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Abstract

In the present thesis we consider discrete minimal surfaces as a subject of dis-
crete differental geometry. The main interest in discrete differential geometry
is not just sampling objects like curves and surfaces of smooth differential
geometry and studying them with numerical methods, but discretizing the
whole theory. The aim is to retrieve as many properties from the smooth
setting as possible.

We consider two of the many different characterizations of minimal sur-
faces and study them in the discrete setting. First there is a discrete curva-
ture theory for polyhedral surfaces due to A.I. Bobenko, H. Pottmann and
J. Wallner. Minimal surfaces are defined as meshes, where the discrete mean
curvature vanishes throughout the mesh. This condition immediately yields
the notion of oriented mixed area of a pair of parallel polygons. We develop
a recursion formula for the mixed area and interpret it in terms of incidence
geometry. Our main interest is hexagonal meshes as discrete minimal sur-
faces.

In the second part of the thesis we develop a discrete version of the
smooth Christoffel dual construction which applies to hexagonal meshes. A
limit consideration motivates the definition of conformal hexagons for which
we discuss a discrete dual construction. We show that this construction is a
sensible discrete analogue of smooth Christoffel duality. From an isothermic
parametrization of the sphere, which in our case is a hexagonal mesh where
each face is a conformal hexagon, we obtain a minimal surface by applying
this dual construction.
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Kurzfassung

Die vorliegende Arbeit befasst sich mit diskreten Minimalflächen und ist da-
her im Gebiet der diskreten Differentialgeometrie angesiedelt. Diese studiert
nicht, wie man auf den ersten Blick vermuten würde, diskret abgetastete
Objekte der

”
üblichen“, also kontinuierlichen Differentialgeometrie, sondern

diskrete Analoga der Theorie, die möglichst viele Eigenschaften der ursprüng-
lichen Theorie behält.

Zwei der zahlreichen Charakterisierungen der glatten Minimalflächen wer-
den in dieser Arbeit im diskreten Kontext untersucht. Zum einen gibt es
eine von A.I. Bobenko, H. Pottmann and J. Wallner entwickelte diskrete
Krümmungstheorie für polyedrische Flächen. Eine solche Fläche ist dann ei-
ne Minimalfäche, wenn die diskrete mittlere Krümmung überall gleich Null
ist. Das führt zur Fragestellung, der elementargeometrischen Kennzeichnung
der Situation zweier paralleler Polygone mit verschwindendem gemischten
Flächeninhalt. Dieses Problem wird im ersten Teil dieser Arbeit gelöst, in-
dem eine Rekursionsformel hergeleitet und geometrisch interpretiert wird.
Dabei wird Sechsecksnetzen erhöhte Aufmerksamkeit geschenkt.

Der zweite Teil der Arbeit diskretisiert die Konstruktion von dualen
Flächen nach Christoffel. Dabei werden wieder Sechsecksnetze verwendet. Li-
mesbetrachtungen motivieren die Definition von konformen Sechsecken, die
einer diskreten Variante der Christoffel-Dualität unterworfen werden können.
Mit Hilfe dieser Überlegungen werden diskrete Minimalflächen aus Sechsecks-
netzen gewonnen, die einer Kugel einbeschrieben sind und deren Facetten
konforme Sechsecke sind.
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fasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die
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Introduction

The present thesis considers hexagonal meshes from the viewpoint of discrete
differential geometry. Discrete differential geometry is a wide field which con-
siders objects like polygons, meshes, and polytopes with the aim of finding
discrete analogues of classical (i.e., smooth) differential geometry. In this
sense not only objects but also properties and notions of the smooth set-
ting are carried over to the discrete theory. Also the other way round is of
great interest, which means that one explores attributes assigned to discrete
objects which survive a refinement process to a continuous limit. A first
treatise of discrete differential geometry can be found in the monograph Dif-
ferenzengeometrie by R. Sauer [23] whereas a modern approach is contained
in Discrete Differential Geometry: Integrable Structure by A.I. Bobenko and
Yu.B. Suris [6]. Discrete differential geometry is not only interesting within
pure mathematics (see e.g. [2, 3, 4, 5, 6]) but also in Computer Graphics and
geometry processing (see e.g. [26]) and architectural design (see e.g. [20]).
The general idea here is to get notions like curvature, offset surface, and
conformal equivalence for discrete objects which are of great importance in
applications.

Minimal surfaces represent a prominent topic which has attracted great
interest for a long time and which several times has been the object of sig-
nificant new developments. They combine differential geometry with other
fields, notably complex analysis. Also the recent field of discrete differential
geometry has not neglected them. Before entering into details we want to
say a few general words on the analogies and differences between the smooth
and discrete categories.

The appeal of smooth minimal surface theory is to a large extent due to
the fact that the same class of surfaces is characterized by different prop-
erties which are unrelated a priori, such as vanishing mean curvature, local
surface minimization, or analyticity of conformal parametrizations. Accord-
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ingly there is a variety of constructions of minimal surfaces: as solutions of
Plateau’s problem, as real part of Lie’s sum of curves surfaces, or by Christof-
fel duality.

Transferring all these properties to the discrete category at the same time
is not easy. Obviously we can pick a class of discrete surfaces (for instance,
triangle meshes) and consider those discrete surfaces which enjoy a certain
property analogous to one of the known properties of smooth minimal sur-
faces. However it is not guaranteed that these discrete minimal surfaces have
any of the other properties which make their smooth counterparts such an in-
teresting object of study. Nevertheless, for some appropriate discretizations
this is exactly what happens, and it is a major aim in discrete differential
geometry to find them.

The following constructions stand out: U. Pinkall and K. Polthier [19]
considered the class of triangle meshes and defined minimality by surface
minimization. The resulting discrete minimal surfaces are, among others,
minimizers of Dirichlet energy, capable of discrete conjugate surfaces, and
allow for the solution of a discrete Plateau’s problem. A.I. Bobenko and U.
Pinkall [4] studied discrete isothermic surface parametrizations (this means
quadrilateral meshes with planar faces and a cross ratio condition for the
vertices). This approach led to a discrete Christoffel duality for isothermic
parametrizations, where minimal surfaces and spheres correspond to each
other, just as in the smooth case. This viewpoint is assumed by several pa-
pers based on [4], e.g. [27]. A.I. Bobenko, T. Hoffmann, and B. Springborn
[2] took the idea of Christoffel duality further and applied it to Koebe polyhe-
dra. They constructed a circle-based class of discrete minimal surfaces which
exhibits convergence to the smooth case and makes it possible to find min-
imal surfaces from the combinatorics of the network of principal curvature
lines.

It turned out that the discrete curvature theory for polyhedral surfaces
introduced by H. Pottmann et al. [5, 20], which is based on the variation
of surface area in offset surfaces, contains both [4] and [2] as special cases.
Minimality of a polyhedral surface with respect to an edgewise parallel Gauss
image is in that context defined by vanishing mixed area of corresponding
faces.

This brings us to the first topic of the present thesis, which systematically
studies the vanishing mixed area property for polygons, having in mind as
a main application the discrete minimal surfaces in the class of hexagonal
meshes (see [17]). After setting up the necessary definitions, we continue with
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a geometric recursion for the computation of oriented mixed areas in Section
2.2. In Section 2.3 this leads to ways of characterizing pairs of parallel poly-
gons whose mixed area is zero. Section 2.4 considers hexagonal meshes which
are minimal and uses the incidence-geometric characterizations of vanishing
mixed area which were obtained earlier for the construction of equilibrium
forces in the edges of a minimal mesh. Finally we discuss an incidence geo-
metric property for the faces of a constant mean curvature surface.

The second topic of the present thesis establishes a discrete Christoffel
dual construction for special hexagonal meshes, namely conformal ones (see
[16]). We start with equivalent characterizations of vertex offset meshes in
Section 3.1. In Section 3.2, we give a definition and a motivation for the
notion of a conformal hexagon. Properties of this type of hexagons as well
as a dual construction are discussed in Section 3.3. The smooth and discrete
Christoffel dual constructions and some of their properties are discussed in
Sections 3.4 and 3.5. An elementary geometry construction of planar confor-
mal hexagons which turn out to be discrete holomorphic is shown in Section
3.6. In the final Section 3.8 we discuss the connection between the Weier-
strass representation and the Christoffel duality and use this to classify some
examples of discrete minimal surfaces.
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Chapter 1

Preliminaries

1.1 Notions of classical differential geometry

1.1.1 Parametrization

In this section we collect some notions of classical differential geometry which
means the study of smooth curves and surfaces. We are mainly interested in
the three-dimensional space R3.

A differentiable map f : U → R3, where U is an open subset of R2,
is regular in U if the two partial derivatives fx(a) and fy(a) are linearely
independent for all a ∈ U . Such a map f is called parametrization of the
surface f(U) ⊆ R3. When it is clear form context we will call the map f a
surface.

A parametrization f is conformal if the partial derivatives are orthogonal
and have the same length i.e.

〈fx(a), fy(a)〉 = 0 ‖fx(a)‖ = ‖fy(a)‖

for all a ∈ U . Each surface can be conformally parametrized locally (see e.g.
[25, p. 314 - 346]).

For the pupose of measuring lengths, angles, areas, and curvatures one
introduces the first and second fundamental forms (here in matrix notation
with their respective coordinate functions)

I =

(
E F
F G

)
II =

(
L M
M N

)
,

1



2 1. PRELIMINARIES

where E = 〈fx, fx〉, F = 〈fx, fy〉, G = 〈fy, fy〉, L = 〈n, fxx〉, M = 〈n, fxy〉,
N = 〈n, fyy〉 with n = (fx × fy)/‖fx × fy‖ as the unit normal vector (the
Gauss map). The area of a surface f(U) is defined as

∫
U

√
det(I) dxdy.

The principal curvatures κ1 and κ2 are defined as roots of the quadratic poly-
nomial equation det(II −κI) = 0. It turns out that the principal curvatures
always are real. The mean curvature H and the Gaussian curvature K are
defined as

H =
1

2
(κ1 + κ2) and K = κ1κ2.

For a vector v in the tangent plane, v = afx + bfy, the normal curvature in
the direction of v is defined as

κn =
Ma2 + 2Nab+ Lb2

Ea2 + 2Fab+Gb2
.

The maximum and the minimum of the normal curvatures are equal to the
principal curvatures, and the associated vectors are called principal direc-
tions. They are orthogonal.

f is a curvature line parametrization if the parameter lines f(x0, ·) and
f(·, y0) are curvature lines, i.e., the tangent vectors fx and fy are principal
directions. Each surface can be locally parametrized with curvature lines. A
parametrization which is conformal and curvature line at the same time is
called isothermic. It is not possible to obtain isothermic parametrizations
for all surfaces. However, for minimal surfaces it is possible.

A Koenigs net is a map f : U → R3 which satisfies the differential
equation

fxy =
νy
ν
fx +

νx
ν
fy,

with some scalar function ν : U → R \ 0 (see e.g. [7]).
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1.2 The complex plane

1.2.1 Möbius transformations

A Möbius transformation is a map M : C∪{∞} → C∪{∞}. Let a, b, c, d ∈ C
such that ad−cb 6= 0. The Möbius transformation can be written in the form

M(z) =


∞ if cz + d = 0,

a/c if z =∞,
az+b
cz+d

otherwise.

A Möbius transformation can be decomposed in translations, rotations, di-
lations, and maps of the form z 7→ 1/z. The cross-ratio of four distinct
points

cr(z0, z1, z2, z3) :=
(z0 − z1)(z2 − z3)

(z1 − z2)(z3 − z0)
∈ C, (1.1)

is invariant under Möbius transformations. Considering lines as circles with
infinite radius we can say that Möbius transformations map circles to circles.
Möbius transformations and anti-Möbius transformations (i.e., z 7→ M(z))
are conformal transformations wich means that they preserve the angle of
two intersecting curves.

Another way to define Möbius transformations comes from incidence ge-
ometry where a Möbius transformation maps circles (including straight lines)
on circles (see e.g. [1]). This implies to add the conjugation map z 7→ z to the
list of elementary transformations in which a Möbius transformation can be
decomposed. We therefore see that from the incidence geometry the Möbius
transformations include what previously was called an anti-Möbius transfor-
mation. If we do that, we have to accept the loss of the invariance of the
cross-ratio under Möbius transformations. To fix this problem we have to
consider the unordered pair {q, q} as cross-ratio of four points.

Möbius transformations in space (say in R3) can be defined as composition
of translations, rotations, dilations, and inversions in the sphere. Unlike
in the planar case, the spatial Möbius transformations are the only angle
preserving transformations in space.

A Möbius transformation M maps a conformal parametrization f on a
conformal parametrization M ◦ f again. In other words, conformal parame-
trizations are objects of Möbius geometry.
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A stereographic projection from the plane to the sphere

Φ(z) :=
1

(|z2|+ 1)
(2z, |z|2 − 1) ∈ C× R ∼= R3

can be seen as the restriction of a Möbius transformation of R3 to a plane in
R3.

1.2.2 Holomorphic functions

For complex analysis we refer to [22]. A complex function f(z) = u(x, y) +
iv(x, y), with z = x+ iy and real valued functions u, v, is holomorphic if the
Cauchy-Riemann differential equations ux = vy and vx = −uy hold. Then
f ′(z) = ux(x, y) + ivx(x, y). A holomorphic function is called conformal if
f ′(z) 6= 0 for all z ∈ U . A conformal parametrization of the plane in the
sense of differential geometry is the same as a conformal map f : C → C,
where the parameter lines are f(x+ iy0) and f(x0 + iy), for fixed x0 and y0,
respectively. A complex function is called meromorphic, if it is holomorphic
everywhere excapt in isolated points, which are poles.

A real valued function u : U → R, where U is simply connected, is called
harmonic if the Laplacian

∆u =
∂2u

∂x2
+
∂2u

∂y2

vanishes everywhere. The real and imaginary parts of a holomorphic function
are harmonic. In this case u is said to be the harmonic conjugate to v. For
each harmonic function u there exists a harmonic conjugate v such that
f = u+ iv is holomorphic.

1.3 Minimal surfaces

We collect some characterizations of minimal surfaces :

Mean curvature. A surface is a minimal surface if the mean curvature H
vanishes for all points.
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Weierstrass representation. f is a conformal parametrization of a mini-
mal surface if and only if it is of the form

f(x, y) = Re
[ ∫

h ·
(

1

2
(
1

g
− g),− 1

2i
(
1

g
+ g), 1

)
dz
]∣∣∣∣∣
z=x+iy

,

where h : U → C is holomorphic and g : U → C∪{∞} is meromorphic;
g, h have no common root; and the components of the integrand have
no pole (see e.g. [11]).

Christoffel duality. f is an isothermic parametrization of a minimal sur-
face if and only if f ∗, defined by the formulas

f ∗x =
fx
‖fx‖2

and f ∗y = − fy
‖fy‖2

,

exists and parametrizes a sphere (see [9] and Section 3.4).

Plateau problem. A surface which has the minimum of area of all surfaces
with a given closed curve as boundary is a minimal surface (see e.g.
[11]).

Björling problem. A surface of the form

f(x, y) = Re
[
c(z)− i

∫ z

0

n(ζ)× ċ(ζ)dζ
]∣∣∣∣∣
z=x+iy

,

is a minimal surface if c, n : I × iJ → C3 are holomorphic functions
(I, J intervals with 0 ∈ I) and if c(I), n(I) ⊂ R3. This minimal sur-
face contains the curve c(I) and has n(I) as Gaussian image in the
corresponding points (see e.g. [18]).

Lie sum. A surface is a minimal surface if and only if it can be represented
as a translation surface f(u, v) = Re(g(u) + h(v)), whose generators
g, h are isotropic curves (which means curves c : C→ C3 such that the
(non-Hermitian) scalar product 〈c′, c′〉 vaneshes. See e.g. [13]).

