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Zusammenfassung

Die numerische Behandlung eines Hamilton-Operators stark korrelierter Vielteilchensys-

teme führt zu exponentiell groÿen Eigenwertproblemen als Funktion der Systemgröÿe. In

dieser Dissertation werden einige neue Zugänge dazu dargelegt.

Die Two-Subsystem Ground State Approximation (TSGSA) wurde durch eine Methode

der linearen Elastomechanik inspiriert. Diese beruht auf einer Partitionierung der Ele-

mentknoten einer Finiten-Elemente oder Finiten-Di�erenzen Diskretisierung in kleinere

Untersysteme. Die Besetzungszahlbasis eines Vielteilchensystems kann auf eine ähnli-

che Weise zerlegt werden. Die tensorielle Struktur des Hamilton-Operators macht diese

Systeme ideal für eine solche Behandlung.

Eine weiterer Ansatz ist die Numerical Projection Technique (NPT), bei der die Basis

nach Maÿgabe eines abstoÿenden Potentials der Teilchen umgeordnet wird. Durch eine

Transformation mit Hilfe des Schur-Komplements können verhältnismäÿig kleine Matri-

zen verwendet werden, die die Eigenwertberechnung drastisch erleichtern.

Die sehr erfolgreiche Multigrid-Methode erlaubt es, die Au�ndung von Lösungen linea-

rer Gleichungssysteme durch Verwendung unterschiedlicher Diskretisierungen stark zu

beschleunigen. Ähnliche Techniken können auf die Suche nach Eigenlösungen der Viel-

teilchensysteme angewendet werden.





Abstract

Solving e�ective Hamiltonians of strongly correlated materials leads to exponentially

large eigenvalue calculations as a function of system size. Several new approaches to

these problems are presented in this thesis.

The Two-Subsystem Ground State Approximation (TSGSA) was inspired by a method

of elasto-mechanics, the Automated Multilevel Substructuring Method (AMLS). It relies

on partitioning the node space of a �nite element or �nite di�erence discretization into

smaller sub-domains. To apply a similar approach in the �eld of many-body Hamiltoni-

ans, the occupation number space is partitioned accordingly. The tensorial structure of

the Hamiltonians make them even more suitable for this method.

Another approach is a Numerical Projection Technique (NPT) using a reordering scheme

on the occupation number basis, which is based on the value of a repulsive potential. In

this case a Schur congruence transformation can be used to lower the size of the matrices

involved and make the eigenvalue calculation more feasible.

A very successful method of applied mathematics is the Multigrid approach. Here, �nd-

ing the solution is accelerated by using di�erent lattice discretizations. Similar techniques

could be used to accelerate the search for eigensolutions of strongly correlated Hamilto-

nians.
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Preface

This work was done within the Doktoratskolleg (DK) Numerical Simulations in Technical

Sciences which is an interdisciplinary doctoral program in Graz funded by the FWF

Austrian Science Fund. At the time of the start of this PhD project, there were 10

proposing professors and 15 PhD positions. One of the aims was to bring together

students from science, mathematics and engineering for the bene�t of collaboration in

research and education.

For this thesis, the project title was Sparse Eigenvalue/-Vector Solvers and Clustering.

Eigenvalue computations play an important role in physics, applied mathematics, civil

engineering, and electrical engineering. The project had the objective to exchange ideas

and approaches to eigenvalue computation between di�erent research �elds. Interdisci-

plinarity may result in pro�t for all involved parties.

The main topic of this thesis was to �nd new approaches to the many-body problem

for strongly correlated materials in many-body physics, inspired by methods of applied

mathematics and engineering. In this research �eld, large algebraic eigenvalue problems

arise from the Schrödinger equation for systems of interacting particles inside a solid.

The main challenge is the exponential increase of the dimensionality of the eigenvalue

problems with respect to the system size. The details will be discussed in chapter 1.

Strongly correlated particles play an important role in many solid state bodies. A famous

e�ect is the appearance of insulating phases in metals due to strong correlations (Mott

insulators [1]). There are prominent examples of chemical compounds like the cuprates

and the manganites, which were under heavy investigation in the past decades. The

cuprates [2] were examined with the objective to �nd an explanation for the phenomenon

of high temperature superconductivity. It is believed that strong interactions give rise to

this important e�ect, which is used in many technical applications. Manganites [3] led to

the exploration of phenomena like the colossal magneto-resistance, used in modern hard

disks of almost every computer nowadays. More recently, optical lattices and light-matter

interaction systems attained attention by the scienti�c community. These systems play
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an important role for e.g. the development of quantum computers. In addition to that

there are many more interesting quantum e�ects due to the astonishing properties of

strongly correlated systems.

In order to study the unique properties of these quantum systems one relies on the

introduction of e�ective models which limit the amount of degrees of freedom, which

depends exponentially on the system size. This is necessary to make the calculations

feasible for modern computation techniques. At the same time the models are required

to re�ect the rich quantum e�ects which are observed in the experiment. In this way

numerical simulations can be used to explore them and explain their origins.

An example for an e�ective model is the multi-banded Hubbard model (see sec. 1.6). For

many calculations it is still too complicated, so further models with even more restrictions

on the degrees of freedom have been introduced like the Heisenberg model or the tJ-model.

They can be obtained from the Hubbard model by projection techniques (see app. I).

There exists a whole bunch of specialized numerical methods for the evaluation of these

models. A few of them are listed in the next paragraphs.

Quantum Monte-Carlo (QMC): This powerful method relies on the evaluation of

system observables by the means of stochastics [4]. A special decomposition of the

quantum mechanical Hamiltonian introduced by Trotter [5] and Suzuki [6] allowed to

treat quantum systems with Monte-Carlo [7, 8]. Further developments included the

stochastic series expansion (SSE, [9]) and acceleration techniques like the loop algorithm

[10]. Compared to other methods fairly large systems can be treated, and provided with

large computational power the physical values can be determined without systematical

error. The method has the major drawback of being limited to non-zero temperatures,

and the analysis of very low temperatures becomes increasingly demanding. Furthermore,

some quantum-mechanical models cannot be treated by QMC due to the sign-problem.

It assigns a minus sign to certain con�guration weights in some cases. In principle, this

can be dealt with, but the computational e�ort becomes exponentially larger.

Density matrix renormalization group (DMRG): As a further development of quan-

tum real-space renormalization groups [11] this method provides means to calculate

ground state (T = 0) properties for large systems [12, 13, 14, 15]. It relies on con-

secutively adding sites to a given system and projecting the gained phase space on a

small subspace in order to limit the computational e�ort in terms of memory and pro-
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cessing power. The major problem is addressing systems which extend in more than

one dimensions. It is possible to treat quasi one-dimensional objects like ladders with

this approach, but it fails for fully two-dimensional systems. Also, DMRG su�ers from

limitations concerning the evaluation of dynamical properties of quantum systems. They

give insight into system excitations which are highly important to understand physical

e�ects of materials. Only recently a mathematical foundation of the algorithm was de-

veloped by introducing matrix product states (MPS, [16, 17]). With this a connection

between the performance of DMRG and the notion of entanglement between clusters was

established.

Cluster perturbation theory (CPT) and variational cluster approach (VCA): Also

a highly competitive method for the calculation of ground state and dynamical material

properties [18, 19]. Here, small physical clusters of only a few particles are constructed

which can be easily calculated exactly. These clusters are combined to build the Green's

function (see sec. 1.8) of the whole system. In this approach, strong-coupling perturba-

tion theory up to leading order is used to reproduce the previously omitted correlations

between the clusters. An extension using variational parameters to improve the obtained

Green's functions is the variational cluster approach (VCA, [20]).

Exact diagonalization (ED): For some cases, the only viable approach is to fall back

on a purely algebraic eigenvalue solver. In this case only fairly small systems can be eval-

uated, although the matrix representations of the eigenproblems have the nice property

of being sparse. For that particular case, many sophisticated iterative eigenvalue solvers

exist [21], which can be applied here. The very powerful yet simple and e�ective Lanczos

method [22, 23] (see app. C) is often used, as well as the Davidson method [24] (see app.

F).

During the course of this dissertation multiple new approaches to the eigenvalue prob-

lem of strongly correlated systems were developed. One of them is described in chapter

2. The two-subsystem ground state approximation was motivated by a method used in

linear elasto-mechanics for the solution of vibrational modes of e.g. membranes (see app.

B). It relies on sub-dividing a physical space into smaller regions where the eigenvalue

problems are solved individually. Later, the solutions of these sub-domains are used to

form a smaller matrix representation of the full problem. This approach is particularly
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suitable for these many-body systems as the individual sub-systems can be combined by

a tensor product.

In chapter 3 another approach is explained. It includes a basis reordering scheme to de�ne

partitions which are more or less relevant for the construction of the system ground state.

The value of a repulsive potential between particles is taken as de�ning quantity for the

partitions. This method can be seen as extension to existing projection techniques used

to generate e�ective Hamiltonians.

In recent years the Multigrid approach to solve large linear systems of equations has

been used very successfully. Chapters 4 and 5 illustrate the possibility of adapting the

Multigrid idea for strongly correlated system Hamiltonians.

To be able to examine, verify and benchmark the di�erent approaches listed above many

di�erent numerical algorithms, implementation techniques and computational frame-

works had to be used. Some of them are explained in the appendices.
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1 Introduction to Many-Body Physics

1.1 The many-body problem

Quantum mechanics in the context of solid-state physics leads to highly dimensional

eigenvalue problems. The full wave function inside a bulk material is a function of the

coordinates of all particles inside the domain.

Ψ = Ψ(~r1, ~r2, ~r3, ..., ~rn; ~R1, ~R2, ..., ~RN ) . (1.1)

Here, the capital R denote the positions of the nuclei, and the lower case letters denote

the electron locations. The number of electrons is n, the number of nuclei is N . The

wave function is generally a complex function and observes special symmetries as will

be described later. Note that it is not directly accessible in an experiment. Only the

measurement of the charge density distribution is possible:

ρ = e |Ψ|2 ,

with e the elementary charge constant.

The wave function must ful�ll the stationary Schrödinger equation

Ĥ |Ψ〉 = E |Ψ〉 . (1.2)

It forms an eigenproblem with eigenvalues E which corresponds to the physical quantity

of energy. Ĥ is a Hermitian di�erential operator, which reads in the most general form:



Ralf Gamillscheg 1 Introduction to Many-Body Physics

Ĥ = − 1
2m

n∑
i

∇2
i −

1
2M

N∑
I

∇2
I

+
1
2

n∑
i

n∑
j

1
|~ri − ~rj |

+
1
2

N∑
I

N∑
J

ZIZJ

|~RI − ~RJ |

−
n∑
i

N∑
I

ZI

|~ri − ~RI |
.

Here, M denotes the mass of the ions, m the mass of the electrons, and Z is the atomic

number. One has to keep in mind, that the Nabla-operators ∇i act on the coordinates

of just one of the particles which is denoted by the index i. And again, capital indices

denote sums over the nuclei while lower case indices correspond to the electrons. The �rst

two terms correspond to the kinetic energies of the electrons and the nuclei, respectively.

The further expressions include the electron-electron interaction, the nucleus-nucleus

interaction and the nucleus-electron interaction.

1.2 The Born-Oppenheimer approximation

In order to reduce the complexity of the problem one �xes the positions of the nuclei

[25]. This can be justi�ed by considering that the masses of the nuclei are larger by more

than three orders of magnitude.

The problem becomes:

Ĥel. |Φ〉 = Eel. |Φ〉 , (1.3)

with the electronic wave function |Φ〉 and the Hamiltonian

Ĥel. = − 1
2m

n∑
i

∇2
i +

1
2

n∑
i 6=j

1
|~ri − ~rj |

−
n∑
i

N∑
I

ZI

|~ri − ~RI |
. (1.4)

1.3 Approximations to the correlations between particles

Well-known methods used in quantum chemistry approximate correlations between parti-

cles. As an example, the local density approximation (LDA) states that the wave function

2
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itself is only a function of the local electronic density. This approximation reduces the

amount of numerical e�ort signi�cantly.

The Hartree-Fock method iteratively corrects the electronic distribution by the calcu-

lation of the interaction and exchange potentials based on the LDA or comparable ap-

proaches, recursively.

In the case of this work no correlations between particles are omitted. Certain quantum

e�ects are believed to have their very origins in these correlations. To study these e�ects

model Hamiltonians are introduced, which can be de�ned in the framework of the second

quantization (see sec. 1.5).

1.4 Fermions and bosons

An important role in the �eld of solid state physics is played by particle statistics. A

crucial property of elementary particles is the indistinguishability, which does not allow an

individual particle to be followed by observing a trajectory. Only the particle distribution

density can be tracked in an experiment.

Consider a wave function of two particles:

Ψ(~r1, ~r2) ,

and de�ne a permutation operator, which swaps these two particles

PΨ(~r1, ~r2) = Ψ(~r2, ~r1) .

As stated, due to the indistinguishability the physical observable quantity, the particle

density ρ = |Ψ|2 must not change:

|PΨ(~r1, ~r2)|2 = |Ψ(~r1, ~r2)|2

PΨ(~r1, ~r2) = Ψ(~r1, ~r2)eiφ .

So the permutation operator does nothing but apply a phase to the wave function. If the

two particles are exchanged twice, the particles are in the initial state again, not only

from the physics point of view, but also mathematically:

P2 = 1

Ψ(~r1, ~r2) = ±Ψ(~r2, ~r1) .

3
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The phase can either be 1 or −1. This leads to the following de�nition: particles which

have a symmetric wave function (+ in the above equation) are called bosons and particles

described by a anti-symmetric wave function (−) are fermions.
Note that elementary particles which compose the matter in the universe like electrons

and quarks are all fermions. Although the notion of changing sign of the overall wave

function by swapping two particles seems to be rather odd it leads in the end to the

stability of matter.

1.5 2nd quantization

The second quantization [26] replaces the description of a solid body system in continuous

space with a description by discrete quantum operators. To represent the wave function

a set of basis functions is introduced which is based on atomic orbitals. This can be

motivated by the notion of localized particles, which are described by a localized wave

function at a speci�c site. The dynamics of the particles is simulated by hopping processes

from site to site.

The following considerations are restricted to fermions as they are the main subject of

interest in this work.

1.5.1 Fermionic �eld operators

De�ne operators which create or annihilate a fermionic �eld at position ~r [25]:

f̂ †(~r), f̂(~r) .

