

file.

8. TFPC : Total function parameter count, which count all the function’s parameters present in a

source file.

9. TRP . Total return point, which count all the returns point of each function present in a source

file.

10. TCYCLO : Total cyclomatic complexity, it add all the cyclomatic complexity related to each

function present in a source file.
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Figure 6.2. Percentage of the selected source files, which were fixed 1-to-15 times. Like the percentage

of those source files that were fixed 2-times is 17%. These source files are selected from

GNOME project repository to perform the experiment.

6.2 Experimental Setup and Results

In order validate the propose set of metrics and to find its correlation with the number of bugs, we

performed an experiment by extracting data from the OSS repository of GNOME project. We down-

loaded 1,537 source files (c-files) from the GNOME project repository. These source files have been

fixed in 2,093 transactions during 2000-2008. After downloaded the source files and their associated

transaction’s data from subversion, we established a linked between the subversion transaction data

and the bug-tracking system. We found that in our data set, the number of bug-fixed transactions

associated to each of the source file is lies between 1 to 15, whereas, the distribution of source files on

the basis of their number of bug-fix transactions is shown in a pie-chart of Figure 6.2. It is shown in

the Figure 6.2 that in our obtained data set, 47% of the source files have only one bug-fix transaction,

whereas 53% of the source files have more than one bug-fix transactions. In order to perform the

experiment we selected only those source files, which belongs to maximum 15 bug-fix transactions.

However, our method is also valid for any large number of transactions, but during experiment, we

found that most of the source files were fixed in very few transactions.

6.2.1 Analysis of Metrics Correlation With Number of Bugs

Our main objective is to find the correlation between the set of logical coupling measures and the

number of bugs. Furthermore, for comparison purpose we want to obtain the correlation between the

classical set of metrics (LOC, Cyclomatic-Complexity, etc.) with the number of bugs. We, therefore,

obtained the program source files coupling data and defined a new set of coupling measures, which we

have discussed in Section 6.1.2 and Section 6.1.2. Now, in this section, first we discuss the statistical

technique which we used to compute the correlation values, and then discuss the obtained results of
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our correlation values.

Correlation is a measure of association between two variables. In our experiment, we found that

most of the metrics are non-linear related with the bug count. Figure 6.3, depicts the scatter plots

of the concern metrics versus bug count, which shows that most of the metrics are non-linearly

related with the number of bugs. However, there are few metrics, which are linearly related with

the number of bugs. We, therefore, used Spearman’s rank correlation. Following, are the main reasons,

1. Spearman’s rank correlation is valid for both linear and non-linear relationships between the

correlated variables, and in our experiment most of the metrics are non linearly correlated with

the number of bugs

2. Since we don’t know exactly which distribution is followed by the obtained metrics data set.

Therefore, performing parametric statistics, i.e., using Pearson correlation is not a valid solution.

Hence, the best solution for our experiment is Spearman’s rank correlation, because it is belongs

to non-parametric statistics.

Before computing the correlation values, we obtained the values of eight different logical-coupling

metrics by using the relations which are given in Section 6.1.2. Similarly, we obtained the six different

classical metrics, which are given in Section 6.1.2. Once we obtained the metrics data and the

number of bugs related to each source file, then we used these data to compute the Spearman’s rank

correlation values between metrics and bug counts. Furthermore, in order to find the collinearity

among the metrics values, we also computed the correlation values between each pair of metrics.

The obtained results of correlation are shown in Table 6.1. Most of the logical coupling metrics

highly correlated with the number of bugs. While, in case of classical metrics set, unfortunately non of

the metrics are found to be highly correlated with the number of bugs. We obtained correlation values

at 0.01 level of significance. In case logical coupling metrics, the maximum obtained Spearman’s rank

correlation is for SCPF and CPC metrics i.e., 0.982 and 0.938. While, lowest in case of WCSFDPF,

i.e., 0.343. The other metrics like COCSF, WCSFDPF, ACPF, MCPF, and SCCP have a positive

and high correlation with the number of bugs, most of them have a correlation value greater than 0.65.

SCPF and CPC are directly related to the number of distinct patterns. Whereas, each pattern of a

source file is a distinct group of one or more associated coupled source files. It means that SCPF and

CPC are directly related with the degree of scattering of a source file, and it is found in one of the ex-

periment performed by Eaddy M. that if the degree of scattering is high then the source files are more

error prone [Eaddy et al., 2008a]. WCSFDPF, count the number of coupled file in different parent

folders, therefore, we can assume that this metric is measuring the cross cutting concern. Because, in

case of software development, source files are normally grouped into one separate folder to perform

some specific task or used for some specific concern. Therefore, if the coupled source files are belongs

to different parent folder folders, then it means that these source files are candidate for cross cutting

concerns. Therefore, one might thinks that WCSFDPF should have a high correlation with the number

of bugs, but in our experiment, we found small correlation value for WCSFDPF, the possible reasons

may be the size of data which we used to find correlations, and second possible reason is, GNOME

project development is more modular and therefore small number of coupled source files which are
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belongs to different parent folder. Whereas, in case of classical metrics set, the possible reason to have

a very small correlation values is their low capability to measure the coupling tendency of a source file.

Finally, we may conclude on the basis of correlation analysis that the high correlation of logical-

coupling metrics with the number of bugs reveals that they can be used to construct a bug predictor

or classification model. Therefore, in the next section we discuss the prediction and classification

capabilities of logical coupling metrics.

6.2.2 Bug Prediction and Classification Using Logical-Coupling Metrics

In software engineering metrics are commonly used for the prediction and the classification of bug

count. In the recent years several works have been done to provide empirical evidence that metrics

can predict post-release defects [Nagappan et al., 2006]. Therefor, the main objective of this section

is to analyze bug prediction and classification capabilities of logical coupling metrics.

In order to perform the experiment, we used Stepwise Regression Analysis, which first build re-

gression model using a metrics that have largest correlation with the number of bugs. We then add

further metrics to the model based on their partial correlation with the metrics that already in the

model. After adding a new metric into the model, the model is evaluated and metrics that do not

contribute significantly removed, so that, in the end, we got a model which consists of the metrics

that explains the maximum variance is left. The amount of variance explained by model is give by R2

[Eaddy et al., 2008a]. In statistics, R2 is the proportion of variability in a data set that is accounted

for by a statistical model. We, also obtained the value of Adjusted R2 and the standard error of

estimate. Adjusted R2 is used to measure any bias in the R2 measure. Whereas, standard error of

estimate measure the deviation of the actual bug value from the bug value predicted by the model.

The obtained results of Stepwise Regression Analysis is shown in Table 6.2.

Table 6.2, represent the stepwise regression results. It is given in the table that maximum variabil-

ity, i.e., R=97.2% and R2=94.6% explained by the three metrics, CPC, MCPF and SCCP. Whereas,

after including the metrics ACPF, SCPF, WCSFSPF and TFUNC into the model. The increase in

the variability is small. The same pattern is found in cas of R2 and Adjusted R2. The small difference

between the values of R and R2 reveals that bias is not present in our model.

Table 6.1, results show that the correlation between some metrics is very high, which indicate

that our data set contains collinearity. Therefor, the obtained results of correlation and stepwise

regression maybe over fitted. In order to overcome this collinearity from the data set we used Principal

Component Analysis (PCA). In case of PCA, we transform the large number of metrics into the small

number of uncorrelated weighted combination of metrics. The weighted combination of metrics are

called principal components.

Table 6.3, shows the value of total variance explained by each principal component. Whereas,

Table 6.4, shows the obtained four principle components. The results of Table 6.3 show that PCA 1

cover 36.5% and PCA 2 define 25.8% variability. Table 6.3 and Table 6.4 are divided into two parts

left part of the table shows the value of principal component without rotation sum of square loading.
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While right part of the table shows the PCA values with rotation sum of square loading. In case

of PCA the best practise is to use PCA with rotation sum of square loading. Therfore, to obtain

a new set of component we used PCA with rotation sum of square loading, which are shown in the

right part Table 6.4. Once we obtained the principal components, then we used them for regression

analysis. The results of PCA based regression model for bug predictor is shown in Table 6.5. The

obtained results of Table 6.5, shows that the value of R and R2 are 89% and 80%. If we compare

the R and R2 results of PCA based regression model with Stepwise Regression model, which is not

PCA based, then we find that the PCA based regression value is less as compared to non PCA based

model. Although, the regression values of stepwise regression model is high as compared to PCA

based regression model, but they are overfitted, because their results are obtained from the data

set that contained collinerity. However, PCA based regression model is more reliable, because their

regression values are obtained from data set, which do not contain any collinearity.

After performingthe bug predictionexperiment, we performedanother experimentto checkthe clas-

sification performanceof logicalcouplingmetrics. For classification we used machine learning algo-

rithmJ48. To evaluatetheclassification performance we, used three different classification evolution

measures i.e., Precision, Recall and Accuracy. Precisionisdefinedas the numbers of relevant documents

retrieved by a search divided by the total number of documents retrievedby thatsearch, and Recallis

defined as thenumber of relevant documents retrieved by a search divided by the total number of

existing relevant documents [Thomas Zimmermann, May 23-28, 2004]. of Table 6.5, shows that the

value of R and R2 are 89% and 80%. If we compare the R and R2 results of PCA based regression

model with Stepwise Regression model, which is not PCA based, then we find that the PCA based

regression value is less as compared to non PCA based model. Although, the regression values of

stepwise regression model is high as compared to PCA based regression model, but they are overfitted,

because their results are obtained from the data set that contained collinerity. However, PCA based

regression model is more reliable, because their regression values are obtained from data set, which

do not contain any collinearity.

Before classification, we categorized the number of training instances (obtained data set) into three

different class categories i.e., LOW, MEDIUM and HIGH. The defined criteria for each class category

is the number of bugs. We performed the experiment three times with the same training instances

but with different criteria for each class category. All the data set contained the same total number

of instances, i.e., 1537. However, the number of instances per category is different in each data set.

The obtained results of classification is given in Table 6.6 and Table 6.7

In case of data set A (shown in Table 6.6), class LOW is assigned to those files that were fixed

only one time, while MEDIUM is assigned to those files that were fixed 2 to 5 times. Finally, we,

assigned class HIGH to those source files that were fixed more than 5 times. Similarly, we changed the

criteria of each class in case of data set B and data set C. The main reason to use different criteria for

each class is to analyze the impact of class selection criteria on the classification results. The results

of Table 6.6, depicts that there is no impact of class selection criteria on the classification results.

The obtained accuracy, precision and recall values are approximately same, i.e., around 97% for all

the three classification experiments, which indicate that we can use logical coupling metrics for the

classification of source files as LOW, MEDIUM and HIGH level of complexity. High complex source
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Table 6.2. Stepwise Linear Regression (Model Summary)

Model R R

Square

Adjusted

R Square

Std. Error

of the Es-

timate

1 0.868a 0.754 0.754 10.199

2 0.932b 0.869 0.869 0.876

3 0.972c 0.946 0.946 0.564

4 0.976d 0.953 0.952 0.527

5 0.977e 0.954 0.954 0.518

6 0.977f 0.955 0.955 0.513

7 0.977g 0.955 0.955 0.511

a. Predictors: (Constant), CPC

b. Predictors: (Constant), CPC, MCPF

c. Predictors: (Constant), CPC, MCPF, SCCP

d. Predictors: (Constant), CPC, MCPF, SCCP, ACPF

e. Predictors: (Constant), CPC, MCPF, SCCP, ACPF, SCPF

f. Predictors: (Constant), CPC, MCPF, SCCP, ACPF, SCPF, WCSFSPF

g. Predictors: (Constant), CPC, MCPF, SCCP, ACPF, SCPF, WCSFSPF, TFUNC

Table 6.3. Total Variance Explained (PCA)

Comp
Initial Eigenvalues Rotation Sums of Squared Loadings

Total % of

Var.

CumulativeTotal %of

Var.

Cumulative

1 5.119 36.565 36.565 3.766 26.903 26.903

2 3.622 25.870 62.436 3.512 25.083 51.986

3 1.759 12.568 75.003 2.506 17.902 69.888

4 1.132 8.085 83.088 1.848 13.201 83.088

files, means it has fixed large number of bugs and therefore, need to be restructured. The classifiers

performance at individual class level is shown in Table 6.7.

6.3 Threats to Validity

Size of the data: We performed the experiment by selecting only one project data, i.e., GNOME.

We selected GNOME, because of the following two reasons. The first one is, GNOME is using

Subversion, and in case of Subversion it is easy to identify a unique transaction as compared to

CVS. While, the second reasons is GNOME is using C-language for the development purpose. While,

C-language is not pure object oriented programming language, and initially we want to study logical

coupling analysis for those source files which are not developed using object oriented programming

languages. Therefore, selecting a single project data not only reduce the size of our data, but also

decrease the validity of the results. Furthermore, we used only bug-fix transaction data for our

experiment, due to which the size of the data became small. While, the statistical correlation analysis

and machine learning classification are highly dependent on the size of the data.

Bug reports mapped to Bug-Fix Transactions: In our experiment, we need only those

transaction’s data, which have been used in fixing of bugs. Unfortunately, there is no direct way to

identify a transaction as a bug-fix transaction. We used a heuristic approach to identify a transaction

as bug-fix transaction, which is not necessarily correct for all the cases. The second big issue is related
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6.4 Summary

Table 6.4. Extracted Four Principle Component Using Principle Component Analysis Method
Component Matrix Rotated Component Matrixa

Metrics
Component

Metrics
Component

1 2 3 4 1 2 3 4

CPC 0.93 -0.07 0.02 -0.09 MCPF 0.92 0.04 0.17 -0.05

SCPF 0.92 -0.09 -.06 0.10 ACPF 0.90 0.05 -.07 -0.05

SCCP 0.88 -0.17 -0.03 0.06 SCPF 0.82 0.04 0.44 -0.04

MCPF 0.84 -0.08 -0.16 0.36 SCCP 0.76 -0.04 0.47 -0.05

COCSF 0.80 -0.08 0.27 -0.44 CPC 0.71 0.06 0.69 -0.01

ACPF 0.69 -0.06 -0.21 0.55 TCYCLO 0.02 0.95 -0.02 0.09

WCSFSPF 0.62 -0.05 0.29 -0.04 TFUNC 0.04 0.94 0.04 0.12

TFUNC 0.18 0.92 -0.13 -0.04 TFPC 0.04 0.94 0.02 0.11

TFPC 0.17 0.92 -0.14 -0.04 TRP 0.01 0.89 -0.01 0.02

TCYCLO 0.13 0.92 -0.20 -0.03 COCSF 0.37 -0.01 0.88 0.12

TRP 0.12 0.86 -0.21 -0.06 WCSFDPF 0.08 0.03 0.82 -0.09

FINC 0.01 0.32 0.85 0.18 WCSFSPF 0.44 -0.03 0.47 0.26

LOC -0.01 0.42 0.82 0.22 LOC -0.04 0.17 -0.01 0.93

WCSFDPF 0.54 -0.07 0.09 -0.62 FINC -0.05 0.08 0.04 0.93

a: Rotation converged in six iterations

Table 6.5. Regression After Applying PCA (Model Summary)

Model R R

Square

Adjusted

R Square

Std. Error

of the Es-

timate

1 0.895 0.80 0.80 1.081

to the mapping of a bug-report with a relevant bug-fix transaction. Again there is no direct link be-

tween bug tracking systems, i.e., Bugzilla and Subversion. Therefore, we used heuristic approaches to

obtain a link between a bug report and a bug fix transaction, which is not necessarily true for all cases.

Threats to external validity: Making a general conclusion on the basis of our results is

considered as a threat to external validity. Although the experiment was designed and performed

with care. But still one cannot confirm that the outcome of the experiment has no error. Similarly,

one cannot confirm the generalization of the findings. In our case, we defined a set metrics for

logical coupling measures, and we performed the experiment only on C-files, and assumed that it

may perform well in other type of source files. Second threat is we performed the experiment on OSS

project development data, while the development strategy of closed software system is different as

compared to the OSS. These are some threats, which we will handle in our future works, specially we

are currently focusing to repeat the experiment using those project data, which have been developed

using C++ and Java languages.

