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Abstract 

This thesis is concerned with open questions relating to the accuracy and safety of buckling design 
rules for steel members. It identifies a series of inconsistencies in the current practice of design of 
these members against instability and comes up with novel solutions to overcome them.  

The accuracy of design rules is addressed for the buckling modes of lateral-torsional, torsional-
flexural and in-plane beam-column buckling. It is shown that the load-carrying capacity of steel 
members for these modes can be assessed with great accuracy on the basis of simple, case-specific 
second order (Ayrton-Perry) equations. Thereby, it is of paramount importance that the proposed 
design equations are calibrated to accurately reflect the results of materially and geometrically non-
linear GMNIA FEM calculations. For the purposes of determining how accurately a formulation 
reflects the true mechanical behaviour of a certain member in a buckling mode, these GMNIA 
calculations are inevitably of deterministic nature, but are conveniently carried out on “model 
members” that inherently reflect a certain,desired safety level through their assumptions regarding 
imperfections and geometry. By doing so, the same, consistent procedure was finally adopted for 
the development of design rules for these buckling modes as for the most-studied and best-
understood benchmark case of flexural column buckling. Accordingly, also the resulting design 
formulae are both formally and mechanically consistent with the benchmark case.  

Aspects of safety were addressed both implicitly through the above-mentioned development 
procedure and explicitly by the use of reliability assessments on the basis of Monte Carlo 
simulations and First Order Reliability Methods. Random number generation and numerical tests 
were used to answer some questions related to the nexus between fabrication tolerances and 
specified imperfections for design. Specifically, the impact of changes to the curvature tolerances of 
compression members was quantified by the use of these methods. Additionally, the possibility was 
addressed to move away from “semi-deterministic” buckling rules calibrated onto “model member” 
GMNIA calculations, and to directly base the calibration of buckling rules on “constant reliability 
curves”. Such curves can be obtained from a combination of numerical GMNIA and probabilistic 
FORM calculations.  

Finally, a systematic development procedure for buckling design rules for steel members is 
proposed, which allows for a consistent expansion of the findings of this thesis to other buckling 
modes.  
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Kurzfassung 

Diese Dissertation befasst sich mit offenen Fragen zur Genauigkeit und Sicherheit von 
Bemessungsregeln für stabilitätsgefährdete Stahlbauteile. In ihr werden eine Reihe von 
Inkonsistenzen in der jetzigen Bemessungspraxis ausgewiesen und mittels innovativer 
Lösungsansätze behoben.  

Die Genauigkeit der Bemessungsregeln wird für die Stabilitätsfälle des Biegedrillknickens, des 
Drillknickens und des Biegeknickens unter kombinierter Beanspruchung untersucht. Es wird 
gezeigt, dass die Tragfähigkeit von Stahlbauteilen gegenüber diesen Versagensfällen mit Hilfe 
einfacher, aus der Theorie II. Ordnung hergeleiteten Formeln erfolgen kann (Ayrton-Perry 
Formulierungen). Dabei ist es von besonderer Bedeutung, dass die vorgeschlagenen Formeln an die 
Ergebnisse von materiell und geometrisch nichtlinearen GMNIA Berechnungen kalibriert werden. 
Diese GMNIA Berechnungen sind zunächst zwangsweise deterministischer Natur, um die 
Genauigkeit einer Formulierung im Hinblick auf die Vorhersage der Tragfähigkeit eines 
bestimmten „Modell-Balkens“ beurteilen zu können. Sie sind aber vorteilhaft in ihren 
Imperfektions- und Geometrieannahmen für den mit einem gewünschten Vertrauensniveau 
abgestimmt. Durch diese Vorgehensweise wird volle Konsistenz mit der Entwicklung des 
Referenzfalles für alle Stabilitäts-Bemessungsregeln hergestellt, dem Biegeknickfall von Stützen. 
Infolge dessen wurden in der vorliegenden Arbeit auch die resultierenden Bemessungsregeln 
sowohl formell als auch mechanisch in vollständiger Konsistenz mit dem Referenzfall formuliert.   

Fragen der Sicherheit wurden sowohl implizit durch die obenbeschriebene Vorgehensweise als auch 
explizit durch die Durchführung von Zuverlässlichkeitsuntersuchungen mit Hilfe von Monte Carlo 
und „First Order Reliability“ Methoden erörtert. Die Generierung von Zufallszahlen und 
numerische (Monte Carlo) Versuche wurden zur Beantwortung von Fragen der Verknüpfung von 
Herstellungstoleranzen und Imperfektionen für Tragfähigkeitsberechnungen angewandt; ein 
Beispiel hierfür ist die Quantifizierung des Effekts der Änderung von Geradheitstoleranzen für 
Druckglieder. Zudem wurde in dieser Arbeit die Möglichkeit untersucht, in Zukunft die 
Kalibrierung von Bemessungsregeln nicht mehr auf Basis von “semi-deterministischen” 
Knickkurven durchzuführen, sondern direkt auf Basis von Kurven konstanter Zuverlässigkeit. Diese 
können mit Hilfe einer Kombination von GMNIA und FORM Berechnungen ermittelt werden.  

Abschließend wird eine systematische Prozedur zur Entwicklung von Bemessungsregeln für 
stabilitätsgefährdete Stahlbauteile vorgeschlagen, welche eine konsistente Erweiterung der in dieser 
Arbeit dargestellten Konzepte auch auf andere Stabilitätsfälle ermöglicht. 
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1  
Introduction 

1.1. Motivation and Objectives 
Buckling theory and buckling design have accompanied the development and advancement of steel 
as a building material and of structural steelwork as a construction method since the very beginning. 
This must be attributed to the specific characteristics of steelwork, for which –due to the high 
strength of the material- the slenderness of components is of paramount importance. One or the 
other form of buckling determines the ultimate resistance of practically all of these components 
whenever compressive stresses are present. It is therefore understandable why the structural 
engineers working with steelwork have always been interested in determining the buckling 
resistance of a structural component –and of the structure as a whole- as accurately as possible. 

The buckling resistance of a structural component can be assessed - with varying degrees of 
accuracy - using a variety of methods. As research tools, experimental methods and numerical 
methods -using mostly non-linear Finite Element Methods (FEM)- have been widely used in the 
past and present to gather information that leads to a better understanding of the main parameters 
governing a stability problem. In recent times, these two methods are also often combined to obtain 
so-called numerical (“Monte Carlo”) tests, i.e. numerical calculations with random sets of input 
parameters. When appropriately employed, they combine the inexpensiveness –in terms of time and 
money- of a numerical calculation with the safety-relevant “scatter” inherent to a real component. 

Theoretically, a future scenario can be envisaged in which exclusively full non-linear numerical 
FEM calculations are used by practitioners and designers to assess the buckling resistance of steel 
structures. However, this does not seem to be desirable from today’s point of view. The frequent 
discussions in the scientific community about the safety or representativeness of one or another 
design rule, based on this or that assumption in a numerical simulation, prove that the application 
and interpretation of such calculations still pose a series of problems even at the basic scientific 
level. Thus, at the moment, the stability design of a large structure conducted solely with non-linear 
numerical methods and (arbitrary) normative imperfection assumptions will be far too prone to 
questioning of its safety level or misinterpretation of its results to be acceptable as a method for 
practical structural design. Both the experimental and the numerical methods alone will therefore be 
of little direct help to designers in their task of dimensioning a structure that is fit for its planned 
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utilization. Thus, simple analytical methods, design charts and tables, and above all formulaic 
descriptions of buckling curves will likely retain a dominant role in the future.  

In the semi-probabilistic Eurocode design philosophy laid out in EN 1990, such buckling curves (or 
rather, the formulaic representation thereof) represent the prime example of a complex, multi-
variable “resistance function”, see Fig 1-1, of which the level of reliability can be assessed using the 
methodologies presented in that standard. All design rules concerned with member buckling checks 
currently contained in the Eurocodes, as well as the rules present in the various national predecessor 
codes for structural design, make use of such formulaic descriptions of buckling curves and 
buckling strength.  

Within the framework of a semi-probabilistic structural design philosophy, buckling curves and 
buckling rules have a dual function: 

1. Accuracy: they must describe the physical behaviour (the strength) of a given, actual 
component with a high level of precision. Evidence for this precision must generally be 
provided for a large number of different cases, in order to prove the mechanical soundness 
of a buckling rule and exclude “chance” as the cause of accuracy for a single given case. 

2. Safety: when used in design, they must represent a specified (or specifiable) level of safety 
against buckling failure. In semi-probabilistic design, it is thereby important that this safety 
level be modifiable by a single, constant partial safety factor for a wide spectrum of design 
checks (e.g. a single factor for all types of stability checks). Design rules furthermore must 

 

Fig 1-1 Buckling curves as “resistance functions” in the terminology of EN 1990 
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be in line with fabrication tolerances and inspection methods of the structure. 

Since fulfilling this double role is not straightforward, it is understandable why both during and 
after the development of the Eurocode 3 (EN 1993) much effort has been (and is being) put into the 
development and improvement of these buckling curves and rules. Thereby, the need for an increase 
of consistency of the different buckling curves is a common denominator of all proposals for 
amendments of the current practice. 

In this context, the following inconsistencies found in buckling design rules for steel members can 
be listed in order to explain the need for a reconsideration and renewed study; thereby, chapter 
numbers are given in brackets at the end of each paragraph to indicate where in this thesis the 
mentioned aspect –with the relevant background literature- is discussed with more detail: 

i. The mechanical background and the accuracy of the single member stability checks are not 
consistently the same for the different cases. While the rules for flexural column buckling 
are based on a very extensive combination of experimental and numerical studies, and on a 
mechanically coherent derivation of a buckling reduction factor, the rules for lateral-
torsional and torsional-flexural buckling are essentially based on the adoption of the column 
curves, with or without some minor modifications (Chapter 4 through 8). 

ii. The inherent reliability level of the single member design checks is not consistent for the 
different buckling modes and, within a single mode, not equal throughout slenderness ranges 
(Chapter 4, 5 & 6). 

iii. No commonly accepted, standardized procedure is currently available that allows for the 
assessment of the impact of changes to single production habits and tolerance requirements 
on the safety of established stability design rules. This poses a series of problems  
in the context of the introduction of the new European standard EN 1090-2 (2008) for the 
fabrication and erection of structural steelwork, which contains specifications for the 
acceptability levels and inspection requirements for geometric imperfections of compression 
members that markedly differ from previous requirements in many countries (Chapter 5).  

iv. Different, methodologically not fully compatible concepts are used for the design of steel 
members under combined loading (beam-columns). One concept makes use of interaction 
factors to account for the coupled effects of the single load cases, and another concept uses 
“overall” buckling reduction factors for the combined load case. While the so-called 
“overall” concept is formally (but not physically/mechanically) better integrated with the 
design rules for single load cases -since it uses the same, Ayrton-Perry type of formulation 
of buckling strength-, the code regulations using the interaction concept are currently based 
on a much more thorough analytical and numerical background (Chapter 9). 
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The present thesis is to be seen as an effort to overcome these inconsistencies. It takes on a number 
of selected, currently discussed problems of member buckling design and aims at finding innovative 
solutions to them.  

The following points were thereby seen as objectives of this thesis: 

1) Clarifying the foundations of the common methods of representation of buckling strength 
and of the current design rules from today’s perspective, and presenting this background in 
the form of a cohesive report. The most-studied and best-understood case of column 
buckling could thereby be identified as the “benchmark case” for the development or 
improvement of rules for other buckling phenomena.  

2) Developing new expressions for the description of buckling curves for the basic cases of 
lateral-torsional, torsional and torsional-flexural buckling and calibrating them to numerical 
curves, with the aim of improving both accuracy and safety of member design rules, and of 
obtaining methodological and mechanical consistency with the benchmark case of column 
buckling. 

3) Formulating a statistical/numerical method that allows to determine the safety level of a 
given buckling curve, respectively to obtain numerical curves that represent a constant 
reliability level throughout slenderness ranges. 

4) Answering some current questions that stem from the introduction of the European 
fabrication standard for structural steelwork EN 1090-2 (2008), more specifically with the 
new geometrical fabrication and erection tolerances given therein, and the implication of 
these innovations on the currently used, long-established buckling rules. Thereby, the nexus 
between tolerances, real shape deviations and code imperfections is discussed. This specific 
task is put in the more general context of answering questions stemming from changes to 
production habits and their impact on design rules.  

5) Describing the two main approaches used for the buckling design of beam-columns under 
combined loading – the interaction concept and the “generalized slenderness” concept based 
on overall load cases- and highlighting the respective advantages and disadvantages. 

6) On the basis of the in-plane case, finding an analytical form of representation of the beam-
column buckling phenomenon that is integrated in “generalized slenderness “ concept and, 
in the context of this derivation, demonstrating the compatibility and equal ranking -in terms 
of mechanical coherence-, of the two design concepts. 

1.2. Scope and limitations 
This thesis deals with the buckling behaviour of isolated steel members and with reliability issues 
concerning these structural elements. The most common rules and methods currently employed to 
determine the structural safety of steel members are subjected to a thorough re-analysis and are 
amended where necessary to increase their mechanical consistency and safety requirements. Since 



PART I – Introduction, Background of Buckling Curves & Methodology 

 

5 

the considered, existing rules are predominantly based on studies of the behaviour of single span 
columns, beams and beam-columns with double-symmetric cross-section loaded by in-plane 
transversal loads and axial forces, the same scope is adopted for this thesis, see Fig 1-2. 
Specifically, the thesis will deal with the behaviour of: 

i. Columns, i.e. members loaded purely by axial forces, with double-symmetric I-shaped 
cross-sections and with or without lateral supports. 

ii. Beams, i.e. members loaded by in-plane bending moments, again with double-symmetric I-
shaped cross-sections. 

iii. Beam-columns, i.e. members loaded by a combination of axial and transversal loads, with 
double-symmetric, open or closed cross-sections. 

 
Fig 1-2 Cross-section types and loading conditions considered in this thesis 

The majority of the numerical calculations in this thesis were carried out with deterministic, “fixed” 
input parameters in order to study the realistic buckling behaviour of the considered type of 
members, and used as basis for a calibration of newly developed design rules. Parametric studies 
were performed where single parameters of the studied case were varied in order to study the 
parameter’s specific influence. Additionally, a large number of numerical calculations were carried 
out by using random input variables in order to obtain “numerical test results” in the context of 
Monte Carlo simulations.  

From the point of view of reliability, the scope of this thesis is connected with the requirements of 
the Eurocode – EN 1990 (2002) and the Construction Products Directive (EEC, 1988): all 
developed rules implicitly assume that products are being used that comply with the “essential 
requirements with regard to mechanical strength and stability”, which specifically entails that they 
are produced according to harmonized European standards and that the fabricators operate a factory 
production control system as a tool for controlling production quality (tolerances, material 
properties, welding procedures, residual stresses). 

The limitations of the thesis are of course directly connected with the above-mentioned breadth of 
the considered field of study: neither the behaviour of unsymmetric sections nor the effects of 
member continuity and boundary conditions –as present in whole structures- were considered. In 
spite of these limitations, it is believed that the overall findings derived from this thesis hold a 
degree of validity that extends beyond the scope detailed above, as the methodological and 
conceptual aspects of these findings are of a rather general nature.  
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1.3. Organization of the thesis 
In this thesis, the pursuit of the objectives described in section 1.1 is organized in separate parts: 

- Part I focuses on general aspects concerned with the origin, usage and development of 
member buckling rules. Following this introductory 1st chapter, the original derivations and 
succeeding expansions and applications of the most common member buckling formulae are 
described in chapter 2. Chapter 3 deals with methodology, focusing on numerical, analytical 
and probabilistic tools as they were used in this thesis. 

- Part II is concerned with basic member buckling cases of columns or beams. In the 
introductory chapter 4, it discusses the main inconsistencies and sources of current research 
need associated with all basic member buckling cases, and identifies some common 
strategies to overcome these inconsistencies. Chapter 5 discusses the “benchmark” case for 
all member buckling cases, i.e. flexural column buckling. It presents the development of 
current European column buckling rules from today’s perspective. Additionally, this chapter 
addresses issues of reliability, both in general terms and for a specific, ongoing discussion 
regarding the impact of changed fabrication tolerances for compression members. 
Chapters 6 and 7 treat two additional basic member buckling cases, i.e. lateral torsional 
buckling and torsional-flexural (column) buckling, respectively. New formulations are 
developed that increase both accuracy and consistency with the “benchmark” case.  
In chapter 8, the design rules resulting from the efforts of chapter 6 and 7, as well as the 
established rules of chapter 5, are summarized in a common design chart, which shows the 
obtained consistency of the design rules.  

- Part III contains a chapter that gives an outlook on specific problems of the development of 
design rules for beam-columns, as well as the summary and conclusions for the whole 
thesis. In chapter 9, the two main concepts for the treatment of beam-columns in design are 
discussed, namely the “interaction concept” and the “generalized slenderness” concept. In 
order to demonstrate how to integrate the accuracy of the interaction concept design rules 
with the advantages of the generalized slenderness concept, a new formulation is developed 
for the in-plane buckling case of beam-columns that is mechanically sound and consistent 
with the Ayrton-Perry type formulations used in the design rules for the basic member 
buckling cases. Additionally, chapter 9 contains a discussion of some inconsistencies of the 
“general method” for the design of members and structures against out-of-plane buckling.  
In the 10th and final chapter, a summary of the content of the present thesis is given and the 
main findings are discussed. The original contributions included in this thesis to engineering 
knowledge and to the consolidation of existing knowledge are listed. Finally, some general 
conclusions are drawn based on the main findings of the thesis.  
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2  
Buckling Curves: Definition and Representation 

2.1. Scope 
In the introduction (chapter 1), it has been argued that buckling formulae and curves presently 
continue to have significance to the design of steel structures against instability. Additionally, the 
buckling curves currently found in international design codes will also be of relevance to the 
development of future, improved stability design rules. Thus, it is important to comment upon the 
origins, derivations, fields of application and limitations of the most common methods of 
representation of buckling resistances and buckling curves. Giving a holistic perspective from 
today’s state of knowledge can be assumed to be - if not original-, certainly valuable to the research 
community. That is the purpose of this chapter.  

In order to focus the attention on this specific purpose, the considerations in this chapter will be 
made with regard to the most-understood and best-documented case of member buckling, i.e. 
flexural column buckling.  

The chapter starts with a definition of buckling curves in general terms. It then proceeds with a 
discussion of the most significant approaches to the representation of buckling curves, both in terms 
of mathematical descriptions (“buckling formulae”) and in terms of graphical representation. 

2.2. Definition and Presentation 
In this thesis, a buckling curve is defined as any kind of representation of buckling strength Rb as a 
function of its theoretical limit loads Rult and Rcr: 

 b ult crR f (R ,R )=  (2.1) 

With  
Rb ..... buckling resistance, i.e. the load level at which the peak of a load-deformation (R-u) 

curve would be measured in tests, see Fig 2-1. 

Rult ..... theoretical limit resistance of the component if the effects of the studied buckling case 
are omitted. This can for instance be the plastic or elastic capacity of the cross-section, 
depending on the studied case and cross-section. 
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Fig 2-1 Schematic representation of the buckling strength Rb. 

Rcr ..... theoretical, elastic critical buckling resistance obtained from a buckling bifurcation 
analysis. In the case of member buckling, this is the so-called “Euler buckling load”.  

In most cases, the designer will make use of a buckling curve that represents a certain, more-or-less 
explicitly defined reliability level. In these cases, it is fitting to speak of a design buckling curve, 
representing a characteristic value Rb,k or a design value Rb,d = Rb,k / γM1 of the buckling strength. 

It is often convenient to define the buckling strength not in absolute terms, but in relative terms to 
the limit load Rult, using the symbol χ for the ratio. This is mostly done for characteristic values of 
both resistances: 

 b,k

ult,k

R
R

χ =  (2.2) 

As the name buckling curve implies, the buckling strength plotted over representative parameters 
has some sort of curvilinear shape. In terms of representation of this dependence, two forms have 
the largest diffusion in the literature. They are plotted in Fig 2-2 for the example of the European 
column buckling curves, and described in the following. In the example, the buckling strength Rb,k 
is represented by the buckling axial load Nb,k. 

In the first form of representation, shown in Fig 2-2a, the buckling strength (in relative form χ) is 
plotted over the normalized slenderness, defined in general terms as follows: 

 column bucklingult,k ult,k

cr cr

R N
R N

λ = ⎯⎯⎯⎯⎯⎯⎯→  (2.3) 

In the second form of representation, shown in Fig 2-2b and going back to Merchant (see section 
2.4.2), the relative buckling strength χ is plotted over the ratio Rb,k/Rcr. The origin of this form of 
presentation is further discussed in section 2.4. This form of representation is used with 
considerable advantage especially to represent shell buckling phenomena (Rotter, 2002). In 
principle, all analytical and numerical buckling curves, as well as test results, can be plotted using 
this form of representation, often resulting in a better visualization and understanding of the 
differences between different buckling phenomena. 

R R =b,max Rult

Rb

u 

λ=0.25
λ=1.0

λ=2.0

ult

cr

R
R

λ =
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Fig 2-2 Forms of representation: as function of slenderness (a); Merchant-Rankine form (b). 

 

2.3. Early approaches based on theoretical or empirical limits. 
In the mid 19th and early 20th century, the first prescriptive rules concerned with the codification of 
design buckling curves were brought forward. Before this time, at least in Central Europe, the 
design of columns was carried out according to experience or empirical formulae found in civil 
engineering manuals (Kurrer, 2008). Early examples of codified buckling curves in Germany are 
shown in Fig 2-3, plotted as “allowable compressive stresses” over the geometric slenderness 
 λ=L/i. The figure also shows the theoretical and empirical basis of these regulations. Essentially, 
these are the bifurcation theory of Euler (1759), the empirical-experimental strength lines of 
Tetmajer (1890), and the tangent-modulus theory as originally developed in Germany by Engesser 
(1891) and Kárman (1910). Internationally, the latter is better known through its confirmation and 
expansion by Shanley (1946). 

Fig 2-3 illustrates the basic idea behind these early buckling curve regulations: the theoretical or 
experimental buckling curves were thought to accurately reflect the actual behaviour of near-perfect 
struts. In order to account for actual deviations from the “perfect” conditions assumed by Euler, 
Engesser, etc., or present in the small-scale tests of Tetmajer, abundant safety factors were applied 
to the theoretical load to obtain the “allowable” compressive working stress of columns. Over time, 
due to positive experience and desire for more slender columns, these safety factors were slowly 
diminished, going from 5 in 1910 (Prussian building regulation) to 2.5 (DIN 4114).  
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Fig 2-3 Early column buckling curves based on theoretical limit loads. 

2.4. The RankineGordonMerchant approach 
While Euler’s and Engesser’s & Kárman’s mathematically consistent theories of column buckling, 
in combination with tests on near-perfect small-scale specimens, such as those performed by 
Tetmajer, long represented the only basis for practical column design in Continental Europe, so-
called “rational” or “semi-rational” formulae enjoyed early popularity in the Anglophone world. 
These formulae were developed (mostly by engineering practitioners) by making more-or-less 
plausible assumptions regarding the deformations of columns and the stresses in critical cross-
sections during the buckling process and introducing factors that could be used to fit the resulting 
mathematical expression to test results.  

One well-known example of such a “semi-rational” expression is the Rankine-Gordon column 
formula (Rankine 1866, 1898). Especially the interpretation and representation given to it by 
Merchant (1954) is still in use today in various fields of stability research and practice.  

2.4.1. The original derivation – “Rankine‐Gordon formula” 

According to Timoshenko (1983, p.209), the formula was originally derived by Tredgold for a 
column with rectangular cross-section and later calibrated by Gordon to test results documented in 
the literature. Rankine extended the applicability of the formula to more general cross-sections and 
published it in his Manual of Civil Engineering, greatly increasing its popularity.  

Using the variables illustrated in Fig 2-4, the first step in the derivation of the Rankine-Gordon 
formula consists in establishing that the deflection w of a beam or column is proportional to the 
square of the length and the maximum bending moment and inversely proportional to the second 
moment of area I of the cross-section, (2.4). 
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Fig 2-4 Rankine-Gordon derivation, used variables. 

 
2

max
1

L Mw c
I

⋅
= ⋅  (2.4) 

Thereby, the constant c1 must have the dimension of length2/force.  
Furthermore, it can be stated that the maximum bending stress σM is proportional to Mmax and the 
distance z, and inversely proportional to the second moment of area I, (2.5). 

 max
M 2

Mc z
I

σ = ⋅ ⋅  (2.5) 

In this case, the constant c2 is dimensionless. By combining the two expressions, we obtain 

 
2 2

1 M M
3

2

c L Lw c
c z z

⋅σ ⋅σ
= ⋅ = ⋅  (2.6) 

The new constant c3 is merely a combination of c1 and c2 and therefore still has the dimension of 
length2/force. Expression (2.6) states that for a given bending stress, the deflection w is proportional 
to L2/z. The fundamental assumption of the Rankine-Gordon derivation is now expressed by (2.7): 

 
2Lw c
z

= ⋅  (2.7) 

Here, c denotes a dimensionless constant that represents a combination of c3 . σM, thereby 
containing the (unknown) bending stress σM. The exact, underlying composition of the constant c is 
however ignored in the rest of the derivation. Since c and c3 are constants, this is equivalent to 
assuming that, for a certain pin-ended column with a given cross-section, the bending component of 
the ultimate stress distribution at failure is also constant and independent of the length.  

The derivation proceeds with the formulation of a maximum stress equation for the deflected 
column, using M=P . w obtained from simple equilibrium.  

 
2

max
P M P P w P P c Lz z
A I A I A I

⋅ ⋅ ⋅
σ = + ⋅ = + ⋅ = +  (2.8) 

By introducing a first-yield failure criterion, using the yield stress fy as limiting stress, as well as the 
identity i2=(I/A) we obtain expression (2.9). 

 ( )
22

2
max y2

P P c L P L P1 c 1 c f
A A i AA i

⎛ ⎞⋅ ⋅ ⎛ ⎞⎜ ⎟σ = + = ⋅ + ⋅ = ⋅ + ⋅λ =⎜ ⎟⎜ ⎟⎝ ⎠⋅ ⎝ ⎠
 (2.9) 

The nominal ultimate buckling stress σb=P/A at failure can therefore be calculated as 

w

L

zP
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( )

yb
b 2

fP
A 1 c

σ = =
+ ⋅λ

 (2.10) 

Expression (2.10) represents the Rankine-Gordon column formula in its classical form. According 
to Timoshenko & Lessells (1928), commonly used values for fy (here not directly comparable to a 
yield stress) and c for the design of machine components made of steel were fy=3000 kg/cm² and 
c=1/7500.  

 
Fig 2-5 Rankine-Gordon buckling stress in [kg/cm²] using a constant of c=1/7500 

Fig 2-5 shows the curve representing the buckling stresses that were calculated using these 
parameters. The Euler-stress σcr –calculated with a value of E=2100000 kg/cm²- is also plotted in 
this figure. 

Expressed in terms of the common normalized variables χ (=Nb/Nult,k=σb/fy) and

ult,k cr 1N / N /λ = = λ λ , (2.10) becomes 

 
( )

b b
2y ult,k

N N 1
A f N 1 k

χ = = =
⋅ + ⋅λ

 (2.11) 

with 

2 2
1

y

Ek c c
f

= ⋅λ = ⋅π  

The impact of the dimensionless factor k on the position of the Rankine-Gordon buckling curve in 
the χ- λ  plane is shown in Fig 2-6. One feature of the curves that might be surprising at first sight is 
the fact that they do not necessarily converge asymptotically towards the Euler hyperbola 

2
1 / λ , 

actually intersecting the Euler curve when k becomes smaller than unity. A limit value 
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consideration of equation (2.11) shows that this expression is only asymptotical to the Euler 
hyperbola if k is equal to 1.0. According to Popov (1952, p. 358), this special case was in use for 
machine design in North America in the first half of the 20th century and was known as Ritter’s 
semi-rational formula.  

 
Fig 2-6 Rankine-Gordon formula with varying factors k, compared to Euler buckling criterion 

2.4.2. Merchant‐Rankine interpretation and visualization 

A more modern interpretation and representation of the Rankine-Gordon formula was developed by 
Merchant (1954). Equation (2.11) can be re-written as follows, using 2

ult,k cr pl crN / N N / Nλ = : 

 b

plpl

cr

N 1
NN

1 k
N

χ = =
⎛ ⎞

+ ⋅⎜ ⎟
⎝ ⎠

 (2.12) 

from which follows: 

 b b

pl cr

N Nk =1 
N N

+ ⋅  (2.13) 

Nb/Npl and Nb/Ncr are the ratios of the ultimate buckling load Nb to the plastic limit or Euler critical 
load, respectively. If we regard each of these ratios as abscissa and ordinate variables of a Cartesian 
coordinate system, we can interpret expression (2.13) geometrically as a straight line that passes 
through Nb/Npl=1.0, and through Nb/Ncr=1/k. This is plotted in Fig 2-7 for various values of k, 
showing the same lines plotted in Fig 2-6 in what came to be called the Merchant-Rankine (MR) 
form of presentation introduced in Fig 2-2.  
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Fig 2-7 Merchant-Rankine representation of the original Rankine-Gordon formula with varying 

values of k 

Horne and Merchant (1965) considered equation (2.13) to be rational only for the case of k=1.0, 
since only in this case the two rational limits of stability design are reached, i.e. the fully plastic 
limit load without stability effects and the purely elastic critical load without plasticity and material 
strength effects. Equation (2.13) then becomes: 

 b b

pl cr

N N =1 
N N

+  (2.14) 

Merchant suggested an expansion of the use of (2.14) to the design of frames, thereby replacing the 
plastic limit and elastic critical normal forces Npl and Ncr of a column with the global plastic and 
elastic load amplification factors Rult and Rcr of a frame. This method is effectively an early 
application of an “overall” approach to the stability design of whole structures.  

Horne (1963) also gave a somewhat more “modern” theoretical justification to the version of the 
Rankine equation given by (2.14), using a combination of an elastic-plastic (E-P) analysis with 
“sudden” development of plastic hinges and a rigid-plastic (R-P) analysis (also see Ligtenberg, 
1965; Maquoi&Jaspart, 2001).  

It is worthwhile to take a look at this derivation from today’s perspective. Thereby, Fig 2-8 is used 
to exemplify the assumptions made in the derivation and to illustrate the comments to it. 

i. In the elastic-plastic analysis of a pin-ended column with a sinusoidal imperfection of 
amplitude 0e , the buckling load Nb is reached when the plastic moment capacity Mpl,N-b –
which includes the effect of the normal force Nb on the plastic capacity of the cross section- 
is reached at mid-span. If the dimensionless variable m is used according to Fig 2-8, the 
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ratio mb is reached: mb,1 for the shorter column and mb,2 for the longer one. This can be 
expressed as follows, using the elastic amplification factor 1/(1-N/Ncr): 

 0b
pl,N b b pl

b

cr

N e M m MN1
N

−
⋅

= = ⋅
−

 (2.15) 

 
Fig 2-8 M-N cross-sectional interaction line of an IPE section; visualization of the assumptions 

made in the Horne derivation of the Merchant-Rankine equation. 

ii. In the (first order) rigid-plastic analysis of this column, the ultimate (plastic) load Npl* is 
achieved when the plastic moment capacity Mpl,N-pl is reached at mid-span. Again using the 
dimensionless variable m, the ratio mpl is reached: mpl,1 for the shorter column and mpl,2 for 
the longer one. Since the column is thought to be rigid, the bending moment at mid-span is 
always equal to N. 0e , as no additional bending deformations occur. In Fig 2-8, this shows 
as a straight line in the n-m plane. For most practical columns, 0e  will be comparatively 
small both in terms of the fraction of length and (more importantly here) in absolute terms. 
This means that there will be a rather small difference in the rigid analysis between Npl* and 
the full plastic capacity A.fy=Npl; this is illustrated for the column of length L1 in Fig 2-8. If 
this holds, we can write. 

 0 0pl pl pl,N pl pl plN * e N e M m M−⋅ ≈ ⋅ = = ⋅  (2.16) 

iii. In the derivation of the Merchant-Rankine formula, the assumption is now made that mb is 
equal to mpl. We can therefore set (2.15) and (2.16) equal and obtain: 

 b
pl

b

cr

N NN1
N

=
−

 (2.17) 

Equation (2.17) is equal to (2.14). This derivation is – at first glance- more coherent and 
“advanced” than the original Rankine-Gordon derivation because of the apparent inclusion of 
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plasticity considerations and the lack of an arbitrary constant. However, a look back to equation 
(2.6) and (2.7) and the comments made there shows that the fundamental assumption of this 
derivation is exactly the same: that the bending component of the ultimate stress distribution at 
failure is constant and -for any given value of 0e - independent of the length of the member.  

As Fig 2-8 schematically illustrates, these assumptions can only approximately be met under very 
specific circumstances: 

- not too slender columns 
- with somehow “intermediate” imperfection amplitudes  

so that the ratio between mb and mpl indeed is almost “independent” of length (in this range) and 
approaches unity. If the column is too slender and stability effects become too dominant, and/or if 
the load eccentricity or column out-of-straightness is too large, it is obvious that the ratio mb/mpl 
will be significantly larger than unity, since mb will be significantly larger than mpl. If however the 
initial out-of-straightness 0e  is too small, again the ratio mb/mpl will be far larger than 1.0, this time 
because mpl is too small.  

 
Fig 2-9 Comparison of the Rankine equation with the European column buckling curves using 

the Merchant-Rankine form of representation 

In order to better illustrate these comments, the Rankine equation (2.14) is compared in Fig 2-9 to 
the ECCS column buckling curves in their current Eurocode 3 version. The Merchant-Rankine form 
of presentation is used. The figure shows that the Rankine equation (straight line from top left to 
bottom right) approximates the course of the European column buckling curves “c” and “d” 
reasonably well for slenderness ratios of 0.4λ =  to 1.4, with line “c” in particular being almost 
parallel to the Rankine line up to this point. For higher slenderness ratios, the slope of line “c” 
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clearly diverges from the Rankine line. This matches the comments made above regarding the 
Horne derivation quite well:  

i. line “c” and “d” represent columns with somewhat larger equivalent imperfections in the 
range of 0e =L/150 in EC3 part 1-1, clause 5.3.2. Lines “a0” to “b” all represent columns 
with smaller inherent imperfections. 

ii. for slender columns, the Rankine line doesn’t appear to represent a good description of the 
column behaviour. 

From a purely safety-related perspective, it should be noted that for columns with small initial 
imperfections, the Rankine equation describes the actual column strength rather inaccurately, but 
results in an abundantly safe design; for columns with large initial imperfections, on the other hand, 
the accuracy and safety of the equation are lacking.  

2.4.3. Modified Merchant‐Rankine formula 

The plots of the European column buckling curves, as presented in Fig 2-9, illustrate that realistic 
buckling curves of structural members have a shape that clearly diverges from a straight line in the 
Merchant-Rankine form of presentation. This was acknowledged over the course of the 
development of the European column buckling rules. A modified, so-called “generalized” version 
of equation (2.14) was therefore brought forward in Europe in the 1970s (Unger, 1977; Murzewski, 
1977; Lindner, 1978; Allen, 1978) and suggested as a viable means of description of more complex, 
realistic buckling curves. In the summative Merchant-Rankine form, the “generalized” equation can 
be written as: 

 
n n

b b

pl cr

N N =1 
N N

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (2.18) 

In explicit form and using the dimensionless variables χ and λ , (2.18) becomes: 

 
( )

1/n

b
2npl

N 1
N 1

⎛ ⎞
⎜ ⎟

χ = = ⎜ ⎟
⎜ ⎟+ λ
⎝ ⎠

 (2.19) 

These equations are evaluated for different values of the single parameter n and plotted in Fig 2-10 
using both the Merchant-Rankine (MR) and the slenderness-dependent form of representation. 
While Fig 2-10b shows that this formula again yields column buckling curves that are plausible and 
rational, it is in the representation used in Fig 2-10a that the advantage of this generalized 
expression is better appreciated.  
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Fig 2-10 Generalized Merchant-Rankine formula plotted using (a) the MR- and (b) the 

slenderness dependent representation 

This figure shows that the single parameter n in equation (2.19) allows for a good approximation of 
the curved shape of realistic column buckling curves, e.g. compare again to Fig 2-9. 

Expressions (2.18) and (2.19) have found broad international acceptance in the past: 

i. Lindner (1978) calibrated the parameter n to find the best-fit value to describe the (originally 
only tabulated) ECCS column buckling curves, obtaining results that are comparable to the 
more complex Ayrton-Perry type formulae used in the Eurocode today.  

ii. This same equation was also used for almost two decades in DIN 18800-2 (1990) for the 
design against lateral-torsional buckling of I- and H-shaped sections, using values of the 
parameter equal to n=2.5 for rolled and n=2.0 for welded sections. 

iii. It has also been used in the Canadian CSA Standard S16.1-94 (Loov, 1995) for curve-fitting 
of the originally tabulated American SSRC column buckling curves (Galambos, 1998) 
leading to accurate representations of the original values. 

Despite its apparent advantages, it should however not remain unmentioned that equation (2.18) 
does not have a mechanical justification in the strict sense, having no known mechanical derivation, 
but is much rather simply a compact and practical formula used for curve-fitting.  

If the clarity of the used terminology is thought to be important, it can be argued that this 
formulation should not be called a “generalized” Merchant-Rankine formula, as this term somehow 
implies a more “general” validity of the expression. The increased representativeness of this 
formulation is actually only given in retrospect, i.e. after the best-fit value of n was determined to 
better represent a certain buckling phenomenon, and not a priori, as would be expected from a 
mechanically improved “generalized” expression. Although this can of course be shrugged off as a 
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minor semantic problem, it would clearly be better - in order to avoid misinterpretation- to refer to 
formula (2.18) as a “modified” or even “calibrated” Merchant-Rankine formulation. 

2.4.4. Comments 

Concluding and summarizing the findings illustrated in this section regarding the Merchant-
Rankine approach, it can be stated that: 

i. The original Rankine-Gordon or Merchant-Rankine formula was derived using assumptions 
that limit the goodness of its description of the actual behaviour of members to very specific 
cases.  

ii. In spite of this, the formula can often be used as a safe estimate of the buckling limit load of 
members and structures. 

iii. A (formally) generalized version of the formula, which uses only one extra parameter, is 
very well suited to curve-fitting. 

iv. The formula has a mathematical form and geometrical interpretation that called for the 
introduction of a different form of representation of buckling curves, where the buckling 
reduction factors (or limit stresses) are plotted over the ratio Nb/Ncr, rather than over the 
length or slenderness of the member.  

2.5. The AyrtonPerryRobertson approach 
Another important approach for the determination and presentation of buckling resistance is 
represented by the Ayrton-Perry formula. It found early application in design practice – again, 
especially in the Anglophone world-, and is still widely in use today. Indeed, a version of it is the 
basis of the member buckling design formulae currently found in the Eurocode.  

When compared to the Euler or the Merchant-Rankine approach, the Ayrton-Perry method has one 
outstanding advantage: it explicitly includes the inevitable imperfections of a structural member, 
and it does so in a generalized form that allows for an inclusion of geometric and structural 
imperfections. Indeed, by using a generalized or “equivalent” imperfection as the calibration factor 
to bring the analytical prediction in line with test data or more sophisticated numerical results, it 
greatly aids the understanding of the meaning of the calibration itself, as it corresponds to both 
common sense and experience that a column’s strength is inversely correlated to the amplitude of a 
given imperfection.  

 
Fig 2-11 Ayrton-Perry derivation, used variables. 

  

e0
L

zI,AN

Ii
A

=

0
0

cr

ew e
1 N / N

= δ + =
−

δ



2. Buckling Curves: Definition and Representation 

 

 

20 

2.5.1. Original derivation 

The original formula (Ayrton & Perry, 1886) was derived along the lines described in the following, 
whereby the variables shown in Fig 2-11 are used here instead of the original ones. Ayrton and 
Perry actually started their considerations by deriving the elastic buckling amplification factor 1/(1-
N/Ncr) for a column with an initial imperfection 0e . This step is skipped here and the derivation is 
entered at the point where a maximum stress equation is introduced.  

The maximum compression stress in the outermost fibre of the cross-section of a pin-ended column 
as depicted in Fig 2-11 can be calculated as follows: 

 0 0
max 2

cr cr

N N w z N N e z N e z 11
A I A I (1 N / N ) A (1 N / N )i

⎛ ⎞⋅ ⋅ ⋅ ⋅ ⋅
σ = + = + = ⋅ + ⋅⎜ ⎟⋅ − −⎝ ⎠

 (2.20) 

In order to generalize the nature of the initial column imperfection, Ayrton and Perry conveniently 
replaced the expression preceding the amplification factor in the parenthesis of equation (2.20) 
with a new variable m: 

 0 0
2

e z e A m
Wi

⋅ ⋅
= =  (2.21) 

As they noted, m is “a term expressing the combination of initial curvature, inaccuracy in 
application of the load, and want of homogeneity of the material”. If appropriately chosen –i.e. 
calibrated to test results or other more sophisticated expressions for buckling resistance-, it 
represents an “equivalent” imperfection which takes into account the above-mentioned effects, 
including those that do otherwise not enter the purely elastic equation (2.20).  

The next step in the derivation consists in introducing a first-yield failure criterion; in this case, at 
failure the normal force N is equal to Nb, and the maximum stress σmax is equal to the yield stress fy. 
If we write the nominal stress caused by the normal force Nb/A at failure as σb and the critical 
elastic buckling stress Ncr/A as σcr, the failure condition reads as follows: 

 b y
b cr

m1 f
(1 / )

⎛ ⎞
σ ⋅ + =⎜ ⎟− σ σ⎝ ⎠

 (2.22) 

By multiplying both sides by (σb/σcr-1), re-ordering and bringing all variables to the left side, this 
equation can also be written as  

 2
b b cr y cr y( (1 m) f ) f 0σ − σ ⋅ σ ⋅ + + + σ ⋅ =  (2.23) 

This is a quadratic equation of the form 2x b x c 0+ ⋅ + = and can be solved accordingly: 
2x 1/ 2 b b 4c⎛ ⎞= ⋅ − ± −⎜ ⎟

⎝ ⎠
. Only the smaller of the two solutions is of interest here. The ultimate 

buckling stress σR=NR/A can thus be calculated using the following formula: 

 2
b cr y cr y cr y

1 ( (1 m) f ) ( (1 m) f ) 4 f
2

⎛ ⎞σ = ⋅ σ ⋅ + + − σ ⋅ + + − ⋅σ ⋅⎜ ⎟
⎝ ⎠

 (2.24) 
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This is the Ayrton-Perry formula in its original form. Ayrton and Perry were aware of the fact that a 
realistic expression for m must be determined or specified. In order to achieve this, they proposed to 
solve equation (2.22) for m, which leads to equation (2.25), and to calculate the “correct” value of 
m for a number of test results. If a sufficient number of test results are given, it should be possible 
to find an appropriate expression for m as function of e.g. the length L or the slenderness λ. 

 y b

b cr

f
1 1 m

⎛ ⎞ ⎛ ⎞σ
− ⋅ − =⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠⎝ ⎠

 (2.25) 

Although they observed from tests on small-scale specimens that the value of 0e  –and hence m- is 
probably in a slightly hyper-linear functional relationship with the length (or slenderness) of the 
column, Ayrton and Perry found it convenient to assume that m is a constant fraction of the 
slenderness λ, i.e m = α ⋅λ , with α being a certain constant. 

Fig 2-12 shows equation (2.24) evaluated for values of fy and E that Ayrton and Perry stated were 
valid for wrought iron –fy=50000 lb/in² and E=29000000 lb/in²- and for various expressions of m. 
The figure shows that the chosen slenderness-proportional expression for m allows for a plausible 
and rational representation of buckling curves, which asymptotically approach the Euler hyperbola 
and span a wide range of buckling stresses. The position and shape of the buckling curve in the σb-λ 
plane strongly depends on the value of the proportionality factor α=m/λ. For α=0.0, either the Euler 
buckling stress or the yield stress of the material represent the upper limits of the buckling stress, 
which is consistent with the theoretical strength of a “perfect” column.  

 
Fig 2-12 Original Ayrton-Perry equation evaluated for different expressions of m and material 

constants of wrought iron.  
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2.5.2. Calibration to tests – “Robertson’s formula” 

Ayrton and Perry provided a formula – equation (2.24)- that allows for a good description of 
buckling phenomena, provided that the expression for m is adequate and properly calibrated to test 
results. This was first done extensively and with already very good accuracy by Robertson (1925), 
who performed and collected from various sources a great number of buckling tests on medium-
sized specimens (mostly rolled bars of full, circular cross-section).  

Robertson used the Ayrton-Perry formula with an expression for the generalised imperfection 
identical to the one proposed by Ayrton and Perry themselves, however choosing to call it η instead 
of m: 

 η= α⋅λ  (2.26) 

As is illustrated in the original Fig 2-13 taken from the Robertson publication, he established that 
for a mild steel with a yield strength of fy=18.3 to/in² and a Young’s Modulus of E=13600 to/in², a 
value of α=0.001 is a good description of the average of the test results, while a value of α=0.003 
yields a curve which forms a good lower bound of these same results. An Ayrton-Perry buckling 
formula with the latter value of α was used extensively in the UK and in Commonwealth countries, 
for example still being present in the 1969 version of British Standard BS 449. 

 

 

 
Fig 2-13 Tests by Tetmajer (1910) as evaluated by Robertson, showing chosen function for η=m 

(Robertson, 1925, p.32, Fig.34) 
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2.5.3. The normalized representation 

In order to bring the Ayrton-Perry formula (2.24) into the modern form now found in the 
Eurocodes, it is necessary to introduce the normalized variables χ and λ , and it is helpful to 
multiply all stress terms in formula (2.24) with the area, in order to work with forces again. The 
generalized imperfection factor m of formula (2.24) will be referred to as η from now on, following 
Robertson’s usage. We thus obtain: 

 2
b cr pl cr pl cr pl

1N (N (1 ) N ) (N (1 ) N ) 4 N N
2

⎛ ⎞= ⋅ ⋅ + η + − ⋅ + η + − ⋅ ⋅⎜ ⎟
⎝ ⎠

 (2.27) 

Using 
2

pl crN / Nλ =
,, 

we can rewrite the term cr pl(N (1 ) N )⋅ + η +  as 
2

crN (1 )⋅ + η+ λ . It is then 
convenient to replace the term 

2(1 )+ η+ λ , which is found both inside and outside of the root, with 
a new variable; if we call the new variable Φ and set the parenthesis term equal to 2 . Φ, we can 
write (2.27) as: 

 
22 2 2

b cr cr cr pl cr
1N 2 N 4 N 4 N N N
2

⎛ ⎞⎛ ⎞= ⋅ ⋅ ⋅Φ − ⋅ ⋅Φ − ⋅ ⋅ = ⋅ Φ − Φ − λ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (2.28) 

By expanding equation (2.28) by pl1/ N  and using b plN / Nχ =  and
2

cr plN / N 1/= λ , we obtain: 

 
22

2
1 ⎛ ⎞

χ = ⋅ Φ − Φ − λ⎜ ⎟
⎝ ⎠λ

 (2.29) 

This equation can now be multiplied with the complement of the bracket term:  

 
2 2222

2 22 22 2

1 1⎡ ⎤
⎛ ⎞ Φ + Φ − λ λ⎢ ⎥χ = ⋅ Φ − Φ − λ ⋅ = ⋅⎜ ⎟ ⎢ ⎥⎝ ⎠λ λΦ + Φ − λ Φ + Φ − λ⎢ ⎥⎣ ⎦

 (2.30) 

This finally leads to the form of the Ayrton-Perry formula currently found in the Eurocode: 

 
22

1
χ =

Φ + Φ − λ
 (2.31) 

with ( )21 1
2

Φ = ⋅ + η+ λ  (2.32) 

It should be noted that equations (2.31) with (2.32) are not in any way different from expression 
(2.24), except for the fact that the buckling stress is expressed in normalized terms and referred to 
the normalized slenderness λ . The position of the buckling curve is still entirely determined by the 
expression chosen for η and by the value chosen for the imperfection amplitude factor α.  

Fig 2-14 attempts to underscore the significance of this statement; it shows buckling curves for 
different steel grades, determined using formula (2.30) and with 0.003η= ⋅λ , as Robertson 
suggested.  
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Since the current Eurocode formulae result in normalized buckling curves that do not depend on the 
steel grade, it is perhaps not universally appreciated that the steel grade does influence the buckling 
reduction factor χ if the generalized imperfection η is expressed by a function of λ, instead of λ , as 
is the case in the current Eurocode formulation. 

The current Eurocode expressions for η have the following form: 

 ( )0η = α⋅ λ − λ  (2.33) 

Expression (2.33) was proposed and discussed by Maquoi and Rondal (1978) as one of several 
possible expressions for η and then established to be the most advantageous formulation in a 
second paper by the same authors (Rondal & Maquoi, 1979). For column buckling, 0λ  is equal to 
0.2; this value is needed to mathematically reproduce the “plateau” of the European column 
buckling curves as established by ECCS. 

The values of α were determined by Maquoi and Rondal to best fit the European column buckling 
curves, resulting in 5 different values for the 5 ECCS curves. These were presented graphically in 
Fig 2-2 both in the slenderness-based and the Merchant-Rankine type of representation. An 
expression for η as function of the normalized slenderness λ , instead of λ, of the sort represented 
by (2.33), results in buckling curves that are independent of the yield strength of the material, which 
is consistent with the original, tabulated ECCS curves. Some more details on this calibration of the 
Ayrton-Perry formulation to the ECCS curves will be given in the pertinent chapter 5.  

 
Fig 2-14 Normalized Ayrton-Perry buckling curves evaluated with η as given by Robertson. 
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2.5.4. “Modified‐slenderness” Ayrton‐Perry formulations 

The classical Ayrton-Perry formulation has sometimes been criticized due to its apparent focus on a 
“first yield” criterion and due to its not always “perfect” accuracy. In this context, Rotter (1982) 
proposed an expression that represents a modified version the original Ayrton-Perry formula. He 
criticized the values of buckling reduction factors resulting from an “unmodified” Ayrton-Perry 
formulation (again calibrated by Rondal and Maquoi (1979b)) used to describe the North American 
SSRC column buckling curves, judging them to show excessive deviations from the original values. 
To improve this situation, he suggested the introduction of a slenderness modification of the 
following form: 

 mod k gλ = λ + ⋅  (2.34) 

with k being a constant value that depends on the column curves 1, 2 or 3, and: 

 2
0.15g λ −

=
λ − β⋅λ + γ

 (2.35) 

Multiple regression analysis was used to determine the best-fit values of k, β and γ. By applying this 
method, the accuracy of the approximation of Rondal and Maquoi’s original formulation was 
increased from a maximum deviation of about 8% in the region of λ =2.0 to ca. half of this value. 

This increased accuracy is of course valuable. However, the cost in terms of handiness of this 
improvement – which mainly affected the practically less-relevant high-slenderness range- seems 
rather high in this case:  

i. Three additional parameters were introduced; in a code, this requires additional tabulation 
and leaves more room for error. From the point of view of the application to new buckling 
design rules for different stability phenomena, these three parameters would have to be 
laboriously calibrated with all their possible combinations to any new member buckling 
case. 

ii. The slenderness λ  is modified in this approach to obtain a best-fit value of the buckling 
reduction factor χ; since the slenderness is the most “visual” parameter of a buckling 
phenomenon, which is well understood and interpreted by the engineer, it is questionable 
whether it is really recommendable to modify this parameter in order to obtain an 
improvement of the abscissa variable χ.  

Another example of a modified Ayrton-Perry formulation is given by the current “specific case” 
design formula for LT-buckling, i.e. the formula that is said to apply to bi-symmetric hot-rolled 
sections. Also in this case, the improvement of the calibration results (to numerical curves, see 
Greiner et al., 2000) was achieved by an introduction of a “modifier” of the slenderness influence in 
the formulation, called “β” in this case. This factor was applied in both the formula for χLT (2.36) 
and ΦLT (2.37).  
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 LT 222 LTLTLT LT

1 1 1.0χ = ≤ ≤
λΦ + Φ −β⋅λ

 (2.36) 

and ( ) 2
LT LT,0 LTLT LT

1 1
2

⎡ ⎤Φ = + α λ − λ + β⋅λ⎢ ⎥⎣ ⎦
 (2.37) 

Since only one additional factor β is introduced, the first one of the above points of “criticism” is 
mitigated in this case. The second one, however, still holds validity: there’s a certain degree of loss 
of mechanical meaning in this formulation, which is also demonstrated by the fact that this 
formulation requires an additional “check” of not exceedance of the bifurcation load 1/

2
LTλ . 

2.5.5. Comments 

The findings of this section can be summarized and commented upon as follows: 

i. The Ayrton-Perry formula was derived using a consistent mechanical model based on the 
second-order theory of a strut with geometrical imperfections.  

ii. As Ayrton and Perry (1886) already recognized, the geometrical imperfection used during 
the derivation of the buckling formula can conveniently be “generalized” by introducing a 
function η; this function serves the purpose of including additional imperfections, such as 
material inhomogeneities and residual stresses, as well as the elasto-plastic cross-sectional 
capacity at the (buckling) failure load, i.e. effects that can otherwise not easily be included 
in such a simple mechanical model. 

iii. Robertson (1925), using a generic expression for η that had already been proposed by 
Ayrton and Perry themselves, was the first to actually calibrate the coefficients of this 
expression to test results, thereby providing a practical design formula that was extensively 
used in practice for over half a century. 

iv. Rondal & Maquoi (1978, 1979) provided a calibration to the ECCS column buckling curves, 
currently found in the Eurocode. Compared to the Robertson formula, the main difference 
lies in the introduction of a plateau value and in the normalized formulation using λ .  

v. To improve the accuracy of the Ayrton-Perry formulation for some specific cases, 
modifications can be thought of. Rotter (1982) presented an early attempt at such a 
modification. Notionally similar modifications were later introduced to adapt the 
formulation to buckling cases other than column buckling, namely LT-buckling, also see 
chapter 6 of this dissertation.  

2.6. Pure curvefitting and empirical approaches 
The Merchant-Rankine and the Ayrton-Perry approaches led to the most common formulaic 
expressions of buckling curves now found in international standards and literature. Both 
formulations should be best understood as powerful tools for best-fit approximations of more 
sophisticated numerical or experimental buckling curves, with the added advantage (particularly felt 
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in the Ayrton-Perry formulation) of having a certain, more or less pronounced degree of underlying 
mechanical justification. This allows for a satisfactory inclusion of the most important parameters 
that govern a particular stability problem and accordingly reduces the calibration effort. 

However, if the correctness or consistency of the underlying mechanics are not considered to be 
paramount, but the best possible approximation of a given (usually tabulated or graphical) buckling 
curve is established as the primary purpose of a buckling formula, then a multitude of other 
mathematical options are imaginable. Some of these curve-fitting formulae are discussed in the 
following paragraphs. 

2.6.1. Mixed polynomial/hyperbolic formulations 

The first of these “pure curve-fitting” formulations uses a summation of higher order expressions of 
λ  for this purpose. Lindner (1978), noting that the shape of the ECCS curves is an apparent mix of 
parabolic and hyperbolic shapes, suggested a formulation of the type given by (2.38) as one 
possibility of representing the tabulated ECCS values. 

 
4 7i j

i j
i 0 j 1

B
A

= =
χ = ⋅λ +

λ
∑ ∑  (2.38) 

Eleven constants are needed in this expression to satisfactorily approximate the entire range of the 
original, tabulated buckling curves (from λ =0.0 to 3.6). The maximum differences between the 
values given by (2.38) and the original values were smaller than 1.0%; in theory, even this 
difference could be reduced by introducing even more parameters.  

In spite of this discretionary accuracy of the approximation, this formulation has the following 
problem: a singularity is introduced at λ =0.0 due to the presence of a term with λ  in the 
denominator. Even if this is ignored by introducing the condition that χ=1.0 at λ =0.0, the range of 
low slenderness is very sensitive to the actual value of the coefficients Ai and Bj. Even a slight 
deviation from the actual “best-fit” value in the 4th or 5th decimal figure results in implausible, 
wrong results.  

Fig 2-15 shows the ECCS column buckling curves as approximated by expression (2.38) and using 
the coefficients Ai and Bj given by Lindner. Although the plots of the resulting curves give very 
good approximations of the ECCS values at slenderness ratios exceeding λ =0.5, the approximation 
is very bad at lower slenderness ratios. This is probably due to the mentioned sensitiveness of 
expression (2.38) at low values of λ ; the table containing the coefficients Ai and Bj only mentions a 
limited number of decimal figures. Since powers spanning +4 and -7 are used, even minor 
differences in a high decimal figure can dramatically change the resulting shape of the curves at this 
slenderness range.  
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Fig 2-15 Approximation of the ECCS column buckling curves using the curve-fitting expression 

and coefficients proposed by Lindner (1978) 

2.6.2. Polynomials 

The above-mentioned problems can of course be circumvented by using a purely polynomial 
expression of the following type to approximate the shape of a buckling curve: 

 
n i

i
i 0

A
=

χ = ⋅λ∑  (2.39) 

In expression (2.39), the value of n can be increased at will in order to augment the accuracy of the 
approximation. Fig 2-16a shows the approximations of the ECCS column buckling curves resulting 
from this approach and n=6, while Fig 2-16b plots the resulting error over the normalized 
slenderness. This figure illustrates that expression (2.39) results in an approximation that is less 
sensitive and far more accurate at low slenderness ratios. However, since at high slenderness ratios 
the actual buckling curves approach a hyperbolic function of λ  - the Euler hyperbola -, a purely 
polynomial expression, centred about the origin of the ordinate axis, inevitably results in a less 
accurate description of the buckling curve at high values of λ . This clearly shows in Fig 2-16b. 
Another problem with this expression is represented by the fact that it yields buckling reduction 
factors χ that (slightly) exceed 1.0 at very low slenderness ratios, and that it does not include the 
plateau value of χ=1.0 up to λ =0.2 that is actually present in the original ECCS curves.  
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Fig 2-16 a) Polynomial approximation of the ECCS column buckling curves for the case of n=6 

and best-fit values of the coefficients Ai ; b) resulting error in the approximation 

The problems inherent to expressions (2.38) and (2.39) can be avoided by using a section-by-
section approximation of a buckling curve, i.e. by dividing the curve that needs to be described 
analytically into a certain number of segments and determining a polynomial or hyperbolic best-fit 
equation for this segment. Attention must of course be paid to the continuity of the resulting 
expression, whereby a zero-order continuity (with the values matching, but the tangents having 
different slopes) is usually considered to be acceptable.  

This approach is used in North America (Galambos, 1998) to describe the SSRC column buckling 
curves. As an example, the expressions used to approximate the SSRC curve 2P (central curve with 
average imperfection values) are given in the following, using the familiar normalized variables χ 
and λ : 
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The advantage of a segmental, multi-functional approximation is clear: each of the functions can be 
kept simple, meaning that not that many coefficients are needed for any individual expressions. 
Since the approximation is performed for different slenderness ranges, it is possible to make the 
“error” of approximation more homogeneously distributed along these ranges, and not concentrated 
in either the low or high slenderness range. The disadvantage is of course represented by the 
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laboriousness and error-proneness given by the correct selection and evaluation of one out of five 
different equations.  

2.6.3. Exponential expressions 

Yet another possible way of formulating best-fit equations for buckling curves was developed by 
Tide (1985; see also Bjorhovde, 1992) and led to the column buckling curve formulation currently 
found in the North American AISC LRFD specification. It follows a segmental approach, but uses 
far fewer segments and –more importantly- a very simple exponential expression to describe the 
original SSRC 2P buckling curve in the low-to-intermediate slenderness range: 

 
2 20.419

2

for 0.00 1.50              e =0.658

for 1.50                         =0.877/

− ⋅λ λ≤ λ ≤ χ =

λ ≥ χ λ
 (2.41)a-b 

Fig 2-17a shows a comparison of the segmental and exponential expressions (2.40) and (2.41). The 
figure illustrates that the much simpler expression (2.41)a is very well able to reproduce the general 
course of a column’s buckling curve. Whether this is the case for other buckling phenomena 
remains to be seen; as is illustrated in Fig 2-17b, the expression intersects the Euler hyperbola at a 
relatively steep angle for values of the calibration coefficient k beyond 0.7. This doesn’t seem to 
reflect the stability behaviour of most structural members.  

 
Fig 2-17 a) Comparison of the segmental approach -expr. (2.40)- to the exponential approach –

expr. (2.41) found in North American standards; b) potential of the exponential expression for 
curve-fitting. 

  

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

exponential
segmental

λ

c =
N

R
/N

pl
 [-

]χ
= N

b/N
pl
 [-

]

Euler

0.0 0.5 1.0 1.5 2.0

λ

Euler

λχ =
2

k

k=0.2
k=0.4
k=0.6

k=0.7
k=0.8

a) b)



PART I – Introduction, Background of Buckling Curves & Methodology 

 

31 

2.6.4. Comments 

The content of this section can be summarized and commented upon as follows: 

i. Buckling curves can also effectively be described by purely mathematical expressions, using 
e.g. polynomials, series of hyperbolic functions, exponential functions or combinations of 
these.  

ii. This can be performed either over the entire range of applicability of the buckling curve  or 
segmentally.  

iii. Pure curve-fitting expressions cannot easily be misinterpreted as being anything else but a 
purely mathematical approximation of an underlying, more sophisticated data pool. Since all 
curve-fitting expressions can actually be interpreted in this way, it can be welcomed if a 
formula does not mislead the practitioner to believe that it expresses anything much more 
fundamental than curve-fitting. 

2.7. Summary 
This chapter discussed the forms of formulaic and graphical representation of design buckling 
curves for the design of steel members against buckling and presented their most common forms of 
formulaic and graphical representation. In broad terms, two philosophies were identified for the 
formulaic description of buckling curves: 

i. The first philosophy makes use of formulae that are based –to a more or less pronounced 
level- on mechanical derivations. The most important formulae of this type are the 
Merchant-Rankine and the Ayrton-Perry ones, used with or without modifications. Original 
and modified versions of Merchant-Rankine and Ayrton-Perry formulae are practically 
omnipresent in European regulations concerned with member stability. 

ii. The second philosophy makes use of entirely mathematical curve-fitting equations, with no 
mechanical background whatsoever. This “pure curve-fitting” approach is the method of 
choice in North American regulations of buckling design checks. 

Which one of these two approaches should be recommended depends on the buckling phenomenon 
at hand. If the variability of buckling curves is not very pronounced, i.e. when the main parameters 
χ and λ  are able to represent most of the buckling behaviour quite well, nothing can be said against 
a purely mathematical curve-fitting using polynomials or other similar expressions. This seems to 
be the case for pure flexural buckling of a column under constant normal force, for example. Also 
many buckling phenomena in plates and shells tend to yield numerical or experimental buckling 
curves that are “homogeneous” enough to be approximated by purely mathematical curve-fitting 
(Rotter, 2002). Member buckling cases, particularly spatial ones, are usually more complex. 
Therefore, the amount of parameters that actually influence the problem is simply too vast for this 
approach: no purely mathematical expression of χ=f( λ ) can satisfactorily describe each and every 
case, unless every single case is separately subjected to curve-fitting. In comparison, formulations 
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that are based on analytical, mechanical derivations have the advantage of implicitly containing at 
least some of these additional parameters, greatly reducing the complexity of calibration.  

Due to this last point, this thesis will not make use of “pure”, mathematical curve-fitting formulae 
to represent buckling curves and design models of buckling behaviour. Approaches based on 
simplified mechanical derivations are preferred. Of these, the Ayrton-Perry approach was shown in 
this chapter to be the best-suited and best-founded one. It is therefore used in this thesis. 

Aside from the approaches detailed in this chapter, a variety of other analytical expressions for 
buckling curves were formulated in the past (see e.g. Osgood, 1946). The origin of some of these 
formulae can still be traced, while for others these origins have been lost over time and/or are 
obscure. Since these additional empirical formulae can essentially be attributed to one of the two 
types previously discussed (i.e. either “modified” mechanical formulae or “pure curve-fitting” 
formulae), an illustration of them would not add much to the topic discussed in this chapter. They 
are consequently also ignored in the rest of this work.  
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3  
Methodology 

3.1. Introduction and Scope 
This chapter gives a concise overview of the numerical modelling techniques, the fundamental 
second-order equations and the statistical tools used in this thesis.  

3.2. Numerical Modelling 
In this thesis, numerical simulations were used for a variety of purposes: 

i. Determining elastic, critical bifurcation loads in Linear Buckling Analyses (LBA). 
ii. Calculating the first-order plastic limit loads in Materially Non-linear Analyses (MNA) 

iii. Obtaining realistic numerical values of the ultimate buckling strength in Geometrically and 
Materially Non-linear Analyses with Imperfections (GMNIA) 

The modelling techniques sketched in Fig 3-1 were used for these three levels of analysis, using the 
software package ABAQUS (Dassault Systems, 2007). The boundary conditions of the member, as 
well as the chosen shapes of imperfection and the used finite element mesh, are shown in the figure. 
As was states in chapter 1, only single-span members with in-plane, out-of-plane and torsional 
restraints at the supports were considered (“end fork” conditions). 

Two different types of elements were used. In many cases treated in this thesis, four-node linear 
shell elements (S4) with six degrees of freedom per node and finite strain formulation were chosen 
to model the studied sections. The advantage of these shell element calculations is that they take 
into account the contribution of shear stresses in plasticity and allow for a more accurate definition 
of loads and boundary conditions in the case of beams and laterally restrained columns. The mesh 
density was generally left constant, with 16 elements per flange and web plate generally found to be 
a sufficient number. For very long (L/h>100) or deep (h/b>3.0) members, the number of nodes in 
longitudinal direction, respectively in the web, was doubled.  

Rigid coupling beams were used to connect the single plates with each other. At the supports, the 
stiffness terms of these elements were manipulated in order to obtain a stiff load introduction 
mechanism (allowing to define concentrated loads to simulate moments and axial loads) that 
nevertheless allowed the cross-section to twist and rotate freely.  
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In the case of hot-rolled I- & H-sections, the fillets were included in the calculations by adding 
equivalent beam elements that were placed in the centroids of the flanges. By defining the cross-
sections of these beam elements as quadratic hollow sections of variable depth and wall thickness, 
the total area and –more importantly- torsional stiffness of the modelled member could be calibrated 
to precisely match the tabulated values given by the production standards for rolled sections. The 
exact bending capacity was thereby also approximated with minimum error. 

 
Fig 3-1 Overview of the FEM modelling techniques and assumptions. 
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In calculations where the buckling mode consisted of flexural buckling in one defined plane, i.e. 
with no twist of the cross-section appearing in either the first- or second-order deformations, it was 
found to be justified –and of course far more economic- to use beam elements instead. Calculations 
using beam elements were also conveniently used whenever cross-sections were studied –mostly 
for purposes of illustration of some extreme effects- that actually would behave like class 3 or 4 
sections due to “premature”, local buckling. Beam elements are suited for studying the (theoretical) 
global buckling behaviour of such cases in the sense that they ignore all local effects. In the used 
FEM models using beam elements, linear Timoshenko elements (B31 or B31OS) were used. 17 
integration points per flange- or web plate were implemented. When required, the effects of the 
fillet radius were included by adding additional beam elements with equivalent hollow sections, as 
described above for the shell element models.  