The Weierstrass representation provides each minimal surface f(x, y) with
an associated family fθ (θ ∈ [0, 2π]) of minimal surfaces. It is given by

fθ(x, y) = Re
[
eiθ
∫
h ·
(

1

2
(
1

g
− g),− 1

2i
(
1

g
+ g), 1

)
dz
]∣∣∣∣∣
z=x+iy

.





Chapter 2

Oriented mixed area and
discrete minimal surfaces

In the present chapter we systematically study the vanishing mixed area
property for polygons, having in mind as a main application the discrete
minimal surfaces in the class of hexagonal meshes. Most of this chapter can
be found in [17].

2.1 Definitions

2.1.1 Convex polygons and parallelity

For two convex subsets K,L ⊆ R2, the area of nonnegative Minkowski com-
binations λK + µL obeys the law

area(λK + µL) = λ2 area(K) + 2λµ area(K,L) + µ2 area(L), (2.1)

where the symbol area(K,L) means the mixed area of K and L (see for
example [24]). If the boundary ∂K is a polygon P with vertices p0, . . . , pN−1,
then the oriented area of K is given by Leibniz’ sector formula

area(P ) := area(K) =
1

2

∑
0≤i<N

det(pi, pi+1). (2.2)

Here indices are taken modulo N . Obviously, there is a vector space of
polygons with N vertices, and the area functional (2.2) is a quadratic form
in this space. For us, the most interesting case is that K and L are bounded

7



8 2. DISCRETE MINIMAL SURFACES

p0,6

p1,2

p3

p4,5

r0

r1

r2

r3

r4

r5r6 q5,6

q0,1

q2,3,4

Figure 2.1: Labeling vertices of ∂K and ∂L with aid of ∂(K+L
2 ) such that they

become parallel.

by parallel polygons P and Q, with vertices p0, . . . , pN−1 and q0, . . . , qN−1,
respectively. This concept, which is not restricted to convex polygons, was
introduced by [20] and means that

pi+1 − pi, qi+1 − qi are linearly dependent, for i = 0, . . . , N − 1.

We assume for a moment that both P,Q have only nonzero edges (i.e., no
coinciding vertices). Then the boundary ∂(λK +µL) has the vertices (λpi +
µqi)0≤i<N , whence area(λK + µL) = 1

2

∑
0≤i<N det(λpi + µqi, λpi+1 + µqi+1)

and consequently

area(P,Q) =
1

4

∑
0≤i<N

(det(pi, qi+1) + det(qi, pi+1)). (2.3)

This formula describes the symmetric bilinear form induced by the area func-
tional in any vector space of polygons with N vertices.

If either P or Q has zero edges (i.e., multiple vertices), the vertices of
∂(λK + µL) need not equal λpi + µqi, but if they do, (2.3) is valid.

Note that arbitrary polygons ∂K, ∂L can be seen as parallel polygons, as
illustrated by Figure 2.1: We are labeling the vertices r0, . . . , rN−1 of ∂(K+L)
consecutively, and subsequently give (possibly multiple) indices p0, . . . , pN−1

and q0, . . . , qN−1 to the vertices of ∂K and ∂L such that pi + qi = ri. Then
all three boundaries of K, L, K + L and in fact λK + µL for λ, µ ≥ 0
are described by parallel polygons, and (2.3) can be used for computing the
mixed area in the sense of (2.1).

2.1.2 The oriented mixed area

The polygons parallel to a given polygon P = (p0, . . . , pN−1), not necessarily
convex, constitute a vector space under vertex-wise addition and scalar mul-
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p0 p1

p2

p3

q0 q1

q2

q3

Figure 2.2: For nondegenerate parallel quads p0, . . . , p3 and q0, . . . , q3, parallel
of one nonzero diagonal characterizes vanishing mixed area (q0q2 ‖ q1q3, or (q1q3 ‖
q0q2).

tiplication. Its dimension equals N + #{i | pi = pi+1}. If there are no zero
edges, we use the symbol

P(P ) = {(q0, . . . , qN−1) | qi+1 − qi = λi(pi+1 − pi), 0 ≤ i < N}/R2 (2.4)

for the vector space of polygons parallel to P , modulo parallel translations.
Then dimP(P ) = N −2. If both P and Q have zero edges, still P +Q might
not have any, and consequently P,Q, P + Q ∈ P(P + Q). The expression
defined by formula (2.3) is translation invariant. Following [20] we define:

Definition 2.1. For parallel polygons P = (p0, . . . , pN−1) and Q = (q0, . . . ,
qN−1), the oriented mixed area is given by the bilinear form (2.3).

Apparently the oriented mixed area, which extends the concept of mixed
area for convex domains, is the bilinear form associated with the quadratic
form measuring oriented area by Leibniz’ sector formula.

2.1.3 Discrete minimal surfaces

The curvature theory presented in [20] deals with parallel meshes, which
means a pair (Σ,Φ) of polyhedral surfaces having the same combinatorics,
such that corresponding edges are parallel. Σ is viewed as Gauss image of
Φ. The definition of parallelity of polygons extends to polygons which lie in
parallel planes; in order to employ (2.3) for the computation of mixed area
they have to be moved to a common plane by parallel translation. If P is
a face and Q the corresponding face in the Gauss image, then P is assigned
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the mean curvature

HP = −area(P,Q)

area(P )
,

and Gaussian curvature

KP =
area(Q)

area(P )
.

For this reason, vanishing mixed area of parallel polygons is characteristic for
discrete minimal surfaces. The following result of [20], illustrated in Figure
2.2, is basic for the construction of minimal surfaces with regular quad mesh
combinatorics:

Proposition 2.2. Parallel quadrilaterals P = (p0, p1, p2, p3) and Q = (q0, q1,
q2, q3) have vanishing mixed area if and only if diagonals p0p2 and q1q3 are
parallel, which is equivalent to diagonals p1p3 and q0q2 being parallel.

This condition actually discretizes the Christoffel duality between a mini-
mal surface and its spherical Gauss image [20]. We therefore call a polyhedral
surface and its parallel Gauss image where all mixed areas vanish, a Christof-
fel dual pair. It is an interesting fact that Proposition 2.2 applies to several
constructions of discrete minimal surfaces based on quadrilaterals, namely
the ones of [4, 2]. This chapter, which deals with vanishing mixed area in
general, is focuses on hexagonal meshes.

2.2 Properties of the oriented mixed area

The main result of the present chapter is the recursion formula of Theorem 2.6
below, which for parallel polygons P,Q with an even number of vertices shows
that area(P,Q) = area(P ∗, Q∗), where P ∗, Q∗ are derived polygons which
have only the half number of vertices. It is used in Section 2.3 to derive
geometric characterizations of parallel polygons with vanishing mixed area.

2.2.1 Formulas for the mixed area

There are equivalent formulae for the oriented mixed area of parallel polygons
which take advantage of parallelity:
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Lemma 2.3. The bilinear form of Equation (2.3) is alternatively expressed
as ∑

i∈{0,1,...,N−1}

(
det(pi, qi+1) + det(qi, pi+1)

)
=
∑

i∈{0,1,...,N−1}
det(pi, qi+1 − qi−1) (2.5)

(indices modulo N). For P,Q parallel and an even number of vertices,

2 area(P,Q) =
∑

i∈{0,2,...,N−2}
det(pi, qi+1 − qi−1)

=
∑

i∈{1,3,...,N−1}
det(pi, qi+1 − qi−1). (2.6)

Proof. The first equality is found by rearranging indices:∑
i
det(pi, qi+1) +

∑
i
det(qi, pi+1) =

∑
i
det(pi, qi+1) +

∑
i
det(qi−1, pi).

In order to show the second equality, we observe that parallelity of P and Q
implies det(pi+1 − pi, qi+1 − qi) = 0. Therefore,∑

i even
det(pi, qi+1 − qi−1)

=
∑

i even
(det(pi, qi+1 − qi) + det(pi, qi − qi−1))

=
∑

i even
(det(pi + (pi+1 − pi), qi+1 − qi)+

+ det(pi + (pi−1 − pi), qi − qi−1))

=
∑

i even
(det(pi+1, qi+1 − qi) + det(pi−1, qi − qi−1))

=
∑

i even
(det(pi+1, qi+1 − qi) + det(pi+1, qi+2 − qi+1))

=
∑

i even
det(pi+1, qi+2 − qi) =

∑
i odd

det(pi, qi+1 − qi−1).

It follows that the expression for 4 area(P,Q) according to (2.3) reads( ∑
i even

+
∑
i odd

)
det(pi, qi+1 − qi−1) =

∑
i even

2 det(pi, qi+1 − qi−1),

which is what we wanted to prove.

We have now obtained an expression for the mixed area which makes
use only of the vertices p0, p2, . . . and q1, q3, . . . , which however does not
have a direct relation to the areas associated with polygons (p0, p2, . . . ) and
(q1, q3, . . . ).
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2.2.2 Construction of a derived polygon

For the following construction of derived polygons, the polygons P,Q must
have an even number N of vertices, and certain diagonals of P are forbidden
to be parallel. We used the notation [v] for the 1-dimensional subspace
spanned by the vector v.

Definition 2.4. Assume a pair of polygons P = (p0, . . . , pN−1) and Q =
(q0, . . . , qN−1), where N is even, such that

pi − pi−2 and pi+2 − pi are linearly independent for i = 0, 2, 4, . . . (2.7)

(indices are taken modulo N). Then a pair of derived polygons P ∗, Q∗ is
constructed such that P ∗ consists of every other vertex of P , while the vertices
of Q∗ are found by parallel translating diagonals of P through points of Q:

p∗i = p2i,

q∗i = (q2i+1 + [p2i+2 − p2i]) ∩ (q2i−1 + [p2i − p2i−2]).

An index shift of 1 yields an analogous derived pair (P ∗∗, Q∗∗) based on the
odd vertices of P :

p∗∗i = p2i+1

and

q∗∗i = (q2i+2 + [p2i+3 − p2i+1]) ∩ (q2i + [p2i+1 − p2i−1]),

provided the lines employed in this intersection are not parallel.

p0 = p∗0

p1

p2 = p∗1 p3

p4 = p∗2

p5
q∗0

q0

q1

q∗2

q2

q3

q∗4q4

q5

Figure 2.3: A pair of polygons P,Q and the derived polygons P ∗, Q∗.
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p0 = p∗0

p1 = p∗∗0

p2 = p∗1

p3 = p∗∗1

p4 = p∗2

p5 = p∗∗2

q1

q2

q3 q4

q5

q0

q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2

q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2

Figure 2.4: Illustration of Lemma 2.5. Polygons P ∗, Q∗ are orthogonal with
respect to the bilinear form defined by the oriented are, if both derived polygons
Q∗ and Q∗∗ degenerate into a point. The converse is not true.

This construction is illustrated by Figures 2.3 and 2.4. Note that if Q∗

cannot be constructed because (2.7) is not fulfilled, still Q∗∗ may be con-
structible. For quadrilaterals, (2.7) is never fulfilled, even after an index
shift. We will be able to treat quadrilaterals as degenerate hexagons.

2.2.3 Non-parallel polygons

The bilinear function of Equation (2.3) which measures the oriented mixed
area for parallel polygons can be evaluated for arbitrary pairs of polygons,
without having a geometric meaning as mixed area in the classical sense.
It still extends the quadratic functional which measures the oriented area
by Leibniz’ sector formula. The definition of derived polygons according to
Definition 2.4 is not restricted to parallel polygons.

We here record a nice geometric property of this functional:

Lemma 2.5. Polygons P,Q are orthogonal with respect to the bilinear func-
tion (2.3), if both derived polygons Q∗ and Q∗∗ with respect to even and odd
indices degenerate into points q∗ and q∗∗, respectively.

Proof. By Lemma 2.3, we have to show that
∑

0≤i<N det(pi, qi+1−qi−1) = 0.
Our assumption on the degeneracy of derived polygons means that there are
real numbers λi with

q∗ = qi + λi(pi−1 − pi+1) for i even,
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q∗∗ = qi + λi(pi−1 − pi+1) for i odd.

=⇒ qi+1 − qi−1 = λi−1(pi−2 − pi)− λi+1(pi − pi+2) for all i.

We use this equality to evaluate (2.3):∑
0≤i<N

det(pi, qi+1 − qi−1)

=
∑

0≤i<N
det(pi, λi−1(pi−2 − pi)− λi+1(pi − pi+2))

=
∑

0≤i<N
λi det(pi+1, pi−1 − pi+1)−

∑
0≤i<N

λi det(pi−1, pi−1 − pi+1)

=
∑

0≤i<N
λi det(pi+1 − pi−1, pi−1 − pi+1) = 0

(indices are taken modulo N). This concludes the proof.

2.2.4 Mixed area of derived polygons

The following theorem is the main technical contribution of the present chap-
ter. It is the basis of geometric characterizations of polygons pairs with
vanishing mixed area, and therefore the basis of constructions of discrete
minimal surfaces.

Theorem 2.6. For any pair of parallel polygons P,Q with an even number
of vertices, the oriented mixed area is unaffected by the passage to derived
polygons:

area(P,Q) = area(P ∗, Q∗) = area(P ∗∗, Q∗∗),

whenever the conditions of Definition 2.4, which allow construction of Q∗ or
Q∗∗, are fulfilled.

Proof. It is obviously sufficient to show the result for P ∗ and Q∗. An
elementary computation yields the coordinates of Q∗’s vertices q∗i :

q∗i =
1

γi

(
αi(p

∗
i+1 − p∗i ) + βi(p

∗
i − p∗i−1)

)
, where

αi = det(q2i−1, p
∗
i − p∗i−1), βi = det(p∗i+1 − p∗i , q2i+1),

γi = det(p∗i+1 − p∗i , p∗i − p∗i−1).

For the mixed area of P ∗ and Q∗, we consider the following sum, where
indices i range from 0 to N/2− 1, and indices j range from 0 to N − 1:
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i
det(q∗i , p

∗
i+1 − p∗i−1) =

=
∑

i

1

γi
det
(
αi(p

∗
i+1 − p∗i ) + βi(p

∗
i − p∗i−1), p

∗
i+1 − p∗i−1

)
=
∑

i

1

γi

(
αi(− det(p∗i+1, p

∗
i−1)− det(p∗i , p

∗
i+1) + det(p∗i , p

∗
i−1)

+βi(det(p∗i , p
∗
i+1)− det(p∗i , p

∗
i−1)− det(p∗i−1, p

∗
i+1))

)
=
∑

i

1

γi

(
αiγi − βiγi

)
=
∑

i

(
det(q2i−1, p

∗
i − p∗i−1)− det(p∗i+1 − p∗i , q2i+1)

)
=
∑

j even

(
det(qj−1, pj − pj−2) + det(qj+1, pj+2 − pj)

)
.

An index shift shows that∑
j even

det(qj−1, pj − pj−2) =
∑
j even

det(qj+1, pj+2 − pj)

=
∑
j odd

det(qj, pj+1 − pj−1),

so we conclude that

area(P ∗, Q∗) =
1

4

∑
i
det(q∗i , p

∗
i+1 − p∗i−1)

=
1

2

∑
j odd

det(qj, pj+1 − pj−1).

By Lemma 2.3, this expression equals area(P,Q), which concludes the proof.