6.4 Summary

In this chapter, we presented our approach to extract the bug fixing coupling patterns and used

them to define a set of logical coupling metrics. First, we described in details the method of pattern

mining and defined our own customize method to extract the different set of bug fix patterns from

the evolution data of GNOME project. Once we obtained the coupling patterns, we used these

patterns and defined eight different logical coupling metrics. We have shown that these metrics are

highly correlated with the number of faults and can be used to construct a regression based bug

prediction model. We used the same metrics and built a machine learning based fault prediction
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6.4 Summary

Table 6.7. Classification evaluation measures of each class with PCA (training instances = 1537)

Data Set Class Instances TP Rate FP Rate Precision Recall F-Measure ROC Area

A HIGH 172 0.936 0.005 0.958 0.936 0.947 0.985

MEDIUM 689 0.99 0.013 0.984 0.99 0.987 0.995

LOW 676 1 0 1 1 1 1

B HIGH 172 0.907 0.015 0.886 0.907 0.897 0.955

MEDIUM 420 0.952 0.014 0.962 0.952 0.957 0.977

LOW 945 1 0 1 1 1 1

C HIGH 35 0.686 0.004 0.8 0.686 0.738 0.938

MEDIUM 137 0.905 0.017 0.838 0.905 0.87 0.952

LOW 1365 0.99 0.041 0.995 0.99 0.993 0.985

model. Furthermore, in this chapter we discussed the results of an experiment which was performed

with data of GNOME project. In case of bug predictor model, the obtained value of R2 is 80%.

Whereas, in case machine learning based classification, the obtained value of accuracy is 97%. The

results presented in this chapter have some threats, like size of the data, identification of bug fix

patterns, etc. These threats are described in details in the last part of the chapter.
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7
Impact Analysis of Software Change Request

Using Single and Multi-label Classification

Parts of the contents of this chapter have been published in [Ahsan and Wotawa, 2010b].

To add a new change or to fix a fault in a software, a software change request (SCR) is generated.

Most of the software change requests are related to the software corrective maintenance task, and

are called bug reports. The accurate and timely resolution of these bug reports not only improves

the quality of software maintenance task but also provides the basis to keep particular software alive.

The handling of software change requests (SCRs) is an integral part of software maintenance and a

task running daily for larger applications.

Current Research Trends: In the recent years information retrieval and machine learning tech-

niques have been applied on SCRs data to perform single label classification of SCRs. The research

trend is to use the textual data of SCRs and apply vector space model to transfer the textual data of

SCRs into key terms and then apply single label machine learning classification technique to classify

SCR either for bug triaging [Cubranic, 2004] [Anvik et al., 2006], effort prediction or impact analysis.

Zimmermann et al. [Thomas Zimmermann, May 23-28, 2004] applied data mining techniques on

software change data. They obtained information regarding which entities changed together in the

past and used this information to guide the developers in case of new changes. They used association

rules to perform the experiments. Canfora et al in 2008 [Canfora and Cerulo, 2005] presented their

approach for the impact analysis of SCRs. They used resolved SCR data along with developer CVS

comments and the name of the impacted source files. After obtaining the data, they used information

retrieval technique for the impact analysis of SCRs. Although the current approaches have performed

well, but we found that there are some issues, when we used single label classification directly for the

impact analysis of SCRs. These issues are discuss in the following paragraph.

Motivations and Findings: SCRs are frequently generated during the evolution of any large

software system. To establish this claim, we have analyzed the reported SCRs of the Mozilla and

Eclipse project. We found that in case of Mozilla a maximum of 393 SCRs had been reported in a

single day. The average reported number of SCRs per day is 97.5. But even more there are about

1,534 days out of total 3,185 days (during the years 1999-2007) when more than 100 SCRs have been

reported. In Figure 7.1 we show the frequency of the SCR count reported per day. Within the Eclipse
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CHAPTER 7. IMPACT ANALYSIS OF SOFTWARE CHANGE REQUEST USING SINGLE AND
MULTI-LABEL CLASSIFICATION

Figure 7.1. Frequency of submitted bug reports during the evolution of Mozilla project

project the figures are similar. The average number of SCRs reported between Revision 3.0 and 3.1

is 37 reports per day. Whereas a maximum of 220 SCRs had been reported in a single day [Anvik

et al., 2006]. Given the fact that the number of reported SCRs per day is high, the task of handling

SCRs becomes a very demanding one.

The process of handling SCRs comprises several actions including the assignment of SCRs to the

most appropriate developer, the identification of those program files and parts of the programs to

be changed, and estimating the expected time required for resolving the SCR. All these actions are

closely interconnected and have to be performed based on available information mostly provided in

textual form. An automatic tool capable of performing all the above mentioned tasks potentially

leads to an improvement of the overall maintenance task. In particular the maintenance time and

effort can be decreased. Therefore, an automated tool for handling SCRs would not only support the

person in charge for SCR handling but also reduce maintenance time and effort.

The timely and error free fixing of SCRs plays an important role to ensure a reliable software

maintenance task. Ensuring reliability and thus program quality can be obtained by performing a

comprehensive change impact analysis prior to the implementation of the SCRs. The change impact

analysis avoids to create faults in programs due to SCRs. A well known and major issue in software

engineering and in software maintenance in particular is that apparently small changes might ripple

through the system and cause major unintended impacts somewhere else. This effect is called ripple

effect. Hence, changing programs without understanding the corresponding effects definitely lead to

unreliable software products [Lee, 1998]. In order to avoid ripple and other effects leading to unreliable
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Table 7.1. Percentage of bug fix transactions in which single or multiple source files have changed

Project Name Mozilla Eclipse Gnome

Duration in which Bug-Fix Transac-

tions Occurred

1999-2009 2001-2009 1997-2008

Bug-Fix Transactions (sample-size) 33617 3599 68058

Bug-Fix Transactions Impacted Sin-

gle Source File

24602 (73.2%) 1960 (54.7%) 51018 (74.9%)

Bug-Fix Transactions Impacted

Multiple Source File

9015 (26.8%) 1630 (45.3%) 17040 (25.1%)

Average Bug-Fix Transactions Im-

pacted Single Source File

67.6%

Average Bug-Fix Transactions Im-

pacted Multiple Source File

32.4%

software, different change impact analysis approaches for predicting effects of SCRs have been intro-

duced, described, and used. Some of the approaches are based on static impact analysis and others

on dynamic impact analysis. The latter are based on the analysis of the program’s behavior [Arnold

and Bohner, 1993] and are usually more expensive in terms of computational time and space require-

ments when compared with static impact analysis methods [Huang and Song, 2006][Chen et al., 2007].

Problem Statement: In case of SCR’s impact analysis, there are some cases in which SCR

impacted more than one source files. Therefore, to perform the supervised machine learning classifi-

cation, some SCRs should be labeled with multiple source file names. Hence, single label classification

cannot be used directly for the impact analysis of SCRs. To get an idea of what percentage of SCRs

impacted more than one source files (i.e., java, cpp, etc.), we performed an experiment by randomly

selecting three different sample data sets of SCRs bug fix transactions from the project repositories

of Mozilla, Eclipse, and Gnome. The experiment results are shown in Table 7.1. An average 33.4%

bug-fix transactions impacted more than one source files. Therefore, we may conclude that in case of

impact analysis of SCRs the traditional single label classification techniques cannot be able to directly

classify at least 33.4% SCRs in the giving setting. Furthermore, in case of textual classifcation, we

mostly come across high dimensional feature space which reduces the performace of machine learning

classifiers, and need to be handeld.

Our Goal and Approach: The main objective of the study presented in this chapter is to resolve

the problems stated above, and to explore the possible solutions for the automated impact analysis

of SCR. Therefore, in order to resolve labeling issue, we present two different approaches which are

based on automated classification of SCR. The first approach is two-fold and semi-automated, in

which we use an apriori algorithm to obtain different groups of source files. We use these groups to

label resolved SCRs, and perform Single-label classification. Whereas, the second approach is one-fold

and fully automated, in which we directly label the resolved SCRs with one or more impacted source

files and perform Multi-label classification. In order to handle the high dimensional feature space

we use the LSI technique from information retrieval, which is commonly used to transfer the high
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7.1 Our Approach

dimensional feature space into a semantic space with less dimensions.

Hypothesis and Contributions: The hypothesis behind our approach is that the history of

resolved software change request together with the list of its impacted source files can be used

effectively for impact analysis of new SCRs. The main contributions of the paper are:

1. We used 3 different approaches of information retrieval and machine learning to improve the

existing textual classification of bug reports These approaches are: (a) LSI to overcome the

existing issues of VSM, such as high dimensionality, synonymy and polysemy, (b) labeling the

bug-fix reports with multiple impacted source files and using multi-label machine learning, and

(c) labeling the bug-fix reports with a single label obtained from file clustering that is based on

pattern mining and association rules.

2. We present the results of an empirical study based on three OSS projects for comparing the

different techniques.

Chapter Layout: The rest of the chapter is organized as follows: In Section 7.1 we describe

our approach. In Section 7.2 we describe the data extraction process. In Section 7.3 we discuss

the indexing and dimension reduction techniques of information retrieval. In the next Section 7.4 we

describe labeling and classification techniques. In Section 7.5 we briefly discuss the different evaluation

measures for the single and multi label classifications. In Section 7.6 we introduce the experimental

setup for collecting data and performing machine learning classification and present the obtained

empirical results, and also discuss the results. Finally in Section 7.7, we summarize the paper.

7.1 Our Approach

We propose two different approaches for impact analysis of SCRs. Our proposed approach belongs to

static impact analysis, and is based on the information gained when mining software repositories. The

pictorial representation of our approach is shown in Figure 7.2. We use a text similarity technique

from information retrieval and machine learning to extract similarities of textual SCRs descriptions

together with information regarding the corresponding impact on one or more source files. In the first

approach (see Figure 7.2 Steps: 1, 2, 3, 5 and 7), we first extract the data of bug fix transaction (a

CVS commit in which bugs are fixed) and then apply the pattern mining technique on the data, and

obtain different sets of source files, which are frequently changed together in order to fix a bug. With

the help of these patterns, we define association rules and use them to cluster the source files into

distinct groups. We are able to use a single group identifier to label each bug-fix report uniquely. As

a consequent a single-label machine learning algorithm for classification can be used again. Currently,

this clustering-based approach is only semi-automated. In the second approach (see Figure 7.2 Step:

1, 2, 3, 4 and 5), where no clustering is performed, we directly label each bug report with the set

comprising all changed source files and use multi-label machine learning classification directly. The

multi-label machine learning based approach is fully automated.

In order to validate our approaches, we performed experiments. In our experimental work, we

used bug reports, the corresponding program files, and log data of the three different OSS projects
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7.2 Data Extraction and Filtering

Figure 7.2. Process to convert the textual data of SCRs into LSI based TDM matrix. We took the

transpose of actual TDM matrix and then labeled with the names of source files. For

labeling and classification two different approaches are used i.e., single and multi label

classifications

Mozilla, Eclipse and Gnome. For building the models for our impact analysis technique, we converted

the textual part of the available bug reports, i.e., the bug summary and the bug description, into a

low dimensional indexed term to document matrix (TDM). This technique usually leads to TDMs of

larger dimensions, which reduces the classification performance. Therefore, we made use of Latent

Semantic Indexing (LSI). Using LSI we also overcome the problems of synonymy and polysemy that

exists in text analysis based on classical Vector Space Model (VSM). After indexing, we labeled

each bug report with one or more impacted source files and performed classification using our two

approaches for impact analysis of SCR.

In the the following subsections we discuss the main steps of our approach i.e., data extraction and

filtering, indexing and dimension reduction, and labeling in detail.

7.2 Data Extraction and Filtering

We extracted the used textual data of the SCRs from the bug tracking system Bugzilla. In our

current work we focus only those SCRs, which are related to corrective software maintenance, i.e.,

Bug Reports. Therefore, we downloaded the bug reports in HTML format from the Bugzilla server of

the OSS projects Mozilla, Eclipse and Gnome. Figure 2 shows an example of a Bugzilla bug report.

We further processed these reports afterwards to extract the relevant textual information, i.e., the

bug report summary and the bug report description. We further filter the summary and description

texts. For this purpose we parse the textual data of each bug report and remove all words which,

are used very frequently. Such words usually are pronouns, prepositions, and articles, and are called

stop-words. Furthermore, we performed stemming. Stemming is a process that removes the suffix
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7.3 Indexing and Dimension Reduction

Figure 7.3. An example of bug report’s summary and description.

from the words. For example, after stemming the word walked becomes walk (see [Baeza-Yates and

Ribeiro-Neto, 1999]). We implemented the extraction and filtering step and applied it to all bug

reports. Hence, we obtained a set of key-words or key-terms for each bug report, which is processed

in the next step of our impact analysis approach.

7.3 Indexing and Dimension Reduction

The most commonly used document representation technique is the Vector Space Model (VSM). In

VSM documents are represented as a vector of terms. In VSM each column represents a unique

document, whereas each row contains the frequency or weight of a term. Therefore, sometime this

representation is also called term-by-document or term-to-document matrix (TDM). The terms may

be weighted according to a given weighting model, which may include local or global weighting,

or both. If local weights are used, then the term weights usually represent the frequency of term

occurrences in that document, i.e., the term frequencies (TF). If global weights are used, then

the weight of a term is given by its inverse document frequency (IDF) values. The most common

weighting scheme is one in which both local and global weights are used. This is commonly referred

to as TF×IDF weighting [Sebastiani, 2002]. TF×IDF determine the relative frequency of words

in a specific document compared to the inverse proportion of that word over the entire document

corpus. Intuitively, this calculation determines how relevant a given word is in a particular document.

Words that are common in a single or a small group of documents tend to have higher TF×IDF

numbers than common words. Therefore to perform a classification of SCR, we use TF×IDF for

indexing. The obtain TDM is high dimensional. When using the TDM in this form for classification

the computational costs are high and the generated results are very likely to be poor. Therefore, we

use the Latent Semantic Indexing (LSI) technique for reducing the dimension.
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7.3.1 Latent Semantic Indexing

In VSM, similarity between the two documents e.g., d1 and d2 is tested lexically by taking the cosine

of angle between the indexed terms of the corresponding vectors d1 and d2.

There are two main drawbacks of VSM. The first one is that VSM documents are presented in

a high dimensional space. The dimensions depend on the number of indexing terms. The second

drawback is the used lexical matching technique, which may retrieve irrelevant or inaccurate results

because of synonyms and polysemy words. Polysemy (words having multiple meaning) and synonymy

(multiple words having the same meaning) are fundamental problems in classical VSM. To overcome

these issues Scott Deerwester in 1990 described a new technique i.e., Latent Semantic Indexing (LSI),

which identifies some underlying latent semantic structure in the data [Deerwester et al., 1990]. LSI

transforms the high dimensional TDM data into a low dimensional semantic space. In the semantic

space terms and document that are closely associated are placed close to each other. E.g., documents,

which contain synonyms, are closer together in LSI space than in the original space. Documents,

which contain polysemy in a different context are more far away from each other in LSI space than in

the original space. Because of the mentioned advantages of LSI we use this method instead of VSM

in our approach. In the next paragraph we formally describe LSI using SVD.

Let us assume an n ×m term-to-document matrix D, where n is the number of key-terms and m

is number of documents. The singular value decomposition of matrix D is given by D = USV T ,

where U and V are orthonormal vectors and S is a diagonal matrix with S=diag(σ1, σ2, σ3,.. σr)

and r is the rank of D. σ1, σ2, σ3,.. σr are singular values of D. U = [u1, u2,u3,....ur] called the left

singular vector. V = [v1,v2,...vr] is called the right singular vector (U represents term vectors, and V

represents document vectors). We truncate the singular values, i.e., keep only the first k largest terms.

LSI used the first k vectors in D as the transformation matrix to convert the original document into

a k-dimensional space. Therefore the resulting matrix Xk is given as: Xk = Ur Dr V T
r ≈ Uk Dk V T

k ,

where Uk is a m×k matrix, Dk is a k × k matrix and V T
k is a k × n matrix. The new matrix Xk

is approximately equal to X and is of rank k. Therefore, SVD can be considered as a technique for

deriving a set of uncorrelated indexing variables or dimensions. The reduction in the dimension is

based on the value of k. In LSI there is no direct way of finding an optimum value for k. This raises

the important and open problem of choosing the dimensionality [Deerwester et al., 1990]. In our case

we repeat the experiment with different values of k and found the best classification results at k=100

for all data sets. After indexing and dimension reduction the next step is labellings and classification.

7.4 Labeling and Classification

In case of text classification problems, two different approaches are used to label a document i.e.,

single-label or multi-label. We use both approaches. Before start labeling we extract the set of im-

pacted source files related to each bug report. This task is accomplish in two steps. In the first step,

we establish a link between the bug reports and the associated check-ins in the version control system

e.g. CVS (in case of Mozilla and Eclipse) and Subversion (in case of Gnome). In check-in developers

make changes in the source files and save those changes into CVS/Subversion. We obtain these links

by processing the log data of CVS/Subversion, and obtain the number of check-in transactions that
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are related to bug fix changes. To identify the bug fix transaction we parse the developer’s check-in

comments. If comments contain any of the following words bug fix, bug fixed, or fixed, or any bug-id,

then we consider this transaction as a bug fix transaction [Fischer et al., 2003]. After identifying the

bug fix transaction, the second step is to list the number of impacted source files in that transaction.