As the name implies, imperfections are included in GMNIA calculations, whereby both geometric 
and structural imperfections (residual stresses) were considered:  

i. The initial geometric imperfections were assumed to follow the shape of the first eigenmode 
pertaining to the studied buckling case. Depending on the studied case, initial rotations, 
deflections, or both were thereby considered. The amplitude of these imperfections, as 
defined in Fig 3-1, was assumed to be equal to e 0=L/1000 at the compression flange. The 
assumptions pertaining to the underlying imperfections closely follow the procedure chosen 
by Beer and Schulz (1970) for the development of the European column buckling curves.  

ii. The residual stresses were assumed to vary linearly over the single cross-section 
components, following the provisions given by ECCS (1984). Accordingly, a distinction 
was made in the case of hot-rolled I- & H- sections between sections with a depth-to-width 
ratio of h/b≤1.2 and sections with h/b>1.2. The magnitude of residual stress thus depends 
on the type of rolled cross-section and is expressed as a fraction of the yield strength fy of 
mild steel S235.  

When not otherwise indicated, all calculations were conducted for steel grade S235, assuming a 
yield strength of fy=235 N/mm² irrespective of plate thickness. Strain hardening was included in the 
calculations, again following the long-established recommendations of ECCS.  

It is customary and good practice to verify numerical models before any systematic numerical study 
is undertaken. For this purpose, a convincing number of comparative calculations was carried out at 
the on-set of the studies presented in this thesis. Thereby, a series of benchmark tests were 
considered, of which only a minimal sample is shown –for illustrative purposes- in Fig 3-2. In very 
general terms, the employed numerical models were considered to be sound when the following 
conditions were met: 

i. The bifurcation loads for a variety of basic and combined load cases must lie within a 
narrow scatter band (+/- 3%) from fully theoretical solutions as reported in the literature. 
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Fig 3-2 Validation of the FEM models: comparison of elastic (bifurcation) buckling loads (a) 

and of GMNIA calculation results (b) with solutions from the literature. 

This is illustrated in Fig 3-2a, which features a normalized representation of lateral-torsional 
bifurcation loads under N+M for a hot-rolled IPE 240 section. For the basic case of constant 
values of both axial and bending terms N and M, analytical solutions of the bifurcation load 
can be found in the literature (e.g. Trahair, 1993). The numerical models used to study these 
–and all other- buckling phenomena could be shown to yield results with excellent 
agreement with the theoretical values. 

ii. The ultimate buckling loads as obtained from GMNIA calculations were compared with 
results published in the literature. A particularly relevant benchmark case for the purposes of 
this thesis was thereby represented by the (original) ECCS column buckling curves as they 
were developed and published by Beer & Schulz (1970). These curves were later slightly 
modified (ECCS 1978) to include an artificial “plateau” up to λ =0.2 that did not show in 
the numerical calculations, but was seen as practically justified, and then described by a 
formula (Maquoi & Rondal, 1978) that is still found in the Eurocode 3– EN 1993-1-1. 
Regardless of these later, minimal changes, the calculations by Beer & Schulz with fixed, 
statistically calibrated imperfection amplitudes and nominal geometric input data represent 
the theoretical/numerical foundation of the currently used column buckling curves and –by 
extension- most other current member buckling rules. It was therefore considered to be of 
utmost importance in this thesis to use numerical models that were able to reproduce the 
original curves by Beer & Schulz with high accuracy. The verification of this accuracy is 
illustrated in Fig 3-2, where the (new) GMNIA results are shown to practically overlap with 
the curves from 1970, with the error throughout the considered slenderness range being 
lower than 2%. 
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3.3. SecondOrder Beam Theory – Basic Equations 
In part II and III of this thesis, new design formulae are developed for the basic member-buckling 
cases of lateral-torsional, torsional, torsional-flexural and in-plane beam-column buckling. In all 
cases, the developed equations are fundamentally based on long-established and well-known 
second-order equations. The following paragraphs give a short summary of the used equations: 

All developed equations are fundamentally based on the following system of differential equations 
for in- and out-of-plane buckling of a prismatic member under uniform (constant) first order axial 
forces N and bending moments My and Mz, found in equal form in numerous international 
publications and taken here from Roik (1978), see also Kaim (2004): 

ii iiiv ii ii y 0z 0
iv ii ii ii ii

z 0 z 0
ii ii ii ii iv ii 2 ii ii

y 0 z 0 T p 0

M ( )0EI v N(v v ) 0
0 EI w N(w w ) M ( ) 0

0M (v v ) M (w w ) EI GI N i ( )ω

⎡ ⎤θ + θ⎡ ⎤ ⎡ ⎤⋅ + + ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥+ ⋅ + + + θ + θ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦+ + θ − θ − ⋅ θ + θ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
  (3.1) 

whereby v, w and θ are the out-of- and in-plane deflection and the twist, and the index “0” indicates 
the initial deformations distributed along the length of the member.  

This system of differential equations is commonly solved by half sine waves as functions for both 
the deformation variables and initial imperfection. In general terms, each variables u(x) can be 
written and differentiated as follows, with u  being the amplitude of the deformation component. 

 
2 4

ii iv
2 4

x x xu u sin        u u sin        u u sin
L L LL L

π⋅ π π⋅ π π⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ = ⋅ ⋅ = ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (3.2) 

The next step consists of entering the terms in (3.2) in (3.1) and introducing the following 
abbreviations (stemming from the critical bifurcation analysis of the perfect member): 
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 (3.3) 

With these abbreviations, the following linear system of equations is obtained, representing an 
equilibrium condition at mid-span of the studied member: 
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  (3.4) 



3. Methodology 

 

 

38 

The expressions in (3.4) are a stiffness relationship in matrix form, and can be expressed in the 
following way: 

 ( ) I
mat geom geom 0− ⋅ = + ⋅K K u F K u  (3.5) 

with  Kmat ....  (first-order) material stiffness matrix 

 Kgeom.... geometrical stiffness matrix 

u ......... vector containing the deformation terms 

u0........ vector for the initial imperfections 

FI........ load vector 

Simplified, case-specific versions of relationship (3.5) are inverted and solved for the vector u in 
the relevant chapters to obtain deformation amplification factors. These can be used to calculate 
second-order internal forces, whereby the following simplified relationships were used : 

 ii ii ii
z z y yM EI v           M EI w           M EIω ω= − ⋅ = − ⋅ = − ⋅ θ  (3.6) 

By once-again assuming half-sine waves for the course of the deformations along the member 
length, the following equations are obtained, valid at mid-span and thus referring to the amplitude 
of the deformation components: 

 
2 2 2

z z y y2 2 2M EI v          M EI w          M EI
L L Lω ω
π π π

= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ θ  (3.7) 

3.4. Reliability Assessment, Random Number Generation,  

Monte Carlo Simulations 

Reliability aspects have been included in this thesis both within the framework of the statistical 
evaluation of test results in order to assess the safety level of certain design rules in accordance with 
the Eurocode (2002) – EN 1990 Annex D, as well as in the context of Monte Carlo simulations to 
obtain “numerical test results” on the basis of randomly generated input parameters.  

3.4.1. Statistical evaluation of test data according to EN 1990 

EN 1990 – Annex D contains a standardized procedure –based on First Order Reliability Methods- 
that allows for the determination of appropriate values (in a semi-probabilistic design concept) of 
partial safety factors γM on the basis of test results. Since the formulae and coefficients of the 
methodology of EN 1990 are used at different locations in the body of this thesis, a brief summary 
of the procedure is given in the following. 

i. EN 1990 – Annex D recognizes the relevance of the accuracy of a design formulation and of 
its ability to react to variabilities of the input parameters that govern a design problem. The 
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design formulation therefore takes on an immediate, central part in the statistical evaluation 
procedure of EN 1990. In the notation of the code, the theoretical value of strength rt is 
expressed as a function of its single input parameters.  

 ( )tt rr g X=  (3.8) 

An example for the function grt  is given by a buckling formula that leads to a column 
strength rt=χ . A fy, with the vector of the basic variables X  containing such parameters as 
the cross-sectional geometry, the yield stress, the column length, etc. 

ii. The theoretical strength rt is compared with the experimental strength re in the methodology 
of Annex D. Thereby, the “actual” values of the basic parameters should be determined for 
each, single test result re,i. This information about the basic variables is used to calculate the 
specific strength prediction rti for a single test result, which can then be plotted as shown in 
Fig 3-3.  

 
Fig 3-3 Schematical representation of the interpretation of Vδ  as variance of the design model. 

For a number of n pairs (re,i;rt,i) plotted in the rt/re plane, a regression line through the origin 
can then be calculated through least-square approximation, using the following formula: 
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iii. The coefficient of variation Vδ of the error terms δi of the design function is calculated as 
follows: 

 2V exp(s ) 1δ Δ= −  (3.10) 
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iv. Up to now, the methodology has only accounted for the differences between a certain pool 
of test data results (usually in terms of strength) and the prediction of the same strength 
according to the design function. In the next step, the sensitivity of the design function itself 
to the variability of the basic input variables must be accounted for, by calculating the error 
propagation term Vrt. In the usual case of a complex, multi-variable design function, Vrt is 
calculated using the following formulae: 

 
2jr,t r,t2

r,t i2 2
i 1 imr,t m,t

VAR g (X) g1V
Xg (X ) r =

⎡ ⎤ ∂⎛ ⎞⎣ ⎦= = ⋅ ⋅σ⎜ ⎟∂⎝ ⎠
∑  (3.14) 

with r,t
i

i

g
X

∂
⋅σ

∂
: partial derivative with respect to the variable Xi times its standard deviation.  

v. The log-normal variation coefficients can now be calculated as follows: 

 ( )2
r,t r,tQ ln V 1= +  (3.15) 

 ( )2Q ln V 1δ δ= +  (3.16) 

 ( )2
rQ ln V 1= +  (3.17) 

with 2 2 2
r r,tV V Vδ= +  (3.18) 

vi. In the next step, the design value of the resistance rd is calculated: 

For n≤100 ( )t

2 2
2rt

md r d, d,n
Q Qr g X exp( k k 0.5 Q )
Q Q

δ
∞= ⋅ − ⋅ − ⋅ − ⋅  (3.19) 

For n>100 ( )t
2

md r d,r g X exp( k Q 0.5 Q )∞= ⋅ − ⋅ − ⋅  (3.20) 

with ( )tr mg X  representing the value of the design function evaluated with the mean values 
of all basic input variables, and kd,n and kd,∞ being the design fractile factors for n and 
infinite single test results.  

vii. Finally, the required partial safety factor γM
*, applicable for designs based on nominal input 

data, can be calculated as follows 

 tk
M

d

r*
r

γ =  (3.21) 

With ( )ttk r NOMr g X= , i.e. the design function evaluated with nominal values of the input 
parameters. This is the quantity usually determined by designers. 
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3.4.2. Random Numbers – Monte Carlo Simulation 

Full scale physical tests of the type that help determine the buckling resistance of steel members are 
expensive and time-consuming, and furthermore pose many difficulties with respect to load 
introduction, representation of desired boundary conditions, etc. (see Singer et al., 1998). In order to 
avoid these difficulties, simulated tests obtained from GMNIA calculations with random input 
variables (“Monte Carlo simulations”) are nowadays increasingly being used instead. This 
procedure is fully legitimate, provided that the real scatter bands of the single input parameters, as 
well as the way these parameters correlate, are known. Some very valuable studies (Alpsten, 1972; 
ECCS, 1978; Melcher, 2004) have already been published that deal with a systematic statistical 
analysis of the properties of steel products for structural steelwork. Nevertheless, no final consensus 
seems to have been reached at the present stage as to what set of structural parameters can be 
regarded as truly representative for the statistical properties of internationally manufactured steel 
products that are placed onto the European market.  

This thesis makes use of Monte Carlo simulations to answer some open questions regarding the 
safety of compression members, and thereby assumes the above-mentioned, published data-sets to 
be representative of current production. The numerical values for the single calculations were 
generated using the standard inverse transform method (see e.g. Glassermann, 2004; Ross, 2009) on 
the basis of cumulative distribution functions (cdf) F for the normal or log-normal distribution, 
depending on the modelled parameter. A single, randomly generated value X is therefore obtained 
from F and a randomly generated value U~Unif[0,1]: 

 [ ]1X F (U),  U~Unif 0,1−=  (3.22) 

An exemplary illustration of the results of such a generation are shown in Fig 3-4, where the 
frequency plot for randomly generated variable values for eccentricities is shown to follow the 
underlying distribution (in form of its probability density function pdf) very well. 

 
Fig 3-4 Exemplary representation of the generation of random variables on the basis of 

distribution functions. 
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Fig 3-5 Exemplary representation of two variables that (a) do not correlate at all, or (b) strongly 

correlate. 

A controversial issue for the application of the Monte Carlo method is the question of the 
correlation of the single parameters. This is graphically illustrated in Fig 3-5 for the example of the 
initial curvature and the residual stresses in a column, generated either without any correlation (a) or 
with strong correlation. It can be noticed that the maxima and minima of both variables lie close to 
each other, meaning that when plotted by themselves (like was done in Fig 3-4) would lead to about 
the same frequencies of occurrence for the whole sample. As a matter of fact, precisely the two 
parameters plotted in Fig 3-5 are sometimes suspected to be inversely correlated with each other, 
meaning that smaller residual stresses are systematically present whenever high curvatures are 
present (Ballio and Mazzolani, 1983 pp. 387). However, for the purposes of this thesis no 
systematic correlation was considered whenever Monte Carlo simulations were performed. 
Thereby, the distinction should be kept in mind between correlation of scatter and mean values of 
the distribution; indeed, for some specific I-sections the fact was taken into account that 
measurements (Alpsten, 1972) had shown the mean values of the web thickness to be larger than 
the nominal value while the mean value of the flange thickness was lower than the nominal one. 
This is, by itself, only proof of a systematic deviation from nominal values, and not for a 
correlation.  

Thus, the disregard of correlation is motivated by the following considerations: 
i. No statistical evaluations exist that would definitively prove such correlations. 

ii. More importantly, the statistical evaluation procedure integrated in the Eurocode – EN 1990 
and discussed in section 3.4.1 represents a First Order Reliability Method, based on the 
assumption that all variables are independent. Since the results of Monte Carlo simulations 
are intended to be evaluated using this procedure, any information stemming from the 
inclusion of the correlation would be “overlooked” by the evaluation itself. 

 

0.0
00

0

0.0
00

2

0.0
00

4

0.0
00

6

0.0
00

8

0.0
01

0

0.0
01

2

0.0
01

4

0

20

40

60

80

100

e0/L

σ r
es

 [N
/m

m
²]

0.0
00

0

0.0
00

2

0.0
00

4

0.0
00

6

0.0
00

8

0.0
01

0

0.0
01

2

0.0
01

4

0

20

40

60

80

100

e0/La) b)

σ r
es

 [N
/m

m
²]

no correlation strong correlation



 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART II 
Columns and Beams – Basic Load Cases 

 

  



 

 

 

 

 

 

  



PART II – Columns and Beams – Basic Load Cases 

 

45 

 

4  
Member Buckling Cases – Common Issues &  
Solution Concepts 

4.1. Scope 
This chapter discusses issues of member buckling design that are common to all basic member 
buckling cases. It begins with a brief illustration of the current treatment of different buckling cases 
in design practice. It continues with a discussion of current inconsistencies in member design 
practice for basic buckling cases. These are mainly identified in the classification of cross-sections 
according to their geometry, the definition of equivalent, geometrical imperfections, as well as in 
the level of reliability present over different slenderness ranges. Finally, an outline is given of the 
general concepts used to overcome some of these inconsistencies in the remainder of part II of this 
thesis.  

4.2. Current treatment of different buckling cases 
Different concepts and ideas can be identified in international design codes when it comes to the 
treatment of different buckling cases, such as flexural buckling versus lateral-torsional buckling 
versus torsional-flexural buckling, etc. Focusing the attention on past and current practice in Europe 
and North America, three such concepts are currently of most relevance to designers. They are 
summarized in Table 4-1 and discussed in the following paragraphs. 

i. Concept 1 is the traditional treatment given to different buckling cases in many Continental 
European design codes, such as DIN 18800-2 (1990) and its predecessor codes, as well as 
most current North American codes (e.g. AISC LRFD - 2004). In this concept, each single 
buckling case is described (in terms of a buckling curve) by a specific formula. A typical 
example is the different treatment of flexural column buckling and lateral-torsional buckling 
in DIN 18800-2. The former was described by the Ayrton-Perry formulation as it was 
calibrated by Rondal&Maquoi (1978) to the ECCS column buckling curves – see chapters 2 
and 5. The latter was described by a so-called “generalised” Merchant-Rankine formulation. 
For the sake of “consistency” of design rules, the Eurocode has mostly abandoned this 
concept. It is therefore not further discussed here. 

  



4. Member Buckling Cases – General Issues & Solution Concepts 

 

46 

Concept 1 
“n buckling cases – n formulae” 

Concept 2 
“n buckling cases – 1 formula  

- n calibrations” 

Concept 3 
“n buckling cases – 1 formula – 

1 imperfection coeff.” 

z,y 22
z,y

1
χ =

Φ + Φ − λ
 

( )

1/n

LT 2n
LT

1

1

⎛ ⎞
⎜ ⎟

χ = ⎜ ⎟
+ λ⎜ ⎟

⎝ ⎠  
TF .........χ =  

22

1
χ =

Φ + Φ −β⋅λ
 

( )21 1
2

Φ = ⋅ + η + β⋅λ
 

( )0η = α ⋅ λ − λ
 

y z LT Tλ = λ ,λ ,λ ,λ , ...  

y z LT Tα = α ,α ,α ,α , ...
 

β=1.0 .... 0.75 
z / y,0 0.2λ = ; LT,0 0.2 ... 0.4λ =  

22

1
χ =

Φ + Φ − λ
 ( )21 1

2
Φ = ⋅ + η + λ

 
( )0*η = α ⋅ λ − λ

 
y z LT Tλ = λ ,λ ,λ ,λ , ...  

⋅0,Sα* = α α  

zα = α    ; 0 0.2λ =  

Table 4-1 Concepts for the treatment of different buckling cases. 

ii. Concept 2 has been built into the existing version of the Eurocode. It defines the buckling 
reduction factor χ for all buckling cases by means of an Ayrton-Perry formula. The specific 
load-carrying behaviour of the single buckling cases is reflected, on the one hand, by the use 
of the specific slenderness of the buckling case. More importantly, a specific categorization 
is used (h/b ratios, types of section, ...), as well as a specific definition of the generalized 
imperfection coefficient η. For buckling cases other than the flexural buckling case, this 
concept is not based on a specific, mechanical derivation, but is simply an adaptation of the 
formula derived for flexural buckling. More details are given in the specific chapters 5, 6 
and 7. 

iii. Concept 3 is relatively new. The first steps in this direction were taken by Sedlacek & 
Müller (2006) and Stangenberg (2006), who proposed this concept as a generalized 
replacement for all current member buckling Eurocode rules, including combined load cases 
– in this sense, they consider it to be the “general” method for the treatment of member 
buckling phenomena. It again makes use of an Ayrton-Perry formulation. In this 
formulation, the imperfection factor η is modified by a new factor (called α0,S in this thesis) 
that accommodates the result of a more precise second-order elastic formulation for the 
specific buckling case. This concept therefore is based on a more accurate mechanical 
derivation, at least for basic cases. More details are given in the remaining chapters of part II 
of this thesis, particularly in chapter 6. What is important to note already is that, in order to 
be able to “generalize” its use, this method makes use of the Ayrton-Perry imperfection 
amplitude factor αz, i.e. the value applicable for out-of-plane flexural buckling, for all (out-
of-plane) member buckling cases.  
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This means that this concept is not calibrated to represent any more sophisticated 
experimental or numerical buckling curves, but is based on a more or less arbitrary 
assumption regarding the similitude between different buckling cases. Like concept 2, it also 
maintains the specific slenderness of the buckling case ( z, LT, Tλ λ λ ...) in the formulation of 
η. The implications of this latter fact are discussed in section 4.3.2 of this chapter. 

4.3. Current inconsistencies 
An increase of consistency of the single member buckling design rules is one major concern to the 
development of improved provisions. While the single points are discussed more thoroughly in the 
chapters specifically dedicated to the single buckling phenomena, the following three points are 
worth mentioning in this more general, introductory chapter. 

4.3.1. Crosssectional classification 

The first “inconsistency” in the current Eurocode design provisions worth mentioning is the 
different cross-sectional classification necessary for different member buckling rules. This is 
schematically summarized in Fig 4-1. Of the three most important member buckling cases treated in 
this thesis, two (flexural and torsional buckling) are classified using the same geometrical 
categorization limits h/b, while the LT buckling case uses different limits. 

 

Fig 4-1 Relationship between buckling curve and cross-sectional geometry according to the 
Eurocode for different member buckling cases. 

One might think that this is insignificant. From the point of view of practicality of application, it 
indeed is not much of an issue, especially today when design software is able to automatically take 
such different classification rules into consideration.  

However, these differences in classification are an (indirect) indicator of the fact that the used 
buckling curves and corresponding formulae do not reflect all specific effects of a buckling 
phenomenon consistently for all buckling cases. The reasoning behind this statement is the 
following: 
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i. The current Eurocode buckling rules for flexural and LT buckling are based on GMNIA 
calculations carried out for model columns or beams with certain, standardized assumptions 
regarding cross-sectional geometry and geometrical or structural imperfections. The ones 
used for the development of rules for I- & H-sections are summarized in Fig 4-2. For 
torsional- and torsional-flexural buckling no specific calculations are known to underlie the 
present Eurocode rules, see chapter 7; however, it is only reasonable to assume that the same 
model beam as for flexural and LT buckling would be used for reasons of consistency.  

 

Fig 4-2 Underlying assumptions for GMNIA calculations as basis of Eurocode member buckling 
rules. 

ii. As is shown in chapter 5, in the case of flexural buckling there is a direct link between the 
imperfection assumptions made for these model columns and the resulting buckling curve. 
The underlying assumptions are thus reflected in the classification of cross-sections with 
regard to buckling curves. For example, higher residual stresses were assumed in the 
GMNIA calculations for all hot-rolled I- & H-sections with h/b≤1.2 than for deeper sections. 
Accordingly, all these sections require the use of a lower buckling curve in design. 

iii. In the GMNIA calculations that led to the classification of cross-sections with regard to 
lateral-torsional buckling, the same imperfection assumptions were made as in the column 
buckling case, i.e. for example higher residual stresses for hot-rolled sections with h/b≤1.2. 
The current classification does, however, not show this underlying assumption, as the 
“jump” of category occurs at h/b=2.0, and not 1.2. This indicates that the used design 
formula is not fully reflective of the underlying mechanical assumptions. 

4.3.2. Lengthdependency of geometric imperfections  

Both the concept 2 and 3 of Table 4-1 make use of Ayrton-Perry formulations for the description of 
member buckling curves. As has been shown in chapter 2, and will be further illustrated in chapters 
5, 6 and 7, the Ayrton-Perry calibration consists of replacing the term 0e W / A⋅  -resulting from a 
second-order first-yield limit state equation- by the “generalized imperfection” η.  

This simple relationship can of course be inverted to obtain 0e  as a function of η: 
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In the Eurocode 3 and the proposals currently being brought forward to amend it, the generalized 
imperfection η is always replaced by a relationship of the following type: 

 ( )S 0η = α ⋅ λ − λ  (4.2) 

Where α is the generalized imperfection amplitude, 0λ  is a plateau value, and (importantly) Sλ  is 
the dimensionless slenderness of the specific buckling case; that is, zλ  in the case of out-of-plane 
flexural buckling, LTλ  in the case of lateral-torsional buckling, TFλ  if we are dealing with 
torsional-flexural buckling, and so on. 

It is interesting to note that this assumption regarding the use of Sλ  in expression (4.2) has some 
implications on the assumed length-dependency of the underlying imperfection amplitude 0e , 
evaluated by using expression (4.1). In Fig 4-3, this is illustrated for an IPE 500 hot-rolled section 
and for the three basic buckling cases of weak-axis flexural buckling ( zλ ), lateral-torsional 
buckling ( LTλ ) and torsional buckling ( Tλ ). Expression (4.2) was evaluated for all cases with a 
value of α=0.34, as this is the value specified in the Eurocode for all three buckling modes for this 
specific section.  

 

Fig 4-3 Equivalent geometrical imperfections for an IPE 500 section, plotted as L/ 0e  - weak-axis 
flexural buckling (a); lateral-torsional buckling (b); torsional buckling (c) 

The figure shows that the equivalent, second order imperfection amplitude 0e  resulting from these 
calculations is quite different from case to case, not just in absolute terms, but (more importantly 
here) in relative terms to the length of the member: 

i. In the case of weak-axis flexural buckling (Fig 4-3a), zλ  is proportional to the length of the 
member. Therefore, also η and 0e  increase linearly with length. Due to the presence of the 
plateau value 0λ , the imperfection 0e  has a non-zero value only above the length 
corresponding to the value of 0λ  (equal to 0.2 in this example); accordingly, the fraction  
L/ 0e  is not constant, but hyperbolic, approaching infinity at L=0, and the constant value that 
would result if 0λ  were zero for L=∞.  
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ii. In the case of lateral-torsional buckling (Fig 4-3b) and, even more so, in the case of torsional 
buckling (Fig 4-3c), the dimensionless slenderness ratios LTλ  and Tλ  do not increase 
linearly with the length of the member, but under-proportionally. This leads to the fact that 
the ratio L/ 0e  increases with length, at least after the “singularity” caused by the 
introduction of 0λ =0.2 is less influential, or in the case of 0λ =0.0. 

In summary, it can be said that when expression (4.2) is used to define the “generalized 
imperfection” as the calibration factor in the Ayrton-Perry formulation, this imperfection only 
increases linearly with length if zλ  (or yλ ) is used for Sλ . In all other cases, it has a non-linear 
dependency. This obviously represents a form of inconsistency in the single formulations. The 
implications of this inconsistency on the accuracy of this calibration are discussed in the specific 
chapters 5 to 7. It is shown there that the length-dependency is significant to the quality of the 
calibration, and must be seen in the context of the imperfections used in GMNIA calculations, as 
well as of real shape deviations.  

4.3.3. Reliability issues 

The procedures currently used to assess the reliability level of a certain design rule are discussed in 
chapter 3. The diagrams in Fig 4-4 serve the purpose of illustrating the current situation of the 
reliability assessment of Eurocode member buckling rules, as it is presented in the literature. Fig 4-
4a and b show the results of the evaluation of the ECCS column buckling data for curves b and c, 
respectively, in terms of the partial safety factor γM*. This factor is directly related to the chosen 
design buckling curve, and expresses the distance between the “design point” that has the desired 
reliability level and the nominal curve the designer uses to determine a member’s “characteristic” 
buckling strength.  

The two diagrams a and b contain single “points” and indicate the result of the evaluation for the 
single tested (nominal) slenderness ratios (CEC, 1988). They show that, when using the reliability 
assessment procedure in its (slightly, but not significantly different) 1988 form, values of γM* of 
1.10-1.14 were determined for the tests pertaining to buckling curve b, and values of 1.02-1.07 for 
the tests belonging to buckling curve c.  

Fig 4-4c and d show the results of the reliability assessment carried out by Müller (2003) on the 
basis of international test results for weak-axis flexural buckling (lines b and c together) and for LT-
buckling of hot-rolled sections, respectively. These evaluations represent the statistical backing of 
the current Eurocode design rules for these buckling cases. They show that values ranging from 
1.08 to 1.13 can be calculated for the pool of available test data in the case of flexural buckling, and 
values from 0.97 to 1.11 in the case of LT buckling. 
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Fig 4-4 Partial safety factors γM* as indicated in the literature for different buckling cases; weak-
axis flexural buckling, line b (a); line c (b); both lines (c); lateral-torsional buckling of hot-
rolled beams (d) 

All diagrams also feature two horizontal lines representing the “recommended” values of the 
codified partial safety factor γM1 according to the ENV version of the Eurocode 3 (1992) and the 
current provision (2006). The values are 1.10 and 1.00, respectively. While the ENV value of 1.10 
is, in an average sense, backed by Fig 4-4, the current EC3 value cannot be justified by the 
reliability provisions of the Eurocode alone, at least not formally. While no published document is 
known that fully justifies the adoption of 1.00 for all cases, some sources (e.g. Schleich et alt, 2002; 
Müller, 2003) state that the weighting factor αR=0.8, which defines the “distance” in standard 
deviations between the mean, expectation value of the buckling strength and the design value (see 
chapter 3) on the resistance side, is actually “too high for steel structures”, and that the “span for 
reduction of safety factors lies at about 10%”.  

In the paper by Schleich et al., this is demonstrated by calculating the actual value of αR for three 
model single-storey frames under dead load, snow and wind, and under the assumption of certain 
probability densities (mean values, scatter) of both load- and resistance-sided quantities. Due to the 
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low scatter of resistance quantities in steel structures when compared to the uncertainties on the side 
of atmospheric loads, in that paper the appropriate value of αR is calculated to be equal to 0.3, while 
the load-sided value is αE=-1.0. Translated back into partial safety factors γM applied to nominal 
strength values, values “below 1.00” could be justified in this particular case. 

Of course, it is difficult to argue for or against the adoption of γM=1.0 for all member buckling cases 
based on this single calculation. Generally speaking, the question of the justification of the current 
Eurocode 3 value of γM1 is (understandably) highly controversial and can only be further discussed 
at a code committee level; it is therefore not further considered in this work. For the purposes of this 
dissertation, it is thus more important to assert the following: 

i.  If the reliability assessment procedure of the Eurocode (EN 1990 – Annex D) is left 
“untouched”, the current member stability rules would actually require non-constant levels 
of partial safety factors γM in order to maintain a constant reliability level over all 
slenderness ranges.  

ii. Due to obvious reasons of practicality in design, it is generally desired to keep the partial 
safety factor at a constant value for all slenderness ratios. However, one must be aware that 
doing so with the current design rules means that the reliability level of buckling design 
checks varies with slenderness. 

iii. As was mentioned in section 4.3.1, all current member buckling rules are based on 
calibrations of (Ayrton-Perry) buckling formulae to GMNIA calculations with deterministic, 
fixed imperfection amplitudes and geometric assumptions. The non-constant reliability 
values over the different slenderness ranges are a direct result of this assumption, as is 
illustrated with much more detail in the following chapter 5. This fact can either be accepted 
as such, or seen as undesirable. If the latter is the case, new, more sophisticated and 
consistent concepts must be developed and implemented for the determination of the design 
buckling strength values, to which then buckling formulae can be calibrated.  

4.4. Concepts for increasing consistency 
The following section describes the concepts developed in this thesis with the purpose of reducing 
the inconsistencies outlined in the previous section. This is done in very general terms, with more 
in-depth procedural aspects left for the specific chapters 5 to 7. This section therefore serves the 
purpose of presenting the basic ideas as such, and will be referred to in the specific chapters with 
this intent. 

4.4.1. Specific derivations and calibrations 

In section 4.2, the three most common concepts for the treatment of different member buckling 
cases in design codes were presented. Of these, concept 2 and 3 were said to be the two currently 
employed or studied concepts. 
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In order to overcome the inconsistencies pointed out in sections 4.3.1 and 4.3.2, i.e. the lack of 
consistency between cross-sectional classification and underlying (GMNIA) imperfection 
assumptions, as well the length-dependency of the underlying imperfections, this thesis advocates 
the use of an intermediate position between concepts 2 and 3. This means that it aims at developing 
formulations for the most relevant member buckling cases that are both specifically calibrated to the 
buckling case at hand (concept 2), and mechanically better backed (concept 3). 

The result of these efforts is an Ayrton-Perry formulation for different member buckling rules of the 
following form: 

 S 22
SS S

1 1.0χ = ≤
Φ + Φ − λ

 (4.3) 

and ( ) 2
z 0,S SS 0,S S

1 1
2

⎡ ⎤Φ = + α ⋅α ⋅ λ − λ + λ⎢ ⎥⎣ ⎦
 (4.4) 

with  

Sλ ..... dimensionless slenderness for the studied buckling case 

0,Sα ... specific “load-carrying behaviour” term stemming from a specific second-order Ayrton-
Perry derivation 

Sα  .... generalized imperfection amplitude factor, calibrated for the specific buckling case as best-
fit values to GMNIA buckling curves with specified imperfections. 

zλ  normalized slenderness for (weak-axis) flexural buckling, used here to account for the linear 
length-dependency of the geometric imperfection 0e . 

0,Sλ .... plateau value shown to be justifiable for the specific buckling case 

The following Table 4-2 schematically illustrates the pursued goal of these development efforts. It 
is a table that consistently relates a certain type cross-section and a certain set of assumptions 
regarding its geometry and imperfections (nominal cross-sectional values, imperfection amplitudes, 
etc.) to a group of coefficients, which accurately describe the strength of this member when used in 
expression (4.3) with (4.4). 

The final result of these efforts is presented in chapter 8, while the single steps taken to get there are 
shown in the specific chapters 5 to 7. The main advantages of such a concept are the following: 

i. By aiming at an accurate calibration of the factors α and 0,Sλ  to more sophisticated GMNIA 
buckling curves, the highest possible correspondence between design rule and the realistic 
buckling behaviour is obtained. This was already the goal of “concept 2” rules, like the ones 
currently found in the Eurocode. It is therefore sensible to maintain this goal and to improve 
its outcome, if possible. The “concept 3” formulations currently being brought forward to 
some extent renounce this aspect, causing inaccuracies in the description of the physical 
phenomena that can be significant, as is pointed out in chapter 6. 
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CROSS-SECTION IMPERFECTIONS BUCKLING CASE 0,Sα  α S 0,Sλ  

 

FBz 1 0.34 0.2 

LT 

2
LT

z

⎛ ⎞λ
⎜ ⎟

λ⎝ ⎠
 ... ... 

... ... ... ... 

.... .... .... ... ... ... 

Table 4-2 Schematic illustration of the desired outcome of newly calibrated member buckling 
rules. 

 

ii. Being able to directly relate buckling curves to a certain set of assumptions regarding cross-
sectional geometry and underlying imperfections allows the designer to better assess the 
sensitivity of a design to changes of these parameters. The imperfection assumptions made 
for the GMNIA calculations underlying current buckling curves represent (more or less 
accurately) real effects in members. That is to say that, for example, stockier, hot-rolled 
sections were shown to indeed have higher residual stresses than sections with higher depth-
to-width ratio (Schulz, 1968). In the design concept sketched in Table 4-2, the designer 
would “feel” this for all member buckling checks. 

iii. The inclusion of a factor α0,S stemming from a specific, second-order derivation, has the 
advantage of better representing the physical behaviour of a given buckling phenomenon, 
and mostly so in terms of stiffness effects. As will be shown in the specific chapters, a 
derivation of a buckling case-specific factor of α0,S is possible when the imperfections are 
assumed to be affine to the buckling eigenmode.  

iv. By introducing the generalized imperfection coefficient η as a function of zλ  for all 
buckling cases, the assumption made in the GMNIA calculations of length-proportionality 
of geometrical imperfections is much better –and consistently- reflected in the buckling 
curves. In the specific chapters 5 to 7, this is also shown to yield more accurate results than 
the current use of Sλ  in these expressions. 
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4.4.2. “Constant reliability curves”  

In section 4.3.3, it has been discussed that the current Eurocode member buckling design rules don’t 
actually have a constant reliability level along all slenderness ranges, since they are based on 
GMNIA calculations that refer to “model beams” with specified, deterministic geometrical input 
data and imperfection assumptions.  

If this situation is deemed to be unsatisfactory, the following ideas can be used to substitute the 
deterministic GMNIA buckling curves by probabilistic GMNIA curves. Once these are obtained 
(for a specified reliability level), the calibration of buckling curves can be carried out accordingly. 

The first idea consists of carrying out a sufficient number of physical or numerical (Monte Carlo) 
tests, which can then be statistically evaluated –with regard to a pre-established buckling formula- 
according to Annex D. Fig 4-5 exemplifies the results of such an analysis for an IPE 160 section 
and weak axis flexural buckling, evaluated for Monte Carlo tests and for buckling curve b of EC3. 
This same calculation will be discussed with more detail in chapter 5, so no details regarding the 
assumptions for the random variables are given at this point.  

 

Fig 4-5 “Constant reliability curves” derived from a Monte Carlo simulation of the weak-axis 
flexural buckling strength of an IPE 160 section. 

The figure shows the results of the single Monte Carlo tests in a form already used for the 
development of the ECCS column buckling curves, i.e. it plots mean values and values 2 standard 
deviations away from the mean, assuming a standard normal distribution. 

The results of the “Annex D” reliability assessment are also plotted in Fig 4-5. The design point rd 
at a distance of kd,∞ = 3.04 log-normal overall standard deviations from the mean, and the upper 
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bound value rub at -3.04 log-normal standard deviations, delimit the shaded area. More details about 
this calculation are also found in chapter 5. 

The lower line, representing rd, can be interpreted as an estimator for the buckling curve that, if 
used in design, would require a constant value of γM1=1.0 in order to have a constant reliability level 
over all slenderness ranges. One can see from the figure that the Eurocode column buckling curve b 
applicable in this case lies above the line rd, which is compatible with the values γM* described in 
section 4.3.3. The additional uncertainties associated with this line stem from the (unknown, in this 
case) accuracy of the GMNIA calculations themselves, when compared to tests, and of course from 
the assumed variability of the independent random basis variables themselves.  

The above method is very laborious. It requires random number generation and a lot of numerical 
“tests” –for every slenderness range- in order to make the evaluation representative. In order to be 
at least somehow practically applicable, it also requires a pre-established buckling curve 
formulation to exist, since the evaluation of rd is then carried out for this formulation. For the 
purpose at hand, i.e. establishing a better, more “probabilistic” GMNIA buckling curve to be used 
as basis of a calibration of a buckling formula, this method therefore seems to be unpractical.   

A different approach to the problem can be found by applying the Eurocode EN 1990 Annex D 
(2002) provisions to the letter, but for the GMNIA model itself. This approach is essentially a First 
Order Reliability Method based on GMNIA calculations, and has the following reasoning: 

i. The Annex D procedure is a “First Order Reliability Method” (FORM) used to determine 
the location of the design resistance value rd for a so-called “resistance function”. Normally, 
one thinks of a formulaic expression (e.g. for a buckling curve) of a component’s resistance 
as being such a resistance function. 

ii. Due to the complexity of the phenomenon, in the case of member buckling such formulaic 
expressions for resistance functions usually must be developed by means of calibration to 
more sophisticated GMNIA curves in order to obtain high accuracy of representation. 

 
Fig 4-6 Schematic representation of the scatter of GMNIA calculations compared to physical 

tests 

iii. It therefore makes sense to regard the GMNIA calculations as some sort of “first step 
resistance functions”, for which the location of the design resistance value rd,GMNIA could be 
determined using the procedures described in EN 1990. 
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iv. These values of rd,GMNIA, which inherently represent a constant reliability level, can then be 
used as the basis of calibration of a formulaic expression of buckling curves to be used by 
designers. If the calibration is accurate and reflects the main parameters well enough, the 
demand for constant reliability will approximately be satisfied by these formulations as well.  

In order to obtain the values of rd,GMNIA, the following steps can therefore be envisaged: 

1) Collect data for the main input parameters (“basis variables”) of the studied problem. 
These will include the statistical parameters (mean value, standard deviation) of the material 
(fy, fu) and geometrical properties, as well as corresponding information regarding 
imperfections. 

2) If full-scale physical tests are available beforehand, calibrate the GMNIA model in order to 
obtain as-small-as-possible divergences between tests and numerical calculation results 
(carried out with the measured input data from the test), see Fig 4-6.  

3) The unavoidable, remaining scatter can then be accounted for by calculating Vδ,GMNIA: 

 2
,GMNIAV exp(s ) 1δ Δ= −  (4.5) 

with ( )
n

2
i

i 1

1s
n 1Δ

=
= Δ − Δ

−
∑  (4.6) 

 
n

i
i 1

1
n =

Δ = Δ∑  (4.7) 

 e,i
i

GMNIA,i

r
ln

b r
⎛ ⎞

Δ = ⎜ ⎟⎜ ⎟⋅⎝ ⎠
 (4.8) 

 
( )

n

e,i GMNIA,i
i 1

n 2
GMNIA,i

i 1

r r
b

r

=

=

⋅
=

∑

∑
 (4.9) 

4) Calculate the adjusted, mean value buckling curve rm,GMNIA resulting from a GMNIA 
calculation carried out for the mean values of the statistical input data. In consistence with 
the EN 1990 Annex D terminology, we can define that r,GMNIAg (X)  represents the result of 
a GMNIA calculation for a row of j different, arbitrary values X of the basis variables. If 

mX  is the row of j variables where every value corresponds to its mean, we can write: 

 mm,GMNIA r,GMNIAr b g (X )= ⋅  (4.10) 

This expression includes the linear regression correction factor b, which will be very close to 
1.00 if appropriate GMNIA models are used. 
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5) The key step of the FORM analysis: calculate the coefficient of variation Vr,GMNIA of the 
GMNIA resistance function: 

 
2jr,GMNIA r,GMNIA2

r,GMNIA i2 2
i 1 imr,GMNIA m,GMNIA

VAR g (X) g1V
Xg (X ) r =

⎡ ⎤ ∂⎛ ⎞⎣ ⎦= = ⋅ ⋅σ⎜ ⎟∂⎝ ⎠
∑  (4.11) 

Equation (3.14) contains partial derivatives of the GMNIA resistance function. Obviously, 
these cannot be explicitly calculated, but must be calculated numerically, i.e. by carrying out 
(at least) one additional GMNIA calculation per variable. 

 mr,GMNIA 1m im i jm r,GMNIAr,GMNIA

i i

g (X ,...,X X ,...,X ) g (X )g
X X

+ Δ −∂
≈

∂ Δ
 (4.12) 

It should be noted that it is proposed to carry out these partial derivatives at mr,GMNIAg (X ) , 
representing the result of a GMNIA calculation with mean values of the basis variables. This 
somewhat differs from the EN 1990 Annex D procedure, which carries out the partial 
derivation at the single test data points, thus obtaining (slightly) different values of Vrt and 
of the corresponding design value rd for every single test. Since, however, the design points 
rd are then averaged for a group of data (e.g. all tests of the same nominal slenderness λ ) to 
obtain values γM*, the differences between (4.12) and the Annex D procedure are minimal.  

Examples of numerical derivatives, and a discussion of the difficulties and necessary 
precautions associated with their calculation, will be given later on in this thesis. 

6) Calculate the lognormal variation coefficients Qr,GMNIA, Qδ,GMNIA and Q: 

 ( )2
r,GMNIA r,GMNIAQ ln V 1= +  (4.13) 

 ( )2
,GMNIA ,GMNIAQ ln V 1δ δ= +  (4.14) 

 ( )2
rQ ln V 1= +  (4.15) 

with 2 2 2
r r,GMNIA ,GMNIAV V Vδ= +  (4.16) 

7) Calculate the design point rd,GMNIA. If Vδ,GMNIA is calculated on the basis of many tests 
(n>100) or, more plausibly, if Vδ,GMNIA is thought to be small enough for the realistic 
GMNIA calculations, rd can be calculated as follows: 

 2
d,GMNIA m,GMNIA d,r r exp( k Q 0.5 Q )∞= ⋅ − ⋅ − ⋅  (4.17) 

The result of such a series of calculations is shown in Fig 4-7, again for the example of weak-axis 
flexural buckling of an IPE 160 section. For this calculation, the possible inaccuracies of the 
GMNIA model itself were ignored, meaning that Vδ was assumed to be zero, and b to be 1.0. These 
assumptions don’t alter the general concept presented here. The assumptions regarding the basis 
variables (scatter band of material strength, geometry, imperfections) are discussed in chapter 5. 
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Fig 4-7 “Constant reliability curves” derived from numerical (GMNIA) calculations for weak-
axis flexural buckling of an IPE 160 section. 

The figure also shows the Eurocode buckling curve b, which would apply for this section and 
buckling case. Again, the non-constant values of γM* discussed in section 4.3.3 are reflected in this 
figure. The line for rd,GMNIA shows where the Eurocode buckling curve should lie in order to justify 
the use of γM1=1.00 based on EN 1990 Annex D. If one were interested in knowing where the 
Eurocode curve should lie to obtain a constant value of γM1 of, for example, 1.05, one would just 
have to multiply all values of rd,GMNIA by this factor.  

When compared to Fig 4-5, the figure in this page shows that the result in terms of the location of 
the constant reliability, design value buckling curve rd is practically the same. Of course, this had to 
be the case due to the fact that Fig 4-5 is based on Monte Carlo simulations that made use of the 
same basis variables, with the same scatter band, as in the calculations for Fig 4-7. The lines for rd 
in both figures, after all, are numerical buckling curves based on certain assumptions regarding the 
parameter variability. Nevertheless, the GMNIA constant reliability curves presented in this section 
can be considered to be much more practical than the Monte Carlo approach: 

i. Contrary to the Monte Carlo concept, this method relies solely on GMNIA calculations, 
making it a viable tool for the development of new buckling rules. 

ii. Instead of simulating dozens of tests with random input variables at each studied nominal 
slenderness value, the GMNIA constant reliability curves make do with j+1 calculations per 
value of λ nom, with j being the number of considered basis variables.  

iii. For the purposes of this concept, it is often possible to keep this number as low as possible, 
by identifying the truly important basis variables through a preliminary, deterministic 
parametric study of the sensibility of the buckling strength for changes of the parameters 
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within the scatter band. In the above example, these parameters were the yield strength fy, 
the flange thickness tf, the amplitude of the out-of-straightness 0e and of the load 
eccentricity e, as well as the level of the residual stresses σres.  

iv. While the method based on the Monte Carlo simulation requires a certain number of “tests” 
to become reproducible in terms of values rd within certain tolerance limits, the presented 
concept based on partial derivatives is fully reproducible for any given GMNIA model and 
assumed basis variable variability. 

In comparison to the current method, which is based on semi-deterministic GMNIA calculations on 
“model beams or columns” with specified geometry and imperfection, the probabilistic GMNIA 
constant amplitude concept is of course still more laborious. In terms of calculation time, it requires 
j+1 calculations per slenderness range instead of just 1. The significance of this extra computing 
time is debateable.  

Additionally, the developers of buckling rules are faced with new uncertainties in the proposed 
probabilistic method, since they must gather information regarding basis variables and their scatter 
band. However, this can’t be regarded as a true drawback of the proposed method compared to the 
current one based on “model beams”; the assumptions for the input data to be used in the “model 
beam” calculations were calibrated to tests (Beer & Schulz, 1970) and therefore also indirectly 
based on probabilistic considerations. Thus, the developers of design rules that make use of “model 
beams” are implicitly making use of these findings. The new concept would not fundamentally 
change this if, for example, parameters for input data variability were agreed upon on a code 
committee level, as was the case for the “model beam” assumptions. 

It is believed that, in the future, such “constant reliability” curves could play an important role in 
the development of buckling curves. In this thesis, they will not be used as the main concept for the 
determination of GMNIA buckling curves due to a current lack of consolidated, widely recognized, 
“state-of-the-art” data pool regarding the variability of material, geometrical and imperfection 
quantities. They will however be used for comparison reasons, coupled with some plausible 
assumptions regarding these quantities. 
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5  
Flexural Column Buckling – the Benchmark Case 

5.1. Introduction and Scope 
This chapter is dedicated to the “benchmark” case for the development of all member buckling 
rules: the flexural column buckling case. It discusses the development of current European column 
buckling rules, with the aim of identifying a coherent development procedure for other buckling 
cases, as well as pointing out the origin of some inconsistencies currently present in design rules. 

Additionally, the chapter addresses some open points that have recently arisen in the context of the 
introduction of a new fabrication standard for constructional steelwork – EN 1090-2 (2009). This 
standard specifies new, relaxed fabrication and erection tolerances for shape deviations (out-of-
straightness) of columns and other compression members. The as-yet unanswered question of 
whether or not this is “covered” by current design rules is therefore discussed here.  

Finally, the chapter addresses the possibility of increasing the homogeneity of the reliability level 
for all slenderness ranges by introducing constant reliability curves as presented in chapter 4.  

5.2. The European Column Buckling Curves  –   

Historical Development from Today’s Perspective 

The development of the so-called European column buckling curves was carried out under the 
auspices of the European Convention for Constructional Steelwork (ECCS) and by its Technical 
Committee 8 (TC8), roughly between the mid-1960s and 1978. It comprised a very extensive 
experimental program, which resulted in the (to date) most complete set of full-scale column 
buckling test data available internationally, as well as a comprehensive theoretical/numerical study. 

The motivation for such an extensive study was (Sfintesco, 1970): 
i. to provide a commonly shared and accepted theoretical and experimental background for a 

harmonization of the single national column design rules in Europe, and 
ii. to homogenize, as far as possible, the level of safety/reliability throughout all ranges of 

slenderness of typical steel columns. 
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Finally, this effort led to the development of five different column buckling curves, termed a0, a, b, 
c, d and representing different cross-sectional geometries and their distinct behaviour in buckling. 
These curves are still found in the Eurocode today. 

In this section, the development of the ECCS column buckling curves is subdivided in logically 
pertinent –but not necessarily chronological- steps, and discussed accordingly. In order to put this 
discussion in a contemporary context, the single steps are complemented by new, specific numerical 
(GMNIA) calculations whenever this was thought to be of benefit to the reader.  

5.2.1. Step 1: Parameter Identification  

The main theoretical background to the development of the ECCS column buckling curves was 
provided by Beer & Schulz (1969, 1970; Schulz 1968), who carried out extensive numerical studies 
based on non-linear, large deformation analyses of imperfect columns.  

One early motivation behind these calculations was to provide a means of identification of the most 
relevant parameters governing the buckling phenomenon. This was meant as a supportive activity to 
the experimental program (see “Step 2”), where these important parameters had to be measured. 
These parameters are only discussed briefly here, since a more thorough description (with similar 
conclusions) is given in chapter 6 for the case of LT buckling. 

In broad terms, the identified parameters can be split-up in two sub-groups: 
i. The first group consists of parameters that have a significant impact in absolute terms, but 

not in terms of normalized slenderness λ  and buckling reduction factors χ. For example, 
this is the case for the yield stress (Fig 5-1) and the geometrical shape-deviations of the 
cross-section (flange thickness, depth, width, etc., see Fig 5-2).  

 
Fig 5-1 GMNIA calculation, HEB400 section, FBz-z: influence of the yield stress on buckling 

strength in normalized (a) and absolute terms plotted as multiples of Nb/(A.fy,S235) (b). 
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Fig 5-2 GMNIA calculation, HEB400 section, FBz-z: influence of the cross-sectional shape 

deviations on buckling strength in normalized (a) and absolute terms (b); max, min: maximum 
and minimum cross-sectional values still in compliance with tolerance limits of EN 10034 
(1993). 

The yield stress can be shown to be almost entirely insignificant in normalized 
representation if the residual stresses are assumed to be proportional to it. In absolute terms, 
its influence strongly diminishes with increasing slenderness. 
The shape deviations’ influence is quite significant in absolute terms, actually increasing 
with slenderness. In terms of normalized factors related to the actual cross-sectional 
capacity, however, their influence is practically zero. More details on the influence of both 
parameters on buckling strength is given in chapter 6 in the context of LT buckling. 
 

ii. The second group of parameters is mainly composed of the geometrical imperfections of the 
member - as opposed to the ones of the cross-section-, as well as the residual stresses 
(structural imperfections). The impact of these parameters is illustrated for the case of weak-
axis flexural buckling of an HEB400 section in Fig 5-3.  
These GMNIA calculations show that the three imperfections (out-of-straightness, end 
eccentricity of the load and residual stresses) all have an influence on the buckling strength 
that reaches its maximum (in relative terms) at intermediate values of the normalized 
slenderness λ, between 0.8 and 1.2. In the case of the residual stresses, both amplitude and 
distribution of these locked-in stresses can be shown to be influential. 
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Fig 5-3 GMNIA calculation, HEB400 section, FBz-z: influence of the initial out-of-straightness 0e  

(a), the load eccentricity (b) and the residual stress amplitude and distribution (c) 

5.2.2. Step 2: Experimental Program  

The experimental program conducted in the context of the development of the ECCS column 
buckling curves comprised some 1067 full-scale buckling tests and a correspondingly large number 
of complementary tests to establish the statistical distributions of the main structural parameters 
presented in Step 1.  

The full-scale buckling tests are described in their scope and statistical exploitation by Sfintesco 
(1970) and Jaquet (1970), as well as Sfintesco & Carpena (1977). Their main findings and use in 
the context of the finalization of the ECCS buckling curves are discussed under Step 3. In this sub-
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section, the complementary tests are of more interest. The significant findings for the single 
parameters are discussed in the following. 

Yield Stress 

All ECCS full-scale buckling test series were conducted on mild steel comparable to the modern 
S235 steel. In order to check the variability of the strength parameters of the material, the tests were 
accompanied by stub-column and tensile coupon tests. The results for the IPE 160 series of tests, 
which comprised sections from four different European countries and from several different 
production lots, are taken from the paper of Strating & Vos (1972) and plotted in Fig 5-4. The 
differences in mean value m and standard deviation s between stub column and coupon tests should 
be noticed. The values stemming from coupon tests are quite comparable with more recent studies 
found in the literature (Petersen, 1993; Byfield & Nethercot, 1997; ERP, 2003, Melcher et al., 2004) 
both in terms of mean values and (importantly) scatter. The scatter of the stub-column tests also 
seems to be in agreement with other sources (Fukumoto, 1983).  

 
Fig 5-4 Yield stress measurements for the tested IPE 160 sections; stub-column (a) and tensile 

coupon tests (b). 

Crosssectional Geometry 

Hot-rolled steel sections, as well as plates and other steelwork manufacturing products, display 
variations in cross-sectional shape (area, thickness, etc.), ideally with a scatter band that lies within 
specified tolerance limits. In the case of the sections tested over the course of the ECCS program, 
these variations were primarily checked and recorded in an indirect and “overall” manner by 
determining the mean area of the sections from a specimens volume, determined by water 
immersion scales. The results of these measurements for the series of tests on IPE 160 sections is 
plotted in Fig 5-5. The data was again taken from Strating & Vos (1972). Interestingly, a much 
more recent study (Melcher, 2004) featured a similar set of statistical parameters for the area of 371 
IPE sections (series 160 to 240), with A/Anom having values of m=1.025 and s=0.0325. 
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Fig 5-5 Statistical variation of the cross-sectional area of IPE 160 sections tested by ECCS. 

Additionally and in parallel to the measurements undertaken by ECCS, a major research project was 
dedicated specifically to the determination of cross-sectional variations of European wide flange 
sections of the HE series (Alpsten, 1972). The most relevant findings are summarized in Fig 5-6.  

 

 
Fig 5-6 Statistical variation of the cross-sectional geometry of HE sections (data: Alpsten, 1972). 
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Alpsten’s study represents the most thorough analysis of cross-sectional variations of European HE 
sections to date, with some 4816 individual sections taken into account. Fig 5-6 shows the data 
provided by Alpsten and a representation of scaled probability density functions applicable to this 
data if normal distributions of the parameters are assumed. 

A comparison between Fig 5-5 and Fig 5-6 leads to the conclusion that the (much more limited in 
scope) measurements by ECCS do not entirely fall within the scatter band observed for HE 
sections. In the case of the IPE 160 sections, the measured shape deviations led to cross-sectional 
areas that were, on average, slightly larger than the nominal value. In the case of the HE shapes, the 
area was measured to be on average slightly lower than nominal value. Alpsten (2002) commented 
on his measurements, noting that it is mainly the flange thickness tf that is responsible for the 
tendency of the area to be smaller than the nominal value. The web thickness partially compensates 
the lower-than-nominal flange thicknesses. This is explicable by an optimization of the rolling 
process and of the time of changeover of the rolls. Width and depth of the rolled sections were 
observed to have only a minimal scatter about the nominal value.  

It should be noted that the above observations were also generally confirmed in the measurements 
on HEAA shapes that were recently carried out during a research project at Graz University of 
Technology (Kettler, 2008). 

What is remarkable in both Fig 5-5 and Fig 5-6 is the fact that the tolerance limits of ±4% on mass, 
converted into area tolerances under the (realistic) assumption that the length variation is practically 
zero and the material density g=7850 kg/m³ is constant, was not generally complied with by the 
specimens measured by Alpsten and ECCS. In order to understand how this is possible, the 
minimum and maximum allowable areas, computed from the single plate thickness tolerances of 
EN 10034, are shown in Fig 5-7 for the HE-A and –B series. 

 
Fig 5-7 Minimum and maximum allowable area ratio A/Anom for HE-A and –B shapes. 
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The figure shows that the area tolerance does not correlate well with the mass tolerance if minimum 
variations of length and material density are assumed. Cross-sectional areas of less than 90% and 
more than 120% of the nominal value are explicitly allowed by current mill manufacturing 
standards. These tolerances are obviously quite significant to the flexural column buckling case 
under pure axial load. If a value of A/Anom of 90% is accepted as the “actual” minimum value of the 
area tolerance, the measurements of ECCS and Alpsten appear to confirm that this tolerance is kept 
at a significant relative “distance” from the actual production scatter band in Europe, lying at ca. 3 
standard deviations from the mean. 

Initial OutofStraightness 

Much attention was paid to the initial out-of-straightness (or curvature) of the compression 
members tested in the ECCS program. In order to test columns thought to be representative of shop 
conditions, only un-straightened bars that were straight to the bare eye (“droite à l’œil” according 
to Sfintesco, 1970) were used. The curvature was measured by determining the deviation from the 
straight line connecting the columns’ extremities at different points. Ballio and Mazzolani (1983, 
pp. 132-133) state that many different shapes of curvature were observed, see Fig 5-8. Schulz 
(1968) and Ersvik & Alpsten (1970) showed that the amplitude of these deflections as fraction of 
the length is the most significant factor, far out-weighing the importance of the shape itself. Schulz 
also showed that the first, sinusoidal “wave” amplitude of a Fourier series of an arbitrary initial 
deflection shape is sufficient to describe the buckling strength of any compression member.  

 
Fig 5-8 Out-of-straightness Δ: idealized and measured. Figure taken from Schulz (1968). 

The connection between fabrication tolerances and out-of-straightness will be discussed with more 
detail in section 5.5 of this chapter. At this stage, only the shape deviations actually measured by 
ECCS will be further described. It shall just be briefly mentioned that the tolerance limit for the 
initial curvature was set at Δ=L/1000 in the years when the ECCS buckling curves were developed.  

Fig 5-9a shows the measured initial curvatures of the tested IPE 160 sections as reported by Strating 
& Vos (1972). A similar, but not quite identical distribution is also given by Fukumoto (1983). 
Tebedge et al. (1972) determined values of the initial curvature for heavy HE sections (mostly 
HEM340 and similar), plotted in Fig 5-9b. 
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Fig 5-9 Measured initial curvature Δ as fraction of the column length for some of the ECCS 

column tests. 

It is interesting to note that the curvatures of deeper, heavy shapes (HE, h>300 mm) were shown to 
be statistically smaller than the ones observed for cross-sections with smaller depth (IPE, h<200 
mm). This is actually in agreement with the rolling tolerances of these sections according to EN 
10034, see Table 5-1.  

 

Section depth h 
[mm] 

Curvature 
tolerance qxx, qyy 

80<h≤180 0.30% of L 

180<h≤360 0.15% of L 

h>360 0.10% of L 

Table 5-1 Initial curvature tolerance according to and using the terminology of EN 10034 (1993). 

Some other probability density functions found in the literature, which are not necessarily directly 
linked to the ECCS test program but connected to it by the common objective of developing column 
buckling curves, are shown in Fig 5-10.  

The distribution given by Fukumoto (1983) was calculated from a collection of all column test data 
available internationally in the early 1980s. It is unknown whether this calculation was 
accompanied by testing of possible correlations and systematic sub-scatters of the single section 
types. One must suspect that such a larger scatter as the one devised by Fukumoto is not 
representative for single types of sections. 

The distribution given by Bjorhovde (1972) was based on more-or-less plausible assumptions 
regarding the likelihood of the occurrence of certain values. The probability of having values above 
the tolerance limit of Δ=L/1000 was assumed to be equal to 2.5%. 
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Fig 5-10 Scaled probability density functions for initial curvature of columns. 

The distribution assumed by Strating & Vos (1972) for their Monte Carlo simulations (see Step 4) 
was based on the actual ECCS measurements for IPE 160 sections, and can be interpreted as a “tail 
approximation” of the upper values of the recorded curvatures.  

Load Eccentricity 

Additionally to the out-of-straightness, load eccentricities at the end of the column can cause 
second-order bending moments in a column. Fig 5-11 shows the eccentricities measured for the IPE 
160 series of ECCS tests. The data is taken from Schulz et al. (1977). 

It shall be noted that these eccentricities had a clear definition: for the case of weak-axis buckling , 
they were equal to the eccentricity of the web with regard to the flange. This definition can be 
regarded to be correct in light of the fact that the load in the ECCS tests was placed at the centroid 
of the web. If the web is eccentric with regard to its nominal position, an eccentricity of the load is 
present. 
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Fig 5-11 Load eccentricity in the ECCS IPE 160 tests, determined as web eccentricity.  

Residual Stresses 

The origin, distribution and amplitude of residual stresses in structural steelwork sections were 
studied by Alpsten (1967), Young (1971, 1972) in the case of hot-rolled sections, and Brozzetti et 
al. in the case of welded sections and plated elements. Beer & Schulz (1969) collected some data 
and discussed the classification of expected residual stresses in hot-rolled sections shown in Fig 5-
12a.  

 
Fig 5-12 Residual stresses in hot-rolled sections according to (a) Beer&Schulz (1969), and (b) 
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For comparison reasons, the ECCS recommendations (1984) for modelling residual stress effects in 
GMNIA calculations are illustrated in Fig 5-12b.  

Schulz (1968) mentions the following statistical data regarding residual stresses in hot-rolled 
sections, Table 5-2: 

 tw/h σres/fy,nom [N/mm²] 

MEAN MAX 

 
h/b≤1.2 

<0.05 0.4  0.55  
<0.075 0.3  0.4 

≥0.075 0.4 0.5 

1.2<h/b<1.7 ≤0.03 0.2 0.3 

>0.03 0.3 0.4 

h/b≥1.7 - 0.2 0.3 

Table 5-2 Data collected by Schulz (1968) on residual stresses in hot-rolled I- & H- sections. 

No minimum values are reported by Schulz. The values that are most representative for actual 
European sections (ratios h/b and tw/h) are printed in bolted characters. It should be mentioned that 
Schulz himself was already aware (through the work of Feder & Lee, 1959) that the residual stress 
in hot-rolled sections is not proportional to the yield strength, but independent of it, and that 
therefore the values in Table 5-2 are actually only valid for mild steel (S235). Nevertheless, he 
accepted this as an extra element of safety for higher-strength steels, which were less well 
understood at the time. 

5.2.3. Step  3:  Reliability  Level  Justification  of  the  GMNIA  Imperfection 

Assumptions 

As was stated in the introduction to this section, one main motivation for the ECCS column 
buckling research was to develop buckling rules with an homogeneous-as-possible level of 
reliability throughout slenderness ranges.  

According to Sfintesco (1970), the Technical Committee 8 originally intended to achieve this goal 
purely by experimental means. An early result of this effort is plotted in Fig 5-13, which shows the 
single, dimensional buckling curve for mild steel (comparable to today’s S235) originally published 
in 1966 by ECCS TC8 (Sfintesco, Carpena et al., 1966). This single curve is based solely on weak-
axis buckling tests of I sections and was developed by connecting (with a “spline” curve) the points 
given by the mean minus two standard deviations (m-2s) of the tests on IPE 160 sections conducted 
prior to that date. For comparison reasons, the figure also shows the current ECCS / Eurocode 3 
column buckling curve b, which applies to IPE 160 sections. 
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Fig 5-13 Original, 1966 ECCS column buckling curve based purely on column tests (mostly IPE 

160) 

If one omits the question of whether or not “sufficient” tests (in number and representativeness) 
were conducted to be able to have an acceptable level of confidence in the determined values of m 
and s, the above-mentioned, purely experimental procedure does indeed lead to a curve that has a 
constant, specified level of reliability over all slenderness ranges. One might therefore ask why this 
procedure wasn’t fully implemented in the end. 

The answer to this question was given by Beer & Schulz (1970): 

i. The experimental program alone, while being quite extensive, could not treat all cases of 
column buckling with sufficient statistical significance. Only weak-axis buckling of 
relatively “small” sections could be treated in large numbers. 

ii. An extrapolation of a design rule from such test results is not acceptable from the point of 
view of structural safety without the backing of a reproducible, theoretical treatment. 

For these reasons, the ECCS column buckling curves were finally developed primarily by means of 
numerical (GMNIA) calculations with deterministic, fixed geometry and imperfection parameters. 
This allowed for an inclusion of parameters and buckling cases (strong axis buckling, buckling of 
very heavy sections) which could otherwise not be sufficiently treated even by an experimental 
program that is as thorough and comprehensive as the one conducted by ECCS TC8. However, in 
these calculations, the assumptions regarding the (actually stochastically distributed) input 
parameters were based on a calibration to the ECCS tests, see Fig 5-14. This ensured the necessary 
feedback to full-scale tests and target reliability levels. 
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Fig 5-14 Calibration of the GMNIA imperfection assumptions to the ECCS column buckling tests. 

The figure shows the philosophy and procedure followed by TC8, which can be described as 
follows: 

i. The GMNIA calculations were performed using nominal geometrical input parameters for 
length and cross-section.  

ii. The geometrical and structural imperfections were fixed to extreme values: 0e =L/1000 for 
the initial curvature, which was equal to the fabrication tolerance Δmax, and the amplitude of 
σres equal to the maximum values shown in Table 5-2. 

iii. These assumptions were justified by plotting the resulting numerical buckling curves 
together with the ECCS test results and comparing the position of the curve with the m-2s 
experimental points.  

As is shown in Fig 5-14 (using a “normalized” form, based on a nominal yield stress of fy,nom of 235 
N/mm²), an acceptable agreement between numerical curve and experimental points could only be 
achieved by plotting the curve for a higher yield stress of fy=260 N/mm²; this was said to be the 
measured 2.3% fractile (equal to mean minus 2 standard deviations) of the yield stress 
measurements for the IPE 160 buckling tests, compare with Fig 5-4a.  

Sfintesco & Carpena (1977) already pointed out the following, very important point: if design rules 
are based on GMNIA curves developed with the above assumptions and are then presented in 
normalized form for all values of fy, and if –finally- a design code prescribes the use of the nominal 
value of the yield stress fy,nom for buckling design checks, a designer complying with this code will 
actually make use of the blue line in Fig 5-14, instead of the (originally intended) red line; over the 
entire range of slenderness where yield stress is relevant, such a design curve will therefore be safer 
than intended by the m-2s philosophy.  
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Due to this observation, Carpena (1971) actually proposed to use a value of the yield stress in 
column buckling design rules that differs from (i.e., is higher than) the minimum value of the 
coupon test yield stress specified by steel manufacturing standards such as EN 10025. This proposal 
was however not followed through, presumably due to the conceptual complications that this would 
entail; it is indeed not desirable to specify the yield stress to be used in design in function of the 
design task to be performed. 