This result concerning the mixed area of parallel polygons is strong in
reducing the number of vertices to deal with by a factor 2. However, if we
apply it to two arbitrary polygons, which are made artificially parallel like
those of Figure 2.1, we only obtain a fact which is obvious from the definition
of mixed area anyway. As illustrated by Figure 2.5, Q∗ then describes the
boundary of the domain L∗ constructed from K and L as the intersection of
all supporting half-spaces of L whose boundary is parallel to an edge of K.
Obviously, area(K,L) = area(K,L∗).
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p0,1 = p∗0

p2,3 = p∗1 p4,5 = p∗2

p6,7 = p∗3

K K + λL K + λL∗

L

q∗0

q1,2

q∗1
q∗2 = q3,4,5,6

q∗3
q7,0(a) (b) (c) (d)

Figure 2.5: An explanation of the fact area(P,Q) = area(P ∗, Q∗) for artificially
parallel polygons which occur as boundaries P = ∂K and Q = ∂L. (a) Both
polygons P and P ∗ describe the boundary ∂K. (b) Convex domains K + λL,
where λ equals 0.1 and 0.2. (c) The same for L∗ instead of L, where the boundary
∂L∗ is given by the polygon Q∗. (d) Polygons Q and Q∗. Obviously the linearly
growing part of area(K + λL) along the edges of ∂K is not affected if we replace
L by L∗.

p0

p1

p2

p5

p4

p3

q0

q1

q2

q3

q4

q5

Figure 2.6: A Pappos hexagon does not fulfill the requirements of Definition 2.4,
and so Theorem 2.7 is not applicable to this pair of parallel Pappos hexagons with
area(P,Q) = 0 (we must apply Proposition 2.8 instead).

2.3 Vanishing mixed areas

This sections applies Theorem 2.6 to parallel polygons P,Q whose mixed
area vanishes. As mentioned in § 2.1.3, such pairs of polygons are especially
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p1

p2 = p∗1

p3

p4 = p∗2

p5

p0 = p∗0

q0

q1

q2

q3 q4

q5

q∗0,1,2

Figure 2.7: Parallel hexagons P,Q with vanishing mixed area (the derived tri-
angle Q∗ degenerates).

interesting for the construction of discrete minimal surfaces.

2.3.1 Vanishing mixed area for parallel hexagons

Here we treat both quadrilaterals and 5-gons as special hexagons. Before
we derive a geometric criterion for the vanishing of mixed area for parallel
hexagons, we discuss pairs P,Q of hexagons where Theorem 2.6 cannot be
applied, because neither derived polygon Q∗, Q∗∗ can be constructed. Obvi-
ously, this is the case if and only both p0, p2, p4 and p1, p3, p5 are collinear,
i.e., P is a Pappos hexagon (see Figure 2.6). Exchanging the role of P and
Q helps, except for the case that both q0, q2, q4 and q1, q3, q5 are collinear.

Theorem 2.7. For parallel hexagons P,Q where one, say P , is not a Pappos
hexagon, there is a labeling of vertices such that the derived polygons P ∗, Q∗

can be constructed. Then area(P,Q) = 0 if and only if all vertices of the
triangle Q∗ coincide, i.e., if the lines

q1 + [p2 − p0], q3 + [p4 − p2], q5 + [p0 − p4]

intersect in a common point.

Proof. The derived polygons P ∗, Q∗ are parallel triangles, with Q∗ = λP ∗+
a. It follows that area(P ∗, Q∗) = λ area(P ∗). By non-collinearity of P ∗, this
area vanishes if and only if λ = 0.
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p0,1 = p∗0 p2,3 = p∗1

p4 = p∗2

p5

q0,1
q2,3 = q∗0,1,2

q4 q5

Figure 2.8: Quadrilaterals with antiparallel diagonals are degenerate hexagons
P,Q, where the triangle Q∗ degenerates into a point.

The case of two Pappos hexagons has to be treated separately:

Proposition 2.8. Suppose that P,Q are two parallel hexagons such that
p1, p3, p5 as well as q0, q2, q4 are collinear (this includes the case of parallel
Pappos hexagons). Then area(P,Q) = 0 in exactly the following cases:

(i) p1 = p3 = p5 or q0 = q2 = q4.

(ii) The triples (p1, p3, p5) and (q4, q0, q2) are affinely equivalent.

(iii) The lines which carry p1, p3, p5 and q0, q2, q4 are parallel.

Proof. By parallel translation we can achieve that the straight lines pass
through the origin of the coordinate system, so there are v, w ∈ R2 \ 0 with
pi = λiv for i = 1, 3, 5 and qj = µjw for j = 0, 2, 4. By Equation (2.5),

2 area(P,Q) =
∑

i=1,3,5
det(λiv, (µi+1 − µi−1)w)

= det(v, w)(λ1(µ2 − µ0) + λ3(µ4 − µ2) + λ5(µ0 − µ4))

= det(v, w)((λ1 − λ3)(µ2 − µ4)− (λ1 − λ5)(µ0 − µ4)).

In case (iii) we have det(v, w) = 0, so area(P,Q) = 0. In case (i) we have

λ1 = λ3 = λ5, or µ0 = µ2 = µ4,
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p0 = p∗0

p1

p2 = p∗1

p3

p4 = p∗2

p5

q0

q1

q2

q3

q4
q5 q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2

Figure 2.9: A pair of parallel 5-gons P,Q seen as hexagons, and a geometric
characterization of vanishing mixed area which follows from this interpretation.
Index shifts produce equivalent configurations.

which likewise implies vanishing mixed area. We now assume that we have
neither case (i) nor case (iii). Then

area(P,Q) = 0 ⇐⇒ (λ1 − λ3) : (λ1 − λ5) = (µ4 − µ0) : (µ4 − µ2),

i.e., if and only if the ratio of collinear points p1, p3, p5 equals the ratio of
collinear points q4, q0, q2. This is equivalent to (ii).

We refrain from an exhaustive discussion of cases. An example of two
parallel Pappos hexagons with vanishing mixed area is shown by Figure 2.6.

2.3.2 Vanishing mixed area for 4- and 5-gons as degen-
erate 6-gons

Two parallel quadrilaterals are converted to parallel hexagons if we count two
pairs of corresponding vertices twice. This operation does not change the
mixed area, and Theorem 2.7 immediately gives the known result of Propo-
sition 2.2 that vanishing mixed area is characterized by anti-parallelity of
diagonals (see Figures 2.2 and 2.8). Anyway Proposition 2.2 follows directly
from Lemma 2.3, because for parallel quads, (2.6) expands to

area(P,Q) = det(p0 − p2, q1 − q3).

For 5-gons, we have the following result:
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p0 = p∗0

p7

p6 = p∗3
p5

p4 = p∗2
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∗
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∗
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∗
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∗
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Figure 2.10: Parallel 8-gons P,Q with vanishing mixed area. The derived poly-
gons P ∗, Q∗ are parallel quads with area(P ∗, Q∗) = 0 and consequently antiparallel
diagonals.

Corollary 2.9. The oriented mixed area of two parallel 5-gons

P = (p0, . . . , p4) and Q = (q0, . . . , q4)

vanishes if both of them are contained in a straight line. If this is not the
case, area(P,Q) = 0 is characterized by the following geometric condition for
one index i (and equivalently for all indices i): The lines

qi+1 + [pi+2 − pi] and qi+3 + [pi+4 − pi+2]

meet on the edge qi+4qi, where indices are taken modulo 5.

Proof. It is sufficient to assume that p0, p1, p4 are not collinear and show
the result for the case i = 0 illustrated by Figure 2.9. By introducing vertices
p5, q5 in the edges p4p0 and q4q0, resp., we convert both P and Q into parallel
hexagons, and Theorem 2.7 is applicable. The statement that Q∗ degenerates
to a point translates to the statement we want to show.

2.3.3 Vanishing mixed area for 8-, 7- and 6-gons (again)

Theorem 2.6 is recursively applicable, but the number of cases to be dis-
tinguished because diagonals are parallel and derived polygons cannot be
constructed becomes greater. The following result for generic 8-gons follows
directly from Theorem 2.6 and Proposition 2.2 (see Figure 2.10).
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Figure 2.11: Parallel 7-gons P,Q with vanishing mixed area, which are inter-
preted as 8-gons with p6 = p7 and q6 = q7, respectively. The derived polygons
P ∗, Q∗ are parallel quads with area(P ∗, Q∗) = 0 and consequently antiparallel
diagonals.

p0 = p∗0

p6,7 = p∗3
p5

p4 = p∗2

p2,3 = p∗1

p1

q0
q1

q2,3

q4

q5

q6,7

q∗1q
∗
1q
∗
1q
∗
1q
∗
1q
∗
1q
∗
1q
∗
1q
∗
1q
∗
1q
∗
1q
∗
1q
∗
1q
∗
1q
∗
1q
∗
1q
∗
1

q∗3q
∗
3q
∗
3q
∗
3q
∗
3q
∗
3q
∗
3q
∗
3q
∗
3q
∗
3q
∗
3q
∗
3q
∗
3q
∗
3q
∗
3q
∗
3q
∗
3

Figure 2.12: Parallel hexagons P,Q with vanishing mixed area, which are in-
terpreted as 8-gons with p6 = p7, p2 = p3 and q6 = q7, q2 = q3 respectively.
The derived polygons P ∗, Q∗ are parallel quads with area(P ∗, Q∗) = 0 and conse-
quently antiparallel diagonals. For a geometric characterization, only one half of
Q∗ is needed.

Corollary 2.10. Parallel 8-gons P,Q where the derived polygons P ∗, Q∗ can
be constructed have vanishing mixed area exactly in the following three cases:
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(i) both sets {p0, p2, p4, p6} and {q∗0, q∗1, q∗2, q∗3} are contained in a straight
line;

(ii) p0 6= p4 and p0p4 is parallel to q∗1p
∗
3,

(iii) p2 6= p6 and p2p6 is parallel to q∗0p
∗
2.

The obvious way to treat parallel 7-gons is as 8-gons with two coincident
vertices: We simply add an 8th vertex p7 = p6 and q7 = q6 to each an apply
Corollary 2.10. This is illustrated by Figure 2.11. It is interesting to observe
that also for hexagons we get again an easy geometric condition if we treat
them as 8-gons with 2 coincident vertices (see Figure 2.12). Disregarding
special cases, we have:

Corollary 2.11. The parallel hexagons (p0, p1, p2, p4, p5, p6) and (q0, q1, q2, q4,
q5, q6) generically have zero oriented mixed area if and only if p0∨p4 ‖ q∗1∨q∗3,
where

q∗1 = (q1 + [p2 − p0]) ∩ (q2 ∨ q4), q∗3 = (q5 + [p4 − p6]) ∩ (q6 ∨ q0).

Proof. The polygons are extended to 8-gons P,Q with the same mixed
area by letting p3 := p2, p7 := p6, q3 := q2, and q7 := q6. The derived
quadrilateral Q∗ according to Corollary 2.10 has the two vertices q∗1, q

∗
3, so

the result follows.

2.3.4 Polygons with vanishing mixed area as a result
of a closing theorem

The following proposition, which is some kind of a closing theorem, generates
parallel pairs of polygons with vanishing mixed area.

Proposition 2.12. Let k be an even number and P = (p0, . . . , pk−1) a planar
polygon. Moreover, let d0 and d1 be arbitrary points in R2 and q0 ∈ d0 +
[p1 − pk−1]. Then there exists a unique polygon Q = (q0, . . . , qk−1) such that
qi − qi+1 ‖ pi − pi+1, the lines

{qi + [pi−1 − pi+1] | i even)}

intersect in d0 and
{qi + [pi−1 − pi+1] | i odd)}

intersect in d1 (see Figure 2.13).
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Pp0
p1

p2

p3

p4p5

p6

p7

Q

d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗d0 = Q∗

q0q1

q2

q3

q4 q5

q6

q7

Figure 2.13: Illustration of the closing theorem stated in Proposition 2.12. Since
Q∗ degenerates to a single point d0, the mixed area of P and Q vaneshes.

Proof. Uniqueness follows from the construction. To prove the existence
of the polygon Q, we construct the 2-periodic sequence (di)i∈Z with di+2 = di
from the given points d0, d1.

The polygon Q with the desired properties exists if and only if Q is parallel
to P and if the concurrence of

qi + [pi − pi+1], di+1 + [pi − pi+2] and qi+1 + [pi+1 − pi+2]

for all i ∈ {0 . . . k − 2} implies that

qk−1 + [pk−1 − p0], d0 + [pk−1 − p1] and q0 + [p0 − p1]

are concurrent.

The lines

qi + [pi − pi+1], di+1 + [pi − pi+2] and qi+1 + [pi+1 − pi+2]

are concurrent for all i ∈ {0 . . . k − 1} if and only if

det
[(qi

1

)
×
(
pi − pi+1

0

)
,

(
di+1

1

)
×
(
pi − pi+2

0

)
,

(
qi+1

1

)
×
(
pi+1 − pi+2

0

)]
= 0.
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This determinant has the form

det

 −p2
i + p2

i+1 −p2
i + p2

i+2 −p2
i+1 + p2

i+2

p1
i − p1

i+1 p1
i − p1

i+2 p1
i+1 − p1

i+2

det(qi, pi − pi+1) det(di+1, pi − pi+2) det(qi+1, pi+1 − pi+2)

 =

= det(qi, pi − pi+1) · det(pi − pi+2, pi+1 − pi+2)−
− det(di+1, pi − pi+2) · det(pi − pi+1, pi+1 − pi+2)+

+ det(qi+1, pi+1 − pi+2) · det(pi − pi+1, pi − pi+2).

Because of the equations

det(pi − pi+1, pi − pi+2) = det(pi − pi+1, pi+1 − pi+2)

= det(pi − pi+2, pi+1 − pi+2),

this determinant equals zero if and only if

si := det(qi, pi−pi+1)−det(di+1, pi−pi+2)+det(qi+1, pi+1−pi+2) = 0. (2.8)

Assuming that Equation (2.8) holds for all i ∈ {0 . . . k− 2} we have to show
(2.8) for i = k − 1.

0 =
k−2∑
i=0

(−1)isi = det(q0, p0 − p1)−
k−2∑
i=0

(−1)i det(di+1, pi − pi+2)+

+ (−1)k−2︸ ︷︷ ︸
=1

det(qk−1, pk−1 − pk)

because k is even. The sum
∑k−2

i=0 (−1)i det(di+1, pi− pi+2) can be written as

k−2∑
i=0

i even

det(d1, pi − pi+2)−
k−3∑
i=1

i odd

det(d0, pi − pi+2) =

= det(d1, p0 − p2 + p2 − p4 + . . .+ pk−2 − pk)−
− det(d0, p1 − p3 + p3 − p5 + . . . pk−3 − pk−1) = 0 + det(d0, p1 − pk−1)

because k ≡ 0 mod (k). So we get

det(q0, p0 − p1)− det(d0, p1 − pk−1) + det(qk−1, pk−1 − pk) = 0

which is Equation (2.8) for i = k − 1 (with indices modulo k).

The property that this closing theorem generates pairs of parallel poly-
gons with vanishing mixed area is based on Lemma 2.5.
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Σ Φ

Figure 2.14: A discrete Enneper’s surface Φ in the shape of a hexagonal mesh,
which corresponds to a spherical mesh Σ by a discrete Christoffel duality. The
marked hexagons correspond to each other.

2.4 Discrete minimal surfaces

Section 2.1.3 already introduced in general terms the definitions of curvature
according to [5, 20]. Recall that a polyhedral surface Φ is a discrete minimal
surface with respect to a Gauss image Σ, if Φ,Σ are parallel meshes such
that corresponding faces have vanishing mixed area. We view Φ as a discrete
Christoffel dual of Σ, and vice versa.

Not every quadrilateral mesh Σ with planar faces (i.e., not every a poly-
hedral surface with regular grid combinatorics) has a Christoffel dual Φ: It
turns out that exactly the discrete Koenigs nets (see [6, 7]) have this prop-
erty. A quadrilateral mesh M with regular grid combinatorics is called dis-
crete Koenigs net (see [7]) if there exists a dual mesh M∗, which is parallel
to M, such that the non-corresponding diogonals are parallel (see Figure
2.8). A remarkable charakterization of discrete Koenigs nets in terms of the
Desargues configuration can be found in [7]. The property of being a smooth
or discrete Koenigs net is invariant under projective transformations.