In case of Subversion all those files, which are committed together have the same revision number.

Therefore, in case of Subversion one can easily obtain the list of source files that are changed in

a single transaction. While, in case of CVS the source file change together do not have the same

revision number. Therefore, in case of CVS we use the Sliding Time Window approach introduced by

Zimmermann [Thomas Zimmermann, May 23-28, 2004]. According to Zimmermann’s approach, files

are considered to be changed together, if the log of each of that files have the same log comments,

the same author name, and the same date. The check-in time may be different, but this difference

should not be more than 20 seconds.

Once we extract the list of impacted source files the next step is to use these information to label

bug-reports data with set of impacted source files. In the following we describe the two different

approaches for labeling of bug reports with the set of changed source files.

7.4.1 Single-Label Classification

In case of single-label classification the predefined data categories are mutually exclusive and each

data or document may belong to exactly one class. A binary classification is the simplest case of the

single-label classification, where each data point label is assigned to one of two predefined classes.

Whereas in case of single-label multi-class classification, where each data point label is assigned to

one of multiple predefined classes. In our experiment we used the single-label multi-class approach,

because in different bug-fix transactions large number of source files are changed. There are some

cases in which a bug-fix transaction impacted more than one source files. Whereas, in case of

single-label multi-class classification we have to label each bug report with a single entity or class

at a time. To overcome this issue we label fixed bug reports with a group-id. Where a group-id

represent a distinct group of source files, which are frequently changed together. To cluster the source

files that are changed together, we apply pattern mining technique on the bug-fix transaction’s data

of CVS/Subversion, and obtain frequent patterns of source files which are changed together. From

source files change patterns data we obtain the sets of association rules. These association rules are

than used to finally cluster the files into groups.

For mining the association rules from the patterns we use the Apriori Algorithm. The problem is

to find file change patterns with a user-specified minimum support, where the support of a pattern

is the percentage of data that contain the pattern [Agrawal and Srikant, 1994]. The obtain patterns

are used to define association rules. Let Fi = {A, B, C} be a set of source file items and let T = {t1,
t2, t3....tn} be a set of transactions. Let t1 be a particular transaction in which source files A and B

are changed. An association rule is of the form A ⇒ B where A, B included in Fi and (A ∩ B = φ).

The confidence of the rule is the conditional probability of A given B, Pr(A|B), and the support of

the rule is the prior probability of A and B, Pr(A and B).

To obtain a group of source files we applied frequent pattern mining on the bug-fix transactional
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Figure 7.4. An example of a groups of source files which is obtained by applying frequent Patterns

Mining and Association Rules on the bug-fix transaction data of Mozilla CVS repository.

data of three different OSS projects, and obtained patterns related to program file changes. We

used these frequent patterns data along with the frequency and confidence value to define rules.

Figure 7.4 depicts an example of such a group of source files, which we extracted from the data of

the Mozilla project. Each circle in Figure 7.4 represents a source file and the integer value inside

the circle represent the change frequency of that file. Whereas, the directed arcs represent the

confidence values of the association rules stating that the two connected source files are changed

together. In particular if we have a source file f1 and another one f2, then the graph comprises

the directed arc (f1, f2) in case a change of f1 may causes a change of f2 with a given confidence.

We obtain these relationships and corresponding confidence values from the obtained association rules.

We, used the directed graph, the minimum support value and the confidence value to build the group

of source files. First, we extracted a sub-graph only comprising arcs where the provided confidence

value is greater than a predefine value. We further removed all nodes that are not connected any-

more. The remaining graph might comprise a set of connected sub-graphs. Each of these sub-graphs

form a group of source files changed together. We assigned an unique group id to each of these groups.

7.4.2 Bug-Report’s Mapping with Source Files’ Group-Id

After creating the groups of source files, we labeled each bug report (which are in the form of reduced

dimension TDM) with one of the appropriate group id, as shown in Figure 7.5. To assign such a

group id to each bug-fix report, we used the procedure described in Progrm1. Its main function is to

compare each element (i.e., name of impacted source files) of a bug report with each element (i.e.,

name of source files in a group) of all the groups one by one. Finally, we used the result of this

comparison of file names, and assigned a group-id to a bug-report. We assigned only that group-id to

a bug report, whose member’s file names either perfectly matched with all the impacted file names of
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Figure 7.5. Labeling of Bug-Reports with group-id. Each group-id represent a group of source files

which are changed together. It is an indirect approach to label each bug-fix report with

multiple source files, and use single label classifiers for classification.

the bug report, or more closely matched as compared to other groups. In this way, we labeled each

row of TDM transpose matrix (which represent the indexed term each bug report) with a group-id.

There are chances that the assigned group-id may contains more source files as compared to the

actual set of files, which are impacted by that bug report. To overcome this issue, after single-label

classification one has to manually select the most appropriate set of impacted source files from the

group of predicted source files.

Program 1 A program to assign a group id to each bug-fix (SCR) report.

FileName1[][];//contains the groups of source files which

//are changed together, row=FileGroups and Column=FileNames.

BugReportFileName2[];//Files Name Impacted by a BugReport.

BugReportGroupId //Required Group-Id of FileGroups.

int counter1=0; int counter2=0;

for(int j=0;j<NumOfGroups;j++)

{for(int k=0;k<NumOfFilesImpactedByABugReport;k++)

{for(int l=0;l<NumOfFilesAssociatedToFileGroup;l++)

{if(BugReportFileName2[k]==FileName1[j][l])

{counter1++;}

}

}

}if(counter1>counter2)

{counter2=counter1;

indexOfFileGroup=j; // Obtain File Group-Id

}counter1=0;

} BugReportGroupId=indexOfFileGroup;

Finally, we used these single labeled reduced dimension TDM as a training and test data sets for

the single label machine learning text classifiers. For single-label classification we used the machine
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learning classifiers Support Vector Machine (SMO), J48, and Naive Bayes.

7.4.3 Multi-Label Classification

In case of multi-label classification, we directly assign multiple impacted source files to each bug

fixed report, and use a multi-label classification algorithm. In multi-label classification the data

categories or classes may not be either mutually exclusive or conditionally independent. In this case

each data may belong to multiple classes simultaneously [Sebastiani, 2002]. Let us assume a set of

documents with a single label π. Then π belongs to a set of disjoint labels K and |K| >1. If |K|=2,

then the learning is called binary classification, and if |K| >2 then the learning is called multi-class

classification. For multi-label classification the data set are associated with a set of labels T ⊆ K

[Tsoumakas et al., 2009].

There are different methods to solve multi-label classification problem. These methods are divided

into two different groups, i.e., Problem Transformation and Algorithm adaptation methods.

Problem Transformation Methods

The problem transformation methods are not dependent on any algorithm. These methods transform

the multi-label classification task into one or more single-label classification, or regression, or label

ranking task, and then apply any existing single label multi-class machine learning algorithm like

SVM [Tsoumakas et al., 2009].

The most commonly problem transformation method is the Label Power Set (LP) method, a set

of labels corresponds to all combinations of any number of the classes. If a document is relevant to

several classes, the document must be assigned the label corresponding to the subset of all relevant

classes. Once the new labels are defined, the multi-label multi-class problem has been reduced to

a single-label multi-class problem, and the categorization task is reduced down to choose the single

best label set for a document.

Formally, we express LP type of classification as H: X→P(L), where P(L) is the power set of label

L. To understand this method consider the case of multi-label classification of software change request

(SCR), which may have multiple classes i.e., impacted source files. Let R represent a set of SCR

and C represent the set of multiple classes i.e., R={r1, r2, r3, r4,.... ri....rn} and C={c1, c2, c3,
c4,....ci.....cm}. Where n is the number of SCR reports and m is the number of classes. In our case

we have one or more impacted source files (F) related to each SCR. Therefore, we may have multiple

classes like, F={f1, f2, f3, f4,...fi...fk}, where k is the total number of distinct source files. Therefore

the total number of distinct possible set of classes is k. If c ⊆ k, then each SCR report is labeled with

c as multi label multi-class. While LP consider each unique set of labels that exist in a multi-label

data set as one of the classes of a new single-label classification task. Therefore in case of LP the

total number of distinct possible set of classes is 2k-1.
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Algorithm Adaption method

In the Algorithm Adaption method the already available machine learning methods for single label

classification are modified in order to make them available for multi-label classification. There are

different algorithm adaptation methods like ML-kNN. ML-kNN is a method that uses kNN lazy

learning algorithms for classification [Zhang and Zhou, 2005].

In our approach we use LP-Method of multi-label classification, which is belong to the Problem

Transformation Method of multi-label classification. We choose LP-Method because it is simple and

commonly used for multi-label classification. While, the computational complexity of LP depends

on the complexity of the base classifier with respect to the number of classes, which is equal to the

number of distinct label sets in the training data set [Tsoumakas et al., 2009].

7.5 Classification Evaluation Measures

7.5.1 Evaluation Measures for Single Label Classification

The commonly used evaluation measures for the classification problems are Precision, Recall and

F-measure. In case of single label classification Precision = a/b and Recall = a/c, where a is the

number of documents retrieved that are relevant, b is the number of documents that are retrieved, c

is the number of documents that are relevant. Precision and recall are not discussed separately. Both

of them are discussed with reference to each another. Therefore, these measures are combined into

a new measures called F-measure, which is actually the weighted harmonic mean of precision and

recall. and given as, F-Measure= (2× Precision × Recall)/(Precision + Recall).

7.5.2 Evaluation Measures for Multi Label Classification

The evaluation measures for multi-label classification is different from the evaluation measures for

single-label classification. In order to define these measures consider a set of multi-labels document

|D|. The document set |D| is given as (xi, Yi), i=1...|D|, with Yi ⊆ L, where L is the set of multi-label

classes. Now assume that H be a multi-label classifier and Z=H(x) be the set of labels predicted by

H, then the measured Hamming loss is given by HammingLoss (H,D)= 1
|D|

∑ |D|
i=1 |YiΔZi|/|Z|. Δ

stand for symmetric difference of two label sets corresponding to the XOR operation. The accuracy is

Accuracy(H,D) = 1
|D|

∑ |D|
i=1 |Yi

⋂
Zi|/|Yi

⋃
Zi|. The measured precision is given by Precision (H,D)

= 1
|D|

∑ |D|
i=1 |Yi

⋂
Zi|/|Zi| , the recall is given by Recall(H,D) = 1

|D|
∑ |D|

i=1 |Yi

⋂
Zi|/|Yi| . The

measure F is given by F-Measure(H, D) = 1
|D|

∑ |D|
i=1 |Yi

⋂
Zi|/(|Yi| + |Zi|) [Godbole and Sarawagi,

2004].

7.5.3 Labels Statistics

In case of multi-label data there are two parameters, which are commonly used to distinguish the

different sets of multi-label data. These two parameters are label cardinality and label density. To
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Table 7.2. Training data sets for single and multi label Machine Learning classification

Project-Name Mozilla Eclipse GNOME

Bug-Report Fixed Period 1999-2009 2001-2006 1997-2008

Label-Type Single-Label Multi-Label Single-Label Multi-Label Single-Label Multi-Label

No. of Bug Reports 1168 1168 534 534 802 802

No. of key-terms 1939 1939 1208 1208 1440 1440

No. of reduced dim (LSI) 100 100 100 100 100 100

Distinct Impacted Files 27 27 38 38 32 32

Number of Labels 14-Groups 27 14-Groups 38 22-Groups 32

Labels Cardinality - 1.68 - 1.21 - 1.18

Labels Density - 0.0622 - 0.032 - 0.036

define these parameters consider a multi-label data instances i.e. (xi,Yi), i=1...|D| where Yi is the set

of label associated with document i, and |D| be the multi-label data set. Label cardinality of a data

set D is the average number of labels of all instances in D. Formally, it is written as LC(D)= 1
|D|

∑
|D|
i=1 |Y |. In contrast label density is the average number of labels instances in document set D divide

by total number of labels |L|, LD(D)= 1
|D|

∑ |D|
i=1 |Yi|/|L| [Tsoumakas et al., 2009].

7.6 Experimental Setup

In order to validate our approach we performed an experiment. The experimental setup follows the

approach discussed in Section 7.1. For this purpose we first obtained the bug report data which have

been fixed and resolved during 1999-2009 (Mozilla), 2001-2006 (Eclipse) and 1997-2008 (Gnome).

The details of the obtained data sets are given in Table 7.2. The data selection criteria that has been

used to obtain the data sets is given in the next paragraph.

Initially, we selected only those bug-reports whose link with CVS or Subversion have been found

using the approach described in Section 7.4. This is the only way to map the fixed bug reports with

its impacted source file names, and in order to train the classifier we should know the name of the

impacted source files. Then, we selected only those bug reports, which have been involved in fixing at

least one or at the most five source files at a time. However, there is a large number of bug reports,

which are involved in fixing more than five source files at a given time. If we choose bug reports, which

are involved in fixing more than five source files, then we will increase the number of distinct impacted

source file names, which ultimately increases the label size. For machine learning classification, if the

label size is large to obtain better classification results, the size of data instances should also be large.

In our experiment it is not easy to increase the data size, because we are bound to select only those

bug reports whose links found in CVS/Subversion. Furthermore, we selected only those bug-reports

that have been involved in fixing source files, which are frequently changed. We used frequent

pattern mining technique to obtain the list of frequently changed source files. We imposed this con-

straint condition to avoid the class imbalance issue of machine learning classification [Japkowicz, 2000].

After obtaining the bug reports data we transformed the textual data of the bug reports into

term-to-document matrix (TDM) by using MATLAB tool TMG [Zeimpekis and Gallopoulos, 2005].

We store the result of TMG in Matlab as sparse matrix. The stored matrix is in the form of high
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dimensional TDM. The size of the TDM dimension (i.e., number of bug reports and number of key-

terms) related to different projects are depicted in Table 7.2. Afterwards we used the LSI technique

to reduce the number of dimensions (see also Table 7.2).

After obtaining the TDM data, the next step is labeling and classification. First we discuss the

experimental set up for single-label classification and then discuss the multi-label classification.

In case of single label classification, first we have to obtain different groups of source files which are

changed together. For this purpose we used the techniques Pattern Mining and Association Rules of

Mining. In our implementation we used the Weka1 tool, and applied the Apriori algorithm on the

obtained bug-fix transaction data of Mozilla, Eclipse and Gnome projects. The obtained patterns

are used to cluster the source files into groups. To perform the grouping of source files we used the

techniques, discussed in Section 7.4.3 and 7.4.3.

After extracting the data and performing labeling, we finally come to the single-label classification

step. For classification, we used three different machine learning classifiers i.e., Support Vector

Machine (SMO), J48, and Naive Bayes. In our implementation we again used the Weka tools. The

results for single-label classification are shown in Table 7.3.

In case of multi-label, we first labeled each bug report directly with one or more impacted source

files, and then used the Label Power set (LP) method together with 3 different machine learn-

ing approaches Support Vector Machine (SMO), J48 and Naive Bayes as different base classifiers.

The obtained classification results of LP methods are shown in Table 7.4. To perform the classifi-

cation task we used Mulan2 with Weka. It is an open source Java API for the multi-label classification.

To obtain more reliable values for the classification evaluation measures, we used the 10 fold cross

validation technique. We now discuss the obtained results in more detail.

7.6.1 Results And Discussion

Table 7.2, data show that the number of source file per group is large in case of Eclipse project as

compared to Gnome and Mozilla. The large number of source file per group indicate that in case of

Eclipse project more files are changed together to fix a bug as compared to Gnome and Mozilla.

Table 7.3 depicts the results of single label classification. In case of Mozilla, the maximum precision

and recall values are 49.3% and 46.4% respectively. We obtained these values using SMO for learning

the classifier. We trained the classifiers with 1168 bug reports and used 14 distinct group of source

files as labels. These 14 groups of source files are shared by 27 distinct source files, where each source

file belongs to only one group. Similarly in case of Eclipse, the maximum precision and recall values

are 45.5% and 44.8%. We obtained these values using support vector machine (SMO). We trained

the classifiers with 534 bug report and used 14 distinct group of source files as labels. These 14

groups of source files are shared by 38 distinct source files. One reason to obtain the low classification

1http://www.cs.waikato.ac.nz/ml/weka/
2http://mlkd.csd.auth.gr/multilabel.html
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Table 7.3. Single-label Classification Evaluation Using 3 Different ML-Algorithms

Project Metrics SMO (%) J48 (%) NB (%)

Mozilla Precision 49.3 30.4 36.7

Recall 46.4 31.0 26.8

Fmeasure 46.4 30.6 27.7

Eclipse Precision 45.5 33.8 33.7

Recall 44.8 34.1 27.0

Fmeasure 42.7 33.8 27.3

Gnome Precision 58.2 39.5 42.7

Recall 51.1 39.4 36.4

Fmeasure 50.7 39.2 36.4

evaluation compared to Mozilla is the small number of training data and large number of files group.