The implications of this point are discussed with more detail in section 5.4.  

5.2.4. Step 4: Monte Carlo Simulations 

In 1972, Strating & Vos published a study on the weak-axis buckling strength of IPE 160 sections 
that made use of statistical input data taken from the “complementary” ECCS tests of section 5.2.2 
and applied the Monte Carlo method to simulate full-scale tests. While this study was not directly 
linked to the development of the ECCS curves, it was considered to be an important contribution to 
it, since it proved that the outcome of the ECCS full-scale tests was fully explicable by purely 
theoretical means.  

 

The following input data were used by Strating & Vos: 

Parameter m s Nominal value 

Initial curvature 0e  0.00085 L 0.0002 L 0.0001L* 

Area A 2047.33 mm² 81.15 mm² 2010 mm² 

Flange thickness tf 8.1 mm 0.527 mm 7.4 mm 

Yield stress fy 310 N/mm² 26 N/mm² 235 N/mm² 

Residual stress σres
*** 0.20 fy 0.05 fy 0.30 fy

* 

Eccentricity 0.595 mm** (ln) 0.461 mm** (ln) 0.0 mm 
 *  “nominal” values of 0e  and σres as used in GMNIA calculations by Beer & Schulz /  

ECCS 
**  actually, Strating & Vos used a Gamma-distribution. A log-normal distribution with 

these parameters was said to be equivalent.  
*** a parabolic distribution was assumed in the flanges, similar to Fig 5-12a 

Table 5-3 Assumptions of Strating & Vos (1972) for their Monte Carlo simulation of weak-axis 
column buckling of IPE 160 shapes. 
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The source of most values in Table 5-3 was already illustrated in section 5.2.2. The results of the 
Monte Carlo simulation are illustrated in Fig 5-15, again in the normalized form of representation 
that plots the ratio of buckling strength and nominal cross-sectional limit load Anom

.fy,nom over the 
nominal value of the normalized slenderness. The original results by Strating & Vos are in good 
agreement with the ECCS experimental values shown in Fig 5-14, except in the intermediate 
slenderness range of λ 1.0 – 1.2, where the Monte Carlo values (m-2s) lie ca. 15% below both 
test data and the red ECCS curve.  

 
Fig 5-15 Monte Carlo simulation of Strating & Vos (1972) for weak-axis column buckling of  

IPE 160 shapes compared to the buckling strength according to the ECCS curve b evaluated for 
two different values of fy and plotted as reduction factor of the nominal strength A.fy,S235.  

This deviation can be explained in light of the discussion of section 5.2.2 regarding the statistical 
data from today’s point of view. Two points must be mentioned: 

i. The assumed mean value of the flange thickness was significantly larger than the nominal 
value in these calculations (tf,mean/tf,nom=1.095), and the coefficient of variation CoV=0.065 
was rather large. This appears to be out of line from what can be justified by actual 
measurements - see Fig 5-6. That figure, which applies to HE sections, showed values of 
tf,mean/tf,nom smaller than 1.0 and (more importantly) a CoV of only 0.03 to be more realistic.  

ii. Strating & Vos assumed the residual stress amplitude σres to be proportional to the current 
yield stress, i.e. the randomly generated value of the yield stress generated: This implies a 
strong correlation of residual and yield stress: when the yield stress is far above the nominal 
value, also the residual stress amplitude is high. As has been stated in section 5.2.2, this is 
not thought to be conclusive with experimental showings. 
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Other than these remarks regarding the above assumptions, the idea of Strating & Vos proved to be 
very advantageous for the purposes of this thesis. Therefore, it is worthwhile to “repeat” Strating’s 
calculation with slightly modified assumptions, and using a Monte Carlo methodology as explained 
in chapter 3. The new assumptions, summarized in Table 5-4, included a more realistic scatter band 
for the residual stresses (un-correlated to the yield strength), as well as a separate variation of the 
single cross-sectional parameters. These were assumed to vary about the mean value, with a CoV of 
5% for the flange and web thickness, and CoV=1% for depth and width of the section. 

 

Parameter m s Nominal value 

Initial curvature 0e  0.00085 L 0.0002 L 0.0001L* 

Yield stress fy 310 N/mm² 26 N/mm² 235 N/mm² 

Eccentricity 0.60 mm (ln) 0.45 mm (ln) 0.0 mm 

Residual stress σres
** 0.20 . 235 N/mm² 0.05 . 235 N/mm² 0.30 . 235 N/mm² 

Flange thickness tf 7.4 mm 0.37 mm 7.4 mm 

Web thickness tw 5.0 mm 0.25 mm 5.0 mm 

Depth h 160 mm 1.6 mm 160 mm 

Width b 82 mm 0.82 mm 82 mm 
*  “nominal” values of 0e  and σres as used in GMNIA calculations  
** a double-linear distribution was assumed, see Fig 5-12b 

Table 5-4 New assumptions for the Monte Carlo simulation of FBz-z of an IPE 160. 

The outcome of this repetition of Strating’s simulation is shown in Fig 5-16. Due to the huge 
increase of computational power of computers since the calculation of Strating & Vos, many more 
calculations could easily be obtained in an acceptable amount of time. The simulations were carried 
out using GMNIA calculations with beam elements. Thirty columns were simulated at ten different 
nominal slenderness values, from z,nomλ =0.2 to 2.0. For z,nomλ =0.0, the calculations were 
performed “by hand”, i.e. the limit load was calculated from the current value of the area and the 
yield stress. In order to compare the results directly with the calculation of Strating & Vos (Fig 5-
15), as well as with the ECCS experimental data (Fig 5-14), the mean value and standard deviation 
was computed and plotted in the classical way, assuming standard normal distributions to apply.  

The figure clearly illustrates the viability of performing Monte Carlo simulations for member 
buckling phenomena: results in excellent agreement with the experimental data can be achieved by 
assuming realistic variations of the main basic variables, and by using appropriate, sophisticated 
enough GMNIA numerical models. 
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Fig 5-16 New Monte Carlo simulation for weak-axis column buckling of IPE 160 shapes. 

5.2.5. Step 5: final curves 

Finally, after some additional numerical and experimental studies, five separate column buckling 
curves were published by ECCS in its 1978 “recommendations” (ECCS, 1978). These curves were 
given as tables, in normalized form – see Fig 5-17. The following points are of interest: 

i. As has been stated above, the curves were essentially based on several series of GMNIA 
calculations with fixed geometrical and imperfection parameters, whereby the latter were 
calibrated to the ECCS full-scale buckling tests. 

ii. Some modifications were made when finalizing the curves: following the suggestion of 
researchers at Cambridge University (Young, 1971; Dwight, 1972), a plateau value at  
λ=0.2 was introduced. The rationale behind this choice was to “include effects of strain-
hardening”, which was thought (but not proven) to be responsible for the fact that “a stocky 
member can reach its squash load, and may well exceed it” (Dwight, 1972). The GMNIA 
calculations by Beer & Schulz did not include strain hardening in the material model; the 
resulting curves did not show the existence of the plateau, having values of χ<1.0 at any 
non-zero slenderness. ECCS TC8 therefore accepted the Cambridge group’s line of 
argumentation (Schulz et al., 1977).  
It should be mentioned, however, that more recent studies (e.g. by Wolf, 2006) have proven 
that the plateau value cannot be proven by GMNIA calculations with fixed (nominal) 
geometrical and imperfection parameters even if strain hardening is included in the model. 
In the present thesis, this is also confirmed: the GMNIA calculations in section 5.2.1 were 
performed by modelling strain hardening: due to the moderate strains at the buckling limit 
state, no hardening effects were observed even for very stocky columns (λ=0.2). 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

λz,nom

χ z,
no

m

IPE 160, S235
weak axis buckling

fy,k

fy,nom

m

m
+2

s
m

-2
s

=N
/(A

 .  
f

b
no

m
y,

no
m

)

2
1

λz,nom



PART II – Columns and Beams – Basic Load Cases 

 

79 

 
Fig 5-17 Original (1978) ECCS column buckling curves, given in diagram form (a) and 

classification table from Eurocode 3. 

5.3. Putting the curves into an equation  
During the development and immediately after the publication of the ECCS column buckling curves 
in table form, several researchers devoted their time to finding a formulaic description of the 
tabulated values. Mostly, reasons of practicality were mentioned as motivation for these 
endeavours. Most of the approaches presented in this context have already been presented in  
chapter 2. Finally, an Ayrton-Perry formulation emerged as the preferred means of description of 
the ECCS buckling curves; these are the column buckling formulae we find in the Eurocode today. 

5.3.1. AyrtonPerry formulations  

The derivation and form of the Ayrton-Perry formulation has been discussed at length in chapter 2. 
Their application to the ECCS column buckling curves, and the implications of the specific 
calibration factors that were eventually chosen, is discussed in the following. 

Expression (5.1) represents the starting point: a first-yield buckling condition using second-order 
internal forces resulting from a sinusoidal pre-deformation. It can be rewritten in normalized form 
by introducing χ=N/(A.fy), z y cr(A f ) / Nλ = ⋅ , and η= 0A e / W⋅ , leading to (5.2) 

 0

y y cr

N N e 1 1.0
A f W f 1 (N / N )

⋅
+ ⋅ ≤

⋅ ⋅ −
 (5.1) 

 2 1.0
1

χ
χ + η⋅ =

− χ ⋅λ
 (5.2) 

This equation can be shown to be identical to equation (2.30) and can be solved accordingly: 
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22

1
χ =

Φ + Φ − λ
 (5.3) 

with ( )21 1
2

Φ = ⋅ + η+ λ  (5.4) 

In the Ayrton-Perry approach, the elastic expression for η=( 0A e / W⋅ ) is replaced by the 
“generalized imperfection”, i.e. the main calibration function of the formulation, see chapter 2. 

Dwight (1972), a British engineer, was quite familiar with the Ayrton-Perry formula; he appears to 
be the first to have proposed the application of this formula to the ECCS column buckling curves. 
Recognizing the need for a new calibration of the Ayrton-Perry formula, he suggested the following 
formulation for η: 

 0
L S
i

⎛ ⎞η = α⋅ −⎜ ⎟
⎝ ⎠

 (5.5) 

with 0
0

1y

0.2S
E / f

λ
= =

λπ⋅
 (5.6) 

and α being the generalized imperfection amplitude factor. 

The following values of α were proposed by Dwight to describe the ECCS curves a, b and c. They 
were still in use in UK design codes as recent as the 2000 version of BS5950-1, Annex C: 

ECCS curve α 

a 0.0020 

b 0.0035 

c 0.0055 

Table 5-5 Generalized imperfection amplitude factors α as calibrated by Dwight (1972). 

It is important to appreciate the use of the geometric slenderness λ=L/i, instead of the “normalized” 
λ in (5.5). As has been shown in chapter 2, this means that every steel grade (with different yield 
stress) results in a different position of the buckling curve in the χ-λ plane, with χ slightly 
increasing with the yield strength. Dwight argued that this is actually more realistic than a 
representation where χ is completely independent of the yield stress, especially if the fact is 
considered that residual stresses are “largely independent of the yield stress of the steel”. The 
calculations that led to Fig 5-1 of this chapter seem to confirm this statement. 

It is also interesting to note that, at least for a mild steel of grade S235 with a yield stress of  
fy=235 N/mm², the values of Table 5-5 given by Dwight are quite comparable to the ones currently 
found in the Eurocode for a normalized slenderness formulation of η, see Table 5-6: 

  



PART II – Columns and Beams – Basic Load Cases 

 

81 

ECCS curve Dwight  
(1972) 

Rondal & Maquoi 
(1979) 

EC3  
(2006) 

a0  0.125 0.13 

a α.λe= 0.0020 . 93.9=0.19 0.206 0.21 

b 0.0035 . 93.9=0.33 0.339 0.34 

c 0.0055 . 93.9=0.52 0.489 0.49 

d - 0.756 0.76 

Table 5-6 Comparison between the generalized imperfection amplitude factors α given by Dwight 
(1972) - valid for steel grade S235-, Rondal & Maquoi (1979) and the Eurocode. 

As has been stated in chapter 2, the current Eurocode expressions for η were determined by Maquoi 
and Rondal (1978; Rondal & Maquoi, 1979), see (5.7): 

 ( )0η = α⋅ λ −λ  (5.7) 

with α according to Table 5-6, third column. The buckling curves resulting from this formulation 
are shown in Fig 5-18a as dashed, red lines and compared to the original tabulated values published 
by ECCS.  

In the present study, it is proposed to compare this expression to the values of ηtab that would have 
precisely described the tabulated curves. The latter are obtained by solving (5.2) for η: 

 ( )2
tab tab

tab

1 1 1
⎛ ⎞

η = − ⋅ − χ ⋅λ⎜ ⎟χ⎝ ⎠
 (5.8) 

 
Fig 5-18 Analytical description of the tabulated (numerical) column buckling curves using an 

Ayrton-Perry approach; comparison of buckling reduction factors χ (a) and of the generalized 
imperfection η (b) 
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The comparison between expressions (5.7) and (5.8) –solved for the tabulated values of the ECCS 
buckling curves- is plotted in Fig 5-18b. This representation has the advantage of visually 
illustrating the significance of an adequate selection of the expression for η. Whenever the value of 
ηtab falls underneath the straight line representing (5.7), the buckling reduction factor given by (5.3) 
with (2.32) and (5.7) is “safe-sided” in comparison to the numerical value. Hence, the chosen 
expression (with corresponding coefficients α) for the most part closely follows the numerical 
values of ηtab; at high slenderness ratios and for the “high imperfection” buckling curves c and d, 
the values of ηtab diverge from a straight line, beginning at λ =1.0, reflecting larger deformations 
than are accounted for in a second-order analysis. However, the significance of accurately 
describing the value of ηtab through (5.7) decreases with increasing slenderness, as the resulting 
buckling reduction factor χ becomes progressively less sensitive to the underlying bow 
imperfection at high slendernesses, in comparison to other kinds of imperfections. The tendency of 
the formulaic, Ayrton-Perry type buckling curves as developed by Maquoi and Rondal to (slightly 
and safe-sidedly) diverge from the numerical curves at high slenderness ratios should nevertheless 
be kept in mind, since it is shown in chapter 6 to occur in the case of LT buckling as well. 

5.3.2. The significance of the imperfection assumption 

It is worthwhile, at this point, to elaborate on the significance of the order of the function η=f(λ) 
and of the length-dependency of the underlying equivalent imperfection resulting from this order.  

In their first (1978) paper, Maquoi and Rondal actually proposed a total of 7 possible expressions 
for η, all of which shared the constraint that the expression for η be a function of some order of λ, 
and that the plateau value of 0 0.2λ =  be respected. Of those 7 expressions, the three below are 
considered in the following: 

 ( )1 1 0.2η = α ⋅ λ −  (5.9) 

 2
2 2 2 2

0.040.04 1η = α ⋅ λ − = α ⋅ λ ⋅ −
λ

 (5.10) 

 ( )2
3 3 0.2η = α ⋅ λ −  (5.11) 

Maquoi and Rondal found that the first two expressions were best suited to represent the European 
column buckling curves, with discrepancies between the tabulated buckling curve and the formulaic 
prediction of less than 2%, when the best-fit value of α was used. Of the two, the expression for η2 
was actually found to be slightly better suited to describe most of the five ECCS buckling curves in 
Maquoi and Rondal’s original 1978 paper. The third expression –equation (5.11)- on the other hand 
was the least convenient of all expressions, leading to maximum deviations of more than 10% - and 
this again when using the best-fit value of α3. In the following elaborations it will be attempted to 
explain why this was inevitably the case. 
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By looking back at equations (5.1) and (5.2), it can be appreciated that an equivalent geometric 
imperfection of amplitude 0e  can be simply calculated: 

 0
We
A

= ⋅η  (5.12) 

If η is known or given, and the elastic section modulus Wel is used in equation (5.12), we obtain the 
amplitude 0e  of a sinusoidal initial imperfection which will yield the exact same buckling load Nb 
as the one given by (5.3), provided that the same value of η and a first yield failure criterion are 
used. In order to understand the underlying meaning of the three expressions for η (5.9) to (5.11), it 
is useful to plot this equivalent imperfection for a certain section.  

 
Fig 5-19 Equivalent imperfection 0e  in absolute terms and as fraction of length for a first-yield 

failure criteria for strong-axis buckling of a “welded” IPE 160 section. αi is the best-fit value 
for ECCS curve “a”. 

Fig 5-19 shows the equivalent elastic imperfection 0e  for strong axis buckling of a “welded”  
IPE 160 (without fillet) and the three expressions for η given above. The generalized imperfection 
amplitude factor α was taken to be equal to the value calibrated by Maquoi & Rondal for the ECCS 
column buckling curve “a”. The chosen section has the geometrical features of an IPE 160, except 
for the omission of the rolling fillet radius r, having an area of A=19.4 cm2, a second moment of 
area about the strong axis of Iy=834.1 cm4 and an elastic section modulus of Wy=104.26 cm3. The 
normalized slenderness of yλ =1.0 corresponds to a (buckling) length of L=615.8 cm. 

The figure shows that the three underlying equivalent imperfections are quite different from each 
other for each of the cases: 
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iv. the expression η1 results in a length-proportional imperfection  that has a value of 0.0 cm 
at yλ =0.2 and then increases linearly at a rate 0e / yλ  of 1.107 cm/ yλ  or 0e /L of 1/556.2 
cm/cm. The latter value directly results from expression (5.9) for η1 if the plateau value of 

0 0.2λ =  is omitted and the underlying value of α1=0.206 is considered: 

 ( ) y
0,1 1 1lim

W 1 W 104.26 1e / L 0.206 1/ 556.2
A L A L 19.4 615.8

λ
= η ⋅ = ⋅α ⋅ = ⋅ ⋅ =  (5.13) 

Fig 5-19b, which plots the inverse L/e0 on the abscissa, illustrates that this constant value of 
0e /L is asymptotically approached by the expression for η1, and this at a rather steady rate.  

v. the expression η2 results in an equivalent imperfection 0e  that also has a value of 0.0 cm at 
yλ =0.2 and then rapidly increases to asymptotically approach a rate of 0e / yλ  of  

0.844 cm/ yλ  or 0e /L of 1/729.8 cm/cm. Again, the latter value directly results from 
expression (5.10) for η2 if the plateau value of 0 0.2λ =  is omitted and the underlying value 
of α2=0.157 is considered: 

 ( )
2

y
0,2 1 2lim

W 1 W 104.26 1e / L 0.157 1/ 729.8
A L A L 19.4 615.8

λ
= η ⋅ = ⋅α ⋅ = ⋅ ⋅ =  (5.14) 

In Fig 5-19b, this again shows as a hyperbolic, asymptotic approximation of the limit value 
of 0e /L resulting from the chosen value of α, this time however at a much faster rate. 

vi. the expression η3 again results in an equivalent imperfection 0e  that has a value of 0.0 cm at 
yλ =0.2; at higher slenderness ratios, the equivalent imperfection increases parabolically. No 

limit rate of imperfection increase exists. The imperfections resulting from expression (5.11)
are clearly smaller than in the other two cases for slenderness ratios below 1.0 – 1.2, and 
increase much faster than the other two beyond this point. 

Summarizing these points, it can be ascertained that the expressions for η1 and η2 can be 
equivalently represented by an essentially -if it weren’t for the plateau-value of 0 0.2λ = - length-
proportional underlying imperfection 0e ; the expression for η3, on the other hand, is equivalently 
represented by an imperfection 0e  that is proportional to L2.  

The ground has now been laid out for a plausible explanation of why it was inevitable that Maquoi 
and Rondal ended up finding that the best approximations of the European buckling curves are 
given by expressions (5.9) and (5.10), and the worst by (5.11):  

i. the European column buckling curves that Maquoi and Rondal approximated were 
determined by means of GMNIA calculations for a length-proportional geometrical 
imperfection of 0e =L/1000 – see section 5.2.3. 

ii. since the additional structural imperfections considered in these GMNIA calculations, i.e. 
the residual stresses, are constant and independent of length, it is a fair guess to expect that 
the underlying length-dependency of the assumed geometrical imperfections is still strongly 
reflected in the resulting buckling curves.  

0e
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iii. had a different relationship for the assumed geometrical imperfections been used by Beer & 
Schulz in their numerical calculations, a different expression than η1 and η2 would have 
yielded the best curve-fitting results. 

An example is used to strengthen the case for the last statement above. Using essentially the same 
numerical methodology employed by Beer and Schulz for the GMNIA calculations of the ECCS 
research project, two numerical buckling curves are calculated for the strong-axis buckling of the 
pin-ended, “welded” IPE 160 of Fig 5-19: 

i. case I: the buckling curve is calculated using exactly the same assumptions made by 
Beer&Schulz: the yield strength of the material is fy=235 MPa, strain-hardening is not 
considered, the residual stresses have a maximum compressive value of y0.3 f⋅ , and the 
geometrical imperfection is proportional to L, having a value of 0e ,I=L/1000. 

ii. case II: the buckling curve is calculated using the same assumptions as above, but for a 
geometrical imperfection that is proportional to L2, instead of L, having a value of  

0e ,II=L2/615800. The denominator of this expression is chosen so that 0e ,II is equal to  
0e ,I=L/1000 at the normalized slenderness of yλ =1.0, i.e. at a length of L=615.8 cm in this 

case. 

The assumptions made for the determination of these two numerical buckling curves are 
summarized in Fig 5-20.  

 

Since no plateau is to be expected from a numerical calculation that is conducted according to  
Fig 5-20, the Ayrton-Perry type curve-fitting is performed using modified versions of the 
expressions (5.9) to (5.11), omitting the plateau value of 0 0.2λ = . In this case, (5.9) and (5.10) are 
identical and can be replaced by a single expression. The following expressions are used 

 yIη = α⋅λ  (5.15) 

 
2

yIIη = α⋅λ  (5.16) 

 

If the claim is correct that the goodness of the Ayrton-Perry approximation mostly depends on the 
quality of the function η, and if the best-fit value of α is used, ηI can be expected to yield a good 
approximation for the “case I” assumption of Fig 5-20, while ηII should be able to approximate the 
“case II” assumption well.  
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Fig 5-20 Assumptions made for the illustration example; 0e : purely geometrical imperfection. 

The results of the example calculations are illustrated in Fig 5-21, using both a length-dependent 
and a Merchant-Rankine type representation of the resulting numerical and Ayrton-Perry buckling 
reduction factors χ. The numerical (GMNIA) calculation results are printed in black, while the 
Ayrton-Perry results are in colour.  

Fig 5-21a shows that, due to the fact that the imperfection was chosen so that both imperfections 
have the same amplitudes for y 1.0λ = , the numerical curves intersect at this slenderness ratio. In 
order to be able to better illustrate the impact of the length proportionality of the generalized 
imperfection function η on the calculation results, the calibration of the factor α was performed for 
the slenderness ratio of y 1.0λ =  alone, and not as a least-square approximation of the entire 
considered slenderness range; doing this leads to identical values of α=0.156 for ηI and ηII. 

Especially the more “spread-out” Merchant-Rankine visualization (Fig 5-21b) clearly shows that 
expression ηI allows for a close approximation of the “case I” imperfection assumption, while ηII 
does the same for the “case II” assumption. 

This example clearly illustrates the significance of a correct, representative choice of the function η 
when using an Ayrton-Perry type formula to represent a buckling curve. If the Ayrton-Perry type 
formulation is used for curve-fitting of a numerically determined buckling curve, it is extremely 
important to choose the expression for η so that it best approximates the imperfection assumptions 
made in the numerical calculation. An analogous statement can be made about the curve-fitting of 
experimentally determined buckling curves, where imperfection measurements must be used as 
guidance. 
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Fig 5-21 Results of the example calculation with assumptions of Fig 5-20; a) slenderness-

dependent plot; b) Merchant-Rankine visualization. Ayrton-Perry versus numerical results. 

5.4. Current reliability level 
In chapter 4, section 4.3.3, it was shown that, quite generally, the reliability level inherent in current 
member buckling rules is not homogeneous throughout all slenderness ranges. For the specific case 
of flexural column buckling, this is confirmed and plotted in Fig 5-22. This figure again shows the 
values calculated by Müller (2003) on the basis of the ECCS tests. It also shows (Fig 5-22b) the 
result of an evaluation of the appropriate partial safety factor γM* according to EN 1990 – Annex D 
for the new Monte Carlo simulation of Fig 5-16.  

The evaluation was carried out based on the assumptions of Table 5-7. Since the evaluation 
procedure assesses the accuracy of the used design formula, only the parameters actually entering 
(5.3) are needed.  

Parameter m s Nominal value 

Yield stress fy 310 N/mm² 26 N/mm² 235 N/mm² 

Flange thickness tf 7.4 mm 0.37 mm 7.4 mm 

Web thickness tw 5.0 mm 0.25 mm 5.0 mm 

Depth h 160 mm 1.6 mm 160 mm 

Width b 82 mm 0.82 mm 82 mm 

Table 5-7 “Pre-information” used for the statistical evaluation of FBz-z of the Monte Carlo 
“tests” for weak-axis flexural buckling of an IPE 160 (see Fig 5-16). 
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Fig 5-22 Current reliability level for weak-axis flexural column buckling of IPE sections; 

according to Müller (a); calculated for the Monte Carlo simulation of Fig 5-16 (b). 

The parameters in Table 5-7 are similar to the ones of Table 5-4, i.e. of the statistical data used for 
the Monte Carlo simulation itself, but with the exception of the yield stress fy; since Annex D of EN 
1990 mandates the use of “pre-information” about representative statistical values of the single 
parameters entering the design formula, a value of fy,mean=285 N/mm² with CoV=0.06 was chosen 
instead. These value are in good agreement with the literature (Petersen, 1993; Byfield & Nethercot, 
1997) and are well-confirmed by the experimental data, at least by the greatly better documented 
number of tensile-coupon tests. 

As is illustrated in Fig 5-22, the evaluation of the new Monte Carlo tests led to values of γM* that 
are in excellent agreement with what Müller found to be appropriate for the ECCS tests. Both 
diagrams (a) and (b) show that the maximum value is reached around a slenderness of λ=1.2, that it 
lies at about γM*=1.12-1.13, and that it tends to be slightly lower at slenderness values beyond this 
peak. The Monte Carlo simulation can therefore be assumed to be representative also for the range 
not covered by tests, i.e. the low slenderness range. Here, a remarkable feature of Fig 5-22 is the 
spike of the value of γM* at λ=0.2. Although this might surprise at first sight, it is actually entirely 
logical if one considers that this slenderness range corresponds to the location of the end of the 
plateau in the ECCS column curves. Since the strength of a member with λ=0.2 must be at least 
minimally -a few percentage points- lower than the value at an even smaller slenderness, but the 
plateau ignores this, γM* ends up accounting for it. The relatively steep drop of the buckling curve 
immediately beyond the plateau’s end then explains the drop of γM* between λ=0.2 and 0.4. 

Of course, the excellent agreement between Fig 5-22a and b contains some degree of “luck”, as 
both the ECCS and the Monte Carlo buckling strengths, representing a limited number of random 
test results, do influence the outcome of the above evaluation; in other words, a repetition of the 
Monte Carlo simulation will not lead to exactly the same results as shown in Fig 5-22b.  
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Nevertheless, the following points can be seen as confirmed by this evaluation: 

i. The ECCS column buckling curves, and, inevitably, the Ayrton-Perry formula calibrated by 
Maquoi and Rondal to best fit these curves, does not fulfil its original goal of having a 
constant reliability level throughout all slenderness ranges. 

ii.  As is illustrated by Fig 5-14, this is due to the fact that the numerical (GMNIA) buckling 
curves eventually adopted as design curves by ECCS do not provide such a constant level of 
reliability when compared to tests if nominal values of yield stress and geometry are used in 
combination with high fractile values of the imperfections. 

This does not mean that the ECCS buckling curves are not in agreement with the more general 
original goal, i.e. to develop buckling design curves that had an irrefutable, sufficient level of safety 
that was acceptable and could be implemented in all European countries. As is also illustrated by 
Fig 5-14, the desired position (m-2s) of the curve itself is complied with throughout all slenderness 
ranges; if anything, the final curve is “safer” than originally intended at lower slenderness.  

In summary, the following can be stated in agreement with the discussion in section 4.3.3: 

i. The current level of reliability of column buckling rules is not directly based on a 
homogeneous reliability level. Rather, it is based on the intrinsic level of reliability given by 
a model member (referred to as “model column” or “model beam” in the following) with 
specified characteristics with regard to geometry, material strength and imperfections. 

ii. This is obviously not a probabilistic approach in the strict sense of the term. It is, however, 
in a loose sense semi-probabilistic, as it entails the following philosophy: a column designed 
to withstand the acting loads under the assumptions inherent to the ECCS curves (nominal 
geometry, minimum nominal yield stress, high fractiles of geometric and structural 
imperfections) can be assumed to be sufficiently safe, since test results proved these 
assumptions to be in good agreement with, or safe-sided, in comparison to the desired 
reliability level. 

  



5. Flexural Column Buckling – the Benchmark Case 

 

90 

5.5. Fabrication tolerances vs. imperfections – effects of changed 
production habits 

This section is dedicated to the treatment of a current, intensely debated topic: the impact of new, 
relaxed fabrication tolerances on the strength of compression members. The current debate, held at 
a code commission level (ECCS TC8), was triggered by the introduction of increased tolerances for 
the out-of-straightness of steel members in the new European standard for the execution of steel 
structures for constructional steelwork, EN 1090-2 (2008). The question currently being asked is the 
extent to which these changes are still “covered” by the present design rules. To date, a consistent, 
logically coherent justification for the acceptance of these changes is still missing.  

The study presented in this section is therefore intended as a contribution to this debate. In the 
broader scientific context, it is intended to serve as an example for the possibility of answering 
questions regarding the impact of changes to production tolerances and manufacturing habits on 
design rules by means of statistical/reliability methods. 

5.5.1. Previous and new regulations 

Most codes regulating the execution of steel structures distinguish between manufacturing and 
erection tolerances. The former, also called shop fabrication tolerances, are concerned with 
deviations from the nominal dimensions measured in the workshop. They mainly serve as control 
quantity for the production quality in the shop or factory. The latter are measured on site, after 
erection. They are a control quantity for the quality of the erection works on site.  

Measurement 
Definition 

Standard Country Manufacturing 
Tolerance 

Erection  
Tolerance 

 

 
(from EN 1090-

2) 

AISC Code of 
Standard Practice 

(2005) 
USA Δ
L/1000 

None 
(Δ
L/1000) 

BS 5920-2 (2001) &  
NSSS (2007) UK 

Δ
max(3mm ; L/1000)  
None 

 
DIN 18800-7 (2002) 

 

DE 
Product standards 

hot-rolled: EN 10034 
welded: ISO 13920 

 
None 

ÖN B4300-7 (1994) AUT Δ
L/1000 Δ
L/1000 

ENV1993-1-1:1992 /  
ENV 1090-1:1996 

Some EU 
countries 

Δ 
L/1000  
Δ 
max(3mm ; L/1000) 

 
None 

ECCS Recc. 1978 - Δ 
L/1000 Δ 
L/667 & 
... 

EN 1090-2:2008 CEN 
members 

Δ 
L/750 Δ 
L/750 

Table 5-8 Out-of-straightness of compression members (except hollow sections) according to 
different international standards. 



PART II – Columns and Beams – Basic Load Cases 

 

91 

Table 5-8 summarizes the regulations of the out-of-straightness tolerances for compression 
members according to different international codes. The following comments can be made: 

i. The manufacturing (shop) tolerances for out-of-straightness of compression members were 
fixed at a value of Δ≤L/1000 in most codes of practice preceding the publication of the new 
European standard EN 1090-2:2008. It should be mentioned on the side that hollow sections 
–produced in Europe according to the standard EN 10210-1 (2006)-  had and still have a 
larger tolerance limit of Δ≤L/500, see Chan & Gardner (2009). 

ii. The value of Δ≤L/1000 is identical to the imperfection assumptions on which the ECCS 
column buckling curves are based, 0e =L/1000, see section 5.2.3. Historically, this tolerance 
value was actually the initial motivation for the adoption of 0e =L/1000 in the ECCS 
GMNIA calculations. 

iii. With Δ≤L/750, EN 1090-2 increases the manufacturing tolerance limit by 1/3. 
iv. In previous national European and current international codes, the sections devoted to 

erection tolerances did not generally include provisions regarding the out-of-straightness of 
compression members. The AISC code only recently added a clarifying drawing where 
columns are shown to have Δ≤L/1000 also in the erected configuration, but no comment is 
given on this – and on how this should be measured- in the text. The same can be stated 
about the former Austrian Standard ÖN B 4300-7 (1994). Other codes only mention 
positioning and inclination restrictions for the erection of columns.  

v. The lack of specification of erection tolerances is explicable by the difficulty and 
cumbersomeness associated with measuring a column’s curvature once it is built in. 
Furthermore, if the curvature is specified as an erection tolerance, it must also be specified 
how, and with what frequency, this quantity ought to be measured on site – this is not 
straight-forward and potentially controversial. 

 
Fig 5-23 Visualization of the acceptance criteria for column curvature according to ECCS (1978) 
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vi. The only provision known to specify clear and uncontroversial acceptance criteria for 
column out-of-straightness on site is contained in the ECCS “European Recommendations 
for Steel Construction” (1978). While this code also uses the value of Δ≤L/1000 for 
workshop fabrication, it loosens this value to Δ≤L/667 = 0.0015 L on site.  

vii. According to this recommendation, if individual measured values exceed this value, the 
construction contract’s parties are expected to agree upon the subsequent procedure by 
judging the fitness-for-purpose of the compression element.  

viii. Additionally to this criterion, the emphasis is placed on the statistical distribution of the 
measured curvature. This is schematically illustrated in Fig 5-23. A series of measurements 
is accepted as conforming to the requirements when the mean value plus α times the 
estimated standard deviation of measurements lies within the tolerance limit. The value of α 
decreases with a rising number of measurements n, spanning a range of 3.7 for n=6 to 2.1 
for n=100. They are meant to lead to a 90% confidence level regarding the non-exceedance 
of the tolerance value.  

ix. EN 1090-2 does specify erection tolerances for the out-of-straightness of compression 
members. However, no indications are given about how, and how often, these ought to be 
measured. One must assume that, in theory, all columns must be measured and checked 
against the tolerance criterion if EN 1090-2 applies as part of a construction contract.  

5.5.2. Can tolerances be determined from equivalent imperfections?  

Some reviews of the current Eurocode design formulae for column buckling have already led 
(Sedlacek et al., 2008) to argumentations that justify the loosening of the curvature tolerances on 
the basis of considerations regarding equivalent imperfections for second-order calculations. This 
line of argumentation uses the following limit state observation for the equivalent imperfection 0e , 
also see (5.12) 

 ( ) ( )0 0
W 1 We / L  
A L A L

α
= η⋅ = ⋅ ⋅ λ − λ  (5.17) 

Then, acknowledging the fact that the values of the generalized imperfection coefficient α also have 
to cover the influence of residual stresses in the Ayrton-Perry formulation, it is argued (assumption 
1) that, at λ = ∞ , this influence of σres is practically zero. Furthermore, it is –implicitly- assumed 
(assumption 2) that the curve a0 is representative for a column with practically no locked-in 
stresses. The following formula can then be derived for strong-axis flexural column buckling FBy-y: 

    ( )
y y

2
y y y y ya0 a0 a00 lim,GEOM,FB y

2 I 2 i f 2 i fL 1e / L  
h A L h L i E h E−

⋅ ⋅ ⋅α α α
= ⋅ ⋅λ = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅

⋅ π π
 (5.18) 

In a third assumption (assumption 3), the ratio iy/h is set to 0.5. With this value, the following was 
said to be the limit value of the purely geometrical imperfection that is already covered by the 
current buckling rules, for the most inconvenient case of steel grade S235: 
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 ( )
y y

0 lim,GEOM,FB
0.13 235e / L 2 0.5 1/ 722

210000−
= ⋅ ⋅ ⋅ =

π
 (5.19) 

Since 0e / L=1/722 is larger than Δ/L=1/750, the new tolerance limit was said to be covered by the 
current design rules. 

Plum (2008) has already shown this line of argumentation to be flawed. He pointed out that the 
assumption regarding iy/h is not realistic for most commercial I- & H-sections, where this value 
moves in the range of 0.35-0.42. This simple corrective remark, regarding only one of the three 
assumptions made above, seems to disprove the above argumentation, since e.g. with iy/h=0.4, 
( )0e / L lim,GEOM,FBy-y=1/903, which is smaller than Δ/L=1/750. 

Additionally, the following comments can be added: 

1) If assumption 2 were true, then in the case of weak-axis flexural buckling FBz-z of typical I- 
and H-sections, which have ratios of iz/b~0.25, applying (5.18) correspondingly would lead 
to the conclusion that a tolerance of only Δ/L=1/1444 is covered by the design rules – an 
even smaller value than the one that was previously valid at Δ/L=1/1000.  

2) If assumption 2 is dropped, or said not to apply for weak-axis buckling of a member made 
of S235 steel, the next most plausible buckling curve for this assumption is line b, the 
“highest” curve for weak-axis buckling of S235 I-sections. In this case, we could calculate 
the “covered” imperfection as follows: 

 ( )
z z

0 lim,GEOM,FB
0.34 235e / L 2 0.25 1/ 552

210000−
≅ ⋅ ⋅ ⋅ =

π
 (5.20) 

This is larger than both Δ/L=1/1000 and Δ/L=1/750, and (importantly) larger than any value 
ever recorded in the ECCS tests, see Fig 5-9 – it is hard to imagine that this could be 
covered by the present rules. 

These two points confirm that it is not purposeful to attempt to draw any conclusions regarding the 
permissibility of loosening geometrical shape tolerances by inference from considerations stemming 
from the second-order beam theory and the generalized imperfection amplitude factor α. As this 
chapter has attempted to show, the current column buckling formulae are essentially based on 
curve-fitting of a second-order equation onto GMNIA buckling curves. The (“equivalent”) second 
order geometric imperfections were fitted to best match the pre-established buckling reduction 
factors of the GMNIA curves. Thereby, these “manipulated” second-order equivalent imperfections 
lost much of their physical meaning, particularly in the quantitative sense that is of interest here. 
Finally, it must be remembered that, from a safety point of view, the values of α must “cover” more 
than just residual stresses and column curvature: since the structural designer eventually calculates a 
column’s strength with nominal values of cross-sectional geometry and material strength, but in 
reality these values scatter, the values of α must also account for the scatter of these quantities. This 
is not acknowledged in the above considerations. 
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5.5.3. Implications for Buckling Strength  Scenarios for the future 

Since all the parameters governing the column buckling phenomenon are random in their nature, 
and the total level of reliability of the prediction of buckling strength depends on a (random) 
combination of these random parameters, an assessment of the implications of the new tolerances 
on the buckling strength can only be carried out by considering the changes to the random 
distribution of these effects by statistical, probabilistic means. 

Ideally, tests could be carried out on columns with geometrical shape deviations representative of 
the production habits of European steelwork contractors, as they result from the tolerances in EN 
1090-2. This is obviously impossible at the present time, as the new code has not yet been 
implemented by fabricators. For this reason, it was chosen to perform Monte Carlo simulations with 
plausible assumptions regarding the future distributions of column shape deviations. Four different 
scenarios will be discussed with more detail in the following. They are represented in Fig 5-24. 

 

 
Fig 5-24 Scenarios for the future development of the scatter band of column curvatures. 
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The figure shows the histograms of the values of the initial column curvature (with index 0e  to 
indicate that a sinusoidal “equivalent” imperfection shape was assumed in the GMNIA calculations) 
that were randomly generated for the Monte Carlo simulations. All scenarios are referred to the 
best-documented (by tests and calculations) case of the weak-axis flexural buckling of IPE 160 
sections made of steel grade S235, see section 5.2.2. The scenarios can be described as follows: 

- SCENARIO 1: the production habits of steelwork fabricators are not altered by the new 
manufacturing and erection tolerances. The deviations found during the ECCS tests are 
thought to be representative of real production; thus, the probability density function (pdf) 
found by Strating & Vos (1972) is assumed to be correct and still valid: m=0.00085 L,  
s =0.0002 L.  

- SCENARIO 2: all columns are produced with an initial curvature of Δ 0e≅ =L/750. 
Although very unrealistic, this scenario is the most unfavourable possibility still allowed by 
the tolerance limits in EN 1090-2.  

- SCENARIO 3: steelwork fabricators make use of the new, relaxed tolerances and produce 
columns that are on average somewhat more curved, i.e. by the the amount L/750 – L/1000. 
The scatter of the production is otherwise left unmodified. No measurements are 
undertaken, neither in the shop nor on site, therefore columns with curvatures exceeding the 
erection tolerance of Δ=L/750 are not effectively prevented from being used in the structure. 

- SCENARIO 4: identical to 3, but with the addition that all columns are thought to be 
measured on site. Columns that exceed the erection tolerance value of Δ=L/750 are not 
allowed; in practical terms, a new random value was generated in this case. 

5.5.4. Montecarlo simulations and reliability analysis 
The Monte Carlo simulations were carried out using GMNIA calculations and the techniques for 
random number generation and data control explained in chapter 3, as well as section 5.2.4. Except 
for the column curvature, the statistical distributions of all other parameters were kept the same in 
all scenarios, and assumed in accordance with Table 5-9 

 

Parameter m s 

Initial curvature 0e  See Fig 5-24 

Yield stress fy 285 N/mm² 17.1 N/mm² 

Eccentricity 0.60 mm (ln) 0.45 mm (ln) 

Residual stress σres
 0.20 . 235 N/mm² 0.05 . 235 N/mm² 

Flange thickness tf 7.4 mm 0.37 mm 

Web thickness tw 5.0 mm 0.25 mm 

Depth h 160 mm 1.6 mm 

Width b 82 mm 0.82 mm 

Table 5-9 Parameter variation for the Monte Carlo simulations – IPE 160 – S235 
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Fig 5-25 Monte Carlo simulation of FBz-z of an IPE 160 section – S235: SCENARIO 1; statistical 

distribution of the simulated tests in a χ-λ plot (a); reliability analysis acc. to EN 1990. 

The chosen input data is mostly based on the measurements collected by Strating & Vos (1970) and 
checked and complemented by newer measurement by Melcher et al. (2004), particularly for the 
flange thickness. The normal or log-normal (ln) distribution was assumed in all cases. 

The results of the statistical analysis are shown in Fig 5-25 to Fig 5-28 for the four different 
scenarios discussed in the previous section. In order to give a more complete und understandable 
picture of the outcome of these simulations, the χ-λ form of representation with m-2s bars 
representing the single “test” results is complemented by a plot showing the result of a reliability 
assessment in accordance with EN 1990 – Annex D. This assessment was performed using the same 
input parameters for the statistical data as contained in Table 5-9, and is shown in terms of the 
required values of the partial safety factor γM*. This factor gives a very clear indication of the 
impact of the single scenarios on the safety level of the column buckling rules, especially when 
compared to the current reliability level discussed in section 5.4 and in chapter 4. 

The figures can be commented upon as follows: 

- SCENARIO 1 - Fig 5-25: the figure shows the position of the “m-2s” points to lie very 
close to the applicable ECCS column buckling curve b. This would not represent any 
noticeable change with respect to the current reliability level, see Fig 5-14 and Fig 5-22. The 
value of γM* that was calculated by following the procedure of EN 1990 is very similar to 
the one calculated by Müller (2003) for the ECCS tests. This is not surprising, since 
Scenario 1 simulates the case where the initial curvatures are left “untouched” by the 
changes of tolerance. 
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Fig 5-26 Monte Carlo simulation of FBz-z of an IPE 160 section – S235: SCENARIO 2. 

 
- SCENARIO 2 - Fig 5-26: the figure shows the position of the “m-2s” points to lie 

noticeably lower than the applicable ECCS column buckling curve b. The difference is most 
pronounced in the region of intermediate slenderness, around 1.0λ = , where the  
“m-2s “points are very close to the line representing curve c.  The maximum value of γM* 
has increased to 1.177 in this scenario.  

- SCENARIO 3 - Fig 5-27: the “m-2s” points start falling significantly below the applicable 
buckling curve at a slenderness of 0.8λ = . In terms of γM*, a maximum value of 1.161 is 
calculated for this scenario. 

 

 
Fig 5-27 Monte Carlo simulation of FBz-z of an IPE 160 section – S235: SCENARIO 3. 
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Fig 5-28 Monte Carlo simulation of FBz-z of an IPE 160 section – S235: SCENARIO 4. 

- SCENARIO 4 - Fig 5-28: again, the “m-2s” points start falling significantly below the 
applicable buckling curve at a slenderness of 0.8λ = . In terms of γM*, a maximum value of 
1.155 is calculated for this scenario, only slightly lower than for scenario 3. 

5.5.5. Discussion and Conclusion 

The outcome of the Monte Carlo simulations shown in Fig 5-25 to Fig 5-28 points out that the 
reliability level of column buckling could be affected by the introduction of new tolerance limits. 
The scenarios 2 to 4 all treated the possibility that columns produced in the future have –on 
average- larger initial curvatures than was customary up to now, while all other parameters were left 
(in terms of scatter band) unmodified. Thus, it is not surprising that the calculations led to an 
(average) loss of column strength, respectively of margin of safety. The magnitude of this loss is in 
the order of 4 to 6%.  

As far as the likelihood of the single scenarios is concerned, it must certainly be admitted that 
scenario 2 is not plausible, since it cannot be expected that all steelwork fabricators produce 
columns that have exactly Δ=L/750. However, this extreme scenario is still interesting when 
compared to the (much more plausible) scenarios 3 and 4: these scenarios treat the possibility that 
fabricators “relax” their fabrication habits with respect to column curvatures, an outcome that, even 
if not necessary, must certainly be seen as “desired” by the new tolerance specifications. The 
calculations in this section have shown the differences between the “extreme” scenario 2 and the 
“desired” scenarios 3 and 4 to be rather small. Interestingly, scenario 4 is plausible even if every 
single column is measured for initial curvature on site and “replaced” if curvatures above Δ=L/750 
are detected. Compared to the (similar) scenario 3, where no such measurements are undertaken, the 
advantage stemming from these measurements is almost zero. 
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It is important to understand that it is often not the purpose of geometric erection (on-site) tolerance 
limits to specify the extreme upper values of shape deviations in the erected structure that must not 
ever be exceeded in order to design a structure safely with a given set of design rules. On the 
contrary, as the presentation (in section 5.5.1) of the acceptance criteria in the 1978 ECCS 
recommendation has shown, the philosophy with respect to tolerances on site was that single values 
above Δ/L=1/1000 are acceptable – as long as the statistical distribution of these deviations is kept 
in check, and the production in the shop is confirmed to produce columns within the (shop) limits 
for Δ. Other, actually implemented international codes implicitly followed a similar philosophy, by 
assuming that site measurements were entirely unnecessary if Δ/L=L/1000 was checked in the shop, 
since the statistical distribution of values on site could then be assumed to be acceptable.  

Of course, this study only discussed some, possibly “too pessimistic” scenarios. The correlation 
between tolerance limits and actual deviations is not always quite as clear-cut as has been assumed 
here. To name one example, Chan & Gardner (2009) have found that the tolerance limits of 
Δ=L/500 for the initial curvature of cylindrical hollow sections “may be unduly lax as evidenced by 
both the observed structural performance and measured imperfections of real columns”. In other 
words, they observed a poor correlation between actual shape deviations and tolerance limit. They 
then justified the use of the current buckling rules for such sections, which are also based on 
GMNIA calculations with 0e /L=1/1000 and fixed residual stresses, by the actual statistical 
distribution of the shape deviations. In principle, this is not quite unlike Scenario 1 discussed above: 
fabrication habits don’t “acknowledge” actually laxer fabrication tolerances. Chan & Gardner’s 
conclusion is coherent: they suggest reassessing the tolerance limit towards more realistic, lower 
levels, “in preference to adjusting buckling curves to accord with current tolerances”.  

Other arguments could be brought in to denounce the scenarios discussed above as too pessimistic: 
for example, residual stress distributions could be lower now than back in the 1960s and ‘70s, when 
the ECCS tests were carried out. Then again, actual column imperfections might be smaller than the 
deviations measured in the ECCS program. Finally, a beneficial inverse correlation between Δ and 
σres (i.e. σres is systematically lower when Δ is large) is sometimes thought to exist (Ballio & 
Mazzolani, 1983). These are valid points, but purely speculative at this stage; as Galambos (1998), 
among others, points out, practically nothing is known about real column curvatures in buildings, 
and the knowledge and data about residual stresses in mill- or shop-fabricated column sections has 
also not yet reached a satisfying level in terms of statistical representativeness.  

Finally, it can be concluded that the new manufacturing and erection tolerances for compression 
members, as contained in EN 1090-2, cannot be logically proven to be “covered” by current 
buckling rules. On the contrary, the implicit intent of the new limits, i.e. to allow steelwork 
fabricators to loosen their fabrication habits with regard to column straightness, has been shown to 
(plausibly) lead to a drop of the reliability level of column buckling rules by about 5%. Whether 
this is acceptable or not should be carefully considered by the concerned code committees. 
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5.6. Constant Reliability Curves 
In chapter 4, the possibility of obtaining “constant reliability buckling curves” by means of GMNIA 
calculations was discussed in general terms. In this section, the feasibility and implications of this 
approach are presented –in exemplary form- for the case of flexural column buckling. 

5.6.1. Input parameters 

The basic idea behind the constant reliability curves presented in chapter 4 originates from a 
reversal of the objectives of the reliability assessment procedure of EN 1990- Annex D; instead of 
determining (for various slenderness ratios) partial safety factors that lead to a certain, desired level 
of reliability for a given buckling curve, a buckling curve is determined that –from the outset- 
signifies a desired, possibly constant reliability level.  

Of course, doing so requires some basic input data from experimental programs. The data given in 
Table 5-10 were assumed for the calculations in this sections, based on the complementary tests 
conducted by ECCS and other research institutions during the development of column buckling 
rules, see section 5.2.2.  Again, all calculations are concerned with hot-rolled I- & H- sections, since 
the variability of basis variables is best documented for these shapes.  

 

 HE sections IPE sections 

Parameter m s m s 

Initial curvature 0e  0.00085 L 0.0002 L 0.00085 L 0.0002 L 

Yield stress fy 285 N/mm² 17.1 N/mm² 285 N/mm² 17.1 N/mm² 

Eccentricity* 

b≤110mm: 
0.6 mm (ln) 

110mm<b≤325 mm: 
0.85 mm (ln) 

b≤110mm: 
0.45 mm (ln) 

110mm<b≤325 mm: 
0.6 mm (ln) 

b≤110mm: 
0.6 mm (ln) 

110mm<b≤325 mm: 
0.80 mm (ln) 

b≤110mm: 
0.45 mm (ln) 

110mm<b≤325 mm: 
0.6 mm (ln) 

Residual stress σres
 

h/b≤1.2: 
0.35 . 235 N/mm² 

h/b>1.2: 
0.20 . 235 N/mm² 

h/b≤1.2: 
0.075 . 235 N/mm² 

h/b>1.2: 
0.05 . 235 N/mm² 

0.20 . 235 N/mm² 0.05 . 235 N/mm² 

Flange thickness tf 0.975 tf,nom 0.03 tf,nom tf,nom 0.05 tf,nom 

Web thickness tw 1.025  tw,nom
 0.04 tw,nom tw,nom 0.05 tw,nom 

Depth h hnom 0.01 hnom hnom 0.01 hnom 

Width b bnom 0.01 bnom bnom 0.01 bnom 

Table 5-10 Assumptions for the parameter variability for the constant reliability curve 
calculations. 
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Ideally, the proposed procedure would also allow for the calibration of the GMNIA model itself to 
real tests. This would create some additional confidence in the validity of the constant reliability 
curves, as it would prove the GMNIA calculations to be accurate, and would allow for a very 
straightforward consideration of the remaining uncertainties pertaining to the numerical model. This 
step had to be omitted in this study, due to the fact that no fully documented tests were available or 
could be carried out. However, it can be argued that the effect of this inaccuracy is fairly small in 
the case of column buckling, for which the common GMNIA results have been calibrated to tests 
and used by many other authors. Additionally, the aim of this study is to illustrate the procedure 
itself, and not to find definitive curves. In this context, this omission is thought to be acceptable.  

5.6.2. Partial derivatives 

The single steps for the calculation of constant reliability curves were described in chapter four, 
section 4.4.2, The most important step was the one concerned with the Taylor expansion and 
linearization, respectively with the calculation of partial derivatives of the GMNIA “resistance 
function”. The following expression was said to be applicable to these derivates: 

 mr,GMNIA 1m im i jm r,GMNIAr,GMNIA

i i

g (X ,...,X X ,...,X ) g (X )g
X X

+ Δ −∂
≈

∂ Δ
 (5.21) 

 

 
Fig 5-29 “Resistance function” in terms of χnom for S235 plotted as function of λ and fy for FBz-z of 

an HEB 400 section. 
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Expression (5.21) represents the equation for an approximate, numerical derivative of the strength 
function gr,GMNIA, which is the function (of all basis variables tf, tw, 0e , σres, fy, etc.) describing the 
(buckling) resistance of the studied member. If this resistance is related to the nominal value of the 
maximum cross-sectional resistance Rult,k, we can replace gr,GMNIA with χnom. In order to better 
understand what it means to form numerical derivatives of the numerical quantity χnom, it is useful 
to plot it for two variables, e.g. for λnom (or the length L) and fy, with all other variables left 
constant. This is done Fig 5-29 for the case of weak-axis flexural buckling of an HEB 400 section 
made of mild steel S235. The figure on the left (a) shows the 3D plot with χnom on the vertical axis 
and λnom and fy on the horizontal ones. The figure on the right (b) shows sections through the χnom 
surface at different levels of λnom.  

Especially figure Fig 5-29b helps to understand the meaning of the partial derivatives: they 
represent the slope of the single curves resulting from the sections through the χnom surface, and are 
a measure for the impact of the variability of the derived parameter on the χnom at the studied point. 
In the case of the yield stress, Fig 5-29 shows that this slope rapidly falls with increasing 
slenderness/length of the member. At λnom=2.0, the slope, and thus the influence of the yield stress 
on the buckling strength, is zero – a known and correct result. The figure also shows why the 
numerical derivative, calculated using (5.21), is quite insensitive to the chosen interval ΔXi=Δfy in 
the case of the yield stress: for a given point, the sensitivity of the function χnom to the yield stress 
appears to be fairly “linear”, as is clear when observing the practically straight lines resulting from 
the sections in Fig 5-29b. 

 
Fig 5-30 “Resistance function” in terms of χnom for S235 plotted as function of λ and 0 /e L  for 

FBz-z of an HEB 400 section. 
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In order to show that this is not always the case, a second example is illustrated in Fig 5-30. It 
shows the function χnom plotted over λnom and the geometric imperfection coefficient 0e / L . In this 
case, the influence of the studied parameter 0e / L  is strongest at “intermediate” slenderness ranges 
around λnom=1.0, as evidenced by the slope of the lines in Fig 5-30b. Furthermore, the slope is 
higher at low values of 0e / L ; this means that relatively small modifications of the geometric 
imperfection have a high impact on χnom when 0e / L  is very small. 

One procedural aspect should be mentioned: when carrying out the numerical derivatives, it is 
important to make sure that the maximum load proportionality factor in the non-linear (Newton 
Raphson) solution algorithm is reached with “sufficient” accuracy. A certain scatter of this value is 
inherent to the solution technique, see the schematic representation in Fig 5-31. This scatter is due 
to the fact that the last converged increment –with a certain tolerance value for the internal force 
residuals- is accepted as the calculation end result. The initial and maximum increment size and the 
tolerance value for the residuals must therefore be set to sufficiently low values in order to obtain 
useable results for the derivative. What constitutes a “sufficiently low” value depends on the 
sensitivity of the calculation parameter with regards to the parameter for which the derivative is 
calculated.  

 
Fig 5-31 Newton-Raphson solution algorithm –numerical error made during the calculation. 

 

Finally, some examples of resulting derivatives can be plotted, see Fig 5-32. They show the 
numerical (GMNIA) derivatives of the function χnom for the parameters fy and 0e / L  for the weak-
axis flexural buckling case of an HEB 400 made of S235. The derivative is calculated at different 
nominal slenderness ranges λnom and at the mean value points of the function χnom, i.e. with all 
other parameters set equal to the mean values of table Table 5-10.  

The figure shows that the partial derivatives are an excellent measure of the sensitiveness of the 
buckling strength to the studied parameter – the peak of the curve indicates the slenderness where 
the parameter has the highest impact. Performing these derivatives is therefore also a good tool of a 
parameter study. 
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Fig 5-32 Examples of numerical partial derivatives: for the yield stress (a); for the geometric 

imperfection coefficient 0e / L  (b) 

As far as the absolute values of the derivatives themselves are concerned, they depend on the 
definition of χnom and of the derived-for parameter. The plausibility of, e.g., the maximum value of 
the curve in Fig 5-32a, which represents the derivative for the yield stress fy, can be easily checked: 
at zλ ,nom=0.0 the yield stress enters the buckling strength linearly; thus the derivative must be a 
constant value regardless of the actual yield stress, and can be calculated to: 

 
( )y y,nom S235

nom y
y y,nom

d A f / (A f ) 1/ f ( 0.0) 0.004255
df f

⋅ ⋅
∂χ ∂ λ = = = ⎯⎯⎯→  (5.22) 

This matches the value calculated and plotted in Fig 5-32a. 

5.6.3. Exemplary curves 

The next pages show some exemplary constant reliability curves calculated following the procedure 
sketched in chapter 4 and further described in this section. Again, the weak-axis flexural buckling 
case was treated. Four sections were chosen with the aim of giving a picture of the influence of the 
different assumptions made in Table 5-10.  

Fig 5-33 shows constant reliability buckling curves for FBz-z of an HEB 400 section. This section 
belongs to the HE group of hot-rolled shapes, and has a depth-to-width ratio h/b>1.2; thus, 
comparatively low residual stresses were assumed, see Table 5-10. The figure shows reliability 
levels corresponding to the mean value rm (50% exceedance), the design value specified by EN 
1990 – Annex D for 0.8 times the reliability index β of 3.8, and the “upper bound” line 
corresponding to the “mirrored” probability of non-exceedance when compared to the design point, 
i.e. the line at 0.8 times 3.8 standard deviations above the mean line.  
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Fig 5-33 Constant Reliability Buckling Curve (CRC) for a HEB 400 section – S235 – FBz-z 

Furthermore, the current Eurocode design buckling curve b is shown, as well as the line at 1.05 
times rd. This line represents a buckling curve that, in theory, requires a constant value γM1=1.05 for 
all λ to satisfy the Eurocode reliability requirements. 

For the HEB 400 section, this latter line coincides fairly well with the current Eurocode buckling 
curve b, except at lower slenderness values, where curve b lies below it. This would indicate that 
buckling curve b would need a factor of not more than γM1=1.05 to reach the EN 1990 reliability 
target for this section and buckling case. 

 
Fig 5-34 CRC for a IPE 160 section – S235 – FBz-z 
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Fig 5-34 shows the same calculation for the much-studied (in this chapter) IPE 160 shape. Here 
both the constant reliability curve for the design point and for 1.05 times rd fall below the current, 
applicable buckling curve b. This is absolutely consistent with the reliability studies carried out in 
5.4, as well as the calculations done for “scenario 1” in the study concerned with column curvature 
and tolerances, see Fig 5-25. In that figure, the partial safety factor γM*=γM1 that is required to reach 
the EN 1990 reliability target was shown to increase with increasing length, and to stabilize beyond 

zλ ,nom=1.1, reaching values of around 1.12. That is the same tendency pointed at by Fig 5-34, 
where the rd line and buckling curve b move farther apart beyond zλ ,nom=0.4 to then stabilize their 
relative distance. 

It can be shown that a buckling curve corresponding to curve c in the Eurocode would be much 
closer to the design value rd – more regarding this follows in the next sub-section. 

Two additional examples are shown in Fig 5-35 and Fig 5-36. They treat a HEA 200 and a HEM 
320 section, respectively. Both sections have h/b≤1.2; thus, higher average residual stresses, with 
higher scatter, were assumed. Due to this fact, -and this fact alone-, Beer & Schulz (1970) have 
classified these sections as belonging to a different buckling curve, namely – for weak-axis flexural 
buckling- the ECCS curve c shown in the figures.  

The two figures show that the buckling curve c indeed lies fairly close (just slightly above) the 
constant reliability curve at the design point rd. One can therefore assume that a value of γM1 around 
1.05 or lower could be shown to apply for this curve and section type. This is in good agreement 
with reliability assessment findings for buckling curve c based on real tests, see Fig 4-4. In that 
figure, values of γM* calculated for real (ECCS) tests were found to lie between 1.02 and 1.07 for 
buckling curve c. 

 
Fig 5-35 CRC for a HEA 200 section – S235 – FBz-z 
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Fig 5-36 CRC for a HEM 320 section – S235 – FBz-z 

5.6.4. Calibration of an AyrtonPerry formulation 

So far, the above figures representing “constant reliability curves” for the design level rd -Fig 5-33 
to Fig 5-36- have only been used to compare the position of the current buckling curves with 
respect to (an estimation of) the target reliability point. Of course, this is only one use of the 
proposed concept using constant reliability curves, and not the most important when this concept’s 
potential application for other buckling cases is seen as a goal. 

In such a scenario, no pre-existing buckling curves or formulae would be given. Instead, a new 
calibration of (preferably) an Ayrton-Perry formulation would have to be carried out. This is done 
exemplarily for the IPE 160 curves of Fig 5-34. That figure shows that the plateau value, or even 
any value χ=1.0, could not be justified for the rd,GMNIA curve, i.e. with a value of γM1=1.0. 
Therefore, the calibration is carried out for the curve representing 1.05 . rd,GMNIA. γM1=1.05 is 
therefore the “target value” of the partial safety factor and representative of the target reliability 
level. 

 

In a first step, the “exact” numerical values of η (see section 5.3) are determined by using 
expression (5.23), which is in principle identical to (5.8). The results are plotted in Fig 5-37a. 
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1 1 1
⎛ ⎞
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 (5.23) 
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Fig 5-37 Description of the 1.05.rd constant reliability curves by an Ayrton-Perry formula; two 

options for the description of the generalized imperfection η (a); resulting buckling curves (b)  

Then, two strategies will be compared for finding an appropriate formulaic description of the 
buckling curve: 

i. In the first strategy, a formulation of the type ( )0η = α ⋅ λ − λ  is used, as was done by 
Rondal & Maquoi (1979). The value of α is calibrated to best fit the value ofχ over the 
entire studied slenderness range of λ=0.0 – 2.0. The calibration is done by least square 
determination. The resulting value of α is equal to 0.45. Thereby, 0λ  was again set to 0.2. 

ii. In the second strategy, the obtained (numerical) curve for ηnum, shown in Fig 5-37a, is 
described by a fourth-order polynomial. 

As can be seen in Fig 5-37a, the polynomial expression is much more accurate in describing ηnum. 
This is obvious, not only because a higher order polynomial approximation must inevitably be more 
accurate than a straight line, but also because the straight line formulation with α=0.45 was 
calibrated to best match χ, not ηnum. The differences in terms of χ are shown in Fig 5-37b. Also 
here, the polynomial approximation of the numerical curve is more accurate than the classical 
“straight line” approach, but only minimally, as can be seen by the fact that all three curves 
essentially overlap. 

The relative differences (“error”) between the target line representing 1.05 rd,GMNIA and the Ayrton-
Perry approximations using two different expressions for η are shown in Fig 5-38a. The figure 
shows that the error hardly exceeds 3% (on the “safe side”) for the straight line approximation, and 
is in the range of slightly more than ±1% for the polynomial approximation of ηnum.  
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Fig 5-38 Error of χ-approximation inherent to the two formulations for η (a); Value of γM* 

resulting from an evaluation of the Monte Carlo “tests” of Fig 5-25 (b). 

Finally, the results can be assessed with regard to the original goal, i.e. obtaining a buckling curve 
description that has a (near-) constant reliability level for all slenderness ranges. This was done by 
evaluating the Monte Carlo “tests” of Fig 5-25 (scenario 1) in accordance with the EN 1990- Annex 
D procedure and calculate the resulting value of γM*. Those simulated “tests” were shown to result 
in values of γM* that are very similar to what Müller (2003) has shown to be applicable to the “real” 
ECCS tests.  

Since the above formulaic description was modelled onto the 1.05 rd,GMNIA constant reliability 
buckling curve of Fig 5-34, using an Ayrton-Perry formulation of the form of (5.3) with two 
different options for η, the desired outcome of this calculation should be that γM* is very close to 
1.05 for all values of λ.  

The actual outcome is shown in Fig 5-38b. The red bars show the result of the evaluation for the 
best-fit, straight line formulation for η, while the green bars represent the outcome for the 
polynomial approximation of ηnum. The figure should also be compared with Fig 5-25b to 
appreciate the difference to the current status. It shows that both formulations are able to maintain 
the scatter of the values of γM* within a certain, narrow band from a specified “target value”. Of the 
two options for the formulation of η, the polynomial approximation is of course more effective. 
Compared to the current status of Fig 5-25b, where the target reliability level cannot directly be 
influenced at all, the straight line formulation for η, which is identical (in form) to the one found in 
the Eurocode now, is also much more effective. Also for this formulation, values of γM* within 1.00 
and 1.07 were found to apply.  
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If α=0.45 were therefore used for this section, a nearly constant reliability level would be achieved 
for this section and buckling case, and a value of γM1 of 1.05 could be accepted as a reasonable, 
sufficiently safe, constant value for all practical slenderness ratios. 

5.6.5. Comments 

The application of the constant reliability buckling curve concept based on GMNIA calculations 
and realistic statistical input data for the basis variables, presented in chapter 4, has been applied for 
the case of weak-axis flexural buckling of some hot-rolled sections. The general feasibility of the 
concept has been proven by means of examples. Of course, in order to be brought to a level suitable 
for inclusion in a design code, the following points would have to be considered: 

i. The statistical input data for the basis variables is, of course, a potential source of 
controversy. In order to avoid this controversy, all parties involved in the development and 
acceptance of buckling rules should, ideally, agree upon a characteristic data pool for the 
variability of the material, geometry and imperfection values (and their potential correlation) 
that influence the studied buckling phenomenon. 

ii. As the example has shown, the calibration of a formula (e.g. Ayrton-Perry) onto a constant-
reliability curve will still lead to some scatter of the resulting value of the partial safety 
factor γM around the specified target value. This is practically inevitable. It would still 
represent an appreciable increase of consistency of the reliability level, as this scatter can 
normally be kept small by appropriate calibration. 

iii. It must be clearly stated that adopting this procedure would lead, in many cases, to a 
different categorization of different sections with regard to buckling curves (a0, a, b, ...) than 
is currently the case in the Eurocode. While the current categorization basically depends on 
a deterministic, fixed decision with respect to the imperfection amplitudes (especially of the 
residual stresses), a new categorization would depend on the assumed, probabilistic scatter 
band of the input parameters, and on the sensitivity of the studied member to the variability 
of these input parameters. 

iv. To name an example in order to clarify the previous point, the results presented in this 
section seem to indicate that, at least if the scatter-band assumptions of Table 5-10 are 
accepted as valid, a categorization of section for weak-axis flexural column buckling could 
lead to the conclusion that IPE shapes (all of which have ratios h/b>1.2) are actually to be 
grouped in the same category as stockier HE sections with h/b≤1.2, while HE sections with 
h/b>1.2 would pertain to a more convenient, “higher” buckling curve. 
 