2.4.1 Construction of hexagonal minimal surfaces

Figure 2.14 illustrates a parallel pair (Σ,Φ) of meshes (for more details, see
the example below). The faces of Σ are tangent to the unit sphere, so it
makes sense to consider Σ as a discrete Gauss image of Φ. As Φ has been
constructed such that the mixed area of corresponding faces vanishes, Φ
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Σ Φ

Figure 2.15: A discrete Enneper’s surface created in the same way as Figure 2.14,
but with a different size of the spherical mesh Σ. Here Φ has self-intersections.
The viewpoint is different from that of Figure 2.14.

is discrete minimal. It should be mentioned in this place that the exact
relation between the discrete Gauss image Σ and the unit sphere S2 can be
of a different nature: We could also require that vertices of Σ lie in S2, or its
edges are tangent to S2. The three cases of vertices, edges, and faces having
an exact tangency relation with S2 correspond to the mesh Φ having offset
meshes Φ +dΣ at constant vertex-vertex distance d, or edge-edge distance d,
or face-face distance d [21, 20]. Note that the property of vanishing mixed
area does not only occur between minimal surface and Gauss image, but also
between a surface Φ of constant mean curvature H with respect to a Gauss
image Σ, and its offset Φ + 1

H
Σ.

The construction of a discrete Christoffel dual (i.e., Φ from Σ) for hexag-
onal meshes is easy, as there are enough degrees of freedom. The fact that
dimP(P ) = 4 leads to a three-dimensional space of parallel polygons Q with
area(P,Q) = 0. Consequently adding a new hexagon of Φ to already con-
structed ones is an operation which has 3 − k degrees of freedom, where
k is the number of known vertices (which are shared with already existing
neighbours of the hexagon to be constructed).

This yields a discrete Cauchy problem
with a unique solution which initial data con-
sisting of two strips of hexagons in different
directions as indicated in the figure aside.

Example 2.13. Figure 2.14 shows a hexagonal mesh Σ which is circum-
scribed to the unit sphere and its Christoffel dual mesh Φ which assumes
the shape of an Enneper’s surface. This example is constructed as follows:
We start with an isothermic curvature-line parametrization x(u, v) of the
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known smooth Enneper’s surface M . Next we tile the parameter domain
with non-convex hexagons — we used dilates of the hexagon with vertices
(0, 0), (1

2
, 1

4
), (1, 0), (1, 1), (1

2
, 3

4
), (0, 1). Mapping the vertices of this tiling

with the parametrization x yields a hexagonal mesh Φ0 with non-planar faces
inscribed to M (it looks very much like Figure 2.14, right). Each planar
hexagon has a center, say (u∗, v∗), and we consider x(u∗, v∗) as the center of
the corresponding spatial hexagon. Next we construct the mesh Σ by parallel
translating the tangent planes of M in the centers of hexagons such that they
touch the unit sphere. Vertices qi of Σ are found by intersection of planes
(see Figure 2.14, left). Having constructed Σ, we find its Christoffel dual Φ
by optimizing Φ0 such that mixed areas of corresponding faces Q in Σ and P
in Φ are zero, and such that corresponding edges qiqj and pipj are parallel.
This amounts to minimizing the quadratic functional

λpar

∑
edges

‖(qi − qj)× (pi − pj)‖2 + λmix

∑
faces

‖ area(P,Q)‖2.

This is done by a standard conjugate gradient method, and turns out not to
change the shape of Φ0 much, despite the fact that the theoretical number
of degrees of freedom is larger.

2.4.2 Reciprocal parallelity in discrete minimal sur-
faces

In the quad mesh case, there is an interesting connection of minimal surfaces
with reciprocal-parallel meshes. A reciprocal-parallel mesh pair is defined as
meshes which are combinatorial duals of each other (there is a correspondence
face–vertex, vertex–face, and edge–edge), such that corresponding edges are
parallel [23]. Proposition 2.2 immediately shows that Φ is a minimal surface
with respect to Σ if meshes composed from diagonals of quads in both Σ,Φ
are reciprocally parallel [20]. This is illustrated in Figure 2.17. It should be
mentioned that reciprocal parallelity of meshes in connection with discrete
minimal surfaces also occurs in other places, for instance in [27].

For hexagonal meshes, we similarly can derive pairs of reciprocal-parallel
meshes from a Christoffel dual pair (Σ,Φ). The geometric characterization
of vanishing mixed area according to Theorem 2.7 and Figure 2.7 leads to the
configuration of lines in meshes Σ and Φ, which is illustrated in Figures 2.16a
and 2.16b. Obviously, the configuration of diagonals in Σ (Figure 2.16c) is
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(a): Σ (b): Φ

(c): Σ∗ (d): Φ∗

QQQQQQQQQQQQQQQQQ

PPPPPPPPPPPPPPPPP

Q∗Q∗Q∗Q∗Q∗Q∗Q∗Q∗Q∗Q∗Q∗Q∗Q∗Q∗Q
∗Q∗Q∗

(e): Σ∗∗ (f): Φ∗∗

Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗

P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗

Figure 2.16: Reciprocal-parallel meshes Σ∗,Φ∗ derived from Christoffel dual
meshes Σ,Φ. The edges around a face in Φ∗ serve as equilibrium forces acting in
the edges adjacent to the corresponding vertex of Σ∗. (a) Hexagonal mesh Σ with
face Q. (b) Hexagonal mesh Φ of the same combinatorics such that corresponding
faces Q of Σ and P of Φ have vanishing mixed area. (c) Triangle mesh whose edges
are derived polygons Q∗ in mesh Σ. (d) Hexagonal mesh whose edges are the lines
p1p
∗, p3p

∗, p5p
∗ in each hexagon of Φ, where p∗ is the degenerate polygon P ∗. Note

that Φ∗ does not have planar faces. In (e) and (f), the geometric characterization
of vanishing mixed area which yields diagonals and their parallels is read in reverse
order compared to (a)–(d): Diagonals are taken from the non-convex hexagons in
the mesh Φ.
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(a) (b) (c) (d) (e) (f)

Figure 2.17: Reciprocal-parallel meshes derived from a quadrilateral mesh Σ
and its Christoffel dual mesh Φ, which is combinatorially equivalent such that
corresponding quadrilaterals P and Q have vanishing mixed area. From left: (a)
Mesh Σ with face P . (b) Mesh Φ with face Q corresponding to P . (c) Quadrilateral
mesh Σ∗ composed from one half of diagonals of Σ. (d) Those diagonals in Φ which
are parallel to the previous ones according to Proposition 2.2 constitute a mesh
Φ∗ reciprocal-parallel to Σ∗: vertices in Σ∗ correspondence faces of Φ∗. (e) and
(f) show the reciprocal-parallel mesh pair Σ∗∗,Φ∗∗ composed from the diagonals
omitted in (c) and (d).

reciprocally parallel to the configuration of lines in Φ, which consist of the
to-be edges of degenerate derived polygons (Figure 2.16d). A different choice
of diagonals in Σ would lead to a different pair of reciprocal-parallel meshes.

Obviously for each vertex of Σ∗, the cycle of edge vectors adjacent to the
corresponding face of Φ∗ serves as equilibrium forces acting on that vertex.
Thus, Φ∗ represents a collection of equilibrium forces for Σ∗. These forces
(scaled) are shown by Figure 2.16c.

As the relation area(P,Q) = 0 is symmetric, the geometric configuration
of the triangle P ∗ and the degenerate triangle Q∗ exists also if the roles of P
and Q (i.e., the roles of Σ and Φ) are exchanged: One half of the diagonals
in Φ constitute a triangle mesh Φ∗∗, which possesses a reciprocal-parallel
hexagonal mesh Σ∗∗ associated with Σ (see Figures 2.16e and 2.16f). Figure
2.16f also shows equilibrium forces for Φ∗∗ which are a scaled version of the
edges of Σ∗∗.

2.5 Discrete constant mean curvature surfaces

In contrast to Section 2.3 where we studied vanishing mixed area of parallel
polygons to obtain vanishing mean curvature, we are now interested in a
geometric characterization of nonzero constant mean curvature. We give a
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Figure 2.18: A discrete nodoid which is a surface of revolution with constant
mean curvature (see Remark 2.17, Example 2.18, and Figure 2.21).

constant c ∈ R \ 0 and discuss an incidence geometric characterization of a
mesh with HP = c for all faces P of the mesh. After simple manipulations of
the definition of the discrete mean curvature we get the following equivalence:

HP = c ⇐⇒ area(P, P + c−1Q) = 0 (see [5]).

Since a dilation with factor λ changes the mean curvature with factor
1/λ, which is valid in the smooth setting as well as in the discrete setting,
we can always prescribe c = −1. We choose c = −1 just for the sake of
simplicity of further computations.

The above formula already indicates the connection between vanishing
mixed area and constant mean curvature and therefore suggests the use of
the derived polygons defined in § 2.2.2. We extend these polygons with one
further derived polygon P̃ ∗ = (p̃∗i ) (see Figures 2.19 and 2.20) defined as

p̃∗i = (p2i−1 + [p2i−2 − p2i]) ∩ (p2i+1 + [p2i − p2i+2]).

Theorem 2.14. Let P = (p0, . . . , pN−1) and Q = (q0, . . . , qN−1) be two paral-
lel polygons, where N is even, and let P ∗ and Q∗ be a pair of derived polygons
(see § 2.2.2). Then the discrete mean curvature HP is equal to −1 if Q∗ and
P̃ ∗ are equal up to translation.
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P

P ∗

Q

P̃ ∗ = Q∗

Figure 2.19: A pair of parallel quadrilaterals P and Q such that the mean curva-
ture HP equals −1 (see Theorem 2.16). The derived polygon P ∗ of a quadrilateral
consists just of the diagonal of P . P̃ ∗ degenerates to a pair of parallel lines.

Proof. We show that area(P,Q) = area(P ) which is equivalent to HP =
−1. Since the mixed area of two polygons is invariant under translations, we
can assume that Q∗ coincides with P̃ ∗. From the definition of p̃∗i follows that

p̃∗i = p2i−1 + µ2i−1(p2i−2 − p2i) and p̃∗i = p2i+1 + λ2i+1(p2i − p2i+2)

for some λi and µi.

4 area(P,Q) = 4 area(P ∗, Q∗) = 4 area(P ∗, P̃ ∗)

=
∑(N−1)/2

i=0
det(p∗i , p̃

∗
i+1 − p̃∗i−1)

=
∑(N−1)/2

i=0
det(p2i, p2i+1 + µ2i+1(p2i − p2i+2)

− (p2i−1 + λ2i−1(p2i−2 − p2i)))

=
∑(N−1)/2

i=0
det(p2i, p2i+1) + det(p2i, p2i+1)

+ µ2i+1 det(p2i,−p2i+2) + λ2i−1 det(p2i,−p2i−2)

= 2 area(P ) +
∑(N−1)/2

i=0
µ2i−1 det(p2i, p2i−2) + λ2i+1 det(p2i, p2i+2)

(∗)
= 2 area(P ) +

∑(N−1)/2

i=0
det(p2i, µ2i−1(p2i−2 − p2i))

+ det(p2i, p2i+1 − p2i−1 − µ2i−1(p2i−2 − p2i))
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P̃ ∗P
P ∗ Q

Q∗

Figure 2.20: A pair of parallel hexagons P and Q such that the mean curvature
HP equals −1. The derived polygons P̃ ∗ and Q∗ are equal up to translation.

= 4 area(P ).

For the equality (∗) we used det(a, b) = det(a, b− a) and the equality

p̃∗i = p2i−1 + µ2i−1(p2i−2 − p2i) = p2i+1 + λ2i+1(p2i − p2i+2).

We can show by a simple numerical example that the condition in Theo-
rem 2.14 that the two derived polygons Q∗ and P̃ ∗ are equal is not sufficient
for constant mean curvature. However, for quadrilaterals and hexagons the
’if’ can be replaced by ’if and only if’.

Theorem 2.15. Let P = (p0, . . . , p5) and Q = (q0, . . . , q5) be two parallel
hexagons which fulfill the requirements of Definition 2.4, and let P̃ ∗ and Q∗

be a pair of derived polygons (see § 2.2.2 and Figure 2.20). Then the discrete
mean curvature HP is equal to −1 if and only if Q∗ and P̃ ∗ are equal up to
translation.

Proof. The ’if’ part is Theorem 2.14. Let us assume that HP = −1. We
have to show that the tiangles p̃∗0, p̃

∗
2, p̃
∗
4 and q∗0, q

∗
2, q
∗
4 (w.l.o.g. we consider

the even labeled polygons) are equal up to translation. By the definition of
the derived polygons which implies that corresponding edges are parallel we
have only to show e.g. p̃∗1 − p̃∗0 = q∗1 − q∗0.

The construction of the derived polygons also guarantees the existence of
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surface name generating curve mean curvature
plane straight line orthogonal to

the axis of revolution
= 0

cylinder straight line parallel to the
axis of revolution

6= 0

sphere circle with midpoint on the
axis of revolution

6= 0

catenoid cosh = 0
unduloid undulary 6= 0
nodoid nodary 6= 0

Table 2.1: All types of surfaces of revolution with constant mean curvature. An
undulary is the locus of one focus of an ellipse rolling on a straight line without
slipping and a nodary is the locus of one focus of a hyperbola (see Figure 2.21)
rolling on a straight line without slipping.

values α1, α3, β1, β5, λ1, λ3, µ1, µ5 such that

q∗0 = q1 + α1(p2 − p0) = q5 + β5(p0 − p4)

q∗1 = q3 + α3(p4 − p2) = q1 + β1(p2 − p0)
(2.9)

and

p∗0 = q5 + µ5(p4 − p0) = q1 + λ1(p0 − p2)

p∗1 = q1 + µ1(p0 − p2) = q3 + λ3(p2 − p4)
(2.10)

HP = −1 implies area(P, P −Q) = 0 and therefore by Lemma 2.3∑
i∈{0,2,4}

det(pi, (qi+1 − pi+1)− (qi−1 − pi−1)) = 0.

Rewriting this equation yields

det(p0 − p2, q1) + det(p2 − p4, q3) + det(p4 − p0, q5)

+ det(p2 − p0, p1) + det(p4 − p2, p3) + det(p0 − p4, p5) = 0,

and using the elementary rule det(a, b) = det(a, b+ λa)

det(p0 − p2, q1 + β1(p2 − p0)) + det(p2 − p4, q3 + α3(p4 − p2))

+ det(p4 − p0, q5 + β5(p0 − p4)) + det(p2 − p0, p1 + µ1(p0 − p2))

+ det(p4 − p2, p3 + λ3(p2 − p4)) + det(p0 − p4, p5 + µ5(p4 − p0)) = 0.
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Replacing with the notions of (2.9) and (2.10) yields

det(p0 − p2, q
∗
1) + det(p2 − p4, q

∗
1) + det(p4 − p0, q

∗
0)

+ det(p2 − p0, p̃
∗
1) + det(p4 − p2, p̃

∗
1) + det(p0 − p4, p̃

∗
0) = 0,

which implies
det(p0 − p4, (q

∗
1 − q∗0)− (p̃∗1 − p̃∗0)) = 0.

q∗1 − q∗0 as well as p̃∗1 − p̃∗0 are both parallel to p0 − p2. We also assumed that
p0, p2, p4 is a non-degenerate triangle. Thus we conclude that

(q∗1 − q∗0)− (p̃∗1 − p̃∗0)

must be zero, which is what we wanted to show.