Finally, in case of Gnome, the precision and recall values are 58.2% and 51.1%. We obtained these

values again using SMO. We trained the classifier with 802 bug reports and used 22 distinct group

of source files as labels. These 22 groups of source files are build with 32 distinct source files. Each

source file belongs to only one group. In case of Gnome we obtained the maximum F-measure value

i.e., 50.7%.

Table 7.4 presents the results obtained using multi-label classification. In case of Mozilla the

maximum precision and recall values are 41.3% and 40.5% respectively. We obtained these values

when LP classifiers used support vector machine (SMO). The evaluation results of other classifiers

are below 33%. We found the similar evaluation results in case of Eclipse, i.e., the precision and

recall values are 32.0% and 27.9%. We obtained these values when LP used support vector machine

(SMO) as base classifier. In case of Gnome the evaluation results are better than for Mozilla and

Eclipse. The maximum precision and recall values are 47.1% and 46.5% respectively. We obtained

these values when the LP classifiers used SMO. In case of Gnome, we trained multi-label classifiers

with 802 bug reports with 32 distinct source files as multi-label. Because we used a large data set, the

classification results are better as compared to the classification results of Mozilla and Eclipse. The

obtained value of F-measure for Mozilla, Eclipse and Gnome are 40.9%, 30.0% and 46.8% respectively.

The experimental results for multi-label classification show that the label cardinality, label density

and the number of labels affected the multi-label classification results. Classification result is improved

by increasing the label density and, decreasing the label cardinality and number of labels. In case of

Gnome we obtained the best classification result as compared to other, because in case of Gnome,

the label cardinality is the smallest i.e., 1.18 (see Table 7.2).

Figure 7.6 and 7.7 depict the trend of precision and recall for single and multi label machine

learning classifiers trained with different classification algorithms. We observe from both figures that

the precision and recall values are better when classifiers are trained using single label classifiers.

The main reasons for this is the number of labels used for classification. From Figure 7.6 and 7.7, it

may also observed that in case of single-label and multi-label classification, Support Vector Machine
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Table 7.4. Multi-label Classification Evaluation Using Label Power set (LP) With 3 Different ML-

Algorithms as Base Classifiers

Project Metrics SMO (%) J48 (%) NB (%)

Mozilla Precision 41.3 25.0 28.6

Recall 40.5 24.5 27.7

Fmeasure 40.9 24.7 28.1

Eclipse Precision 32.0 20.2 28.1

Recall 27.9 20.4 26.0

Fmeasure 30.0 20.2 26.8

Gnome Precision 47.1 31.8 34.9

Recall 46.5 31.9 34.0

Fmeasure 46.8 31.8 34.5

performed well. There may be two main reasons for the better performance of SMO as compared

to Naive Bayes and J48. The first one is, SMO perform well in case of text classification with large

feature space. Whereas, the second reason is, SMO can be believed to be less prone to the class

imbalance problem as compared to other supervised machine learning classifiers. Because, SMO

classification is based on small number of support vectors and thus SMO may not be sensitive to the

number of data representing each class.

Figure 7.8 depicts the precision-recall plot of each label or class. The pattern of the graph shows

that in case of Gnome precision and recall are linearly increasing or decreasing, whereas in case

Mozilla and Eclipse most of the labels have high recall values at low precision and high precision

values at low recall. It is also shown in the figure that in case of multi-label classification most of the

precision and recall values are near the origin of the plot as compared to single label-classification.

One possible reason is, multi-label training data sets contain more class imbalance as compare to

single label training data sets [Japkowicz, 2000].

7.6.2 Threat to Validity

There are some threats to validity of the proposed approach that are related to the classification and

the size of the training data set. In this section we discuss them briefly.

In case of single label classification, we label each bug report with a source file’s group-id. Where

each group-id represents the possible cluster of impacted source files that are frequently changed

together. These groups of source files are obtained using association rule mining. Each group

comprises multiple distinct source files. However, there are some cases in which source files belong

to multiple groups at a time. These are very few cases in our data set. Therefore, we assigned

overlapping files to any one of the groups. Similarly, there may be some cases in which the as-

signed group-id to a bug report may contains more source files names as compared to the name of
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Figure 7.6. Precision values of single and multi-label classification when classifiers trained with three

different machine learning algorithms i.e., support vector machine, J48 and Naive Bayes

(NB)

Figure 7.7. Recall values of single and multi-label classification when classifiers trained with three

different machine learning algorithms i.e., support vector machine, J48 and Naive Bayes

(NB)
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Figure 7.8. Precision-Recall plot of individual labels.

actual source files that have been impacted by that bug report. Therefore, in those cases after classi-

fication manual selection of source files from the predicted group of source files plays an important role.

In order to obtain the change-coupling data we performed frequent pattern mining and obtained

groups of files which are changed together. These group of files are time dependent and there might

be some cases in which source files are removed or deleted from the software repository. In these cases

our system may include deleted source files in any of the file groups. Similarly, our system is not

able to include newly added project’s source files into any existing group of files. The newly added

project’s source files have small change-coupling history but we considered only those source files to be

included in a group when their change-coupling frequency value is larger than a predefined value. The

described cases are very few and have, therefore, very little impact on the performance of the classifiers.

In case of multi-label classification the size of the labels plays an important role. It is difficult to

identify an optimum size of labels. Large label size reduce the performance of multi-label classifica-

tion. In our experiment source files are labels, and in case of large OSS the number of source files

are in thousands. This value varies from project to project. However, during labeling we consider

only those source files, which are frequently changed. Therefore, we obtained a lower number of labels.

7.7 Summary

In this chapter we presented and compared two different approaches for the automation of SCR

impact analysis. We evaluated these methods using three data sets from the three open source

software projects repositories i.e., Mozilla, Eclipse and Gnome. Our experimental results indicate

that the textual data of past SCR, which are labeled with the set of impacted source files, can be
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used to build the supervised machine learning based models for the automation of SCR impact analysis.

In summary our approach comprises the following steps: Before building the models, we first

transform the textual data of SCRs or bug reports into a low dimension indexed term-to-document

matrix (TDM). In order to transform the SCRs data into TDM, we use indexing and dimension

reduction techniques from information retrieval i.e., TF×IDF and Latent Semantic Indexing (LSI).

After the transformation of SCR data into TDM, we label them and use single and multi-label

classifiers to build the models.

From the empirical analysis we found out that the single label classifiers have large values for the

classification measures compared with the multi-label classifiers. But the multi-label classifiers are

more reliable compared to the single label classifiers. This is due to the fact that in case of single

label, we label each SCR with a single group of source file, which are frequently changed together.

We obtain these groups of source file using an indirect method, i.e., frequent pattern mining and

association rules. Whereas in the case of multi-label we labeled each SCR directly with the set of

actual impacted source files.

In case of Gnome project, the obtained values of precision and recall for the single-label classification

are 58.2% and 51.1%. Whereas the precision and recall values of multi-label classification are 47.1%

and 46.5%. We observed similar trends in case of Mozilla and Eclipse, but their evaluation measures

values are less. Another result obtained is that in case of single and multi labe classification, learning

based on Support Vector Machin (SMO) performed well.
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8
Automatic Bug Triaging System Based on

Multi-Label Classification of SCRs

Parts of the contents of this chapter have been published in [Ahsan et al., 2009a] and [Ahsan et al., 2009c]

In software engineering a Bug Triage System (BTS) is commonly used at the time when new SCRs

are reported. BTS is used to assign a new SCR or bug report to an appropriate developer, who is

capable to resolve the issue.

In chapter 7, we described our approach to extract the data of software change requests (SCRs)

from the project’s repository of GNOME, Mozilla and Eclipse. We used the extracted data of SCRs

to perform an experiment for the impact analysis of SCRs. Now, in this chapter we use the SCR

data of Mozilla project and describe our approach to construct a bug triage system, which is based

on multi label classification of SCRs. The content of this chapter has been published in the paper

[Ahsan et al., 2009a] and [Ahsan et al., 2009c].

Recent Research Trends: The recent trends in the software engineering are, researchers use the

resolved bug reports data of OSS and labels them with the name of a developer who actually resolved

them. After labeling supervised machine learning classifiers are used to train. Finally, at the time

when a new bug report is submitted, the trained classifiers are used to predict the name of a developer

who is appropriate to resolve the new bug report. This process is commonly known as Automatic

Bug Triaging [Cubranic, 2004, Anvik et al., 2006]. In another approach, resolved bug reports are

labeled with the time which have been spent to fix them and used this data to train machine learning

classifiers. Finally, at the time, when new bug is reported the trained classifier is used to predict the

approximate time required to fix the new bug report [Weiss et al., 2007]. Similarly, Canfora et al

[Canfora and Cerulo, 2005] in 2008, presented their approach for the impact analysis of SCRs. They

used the textual similarity technique of informational retrieval to retrieve past SCRs similar to a new

SCR and to compute the rank list of impacted files.

Motivation and Findings: A major part of software costs is spent for software maintenance.

The software maintenance cost may be reduced when completing maintenance tasks in time using

fewer resources. To improve the corrective maintenance task most large and OSS software systems

use a bug tracking system and perform the assignment of bug reports to the maintenance personal
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manually. When a new bug is reported, the first measure is to validate it as a unique bug report and to

assign it to the most appropriate developer. However, a manual validation and allocation of hundreds

of bug reports per day is a challenging task. It needs lots of skills and consumes lots of time. Moreover,

manual bug triage is error-prone, tedious and time consuming, especially in cases where hundreds of

bugs are reported daily. Within our study we found that, in case of Mozilla, the average number of

reported bugs per day is 97.5 (see Figure 7.1). From these observations we can conclude that in case

of large and open source software system large number of bugs are reported per day, which ultimately

increases the software maintenance time and cost. Therefore, an automatic and accurate bug triage

system may play an important role to reduce the time and cost of software corrective maintenance task.

Our Goals and Approach: The goal of our research work is to utilize the advance techniques

of information retrieval and machine learning classification to construct an automatic bug triaging

system, which is not only capable of assign SCRs to the appropriate developers, but also identify

the name of the suspected source files, which are required to be modified, and estimate time, which

is required to fix the SCR. The underlying assumption is that the available SCRs together with the

information regarding the developer resolving the SCR, set of modified source files and the time spent

to fix the SCR would let us extract the mapping, which is close to the optimum. This assumption is

to a great extent reasonable because, when manually assigning SCRs to developers someone would

always like to assign the right task to the right people. In this case study, we make use of information

retrieval and multi-label machine learning methods for indexing and classification of the textual

information given in a SCR into a set of categories. In our experiments, the text files are the SCRs (or

bug reports) and the categories into which bug reports are classified are the name of the appropriate

developers who can fix the bug reports.

Research Contribution: Following are the main contributions,

❏ We performed two different experiments to contribute the objective of providing an automated

bug triage system. The first experiment is based on the single label classification of SCRs

which is capable to assign SCRs to the appropriate developers. Whereas, the second experiment

is based on multi label classification of SCRs, which is not only capable to assign SCRs to

the appropriate developers, but also identify the name of the suspected source files, which are

required to be modified, and estimate time, which is required to fix the SCR.

❏ We compared the two different approaches and found that the multi label classification of SCRs

is more comprehensive and performed well and can be used for the bug triage system.

Chapter Layout: The rest of the chapter is organized as. In Section 8.1 we describe two different

approaches for a bug triage system. In Section 8.2 we describe in details the single label classifica-

tion approach for a BTS system and discuss the experimental results. In Section 8.3 we describe

the multi-label classification approach to construct a bug triaging system. Threats to validity are

described in Section 8.4. Finally, in Section we summarize the chapter.
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8.1 Different Approaches For an Automatic Bug Triage System

Figure 8.1. Process flow diagram of the proposed Automatic Bug Triage System (BTS) based on single

label machine learning classification.

8.1 Different Approaches For an Automatic Bug Triage System

In this chapter, we present two different approaches to obtain an automatic bug triage system and

discuss the results of two different experiments, which are based on our approaches. In the first

experiment, we downloaded resolved bug reports along with the developer’s activity data from the

Mozilla open source project. We extracted the relevant features like the report title, report summary,

etc., from each bug report, and extracted developer’s name who resolved the bug reports from the de-

velopers activity data. We processed the extracted textual data, and obtained the term-to-document

matrix (TDM) using an approach, which we have described in Chapter 7. For term weighting

methods, we used simple term frequency and TF × IDF (term frequency inverse document frequency)

methods. Furthermore, we reduced the dimensionality of the obtained TDM by applying feature

selection and latent semantic indexing (LSI) methods. Finally, we used seven different machine

learning methods for the classification of bug reports. The best obtained BTS is based on LSI and

support vector machine having 44.4% classification accuracy. The average precision and recall values

are 30% and 28%, respectively.

In the second experiment, we used the same TDM data of Mozilla project, which we have obtained

in the first experiment. Now, in this experiment we labeled each TDM (SCR data transformed

into key terms) with multiple labels, i.e., the developer name, the list of source files, and the time

spent to resolve the SCR. To obtain effort value and the list of impacted source files, we used our

own approaches, which we have described in Chapter 3 and 7. After obtaining the labeled data of

SCRs, we perform classification. For classification, we used two different approaches of multi-label

machine learning methods, i.e., Problem Transformation Methods and Algorithm Adaption Methods.

Our experimental result shows that the best multi-label classifier for SCR is ML-kNN (Algorithm

Adaptation Methods). The obtained precision and recall values are 71.3% and 40.1% respectively.

8.2 Bug Triage System Based on Single Label Classification of SCR

Figure 8.1 shows the process flow diagram of our proposed automatic bug triage system based on

single label classification approach. In the following sub sections, we describe our approach in detail

to develop an automatic bug triage system.
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8.2.1 Data Preparation

To perform the experiment, we downloaded 1,983 bug reports along with the developer’s activity

data from the available repositories of Mozilla project. These bug reports have been fixed between

2005-06-01 and 2006-05-31. We considered only those bug reports which have been fixed or resolved.

Whereas we left the other type of bug reports such as duplicate bug reports. Followings are the steps,

which have used to prepare different data sets. We used these data sets to train and test the ML

classifiers.

Step-1: After downloading the data, we extracted developer names from developer’s activity

data who have resolved the bug reports. To obtain developer names, we processed the developer’s

activity data, and extracted the name of those developers who changed the status of bug reports

to ”RESOLVED”. We considered these developers as those who resolved bug reports [Ahsan et al.,

2009b].

Step-2: Initially, we had 1,983 bug reports. We found that these bug reports had been fixed by 186

distinct developers. This number of developers is very large, while most of them fixed very few bugs.

In our experiment, each developer represents a class. The better performance of the machine learning

classifiers can be achieved, if the number of classes is small and each class should have a sufficient

number of instances. Therefore, we further processed the bug reports data and finally selected 792

bug reports. These are the bug reports which have been fixed by 18 distinct developers. While each

of these selected developers have resolved at least 30 bug reports.

Step-3: In this step, we processed each bug report by extracting the data from it. We extracted

report title, description, product, component and the operating system names, and merged them

into a text file. This text file was further processed to obtain the term-to-document matrix (TDM)

by using MATLAB TMG tool [Zeimpekis and Gallopoulos, 2005]. To execute TMG. Some inputs

are required, like a list of stop words, stemming option, name of term indexing method, and global

frequency of term occurrence. For stop words we used a SMART stop word list. Stop words are the

set of common words such as the, is, an etc. These words are not important for indexing and should

be removed. We left the option of stemming because the previous research [5] shows that it has less

impact. For terms weighting, we used inverse document frequency (TF×IDF), and for dimension

reduction, we set the global term frequency value ≥3 (global term frequency is a feature selection

method). It means that each term in the TDM has appeared in at least three bug reports. After

executing the TMG tool, we obtained a term-to-document matrix (TDM). This TDM matrix data is

stored as a sparse matrix in MATLAB. The results obtained using TMG tool is shown in Table 8.1.

Step-4: We repeat step-3 with different options, i.e., for term indexing, we used simple term

frequency (TF) and for dimension reduction, we set global term frequency value ≥2. The obtained

TDM contains 2,769 keywords or terms, where each term is a dimension. To further reduce the

dimensionality, we used LSI. To perform this task, we applied the techniques of singular value

decomposition on the obtained TDM matrix data, and obtained 792 singular values, which are also

called factors. It means that the 2,769 terms or dimensions now transformed into only 792 significant

dimensions. The higher singular values are more significant. Therefore, to obtain the multiple low

dimensional TDM matrices, we transformed the original TDM matrix into 4 different low dimensional
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8.2.2 Experimental Setup and Results

Table 8.1. Data related to the bug report’s index terms

Number of bug reports 792

Total number of distinct terms found in 792 bug reports 1836

Average number of indexing terms per documents 57.19

Sparsity 1.57%

Removed stop words 566

Removed terms using the term-length thresholds 226

Removed terms using the global thresholds 6261

Table 8.2. Different data sets on the basis of features size (dimensions).