PART II – Columns and Beams – Basic Load Cases 

 

111 

 

6  
LateralTorsional Buckling of I & H Sections 

6.1. Introduction and Scope 
In this chapter, the lateral-torsional buckling mode of prismatic I- & H-sections is treated from 
different perspectives. First of all, the current design provisions are briefly revisited. Thereby, the 
inconsistencies between this buckling case and the “benchmark” case of flexural column buckling, 
particularly for what concerns the categorization of cross-sections, is pointed out. The on-going 
debate regarding these buckling curves is delineated, and the goal of any further work treating this 
case is discussed.  

Then, a parametric study is carried out in order to identify the most relevant structural parameters 
that govern this buckling case, and generally to clarify the load carrying behaviour. 

In a next step, a large series of GMNIA calculations is carried out for the case of constant bending 
moment of a single-span member, in order to provide the basis for a new buckling curve 
formulation based on the now-classical “model beam” with nominal input parameters and fixed 
imperfection amplitudes, i.e. in analogy to what Beer & Schulz (1970) have done for the column 
buckling case.  

A specific Ayrton-Perry type formulation for the basic case of LT-buckling of members under 
constant bending moment is then derived and, very importantly, specifically calibrated. Thereby, 
different strategies are followed. At the end, a very accurate formulation could be found, which is 
able to very well reflect the differences between different assumptions made during the GMNIA 
calculations. 

Since non-uniform bending moment diagrams are omnipresent in practical application of beams, a 
simplified expansion of the found formulation is also proposed; thereby, it was aimed to combine 
mechanical rationality with practicality, while at the same time maintaining accuracy. A very 
accurate formulation was thereby found that requires less additional moment-diagram parameters 
than current practical formulations in the Eurocode. 
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The aspects concerned with reliability and safety are mainly treated by the use of Monte Carlo 
simulations, with the addition of some comparisons with documented test results from the literature. 
Finally, the applicability of the constant reliability curve concept is also discussed for this buckling 
case. 

6.2. Elastic buckling moment Mcr and normalized slenderness for 

LT buckling 

The elastic, critical (bifurcation) buckling moment of prismatic beams has been studied as early as 
1910 by Timoshenko. An updated overview of the development of knowledge in the field has been 
given e.g. by Serna et alt. (2006).  

In simple cases such as prismatic beams under constant bending moment, analytical solutions for 
the critical bifurcation moment Mcr can be formulated. In cases where the loading condition is not 
uniform along the beam’s length, approximations have been developed by various authors (see 
Trahair, 1993). As Andrade and Camotim (2007) have noted, one of the most widely-used formulae 
for the practical calculation of the critical moment Mcr is the so-called 3-factor formula, which also 
entered the ENV (1992) version of Eurocode 3: 

 ( ) ( ) ( )
2 22 2z Tz z

cr 1 2 g 3 j 2 g 3 j2 2
zz z

k L GIIEI kM C C z C z C z C z
k I(k L) EI

ω

ω

⎡ ⎤⋅ ⋅⎛ ⎞π ⎢ ⎥= ⋅ ⋅ ⋅ + + − − −⎜ ⎟⎢ ⎥⋅ π⎝ ⎠⎣ ⎦

 (6.1) 

where 

C1, C2, C3 are modification factors depending on the loading and end restraint conditions 

zg is the distance between shear centre and point of (transversal) load application 

zj = 2 2
s

A y

zz 0.5 (y z ) dA
I

− +∫  

zs is the coordinate of the shear centre 

kz, kω  are are effective length factors with respect to in-plane resp out-of-plane buckling 

In the case studied in this thesis of beams with double-symmetric cross-sections and end-fork 
boundary conditions, this equation can be simplified as follows: 

 ( )
2 2 2z T

cr 1 2 g 2 g2 2
z z

IEI L GIM C C z C z
IL EI
ω

⎡ ⎤π ⋅
⎢ ⎥= ⋅ ⋅ + + −

π⎢ ⎥⎣ ⎦
 (6.2) 

If the load acts in the shear centre (equal to the centroid in the double-symmetric case), the equation 
further simplifies: 
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z z
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π

 (6.3) 
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The factor C1 is defined as the ratio between the critical moment Mcr,nu valid for an arbitrary, non-
uniform bending moment diagram along the beam’s length and the analytically solvable critical 
moment Mcr,u for a uniform bending moment. In the simplest case of a uniform bending moment, 
the factor C1 thus per definition assumes a value of 1.0. The analytical solution for Mcr,u for a 
double-symmetric beam is thus given by: 

 
2 2

z T
cr,u 2 2

z z

IEI L GIM
IL EI
ωπ ⋅

= ⋅ +
π

 (6.4) 

In the following discussion of the design rules for LT buckling, the normalized slenderness LTλ  
will be used; it is defined as follows: 

 pl
LT

cr

M
M

λ =  (6.5) 

where  

Mpl is the plastic section capacity Wpl . fy of the cross-section 

Mcr  is calculated using the appropriate formula of (6.1) - (6.4). 

Additional details concerning the calculation of Mcr, specifically with regard to non-uniform 
bending moments, are given in section 6.9. 

6.3. Design provisions – evolution and current developments 
In this section, the current design approaches are briefly discussed. Thereby, details are given only 
for the basic case of a uniform bending moment diagram. The on-going debate regarding safety and 
accuracy of the current rules is then discussed. 

6.3.1. Existing approaches 

The inclusion of specific LT buckling rules in European and North American design codes took 
place relatively late, in the second half of the 20th century. As Galambos (1998) points out, three 
approaches have traditionally been employed: 

i. Approach 1: design formulae are used that are purely calibrated to test results, whereby the 
“rational” limits represented by the pure (plastic) bending capacity Mpl and the Euler 
buckling moment Mcr are observed and a straight-line interpolation is carried out between 
them; this is the approach used in the AISC LRFD (2001) code. 

ii. Approach 2: this approach has been used for quite some time on the European continent, as 
it already entered the ECCS recommendations of 1978 and the “yellow print” 1981 edition 
of DIN 18800-2, which eventually led to the first “real” edition (DIN 18800-2, 1990). In its 
most basic form, it goes back to the work of Unger (1977) and makes use of a modified 
Merchant-Rankine formula of the following form (using the familiar EC3 notation): 
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( )

1/n
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LT 2n

pl LT

M 1
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⎛ ⎞
⎜ ⎟

χ = = ⎜ ⎟
+ λ⎜ ⎟

⎝ ⎠

 (6.6) 

Thereby, n=2.5 is used for hot-rolled sections, whereas n=2.0 is used for welded ones. The 
formula is evaluated and plotted in Fig 6-1. In spite of its apparent rationality, this approach 
has been criticized (Fukumoto & Kubo 1977, Fukumoto 1982) for its allegedly insufficient 
level of safety. Lindner et al (1994) replied to this criticism by providing a statistical 
justification that made use of a sorted-out data pool that showed that the curves are 
sufficiently safe, provided a safety factor of γM1=1.1 is used. 

 
Fig 6-1 Representation of formula (6.6) in the classic χLT- LTλ  (a) and in the Merchant-Rankine 

form (b). 

iii. Approach 3: this approach assumes that beams and columns “act alike” in terms of stability, 
meaning that the flexural column buckling curves are (with restrictions and amendments, as 
will be discussed below) assumed to be accurate for the LT buckling case of beams as well. 
This approach has been popular in the UK and the Commonwealth countries for some time 
(see e.g. the last, year 2000 version of BS5950-1), and has been adopted in Eurocode 3 
already in the ENV version (1992). In most cases, including the Eurocode, it makes use of 
the Ayrton-Perry formulation. As this approach is currently in use in Europe, it will be 
discussed with more detail in the following. 
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6.3.2. Current design provisions and categorization 

According to Eurocode 3 – EN 1993-1-1 (EC3), the design LT buckling resistance Mb,Rd of steel 
members with compact cross-sections is determined by multiplying the plastic cross-sectional 
moment capacity Mpl with a buckling reduction factor χLT. The reduction factor is determined by 
using one of two sets of formulae, which are associated with so-called “cases”. In the first, 
“general” case, the following formulae are used: 

 LT 22
LTLT LT

1 1.0χ = ≤
Φ + Φ − λ

 (6.7) 

and ( ) 2
LT LTLT LT

1 1 0.2
2

⎡ ⎤Φ = + α λ − + λ⎢ ⎥⎣ ⎦
 (6.8) 

where 

LTα  …. generalized imperfection factor, tabulated according to Table 6-1. 

These “general” curves are identical to the column buckling curves, but use a different 
categorization according to cross-sectional geometry when compared to the column buckling case. 
For hot-rolled sections, the column buckling curve “a” is used for sections with depth-to-width ratio 
h/b≤2.0, while curve “b” applies for more slender sections.  

In the “specific” case of hot-rolled sections and equivalent welded sections, the following 
expressions can be used: 

 LT 222 LTLTLT LT

1 1 1.0χ = ≤ ≤
λΦ + Φ −β⋅λ

 (6.9) 

and ( ) 2
LT LT,0 LTLT LT

1 1
2

⎡ ⎤Φ = + α λ − λ + β ⋅ λ⎢ ⎥⎣ ⎦
 (6.10) 

whereby 

LT,0λ  …. extended plateau value for LT buckling (recommended value of 0.4). 

β …. curve shape modification factor (recommended value of 0.75). 

LTα  …. generalized imperfection factor for the specific case, see Table 6-1. 

This “specific” formulation is based on extensive experimental (Byfield & Nethercot, 1998) and 
statistical work according to Annex D of EN 1990 for the low-slenderness range around the desired 
plateau of LT,0λ =0.4 (King, 2000), as well as on comprehensive numerical studies (Greiner et al. 
2000), which were used to develop the design resistance model. The experimental and statistical 
work justified the introduction of a plateau value of LT,0λ =0.4, which did not appear in this extent 
in the numerical studies.  
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Fig 6-2 Examples for numerical buckling curves obtained by Greiner & Salzgeber (2000) for the 

development of the current EC3 “specific” LT buckling curves. 

The numerical studies served the purpose of obtaining a comprehensive set of numerical buckling 
curves for a great variety of hot-rolled and equivalent welded sections, different load cases and steel 
grades; they were conducted as geometrically and materially non-linear FEM calculations 
(GMNIA) with residual stresses and geometrical imperfections in the shape of sinusoidal, purely 
lateral bow imperfections. Two examples for the obtained curves are shown in Fig 6-2. 
Importantly, it was also shown that the numerical curves very well matched the lower bound of a 
test data pool found in the literature (see section 6.10.1). 

In a final step, the resulting numerical curves were approximated using the above expressions (6.9) 
with (2.37), whereby the experimentally founded plateau of LT,0λ =0.4 was introduced as a 
constraint for the calibration.  

Both the expressions (6.7) with (6.8) and (6.9) with (2.37) represent Ayrton-Perry type formulae 
that were calibrated for the LT buckling phenomenon using the so-called “generalized imperfection 
coefficient” α as calibration factor. They were, however, not coherently derived for the specific case 
at hand (LT buckling), but rather adapted (and, in the “specific” case, modified) from the column 
buckling case; by contrast, for the column buckling case the formulation is mechanically coherent, 
as was shown in chapter 5. 

 

 

a) b)



PART II – Columns and Beams – Basic Load Cases 

 

117 

hot-rolled I&H sections 

h/b 
General 

Case 
Specific 

Case 

≤2.0 αLT=0.21(a) αLT=0.34(b)

>2.0 αLT=0.34(b) αLT=0.49(c)

Table 6-1 Generalized imperfection coefficients αLT for LT buckling acc. to Eurocode 3. 

6.3.3. Open questions and current developments 

The code provisions of Eurocode 3 – EN 1993-1-1 for the design of steel members against lateral-
torsional buckling have lately come under renewed scrutiny from different sides. Whenever these 
provisions were critically reviewed, the criticism mainly focused on either one of the following 
aspects: 

i. Numerical buckling curves, determined using geometrically and materially non-linear 
(GMNIA) finite element calculations, were compared to the buckling curves found in the 
code (Rebelo et al. 2008; Snijder et al. 2008). Depending on the studied section and load 
case, more or less large discrepancies between the numerical and the code curve were 
thereby found to exist. This is exemplified by the buckling curves shown in Fig 6-3, where 
GMNIA buckling curves obtained for the “model beam” and eigenmode-conform geometric 
imperfections are compared to the applicable “general case” and “specific case” EC3 curves. 
 

ii. The discrepancies between numerical and code buckling curves were sometimes found to lie 
on the “unconservative” side, see Fig 6-3a, resulting in numerically determined buckling 
reduction factors that are lower than the code value. This was more frequently found to be 
the case for the “specific case” (SC) than for the “general case” (GC) curves of EC3. While 
it is not correct to regard this as a safety issue, it nevertheless led to an on-going debate 
about the appropriate partial safety factor to be adopted for each of the cases (Rebelo et al. 
2008).  
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Fig 6-3 Numerical buckling curves for an IPE 500 (a) and HEM320 (b) section compared to EC3 

curves. 

iii. The plot of the numerical buckling curve in Fig 6-3b explains another point that has been 
raised: the grouping of the properties of the sections is based purely on the depth-to-width 
ratio h/b, which is but a proxy representation of a variety of effects (torsional stiffness, 
behavior in plasticity). This grouping often fails to represent the actual behaviour of a 
certain section in a satisfactory way. In the case of the HEM320 section in Fig 6-3b, even 
the “less safe-sided” specific case curve of EC3 fails to accurately represent the high 
resistance of such a stocky section. Quite generally, a very large scatter of the position of the 
numerical buckling curves in the χ- λ  plane can be observed.  

iv. As is also illustrated in Fig 6-3b, the numerical calculations show a post-critical capacity of 
stocky sections that, albeit being present only for lengths that exceed the practical range, is 
interesting from a theoretical point of view, see 6.5.3, as well as (Taras & Greiner, 2008b).  

v. Some recent studies have focused their criticism of current LT buckling design rules on the 
perceived lack of consistency with other member buckling cases (columns) and have 
envisaged the development of a common “family” of buckling curves for all buckling 
phenomena (Sedlacek & Müller, 2006). In this context, much effort is currently being 
placed on the development of a “general method” for the stability design of members and 
whole structures (Stangenberg 2007; Naumes et al. 2008), whereby a “general” slenderness 
is used and the stability check of a structure is carried out through the application of a single 
buckling reduction factor χ. In this design philosophy, the LT buckling case merely 
represents a very special case, albeit a very important one.  
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In addressing the issues raised in the first four points, the study presented in this chapter 
acknowledges the need for increased consistency in the design rules for different member buckling 
cases and makes use of some ideas that were suggested for the “general method”, although a 
different design philosophy is advocated here in the last resort. This philosophy is traditionally 
based on a careful design against stability of single elements and members, rather than on an all-
inclusive, single check of entire structural systems. 

In order to achieve these objectives, the steps of a “consistent” development of buckling rules 
presented in chapter 3 must be followed, whereby special attention is paid to keeping consistency 
with the “benchmark” case of column buckling. Accordingly, the next step must consist in an 
identification of the parameters dominating the studied buckling phenomenon, which is carried out 
using numerical tools. 

6.4. Numerical studies – general remarks 
The numerical studies have been carried out using the methodology described in chapter 3 for shell 
element models. Beyond the general assumptions and modelling techniques described in that 
section, the following assumptions were made in all numerical calculations of this chapter, see Fig 
3-1: 

i. Only single-span members with in-plane, out-of-plane and torsional restraints at the 
supports (“end fork”) were considered. 

ii. In most calculations, and if not stated otherwise, the basic load case with constant bending 
moment over the member’s length was considered. A specific subsection is dedicated to the 
expansion of the findings for this basic load case to other load cases. The loads are applied 
as end moments or point loads, whereby the modelling techniques for the load introduction 
follow what is stated in chapter 3. 

iii. If not stated otherwise, all calculations are carried out for steel grade S235. In order to 
compare the findings to a different steel grade that is as “different” as possible from S235, 
yet still just within the range of applicability of slender beams, some calculations were 
carried out for S460. Strain hardening was considered, using the material model as shown in 
Fig 6-4. 

iv. The geometric imperfections were generally assumed to be proportional to the buckling 
eigenmode of the studied case, unless it is specifically stated that other imperfection shapes 
were assumed; in the latter case, purely lateral or purely torsional imperfections were 
studied. 
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Fig 6-4 Overview of the FEM modelling techniques and assumptions. 

v. The residual stresses were assumed to vary linearly over the single cross-sectional 
components. Both in the case of hot-rolled and welded members, the common assumptions 
as recommended in the ECCS recommendations (1984) were followed. 

6.5. Preliminary Parametric Study 
In this section, the influence of certain, specific structural parameters is studied by means of 
numerical GMNIA calculations in order to identify their impact on the LT buckling resistance of a 
section both in terms of absolute strength and in terms of the shape of a buckling curve. 

6.5.1. Geometrical imperfections: shape and amplitude 

As for other buckling phenomena, the shape and amplitude of initial geometrical imperfections is 
relevant to the ultimate LT buckling resistance of a member. Fig 6-5 shows numerical buckling 
curves for the case of a single span IPE 240 section under constant bending moment. Thereby, Fig 
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6-5a shows the influence of the chosen imperfection amplitude in the case of an imperfection shape 
that is affine to the first LT buckling eigenmode. Three curves are shown for length-proportional 
amplitudes 0e  equal to L/2000, L/1000 and L/500. The largest differences in absolute buckling 
strength (as percentage of the plastic moment resistance of the section) is present in the region of 
intermediate slenderness (around LTλ =1.0); at this slenderness, the numerical buckling reduction 
factors are χLT=0.697, 0.660, 0.616, respectively.  

 
Fig 6-5 Influence of the imperfection amplitude (a) and shape (b) on numerical LT-buckling 

curves. 

The largest relative differences (in terms of percentage points) between the three buckling curves 
are reached at a somewhat higher slenderness range of around LTλ =1.2. The difference between the 
central line for 0e =L/1000 and the other two lines just exceeds 8% as a maximum value of 
discrepancy.  

Fig 6-5b shows numerical buckling curves resulting from different assumptions regarding the shape 
of the initial imperfection. Again for a single span IPE 240 under constant bending moment, 3 
different shapes (with constant amplitude 0e =L/1000) are considered: “v0” with a sinusoidal lateral 
deformation equal to the weak-axis flexural buckling eigenmode; “EV” affine to the first LT 
buckling eigenmode; and “φ0” equal to a merely rotational initial deformation, equal to the first 
eigenmode for torsional buckling, with no out-of-straightness of the section’s centroid. As the 
figure shows, the influence of the shape is not very pronounced in the given load case; the purely 
lateral shape of imperfection, leading to the highest values of buckling resistance, lies less than 3% 
above the line corresponding to an eigenmode-conform imperfection up to LTλ =1.5, and 7% above 
the lowest line corresponding to a purely rotational imperfection.  
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Fig 6-6 Influence of the imperfection shape – load case “Q”, concentrated load at mid-span, top 

flange 

This explains why relatively little importance was given to the actual shape of the imperfection 
assumed for numerical calculations that led to the current Eurocode 3 LT buckling curves for the 
“specific case” of hot-rolled I- & H sections (Greiner et al 2000). For those calculations, a purely 
lateral out-of-straightness was chosen. 

An additional figure, Fig 6-6, points out that the above statements regarding the low influence of 
the shape of buckling curve do not entirely hold their validity when other load cases are looked at. 
This figure again shows numerical buckling curves for the three different shapes of imperfection 
described above, but for a different load case: the case of a concentrated load “Q” at mid-span of an 
IPE 240 section, and acting on the upper flange. As is illustrated in the figure, the difference 
between the resulting buckling reduction factors χLT is larger in this case, being quantitatively 
comparable to the differences discussed for Fig 6-5a. This is explicable in light of the higher 
“driving” force of the torsional deformation for this load case, since in the case of the “EV” and 
“φ0” imperfections a first-order torsional moment is present due to the eccentricity of the load with 
respect to the shear centre in the imperfect configuration. 

6.5.2. Residual stresses: amplitude and distribution 

The influence of the amplitude and distribution of residual stresses has been studied extensively for 
the case of flexural buckling. In these studies, the amplitudes and distributions of residual stresses 
found to be typical for welded I- & H-sections were shown to lead to significantly lower buckling 
coefficients χLT than e.g. the case of hot-rolled beams. Similar effects can be observed when 
analyzing the LT buckling case; this is illustrated in Fig 6-7 and discussed thereafter. 

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

χ
LT

=M
R
/M

pl
 [-

]

λLT

IPE 240
S 235
e =L/10000

σres

-- +

±0.3 fy

EV
v0

φ0

2
1

λLT

Q

Q



PART II – Columns and Beams – Basic Load Cases 

 

123 

 
Fig 6-7 Numerical buckling curves resulting from different assumption reg. residual stresses. 

The figure shows three different numerical buckling curves, calculated for the same IPE 240 section 
for the M=constant load case and the same, eigenmode-conform imperfection shape and amplitude. 
The difference between the three lines is represented by the assumptions regarding the residual 
stresses, whereby “0” denotes the curve for no residual stress at all, “r” for the pattern considered to 
be typical for hot-rolled beams of this series, and “w” for the distribution of residual stresses 
typically assumed for welded sections in accordance with the ECCS (1984) recommendation. The 
figure shows that the assumed residual stresses result in marked differences in the position of the 
buckling curves of more than 15% between the upper and lower lines in the region of maximum 
discrepancy, around LTλ =1.0. 

A remarkable feature of the numerical buckling curve for welded sections has already been 
discussed in the ECCS TC8 report that presents the background to the “specific case” LT buckling 
curves of Eurocode 3 (Greiner et al 2000): the curve’s marked bend at approximately LTλ =1.0, 
which is a unique feature of the residual stress distribution assumed to result from welding. In this 
report, it was pointed out that, after the bend at LTλ =1.0, the curve matches very well with the one 
resulting from a calculation for an IPE240 with a yield stress of fy=0.75 . fy,nom,S235= 176.25 MPa 
and no residual stresses, and plotted over the values of LTλ  and χLT that relate to the plastic 
moment capacity of a S235 section. The drop in yield stress of 0.25 times the nominal value fy,nom is 
equal to the almost constant compressive residual stress assumed to be present in the flanges. The 
fact that the red line for fy=0.75 . 235 MPa matches the “w” line at high slenderness indicates that 
the assumed, almost constant distribution of residual stresses in the “w” case is quite 
disadvantageous at slenderness ranges around LTλ =1.0, since it appears to be equivalent to a drop 
of the yield strength by 25%. This is vastly more severe than the bi-linear distribution usually 
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assumed for hot-rolled sections, even though the amplitude of the maximum compressive stress at 
the flange’s exterior edge is larger in this case. 

In reality (see already Brozzetti et alt., 1971), the stress distribution in welded sections depends on a 
variety of different parameters, among them the fabrication / cutting method for the flange plate 
itself (rolled plate vs. oxyflame-cut...). Many common welding and cutting processes can cause 
residual stress distributions in flange plates that are far more beneficial than the one assumed in Fig 
6-7, case “w”. Considering the wide range of parameters that influence the amplitude and 
distribution of residual stresses around welded joints, it would therefore certainly be worthwhile to 
re-assess the representativeness of this distribution.  

6.5.3. Section series  

The fact that the section series, or more generally the cross-sectional geometry, influences the shape 
of the LT buckling curve has already been discussed in section 6.3 and will be at the centre of the 
considerations made in the remainder of this chapter. Fig 6-8 shall therefore merely serve as 
additional, exemplary evidence of the influence of cross-sectional geometry on LT buckling curves.  

 
Fig 6-8 Numerical LT buckling curves for different hot-rolled beams. 

What should be particularly appreciated already at this point is the relatively poor 
representativeness of the current classification of sections with regard to depth-to-width ratios h/b. 
The figure shows two sections with widely different h/b ratios, an HEA 200 (h/b=0.95) and an 
HEM 600 (h/b=2.03), to lead to very similar buckling reduction factors χLT at least up to LTλ =1.0, 
which corresponds to lengths close to the limit of practical application for both these sections. 
Conversely, two sections with almost identical h/b ratio (again the HEM 600 and IPE 240 with 
h/b=2.0) have buckling curves that, albeit being close, are farther apart than the HEA 200 and HEM 
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600 curves, with the section with the (slightly) lower value of h/b actually having a lower-lying 
buckling curve. Only very deep sections such as the HEAA 1000 (h/b=3.23) clearly show a 
tendency towards lower buckling curves. The relatively poor describing quality of the depth-to-
width ratio has recently also been criticized by Beier-Tertel (2009), who proposed to use the 
parameter Iy/IT instead of h/b, arguing that this factor is better able to reflect the significance of a 
section’s torsional stiffness. 

Another interesting aspect of the buckling curves in Fig 6-8 is represented by the tendency of the 
stockier sections to exceed the Euler critical buckling moment Mcr (indicated by the hyperbola 1/

2
LTλ ) at high slenderness. In order to understand this “post-critical” load-carrying mechanism, it is 

necessary to take a look at the load-deformation plots, see Fig 6-9. 

 
Fig 6-9 Load-deformation paths for an HEM section with z 6.60λ = , L=32.68 [m]. 

The right-hand plot in Fig 6-9 shows the lateral and vertical deformations v  and w at mid-span, as 
well as the cross-sectional rotation θ  at this position, plotted over the load proportionality factor 
LPF=M/Mpl, for a member with zλ =6.60 and a physical length of 32.68 m. The left-hand side of the 
figure shows the calculated path of deformation, plotted with a deformation scale factor of 1.0. The 
usual geometrical imperfections were assumed, which follow the shape of the eigenmode and have 
an amplitude of 0e =L/1000. The figure illustrates that, for a member of this extreme length and 
with the given compact cross-section, very large deformations occur before the ultimate load is 
reached. Special attention should be paid to the calculated cross-sectional rotation at the ultimate 
load: this rotation reaches a value of 34°. At this stage of deformation, the cross-sectional strength 
for bending about the weak axis becomes relevant. With increasing length of the member, the 
ultimate cross-sectional rotation increases even further: eventually, the cross-section at mid-span 

LPF=0.000
v

w

θ

LPF=0.200

LPF=0.475

LPF=0.502

LPF=0.515

LPF=0.537

M

0 10 20 30 40

LP
F=

M
/M

pl
 [-]

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

v,w [cm]

0 20 40 60 80 100 120 140

 

θ [°]

θ
v
w



6. LateralTorsional Buckling of I & H Beams 

 

126 

rotates so much that the external bending moment – which, at the end supports, is still applied about 
the strong axis- acts about the weak axis on this cross-section. Therefore, it can be shown that the 
numerical GMNIA buckling curve for this specific case asymptotically approaches the ratio 
Mpl,z/Mpl,y, which for this profile is calculated to 0.478.  

This behaviour is only explicable by the large-deformations theory and can therefore not be 
included in the analytical, second-order formulation proposed in section 6.7. This should however 
not be considered as a limitation of the practical applicability of the equations presented in that 
section, as members of such extreme slenderness are not of any practical relevance.  

6.5.4. Steel grade 

The influence of the steel grade on the buckling strength and buckling reduction factor for the case 
of flexural column buckling has already been treated by Schulz (1968) and has more recently been 
subjected to renewed scrutiny by Wolf (2006). In terms of buckling reduction factors χ, numerical 
curves for two different steel grades were shown to be (practically) identical if two conditions are 
fulfilled: (a) the residual stresses have the same distribution and are proportional to the yield 
strength (this includes the case were they are zero), and (b) the amplitude of the geometrical 
imperfection is assumed to be proportional to the dimensionless slenderness λ, instead of length or 
the geometrical slenderness λ. Wolf showed that the latter factor has a relatively small influence, 
leading to values of χ for S355 lying not more than 3% above the values for S235. Whether or not 
the residual stresses are proportional to the yield stress, on the other hand, was shown to have a 
larger impact (above 10% for S355/S235 around λ=1.0) in the flexural buckling case. 

 
Fig 6-10 Numerical LT buckling curves – influence of steel grade; with fixed residual stress 

amplitude (a) and with residual stress proportional to the yield stress (b) 
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Fig 6-10 shows the influence of the assumed proportionality of the residual stresses on the buckling 
curves for two different steel grades for the LT buckling case under constant amplitude, again for an 
IPE 240. The curves in Fig 6-10a were calculated considering a fixed maximum amplitude of the 
residual stresses of 0.3 times 235 MPa, while the curves in Fig 6-10b are based on the assumption 
that the residual stress amplitude is proportional to the yield stress. The figures illustrate that the 
influence of the yield stress on the resulting factor χLT is relatively small, being practically non-
existent in the proportional residual stress case, and nowhere larger than 6% in the case of fixed 
residual stresses. As for other structural parameters, the maximum influence is observed around 

LTλ =1.0. 

The following figure, Fig 6-11, serves the purpose of bringing to attention an aspect that is of 
particular interest in the context of statistical evaluations of test data and reliability analyses: the 
decreasing influence of the yield stress on the buckling strength with increasing member length.  

 
Fig 6-11 Influence of steel grade without residual stresses – plotted over LTλ (a) and λz (b) 

Thereby, the diagram in Fig 6-11a again shows that the yield strength per se has almost no 
influence on the position of a buckling curve in terms of χLT, shown here for the case of an IPE 240 
with no residual stresses. Fig 6-11b, on the other hand, plots χLT over the geometrical slenderness 
λz; this quantity is of course proportional to the physical length of the member, and each value 
represents a certain member length independently of the the steel grade - while LTλ  does not. While 
this is trivial and might appear to be irrelevant, it is relevant to the determination of which 
parameters can be considered to be “independent” - and which ones cannot- for the purposes of a 
statistical reliability analysis. King (2009) pointed out that the ultimate LT buckling strength MR of 
a beam is a function of fy

α, whereby α is an exponent ranging from 1 at very low slenderness to 0 at 
very high slenderness.  
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If we acknowledge that χLT, as function of LTλ , is independent of the steel grade, and if we know 
the buckling strength MR,S235 for the (arbitrarily chosen) steel grade S235, we can write MR,fy for 
any other steel grade with a  yield strength fy as follows: 

 
y

y
R,f R,S235

y,S235

f
M M

f

α
⎛ ⎞

= ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

 (6.11) 

With R ,S235 LT,S235 pl y,S235M (L) W f= χ ⋅ ⋅  

For a fixed set of geometrical and structural imperfections, and a certain load case, the independent 
variables of the problem are thus: 

i. the member length L – contained in χLT,S235, which is of a function of L. 
ii. the cross-sectional geometry – contained both in χLT,S235 for the reference steel grade and in 

Wpl (see section 6.5.5). 
iii. the steel grade, represented by its yield stress fy.  

The dimensionless buckling reduction factor χLT for a discretionary steel grade is thus, by itself, not 
an independent variable, as it depends on all of the above variables; it is therefore not possible to 
separate the scatter of χLT from the scatter of any of the above variables (compare Rebelo et al., 
2009). By solving equation (6.11) for α, we obtain equation (6.12).  

 
( )

( )
yR,f R,S235

y y,S235

ln M M

ln f f
α =  (6.12) 

In Fig 6-12, the factor α for the example given above is plotted on the right-side axis, along with the 
resistance MR for the two steel grades shown in Fig 6-11, but normalized in both cases to the plastic 
moment capacity of a S235 section (plotted on the vertical axis on the left). This representation is 
much better suited than the one given in Fig 6-11 to illustrate the swift decrease of influence of the 
yield stress on buckling strength with increasing member length. 

It should be noted that this behaviour attains particular relevance not as much due to the difference 
in yield stress between two different steel grades, but much rather due to the wide scatter of the 
yield stress within a certain (nominal) steel grade: while this scatter dominates the total scatter of 
the buckling strength at low slenderness ratios, it does not influence the total scatter at all at a very 
high slenderness. This is visually very well expressed by the course of the curve representing α in 
Fig 6-12.  
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Fig 6-12 LT buckling strength for S460 and S235 as fraction of the sectional moment capacity for 

S235 (left axis); Exponent α (right axis). 

6.5.5. Crosssectional shape tolerances 

The manufacturing process of steel members –whether they are rolled, welded or otherwise 
assembled- must allow for certain geometrical tolerances, i.e. deviations of the actual shape of the 
cross-section from the nominal one. For the IPE 240 studied in all the examples so far, the 
allowable deviations of depth, width and thickness are given in EN 10034 (1993) and reported in 
the following table: 

 

 nominal value 
[mm] 

tolerance max/min 
[mm] 

section depth h 240 +4.0 / -2.0 

section width b 120 +4.0 / -2.0 

flange thickness 9.8 +2.0 / -1.0 

web thickness 6.2 ±0.7 

Table 6-2 Nominal value and maximum permissible shape deviations for an IPE 240 section 
according to EN 10034 (1993) 

Due to the manufacturing process of hot-rolled I-section, the fillet radius itself is basically constant 
in all cases, thus no tolerance is specified in the code. Other tolerances refer to total weight and the 
out-of-straightness of the both cross-section; these are not taken into further consideration in the 
following.  
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Fig 6-13 Influence of the cross-sectional shape deviations on the LT buckling strength in relative 

(a) and absolute terms (b). 

The above figure, Fig 6-13, illustrates the impact that the tolerances have on the shape of the 
buckling curve. Thereby, plot (a) shows the value of the buckling reduction factor χLT related to the 
“real” moment capacity, and plotted over the “real” value of LTλ , both calculated with the 
“maximum”, “nominal” and “minimum” cross-sectional dimensions; the “maximum” cross-section 
has a depth of 244 mm, a width of 124 mm, a flange thickness of 11.8 mm and a web thickness of 
6.9 mm, and the “minimum” cross-section is determined accordingly. As the figure shows, the 
deviations from the nominal size represented by the cross-sectional tolerances are not large enough 
to significantly alter the shape of this “real” buckling curve; a comparison with Fig 6-8 thereby 
helps explaining why there is any difference between the curves at all. 

What is perhaps more interesting to notice is the buckling strength in absolute terms, shown in 
figure Fig 6-13b in terms of χLT as reduction factor of the nominal section moment capacity, plotted 
over the nominal value of LTλ . The figure gives a clear indication of the large scatter of buckling 
stress (for any given length, respectively value of LT ,nomλ ) that can be caused by deviations of the 
cross-sectional geometry. As a matter of fact, the influence of the geometry, while slightly 
decreasing with increasing slenderness (length) in terms of χLT,nom, actually increases with 
slenderness in relative terms. For example, at LT ,nomλ =0.0 an IPE 240 section made of S235, with 
the “maximum” cross-section geometrical parameters within tolerance, has a moment capacity 
approximately 21% higher than a “nominal” section; at LT ,nomλ =2.0, this ratio reaches 40%, and 
the difference between the LT buckling moment capacity of the “minimum” and “maximum” 
section exceeds 80%. It is clear that –especially in the high slenderness range, where the yield 
stress’s scatter was shown to be of secondary importance- the cross-sectional geometry will be 
paramount to the total scatter of the buckling strength. 
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6.5.6. Fillet radius 

A question often raised in the context of the determination of numerical buckling curves is whether 
or not a curve for a certain hot-rolled beam is correctly determined even if the fillet radius is 
omitted. This question is of practical relevance, rather than theoretical, because modelling the fillet 
with beam- or shell elements is not entirely straight-forward – see chapter 3. In the numerical 
calculations that underpin the current Eurocode LT and combined N+M buckling provisions, the 
fillet radius was generally omitted. This has sometimes been criticized. A justification by means of 
an example calculation has already been given by Kaim (2004). Here, a similar example –but for a 
different section- is shown, see Fig 6-14. The plot shows that the difference in terms of buckling 
curves between an IPE240 with the nominal fillet radius (r=15mm) and without (r=0 mm) is indeed 
small – provided of course that χLT, Mpl and LTλ  are calculated for the corresponding cross-section. 
However, if the goal of a calculation is to determine the LT buckling strength in terms of MR, the 
fillet must be included, as it has a significant impact in this case. For an IPE 240, the cross-sectional 
plastic moment capacity Mpl is ca. 6% higher with fillet radius than without. The M=const. LT-
buckling strength MR of an IPE 240 beam of 3500 mm of length is ca. 10% higher with fillet when 
compared to the case with r=0. However, the slenderness LTλ  for these two cases is also different, 
being slightly higher in the case of r=0; in order to have the same value of LTλ , two beams with or 
without fillet must have different length. As the figure shows, this results in differences in terms of 
χLT as low as 2.5% in the given case. 

In summary, it can be said that the omission of the fillet radius is justified if only the shape of the 
buckling curve is studied, while it is obviously not justified if the buckling strength in absolute 
terms is of interest. The criticism sometimes directed at the omission of the fillet in numerical 
calculations thus seems to stem more from a misunderstanding of the aims of a certain calculation, 
rather than an actual questioning of the simple mechanical relationships discussed in this section. 

 
Fig 6-14 Influence of the omission of the fillet on the shape of the buckling curve. 
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6.6. Numerical buckling curves with nominal input parameters 
In order to obtain buckling rules that are consistent with and comparable to the ones for the 
“benchmark case” of flexural column buckling for LT buckling, the procedure during the 
development of the column buckling curves must be followed. In practical terms, the first step thus 
consists in the determination of numerical (GMNIA) buckling curves that are based on the “model 
beam” assumptions of Beer & Schulz / ECCS: nominal geometric and material input parameters, 
and “fixed” imperfection amplitude coefficients. 

The residual stresses were assumed to vary linearly over the single cross-section components, 
following the provisions given in the ECCS recommendation (1984). Accordingly, a distinction was 
made between hot-rolled beams with a depth-to-width ratio of h/b≤1.2 and sections with h/b>1.2, 
see Fig 3-1. The magnitude of residual stress thus depends on the type of rolled cross-section and is 
expressed as a fraction of the yield strength fy of mild steel S235. Strain hardening was included in 
the calculations, also in accordance with the ECCS recommendation. All calculations were 
conducted for steel grade S235, assuming a yield strength of fy=235 N/mm².  

 

 
Fig 6-15 Numerical LT buckling curves for hot-rolled sections of steel grade S235, compared with 

Eurocode 3 “general” and “special case” curves; h/b≤2.0 (a); h/b>2.0 (b). 

 

The results of these calculations for hot-rolled sections are shown in Fig 6-15 and compared to the 
current Eurocode design curves. The figure illustrates what has been stated in the introduction, i.e. 
that the rather coarse grouping of the properties of the sections according to the depth-to-width ratio 
h/b can only accurately describe but a few of the sections by one single buckling curve. 
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Fig 6-16 shows numerical buckling curves valid for welded cross-sections, whereby cross-section 
geometries almost equal to rolled sections (from HEA 200 to HEA 1000), but without fillet radius, 
were studied. For these sections, the lack of a “general” accuracy (for all section geometries) of the 
current design provisions seems to be even more severe. 

 
Fig 6-16 Numerical LT buckling curves for welded sections of steel grade S235, compared with 

Eurocode 3 “general” and “special case” curves; h/b≤2.0 (a); h/b>2.0 (b). 

6.7. AyrtonPerry formulation  
In this section, case-specific analytical formulae are derived along the lines of the Ayrton-Perry 
formulation: using second-order internal forces and a first-yield criterion for the definition of an 
ultimate buckling load. For a single-span member with double-symmetric cross-section and 
constant bending moment, the assumption of initial lateral and torsional imperfections v0 and θ0 of 
sinusoidal shape lead to the following second-order equilibrium equations: 

 0cr,z y yN v M M⋅ − ⋅θ = ⋅θ  (6.13) 

 
2

cr
0y y

cr,z

MM v M v
N

− ⋅ + ⋅θ = ⋅  (6.14) 

with: cr cr,zM , N  elastic critical buckling loads for lateral-torsional and flexural buckling. 

Of all possible combinations of v0 and θ0, three special cases can be considered: one case with only 
lateral imperfections v0, one case with only torsional imperfections θ0 and one case with a 
distribution of θ0 and v0 corresponding to the shape of the first buckling eigenmode of the system. 
The latter approach was e.g. also used by Stangenberg (2006); it implies a coupling of the two 
degrees of freedom of the problem according to (6.15). 
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 cr
0 0

cr,z

Mv
N

= ⋅θ  (6.15) 

By using equation (6.15) in (6.14) and combining (6.14) and (6.13), the following relationships 
between the deformation amplitudes v and θ and the initial torsional imperfection θ0 are found: 

 y
0

cr y

M
M M

θ = θ ⋅
−

 (6.16) 

 ycr
0

cr,z cr y

MMv
N M M

= θ ⋅ ⋅
−

 (6.17) 

The following expressions can be used to determine the second order internal forces (out-of-plane 
bending moment Mz and warping moment Mω) as a function of the occurring deformations: 

 
2

z z 2M EI v
L
π

= ⋅ ⋅  (6.18) 

 
2

2M EI
Lω ω
π

= ⋅ ⋅θ  (6.19) 

By using (6.16) and (6.17) in (3.7) and (6.19), we obtain: 

 y
0z

y

cr

M
M M

1
M

= θ ⋅
−

 (6.20) 

 
2

y ycr,z
0 02

ycr y cr z

cr

M MN IM EI MM M M IL 1
M

ω
ω ω

⎛ ⎞π
= ⋅ ⋅θ ⋅ = ⋅ ⋅θ ⋅⎜ ⎟− ⎝ ⎠ −

 (6.21) 

Mz and Mω can also be expressed in terms of the imperfection amplitude 0e  by considering the 
following geometrical relationship: 

 0
0

cr cr,z

e
M / N h / 2

θ =
+

 (6.22) 

The maximum stress equation can now be written for the outermost fibre of the compressed flange 
and set equal to the yield stress in a first-yield failure criterion: 

0y y y cr,z maxz
max y

yy z y cr cr,z z cr z

cr

M M M NM IM e 1 fMW W I W M / N h / 2 W M I I1
M

ω ω

ω ω

⎡ ⎤ω
+ + ⋅ω = + ⋅ ⋅ + ⋅ ⋅ =⎢ ⎥+ ⎣ ⎦−

 (6.23) 

In the present case of a double-symmetric I cross-section, the following relationships hold: 

 z
z max

I h bW   ;  
b / 2 4

⋅
= ω =  (6.24) 

resulting in the following simplified form of equation (6.23): 
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 0y y cr,z
y

yy z cr cr,z cr

cr

M M N1 e 1 h / 2 fMW W M / N h / 2 M1
M

⎡ ⎤
+ ⋅ ⋅ ⋅ + ⋅ =⎢ ⎥+ ⎣ ⎦−

 (6.25) 

In order to obtain a dimensionless equation, expression (6.25) must be divided by the yield stress fy. 
Furthermore, the second term on the left side can be expanded with Wy /Wy and A/A: 

 0y y y cr,z

yy y y y z cr cr,z cr

cr

M M W N1 A e 1 h / 2 1.0MW f W f W A (M / N h / 2) M1
M

⎡ ⎤⋅
+ ⋅ ⋅ ⋅ ⋅ + ⋅ =⎢ ⎥⋅ ⋅ ⋅ + ⎣ ⎦−

 (6.26) 

The dimensionless slendernesses and buckling reduction factors can now be introduced: 

 y y y y
z LTLT

y y cr,z cr

M A f W f
 ;  ; 

W f N M
⋅ ⋅

χ = λ = λ =
⋅

 (6.27) 

Using the expressions (6.27) in (6.26) and simplifying finally leads to the following equation: 

 
2

0 LT LT
LT 2 2

z z LTLT

A e 1.0
W 1

χ⋅ λ
χ + ⋅ ⋅ =

λ − χ ⋅λ
 (6.28) 

By substituting: 
2

0 LT
2

z z

A e*
W
⋅ λ

η = ⋅
λ

 (6.29) 

we obtain an equation that is identical to the Ayrton-Perry formula (5.2) of chapter 5 and can be 
solved accordingly: 

 LT 22
LTLT LT

1 1.0χ = ≤
Φ + Φ − λ

 (6.30) 

and ( )2
LTLT

1 1 *
2

Φ = ⋅ + η +λ  (6.31) 

 

The result of the (elastic second-order) derivation given up to this point is identical to the one given 
by Stangenberg (2006). Equation (6.28) is evaluated for three cross-sections using the elastic values 
of A and Wz and an amplitude of the initial, sinusoidal geometric imperfection of 0e =L/1000 (of 
EV-conform shape) and plotted in Fig 6-17. The resulting buckling curves show that the torsional 
rigidity of the sections is quite distinctly taken into account by the proposed analytical formulation. 
The fact that stocky sections like an HEB400 and HEM200 have a higher resistance against LT 
buckling when compared to a slender HEAA1000 is thereby (qualitatively) correctly predicted. 
However, the curves illustrated in Fig 6-17 just represent the outcome of an elastic second order 
calculation and do therefore not realistically (quantitatively) reflect the actual characteristic 
resistance against LT buckling. 



6. LateralTorsional Buckling of I & H Beams 

 

136 

 
Fig 6-17 Analytical buckling curves according to the purely elastic, second order derivation. 

The above derivation has been carried out using the assumption that the initial geometric 
imperfection is affine to the first eigenmode; this assumption led to a design equation that has the 
shape of the Ayrton-Perry formula. It is interesting to study how the derivation is affected if a 
different assumption regarding the initial imperfections is made. 

Two cases can be considered: the case where the initial deformation is purely lateral – v0; and one 
case where the initial deformation is purely torsional - φ0. Following the same steps that led from 
equations (6.13) and (6.14) to (6.28), the following relationships are established 

 

 

2
y

0 2 2
cr y

M
v v

M M
= ⋅

−
 

22
ycr

0 2 2
y cr,z cr y

MMv v
M N M M

= ⋅ ⋅
⋅ −

 (6.32)
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0 2 2
y cr y

MN
v

M M M
θ = ⋅ ⋅

−
 

2
y

0 2 2
cr y

M
M M

θ = θ ⋅
−

 (6.33)
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(6.34)
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In the above representation, only the most important results of the derivation have been reported, as 
the other points (internal forces, stress-based limit state formulation, introduction of dimensionless 
variables) are identical to the steps taken in equations (3.7), (6.19), (6.24), (6.25) and (6.27). The 
main difference between the eigenmode-conform and the above derivations lies in the different 
appearance of the deformation amplification factor, compare e.g. (6.16) and (6.32); in the latter 
case, this amplification factor is quadratic. This follows through till the final dimensionless limit 
state equations (6.34).  

Contrary to (6.28), which is an Ayrton-Perry equation that can be solved for χLT accordingly, 
equations (6.34) cannot explicitly be solved for χLT. However, iterative root-finding methods can be 
employed to find values of χLT that fulfill (6.34). The following figure, Fig 6-18, shows the result of 
such an analysis for two sections and the two initial imperfection shapes “v0” and “φ0”, as well as 
the eigenmode-conform imperfection shape. 

 
Fig 6-18 Impact of the imperfection shape on the position of a purely elastic, second-order LT 

buckling curve. 

As in Fig 6-17, the elastic values of A and Wz and an amplitude of the initial, sinusoidal geometric 
imperfection of 0e =L/1000 were assumed for this calculation. The same remarks regarding the 
quantitative interpretation of this plot apply as for Fig 6-17. 

The two key points illustrated by Fig 6-18 are discussed in the following. For one, the effect of the 
imperfection shape on the LT buckling strength discussed in section 6.5.1 is also reflected in the 
analytical derivations. The purely lateral deflection is shown in the figure to result in higher values 
of χLT than the the other two imperfection shapes, with the purely torsional being the most 
detrimental. Additionally, it should be noted that the difference between the three lines depends 
rather strongly on the studied section, whereby this is especially the case for the purely torsional 
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imperfection. If we look at equation (6.34) for this case, we can see that the term Mcr/(Ncr,z 
. h/2) is 

present in the term in parenthesis, in the numerator - and not in the denominator as is the case for 
the purely lateral imperfection. This term is larger for stockier sections than for rather slender ones, 
and increases with member length and slenderness. This explains why the curve for the purely 
torsional imperfection appears not to converge towards the curve for the purely lateral and 
eigenmode-affine imperfection.  

Finally, Fig 6-19 illustrates the impact of both imperfection shape and amplitude on the buckling 
curves obtained from equations (6.28) or (6.34). It is thereby interesting to note that the difference 
between the curves pertaining to a certain shape strongly increase with raising imperfection 
amplitude.  

 
Fig 6-19 Influence of shape and amplitude on the results of the analytical LT buckling curves. 

The curves for the eigenmode-affine and purely lateral imperfection are clearly “rational” in the 
sense discussed in chapter 2, since they converge towards the Euler hyperbola both with decreasing 
imperfection and increasing slenderness. The curve for the purely torsional imperfection also 
approaches the Euler hyperbola with decreasing imperfection, but has a much slower convergence 
rate towards the hyperbola at high slenderness. 
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6.8. Calibration  
The analytical, Ayrton-Perry type buckling curve formulation presented in the preceding section 
and given by expressions (6.30) and (6.31) is specific for the studied case of LT buckling. In the 
next step, this formulation must be calibrated to the representative numerical buckling curves that 
were produced in section 6.6. That is done in this section, whereby existing approaches are 
discussed and new ones are presented. Since the objective of the section is to show the 
methodology, all considerations are made solely for hot-rolled, commercial European I- & H 
sections. However, at the end of the section the results are expanded to welded sections. 

6.8.1. Representation of existing rules 

The existing Eurocode 3 approach, see section 6.3, can be interpreted as a calibration of the factor 
η* in equation (6.31) to best represent the numerical/experimental buckling data by analytical 
curves. Similarly to the assumptions made in the column buckling case, the Eurocode 3 calibration 
expression for η* is expressed represented by a linear function of the slenderness LTλ . 

 ( )LT LT,0LT*η = α ⋅ λ − λ  (6.35) 

with LT,0λ …. plateau value, equal to 0.2 for the EC3 “general case”. 

As has been discussed in chapter 5, it is convenient –in order to get a “feel” of the quality of the 
approximation function for η respectively η*- to compare the proposed calibration expression –
here, (6.35)- to the values of η*num that precisely describe the numerical values.  

The latter are obtained by solving (6.28) with (6.29) for η*: 

 ( )2
LTnum LT,num

LT,num

1* 1 1
⎛ ⎞

η = − ⋅ − χ ⋅λ⎜ ⎟⎜ ⎟χ⎝ ⎠
 (6.36) 

with χnum... value of the buckling reduction factor as obtained from a numerical (GMNIA) 
calculation, see section 6.6. 

Fig 6-20 shows the comparison of the values of η* that match the numerical buckling curves for 
hot-rolled I- & H sections presented in section 6.6 –obtained using equation (6.36)- with a buckling 
curve that results from equation (6.30) with expression (6.35) and using the values for αLT and 

LT,0λ  of the “general case” of Eurocode 3, see section 6.3. Two aspects can be pointed out: 

i. The numerical values η*num are rather coarsely described by the expressions for η* found in 
EC3, (6.35). The lack of accuracy of the current rules was already discussed in the 
introduction. The representation in Fig 6-20, however, aids the understanding of why this is 
the case; it also shows that the description is less accurate for stockier sections (with 
h/b≤2.0) than for more slender ones.  
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Fig 6-20 Comparison of the factor η* -see equation - found in EC3 with the numerical values. 

ii. Quite generally, the numerical values of η*num, when plotted over LTλ , are not well 
represented by a straight line, having a distinctly non-linear course when LTλ >1.0. Some of 
these curves actually fall below a value of η*num=0.0. Expression (6.30) degenerates into the 
Euler hyperbola 1/

2
LTλ  for the case of η*=0.0, and values of η* lower than zero indicate 

that the Euler hyperbola has been exceeded; indeed this is what was observed in the 
numerical buckling curves for stocky sections in the high slenderness range. 

6.8.2. Generalized imperfection η and equivalent geometrical imperfection e0 

As is discussed in the previous section and in the introductory section 6.3, the current Eurocode 3 
formulation is neither very accurate, nor consistent with the physical behavior. Bearing in mind the 
second-order, Ayrton-Perry type derivation in section 6.7, this can be explained. If we look at the 
elastic expression for η* (6.29), we see that this term differs from the term for η used in the column 
buckling case by the additional coefficient ( )2

LT z/λ λ , which represents a stiffness and strength 
modification factor that is peculiar to the LT buckling case. By using expression (6.35) to 
generalize η* and calibrate it to the numerical values, this term is “blurred” in the calibration and its 
potential is thereby lost. It therefore makes sense to include this parameter in a description of η* 
and to write: 

 
2
LT
2
z

* λ
η = η⋅

λ
 (6.37) 

The factor η thereby replaces the elastic terms A.e0/Wz. This is exactly the term that was replaced 
by a generalized expression in the column buckling case by ( )0α⋅ λ − λ , see chapter 4. 
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Again, a calibration function with appropriate calibration factors is needed that is as accurate and 
simple as possible. Two different expressions for η are discussed here: 

 ( )zI 0.2η = α⋅ λ −  (6.38) 

 ( )LTII 0.2η = α⋅ λ −  (6.39) 

Expression (6.38) represents a generalized imperfection η that increases linearly with the 
dimensionless slenderness for weak-axis buckling zλ , and therefore with the length of the member, 
analogously to the column buckling case. Expression (6.39) represents a factor η that is 
proportional to LTλ , as is currently commonplace in the EC3 rules for LT buckling. Since LTλ  is 
not length-proportional, the generalized imperfection does not increase linearly with length if 
(6.39) is used. 

It is worthwhile to elaborate on this point, which was already mentioned in broader terms in chapter 
4; the generalized imperfection η can more tangibly be expressed by an “equivalent” geometrical 
imperfection, which is easily calculated by solving equation (6.29) for 0e : 

 z
0

We
A

= η ⋅  (6.40) 

This equation is also used –in a slightly modified form– in EC3, see clause (5.10), to calculate the 
equivalent geometrical imperfection amplitudes of frames to be used in second-order design 
calculations.  

Equation (6.40) is evaluated for both expressions (6.38) and (6.39) and plotted over the length in 
Fig 6-21. Thereby, the elastic section modulus Wz and the area A of an HEM600 section were 
chosen, as this stocky section series lends itself to a good representation of the studied effects. The 
imperfection factor α was set to be equal to 0.34 in both cases; this is equal –for this specific 
section- to both the factor αFBz for weak axis flexural buckling and to αLT for the general case LT 
buckling case according to EC3. For completeness, it should be stated that, for the calculation of zλ  
and LTλ , once more the yield strength of steel grade S235 and the basic cases of single-span 
members with constant normal force or bending moment were considered.  

Two representations of 0e  are chosen. In Fig 6-21a, the ratio of length to imperfection 0L / e  is 
plotted, while figure Fig 6-21b shows the imperfection itself plotted over the length. The latter 
figure illustrates that the equivalent geometrical imperfection indeed increases linearly with length 
when equation (6.38) is used, while (6.39) results in an imperfection that is clearly under-
proportional with regard to length. Due to the plateau, both lines do not start at L=0, but at the 
length corresponding to z 0.2λ =  and LT 0.2λ = , respectively. Fig 6-21a, on the other hand, shows 
that –due to the inclusion of the plateau value 0 0.2λ = , not even equation (6.38) corresponds to a 
geometrical imperfection that is a constant fraction of length. It does however approach a constant 
fraction, as is illustrated by the comparison with the imperfection resulting from zη = α ⋅ λ  without 
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the plateau. Equation (6.38) does therefore qualitatively reflect the assumptions made during the 
calculation of numerical buckling curves for column buckling (chapter 5) and LT buckling (section 
6.6), where the geometrical imperfections were assumed to have an amplitude proportional to the 
member length.  

It should be noticed again that also fabrication tolerances for the out-of-straightness of members are 
generally defined by constant fractions of length. Equation (6.39), in comparison, represents an 
equivalent geometrical imperfection that –as a fraction of length- is far from constant. The 
implications of these findings are discussed in the following sub-section. 

 
Fig 6-21 Equivalent geometrical imperfections for a HEM600 section, plotted as L/ 0e  (a) and 0e  

(b) over the member length. 

6.8.3. Calibration of the AyrtonPerry “generalized imperfection” η 

In the preceding paragraphs, it was already pointed out that only a generalized imperfection η 
expressed by equation (6.38) preserved the basic assumption regarding the geometrical 
imperfections made during the development of the numerical buckling curves. The implications of 
this fact on the calibration of the specific Ayrton-Perry formulation of section 6.7 to the numerical 
curves are discussed in the following.  

For the purpose of selecting the expression among (6.38) and (6.39) that is best suited for 
calibration, the “best-fit” value of α for both expressions is determined and the results are 
compared.  

Additionally, a third proposal is examined, which is being brought forward in different publications 
(Sedlacek/Müller 2006, Naumes 2008) as the expression for the “new European member buckling 
curves”; in this proposal, it is suggested to use an expression similar to (6.39) and the same factor 
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for αLT that is valid for weak axis flexural buckling, i.e. αFBz, which leads to the following form in 
the LT buckling case: 

 ( )LTFBz 0.2η = α ⋅ λ −  (6.41) 

This proposal is included in the considerations made in the following paragraphs in order to check 
its validity for LT buckling.  

 
Fig 6-22 Comparison of the numerical value of the Ayrton-Perry generalized imperfection η with 

the three approximations given by the three expressions (6.38), (6.39) and (6.41). 

An example is conveniently used to compare the three expressions (6.38), (6.39) and (6.41) for the 
generalized imperfection. In a first step, the expression for η itself is compared to numerical values 
obtained by evaluating the following equation – compare with (6.36). 

 ( )
2

2z
LTnum LT,num

LT LT,num

1 1 1
⎛ ⎞⎛ ⎞λ

η = ⋅ − ⋅ − χ ⋅λ⎜ ⎟⎜ ⎟ ⎜ ⎟χλ⎝ ⎠ ⎝ ⎠
 (6.42) 

Fig 6-22 shows values of η that match the numerical buckling curve for LT buckling of an 
HEM600 section, plotted over zλ  (Fig 6-22a). In the figure, these values are compared to the 
expressions (6.38) and (6.39) with the respective “best-fit” values of αLT, as well as to expression 
(6.41) with the value of αFbz=0.34 taken from tables 6.1 and 6.2 in Eurocode 3 (2006).  
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ηnum from zero up to the peak in the η=f(λ) curve. They are equal to 0.28 for expression (6.38) and 
0.48 for (6.39). The following observations can be made: 

i. When plotted over zλ , the numerical values of ηnum have a clearly linear course up to a 
value of zλ  that corresponds to approximately LTλ =1.0 (see Fig 6-22b). Beyond this point, 
the slope of the numerical curve quickly changes and the values of ηnum peak at a value of 

zλ  of approximately 3.0, decreasing beyond this point.  
ii. This is explicable by a change of the dominant imperfection and strength component. The 

linear segment of the curve reflects the assumptions made for the numerical LT buckling 
curves in section 6.6, with length-proportional geometrical imperfections. The linear 
segment of ηnum thus indicates that geometrical imperfections are dominant here, whereas -
for higher λ- residual stresses and large deformations become more relevant. 

iii. The function for η given by (6.41) is far removed from the numerical values both in shape 
and position. At high slenderness ratios (around LTλ =1.6) it does intersect the numerical 
curve, but this does not seem to reflect any mechanical behaviour. Since most of the 
numerical line lies above the values of η given by (6.41), the analytical buckling curve 
resulting from this expression will yield reduction factors χLT on the “unsafe” side compared 
to the numerical buckling curve. 

In light of these results it can be concluded that expression (6.38), representing a generalized 
imperfection that is proportional to zλ  and therefore to the member’s length, is the suitable one to 
approximate the numerical curve, at least in the linear segment of the ηnum curve. 

Contrary to (6.38), expression (6.39) represents imperfection amplitudes deviating from the length 
proportional ones, which causes problems of fitting the function for ηnum and may lead to “unsafe-
sided” results. 

The last points are confirmed in Fig 6-23, which shows the analytical buckling curves given by the 
evaluation of equation (6.30) with (6.31) and (6.37) for expressions (6.38), (6.39) and (6.41) and 
compares these curves with the numerical curve for the HEM600 section discussed above. If (6.41) 
is used to describe η, the value of αFBz is equal to 0.34 for the HEM600 according to EC3 tables 6.1 
and 6.2. Two forms of representation are used, the classical representation with the buckling 
reduction factors χLT plotted over LTλ  (a), and the Merchant-Rankine representation where χLT is 
plotted over the ratio of the ultimate buckling load MR to the Euler critical load Mcr (b). The latter 
form of representation has the advantage of better showing the differences between each curve.  

The figure shows that the analytical curves given by expression (6.38) –with the best-fit value of 
αLT=0.28- practically overlaps with the numerical curves up to a slenderness of LTλ =1.0, while the 
“best-fit” curve given by expression (6.39) -αLT=0.48-slightly diverges from the numerical one. The 
curve given by (6.41), on the other hand, lies significantly above the numerical curve over a wide 
range of slenderness. A comparison with Fig 6-22a shows this to be consistent with that plot, where 
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the values of η for expression (6.41) were shown to lie significantly below the numerical values 
ηnum over a wide slenderness range. 

It has already been stated that also the analytical curve resulting from expression (6.38) diverges 
from the numerical curve towards the “safe side” beginning at LTλ =1.0. It is interesting to point out 
that this divergence almost precisely occurs at a length corresponding to the practical limit of 
applicability for the given section and load case; lengths exceeding the ratio of L/h=25 
(corresponding to L=15.5m for the HEM600) represent a realistic estimate for an upper limit of 
practical application for the given loading condition, since at a service load level (assumed to be 
70% of the ultimate load level) a deformation limit of L/200 is exceeded here. It can therefore be 
ascertained that a very small error results from the description using expression (6.38) and the best-
fit value of αLT for all practical member lengths. This was found to be the case for all studied 
sections.  

 
Fig 6-23  Comparison of numerical and best-fit analytical buckling curves for a HEM600; χ-λ 

representation (a); Merchant-Rankine plot (b) 

The maximum error inherent to expression (6.39) with the best-fit value of αLT=0.48 is slightly 
larger, and reaches its maximum on the “unsafe” side for the studied section. This is not necessarily 
the case for all sections; as a matter of fact, due to the under-proportionality of η with regard to 
length resulting from (6.39), this expression can in some cases even yield more accurate results in 
the high slenderness range than expression (6.38) – provided again that the section-specific best-fit 
value of αLT is used.  
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The inaccuracy of expression (6.41) is inherent to its core assumption regarding the value of the 
“generalized imperfection coefficient” α. The values of αFBz given in EC3 for weak axis flexural 
buckling are larger for hot-rolled beams with h/b≤1.2 than for deeper sections, which is coherent 
with the higher residual stresses in stockier sections. The adoption of these values in an equation 
like (6.41) for LT buckling, however, appears to be going against the actual trend observed in the 
numerical calculations, where sections with larger h/b require a higher value of α than stockier ones. 
Thus, using expression (6.41) will result in “un-safe sided” buckling curves for most sections with 
h/b larger than approx. 1.8, and very “safe sided” curves for sections with h/b≤1.2.  

This last statement is further confirmed by two additional examples, plotted in Fig 6-24. The figures 
show GMNIA curves for an HEA 200 and an HEAA1000 section, it is hot-rolled, class 1 sections 
that are at the two extremes of the h/b spectrum of commercial sections. These numerical GMNIA 
curves, calculated using the common model beam geometry and imperfection assumptions, are 
compared to the result of the Ayrton-Perry formula (6.30) with η* according to (6.37) and η taken 
to follow the function (6.41), i.e. the linear function in LTλ , with the generalized imperfection 
amplitude α equal to the value that is valid for weak-axis flexural buckling, αFBz according to the 
Eurocode. 

The figure again shows the built-in inaccuracies of this formulation. As has been expected, the 
stocky HEA 200 section is clearly penalized by this formulation of η, since the value of αFBz =0.49, 
applicable in the weak-axis flexural buckling case for this section, is too “conservative” for LT 
buckling. The opposite is true for the slender HEAA 1000 section, where the value of αFBz=0.34, 
applicable for flexural buckling, is not high enough, yielding results that don’t reflect the behaviour 
observed in GMNIA calculations. 

 
Fig 6-24 Comparison between GMNIA curves for an HEA 200 (a) and HEAA 1000 (b) section 

with the results of the analytical formulation (6.30) and η according to (6.41). 
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Whether or not the observed discrepancies in Fig 6-24 are acceptable from the point of safety would 
have to be decided at a code committee level; in spite of margins of error of more than 10% to the 
“unsafe” side, one could still argue that the discrepancies are in the range of the current design 
rules. It is however clear that the proposed “new European member buckling curves” (Sedlacek & 
Müller, 2006), which use expression (6.41) and are intended to be employed for all imaginable 
combinations of cross-sections and loading conditions, is actually not able to consistently and 
accurately describe the LT buckling behaviour of the simple, prismatic model beams, on which the 
benchmark case for member buckling design -column buckling- is also based. Considering that the 
“second simplest” (after column buckling) basic member stability case is being treated here, the 
above observation cannot but make one sceptical regarding the introduction of the “general 
method” with the “new European member buckling curves” as a codified design procedure, at least 
not without considerable additional numerical studies. Due to the apparent lack of accuracy and 
consistency for LT buckling observed for curves resulting from expression (6.41) in the above–and 
many other- studied cases, this expression will not be further considered in this chapter. 

If we now return our attention solely to expressions (6.38) or (6.39) and on the task of their 
calibration to the developed numerical LT buckling curves, it can be stated that the differences 
between buckling curves that were calculated using either one of the two expressions do not appear 
to be dramatic. Provided that the “best-fit” value of αLT is used in both expressions, the curve 
resulting from expression (6.38) was shown in Fig 6-23 to be only slightly more accurate –in 
absolute more than in relative terms- than the curve resulting from (6.39).  

 
Fig 6-25  “Best-fit” values of the generalized imperfection amplitude coefficient α. 
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Nevertheless, the adoption of expression (6.38) is recommended. This is desirable from a 
theoretical point of view because it (better) reflects the underlying assumptions regarding 
geometrical imperfections made during the calculation of the numerical buckling curves. More 
importantly, it is far better suited for the “grouping” of sections with regard to their geometrical 
properties (h/b). This is shown in Fig 6-25 through a comparison of “best-fit” values of αLT for 
some representative sections and expressions (6.38) and (6.39). The sections are ordered with 
ascending h/b ratio. Up to IPE200, all sections have values of h/b≤2.0, the classification limit for 
the LT buckling rules in EC3. 

Fig 6-25 shows that, if the parameter h/b with a classification limit at 2.0 were to be maintained, 
only expression (6.38) allows for a satisfactory representation of the actual behaviour. For this 
formulation, a tendency to an increase of the best-fit value of αLT with increasing h/b is (at least 
qualitatively) noticeable. For formulation (6.39), no such tendency was observed, showing a 
remarkable scatter depending on the rolling series (HEAA, IPE, HEM), especially for sections with 
h/b≤2.0. 