Analogous to the case N = 6 of Theorem 2.15 there is also the if and
only if condition for the quadrilateral case N = 4 even though the derived
polygons P̃ ∗ and Q∗ degenerate to pairs of parallel lines (see Figure 2.19).

Theorem 2.16. Let P = (p0, . . . , p3) and Q = (q0, . . . , q3) be two parallel
quadrilaterals and let P̃ ∗ and Q∗ be a pair of derived polygons which degen-
erate to pairs of parallel polygons (see § 2.2.2 and Figure 2.19). Then the
discrete mean curvature HP is equal to −1 if and only if Q∗ and P̃ ∗ are equal
up to translation.

Proof. The ’if’ part is Theorem 2.14. We have to show that

〈p3 − p1, (p0 − p2)
⊥〉 = 〈q3 − q1, (p0 − p2)

⊥〉.

Analogous to the proof of Thoerem 2.15, we get

HP = −1 ⇐⇒
∑
i∈{0,2}

det(pi, (qi+1 − pi+1)− (qi−1 − pi−1)) = 0

and therefore
det(p0 − p2, p3 − p1 − (q3 − q1)) = 0,

which is what we wanted to show.

Remark 2.17. According to the Theorem of Delaunay (see e.g. [12, Theorem
3.4, p. 46]) a surface of revolution with constant mean curvature is locally
one of the surfaces listed in Table 2.1.
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Example 2.18. Figures 2.18 and 2.21 show a hexagonal mesh which assumes
the shape of a nodoid (see Remark 2.17). We construct this example as
follows: We start with a rotational symmetric hexagonal mesh Σ covering
the sphere and construct a mesh Φ parallel to Σ (i.e., same combinatorics
and edgewise parallel) minimizing energies according to the following goals:

(i) Constant mean curvature Hp = −1 for all facets of the mesh.

(ii) Arbitrary radius of one circle of hexagons of Σ.

(iii) Fairness of the mesh.

(iv) Same rotational symmetry as Σ.

With some specific choice of the radius for the circle of hexagons (ii) the
optimization prozess could result in Φ covering a sphere again. However, the
choice which leads to Figure 2.18 leads to a discrete surface which after a
visual inspection reminds us of a nodoid (see Remark 2.17). A smooth nodoid
is a surface of revolution whose generating curve in a plan through the axis
is a nodary. Nodaries are plane curves which are can be generated as locus of
focus of a hyperbola rolling on a straight line without slipping. Figure 2.21
shows a nodary and indicates how close the discrete nodoid approximates
the smooth one.
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F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1

F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1
h

n

Figure 2.21: A discrete surface of revolution with constant mean curvature (see
Remark 2.17 and Example 2.18). The surface is cut open along a plane passing
through the axis. Visual inspection reveals that the considered surface is a nodoid.
The generating curve n, which is a nodary, is indicated. Also the hyperbola h with
its two focal points F1 and F2 which generates the nodary is illustrated.



Chapter 3

Conformal hexagonal meshes
and minimal surfaces

In the present chapter we establish a discrete Christoffel dual construction
for special hexagonal meshes, namely conformal ones. Most of this chapter
can be found in [16].

Figure 3.1: A discrete Enneper’s surface (right) and its discrete Gauss image
(see Example 3.24). This instance of the discrete Enneper’s surface is a result of
the discrete Christoffel dual construction stated in Definition 3.8 whereas Figures
2.14 and 2.15 are the result of an optimazation prozess minimizing the mixed area
(see Example 2.13).

37
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3.1 Multi-ratio and vertex offset meshes

For the notion of pairs of parallel meshes see the introduction of § 2.1.3 and
for offset meshes and offset distances of parallel meshes we refer back to
§ 2.4.1

For quad meshes H. Pottmann et al. [20, 21] showed a connection be-
tween the existence of vertex and face offsets on the one hand, and circular
and conical meshes on the other hand. In the present chapter the circular
meshes are the more important ones. A circular polygon is a polygon with a
circumcircle and a quasi-circular polygon is edge-wise parallel to a polygon
with a circumcircle (see e.g. [14]). A circular mesh is a mesh where each face
is a circular polygon and a quasi-circular mesh is a mesh where each face is
a quasi-circular polygon.

A quadrilateral is circular if and only if its cross-ratio is real. A gen-
eralization of the cross-ratio to polygons with an even number of vertices
z0, . . . , zn−1 is the so-called multi-ratio (see e.g. [3])

q(z0, . . . , zn−1) :=
(z0 − z1)(z2 − z3) · . . . · (zn−2 − zn−1)

(z1 − z2)(z3 − z4) · . . . · (zn−1 − z0)
.

Obviously, the multi-ratio q(z0, . . . , zn−1) is invariant under orientatin pre-
serving Möbius transformations since it is invariant under translations, dila-
tions, rotations and transformations of the form z 7→ 1/z. However, a real
value for the multi-ratio is invariant under anti-Möbius transformations as
well (see § 1.2.1).

Lemma 3.1. Let (zi) = (z0, . . . , zn−1) with n even be a polygon in the com-
plex plane. Further let αi denote the angles between zi−2− zi−3 and zi+1− zi
and let θi be the internal angles between zi−1− zi and zi+1− zi, where indices
are taken modulo n. Then the following statements are equivalent.

(i) There exists a polygon parallel to (zi) with all vertices on a circle.

(ii) The angles αi fulfill∑
i even

αi ∈ πZ, or, which is equivalent,
∑

i odd
αi ∈ πZ.

(iii) The multi-ratio q(z0, . . . , zn−1) is real.
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(iv) The interior angles θi have the property∑
i even

θi =
∑

i odd
θi =

n− 2

2
π.

Proof. (i) =⇒ (ii): Without loss of generality assume that (zi) lie on a
circle. For regular n-gons (wi) (see Figure 3.2) we have αi = 32π

n
for all i,

which yields
∑

i even αi = 3π. When changing one single vertex of (wi) on
the circle, e.g. wj 7−→ w̃j, the directions wj+1−wj and wj−wj−1 will change
about the same angle α, which follows from the inscribed angle theorem.
We get a new n-gon (w̃i) with w̃i = wi for all i except for i = j. For the
corresponding angles we have

α̃j−1 = αj−1 − α, α̃j = αj − α, α̃j+2 = αj+2 + α and α̃j+3 = αj+3 + α,

where all others remain unchanged. Therefore∑
i even

α̃i =
∑
i even

αi = 3π ∈ πZ.

αj

αj+2

α̃j

α̃j+2

wj−3

wj−2
wj−1

wjwjwjwjwjwjwjwjwjwjwjwjwjwjwjwjwj

wj+1

wj+2

w̃j

Figure 3.2: For a regular 8-gon we have an angle of 3π/4 for all αi =
∠(wi−2 − wi−3, wi+1 − wi). When changing a vertex wj to w̃j on the circumcircle
the corresponding angles αj−1, αj , αj+2 and αj+3 are replaced by α̃j−1 = αj−1−α,
α̃j = αj − α, α̃j+2 = αj+2 + α and α̃j+3 = αj+3 + α, respectively.
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If we change each vertex of the regular polygon (wi) until they come to the
positions of (zi) the sum of the considered angles remains in πZ.

(ii) =⇒ (i): Now we start with a polygon (zi) with corresponding angles αi
such that ∑

i even

αi ∈ πZ.

Starting with an arbitrary vertex w0 on a circle we construct vertices w1, . . . ,
wn on this circle with edges wi−wi−1 parallel to zi−zi−1 for all i ∈ {0, . . . , n},
where indices are taken modulo n only for zi but not yet for the points wi
(see Figure 3.3 with wi = zi). Until now we do not know whether wn = w0 or
not. From “(i) =⇒ (ii)” we know that the polygon (wi)

n−1
i=0 fulfills condition

(ii). Using the assumptions we can conclude that also wn − wn−1 is parallel
to w0 − wn−1 which yields wn = w0.

(i) ⇐⇒ (iii): With zk − zk−1 = ak exp(iϕk) and αk = ϕk−2 − ϕk+1 we get

q(z0, . . . , zn−1) =
∏
k even

(zk−2 − zk−3)

(zk+1 − zk)
=
∏
k even

ak−2e
iϕk−2

ak+1eiϕk+1
=

=
∏
k even

ak−2

ak+1

eiαk =
( ∏
k even

ak−2

ak+1

)
exp

(
i
∑
j even

αj
)
.

This yields

q(z0, . . . , zn−1) ∈ R⇐⇒
∑
j even

αj ∈ πZ.

(i) ⇐⇒ (iv): This statement without proof can be found in [14]. Our prove
is analogue to ’(i) ⇐⇒ (ii)’. We start with a regular n-gon, where the an-
gle condition of (iv) is obviously fulfilled, and move the vertices along the
circumcircle. According to the inscribed angle theorem this does not change
the sum of odd and even labeled agles, respectively.

Now we start with a polygon fulfilling the equation of (iv). Again, we move
the vertices of a regular n-gon on its circumcircle until its edges are parallel
to the given one. This is posslible since the circular polygon fulfills the angle
condition even when moving the vertices.

Corollary 3.2. Let M be a Möbius transformation and let (zi) be an n-gon
with n even. Then (zi) is quasi-circular if and only if (M(zi)) is.
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Proof. q(z0, . . . , zn−1) = q(M(z0), . . . ,M(zn−1)) ∈ R follows from the Mö-
bius invariance of the multi-ratio.

Remark 3.3. The construction of a parallel polygon with vertices on a circle
either closes up for all starting points z0, or for none of them (see Figure 3.3).
Let (wi)

n−1
i=0 be an arbitrary polygon and let (zi)

n
i=0 be contained in the circle

S1 where zi − zi+1 is parallel to wi − wi+1 (indices taken modulo n only for
wi). We define

µ : S1 −→ R2

z 7−→ µ(z) = [z1 − z] ∩ [zn−1 − zn].

Then the set µ(S1) is a conic section, which is a consequence of properties
of projective mappings between pencils of lines (see Figure 3.3, right).

Theorem 3.4 applies the above properties of polygons to meshes. The multi-
ratios which are mentioned are computed w.r.t. an arbitrary choice of Carte-
sian coordinate system in each face.

Theorem 3.4. Each of the following statements concerning a mesh M with
planar faces implies the other five.

(i) M has a vertex offset.

(ii) Every face of M is a quasi-circular polygon.

z0
z0 z2 z1

z0

zn

zn−1

µ(z0)

Figure 3.3: Left: The construction of a parallel polygon with vertices on a circle
closes up for all starting points z0 or for none. Right: The set of all points µ(z0)
which arise from the construction of Remark 3.3 are located on a conic section.
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(iii) For each face, the angles αi fulfill both,∑
i even

αi ∈ πZ and
∑
i odd

αi ∈ πZ,

respectively.

(iv) For each face, the angles αi fulfill
∑

i odd αi ∈ πZ.

(v) The multi-ratio of each face is real.

(vi) For each face, the interior angles θi have the property∑
i even

θi =
∑
i odd

θi.

The equivalence of statements (i)⇔ (ii)⇔ (iv) can be found in [14], and
(i)⇔ (ii) for quad meshes can be found in [20]. The rest follows immediately
from Lemma 3.1.

3.2 Conformal hexagons

Both conformal and curvature line parametrisations play a fundamental role
in the theory of minimal surfaces. On the one hand, the Weierstrass repre-
sentation converts a pair of a holomorphic and a meromorphic function (i.e.,
conformal parametrizations of S2) to a certain parametrization of a mini-
mal surface. On the other hand, Christoffel duality converts a conformal
parametrization of the sphere to an isothermic parametrization of a minimal
surface and vice versa. We now aim at a discrete analogue of a continuous
conformal surface, using hexagonal meshes.

Definition 3.5. A hexagon (z0, . . . , z5) is called conformal if both cr(z0, z1,
z2, z3) = −1/2 and cr(z0, z5, z4, z3) = −1/2.

The prototype of a conformal hexagon is a regular hexagon. Since Möbius
transformations leave a real cross-ratio of four points invariant, we immedi-
ately see that conformality of hexagons is Möbius invariant and each hexagon
which is Möbius equivalent to a regular hexagon is conformal.
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For a conformal hexagon both quadrilaterals z0, z1, z2, z3 and z0, z5, z4, z3

are circular since their cross-ratios are real (see Figure 3.4). The multi-ratio
of conformal hexagons is

q(z0, . . . , z5) =
(z0 − z1)(z2 − z3)(z4 − z5)

(z1 − z2)(z3 − z4)(z5 − z0)
= −1

2

(z3 − z0)(z4 − z5)

(z3 − z4)(z5 − z0)
= −1,

which implies, with Lemma 3.1, that this hexagon is quasi-circular.

Definition 3.6. Let f : U ⊆ R2 −→ R3 be a smooth regular mapping. Then
the hexagon

f0 = f + εfx f3 = f − εfx

f1 = f +
ε

2
fx +

√
3

2
εfy f4 = f − ε

2
fx −

√
3

2
εfy

f2 = f − ε

2
fx +

√
3

2
εfy f5 = f +

ε

2
fx −

√
3

2
εfy

is called infinitesimal hexagon at (x, y) where f = f(x, y) ∈ R3, fx = ∂f/∂x
and fy = ∂f/∂y.

Note that in general infinitesimal hexagons are not planar. According to
the Taylor expansion the vertices fi of the infinitesimal hexagon differ from
f(zi) in terms of order o(ε), where zi are the vertices of a regular hexagon
with radius ε and centered at (x, y).

For the following we extend the cross-ratio to points of R3 (see e.g. [4]).
Four points in R3 define a plane or sphere, which is identified with C ∪ ∞
via stereographic projection.

Theorem 3.7. Consider a regular mapping f : U ⊆ R2 −→ R3 and the
associated infinitesimal hexagon f0, . . . , f5 for a point (x, y) ∈ U . Then

z0

z1

z2

z3
z4

z5

Figure 3.4: An arbitrary conformal hexagon (zi) with its two circles.
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cr(f0, f1, f2, f3) = −1/2 + o(ε) and cr(f0, f5, f4, f3) = −1/2 + o(ε) for all
(x, y) ∈ U if and only if f is a conformal mapping.

Proof. Translation x 7→ x − f − εfx and scaling x 7→ 2x/ε transform the
vertices to

X̂0 = 0 X̂3 = −4fx

X̂1 = −fx +
√

3fy X̂4 = −3fx −
√

3fy

X̂2 = −3fx +
√

3fy X̂5 = −fx −
√

3fy.

The inversion X̃i = X̂i/‖X̂i‖2 sends X̂0 to ∞. As all three transformations
do not change the cross-ratio up to complex conjugation we get

cr(f0, f1, f2, f3) = cr(X̂0, X̂1, X̂2, X̂3) = cr(∞, X̃1, X̃2, X̃3) =
X̃3 − X̃2

X̃1 − X̃2

.

We start with the first cross-ratio condition

cr(f0, f1, f2, f3) = −1

2
+ o(ε)⇐⇒ X̃3 − X̃2 = −1

2
(X̃1 − X̃2) + o(ε), (3.1)

which is equivalent to

− fx
2C
− 3
−3fx +

√
3fy

A
+
−fx +

√
3fy

B
= o(ε),

where A = ‖−3fx+
√

3fy‖2, B = ‖−fx+
√

3fy‖2 and C = ‖fx‖2. Collecting
the coefficients of fx and fy we get

fx ·
(−1/2

C
+

9

A
− 1

B

)
+ fy ·

(−3
√

3

A
+

√
3

B

)
= o(ε),

which is equivalent to

−1

2
AB + 9BC − AC = 0 and − 3B + A = 0

because of the linear independence of {fx, fy}. It is easy to see that −3B +
A = 0 ⇔ ‖fx‖ = ‖fy‖ and −1

2
AB + 9CB − CA = 0 ⇔ 3〈fx, fx〉2 −

6〈fy, fy〉〈fx, fx〉 + 12〈fx, fy〉2 + 3〈fy, fy〉2 − 8
√

3〈fx, fy〉〈fy, fy〉 = 0. Further,
it is easy to see that Equation (3.1) is equivalent to

‖fx‖ = ‖fy‖ and
[
〈fx, fy〉 = 0 or 〈fx, fy〉 =

2
√

3〈fy, fy〉
3

]
. (3.2)
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Since ‖fy‖2 ≥ 〈fx, fy〉 = 2
√

3/3‖fy‖2 would impliy 1 ≥ 2
√

3/3, which is a
contradiction, fx and fy must be orthogonal. We get

cr(f0, f1, f2, f3) = −1/2 + o(ε) and cr(f0, f5, f4, f3) = −1/2 + o(ε)

is equivalent to ‖fx‖ = ‖fy‖ and 〈fx, fy〉 = 0, which is further equivalent
to the conformality of f .