Data

Set

Dimension Reduction

Technique

Dimen.

/Factor

Global

words

Weight

Func.

A Feature Selec.(terms

frequency)

1836 ≥3 TF×IDF

B Laten semantic index-

ing (LSI)

50 ≥2 TF

C Laten semantic index-

ing (LSI)

100 ≥2 TF

D Laten semantic index-

ing (LSI)

300 ≥2 TF

E Laten semantic index-

ing (LSI)

500 ≥2 TF

TDM matrices by considering the top 50, 100, 300 and 500 singular values.

Step-5: After converting the bug report’s data into the reduced dimensional TDM, we took the

transpose of each TDM matrix because each column of TDM matrix represents a unique bug report.

After converting column into rows, we labeled rows of each TDM matrix with the developer name.

These labeled data sets have used to train the ML classifiers.

8.2.2 Experimental Setup and Results

To perform the bug classification experiment, we used five different data sets, which we have obtained

in the previous section. The description of these data sets are shown in Table 8.2. To perform the

machine learning based classification, we used WEKA tool. It is a java based open source tool [Ian

H. Witten and Kaufmann, 2005], and to obtain the better classification results, we used 10-fold cross

validation techniques. To perform the comparative study for the classification of bug reports, we

used seven different ML algorithms, i.e., Decision Table (DT), NaiveBayes (NB), RBF Network (RB),

Random Forest (RF), REPTree (RT), Support Vector Machine (SVM) and Tree-J48 (J48). In the

following section, we discuss the obtained results.

The classification results of our proposed bug triage system are shown in Table 8.3 and 8.4. Table
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8.2 Bug Triage System Based on Single Label Classification of SCR

Figure 8.2. Classification Accuracy of 7 different classifiers, train and test with 4 different dimension

size data sets (dimension reduced by LSI).

8.3 shows the classification results of seven different ML classifiers, when they are trained and tested

with four different data sets, i.e., B, C, D and E. According to Table 8.3, the maximum value of

classification accuracy is 44.4%, which is obtained when data set C is trained with SVM. Similarly,

the maximum precision, recall and F-measure values are, 0.37, 0.348 and 0.349 respectively, which

are obtained when SVM is used to classify low dimension data sets. The maximum obtained kappa-

statistic value is 0.387, which is obtained when SVM is used to classify the data set C (A perfect

classification would produce a Kappa value of one). Figure 8.2, 8.3, 8.4 and 8.5 shows patterns of

different evaluation measures. According to these figures, the value of different evaluation measures

decreases when dimension size is either very large such as 500 or very small such as 50. While

the evaluation measures are maximum, when trained and tested with a data set of 100 dimensions.

Therefore, we can say that in order to obtain the best classification results using LSI the dimension

size of data set should be optimum.

Table 8.4 shows the classification results when seven different classifiers trained and tested with

a data set A. According to Table 8.4, the RepTree classifier has the highest value for the accuracy,

i.e., 42.98%. While, in case of SVM the obtained classification accuracy is 41.34%, but SVM has the

highest values for the average precision and recall, i.e., 0.38 and 0.34 respectively. The maximum

obtained kapa statistic values are, 0.363 and 0.351, which are obtained when data set A classify with

RT and SVM respectively. Figure 8.6 shows the classification accuracy of seven different classifiers.

According to this figure RBF-Network and Tree J48 has the lowest value of classification accuracy,

i.e., 23.7% and 33.7% respectively. Whereas, the accuracy values lies between 38.5% to 42.9%, when

DT, NB, RF, RT and SVM are used for classification. Figure 8.7 shows the evaluation measures,

i.e., precision, recall and F-measure of seven different classifiers, when they trained with data set A.

According to these figures Random Forest, RepTree, Decision Tree and J48 have lowest values for
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8.2.2 Experimental Setup and Results

Table 8.3. Evaluation results of bug report’s classification (When train & test with LSI based low

dimensional data)

ML Data

Set

Factors /

Dimen-

sions

Accuracy

%

kappa Avg.

Precision

Avg.

Recall

Avg. F-

Measure

DT B 50 29.7 0.213 0.193 0.228 0.197

DT C 100 36.4 0.283 0.202 0.196 0.179

DT D 300 36.4 0.280 0.226 0.229 0.206

DT E 500 38.2 0.301 0.361 0.303 0.294

NB B 50 26.5 0.218 0.312 0.272 0.277

NB C 100 31.5 0.273 0.244 0.245 0.227

NB D 300 37.7 0.330 0.319 0.325 0.289

NB E 500 36.0 0.319 0.312 0.328 0.296

RB B 50 28.6 0.223 0.235 0.303 0.239

RB C 100 34.8 0.291 0.255 0.276 0.229

RB D 300 36.4 0.280 0.312 0.272 0.265

RB E 500 37.4 0.315 0.316 0.236 0.216

RF B 50 34.3 0.276 0.112 0.100 0.096

RF C 100 31.6 0.242 0.303 0.268 0.271

RF D 300 16.4 0.074 0.170 0.166 0.157

RF E 500 13.8 0.044 0.215 0.166 0.165

RT B 50 30.3 0.231 0.244 0.268 0.245

RT C 100 36.5 0.290 0.180 0.233 0.191

RT D 300 35.8 0.298 0.285 0.243 0.221

RT E 500 37.2 0.294 0.266 0.259 0.243

SVM B 50 38.8 0.319 0.372 0.321 0.331

SVM C 100 44.4 0.387 0.30 0.282 0.267

SVM D 300 42.9 0.373 0.361 0.342 0.343

SVM E 500 40.7 0.350 0.361 0.348 0.349

J48 B 50 26.4 0.202 0.222 0.218 0.219

J48 C 100 31.4 0.256 0.236 0.226 0.229

J48 D 300 28.4 0.223 0.282 0.280 0.278

J48 E 500 27.9 0.217 0.244 0.244 0.243
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8.2 Bug Triage System Based on Single Label Classification of SCR

Figure 8.3. Classification Precision of 7 different classifiers, train and test with 4 different dimension

size data sets (dimensions are reduced by LSI).

Figure 8.4. Classification Recall of 7 different classifiers, train and test with 4 different dimension size

data sets (dimensions are reduced by LSI).
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8.3 Bug Triage System Based on the Multi-label Machine Learning Classification

Figure 8.5. F-Measure of 7 different classifiers, train and test with 4 different dimension size data sets

(dimensions are reduced by LSI).

Table 8.4. Evaluation results of bug report’s classification (When train & test with data set obtained

without using LSI)

ML Data

Set

Accuracy

%

kappa Avg.

Precision

Avg.

Recall

Avg. F-

Measure

DT A 40.2023 0.324 0.260 0.24 0.217

NB A 39.1909 0.338 0.316 0.36 0.313

RBF A 23.7674 0.168 0.371 0.33 0.325

RF A 38.5588 0.319 0.126 0.09 0.092

RT A 42.9836 0.363 0.288 0.25 0.232

SVM A 41.3401 0.351 0.380 0.34 0.354

J48 A 33.7547 0.272 0.228 0.23 0.229

precision, recall and F-measures, i.e., between the range of 0.09-0.26. While SVM, Naive Bayes and

RBF-Network have maximum values, i.e., between the range of 0.30 and 0.38.

8.3 Bug Triage System Based on the Multi-label Machine Learning

Classification

Multi-label classification is a rapidly developing field of machine learning. There are large number of

research areas such as protein function classification, semantic scene classification, among others all of

them requiring multi-label classification [Tsoumakas et al., 2009]. We used the two different methods

of multi-label classification, i.e., Problem Transformation and Algorithm adaptation methods. The

detail of multi labels classification and its different methods are given in Chapter 7. In the following

paragraph we describe that how we used Label Power Set (LP) to label SCRs data for the multi label
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8.3 Bug Triage System Based on the Multi-label Machine Learning Classification

Figure 8.6. Classification accuracy of 7 different classifiers, train and test with a data set whose dimen-

sions are reduced by feature selection method.

Figure 8.7. Precision, Recall & F-measure of 7 diff. classifiers, train & test with a data set whose

dimensions are reduced by feature selection method.
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8.3.1 Data Collection

classification.

The commonly used problem transformation method is Label Power Set (LP). It considers each

unique set of labels that exists in multi-label training set as one of the classes of a new single label

classification task [Tsoumakas et al., 2009]. To understand LP method work in our experiment,

consider an example of multi-label classification of CR, which have three different label categories

to assign each software change request. Let R represent a set of SCR, and C represent the set of

multiple classes of multi-label.

R={r1, r2, r3, r4,.... ri....rn}
C={c1, c2, c3, c4,....ci.....cm}

Where n is the number of SCR reports and m is the number of classes. In our case we have three

different label categories i.e., developers (D), files name (F) and effort (E). Each label category may

have multiple classes like.

D={d1, d2, d3, d4,....di...dj}
F={f1, f2, f3, f4,...fi...fk}
E={e1, e2, e3, e4,...ei...en}

Where j is the total number of distinct developers, k is the total number of distinct source files and n

is the total number of distinct effort values. Therefore the total number of distinct multi-label class

sets,

Cm=Dj×Fk×En

If c ⊆ C, then each SCR is labeled with c. In our case we assigned a single developer, single effort value

and one or more source files to each SCR. Therefore the possible examples of multi-label multi-class

sets are given by:

C={{d1,f1,e1},{d1,f1,f2, e2}, ...,{dj ,f1...k, el}}

Table 8.5 shows that, how multi-label multi-class is converted into single-label multi-class classes,

and associated with different SCR.

We, also used the Algorithm Adaption method of multi-label classification, i.e., ML-kNN. ML-kNN

is a method that uses kNN lazy learning algorithms for classification [Zhang and Zhou, 2005]. In order

to evaluate the classifiers, we used the multi-label classification evaluation measures. For the formal

description of the multi label classification evaluation measures, see Chapter 7.

8.3.1 Data Collection

We obtained data from the Mozilla project repository. These data are in the XML, html and text

format. Therefore, we parsed all the downloaded data files to extract the relevant information. After
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8.3 Bug Triage System Based on the Multi-label Machine Learning Classification

Table 8.5. SCR assigned with multiple labels

SCR(R)

Deve.(D) Files(F) Effort(E)

Multi-Label{d1,..dj} {f1,..fk} {e1,..el}
D×F×E

r1 {d1} {f1,f2} {e2} {d1,f1,f2,e2}
r2 {d3} {f2} {e1} {d3,f2,e1}
. . . . .

. . . . .

rn {dj} {fk} {el} {dj ,fk,el}

obtaining the bug reports data, we performed two main tasks, i.e., converting the bug report’s data

into the term-to-document matrix and performed labeling.

Conversion of Bug Reports into TDM

To convert the bug reports into TDM, we used the approach which we have described in Chapter

7. To perform the comparative experiment, we used different combination of the term’s weighting

function and dimension reduction techniques, and obtained two different groups of data sets. In the

first group, we obtained data sets using TF×IDF as term weighting function, and different values for

the Document Frequency Thresholding as dimension reduction, i.e., we selected those terms that have

occurred at least 3, 6 and 9 times. In the second group, we used TF×IDF as weighting function and

used Latent Semantic Indexing (LSI) for dimension reduction. We used different factor i.e., 100, 150,

and 200 as dimension.

Data Labeling

In case of multi-label classification, if the number of training instances per label is significantly small

compared to the total number of instances, then it may create a problem similar to class imbalance

[Godbole and Sarawagi, 2004]. Therefore, to avoid the class imbalance issue, we selected only those

classes for labels, which have some predefined minimum number of instances. Furthermore, to study

the impact of label size, label density and label cardinality on multi-label classification. We used

three different data set of different label size. These data sets are obtained by different combinations

of the classes that belong to each label’s category. We used three categories of labels, i.e., developer,

source file and effort. While each category has multiple classes.

There are two approaches to label the bug reports with the developers name. One of the approaches

is to assign a group of developers who have resolved the similar bug reports. This is basically a semi-

automated approach. In which, after classification one may obtain a set of appropriate developers

name, and one has to select a single most appropriate developer from the obtained set of developers

(see [Anvik et al., 2006]). In the second approach, each bug report is labeled with the single developer

name who actually resolved it [Cubranic, 2004]. We used the later approach and labeled each bug

152



8.3.2 Experimental Setup and Results

report with single developer.

Now the issue is to identify the name of a developer who actually resolved the bug. To accomplish

this task we considered an approach given by D. Cubranic [Cubranic, 2004]. According to this ap-

proach the developer who handles a bug report when the bug status is FIXED, is the actual developer

who resolved that bug. However, there are some other scenarios, which are possible. For example,

when bugs are resolved as DUPLICATE or as INVALID, then the developers who resolved them as

DUPLICATE or INVALID are the actual developers who fixed those bugs. Since we considered only

those bug reports data, which have been resolved as FIXED, therefore we have not considered other

scenarios, i.e., DUPLICATE or INVALID bug reports.

To label the bug reports with the name of impacted source files, we processed the CVS-log data. As

a result we obtained the name of the source files that have been used to fix a bug. We first established

a link between the bug reports, and the CVS log comments of the corresponding source file revisions.

To obtain the link between bug reports (stored into Bugzilla) and the CVS-log comments (stored into

CVS repository), we used an approach which we have described in Chapter 7.

Finally, to label the resolved bug reports with their effort value, we have to extract the effort data.

We consider the time that was spent between the ASSIGNED and the RESOLVED periods of a bug

life as the estimated bug fix effort (in days). To obtain the effort data, we used an approach which

we have described in chapter 3.

Because of the above mentioned assumptions, we found that in our data set the total number

of labels are 2,567 i.e., 503 distinct developers, 907 distinct source files, and 1,157 distinct effort

values. These numbers of labels are very large, while most of the developers have fixed very few

bugs, similarly, most of the files have changed one or two times. Therefore, we further processed the

data set and because of label, we obtained the three different groups of data. These groups of data

are obtained by selecting only those developers that have fixed some specific number of bugs, and

selected those source files which have changed at least for some specific number of times. For an effort,

we used the statistical frequency distribution. We divided the effort data into 3 class intervals, and

considered the mean value of each class interval as a class value of all those effort values that lie within

that class interval. In our experiment, the standard deviation of each class was found small. There-

fore, this reduction has less impact on the prediction. The predicted effort class values are almost

equal to the predicted-effort (± Std.Dev). The frequency distribution of the effort data is shown in

Table 8.6. The details of the three different groups of data on the basis of labels are shown in Table 8.7.

8.3.2 Experimental Setup and Results

In the last section we performed indexing and labeling of SCRs. Now, after indexing and labeling,

we obtained multiple data set for classification. The complete experiment setup is shown in Figure 8.8.

As discussed in Chapter 7 there are two methods for multi-label classification. First, we applied

problem transformation methods, i.e., Label Power set (LP) methods and used Support Vector Ma-

chine (SMO), J48 and Naive Bayes as base classes. Then, we used the algorithm adaptation method,
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Table 8.6. Frequency distribution of effort data (bug fix time) to obtain distinct classes of effort

Label based

data set

Class Interval (Ef-

fort data in days)

Frequency Mean Std. Dev

44
0-1 369 1.0 0.0

2-7 144 3.4 2.5

8-30 35 17.9 5.5

59
0-1 449 1.0 0.0

2-7 222 3.6 2.6

8-30 48 16.9 5.3

91
0-1 522 1.0 0.0

2-7 289 3.5 2.5

8-30 72 17.8 5.7

Table 8.7. Size of labels and the label selection criteria for three different data sets

Data Set (label based) 44 59 91

Size of Data Instance 548 719 808

Count of Distinct De-

veloper Labels

16 26 34

Developer Label Se-

lection Criteria

Fix at

least 60

bugs

Fix at

least 13

bugs

Fix at

least 10

bugs

Count of Distinct File

Labels

25 30 54

File Label Selection

Criteria

Changed

at least

13 times

Changed

at least

30 times

Changed

at least

10 times

Count of Distinct Ef-

fort Labels

3 3 3

Total Number of La-

bels

44 59 91

Label Cardinality 3 3 3

Label Density 0.068 0.051 0.032
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Figure 8.8. Multi-Label classification of software CR

155



8.3 Bug Triage System Based on the Multi-label Machine Learning Classification

i.e., ML-kNN. The obtained classification results of LP methods are shown in Table 8.8, while the clas-

sification results of ML-kNN is shown in Table 8.9. To perform the classification task we used Mulan.