In order to ful�ll the symmetry requirements on the wave function (anti-) commutation

rules have to be introduced:

{
f̂(~r), f̂ †(~r′)

}
:= f̂(~r)f̂ †(~r′) + f̂ †(~r′)f̂(~r) = δ(~r − ~r′){

f̂ †(~r), f̂ †(~r′)
}

= 0{
f̂(~r), f̂(~r′)

}
= 0 .

4
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1.5.2 Discrete annihilation and creation operators

A speci�c basis function set ξi(~r) can be introduced to transform to discrete annihilation

and creation operators âi and â
†
i :

f̂(~r) =
∑
i

âiξi(~r)

f̂ †(~r) =
∑
i

â†iξ
∗
i (~r) .

The discrete creation operator âi can be imagined as creating a particle with wave func-

tion ξi(~r). For strongly correlated materials it describes a localized wave function. This

picture has to be used primarily for e.g. f orbitals of transition metals, which hold locally

bound electrons.

The particle creation and annihilation operators âi, â
†
i inherit the commutation rules

from the �eld operators:

{a†i , a
†
j} = 0

{ai, aj} = 0

{ai, a†j} = δi,j .

1.5.3 The occupation number basis

The concept of indistinguishability leads to the possibility of de�ning the state of a

quantum particle system merely by the number of particles at each site in space. These

sites may correspond to a physical crystal lattice.

So a quantum basis state of the system looks like

|φ〉 = |n1, n2, n3, ...nL〉 .

Here, ni denotes the number of particles at site i and L is the total number of sites.

In the case of fermions the anti-symmetric property of the wave function forbids the

location of more than one particle per site. So only two values for a speci�c site are

valid: ni = 0 or ni = 1.

In general, annihilation and creation operators modify the number of electrons at each

5
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site.

â† |n〉 =
√
n+ 1 |n+ 1〉

â |n〉 =
√
n |n− 1〉 .

The creation operator â† switches from a state with n particles to a state with n +
1 particles and therefore creates a particle, while the annihilation operator destroys a

particle.

This allows to represent any state of the quantum system in terms of the operators:

|φ〉 = (â†1)n1(â†2)n2 ...(â†L)nL |0〉 ,

where |0〉 is the so-called vacuum state without any particle.

Using these operators another operator can be introduced which counts the number of

particles at a site.

n̂ = â†â

n̂ |n〉 = â†â |n〉 = â†
√
n |n− 1〉 =

√
n
√
n |n〉 = n |n〉 .

One can easily see that each occupation number basis state is an eigenstate of the particle

number operator with eigenvalue n.

1.5.4 Transformation of operators

To transform an operator speci�ed within the framework of �rst quantization to second

quantization one has to distinguish depending on how many particles it is acting on [27].

1.5.4.1 Transformation of single particle operators

An single particle operator Ô can be transformed using:∑
ij

〈i| Ô |j〉 â†i âj ,

where {|i〉} are the single particle basis states and Ô is the operator in �rst quantization

representation.

6
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1.5.4.2 Transformation of two particle operators

An operator acting on two particles (e.g. an interaction potential) is transformed like:∑
ijmn

〈i,m| Ô2 |j, n〉 â†i â
†
mânâj ,

where |i,m〉 expresses, that the �rst particle is in single particle state |i〉 and the second

in state |m〉.

1.5.5 General Hamiltonian in 2nd quantization

In the most general case, a many-body Hamiltonian consisting of single and two particle

operators has the form

H =
∑
ij

tij â
†
i âj +

∑
qrst

Vqrstâ
†
qâ
†
rât âs . (1.5)

Here, the �rst term represents the kinetic part of the Hamiltonian. In the discrete

case this is re�ected by particles hopping from site to site. tij is the hopping-integral

which is calculated by tij = 〈i| Ĥkin. |j〉. The potential term is quanti�ed by the man-

ifold Vqrst = 〈q, r| Ĥpot. |s, t〉 which holds information over the interaction between the

particles. Usually, the dimensionality of this quantity is drastically reduced by the intro-

duction of model Hamiltonians.

1.6 The Hubbard model

The operators introduced in the previous section can be used to de�ne a basic model

[28, 29] of a solid body, which though looking very simple describes a vast number of

quantum e�ects. At the same time numerical treatment is very di�cult.

The Hubbard model additionally introduces a second spin species. The two species are

denoted spin-up (↑) and spin-down (↓).

1.6.1 The extended one-band Hubbard model

Starting from the generic Hamiltonian (eq. 1.5) one can derive an e�ective model by

introducing some simpli�cations. A one-banded model restricts the number of orbitals

per site to one. It is assumed that the orbitals are translational invariant and the hopping

7
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integral tij becomes a single number t for nearest-neighbor hoppings. Hoppings to sites

further away are neglected.

The interaction is restricted to an on-site Coulomb interaction described by the param-

eter U and an interaction of nearest-neighbors described by V .

H = −t
∑
〈ij〉σ

â†iσâjσ + V
∑
〈ij〉σσ′

n̂iσn̂jσ′ + U
∑
i

n̂i↑n̂i↓ .

The �rst (kinetic) term describes the hopping of fermions from one site to a neighboring

one. The second (potential) term gives an additional cost of energy, if two electrons

occupy neighboring sites. The third (potential) term punishes two particles with di�erent

spins occupying the same site. The sum over indices in triangular brackets denotes

summation over all neighboring site pairs, σ is the spin degree of freedom (↑,↓).
The short-ranged potentials can be physically justi�ed by considering screening. The

repulsion does not exhibit power law like behavior as usual Coulomb interactions, but

due to the presence of other charges in the crystal the potential is screened and suppressed

exponentially with distance.

1.6.2 The one-band Hubbard model

The interactions are restricted to on-site interactions:

H = −t
∑

<i,j>σ

â†iσâjσ + U
∑
i

n̂i↑n̂i↓ . (1.6)

1.6.3 Particle �lling

The Hubbard Hamiltonian conserves the number of particles per spin species in a system.

This means that the Hamiltonian of a grand-canonical ensemble breaks down into sectors

of di�erent particle numbers, which can be calculated independently.

In physics, the most important case is that of half-�lling. In this case a Hubbard-type

system of L sites is occupied by N↑ = L/2 spin-up and N↓ = L/2 spin-down particles.

At half-�lling the Hubbard model exhibits particle-hole symmetry.

Generally, the size of the occupation number basis is(
L

N

)
,

8



1.7 Spin-less fermions Ralf Gamillscheg

which is the binomial coe�cient and corresponds the number of possibilities of distribut-

ing N indistinguishable particles on L sites.

For a system with two spin species the size becomes(
L

N↑

)
·

(
L

N↓

)
.

Note that at half-�lling these factors grow exponentially with the system size L.

1.7 Spin-less fermions with nearest neighbor interaction

A system of particles of only one spin-species is given by

H = −t
∑
<i,j>

â†i âj +
V

2

∑
<i,j>

n̂in̂j . (1.7)

The Hamiltonian introduces additionally to the aforementioned hopping term a potential,

which applies for system states where two or more particles are located next to each other.

In the case V > 0 this corresponds to a repulsion between the particles.

In the case of half-�lling a large repulsion term leads to a ground state where crystal

sites are alternatingly occupied and empty.

1.7.1 Mapping to a spin system

For a one-dimensional system the Hamiltonian looks like

H = −t
∑
i

(â†i âi+1 + â†i+1âi) + V
∑
i

n̂in̂i+1 .

It can be mapped to a pure spin system by

a†i −→ S+
i (−1)ñi

ai −→ (−1)ñiS−i

a†iai −→ Sz +
1
2
.

This is called the Jordan-Wigner transformation [30]. The sign is necessary to account for

the anti-commutation rules of the fermionic operators. ñi counts the number of particles

to the left side of site i.

9
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It leads to a XXZ-Hamiltonian of a spin-1
2 system:

HXXZ =
∑
i

(
Jxy(Sxi+1S

x
i + Syi+1S

y
i ) + JzS

z
i+1S

z
i

)
,

with

t =̂
Jxy
2

V =̂ Jz .

1.7.2 Phase diagram

The phase diagram of such spin systems is well known and it exhibits multiple phase

transitions: [30, p. 161]

Jz
Jxy



< −1 Ising Ferromagnet

= −1 Heisenberg Ferromagnet

> −1, < 1 XY

= 1 Heisenberg Anti-Ferromagnet

> 1 Ising Anti-Ferromagnet

Thus, a system of spin-less particles with no (small) nearest neighbor interaction cor-

responds to a spin chain in the XY-phase. We can further deduct, that the system

undergoes a phase transition at
V

t
= 2

Jz
Jxy

= 2

from a free-fermion state to a density-wave driven state, where the sites are mostly

alternatingly occupied and unoccupied. This corresponds to an anti-ferromagnet in the

spin picture and it holds for systems at half-�lling and a chemical potential µ = 0. In

the spin picture a magnetic �eld h corresponds to µ in the particle picture.

1.8 The Green's function

The Green's function plays an important role for analysis of dynamical processes of

many-body systems. Generally, the one-particle retarded Green's function is de�ned as

[31]

10
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Gret.
i,j (t, t′) = −iΘ(t− t′)

〈[
âi (t), â

†
j(t
′)
]
ε

〉
.

In the case of fermions [., .]ε denotes the anti-commutator, the angle brackets 〈.〉 denote
the average evaluated in the ground state: 〈.〉 ≡ 〈Ψ0| . |Ψ0〉.
The Green's function is closely related to the spectral function Si,j(E) which gives im-

mediate insight into the possible excitations of the system. The relation of Si,j(E) and
the fourrier-transformed Green's function reads

Gret.
i,j (E) =

∫ ∞
−∞

dω
Si,j(ω)

E − ω + i0+
.

The transformed Green's function in energy-space is given by

Gret.
i,j (E) = 〈Ψ0| âi

1
E − (Ĥ − E0) + i0+

â†j |Ψ0〉+ 〈Ψ0| â†j
1

E + (Ĥ − E0) + i0+
âi |Ψ0〉 .

Here, the Fourrier integral has been calculated, the anti-commutator and the ground

state |Ψ0〉 have been written down explicitly.

11





2 Two-Subsystem Ground State

Approximation

2.1 Introduction and motivation

The method presented in the following sections is inspired by the Automated Multilevel

Sub-structuring Method [32, 33]. For details about this method, see appendix B. It is

a successful method in the �eld of linear elastodynamics and it relies on partitioning

the physical space into smaller pieces wherein the eigenproblem is solved separately as a

starting point for the full system eigenproblem calculation. Here a similar technique on

the occupation number state space of strongly-correlated systems is applied.

2.2 Partitioning

2.2.1 Occupation number basis

We restrict the discussion to an even amount of total particles N on an even amount of

sites L. An extension to odd numbers is straight forward.

Consider as an example a restriction on the occupation number basis which only includes

the system con�gurations listed below. The total physical system is divided into two

equally sized subsystems A and B.

�
N
2 particles on subsystem A, N2 particles on subsystem B

�
N
2 − 1 particles on subsystem A, N2 + 1 particles on subsystem B

�
N
2 + 1 particles on subsystem A, N2 − 1 particles on subsystem B

See also �g. 2.1 for a graphical representation. This scheme can in principle be expanded

to further numbers of particles away from equilibrium. So the number l as a measure
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Figure 2.1: Representatives of basis states in di�erent TSGSA partitions.

of the imbalance can be introduced. Then, the particles numbers in the two subsystems

can be expressed as

NA =
N

2
+ l NB =

N

2
− l

In principle this could be expanded to a maximum value l∗ = N/2 with l ∈ {−l∗, ...l∗}.
In this case all basis states would be included.

The particles can hop from one sub-system to the other and therefore all particle oc-

cupations from a totally empty to a totally �lled sub-system are conceivable. However,

the most probable is the even distribution with an equal amount of particles in both

sub-systems (NA = NB = N/2).

2.2.2 Hubbard model

A possible partitioning for the Hubbard model is shown in tab. 2.1. Here, both spin

species are partitioned separately.

The �rst partition consists again of two subsystems with equal particle numbers. The

next class of partitions can be obtained by letting either a spin-up particle or a spin-down

particle hop. In this case, there are four equivalent partitions of this type instead of two

for the spin-less case.

A partition (l↑, l↓) represents a sub-system con�guration with

NA,↑ =
N↑
2

+ l↑ NA,↓ =
N↓
2

+ l↓

NB,↑ =
N↑
2
− l↑ NB,↓ =

N↓
2
− l↓ .
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subsystem 1 subsystem 2

partition #spin-up #spin-down #spin-up #spin-down

0 N↑/2 N↓/2 N↑/2 N↓/2

1 N↑/2− 1 N↓/2 N↑/2 + 1 N↓/2
2 N↑/2 + 1 N↓/2 N↑/2− 1 N↓/2
3 N↑/2 N↓/2− 1 N↑/2 N↓/2 + 1
4 N↑/2 N↓/2 + 1 N↑/2 N↓/2− 1

...

Table 2.1: A possible TSGSA partitioning of the Hubbard model.

2.2.3 Hamiltonian

In general a Hamiltonian of a systems consisting of two sub-system reads

Ĥ = ĤA + ĤB + ĤAB .

Here, ĤA and ĤB include the interior hopping and potential terms of the sub-systems A

and B, respectively. ĤAB contains both the hopping over the sub-system boundary and

possibly a nearest neighbor potential.

For spin-less fermions the parts of the Hamiltonian are:

ĤX = −t
∑
〈i,j〉

â†X,iâX,j + V
∑
〈i,j〉

n̂X,in̂X,j , X ∈ {A,B}

ĤAB = −t
∑
i,j

′ (
â†A,iâB,j + â†B,j âA,i

)
+ V

∑
i,j

′
n̂A,in̂B,j ,

where
∑′ indicates that the indices i, j have to be chosen such that they describe opposite

sites on the boundary.

For the Hubbard model the parts are:

ĤX = −t
∑
〈i,j〉,σ

â†X,i,σâX,j,σ + U
∑
i

n̂X,i↑n̂X,i↓ , X ∈ {A,B}

ĤAB = −t
∑
i,j,σ

′ (
â†A,i,σâB,j,σ + â†B,j,σâA,i,σ

)
.
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As the Hamiltonians conserve the total number of particles the calculations can be split

into sectors of �xed number of particles. This means that the particle numbers in the

sub-systems are subjects to the constraint

NA +NB = N ,

or in the case of two spin species

NA,σ +NB,σ = Nσ , σ ∈ {↑, ↓} .

2.2.4 Combination of sub-systems

Fig. 2.2 shows a diagrammatic view of the di�erent sub-system con�gurations. Note that

the elementary insertion or removal of a particle can only lead from one con�guration to

an adjacent one.