Thus, maintaining the classification limit at h/b=2.0, values of αLT according to Table 6-3 are 
proposed. This proposal is shown in Fig 6-25 as a dashed horizontal line. In Fig 6-26, it is compared 
to numerical values of η plotted over zλ .  

 

h/b hot-rolled I & H

≤2.0 αLT=0.28 

>2.0 αLT=0.38 

Table 6-3 Proposed categorization according to h/b for the approach of section 6.8.3. 

When compared to Fig 6-20, the improved accuracy of this proposal in contrast to the current 
Eurocode provisions is probably not immediately appreciable. This is better shown in Fig 6-27, 
which compares the new analytical curve calculated using Table 6-3 with the numerical curve in 
terms of the buckling reduction factor χLT; thereby, the sections with the largest observed 
discrepancies between the numerical value ηnum and η according to Table 6-3 were chosen. Again, 
both the classical χ-λ and the Merchant-Rankine representation are used. 

Even for these four sections, the error in the prediction of χLT is small within the practically relevant 
lengths with L/h≤25. If discrepancies beyond a few percentage points are observed, they are 
consistently “safesided” and occur only at the upper limit of applicability of the respective section. 
As the comparison of the lines for the HEM200 section in Fig 6-27 shows, the proposed analytical 
formulation does not allow for a representation of the post-critical behaviour that was observed for 
very stocky sections; this is however of no practical relevance, since this behaviour only occurs at 
unrealistically large lengths. 
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Fig 6-26 Generalized imperfection η for all numerical buckling curves and proposed 

approximation. 

The formulation proposed in this sub-section is therefore able to represent the numerical LT 
buckling curves with good accuracy, whereby the geometrical classification limits of h/b in EC3 are 
maintained. When compared to the current EC3 curves, the proposal is much more accurate 
(compare Fig 6-27 with Fig 6-15) especially because the new factor ( LT z/λ λ )2 accounts for the 
most relevant characteristics of each beam. 

 

 
Fig 6-27 Comparison of the numerical and proposed analytical curves; “worst-fit” sections. 
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6.8.4. Introduction of an additional “crosssectional” factor 

While the approach presented in the preceding section is already sufficiently accurate and simple 
for a code regulation, it still has one major disadvantage from the point of view of mechanical 
coherence: it doesn’t directly reflect the change of residual stresses that –in consistence with the 
derivation of the column buckling curves- was assumed to occur at the depth-to-width ratio of 
h/b=1.2. As a matter of fact, αLT in Table 6-1 and 2 is higher for sections with lower residual 
stresses, which is neither logical nor consistent with the column buckling case.  

Therefore, an additional factor must be included, while at the same time simplicity must be retained. 
By observing the best-fit values of αLT for expression (6.38) –see Fig 6-25-, it was found that the 
increase of this value is approximately proportional to (h/b)0.5 or, with far greater accuracy, to the 
square root of the ratio of the two elastic section moduli Wy,el/Wz,el. By dividing η by this new 
factor, Fig 6-28 is obtained. Thereby, the numerical values of η are conveniently separated for 
sections with h/b>1.2 (a) and h/b≤1.2 (b). When compared to Fig 6-26, the introduction of the new 
factor (Wy,el/Wz,el)0.5 results in a remarkable reduction of the scatter of the numerical lines. What is 
even more remarkable, the slope of the ηnum curves is now consistent with the change of residual 
stresses at h/b=1.2.  

A proposal can therefore be made: the buckling reduction factor can be calculated using equation 
(6.30) and the value of ΦLT expressed by (6.43). 

 ( )
2 2

2 2LT LT
LT z LTLT LT2 2

z z

1 11 1 0.2
2 2

⎡ ⎤ ⎡ ⎤λ λ⎢ ⎥ ⎢ ⎥Φ = + η⋅ + λ = + α ⋅ λ − ⋅ + λ
⎢ ⎥ ⎢ ⎥λ λ⎣ ⎦ ⎣ ⎦

 (6.43) 

The value of αLT can be taken from Table 6-4. The red, dashed lines in Fig 6-28a and b show the 
resulting function for the generalized imperfection η. 

 
Fig 6-28 Reduction of scatter by introduction of an additional factor. 
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h/b hot-rolled I&H 

≤1.2 αLT= y,el z,el0.16 W / W⋅  

>1.2 αLT= y,el z,el0.12 W / W⋅  

Table 6-4 Generalized imperfection amplitude coefficients for the proposed formulation. 

Finally, the analytical buckling curves χLT=f( LTλ ) resulting from the proposal made in this sub-
section can be compared to the numerical curves, see figure Fig 6-29a. The comparison is carried 
out for four representative sections, illustrating the remarkable degree of accuracy that is achieved 
by the proposed formulation. For all considered sections, the error in the prediction of χLT is 
extremely small in absolute and in percentage terms, with the exception of members with large  

LTλ , where a small, safe-sided divergence is present.  

If the accuracy in the region of large slenderness is deemed to be insufficient, it can easily be 
increased by introducing a limit value of η; for example, if η is set to be constant for values of LTλ
>1.1, we obtain analytical curves of the shape shown in Fig 6-29b. For the sections shown in that 
figure, the maximum error on both the “safe” and “unsafe” becomes negligibly small for all 
member within the realm of practicality. A comparison between Fig 6-22a and b –where the 
proposed “cut-off” is signified by the horizontal line beginning at LTλ =1.1- helps explaining this: 
beginning at LTλ =1.0, ηnum diverges from a straight line; by introducing a “cut-off” limit of η, this 
is somehow acknowledged.  

Thereby, it helps that the precision of η rapidly loses relevance with increasing slenderness; thus, 
even this very coarse approximation of the “non-linear” segment of the ηnum curve already results in 
an appreciably higher accuracy in terms of χLT. Of course, whether or not the cut-off limit discussed 
in this paragraph is worthwhile of inclusion in a design provision should be considered in light of 
the overall safety requirements of the proposal.  

In this respect, the Montecarlo simulations carried out in section 6.10 point out that the numerical 
buckling curves obtained from nominal material and cross-sectional values and “fixed” amplitudes 
for geometric imperfections ( 0e =L/1000) and residual stresses do not have the same level of 
reliability throughout the slenderness ranges. While such curves were shown to be clearly “safe-
sided” at low slenderness, and in good agreement with the target reliability for “characteristic” 
values in the most common practical range of slenderness, the curves tended to fall above the values 
representing this “target” level of reliability at high slenderness. The reason is that imperfection 
types become relevant, from a probabilistic point of view, that are not necessarily sufficiently 
covered by the fixed imperfection assumptions made during the numerical GMNIA calculations.  
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Fig 6-29 Numerical vs. analytical curves - proposal of section 6.8.4 (a); introduction of a cut-off 

limit of η (b). 

This is exemplified by the plots in Fig 6-30. They show the results of the Montecarlo simulation of 
section 6.10 for an HEB 400 section, with mean values and m +/– 2s values marked by the dots in 
the vertical lines, as well as a numerical buckling curve for this section – calculated according to the 
criteria mentioned in section 6.6- and the analytical curve that results from (6.30) and the value of 
ΦLT expressed by (6.43). 

 

 
Fig 6-30 Results of a Montecarlo simulation for a HEB 400 compared to a numerical buckling 

curve and the analytical formulation of section 6.8.4. 
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In section 6.10, it is discussed with more detail that the numerical curve with “fixed” imperfection 
amplitudes changes from a very low fractile to one that falls within the interval m-2s≤χLT≤m with 
raising slenderness. Fig 6-30 shows that the tendency of the analytical curve to fall below the 
numerical curve at a slenderness exceeding LTλ =1.0 actually has the welcome effect of 
compensating this effect. In light of this, it makes sense to maintain (6.43) in its proposed form, at 
least for hot-rolled sections. 

6.8.5. Welded sections and other residual stress distributions 

In order to encompass the scope of the current “specific case” LT buckling formulae found in EC3, 
the description of LT buckling curves presented in the previous section 6.8.4 must be expanded to 
include welded sections that are geometrically “comparable” to the commercial hot-rolled sections. 
This has been done and is illustrated in Fig 6-31. The figure shows that the parameters discussed in 
the previous section again allow for a description of the slope of the numerical values of η in the 
practical, intermediate slenderness range. A “best-fit”, least-square calibration of αLT to the 
numerical χLT values for all studied sections led to a value of αLT= y,el z,el0.21 W / W⋅  in the case of 
welded sections in the studied h/b range of 1.0 to 3.3.  

The distinctive bend around LTλ =1.0, discussed in section 6.5.2, is very noticeable both in terms of 
the generalized imperfection coefficient η and in terms of χLT. Again, the accuracy of the 
description could be improved by introducing a “cut-off” limit for η, but this is not followed 
through here. More pressingly, it is the assumptions regarding residual stresses in welded sections 
themselves that would be worthwhile of a deeper reconsideration, see section 6.5.2. 

 
Fig 6-31 Generalized imperfection coefficient for welded sections (a); buckling reduction factors 

for four selected sections (b). 
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From a theoretical point of view, the most interesting finding is the fact that –again- the 
assumptions regarding residual stresses are reflected by the best-fit value of αLT. In this context, it’s 
worthwhile to add another “extreme case” to the considerations made herein, i.e. the case in which 
no residual stresses at all are considered. Fig 6-32 shows the results of numerical calculations for 
both in terms of the factor η and χLT, as well as the results of the analytical formulation (6.43) with 
a best fit value of αLT= y,el z,el0.08 W / W⋅ .  

Again, the agreement of numerical and analytical curves is excellent in the slenderness range up to 
LT 1.0λ = , although the curves seem to separate slightly before this slenderness in this case.  

It can be concluded that the proposed formulation (6.30) with (6.43) is very well suited to represent 
the LT buckling strength of I- & H-beams for any range of geometrical properties (h/b, Wy, Wz …) 
and given set of assumptions regarding residual stress distribution and amplitude – the latter, 
however, requires a specific calibration, resulting in different values of αLT for different underlying 
residual stress distributions. This is fully consistent with the flexural buckling case. 

The following potential for further improvement is given by the proposed equation: it can be 
asserted that a better knowledge of the actual residual stress amplitudes and distributions found in 
hot-rolled and –even more importantly- welded I- & H-beams would make it worthwhile to develop 
an expression for αLT that is a function of the residual stress amplitude and distribution, hence 
allowing for an inclusion of the (expected) residual stresses in the design function; this would allow 
for a consideration of such effects as stress relief heat treatment (“αLT y,el z,el0.08 W / W⋅ ”) or 
improved welding procedures with low heat input (“αLT< y,el z,el0.21 W / W⋅ ”). 

 
Fig 6-32 Generalized imperfection coefficient for sections without any residual stresses (a); 

buckling reduction factors for four selected sections (b). 
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6.8.6. Crosssections with “extreme” geometry – limit values of αLT 

All calculations up to this point dealt with commercial, hot-rolled sections of the European IPE or 
HE series, as well as with “equivalent” (that is similar) welded sections. The cross-sectional factor 

y,el z,elW / W  was shown to be an accurate descriptor of the behaviour of these sections; however, 
the factor does not asymptotically approach any constant finite with increasing ratio Wy,el/Wz,el, 
meaning that for very deep sections, or any sections with “extreme” ratio Wy,el/Wz,el, the generalized 
imperfection becomes increasingly, excessively large. In other words, it can be expected that this 
approximate classification factor will not be accurate enough to describe the behavior of at least 
some, extreme cross-sections. A limiting value of αLT might be necessary, whereby the most 
straightforward –and desirable- such value is given by αZ, the generalized imperfection amplitude 
valid for out-of-plane flexural buckling. The reasoning behind the last statement is that the flange of 
a very deep section with (comparatively) low torsional rigidity should behave similarly to a column 
in weak-axis buckling.  

In order to check the validity of this reasoning, the sections shown in Fig 6-33 were added to the 
pool of studied sections. These sections include three (fictitious, non-commercial) hot-rolled 
sections, one with a very wide flange (ratio h/b=0.75) and a thin web, one very slender rolled 
section with h/b=6.6, and one section with h/b=4, but with very thick web and flanges, making this 
a torsionally very rigid section in spite of the high h/b ratio. Two welded sections were also studied, 
one with a very high h/b ratio of 10, and one with h/b=1.0 and thick plates. The residual stresses 
were assumed as shown in the figure, which means that no distinction between h/b ratios was made 
in the case of hot-rolled sections. The geometrical imperfections were assumed to have a shape 
affine to the eigenmode and to have an amplitude of 0e L /1000= . The single sections are identified 
in the figure by “R” for rolled and “W” for welded sections. The exact geometrical input data is 
contained in Table 6-5. 

This table also contains the values of αLT that are obtained by applying the formulae in Table 6-4, 
as well as the value of y,el z,el0.21 W / W⋅  shown to apply for welded sections in 6.8.5. It also 
contains the value αLT,max=αZ, which is assumed to be the limiting value of the generalized 
imperfection.  

 
Fig 6-33 Studied “extreme” geometries; “hot-rolled” (fictitious) and welded sections. 
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 R1 R2 R3 W1 W2 

h [mm] 450 990 400 1000 300 

b [mm] 600 150 100 100 300 

tf [mm] 30 31 35 40 30 

tw [mm] 8 16.5 35 15 30 

r [mm] 20 30 35 - - 

IT [cm4] 1076.8 524.5 1384.1 530.2 756.1 

αLT
* 0.171 0.642 0.412 1.339 0.343 

αLT,max= αz
** 0.34 0.64 

 *   0.12 . (Wy,el/Wz,el)0.5 for all hot-rolled sections, all (h/b); 0.20 . (Wy,el/Wz,el)0.5 for welded sections 
**  0.34 for hot-rolled, 0.64 for welded sections (0.21/0.16  . 0.49=0.64) 

Table 6-5 Studied “extreme” geometries and underlying imperfection amplitudes αLT 

One might notice that the value of αLT,max for welded sections (0.64) is higher than the value for αz 
found in the Eurocode for these sections; this stems from the fact –not discussed in full detail here- 
that the value of αz for welded sections is not fully compatible with the now-common residual stress 
assumptions for welded sections; as a matter of fact, Young & Schulz (1977) clearly state that the 
theoretical/numerical calculations that led to the establishment of buckling curve c for weak-axis 
buckling FBzz of stocky hot-rolled and welded columns were all based on the same assumption 
regarding residual stresses, and that is the one used for stocky rolled sections.  

As a consequence, it can be shown that the imperfection factor αz should be somewhat higher to 
accurately describe (column) buckling curves calculated with the “welded” residual stresses of Fig 
6-33. This also was reflected in the value of αLT= y,el z,el0.21 W / W⋅  shown to apply for welded 
sections in LT buckling. This factor is 31% higher than the one that applies for stocky rolled 
sections ( y,el z,el0.16 W / W⋅ ). Therefore, the upper limiting value of αLT,max is also assumed to lie 
31% above the value of αz=0.49; Thus αLT,max is set to 0.64 for welded sections. 

Having concluded these introductory considerations, it is now possible to study the behaviour of the 
sections in Fig 6-33 by means of numerical GMNIA calculations, and to compare these results with 
the results of the new design formulation of section 6.7 and 6.8 for the different values of αLT, as 
well as to the current Eurocode rules. 

For hot-rolled sections, this is done in Fig 6-34. Figure a shows the behaviour of the very stocky 
“R1” section. For this section and the given imperfections, for which the formula of Table 6-4 for 
h/b>1.2 is applicable in spite of the actual ratio, a value of αLT=0.171 is calculated. This value is 
much smaller than the applicable αz=0.34, hence leading to a very high buckling curve. The 
question was whether or not this behaviour corresponds to the realistic, GMNIA behaviour. 
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Fig 6-34 GMNIA buckling curves for fictitious hot-rolled sections with “extreme” geometry; 

comparison with EC3 rules and with the new design formula. 
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very stocky hot-rolled sections, at least within the practical ranges of length. The advantages in 
accuracy of the new formulation in comparison to the EC3 rules are also clearly felt for such a 
section. 

Fig 6-34b shows the GMNIA buckling curves for the deep, slender R2 section and the resulting 
curves according to the new formulation, evaluated for the values of αLT obtained from  
αLT= y,el z,el0.12 W / W 0.642⋅ =  and for αLT,max=0.34. As the figure shows, the curve for 
αLT=0.642 lies much too low for this section, which is what was expected in the first paragraph of 
this sub-section; the correction factor y,el z,elW / W  is not accurate anymore for sections of this 
shape. Indeed, the postulated limiting value of αLT,max=αz=0.34 is much better suited to describe 
sections of this type, as is clearly illustrated in the figure.  

A partly similar, partly opposite tendency is observed in Fig 6-34c for the R3 section; this deep and 
narrow, yet very thick and torsionally stiff section features a GMNIA buckling curve that lies well 
above both Eurocode curves. It also lies well above the curve calculated with αLT=

y,el z,el0.12 W / W 0.412⋅ = , and is most accurately described by the curve calculated with the 
limiting value αLT,max=αz=0.34. The proposed formulation, combined with the limiting value of 
αLT=αz, thus seems to satisfactorily describe all studied hot-rolled sections. 

The studies conducted for the two welded sections W1 and W2 are illustrated in Fig 6-35. For the 
slender, deep section W1, the expression αLT= y,el z,el0.21 W / W 1.339⋅ =  is again shown in  
Fig 6-35a to lead to a buckling curve that lies significantly below the numerical curve; by 
introducing the “limiting value” of αLT=0.64 discussed above, the description becomes very 
accurate.  

 
Fig 6-35 GMNIA buckling curves for welded sections with “extreme” geometry; comparison with 

EC3 rules and with the new design formula. 
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For the very stocky section in Fig 6-35b, the expression αLT= y,el z,el0.21 W / W 0.343⋅ =  is shown 
to be very accurate within the practical ranges of length. 

In summary, it can be said that the general formulation αLT= LT y,el z,ela W / W⋅ , with aLT being a 
constant, should be amended by a limiting value corresponding to αz for hot-rolled sections, and a 
modification of αz for welded sections. While this limiting value hardly becomes effective with the 
common geometries of commercial hot-rolled members, its introduction allows for an accurate and 
safe description of even some rather unusual sections.  

Additionally, the limiting value has the advantage of making the inherent, equivalent imperfections 
– to be used e.g. in a second-order calculation- more consistent with the weak-axis flexural column 
buckling case. These can be calculated quite simply from (6.44), also see (6.40): 

 ( ){ }z z
0 zLT z

W We MIN a 0.2 ;
A A

= η ⋅ = ⋅ λ − α ⋅  (6.44) 

With the inclusion of the limiting value, a beam designed against LT buckling using a second-order 
calculation and a stress-based limit state will require an equivalent geometric imperfection that is 
lower or equal to the one that applies for weak-axis flexural buckling. This is theoretically desirable 
and particularly advantageous when one thinks of an application with combined loading N + M. 

 

Finally, the following Table 6-6 is proposed for the calculation of the generalized imperfection 
amplitude αLT for the design of hot-rolled and welded I- & H-sections. 

 

h/b hot-rolled I & H Welded I & H 

≤1.2 αLT= y,el z,el0.16 W / W 0.49⋅ ≤
αLT= y,el z,el0.21 W / W 0.64⋅ ≤  

>1.2 αLT= y,el z,el0.12 W / W 0.34⋅ ≤

Table 6-6 Generalized imperfection amplitude αLT and its limit values; final table. 
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6.9. Treatment of nonuniform bending moments 
In this section, an expansion of the proposed, new formulation for the buckling reduction factor χLT 
is presented that allows for a simple and accurate inclusion of the effects of non-uniform bending 
moment diagrams on the LT buckling strength of I- & H-sections. Since this formulation depends 
on a correct calculation of the normalized slenderness LTλ  and hence of the elastic, critical bending 
moment Mcr for the non-uniform moment case, this aspect is discussed first in the following. 

6.9.1. Euler critical buckling moment  

The formulae for the calculation of the elastic critical bending moment were given in section 6.2. It 
was pointed out that, in the widely used, so-called 3-factor formula (equation (6.1) respectively the 
subsequent simplification), the factor C1 serves as the correction factor that modifies the critical 
moment Mcr,u for uniform bending moment to obtain the applicable value for non-uniform moments 
Mcr,nu:  

 cr,nu 1 cr,uM C M= ⋅  (6.45) 

Similarly, and bearing in mind that the critical bending moment is used primarily to calculate the 
normalized slenderness LTλ , it is also common to see the use of a modification factor kc to be 
applied to the slenderness: 

 LT,nu LT,nuckλ = ⋅λ  (6.46) 

Due to the definition of LT pl crM / Mλ =  and the fact that Mpl is constant for prismatic members, 
C1 and kc stand in the following relationship: 

 c
1

1k
C

=  (6.47) 

Many solutions for either C1 or kc are found in the literature for a variety of load cases. The ENV 
(1992) version of Eurocode 3 part 1-1 contains values of C1  in form of a table; selected values of 
C1, as well as the corresponding values of kc calculated using (6.47), are given in Table 6-7. 

Specifically for the case of a linear bending moment diagram, several slightly different formulae for 
C1 or kc are found in the literature. Trahair (1993) mentions the following two, whereby the first one 
is originally taken from Salvadory (1955): 

 2
1C 1.75 1.05 0.3 2.5= − ⋅ Ψ + ⋅ Ψ ≤  (6.48) 

 1
1C 2.5

0.6 0.4
= ≤

+ ⋅ Ψ
 (6.49) 

Additionally to, and slightly diverging from the values in Table 6-7, ENV 1993-1-1 contains the 
following formula: 

 2
1C 1.88 1.40 0.52 2.7= − ⋅ Ψ + ⋅Ψ ≤  (6.50) 
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Moment diagram C1 [-] kc [-] 

 
1.00 1.00 

 
1.132 0.94 

 
1.285 0.88 

 
1.365 0.86 

 1.565 0.80 

 

 

Ψ=+0.5; C1=1.323 
Ψ=+0.0; C1=1.879 
Ψ=-0.5; C1=2.704 
Ψ=-1.0; C1=2.752 

0.87 
0.73 
0.61 
0.60 

Table 6-7 Values of C1 according to ENV 1993-1-1 (1992), and cooresponding values of kc, valid 
for double-symmetric beams and end-fork conditions, load acting in the centroid 

Finally, EC3– EN 1993-1-1 clause 6.3.2.3 gives the following formula (6.51) for kc for the beam 
under constant moment gradient. All four formulae are evaluated and illustrated in Fig 6-36. 

 c
1k

1.33 0.33
=

− ⋅ Ψ
 (6.51) 

 
Fig 6-36 Values of C1 and kc for constant moment gradients. 
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6.9.2. Elastoplastic behaviour (GMNIA)  

Throughout this chapter, it was shown that the buckling reduction factor χLT is greatly variable 
when plotted over LTλ , with the resulting buckling curve’s position and shape depending on a 
variety of factors that are not sufficiently taken into account by LTλ  alone. This is again true for the 
case of non-uniform bending moment diagrams, as is shown in Fig 6-37. The figure illustrates 
numerical, GMNIA buckling curves for a hot-rolled IPE 500 section and a variety of bending 
moment diagrams. The numerical values of χLT were obtained for geometrical imperfections 
corresponding to the first (LT) eigenmode shape and with amplitudes of 0e =L/1000. 

While the reduction factors χLT in the figure all refer to the same value of Mpl, it shall be noted that 
the value of LTλ  was consequentially calculated with the correct value of Mcr, using the results of 
numerical bifurcation analyses and validating them by comparison with the values of C1 discussed 
in the previous sub-section. Therefore, the studied IPE 500 section will have different lengths, 
depending on the moment diagram, for a given value of LTλ . 

The figure clearly illustrates that, due to reasons that are discussed with more detail farther below, 
the buckling curves are greatly influenced by the moment diagram when plotted over LTλ . 
Specifically the “plateau” value of the curves is clearly very heavily influenced by the moment 
diagram. Indeed, the differences are so large that ignoring them will necessarily lead to an 
uneconomical design. This is better illustrated in Fig 6-38. In this figure, GMNIA results are plotted 
for an IPE 500 section and a linear bending moment diagram with M=0 at one end of the beam.  

 
Fig 6-37 Numerical (GMNIA) values of χLT  for an IPE 500 section and different bending moment 

diagrams; steel grade S 235, residual stresses according to Fig 3-1. 

The results are compared to the two different codified LT buckling curves for this section according 
to the Eurocode, as well as to the (unmodified) formulation developed in section 6.7 and calibrated 

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

λLT

χ LT
=M

R
/M

pl
 [-

]

2
1

λLT

IPE 500

e =L/10000



PART II – Columns and Beams – Basic Load Cases 

 

163 

in section 6.8.4. Again, LTλ  is calculated using the correct value of Mcr  for all cases. The figure 
shows that, without modification, neither the Eurocode formulae nor the new formulation are 
accurate in any but the very large slenderness range. The largest differences occur at low 
slenderness, which especially for the particular load case studied in Fig 6-38 is the practically most 
relevant range.  

 
Fig 6-38 Comparison of unmodified LT buckling formulations with GMNIA results for moment 

gradient. 

Thus, the buckling reduction factors must be modified if accuracy ought to be improved. Before this 
is done for the new formulation proposed in this thesis, the current rules in the Eurocode 3 are 
briefly discussed. 

6.9.3. Treatment of nonuniform bending moments in Eurocode 3 
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this case, the reduction factor χLT valid for the “specific case” (SC) is modified by a factor f as 
follows: 

 LT
LT,mod 2

LT

1.0
 

f     1/

≤χ
χ =

≤ λ
 (6.52) 

 ( )2
LTcf 1 0.5 (1 k ) 1 2.0 0.8 1.0⎡ ⎤= − ⋅ − − ⋅ λ − ≤⎢ ⎥⎣ ⎦

 (6.53) 

This formulation was proposed by Lindner (2000) and based on curve-fitting of an extensive series 
of GMNIA numerical calculations (Greiner et al., 2000). Specifically, the factor f was calibrated to 
give best-fit results when applied to the “specific case” formulations valid for the constant moment 
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load case. It was found to be convenient to make use of the factor kc, which was discussed in 
section 6.9.1, to include the influence of a variable moment diagram by using the information 
contained in this factor concerned with elastic bifurcation.  

 

 
Fig 6-39 “Specific case” buckling curves for different bending moment diagrams according to the 

Eurocode (a); modification factor 1/f (b). 

The resulting factor χLT,mod and the factor 1/f are plotted in Fig 6-39. The figure shows that the 
factor 1/f, which indicates the increase of the buckling factor χLT when compared to its un-modified 
version, was formulated so that it has a parabolic shape when plotted over LTλ  and reaches its 
maximum at LTλ =0.8, with a value of 2/(kc+1). This was observed to be in good agreement with 
the numerical results. At a value of LTλ =1.5, the un-modified value of χLT is again valid for all load 
cases.  

The presented treatment of non-uniform bending moments using the factor f has the advantage of 
being fairly straightforward and often quite accurate when compared with FEM calculations. It 
does, however, present the following disadvantages: 

i. The factor f was fitted to be accurate when used in combination with the “specific case” LT 
buckling curves of EC3. Since the formulation χLT,SC itself must be correctly seen as curve-
fitting to FEM calculations amended by the statistically justified plateau value, the accuracy 
of the factor χLT,mod depends heavily on the accuracy of χLT,SC; the latter was shown to be 
high only for some sections, see Fig 6-15. 

ii. Since the factor f has no mechanical justification, other than resulting in a good fit of 
numerical curves when used in combination with the Eurocode “specific case” factors for 
χLT, it has been questioned whether or not it can be used in combination with other LT 
buckling curves, e.g. with the “general case” curves of the same code. Through a “loop-
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hole”, this possibility is not entirely excluded by the code, which leaves the option open for 
so-called “nationally determined parameters”. From a “safety” point of view, one can also 
show that the factor would actually always be “conservative” when used in combination 
with the (generally lower) general-case curves. Nevertheless, it is clear that this use was not 
intended by the developers of the factor f, and is mechanically entirely unfounded.  

6.9.4. Proposal for an adaptation of the new formulation 

The development of a new, specific formulation for χLT in section 6.7 and the calibration of section 
6.8 proved to be very accurate and effective for the case of uniform bending moments. However, in 
Fig 6-38 it was shown that not even this new, specific formulation (referred to as “new formulation” 
in the following) is able to accurately describe the course of a numerical buckling curve for cases 
with non-uniform bending moment diagrams. This is of course not surprising and explicable by the 
fact that the formulation was derived only for the basic case of constant bending moments.  
It is therefore clear that the newly developed formula of section 6.7 and 6.8 must be modified in 
order to obtain an accurate formulaic description of the realistic buckling behaviour of members 
under non-uniform bending moments. Thereby, existing modifications, specifically the factor f of 
the Eurocode 3, cannot directly be applied due to the reasons given in the previous section, where it 
was shown that f can correctly only be used in conjunction with the “specific case” buckling curves 
of the code. If the factor were applied to the new formulation, it would also often be “unsafe”, since 
the new formulation yields values of χLT that can lie above the specific-case curves.  
A different, new type of modification is therefore introduced in the following, which is based on 
realistic assumptions and approximations regarding the ultimate LT buckling behaviour.  

 
Fig 6-40 Basic idea: introduction of an “over-strength” factor ϕ. 
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The result is a factor χLT,nu, i.e. a modified version of the “new formulation” for χLT introduced in 
section 6.7, which takes into account the non-uniform bending moments. The basic idea behind the 
development of this formulation is shown in Fig 6-40. 

The plot on the left of Fig 6-40 shows a qualitative, plausible extension of the GMNIA buckling 
curves presented in section 6.9.2. This fictitious extension can be interpreted as follows: 

i. In the case of bending moment diagrams with constant moment gradient, the main effect 
leading to the observed shifting of the plateau value of the numerical buckling curves 
towards higher values of slenderness is given by the fact that the location of the maximum 
(first-order) bending moment in the beam at failure does not correspond to the location of 
failure xf; the former is at the beam’s extremity, while the latter is at a certain location 
within the beam’s free span. By observing the shape of the (extended) curves, one can see 
that this has a quite similar effect to the one given by an “over-strength” of the material, 
confront with Fig 6-12; the influence is largest at very low slenderness, and vanishes at very 
high slenderness. This “over-strength” ϕ is of course actually not related to the cross-section 
capacity itself, but to the moment that would need to be applied at the beam’s extremity in 
order to reach Mpl at the location of failure. This end moment is also the one to which MR, 
Mcr and χLT refer. If we assume that, in the case of constant moment gradients, ϕ indeed 
only depends on the difference between the location of maximum moment and failure xf, it 
can be calculated as follows: 

 
( ) ( )f

1
1 1 x / L

ϕ =
Ψ + − Ψ ⋅ −

 (6.54) 

The difficulty of evaluating (6.54) is of course entirely given by the identification of the 
failure location xf. In principle, this location can only be determined by a non-linear 
calculation, which defeats the purpose of developing a buckling design formula in the first 
place. However, it can be shown that –in the simple, yet practically most relevant cases- the 
failure cross-section is fairly stably located at certain fractions of the total beam length. 
Some examples are given in Fig 6-41a for an IPE 500 section with eigenmode-conform 
imperfections of amplitude 0e L /1000= . In this figure, the failure location was identified 
by the location of the maximum (plastic) strains in the compression flange at failure.  
 

ii. In the case of variable moment distributions with a clearly identifiable failure location, i.e. 
for example failure at mid-span for a concentrated load at the same location, the beneficial 
effect in terms of χLT is less pronounced, see again Fig 6-40. However, in principle the same 
“over-strength” behaviour is observable. As is indicated in the figure, in this case this cannot 
be attributed to a mismatch of failure and maximum load position, as these are the same. 
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Fig 6-41 Results of GMNIA calculations for an IPE 500 section of S235, z 2.0λ = ; contour plot of 

Mises stresses in the compression flange at failure. 

As was pointed out by Greiner et alt. (2000), this must much rather be attributed to a 
difference in the size of the plastic zone surrounding the exact failure location/cross-section.  
In Fig 6-41b, the length of the plastic zone at failure, defined as the distance between the 
outermost locations where the yield strain has been exceeded, is compared for three typical 
moment diagrams. While the higher “supporting” action cannot be directly quantified from 
these figures, they do point out the general tendency. 

In summary, it can be stated that the observations made regarding the influence of the moment 
diagram in the GMNIA calculations of Fig 6-40 can primarily be interpreted as the effect of an 
“over-strength” factor ϕ with respect to the maximum moment in the beam at buckling. In order to 
incorporate this “over-strength” in the design formula for χLT developed in section 6.7, the terms 
containing “Mpl” must be replaced with “Mpl . ϕ”. This results in the following modification to the 
limit-state formulation: 
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with: ( )zLT 0.2α ⋅ λ −η =  (6.56) 

and αLT taken from Table 6-4. 
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Equation (6.55) can again be solved as follows: 

 LT 22
LTLT LT

1.0ϕ
χ = ≤

Φ + Φ − ϕ⋅λ
 (6.57) 

with 
2

2LT
LTLT 2

z

1 1
2

⎛ ⎞⎛ ⎞λ⎜ ⎟⎜ ⎟Φ = ⋅ + ϕ⋅ η⋅ + λ
⎜ ⎟⎜ ⎟λ⎝ ⎠⎝ ⎠

 (6.58) 

The value of χLT is limited by 1.0 in this formulation in order to cover all cases where the failure 
criteria is given by the cross-sectional capacity at the location of the (reference) maximum moment 
alone.  

It must be clearly stated that the above formulation is a simplificaton of the actual behaviour. The 
following assumptions are thereby made: 

i. The second-order buckling amplification factor ( )2
LTLT1 / 1− χ ⋅ λ , shown in section 6.7 to 

be applicable to the LT buckling case under constant bending moment if eigenmode-conform 
imperfections are considered, is applied without modification; in reality, non-uniform 
bending moment diagrams would require a (moderate) modification of this factor to be fully 
accurate, as is the case for amplification factors applied to columns with variable shapes of 
initial imperfection and/or lateral load.  

ii. The generalized imperfection amplitude η, calibrated in section 6.8, is taken to be valid in 
this formulation. This is justified by the fact that the same geometrical and material 
imperfection amplitudes are applied in the GMNIA calculations, with the only difference 
being the shape of the imperfection.  

In practical terms, these simplifications do not necessarily affect the accuracy of the resulting 
formulation. As a matter of fact, the newly introduced “over-strength” factor is conveniently used to 
also cover the inaccuracies stemming from the above simplifications, additionally to the actual 
physical effects that it is intended to take into account (i.e. the distance between failure and loading 
point, respectively the influence of the size of the plastic zone). 

For practical applications, a table (Table 6-8) is proposed containing values of ϕ for some typical 
bending moment diagrams, to be used in (6.57) and (6.58). As the following section shows, these 
values give very satisfying result in terms of accuracy. They were obtained through a series of 96 
GMNIA calculations (8 sections, 12 load cases).  

The proposal spans values of ϕ ranging from 1.00 to a maximum of 1.267 at Ψ=-1/3 in the case of a 
constant moment gradient. In the case of non-uniform moments with maximum sagging moment at 
mid-span, values of 1.05 and 1.11 were found to apply for parabolic and triangular diagrams, 
respectively. Interestingly, the shape of the curve between the two values at the extremities seems to 
be the predominant factor in these cases. 
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Moment diagram ϕ [-] 

1.00 

 
1.05 

1.11 

21.25 0.1 0.15− ⋅ψ − ⋅ψ  

Table 6-8 Proposed values of ϕ for hot-rolled and welded I- & H-sections.  

Fig 6-42 shows the results of some of these GMNIA calculations in terms of ϕ, calculated by 
identifying the failure location in the numerical calculation and applying equation (6.54) for a series 
of hot-rolled I-sections with values of h/b spanning from 1.0 to 3.30, and loaded by a constant 
gradient bending moment. The failure location was thereby identified as the position of the cross-
section where the maximum strains occurred.  

Additionally, the figure shows a formulaic approximation of the GMNIA results, obtained from a 
polynomial regression analysis. 

The scatter indicates that any formulation of this type can only be an approximation, as the exact 
failure location is dependent on the section type itself. Nevertheless, the general tendency of the 
values of ϕ can be described fairly well by a parabolic approximation.  

 
Fig 6-42 GMNIA results in terms of ϕ for contant moment gradients and hot-rolled I- & H-

sections.  
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6.9.5. Accuracy of the new formulation 

The accuracy of the proposed expansion of the new formulation to a number of cases with non-
uniform bending moment is demonstrated in this section by comparing the results of GMNIA 
calculations with an evaluation of (6.57) with values for ϕ taken from Table 6-8. Thereby, results 
for two typical hot-rolled beam sections are included, i.e. an IPE 500 and an HEB 400 section. 
These are representative of slender and stocky sections, respectively. All calculations were carried 
out for steel grade S235, and for eigenmode-affine initial imperfections with amplitude 0e =L/1000. 
The results of these calculations are shown in the following figures (Fig 6-43 - Fig 6-45). The 
accuracy of the proposed formulation is apparent. In order to be able to better appreciate gains in 
comparison to the current Eurocode design practice, the applicable formulae (general case and 
specific case modified by the factor f) are included as well.  

 

 
Fig 6-43 Accuracy for parabolic and triangular moment diagrams with maximum at mid-span. 
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Fig 6-44 Accuracy for various non-uniform bending moment diagrams. 
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Fig 6-45 Accuracy for constant gradient bending moment diagrams 
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Fig 6-43 to Fig 6-45 show that the proposed, new formulation is able to describe the behaviour of 
the GMNIA model beams better than the current Eurocode 3 formulations. However, it shall not 
remained unmentioned that the “specific case” formulation, when modified by the factor f, is also 
often quite accurate. This should come as no surprise, since this formulation was also specifically 
calibrated to describe quite similar GMNIA calculations for hot-rolled sections. Again, the main 
advantage of the new formulation is a combination of accuracy and mechanical soundness. The 
greater mechanical soundness is, for example, clearly felt by the fact that equation (6.57) requires 
no additional check against the exceeding of the Euler load MR=Mcr, naturally converging against 
this upper limit for very high slenderness or if αLT is set equal to zero, while the “specific 
formulation” (6.52) does require such a check. 

Additional calculations for different sections (hot-rolled and “equivalent welded”) have shown the 
accuracy resulting from the new formulation to be comparable to what is shown in the following 
figures, with the largest (conservative) deviations in the practical range of beam length occurring in 
the case of welded sections, and being smaller than 7%. 

The proposal made in this section is by no means exhaustive, as many other bending moment 
diagrams would need to be analysed even to be considered complete for the simple case of simply-
supported beams with uniform cross-section. Nevertheless, it is believed that the proposed 
procedure could fairly easily be expanded to other cases by obtaining suitable values of ϕ for these 
cases, thus providing a methodology that can be replicated in order to obtain accurate design 
formulae that are based on simple, yet consistent engineering models. 

6.10. Reliability Level & Monte Carlo Simulations  

All considerations up to this point in this chapter were concerned with the “deterministic” 
description of the behaviour of a “model beam” with certain, specified structural parameters. The 
expected reliability level of the newly developed formulae in terms of the Eurocode semi-
probabilistic design philosophy is treated in this section. Thereby, reference is made to both real, 
physical tests published in the literature and to Monte Carlo simulations. 

6.10.1. Statistical evaluation based on physical tests 

The source of the recommended values of the partial safety factor γM1 for LT buckling in the ENV 
and EN versions of the Eurocode has already been discussed in chapter 4, Fig. 4-4d, and is re-
plotted here in Fig 6-46. In this most recent work dealing with the statistical evaluation of physical 
test results for LT buckling, Müller (2003) considered tests on I- & H- sections (144 hot-rolled; 71 
welded) that were carried out internationally and collected e.g. in the CEC (1988) background 
document to Eurocode 3, or later by Greiner & Kaim (2001). He evaluated these tests for the so-
called “general case” LT buckling rule of EC3 and thereby grouped together a variety of different 
load cases.  
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Fig 6-46 Background of the recommendations for γM1 for LT buckling in the ENV and current (EN) 

version of EC3. 

The results of this evaluation in terms of γM* led to the conclusion that the “general case” LT 
buckling curves require a safety factor of γM1=1.1, whereby this becomes conservative with 
increasing slenderness.  

In the following, the above conclusions drawn from physical test results are verified and expanded 
to include the new design formula proposed in this chapter, as well as the “specific case” curves. In 
order to eliminate the possibility of influencing the statistical evaluation by the grouping of too 
many different effects, only tests concerned with a single section series and the constant bending 
moment load case are considered.  

Of the more than 140 tests on hot-rolled sections reported in the CEC (1988) Eurocode background 
document, the vast majority were carried out in Japan, using Japanese H sections. Of these, 46 tests 
were carried by Suzuki, Fukumoto and Wakabaya with constant bending moment diagrams between 
lateral supports and using a H 200x100x5,5x8 section with a steel grade equivalent to a S235. 

These tests are plotted in Fig 6-47 and compared to the current Eurocode regulations and the new 
design equation (EQU) proposed in this chapter. The GMNIA calculations on which the latter 
proposal is based are also shown in order to again demonstrate the accuracy of the proposal in 
describing the behaviour of the deterministic “model beam”.  

In Fig 6-47a, the results are presented in terms of the nominal buckling reduction factor χLT,nom 
based on the nominal plastic moment capacity Mpl,nom=48.2 kNm of the studied section, and plotted 
over the nominal normalized slenderness. In Fig 6-47b, the results (theoretically) refer to the 
“actual” measured values of Mpl, whereby this fact needs some more discussion in the following 
paragraph. Both plots make use of values of χ and λ  taken from the report by Greiner & Kaim 
(2001), with only a minor modification of the nominal values, which are made to refer to a nominal 
yield strength of fy,nom=235 N/mm² instead of the original 240 N/mm².  
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Fig 6-47 Test results for Japanese H200x100x5,5x8 sections under constant bending moment, 

plotted over the nominal (a) and actual (b) slenderness; comparison with EC3 rules and the 
proposal of sections 6.7 & 6.8. 
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the calculation of the reduction factor. The fact that the three design curves do not match the plotted 
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plastic moment capacity (Mpl,e). In order to prove the conjecture made above, the “measured” 
plastic section modulus Wpl,e is calculated from Mpl,e and fy,e. 

 
Table 6-9 Excerpt from the considered test data pool 

The resulting values of Wpl,e, contained in Table 6-9 show that, in the case of the Suzuki and 
Wakabaya tests, all values are identical and are equal to the nominal section modulus Wpl,nom,r=0 
valid if the fillet radius is not considered. Only in the case of the Fukumoto tests, a different value 
is retrieved. It is therefore safe to assume that the majority of the results plotted in Fig 6-47b are, in 
reality, not “actual” values of slenderness and of the buckling reduction factor. In all likelihood, 
only the (coupon) yield stress was measured in many of the LT buckling tests that underpin the 
current Eurocode safety factors, while the cross-sectional geometry was assumed to be equal to the 
nominal values. This observation is important due to the following reasons: 

i. The lack of information regarding the “actual” values of some base variables (specifically 
here, the cross-sectional geometry), and the resulting inaccuracies in the calculation of 
strength according to the design formula for χ, result in discrepancies and –more 
importantly- a scatter of the discrepancies between the prediction of the design function rt 
and the observed test results re that are larger than they would be if all values had been 
measured. This increases the value of the coefficient of variation Vδ of the error of the 
design function and thus leads to a lower design value rd. 

ii. Additionally to the unknown variability of the cross-sectional geometry in the LT buckling 
tests, the measured yield stress in all of these tests was significantly higher than the nominal 
value for a steel grade of S235. In the EN 1990 – Annex D procedure, such cases are 
specifically addressed and it is recommended to take pre-information of base variable scatter 
into account when computing the value of the coefficient of variation of the design function 
Vrt. In order to include some degree of pre-information, the statistical evaluation carried out 
by Müller (2003), which underpins the current Eurocode recommendations, made use of a 
constant value of Vrt=0.08. Thereby, the total impact of the variability of the yield stress and 

H 200x100x5,5x8
hnom 200 mm tf,nom 8 mm fy,nom 235 N/mm²

bnom 100 mm tw,nom 5.5 mm Wpl,nom 205.1 cm³

rnom 8 mm Wpl,nom,r=0 200.2 cm³

MR,e fy,e Mpl,e "Wpl,e" Mpl,nom λLT,act,e χLT,act,e λLT,nom,e χLT,nom,e

[kNm] [N/mm²] [kNm] [cm³] [kNm] [‐] [‐] [‐] [‐]
722 Suzuki 58.0 297.2 59.5 200.2 48.2 0.34 0.975 0.313 1.206
719 Wakabaya 65.3 312.9 62.6 200.2 48.2 0.5 1.042 0.443 1.355
752 Suzuki 56.9 305.1 61.1 200.2 48.2 0.68 0.931 0.602 1.184
721 Wakabaya 55.9 304.1 60.9 200.2 48.2 0.8 0.918 0.713 1.162
759 Suzuki 45.2 292.3 58.5 200.2 48.2 1.01 0.773 0.917 0.940
761 Suzuki 49.2 305.1 61.1 200.2 48.2 1.03 0.805 0.917 1.023
1177 Fukumoto 39.7 306.3 63.5 207.3 48.2 1.22 0.625 1.100 0.825

# Source
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cross-sectional geometry was considered to be constant for all slenderness ranges. This is of 
course a strong simplification. 

The scatter of the test results, when compared to the value predicted by design formulae, is further 
illustrated in Fig 6-48. The test results of Fig 6-47are plotted in terms of the nominal buckling 
reduction factor χLT,nom and compared to the prediction given by three design formulae. Thereby, a 
distinction is made between tests with values of λ LT,nom smaller and larger than 0.8. The calculated 
values of the regression correction factor b and of Vδ  are also included in the plot. Due to the 
mentioned lack of information regarding what are really the “actual” values of the base variables 
that enter χLT,nom,t, the calculated values of Vδ  must be assumed to be significantly too high. 

 
Fig 6-48 Accuracy of the three different formulations in describing the tests. 

The results of the statistical evaluation of the examined physical test results on H200x100x5,5x8 
sections in terms of γM* is shown in Fig 6-49. The values of γM* were thereby again calculated 
using the assumption that Vrt=0.08. For the factor kd,n, D.8.2.2.5.(4) of EN 1990 Annex D was 
considered, which allows to use the total number of considered test results (n=46) even though 
smaller sub-groups were analyzed. Therefore, kd,n=3.04 was used. A so-called “tail approximation” 
was also performed in order to eliminate the potentially negative effects of excessively “safe sided” 
test results from the data pool; this meant the exclusion of three test results. 
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Fig 6-49 Results in terms of γM

* of a statistical evaluation of the tests in Fig 6-47 for the three 
formulations 

Fig 6-49 can be commented upon as follows: 

i. When compared to Fig 6-46, the evaluation for the “general case” in Fig 6-49a curves shows 
somewhat lower values of γM

* at low slenderness, and higher ones at higher slenderness. 
Even though the exact same assumptions were used in both figures, one should note that 
only a portion of the data pool considered for Fig 6-46 was also considered for Fig 6-49a. 
This alone is a source of discrepancy. The fact that tests with variable bending moment were 
also included in Fig 6-46 further explains the differences, particularly in the higher 
slenderness range; since the “general case” curves do not take the (positive) effects of 
variable bending moments into account, the evaluation must lead to a lower value of γM

* if 
such tests are included, particularly for higher slenderness ratios. The “un-safe” effects of 
this common grouping are irrelevant to practice in this case, as they only affect one 
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slenderness range and do not modify the maximum value of γM
*. Nevertheless, this is an 

example of the need for caution when different test populations are grouped together. 
ii. The evaluation for the “specific case” buckling curve leads to values that are fairly constant 

and just above γM
*=1.1. Since the change from γM1=1.1 to 1.0 between ENV end EN 

versions of the Eurocode was justified independently of the test results (see comments in 
chapter 4), this result would be in accordance with the desired outcome at the time of the 
development of the “specific case” curves. King (2008) carried out a separate evaluation of 
LT buckling tests according to EN 1990 for the “specific case”, whereby he also included 
adequate pre-information regarding the variability of the base variables and, thus, of Vrt. 
This led to the conclusion that values of γM1=1.0 could be justified by the tests alone, with 
calculated values of γM

* lying in the range of 1.00-1.05 for tests up to λ LT,nom=1.5. 
iii. The evaluation for the new formulation yields results that are very similar to the ones given 

by the “general case”. This is not surprising, considering that the curves themselves are 
almost overlapping for this one section, see Fig 6-47.  

Finally, some comments can be made concerning the general representativeness of the LT buckling 
tests documented in the literature when seen in the context of the Eurocode and of the newly 
proposed LT buckling curves:  

i. The CEC (1988) Eurocode background document only contains 8 tests with hot-rolled 
sections with a depth-to-width ratio of h/b>2.0. This means that such sections are severely 
under-represented in the test population underpinning the Eurocode rules, making it 
somewhat questionable whether or not the statistical evaluation of Fig 6-46 is significant for 
this type of section.  

ii. More than 50% of all the test results for hot-rolled sections were carried out with sections 
that had a depth-to-width ratio of exactly h/b=2.0. As was seen in section 6.3.2, this is 
exactly the “switching point” between different buckling curves, with sections with this ratio 
still falling in the higher curve (e.g. curve “a” for hot-rolled sections in the “general case”). 
At least in theory, this situation is always safe-sided for “stockier” sections with h/b≤2.0, 
since sections with smaller h/b than 2.0 should generally have a “higher resistance” in the 
normalized sense of χLT, and this is not accounted for by the “general” and “specific case” 
curves. It is however accounted for by the new formulation, indicating that the results of  
Fig 6-49 can no longer be accepted as being generally accurate, or “safe sided”, for the new, 
section-specific formulation.  

In summary, the current partial safety factors γM1 for LT buckling in the Eurocode are based on an 
extensive, yet not entirely satisfactory and comprehensive test population. The fact that a majority 
of the main structural base variables influencing the buckling problem were not measured during 
these tests has a negative influence on the outcome of the statistical evaluation, leaving the door 
open for interpretation, as is proven by the different outcomes of the evaluations done by Müller 
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(2003) and King (2008). Additionally, the tested section geometries lead to more open questions 
regarding the actual reliability level for a range of un-tested sections.  

In order to address the shortcomings of the data pool and be able to better estimate the influence of 
the “missing” parameters (h/b ratios, section geometry, more representative yield stress etc.) on the 
outcome of the statistical evaluation, Monte Carlo simulations are performer in the  following sub-
section for some exemplary cases. 

6.10.2. Monte Carlo simulations and evaluation 

The following sub-section documents some selected results of Monte Carlo simulations for LT 
buckling of hot-rolled sections under constant bending moment. In the absence of any more specific 
information concerned with the single base variables, the data collected during the development of 
the ECCS column buckling curves, as well as the data published by Alpsten (1972, 2002), will be 
used for reference, see chapter 5.  

Three sections are studied: the Japanese H200x100x5,5x8 section already treated above, an IPE 500 
section representing “slender” beams, and a stockier HEB 400 section. All beams are again assumed 
to be made of steel grade S235, with a nominal yield stress of fy=235 N/mm². The assumptions 
made for the random input data generation in the Monte Carlo simulations are summarized in Table 
5-4. Compared to the column buckling case treated in chapter 5, the main difference is represented 
by the inclusion of the amplitude of the initial rotation θ 0 of the section at mid-span. This inclusion 
became necessary due to its larger significance in the LT buckling case. Since no measured data has 
been published pertaining to this quantity, a simplified assumption was made for the purposes of 
this study: it was assumed that one of the flanges has an initial out-of-straightness that conforms to 
the measurements of the ECCS column buckling tests (i.e. with an average value of 0e =0.00085 L 
and a standard deviation of 0.0002 L), while the second flange of the I-section is on average only 
half as crooked. The standard deviation was chosen so that having a beam with both flanges equally 
deflected in the same direction and having a beam with one flange perfectly straight have the same 
probability of occurrence, with both being at one standard deviation from the assumed mean value.  

Of course, due to the fact that all the parameters governing the random data generation in Table 5-4 
contain a certain degree of assumption and conjecture, the results presented in this section are to be 
seen as an indication of general tendencies, rather than absolute representations of the real physical 
and statistical behaviour. Nevertheless, it is believed that important information can be retrieved 
from these calculations, as these calculations are not hampered by the above-mentioned 
shortcomings of the experimental program. 
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section Parameter m s Nominal value 

 
 
 

H200x100x5,5x8 

Initial curvature 0e * 0.00085 L 0.0002 L - 

Initial rotation  θ 0
** 0.00085 L /(2h) 0.0002 L /(4h) - 

Yield stress fy 285 N/mm² 17 N/mm² 235 N/mm² 

Residual stress σres
 0.20 . 235 N/mm² 0.05 . 235 N/mm² 0.30 . 235 N/mm² 

Flange thickness tf 8.0 mm 0.40 mm 8.0 mm 

Web thickness tw 5.5 mm 0.28 mm 5.5 mm 

Depth h 200 mm 2.0 mm 200 mm 

Width b 100 mm 1.0 mm 100 mm 

 
 
 

IPE 500 

Initial curvature 0e * 0.00085 L 0.0002 L - 

Initial rotation  θ 0
** 0.00085 L /(2h) 0.0002 L /(4h) - 

Yield stress fy 285 N/mm² 17 N/mm² 235 N/mm² 

Residual stress σres
 0.20 . 235 N/mm² 0.05 . 235 N/mm² 0.30 . 235 N/mm² 

Flange thickness tf 16.0 mm 0.8 mm 16.0 mm 

Web thickness tw 10.2 mm 0.51 mm 10.2 mm 

Depth h 500 mm 5.0 mm 500 mm 

Width b 200 mm 2.0 mm 200 mm 

 
 
 

HEB 400 

Initial curvature 0e * 0.00085 L 0.0002 L - 

Initial rotation  θ 0
** 0.00085 L /(2h) 0.0002 L /(4h) - 

Yield stress fy 285 N/mm² 17 N/mm² 235 N/mm² 

Residual stress σres
 0.20 . 235 N/mm² 0.05 . 235 N/mm² 0.30 . 235 N/mm² 

Flange thickness tf 23.4 mm 0.72 mm 24.0 mm 

Web thickness tw 14.3 mm 0.54 mm 13.5 mm 

Depth h 400 mm 4.0 mm 400 mm 

Width b 300 mm 3.0 mm 300 mm 
*  refers to one of the flanges, assumed to have a sinusoidal shape 
** on average, one flange has half the initial curvature of the other.  

Table 6-10 Base variables: assumptions for the Monte Carlo simulations. 

In a first step, a Monte Carlo simulation is carried out for the H200x100x5,5x8 section studied in 
section 6.10.1. The plots in Fig 6-50 show the results of this calculation in a form already used in 
Fig 6-47 to present the results of the physical LT buckling tests on this same section. Accordingly, 
Fig 6-50a shows the results in terms of the achieved nominal buckling reduction factor, thus being a 
representation of the absolute buckling strength, normalized with the nominal plastic moment 
capacity of the section. Fig 6-50b shows the results in terms of the “actual” values of χLT and λ LT, 
meaning that the “actual”, randomly generated values of the base variables of Table 5-4 were used 
in the calculation of Mpl, Mcr, χLT and λ LT. 
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Fig 6-50 Monte Carlo simulation results, plotted over the nominal (a) and actual (b) slenderness. 

Comparing Fig 6-50 and Fig 6-47, the following differences are apparent: 

i. A “lower bound curve” connecting the lowest values of the test results would lie 
significantly lower in Fig 6-50a when compared to Fig 6-47a. On the other hand, a curve 
connecting the upper values of the test results in the two figures would be very similar in 
both. In order to explain this, the base variables leading to two Monte Carlo test results 
(marked with “1” and “2” in Fig 6-50a) at a nominal slenderness of λ LT=1.0, corresponding 
to a length of L=2922mm, are looked at in detail in the following Table 6-11: 

Base variable MC test “1” MC test “2” 

Initial curvature 0e * L/954 L/1078 

Initial rotation  θ 0
** 2.67 mrad 6.21 mrad 

Yield stress fy 309.9 N/mm² 253.3 N/mm² 

Residual stress σres
 41.5 N/mm² 62.9 N/mm² 

Flange thickness tf 8.87 mm 7.19 mm 

Web thickness tw 5.69 mm 6.01 mm 

Depth h 199.6 mm 200.0 mm 

Width b 100.4 mm 100.2 mm 

Table 6-11 Monte Carlo tests “1” and “2” of Fig 6-50; generated input data. 

The comparison of the values contained in the table shows that the main differences between 
the highest (“1”) and lowest (“2”) test results are to be found in the initial rotation, the 
residual stresses and, most importantly, the flange thickness and the yield stress.  
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In order to explain the differences between Fig 6-50a and the physical tests in Fig 6-47a, it 
is important to recall (by looking at Table 6-9) that the yield stress in the physical tests was 
also rather high, never falling below 280 N/mm² in any of the tests included in Fig 6-47, 
and often lying above 300 N/mm². Since no values are included in Fig 6-47a with yield 
stresses as low as the one generated for the Monte Carlo test “2”, it is clear that the lowest 
Monte Carlo tests had to be lower in terms of χLT,nom.  
 

ii. A comparison between the Monte Carlo and the physical test results in Fig 6-50b and  
Fig 6-47b, plotted in terms of χLT,act over λ LT,act, at first sight gives some confirmation to the 
points made in section 6.10.1, i.e. that the scatter of the physical test results in Fig 6-47b is 
high and caused by a lack of information regarding the base variables. In the Monte Carlo 
tests, all input data is (inevitably) known, leading to the narrow scatter band in Fig 6-50b. 
It is interesting to discuss this figure with some more detail, as it is perhaps not readily 
understood why even in the case of the Monte Carlo tests, where all input data is known, the 
test results in terms of χLT,act lie at a more or less noticeable distance from the (Eurocode or 
new) design buckling curves. As a matter of fact, judging from Fig 6-50b, for this specific 
section the newly proposed design curve appears to be the most inaccurate of all three 
included curves. This seems to be in contrast with what has been demonstrated in section 
6.8, where the new formulation was shown to be far more accurate in describing the 
behaviour of any given section.  
Of course, the reason for this apparent inconsistency lies in the fact that the accuracy of the 
new formulation is referred to the deterministic “model beam” alone; the GMNIA results for 
this beam with nominal yield stress and cross-sectional geometry, eigenmode-affine 
geometric imperfections and fixed, high imperfection amplitudes is also included in  
Fig 6-50b and is shown to also lie significantly below the Monte Carlo test results in terms 
of χLT,act. Furthermore, this doesn’t necessarily mean that the curve is “inaccurate” for the 
purposes of reliability, since the assessment of the accuracy of a given formulation (i.e. the 
calculation of Vδ) is only performed after the linear regression correction factor b is 
calculated:  

 
( ) ( )

n n

e,i t,i LT,nom,e,i LT,nom,t,i
i 1 i 1

n n2 2
t,i LT,nom,t,i

i 1 i 1

r r
b

r

= =

= =

⋅ χ ⋅χ
= =

χ

∑ ∑

∑ ∑
 (6.59) 

The factor b can also be thought of as an in-built safety factor in a given design rule. A value 
of b=1.0 would mean that the design curve describes the mean values of the test results, in 
terms of χLT,act, while values higher than 1.0 would indicate that the design curve already 
describes a lower fractile. Neither one of these scenarios affects the “accuracy” of a design 
rule for the purposes of a reliability analysis.  
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Fig 6-51 GMNIA curve calculated with the mean values of the input parameters and compared to 

the newly-developed Ayrton-Perry formula evaluated with (6.43). 

This is further discussed in Fig 6-51. The figure on the left is similar to Fig 6-50b, but omits 
the current Eurocode curves and only includes the new LT buckling design curve (in red). 
Additionally, it includes a new GMNIA buckling curve; contrary to the numerical curve that 
was used for the calibration of the new design rule, this GMNIA curve was calculated using 
the mean values m of Table 5-4 as input variables. Even in terms of χLT,act, this curve is 
higher than the new design formula based on the “model beam”. The reason for this 
primarily lies in the beneficial combination of higher yield strength and lower residual 
stresses, as well as somewhat smaller initial imperfections and a slightly more convenient 
shape of the imperfection when compared to the eigenmode-affine shape used for the 
“model beam”. Since this curve passes in the middle of the scatter band of the Monte Carlo 
test results, Fig 6-51a proves that a buckling curve representing the mean values of the base 
variables would be far better suited to describe the (average) position of test results in terms 
of χLT,act over λ LT,act. Such a curve would, however, require far larger safety factors than 
one based on a low fractile in order to cover the rare low fractile combination cases that 
define the design points.  
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The “accuracy” in terms of Vδ of the new formulation is not affected by these 
considerations, since the linear regression, and thus the factor b, is very well able to lead to a 
very accurate description of the tests, see Fig 6-51b. When compared to Fig 6-48, this plot 
shows the values of Vδ to be significantly smaller in the case of the Monte Carlo tests. The 
figure contains the results for two values of λ LT,nom; interestingly, if all considered 
slenderness values are looked at, a tendency can be observed for the factor Vδ to be very low 
at low slenderness, somewhat larger at values of λ LT,nom around 1.0, and then decrease 
again. This is in keeping with the fact that the imperfections are mostly felt in the 
intermediate slenderness range, and are not included in the buckling design formulae. This 
means that even though the imperfection amplitudes are known in the case of the Monte 
Carlo tests, their value is irrelevant to the result of the formula and leads to a larger value of 
Vδ if the imperfections are relevant.The attention can now be turned to the results in terms of 

the safety factor γM
* of the statistical evaluation according to EN 1990 Annex D for the three 

sections of Table 5-4. This is done by calculating the values of γM
* for all three considered buckling 

design curves (“general case”, “specific case” and “new formulation”). For a better visualization 
and interpretation of the results, the results of the Monte Carlo simulation are also plotted as m +/- 
2s lines in a χLT,nom/ λ LT,nom plot and compared to the position of the design buckling curves in this 
space. In all plots, the “specific case” curve is the higher one of the two Eurocode 3 curves. 

Fig 6-52 shows the results of this evaluation for the H200x100x5,5x8 section. The plot on the left 
essentially contains the same information given by Fig 6-50a, with the difference that the m+/-2s 
lines already contain some statistical information. It can be seen again that the new formulation 
yields the lowest design curve for this specific section up to the higher slenderness values, where it 
basically overlaps with the “general case” curve for this section. 

 
Fig 6-52 Monte Carlo simulation and statistical evaluation: H200x100x5,5x8 section, S235. 
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Fig 6-52b shows the the results of the statistical evaluation in terms of γM
* for the H200x100x5,5x8 

section. The results are best discussed in combination with Fig 6-49, where the values of γM
* were 

calculated for the physical tests performed with the same section. The values calculated for the 
Monte Carlo tests are generally lower than the ones calculated for the physical tests, which is in 
keeping with the comments made about the origin of rather large values of Vδ in the case of the 
physical tests.  

In relative terms, the results in the two figures generally confirm the same tendencies for the values 
of γM

*; both for the “general case” and the new formulation, the obtained values of γM
* are (slightly) 

higher at low slenderness. The new formulation seems to be best suited at maintaining the required 
value of γM

* fairly constant, as the obtained values range between 1.025 and 0.965 with no sudden 
changes.  

The “specific case” evaluation shows a behaviour similar to Fig 6-49b, with the values being 
slightly higher than for the other two curves, and remaining fairly constant throughout the 
slenderness ranges. The exception in this case is represented by the results for the nominal 
slenderness value of λ LT,nom=1.6, where γM

* shows a “peak”. As Fig 6-52a shows, at this 
slenderness the “specific case” buckling curve is coincident with the Euler hyperbola. A look at Fig 
6-47a reveals that only very few physical tests were carried out at high slenderness λ LT,nom~1.6, 
and these tests were grouped together with tests with lower slenderness beginning with λ LT,nom=0.8 
in Fig 6-49b. In the Monte Carlo simulation, 30 tests were simulated at λ LT,nom=1.6, meaning that 
enough data points for this specific slenderness are contained in the evaluation. Thus, it can be 
assumed that the representation in Fig 6-49b “missed” a peak in the required value of γM

*. 

The following two figures (Fig 6-53 and Fig 6-54) show the results of identical statistical 
evaluations for the IPE 500 and HEB 400 sections, respectively.  

 
Fig 6-53 Monte Carlo simulation and statistical evaluation: IPE 500 section, S235. 
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Fig 6-54 Monte Carlo simulation and statistical evaluation: HEB 400 section, S235. 

The figures on the left show the new formulation (dashed red line) to be specific to the section, 
while the existing Eurocode formulations are fixed in their position in the χLT,nom/ λ LT,nom plane for 
a certain categorization of h/b. The advantages of the section-specific new formulation become 
apparent for these two cases: the calculated values of γM

* become far more homogeneous in this 
specific formulation when compared to both the “general case “ and “specific case” curves of the 
Eurocode. The new formulation yields values of γM

* that fluctuate around values at or just above 
1.0. The “general case” seems to have the general tendency of becoming “more conservative”, i.e. 
requiring lower values of γM

*, with increasing slenderness, while the opposite tendency seems to be 
true for the “specific case” curves. 

In summary, the Monte Carlo simulations presented in this section helped to clarify some points 
concerned with the reliability level of current and proposed LT buckling curves: 

i. The advantages of actually knowing the measured values of all relevant base variables were 
emphasized. 

ii. The difference in accuracy between a curve that describes a beam with average values of 
input variables and one with lower fractile values was described, and the implications of 
these differences on a reliability analysis were discussed. 

iii. The possibility of “missing” peaks or sudden increases in the demand for γM
* by grouping 

together tests pertaining to a rather broad range of slenderness was demonstrated and, in one 
example, shown to be risky in the case of the “specific case” curves. 

iv. One advantage of the newly proposed buckling curve formulation was shown to lie in the 
fact that the curve is specific for any given section, meaning that the reliability level is 
intrinsically more homogeneous for different sections than the Eurocode curves with their 
coarse categorization in accordance to h/b≤ or > 2.0.  
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6.11. Constant Reliability Curves 
In this section, the potential for an applicability of “constant reliability curves” to the development 
of probabilistically calibrated and categorized LT buckling rules is investigated and briefly 
presented. Thereby, the basic principles presented in chapter 4 and applied to the column buckling 
case in chapter 5, section 5.6, are adopted. The main purpose of this presentation is to demonstrate 
the viability and the difficulties of this sort of calibration. 

The same three sections studied in 6.10 (H200x100x5,5x8, IPE 500, HEB 400, all of steel grade 
S235) are treated again. The method requires probabilistic input data; the values of Table 5-4 are 
therefore adopted. The numerical partial derivatives for each of the eight base variables, essential to 
the development of the constant reliability curves, are performed using the same methodology 
already discusses in chapter 5, section 5.6.  