It is an open source java API for multi-label classification (http://mlkd.csd.auth.gr/multilabel.html).

To obtain better classification results, we used 10 fold cross validation, and to evaluate the classifica-

tion results, we used five different evaluation measures.

According to the obtained results of Label Power Set (LP) method as shown in Table 8.8, the

classification accuracy is 45.2% with 54% precision, 54% recall and 3.0% HammingLoss. These results

are obtained when LP classifier is trained and tested using the data set that has labeled size 91 and

200 dimensions, while a support vector machine is used as a base classifier. According to the Table

8.8 data, the obtained results of classification measures are better when LSI based low dimension

data sets are used to train and test the LP classifier. However, the difference in the classifications

results are not significant as compared to the classification results which are obtained using the data

set whose dimensions are reduced by using term-global-frequency. Furthermore Table 8.8 depicts the

significant impact of label size on the classification results. We obtained the best classification results

when classifiers trained with the data set that has 91 labels. For LP based multi-label classification,

we used SMO, J48 and Naive Bayes as base classifiers. One can use any other multi-class machine

learning classifier as base classifier for LP method. However, we selected SMO (support vector

machine), J48 and Naive Bayes because these machine learning classifiers are supposed to be the best

for multi-class text classification purpose. In case LP based classification the best results are obtained

when LP classifiers used SMO as base classifier.

The classification results of ML-kNN are given in Table 8.9. In case of ML-kNN classifiers, we

obtained high precision and recall values as compared to LP classifier, while accuracy value is low. In

case of ML-kNN classifiers, we obtained 71% precision, 40% recall, 37% accuracy and 2.5% Hammin-

gLoss. Table 8.9 shows that the evaluation measures are slightly changed when trained with different

cluster size, i.e., 6, 8 and 10. However, classification results of ML-kNN are different when trained

with the data sets of different label size. The best classification results are obtained when classifiers

are trained with the data set that has 91 labels.

Table 8.10 depicts the average classification measures of LP and ML-kNN classifiers. The data

of Table 8.10 is derived from Table 8.8 and 8.9. We took the average of each classification mea-

sure which is obtained when classifiers are trained with different dimensional data sets, i.e., LSI

and term-global-frequency (TGF). The trend of the average classification measures is similar to

the trend, which are found in Table 8.8 and 8.9 data. The maximum obtained average precision

value is 70.93%, which is obtained when ML-kNN (cluster 8) classifier is used to classify the SCR data.

Figure 8.9 and 8.10 shows a plot between the obtained precision and recall values against different

classifiers. The trend of the graph shows that the precision and recall values are maximum when a

ML-kNN is used for the classification. While the minimum values of precision and recall are found

when LP classifiers are used to classify CR using J48 as base classifier. From Figure 8.9 and 8.9, it

may be observed that there is a small variation in the precision and recall values, when classifiers

trained with data sets whose dimensions are reduced by LSI or TGF (term-global frequency). It

shows low performance of LSI, one possible reason not to attain an optimum performance of LSI is

156



8.3.2 Experimental Setup and Results

T
a
b
le

8
.8
.
M
u
lt
i-
L
a
b
el

C
la
ss
ifi
ca
ti
o
n

o
f
B
u
g
R
ep

o
rt
s
U
si
n
g
L
a
be
l
P
o
w
er

S
et

C
la
ss
ifi
er
s
(P

ro
b
le
m

T
ra
n
sf
o
rm

a
ti
o
n

M
et
h
o
d
s
B
a
se
d

o
n

S
u
p
p
o
rt

V
ec
to
r

M
a
ch

in
e,

J
4
8
a
n
d
N
a
iv
e
B
ay

es
)

L
a
b
el
s

M
et
ri
cs

S
u
p
p
o
rt

V
ec
to
r
M
a
ch

in
e
(S
M
O
)

J
4
8

N
a
iv
e
B
ay

es

T
er
m

G
lo
b
a
l
F
re
q
.

L
S
I

T
er
m

G
lo
b
a
l
F
re
q
.

L
S
I

T
er
m

G
lo
b
a
l
F
re
q
.

L
S
I

3
6

9
1
0
0

1
5
0

2
0
0

3
6

9
1
0
0

1
5
0

2
0
0

3
6

9
1
0
0

1
5
0

2
0
0

4
4

H
a
m
m
in
g
L
o
ss

0
.0
7
5

0
.0
7
8

0
.0
7
3

0
.0
7
5

0
.0
7
3

0
.0
7
3

0
.0
7
8

0
.0
7
8

0
.0
7
8

0
.0
9
7

0
.0
9
5

0
.0
9
8

0
.0
7
5

0
.0
7
7

0
.0
7
7

0
.0
7
6

0
.0
7
8

0
.0
7
8

A
cc
u
ra
cy

0
.3
5
6

0
.3
4
2

0
.3
6
7

0
.3
5
3

0
.3
6
8

0
.3
7
1

0
.3
3
6

0
.3
4
2

0
.3
3
4

0
.2
0
8

0
.2
1
1

0
.1
9
3

0
.3
5
6

0
.3
4
0

0
.3
3
3

0
.3
5
0

0
.3
3
0

0
.3
3
1

P
re
ci
si
o
n

0
.4
5
3

0
.4
3
0

0
.4
6
4

0
.4
5
0

0
.4
6
4

0
.4
6
7

0
.4
3
0

0
.4
3
0

0
.4
2
9

0
.2
9
2

0
.3
0
0

0
.2
7
9

0
.4
5
2

0
.4
3
7

0
.4
3
3

0
.4
4
2

0
.4
2
5

0
.4
2
7

R
ec
a
ll

0
.4
5
3

0
.4
3
0

0
.4
6
4

0
.4
5
0

0
.4
6
4

0
.4
6
7

0
.4
3
0

0
.4
3
0

0
.4
2
9

0
.2
9
2

0
.3
0
0

0
.2
7
9

0
.4
5
2

0
.4
3
7

0
.4
3
3

0
.4
4
2

0
.4
2
5

0
.4
2
7

F
m
ea
su
re

0
.4
5
3

0
.4
3
0

0
.4
6
4

0
.4
5
0

0
.4
6
4

0
.4
6
7

0
.4
3
0

0
.4
3
0

0
.4
2
9

0
.2
9
2

0
.3
0
0

0
.2
7
9

0
.4
5
2

0
.4
3
7

0
.4
3
3

0
.4
4
2

0
.4
2
5

0
.4
2
7

5
9

H
a
m
m
in
g
L
o
ss

0
.0
5
9

0
.0
5
5

0
.0
5
5

0
.0
5
6

0
.0
5
5

0
.0
5
5

0
.0
5
9

0
.0
5
8

0
.0
5
8

0
.0
7
2

0
.0
7
6

0
.0
7
5

0
.0
6
0

0
.0
6
2

0
.0
6
2

0
.0
5
8

0
.0
6
0

0
.0
6
2

A
cc
u
ra
cy

0
.3
3
1

0
.3
6
6

0
.3
7
1

0
.3
6
3

0
.3
6
6

0
.3
6
5

0
.3
3
0

0
.3
4
4

0
.3
3
6

0
.2
1
4

0
.1
8
1

0
.1
8
5

0
.3
1
8

0
.3
0
1

0
.3
0
4

0
.3
3
6

0
.3
2
6

0
.3
0
9

P
re
ci
si
o
n

0
.4
2
1

0
.4
5
8

0
.4
6
3

0
.4
5
2

0
.4
5
6

0
.4
5
6

0
.4
1
7

0
.4
3
3

0
.4
2
6

0
.2
9
3

0
.2
5
7

0
.2
6
2

0
.4
0
7

0
.3
9
2

0
.3
9
3

0
.4
2
7

0
.4
1
4

0
.3
9
5

R
ec
a
ll

0
.4
2
1

0
.4
5
8

0
.4
6
3

0
.4
5
2

0
.4
5
6

0
.4
5
6

0
.4
1
7

0
.4
3
3

0
.4
2
6

0
.2
9
3

0
.2
5
7

0
.2
6
2

0
.4
0
7

0
.3
9
2

0
.3
9
3

0
.4
2
7

0
.4
1
4

0
.3
9
5

F
m
ea
su
re

0
.4
2
1

0
.4
5
8

0
.4
6
3

0
.4
5
2

0
.4
5
6

0
.4
5
6

0
.4
1
7

0
.4
3
3

0
.4
2
6

0
.2
9
3

0
.2
5
7

0
.2
6
2

0
.4
0
7

0
.3
9
2

0
.3
9
3

0
.4
2
7

0
.4
1
4

0
.3
9
5

9
1

H
a
m
m
in
g
L
o
ss

0
.0
3
2

0
.0
3
1

0
.0
3
1

0
.0
3
1

0
.0
3
1

0
.0
3
0

0
.0
3
3

0
.0
3
3

0
.0
3
2

0
.0
4
2

0
.0
4
4

0
.0
4
5

0
.0
3
5

0
.0
3
5

0
.0
3
6

0
.0
3
4

0
.0
3
5

0
.0
2
6

A
cc
u
ra
cy

0
.4
2
2

0
.4
4
6

0
.4
4
5

0
.4
4
2

0
.4
4
3

0
.4
5
2

0
.4
1
6

0
.4
1
4

0
.4
1
5

0
.2
7
8

0
.2
3
7

0
.2
3
5

0
.3
7
9

0
.3
7
9

0
.3
6
0

0
.3
9
5

0
.3
8
4

0
.3
5
7

P
re
ci
si
o
n

0
.5
1
5

0
.5
3
6

0
.5
3
5

0
.5
3
2

0
.5
3
3

0
.5
4
0

0
.5
0
3

0
.5
0
3

0
.5
0
7

0
.3
6
8

0
.3
2
6

0
.3
2
2

0
.4
7
0

0
.4
7
0

0
.4
5
0

0
.4
8
4

0
.4
7
2

0
.6
8
7

R
ec
a
ll

0
.5
1
5

0
.5
3
6

0
.5
3
5

0
.5
3
2

0
.5
3
3

0
.5
4
0

0
.5
0
3

0
.5
0
3

0
.5
0
7

0
.3
6
8

0
.3
2
6

0
.3
2
2

0
.4
7
0

0
.4
7
0

0
.4
5
0

0
.4
8
4

0
.4
7
2

0
.3
8
5

F
m
ea
su
re

0
.5
1
5

0
.5
3
6

0
.5
3
5

0
.5
3
2

0
.5
3
3

0
.5
4
0

0
.5
0
3

0
.5
0
3

0
.5
0
7

0
.3
6
8

0
.3
2
6

0
.3
2
2

0
.4
7
0

0
.4
7
0

0
.4
5
0

0
.4
8
4

0
.4
7
2

0
.4
9
3

157
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8.4 Threats to Validity

Figure 8.9. The average Precision values of Multi-label Classifiers i.e., Label Power Set and ML-kNN

methods (with data sets of 3-different Label size)

the unstructured format of bug reports, which is not favorable for latent semantic analysis. However,

the precision and recall values increase when the classifiers are trained with the data set of large

number of labels. The possible reasons to obtain the high precision and recall values is the large

number of instances. If we increase the label size then it automatically increase the number of data

instances.

8.4 Threats to Validity

There are some threats that are related to the labeling of bug reports. In this section we describe

them briefly.

The size of the labels plays an important role in prediction accuracy. It is difficult to identify an

optimum size of labels. In fact, its value varies from project to project, and is larger for those projects

that have a large development team and high number of source files. However, during labeling, we

consider only those developers, who are very active, and only consider those source files, which are

frequently changed. Therefore, we obtained a lower number of labels.

We assigned a single developer to each bug report. However, sometimes multiple developers are

involved in fixing a bug or different developers are available to fix specific types of bugs. One approach

is to assign a group of developers to a bug report. Then in that case, after classification one has to

select the single most appropriate developer from the predicted group of developers. This makes the

prediction process semi-automated and needs an expert, who should be able to choose an appropriate

developer from the obtained group of developers. In this way, we might improve the prediction
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8.5 Summary

Figure 8.10. The average Recall values of Multi-label Classifiers i.e., Label Power Set and ML-kNN

methods (with data sets of 3-different Label size)

accuracy but at the cost of full automation.

We assigned multiple source files to each bug report, due to which the size of the labels increased.

The other solution is to first make the group of source files on the basis of source file co-change

analysis, and then label each bug report with those groups. In this way, we reduce the size of

labels and increase the predictive power, but the final size of the predicted source files becomes large,

which may create a burden on developers to spend more time to choose the proper files for modification.

We assigned, mean estimated effort value to each bug report, by dividing the large class size of

effort data (i.e., The time spent to fix a bug) into different class intervals. We used the mean value of

each class interval as the effort value for those bug reports whose effort value lie in that class interval.

Since in our data set the standard deviation for each class interval is small therefore it has low impact

on predicted effort value, however if the number of classes interval is large with large deviation from

mean class values then it will decrease the prediction accuracy for effort value. Another threat is the

validity of effort data itself, since most of the OSS systems do not maintain effort data. Therefore,

we used our own heuristic approach to obtain the effort data.

8.5 Summary

In this chapter, we have presented two different approaches for the construction of an automatic

bug triage system. Our approaches are based on the single and multi label classification of SCRs.

Furthermore, we used Latent Semantic Indexing technique of information retrieval to resolve the

indexing and high dimensionality issue of the classical vector space model. To validate both the

approaches, we have performed two different experiments and discussed their results.
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In the first experiment, we presented a comparative analysis of different available information

retrieval and machine learning methods in order to automate the assignment of bug reports to devel-

opers in an optimal fashion. Our target is to find a combination of methods, which is most suitable

to finally develop a high performance bug triage system. We performed experiments using 792 bug

reports. These bug reports are transformed into five different data sets on the basis of different

indexing and dimension reduction methods of information retrieval. Finally, we used these five data

sets and apply multiple machine learning algorithms. All of these seven ML algorithms belong to the

class of supervised machine learning methods, and are used for single-label multi-class classification.

Our experimental results indicate that classification based on LSI and support vector machine has

the best accuracy, precision, and recall values.

In the second experiment, for classifying software change requests, we used multi-label machine

learning classifiers. We used information retrieval techniques for the indexing and labeling of software

change requests with multiple labels. These labels belong to three different categories, i.e., file name,

developer name and expected time spent to resolve the request. We have evaluated our technique

on different groups of data of a large open source project, Mozilla. The obtained results show that

the multi-label classification techniques of machine learning classify software change requests using

multiple labels. The main advantage of multi-label classification is that the software change requests

can be automatically assigned to the appropriate developers. Furthermore, it provides the list of

source files, which are required to be modified, and provides the expected time required to resolve

the change request. In this experiment, we used two different methods of multi-label classification,

i.e., problem transformation and algorithm adaptation method. We further analyzed the impact of

label size, label cardinality and label density on the classification results, by using three different

data sets of different label size. Our experimental results show that the size of labels affected the

multi-label classification results, and the classification result is improved by increasing number of

instances per labels. We got the best classification result at label size 91 while the number of instances

was maximum, i.e., 808. Our technique could classify software change requests with 71.3% precision

and 40.1% recall.
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9
Related Work

Software repositories contain a huge amount of useful information for empirical studies in software

engineering. These repositories mainly contain data related to the changes in the source code, bug

reports and developer’s communications. Research is now proceeding to mine these repositories and

acquire some useful knowledge or patterns related to the fixing of bugs, or inducing of bugs, or impact

analysis of software change requests, etc. The field of MSR provides a platform for those researchers

who are interested to mine the hidden knowledge from the software repositories. Particularly, the

focus of MSR research is to transform repositories from a static record keeping into active repositories.

MSR’s research is now proceeding to uncover the ways in which mining software repositories can help

support the maintenance of software systems, improve software design/reuse, and empirically validate

novel ideas and techniques.

The research trend in MSR reveals that MSR is very inter-disciplinary. The techniques and

approaches used in MSR are commonly come from machine learning, information retrieval, applied

statistics, artificial intelligence, social science and software engineering [Zimmermann, 2009]. In this

chapter our objective is to discuss related research work. Therefore, in the reset of the chapter, first

different approaches and techniques are discussed for extracting valuable information from software

repositories. Next, we describe those research works in detail, which are related to our thesis work.

9.1 Extracting Data From Software Repositories

Fischer et al. [2003] extracted data from a version control system (CVS) and a bug tracking system

(Bugzilla) to populate a release history database. They identified that although a version control

system and a bug tracking system contains an enormous amount of useful data but these systems

provide insufficient support for a detailed analysis of software evolution aspects. They addressed this

problem and introduced an approach for populating a release history database that combines version

data with bug tracking data and adds missing data, which are not covered by version control systems.