When combining two subsystem con�gurations to build a partition, the systems mirrored

at the origin have to be used (see �g. 2.3). For an odd number of particles one has to

combine the subsystems as pictured in �g. 2.4.

2.2.5 Hamilton matrix structure

Let's stick for the moment with a three-partitioned system (l∗ = 1). The truncated

Hamilton matrix of the system looks like:

Ht =


H(0,0) H

(0,0)
(−1,+1) H

(0,0)
(+1,−1)(

H
(0,0)
(−1,+1)

)†
H(−1,+1) 0(

H
(0,0)
(+1,−1)

)†
0 H(+1,−1)

 , (2.1)

where H(0,0), H(−1,+1) and H(+1,−1) are the interior Hamiltonians for the partitions

listed above, respectively. The indices of H(l,−l) denote the particle number di�erence

from N/2 in the subsystems A and B. In these parts, all hopping processes are included,

which do not change the particle numbers in the two subsystems. By contrast, H(0,0)
(−1,+1)

andH(0,0)
(+1,−1) contain the hoppings over the interface of the two subsystems A and B. Note

that there is no possible hopping which connects the partitions (−1,+1) and (+1,−1)
because two elementary processes would be needed.

Fig. 2.5 and �g. 2.6 show graphical representations of the Hamiltonians for multiple

partitions with the ordering explained above.
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Figure 2.2: Diagrammatic view of the di�erent subsystems and their connections for the

spin-less fermion system (above) and the Hubbard system (below).
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Figure 2.3: Combining subsystems to build partitions for the spin-less fermion system

(left) and the Hubbard system (right).

Figure 2.4: Combining subsystems to build partitions for the Hubbard system with an

odd amount of spin-up particles.
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Figure 2.5: The TSGSA matrix for a system of spin-less fermions including partitions

with one particle o� balance (left) or two particles o� balance (right). l

denotes the number of particles away from equilibrium.
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Figure 2.6: The TSGSA matrix for a Hubbard-type system including partitions with 1

particle o� balance. l↑ and l↓ denote the number of spin-up and spin-down

particles o�-equilibrium, respectively.

In general the basis vectors in partition (+l,−l) are tensor products of basis vectors of
the individual sub-systems A and B:

|v(l,−l)
ν 〉 = |v(l)

νA
〉
A
⊗ |v(−l)

νB
〉
B
,

where ν = (νA, νB) is the index pair for the basis vectors of the total system, while νX
enumerates the basis vectors of sub-system X. The outer index indicates the sub-system

the basis vectors belong to. In terms of quantum mechanical creation and annihilation

operators, the basis states are constructed by:

|v(l)
νX
〉
X

=
LX∏
i=1

(
a†X,i

)nν(X,i)
|0〉X ,

∑
i

nν(X, i) = NX ± l , nν(X, i) ∈ {0, 1} .

Here a†X,i creates a particle in sub-system X ∈ {A,B} at site i, and |0〉X is the vacuum

state of the corresponding sub-system.
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2.3 Hamiltonian transformation

Consider the three-partition Hamiltonian of type 2.1

H =

 H1 H1,2 H1,3

H†1,2 H2 0
H†1,3 0 H3

 ,

and rotate the full Hamilton matrix by the following orthogonal matrix

V =

V1

V2

V3

 ,

which contains the eigenvectors of each individual partition:

H1V1 = V1D1

H2V2 = V2D2

H3V3 = V3D3 .

Here, D1, D2 and D3 are diagonal matrices with the partition eigenvalues as their entries.

The transformed Hamiltonian reads

Hr = V †HV =

D1 B1 B2

B†1 D2 0
B†2 0 D3

 , (2.2)

with B1 = V †1 H1,2V2 and B2 = V †1 H1,3V3.

By using only a small number of eigenstates of the individual partitions one arrives at

a much smaller matrix Hr compared to the original Hamiltonian. In this case the Vi
become rectangular. They are not unitary any more, but V †i Vi = I still holds.

In terms of the description used in quantum mechanics, we �rst solve the individual

decoupled eigensystems for di�erent partitions |l| ≤ l∗:

Ĥ(l,l) |ψ(l)
ν 〉 = E(l)

ν |ψ(l)
ν 〉 .

From the calculated eigenvectors only a small cropping number is kept. Subsequently the

approximation to the total system ground-state is constructed using a linear combination

of the kept eigenvectors of the selected partitions:
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|Ψ(l∗)
0 〉 =

l∗∑
l=−l∗

crop.∑
ν

C
(l∗)
l,ν |ψ

(l)
ν 〉 .

For the Hubbard system partitions up to (l∗↑, l
∗
↓) are included using a Manhattan distance

measure, e.g. (l↑, l↓) ∈ {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)} for l∗↑ = 1, l∗↓ = 1.

The coe�cients C(l∗)
l,ν are given by the eigensolution of the matrix

H̃
(l′,l)
ν′,ν = 〈ψ(l′)

ν′ |Ĥ|ψ
(l)
ν 〉 ,

using the partition eigensolutions |ψ(l)
ν 〉. This corresponds to matrix 2.2.

2.4 Solutions for partitions

For solving the eigenvalue problem for each partition the hopping of the subsystem bound-

aries is turned o�. So it su�ces to evaluate the eigenstates of the smaller systems and

build the eigenvectors and eigenvalues of the the larger system by a tensor product eval-

uation.

2.4.1 Simple tensorial system

Let HA and HB be the Hamiltonians of two subsystem A and B, respectively. All

further indices indicating the partition have been dropped temporarily. A Hamiltonian

describing the tensorial system reads:

H = HA ⊗ IB + IA ⊗HB , (2.3)

with IX the identity matrix of corresponding size. The solution for the eigenvalue equa-

tion can be obtained by using the eigensolutions of the two subsystems:

HV = (HA ⊗ IB + IA ⊗HB) (VA ⊗ VB)

= (HAVA)⊗ VB + VA ⊗ (HBVB)

= (VADA)⊗ VB + VA ⊗ (VBDB)

= (VA ⊗ VB) (DA ⊗ IB + IA ⊗DB)

= V D .
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2.4 Solutions for partitions Ralf Gamillscheg

The eigenvalues can be calculated by summing up the eigenvalues of the subsystems in

all possible combinations. The eigenvectors are given by the Kronecker-product of the

subsystem eigenvectors.

The matrix elements of H have the form:

〈v(l)
ν′ | Ĥ |v

(l)
ν 〉 = 〈v(l)

ν′A
|ĤA|v(l)

νA
〉
A
δν′B ,νB + δν′A,νA 〈v

(−l)
ν′B
|ĤB|v(−l)

νB
〉
B
.

Let the eigenvalue problem of the two sub-systems be given by

ĤX |Ψ(l)
νX
〉
X

= E(l)
νX
|Ψ(l)

νX
〉
X
.

Then, the eigensolutions of the combined system can be constructed using

|ψ(l)
ν 〉 := |Ψ(l)

νA
〉
A
⊗ |Ψ(−l)

νB
〉
B

E(l)
ν := E(l)

νA
+ E(−l)

νB
.

2.4.2 Inter-partition hopping

For calculation of the o�-diagonal elements of the matrix 2.2 one needs to determine the

inter-partition overlaps.

One can write these overlaps as a sum over tensor products:

O =
∑
α

oA,α ⊗ oB,α .

α denotes di�erent paths, where a particle can hop from one to another sub-system.

The matrices oXα correspond to the creation and annihilation operators of quantum

mechanics restricted to sites at the sub-system boundary.

In terms of the operators, the matrix elements of the o�-diagonal blocks with l′ = l+ 1,
which describe a hopping from sub-system B to A have the form

〈v(l′)
ν′ | (HAB)(l′,l) |v(l)

ν 〉 = −t
∑
i,j

′
〈v(l′)
ν′A
| â†A,i |v

(l)
νA
〉
A
〈v(−l′)
ν′B
| âB,j |v

(−l)
νB
〉
B
.

The sum
∑′ selects only indices i, j on neighboring sites across the sub-system boundary.

Due to the reordering of the operators there may be an additional sign factor. The matrix
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System full system border potentials turned o�

E0 E1 E2 E0 E1 E2

L = 4, N = 2 -0.3852 -0.3852 10.0000 -2.0000 -0.3852 0.0000

L = 6, N = 3 -0.6976 -0.4844 8.0000 -2.3695 -1.1789 -1.1745

L = 8, N = 4 -0.7919 -0.7919 7.0979 -3.1678 -1.8088 -1.6899

L = 10, N = 5 -1.0015 -0.9784 6.2745 -3.0451 -2.6718 -2.2373

L = 12, N = 6 -1.1880 -1.1880 5.8613 -3.9238 -2.9039 -2.8513

L = 14, N = 7 -1.3874 -1.3846 5.418 -3.7119 -3.5851 -2.9954

L = 16, N = 8 -1.5840 -1.5840 5.1297 -4.5339 -3.7477 -3.7219

L = 18, N = 9 -1.7822 -1.7818 4.8137 -4.3372 -4.2916 -3.6677

L = 20, N = 10 -1.9800 -1.9800 4.5695 -5.0690 -4.4458 -4.4323

Table 2.2: Lowest 3 eigenvalues of a given system of spin-less fermions compared with

the same system where the nearest neighbor potentials across the subsystem

borders (splitting in two) have been removed (pbc., V = 10).

elements describing a hopping from sub-system B to A follow from the hermiticity of the

total Hamiltonian.

In an 1D system with periodic boundary conditions there are two possible pairs of sites

where a particle can hop from one to another subsystem. So the sum reduces to an

addition of two terms. One of the summands may describe the process of a particle

hopping from the second subsystem at site s2 to the �rst subsystem at site s1. In this

case the matrix o1 is the matrix representation of a creation operator at the given site

s1.

2.4.3 Nearest neighbor potential

A problem arises when looking at the nearest neighbor potential at the boundary. Simply

neglecting this is not an option as can be seen in tab. 2.2. On �rst impression one might

think, that the approximation becomes more accurate when going to higher partitions,

because in 1D a only �xed number of neighbor pairs (2 with pbc.) is a�ected. But

one should keep in mind, that at half �lling, the fraction of states a�ected because of 2

particles sitting at the boundary is constant for arbitrary system sizes.

The potential on the subsystem boundaries can be expressed as follows:
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2.5 Basis transformation Ralf Gamillscheg

Ub = V
∑
α

RA,α ⊗RB,α .

Here, RX,α is a diagonal matrix with entries 1 at the indices, where the corresponding

basis states are occupied with a particle at the boundary, X denotes the subsystem. The

sum goes over all possible neighbor pairs across subsystem boundaries. The matrices

correspond to the particle number operators of quantum mechanics. Using them the

matrix elements on the diagonal can be expressed as

〈v(l)
ν |
(
H int
AB

)(l,l) |v(l)
ν 〉 = V

∑
ij

′
〈v(l)
νA
|n̂A,i|v(l)

νA
〉
A
〈v(−l)
νB
|n̂B,j |v(−l)

νB
〉
B
.

Again, the sum
∑′ selects only indices i, j on neighboring sites across the sub-system

boundary.

2.5 Basis transformation

As seen in the previous paragraphs, all involved blocks of the Hamilton matrix 2.2 have

the same structure:

M (l′,l) =
∑
α

M
(l′,l)
A,α ⊗M

(−l′,−l)
B,α ,

with a very limited number of summands denoted by α.

The expression can be easily rotated to a di�erent basis set given in the columns of a

matrix Ṽ (l) = Ṽ
(l)
A ⊗ Ṽ

(−l)
B :

(
Ṽ (l′)

)†
M (l′,l)Ṽ (l) =

∑
α

(
Ṽ

(l′)
A ⊗ Ṽ (−l′)

B

)† (
M

(l′,l)
A,α ⊗M

(−l′,−l)
B,α

)(
Ṽ

(l)
A ⊗ Ṽ

(−l)
B

)
=

∑
α

((
Ṽ

(l′)
A

)†
M

(l′,l)
A,α Ṽ

(l)
A

)
⊗
((

Ṽ
(−l′)
B

)†
M

(−l′,−l)
B,α Ṽ

(−l)
B

)
These calculations reduce the computational e�ort enormously, when considering a much

smaller basis set introduced by Ṽ (l) which becomes highly rectangular in this case. All the

calculations are done at the numerical complexity of the sub-systems. The transformed

matrices
(
Ṽ

(l′)
X

)†
M

(l′,l)
X,α Ṽ

(l)
X which are comparably small are then combined to form the

partition.
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Figure 2.7: Illustration of the construction of the TSGSA basis Ṽ . Each partition cor-

responds to a �xed number of spin-up and spin-down particles in both sub-

systems, which eigenvectors are combined tensorially (blue) to Ṽ (l). For each

sub-system A and B the vectors are obtained by solving the corresponding

eigenvalue problem. The eigenvectors are truncated e.g. by keeping only the

vectors on the lower end of the spectrum (red).
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2.5.1 Fermionic sign parity considerations

The fermionic commutation rules have to be obeyed when determining the o�-diagonal

Hamiltonian parts, which contain the hopping processes over the boundaries.

For each individual subsystem a parity of a particle creation/annihilation process can

be determined using a simple site numbering of the subsystem. When combining this

processes, a site numbering of the total system would have to be used.

In order to simplify the calculation one can think of a numbering scheme, where all

sites of subsystem A are counted �rst, and then those of subsystem B. So, for the �rst

subsystem the parity is the same as the subsystem parity. For processes in the second

subsystem an additional sign-�ip from the amount of particles in the �rst subsystem has

to be considered.

2.6 Numerical results

2.6.1 Spin-less fermions

Tab. 2.3 shows that even ground states of large systems are well approximated by a very

limited amount of partition eigenstates. Note that for this calculation each partition was

calculated exactly and not using the tensor structure of the partitions. The practical

application of this is limited because although the individual eigenproblems that have to

be solved are smaller by a factor compared to the full problem, a comparably large number

of eigenvectors has to be computed. If the tensor structure was used, the algorithm

performance is increased exponentially. Nevertheless, the potential of this method can

clearly be seen.

Tab. 2.4 shows a calculation taking advantage of the tensorial structure. Note that for

the system with nearest neighbor interaction the tensorial combination does not give

the exact partition eigensolutions. Therefore, the accuracy is worse than in the previous

case.