3.3 A dual construction for conformal hexagons

With a view towards the smooth Christoffel dual construction of Section 3.4,
we introduce a dual construction for conformal hexagons.

Definition 3.8. For a conformal hexagon (zi), let ai := zi+1− zi be the edge
vectors, where indices are taken modulo n. A hexagon (z∗i ) is called dual to
(zi) if

z∗1 − z∗0 = −1/(z1 − z0) = −1/a0 z∗4 − z∗3 = −1/(z4 − z3) = −1/a3

z∗2 − z∗1 = 2/(z2 − z1) = 2/a1 z∗5 − z∗4 = 2/(z5 − z4) = 2/a4

z∗3 − z∗2 = −1/(z3 − z2) = −1/a2 z∗0 − z∗5 = −1/(z0 − z5) = −1/a5

(see Figure 3.5).

Proposition 3.9. Let (zi) be a conformal hexagon, ai := zi+1 − zi and b :=
z0 − z3. Then

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

z0

z1 z2

z3

z4

z5

z∗0

z∗1 z∗2

z∗3

z∗4

z∗5

Figure 3.5: Left: Edge coefficients in the discrete dual construction (Defini-
tion 3.8). Right: A conformal hexagon and its dual. For each conformal hexagon
z0, . . . , z5 both quadrilaterals z0, z1, z2, z3 and z0, z3, z4, z5 are circular.
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(i)
∑5

i=0 ai = 0, a0 + a1 + a2 + b = 0,
a0a2

a1b
= −1

2
,

a3a5

a4b
=

1

2
.

(ii) z∗0 − z∗3 = 2/b and in particular z0 − z3 is parallel to z∗0 − z∗3.

(iii) The hexagon (zi) posesses a dual hexagon.

(iv) The dual (z∗i ) is a conformal hexagon, and is unique up to translation.

(v) Non-corresponding diagonals of both quadrilaterals z0, z1, z2, z3 and z0,
z5, z4, z3 are transformed according to

z∗1 − z∗3 = 3
z0 − z2

|z0 − z2|2
, z∗2 − z∗0 = 3

z3 − z1

|z3 − z1|2
,

z∗5 − z∗3 = 3
z0 − z4

|z0 − z4|2
, z∗4 − z∗0 = 3

z3 − z5

|z3 − z5|2
.

In particular they are parallel:

z2 − z0 ‖ z∗1 − z∗3 , z1 − z3 ‖ z∗0 − z∗2 ,
z4 − z0 ‖ z∗5 − z∗3 , z5 − z3 ‖ z∗4 − z∗0 .

(vi) Applying the duality twice yields the original hexagon, up to translation:
(z∗∗i ) = (zi).

Proof. The properties of (i) follow immediately from the definition.

Using the properties of (i) we get

z∗0 − z∗3 =
1

a0

− 2

a1

+
1

a2

=
a1a2 − 2a0a2 + a0a1

a0a1a2

=
a1a2 + a1b+ a0a1

a0a1a2

=

=
2(a2 + b+ a0)

2a0a2

=
−2a1

a1b
=

2

b

which implies (ii). We consider 1/a3 − 2/a4 + 1/a5 which is −2/b analog to
the proof of (ii). This yields

−1/a0 + 2/a1 − 1/a2 − 1/a3 + 2/a4 − 1/a5 = −2/b+ 2/b = 0,

and therefore (iii). The cross-ratios of the involved quadrilaterals are

cr(z∗0 , z
∗
1 , z
∗
2 , z
∗
3) =

(z∗0 − z∗1)(z∗2 − z∗3)

(z∗1 − z∗2)(z∗3 − z∗0)
=

1
a0

1
a2

− 2
a1

(
− 2

b

) = −1

2
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and

cr(z∗0 , z
∗
5 , z
∗
4 , z
∗
3) = −1

2
,

which implies (iv).

The proof of (v) can be found in in A.I. Bobenko and Yu.B. Suris [7, Corollary
31].

cr(z0, . . . , z3) = −1

2
⇐⇒ z0 − z1

z1 − z2

= −1

2

z3 − z0

z2 − z3

⇐⇒ z0 − z2 + z2 − z1

z1 − z2

= −1

2

z3 − z2 + z2 − z0

z2 − z3

⇐⇒ 2
z0 − z2

z1 − z2

− 2 = −z2 − z0

z2 − z3

+ 1

⇐⇒ 2

z1 − z2

− 1

z2 − z3

=
3

z0 − z2

.

Taking the complex conjugate of the last equation yields

z∗1 − z∗3 = z∗1 − z∗2 + z∗2 − z∗3 =
2

(z1 − z2)
− 1

(z2 − z3)
=

3(z0 − z2)

|z0 − z2|2
.

All other cases in (v) can be shown analogously.

Applying the dual operator ∗ twice yields

z∗∗i+1 − z∗∗i = − 1

(z∗i+1 − z∗i )
= − 1(

− 1

(zi+1 − zi)

) = zi+1 − zi

or

z∗∗i+1 − z∗∗i =
2

(z∗i+1 − z∗i )
=

2( 2

(zi+1 − zi)

) = zi+1 − zi,

which implies (vi).

3.4 Christoffel dual construction

The following theorem by E.B. Christoffel [9] characterizes isothermic sur-
faces via a dual construction. An isothermic parametrization is a conformal
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cuvature line parametrization. It is known that all minimal surfaces can be
expressed in isothermic parameters. For the unit sphere S2, every conformal
parametrization is isothermic.

Theorem 3.10 (Christoffel). Let f be an isothermic parametrisation. Then
the Christoffel dual f ∗, defined by the formulas

f ∗x =
fx
‖fx‖2

and f ∗y = − fy
‖fy‖2

exists and is isothermic again. The dual f ∗ is a minimal surface if and only
if f is a sphere.

The next two propositions state properties of the smooth Christoffel dual
construction.

Proposition 3.11. Let f : U ⊆ R2 −→ R3 be an isothermic parametrisa-
tion, let f ∗ be its dual, and consider the ball Br(x, y) with radius r centered
at (x, y). Then

lim
r→0

A(f(Br(x, y)))

A(f ∗(Br(x, y)))
= ‖fx(x, y)‖2‖fy(x, y)‖2,

where A is the surface area.

Proposition 3.12. Let f : U ⊆ R2 −→ R3 be an isothermic parametrisa-
tion, ε > 0 and r = ε/

√
π. Further let ϕ : U ′ −→ U with ϕ(x, y) = (εx, εy)

Figure 3.6: A discrete catenoid and its discrete Gauss image (see Example 3.25).
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be a parameter transformation, fε := f ◦ ϕ the transformed function and f ∗ε
its dual. Then

lim
ε→0
A(fε(Br(x, y)))A(f ∗ε (Br(x, y))) = 1. (3.3)

We consider the dual construction of discrete isothermic surfaces as quad
meshes [4, 2]. The dual z∗0 , . . . , z

∗
3 of a conformal square with vertices z0, . . . , z3

is defined via
z∗i+1 − z∗i = (−1)i/(zi+1 − zi).

For a square P with edge length l and its dual P ∗, which then has edge length
1/l, we obtain A(P ) = l2, A(P ∗) = 1/l2 and therefore

A(P )

A(P ∗)
= l4 and A(P )A(P ∗) = 1,

which are discrete analogues of Propositions 3.11 and 3.12.
Computing the area of hexagons is more involved than the rectangle case.

For a conformal hexagon (zi) and its dual (z∗i ) we have

z∗i+1 − z∗i = −1/(zi+1 − zi)

for i ∈ {0, 2, 3, 5} and

z∗i+1 − z∗i = 2/(zi+1 − zi)

for i ∈ {1, 4}. Multiplying each vertex zi with r ∈ R \ 0 we get the hexagon
(wi) := (rzi) and its dual (w∗i ) with

wi+1 − wi = r(zi+1 − zi) andw∗i+1 − w∗i = −r−1/(zi+1 − zi)

for i ∈ {0, 2, 3, 5} and

w∗i+1 − w∗i = 2r−1/(zi+1 − zi)

for i ∈ {1, 4}. Consequently

w∗i+1 − w∗i = r−1(z∗i+1 − z∗i ).

The areas of (zi) and (z∗i ), are denoted by A(zi) = p and A(z∗i ) = q respec-
tively. Then

A(wi) = r2A(zi) = r2p and A(w∗i ) = A
(1

r
z∗i
)

=
1

r2
q.
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This yields disretizations of Propositions 3.11 and 3.12, namely

A(vi)

A(v∗i )
=
r2p
1

r2
q

= r2r2p

q
and A(vi)A(v∗i ) = pq. (3.4)

The fact that r does not occur in (3.4) means that A(vi)A(v∗i ) does not
depend on the discrete parametrisation.

Figure 3.7: Linear combinations of parallel meshes, where one is a discrete
catenoid and the second is a discrete helical surface are members of the corre-
sponding associated family of minimal surfaces. Special combinations can lead to
quad meshes (see Figure 3.21 on page 74). The case illustrated here is in fact a
discrete helicoid, which means that it discretizes a surface generated by the he-
lical motion of a straight line which orthogonally intersects the helical axis (see
Example 3.30).
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3.5 Discrete conformal and discrete minimal

surfaces

Definition 3.13. A discrete (hexagonal) conformal surface is a mesh with
regular hexagonal combinatorics where each hexagon is conformal in the sense
of Definition 3.5.

This definition is motivated by the following statements:

(i) The definition of planar discrete conformal surfaces (Definition 3.13) is
Möbius invariant (see Section 3.2).

(ii) According to Theorem 3.7, the limit of cross-ratios of the two quadri-
laterals of the infinitesimal hexagon both equal −1/2 if and only if the
considered mapping is conformal.

(iii) The discrete dual construction fulfils the property (z∗∗i ) = (zi), which
is analogous to the smooth dual construction (see Proposition 3.9 (vi)).

(iv) The discrete dual construction always closes for conformal hexagons
and transforms a discrete conformal surface into another one (see Propo-
sition 3.9).

(v) The discrete dual construction of Definition 3.8 fulfils discrete analogues
of properties of the smooth dual construction (see Propositions 3.11 and
3.12 and Equations (3.4)).

Consequently, a discrete conformal surface can be seen as a discrete analogue
of a smooth conformal parametrized surface.

Remark 3.14. (i) Since each face of a conformal mesh has multi-ratio
−1, it posesses the vertex offset property (see Theorem 3.4).

(ii) All vertices of a circular hexagonal mesh are always contained in a
sphere or in a plane. We can say that a circular hexagonal surface is
a discrete analogue of a surface with umbilic points only.

The next definition is motivated by Theorem 3.10.

Definition 3.15. A discrete (hexagonal) minimal surface is the dual of a
conformal mesh covering the unit sphere.
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Here the word “covering” can be understood as “inscribed”, “edge-wise
tangent”, i.e., circumscribed or “face-wise tangent”, i.e., circumscribed. Later
we show that a certain notion of discrete mean curvature vanishes for all such
minimal surfaces.

Remark 3.16. A more general definition of conformal hexagonal meshes can
be derived from the dual construction for quad meshes in [7]. Instead of taking
cross-ratios −1/2 in Definition 3.5, we take fractions −αn/βm where m and
n identify the row and the column of the position of the quadrilateral. This
can be interpreted as a discrete reparametrization of the standard conformal
mesh. The dual construction then must be modified in the following way:

z∗1 − z∗0 = −βm/(z1 − z0) z∗4 − z∗3 = −βm/(z4 − z3)

z∗2 − z∗1 = αn/(z2 − z1) z∗5 − z∗4 = αn/(z5 − z4)

z∗3 − z∗2 = −βm/(z3 − z2) z∗0 − z∗5 = −βm/(z0 − z5).

After this change Proposition 3.9 is still valid.

3.6 A construction of planar conformal meshes

This section describes an explicit construction of a conformal hexagonal
mesh, which we are going to use later.

z0

z1

z2

z3

z4

z5

(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi) (zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi) α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)

α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)

β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi) β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)

Figure 3.8: Left: An arbitrary conformal hexagon (zi). Right: A planar confor-
mal mesh βk ◦ αl(zi) = αl ◦ βk(zi) (see Proposition 3.17).
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Proposition 3.17. Let (zi) be a conformal hexagon and let α and β be two
similarities, which map (z4, z5) to (z2, z1) and (z3, z4) to (z1, z0), respectively.
Then α and β commute, i.e.,

α ◦ β = β ◦ α and βk ◦ αl(zi) = αl ◦ βk(zi)

is a conformal mesh, with no gaps, where (k, l) ∈ Z2 (Figure 3.8).

Proof. There exist ϕ, ψ ∈ R and v, w ∈ C such that

α(z) = reiϕz + v and β(z) = seiψz + w.

We obtain

α(z5) = reiϕz5 + v = z1 β(z4) = seiψz4 + w = z0

α(z4) = reiϕz4 + v = z2 β(z3) = seiψz3 + w = z1,

which implies

reiϕ(z5 − z4) = z1 − z2 andseiψ(z4 − z3) = z0 − z1.

It follows that

r

s
ei(ϕ−ψ) z4 − z5

z3 − z4

=
z1 − z2

z0 − z1

⇐⇒ r

s
ei(ϕ−ψ) z5 − z0

z0 − z3

= −z2 − z3

z3 − z0

,

because of the cross-ratio condition of conformal hexagons. Further,

seiψz2 + w − (seiψz3 + w)︸ ︷︷ ︸
=z1

= reiϕz0 + v − (reiϕz5 + v)︸ ︷︷ ︸
=z1

,

which implies β(z2) = α(z0). Since

β−1(z) = s−1e−iψz − s−1e−iψw, α−1(z) = r−1e−iϕz − r−1e−iϕv

and
α−1(z2) = β−1(z0)

we have
r−1e−iϕz2 − r−1e−iϕv = s−1e−iψz0 − s−1e−iψw

and
reiϕz0 + v = seiψz2 + w.
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We multiply the last two equations and get

z0z2 − z0v + vα−1(z2) = z0z2 − wz2 + wβ−1(z0) ⇐⇒ v = w
(z4 − z2)

(z4 − z0)
.

We want to show that β ◦ α = α ◦ β. Therefore we compute

α ◦ β(z) = rsei(ϕ+ψ)z + reiψw + v

and

β ◦ α(z) = rsei(ϕ+ψ)z + seiϕv + w.

Consequently,

α ◦ β = β ◦ α ⇐⇒ (reiϕ − 1)w = (seiψ − 1)v. (3.5)

Replacing v by w(z4 − z2)/(z4 − z0), the last equation is further equivalent
to

(reiϕ − 1) = (seiψ − 1)
(z4 − z2)

(z4 − z0)
⇐⇒ β(z2) = α(z0),

which we have already shown to be true.

To obtain circular conformal meshes we have to start with a circular confor-
mal hexagon and then apply Proposition 3.17.