They applied their technique on the large Open Source project Mozilla. We used a similar approach

to extract the data and populated our own database for our research work. However, in contrast to

this work we store further information about different types of change transaction in our database.

Furthermore, we populated our database with code metrics data.
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9.2 Bug Fix Effort Estimation Model for OSS

Čubranić and Murphy [2003] presented a tool Hipikat that forms implicit group memory for a

project by predicting links between stored artifacts and then recommends relevant part of the group

memory to a developer working on the task. It groups four types of artifacts: bug and feature

descriptions, source file revisions, messages posted on developer forums, and other project documents.

It provides great helps to new developers in an open source project by providing an efficient and

effective access to the group memory for a software development project. Hipikat can be considered as

a recommender system for software developers that draws its recommendation from the development

history of OSS projects.

Zimmermann [2006] developed a java plug-in named APFEL that collects change data from version

archives and stores them into a database. APFEL collects the change information between two

revisions at the token level like method calls but does not identify changes accordingly to their types.

9.2 Bug Fix Effort Estimation Model for OSS

In case of an effort estimation model various approaches have been used to establish estimation

models, like an algorithmic, analogy, hybrid and machine learning. Initially, for software estimation

models algorithmic estimation methods were used, like Boehm’s constructive cost model COCOMO

[Boehm, 1981] and COCOMO II [Boehm et al., 1995], and Putnam’s software life cycle management

(SLIM) [Putnam, 1978].

Jørgensen [1995] developed eleven different effort prediction models based on regression, neural

network and pattern recognition and reported that the model based on regression, and pattern

recognition are best compared to other models. Eick et al. [2001] worked on the software evolution

data of fifteen years. They showed that the code decays, means if the code life is large then it needs

more effort to add new changes. They extracted a large number of features from the evolution data

and constructed multiple models. Their regression based effort estimation model shows that more

effort is required to make changes in the older source code. Their model also shows that the number

of added or deleted lines has less impact on an effort.

De Lucia et al. [2002] obtained a data set from five different projects. They used multiple linear

regression to build the estimation models. They found that the performance of their models was

enhanced if they included the different types of a maintenance task into their models. They used

cross validation to assess their models. Song et al. [2006] used the NASA’s SEL defect data set and

applied association rule mining on the data set, to classify the effort using intervals. They found that

association rule mining technique is better to predict the effort compared with other machine learning

techniques like PART, C4.5., and Näıve Bayes.

Yu [2006b] analysed an evolution data set of 121 revisions of Linux to develop an effort estimation

model for OSS. Since Linux does not maintain effort data. Therefore, he first performed an experiment

on NASA SEL database, which is a closed software system and maintained actual effort data. From

this experiment, he identified those measures which can be used indirectly to represent a maintenance

effort. In the next step, he used those indirect measures as an effort and developed two regressions
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9.3 Analysis of Source Code Changes to Identify Risky Source Files

based estimation model for Linux project. Our work is similar to his work, but we used different

approach to obtain the effort data. Furthermore, we used both multiple linear regression and machine

learning methods to develop an effort estimation model.

Weiss et al. [2007] used the available effort data of the JBoss project, which is maintained by the

JIRA bug reporting system. They used the text similarity and the nearest neighbor approach, and

obtained the average effort data of all the resolved bugs whose summary and title are similar to the

new bug report summary and title. They used the obtained average effort value as the predicted

effort value of the new bug report. Koch [2008a] discussed the issue of programmer participation and

effort modeling for OSS. He worked on the GNOME project data and estimated the effort on the basis

of programmer participation and the product metrics. He showed that the impact of programmer

participation on effort estimation is less compared to the product metrics.

9.3 Analysis of Source Code Changes to Identify Risky Source Files

Mockus and Weiss [2000] presented a model for the risk analysis of changes in the source code. They

presented a model to predict the risk associated with the new changes. Their risk model based on

historical information. The HATARI tool developed by Śliwerski et al. [2005a] provides an eclipse

plug-in tool to the developer that indicates a risky code region using a complete code history. HATARI

relates version archives to a bug database to locate the risky code locations. HATARI makes this risk

visible to developers by annotating source code with color bars. Moreover, HATARI provides views

to browse through the most risky locations and to analyze the risk history of a particular location in

a source code.

Sliwerski et al. [2005] introduced kenyon. It is used to analyze the CVS repository of Mozilla and

Eclipse together with the information stored in the corresponding Bugzilla bug reporting system to

identify a fix inducing changes. They introduced a technique, which used CVS commands annotation

and diff to identify the exact location of source code lines, which introduced the actual faults into

the systems. Later their technique is known as AZZ algorithm.

Bevan et al. [2005] provides an automatic system for the extraction of source code changes data

along with change metadata from software repositories like CVS and Subversion. Their system is

called Kenyon. It may be used to automatically check out user defined ranges of revisions from

source code repositories. Kenyon reduces the time of research, automates configuration retrieval and

allows user control on configuration times. Different version control systems and multiple data input

sources are supported. Kenyon provides efficient, accessible, and optional storage of extracted facts

or information.

Kim et al. [2006a] built bug fix memories by extracting change data from bug fixing changes. They

developed a tool named BugMem, which learned from previous bug fix change data. They used the

algorithm AZZ to locate a bug introducing changes in the source code. They only considered bug

fixing changes and left other changes like a bug introducing and bug fix-introducing changes.
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Kim et al. [2008] in their work, Classifying Software Changes Clean or Buggy ? introduced a

technique, which is used to predict software bugs. They called it change classification. They used

machine learning techniques to classify software changes. They classified program file changes of 12

open source projects into the two classes clean or buggy. They used machine learning classifier to

identify whether a current change in a program file is more comparable to any existing buggy or clean

change. They trained the machine learning classifier using some features from the source code. These

features were extracted from change metadata, complexity metrics, change source code, change to

log message and file names. In our experiment, we also used the history of different types of changes.

However, instead to use the change information and perform classification, we preferred to build our

own model, which numerically predicts the risk value for a source file.

9.4 Fault Prediction Model

A lot of research has been carried out regarding complexity metrics and prediction of faults. Chi-

damber and Kemerer [1994] initially proposed the object-oriented metrics. Gyimothy et al. [2005]

validated the object-oriented metrics for fault prediction in open source software. In this paper, the

authors used logistic regression and machine learning techniques to identify faulty classes in mozilla.

Zhang and Tsai [February 28, 2005] showed the application of machine learning techniques in tackling

software engineering problems. He suggested that machine learning algorithms can be used to build

tools for software development and maintenance tasks as well as can be incorporated into software

products to make them adaptive and self-configuring.

Porter and Selby [1990] used classification trees based on metrics from previous releases to identify

components having high-risk properties. The authors developed a method of automatically generating

measurement-based models of high-risk components. Brun and Ernst [2004] used machine learning

techniques to model program properties that result in errors. The authors applied these models to

classify and rank properties of user written programs that may result in errors. Song et al. [2006]

simulated data sets for comparing prediction techniques, including regression, rule induction, the

nearest neighbor (a form of case-based reasoning), and neural networks. They concluded that the

results of the prediction technique vary with the characteristics of the data set being used. Aljahdali

et al. [2001] used feed-forward neural network to predict the faults in a program during the initial

test/debug process. They also compared the results between regression models and neural networks.

Fenton and Neil [1999] provided a critical review of the defect prediction models based on software

metrics. They discussed the weaknesses of the models proposed previously and identified causes for

these shortcomings. Kim et al. Boetticher [2005] performed an experiment to show how biased data

distribution impacts the results and presented two nearest neighbor sampling approaches. Koru and

Liu [2005a] combined static software measure with defect data at the class level and applied different

machine learning techniques to develop a bug predictor model. Now, in the following we describe

some research work related to logical couplings.

In the recent years, few attempts have been made by researchers to correlate the logical-coupling

metrics with the number of faults [Eaddy et al., 2008b, D’Ambros et al., 2009a]. However, most of the

research works have been performed, which discussed the significance of logical coupling [Mens and
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Lanza, 2002, Zhou et al., 2008, Zimmermann et al., 2005b]. D’Ambros et al. [2009a] has addressed this

issue, and correlated logical coupling measures with the number of bugs. Researchers explored the

different aspect of logical or change coupling analysis like coupling visualization, coupling measures,

software complexity, etc. [Mens and Lanza, 2002, Zhou et al., 2008, Zimmermann et al., 2005b]. Zhou

et al. [2008] developed a technique called CAESAR to identify the change patterns by identifying

the logical coupling among modules across several releases of a software. Their technique finds the

co-change patterns among the source files of different modules. For this purpose, they processed

the evolution data of a software system. Their technique found dependencies among modules. They

validated these dependencies by examining the change reports.

Breu [2006] processed the co-change data for aspect mining, which identifies cross-cutting concerns

in a program. They identify and rank cross-cutting concerns. Zimmermann et al. Zimmermann

et al. [2004] applied data mining techniques on software change data sets. The authors obtained

information regarding which entities changed together in the past and used this information to guide

the developers in case of new changes. They used pattern mining and association rules to perform

the experiment. Bieman et al. [2003b] processed those cluster of classes, which are most frequently

changed together. They described a method to identify and visualize classes and their interactions

that are most change-prone. They measured the degree of change-proneness with the help three

metrics, i.e., local change proneness (related to single class change), pair change coupling (when two

classes changed together) and sum of pair coupling (a class may be involved in multiple pair couplings).

Zhou et al. [2008] proposed a change propagation model based on Bayesian Network, which may

be used to predict future change coupling. To build the model, they extracted a set of features

from the co-changed data i.e., static source code dependency (such as message passing between

classes, inheritance, or interface implementations), past co-change frequency, change a significance

level (assign a significance level to source code changes in terms of the change impact on other

source code entities e.g., changing the signature of a method will impact all of its callers. They

classify each change on the basis of significance level as low, middle, high or crucial), age of a change,

author information, change request, change candidate and co-change entity. They conducted an

experiment on two medium open source project, i.e., Azureus and ArgoUML. They showed that the

Bayesian network that was built by using the selected set of features provides useful predictions about

a change coupling candidate. Their obtained model performed well with 80% precision and 60% recall.

Fluri et al. [2005] developed a method which considered only the structural changes in the source

code to perform change coupling analysis. They extracted structural change data from source codes,

because a version control system maintain only textual data. The textual data of a version control

system are normally used for change coupling analysis, while there are chances that the change cou-

pling is caused by the textual modification, such as the changes in the license text. Therefore, before

performing the change coupling analysis, they filtered change coupling data and considered only

those change couplings which are caused by structural changes in the source codes. For this purpose,

they presented an approach that used the structural compare services shipped with the Eclipse IDE

to obtain the fine-grained changes between subsequent versions of Java’s classes. This information

enables to identify those change couplings which result due to structural changes. Hence they
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distilled the causes for change couplings along releases and filter out those that are structurally irrel-

evant. They found that reasonable amount of change couplings are not caused by source code changes.

Eaddy et al. [2008b] correlated cross-cutting concerns with defects. They performed an empirical

study on three open source projects. They used the set of metrics related to the cross-cutting concerns

and correlate them with defects. Their experimental results reveal that more scattered and tangled

code for the implementation of a concern is highly correlated with the defect. D’Ambros et al.

D’Ambros et al. [2009a] pointed out that change coupling (or logical coupling) measures are highly

correlated with bugs. They defined a set of change coupling metrics and used them with Chidamber

and Kemerer metric suite to correlate them with the number of bugs. Their experimental results

show that change coupling metrics are more correlated with bugs as compared to other metrics such

as complexity metrics. They performed their experiment on three large software system, i.e., Eclipse,

ArgoUML and Mylyn. Their experimental results proved that the performance of a bug prediction

model based on complexity metrics can be improved if using change coupling measures. To keep

in mind the high correlation of change coupling measures with the number of bugs, and to further

validate D’Ambros’s approach, we designed an experiment on different data set and introduce a new

set of change coupling metrics. Finally, we used these set of logical coupling metrics to build a high

performance fault prediction model.

9.5 Machine Learning Classification of Software Change Request

To the best of our knowledge there is no work has been done using multi-label techniques for the

labeling and classification of software change requests. However, there are few papers, which used

single label classification technique for the classification of software change requests. In the following

paragraphs, we discuss some of the related works, which are related to automatic bug triaging and

impact analysis using classification of SCRs.

Cubranic [2004] worked on bug triage. They used Eclipse bug report data and labeled each bug

report with the developer name who actually fixed them. They obtained 30% classification accuracy

using Naive Bayes classifier. They used vector space model for indexing. They performed classification

with and without truncation of vocabulary. The truncation of vocabulary is actually the feature

selection technique. They trained the classifier with different data set. Each data set was obtained

by selecting only those vocabularies that have some specific frequency of occurrence between the

documents, i.e. more than 1, 2, 5, 10 and 20.

Anvik et al. [2006] used Eclipse and Firefox project data sets to present a semi automated solution

for the assignment of bug reports to the set of appropriate developers. They developed a technique

which parsed the bug report summary and description text, and obtained a set of index terms. They

labeled each bug report with the group of developer names suitable to resolve them. Their work is

based on vector space model and machine learning. For classification they used SVM, Naive Bayes

and C4.5. They got the precision levels 57% for Eclipse and 64% for Firefox project. Another related

work that used the information retrieval (IR) and the ML methods for the classification of bug reports

is presented by Weiss et al. [2007], they used the average bug fix time of similar bug fix reports for
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the effort prediction.

Canfora and Cerulo [2005] used bug reports and source file revision data of four different OSS

projects. They used a probabilistic information retrieval to link the change request description to the

set of historical source file revisions impacted by similar past change requests (CR). For this purpose

Gerardo and Luigi constructed file descriptors for each source file by merging the textual data of the

revision check in comments, the textual data of the summary, and the description of a CR. Moreover,

they used textual similarity measure to retrieve past CRs, which are similar to the new CR. From these

CRs the Gerardo and Luigi approach computes a ranked list of possible impacted source files. Our

approach is more related to Canfora because we linked SCRs/bug-reports with impacted source file

names to perform impact analysis. However, our approach is different. We have not used probabilistic

model of information retrieval rather we first used the indexing technique of information retrieval,

i.e., LSI to index the key term of bug report’s textual data. Then, labeled each SCR/bug-reports with

one or more impacted source files, and applied multi-label classification to perform the impact analysis.

All the mentioned previously published papers are similar to our research work. The main difference

lies in the classification. All the past approaches classify bug fix reports with single labels, whereas

we use multi-label techniques for the same purpose. Therefore, our proposed technique is more

comprehensive regarding the classification of bug fix change requests. Furthermore, we use latent

semantic indexing methods for indexing, whereas in most of the above mentioned approaches vector

space models are used. LSI is a more advanced technique compared to classical vector space models.

Other works that is related to the text classification using information retrieval and multi-label

techniques include [Chen et al., 2007], and Joachims T. [Tsoumakas et al., 2009].
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10
Conclusion and Future Work

10.1 Conclusion

The work presented in this dissertation is based on the application of machine learning techniques on

software engineering data. This thesis contributed research in the field of mining software repositories.

MSR is a very inter-disciplinary field. Researchers belong to MSR are normally motivated to apply

machine learning techniques on the software engineering data and come up with some new models for

the automation of software development and software maintenance.

The overall thesis of our research work is that change history of source files and bug reports have

enough information to construct the state of the art estimation and prediction models, and develop

methods to support the development and the maintenance task of software engineering projects. This

thesis makes the following contributions in this area.

10.1.1 Estimation and Prediction Models

The presented work on the effort estimation model for OSS, based on a novel approach, which mine

effort data from a software repository. The purpose of an effort estimation model is to estimate that

how much effort is required to fix a fault. To build an effort estimation model one needs effort data

and a set of metric as estimators. However, the dilemma is, most of the OSS does not maintain

effort data. Therefore, we built an effort estimation model in two steps. First, we extracted the

effort data in bug-fixing days from the logs of developer’s bug-fixing activity. However, finding the

exact number of bug-fixing days is non trivial. Because, we found that in case of OSS, multiple

parameters are responsible to vary the bug-fixing time. The two important parameters, which impact

the bug-fixing duration are developer’s priority levels and bug’ severity levels. We found that in case

of OSS, developers do not treat bugs equally. Rather bugs are treated on the basis of their severity

levels. We considered these parameters in computing the numbers of days, which spent in fixing a

bug. Once we obtained the exact number of bug-fixing days (i.e., effort data), then we used a set

of metrics and regression methods to build effort estimation models. All the models are based on

the same underlying metrics and effort data and trained with the data set of Mozilla project. The

obtained results show that the machine learning and multiple linear regression based effort estimation

models have correlation values between 0.51 and 0.56. Similarly, the MMRE (mean magnitude of
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relative error) values lie between 63% and 93%. This shows that the performance of our models is

satisfactory.