2.6.2 Hubbard model

The Hubbard case has the nice property, that the tensorially combined eigenstates of the

subsystems give the exact full system eigensolutions of the individual partitions. This

provides a huge boost in terms of computational performance because the Hilbert space

of the subsystems is exponentially smaller than that of the full system.
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System Nb partitions size ncrop. ETSGSA Eexact

L = 4, N = 2 6 4/1/1 4 -0.385 -0.385

L = 8, N = 4 70 36/16/16 36 -0.792 -0.792

L = 12, N = 6 924 400/225/225 100 -1.187 -1.188

L = 16, N = 8 12870 4900/3136/3136 100 -1.582 -1.584

L = 20, N = 10 184756 63504/44100/44100 100 -1.978 -1.980

Table 2.3: Ground state energies for di�erent systems estimated by TSGSA for spin-less

fermions and a potential V = 10 compared with exact values. The individual

partition eigensolutions were calculated exactly. Nb denotes the full basis size.

For the �rst three partition classes, the individual size is given. ncrop. indicates

the number of eigenstates from the three partitions used for the approximation.

System Nb Nb(p) ncrop.(p) ETSGSA Eexact |ETSGSA − Eexact|

L = 4, N = 2 6 4/1 4/1 -0.385 -0.385 0.000

L = 8, N = 4 70 36/16 25/9 -0.755 -0.792 0.037

L = 12, N = 6 924 400/225 100/64 -1.161 -1.188 0.894

L = 16, N = 8 12870 4900/3136 100/64 -1.461 -1.584 0.123

L = 20, N = 10 184756 63504/44100 100/64 -1.817 -1.980 0.163

L = 20, N = 10 184756 63504/44100 400/225 -1.882 -1.980 0.098

Table 2.4: Ground state energies estimated by TSGSA for spin-less fermions and a po-

tential V = 10 compared with exact values. Nb(p) and ncrop.(p) denote the

full size and number taken for the approximation of each partition.
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System Nb Nb(p) E2-part. Eexact |E2-part. − Eexact|

L = 4, N↑ = N↓ = 2 36 16/4 -0.969 -1.100 0.131

L = 8, N↑ = N↓ = 4 4900 1296/576 -2.055 -2.177 0.122

L = 12, N↑ = N↓ = 6 853776 160000/90000 -3.116 -3.232 0.117

Table 2.5: Principle accuracy of the two-partition approximation (exact values) for the

Hubbard model. Nb is the total basis size, Nb(p) is the partition size, when

including only the �rst two partition classes.

System Nb Nb(p) ncrop. ETSGSA Eexact

L = 4, N↑ = N↓ = 2 36 16/4 32 -0.969 -1.100

L = 8, N↑ = N↓ = 4 4900 1296/576 100 -2.053 -2.177

L = 12, N↑ = N↓ = 6 853776 160000/90000 100 -2.931 -3.232

Table 2.6: Ground state energies estimated by TSGSA for the Hubbard model and a

potential U = 10 compared with exact values. For all partitions the same

amount of lowest eigenstates ncrop. was used.

Tab. 2.5 shows the accuracy of the approximation of a Hubbard system by only including

the basis states with balanced particle numbers in both subsystems (l↑ = l↓ = 0) and
additionally the partitions with one particle o�-equilibrium (|l↑|+|l↓| = 1). Note that the
accuracy increases with increasing system sizes. This can be understood by considering

that the primary partition gains in weight for larger systems, as an imbalance in term of

particle occupation becomes statistically less likely.

Tab. 2.6 shows results obtained by the method for a few small systems compared with

exact diagonalization obtained by the standard ARPACK routine. Note that a very small

fraction of up to 100 basis states was used.

Tab. 2.7 and 2.8 show the development of a two-partitioned approximation to a speci�c

system when including successively more subsystem basis states. The fast convergence

to the two partition solution can easily be seen. To improve the approximation of the

exact solution, further partitions would have to be included.

Fig. 2.8 to 2.11 give a graphical representation of the accuracy dependent on the sub-

system cropping numbers.
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ncrop.(p) ETSGSA |ETSGSA − E2-part.| |ETSGSA − Eexact|
2/2 -1.8308 0.2244 0.3459

10/10 -1.9339 0.1213 0.2428

100/100 -2.0530 0.0021 0.1236

500/200 -2.0550 0.0002 0.1217

1024/225 -2.0552 0.0000 0.1215

1296/576 -2.0552 0.0000 0.1215

Table 2.7: Ground state accuracy of a Hubbard system (L = 8, N↑ = 4, N↓ = 4, U = 10)
for di�erent croppings ncrop.(p). The exact ground state energy of this system

is Eexact = −2.1767, for the exact two-partition system: E2-part. = −2.0552.
The accuracy of estimation to the exact ground state are given as well as the

accuracy of the full two-partition system.

ncrop.(p) ETSGSA |ETSGSA − E2-part.| |ETSGSA − Eexact|
2/2 -2.8876 0.2278 0.3447

4/4 -2.8878 0.2277 0.3446

6/6 -2.9215 0.1940 0.3109

10/10 -2.9314 0.1841 0.3010

20/20 -2.9991 0.1164 0.2333

30/30 -3.0099 0.1056 0.2225

40/40 -3.1036 0.0119 0.1288

60/60 -3.1146 0.0009 0.1178

80/80 -3.1146 0.0008 0.1177

80/20 -2.9998 0.1157 0.2326

80/40 -3.1042 0.0113 0.1282

80/60 -3.1146 0.0008 0.1177

Table 2.8: Ground state accuracy of a Hubbard model (L = 12, N↑ = 6, N↓ = 6, U = 10)
for di�erent croppings ncrop.(p). The exact ground state energy of this system

is Eexact = −3.2324, for the exact two-partition system: E2−part. = −3.1155.
The accuracy of estimation to the exact ground state are given as well as the

accuracy of the full two-partition system.
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Figure 2.8: Accuracy of TSGSA ground state approximation vs. cropping. Ncrop,0 refers

to number of states included from partition with equal particles in both sys-

tems, Ncrop,1 to partition with particle out of equilibrium. System parame-

ters: L = 8, N↑ = 4, N↓ = 4, U = 10.

2.6.2.1 Higher partitions

Tab. 2.9 and 2.10 show the e�ect on the result of a speci�c Hubbard system when includ-

ing higher partitions to the problem. It can be seen clearly, that introducing additional

partitions increases the accuracy. Note that including further partitions increases the

numerical e�ort only linearly up to the �nal eigenvalue calculation.

2.6.2.2 Extension to multiple dimensions

Extension to multiple dimensions is pretty straight forward, the system is simply split

into two parts perpendicular to the �rst spatial axis. Tab. 2.11 shows the in�uence of

the geometry of systems with equal numbers of sites on the approximation result. It

can be seen that shapes with more possible particle exchange paths between the two

subsystems give poorer results. This can be understood by considering, that in this

case the equilibrium partition gets less weight, and the partitions o�-equilibrium more,

because a hopping over the boundary is statistically more probable.
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Figure 2.9: Distance of TSGSA ground state approximation from the full two-partition

solution vs. cropping on logarithmic scale. Ncrop,0 refers to number of states

included from partition with equal particles in both systems, Ncrop,1 to parti-

tion with one particle out of equilibrium. System parameters: L = 8, N↑ = 4,
N↓ = 4, U = 10.

32



2.6 Numerical results Ralf Gamillscheg

0

10

20

30

40

0

20

40

60

80

0.1

0.15

0.2

0.25

0.3

0.35

N
crop,0N

crop,1

E
0−

E
0,

ex
ac

t

Figure 2.10: Accuracy of TSGSA ground state approximation vs. cropping. Ncrop,0 refers

to number of states included from partition with equal particles in both sys-

tems, Ncrop,1 to partition with particle out of equilibrium. System parame-

ters: L = 12, N↑ = 6, N↓ = 6, U = 10.

2.6.2.3 Comparison to DMRG

Tab. 2.12 shows comparisons with the DMRG method. The program implemented by

Reinhard Noack was used. Note that the relative error is decreasing with system size for

a constant number of eigenmodes taken into account, even if the system size is increased.

This is due to the fact that with larger systems the primary partition becomes more

important and hoppings over the subsystem boundary have less weight.

2.6.2.4 Same-time correlations

The same-time density-density correlations were evaluated from the ground state eigen-

vector and compared to the exact diagonalization results.

To calculate the values directly from the TSGSA basis, the following transformation can
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Figure 2.11: Distance of TSGSA ground state approximation from the full two-partition

solution vs. cropping on logarithmic scale. Ncrop,0 refers to number of

states included from partition with equal particles in both systems, Ncrop,1 to

partition with one particle out of equilibrium. System parameters: L = 12,
N↑ = 6, N↓ = 6, U = 10.
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ncrop.(p) ETSGSA |ETSGSA − Eexact|
4/4 -1.831 0.346

16/16 -1.934 0.243

64/64 -2.027 0.150

100/100 -2.053 0.124

4/4/4 -1.831 0.346

16/16/16 -1.954 0.223

64/64/64 -2.108 0.069

100/100/100 -2.167 0.009

Table 2.9: TSGSA accuracy for a Hubbard system (L = 8, N↑ = N↓ = 4, U = 10,
Nb = 4900) when including more than 2 partitions.

ncrop.(p) Epart. ETSGSA |ETSGSA − Epart.| |ETSGSA − Eexact| relative error

80/60 -3.1155 -3.1146 0.0008 0.1177 0.0361

80/60/30 -3.2302 -3.2216 0.0086 0.0108 0.0033

80/60/40 -3.2227 0.0075 0.0096 0.0030

80/60/50 -3.2249 0.0053 0.0075 0.0023

80/60/50/20 -3.2320 -3.2263 0.0057 0.0061 0.0019

Table 2.10: TSGSA accuracy for a Hubbard system (L = 12, N↑ = N↓ = 6) when in-

cluding more than 2 partitions. The exact ground state energy is Eexact =
−3.232383. Epart. denotes the exact value for the corresponding partitions.

be used. The density operator reads:

〈ρi〉 = 〈Ψ0| n̂i |Ψ0〉

=
∑
j,k

〈Ψ0|φj〉 〈φj | n̂i |φk〉 〈φk|Ψ0〉

=
∑
j

|fj |2 〈φj | n̂i |φj〉 ,

where Ψ0 is the ground state, |φj〉 is the TSGSA-basis and fj are the coe�cients of the

ground state in the TSGSA-basis. Note that the last line follows from the diagonality of

the occupation number operator n̂i = â†i âi.
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Geometry N↑ = N↓ ncrop.(p) ETSGSA |ETSGSA − Eexact| |ETSGSA − E2-part.|

Lx = 2, Ly = 2 2 50/25 -3.300 0.388 5E-14

Lx = 4, Ly = 2 4 50/25 -6.074 0.045 1E-12

Lx = 12, Ly = 1 6 50/25 -3.010 0.222 0.105

Lx = 6, Ly = 2 6 50/25 -8.964 0.200 0.161

Lx = 4, Ly = 3 6 50/25 -4.184 0.667 0.320

Lx = 2, Ly = 6 6 50/25 -4.647 4.517 1.550

Table 2.11: Hubbard-TSGSA for systems with more than one spatial dimension (pbc.).

System ncrop.(p) Eexact ETSGSA EDMRG relative error

L = 4, N↑ = N↓ = 2 4/2 -0.911 -0.882 -0.911 0.032

L = 8, N↑ = N↓ = 4 36/24 -1.975 -1.937 -1.975 0.019

L = 12, N↑ = N↓ = 6 50/25 -3.041 -2.949 -3.041 0.030

L = 16, N↑ = N↓ = 8 50/25 -3.961 -4.109 0.036

L = 20, N↑ = N↓ = 10 50/25 -5.021 -5.178 0.030

L = 24, N↑ = N↓ = 12 50/25 -6.090 -6.245 0.025

Table 2.12: Hubbard-TSGSA compared with DMRG (obc.).
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Figure 2.12: Density and same-time correlations for a Hubbard-type system (L = 12,
N↑ = N↓ = 6). The correlations are measured from site 1. Compared are

TSGSA and results obtained by exact diagonalization.

The same holds true for the same-time correlations:

〈cij〉 = 〈Ψ0| n̂in̂j |Ψ0〉

=
∑
k

|fk|2 〈φk| n̂in̂j |φk〉 .

The connected correlation function reads then:

〈c′ij〉 = 〈cij〉 − 〈ρi〉 〈ρj〉 .

For numerical results see �g. 2.12. It shows that the correlations are slightly over-

estimated at small distances.

2.6.3 Boundary conditions for subsystem problems

This section introduces the idea to use periodic boundary-conditions for the subsystem

eigenvalue problem. When combining the states to form a full problem subspace for the

�nal computation this may give better results. Note that this contradicts the derivation

37



Ralf Gamillscheg 2 Two-Subsystem Ground State Approximation

ncrop.(p) Ncores t [s] ETSGSA rel. error

25/25/25 5 2223 -5.5101 0.066

50/50/50 10 5123 -5.5305 0.061

75/75/75 10 15916 -5.5322 0.061

100/100/100 20 23369 -5.8169 0.013

Table 2.13: Convergence of the method for a Hubbard-type system (L = 22, N↑ = N↓ =
11, pbc., U = 10), compared with DMRG (ground-state energy: −5.8907).
Ncores indicates the number of computation cores used, t gives the total run-

time in seconds.

of the problem, where the hoppings out of a certain subsystem is considered by the

o�-diagonal block in the ordered Hamiltonian.

Indeed, all calculations show, that using periodic boundary conditions give worse approxi-

mations. This is observed by the number of necessary eigensolutions from the subsystems

to form equally accurate full system approximation. This number is generally larger in

the case of periodic boundaries.

2.7 CPU time measurements

A world record for the diagonalization of the Hubbard model was achieved in 2008 by

Yamada et al. at the Earth Simulator [34]. The largest system they calculated was of

length 22 with 9 up and 8 down particles, which resulted in a matrix size of 159·109. Tab.

2.13 shows results for a system (L = 22, N↑ = N↓ = 11) at the for physics important

case of half-�lling. The basis size of this calculation was 5.0 · 1011, which is three times

larger than the record. The calculations were performed at a 8 QuadCore Opteron CPU

cluster at Graz University of technology.

2.8 Vector selection

A crucial point for the algorithm is the amount of eigenvectors from the subsystems

which are needed to build the TSGSA basis. Within this work only the lowest eigen-

solutions of the subsystems were considered. It may be a good idea to think of a more

sophisticated method for selecting them. As can be seen in �g. 2.13 for a small system,
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Figure 2.13: Ground state eigenvector coe�cients of a system L = 4, N↑ = N↓ = 2 in

the TSGSA basis. The modulus squared of each coe�cient of the normed

vector is shown. The partition boundaries are marked by vertical lines.

only a very limited amount of eigenvectors from the subsystems play an important role in

contributing to the exact ground state. If they could be preselected, the computational

e�ort could be decreased even more.