The results of this first order reliability analysis (FORM) are shown in the following figures (Fig 6-
55 to Fig 6-57) for the three studied sections. The diagrams can be described as follows: 

i. In the figures on the left, the curves rm, rd and rub are plotted, representing the mean curve, 
the “design value” curve that would (theoretically) require a partial safety factor of exactly 
γM

*=1.0, and the “upper bound” curve representing values that are at the same “distance” (in 
terms of probability) from the mean value as the design value. All these plots are presented 
in terms of χLT,nom over λ LT,nom. 

ii. Additionally, the figure on the left features the design curve resulting from the new 
formulation proposed in this chapter (red dashed line), a line representing a FORM constant 
reliability curve that would require exactly a value of γM

*=1.05 (1.05 rd - blue dashed-dotted 
line), and a best-fit approximation of 1.05 rd (green dashed line).  

iii. It was chosen to approximate the 1.05 rd line with a best-fit description, and not the rd line, 
because the rd curve inevitably drops below χLT,nom= 1.0 at very low slenderness. This is due 
to the fact that the cross-sectional capacity itself actually requires a partial safety factor 
slightly larger than 1.00, at least if the assumptions regarding the statistical distributions of 
the base variables in Table 5-4 are taken to be valid. This is particularly felt at the end of the 
plateau of the new design curve ( z,nom 0.2λ = ) , where values of γM

* of ca. 1.04 ... 1.05 are 
needed for all three studied sections. The same tendency was also observed in the column 
buckling case.  

iv. The best-fit description was carried out using the same technique employed in section 6.8, 
particularly using the final formula (6.43) of sub-section 6.8.4, leaving the generalized 
imperfection amplitude η, or rather the generalized imperfection amplitude factor αLT, up 
for calibration: 

 ( )z,nomLT 0.2η = α ⋅ λ −  (6.60) 

And αLT= LT y,el z,ela W / W⋅ , with aLT being a constant. 
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Fig 6-55 Constant Reliability Curves for a H200x100x5,5x8 section, steel grade S235. 

 
The figure b), on the right in Fig 6-55 to Fig 6-57, shows the functions of η over z,nomλ  that 
result from the proposal of Table 6-4 (aLT=0.12, αLT= LT y,el z,ela W / W⋅ ,, based on the 
“model beam” calibration), the “numerical values” of η that were calculated using equation 
(6.42), and the best-fit function. 
 

The following observations can be made regarding Fig 6-55 to Fig 6-57: 

i. When the lines for rd and for the new proposal based on the “model beam” (αLT=0.12) are 
compared, the near-equivalence of the evidence conveyed by the constant reliability curves 
and by the Monte Carlo simulations of section 6.10.2 becomes evident. This is particularly 
true of the calculated values of γM

* in Fig 6-52b to Fig 6-54b are looked at. The value of γM
* 

is directly comparable to the relative distance of the red dashed line for aLT=0.12 and the rd 
line in Fig 6-55 to Fig 6-57. For the IPE 500 and the HEB 400 section, the two lines are very 
close beginning at intermediate slenderness ( λ LT,nom~0.4). In the case of the IPE 500, the 
distance between the two lines rd and aLT=0.12 is actually the smallest at λ LT,nom~0.6 and 
then again after λ LT,nom~1.0. These are the points were γM

* is closest to 1.0 in Fig 6-53b. In 
the case of the H200x100x5,5x8 section, the calculated value of γM

* decreases with 
increasing slenderness, see Fig 6-52b. This is reflected in Fig 6-55 by an increasing 
difference between the aLT=0.12 and the rd line. This difference again becomes somewhat 
smaller at λ LT,nom~1.5, which is also reflected in the increase of γM

* in Fig 6-52b.  
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Fig 6-56 Constant Reliability Curves for an IPE 500 section, steel grade S235. 
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section 6.8, i.e. an essentially deterministic categorization based on the assumptions made in 
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reflect the differences between different sections in a probabilistic sense.  
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e.g. deep sections will react differently to a variability of flange thickness, or overall depth, 
than stocky sections.  
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Fig 6-57 Constant Reliability Curves for a HEB 400 section, steel grade S235. 
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7  
Torsional & TorsionalFlexural Buckling of I & H Sections 

7.1. Introduction and Scope 
Columns in the shape of I- or H-profiles are frequently restrained in lateral direction; examples for 
such supports are side rails supporting a cladding system, liner trays, trapezoidal sheeting, sandwich 
panels, etc. In either case, these elements of the building envelope can usually be thought of as a 
continuous restraint for the purely lateral deflection of the column, effectively preventing the pure 
weak-axis buckling mode. In these cases, the buckling failure mode is described by a rotation of the 
cross-section about the axis of lateral restraint. Depending on the location of the restraints, the 
column may react by a mere torsional deformation (when the lateral support is in line with the 
column’s centroid), or by a combined torsional and flexural deformation (when the lateral support is 
eccentric, as is usually the case in the case of cladding). The global ultimate limit (buckling) load is 
thereby usually reached when one of the flanges reaches its plastic limit load. 

The problem of the ultimate strength and buckling behaviour of laterally supported columns and 
beam-columns is well known; fundamental research work on the topic has already been published 
by Horne & Ajmani (1971). These early studies mainly focused on the determination of maximum 
slendernesses (or minimum support spacing and stiffness) for a fully plastic design of beam-
columns under combined axial compression and in-plane bending moment using the plastic hinge 
theory. They constitute the theoretical background for the so-called “stable length” method found in 
Annex BB.3 of Eurocode 3-1-1 (2006), see also King (2005). 

Nevertheless, the basic case of torsional (T) and torsional-flexural (TF) buckling–seen as a member 
instability phenomenon comparable to flexural or lateral torsional buckling and expressible in the 
general form of a buckling curve  yN / (A f ) f ( )χ = ⋅ = λ - is treated with a certain degree of neglect 
in most international design codes. In the Eurocode 3, torsional and torsional-flexural buckling is 
considered to behave somewhat similarly to out-of-plane flexural buckling, with the λ-dependent 
reduction factor χ being equal to the one for out-of-plane flexural buckling.  

This chapter is therefore aimed at developing and representing specific buckling curves of members 
with double-symmetric I- and H-sections with lateral restraints under pure axial compression, which 
tend to fail in torsional or torsional-flexural buckling. Thereby, single span members are considered 
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and the lateral restraints are assumed to be applied continuously along the span, see Fig 7-1. The 
possible contribution of the lateral support to the torsional rigidity of the column-cladding system, 
as would be given in practice whenever the lateral support runs continuously (rigid node) across the 
studied column, is ignored in the present study; for many conventional cladding systems, this effect 
will be comparatively small.  

Numerical simulations are carried out on the basis of geometrically and materially nonlinear 
analyses with imperfections (GMNIA). The results of the GMNIA calculations are illustrated in the 
form of buckling curves for different cross-section shapes and different positions of the lateral 
restraints in relation to the centroid of the sections.  

Following the procedure applied in chapter 6 for the LT buckling case, a specific, second-order 
formulation is then developed for the torsional buckling phenomenon. Again, a generalized 
imperfection is defined in the typical form of the Ayrton-Perry formulation, allowing for a 
subsequent calibration to pre-established numerical curves.  

In a final step the numerically obtained buckling curves are described by a possibly encompassing, 
calibrated definition of the generalized imperfection. Finally, the newly developed curves are 
compared to both the numerical curves and the rules given in Eurocode 3-1-1, illustrating the 
advantage in accuracy provided by the new formulation. 

7.2. Elastic critical buckling loads 

7.2.1. General relationships 

Before the ultimate strength of members subjected to torsional or torsional-flexural buckling can be 
represented in the familiar form of buckling curves, it is necessary to determine the critical Euler 
buckling loads Ncr for these cases of member instability. The normalized slenderness Tλ  or TFλ  for 
torsional or torsional-flexural buckling can then be calculated as the square root of the ratio 

pl cr y crN / N A f / N= ⋅  as costumary. 

The critical Euler buckling loads Ncr,T or Ncr,TF for torsional and torsional-flexural buckling of 
members with double-symmetric sections and enforced axis of rotation are well known -see e.g. 
Timoshenko (1964) or Bleich (1954)- and can be expressed by the following set of equations: 

 
2 2

cr,TF cr,z 2 2
p

c dN N
i d

+
= ⋅

+
 (7.1) 

Where 
2

cr,z 2
EIN
L

= π
 (7.2) 

 p y zi (I I ) / A= +
 (7.3) 
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 w T

z cr,z

I GIc
I N

= +  (7.4) 

and d is the distance of the lateral restraint from the centre of gravity, see Fig 7-1. 

For practical use in design, the relationship between the buckling loads Ncr,T and Ncr,z can be 
expressed equivalently to the procedure used in BS 5950-1 (2000) - Annex G, by referring to the 
slenderness coefficients TFλ  and zλ  and combining them through a factor kT : 

 TF zTkλ = ⋅λ  (7.5) 

where kT is a factor accounting for the influence of the torsional rigidity of the section. 

In a paper by Greiner et alt. (1999), kT was evaluated for different cross section shapes and 
represented in form of diagrams. The diagram in Fig 7-1 was thereby developed under the 
geometric assumption that the thickness of the web is half the thickness of the flanges. This 
assumption was necessary in order to eliminate the otherwise free parameter of web thickness from 
the chosen form of representation. By comparing the results of the calculations carried out under 
these assumptions with results of calculations for actual rolled beam sections (IPE500 and 
HEB300), it could be shown that the parameter which best reproduces the beneficial effect of 
torsional rigidity on the critical buckling behaviour of double symmetric I- and H-sections is the 
ratio h/tf of section depth to flange thickness. The assumption concerning the web thickness was 
shown to yield slightly higher values of slenderness than the ones calculated for actual rolled beam 
sections and is therefore somewhat on the safe side. Hence, the application of the procedure 
illustrated in Fig 7-1 allows for a simple and safe evaluation of critical torsional buckling loads over 
the more accessible buckling loads for out-of-plane flexural buckling. 

 
Fig 7-1 Ratio kt of weak-axis flexural and torsional-flexural slenderness TF zTk /= λ λ  
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7.2.2. Comparison with in & outofplane buckling and “limit slenderness” 

In order to appreciate the significance of the studied buckling phenomenon, it is first useful to take 
a look at the critical buckling loads for torsional and torsional-flexural buckling (TB & TFB) and 
compare them to the other main global buckling modes associated to column buckling, i.e. strong- 
and weak axis flexural buckling (FByy & FBzz, respectively). This is done for three different 
sections in Fig 7-2 and Fig 7-3, representative for relatively slender (IPE500), indermediate 
(IPE240) and stocky sections (HEM 400) as far as their torsional rigidity is concerned. In these 
figures, the normalized critical (bifurcation) buckling loads Ncr/Npl for the different modes is plotted 
over the length of the section; in all calculations, the fillet radius was included in the calculation of 
area, torsional rigidity IT and second moment of area Iy. The boundary conditions are shown in Fig 
7-1. 

 
Fig 7-2 Comparison of critical buckling loads and modes for an IPE 500 and IPE 240 section. 
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Fig 7-3 Comparison of critical buckling loads and modes for an HEM 400 section. 

In Fig 7-2a, c and Fig 7-3a TB is compared to FByy and FBzz with a number of intermediate lateral 
restraints, with n=0 representing a member free of lateral restraints within its span. The figure 
shows that it takes a varying, section-dependent number of intermediate restraint points in order to 
have a lower critical buckling load for FByy than FBzz; this number is n=4 in the case of the IPE 
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lie in a very relevant domain of practical applications, with the change of mode lying at ca. 4 to 8 
m, and L/h~14 to 18, depending on the section. With increasing number of intermediate restraint 
points n, the transition from the TB to the FBzz mode is of course pushed even farther towards 
greater member lengths. Thus, in many practical cases the question of whether or not the lateral 
restraints represent a “continuous” support will make little difference in design; this is especially 
true if one considers the current Eurocode rules, where the buckling reduction factors χz and χTB are 
to be calculated with the exact same buckling curves and with the value of λ  corresponding to the 
lower value of Ncr,z or Ncr,T, see also the explanations given in section 7.3.  

If one considers the case where n is large enough to make the strong-axis buckling case FByy more 
relevant than the purely flexural FBzz case in terms of Ncr, the practical significance of the TB case 
becomes even more evident from Fig 7-2a, c and Fig 7-3a. The change of mode between TB and 
FByy occurs at lengths corresponding to ratios L/h of ca. 36 and 47 in the case of the IPE 240 and 
500 sections, respectively, making TFB clearly relevant in practice for these sections.  

The considerations made up to this point are only further accentuated if the lateral restraints are 
placed eccentrically with regard to the section’s centroid line, i.e. in the case of torsional-flexural 
buckling TFB. This is shown in Fig 7-2b, d and Fig 7-3b for the three studied sections and a 
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position of the lateral support that is aligned with the centroid of one of the two flanges of the 
symmetric I-section. A positioning of the (continuous) lateral support at this location, or rather 
slightly farther “outside”, is quite typical for the effect of cladding in building envelopes. The 
figures show that the eccentricity d of the support line leads to a significant drop of Ncr,TF. In the 
case of the more slender IPE sections, boundary conditions of this type will cause the TFB case to 
be the only relevant global bifurcation mode in all ranges of practical application, particularly for 
single-span members.  

It has thus been shown that the normalized column slenderness pl crN / Nλ =  will indeed be 
governed by Ncr,T or Ncr,TF in many cases of practical application. One additional, possibly 
surprising fact resulting from the calculation in Fig 7-2 and Fig 7-3 must however be pointed out: 
all diagrams in these figures illustrate that, while the critical buckling load Ncr,z and Ncr,y for flexural 
buckling approach values of zero for infinite member length, the Ncr,T and Ncr,TF curves approach a 
non-zero value. Indeed, a limit value of Ncr,TF (which includes Ncr,T as a special case) for L equal to 
infinity can be calculated from equation (7.1): 

 T
cr,TF, cr,TF 2 2L p

GIN lim N
i d∞ →∞

= =
+

 (7.6) 

This is, of course, always a non-zero value. As the term itself implies, while the warping 
resistance’s Iω contribution to the load-carrying behaviour approaches zero with increasing length 
the torsional rigidity GIT maintains a non-zero stiffness contribution even at infinite length, causing 
there to be an almost-constant value of Ncr,TF at higher lengths.  

This characteristic of TB and TFB has another remarkable effect: it causes all buckling curves  
χ(λTF) to stop at a certain value of the normalized slenderness. This is quite untypical for buckling 
curves, which generally tend towards infinite values of slenderness. By using (7.6) in the column 
slenderness definition, we can calculate the limit slenderness as follows: 

 
( )2 2

y ppl
TF,lim

cr,TF, T

A f i dN
N GI∞

⋅ ⋅ +
λ = =  (7.7) 

 

As will be shown in the following section, the existence of the limit slenderness means that –as far 
as the TB and TFB mode itself is concerned- all buckling curves for TB and TFB will stop at 

TF,limλ  for the simple reason that there is no value of λTF beyond this point. How this affects the 
shape of (numerical) buckling curves will be shown in the following section. 
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7.3. Numerical  (GMNIA)  buckling  curves  and  comparison  with 

Eurocode rules 

7.3.1. General remarks 

In this section, the general behaviour of columns failing in the torsional- and torsional-flexural 
buckling mode are studied by means of numerical GMNIA calculations and compared to the current 
Eurocode design regulations.  

Again, only single-span members with end fork boundary conditions and intermediate lateral 
supports were considered, i.e. members with in-plane (parallel to web), out-of-plane (lateral) and 
torsional restraints at the ends and solely lateral restraints along the free span. 

The numerical methodology followed the general indications given in chapter 3. Both beam and 
shell element models were used, whereby the shell models were mostly used to confirm the beam 
model’s accuracy. The initial geometric imperfections were assumed to be distributed in a 
sinusoidal shape along the length of the member, having their maximum value at mid-span. The 
possibility that the imposition of the restraints will influence the initial shape of the member was 
ignored for the purposes of this study. Both initial rotations and (in the torsional-flexural case) 
lateral deflections were considered. The amplitude of these imperfections was assumed to be equal 
to 0e =L/1000. Only global imperfections were considered, i.e. no imperfections involving cross-
section distortion were taken into consideration. All calculations were conducted for steel grade 
S235, with fy=235 N/mm².  

The differences between cross-sectional classes (1 to 4) were neglected for the purposes of this 
study. This means that some sections are treated as if they were compact class 1 or 2 sections even 
when they are actually slender class 4 sections under pure compression. This was done in order to 
be able to better separate the single buckling effects and focus on the studied case alone. 

7.3.2. The Eurocode buckling rules for torsional and torsionalflexural buckling 

According to Eurocode 3 – EN 1993-1-1 (EC3), clause 6.3.1.4, the design buckling resistance Nb,Rd 
against torsional or torsional-flexural buckling is calculated by multiplying the plastic resistance 
A.fy=Npl with the buckling reduction factor χTF; thereby, the torsional-flexural mode includes the 
purely torsional mode as a special case. The reduction factor is calculated from the following 
Ayrton-Perry formula and – in the case of hot-rolled sections studied in this chapter- the generalized 
imperfection factor αTF according to Table 6-4. 

 TF 22
TFTF TF

1 1.0χ = ≤
Φ + Φ − λ

 (7.8) 

and ( ) 2
TF TFTF TF

1 1 0.2
2

⎡ ⎤Φ = + α λ − + λ⎢ ⎥⎣ ⎦
 (7.9) 
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h/b 
hot-rolled I  

(buckling curve)

≤1.2 αTF=0.49 (c) 

>1.2 αTF=0.34 (b) 

Table 7-1 Generalized imperfection amplitude according to the Eurocode. 

The generalized imperfection amplitude factor αTF is identical to the one applicable for the weak-
axis flexural buckling mode, αz. The generalized imperfection term η= ( )TFTF 0.2α λ −  is a linear 
function of TFλ ; as was pointed out in chapter 4, section 4.3.2, this means that the underlying 
equivalent imperfection amplitude 0e  is not a linear function of the member length, since TFλ  is 
not proportional to length. 

7.3.3. Comparison  of  GMNIA  and  Eurocode  buckling  curves  for  different 

sections 

The general behaviour of I-sections in torsional or torsional-flexural buckling is illustrated for four 
different sections and four locations of the lateral restraint in Fig 7-4. The four chosen sections 
represent a fairly broad band of geometrical proportions, ranging from a stocky HEM 400 to a very 
slender HEAA 1000, and including two increasingly slender IPE sections (IPE 240 & 500). 
Nevertheless, all sections have an h/b ratio larger than 1.2, leading to a common assumption for the 
residual stresses in all cases. This common categorization with h/b>1.2 also leads to the fact that all 
sections are designed against TB/TFB with the exact same buckling curve b according to the 
Eurocode, as this is the curve that would also apply for weak-axis flexural buckling.  

Fig 7-4a illustrates the buckling strength of the four studied sections for the purely torsional 
buckling case TB. In this case, the imperfection shape doesn’t contain any movement of the 
section’s centroid, as the imperfections are mainly associated to the two flanges, where each of 
them is pre-deflected by an amount of 0e =L/1000. The centroid also doesn’t deflect during the 
buckling phenomenon, which is therefore entirely associated with a (circular) rotation of the cross-
section, having its maximum at mid-span. The differences between the behaviour (in terms of shape 
of the numerical buckling curve) of the single sections is clearly visible in the figure: while the 
behaviour of the slender HEAA 1000 section results in a buckling curve that has a typical, sharp 
drop of the buckling strength with increasing slenderness, the stocky HEM 400 section is entirely 
unaffected by buckling in this case. The two IPE sections have a behaviour that is somewhat 
intermediate between the two previously discussed extreme cases. All numerical GMNIA curves 
have in common that they lie relatively far above the Eurocode design curve (meaning that the 
Eurocode curve is “very conservative” for this case), and that they stop at (or don’t exceed) the limit 
value of the slenderness T,limλ  calculated using (7.7) for d=0. This theoretical limit value is 
indicated with short, vertical dashed lines in the figures. 
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Fig 7-4 Numerical (GMNIA) TB and TFB curves compared with the Eurocode curve. 

Fig 7-4b-d illustrate cases of torsional-flexural buckling for the same sections, with increasing 
values of the eccentricity d of the lateral support. The first thing that catches the eye in these three 
figures is that the numerical GMNIA curves progressively get closer to the Eurocode design curve; 
the latter is always the same for all cases of TB and TFB.  

In the case of lateral supports at the height of the centroid of one of the flanges (Fig 7-4b), the 
differences between the single sections are still significant, but decreasing when compared to the 
TB case. The limit slenderness TF,limλ  is pushed towards higher values and disappears from the 
plotted graph for the HEAA 1000 section. The HEM 400 reaches its full plastic capacity up to a 
slenderness value of ca. λTF=0.5, and then suddenly begins to drop almost vertically; the last 
plotted point in the curve thereby only indicates the last plotted calculation, not the physical stop of 
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the curve. The same behaviour is observed for the other three sections as well as they approach their 
respective value of TF,limλ .  

When d=h (Fig 7-4c), with h being the section depth, the IPE and HEAA sections are very close to 
each other and increasingly closer to the Eurocode curve. The values of TF,limλ  lie beyond the 
plotted range limit of 2.0 for these three sections. Only the HEM 400 section has a behaviour that 
clearly diverges from the behaviour of the other sections. As the –otherwise rather high- buckling 
curve approaches the calculated value of TF,limλ , the buckling curve again drops dramatically.  

At a value of d=2h (Fig 7-4d) the buckling curves resulting from the GMNIA calculations are very 
close to the EC3 design curve (also valid for weak-axis flexural buckling), with only minor 
differences remaining between the single sections.  

The shape of the buckling curves of the four sections shown in Fig 7-4 can be further commented 
upon and explained as follows: 

i. The fact that the curves’ shape is quite distinctly influenced by the section series in the case 
of TB is –in retrospect- not very surprising. As the name of the torsional buckling mode 
implies, torsional rigidities and deformations are dominant in this case. Since the torsional 
rigidity –and its relative contribution when compared to the warping stiffness- is very 
different for each section, the differences in the shape of the buckling curve are 
understandable. The reason why the Eurocode does not at all reflect these differences is to 
be found purely in the scarcity of specific numerical studies of this phenomenon found in 
the literature, which clearly led the code developers to adopt a cautious lower-bound 
approach. 

ii. The fact that the Eurocode provision –which is valid for TB and TFB- is a lower limit is 
confirmed by the tendency to approach the Eurocode (weak-axis flexural buckling) curve 
with increasing section slenderness and –importantly- support eccentricity d. In the limit 
case of d=∞, buckling curves must inevitably converge towards the Eurocode curve, as this 
case is identical to the weak-axis flexural buckling case, with TF,limλ =∞ and TF zλ = λ . 

iii. The observed, sharp drop of the buckling curves as they reach the limit value of TF,limλ  in 
the torsional-flexural buckling case, but not in the purely torsional case, is best explained by 
representing the results shown in Fig 7-4 in a different form, that is by plotting them over 
the length and the strong-axis flexural buckling slenderness yλ . This is done in Fig 7-5 for 
the IPE 240 section and the cases d=0 and d=hs/2, with hs being the distance between the 
centroids of the flanges. Additionally to the GMNIA and Eurocode TFB curves for the 
single cases, these plots include the Eurocode buckling curve for strong axis flexural 
buckling FByy, as well as the critical (Euler) buckling loads Ncr for TFB and FByy. The 
purpose of this representation is to show that the observed quasi-vertical drop of the 
buckling curves in the χTF/λTF space stems from a mode switch between TFB and FByy. 
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Fig 7-5 TFB and FByy buckling curves for an IPE 240 section; d=0 (a) and d=hs/2 (b) 

When the two plots of the numerical results in Fig 7-5a and b are compared, a fact that comes to 
one’s attention is that the GMNIA curve appears to approach a horizontal asymptote in the case of 
purely torsional buckling (a), which is consistent with the behaviour of the critical TB load Ncr,T. 
Contrary to this, the GMNIA curve in the case of torsional-flexural buckling does not approach a 
horizontal asymptote, but rather approaches the Euler critical buckling load for strong-axis buckling 
Ncr,y with increasing length.  

By comparing the results with the Eurocode rules, it becomes clear that the GMNIA TB curve not 
only lies significantly above the Eurocode values for torsional buckling, but also “misses” the 
transition to the FByy buckling load predicted by the EC3 rules for this mode. In the studied TFB 
case, the GMNIA curve still lies well above the Eurocode values in the range that appears to be 
dominated purely by TFB, then (between L=1000 and 1500 cm) features a smooth transition to 
Ncr,y, thereby trespassing the EC3 curve for FByy. Over a relatively small range of length, this 
“transition” line lies slightly below both the Eurocode TFB and FByy buckling curves, meaning that 
the code regulations are actually somewhat “unconservative” in this range.  

It is fairly easy to answer the question of where the differences in behaviour between the studied TB 
and TFB cases in Fig 7-5a and b stem from: these are to be found in the shape of the imperfection 
for both cases, particularly in the position of the centroid of the section in the imperfect 
configuration and with respect to the section’s strong axis. While in the TB case the centroid does 
not move at all throughout the loading process, in the TFB case the imperfection itself has a (very 
small, but present) component in the direction parallel to the web in perfect configuration, given by 
the circular shape of the deformation path.  
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Fig 7-6 TFB and FByy buckling curves for an HEM 400 section; d=hs/2 (a) and d=h (b) 

Thus, in the TFB case, at a certain length the non-linear load-deformation path enters the strong-
axis flexural-buckling path. Since the initial imperfection in this direction is rather small, and 
certainly smaller than the value of 0e =L/1000 assumed by Beer & Schulz (1970) when they 
established the ECCS curve that now became the EC3 column buckling curve a for FByy, the 
GMNIA curves at very high member length ends up being closer to the critical load Ncr,y than the 
Eurocode design curve for FByy. Of course, this could only happen because no (additional) 
imperfection in the direction of the web was included in the calculations, as only the effect of TFB 
and coupled rotational-lateral imperfections is intended to be studied. The same (intentional) lack of 
imperfection with curvature about the strong axis is also responsible for the “missing” of the 
bifurcation at Ncr,y in the GMNIA calculations for the torsional buckling case in Fig 7-5a. 

The transitional behaviour between TFB and FByy is illustrated a bit better when looking at the 
HEM 400 section, see Fig 7-6. For this section, the classical χTF=f(λTF) type of representation 
features rather sudden drops of the buckling load as the limit slenderness value of TF,limλ  is 
approached in Fig 7-4a-c. The GMNIA results from Fig 7-4b (d=hs/2) and c (d=h) are looked at 
again in Fig 7-6, since they are the most interesting. As Fig 7-6a shows, the Eurocode would 
actually predict a lower TF buckling load than the one given by the applicable FByy curve up to 
lengths of over 12m for this section and d=hs/2. This is not reflected by the GMNIA curve, which 
shows a behaviour typical of pure strong-axis buckling, albeit with a smaller imperfection than  

0e =L/1000. Accordingly, the numerical curve stays at χ=1.0 up to a relatively high length, and then 
smoothly descends towards Ncr,y. In the case of d=h (Fig 7-6b), the TF buckling mode appears to 
have a stronger impact on the buckling load at lower member length, albeit not sufficient to make 
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the current rules for TFB in the Eurocode any less than very “conservative” throughout the length-
range where this mode is dominant. 

An additional example is illustrated in Fig 7-7, where the GMNIA buckling curves for TB/TFB and 
variable support eccentricities d are plotted for an IPE 500 section and compared to the applicable 
Eurocode design curves.  

 
Fig 7-7 TFB and FByy buckling curves for an IPE 500 section; d=variable. 
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Again, the transitional behaviour from TFB to FByy is clearly visible in Fig 7-7b and c. The 
“unsafe” discrepancies in the length range where both the EC3 design curves lie above the GMNIA 
curve are most pronounced for the case where the lateral support is at a flange centroid (Fig 7-7b). 
With further increasing eccentricity, the behaviour becomes increasingly dominated by the TFB 
mode alone, until finally at d=2h the Eurocode TFB curve appears to describe the GMNIA curve 
almost perfectly throughout all studied lengths. 

In summary, it can be said that the current Eurocode rules describing the torsional- and torsional-
flexural buckling mode are rather “conservative” in many cases. This is particularly true in the case 
of the pure torsional buckling case, where the torsional rigidity of practically all compact (class 1 
and 2) hot-rolled and welded I- & H-sections would actually award a much higher TB resistance 
than is currently granted by the code. In the case of eccentric lateral supports (TFB), the rotational 
(circular) nature of the deformation path and the associated presence of (small) deflection 
components parallel to the section’s web cause the sections to “switch failure mode” beyond a 
certain length and to approach a behaviour that is increasingly dominated by the strong-axis 
buckling mode. Due to the fact that the Eurocode rules do not know “smooth” transitions between 
the effects of the singly global member buckling cases, this observed transitional behaviour can 
show some ranges of application where even the (otherwise “conservative”) Eurocode rules are 
“unconservative”. The danger of the occurrence of this transitional zone of “unconservatism” is also 
strongly coupled with the actual position of the lateral support. It can be shown that the studied 
position at d=hs/2 is in the worst area for this transitional behaviour; for smaller values of d, the 
component of the imperfection/deformation parallel to the section’s web quickly becomes very 
small, while for larger values of d (outside the section), the “real” TFB buckling behaviour quickly 
becomes entirely dominant throughout all practical ranges of length.  

7.3.4. TFB with one fully restrained flange 

In all the above calculations concerned with torsional-flexural buckling, the studied columns were 
assumed to be continuously supported only in a lateral direction, which corresponds to the 
configuration most likely to be found in practical applications. These boundary conditions were 
shown to be due to a transition (beginning at a certain, usually high length) from the TFB mode to 
the strong-axis buckling mode FByy, due to the presence of deformation components parallel to the 
web and the free deformability in this direction. This behaviour would clearly be suppressed if one 
of the flanges were entirely restrained, in directions parallel and perpendicular to the web. In 
practice, this bi-directionally restrained condition of an I-shaped column is possibly not very 
frequent; applications can be imagined in certain steel sheet pile constructions, where the support in 
the direction of the web is given (at least in one direction) by the ground. A similar configuration 
can be imagined to exist for longitudinal stiffeners of large tanks and silos, especially when these 
are filled and thus very stiff in radial direction. The following pages will treat the behaviour of such 
columns under pure compression and lateral imperfections of the unrestrained flange. 
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The comparison between the behaviour of a mono- and bi-directionally restrained flange is shown 
in Fig 7-8 for an IPE 500 section; thereby, the GMNIA buckling curves for both cases are plotted in 
the χTF/λTF space (a), as well as over the member length (b). The differences between the two 
curves are very large; the bi-directionally restrained column has a significantly higher buckling 
resistance, which also exceeds the bifurcation load for TFB at a relatively low length of ca. 6m.  

 
Fig 7-8 Differences in TF buckling strength between the mono-directionally (laterally) and bi-

directionally restrained flange for an IPE 500 section, plotted over λTF (a) and L(b). 

Again, the explanation for this behaviour can be found in the geometrically non-linear, “circular” 
deformation path of the buckling phenomenon: the prevented deformation of the restrained flange 
in a direction parallel to the web allows the mid-span section to deflect (rotate) much farther and to 
exploit much more of the cross-section’s plastic capacity before the peak of the load-deformation 
path is reached.  

This is illustrated in Fig 7-9, where load/lateral deformation paths for the unrestrained flange are 
plotted for both studied boundary conditions. The studied section is again an IPE 500, with a length 
of L=8070 mm corresponding to a weak-axis normalized slenderness of λz=2.0. The plotted 
deformations and stresses are calculated at mid-span. As in all the GMNIA calculations in this 
chapter, an eigenmode-conform imperfection was assumed in both cases, with an amplitude of  

0e =L/1000=8.07mm. The figure shows that the load/deformation paths for both boundary 
conditions practically overlap up to a normalized load N/Npl of ca. 0.4. This load factor corresponds 
to the appearance of the first yield stresses at the right-sided (in the figure) external edge of the 
upper, unrestrained flange.  
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Fig 7-9 Load-deformation paths for an IPE 500 section in TFB for two boundary conditions. 

Beyond this point, the mono-directionally restrained column (boundary condition BC1) features a 
drop of stiffness, which culminates in the reaching of the maximum (buckling) load at a load factor 
of N/Npl=χTF=0.46. Beyond this point, the column with BC1 displays a typical post-buckling 
behaviour with a drawn-out, “flat” load-deformation curve. 

In the case of the bi-directionally restrained column (BC2), the occurrence of yield at N/Npl=0.4 
produces a much more gradual decrease of stiffness, which is more typical of failure mechanisms 
that involve the approach of a plastic mechanism. Indeed, the stiffness appears to “stabilize” in the 
range beyond N/Npl=0.5 up to ca. 0.62, where another gradual decrease occurs that leads to the 
maximum load factor of N/Npl=”χTF”=0.66. The quotes are intended to indicate that it is up to 
debate whether or not this maximum load can be classified as a TF buckling load in the strict sense.  

The stresses in the unrestrained flange at the maximum (failure) load are also significantly different, 
depending on the boundary condition. In the case of BC1, about one fifth of the unrestrained flange 
has reached the assumed yield (compressive) stress of fy=235 N/mm². The rest of the flange is also 
entirely subject to compressive stresses. The comparatively small deterioration of rigidity against 
further lateral deformation, caused by the zone of yielding, makes any further increase of 
deformation impossible. In the case of BC2, the flange stresses at the maximum load feature a 
significant bending component, emphasized by the fact that the yield stress is reached at both edges 
of the flange, on one side as compressive, and on the other side as tensile stresses. The compressive 
area with σx=- fy stretches across the entire right side of the flange, while the tensile yield zone 
takes up a width of approximately b/5; this leaves little space for a resulting axial force in the 
flange.  
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Interestingly, the achieved maximum load factor of N/Npl=0.66 compares fairly well with the 
section capacity of the IPE 500 section with one flange “missing”; Npl-1flange/Npl=(Aw+Afl)/Atot 

=79.7/116=0.687. Indeed, the stress distribution at failure for the whole section can be shown to be 
a condition very close to full yielding in every fibre, i.e. a primarily global cross-sectional failure.  

For practical application, one might ask whether or not this significant over-strength afforded by the 
bi-directionality of the flange support is practically exploitable, due to the large deformations that 
appear to occur. As is shown in Fig 7-9, the lateral flange deformation at failure for BC1 is 49mm, 
equal to ca. b/4 of the section width. The deformation at the maximum load for BC2 is exactly three 
times as large, reaching 147mm. At least for the studied section, this value appears to be too high 
for practical acceptance; possibly, a design criterion based on deformations –rather than maximum 
strength- would have to be defined in practice for the BC2 case, plausibly making the differences 
between the two cases negligible. 

In summary, it can be said that the additional support of the column in a direction parallel to the 
web would cause a significant increase in ultimate strength of a column subjected to torsional-
flexural buckling. Generally, this case will be rare in design and only given in certain, specific types 
of structures. Furthermore, maximum deformation design criteria might need to be introduced, 
which would render the differences between the mono- and bi-directionally supported column 
irrelevant. Due to these reasons, the bi-directionally supported case is not further considered in the 
remainder of this chapter. 

7.3.5. Additional effects: h/b ratio, fillet radius, residual stresses. 

Up to now, the study of the realistic, GMNIA buckling behaviour in this section focused on four 
“real”, commercial shapes. Of the four studied sections, the IPE240, IPE 500 and HEAA 1000 
could a priori be expected to be sensitive to torsional and torsional-flexural buckling, merely from 
“engineering judgment”, due to their perceived –and real- slenderness for these buckling cases.  

The general perception is that the values of h/b, which are usually seen as the main indicator of 
whether a section is “stocky” or “slender”, are –plausibly- also a good indicator of the position 
(“low” or “high”) of a TB and TFB buckling curve in the χTF/λTF space. This perception was also 
confirmed by the GMNIA plots in Fig 7-4, where a higher value of h/b clearly correlated with a 
lower position of the buckling curve. The results obtained and plotted in Fig 7-10 will therefore 
likely come as a surprise at first sight. In this figure, the previously obtained TB buckling curve for 
the hot-rolled IPE 500 section is compared with two fictitious, modified “IPE 500” sections with 
b=0.5.bnom=100 mm and b=hnom=500mm, resulting in h/b ratios of 5 and 1, respectively. All other 
parameters were left entirely unaltered, i.e. the section’s flange and web thickness, the fillet radius, 
and of course the depth h=500mm. Since beam elements were used in these GMNIA calculations, 
the fact that the b=500 flange is actually vastly in class 4 range could easily be ignored for this 
academic illustration example.  
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Fig 7-10 GMNIA buckling curves for modified (b=var.) IPE 500 sections. 

The above-mentioned “engineering judgment” will likely lead one to think that the “slender” 
section with h/b=5 (b=100mm) will lead to a GMNIA buckling curve that lies significantly lower 
than the one obtained for the section with h/b=1 (b=500mm). As a matter of fact, an “extrapolation” 
of the observations made in Fig 7-4, where a section with h/b=1.4 (HEM 400) did not at all react to 
torsional buckling, could lead to the assumption that the b=500 section will not react to this mode 
either.  

In reality, exactly the opposite is true: as the GMNIA plots in Fig 7-10 show, the putatively 
“stocky” section is actually quite slender in terms of torsional buckling, and the “slender” section is 
actually the least prone to this buckling mode. The explanation for this lies in the calculation of the 
torsional rigidity IT

31/ 3 a t≅ ⋅ ⋅∑ , which is most vigorously affected by the single plate thicknesses 
(as well as the fillet radius), i.e. all quantities that are identical for all three sections studied in Fig 7-
10. The width of the flange affects the area A and particularly the polar moment of inertia Ip much 
more, which –considering that both quantities enter the numerator under the square root in (7.7)- 
also explains why the limit slenderness is highest in the case of what was thought to be the “stocky” 
h/b=1 section. It therefore appears that the h/b ratio is a fairly bad instrument for judging the 
proneness towards torsional buckling of a section. 

Another effect that is often controversial when numerical buckling curves are obtained or compared 
is represented by the fillet radius; more precisely, the controversy arises from the question of 
whether or not its inclusion is necessary in order to obtain accurate buckling curves, provided that 
the correct/corresponding values of Npl, Ncr, λTF are used for reference.  
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Fig 7-11 Influence of the fillet radius on the shape of the resulting buckling curve 

In chapter 6, section 6.5.6, the influence of the fillet was shown to be negligible for the LT buckling 
case, at least as far as the obtained shape and position of the numerical buckling curve is concerned. 
Correspondingly, Fig 7-11 shows a study of the influence of the fillet radius for the torsional 
buckling case. The figure illustrates two GMNIA TB buckling curves for an IPE 500 section, both 
calculated with the same assumptions regarding imperfections, and with the only difference lying in 
the inclusion or omission of the fillet. It is illustrated in the figure that, contrary to what was 
observed in the LT buckling case, the fillet radius has a rather significant impact on the resulting 
shape and position of the TB buckling curve. This is again due to the very high influence of the 
torsional rigidity on the buckling phenomenon, exemplified among other things in the resulting 
value of the limit slenderness TF,limλ . Of course, the purely torsional buckling case is the one most 
affected by this phenomenon. It can be shown that, in the TFB case, the significance of the fillet on 
the shape of the buckling curve decreases with increasing eccentricity d, and vanishes as the TFB 
case approaches the behaviour of weak-axis flexural buckling.  

A final effect that must be briefly addressed is the influence of the residual stresses. All sections 
studied so far were assumed to have residual stresses with amplitudes of σres=0.3 fy,nom,S235, which is 
the value commonly assumed for hot-rolled sections with h/b>1.2. In Fig 7-12, one of the most 
slender (for TB) possible sections with h/b<1.2, an HEA 360, is studied, using as basis of the 
GMNIA calculations the applicable, higher amplitudes of the residual stresses of  
0.5.fy,nom,S235=117.5 N/mm². Additionally to confirming the general tendencies pointed out in this 
section (limit slenderness values, drop of χTF at high slenderness, poor representativeness of h/b), 
the effects of the higher residual stresses also become visible in this figure: with increasing values 
of d, the numerical curves again approach the Eurocode weak-axis design buckling curve, but this 
time the lower curve c, applicable for these sections with higher residual stresses. 
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Fig 7-12 TB and TFB buckling behaviour of a section with h/b<1.2 and correspondingly higher 

residual stress amplitudes.  

7.4. AyrtonPerry Formulation 
In this section, case-specific analytical Ayrton Perry formulae are derived for the torsional-flexural 
buckling case of single-span members under constant axial force. The same principles are applied 
as in chapter 6, section 6.7 for the LT buckling case. The special case of purely torsional buckling 
(TB), where the eccentricity of the lateral support d is equal to zero, is thereby consistently included 
in the following derivation as a special case.  

7.4.1. Derivation 

For a simply-supported column with double-symmetric cross-section and constant axial force N, the 
assumption of initial lateral and torsional imperfections v0 and θ0 (with amplitudes 0v  and 0θ ) of 
sinusoidal shape leads to the following two de-coupled second-order equilibrium equations: 

 0cr,zN v N v N v⋅ − ⋅ = ⋅  (7.10) 

 2 2T
0cr,z p p

z cr,z

I GIN N i N i
I N
ω

⎛ ⎞
⋅ + ⋅θ− ⋅ ⋅θ = ⋅ ⋅θ⎜ ⎟⎜ ⎟
⎝ ⎠

 (7.11) 

By using (7.4) in (7.11), the latter is written as follows: 

 2 2 2
0cr,z p pN c N i N i⋅ ⋅θ− ⋅ ⋅θ = ⋅ ⋅θ  (7.12) 
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The two equations (6.13) and (7.12) are not couple, representing the behaviour of a free column, i.e. 
one that is not laterally supported between end supports. In the TF buckling case, v  and θ  are 
geometrically coupled as follows, see Fig 7-1 and Fig 7-4 for geometrical reference: 

 0 0v d   and  v d  = ⋅θ = ⋅θ  (7.13) 

The relationships in (7.13) can be used in (6.13); By multiplying the resulting equation by d and 
summing the resulting term to (7.12), the TFB equilibrium equation in terms of the warping 
moment about the location of the lateral support is obtained: 

 ( ) ( ) ( )2 2 2 2 2 2
0cr,z p pN c d N i d N i d⋅ + ⋅θ − ⋅ + ⋅θ = ⋅ + ⋅θ  (7.14) 

or, through division by (ip
2 + d2) 

 
( )
( )

2 2

0cr,z 2 2
p

c d
N N N

i d

+
⋅ ⋅θ − ⋅θ = ⋅θ

+
 (7.15) 

The first term in equation (7.15) is identical to the TFB bifurcation load Ncr,TF, see (7.1). Thus, we 
obtain the following simple expression for the rotation amplitude θ , which contains the second-
order amplification deformation amplification factor: 

 0
cr,TF

N
N N

θ = θ ⋅
−

 (7.16) 

This is conceptually identical to the relationship (6.16) in chapter 6, valid for LT buckling. 
Accordingly, the following expressions can again be used to determine the second order internal 
forces (out-of-plane bending moment Mz and warping moment Mω) as a function of the occurring 
deformations: 

 
2

z z 2M EI v
L
π

= ⋅ ⋅  (7.17) 

 
2

2M EI
Lω ω
π

= ⋅ ⋅θ  (7.18) 

By using (7.16) and (7.13) in (3.7) and (7.18)we obtain: 

 0z cr,z
cr,TF

NM N d
N N

= ⋅θ ⋅ ⋅
−

 (7.19) 

 0cr,z
z cr,TF

I NM N
I N N
ω

ω = ⋅ ⋅θ ⋅
−

 (7.20) 

Mz and Mω can also be expressed in terms of the imperfection amplitude 0e  by considering the 
following geometrical relationship: 
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 0
0

e
d h / 2

θ =
+

 (7.21) 

The maximum stress equation can now be written for the outermost fibre of the compressed flange 
and set equal to the yield stress in a first-yield failure criterion: 

0 maxz
max cr,z

z z

MMN N e dN
A W I A d h / 2 W I

ω

ω ω

ω
+ + ⋅ω = + ⋅ ⋅ +

+

Iω⋅ y
z cr,TF

N f
I N N

⎡ ⎤
⋅ ⋅ =⎢ ⎥

−⎢ ⎥⎣ ⎦
 (7.22) 

In the present case of a double-symmetric I cross-section, the following relationships hold: 

 z
z max

I h bW   ;  (b / 2) (h / 2)
b / 2 4

⋅
= ω = = ⋅  (7.23) 

Resulting in the following stress equation: 

 0
cr,z

z

N e d h / 2N
A W

+
+ ⋅ ⋅

d h / 2+ y
cr,TF

N f
N N

⋅ =
−

 (7.24) 

In order to obtain a dimensionless equation, expression (7.24) must be divided by the yield stress fy. 
Furthermore, the second term on the left side can be expanded with A/A: 

 0cr,z

y y z cr,TF

NN A e N 1.0
A f A f W N N

⋅
+ ⋅ ⋅ =

⋅ ⋅ −
 (7.25) 

The dimensionless slendernesses and buckling reduction factors can now be introduced: 

 y y
z TFTF

y cr,z cr,TF

A f A fN  ;  ; 
A f N N

⋅ ⋅
χ = λ = λ =

⋅
 (7.26) 

Using the expressions (7.26) in (7.25) and simplifying finally leads to the following equation: 

 
2

0 TF TF
TF 2 2

z z TFTF

A e 1.0
W 1

χ⋅ λ
χ + ⋅ ⋅ =

λ − χ ⋅λ
 (7.27) 

With the exception of the index of the buckling reduction factor χ and the slenderness λ , this 
equation is identical to equation (6.28) of the LT buckling case. Accordingly, by substituting 

  
2

0 TF
2

z z

A e*
W
⋅ λ

η = ⋅
λ

 (7.28) 

we obtain  TF
TF 2

TFTF

* 1.0
1

χ
χ + η ⋅ =

− χ ⋅λ
 (7.29) 
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This equation is identical to the Ayrton-Perry formula (5.2) of chapter 5 and can be solved 
accordingly: 

 TF 22
TFTF TF

1 1.0χ = ≤
Φ + Φ − λ

 (7.30) 

with ( )2
TFTF

1 1 *
2

Φ = ⋅ + η +λ  (7.31) 

 

As a remark concluding the derivation, it can be stated that it again was shown to be possible to 
develop a specific Ayrton-Perry buckling formulation for the studied global member buckling case. 
The resulting formulation is –remarkably- qualitatively identical to the one developed for LT 
buckling: again the term 0A e⋅ /Wz is present, as well as a stiffness-related modifier of the form 

2 2
S z/λ λ , with the “case specific” slenderness Sλ  being equal to TFλ  in the TFB case. 

7.4.2. Representation 

Prior to the calibration the newly-developed formulation to realistic GMNIA buckling curves, it is 
interesting to study the shape of the elastic buckling curves, i.e. the curves that result from equation 
(6.30) with (6.31) and η* calculated as given by (7.28), using the elastic values of A and Wz and an 
amplitude of the initial, sinusoidal geometric imperfection of 0e =L/1000. This is done for the four 
sections that were already studied in Fig 7-4, i.e. the HEM 400, IPE 240, IPE 500 and HEAA 1000 
section. The resulting analytical, elastic Ayrton-Perry buckling curves (A-Pelast) are plotted in Fig 7-
13.  

 
Fig 7-13 Analytical buckling curves according to the purely elastic, second order derivation. 
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Quite generally, the figure illustrates that the resulting, elastic buckling curves already lie 
significantly higher than the Eurocode buckling curve that would apply for these sections, with the 
exception of the low slenderness range, where the missing plateau in the purely elastic formulation 
leads to an immediate drop in the predicted load carrying capacity. Then, it is clear that the torsional 
rigidity of the single cross-sections is (qualitatively) well represented by the formulation, which 
distinguishes between different sections primarily due to the very different ratio 

2 2
TF z/λ λ  for every 

section: the torsionally stiff HEM 400 “automatically” has a higher buckling reduction curve than 
the more slender IPE and HEAA sections. As far as the influence of the lateral support eccentricity 
d is concerned, the differences between Fig 7-13a and b indicate that the drop in load-carrying 
capacity associated with a larger value of d is also well represented by the developed formulation.  

Furthermore, the formulation features the characteristic “limit slenderness” TF,limλ . As a matter of 
fact, the perhaps most surprising aspect of the developed buckling formulation is the fact that the 
curves have a tendency of pointing upwards after a certain value of TFλ  is passed, see especially the 
lines for IPE 240 and HEM 400 in Fig 7-13a and b. The lines in the plot are not entirely drawn out, 
but can be shown to converge to 1.0 at TF,limλ when the limit slenderness is smaller than 1.0, and to 
the Euler buckling load corresponding to 1/ TF,lim

2
λ  if the limit slenderness is larger than 1.0. 

Mathematically, this is caused by the term 
2 2
TF z/λ λ , which tends towards zero at infinite length due 

to the finite value of 
2
TFλ  at infinite length. Thus, at infinite length equation (7.28) is zero, making 

the buckling reduction factor χTF according to (6.30) reach the solution that is valid for a perfect 
column ( 0e =0). 

While this tendency is clearly illogical, one has to bear in mind that the parameter TFλ  is by no 
means linearly proportional to the length of the member; indeed, it can be shown that the point at 
which the buckling lines start pointing upward corresponds to extreme, unrealistic lengths of the 
member. This is absolutely confirmed in the comparisons shown in section 7.6. 

7.5. Calibration 
Having successfully determined a specific Ayrton-Perry formulation for the studied global member 
buckling case, we can now proceed to the all-important task of calibrating the imperfection 
definition to accurately describe the behaviour of the model beam with nominal geometry and fixed 
imperfection amplitudes, as has been done by Maquoi and Rondal (1978, 1979) for the column 
buckling curves and correspondingly in chapter 6 of this thesis for LT buckling.  

Thereby, and as done in chapter 6, the first step is again to re-plot the results of numerical GMNIA 
buckling curves in terms of the “un-modified” generalized Ayrton-Perry imperfection η* that –
when used in the Ayrton-Perry formula-, would exactly match the obtained numerical results. This 
numerical value of η*num can be calculated from the numerically obtained values of χTF,num  as 
follows, also see chapter 5 and 6.  
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 ( )2
TFnum TF,num

TF,num

1* 1 1
⎛ ⎞

η = − ⋅ − χ ⋅λ⎜ ⎟⎜ ⎟χ⎝ ⎠
 (7.32) 

In Fig 7-14, this equation is evaluated for some numerical TB buckling curves for hot-rolled I-
sections with h/b>1.2, and compared to the current Eurocode rule, where η* is expressed by term 

TT* ( 0.2)η = α ⋅ λ −  and αT=αz=0.34.  

 

 
Fig 7-14 Numerical values of η* for a representative selection of cross-sections and the torsional 

buckling case TB; comparison with the current Eurocode 3 formulation for η*. 

Two aspects are illustrated in the plot in Fig 7-14: 

- The Eurocode rule is always “conservative” for TB of hot-rolled sections; in the chosen 
representation, a rule is safe when the numerical GMNIA curves lie below the chosen design 
formulation. 

- The numerical curves appear to diverge widely, i.e. to depend heavily on the section shape 
both as far as slope and deviation from a straight line is concerned. Quite generally, the non-
linear relationship between λT and the member length appears to cause the numerical curves 
to bend upwards in the all-important (for accuracy) low slenderness range. This makes a 
linear function of λT a rather bad descriptor of the behaviour of many sections.  

As was done in chapter 5 for flexural and 6 for LT buckling, it can again be shown that the 
(geometrical) imperfection assumption underlying the numerical curves, i.e. a length-proportional 
imperfection amplitude of 0e L /1000= , is also very dominant in the equivalent, correct generalized 
imperfection η of the Ayrton-Perry formulation, i.e. the term that comes to replace the purely-
elastic expression A.
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of η that would exactly describe the GMNIA curves can be calculated by the following amended 
form of (7.32): 

 ( )
2 2

2z z
TFnum num TF,num2 2

TF,numTF TF

1* 1 1
⎛ ⎞λ λ

η = ⋅η = ⋅ − ⋅ − χ ⋅λ⎜ ⎟⎜ ⎟χλ λ ⎝ ⎠
 (7.33) 

Value of ηnum for different sections and positions of the lateral restraints are plotted over the weak-
axis flexural buckling (FBzz) slenderness λz in Fig 7-15, and compared to the value of 

z0.34 ( 0.2)η = ⋅ λ −  that is used by the Eurocode for FBzz.  

 

Fig 7-15 Numerical values of η  for different support eccentricities d, comparison with the weak-
axis flexural buckling case. 

The figure shows that the imperfections ηnum that would perfectly describe the GMNIA buckling 
curves for TB indeed increase almost linearly when plotted over λz; this is also true for TFB cases 
with d=hs/2 and –at least in the low slenderness range- for d=h. More importantly, the divergence 
from a straight line occurs at higher slenderness, where the significance of the imperfection 
amplitude decreases, and present themselves as a bend downward, i.e. towards safer results. 
Therefore, it appears safe to say that a calibration formulation for the generalized imperfection that 
is a linear function of λz, i.e. an expression of the type z 0TF ( )η = α ⋅ λ −λ , will again yield good 
results, provided that the value of the generalized imperfection amplitude αTF is correctly 
calibrated. As is shown in Fig 7-15, there are clearly effects in the realistic, large-displacement 
GMNIA calculation with residual stresses and plasticity that are not sufficiently well covered by the 
Ayrton-Perry formulation itself; otherwise, the GMNIA curves for ηnum would all be in the same 
scatter-band without further modification. The TB case, for example, appears to require much lower 
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values of η than the TFB cases with higher values of d. This must be included in the calibration of 
αTF to obtain accurate results. 

Considering the slopes of the GMNIA curves in Fig 7-15, as well as the general behaviour of 
columns failing in TB and TFB described in section 7.3, it appears that an encompassing and 
rational calibration of αTF must fulfil the following conditions: 

- It must account for the fact that torsional-flexural buckling approaches the behaviour of 
weak-axis flexural buckling when the eccentricity of the lateral supports becomes very 
large. 

- It must also take into account the differences between the single sections, including the 
differences in residual stresses assumed to exist between sections with h/b≤1.2 and >1.2, 
without the need for many additional cross-sectional classification criteria. 

The first point requires the factor αTF to be formulated in a way that approaches (but does not 
exceed) the constant value that applies for FBzz, that is e.g. 0.34 for hot-rolled I-sections sections 
with h/b>1.2. The second point requires the selection of a sensible classification parameter, which 
best describes the differences between one section and the other.  

As has been shown in Fig 7-10, the h/b ratio clearly is not an encompassing classification criterion, 
since sections with small h/b are not necessarily “stocky” in the context of TFB. A much better 
parameter is found in the most characteristic feature of the TFB mode: the limit value of the 
slenderness TF,limλ , see equation (7.7). This quantity very well reflects the torsional properties of a 
section, and is clearly correlated with the shape of a buckling curve, since it expresses its maximum 
extent in the χTF/ TFλ  space.  

Based on the above considerations, and to a calibration to the obtained GMNIA TFB curves, the 
following formulation for the generalized imperfection η and its amplitude αTF is proposed: 

 ( )zTF 0.2η = α ⋅ λ −  (7.34) 

and ( )TF,limTF z sin arctan( / 2)α = α ⋅ λ  (7.35) 

Expression (7.35) is plotted in Fig 7-16b. The characteristic asymptotic shape of the sin(arctan(α)) 
function is recognizable in the figure. The function is designed to converge towards the coefficient 
αz applicable for weak-axis flexural buckling with increasing values of TF,limλ , and to satisfactorily 
describe the numerical values of ηnum for all studied sections and lateral support configurations.  

The latter point is illustrated in Fig 7-16a, where numerical values of ηnum (calculated by applying 
(7.33) to the GMNIA results obtained for 6 different sections and 5 locations of the lateral support) 
are “normalized” by a multiplication with the term 1/ ( )TF,limsin arctan( / 2)λ , and compared to the 
weak-axis FBzz function for η= ( )zz 0.2α ⋅ λ − , with αz=0.34 for the studied sections according to 
the Eurocode. When compared to Fig 7-15a and b, this representation illustrates that the chosen 
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function for αTF is well able to “bring together” the different GMNIA curves for ηnum. The 
essentially empirical, “rational” selection of the cross-sectional categorization factor 

( )TF,limsin arctan( / 2)λ  obviously cannot take all the effects into account that cause the differences 
between a simple first-yield second-order failure formulation and a large-displacement, elasto-
plastic GMNIA calculation, so some differences between the function (7.35) and the GMNIA 
values remain. However, as will be shown in the next section, these differences in terms of η do not 
cause major discrepancies in terms of χT - χTF. 

 

 
Fig 7-16 Comparison of (7.35) with the GMNIA values of ηnum for different sections and support 

conditions (a); representation of (7.35) for sections with h/b>1.2 (b). 
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In this section, the analytical buckling curve expression developed in section 7.5, and calibrated in 
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This is done in order to illustrate the increase in accuracy afforded by the new formulation, as well 
as to discuss the implications for design that would follow from the application of the new 
formulation.  

The comparison is first done for the same four hot-rolled sections that were already treated in  
Fig 7-4. In Fig 7-17, the GMNIA buckling curves for an HEM 400, IPE240, IPE 500 and HEAA 
1000 section are compared to the new formulation (EQU) and to the applicable Eurocode 3 
buckling curve b. The eccentricity of the lateral support is progressively increased from Fig 7-17a to 
Fig 7-17d, ranging from the purely torsion TB case (a) to a case with d=2h (d). 
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The figure shows that the differences between the analytical (EQU) and GMNIA buckling curves 
are rather small for all studied cases and over most ranges of slenderness TFλ . The proposed 
analytical formulation appears to be well able to account for the different shapes of the buckling 
curves, depending on section series and support eccentricity. Larger discrepancies appear only at 
slenderness values that approach the limit slenderness TF,limλ . At these higher slenderness ratios, 
the tendency of the analytical curve to point upward to either the value of 1.0 (if TF,limλ <1.0) or to 
the bifurcation load 1/ TF,lim

2
λ  was already pointed in section 7.4.2; the opposite tendency of the 

GMNIA for TFB (d ≠ 0) curves to fall towards the FByy bifurcation load was also already 
emphasized.  

 
Fig 7-17 Analytical (EQU) TB and TFB curves compared with the Eurocode and numerical 

(GMNIA) curves. 
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Since the slenderness for TFλ  stands in a highly non-linear relationship to the member length, it is 
again helpful to plot the results of Fig 7-17 over the member length (and the strong-axis slenderness 

yλ ). This is done in Fig 7-18 for the IPE 500 and IPE 240 sections. In these figures, the “EQU” 
lines representing the analytical buckling curve formulations also include the Eurocode buckling 
curve for strong-axis flexural buckling FByy, in order to indicate at what length or slenderness the 
FByy will become the most critical buckling mode in the proposed design procedure.  

 
Fig 7-18 Analytical formulations (EQU) for TB/TFB and FByy (=EC3 curve a) compared with 

GMNIA buckling curves, IPE 500 (a-b) and IPE 240 (c-d) section. 
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The plots confirm the general tendencies shown in Fig 7-17, possibly showing even more clearly 
how precisely the proposed formulation is able to describe the TB and TFB buckling phenomenon 
in the (lower) range of length where the phenomenon is entirely independent of the FByy mode. 

In the case of TB of the IPE 500 section (Fig 7-18a), the proposed formulation is only slightly 
“conservative” up the lengths of ca. 20m, when FByy becomes the prevalent buckling mode for the 
studied column. In the case of TFB with d=hs (Fig 7-18b), the proposed formulation is very accurate 
up to lengths of ca. 12m, after which the transitional behaviour between TFB and FByy becomes 
prevalent. The proposed formulation does not attempt to take this behaviour into account, and 
therefore yields results that are “unconservative” in the transitional range, with discrepancies that –
in relative terms- are rather high (with over-estimations of strength by factors of up to 1.5). In 
practical applications, this might have to be kept in mind; however, the “unsafe” transitional range 
only starts at lengths (L/h~20, L/b~50) and buckling reduction factors that approach the lower 
limits of practical occurrence for the studied boundary condition.  

Very similar findings are obtained for the TB and TFB case of the IPE 240 section (Fig 7-18c &d). 
Again, the TB case appears to be very well described by the proposed formulation. The FByy 
formula (EC3 buckling curve b) becomes dominant at lengths of approximately 6.0 m. The 
“upwards” tendency of the TB buckling formulation only occurs beyond this point, confirming that 
the buckling formulation is accurate throughout the realistic range of application. In the TFB case, 
the transitional behaviour sets in at lengths corresponding to L/h~22, and causes larger relative 
discrepancies for members with lengths between 8 and 13m; this is again at –or mostly beyond- the 
upper-most limit of applicability of this slender section as a laterally not fully restrained column.  

For a typical heavy column section like an HEM 400, the results of the evaluation of the new design 
formula is plotted in Fig 7-19. In the TFB case in Fig 7-19a, this column is not affected by this 
specific buckling mode, and fails in strong-axis buckling only due to the (small) deformation 
component parallel to web, which initiates FByy buckling. The Eurocode 3 formula for FByy for 
this section is more critical throughout all ranges of length for this section, making the TFB mode 
irrelevant. 

The HEM 400 section is affected by TFB only if the eccentricity of the lateral support exceeds half 
the member depth, see Fig 7-19b, where d=h. In this case, the proposed, new TFB buckling 
formulation is able to describe the column’s behaviour very well up to lengths of ca. 15m, where 
the dominant failure mode switches to FByy both according to the design formulae (EC3 for FByy 
with buckling curve a) and the GMNIA calculations. 
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Fig 7-19 Analytical formulations (EQU) for TFB and FByy (=EC3 curve b) compared with 

GMNIA buckling curves, HEM 400 section. 
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support eccentricity d. If equation (7.35) is to be used appropriately in the proposed Ayrton-Perry 
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formulation (EQU) is compared to the GMNIA curves for the HEA 360 in Fig 7-20a in terms of χTF 
plotted over λTF. Again, the figure shows the generally quite good accuracy of the proposed 
formulation. Quite clearly, the proposed interpolation expression (7.35) between a zero-lateral and a 
pure lateral weak-axis buckling behaviour is quite well able to describe an arbitrary section’s TFB 
buckling loads. In Fig 7-20b, the results for the specific case of d=hs/2 are plotted over the member 
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the lateral support that the largest transitional effects between TFB and FByy are observed within 
the (upper) limits of practical application. As is shown in the figure, the Eurocode FByy buckling 
curve (curve b for this section) becomes relevant before the transitional behaviour sets in at lengths 
of ca. 12.5m.  
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Fig 7-20 Proposed analytical and GMNIA numerical buckling curves for an HEM 400. 

7.7. Conclusions 
In this chapter, the less well-known column buckling mode of torsional- and torsional-flexural 
buckling (TB / TFB) of laterally restrained I-& H-sections was studied by means of numerical 
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The practical relevance of this buckling mode was pointed out and demonstrated by comparing the 
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modes about the main axes of inertia. The developed Ayrton-Perry formulation was shown to 
represent a huge increase in the accuracy of description of the real behaviour of columns in TFB. 
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for this mode, is therefore summarized in the following table: 
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⎛ ⎞λ⎜ ⎟Φ = ⋅ + η⋅ + λ
⎜ ⎟λ⎝ ⎠

 

Generalized imperfection 

η 
( )zTF 0.2η = α ⋅ λ −  

Generalized imperfection 

amplitude αTF 
( )TF,limTF z sin arctan( / 2)α = α ⋅ λ ; 

z
0.34....hot rolled I- & H-sections, h/b>1.2                    
0.49....hot rolled (h/b 1.2) & welded I- & H-sections

−⎧
α = ⎨ − ≤⎩

 

Table 7-2 Summary of the design proposal of this chapter 
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8  
Summary of Design Proposals – “Code Clauses” 

8.1. Scope 
The new design formulations proposed in this thesis for the description of buckling curves for 
lateral-torsional (LTB) and torsional/torsional flexural buckling (TB/TFB) are summarized in the 
following pages in a form comparable to “code clauses”. Of course, this is not intended to be a 
complete representation; it is however intended as a conceptual draft for a possible codification.  

8.2. “Code clauses” 

Design of columns and beams with hotrolled or welded I & Hsections against:  

(1) The buckling resistance Rb,s of hot-rolled or welded, compact or semi-compact I- & H 
sections, used as columns or beams may be assessed by applying the following formula: 

 ult,k,S
b,S S

M1

R
R = ⋅χ

γ
 (8.1) 

where S 22
SS S

1.0ϕ
χ = ≤

Φ + Φ − ϕ⋅λ
 (8.2) 

and ( )( )2
imp SS 0,S S

1 1 0.2
2

⎡ ⎤Φ = + ϕ ⋅ α ⋅α ⋅ λ − + λ⎢ ⎥⎣ ⎦
 (8.3) 

Rult,k,S... characteristic plastic section capacity. The following values shall be used: 

For columns under axial forces (FB, TB/TFB): ult,k,S R,k yR N A f= = ⋅  

For beams in bending (LT-buckling): ult,k,S R,k y,pl yR M W f= = ⋅  

Sχ ..... case-specific buckling reduction factor, see Table 8-1 

Sλ ..... normalized slenderness for the specific buckling case, see Table 8-1 

0eλ ..... slenderness used for the definition of the generalized imperfection, see Table 8-1 

Sα  .... generalized imperfection amplitude factor of the specific case, see Table 8-1 

0,Sα ... case-specific second-order stiffness term, see Table 8-2 

ϕ    .... load diagram factor to account for variable loads, see Table 8-2 
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BUCKLING 
MODE 

Sχ  Sλ  0eλ  αS 
(index) 

Values of αS 

Hot-rolled  
h/b>1.2 

Hot-rolled  
h/b≤1.2 Welded 

FByy yχ  yλ  yλ  αy 0.21 0.34 0.34 

FBzz zχ  zλ  zλ  αz 0.34 0.49 0.49 

TB/ 
TFB TFχ  TFλ  zλ  αTF 0.34 . βTF 0.49 . βTF 0.49 . βTF 

LTB LTχ  LTλ  zλ  αLT 0.12 . βLT ≤ 0.34 0.16 . βLT ≤ 0.49 0.21 . βLT ≤ 0.64 

Table 8-1 Generalized imperfection amplitude αS for hot-rolled and welded I- & H-sections. 

 
Note 1: the additional coefficients used in Table 8-1 are defined as follows: 

βLT= y,el z,elW / W    

βTF= ( )TF,limsin arctan( / 2)λ  

( )2 2
y p

TF,lim
T

A f i d

GI

⋅ ⋅ +
λ =  

d:   eccentricity of lateral support;  

Wy,el ... Wz,el: elastic section moduli 

 
Note 2: The numerical values of αS in Table 8-1 are based on geometrically and materially 
non-linear numerical (FEM) calculations that considered nominal cross-sectional parameters 
and imperfection assumptions as shown in Fig 8-1. 