In this thesis, we presented a novel approach to build a risk model for the analysis of software

changes. In case of risk estimation models, the purpose is to estimate that the risk of faults, which is

associated with a source file for new changes. To construct a risk estimation model, we used the data

of different types of software’s changes, particularly we used the historical data of faulty changes.

We showed that how these changes are distributed during the evolution of a source file. Moreover,

we used an approach to transform the previous change history of source files into the four types of

changes, i.e., bug-fix, bug fix-introducing, buggy changes and clean changes. Each source file has

different values for these changes. We used this information and built a risk model. In order to build

the model, we performed a case study on Mozilla project data. We found that if a source file has

a high probability of faulty changes and also fixed large number of bugs, then such source files are

risky for new changes. We can conclude that the files, which have higher risk values are riskier when

applying the next change and thus such source files demands more attention and should be tested

more thoroughly.

The main contribution of this part of the thesis is to present a high performance fault prediction

model. In order to obtain a high performance fault prediction model, we performed two different

experiments. In the first experiment, we used two different techniques, i.e., regression and classifi-

cation to build the fault prediction models. In this experiment, we trained and tested each model

using raw metric (without PCA) and principal components. Although the results of classification

evaluation using raw metrics and PCA are almost similar, but we preferred to choose the classification

evaluation measures, which are obtained using principal components. The reason is, the evaluation

results obtained from principal components are not over estimated. Whereas, the evaluation results

obtained using raw metrics may be over estimated, because in case raw metrics data collinearity exist

among the metrics.

In case of regression based fault prediction model, we used parametric regression techniques, i.e.,

multiple linear regression and non-parametric regression, i.e., neural network, support vector machine

(SMOreg), radial basis function, and REPTree. The evaluation results show that in case of regression

based fault prediction model, the best prediction models are multiple linear regression, and neural

network. In case of multiple linear regression, the obtained value of R (correlation) and RRSE (root

relative square error) are 0.71 and 77.98% respectively. Similarly, in case of neural network, the

obtained value R and RRSE are 0.62 and 78.81% respectively.

In case of classification based fault prediction model, we used eight different classifiers, i.e., logistic

regression, decision tree (J48), support vector machine (SMO), radial basis function, neural network,

naive bayes, AdaBoost and Bagging. In case of binary classification, the performance of the classifiers

becomes poor if the class distribution is skewed. Whereas, in case of software fault prediction model,

the class distribution is mostly skewed. Because, in any release of a software product, the number of

clean source files is greater than the number of faulty source files. Therefore, an objective to perform

this experiment is to analyze the performance of each classifiers, when the class distribution is skewed.

The skewed class distribution generates biased classification results, because larger classes usually
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dominate smaller classes. The consequence is that the classifiers give more weight to the larger classes

to maintain higher prediction accuracy. Therefore, in case of skewed class distribution we cannot

use the classification evaluation measure Accuracy to evaluate the model. We used ROC to analyze

the performance of individual class. Because, if the class distribution is skewed then ROC-Area (Re-

ceiving Operating Characteristic curve) is normally used to evaluate the performance of the classifiers.

To perform a detail analysis about the impact of skewed class distribution on the performance of a

classification based fault prediction models. We built models using two different classification schema,

i.e., isBuggy and bugLevel. In case of classification scheme isBuggy, instances classified based on two

classes, i.e., isBuggy=yes (means buggy file) and isBuggy=false (means clean file). Whereas, in case of

bugLevel classification scheme, instances classified based on three classes, i.e., low, medium, and high.

Our experimental results show that, in case of a classification scheme isBuggy, the best performed

classifier is Boosting (AdaBoost), whose obtained value of precision for the class isBuggy=yes is

53.7% at 60.0% recall and 0.79 ROC area. Similarly, in case of a classification scheme bugLevel, the

best performed classifier is Naive Bayes. Whose value of precision for the class bugLevel=Medium

is 18.7% at 35.2% recall and 0.80 ROC area, and for the class bugLevel=High is 23.5% at 24.4%

recall and 0.66 ROC area. The results show that classifiers performed well when class distribution

follows isBuggy classification schem. The reason is, the class distribution isBuggy is less skewed as

compared to bugLevel. Furthermore, results show that in our experiment bugLevel has highly skewed

distribution. Therefore, most of the classifiers failed to perform well except Naive Bayes. Therefore,

we can conclude that in case classification based fault prediction models, if the class distribution is

highly skewed than Naive Bayes, performed well. However, if the class distribution is less skewed then

the best classifiers are: bagging, boosting, decision tree (J48), neural network and logistic regression.

The experimental results of fault prediction models reveal that, some prediction models performed

well, and their performance can be further improved if we build the model by using those estimators,

who have high correlation with the number of faults. Therefore, we performed another experiment in

which, we introduced eight new metrics, which are related to the logical couplings among the source

files. We extracted these metrics from the logical coupling patterns, which are related to the fixing

of faults. We found that these metrics are highly correlated with the number of faults, and therefore,

can be used to construct a fault prediction model. The obtained value of R2 of a regression based

fault prediction model (when using logical coupling metrics as predictors) is 80%. Whereas, in case

classification based fault prediction model, the obtained value of accuracy is 97%. The models trained

and tested using GNOME project data.

The thesis of our research work is that the performance of the classification based fault prediction

model is affected if the class distribution of the training data set is skewed. However, there are

some classifier who perform well even in case of skewed class distribution, i.e., bagging, boosting and

decision tree (J48) and Naive Bayes. In case of regression based fault prediction model, MLR and

neural network perform performed well. Furthermore, logical couplings have a significant potential

to create bugs in source files, which could be measured with the help some metrics. These metrics

should be defined in a way that it should exploit the coupling tendency of a source file as maximum

as possible. We have used bug fix patterns to define a set of eight metrics and found that these sets
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of metrics are highly correlated with the number of bugs in source files.

10.1.2 Multi-Label Classification of SCRs

In order to perform an impact analysis of SCRs using classification techniques of machine learning.

We found that there are some cases in which SCRs impacted more than one source files. Therefore,

to perform the supervised machine learning classification, some of the SCR should be labeled with

multiple source files names. Hence, single label classification cannot be used directly for the clas-

sification of SCRs. In order overcome this issue, in this thesis, we presented two novel techniques

for the impact analysis of SCRs. The first technique is semi-automated and use frequent pattern

mining and association rules to make different groups of source files, which are changed together.

After creating the groups of source files, the group identifier can be used to label each SCR uniquely.

As a consequence a single-label machine learning classifier can be used again. Whereas, the other

technique is fully automated and use multi-label classification techniques. In case of multi-label

classification, we directly label each SCR with the set comprising all changed source files and use

multi-label machine learning classification directly.

We evaluated these methods by performing an experiment by using three data sets. These data

sets were obtained from three OSS project’s repositories, i.e., Mozilla, Eclipse and Gnome. Our

experimental results are promising, which indicates that the textual data of past SCRs, which are

labeled with the set of impacted source files, can be used to build the supervised machine learning

based models for the automation of SCRs impact analysis. In case of single-label, the obtained maxi-

mum precision and recall values are 58.2% and 51.1%. Similarly, in case of multi-label. The obtained

maximum precision and recall values are 47.1% and 46.5%. These values were obtained when SMO

used as single-label, and as base classifier of Label Power Set (LP) method of multi-label classification.

In order to develop an automatic bug triage system. In this thesis, we presented a comparative

analysis of different available information retrieval and machine learning techniques. Our target is

to find a combination of methods, which is most suitable to finally develop a high performance bug

triage system. We performed experiments using bug reports (SCRs) of Mozilla project. These bug

reports were transformed into five different data sets using different indexing and dimension reduction

methods of information retrieval. Finally, we used these five data sets and apply supervised machine

learning algorithms. Our experimental results indicate that classification based on Latent Semantic

Indexing and Support Vector Machine has the best accuracy, precision, and recall values.

Furthermore, in this thesis, we presented a novel approach to perform a bug triaging using multi-

label classification of SCRs. The main advantage of multi-label classification is that software change

requests can be labeled simultaneously with developer name, file name, and effort value (expected

time spent to fix a bug report). We found that the classification of multi-labeled SCRs successfully

assigned SCR to the appropriate developer. Moreover, it provides a list of source files, which is

required to be modified, and provides an expected time required to resolve a change request. In

this experiment, we used two methods of multi-label classification, i.e., Problem Transformation and

Algorithm Adaptation. We have evaluated our technique on different groups of data of a large open

source project, Mozilla. We further analyzed the impact of label size, label cardinality and label
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density on the classification results, by using three different data set of different label size. The results

show that the size of labels affected the multi-label classification results. We got the best classification

result at label size 91. Our technique could classify software change requests with 71.3% precision

and 40.1% recall. The obtained results show that the multi-label classification techniques of machine

learning can be used for bug triaging.

10.2 Future Work

During the research work on this thesis, we encountered promising further research directions. In

this section, we discuss some of the possible future research work, which will further enhance the

presented work of this thesis.

In this thesis, we presented an effort estimation model. We built an effort estimation model by

using code and process metrics. We found that the correlation between the process metrics and the

effort value is high as compared to the correlation between code metrics and effort value. Since, in

our experiment we used only three process metrics, and 12 code metrics. Therefore, further research

can be done to find more process metrics, which are highly correlated with the bug-fixing effort

value. This will further improve estimation power of our presented effort estimation model. During

this experiment, we found that bug-fixing time is depended on two factors, i.e., bug severity levels

and bug priority levels. We found that high severity and high priority bugs are fixed in short time.

However, we also found that there are several examples in which high severity and high priority

bugs are fixed in more than 100 days. Sometimes low priority bugs are fixed in small time. An

interesting research work can be done to find that how developers allocate time to fix a bug. Further-

more, research work can be done to find the exact relation of these two factors with the bug-fixing time.

In case of a risk model, we used the data of four different types of source code changes. The quality

of this data is based on the link between the developer’s comments into a version control system

and the corresponding bug reports of a bug tracking system. Since, currently there is no direct way

to establish a link between a version control system and a bug tracking system. Therefore, some

research work can be done to establish a new bug tracking system, which automatically linked with

the version control system. Furthermore, in order to build a risk model we considered the expected

cost of the severity as a unit cost, and then estimated the risk value. Therefore, research can be done

to find the actual cost related to the severity of bug.

In case of classification based fault prediction model, we found that the class distribution is skewed.

Therefore, we used several classification evaluation measures, which are normally used when class

distribution is skewed. However, one can use some other machine learning techniques to overcome

class imbalance issue or skewed class distribution. Furthermore, we found that logical coupling

metrics are highly correlated with the numbers of bugs. Therefore, further research can be done to

obtain more coupling metrics for fault prediction models.

In this thesis work, we found that textual classification of SCRs can be used for impact analysis and

bug triaging. However, the result of textual classification is not very good. One possible reason is the
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textual content of bug reports are unstructured. Therefore, new research work can be done to improve

the quality of bug reports. Furthermore, in this thesis we used multi-label classification technique for

the classification of SCRs. The obtained results show that the performance of multi-label classification

is depending on the label size. Large number of labels reduces the performance of the multi-label

classification. Whereas, for the impact analysis or bug triage the numbers of labels are always in a

large number. Therefore, further research can be done to modify some of the existing multi-label clas-

sification algorithm, so that new modified algorithm ca be used efficiently for the classification of SCRs.
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B.1 Terminology

List of terms used in this thesis:

Bug Tracking System: A bug tracking system is used to store and manage information about bugs

such as when a bug is reported, who reported a bug, short description of a bug, severity of a

bug, platform on which a bug is reported, module in which a bug is reported and status of a

bug.

Version or Revision: These two terms are used interchangeably. A version or revision represents

instance of a file at a particular time. As a software system evolves, changes are made to the

files. Revisions are used to identify different instances of a changed file.

Version Control System: It is an important feature of a software configuration management system

(SCM), used to manage different revisions of files in a software project. Whereas, SCM is the

process of handling changes made to the software during its development. It is used to control

the evolution of software projects. SCM comprises four operations: Identification, control, status

accounting and audit. (IEEE Guide to Software Configuration Management. 1987. IEEE/ANSI

Standard 1042-1987.)

Commit: It is the process of submitting changes to an SCM system. Initially new files of a project

are committed to the SCM system. Then each change to a file is committed. A commit may

involve a single file or multiple files together.

Change: Software evolution is characterized by making changes to the files. A change represents a

single modification stored in the software configuration management system (SCM) repository.

Hunk: Changes are made to files in chunks of source code that are dispersed in a file. These chunks

of contiguous source code lines are called hunks. There can be multiple hunks in a change delta.

Change log or CVS log: When a developer commits a change to the SCM system, she/he records a

message describing the purpose of the change. This message is called change log. Change logs

can be processed to identify different kinds of changes.

Change Annotation or CVS Annotation: It is a basic feature of configuration management systems.

An SCM system annotates each source code line with the date of modification, author of the

line and the revision in which that line was changed.
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Bug: A bug is characterized by a programming mistake or error in source code that results in mal-

functioning of software.

Fix: A fix is characterized by replacing erroneous source code with the correct code. A fix is used to

remove a bug from software.

Bug Fix Change: A change applied to software, to fix a bug is called a bug fix change.

Bug-Inducing or Bug-Introducing Change: A change which resulted in malfunctioning of software

later on is called a bug-inducing change or buggy change.

Bug Fix Hunk: A hunk which is part of a fix is called a bug fix hunk.

Bug-Inducing Hunk: A hunk which resulted in malfunctioning of software later on is called a bug-

inducing hunk.

Bug-Fix Developer: A developer who makes changes to fix a bug is called a bug-fix developer.

Bug-Inducing Developer: A developer, modifications made by whom resulted in malfunctioning of

software, is called a bug-inducing developer.

Bug-fixing Time: It is the time spent to fix a bug

Bug-fixing Activity: Activities or tasks performed by one or more developers to fix a bug.

Bug fix Effort: An effort, which is required to fix a bug.
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Davor Čubranić and Gail C. Murphy. Hipikat: recommending pertinent software development ar-

tifacts. In Proceedings of the 25th International Conference on Software Engineering, ICSE ’03,

pages 408–418, Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1877-X. URL

http://portal.acm.org/citation.cfm?id=776816.776866.

Sanford Weisberg. Applied Linear Regression. Wiley Series in Probability and Statistics,, 2005. ISBN

978-0471663799.

Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. How long will it take to

fix this bug? In MSR ’07: Proceedings of the Fourth International Workshop on Mining Software

Repositories, page 1, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2950-X.

doi: http://dx.doi.org/10.1109/MSR.2007.13.

D.R. Wilson and T.R. Martinez. The need for small learning rates on large problems. In Neural

Networks, 2001. Proceedings. IJCNN ’01. International Joint Conference on, volume 1, pages 115

–119 vol.1, 2001. doi: 10.1109/IJCNN.2001.939002.

Franz Wotawa. On the relationship between model-based debugging and program slicing. Artificial

Intelligence, 135(1-2):125–143, 2002. doi: http://dx.doi.org/10.1016/S0004-3702(01)00161-8.

Tao Xie and Jian Pei. Mapo: mining api usages from open source repositories. In Proceedings of the

2006 international workshop on Mining software repositories, MSR ’06, pages 54–57, 2006. ISBN

1-59593-397-2.

Liguo Yu. Indirectly predicting the maintenance effort of open-source software: Research articles. J.

Softw. Maint. Evol., 18(5):311–332, 2006a. ISSN 1532-060X. doi: http://dx.doi.org/10.1002/smr.

v18:5.

Liguo Yu. Indirectly predicting the maintenance effort of open-source software: Research articles. J.

Softw. Maint. Evol., 18:311–332, September 2006b. ISSN 1532-060X. doi: 10.1002/smr.v18:5. URL

http://portal.acm.org/citation.cfm?id=1165036.1165037.

Dimitrios Zeimpekis and Efstratios Gallopoulos. Tmg: A matlab toolbox for generating term-

document matrices from text collections, 2005.

Du Zhang. Applying machine learning algorithms in software development. In Proceedings of the 2000

Monterey Workshop on Modeling Software System Structures in a Fastly Moving Scenario, pages

275–291, 2000.

189

http://portal.acm.org/citation.cfm?id=776816.776866
http://portal.acm.org/citation.cfm?id=1165036.1165037


Bibliography

Du Zhang and Jeffrey J. P. Tsai. Machine Learning Applications In Software Engineering (Series on

Software Engineering and Knowledge Engineering). World Scientific Publishing Company, February

28, 2005. ISBN 978-9812560940.

Min-Ling Zhang and Zhi-Hua Zhou. A k-nearest neighbor based algorithm for multi-label classification.

In GrC, pages 718–721, 2005.
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