A similarity which is no translation is decomposable into a dilation and a
rotation. The center of rotation of α and β is v/(1− reiϕ) and w/(1− seiψ),
respectively. From equation (3.5) we obtain that both centers must be the
same if and only if α ◦ β = β ◦ α. In R2 we take the 3× 3 matrices

A =

 1 0
Re v
Im v

rDϕ

 and B =

 1 0
Rew
Imw

sDψ


for α and β, where Dω is the 2 × 2 rotation matrix by an angle of ω. Since
A and B commute, i.e., AB = BA, αl ◦ βk can be written in the form
exp(l logA+ k logB).
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3.6.1 Discrete holomorphic functions

Now, we consider a meshM with arbitrary combinatorics stored in the graph
G. The double D of G is a quad graph defined such that the new vertices
V (D) are the old ones V (G) combined with the vertices of the dual graph
V (G∗) (see e.g. [6] and Figure 3.9). A quadrilateral of D consists of the two
vertices incident with an edge of G and the two vertices incident with the
corresponding edge of G∗. A function f is discrete holomorphic with (possibly
complex) weights ν if for each quadrilateral (z0, w0, z1, w1) of the double graph
D the equation

f(w1)− f(w0)

f(z1)− f(z0)
= iν(z0, z1) = − 1

iν(w0, w1)
(3.6)

holds. A discrete Laplacian operator with weights ν then acts on a complex-
valued function via

(∆f)(z) =
∑

w∈star(z)

ν(w, z)(f(w)− f(z)),

where star(z) consists of all vertices which are connected with z by an edge
of G. Further, f is called discrete harmonic if

(∆f)(z) = 0

GGGGGGGGGGGGGGGGG DDDDDDDDDDDDDDDDD

z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0

w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0 z1z1z1z1z1z1z1z1z1z1z1z1z1z1z1z1z1

w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1

Figure 3.9: Left: A graph G with arbitrary combinatorics. Right: The double D
(dashed lines) of G (see § 3.6.1). The vertices of V (D) are the vertices V (G) (white
points) and the vertices of the dual graph V (G∗) (black points). The double D
is a quad-graph where each quadrilateral (z0, w0, z1, w1) consists of two vertices
(z0, z1) of V (G) and the two vertices (w0, w1) of V (G∗) corresponding to the two
adjacent faces incident with (zo, z1).



56 3. CONFORMAL HEXAGONAL MESHES

for all verticies z of the graph.
We consider complex functions defined an a graph G with values coming

from the embedding in C.

Proposition 3.18. The vertex coordinates of the meshM with double graph
combinatorics derived from a conformal hexagonal mesh generated with Propo-
sition 3.17 are function values of a discrete holomorphic function defined on
a regular hexagonal graph.

Proof. We consider points wi generated with the same similarities as the
meshM, starting with one arbitrary point. These new points are the function
values of the vertices of the dual mesh M∗. Here, the word ’dual’ does not
mean the Christoffel dual of the mesh M but the combinatorial dual of M
being seen as a graph. Since the new mesh with vertices

V (M) ∪ V (M∗)

and double graph combinatorics is generated via similarities, the ratio (z1 −
z0)/(w1 − w0) is constant for each quadrilateral. Therefore there exists a
“nice” weight function ν that fulfills (3.6) and which is constant at the edges
(z0, z1) and (w0, w1) of the mesh.

Corollary 3.19. The vertex coordinates of the conformal hexagonal meshM
generated with Proposition 3.17 and its dual mesh M∗ are function values of
a discrete harmonic function defined on a regular hexagonal graph.

Proof. This follows immediately from Proposition 3.18 and [6, Theorem
7.3], which says that a discrete holomorphic function f , defined on the double
graph D of an arbitrary graph G, restricted to G or G∗ is discrete harmonic.

Corollary 3.20. Let (zi) be a hexagon which is Möbius equivalent to a reg-
ular one. Then, the conformal hexagonal mesh M generated with Proposi-
tion 3.17 is discrete harmonic with constant weights.

Proof. Let (zi) be a hexagon of the mesh M (see Figure 3.10). Then,
without loss of generality we have to show that the sum of the vectors of the
edges emanating from z2 is the zero vector. If (zi) is a regular hexagon, then



3.6. A CONSTRUCTION OF PLANAR CONFORMAL MESHES 57

the proposition is obvious. For the non-regular case let us assume further
without loss of generality that

α(z) = reiϕz

which means that the center of rotation is 0. Therefore we have to show that

(z1 − z2) + (z3 − z2) + (reiϕz3 − z2) = 0.

reiϕz3 − z2 = reiϕ(z3 − z4) = −1

2
reiϕ

(z2 − z3)(z4 − z1)

(z1 − z2)
=

= −1

2

(z2 − z3)(z4 − z1)

(z5 − z4)
=

(z1 − z2)(z3 − z4)

(z5 − z4)
.

To finish the proof we must show that

p := (z1 − z2)(z5 − z4) + (z3 − z2)(z5 − z4) + (z1 − z2)(z3 − z4)

is zero. The cross-ratio conditions of four successive vertices of (zi) are equiv-
alent to crp(k) = 0 for all k ∈ {0, . . . , 5}, where

crp(k) := (zk − zk+1)(zk+2 − zk+3) +
1

2
(zk+1 − zk+2)(zk+3 − zk).

A computer analysis with Mathematica of the system of algebraic equations
crp(0) = 0

...
crp(5) = 0

p = 0

in the unknowns z1, . . . , z5 leads to the following equation which can be very-
fied by hand by a careful computation:

p2 =
4

3
crp(0)crp(2)− 8

3
crp(1)crp(2) +

4

3
crp(1)crp(3)

− 2

3
crp(0)p+

4

3
crp(1)p+ 2crp(2)p− 4

3
crp(3)p+

2

3
crp(4)p = 0.

Therefore, p = 0. That is what we wanted to show.
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(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)

z3z3z3z3z3z3z3z3z3z3z3z3z3z3z3z3z3

z2z2z2z2z2z2z2z2z2z2z2z2z2z2z2z2z2

z1z1z1z1z1z1z1z1z1z1z1z1z1z1z1z1z1
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Figure 3.10: Illustration to the proof of Corollary 3.20. This mesh is harmonic
with constant weights if the vectors z1 − z2, z3 − z2, and α(z3)− z2 sum up to 0.
Because of the construction with similarities it is sufficient to verify this property
for one single vertex only.

3.7 Polygons with vanishing mixed area and

discrete minimal surfaces

In this section we discuss the connection between discrete minimal surfaces
defined in [5] and those of Definition 3.15.

In smooth differential geometry a minimal surface can be defined as a
surface with vanishing mean curvature in each point. A discrete minimal
surface in this setting is a mesh where the discrete mean curvature HP (see
Subsection 2.1.3) is zero for all faces P of the mesh. Incidence geometric
properties of the polygons with vanishing mixed area were studied in Section
2.3 and [17]. A result of [5] is that two parallel quadrilaterals have vanishing
mean curvature if and only if their non-corresponding diagonals are parallel
(see Figure 2.2).

According to Proposition 3.9, (v) the non-corresponding diagonals of the
quadrilaterals of a conformal hexagon and its dual are parallel. This yields

Proposition 3.21. A discrete minimal surface in the sense of Definition 3.15
has vanishing discrete mean curvature and therefore is a discrete minimal
surface in the sense of [5].
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Remark 3.22. A pair of meshes M and M′ is called reciprocal parallel,
if their combinatorics are dual (correspondences are vertex-face, face-vertex
and edge-edge) and corresponding edges are parallel. The connection between
the existence of a reciprocal parallel mesh and infinitesimal flexibility was
studied in [27].

Proposition 3.9, (v) says that non-corresponding diagonals of conformal
hexagons of the quadrilaterals with cross-ratio equal to −1/2 are parallel.

From a discrete conformal surface and its dual we can derive two pairs of
reciprocal parallel quad meshes by choosing the edges

z2 − z0 ‖ z∗3 − z∗1 and z4 − z0 ‖ z∗3 − z∗5

(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)
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Figure 3.11: A pair of dual hexagonal meshesM andM∗. The meshM on the
upper side consists of hexagons (zi) where the union of the vertices z0, z2, z4 form
a quad mesh M (dashed). The dual hexagonal mesh M∗ consists of hexagons
(z∗i ), where the union of the vertices z∗1 , z

∗
3 , z
∗
5 form a quad mesh M∗. According

to Remark 3.22 and Proposition 3.9, (v), M and M∗ are reciprocal parallel.
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for the first pair and

z1 − z3 ‖ z∗0 − z∗2 and z5 − z3 ‖ z∗0 − z∗4
for the second pair (see Figure 3.11).

3.8 Examples of discrete minimal surfaces

As a preparation to the construction of examples, we have to discuss the
relation between Christoffel duality and Weierstrass representation. We start
with an arbitrary conformal map which is a holomorphic function g : U ⊂
C −→ C where g′(z0) 6= 0 for all z0 ∈ U . This is a conformal parametrisation
of a part of the plane. With the stereographic projection

Φ(z) :=
1

(|z2|+ 1)
(2z, |z|2 − 1)

we get
n := Φ ◦ g

as a conformal parametrisation of the sphere. By applying the Christoffel
duality (Theorem 3.10) to n we get an isothermic parametrisation f ∗ of a
minimal surface with

f ∗x =
nx
‖nx‖2

and f ∗y = − ny
‖ny‖2

. (3.7)

On the other hand we get minimal surfaces f with the same Gauss image as
f ∗ via the Weierstrass representation (see e.g. [11]):

Theorem 3.23 (Weierstrass representation). For a holomorphic function h
and a meromorphic function g (with some restrictions) the map

f = Re

∫
h ·
(

1

2
(
1

g
− g),− 1

2i
(
1

g
+ g), 1

)
(3.8)

is a parametrisation of a minimal surface. Φ ◦ g is the Gauss image of f .

As any holomorphic function f(x+ iy) satisfies

Re(f ′) =
∂

∂x
Re f,

Equations (3.7) and (3.8) produce the same result if and only if n = Φ ◦ g
satisfies the condition that nx/‖nx‖2 equals the integrand in (3.8).
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zzzzzzzzzzzzzzzzz
[0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0]

[1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0]

[0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1]

[1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1]

Figure 3.12: The derived quad mesh (dashed) [m,n] := αm−n ◦ β2n(z) with
(m,n) ∈ Z2 represents a discrete parametrization of the conformal hexagonal mesh
generated with two similarities α and β following Proposition 3.17. We chose z
arbitrarily.

3.8.1 Examples

For our examples, we start with a circular hexagonal conformal mesh in C
and apply the discrete Christoffel duality to the stereographic projection of
the mesh.

Let α and β be two similarities which generate a conformal hexagonal
mesh as explained in Section 3.6 and choose z ∈ C such that α(z) 6= z 6=
β(z). We call a mesh αm−n ◦ β2n(z) with (m,n) ∈ Z2 a derived quad mesh
(Figure 3.12). The derived quad mesh represents a discrete parametrization
assigned to the conformal hexagonal surface. We basically distinguish three
cases:

(i) Both α and β are translations.

(ii) α is a rotation and β is a dilation with the same fixed point.

(iii) Both, α and β are similarities with the same fixed point but different
from a pure translation, rotation, or dilation.

For (m,n) ∈ Z2 and after an appropriate change of parameters, the derived
quad mesh is of the form m + in in (i), ea(m+in) in (ii), and e(a+ib)(m+in) in
(iii), where a, b ∈ R, a, b 6= 0. Therefore the meshes discretize the meppings
z 7→ z, z 7→ eaz, and z 7→ e(a+ib)z, respectively.
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Figure 3.13: Left: Circular conformal mesh which discretizes z 7→ z. Center:
Discrete Gauss image, which is the stereographic projection of the circular confor-
mal mesh. Right: Discrete minimal surface generated as the discrete Christoffel
dual of the Gauss image. According to Example 3.24 the hexagonal mesh is a
discrete Enneper’s surface.

Figure 3.14: Left: Circular conformal mesh which discretizes z 7−→ eλz (λ > 0)
(a symmetric hexagon, which is Möbius equivalent to a regular one is marked).
Center: Discrete Gauss image, which is the stereographic projection of the cir-
cular conformal mesh. Right: Discrete minimal surface generated as the discrete
Christoffel dual of the Gauss image. Referring to Example 3.25 the hexagonal
mesh is a discrete catenoid.



3.8. EXAMPLES OF DISCRETE MINIMAL SURFACES 63

w0

w1 w2

w5

0

z1

z5

α/2

γ(Re(z1))

γ(z∞)γ(z∞)γ(z∞)γ(z∞)γ(z∞)γ(z∞)γ(z∞)γ(z∞)γ(z∞)γ(z∞)γ(z∞)γ(z∞)γ(z∞)γ(z∞)γ(z∞)γ(z∞)γ(z∞)

z2

z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0 z3

Figure 3.15: The construction of a symmetric hexagon which is Möbius equiv-
alent to a regular hexagon. Here the angle α and the point z1 are given. The
construction is described in Remark 3.26.

Example 3.24 (Discrete Enneper’s surface). Letting g(z) = z and h(z) = z
yields

n(x+ iy) =
1

x2 + y2 + 1
(2x, 2y, x2 + y2 − 1),

and it is easy to verify that nx/‖nx‖2 is equal to the real part of the integrand
of (3.8). This is exactly the case of Enneper’s surface (see Figures 3.1 and
3.13). We see that Christoffel duality of the regular hexagonal mesh generates
a discrete Enneper’s suface.

Example 3.25 (Discrete catenoid). We start with a symmetric hexagon
which is Möbius equivalent to a regular hexagon but not itself regular (see
Figure 3.14, left and Remark 3.26) and apply Proposition 3.17 to get a cir-
cular conformal mesh with rotational symmetry. This mesh discretizes the
holomorphic function

g(z) = eλz

with an appropriate choice of λ > 0. We compute n(z) = (Φ◦g)(z) = Φ(eλz)
and see that nx/‖nx‖2 equals the real part of the integrand of (3.8) for
h(z) = 1/λ = const. The resulting minimal surface is the catenoid (see also
§ 3.8.2). We see that Christoffel duality of a hexagonal mesh with rotational
symmetries as described generates a discrete catenoid (see Figures 3.6 and
3.14).

Remark 3.26 (Symmetric conformal hexagons). There are several ways to
construct a symmetric hexagon (zi), which is Möbius equivalent to a regular



64 3. CONFORMAL HEXAGONAL MESHES

hexagon. We consider a very simple construction where z1 and α, which is
the angle between z1 − z2 and z5 − z4, are given.

The following construction is demonstrated in Figure 3.15. Without loss
of generality we choose the hexagon to be symmetric with respect to the real
axis of the complex plane. Then z5 = z1.

We consider the Möbius transformation γ1 which maps z5, 0, z1 onto w5,
w0, w1, where (wi) is a regular hexagon. Likewise, γ2 maps w5, w0, w1 onto
w5, w2, w1. The Möbius transformation γ = γ−1

1 ◦ γ2 ◦ γ1 maps an arbitrary
choice of z0 onto a point z2 so that z5, z0, z1, z2 and w5, w0, w1, w2 are
Möbius equivalent. Because of the symmetry we have to choose z0 on the real
axis. γ(R) is a circle. Therefore z2 is one point of the intersection of this
circle with the line Rz1.

To construct this circle we consider the image under γ of the two special
points Re(z1) and the point at infinity z∞ of the complex plane. Because of
the cross-ratio condition we get

γ(Re(z1)) = Re(z1) + i3 Im(z1) and γ(z∞) = Re(z1) + i
1

3
Im(z1).

Because of the symmetry of the Möbius transformation γ with respect to the
line joining z1 and z5, the above constructed points γ(Re(z1)) and γ(z∞) form
a diameter of the circle. The hexagon (zi) lies on a circle which completes
the construction.