 

Fig 8-1 Assumptions used to derive the values of αS in Table 8-1.   
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 BUCKLING 
MODE 0,Sα  LOAD CASE ϕ 

co
lu

m
ns

 
FByy 1.00 

N=const. 
 1.00 

FBzz 1.00 

TB/TFB 
2

TF

z

⎛ ⎞λ
⎜ ⎟

λ⎝ ⎠
 

be
am

s 

LTB 
2

LT

z

⎛ ⎞λ
⎜ ⎟

λ⎝ ⎠
 

M=const.   1.00 

 0.95 

 0.90 

 

21.25 0.1 0.15− ⋅ψ − ⋅ψ

Table 8-2 Stiffness factor α0,S and bending diagram factor ϕ 

 

(2) The slenderness for single buckling modes may be calculated as follows: 

For columns failing in strong-axis flexural buckling FByy: 
y

y
cr,y

A f
N

⋅
λ =  

For columns failing in weak-axis flexural buckling FBzz: y
z

cr,z

A f
N

⋅
λ =  

For columns failing in torsional or torsional-flexural buckling TFB: y
TF

cr,TF

A f
N

⋅
λ =  

For beams failing in lateral-torsional buckling LTB: y,pl y
LT

cr

W f
M

⋅
λ =  

(3) In the case of semi-compact class 3 sections, the following condition shall be additionally 
checked: 

 R,k
b,S LT Rd,class3

M1

M
R M= ⋅χ ≤

γ
 (8.4) 

Where  MRd,class3 is the elastic cross-sectional moment capacity y,el y M1W f /⋅ γ  
 

  

ψ.MM
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8.3. Comments 
The above clauses allow for an accurate determination of the buckling resistance of columns and 
beams with hot-rolled, compact and semi-compact sections under either constant axial force 
(flexural, torsional and torsional-flexural buckling) or a variety of bending moment diagrams 
(lateral-torsional buckling). In terms of practicality, the proposed formulation is thereby absolutely 
comparable to current formulations found in the Eurocode. 

The main differences between the current Eurocode formulation and the new proposal are the 
following: 

i. In the proposal, the generalized imperfection η is defined in terms of a linear relationship 
between the imperfection and the normalized slenderness for strong- or weak-axis flexural 
buckling yλ  or zλ , -respectively the length-, of the member. In the present Eurocode 
formulation, η increases linearly with the normalized slenderness Sλ  of the specific 
buckling case, which is not necessarily proportional to the length. In the case of torsional, 
torsional-flexural and lateral-torsional buckling, this has been shown to cause problems for 
the calibration in the specific chapters 5 to 7, due to the fact that the GMNIA numerical 
curves onto which the analytical curve was calibrated are also largely dominated by the 
(length-proportional) assumption for the geometric imperfection 0e L /1000= ; also see 
section 5.3.2  

ii. The consistent definition of the generalized imperfection η as a function of zλ  allows for a 
straightforward inclusion of a transitional behaviour between the specific (lateral) buckling 
case and the limit case of weak-axis flexural buckling; this is observed in Table 8-1 by the 
delimitation of the value of αS by the value of αz valid for weak-axis flexural buckling FBzz. 
This delimitation is implicit in the formulation of αTF, which “automatically” converges 
towards the applicable value of αz, and explicit in the definition of αLT, which needs a 
specific “check” to see whether or not it has exceeded αz. The implications of this 
delimitation have been discussed in detail in section 6.8.6 and 7.5. 

iii. The formulation for χS, respectively ΦS, contains a specific stiffness correction term α0,S, 
which takes into account the characteristic sensitivity towards imperfections of the different 
studied buckling modes. This term stems from second-order, elastic derivations for the 
single specific cases, see chapters 6 and 7.  

iv. Additionally, formulae (4.3) and (8.3) contain a factor ϕ to account for variable bending 
moment diagrams in the LT buckling case, developed in section 6.9 of chapter 6 in this 
thesis. It shall be noticed that this factor is set to 1.0 for the column buckling cases, where 
only the case with constant axial force was considered in this thesis; as a matter of fact, it is 
believed that a very similar concept, i.e. a specific factor ϕ for these column buckling cases, 
could be developed along the lines of what has been done for the LTB case, with no need for 
a modification of the formulae (4.3) and (8.3) themselves. 
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v. By defining the normalized slenderness LTλ  uniformly as a function of the plastic moment 
capacity for compact and semi-compact sections, a definition is used that allows for a 
homogeneous description of the buckling resistance as observed in GMNIA calculations. On 
one hand, if the elastic moment capacity had been used in the definition of both χLT and LTλ  
in the case of class 3 sections, these sections would be designed (too) conservatively with 
the above formulation. This is currently the case in the Eurocode. On the other hand, in 
order to avoid an unconservative regulation in the low LT slenderness range, the proposal 
needs an additional check against the applicable cross-sectional capacity, see clause (3). The 
accuracy presented by this clause depends on the formula used to determine MRd,class3. 
Models for the determination of the cross-sectional capacity of semi-compact sections, 
which are more refined than the simple elastic capacity, have recently been developed and 
presented e.g. by Kettler (2008), and could be used to increase the accuracy and consistency 
of clause (3). 
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9  
On the Derivation of Design Rules for BeamColumns  

9.1. Introduction and Scope 
In this chapter, an outlook is given on some aspects of beam-column design that are currently of 
interest to the scientific community and at code-committee level. The chapter begins with a 
discussion of the main concepts for the design of members subjected to combined load cases, the 
“interaction” and the “generalized slenderness” concept. Then, it proceeds with a brief numerical 
study of the in-plane buckling behaviour of beam-columns, thereby using types of representation of 
strength that are not commonly used in the literature. After a discussion of the design rules currently 
contained in Eurocode 3, which are based on the interaction concept, a new formulation for the in-
plane buckling check of beam-columns is developed and presented that is integrated in the 
“generalized slenderness” concept and makes use of an overall, in-plane buckling reduction factor 
formulated using an Ayrton-Perry type representation. The accuracy and efficiency of the proposed 
formulation is demonstrated by means of comparative numerical (GMNIA) calculations, leading to 
the conclusion that the proposal is fully compatible in terms of safety and mechanical soundness–if 
not slightly superior- to the design rules currently found in the Eurocode. In a final section of this 
chapter, some remarks are made with respect to the “general method” in EN 1993-1-1 – clause 6.3.4 
for the design of beam-columns against spatial buckling. 

9.2. Concepts for BeamColumn Design 
Beam-columns are characterized by the presence of compressive axial forces and bending moments. 
The resistance of a steel member against either one of these two sources of compressive stresses has 
been dealt with at lengths in part II of this thesis, and can be determined using the methods detailed 
therein. For a given level of the axial force N and the bending moment M, one can thus calculate the 
utilization of a steel member for either N or M by using the design formulae for columns and beams 
of Eurocode 3, or of part II; these can be written as nFB= ( )y M1N / A f /χ ⋅ ⋅ γ  for flexural buckling of 
a member under axial load and mLT= ( )LT y M1M / W f /χ ⋅ ⋅ γ  for LT-buckling of a member in 
bending. 
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Due to the non-linearity of both stresses and deformations with respect to the level of loading, the 
resistance against the combination of axial forces and bending moments cannot generally be 
calculated directly from a (linear) superposition of the utilizations for the single loading 
components. In other words, the total utilization under N+M will often be higher, sometimes 
smaller, and only by pure chance equal to nFB+mLT. This obviously must be –and is- considered by 
design rules for beam columns.  

In this context, two distinct concepts have come to be seen as the most advantageous ways of 
dealing with the beam-column buckling behaviour, see Fig 9-1: 

i. The first and (currently) most common is the so-called “interaction concept”. It directly 
makes use of the valuable information contained in the utilizations nFB and mLT by adding 
them together, and accounts for the mentioned effects of the simultaneous presence of N and 
M by an interaction factor k. As described by Lindner (1986) and later Greiner et al. (1998), 
different uses (multiplier or addend) and positions (before nFB or mLT) of k have been 
considered. For the Eurocode, a format where k is a multiplier of the bending term was used.  

 
Fig 9-1 Concepts for beam-column design; interaction concept versus generalized slenderness 

concepts. 

ii. In the second type of concepts, a generalized definition of the (normalized) slenderness is 
used; they are therefore called “generalized slenderness concepts” in the following. 
Specifically, these concepts encompass the “overall method” commonly used for the design 
of plates and shells (see e.g. Rotter, 2002) and the so-called “general method” for the design 
of beam-columns of clause 6.3.4 of Eurocode 3 - EN 1993-1-1 (2005). These methods have 
in common that they do not explicitly consider the utilizations for the single components of 
a given loading condition, but rather consider total utilizations for the combined case as 
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basis for design. As is illustrated in Fig 9-1, these methods define the slenderness λ GS in a 
generalized form as the square root of total load proportionality factors LPF: 

 plMNA
GS

LBA cr

RLPF
LPF R

λ = =  (9.1) 

LPFMNA is the maximum amplifier of a combined load case that can be reached in a 
(materially non-linear) analysis of the structure without taking into account the effects of the 
studied buckling case. In the “overall method” used for plate and shell buckling analysis, 
this load proportionality factor is calculated by omitting all stability effects, but taking into 
account the material non-linearity in a materially non-linear analysis. This corresponds to 
the plastic resistance Rpl of the studied structure for a linear amplification of a given load 
case. In the “general method” of EN 1993-1-1, LPFMNA is replaced by the in-plane buckling 
strength, i.e. the (plastic) resistance Rb,ip of the studied member for a linear amplification of 
(N+M), including the second-order effects of imperfections and deformations in the main 
plane of bending.  
LPFLBA is the maximum amplifier of a combined load case until bifurcation is reached for 
the studied buckling phenomenon. It can also be seen as the resistance Rcr against elastic 
buckling of the studied member for a linear amplification of (N+M). 
In the concepts that make use of the “generalized slenderness”, the buckling design check 
has the following format: 

 GS MNA
b,d

M1

LPFR 1.0χ ⋅
= ≥

γ
 (9.2) 

Thereby, Rb,d is the design resistance (in terms of a maximum load amplification factor) of 
the structure against the studied buckling phenomenon for a given load combination.  
Equation (9.2) contains a buckling reduction factor χGS, which is a function of the 
generalized slenderness λ GS. As is indicated by the question mark in Fig 9-1, the values to 
be adopted for χGS are not clear and still up for debate, with a common opinion being that 
they must be studied and calibrated by means of GMNIA calculations, see e.g. Greiner 
(2003). This is also the topic of section 9.6 of this chapter. 
(It shall be noted that in the “general method” of EC3 for the design of beam-columns the 
index of both slenderness and reduction factor is “op” for “out-of-plane”, instead of the 
general “GS”).  

In summary, the “interaction concept” and the “generalized slenderness” concepts (“overall” and 
“general method”) use different formulations for the buckling resistance of members under 
combined loading. Clearly, the formulation for the buckling design check according to (9.2) can be 
said to be “consistent” in the sense that it is a generalized formulation that also implicitly contains 
the buckling checks used for single load cases of only N or only M. (In the case of the general 
method this is only true for M, since for N it is based in χy

.Npl instead of on Npl alone). However, 
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the formulation does not –by itself- contribute to a solution of the design problem of members 
under combined loading, since the buckling reduction factor χGS must account for the exact same 
effects as the interaction factor k. The two concepts are therefore best thought of merely as two 
different forms of representation of the same information, without attributing an (inexistent) higher 
degree of mechanical consistence to any of the two concepts. Therefore, both concepts are 
considered in the remainder of this chapter. 

9.3. InPlane Buckling Behaviour of BeamColumns 
As has been stated in the introductory section 7.1, this chapter focuses on the in-plane buckling 
behaviour FBip of beam-columns, and thereby aims at developing a new formulation that better 
harmonizes the design rules for this buckling mode with the Eurocode rules for the modes 
associated with single load cases. A preliminary step in this direction is to study the behaviour of 
beam-columns for FBip by means of GMNIA calculations, and to compare the results of these 
calculations to the current Eurocode rules for beam-columns. This is done in this section. 

9.3.1. Variable definitions  

The variables and forms of representation used in the remainder of this chapter are presented and 
discussed in the following. The plots in Fig 9-2 thereby serve the purpose of helping to interpret the 
single variables. Plot (a) in Fig 9-2 shows the strength of a certain beam-column, an IPE 500 with λ

y=1.0, and load case (N+My,constant) as obtained from GMNIA calculations in terms of a N-My 
interaction curve (line with circles indicating the single results). This type of representation 
indicates the maximum obtainable value of n=N/Npl and m=M/Mpl, whereby m refers to the 
maximum applied first order moment, which for this load case is constant over the member length. 

 
Fig 9-2 Used variables as they appear in a GMNIA N-My interaction resistance plot (a) and in a 

N-MyII plot (b). 
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The plot also shows the N-M cross-sectional interaction curve, i.e. the plastic limit load for this 
section. In this plot, the following characteristic values and variables can be identified: 

i. At a given (design) load level, a certain (“zero”) reference combination of n and m is 
present. This loading condition is identified by the red circle with coordinates n=n0 and 
m=m0 in the plot. For the beam-column to be “safe” against in-plane buckling, n0/m0 must 
lie below the GMNIA curve.  

ii. The ratio m0/n0, which represents the eccentricity of the axial force N=n0
.Npl that would 

equivalently lead to m0, is denominated by the variable η0 in the following.  

 
( )
( )

pl 0
0

0pl

M / M m
nN / N

η = =  (9.3) 

iii. The value of the GMNIA N-My resistance curve lying on the straight line passing throuh the 
the plot’s origin and the point m0/n0 indicates the combination of n and m at which the given 
beam-column has just reached its GMNIA buckling strength if n0 and m0 are both amplified 
proportionally, i.e. by maintaining the ratio η0 constant. The value of n reached in this case 
is denominated as χy,η0 in the following. It is the buckling reduction factor with regard to the 
axial force section capacity Npl that can be reached if a N/M pair is proportionally increased 
until failure.  

iv. If no bending moment is present, the value of the GMNIA resistance curve at m=0 is 
(practically) identical with the buckling reduction factor χy,EC3 valid for a column failing in 
in-plane flexural buckling, provided of course that the same imperfections and input data are 
used in the GMNIA calculations as done by Beer & Schulz (1970) for the original ECCS 
column buckling curves, see chapter 5. 

v. In the interaction design concept for beam-columns of EN 1993-1-1, the variable of ny is 
used, which represents the ratio of the acting, normalized axial force n0 over χy,EC3. 

vi. Instead of through amplification of both n0 and m0 at the same pace, the N-My resistance 
curve can also be reached starting from m0/n0 by maintaining N constant and increasing only 
M. The total value of the applied, normalized bending moment at failure is denominated 
mb,ip for this case. This value isof relevance for the definition of the imteraction factor ky 
according to the interaction concept design formulae of EN 1993-1-1, see section 9.3.3. 

Fig 9-2b also shows results of a GMNIA calculation, but presented in a different format: the 
GMNIA curve (with circles) in this case shows the combination of n and mII that is present in the 
IPE 500 section with λ y=1.0 if a given load ratio η0=m0/n0 is maintained throughout a loading path 
from zero load up to failure, whereby mII is the (normalized) total, second order bending moment 
present in the critical section (at mid-span in this case): 
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The dashed red line in Fig 9-2b therefore represents the first-order, load bending moments M 
throughout the loading path, while the GMNIA curve shows the bending moments that are actually 
acting on the most critical cross-section, i.e. M plus second order effects. This form of 
representation is useful in order to understand the steps needed to formulate a “generalized 
slenderness” approach for the FBip buckling case:  

i. A “generalized slenderness” in the sense of the “overall method” discussed in section 9.2 
requires the identification of the maximum load amplification factor Rpl up to the plastic 
limit load for a given, fixed load combination. After calculating the ordinate value b of this 
amplification factor (by considering the in-plane interaction relationship), Rpl can be simply 
calculated from:  

 pl 0R b / n=  (9.5) 

ii. For the in-plane buckling case, the elastic, bifurcation buckling load needed for the 
calculation of the slenderness is governed solely by the axial force, and is independent of the 
bending moment. The elastic buckling resistance Rcr in terms of load amplification can 
therefore be written as follows: 

 cr
cr 2

0 pl y0

N 1R
n N n

= =
⋅ ⋅λ

 (9.6) 

iii. The “generalized”, in-plane slenderness λ ip can therefore be written as follows: 

 pl
ip y

cr

R
b

R
λ = = λ ⋅  (9.7) 

As can easily be seen, the in-plane slenderness λ ip defined in this way is equal to λ y if 
m0=0.0, and equal to zero if n0=0.0, which is descriptive of the buckling proneness for these 
cases.  

iv. The plot shows the maximum load amplification factor χy,η0 for proportional load case 
amplification as the ordinate value of the peak of the GMNIA curve.  

v. The in-plane buckling strength in terms of load amplification factor Rb,ip is thus defined as 
follows: 

 y, 0
b,ip

0
R

n
ηχ

=  (9.8) 

vi. Finally, the “generalized” buckling reduction factor χip for FBip can be defined as follows: 

 b,ip y, 0
ip

pl

R
R b

ηχ
χ = =  (9.9) 

The forms of representation and variable definitions given above will be used in the following, 
whereby the first step is to show the GMNIA buckling behaviour for FBip in the above terms. 
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9.3.2. Buckling behaviour in numerical (GMNIA) calculations 

The figures in this section illustrate the load-carrying and buckling behaviour of laterally restrained 
beam-columns as shown by GMNIA calculations. Thereby, all calculations refer to single-span 
members loaded by constant bending moments. The yield stress of the material is fy=235 N/mm² in 
all shown cases, while the residual stress patterns follow the recommendations given in the ECCS 
(1984) recommendation. The in-plane geometric imperfection was assumed to be of sinusoidal 
shape and to have a magnitude of 0e =L/1000, leading to the EC3 buckling reduction factors χy –
which are based on calculations that used the same assumptions- for cases where M=0.  

The first plots, shown in Fig 9-3, are of the type already presented in Fig 9-2a. The buckling 
resistance is presented in terms of buckling interaction curves for two different sections and three 
different values of yλ . 

 
Fig 9-3 N-My interaction resistance curves for an IPE 240 (a) and an RHS 200/100/10 (b) section 

and various values of yλ . 

For both sections, the same general behaviour can be observed in these plots: 

i. With increasing slenderness, the buckling N+My interaction curves move farther away from 
the cross-sectional interaction curve. The ordinate value of the curves at m=0 corresponds to 
the buckling reduction factor for FByy and m=0, while n=0 at m=1.0, meaning the plastic 
bending capacity Mpl is reached.  

ii. In between these two points, a (visually not very pronounced, but present) non-linear 
relationship is observed. This is the non-linear interaction effect that needs to be taken into 
account by either an interaction factor k or a specific definition of the buckling reduction 
factor χ, as mentioned in section 9.2. 
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Fig 9-4 N-My

II plots for an IPE 500 and different values of η0 obtained using the Riks algorithm 
(a); for η0=0.5 and three different loading paths up to failure (b). 

The type of representation used in Fig 9-3 only shows the final results –in terms of obtained 
combinations of n and m- of GMNIA calculations and is therefore not very informative with regard 
to the actual load-carrying behaviour. In order to better understand what the single GMNIA result 
points of Fig 9-3 represent, it is convenient to plot the total, second-order bending moments in 
loading path curves as first presented in Fig 9-2b. This is done in Fig 9-4. 

Fig 9-4a shows the loading path curves for three different values of the ratio m/n=η0 for an IPE 500 
section. The loading paths are thereby calculated using the Riks algorithm in Abaqus, allowing for 
an analysis of the post-buckling behaviour. Two observations are of relevance: 

i. The peak of the loading path curves is reached prior to obtaining the full plastic bending 
resistance given by the N-My cross-sectional interaction curve. This is due to the loss of 
stiffness caused by yield stresses in the flanges, which are obtained early on through a 
combination of compressive residual stresses and direct load stresses.  

ii. After the peak is passed, the loading path curves descend into the N-My interaction curve 
and follow this curve until the end of the numerical calculation.  

Fig 9-4b shows three different loading path curves, with all of them resulting in a final value of the 
ratio of (first order) bending moment to axial force at failure of η0=m/n=0.22/0.44=0.50, but each 
representing a different loading history up to this point:  

i. The loading path marked as “2” in the figure is the one also shown in Fig 9-4a, i.e. one 
where the ratio of η0=0.5 is present from the load level zero and kept constant with 
increasing load up to failure. At failure, the normalized axial force is n=χy,η0=0.44, and the 
respective normalized bending moment is m=0.5.0.44=0.22. The total, second order value of 
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m=mII is much higher than this value, reaching mII=0.6, which illustrates the significance of 
stability effects for this member at the given slenderness of yλ =1.0.  

ii. The curve marked as “1” represents a loading history where an axial force corresponding to 
n=0.44 is applied in a first step, and a first order bending moment corresponding to m=0.22 
is applied in a second step, keeping n constant. The axial force alone already causes second-
order bending moments of ca. mII=0.08. Due to the presence of the axial force, these 
bending moments increase over-proportionally with the increase of m, finally resulting in 
the same failure point at n=0.44 and m=0.22, with mII=0.60. 

iii. The curve marked as “3” in the figure represents the case were a bending moment 
equivalent to m=0.22 is applied first, with no normal force, and a normal force of n=0.44 is 
applied in a second step, keeping m constant. Again, the same failure load is finally reached. 

The observations made with regard to Fig 9-4b are quite relevant, as they imply that the ultimate 
buckling load for a certain total loading state is actually independent of the loading history. Only 
this fact allows for a definition of buckling rules that is independent of the sequence of loading.  

 

The fact that the non-linear, GMNIA buckling load does not reach the plastic N-My interaction 
curve is quite relevant for the development of an accurate design rule and should therefore be 
discussed with more detail. Some results of a study concerned with this specific aspect are plotted 
in Fig 9-5a-d. The figures show N-MII loading path curves for an IPE 500 section failing in in-plane 
buckling under N+M for different values of the ratio η0 and for four different values of yλ . 

It would be desirable to be able to include the exact parameters and effects that lead to this 
“premature” failing of a beam-column in a design formulation. However, this seems to be beyond 
the scope of the task of developing an accurate but simple buckling rule, as a precise formulaic 
representation would require an inclusion of effects and stiffness terms that exceeds what is 
practical in a design rule. However, the plots in Fig 9-5 do help to indentify the key parameters of 
the problem:  

i. The comparison of figures a to d shows that the distance between peak of the loading path 
curve and the plastic interaction curve increases with slenderness; at λ y=0.5, the GMNIA 
curves are fairly close to the plastic N-My interaction curve, while at λ y=2.0 this distance is 
generally larger. 

ii. The load ratio η0=m0/n0 also appears to be of relevance. This is particularly evident in  
Fig 9-5c, which shows loading path curves for λ y=1.5: while for a value of η0=4.0 the peak 
of the curve is close to the plastic interaction curve, for η0=0.0 (m0=0) the peak is even prior 
to the elastic interaction, represented by the straight line “1” (see figure d for the definition 
of the straight interaction lines). This means that the slenderness λ y alone is not fully 
descriptive, and that the level of normal force is also relevant. 
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Fig 9-5 N-My

II plots for an IPE 500 and different values of η0 for yλ =0.5 (a), 1.0 (b), 1.5 (c) and 
2.0 (d). 

As will be shown in section 9.3.3, the effect illustrated in Fig 9-5 is explicitly addressed in the 
interaction concept buckling formulae of Annex A (“French-Belgian formulae”) of EN 1993-1-1, 
and implicitly in the formulations of Annex B (“Austrian-German formulae”) of the same code.  

 

In a final figure dealing with the GMNIA results for the in-plane buckling behaviour of beam-
columns, the buckling reduction factors χip and χy,η0 defined in (9.9) and (9.8), and illustrated in Fig 
9-2, are plotted over the slenderness values λ ip -as defined in (9.9)- and λ y, respectively. 
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Fig 9-6 Buckling reduction factor χip (a) and χy,η0 (b) for the in-plane buckling of an IPE 500 

section under constant bending moment. 

Fig 9-6a shows the buckling reduction factors χip for an IPE 500 under axial force and a constant 
bending moment diagram, calculated for different values of η0 and plotted over λ ip. The figure 
shows that each value of the ratio η0 leads to a distinctly separate, unique buckling curve, with high 
values of η0 (i.e. load cases with a large bending component) resulting in lower curves. Thereby, the 
distance between the single curves increases under-proportionately with rising value of η0. With 
increasing η0, the curves can be shown approach a limit curve representing a lower bound for very 
high η0 values. 

The plots in Fig 9-6b are a different representation of the same GMNIA results, where the buckling 
reduction factor χy,η0 is plotted over λ y. As was discussed in the description of Fig 9-2, χy,η0 is the 
maximum ratio of n=N/Npl that can be reached for a certain value of η0 if the two load components 
N and M are increased proportionately. Thus, the plot for example indicates that at λ y=1.0 a beam-
column loaded with η0=0.5 can reach a maximum value of n=χy,η0=0.44, and thus a value of 
m=η0

.n=0.22; this is the same result discussed at length in Fig 9-4. 

Both types of representation shown in Fig 9-6 are used extensively in sections 9.4 and 9.5, whereby 
more detailed descriptions are given there.  
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9.3.3. Eurocode design rules – interaction factors ky and kz 

Clause 6.3.3 of EC3- EN 1993-1-1 (2005) contains interaction concept design formulae for beam-
columns. The theoretical and statistical background of these formulae, including the full list of 
references for single papers and research reports, has been collected and published in the ECCS 
Document N°119 (Boissonade et al., 2006).  

The general form of the design formulae for the special case of pure in-plane buckling without any 
out-of-plane effects can be written as follows, whereby the partial safety factor γM1 is omitted: 

for N+My: y
y

y pl y,pl

MN k 1.0
N M

+ ≤
χ ⋅

 (9.10) 

for N+Mz: z
z

z pl z,pl

MN k 1.0
N M

+ ≤
χ ⋅

 (9.11) 

While these formulae (or rather, extended versions of them that account for in- and out-of plane 
effects) are contained in the main part of EC3 – EN 1993-1-1, the all-important interaction 
coefficients k are contained in two separate annexes of the code, Annex A and B. Thereby, Annex 
A contains what came to be known as the “French-Belgian” coefficients, and Annex B contains the 
“Austrian-German” ones. The reason for this distinction is the following: 

i. Two different research teams, one composed of French and Belgian researchers, the other of 
Austrian and German ones, were concerned with the revision and improvement of beam-
column design curves for ECCS TC8. Thereby, the original intent was to provide two 
different levels of complexity and validity of the resulting formulae.  

ii. While an agreement was found regarding the general formulation of the interaction design 
equation, two completely different proposals were made for the interaction coefficients. On 
one hand, the “French-Belgian” proposal was primarily based on a rigorous (elastic) second-
order formulation, with some calibration needed only for the inclusion of effects stemming 
from material non-linearity. The “Austrian-German” proposal, on the other hand, was based 
primarily on the calibration to GMNIA calculations, with the goal in mind of keeping the 
resulting formulation as simple as possible without giving up too much accuracy.  

iii. Contrary to the original intent of having two formulae that cover different levels of 
complexity of the structure and loading case, the Annex A and B formulae ended up being 
valid for the exact same type of member: prismatic members with double-symmetric cross-
section. 

iv. Thus, the two Annexes are seen in EC3 as two alternative options for the treatment of the 
same problem, with the selection of either one of the sets of formulae open to national code 
committees’ or even the designers’ choice. 
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For the case treated in this section of in-plane buckling of beam-columns of members with class 1 
or 2 cross-sections, the following equations are used to determine the interaction factors ky or kz 
according to Annex A and B: 

Annex A: 

 

( )
mS,y

y 2
y cr,y 2mS,y

y yy
y pl y

C 1k
1 N / N 1.6 C N 1MAX 1 (w 1) 2 ;

w N w

= ⋅
− χ ⋅ ⎧ ⎫⎛ ⎞⋅⎪ ⎪+ − ⋅ − ⋅ λ + λ ⋅⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 (9.12) 

 

( )
mS,z

z 2
2z cr,z mS,z

z zz
z pl z

C 1k
1 N / N 1.6 C N 1MAX 1 (w 1) 2 ;

w N w

= ⋅
− χ ⋅ ⎧ ⎫⎛ ⎞⋅⎪ ⎪+ − ⋅ − ⋅ λ + λ ⋅⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 (9.13) 

With  wy=Wy,pl/Wy,el≤1.5   

wz=Wz,pl/Wz,el≤1.5  

CmS,y , CmS,z... equivalent sinusoidal moment factor; CmS,j=f(N/Ncr) 
 
It shall be noted that the two equations (9.12) and (9.13) are identical in all but the indices, 
indicating that the expression is thought to be valid for arbitrary (double-symmetric) cross-sectional 
geometries. 

Annex B: 

 { }yy mU
y pl

Nk C 1 MIN 0.2;0.8
N

⎡ ⎤
= ⋅ + ⋅ λ −⎢ ⎥

χ ⋅⎢ ⎥⎣ ⎦
 (9.14) 

 { }zz mU
z pl

Nk C 1 MIN 2 0.6 ;  0.8
N

⎡ ⎤
= ⋅ + ⋅ ⋅λ −⎢ ⎥

χ ⋅⎢ ⎥⎣ ⎦
 (9.15) 

With  CmU... equivalent uniform moment factor 
 
It is self-evident that the mechanically more rigorous derivation of the formulae in Annex A 
resulted in a more complex mathematical expression when compared to the approximate, purely 
calibrated expressions of Annex B. In terms of accuracy of the resulting design equation –when 
compared to GMNIA results for the “model beams”-, several examples given in the mentioned 
ECCS background document confirmed the two methods to yield largely comparable results. This 
is illustrated in the following, beginning with the representation of the resulting N-M buckling 
interaction curves according to GMNIA calculations and the two Annexes of EC3 shown in Fig 9-7. 
Thereby, Fig 9-7a shows the curves for a strong-axis in-plane case for an IPE 240, while Fig 9-7b 
shows the comparison for weak-axis in-plane buckling of an HEA 500.  
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Fig 9-7 N-M interaction for an IPE 240 subject to N+My (a) and an HEA 500 subject to N+Mz 

(b); comparison of GMNIA results and interaction concept formulae with coefficient of Annex A 
and B of EC3- EN 1993-1-1.  

The figure shows that for the studied case with constant bending moment diagram the two sets of 
formulae of Annex A and B result in very similar design curves, which in both cases lie 
satisfactorily close to the GMNIA curves. As lower slenderness, the Annex A curve appears to be 
slightly more accurate than the Annex B line. While at higher slenderness the differences between 
the two methods all but disappear. 

One major difference between the two sets of formulae is represented by the consideration of the 
cross-sectional resistance at zero slenderness. By evaluating equation (9.10) or (9.11) with (9.12) to 
(9.15), we obtain the following equation for the interaction curve at zero-slenderness: 

 

Annex A  

for N+My: 
y

pl y,pl
y

pl y

MN 1 1.0
N MN 1MAX 1 2 (w 1) ;

N w

+ ⋅ =
⎧ ⎫⎪ ⎪+ ⋅ − ⋅⎨ ⎬
⎪ ⎪⎩ ⎭

 (9.16) 

for N+Mz: z

pl z,pl
z

pl z

MN 1 1.0
N MN 1MAX 1 2 (w 1) ;

N w

+ ⋅ =
⎧ ⎫⎪ ⎪+ ⋅ − ⋅⎨ ⎬
⎪ ⎪⎩ ⎭

 (9.17) 
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Fig 9-8 Cross-sectional N-M interaction at zero slenderness for Annex A (a) and B (b) 

interaction factor formulae of EC3 - EN 1993-1-1. HEA 500z subject to N+Mz , all other cases 
to N+My.  

Annex B 

For N+My: y

pl pl y,pl

MN N1 0.2 1.0
N N M

⎛ ⎞
+ − ⋅ ⋅ =⎜ ⎟⎜ ⎟

⎝ ⎠
 (9.18) 

For N+Mz: z

pl pl z,pl

MN N1 0.6 1.0
N N M

⎛ ⎞
+ − ⋅ ⋅ =⎜ ⎟⎜ ⎟

⎝ ⎠
 (9.19) 

These functions are plotted in Fig 9-8 and compared to real plastic interaction curves for some 
selected cross-sections. It shall be noticed that both sets of equations for Annex A and B result in 
non-linear interaction curves at zero slenderness, with the exception of cases where Wpl/Wel=1.0 in 
the Annex A formulation, where a linear interaction applies. While in the case of the Annex B 
formulae the distinction between different cross-sectional interaction curves is only very coarsely 
taken into account by the distinction between weak- and strong-axis buckling, the differentiation 
between different cross-sections is somewhat more refined in the Annex A formulation, where the 
shape of the curve is determined by the factor w=Wpl/Wel. The cross-sectional interaction 
formulation of Annex A was proposed by Villette et al. (2000) and is based on the approximation of 
the relationship valid for rectangular cross-sections. The comparison of formulaic and “real” 
interaction curves in Fig 9-8 shows this assumption to be rather inaccurate, albeit safe-sided, for 
some sections, particularly for weak-axis flexural buckling cases, where the presence of the web 
area in the calculation of Npl, and the web’s negligible significance for the weak-axis bending 
strength, results in very advantageous cross-sectional interaction curves.  

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

n=
N

/N
pl
 [-

]
m=M/Mpl [-]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
n=

N
/N

pl
 [-

]

m=M/Mpl [-]

N/M CS-interaction at =0.0λ

w=
W /Wpl el

1.5
1.4
1.3
1.2
1.1

kz

ky

1.0

HEM100,w=1.24 HEM100,w=1.24

IPE500,w=1.14 IPE500,w=1.14
CHS178/10,w=1.34 CHS178/10,w=1.34
HEA500z,w=1.50 HEA500z,w=1.50

"real" "real"

EC3-A EC3-B

a) b)



9. On the Derivation of Design Rules forBeam Columns 

 

250 

 
Fig 9-9 Comparison of ky and kz values according to the formulae of Annex A (a,c) and B (b,d) of 

EC3 - EN 1993-1-1 with GMNIA results.  

At least from a theoretical point of view, the main “advantage” of the more refined formulations of 
the cross-sectional resistance in equations (9.12) and (9.13) when compared to the Annex B 
formulae lies in the explicit inclusion of the effects discussed in Fig 9-5, i.e. the increasing distance 
between the peak of the n-mII curves and the plastic cross-sectional interaction with increasing 
slenderness and higher values of N=n0

.Npl. Indeed, the expression term Cyy contained in the 
denominator of (9.12) is chosen so that the underlying cross-sectional resistance parabolically 
approaches the  elastic cross-sectional resistance with increasing slenderness and axial force. 

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

k z [
-]

λz

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

k z [
-]

λz

0.0 0.5 1.0 1.5 2.0
0.5

1.0

1.5

2.0

k y [
-]

λy

0.0 0.5 1.0 1.5 2.0
0.5

1.0

1.5

2.0

k y [
-]

λy

EC3-A

EC3-A

EC3-B

EC3-B

GMNIA

GMNIA

GMNIA

GMNIA

ny=0.1

ny=0.1 ny=0.1

ny=0.1

ny=0.8

ny=0.8 ny=0.8

ny=0.8-

-

-

-

+

+

±0.3 fy

±0.3 fy

IPE 240
M =const.y

HEA 500z
M =const.z

a)

c)

b)

d)



PART III – Design Rules for Beam Columns, Summary & Conclusions  

 

251 

 ( )
2

2mS,y y,el
y yyy y

y pl y,pl

1.6 C WNC 1 (w 1) 2
w N W

⎛ ⎞⋅
= + − ⋅ − ⋅ λ + λ ⋅ ≥⎜ ⎟⎜ ⎟

⎝ ⎠
 (9.20) 

In a final representation of the two sets of formulae for the interaction coefficient in the Annexes of 
EC3 – EN 1993-1-1, the values of ky and kz are themselves compared to the equivalent values of the 
interaction factors as obtained from GMNIA calculations. This is done in Fig 9-9. It shall be noted 
that the GMNIA values where obtained from calculations of the type shown in Fig 9-2a: the axial 
force was applied in a first step, with a defined value of ny= y,EC3 plN / ( N )χ ⋅ , and the bending 
moment was applied in a second step and increased until failure, when the normalized moment mb,ip 
is acting. By setting the utilization at failure equal to 1.0 and solving (9.10) for ky, we obtain the 
formula by which the GMNIA values of ky were calculated, see also Ofner (1997): 

 y
y

b,ip

1.0 n
k

m
−

=  (9.21) 

The comparison of the interaction factors shown in Fig 9-9 can be commented upon as follows: 

i. The Annex A formulae yield shapes of the curve representing the interaction factors that are 
qualitatively and quantitatively well comparable with the GMNIA curves. This is 
particularly true for the IPE 240 section loaded in strong-axis, particularly when the axial 
force term ny is small.  

ii. The Annex B formulae result in a bilinear curve in the representation chosen in Fig 9-9. This 
is of course intended, as this type of representation forms the basis of the proposal for the 
Annex B interaction factors, see Greiner et al. (1998). The extensive set of GMNIA 
parametric studies that underpin the Annex B formulae led to the conclusion that a constant 
value of k beyond λ =1.0 is recommendable in order to describe the behaviour of an as-
wide-as possible range of cross-sectional geometries with such a simple formulation for ky. 
It shall also be noticed that for lower values of ny, the GMNIA curves indeed show an 
almost constant value of ky at higher slenderness. Only for higher values of ny a drop of ky is 
observed, causing deviations from the design interaction factors both for Annex A and B. 

iii.  However, not describing this specific shape by a formulaic description is not at all cause of 
a larger error for higher values of ny, since for these the total utilization is already taken in 
by ny itself, and a (mostly safe-sided) error on the remaining bending component’s 
utilization hardly affects the overall accuracy. 

iv. The comparison of the design interaction factors with GMNIA calculations shall not express 
direct consequences to safety aspects, since the design formulae of both annexes have been 
statistically calibrated to test results and FE-calculations, see Boissonade et al. (2006). 

In summary, the comparison between the two interaction concept formulae discussed in this section 
has resulted in the conclusion that –at least for the studied in-plane buckling case- both formulations 
are absolutely comparable in accuracy, even though the Annex A formulation has an advantage 
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from the point of view of mechanical interpretability. In this context, ideas from the Annex A 
concept could be taken and adapted to the proposed, Ayrton-Perry type formulation developed in 
the next section. 

9.4. AyrtonPerry  formulation  for  InPlane  Buckling  of  Beam

Columns 

In this section, the Ayrton-Perry type formulation developed for flexural column buckling under 
pure axial compression is expanded to include the in-plane beam-column buckling phenomenon. 
The steps that had to be taken in order to obtain a formulation of this type are detailed in the 
following, whereby the first step consists of a linearization of the (non-linear) plastic interaction 
curve.  

9.4.1. Linearization of the NMy interaction curve 

As will be shown in this section, one requirement for the development of an Ayrton-Perry type 
formulation for an “overall” in-plane buckling reduction factor is that the the cross-sectional N-M 
plastic interaction curve is linear, at least section-wise. The exact, non-linear interaction curves 
must therefore be linearized in order to be able to proceed with this type of formulation. The way 
that this has been done for the purposes of this section is illustrated in Fig 9-10. The figure makes a 
distinction between strong- and weak axis buckling of I-sections, and treats hollow sections 
similarly to the strong-axis I-section case: 

 
Fig 9-10 Linearization of the cross-sectional interaction curves, definition of used variables; for 

hollow sections and strong-axis buckling of I-sections (a); for weak-axis buckling of I-sections.  
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i. The interaction curve for circular and rectangular hollow sections, as well as for strong-axis 
buckling of I-sections (N+My) is linearized by two different segments. The slope change 
occurs at the value of ηSC1, chosen to correspond to a abscissa value of m=0.8. 

ii. The distinctly non-linear interaction curve for weak-axis flexural buckling of I-sections 
(N+Mz) is linearized by three segments, with one segment approximating the curve between 
m=0 and 0.8, and a vertical segment describing the range where the axial force is smaller 
than Aw .fy and one segment connecting these two. Two slope changes are present, occurring 
at values of ηSC1 and ηSC2.  

iii. The single straight segments are characterized in their position by their intersection points 
with the coordinate axes. The following definitions are used: 

1/kni .... ordinate value of the intersection of the segment i of the multi-linear approximation 
with the vertical n-axis. 

1/kmi .... abscissa value of the intersection of the segment i of the multi-linear approximation 
with the horizontal m-axis. 

Within a given segment i, the interaction curve is thus described by the following equation: 

 mi mi
pl

ni ni ni

k 1 m k1n (m) m
k k k

⎛ ⎞ − ⋅
= − ⋅ =⎜ ⎟

⎝ ⎠
 (9.22) 

with  npl(m).... normalized plastic capacity for axial loading under consideration of the reduction 
caused by the simultaneous presence of bending moments. 

Appropriate parameters need to be selected in order to make the proposed linearization as accurate 
and consistent as possible. In this respect, the plastic interaction functions found in clause 6.2.9 of 
EC3 – EN 1993-1-1 are of help: For the cases of strong-axis bending of I-sections and rectangular 
hollow sections, this clause already makes use of a linearization of the “exact” plastic interaction 
curve. Accordingly, this expression is adopted for the first section of the curve in Fig 9-10a for 
these cases.  

The proposed values of kni and kmi for the different studied cross-sections are summarized in Table 
9-1. Thereby, values for I-sections in strong-axis bending and rectangular hollow sections are based 
on the above-mentioned linearized cross-sectional resistance given in clause 6.2.9 (5) of EC3 –  
EN 1993-1-1. The proposed values for circular hollow sections are based on the N-M interaction 
curve valid for thin-walled, circular hollow sections: 

 pl,CHS,exactm (n) cos n
2
π⎛ ⎞= ⋅⎜ ⎟

⎝ ⎠
 (9.23) 

Considering the slope change at m=0.8, the following values can therefore be calculated: 

 ( ) ( )pl,CHS,exact
2n m 0.8 arccos 0.8 0.41= = ⋅ =
π

 (9.24) 

 m1
1 0.41k 0.74

0.8
−

= =  (9.25)
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# Type of section and loading Parameters of the N-M interaction linearization 

1 I-section, strong axis buckling N+My kn1=1.0; km1=1 0.5 a 0.75− ⋅ ≥ ; SC1
m1

0.8
1 0.8 k

η =
− ⋅

 

kn2=
m1

0.2
1 0.8 k− ⋅

; km2=1.0; SC2η = ∞  2 Rectangular hollow section RHS, N+My 

3 Circular Hollow Section CHS, N+M 

kn1=1.0 ; km1=0.74; SC1
m1

0.8
1 0.8 k

η =
− ⋅

=1.95 

kn2=
m1

0.2
1 0.8 k− ⋅

=0.49; km2=1.0; SC2η = ∞  

4 I-section, weak axis buckling N+Mz 

kn1=1.0; km1=
1 a
1.45

−
; SC1

m1

0.8
1 0.8 k

η =
− ⋅

 

kn2=
0.8

1.81 a−
; km2=

1 a
1 0.55 a

−
− ⋅

; SC2
1
a

η =  

kn3=0.0; km3=1.0; SC3η = ∞  

wf AA 2 b ta
A A

− ⋅ ⋅
= =  

Table 9-1 Parameters of the linearized N-M interaction 

Quite similarly, the proposed value of kni and kmi for weak-axis flexural buckling under N+Mz of I-
sections is based on the a linearization of the following, non-linear “exact” formulation, taken from 
EN 1993-1-1 clause 6.2.9: 

 
pl,I Mz,exact

2

pl,I Mz,exact

n a m (n) 1

n an a m (n) 1
1 a

−

−

≤ → =

−⎛ ⎞> → = − ⎜ ⎟−⎝ ⎠

 (9.26) 

9.4.2. Inplane slenderness  

The linearized cross-sectional interaction curve can now be used to calculate the generalized, 
“overall” slenderness for in-plane buckling ipλ  presented in section 9.3.1. Fig 9-11 is used for 
reference; it schematically illustrates the underlying concepts for a case where the first section “1” 
of the linearized cross-sectional interaction curve is applicable.  

Since load amplification factors Rpl and Rcr are used in this concept, the reference load level must 
be defined. Quite generally, it can be written as a certain combination of m0 and n0, corresponding 
to a point on the straight line with “slope” η0. We can write: 

 0
0

0

mn n= =
η

 (9.27) 
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Fig 9-11 Variables used for a formulaic definition of the “overall” in-plane slenderness ipλ  using 

the linearized cross-sectional interaction curve 

This load combination is always proportionally increased in the following. For example, it can be 
increased by Rpl before it reaches the plastic section capacity. Using the linearized interaction 
relationship (9.22), Rpl can be calculated: 

 pl 0 mi0
pl 0 pl

0 ni

1 R m kmR n R
k

− ⋅ ⋅
⋅ = ⋅ =

η
 (9.28) 

 mi
pl 0

0 ni ni

k1 1R m
k k

⎛ ⎞
⋅ ⋅ + =⎜ ⎟η⎝ ⎠

 (9.29) 

 
( ) ( )

0
pl

0 ni 0 mi 0 ni 0 mi 0 0

1 1R
m k k n k k n c

η
= = =

⋅ + η ⋅ ⋅ + η ⋅ ⋅
 (9.30) 

With c0= ( )ni 0 mik k+ η ⋅ . 

For the slenderness definition of equation (9.7), the elastic (bifurcation) buckling amplification 
factor Rcr is also needed. This can be calculated as follows: 

 cr cr
cr 2

0 pl y0

N N 1R
N n N n

= = =
⋅ ⋅λ

 (9.31) 

Finally, the “overall” in-plane slenderness can be calculated:  

 ypl
ip

cr 0

R
R c

λ
λ = =  (9.32) 
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k k
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+ η ⋅

2
ycr 0R 1/ n⎛ ⎞= ⋅ λ⎜ ⎟

⎝ ⎠( )pl
0 n1 0 m1

1R
n k k

=
⋅ + η ⋅

pl 0R b / n=
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It can be observed that the slenderness ipλ  is a function of the loading ratio η0, which is kept 
constant in this definition, and of the parameters governing the cross-sectional interaction curve.  

Since kni=kn1 for m0 and η0 equal to zero, and kn1 is always equal to one, the overall in-plane 
slenderness is “automatically” equal to yλ  when no bending moment is present, which is logically 
consistent.  

9.4.3. Plasticelastic transitional behaviour of the interaction curve  

One last preliminary step must be taken before the buckling strength for in-plane buckling can be 
formulated in terms of an Ayrton-Perry formulation, which is connected with the phenomena 
discussed in the description of Fig 9-4a and Fig 9-5: in a (realistic) GMNIA calculation, the n-mII 
curve reaches the peak value before the plastic interaction curve is reached. This fact must be taken 
into account by a mechanically rational formulation.  

In the interaction concept formulations of Annex A of EC3 – EN 1993-1-1, the transitional 
behaviour of the valid cross-sectional interaction has been shown to be explicitly taken into account 
in equation (9.20) by formulating the factor Cyy so that it converges towards the (linear) elastic 
cross-sectional interaction curve with increasing values of the normal force ratio n and the 
slenderness λ . A comparable formulation is proposed in the following, see Fig 9-12, based on the 
following criteria: 

i. The segmentally linear description of the failure curve should be retained also for the 
slenderness-dependent transitional case. This is done by expressing the interaction curves 
that are thought to be valid at failure by straight lines, which are defined by the same type of 
parameters used in Table 9-1 for the fully plastic interaction curve. These slenderness-
dependent parameters are designated as k* (specifically, kni* and kmi

*) in Fig 9-12a and the 
following, to distinguish them from the parameters k of the fully plastic case. 

ii. At zero slenderness and/or axial force component of the load point ( λ =0, η0=∞), the full 
plastic interaction should be maintained, meaning that k* should be equal to the applicable 
value of k (kni*=kni, kmi*=kmi). 

iii. At high value of slenderness and axial force components, the elastic cross-sectional 
interaction line should be valid, i.e. one were the strength is governed by the equation 

 n w m 1.0+ ⋅ =  (9.33) 

with w... Wpl/Wel ; n=N/Npl ; m=M/Mpl 

iv. The described transitional behaviour is a highly complex phenomenon that can only rather 
coarsely be described by simple formulations suitable for design. The GMNIA calculations 
carried out in the context of the study presented in this chapter, partly reproduced in sections 
9.3.2 and 9.5, pointed out that the cross-sectional shape, as well as the residual stresses, also 
play a significant role in determining the “speed” at which the valid cross-sectional 
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interaction curve moves from the plastic to the linear elastic curve with increasing 
slenderness. While this cannot be easily included in a comprehensive way, it was found 
important to include a specific factor that accounts for the differences between section types.  
 

 
Fig 9-12 Slenderness-dependent transition of the linearized cross-sectional interaction from the 

the plastic to the elastic case; representation of the modified values kni* and kmi* (a); transition 
expression as formula of the overall in-plane slenderness ipλ  (b). 

v. The shape of the bending moment diagram, which is shown to be quite generally important 
for the obtained buckling strength, also has an impact on the plastic-elastic transitional 
behaviour of the interaction relationship. This effect should therefore also be taken into 
account. 

Finally, the following proposal is made for the definition of the values of k*: 

 ipni ni ni mSk * k (1 k ) C 1= + − ⋅ρ ⋅λ ⋅ ≤  (9.34) 

 ipmi mi mi mSk * k (w k ) C w= + − ⋅ρ ⋅λ ⋅ ≤  (9.35) 

Whereby ipλ  ... overall, in-plane slenderness as given by equation (9.32) 

 ρ   ..... factor accounting for the specific transitional behaviour of a certain cross-
section type.  

 CmS .... equivalent moment factor for sinusoidal moment diagram. 
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The general meaning of equation (9.35) is illustrated in Fig 9-12b for different values of ρ and for a 
value of CmS=1.0. This form of representation shows the transition with increasing values of ipλ ; 
the ordinate variable is thereby equal to 1.0 when the elastic, and 0.0 when the plastic N-M 
interaction curve is applicable. 

The figure illustrates the very simple shape of the the proposed transition function, with the ordinate 
value being a linear function of ipλ . Thereby, the overall in-plane slenderness ipλ  is a very 
convenient and descriptive parameter, as it includes both the “pure” effects of slenderness and 
instability ( yλ ) and of the level of normal force to be expected at failure, accounted for by the 
cross-sectional parameters kni and kmi and the load ratio η0 in the definition of ipλ .  

The factor ρ is quite relevant, as it allows for a consideration of the specific behaviour of different 
types of cross-sections. GMNIA calculations can be used to investigate the behaviour of different 
types of sections, and ρ can be used to as a perhaps coarse, yet effective tool for calibration. The 
large series of GMNIA calculations conducted in the context of the study presented in this chapter 
led to the conclusion that the values of ρ given in Table 9-2 are well suited for being used in 
conjunction with expressions (9.34) and (9.35) and with the formulation developed in the following 
section 9.4.4. 

 

Type of section and loading 
Residual stress 

distribution 
ρ 

I-section, strong axis buckling N+My 

 

0.8 

Rectangular hollow section RHS, N+My 

 

0.4 

Circular Hollow Section CHS, N+M 

 

0.6 

I-section, weak axis buckling N+Mz 

 
0.6 

Table 9-2 Recommended values for ρ to be used in expressions (9.34) and (9.35)  

  

- -+

±0.3-0.5 fy

+0.5 fy

-0.2 fy
+

+

++ -

-

±0.15 fy
-

+ + -

-
-

+

±0.3-0.5 fy
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It shall be noticed that a lower value of ρ is an indicator of a more lenient behaviour from the point 
of view of the plastic-elastic transition of the applicable cross-sectional N+M interaction curve in 
inelastic buckling. Since residual stresses play a significant role in this context, the values assumed 
in GMNIA calculations are also included in Table 9-2. They are believed to be responsible for 
much of the differences in the applicable value ρ, specifically for the large difference between the I-
section and the rectangular hollow section, both under N+My.  

9.4.4. AyrtonPerry formulation of the buckling reduction factors χy,η0 and χip 

The ground has been prepared now for the development of Ayrton-Perry type formulation for 
generalized buckling reduction factors for the overall N+M load case χy,η0 and χip. The variables 
shown in Fig 9-12 will thereby be used in the following. The necessary, missing steps that lead up 
to the desired formulation are listed in the following. For reasons of better readability, the equations 
are written down for the strong-axis in-plane buckling case (indices “y”); the weak-axis in-plane 
case would lead to the same results, with only a change of index to “z”. 

i. The first step consists of formulating the failure equation that describes the maximum 
combination of n=N/Npl and the second order value of mII=My

II/My,pl under consideration of 
the transitional, linearized cross-sectional interaction described in the previous section: 

 
IIII

y
ni mi

ni mi ni pl y,pl

M1 m 1 Nn  k * k * 1.0
k * 1/ k * k * N M

= − ⋅ ⎯⎯→ ⋅ + ⋅ =  (9.36) 

Notice that this is a linear cross-sectional interaction equation. This is essential to the 
present derivation. In a beam-column with imperfections and loaded by axial forces N and 
first-order bending moments My, the total bending moment at failure contains second-order 
moments and is therefore written as My

II in (9.36). 
It shall be noted that the index “i” of the factors k* is to be determined by the value of the 
loading ratio η0=m0/n0; if, for example, η0 is smaller than ηSC1 in Table 9-1 for the studied 
section, the index “1” applies for the rest of the calculation. 

ii. In the case of a simply supported beam-column with sinusoidal geometric imperfections of 
amplitude 0e  and a sinusoidal bending moment diagram with maximum value MS, MII is 
calculated as follows, using the well-known elastic amplification factor. 

 ( )II
0y y,S

cr,y

1M M N e
1 N / N

= + ⋅ ⋅
−

 (9.37) 

Since the first-order bending moment diagram will only rarely be sinusoidal, it is customary 
to make use of “equivalent moment factors” CmS as corrective multipliers of My, thus 
yielding: 
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 ( )II
0y mS y

cr,y

1M C M N e
1 N / N

= ⋅ + ⋅ ⋅
−

 (9.38) 

iii. The buckling failure equation can now be written in the following form by combining (9.36) 
and (9.38): 

 
( )

y,

0mS y
ni mi

pl pl cr,y

C M N eN 1k * k * 1.0
N M 1 N / N

⋅ + ⋅
⋅ + ⋅ ⋅ =

−
 (9.39) 

iv. In order to account for the effects of the geometric imperfections in a consistent way, with a 
smooth transition to the pure column buckling case when η0 and M are zero, it is convenient 
to recall the derivation of the formulae that describe the ECCS (now EC3) column buckling 
curves in chapter 5, section 5.3. For My=0.0, equation (9.39) is written as follows:  

 0
ni mi

pl y,pl cr,y

N N e 1k * k * 1.0
N M 1 N / N

⋅
+ ⋅ ⋅ =

−
 (9.40) 

By expanding the second summand by Npl/Npl, we obtain  

 
0pl

ni mi
pl y,pl pl cr,y

N eN N 1k * k * 1.0
N M N 1 N / N

⋅
+ ⋅ ⋅ ⋅ =

−
 (9.41) 

Other than the factors kn1* and km1*, this equation is identical with (5.1) and can be 
rewritten in normalized form by introducing χy=N/Npl y pl cr,yN / Nλ = : 

 y
2

0pl
ni y m

y
i

y,pl y

N e
k * k * 1.0

M 1

χ
⋅ =

− χ ⋅λ

⋅
⋅χ + ⋅  (9.42) 

According to section 5.3.1, the next step leading to an explicit formulation for χy consists of 
introducing the Ayrton-Perry generalized imperfection ηimp (9.43) and replacing this term 
with the generalized imperfection definition for column buckling of Eurocode 3, (9.44). 

 
0pl

imp mi
y,pl

N e
k *

M
⋅

η = ⋅  (9.43) 

 ( )yimp imp,EC3 0.2η = η = α⋅ λ −  (9.44) 

By using (9.44) and (9.43) in (9.42), and considering that for M=0, η0=0.0<ηSC1 ⎯⎯→  
kni*=1.0, it is easily shown that (9.42) leads to the Eurocode design curve for column 
buckling. The important aspect here is to note that, in order to be consistent with the 
Eurocode regulations for columns under pure axial compression, the imperfection amplitude 

0e  must be replaced as follows: 



PART III – Design Rules for Beam Columns, Summary & Conclusions  

 

261 

 y,pl
0 imp,EC3

pl mi

M
e

N k *
= ⋅η

⋅
 (9.45) 

v. Equation (9.45) can now be used in (9.39) to obtain (9.46): 

 
y,

y,pl
mS y imp,EC3

pl mi
ni mi

pl pl cr,y

M
C M N

N k *N 1k * k * 1.0
N M 1 N / N

⎛ ⎞
⋅ + ⋅ ⋅η⎜ ⎟⎜ ⎟⋅⎝ ⎠⋅ + ⋅ ⋅ =

−
 (9.46) 

which can be simplified as follows: 

 
y,

y pl
ni mi mS imp,EC3

pl pl pl cr,y

M NN N 1k * k * C 1.0
N M N N 1 N / N

⎛ ⎞⋅
⎜ ⎟⋅ + ⋅ ⋅ + η ⋅ ⋅ =
⎜ ⎟⋅ −⎝ ⎠

 (9.47) 

vi. It can now be observed that the term 
y,y pl pl(M N ) / (M N)⋅ ⋅  in (9.47) is identical to the 

definition of the ratio η0=m0/n0 used e.g. for the definition of the overall in-plane 
slenderness in (9.27) and the following. Additionally, at failure the ratio N/Npl is identical to 
the sought-for reduction factor χy,η0, see Fig 9-12. By introducing η0, as well as the 
normalized variables χy,η0=N/Npl and y pl cr,yN / Nλ = , we obtain: 

 ( ) y, 0
ni y, 0 mi mS 0 imp,EC3

y,
2

y0

k * k * C 1.
1

0η
η

η

χ
⋅ ⋅ =

− ⋅λ
χ + ⋅ ⋅η + η

χ
 (9.48) 

The term ( )mi mS 0 imp,EC3k * C⋅ ⋅η + η  is designated ηtot in the following: 

 tot mi mS 0 imp,EC3k * Cη = ⋅ ⋅η + η  (9.49) 

This leads to: y, 0
ni y, 0 tot

y, 0
2

y

k * 1.0
1

η
η

η

⋅ =
− ⋅λ

χ
⋅χ + η

χ
 (9.50) 

vii. Equation (9.50) is once again a quadratic equation in χy,η0 that can now be solved and 
progressively simplified, as was shown for the original Ayrton-Perry derivation in chapter 2, 
section 2.5:  

 
( ) ( ) ( )ni tot ni tot ni tot

y

4 2 22
y y y

, 0
ni

2
y

0.5 * k * k *

k *

2 k
η

− η +λ − ⋅ − ⋅λ η − +η
χ =

+ λ +

⋅λ
 (9.51) 

 
( ) ( )ni tot n

22 2 2
y y yi ni tot

y 2
i y

, 0
n

0.5 * * k *

k

k 4 k

*
η

λ + − ⋅ ⋅− +η − +η
χ

λ λ +

⋅λ
=  (9.52) 

 ( )ni t ipy t
2

ok * 2+η = ⋅Φλ +  (9.53) 
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 ip ni ip
y, 0

ni

22
y

2
y

0.5 4 *4 2

k *

k
η

− ⋅Φ − ⋅Φ
χ

− ⋅ ⋅λ

⋅λ
=  (9.54) 

The following step includes an expansion by the complementary term. 

 ip ip ni ip ip ni
y, 0

ni ip ip

2 22 2
y y

2 2
y yi

2
n

* *

k * *

k k

k
η

− ⋅λ − ⋅λ

⋅λ − ⋅

⎛ ⎞Φ − Φ Φ + Φ⎜ ⎟χ = ⋅⎜ ⎟
⎜ Φ + Φ⎝ ⎠λ ⎟

 (9.55) 

viii. By further simplifying and reducing terms in the fraction, the following, Ayrton-Perry type 
equation is finally obtained: 

 y, 0

ip ip ni
22

y

1

*k
η

−
χ

+ Φ ⋅λ
=

Φ
 (9.56) 

Equation (9.56) is almost identical to the Ayrton-Perry design formula for flexural column buckling 
found in the Eurocode, with the main differences lying in the presence of the transitional cross-
sectional interaction parameters k*, as well as in the presence of the first-order bending moment in 
the ratio η0 and thus in ηtot, as well as the appropriate value of the equivalent, sinusoidal bending 
moment factor CmS. The latter factor will be specifically addressed in the following section 9.4.5. 

Expression (9.56) is referred to the maximum load amplification factor for a combination of N+My, 
but applied as a buckling reduction factor to the axial force resistance Npl. This is the form of 
representation of the buckling strength discussed in section 9.3.1 and first applied in Fig 9-6b. In 
order to write the buckling factor in terms of a factor χip as function of the “overall” in-plane 
slenderness ipλ , equations (9.30) and (9.32) have to be used, leading to the following relationships 

 
( )

b,ip y, 0 o
ip y, 0 0

pl 0 0

R / n
c

R 1/ n c
η

η

χ
χ = = = χ ⋅

⋅
 (9.57) 

 0
ip

i
22

ip n pip i 0k

c 1.0
* c

χ =
− ⋅

≤
Φ + ⋅λΦ

 (9.58) 

With  ( )ip ni tot 0
2

ip
1 k * c
2

Φ = ⋅ +η λ ⋅+  (9.59) 

Or if ηtot is written out: 

 ( )( )2
iip ni m pi mS 0 imp,EC3 0

1 k * k * C c
2

Φ = ⋅ + ⋅ ⋅ λη + ⋅η +  (9.60) 

Thereby, the fully plastic, cross-sectional interaction factor c0 is equal to ( )ni 0 mik k+ η ⋅ . The 
differences between kni / kmi, which refer to the full plastic cross-sectional interaction curve, and  
kni */ kmi*, which refer to the transitional interaction, must of course be kept in mind here. 
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9.4.5. Sinusoidal equivalent moment factors CmS  

The derivation of section 9.4.4 requires the use of equivalent sinusoidal moment factors CmS 
whenever a bending moment diagram is present that is not sinusoidal. As Gonçalves & Camotim 
(2004) noted, the importance of a correct distinction between equivalent moment factors for 
uniform and sinusoidal bending moments is often not fully appreciated. Furthermore, the equivalent 
uniform bending moment coefficients (CmU) have usually been formulated in the literature in a way 
that omits the effects of the axial force level N/Ncr, while the sinusoidal coefficients CmS usually 
include this effect, adding to the confusion in the application of the two formulations. One typical 
example for the omission of the axial load effects in the CmU factors is the often-used formula 
proposed by Austin (1961) for constant moment-gradient diagrams: CmU=0.6+0.4Ψ.  

In the above derivation of an Ayrton-Perry type formula for in-plane buckling of beam-columns, the 
tacit assumption was also made that the sinusoidal, equivalent moment factor is independent of the 
level of axial force. The developed, explicit formulation of χy,η0 or χip as a function of the 
slenderness and plastic strength is only rigorous if no additional terms containing N are present. In 
reality, however, the equivalent sinusoidal bending moments are dependent on the ratio N/Ncr,y for 
all but the basic case of a sinusoidal moment diagram. For many basic cases, functions for CmS are 
found in the literature, see e.g. Petersen (1993) or Chen (2007): 

i. parabolic bending moment diagram: mS
cr,y

NC 1 0.03
N

= + ⋅  (9.61) 

ii. constant bending moment diagram: mS
cr,y

NC 1 0.27
N

= + ⋅  (9.62) 

iii. triangular bending moment diagram: mS
cr,y

NC 1 0.18
N

= − ⋅  (9.63) 

The ratio N/Ncr,y can be re-written as follows: 

 2 2pl ip
y yy, 0

cr,y pl cr,y 0

NN N
N N N cη

χ
= ⋅ = χ ⋅λ = ⋅λ  (9.64) 

It can be seen that (9.64) contains the (unknown) variable χy,η0, respectively χip. The presence 
(within CmS and thus ηtot) of this additional term χy,η0 was not considered when solving expression 
(9.50), and would have prevented the explicit solution for χy,η0 or χip of (9.56) or (9.58). This term 
must therefore be replaced by an accurate-enough, “pre-emptive” estimation of χy,η0 or χip. For this 
purpose, the following expression is proposed, based on a simple Merchant-Rankine formulation 
for χip=f( ipλ ), see section 2.4 of chapter 2, equation (2.19):  

 ip 2 2
ip y 0

1 1

1 1 / c
χ ≈ =

+ λ + λ
 (9.65) 
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By using (9.65) in (9.64), we obtain the following expression for the approximation nce of N/Ncr: 

 
( )

2
y

ce 2
cr,y y0

N n
N c

λ
≅ =

+ λ
 (9.66) 

It can be seen that this expression is independent of the load level N, making its application in the 
context of the derivation of section 9.4.5 possible. It is therefore proposed to calculate the 
equivalent moment factors CmS by replacing terms with N/Ncr,y with nce. 

One might ask whether (9.66) is accurate enough, and why one should need the Ayrton-Perry 
formula (9.58) if (9.65) were accurate. The following can be said with respect to this: 

i. Obviously, the expression (9.65) is not very accurate in describing χip as a function of ipλ . 
As the comparative calculations in section 9.5 show, the buckling curves in terms of  
χip=f( ipλ ) have a wider scatter band and depend on a variety of factors that are not at all 
accounted for by (9.65). The differences between (9.65) and the “actual” values can be in 
the range of ca. 20-30% in some cases. A more accurate formulation like the one proposed 
in (9.58) is therefore definitely needed if the value of χip is to be accurately determined. 
 

ii. However, (9.65) is only (implicitly) contained in (9.66), with the intent of using it in the 
calculation of CmS and ηtot of equation (9.59), and not to calculate χip itself. It is thus only 
related to the bending component of the load, which will be of negligible importance at 
higher values of N/Ncr, i.e. when the influence of the axial force on CmS is the greatest. 
 

iii. Furthermore, it can be shown that (9.65) and thus (9.66) result in rather high, conservative 
estimates of N/Ncr whenever the bending component is dominant, i.e. when the beam-
column is subjected to high “imperfections” in the sense of first-order deflections, see the 
discussion of Fig 2-9 in chapter 2. A certain, minor degree of additional conservatism in the 
bending term can be thought of as being acceptable in this context. 

The use of (9.66) therefore appears to be fully justified in the context of the calculation of CmS 
values, thus allowing for an accurate application of the Ayrton-Perry formulations (9.56) and (9.58) 
also for cases where the bending moment diagram is not sinusoidal. 

  



PART III – Design Rules for Beam Columns, Summary & Conclusions  

 

265 

9.4.6. Summary of the proposed formulation 

Several different aspects had to be discussed in section 9.4 in order to explain the background of the 
newly proposed Ayrton-Perry formulations (9.56) and (9.58). In order to facilitate understanding of 
the proposal, it is summarized in the following in a more compact form resembling code clauses. 

(1) The in-plane buckling resistance of beam-columns subjected to N+Mj, with j being the axis 
(y or z) about which the bending moment acts, may be determined using the following 
formulae: 

 
!ip pl

d b,ip
M1

R
R R 1.0

χ ⋅
= = ≥

γ
 (9.67) 

with  Rb,ip: amplification factor of the design load combination Nd+Mj,d that results in the 
achievement of the ultimate, in-plane buckling condition.  

 Rpl: amplification factor of the design load combination Nd+Mj,d that results in the 
achievement of the plastic section capacity. 

 χip: overall, in-plane buckling reduction factor. 