2.9 Implementation

2.9.1 Subsystems

The required subsystems are determined and arranged in a tree-shaped manner (see

�g. 2.2). To every subsystem pointers to every child -subsystem are associated and the

corresponding overlap matrices are calculated.
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total cores comp. cores tsubsystem ttotal speed-up

2 1 7358 7472 1.00

3 2 4236 4345 1.72

4 3 3134 3247 2.30

5 4 3319 3432 2.18

6 5 3048 3161 2.36

Table 2.14: MPI Speedup for parallel computation of subsystems (L = 24, N↑ = N↓ = 12,
5 subsystems). ttotal and tsubsystem denote the run times of the full calculation

and the subsystem diagonalization only, respectively. One of the cores simply

served as master to distribute the work.

2.9.2 Diagonalization of subsystems

For all the subsystems the speci�ed amount of eigenvalues and eigenvectors is calculated.

2.9.3 Combination of subsystems

For the left part of the system all possible subsystems are assumed. The correspond-

ing right subsystem is determined and the partition eigenvalues and eigenvectors are

calculated. By recursion all child-subsystems are considered for each system and the

corresponding overlaps are calculated.

2.9.4 Solving the �nal eigenproblem

Without calculating the matrix in the end a matrix product with a vector can be per-

formed. This is used to calculate the lowest eigenvalues by a Lanczos-type algorithm.

2.9.5 Parallelization

A simple parallelization scheme can be devised by simply distributing the calculations of

di�erent subsystems to multiple computer cores. Tab. 2.14 shows results from a simple

implementation using the OpenMPI framework performed on a computer cluster at Graz

University of Technology (ghost.tugraz.at).

The limits of the speed-up can be explained by considering the system calculated. There

are 5 partitions where one of them dominates because it is larger than the other four. So
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total comp. 50/25/25 60/40/25 80/40/25

cores cores t speed-up t speed-up t speed-up

2 1 15621 1.00 17700 1.00 20262 1.00

3 2 7050 2.22 10771 1.64 12092 1.66

4 3 5007 3.12 7425 2.38 10062 2.01

5 4 4748 3.29 7268 2.44 8008 2.53

6 5 3820 4.08 6774 2.61 8742 2.32

total comp. 100/50/30 100/50/50/50

cores cores t speed-up t speed-up

2 1 26981 1.00 54789 1.00

3 2 17661 1.53 40074 1.37

4 3 12599 2.14 21466 2.55

5 4 12664 2.13 25458 2.15

6 5 10901 2.46 20725 2.64

Table 2.15: MPI speedup for parallel computation of subsystems (L = 24, N↑ = N↓ = 12,
3 or 4 subsystems). The numbers in the header line denote the subsystem

cropping for each of the partition species.

more computational cores do not lower the necessary time. Furthermore, the total num-

ber of partitions is very small. More partitions may lead to a more e�cient distribution

of work.

Tab. 2.15 shows CPU run times for di�erent croppings of the subsystem eigensolutions.

Tab. 2.16 shows results for a speci�c system for di�erent cropping numbers.

2.10 TSGSA and the Schur complement

Another possibility is using the Schur-complement to eliminate the higher partitions and

get an e�ective Hamiltonian.

Consider the following block-structured Hamiltonian:

H =

(
H0 H0,1

H†0,1 H1

)
,

with H0 the zeroth partition of equal amount of particles in both subsystems. H1 is the
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Levels ncrop.(p) ETSGSA

2 50/25 -6.097

3 50/25/25 -6.097

3 60/40/25 -6.101

3 80/40/25 -6.101

3 100/50/30 -6.101

3 100/100/100 -6.103

4 100/50/50/50 -6.101

Table 2.16: Eigenvalue results obtained by TSGSA for a Hubbard model of speci�c sys-

tem size (L = 24, N↑ = N↓ = 12, U = 10) for di�erent cropping numbers.

The solution obtained by DMRG is E0 = −6.245. The calculations were

performed on the computer cluster ghost.tugraz.at.

internal Hamiltonian of partition 1 and H0,1 the part describing the hoppings over the

boundary.

The problem can be transformed to a non-linear eigenvalue-problem of the size of H0:

(
H0 −H0,1(H1 − λ)−1H†0,1

)
v = λv . (2.4)

H1 consists of sub-partitions with no overlap:

H1 =

(
H1,1 0

0 H1,2

)
.

In the case of spin-less fermions there are two, in the case of the Hubbard model there are

four sub-partitions. Such a matrix can easily be inverted by inversion of the individual

matrices.

2.10.1 Numerical results

Tab. 2.17 shows, that indeed the eigenvalue problem can be solved by using the non-linear

eigenproblem.
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System Eexact E2-part. E1-part. Eλ=0 niter. ETSGSA

L = 4, N = 2 -0.385 -0.385 -0.385 -0.385 1 -0.385

L = 8, N = 4 -0.792 -0.792 -0.612 -0.812 3 -0.792

L = 12, N = 6 -1.188 -1.188 -0.992 -1.216 3 -1.188

L = 16, N = 8 -1.584 -1.584 -1.386 -1.623 3 -1.584

Table 2.17: Solving the non-linear eigenvalue problem obtained by Schur inversion itera-

tively. Spin-less fermions, pbc. V=10

2.11 TSGSA and the Green's function

An important quantity when dealing with strongly-correlated many-body systems is the

dynamic Green's function (see sec. 1.8).

An approximation within the presented framework can be written in terms of matrix

representations:

Gi,j(ω) = ~g†j,+1V+1
1

ω − (V †+1H+1V+1 − E0)
V †+1~gi,+1

+ ~g†i,−1V−1
1

ω + (V †−1H−1V−1 − E0)
V †−1~gj,−1 .

Here, ~gi,±1 denotes the excited vector obtained by adding/removing (±1) a particle at

site i. V±1 denotes the TSGSA basis for the system with one particle added/removed.

To determine the vectors ~g±1 a creation/annihilation operator in the TSGSA basis is

needed:

~g±1 = A±1~g .

This operator can again be written as block diagonal matrix where the blocks correspond

to the individual partitions (A±1 = diag(A1,±1, A2,±1, ...)). Each partition operator can

be written as a tensor product of the two individual subsystem operators:

Ai,±1 = Ai,±1,A ⊗Ai,±1,B .

The single subsystem operator Ai,±1,X (see also �g. 2.14)) can be obtained from the

full matrix representation of the creation/annihilation operator in the Hubbard basis by

rotation:

Ai,±1,X = V †(n±1)a(n)→(n±1)V(n) .
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Figure 2.14: Illustration of the mapping from one subsystem to an adjacent one by the

creation operator (here: a†i,↑). The squares denote the original TSGSA

partitioning, the circles denote a partitioning with one more spin-up particle.

Here, a(n)→(n±1) denotes the matrix representation of the creation/annihilation operator

acting on the Hubbard basis of the subsystem with n particles and resulting in a vector

in the basis with n+1 particles. V(n) and V(n±1) are the eigenvectors of the corresponding

Hamiltonians.

In fact the operator A±1 does not have to be calculated explicitly, but the application

on the vector can be implemented. Once again it can be calculated with respect to

the numerical complexity of the subsystem. For the Hubbard model the subsystem

operators a(n)→(n±1) can be easily constructed using individual operators for spin-up

and spin-down, which further decreases the numerical e�ort.

Fig. 2.15 shows numerical results obtained by TSGSA. It can be seen that many features

of the spectral function can be reproduced by the method.

2.12 Conclusions and Outlook

The approach presented in the previous sections gives a new perspective to calculate

eigenvalue problems of strongly correlated systems. Furthermore, it has the advantage

of producing an explicit matrix representation and an adjusted basis. The approach can

easily be extended to multiple physical dimensions. In this case the partitions l 6= 0
may play a more important role due to an increased hopping probability between the
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subsystems.

Potentially a large improvement to the algorithm can be achieved by a sophisticated

selection process of the subsystem eigensolutions. As shown, only a comparably small

number of them contribute to the full system ground state.
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Figure 2.15: Plot of the spectral function obtained from the imaginary part of the Green's

function calculated by TSGSA for a system of 12 sites at half-�lling. The

inset shows a direct computation of a system with size 6 for comparison.
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3 A Numerical Projection Technique

using Basis Reordering by Potential

Terms

3.1 Motivation

H = −t
∑
〈ij〉

aia
†
j + V

∑
〈ij〉

n̂in̂j .

In a system of spin-less particles at half-�lling and a repulsive nearest neighbor interaction

particles tend to occupy sites alternatingly and leave unoccupied sites in between. Thus,

it is reasonable to assume that the basis states contributing to the system ground state

are mainly particle con�gurations with no or few particle pairs on adjacent sites.

The following considerations include a basis reordering by the number of nearest neighbor

particles in such systems. This means, that the �rst partition of basis states corresponds

to con�gurations with no pairs, then one, two, etc. number of pairs on adjacent sites.

These partitions correspond to diagonal matrix entries in the Hamiltonian as multiples

of V .

3.1.1 Example: 3 particles on 6 sites

A system of three spin-less particles on 6 sites has 20 occupation number basis states.

They can be partitioned into 3 sets (assuming periodic boundary conditions of a 1D

system):

� 2 states with no adjacent particles: |↑ 0 ↑ 0 ↑ 0〉 and |0 ↑ 0 ↑ 0 ↑〉

� 12 states with one pair of adjacent particles: |↑↑ 0 ↑ 00〉, |↑↑ 00 ↑ 0〉, ...

� 6 states with 2 pairs of adjacent particles: |↑↑↑ 000〉, |0 ↑↑↑ 00〉, ...
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Figure 3.1: Illustration of the Hamilton matrix of a V-ordered occupation number basis.

The blue parts contain the hopping terms inside a partition and the potential

on the diagonal and the green parts contain the hopping terms between the

partitions.

3.1.2 Hamilton matrix structure

Sorting the basis by the entries on the diagonal leads to a partitioning of the Hamilton

matrix (see �g. 3.1) into di�erent sectors. The diagonal entries have the form NκV ,

where Nκ is the number of particle pairs occupying nearest-neighbor sites. With strong

coupling states with increasing Nκ have less weight in the low energy eigensolutions.

Note that the hopping of a particle can only change the number of particle pairs on neigh-

boring sites Nκ by a maximum of one. Therefore, only o�-diagonal blocks connecting

neighboring partitions have entries.

A very similar partitioning can be devised for the Hubbard model. Here, the relevant

quantity for the classi�cation of the basis states is the number of doubly occupied sites.

Again, only adjacent partitions are connected.

3.1.3 Projection formalism

The projection technique in the context of strongly correlated many body Hamiltonians

(see app. I) allows to restrict the degrees of freedom and to construct an e�ective model
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Hamiltonian. A well-known example would be the derivation of the tJ-model as a sim-

pli�cation of the Hubbard model. Here, the set of dynamical variables, corresponding to

the occupation number basis states is reduced to the con�gurations with no interaction

particle pairs. The dynamics of one interacting pair is projected onto that basis set using

perturbation theory. Further states with more than one pair of particles are neglected.

Looking back at �g. 3.1 this method projects the second sector onto the �rst.

The approach presented in the next sections can be viewed as an extension of the stan-

dard projection technique. The method is demonstrated using two strongly correlated

material Hamiltonians, the spin-less fermion model with nearest neighbor repulsion and

the Hubbard model with on-site repulsion.

3.2 Numerical projection technique

As a toy problem, consider a two-partitioned matrix with blocks A and B on the diagonal

and a connecting o�-diagonal block E. The corresponding eigenvalue problem reads(
A E

E† B

)(
~x1

~x2

)
= λ

(
~x1

~x2

)
. (3.1)

The blocks correspond to partitions of the original problem. A may be constructed

from multiple sectors corresponding to individual Nκ. Let B consist of a single sector,

which includes higher states than A in terms of energy contents. All further sectors are

dismissed for the time being.

Transforming the Hamilton matrix by a Schur transformation results in an equivalent

expression (
S 0
E† B

)(
~x1

~x2

)
= λ

(
I −EB−1

0 I

)(
~x1

~x2

)
,

with S = A− EB−1E†.

From the second line of the matrix equation follows

~x2 = −(B − λ)−1E†~x1 . (3.2)

Inserting into the �rst line and rearranging leads to

Sλ~x1 := (A− E(B − λ)−1E†)~x1 = λ~x1 . (3.3)
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Note that this equation is in principle exact, no approximations have been made so

far. Note that solutions of this equation can be used to form solutions of the total

eigenproblem. Solutions of the form (~0, ~x2) cannot be calculated in this way, but their

eigenvalues are of order O(V ) instead of O(t) anyway.
In the end an equivalent problem to equation 3.1 of smaller size (just the size of B) is

obtained but at the prize of a non-linear eigenvalue problem (Sλ − λ)~x1 = 0.

3.2.1 Series expansion of (B − λ)−1

The matrix B corresponds to a sector with a speci�c potential term NκV . For increas-

ing partition number this entries become increasingly larger than the hopping term, so

the following consideration can be justi�ed. Split the matrix B in kinetic part of the

Hamiltonian B̃, and in potential part BV = NκV I, which is diagonal:

B = BV + B̃ .

Then expand the inverse in powers of (Bv − λ)−1. Note that λ will be of order O(t) �
O(V ), so Bv − λ is of order O(V ). The expansion yields:

1
BV − λ+ B̃

=
1

BV − λ
− 1

(BV − λ)2
B̃ + . . .

=
∞∑
ν=0

1
(BV − λ)ν+1

(−B̃)ν ,

and the calculation of Sλ becomes

Sλ = A−
∞∑
ν=0

1
(BV − λ)ν+1

E(−B̃)νE† . (3.4)

Note that if B corresponds to a single sector the expressions 1/(BV − λ)ν+1 are only

numbers. For an evaluation of Sλ only these prefactors are modi�ed, when the value λ

is changed.

In terms of implementation the matrices E(−B̃)νE† can be calculated once and reused

for many di�erent values λ. These matrices to be stored have the size of A and may be

comparably small.

Using this expansion, also the expression needed in eq. 3.2 for an evaluation of the

eigenvector can be calculated, too:

−(B − λ)−1E† = −
∞∑
ν=0

1
(BV − λ)ν+1

(−B̃)νE† .
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3.2.2 Solving the non-linear eigenproblem by successive evaluation

One possibility is to use a current approximation of λ to calculate Sλ, then solve the

eigenvalue problem by suitable means and use the resulting eigenvalue as a new approx-

imation for λ. This corresponds to

λ(new) = αE(λ(old)) + (1− α)λ(old) , (3.5)

with α = 1 and E(.) denoting the evaluation of the new lambda by solving the eigenvalue

problem of Sλ. The �xed point of λ can be attained by recursion.