We got now a symmetric hexagon which is also shown in Figure 3.14 left.

3.8.2 Discrete hyperbolic cosine

In this subsection we discuss discretizations of the smooth hyperbolic cosine
which provides us with a motivation for the naming of the discrete catenoid of
Example 3.25. First, we consider four properties of this smooth trigonometric
curve, the first and second also appears in physics:

(i) The catenary is the solution to the problem of describing the curve
of an ideal chain hanging in the gravitational field. This leads to the
second order ODE (see e.g. [28, III. § 11])

x′′ = c
√

1 + (x′)2, (3.9)
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with a constant c, which includes the gravitational acceleration and
material specifications. The solution to the ODE (3.9) is the catenary

x(y) =
1

c
cosh(cy + d1) + d2

with d1, d2 ∈ R.

(ii) The catenoid is the only nontrivial surface of revolution which is a
minimal surface (see e.g. [10]). The meridian of this surface, possibly
after a change of the parameter, is of the form

c cosh(y/c)

for some nonzero real number c, when rotating round the y-axis. There-
fore, the graph of the cosh function appears as the Christoffel dual of
the meridian curve Φ ◦ exp(x) of the unit sphere, where Φ is the stere-
ographic projection.

(iii) We have the following connection between the length of the catenary
and its area under the graph:

Theorem 3.27. A curve (x(y), y) in R2 describes a possibly stretched
hyperbolic cosine if and only if for all y1, y2 ∈ R the equation

A = cl

holds, where c is a real number, A is the area under the graph and l is
the length of the graph, both between the points y1 and y2.

For the proof see [8].

(iv) Let x(y) = cosh(y) be the radius function of the parallel circuits of a
surface of revolution. Then n(y) = (− tanh(y), 1/ cosh(y)) is its Gauss
image and x(y) and n(y) fulfills

(log x(y))′ = (log n(y))′.

This property is used in [5, Example 1] to define discrete catenoids.

We now turn to the discrete setting and consider polygons (pi)i∈{0,...,N}
with pi = (p1

i , p
2
i ) ∈ R2 and segment lengths li = ‖pi+1 − pi‖. There are

straight forward disrcetizations of the above smooth properties of cosh, which
can serve as a definition:
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(i) The discretization of the catenary is a polygon which fulfills the second
order difference equation

∆∆p1
i = c(li + li+1). (3.10)

This equation implies a position of equilibrium.

(ii) We consider a planar conformal quadmesh, which is rotational sym-
metric (see Figure 3.16), project it stereographic to the unit sphere
and compute the Christoffel dual according to [4]. The dualized merid-
ian polygons can be seen as a discrete cosh (see also [5, Example 1]).

(iii) A discrete cosh is a polygon which fulfills

Ai = cli

for all i ∈ {0, . . . , N}, where Ai is the area between the line segment
pi+1pi and the y-axis.

(iv) The discrete curvature theory of [5] leads to a construction of a discrete
catenoid which is described there ([5, Example 1]) and which fulfills the
difference equation

∆ log p1
i = ∆ log n1

i ,

where (ni) represents the corresponding meridian polygon on the unit
sphere.

Unfortunately, as can be seen from numerical examples, the definitions
of the discrete versions of the hyperbolic cosine of (i), (ii), and (iii) are not
equivalent. However, we can combine the three cases. We substitute the
length li in (i) by li from (iii). Note that the constants are possibly different
and therefore they do not cancel. We get

∆∆p1
i = c(Ai + Ai+1) (3.11)

with some constant c. Now we have the following

Theorem 3.28. The discrete hyperbolic cosine of (ii) constructed via the
discrete Christoffel duality for the quad mesh setting fulfills Equation (3.11).
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f0 f1
f2
1

f0

f6
1

f5
0

Figure 3.16: A planar conformal quad mesh discretizing ez. The zoom illustrates
the sequence (3.12) generated with the similarity x 7→ xf1/f0.

Proof. We consider the planar conformal mesh discretizing ez and con-
structed via similarities (see Figure 3.16 and [4]). W.l.o.g. one discrete pa-
rameter line (fi)i∈{0,...,N} lies in the x-axis and therefore we denote by fi the
x value of this point. Then we have 0 < f0 < f1 and

fi = fi−1
f1

f0

, which implies fi =
f i1
f i−1

0

. (3.12)

The stereographic projection to the unit circle in the xy-plane, which has the
form

Φ(x) =
1

x2 + 1

(
2x

x2 − 1

)
,

leads to points φi = Φ(fi). Now we compute the discrete Christoffel dual
(pi) of (φi) with the initial value p0 = (r, 0) (see also Figure 3.17). Then,

pi = pi−1 +
∆φi−1

‖∆φi−1‖2
(3.13)
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d

d

p0 = (r, 0)

pi−1

pi

pi+1

x

y

Ai

Ai−1

Figure 3.17: The Christoffel dual polygon of a meridian polygon of the unit
sphere which on the other hand is the stereographic projection of the planar quad
mesh illustrated in Figure 3.16.

for all i ∈ {1, . . . , N}. We set a := fi−1 and b := fi and compute

∆φi−1 = φi − φi−1 = Φ(b)− Φ(a)

=
1

b2 + 1

(
2b

b2 − 1

)
− 1

a2 + 1

(
2a

a2 − 1

)
= − 2(a− b)

(a2 + 1)(b2 + 1)

(
1− ab
a+ b

)
and its norm

‖∆φi−1‖2 =
4(a− b)2

(a2 + 1)(b2 + 1)
,

and get

∆pi−1 = − 1

2(a− b)

(
1− ab
a+ b

)
.

An interesting fact is that the y component d of ∆pi−1 is independent of i
because inserting fi−1+j for a and fi+j for b yields
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d =
fi+j + fi−1+j

2(fi+j − fi−1+j)
=

f i+j1 /f i−1+j
0 + f i−1+j

1 /f i−2+j
0

2(f i+j1 /f i−1+j
0 − f i−1+j

1 /f i−2+j
0 )

=

=
fi + fi−1

2(fi − fi−1)
=

a+ b

2(b− a)
.

Further we compute the second differences

∆∆pi = −∆pi−1 + ∆pi =
1

2(a− b)

(
1− ab
a+ b

)
− 1

2(b− b2

a
)

(
1− b b2

a

b+ b2

a

)

=

(
(b2 + 1)/2b

0

)
.

We recall that Ai denots the area between the line segment pi+1pi and the
y-axis and d is the y component of this segment. Therefore

Ai−1 =
p1
i−1 + p1

i

2
d and Ai =

p1
i + p1

i+1

2
d.

We choose the initial value p0 = (r, 0) in such a way that

p1
i−1 = − b+ a2b

2(a− b)2
.

Then, p1
i = p1

i−1 + ∆p1
i−1 and p1

i+1 = p1
i + ∆p1

i . It turns out that p1
i is equal

to p1
i−1 with a replaced by b and b replaced by b2/a. And analogous for pi+1

with a replaced by b2/a and b replaced by b3/a2. This mean that the choice
of that special r is independent of i. Therefore

p1
i = − a+ ab2

2(a− b)2
and p1

i+1 = − a2 + b4

2b(a− b)2

and further

Ai−1 + Ai =
(a+ b)3(1 + b2)

8b(a− b)3
.

Now we can compute the factor c of Equation (3.11)

c =
∆∆p1

i

(Ai + Ai+1)
=

4(a− b)3

(a+ b)3
,

which is independent of transformations of the form a replacing by bi/ai−1

and b replacing by bi+1/ai. Therefore c is independent of i.
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Figure 3.18: Hexagonal mesh as discrete catenoid. The meridian polygon, which
is indicated can be seen as a discrete cosh.

The last theorem is a result for the discrete cosh function appearing as the
Christoffel dual of a meridian polygon in the setting of quad meshes. How-
ever, since we want to give a motivation for the hexagonal case (see Exapmle
3.25) with the appropriate duality construction (see Definition 3.8), addi-
tional considerations are necessary. Our goal is to interpret the polygonal
line indicated in Figure 3.18 as discrete hyperbolic cosine. Because of the
coefficients appearing in Definition 3.8 and Proposition 3.9 the dual construc-
tion of (3.13) must be modified as follows:

pi =


pi−1 + 2

∆φi−1

‖∆φi−1‖2
for i even,

pi−1 + 3
∆φi−1

‖∆φi−1‖2
for i odd.

Also the sequence (3.12) changes into 0 < f0 < f2 and

fi =

fi−2
f2

f0

for i even,

λfi+1 + (1− λ)fi−1 for i odd.

with some λ ∈ (0, 1). With this changed notions Theorem 3.28 modifies to
the conjecture
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The discrete hyperbolic cosine constructed via the discrete Christof-
fel duality in the hexagonal setting fulfills

∆∆p1
i =

{
c1Ai + c2Ai+1 for i even,

c2Ai + c1Ai+1 for i odd,

where c1 and c2 are independent from i.

The proof of this conjecture appears to be much more complex than the
proof of Theorem 3.28, such that we can only provide verifications for a
list of examples with the help of a computer. The following program was
written in Mathematica. Note that in the list of examples all etries of the
form r[i] - r[0] are all zero, which is expected and which supports the
conjecture.

f[i_/;EvenQ[i]] := f[i - 2]*f[2]/f[0]
f[i_/;OddQ[i]] := la*f[i + 1] + (1 - la)*f[i - 1]
st[x_] := 1/(x^2 + 1)*{2*x, x^2 - 1}
s[i_] := st[f[i]]
p[0] := {r, 0}
p[i_/;EvenQ[i]] :=

p[i - 1] + 2*(s[i] - s[i - 1])/Norm[s[i] - s[i - 1]]^2
p[i_/;OddQ[i]] :=

p[i - 1] + 3*(s[i] - s[i - 1])/Norm[s[i] - s[i - 1]]^2
p1[i_] := p[i + 2][[1]] - 2*p[i + 1][[1]] + p[i][[1]]
d[i_] := p[i + 1][[2]] - p[i][[2]]
A[i_] := (p[i + 1][[1]] + p[i][[1]])/2*d[i]
AA[i_/;EvenQ[i]] := c*A[i + 1] + A[i]
AA[i_/;OddQ[i]] := A[i + 1] + c*A[i]
gl[i_] := (p1[i]/AA[i])/(p1[i + 1]/AA[i + 1])

For[i = 0, i < 5, i++,
{
f[0] = Random[Integer, {1, 1000}],
f[2] = f[0] + Random[Integer, {1, 100}],
la = 1/Random[Integer, {2, 100}],
Lc = Flatten[Solve[{gl[0] == 1, gl[1] == 1}, c, r]],
ggl[i_] = gl[i] /. Lc,
Lr = Flatten[Solve[ggl[j] == 1, r]],
rrr = r /. Lr,
For[j = 0, j < 4, j++,
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{
ii = Random[Integer, {0, 100}],
Lr = Flatten[Solve[ggl[ii] == 1, r]],
rr = r /. Lr,
Print["f[0]=", f[0], " f[2]=", f[2], " la=", la, " r[", ii,
"]-r[0]=", rr - rrr]
}]

}]

f[0]=111 f[2]=116 la=1/99 r[46]-r[0]=0
f[0]=111 f[2]=116 la=1/99 r[63]-r[0]=0
f[0]=111 f[2]=116 la=1/99 r[45]-r[0]=0
f[0]=111 f[2]=116 la=1/99 r[35]-r[0]=0
f[0]=467 f[2]=567 la=1/78 r[70]-r[0]=0
f[0]=467 f[2]=567 la=1/78 r[8]-r[0]=0
f[0]=467 f[2]=567 la=1/78 r[48]-r[0]=0
f[0]=467 f[2]=567 la=1/78 r[13]-r[0]=0
f[0]=666 f[2]=711 la=1/32 r[30]-r[0]=0
f[0]=666 f[2]=711 la=1/32 r[84]-r[0]=0
f[0]=666 f[2]=711 la=1/32 r[58]-r[0]=0
f[0]=666 f[2]=711 la=1/32 r[69]-r[0]=0
f[0]=26 f[2]=80 la=1/94 r[36]-r[0]=0
f[0]=26 f[2]=80 la=1/94 r[89]-r[0]=0
f[0]=26 f[2]=80 la=1/94 r[76]-r[0]=0
f[0]=26 f[2]=80 la=1/94 r[56]-r[0]=0
f[0]=109 f[2]=137 la=1/17 r[21]-r[0]=0
f[0]=109 f[2]=137 la=1/17 r[51]-r[0]=0
f[0]=109 f[2]=137 la=1/17 r[16]-r[0]=0
f[0]=109 f[2]=137 la=1/17 r[89]-r[0]=0

Example 3.29 (Helical surface). We start with an arbitrary hexagon, which
is not regular, but Möbius equivalent to a regular hexagon. We apply Propo-
sition 3.17 to get a mesh which discretizes the function

g(z) = eaz,

where a ∈ C \ 0 (see Figure 3.19, left). With h(z) = 1/a it is easy to verify
that nx/‖nx‖2 equals the real part of the integrand of (3.8). For a ∈ R we
obtain the catenoid (see Example 3.25) and for a ∈ iR we obtain the helicoid
and especially for a = i the helicoid with the parametrization

f(x, y) = (sin(x) sinh(y), cos(x) sinh(y), x).
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Figure 3.19: Left: Circular conformal mesh M which discretizes z 7→ eaz (a ∈
C \ (R ∪ iR)). According to Proposition 3.17 we start with an arbitrary hexagon
which is Möbius equivalent to a regular hexagon and apply similarities. Here the
mesh M overlaps itself (multi-valued function). Right: Stereographic projection
of the mesh M.

Figure 3.20: A discrete minimal surface which discretizes the smooth helical
surface given by (3.14). The corresponding Gauss image is shown by Figure 3.19,
right.



74 3. CONFORMAL HEXAGONAL MESHES

a

(zi)

2a
−1/a

(z∗i ) (z̃∗i )

Figure 3.21: Each hexagon (zi), which is Möbius equivalent to a regular one (left)
can be dualized in three different ways, by interchanging the coefficients 2 and −1
in the discrete dual construction (Definition 3.8). Two of them, (z∗i ) and (z̃∗i ) are
illustrated here. The linear combination 1/3z∗i + 2/3z̃∗i yields a quadrilateral.

For a = a1 + ia2 (a1, a2 6= 0) we get the surface

f(u, v) = Dωu ·Dαv

(−a2
1 + a2

2)/(aa)2 cosh v
2a1a2/(aa)2 sinh v

0

+

 0
0

u/(aa)

 , (3.14)

where Dt is the rotation matrix for rotation around the z-axis by an angle
of t, ω = aa/(2a1a2) and α = (a2

2 − a2
1)/(2a1a2). We see that this is a helical

surface too.
The Christoffel dual of the considered hexagonal mesh generates a discrete

minimal surface illustrated in Figure 3.20.

Example 3.30 (Associated family, helicoid). The spherical hexagonal mesh
of Example 3.25 can be dualized in yet another way. We interchange the
coefficients 2 and −1 in the discrete dual construction and get a helical
surface. The edges of all faces of this mesh are parallel to the corresponding
edges of the catenoid given in Example 3.25. Linear combinations of these two
discrete surfaces give all members of the associated family of this minimal
surface. A special combination yields a quad mesh which discretizes the
helicoid (see Figures 3.8.2 and 3.21).
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Figure 3.22: Linear combinations of parallel meshes, where one is a discrete
catenoid and the second is a discrete helical surface are members of the corre-
sponding associated family of minimal surfaces. Special combinations can lead to
quad meshes (see Figure 3.21 on page 74). The case illustrated here is in fact a
discrete helicoid, which means that it discretizes a surface generated by the he-
lical motion of a straight line which orthogonally intersects the helical axis (see
Example 3.30).
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