 

(2) The plastic amplification factor may be determined using the following set of formulae: 

 0
pl

0 0 0 0

1R
m c n c

η
= =

⋅ ⋅
 (9.68) 

with  m0, n0: ratios between the design levels of the load components Nd and Mj,d to the 
respective plastic section capacities: m0=Md/Mpl ; n0=Nd/Npl 

 η0: ratio of m0/n0 

 c0: plastic cross-sectional capacity factor; c0= ( )ni 0 mik k+ η ⋅  

The cross-sectional capacity factor c0 may be calculated with the specific values of kni and 
kmi valid for the studied cross-sectional type, taken from Table 9-3. Thereby, the index of 
the applicable factors kni is decided by the following case distinction: 
 
- If η0<ηSC1: kni=kn1 ; kmi=km1 

- If ηSC1≤η0<ηSC2: kni=kn2 ; kmi=km2 

- If ηSC2≤η0<ηSC3: kni=kn3 ; kmi=km3 

  



9. On the Derivation of Design Rules forBeam Columns 

 

266 

# 
Type of section, loading, underlying 

residual stress distributions 
Parameters of the N-M interaction linearization ρ 

1 

I-section, strong 

axis buckling 

N+My 
 

kn1=1.0; km1=1 0.5 a 0.75− ⋅ ≥ ; SC1
m1

0.8
1 0.8 k

η =
− ⋅

 

kn2=
m1

0.2
1 0.8 k− ⋅

; km2=1.0; SC2η = ∞  

0.8 

2 

Rectangular 

hollow section 

RHS, N+My  

0.4 

3 

Circular Hollow 

Section CHS, 

N+M  

kn1=1.0 ; km1=0.74; =1.95 

kn2= =0.49; km2=1.0; SC2η = ∞  

0.6 

4 

I-section, weak 

axis buckling 

N+Mz  

kn1=1.0; km1=
1 a
1.45

−
;  

kn2=
0.8

1.81 a−
; km2=

1 a
1 0.55 a

−
− ⋅

; SC2
1
a

η =  

kn3=0.0; km3=1.0; SC3η = ∞  

0.6 

wf AA 2 b ta
A A

− ⋅ ⋅
= =  

Table 9-3 Summary of the coefficients used for the description of the cross-sectional N+M 
interaction behaviour. 

(3) The overall, in-plane buckling reduction factor can be calculated by using the following 
equation: 

 0
ip

i
22

ip n pip i 0k

c 1.0
* c

χ =
− ⋅

≤
Φ + ⋅λΦ

 (9.69) 

with  ( )ip ni tot 0
2

ip
1 k * c
2

Φ = ⋅ +η λ ⋅+  (9.70) 

and  ipλ : overall, in-plane normalized slenderness, calculated as follows:  
ip j 0/ cλ = λ .  

 ηtot: total value of the generalized Ayrton-Perry imperfection: 

  tot mi mS 0 imp,EC3k * Cη = ⋅ ⋅η + η , with 

- -+

±0.3-0.5 fy

+0.5 fy

-0.2 fy
+

+

++ -

-

±0.15 fy
-

+ + -

SC1
m1

0.8
1 0.8 k

η =
− ⋅

m1

0.2
1 0.8 k− ⋅

-
-

+

±0.3-0.5 fy

SC1
m1

0.8
1 0.8 k

η =
− ⋅
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  ( )jimp,EC3 0.2η = α⋅ λ − ; generalized imperfection for column buckling 
according to clause 6.3.1.2 of EC3 – EN 1993-1-1. 

  CmS: equivalent sinusoidal moment factor, calculated with the formulae given 
in Fig 9-4. 

 kni*, kmi*: slenderness-dependent, transitional cross-sectional capacity coefficients, 
see (4) 

# Moment diagram CmS [-] 

1 
 mS ceC 1 0.27 n= + ⋅  

2 
 mS ceC 1 0.03 n= + ⋅  

3 
 mS ceC 1 0.18 n= − ⋅  

4 ( ) *
ce0.79 0.21 0.36 0.33 n   + ⋅ψ + ⋅ ψ − ⋅  

( )
2

j
ce 2

j0

n
c

λ
=

+ λ
 

*
   formula due to Villette et al. (2000); notice that case #4 with Ψ=1.0 is not 

identical to case #1. A discussion of this formula is given in section 9.5. 

Table 9-4 Proposed values for the equivalent sinusoidal bending moment factors CmS. 

(4) The factors kni* and kmi* are calculated from a modification of the applicable values of kni 
and kmi (with the applicable index i) using the following formulae: 

 ipni ni ni mSk * k (1 k ) C 1= + − ⋅ρ ⋅λ ⋅ ≤  (9.71) 

 ipmi mi mi mSk * k (w k ) C w= + − ⋅ρ ⋅λ ⋅ ≤  (9.72) 

 w: ratio of plastic to elastic section moduli: w=Wj,pl/Wj,el. 

 ρ: factor accounting for the specific transitional behaviour of a certain cross-
section type, taken from Table 9-3. 

(5) As an equivalent alternative to clause (1), the in-plane buckling resistance may also be 
formulated in terms of the maximum obtainable axial force NRd,η0 that can be achieved if the 
design load combination of Nd+Mj,d is proportionally increased up to failure: 

 
!

d d

Rd, 0 j, 0 pl

N N 1.0
N Nη η

= ≤
χ ⋅

 (9.73) 

ψ.MM
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with 
22

j, 0
0

i n jp ip i

1 1

*k cη

− ⋅λ
χ = ≤

Φ + Φ
 (9.74) 

and the variables in (9.73) taken from clauses (1) to (4). 

9.5. Comparison with GMNIA Calculations and EC3 Rules 
In this section, the Ayrton-Perry type formulation developed in section 9.4 for the description of the 
in-plane buckling strength of beam-columns under N+M is compared to the results of GMNIA 
calculations, carried out mostly using beam element models as outlined in chapter 3. The 
comparison will be carried out using three different forms of representation: 

i. In terms of buckling reduction factors χip and χy,η0 
ii. As buckling resistance N+M interaction curves 

iii. In terms of the applicable factor k in the terminology of the interaction factor concept 

All calculations in this section were carried out for steel grade S235. The residual stress amplitudes 
used for the GMNIA calculations and shown in the single figures are referred to the yield stress of 
S235, fy=235 N/mm². The geometric imperfection was always assumed to have a sinusoidal 
distribution and to have an amplitude of 0e =L/1000.  

Most calculations refer to the basic case of a constant bending moment diagram. Other cases have 
also been considered and specifically marked in the figures. 

9.5.1. Buckling reduction factors 

In the first type of comparison of analytical and GMNIA results, the buckling reduction factors χip 
and χj,η0 are calculated using equations (9.69) and (9.74), and are plotted together with the 
equivalent values obtained from GMNIA calculations.  

The first group of these plots is shown in Fig 9-13, where results for an IPE 240 and an HEA 300 
section, both loaded by strong-axis bending moments plus axial force are shown. Five different 
ratios of M to N, expressed by the value η0= pl pl(M N ) / (N M )⋅ ⋅ , were considered. 

The plots in Fig 9-13 show that equations (9.69) and (9.74) are very accurate in describing the 
calculated resistance of the GMNIA model beam-column with fixed imperfections. Thereby, the 
analytical line for η0=0.0 is identical to the Eurocode / ECCS column buckling curve a in both types 
of representation. This is inherent to the proposed formulation, which makes explicit use of the 
Eurocode generalized imperfection ( )y 0.2α⋅ λ − , with α=0.21 for the IPE 240 and α=0.34 for the 
HEA 300 section. It can be observed that the biggest differences –themselves rather small- between 
the proposed analytical and the GMNIA curve are actually present in the case of the HEA 300 
section at η0=0.0, i.e. when the proposed formulation is identical to the EC3 column buckling curve 
for this section.  
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Fig 9-13 Comparison of buckling reduction factors according to GMNIA calculations and 

equation (9.69) and (9.74); for an IPE 240 (a-b) and HEA 300 (c-d) section, both under 
constant bending moment. 

The lines of most interest here, i.e. those where η0>0.0, which describe cases where the studied 
beam-column behaviour is present, appear to be very well able to describe the GMNIA buckling 
loads. Some minor differences in the (apparent) accuracy of the representation in terms of χip and 
χy,η0 are observed; these are due to the fact that different reference values of Rpl are used in the case 
of the χip=f( ipλ ) curves, as these are calculated “correctly” in the case of the GMNIA curves by 
calculating the numerical value of Rpl,MNA in a preceding, materially non-linear analysis (MNA); 
this value is of course not 100% identical to the value of Rpl,linearization obtained by applying (9.68), 
which is based on a linearization of the non-linear plastic N+M interaction curve. However, the 
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differences between Rpl,MNA and Rpl,linearization were small in all cases. In the case of the 
representation in terms of the obtainable axial force, i.e. of χy,η0, the reference value is Npl=A.fy in 
both cases. For an estimation of the “safety” of the proposed formulation, the representation in 
terms of χy,η0 is actually more purposeful, as it directly compares obtained strength based on the 
same basic variable: whenever the analytical line lies below the GMNIA line, the equation is “safe”.  

Fig 9-14 shows the same type of representation, for the same load case of constant bending moment 
plus axial force, for two hollow sections, one with circular and one with rectangular section.  

 

 
Fig 9-14 Comparison of buckling reduction factors according to GMNIA calculations and 

equation (9.69) and (9.74); for a CHS 178/10 (a-b) and RHS 200/100/10 section (c-d), both 
under constant bending moment. 
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The distinctly different residual stress patterns valid for these sections are plotted in the figure. The 
accuracy of the proposed description is again very satisfactory. As Fig 9-14b and d, the proposed 
formulation is always slightly safe-sided in terms of χy,η0. In terms of χip, the analytical curve 
appears to be slightly less accurate, but once again this (minimal) inaccuracy is to attributed more 
on the conservative, linearized approximation of the plastic N+M interaction than on the 
formulation itself.  

As a final type of cross-sectional shape, an HEA 500 section is studied in Fig 9-15 that is loaded by 
a combination of axial force and constant weak-axis bending moment Mz. For this type of section 
and loading, a linearization of the cross-sectional plastic interaction curve was proposed in Fig 9-10 
that consist of three different (linear) segments. Due to the more distinctly non-linear cross-
sectional interaction curve for weak-axis bending, the cross-sectional capacity at zλ =0.0 is slightly 
underestimated by the proposed linearization. This is visible in the small, safe-sided differences 
between the analytical and GMNIA values of χy,η0 at zλ =0.0 for the cases where η0=0.5, 1.0 and 
2.00. At η0=4.00, the “exact” interaction curve is reached by the linearized one, since for this value 
of η0 the vertical portion of the interaction curve (see Fig 9-10b) is valid for this section, meaning 
that Mpl can be reached at zλ =0.0 in spite of the presence of some axial force. This fact is included 
in the proposed formulation.  

After having established the high accuracy of the proposed formulation for the most basic case of 
constant bending moment, it is now interesting to study this accuracy for other load cases. This is 
done in Fig 9-16 and Fig 9-17 for an IPE 240 subjected to a load combination of N+My with 
different, variable bending moment diagrams. 

 

 
Fig 9-15 Comparison of buckling reduction factors according to GMNIA calculations and 

equation (9.69) and (9.74) for a HEA 500 section loaded by N+Mz. 
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Fig 9-16 Comparison of GMNIA and analytical buckling reduction factors for an IPE 240 and 

different load cases, with N+My; parabolic (a-b) and triangular moment diagram (c-d). 

Fig 9-16 shows the comparison of proposed analytical and GMNIA curves for the simple cases of 
parabolic and triangular bending moment with maximum at mid-span. The accuracy in the case of 
the parabolic bending moment diagram (Fig 9-16a-b) is remarkably high and is probably to be 
attributed to the high accuracy of the CmS values for this case, which most closely resembles the 
actual sinusoidal moment diagram that underlies the analytical formulation. 

In Fig 9-17, the analytical and GMNIA curves are compared for cases with constant moment 
gradient, again for an IPE 240 section. Thereby, the formula developed by Villette et al. (2000) is 
used for the calculation of the equivalent sinusoidal moment factor CmS, see Table 9-4. 

  

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

χ
ip
=R

b,
ip
/R

pl
 [-

]

λ ip

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

χ
y,

η
0=N

b/N
pl
 [-

]

λy

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

χ
ip
=R

b,
ip
/R

pl
 [-

]

λ ip

η0=0.00
η0=0.50
η0=1.00
η0=2.00
η0=4.00

2
ip

1

λ

2
ip

1

λ

-

-

-

-

+

+

±0.3 fy

±0.3 fy

IPE 240

IPE 240

M

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

χ
y,

η
0=N

b/N
pl
 [-

]
λy

2.0

2.0

a)

c)

b)

d)

η0=0.00

η0=0.00

η0=0.50

η0=0.50

η0=1.00

η0=1.00

η0=2.00

η0=4.00

2
y

1

λ

2
y

1

λ

GMNIA

GMNIA

EQU

EQU

η0=0.00
η0=0.50
η0=1.00
η0=2.00
η0=4.00 M



PART III – Design Rules for Beam Columns, Summary & Conclusions  

 

273 

 
Fig 9-17 Comparison of GMNIA and analytical buckling reduction factors for an IPE 240 and 

moment diagrams with constant moment gradients; for Ψ=0.5 (a-b) and Ψ=-0.5 (c-d). 

The following aspects are of interest here, which are particularly well observable in Fig 9-17c and 
d, which deal with a moment diagram with sign change and Ψ=-0.5: 

i. The sign change of the moment gradient leads to a buckling/ultimate strength behaviour that 
is largely dominated by the cross-sectional capacity at the beam-column’s extremity, i.e. 
where the highest first-order bending moment is acting, for all but very high slenderness 
values. This becomes increasingly true with higher values of η0, i.e. with an increasing 
bending moment component of the load. This is observed in the wide extension of the 
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“plateau” in both types of representation, particularly in the plot in terms of χy,η0, in the case 
of Ψ=-0.5. 

ii. The proposed analytical expression is very well able to reproduce this behaviour as observed 
in GMNIA calculations. Both the formulation for χip and for χy,η0 are explicitly limited by 
the plastic cross-sectional capacity of the section, which leads to the observed plastic 
plateau. Through the selection of a more appropriate value of CmS for the given load case, 
the extension of the plateau value would be reached.  

iii. For the particular case of constant moment gradients, the formula contained in Table 9-4, as 
well as in Annex A of EC3- EN 1993-1-1, appears to be a somewhat conservative, yet 
acceptable approximation. The conservativeness is most likely to be attributed to the fact 
that the formula is based purely on the elastic second-order moment amplification, while the 
GMNIA curves of course include effects of plasticity. As Kaim (2004) pointed out, other 
formulae, particularly the already mentioned formula by Austin (1961), can actually be 
shown to be more accurate for the description of the beam-column buckling strength in the 
elasto-plastic case.  
 

9.5.2. NM buckling interaction diagrams 

In Fig 9-18, a different type of representation is used to compare the results of the analytical 
formulation of equation (9.69) with results of GMNIA calculations. The plots in this figure show 
the predicted ultimate buckling strength in terms of maximum obtainable pairs of N+M for different 
sections and different slenderness values. All calculations were carried out for the most basic load 
case of constant bending moment plus axial force.  

The plots once again confirm the high accuracy obtained by the application of the proposed 
analytical formulation. The analytical description closely follows the GMNIA curves throughout all 
values of η0 for all four shown sections, and gives minimally “conservative” results for almost all 
points. 

A characteristic feature of the analytical interaction curves is the fact that a certain, minor slope 
discontinuity is present at certain values. In the plots, this is perhaps best appreciated for the case of 
weak-axis buckling of the HEA 500 section (Fig 9-18b). The discontinuity (primarily of slope) is a 
direct reflection of the underlying shape of the cross-sectional interaction curve. Since this curve 
was segmentally linearized, and this linearization is maintained (with the same points of slope 
change at η0=ηSCi) also for the transitional, slenderness-dependent interaction discussed in section 
9.4.3, it is clear that the change of the underlying segment of the interaction linearization also 
causes a certain discontinuity of the resulting buckling strength interaction plots. However, this 
does not present any practical disadvantages for the user of the proposed design formulae, who will 
generally be interested in a discrete strength prediction. 
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Fig 9-18 Comparison of GMNIA and analytical results in terms of N+M interaction curves for 

different sections and values of λ ; constant bending moment diagram. 

One advantage of the proposed formulation, when compared with the current Eurocode design rules 
based on the interaction concept described in section 9.3.3, is the fact that the transition of cross-
sectional check to buckling check is explicitly included and very accurate. This is due to the fact 
that, unlike the interaction concept curves, the proposed formulae are based on a very accurate, 
linearized approximation of the actual cross-sectional N+M interaction curve of the studied section; 
a comparison between the underlying cross-sectional interaction curves of Fig 9-8 and the 
linearization of the actual curves in Fig 9-18 clearly illustrates this. This fact is particularly felt in 
the case of in-plane buckling checks with N+M where the bending moment diagram has a rather 
steep gradient, see Fig 9-19. 
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Fig 9-19 Comparison of GMNIA and analytical results in terms of N+M interaction curves; 

analytical resistance calculated with the interaction coefficients of Annex A & B of EC3, as well 
as the proposed formulation for χip; moment diagram with constant gradient, Ψ=0.0. 

In these cases, especially in cases where the bending moment is dominant, the buckling checks 
using the interaction concept in EC3 can result in a prediction of the buckling strength that exceeds 
the cross-sectional interaction curve. This is due to the fact that the buckling check using the 
interaction concept is referred –through the equivalent moment coefficient Cm-  to a point in the 
member where the largest stability effects are present. In the case of the bending moment diagram 
in Fig 9-19, this point might not be the critical, strength-determining point in the member when 
stability effects are not too significant. In these cases, the strength will be dominated by the cross-
sectional N+M interaction at the beam-column’s extremity. Since the proposed formulation is based 
on a precise representation of this exact strength, and the buckling reduction factor χip according to 
(9.69) has an upper limit value of 1.0, cross-sectional and buckling check are covered by the same 
design formula in the proposed formulation. This is not the case for the interaction concept 
formulae, as can be seen in Fig 9-19, where for yλ =0.5 both the interaction lines calculated by 
using the coefficients of EC3 Annex A and (even more so) B exceed the cross-sectional capacity 
beyond certain values of m. This is the reason why the EC3 design formulae explicitly require 
checks of the cross-sectional capacity at the member ends in addition to the buckling check. 

As far as the accuracy of the proposed formulation is concerned for the case studied in Fig 9-19, it 
can be said that the proposal again shows a high accuracy, comparable to the one obtained by using 
the EC3 interaction concepts. When compared to the cases with constant bending moment diagram 
of Fig 9-18, the proposed formulation appears to be somewhat more conservative, particularly for 
higher slenderness, where it follows the EC3 Annex A curve very closely. This is to be attributed to 
the use of the same CmS value for this loading case. As was already mentioned in the context of Fig 
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9-17, the equivalent sinusoidal moment equation in Table 9-4for this load case is rather 
conservative at higher slenderness. The Annex B interaction curves make use of the Austin formula, 
which is slightly more accurate –and less conservative- in describing the inelastic buckling 
behaviour of beam-column. This is reflected in Fig 9-19, where the Annex B curves lie slightly 
higher than the other two analytical curves. 

9.5.3. Interaction factor kyy 

One additional form of comparison is used in this section in order to illustrate the differences 
between the proposed formulation, GMNIA results and the existing rules found in the Eurocode. 
The results are thereby compared in terms of interaction coefficients k, as presented in section 9.2 
and defined in 9.3.1.  

The methodology used to obtain the GMNIA results for these coefficients has already been 
described in the context of Fig 9-9. The Eurocode coefficients are explicit formulations for the 
interaction coefficients and are therefore fairly easily calculated with the formulae of section 9.3.3. 
In the case of the proposed Ayrton-Perry type formulation, however, the factors ky or kz cannot be 
directly calculated, at least not in a form that is fully compatible with the interaction concept design 
expression of clause 6.3.3 of EC3- EN 1993-1-1. This is due to the fact that the proposed Ayrton-
Perry formulation entails a total load amplification, where the ratio of M to N is considered to be 
fixed and the design resistance is expressed in terms of a load amplification factor Rd for the 
combined load case, see (9.67). This factor corresponds to the inverse of the utilization of the beam-
column under the design load. In the case of the interaction coefficients, however, not the ratio of 
M/N, but the utilization of the pure flexural column buckling case j j pln N / ( N )= χ ⋅  is fixed; see 
equations (9.10) and (9.11), which are written in general form for a bending axis “j” in (9.75): 

 j
j

j pl j,pl

MN k 1.0
N M

+ ≤
χ ⋅

 (9.75) 

It shall be noted that, due to the fact that the factor kj is a function of nj, the result of the sum in 
(9.75) is actually not a utilization in the commonly understood sense of the inverse of the still-
possible amplification of a given load case before failure. It is a utilization ratio for a fixed axial 
force plus an arbitrary bending moment, which could be increased alone until the sum is equal to 
one. If one desires to know the utilization for the combined load case, (9.75) would have to be 
solved iteratively. 

Just as (9.75) would have to be solved iteratively in order to calculate a utilization for the combined 
load case of N+M, the proposed Ayrton-Perry formulation of section 9.4 must be solved by iteration 
to obtain values of kj as a function of a fixed value of nj. Thereby, the most efficient way is to 
perform the iteration by using the factor χj,η0 of equation (9.74) as reference, and making the 
following considerations: 
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i. As has been shown in Fig 9-4b, a certain point on the failure curve in an N-M interaction 
diagram is reached independently of the loading history. Therefore, the utilization of 1.0 is 
reached in both the interaction concept as given by (9.75) and with the Ayrton-Perry 
formula (9.74). We can therefore write: 

 j
j

j pl j,pl j, 0 pl

MN Nk 1.0
N M Nη

+ = =
χ ⋅ χ ⋅

 (9.76) 

ii. This equation can be solved for kj: 

 j,pl j,pl
j

j j, 0 pl j pl j pl j, 0 j 0 j, 0 j

M MN N N 1 1 1 1 1k
M N N M Nη η η

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⋅ − = ⋅ ⋅ − = ⋅ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟χ ⋅ χ ⋅ χ χ η χ χ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (9.77) 

iii. Equation (9.76) can now be re-written as follows: 

 j
0 j, 0 j j, 0

1 1 1 nn m
η η

⎛ ⎞
+ ⋅ − ⋅ =⎜ ⎟⎜ ⎟η χ χ χ⎝ ⎠

 (9.78) 

iv. Equation (9.77) contains both η0 and nj, which are both functions of n. χj is a constant for a 
certain value of jλ . For a fixed value of nj, a solution for (9.78) can be found through 
iterative variation of the possible combinations of n and m, i.e. of η0. Once this is achieved, 
the factor kj can be calculated from (9.77) for this numerical value of η0.  

The above procedure has been adopted to calculate factors kj that are “inherently” contained in the 
proposed Ayrton-Perry formulation of section 9.4. These are compared to the GMNIA calculations 
and the factor kj according to Annex A and B of EC3 – EN 1993-1-1 in Fig 9-20. Three different 
sections are studied, an IPE 240 in strong-axis bending, a circular hollow section CHS 178/10, and 
a HEA 500 in weak-axis bending, all loaded by a constant  moment diagram plus axial force. 

The three diagrams in the top row of Fig 9-20 show the interaction factors according to the 
Eurocode, while the bottom row shows the ones retrieved from the proposed Ayrton-Perry 
formulation. The following observations can be made: 

i. The proposed formulation seems to follow the GMNIA values of kj quite well, particularly 
from a qualitative point of view, but also quantitatively. Thereby, the Ayrton-Perry curves 
appear to have a similar course as the ones of the EC3- Annex A formulae, but with some 
advantages in accuracy particularly in the case of the circular cross-section, for which the 
cross-sectional interaction is poorly represented by the Annex A formulae.  

ii. The discontinuities of the interaction curve addressed in section 9.5.2 that result from the 
linearized, segmental representation of the actually curved N+M cross-sectional interaction 
relationship also result in discontinuities of the kj values for the Ayrton-Perry formulation, 
see in particular the “jump” of ky in Fig 9-20b, ηy=0.4 a yλ >1.0. Again, this is inherent to 
the formulation, but not necessarily to be seen as a disadvantage to the user. 
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Fig 9-20 Comparison of interaction coefficients ky and kz for different cross-sections. 

iii. It should again be noted that the accuracy of the ky values gives a rather misleading 
representation of the accuracy of the formulation itself, particularly for higher values of ny 
or nz. Even errors of some 20-30% in terms of kj only lead to total errors of only a few 
percentage points at values of nj beyond 0.5. In this sense, it is a welcome observation that 
the accuracy of the proposed formulation in terms of kj is highest for low values of nj, and 
mostly conservative in all other cases.  

iv. The comparison of the proposed formulation and the Eurocode coefficients leads to the 
conclusion that the new proposal has a very similar, inherent safety level. An adoption of the 
proposal for practical design as an alternative method based on the “overall” slenderness 
concept would therefore appear to be consistent with the safety level of current rules.  
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9.6. Some  comments  on  the  “general method”  for  outofplane 

beamcolumn buckling 

In section 9.2, the so-called “general method” contained in clause 6.3.4 of EC3 – EN 1993-1-1 was 
conceptually introduced as a proposal for a general methodology for the design of members (or 
indeed whole structures) against spatial instability, based on a “generalized slenderness” concept.  

Using the general variable naming adopted in this chapter, the method’s basic design equation can 
be written as follows 

 
!op b,ip

b,op
M1

R
R 1.0

χ ⋅
= ≥

γ
 (9.79) 

With Rb,op ... design resistance (in terms of a maximum load amplification factor) of the 
structural element against out-of-plane instability. 

 Rb,ip ... design resistance of the structure against in-plane instability, i.e. the same 
resistance determined in sections 9.3 to 9.5 of this chapter, as defined e.g. in (9.8). 

 χop... buckling reduction factor for out-of-plane buckling. 

Thereby, the buckling reduction factor χop is stated to be a function of λ op, defined as follows: 

 b,op op b,ip
op

cr,op M1

R R
1.0

R
χ ⋅

λ = = ≥
γ

 (9.80) 

With Rcr,op ... maximum load amplification factor (for a given load combination) until the first 
out-of-plane bifurcation mode is reached. 

The Eurocode gives two options for the assessment of the value χop: 

1) In a first method, the value of χop is determined by taking the minimum of χz and χLT, both 
taken from the current clauses 6.3.1 and 6.3.2 of EC3 – EN 1993-1-1.  

2) In second method, an interpolation between χz and χLT is recommended, “based on the 
cross-sectional interaction”. Simões da Silva et al. (2010) gave an interpretation of this as 
entailing the combination of N/Npl + M/Mpl=χop and N/(χz

.Npl)+M/(χLT
.Mpl)=1.0. This can 

be shown to result in the following interpolation function for χop, with η0=m/n as used in the 
previous sections of this chapter: 

 0 z LT
op

LT 0 z

(1 )+ η ⋅χ ⋅χ
χ =

χ + η ⋅χ
 (9.81) 

In both interpolation methods, the values of χz and χLT are to be evaluated for the slenderness λ op, 
and not for λ z or λ LT. 

As has also been already mentioned in section 9.2, the main problem of the “generalized 
slenderness” methods, of which the “general method” is one example, is the determination of the 
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appropriate values of the buckling reduction factor, i.e. in this case of χop. Indeed, the whole point 
of the development of an Ayrton-Perry derivation for the in-plane buckling case in section 9.4 was 
to determine the appropriate values of the buckling reduction factor χip, which is a reduction factor 
that is also based on a “generalized slenderness” concept, albeit for the in-plane case. It was shown 
that very accurate results can be achieved for such a buckling reduction factor if the specific effects 
of the cross-sectional capacity and of the non-linear load-deformation behaviour are taken into 
account by an in-depth analysis of the realistic load-carrying behaviour, primarily by means of 
complementary GMNIA calculations.  

For the proposal for χop currently contained in EC3- EN 1993-1-1 clause 6.3.4., no such studies 
appear to have been performed prior to the inclusion of the method in the code. In the PhD thesis by 
Müller (2003), the adoption of the method is advocated, and statistical evaluations are carried out 
on the basis of specific test data. Some first calculations have been performed by Greiner & Ofner 
(2007). Simões da Silva et al. (2010) also noticed the lack of a comprehensive parametric study for 
the assessment of the accuracy of the proposed formulae, and provided a number of new 
calculations for prismatic beam-columns. The considerations made in the following paragraphs are 
to be seen in the context of the on-going discussion of the accuracy and of the mechanical 
soundness of the “general method”. Thereby, all comments are related to the simplest imaginable 
application of the method: simply supported, laterally unrestrained I-sections with double 
symmetric cross-section, loaded by axial force and a constant bending moment diagram.  

One observation that should be discussed is the fact that the “general method” is inherently not 
consistent with the column buckling case for weak-axis buckling. This can be appreciated when this 
special case is entered in the design equation (9.79). For one, the in-plane buckling resistance can 
be written as the product of an in-plane buckling reduction factor (e.g. calculated with the formulae 
developed in this chapter) and the plastic resistance Rpl. Thus, the out-of-plane buckling resistance 
according to the “general method” becomes: 

 op b,ip op ip pl
b,op

M1 M1

R R
R 1.0

χ ⋅ χ ⋅χ ⋅
= = ≥

γ γ
 (9.82) 

In the case of a column (M=0), this term becomes: 

 opz y pl
b,op

M1

( ) R
R 1.0

χ λ ⋅χ ⋅
= ≥

γ
 (9.83) 

 y pl
op

cr,z

N
N

χ ⋅
λ =  (9.84) 

The value of Rb,op calculated in this way will generally be lower than z pl M1( N ) / (N )χ ⋅ ⋅ γ , which is 
the correct value –written in terms of a possible load amplification- according to the column 
buckling curves of the Eurocode – clause 6.3.1. This will be particularly felt when the effects of χy 
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are relatively high in relation to χz, meaning cases where χy is not much larger than χz. In the case 
of I-sections, this applies to stocky sections with wide flanges. 

One could argue that this additional “safety” is really to be attributed to the fact that imperfections 
of the full magnitude (e.g. 0e =L/1000 in GMNIA calculations) in both main directions are thereby 
account for even for the simple column buckling case. Indeed, this assumption was made in the 
paper by Simões da Silva et al. (2010), and leads to smaller –yet still present- differences between 
the results of GMNIA calculations and (9.82) for columns. However, one should be aware of the 
fact that this changes the safety level of precisely the one stability case which is universally 
regarded as the benchmark case for member buckling and which is most firmly substantiated by test 
results Due to this observation, geometric imperfections affine to the first eigenmode with 
amplitudes of 0e =L/1000 have commonly been considered to be the appropriate choice for GMNIA 
calculations for “model members”.  

More importantly than the implications for the pure column buckling case (which will perhaps not 
be a field of application of the “general method”), it is interesting to check the effects of the above-
mentioned “bi-directional strength reduction” on combined load cases with N+M. For these cases 
too, the prescription of the “general method” implies that the in-plane buckling load be further 
reduced to account for out-of-plane effects.  

While, of course, there indeed are effects of in-plane second-order deformations on the out-of-plane 
ultimate buckling load in such cases, these are likely over-estimated by the procedure of the 
“general method”, once again particularly in cases where the bending stiffness of the member about 
the strong axis is not hugely larger than the one about the weak axis. 

 
Fig 9-21 Comparison of GMNIA buckling curves and EC3 proposals for the “general method”; 

IPE 240 (a) and HEB 240 (b) sections. 
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The above comments are now reinforced by numerical examples. Two sections are studied within 
the context of the “general method”, one slender (for lateral deformation) IPE 240, and a stockier 
HEB 240 section. Both are loaded by an axial force plus a constant bending moment diagram.  

The GMNIA results were obtained with separate calculations for the in-plane and out-of-plane 
buckling strength, whereby the in-plane strength was needed to calculate the applicable value of 

opλ  according to (9.80). In both types of GMNIA calculation, eigenmode-affine imperfections were 
assumed, with amplitude 0e =L/1000. 

The plots in Fig 9-21 show the comparison between the behaviour of the two studied sections, and 
compare the obtained GMNIA curves with the different proposals for the reduction factor χop found 
in the Eurocode. The following comments can be made: 

i. In the case of the slender IPE 240 section, where the in-plane bending stiffness (and 
buckling strength) is much higher than the out-of-plane stiffness, the buckling curves 
obtained from GMNIA calculations for different values of η0=(M/Mpl)/(N/Npl) lie in a fairly 
narrow scatter band, which also happens to be well described by the EC3 curves that apply 
for column buckling (χz,op) and LT-buckling (χLT,op) when plotted over opλ . Furthermore, 
the interpolated curve, obtained from an application of equation (9.81) for the studied case 
of η0=1.0, seems to be very well able to describe the behaviour of this particular beam-
column loaded in N+M.  

This is the desired scenario for the application of the “general method”. The accuracy of the 
description of the “real” buckling strength is clearly very high for this case. 

ii. However, the case of the stockier HEB 240 section gives a completely different picture. In 
this case, already the curve that applies for pure column buckling (η0=0.0) lies distinctly 
above the EC3 curve for χz,op, and furthermore has a remarkable feature: it stops at certain 
slenderness limλ . This is actually quite easily explained by forming a limit value at infinite 
length of equation (9.84): 

iii.  z zy pl y
op,lim z yy 2L L y ycr,z zy

N i1lim lim
N i→∞ →∞

χ ⋅ λ λ
λ = = χ ⋅λ = ⋅λ ⋅ = =

λ λλ
 (9.85) 

Thereby, the limit value of χy was determined to be the Euler buckling load, which is what 
results from the Ayrton-Perry type formulation for the EC3 column buckling curves at 
infinite length. Thus, the limit slenderness op,limλ  is equal to the ratios of the two radii of 
gyration, respectively of the slenderness zλ  to yλ . In the case of the HEB 240 section, this 
value is equal to 1.694 and thus lies within the shown section of the χ- λ  plane. In the case 
of the IPE 240 section, this value is 3.704 and far beyond what is shown in the plot.  

The GMNIA buckling curve is clearly influenced by the presence of this limit value of 
slenderness, and has a shape that appears to be “drawn away” from the curve for χz,op 
towards the value 2

op,lim1 / ( )λ . 
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iv. The case where only bending moments are present (η0=∞) represents the pure LT-buckling 
case. Since no normal forces are present, the plastic bending strength determines Rb,ip in 
(9.79) and thus there are no differences between opλ  and LTλ . For this case, the “general 
method” would be very conservative for the HEB 240 section if indeed one were to use the 
first recommendation for the determination of χop, which would lead to the use of the very 
low-lying column buckling curve c for this section. As the figure shows, for this case also 
the general-case LT buckling curve lies a bit low. A better curve would of course be found 
by using the formulations developed in chapter 6 of this thesis for the pure LT buckling 
case. 

v. The most remarkable behaviour, however, is shown by the GMNIA curve in terms of χop for 
the HEB 240 section and η0=1.0. This curve comes to lie above the curve for η0=∞ for a 
certain portion of its length, then drops below it. It can be shown to converge towards the 
same point as the curve for η0=0.0, reaching the same limit value of slenderness.  

This behaviour of the GMNIA curve for η0=1.0 for the stocky HEB 240 section matches the 
comments made above, and can be explained accordingly:  

v. The “general method” uses the convention that the reference value of the buckling strength 
be given by the in-plane buckling limit load. This is a departure from most other stability 
rules, which implicitly use a cross-sectional capacity as the reference value for both 
slenderness and buckling reduction factor, and not a quantity related to the load carrying 
capacity of the whole member. 

vi. The buckling behaviour of beam-columns is actually dominated by the first (spatial) 
eigenmode, with only comparatively secondary effects from the in-plane deformations. 

vii. This causes the GMNIA curve -in terms of this definition of slenderness- to have a shape 
similar to the one observed for η0=1.0 whenever the in-plane and out-of-plane modes are not 
too far apart. This is not in itself a problem, since the χop is just a form of representation of 
results. However, very conservative results will be achieved in design for these cases if one 
applies another “full” reduction of the load-carrying capacity by χz,op or χLT,op to the in-plane 
strength in this range.  

These findings are further corroborated by the calculation results illustrated in Fig 9-22. This figure 
shows the same type of GMNIA results plotted as values χop over λ op, but with the difference that 
the results are plotted separately for single members of a certain length (identified by values of λ z) 
and varying factors of η0. This type of representation has the advantage of showing how the 
buckling reduction factor for a certain member is affected by the load case in the “general method” 
type of representation. The lower-right point of the GMNIA curves always represents the “column 
buckling” case, where η0=0.0. The arrows in the figure indicate the direction of increase of η0. The 
other extremity of the single curves is given by the case of η0=∞, where only bending moments are 
present. The following comments can be made about these plots: 
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Fig 9-22 Comparison of GMNIA results (plotted for single sections and progressively increasing 

values of η0) and EC3 proposals for the “general method”; IPE 240 (a) and HEB 240 (b). 

i. This type of representation illustrates fairly well the dependency between the buckling 
reduction factor χop and the load case as given by η0. One fact that is particularly well 
represented by this type of plotting  is that an interpolation between the curves for χz,op and 
χLT,op might not be as straightforward as envisaged by equation (9.81). In this sense, the fact 
that the interpolation was thought to be fairly accurate in the description of the case with 
η0=1.0 for the IPE 240 section in Fig 9-21 must be thought to be rather fortuitous. An 
interpolation of this type would require the GMNIA curves in Fig 9-22 to show a smooth 
transition from the “column curve” χz,op to the “beam curve” χLT,op. This is clearly not 
generally the case for the two studied sections. Particularly at lower lengths of the members, 
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the GMNIA values of χop “jump” quite unpredictably with changing η0 in the chosen type of 
representation. It is important to recall here that this is not due to a numerical problem in the 
GMNIA calculations, which indeed give smooth transitions of the actual load carrying 
capacity with changing values of η0. The shown shape of the curves is entirely due to the 
form of representation itself.  

ii. The fact that none of the results fall below the lower of the two EC3 curves, which in these 
cases was always the “column curve” χz,op, is certainly a welcome observation, particularly 
if the lowest χop-curve is used for design. However, the conservatism that this method 
entails can be very large; compare e.g. the results for zλ =1.0 and upper-intermediate values 
of η0 with the χz,op curve for the HEB 240 section. Differences of this magnitude are 
generally not considered to be adequate.  

To conclude this section, it can be stated that the “general method”, albeit being fairly simple in its 
application and inviting for designers due to its putatively unlimited scope of application, seems to 
require a thorough and comprehensive reconsideration from the point of view of its accuracy and 
theoretical background in order to meet the standards set by the other buckling design rules present 
in the Eurocode. 

Only the simplest imaginable cases were considered in this section, yet some major inconsistencies 
were discovered. Further discrepancies were also noticed by the mentioned other authors who have 
studied the accuracy of this method. The fact that the method implicitly considers imperfections at 
their maximum extent to be present in both directions of a beam-column, and more importantly that 
it over-estimates the impact of this double-curvature in many practical cases, is certainly one point 
of inconsistency with other rules.  

From a theoretical point of view, the method provides little insight in the mechanisms that actually 
dominate a spatial failure mode: an in-plane failure mode is first declared as the upper limit value of 
a spatial buckling phenomenon that has its bifurcation load far before this in-plane mode can be 
activated, and a rather arbitrary choice of buckling curve is then used to reduce this in-plane 
strength to estimate the spatial, out-of-plane strength. For practical purposes, this might be accurate 
enough in those particular cases where specific design rules are presently missing, e.g. for tapered 
beams, castellated or cellular beams, and similar cases that are not explicitly covered by the current 
Eurocode design rules but may be considered to behave at least qualitatively similarly to standard 
cases. However, it does not appear to be a generally appropriate procedure for as wide a spectrum 
of application as stated in the code, which would include all types of sections and whole spatial 
frame structures. In this sense, attributing a “general validity” to the “general method” would seem 
to be a rather far-fetched conclusion.   
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9.7. Conclusions 
This chapter gave an overview of the issues involved with the development of design rules for 
(class 1 & 2) beam-columns. Thereby, a new proposal for the design of such members against in-
plane buckling was made that is fully compatible with the increasingly popular trend in the 
scientific community of using “generalized” slenderness definitions for “overall” load cases for the 
design of structures.  

It is believed that the proposed formulation is the first such expression for steel members that 
integrates a consistent mechanical derivation and all relevant mechanical effects in an “overall” (in-
plane) buckling reduction factor. The proposal makes once again use of the Ayrton-Perry format, 
making the expression fully compatible with the other Eurocode member design rules. The plastic 
cross-sectional capacity of the members is fully taken into account in the formulation, having the 
welcome side effect that the check of the critical cross-section is “automatically” included in the 
stability design check, which is something that is not the case in the current rules.  

As a further result of this derivation and of the pertinent numerical study, it could also be illustrated 
how the given design formulae for in-plane buckling under N+M in Eurocode 3 - EN 1993-1-1 cope 
with this more complex buckling behaviour. In this context, both design formulations of Annex A 
and B of the Eurocode were shown to appropriately cover the main effects with good accuracy as 
far as practical applications are concerned. 

In order to further emphasize the significance of an adequate derivation of buckling design rules 
that takes into account the idiosyncrasies of the studied instability case, a brief discussion was given 
in the final section of the chapter of the strengths and weaknesses of the so-called “general method” 
for the design of steel members and structures against spatial instability. This method is essentially 
based on an inventive way of expressing the buckling design condition. Besides pointing out some 
general inconsistencies, the need was stressed for a consistent and accurate formulation of the 
buckling reduction factor for this method in order to meet the standards of accuracy and mechanical 
soundness inherent to other Eurocode design rules. It is believed that the methodology employed in 
this chapter for the development of a formulation for the in-plane case could serve as a blueprint for 
any such effort of formulating buckling reduction factors for more complex cases.  
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10  
Summary and Conclusions 

10.1. Summary 
This thesis is concerned with the improvement of the consistency, in terms of safety level and 
mechanical soundness, of buckling design rules for steel members. It discusses a number of 
different topics, with the aim of increasing the understanding of the studied engineering problems 
and of providing designers with simpler, safer and better understandable formulae for certain, very 
common design tasks. More specifically, the following summary can be given of the topics treated 
in this thesis, listed in the order of appearance in the main body of the text: 

I. In the 1st, introductory chapter, the identified inconsistencies and problems in current 
buckling design rules are presented in a general form. The scope and limitations of the 
studied cases are stated, and the thesis’ organization in parts is introduced and explained. 

II. In chapter 2, comprehensive background information is given regarding the source, the 
derivation, the mechanical soundness and the strengths and weaknesses of the most common 
buckling design formulae found in international design codes and the technical literature. 
Many of these design formulae have been codified and used –in one or the other form- for 
several decades by structural engineers in different countries. Nevertheless, or perhaps 
precisely because of their long-established use, the mechanical background of some of them 
is not always readily available. The comparison of the different backgrounds given in this 
chapter is therefore intended to shed some light on the often controversial matter of what 
type of design formulation is most appropriately used as a format for buckling checks. Two 
very different types of formulation could be identified: 
1) Formulations that are based on pure curve-fitting of an essentially arbitrary 

mathematical expression (polynomials, exponential functions, etc.) to previously 
established numerical and/or experimental data points. 

2) Formulations based on a more-or-less mechanically sound, rational formulation. 

The most important formulation of the second type is the one that is most present in the 
Eurocode, i.e. the so-called Ayton-Perry formula, which in its simplest manifestation takes 
on the following form: 
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22

1
χ =

Φ + Φ − λ
 (10.1) 

with ( )21 1
2

Φ = ⋅ + η+ λ  (10.2) 

and  η being the so-called “generalized imperfection coefficient”. 

III. In chapter 3, the used methodology is explained. In this thesis, state-of-the-art numerical, 
analytical and probabilistic methods have been used and combined. While the employed 
numerical modelling techniques, as well as the fundamental equations used as starting point 
for the single derivations of new design formulae, can be considered to be part of the 
accepted standard methodology in buckling analysis and design, the probabilistic concepts 
involving Monte Carlo simulations and random number generation are perhaps more rarely 
used in these contexts and are described accordingly. 

IV. In chapter 4, the main inconsistencies in current buckling design rules for steel members 
subjected to simple load cases (columns or beams) are listed, and common strategies for the 
overcoming of these inconsistencies are introduced. Specifically, the following points were 
seen as the source of inaccuracies and as worth of a reassessment: 
- The classification of cross-sections with respect to their geometrical parameter h/b are 

noticed not to be consistent for the single, basic buckling design rules. Different 
classification criteria exist for the flexural (column) and the lateral-torsional (beam) 
buckling case. This is an indicator for the lack of descriptiveness of at least one of these 
rules, which was also confirmed by numerical calculations in the specific chapters  
5 to 7.  

- The underlying equivalent geometric imperfections for the single basic member buckling 
checks are shown to not only be very different for each case in absolute terms, but also 
to have a completely different length-dependency. While for the column buckling case 
the underlying, equivalent geometric imperfection is essentially linearly dependent on 
the member’s length, a highly non-linear relationship was found to apply for the design 
rules for lateral-torsional and torsional buckling according to  
the Eurocode. 

- The reliability level of the single basic buckling design rules, expressed in terms of 
required partial safety factor γM

*, is shown to be non-constant throughout slenderness 
ranges. 

The chapter proceeds with a discussion –in general terms- of how these inconsistencies can 
be removed. Particularly the non-constant reliability level for different ranges of slenderness 
is addressed in chapter 4 itself, where two different statistical methods based on First Order 
Reliability Methods (FORM) are proposed and discussed. If based on a representative range 
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of statistical input data for the most dominant structural parameters governing the studied 
buckling case, these methods can be used to obtain true “constant reliability curves”. 

V. The first part of chapter 5 discusses the background of the European column buckling 
curves developed by ECCS (1978) and currently found in the Eurocode. Thereby, particular 
emphasis is put on the experimental program underpinning these curves, which also includes 
an early application of Monte Carlo simulations in the study of buckling phenomena, as well 
as on the numerical studies and their underlying assumptions that led to the final shape of 
the ECCS curves. These numerical buckling curves were obtained on the basis of “model 
columns”, i.e. members with fixed (non-random) imperfection amplitudes and geometrical 
input data, whereby the assumptions regarding the imperfections were calibrated to match 
the experimental data points obtained from large-scale tests.  
For the purposes of this thesis, it was important to clarify that these numerical curves based 
on “model columns”, and hence the assumptions for the “model column” calculations, are 
essentially the main theoretical foundation of the current safety and reliability level of the 
European design rules for columns. In this sense, it was also important to place the 
background of the calibration (performed by Maquoi and Rondal, 1978), of an Ayrton-Perry 
formula to these numerical curves in the correct conceptual context. Due to the very 
comprehensive background given in the case of the development of the column buckling 
curves now found in the Eurocode, this buckling case and its derivation were regarded as the 
“benchmark” case for member stability cases in the context of this thesis. 
The chapter then proceeds with the treatment of a current problem in the application of these 
long-established column buckling curves: the changes in the specification of permissible 
out-of-straightness of compression members brought about by the introduction of a new, 
Europe-wide standard for the fabrication and erection of structural steelwork, EN 1090-
2:2008. Monte Carlo simulations are used to evaluate a series of plausible scenarios, which 
could develop as a consequence of the introduction of the new standard, in order to answer 
the question of the impact of “relaxed” curvature tolerances on the safety of commonly used 
buckling checks. Thereby, such a probabilistic approach is shown to be the only consistent 
approach to quantify the impact of such a change in production habits in a meaningful way. 
Finally, the FORM methods described in chapter four to obtain “constant reliability curves” 
are applied to the column buckling curve, illustrating the possibility of moving away from 
“semi-deterministic” buckling design rules based on “model columns” on to truly 
probabilistic curves in the future, provided that agreement is found with respect to the 
scatter-band of basic input variables to be used in such calculations.  

VI. In chapter 6, a new design formulation for lateral-torsional buckling of beams is 
systematically developed, calibrated and statistically justified. Thereby, a new Ayrton-Perry 
type formulation is obtained that is based on a specific second-order derivation for the case 
at hand. The significance of accurately -and mechanically sensibly- formulating the 
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expression for the generalized imperfection coefficient η, and of calibrating this expression 
to match a comprehensive series of numerical GMNIA buckling curves is highlighted. By 
doing so, a formulation is finally obtained that very accurately describes the course of 
numerical buckling curves, which themselves were calculated using the same (“model 
beam”) assumptions for imperfections and geometry as for the benchmark column buckling 
case. This assures that a comparable level of inherent safety is present in the proposed 
formulation as in the column buckling case. This is further emphasized by specific 
assessments of the reliability level through probabilistic means at the end of the chapter. By 
resulting in a separate buckling curve for each single studied cross-section, the formulation 
specifically takes the torsional characteristics of each cross-section into account in a very 
precise way. Thereby, the categorization with respect to cross-sectional geometries no 
longer needs an arbitrarily set limit at h/b=2.0, but categorizes the cross-sections in 
accordance with the underlying imperfection assumptions made during the development of 
the curves, which is consistent with the situation found for column buckling. This highlights 
the mechanical soundness of the newly proposed formulae. 

VII. The case of laterally supported columns with I- & H-shaped cross-sections failing in 
torsional and torsional-flexural buckling is treated in chapter 7 both numerically and 
analytically. After a comprehensive numerical study and description of the peculiarities and 
the practical significance of this buckling phenomenon, and of the high conservatism of 
current code provisions dealing with this buckling case, the chapter proceeds with the 
development of a new, Ayrton-Perry type formulation for torsional and torsional-flexural 
buckling. Thereby, analogous steps are followed as in chapter 6 for the LT buckling case. In 
this way, a formulation could again be found that very well describes the shape of numerical 
buckling curves obtained from calculations with the “model column” assumptions, and that 
is thereby consistent both in the type of formulation and in descriptive accuracy with the 
benchmark column buckling case. 

VIII. In order to better illustrate the high degree of consistency between the different basic 
member buckling cases obtained by the newly proposed formulations for lateral-torsional 
and torsional-flexural buckling, these proposals were combined with the long-established 
column buckling case in a common design formula and table, contained in chapter 8 of the 
thesis. The common Ayrton-Perry type formulation is thereby convenient for a generalized 
formulation of the buckling reduction factors. The peculiarities of the single buckling cases 
are then easily implemented through separate coefficients, tabulated in the mentioned design 
table. 

IX. Some important aspects of the derivation of design rules for beam-columns, i.e. members 
subjected to the combined action of axial and transversal loads, are treated in chapter 9. 
Thereby, the two main concepts currently implemented in design codes for the design of 
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such elements are first discussed: the interaction concept and the “generalized slenderness” 
concept. As far as the consistency of the design rules is concerned, it is noted that the 
“generalized slenderness” concept, particularly in its manifestation as the so-called “general 
method” in Eurocode 3- clause 6.3.4, is formally more consistent with the other buckling 
design rules in the code, because it makes use of the same concept of applying a buckling 
reduction factor to an ultimate strength criteria that is not affected by the studied stability 
phenomenon. However, it is shown in this chapter that the interaction concept as it is 
included in the Eurocode – clause 6.3.3 is mechanically much more coherent and consistent 
with the mechanical soundness and safety of the benchmark column buckling case. 
Recognizing these two different levels of consistency, a new proposal is made in chapter 9 
for a formulation (again resulting in an Ayrton-Perry formula) for beam-column design that 
is both formally and mechanically consistent with the basic benchmark cases. This is done 
for the in-plane beam-column buckling case. Through a very accurate, yet simple 
linearization of the plastic, cross-sectional N+M interaction relationship for a variety of 
practical cross-sections, the “exact” cross-section capacity of specific sections was placed at 
the centre of the new proposal, thereby consistently integrating cross-sectional and buckling 
check in one design task. The more complex effects of the buckling phenomenon as 
observed in numerical GMNIA calculations, e.g. the detrimental effects of flange yielding 
on the obtainable buckling loads at high slenderness, or the effects of residual stresses, are 
taken into account through simple, yet efficient coefficients. A comparative study of 
calculated buckling strengths with GMNIA calculations using the “model column” 
assumptions, as well as with the mechanically sound interaction formulae of Eurocode 3, 
confirm the consistency of the proposed formulation in terms of safety and accuracy. 

10.2. Original Contributions  
The original contributions to engineering knowledge made in this thesis include the points listed in 
the following: 

- The development of new, far more accurate formulations to describe the buckling strength 
of beams and columns for lateral-torsional and torsional-flexural buckling. They are 
obtained by deriving specific second-order, first-yield (“Ayrton-Perry”) failure expressions 
and systematically calibrating the imperfection amplitudes to the numerical curves. By 
doing so, full methodological consistency with the long-established flexural column 
buckling case is obtained (Chapters 6 & 7). 

- Using these new expressions, a consistent classification of structural sections with regard to 
their buckling behaviour was obtained. Contrary to what is currently the case, assumptions 
made in the development of numerical buckling curves (regarding geometry, strength and 
imperfections) are thus fully reflected in the classification for all studied basic buckling 
cases (Chapter 8). 
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- The known inconsistencies in terms of reliability level of current member buckling rules are 
shown to be mechanically/statistically explicable. Methods suitable for the removal of these 
inconsistencies are presented and applied. These include Monte Carlo random number 
generation methods and “First Order Reliability Methods” (FORM) combined with non-
linear, GMNIA Finite Element calculations (Chapters 4, 5, 6). 

- Again using Monte Carlo and FORM methods, a way of answering questions regarding the 
impact of changes to production tolerances or habits of curvature-control is presented. 
Specifically, the possible impact of modifications of straightness tolerances for compression 
members is quantified (Chapter 5). 

- An expansion of the column buckling design formula to the in-plane beam-column case 
with combined axial and bending loading is developed and calibrated to obtain very high 
accuracy when compared to numerical results. Thereby, a linearization of the cross-sectional 
N-M interaction curve is shown to be essential. The new formulation is conceptually 
integrated in the two existing design concepts for beam-columns (Chapter 9). Full formal 
and mechanical consistence is thereby obtained with the benchmark column buckling case. 

Contributions to the consolidation of existing engineering knowledge include: 

i. A comprehensive discussion of the origins, underlying assumptions, strengths and 
limitations of the most common buckling design formulae (Chapter 2). 

ii. The description of the applicability of numerical, analytical and statistical tools for the 
development of buckling rules (Chapter 3). 

iii. An outline of the development of the ECCS European Column Buckling Curves  
(Chapter 5). 

iv. A discussion of the viability of the application of the “general method” as the standard 
design tool for out-of-plane stability checks of beam-columns (Chapter 9). 

10.3. Conclusions 
In addition to the more specific implications of the numerical parametric studies and of the new 
design proposals presented in this thesis, which are discussed in detail in the pertinent chapters, the 
findings of this work allow one to draw the following general conclusions: 

I. The different rules and formulae currently used by designers to determine the structural 
safety of steel members against the various modes of global instability do not have a 
consistent level of mechanical justification and were not developed following a unified 
procedure. While the design rules for the “benchmark” flexural column buckling case are 
based on a large and concerted experimental and numerical research effort and statistical 
evaluation, and are expressed in terms of a simple but mechanically coherent second-order 
(Ayrton-Perry) formula, the rules for other global member buckling rules are often based on 
mechanically not fully coherent adaptations of the buckling curves for the benchmark case. 
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This applies to the current EC3- EN 1993-1-1 rules for lateral-torsional buckling of beams 
(clause 6.3.2) and for torsional-flexural buckling of (laterally restrained) columns (clause 
6.3.1.4), as well as for the so-called “general method” for the design of beam-columns 
(clause 6.3.4). In contrast to this, rules that are based on a firm mechanical background, such 
as the formulae for beam-columns according to clause 6.3.3 of the Eurocode, are not 
presented in a mathematical format that is consistent with other buckling rules, since they 
use an additive “interaction concept” formula instead of a single buckling reduction factor. 

II. A number of recent studies (e.g. Müller, 2003; Naumes et al., 2009) have already noticed the 
above-mentioned difficulties and inconsistencies and have tried to overcome them, thereby 
focusing primarily on aspects of consistency of formulaic representation and of reliability. 
Through the evaluation of existing physical test results, the safety and reliability level of 
some current or proposed design rules could thereby be shown to be acceptable and similar 
for different studied cases and, in this sense, “consistent” for the evaluated scope of test 
data. Accordingly, there is an increasing tendency of primarily using statistical tools as 
provided by the Eurocode (2002) - EN 1990 to determine the acceptability of a certain 
design rule. By adopting such a procedure, the assessment of the accuracy of the design 
formulation is often lost (or rather “blurred”) into the statistics. Although this is not 
necessarily very important to safety (as long as the safety level is “proven” by the statistical 
evaluation), the tendency of drawing broad conclusions from statistical evaluations alone, 
including for fields of application not covered by the considered tests, is nevertheless rather 
problematic. An example for this is the application of the “general method” for the design of 
beam-columns: as was shown in section 9.6, the mechanical background of this method is –
at the current stage- not clear, and results can significantly diverge from numerical 
calculations that are commonly used to verify buckling rules. It is therefore concluded that a 
methodology for the development of buckling rules that omits (numerical) accuracy studies 
is not conclusive and should not be regarded as a general foundation for buckling design. 

III. This thesis set out to overcome the inconsistencies mentioned above for some of the most 
relevant member buckling cases, thereby using a methodology that very closely follows the 
steps taken during the development of the “benchmark” rules for member buckling design, 
i.e. the (flexural) column buckling rules. Thereby, both aspects of safety and of accuracy 
could be covered systematically. Expressed in a more generalized form, the used procedure 
is schematically represented in Fig 10-1, and the conclusions to be drawn from this 
procedure are discussed in the following. 

i. The methodology used in this thesis for the development of new design rules for lateral-
torsional, torsional-flexural and in-plane beam-column buckling achieved full consistency 
with the benchmark case of column buckling in terms of formal presentation of the 
design equation, mechanical accuracy and reliability level. It did so by focusing on 
accuracy and safety simultaneously.  
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Fig 10-1 Schematical representation of the proposed methodology 
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ii. The accuracy of a proposed formulation is assured first of all through the development of 
specific formulations of a buckling failure condition that are based on second-order 
internal forces and on elastic (or linearized plastic) cross-sectional interaction conditions. 
This results in equations for the buckling reduction factor that take on the form of the 
classical Ayrton-Perry formula, with mechanically coherent modifications to account for 
the specific effects of the studied buckling case.  
Specifically, the modifications must not only include case-specific stiffness terms that 
stem from the second-order derivation itself, but must also account for effects that are 
otherwise omitted in such a simple design equation. The latter stem from the complex 
behaviour shown by the inelastic buckling of steel members with geometric and structural 
imperfections. In the basic cases of flexural, lateral-torsional and torsional-flexural 
buckling, these effects can conveniently be included in the definition of the “generalized 
imperfection” η. This is what was done by Maquoi & Rondal (1978) for the benchmark 
case of flexural column buckling, and was successfully expanded in this thesis for lateral-
torsional and torsional-flexural buckling. For the more complex, combined load-cases 
found in beam-columns, additional effects must specifically be taken into account. In 
particular, these refer to the transition from the fully plastic cross-sectional N+M 
interaction valid at low slenderness to a purely elastic, “first-yield” buckling condition 
valid for very slender elements. Considerations of this type were made in chapter 9 for 
the in-plane beam-column buckling phenomenon and also resulted in very high accuracy. 
Of course, a measure of comparison is needed in order to determine the accuracy of a 
formulation. In this sense, the state of the art currently consists of regarding a formulation 
as accurate when it manages to describe the studied buckling strength as shown in 
realistic GMNIA calculations for a wide range of parameter variations. These 
calculations must thereby make use of modelling techniques that are widely accepted as 
realistic reflections of the actual behaviour, and/or are validated by comparison with 
specific test results whenever possible and necessary. As far as the input parameters of 
these calculations are concerned, the commonly accepted methodology is to determine 
the behaviour of so-called “model members”, i.e. members with deterministic, fixed input 
parameters representing rather safe-sided, lower strength fractiles. The benchmark for 
this type of calculations is represented by the assumptions made by Beer & Schulz (1970) 
in the large parametric study that directly led to the ECCS column buckling curves. These 
assumptions lead over to considerations of safety, as they were explicitly linked to the 
target reliability level for member buckling checks. 

iii. The safety or reliability of a buckling design rule is usually determined on the basis of 
methods contained in the Eurocode – EN 1990. These are essentially First Order 
Reliability Methods (FORM) that allow one to determine the required value of the partial 
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safety factors γM to be used in combination with a certain design rule in a semi-
probabilistic design philosophy.  
In the past, the test data used as basis for a reliability assessment were usually provided 
by large-scale physical (“real”) tests. Nowadays, simulated tests obtained from GMNIA 
calculations with random input variables (“Monte Carlo method”) are increasingly being 
used instead. Thereby, the evaluation of a data set obtained by “numerical tests” can be 
thought to be fully representative of the real scatter of tests, provided that the real scatter 
bands of the single input parameters, as well as the way these parameters correlate, are 
known. Very valuable studies of these scatter bands and correlations have been published 
in the literature (Alpsten, 1972; ECCS, 1978; Melcher, 2004). In an application that made 
use of the data given in these publications, Monte Carlo simulations could be carried out 
in this thesis that allowed for a quantification of the reliability impact of the changes of 
geometric tolerances for compression members currently being brought about by the 
introduction of the new fabrication standard for constructional steelwork EN 1090-2. 
Deterministic methods alone would not be able to produce results of this type.  
It is believed that a coordinated, international effort (by steel producers) in order to obtain 
a fully comprehensive and reliable data pool on the variability of properties of structural 
steel members would be very valuable to the steel construction industry. This would 
ensure that safety assessments based on Monte Carlo simulations or other reliability 
methods are routinely accepted by members of the research, design and building authority 
communities. 
In this context, the possibility was also addressed in this thesis to move away from “semi-
deterministic” buckling rules calibrated onto “model member” GMNIA calculations, and 
to directly base the calibration of buckling rules on “constant reliability curves”. As was 
shown in chapters 4 and 5 of this thesis, such curves can be obtained from a combination 
of numerical GMNIA calculations and probabilistic FORM methods. They once again 
require information regarding the scatter band and correlation of the properties of steel 
members. The computation effort needed to obtain buckling curves of this type is larger 
than the one needed for “model member” curves, but can still be contained within a 
reasonable time-frame.  

iv. The last step consists of assessing the final acceptability of a certain buckling design rule. 
According to the philosophy pursued in this thesis, the acceptance should depend on the 
combination of mechanical coherence, accuracy, safety and practicality. In this sense, it 
is believed that the way in which specific member buckling cases were treated in this 
thesis can serve as guidance and starting point for future developments. 
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A  
NOTATION  

It was attempted to describe all used variables in the text at their first appearance. The following 
pages therefore only list the most important symbols used in this thesis. Specific sub-indices are not 
always included, but are explained in the text and can be easily inferred. 

General acronyms 

CHS Circular hollow section 

FByy Flexural buckling about the y-axis 

FBzz Flexural buckling about the z-axis 

LPF Load Proportionality Factor 

LTB Lateral-torsional buckling  

QHS Quadratic hollow section 

RHS Rectangular hollow section 

TB/TFB Torsional and Torsional-flexural buckling 

Methods of analysis 

GMNIA  Geometrically, materially nonlinear analysis with imperfections 

LBA Linear Buckling Analysis 

MNA  Materially nonlinear analysis 

Geometrical parameters 

b Section width 

D External diameter of circular hollow sections 

h  Section depth 

L  Length 

r  Fillet radius for H-shaped sections 
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t  Thickness 

tact, Aact... Actual values of e.g. a thickness or area, as measured. 

tf  Flange thickness 

tnom, Anom... Nominal values of e.g. a thickness or area. 

tw  Web thickness 

Deformations and imperfections 

u, u  Displacement in longitudinal x-axis direction and its maximum amplitude 

v, v   Displacement in (lateral) y-axis direction and its maximum amplitude 

w, w   Displacement in (in-plane) z-axis direction and its maximum amplitude 

θ, θ   Rotation about the longitudinal axis and its maximum amplitude 

0e , 0e  Values of the initial geometric imperfection and its maximum amplitude 

v 0  Amplitude of a trasnversal initial geometric imperfection 

w 0  Amplitude of an in-plane initial geometric imperfection 

θ 0 Amplitude of a rotational initial geometric imperfection 

Section properties 

IT  Torsional constant 

Iy  Moment of inertia, related to strong axis bending 

Iz  Moment of inertia, related to weak axis bending 

Iω Warping constant 

Wj, Wj,el  Elastic section modulus, related to the axis “j” (j=y or z) 

Wpl, Wj,pl  Plastic section modulus, related to the axis “j” (j=y or z) 

Material parameters 

ν  Poisson’s ratio 

E  Young’s modulus of elasticity 

fu  Ultimate tensile strength, mean 

fy  Yield strength 

G  Shear modulus 

εy  Strain at yielding 

ε  Strain 
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Forces, resistances and load amplification factors 

m, mII Normalized bending moment acc. to first or second order theory, equal to M/Mpl 

MEd  Design value of the acting bending moment 

Mel  Elastic cross-section resistance for pure bending moment 

Mpl  Plastic cross-section resistance for pure bending moment 

MT  Torsional moment 

My  Bending moment about the strong axis (y) 

Mz  Bending moment about the weak axis (z) 

Mω  Warping moment 

N  Axial Force 

n Normalized axial force, equal to N/Npl 

Nb Axial force at the ultimate limit state (buckling resistance) 

Ncr Axial force at the first bifurcation, “Euler load” 

NEd  Design value of the acting axial force 

Npl Plastic cross-section resistance for pure axial force 

NR see Nb 

Nult,k see Npl 

Rb Buckling resistance in terms of maximum load amplification factor 

Rcr Load amplification factor at (first) bifurcation 

Rpl Plastic resistance in terms of load amplification factor 

Rult see Rpl 

Statistical parameters 

γM
*   Partial safety factor related to nominal values 

γM1  Partial safety factor for member resistance (buckling strength) 

b  Least squares estimator 

cdf Cumulative distribution function 

pdf Probability density function 

rd  Design resistance 

re,i  Resistance values (from tests) 
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rt,i  Theoretical values of the resistance (from a model function) 

Vδ  Coefficient of variations of the error terms 

Vr  Total coefficient of variations of the model 

Vrt  Coefficient of variations of the model function 

Slenderness 

λ geometric slenderness, equal to L/i 

λ1 “normalization slenderness”, equal to yE / fπ⋅  

λ  Normalized slenderness 

0, LT,0 Plateau value of the buckling curve, e.g. for LT buckling  

act Normalized slenderness calculated with actual (measured) values of geometry and fy 

GS “Generalized slenderness”, equal to pl crR / R  

nom Normalized slenderness calculated with nominal values of geometry and fy 

λ ip Normalized “overall” slenderness for in-plane buckling 

λ LT Normalized slenderness for lateral-torsional buckling 

λ op Normalized “overall” slenderness for out-of-plane buckling  

λ T Normalized slenderness for torsional buckling 

λ TF Normalized slenderness for torsional-flexural buckling 

λ y Normalized slenderness for in-plane flexural column buckling 

λ z Normalized slenderness for out-of-plane flexural column buckling 

Coefficients used in buckling check 

χ buckling reduction factor 

χj ... for flexural buckling about the axis “j” (j=y or z) 

χS ... for the specific, studied buckling case 

χLT ... for lateral-torsional buckling 

χT , χTF ... for torsional or torsional-flexural buckling 

χip ... for in-plane flexural buckling under N+M 

χy,η0 ... for in-plane flexural buckling under N+M, referred to the axial force alone. 

χop ... for out-of-plane buckling under N+M 

k, kj interaction factor, related to buckling about the axis “j” (j=y or z) 

λ λ

λ

λ

λ
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