3.2.3 Solving the non-linear eigenproblem by a Newton-Raphson scheme

A more sophisticated possibility is to use the Newton-Raphson method to get a better

new approximation for λ. De�ne Φ(λ) = E(λ)− λ = 0

λ(new) = λ− Φ(λ)
Φ′(λ)

= − 1
E ′(λ)− 1

E(λ) +
E ′(λ)
E ′(λ)− 1

λ .

The last equality shows that this can be transformed to an equation of form 3.5 with

α = − 1
E ′(λ)− 1

.

3.2.3.1 Calculation of E ′(λ)

The derivative of Sλ (eq. 3.3) with respect to λ reads

S′λ = −E(B − λ)−2E† . (3.6)

Using expansion 3.4 one can build the derivative:

S′λ = −
∞∑
ν=0

(ν + 1)
(BV − λ)ν+2

E(−B̃)νE† . (3.7)

Therefore, an approximation of the E ′(λ) using the current approximation to the eigen-

vector |x〉 can be calculated using the Hellmann-Feynman theorem:

E ′(λ) =
〈x|S′λ |x〉
〈x|x〉

= −
∞∑
ν=0

(ν + 1)
(BV − λ)ν+2

〈x|E(−B̃)νE† |x〉
〈x|x〉

.

Again, the stored matrices as described in sec. 3.2.1 can be reused.
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3.3 Iteration concept

The following algorithm de�nes an iterative scheme, which successively integrates further

sectors into the calculation.

1. Solve the eigenvalue problem for an initial partition A1 which may include several

sectors Nκ = 0, 1, 2..N ′ and get the corresponding unitary matrix V1 containing

the eigenvectors.

2. Expand the matrix to include the next sector (B1):

A2 =

(
A1 E1

E†1 B1

)
.

Transform it using the unitary matrix diag(V1, I)

Ã2 :=

(
V †1

I

)(
A1 E1

E†1 B1

)(
V1

I

)
=

(
V †1 A1V1 V †1 E1

E†1V1 B1

)
, (3.8)

with D1 := V †1 A1V1 diagonal.

3. Having solved the eigenvalue problem for Ã2 by the expansion scheme and obtaining

the eigenvectors Ṽ2 from it one can create the new over-all eigenvector matrix:

V2 =

(
V1

I

)
Ṽ2 .

Proof:

V †2 A2V2 = Ṽ †2

(
V †1

I

)(
A1 E1

E†1 B1

)(
V1

I

)
Ṽ2

= Ṽ †2

(
D1 V †1 E1

E†1V1 B1

)
︸ ︷︷ ︸

Ã2

Ṽ2

= D2 .

The second line follows from eq. 3.8 and the third by construction of Ṽ2.

4. Continue the iteration by including the next sector B2:

Ã3 =

(
D2 V †2 E2

E†2V2 B2

)
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� � ...

Figure 3.2: Truncation procedure for the scheme presented in the text. Each sector is

consecutively projected onto the original e�ective matrix and diagonalized.

The iteration steps 3 and 4 can be continued up to a sector, which can be determined

on-the-�y by attaining convergence. Then it can be assumed that further sectors do not

contribute and the evaluation can be aborted.

3.3.1 Truncation

When consecutively including higher sectors, the reference part of the matrix in the

upper left corner stays constant in size. One can imagine this as a projection of the

higher sectors onto the same matrix, one after another.

Some systems may have large �rst sectors. The number of vectors retained in the �rst

partition can be restricted based on a suitable criterion. The most simple would be to

keep only the lowest eigenstates of the partition solution. More sophisticated criteria as

in DMRG are also conceivable. The restriction can also take place at a later time in the

iteration.

In this work, a �xed number of vectors p̃1 is kept from the initial partition. This number

also determines the size of the upper-left block during the recursion procedure.

3.4 Translational invariance

Due to the translational invariance of the systems with periodic boundary conditions,

the problem can be separated in di�erent regimes of �xed momentum k. The vectors

necessary for the calculation of the overall ground state can be restricted to the vectors

with the appropriate momentum. In the case of the system of fermions with nearest

neighbor interaction we have a total momentum of k = ±π
2 . The selection by momentum
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leads to a signi�cant reduction of the computational e�ort due to the smaller matrix

sizes involved. This way, including vectors which do not contribute to the overall system

ground state can be avoided.

3.4.1 Determination of the momentum

Momentum and translation operator are related by

T̂ = eip̂ .

They have the same set of eigenfunctions and the eigenvalues are related consequently

by

λT = eik .

Since the momentum operator and the Hamiltonian commute, all eigenstates of the

Hamiltonian are also eigenvalues of the momentum operator. So for non-degenerate

states the momentum can easily be calculated by using the translation operator

k = −i ln 〈Ψ| T̂ |Ψ〉 .

For degenerate eigenstates the vectors have to be rotated in the subspace in order to get

eigenstates of the translation operator. This can be achieved by solving the eigenvalue

problem

(U †T̂U)V = V ΛT ,

where U is the matrix of degenerate eigenvectors in columns. The problem size is given

by the multiplicity of the energy eigenvalue. The eigenvalues in the diagonal of ΛT give

the momenta of the subspace vectors. And the rotated eigenvectors can be determined

by

Up̂ = UV .

3.5 Numerical results for the fermion model with nearest

neighbor repulsion

Tab. 3.1 shows the results for the presented algorithm for the case of spin-less fermions.

In the case of periodic boundary conditions the �rst sector (Nκ = 0) consists of just

2 states with alternatingly occupied and unoccupied sites, i.e. p̃1 = 2. Here, one can

see that the algorithm is signi�cantly faster than the highly optimized ARPACK routine

(Arnoldi implementation) for increasing system size.
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system Nb tNPT [s] ENPT tA [s] E0

∣∣∣ENPT−E0
E0

∣∣∣
L = 16, N = 8 12870 0.01 -1.5724 0.21 -1.5840 0.007

L = 18, N = 9 48620 0.01 -1.7651 0.83 -1.7822 0.010

L = 20, N = 10 184756 0.10 -1.9565 4.05 -1.9800 0.012

L = 22, N = 11 705432 0.34 -2.1468 10.38 -2.1780 0.014

L = 24, N = 12 2704156 0.62 -2.3359 87.13 -2.3700 0.014

Table 3.1: Comparison between the numerical projection technique and a traditional

Arnoldi eigensolver (ARPACK) for di�erent systems at half-�lling with V = 10
and periodic boundary conditions. Nb denotes the basis size. tNPT, ENPT and

tA, E0 denote run time and ground state energy for NPT and ARPACK,

respectively. The accuracy was set to ελ = 0.1.

3.5.1 Dependence on the starting partition

Fig. 3.3 shows what happens when starting at a speci�c initial partition size. That

means, that initially the exact problem is solved for the system including all sectors

up to a number Nmax
κ , which is indicated by the color. Still, for all calculations the

dimension of the upper-left part of the matrix was reduced to p̃1 = 2 after the initial

eigenvalue calculation. E.g. the turquoise upward triangles show the development, when

using all sectors up to Nκ = 3 as initial partition. The relative accuracy increases by one

order of magnitude as compared to Nκ = 2.
The �gure shows, that for each starting partition convergence is reached for a di�erent

value. After about two steps of the iterative procedure no improvements to the eigenval-

ues are achieved. Tab. 3.2 shows this e�ect numerically.

The reason is that important vectors are thrown away during the recursion procedure

which connect to the sectors with larger Nκ. Therefore introducing the new sectors does

not contribute to the improvement of the low eigenstates.

For large initial problem sizes the accuracy is increased by about one to two orders of

magnitude, but it levels o� again to a certain value. This is obviously due to the small

truncation size p̃1 = 2.

3.5.2 Dependence on the vector truncation

This section shows the dependence on the truncation size p̃1.
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Figure 3.3: Convergence of the lowest eigenvalue when introducing successively higher

sectors Nmax
κ , depending on the initial partition size N ini

κ . In all cases, after

the initial eigenvalue computation, only 2 vectors were kept, i.e. p̃1 = 2.
The blue solid line indicates the exact eigenvalues of each partition including

sectors up to Nmax
κ . The results are presented on logarithmic scale as distance

to the exact ground-state (L = 20, N = 10, V = 10).
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system N ini
κ N ini

b ENPT tNPT [s]

L = 12, N = 6 0 2 -1.18388 0.00

1 62 -1.18798 0.04

2 362 -1.18800 0.94

3 762 -1.18800 11.53

exact 924 -1.18800

L = 14, N = 7 0 2 -1.37977 0.02

1 86 -1.38736 0.23

2 716 -1.38743 38.08

3 2116 -1.38743 556.04

exact 3432 -1.38743

L = 20, N = 10 0 2 -1.95649 0.59

1 182 -1.95649 0.61

2 3422 -1.97931 0.59

3 23582 -1.97999 0.43

4 76502 -1.98000 0.64

exact 184756 -1.98000

Table 3.2: Dependence of the algorithm result on di�erent sizes of the initial partition

consisting of N ini
κ sectors and N ini

b basis states (V = 10, ελ = 10−3, p̃1 = 2).
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p̃1 ENPT

∣∣∣ENPT−E0
E0

∣∣∣ titers. [s]

2 -1.9565 0.012 0.66

4 -1.9573 0.011 1.34

6 -1.9594 0.010 2.25

10 -1.9629 0.008 3.76

14 -1.9713 0.004 6.79

16 -1.9749 0.003 9.21

3 sectors -1.9793 0.001

exact -1.9800

Table 3.3: Dependence of the lowest eigenvalue on the truncation size p̃1 for a system

with L = 20, N = 10, V = 10, ελ = 10−4. Here, the initial partition consists

of the �rst two sectors (N ini
κ = 1) which includes 182 basis states. In addition

the exact lowest eigenvalue is given for the sub-matrix including the �rst three

sectors and the original matrix.

Tab. 3.3 shows the dependence of the �nal result on the dimension p̃1 of the upper left

part block of the iteration procedure. The improvement can be seen clearly, although

the accuracy is limited by the fact, that only the �rst two sectors are used as the initial

problem. The accuracy given by three initial sectors cannot be reached.

Fig. 3.4 shows the scalar product of all partition eigenvectors with the total system

ground state. It can be seen that not only the lowest eigenstates of the smaller partition

contribute to the exact solution, but also certain, although not many, higher states.

This shows that a fairly limited amount of partition eigenvectors are needed to represent

a highly accurate approximation of the system ground state.

3.6 Analysis of the non-linear eigenvalue problem

This section deals with the analysis of a the blocked eigenvalue problem

F~x =

(
A E

ET B

)(
~x1

~x2

)
= λ

(
~x1

~x2

)
.

Note that when setting the eigenvector components of the �rst partition to zero (~x1 = 0),
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Figure 3.4: Scalar products of the exact eigenvectors (denoted by index) of di�erent sec-

tors with the exact ground state of the system. The largest contribution stems

from the sector with zero double-occupancies (partition 0), which consists of

only two states (blue).
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Figure 3.5: Minimal eigenvalue of Sλ − λI over λ for system L = 10, N = 5.

above equation results in

B~x2 = λ~x2 .

So the second part of the eigenvector is an eigenvector of B. This leads to a possible

classi�cation of the eigenvalues of F into eigenvalues of B and the rest.

Fig. 3.5 shows the exact solution of all eigenvalues and in addition it shows the minimum

magnitude of the eigenvalues of

Sλ − λI = (A− E(B − λ)−1E†)− λI .

One can see, that this value only vanishes at full system eigenvalues which are not an

eigenvalue of B.

Due to multiplicity, the number of eigenvalues of the full system is generally not decom-

posed into the number of eigenvalues of B and the dimensionality of A. In case of �g.

3.5 there are 6 eigenvalues, which are not eigenvalues of B whereas dim(F )−dim(B) = 2
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3.7 Alternatives for solving the non-linear eigenvalue

problem

The slowest part of the algorithm is building the inverse of the matrix (B − λ). This

section deals with an alternative approach to solve the nonlinear eigenproblem (eq. 3.3)

Sλ~x1 = (A− E(B − λ)−1E†)~x1 = λ~x1 .

3.7.1 Matrix product with Sλ

A simple product of Sλ with a vector leads to

Sλ~x = (A− E(B − λ)−1E†)~x

= Ax− E(B − λ)−1 E†~x︸︷︷︸
~y

= Ax− E(B − λ)−1~y .

Therefore one can solve the linear problem

(B − λ)~z = ~y ,

for z and yields

Sλ~x = Ax− E~z .

Note that in the course of this algorithm the matrix A and therefore the vector ~x is

usually very small compared to the large matrix B. So an inversion of B is much more

complicated than solving the stated linear problem for a few vectors.

This also leads to the following possibility. Instead of evaluating Sλ by inversion of B−λ
one could apply the above procedure to the identity matrix. Since the dimension of this

matrix is small compared to B the linear problem has to be solved only a comparable

small number of times.

3.7.2 Non-linear Arnoldi method

A non-linear, sparse eigenvalue problem

T (λ)x = 0 , (3.9)
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can be solved using a non-linear Arnoldi method [35].

This is a preconditioned method with a suitable inverse approximation M ≈ T (σ)−1

with σ close to the wanted eigenvalue. It relies on solving a projected eigenproblem

V TT (λ)V ~y = 0 ,

where λ is a current approximation to the eigenvalue. After each diagonalization of the

projected problem the search space V is extended by a new vector

v = MT (µ)~u ,

where M is the preconditioner and ~u is a Ritz vector.

In this case it could be imagined to use

M = A− ET (VB − λ)−1E .

as a preconditioner where VB is the diagonal of B containing the potential only.

3.7.3 Method of successive linear problems

This method was proposed in [35] to solve the projected problem. Due to the characteris-

tic of the present eigenvalue problem, which is actually not very large, but the evaluation

of T (λ) is rather complex, this algorithm could be useful for the full problem.

A �rst order approximation of eq. 3.9 yields

T (λ)x ≈ (T (µ)− θT ′(µ))~x = 0 with θ = (µ− λ) ,

and leads to the following algorithm.

Solve successively the generalized eigenvalue problem

T (µ)~u = θT ′(µ)~u

and update λ by

λ = λold − θ

3.7.4 Numerical experiments

For a comparison of the mentioned methods, see tab. 3.4. The di�erent methods are

� Expansion as explained in section 3.2.1.
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L = 16, N = 8 L = 12, N = 6

method time [s] ENPT time [s] ENPT

Expansion 19.18 -1.58387670 0.78 -1.187984987

Expansion (Newton) 25.78 -1.58387665 0.99 -1.187984975

Arnoldi (GS) 34.93 -1.58387668 1.09 -1.187984975

Succ. Linear (Exp.) 26.52 -1.58387665 1.06 -1.187984975

Succ. Linear (Prod.) 113.00 -1.58387665 2.76 -1.187984975

Arnoldi (Exp.) 511.65 -1.58387668

Table 3.4: Comparison of di�erent algorithms for solving the Non-linear eigenproblem

3.9. See text for details of the methods.

� Expansion using Newton acceleration (sec. 3.2.3).

� Arnoldi with evaluating Sλ~v by solving a linear equation (sec. 3.7.1).

� Method of successive linear products with expansion to calculate Sλ (sec. 3.7.3).

� Method of successive linear products evaluating Sλ~v by solving a linear equation.

� Arnoldi with expansion for calculation of the product Sλ~v.

Tab. 3.4 shows that the sophisticated methods do not improve the computation time

compared to the simple expansion scheme.

3.7.5 On the di�erence of the successive linear approach to standard

Newton

Going back to sec. 3.2.3 the following method for the update of λ was introduced:

λnew = λ− Φ(λ)
Φ′(λ)

with Φ(λ) = ~v†S(λ)~v − λ (3.10)

The approach of successive linear problems solves the generalized eigenvalue problem:

T (λ)− (λnew − λ)T ′(λ) = 0 (3.11)

On clearly sees, that eq. 3.10 leads to a similar result, when multiplying with Φ′(λ)

Φ′(λ)(λnew − λ) = Φ(λ)
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Figure 3.6: Convergence value of the direct method (blue crosses) for di�erent initial

values. Here, always the eigenvalue closest to the initial value was taken for

the next iteration. The lowest level consists of two close energies. All initial

values below and above this level converge eventually to the lower and higher

state, respectively. The lines show the exact eigenvalues of the full problem,

the eigenvalues of B are marked by a circle.

The di�erence is, that eq. 3.11 leaves the vectors open to calculation, while the other

scheme keeps them �xed using the previous approximation.

3.7.6 Convergence properties

Di�erences in convergence behavior can be seen looking at �g. 3.6 to 3.8. The �rst picture

shows, that taking the solution of the linear eigenproblem as the next approximation

always leads to convergence to the lowest eigenvalues. Comparing �gures 3.7 and 3.8

shows that the successive linear method is more reliable in converging to a eigenvalue

close to the initial value. Additionally it is shown that the eigenvalues of B, which are

also eigenvalues of the full problem, are never converged to.
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Figure 3.7: Convergence value of the Newton method (blue crosses) for di�erent initial

values. Here, always the eigenvalue closest to the initial value was taken for

the next iteration. The lines show the exact eigenvalues of the full problem,

the eigenvalues of B are marked by a circle.
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Figure 3.8: Convergence value of the method (blue crosses) of successive linear problems

for di�erent initial values. Here, always the eigenvalue closest to the initial

value was taken for the next iteration. The lines show the exact eigenvalues

of the full problem, the eigenvalues of B are marked by a circle.
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system time (full) time (partial)

L = 10, N↑ = N↓ = 5 1.20 1.79

L = 12, N↑ = N↓ = 6 18.59 32.65

L = 14, N↑ = N↓ = 7 (mem) 371.00

Table 3.5: Algorithm running time using partial construction of a Hubbard Hamiltonian

compared to full construction. (mem) indicates that the full Hamiltonian does

not �t into memory of the used machine (2GB RAM).

Figure 3.9: Conservation of number of nearest neighbor pairs in a hopping process of

spin-less fermions.

3.8 Partial construction of the Hamiltonian

Since the Hamiltonian is not needed in full, one can construct only the parts of the

Hamiltonian belonging to a single sector. This saves a large amount of system mem-

ory. Additionally it may save computational time, if not all sectors are necessary for

convergence (see tab. 3.5).

3.8.1 Implementation

At a particular step the following matrices have to be known: the Hamiltonian inside a

particular sector, and the overlap to the previous sector. This matrices can be calculated

explicitly by considering elementary hopping processes. In the case of spin-less particles

such a process conserves the number of nearest neighbor pairs only in the situation

depicted in �g. 3.9. Considering only these cases the Hamiltonian can be computed.

The same holds for the inter-sector parts, which change the number of pairs by one.
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system classic. projector NPT exact

L = 14, N = 7, V = 10 -1.4615 -1.3798 -1.3874

L = 16, N = 8, V = 10 -1.6697 -1.5724 -1.5840

L = 18, N = 9, V = 10 -1.8784 -1.7651 -1.7822

L = 20, N = 10, V = 10 -2.0871 -1.9565 -1.9800

Table 3.6: Comparison of results of the NPT algorithm and the traditional projector

formalism.

3.9 Comparison to standard projection-formalism

Instead of successively solving eq. 3.3

(A− E(B − λ)−1E†)x1 = λx1 ,

the projector formulation (see app. I) leads to the equation

(A− E(B − E0)−1E†)x1 = λx1 , .

The NPT procedure is not only self-consistently updating the value λ on the left-hand

side, but it also includes all higher terms involving not only states with just one nearest

neighbor pair.

Tab. 3.6 lists some values to compare both approaches. It shows that the NPT clearly

exceeds the results of the classical projector scheme in terms of accuracy.

3.10 Numerical results for the Hubbard model

In contrast to the previous model the �rst sector of the Hubbard model is comparably

large due to the spin degeneracy. The number of basis state in the �rst sector amounts

to
(
L
N↑

)(L−N↑
N↓

)
. At half-�lling the �rst sector includes only states where every site is

occupied by either a spin-up or a spin-down particle. The expression simpli�es to
(
L
L/2

)
basis states.

This means that at half-�lling no hopping process without construction of a doubly

occupied site is possible. Thus, the Hamiltonian of the �rst sector is exactly zero.

Tab. 3.7 shows the computation time of the NPT approach in comparison to the standard

ARPACK routine.
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NPT ARPACK

Nb ttot [s] tits [s] ENPT ttot [s] tits [s] E0

L = 8, N↑ = N↓ = 4 4900 0.10 0.06 -2.15497 0.07 0.04 -2.17668

L = 10, N↑ = N↓ = 5 63504 1.13 0.56 -2.65938 1.49 0.87 -2.70369

L = 12, N↑ = N↓ = 6 853776 17.74 8.37 -3.15762 31.76 22.03 -3.23238

Table 3.7: Comparison between NPT and a traditional Arnoldi eigensolver (ARPACK)

for di�erent systems with U = 10 and periodic boundary conditions. The

accuracy was set to 0.01 (ttot: total time, tits: iteration time).

3.11 Comparison to reduced models

Standard projection techniques lead to the derivation of the tJ-model and the Heisenberg

model from the more complicated Hubbard model. By using these models the Hilbert

space of a system can be reduced drastically. The tJ-model describes the system by using

only basis states without double occupancies. It reduces to the Heisenberg model at half-

�lling which is solely a spin-model. The e�ective spin-spin interaction is connected to

the Hubbard-U by

J =
4t2

U
.

In terms of the present framework, these models correspond to a projection of the second

sector with Nκ = 1 to the primary sector with Nκ = 0. Furthermore, the non-linear

eigenproblem is replaced by a linear problem with λ = 0.

Tab. 3.8 shows a comparison between the solution of the Hubbard model, the corre-

sponding tJ/Heisenberg model, and the NPT approach for di�erent model systems As

can be seen the approximation of NPT surpasses the reduced models.

3.12 Three-partition recursion

Consider as a toy model the following 3-partitioned potential ordered matrix:

A E 0
E† B F

0 F † C

 ,
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system model ENPT

∣∣∣E−E0
E0

∣∣∣
L = 8, N↑ = N↓ = 4, U = 10

Hubbard -2.1767

NPT (p̃1 = 20) -2.1526 0.0110

Heisenberg -2.2604 0.0385

L = 10, N↑ = N↓ = 5, U = 10
Hubbard -2.7037

NPT (p̃1 = 26) -2.6572 0.0172

Heisenberg -2.8062 0.0379

L = 10, N↑ = N↓ = 4, U = 10
Hubbard -5.6698

NPT (p̃1 = 80) -5.7303 0.0107

tJ -5.5282 0.0250

L = 10, N↑ = N↓ = 5, U = 5
Hubbard -4.9334

NPT (p̃1 = 26) -4.6032 0.0669

Heisenberg -5.6123 0.1376

Table 3.8: Comparison of the lowest eigenvalue obtained by NPT with those of the

Heisenberg or tJ-model and the exact result for the original Hubbard model

(pbc., N ini
κ = 1).
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where A, B, and C correspond to the inner Hamiltonians of the three partitions, respec-

tively. E.g. B includes all states with one occupied nearest neighbor pair, C all with

two. E and F are the inter-partition hoppings which form an additional particle pair to

contribute to the potential.

The �rst approximation is to use only A:

(A− λI)~x = 0 .

A second approximation is to use the Schur complement transformation as explained in

the previous sections:

(
A− λI − E(B − λI)−1E†

)
~x = 0 .

A further extension is to include the third partition:(
A− λI − E

(
B − λI − F (C − λI)−1F †

)−1
E†
)
~x = 0 . (3.12)

Note that this is still exact, no approximation has been applied. The result can be

obtained by applying a Schur complement transformation regarding B �rst and then on

A.

3.12.1 Expansion of C -contribution

Consider the inner expression of eq. 3.12:(
B − λI − F (C − λI)−1F †

)−1
.

Here, the term F (...)−1F † is usually small compared to B − λI because it contains a

larger partition with a larger potential term. Use this to form the expansion:

(
B − λI − F (C − λI)−1F †

)−1
=

(B − λI)−1

+(B − λI)−1F (C − λI)−1F †(B − λI)−1

+(B − λI)−1F (C − λI)−1F †(B − λI)−1F (C − λI)−1F †(B − λI)

+O(C−3) .

(3.13)
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Up to the linear inverse part regarding C the full problem reads

(
A− λI − E (B − λI)−1E† − E(B − λI)−1F (C − λI)−1F †(B − λI)−1E†

)
~x = 0 .

3.12.2 Expansion of the kinetic part

The kinetic part of B and C is considered small compared to the potential part.

E(B − λI)−1E† =
∞∑
ν=0

1
(BV − λ)ν+1

E(−B̃)νE† ,

where BV is the potential and B̃ is the kinetic part of B.

Using only the inverse linear correction by C the corresponding term reads

E(B − λI)−1F (C − λI)−1F †(B − λI)−1E† =∑
νµρ

1
(BV − λ)ν+1

1
(BV − λ)µ+1

1
(CV − λ)ρ+1

E(−B̃)νF (−C̃)ρF †(−B̃)µE† . (3.14)

The �rst terms of this expansion are

1
(BV − λ)2

1
(CV − λ)

EFF †E†

+
1

(BV − λ)3

1
(CV − λ)

(
E(−B̃)FF †E† + EFF †(−B̃)E†

)
+

1
(BV − λ)2

1
(CV − λ)2

EF (−C̃)F †E†

+O((BV − λ)−3(CV − λ)−2) +O((BV − λ)−2(CV − λ)−3)

The matrices E(...)E† appearing in this expansions are usually small and independent

of λ. They could be cached for reusing.

3.12.3 Iteration concept

Again, a similar iteration concept as for the more simple case with involving just the next

partition can be used. The only new aspect involves the construction of the overall uni-

tary eigenvector approximation, which is used to transform the o�-diagonal Hamiltonian

blocks of the next partition.
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Figure 3.10: Comparison of the 2-partition approach to the 3-partition approach for two

di�erent system sizes. The development of the accuracy is given as a function

of included sectors Nmax
κ . The values are given as distances to the exact

ground state energy.

Note that in the case of involving additional sectors the new approximation is not any

more a solution to the eigenproblem of the �rst two partitions. So the new matrix Ã is

not any more diagonal, and must be calculated additionally in every step.

3.12.4 Numerical experiments

Fig. 3.10 shows results from an actual implementation using the iterative scheme. As

can be seen there is no qualitative improvement of including three partitions in every

iteration step. What can be seen clearly is the quantitative improvement due to the

more exact calculations of the �rst partitions. But still some saturation is reached after

a small number of iterations.
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3.13 Conclusions

The Numerical Projection Technique is a generalization of traditional projection schemes

with respect to multiple aspects. No approximations are made to the original model and

also no limitations are imposed on the number of included sectors. It combines the steps

of projection and eigenvalue computation.

Another advantage is, that no e�ective Hamiltonian has to be formulated which may not

be trivial for complex multi-banded systems, e.g. in the spin-orbital model for manganites

[36]. Furthermore, also moderate coupling constants can be treated more e�ectively

because higher sectors become more important in this case.

The approach is applicable to other algebraic eigenproblems of the same shape from

other research �elds. The diagonal entries should mostly be dominant compared to the

o�-diagonal elements, only a small fraction should have entries close to zero.
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4 Multi-Dimensional Approach to the

Fermionic Many-Body Problem

This chapter describes an alternative basis for the description of the many-body system.

It relies on a description of the fermions on a lattice using their explicit coordinates,

but at the same time restricts the coordinate space in order to obey the anti-symmetric

property of the corresponding wave function and the Pauli's principle (see sec. 1.4).

4.1 Coordinate space restriction

Remember the anti-symmetric relation for fermions from section 1.4:

Ψ(x(1), x(2)) = −Ψ(x(2), x(1)) ,

where x(1) and x(2) represent the coordinates of particle 1 and 2, respectively.

In general, each particle has d coordinates, where d is the spatial dimension. The full

coordinate space has d·N dimensions with particle numberN . The number of possibilities

for occupation con�gurations is

Ld·N ,

where L is the number of lattice points in each dimension.

This number is drastically reduced by the property of indistinguishability and the sym-

metry of the wave function. In the full con�guration space many entries of a proper

wave-vector have the same entries on di�erent lattice points up to a minus sign.

We can now apply a criterion for choosing points of the full coordinate space in order to

obtain a smaller set of points. The value of the wave function for points outside of the

small set can be extrapolated from inside.

The criterion for particles in 1D is a simple restriction on the coordinates of the particles

which are only numbers in this case:
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x(1) < x(2) < x(3) < ...

x(i) < x(i+1) .

It is a simple ordering of the individual coordinates. In addition, the Pauli principle

implies a boundary condition onto the full coordinate space. At the surface where two

particles have the same coordinates, the wave function must vanish.

In 2D, the condition reads:

x
(i)
1 < x

(i+1)
1 ∨

(
x

(i)
1 = x

(i+1)
1 ∧ x(i)

2 < x
(i+1)
2

)
.

The criterion applies a similar restriction to the �rst coordinate of each particle. But

additionally, these numbers are allowed to be equal for both particles, when the condition

is ful�lled for the second pair of coordinates. In general, the coordinates of the individual

particles have to be ordered in a lexicographical way:

x
(i)
j < x

(i+1)
j ∨

(
x

(i)
j = x

(i+1)
j ∧ [Criterion for j → (j + 1)]

)
.

A state belonging to the restricted domain can be represented by

|~r1~r2...~rN 〉 ,

the coordinates of the particles with ~r1 ≺ ~r2 ≺ ~r3 ≺ ...~rN−1 ≺ ~rN according to a

lexicographical ordering.

Example: (N = 4, d = 2) Consider the state |00021022〉. It means that particle 1

has coordinates (0, 0), particle 2 has coordinates (0, 2), particle 3 has coordinates (1, 0),
and particle 4 has coordinates (2, 2). The coordinates are correct with respect to the

lexicographical ordering.

Examples of not valid coordinate sets: |00121022〉 and |00020222〉. The criterion is

violated.

4.2 Geometric considerations

It is a rather di�cult task to interpret the multi-dimensional space geometrically as the

dimensionality of the needed space increases linearly with the number of particles. It is
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4.2 Geometric considerations Ralf Gamillscheg

Figure 4.1: Graphical representation of the many-body wave function de�nition space for

a two particle fermionic system in 1D. The axes re�ect the positions of the

two particles, respectively. Left: continuous, right: discrete.

only possible for very small particle numbers, e.g. for a system with 2 particles in 1D

(see �g. 4.1).

Here, the lexicographical criterion restricts the full coordinate (two-dimensional) space to

the space below the diagonal. The boundary condition states, that the wave function at

this line must be zero. In the discrete case it can be seen that the points on the diagonal

are also omitted, in order to obey the Pauli principle.

It is also possible within the limits of human's imaginativeness to consider three particles

in 1D. The restricted space corresponds to a pyramid shaped space (see �g. 4.2).

Unfortunately, this simple cases do not express the complexity of fermionic systems in

terms of the exchange interaction. Due to the antisymmetry of the wave function a sign

change of the wave function occurs when two particles exchange their positions. This

cannot happen in 1D due to model restrictions. So, the simplest model to re�ect this

phenomenon is a 2D system with 2 particles, which corresponds to a 4-dimensional wave

function de�nition space.

This cannot be pictured easily, but this space can be projected to a three dimensional

space using stereographic projection. Here, each direction in 4-dimensional space is

reproduced as a point in 3D. Each canonical direction is represented by a corner point

of a tetrahedron. The planes correspond to one of the 4-dimensional coordinates being

zero. So the system can be drawn and interesting conclusions can be obtained (see �g.
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Figure 4.2: Graphical representation of the many-body wave function de�nition space for

a three particle fermionic system in 1D. The axis re�ect the positions of the

three particles, respectively.

4.3).

Let (x1, x2) be the coordinates of the �rst particle, and (x3, x4) be the coordinates of

the second particle. This space can be partitioned in two halves where either x1 > x3 or

x1 < x3. So the lexicographical criterion can be applied and one half is dismissed, i.e.

mapped to the other half-space. Furthermore, when both coordinates are equal, which

is the case at the intersecting plane of the two halves (see �g. 4.3 right), the secondary

criterion for the other two coordinates has to be applied. The plane is once more divided

in two sub-sections with x2 > x4 and x2 < x4, respectively. One of them can be mapped

to another.

4.3 Generation of valid states

In order to apply the restrictions by the lexicographical criterion to build a fermionic

wave function an e�ective algorithm is needed to go through the space of admissible

points.

With this method matrix expressions like the vector-matrix-product can be evaluated

without the actual need to calculate the matrix itself.
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Figure 4.3: Graphical representation of the many-body wave function de�nition space

for a two particle fermionic system in 2D using stereographic projection.

Left: Each point in three dimensional space corresponds to a direction in

4-dimensional space. Right: Application of the fermionic lexicographical

criterion to the projection (see text).
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Initial state: Since the aim is to go through the state space in a lexicographical way,

the lowest possible way of preparing the particle con�guration is needed.

As an example for N = 4, d = 2, L = 10 the initial state would be |00010203〉, which
means that the �rst fermion has coordinates (0, 0), the second (0, 1) and so on. So the

electrons are prepared to occupy the lowest possible coordinates in an ascending way.

The next state: To go from one state to another is fairly simple. Just increase the

most right coordinate of the most right particle: |00010204〉 ... |00010299〉.
The next part is more tricky. We have to ensure the lexicographical ordering between

particles. In order to do so, we increase the coordinate of the second rightest particle and

prepare the coordinates of the rightest particle to be just one step ahead: |00010304〉.
Then increase again the most right coordinate of the most right particle.

Further considerations include the following state: |00019899〉. Here, increasing the

coordinates of the second particle from the right leaves no possibility for the most right

to be in. So this state has to be dismissed and the next valid state is: |00020304〉.

4.3.1 Interpretation of a nearest neighbor interaction

The nearest neighbor interaction model (see sec. 1.7) includes a term punishing states

with particles occupying neighboring sites.

In the case of the simple two particle in 1D model the potential is applied to states next

to the main diagonal in the full coordinate space (see �g. 4.4).

For the three particles in 1D, the potential appears next to the planes of the pyramid

shaped restricted domain (see �g. 4.5).

Fig. 4.6 shows a quantitative analysis of the three-fermion system.

4.4 Mapping between the occupation number basis and the

N · d-dimensional coordinate representation

Using the criterion de�ned in previous sections one arrives at basis states for particles

which are very similar to the occupation number basis. In the occupation number basis a

state is de�ned with the number of particles at each site. In the case of spin-less fermions

this number is either 0 or 1. The occupation number states can be seen as representatives
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Figure 4.4: Nearest-neighbor potential in a system of 2 particles in 1D. Left: discrete,

right: continuous.

Figure 4.5: Nearest-neighbor potential in a system of 3 particles in 1D.
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Figure 4.6: Next nearest neighbor potential in the 3-dimensional phase space for a system

with 3 particles in 1D (L = 6). The radius of the spheres is proportional to
the number of nearest neighbor pairs of each set of coordinates.

82
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for many states of the full many-body-state by permuting the coordinates of the involved

particles.

It turns out, that the much fewer states described by the lexicographical criterion have a

one-to-one relation to the occupation number basis states. Using the basis states de�ned

by the criterion allows to map the occupation basis states on the N · d-dimensional

many-body-space.

Furthermore we will see, that the matrix representation of the many-body Hamiltonian

has a very similar structure compared to an FDM discretization. The symmetries of the

wave function translate to a specially shaped computational domain and rather exotic

boundary conditions.

4.4.1 Kinetic operator

The hopping term, which appears for example in the Hubbard model (see sec. 1.6) can be

mapped exactly to the discretization of the Laplacian in the multi-dimensional picture.

In the case of a discretization of di�erential equations the Laplacian can be represented

by a standard di�erence star in the discretized space. It is constructed of legs to all the

canonical neighboring directions. These legs are exactly the same as the hopping paths

of the particles in the occupation number basis.

Additional complexity comes into play when looking at systems with at least two fermions

in at least two spatial dimensions. Here it may occur that a particle hops and the overall

coordinate are not lexicographically ordered anymore. Then the state has to be ordered

manually again, a procedure which can be seen as a back-projection into the calculation

domain with states obeying the fermionic criterion.

Translated into the language of �nite di�erences this corresponds to a �nite-di�erence

star where on some legs an additional minus signs appears. This is of course due to the

antisymmetry of the fermionic wave function.

In the case of 2 particles in 2D (see �g. 4.3) this means that the points on one side of

the interacting plane have neighbors on the other side. So it can be imagined that the

to halves of the plane have to be folded and collapsed to re�ect the fermionic boundary

conditions.
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4.4.2 Potential operator

In the occupation number basis a potential appears on the diagonal of the matrix-

representation. This holds also true for the multi-dimensional approach. Here, an addi-

tional term on the diagonal can be added for all states.

4.5 Creation of the kinetic FDM-Matrix

In order to create the kinetic part of the FDM-Matrix in theN ·d-dimensional description,

which corresponds to the hopping term in terms of the second quantization, the neighbor

relations have to be established. Due to the antisymmetry of the fermionic wave function

the geometry of such a system becomes complicated. This especially applies to problems

in more than one spatial dimensions, where the particles can swap locations by multiple

hopping processes.

The following section describes a way to �nd all neighboring relations.

4.5.1 Finding neighbors

To �nd a neighbor of a speci�c point |X〉 it does not su�ce to change each of the

coordinates by one position to get the points |Yi〉. When having created such a neighbor,

the criterion (sec. 4.1) has to be applied. The point can either be valid, so a correct

neighbor relation is established, or it can violate the criterion. In the latter case further

two possibilities may occur.

If the coordinates can be rearranged by swaps of the particle positions and ending up with

a set of coordinates obeying the criterion also a neighbor relation to this ordered point

can be created. In this case due to the antisymmetry an additional sign appears, which

is determined by the number of necessary particle swappings. This process corresponds

to a back-projection of a point outside the computational domain into the domain.

The other possibility is that two set of particle coordinates are equal which violates the

Pauli's principle and the corresponding point has to be dismissed. Then this leg has no

neighbor.

4.5.2 Example: creation of FDM-Matrix for 2 particles in 2D

Let N = 2,d = 2,L = 2 where N is the number of fermions, d is the number of spatial

dimensions and L is the number of discretization points per dimension.
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There are 6 points of the full coordinate space (16 points), which ful�ll the criterion (sec.

4.1):

|À〉 = |0001〉 , |Á〉 = |0010〉 , |Â〉 = |0011〉 , |Ã〉 = |0110〉 , |Ä〉 = |0111〉 , |Å〉 = |1011〉

Let's calculate the neighbors of |Á〉 = |0010〉:

|0011〉 → |Â〉OK

|0000〉 → INVALID (Pauli)

|0110〉 → |Ã〉OK

|1010〉 → INVALID (Pauli)

In principle 4 di�erent neighbors are possible. These are created by adjusting one of the

coordinates by 1. Two of the neighbors turn out to be valid (|Â〉 and |Ã〉) while two

other turn out to violate Pauli's principle.

Now let's calculate the neighbors of |Ã〉 = |0110〉:

|0111〉 → |Ä〉OK

|0100〉 → SORT→ |0001〉 = |À〉 , PARITY:−1

|0010〉 → |Á〉OK

|1110〉 → SORT→ |1011〉 = |Å〉 , PARITY:−1

Again, two perfectly valid neighbors turn up, while the two others can be rearranged to

ful�ll the criterion. In this case the coordinates of the two particles have to be swapped,

so an additional minus sign appears.

Putting all information together the following FDM-Matrix can be evaluated:

8 0 −1 1 0 0
0 8 −1 −1 0 0
−1 −1 8 0 −1 −1
1 −1 0 8 −1 1
0 0 −1 −1 8 0
0 0 −1 1 0 8


,

The number 8 on the diagonal comes from the usual de�nition of the �nite-di�erence

star, which allows for an additional value 2 for each dimension.
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4.5.3 Example: nearest neighbor potential

The nearest neighbor potential appears on the diagonal only. It essentially counts, how

many pairs of particles are located next to each other.

Looking at the state |0111〉 which has coordinates (0, 1) of the �rst particle and (1, 1) of
the second we can see that the two particles are located next to each other.

The nearest neighbor potential adds the following terms to the previous example:

8+V 0 −1 1 0 0
0 8+V −1 −1 0 0
−1 −1 8 0 −1 −1
1 −1 0 8 −1 1
0 0 −1 −1 8+V 0
0 0 −1 1 0 8+V


,

where V is the value of the potential.

Generally only multiples of V appear as additional terms on the diagonal, but note that

some states have no neighboring particles and are not in�uenced by the potential.

Typical numerical values for V are in the order of 0− 10
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5 Multigrid

5.1 Introduction

Multigrid [37, 38] was introduced as a technique to solve linear equations of a �nite

element discretization. The basic idea is to use di�erent lattice spacings to accelerate

the evaluation. In this way di�erent regions of the frequency domain can be e�ciently

treated on a suitable lattice, respectively.

High frequencies of the solution are obtained on a �ne grid, while the convergence of low-

frequency components can be drastically accelerated by using a coarser discretization

(see �g. 5.1).

Note that the coarse grid calculations are numerically much less demanding because of

much smaller number of degrees of freedom.

5.1.1 The standard V-cycle

By introducing a V-shaped cycle it is assured that a symmetric operation takes place

(see alg. 1). This so-called V-cycle consists of smoothing steps as well as restriction and

Figure 5.1: Basic idea of multigrid: Solving di�erent frequency regimes of the solution

on grids with di�erent lattice spacings.
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Figure 5.2: Left: Standard multigrid V-cycle, right: FAS (Full Approximation

Scheme).

prolongation processes. Usually, smoothing consists of the application of a few steps of

a standard iterative linear solver (e.g. Gauss-Seidel).

The transfer of solutions to coarser grids is called restriction, going to �ner grids is called

prolongation.

Algorithm 1 Standard multigrid V-cycle
Input: current vector ~vl, current level l

Relax ~vl for ν1 times on level l: ~vl ← Rl~vl
if l > 1 then

Go to level l − 1: Restrict ~vl−1 ← I ll−1
~l

Do standard V-cycle with vl−1 on level l − 1
Go back to level l: Correct ~vl with

(
I ll−1

)T
~vl−1

end if

Relax ~vl for ν2 times on level L: ~vl ← Ri~vl

A more sophisticated method is the full approximation scheme (FAS, see [37]) which

starts at a coarse level and uses consecutive V-cycles while at the same time reaches �ner

levels (see �g. 5.2 right).

Usually smoothing involves some sweeps of an iterative solver, e.g. a Gauss-Seidel step.
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Often a very small number (e.g. 2) cycles is su�cient.

It has advantages to use the transposed restriction matrix for prolongation and vice-versa

because it guarantees to have a symmetric operation.

5.2 Solving eigenvalue-problems with multigrid

In principle there are three methods of solving eigenvalue problems with multigrid [39]:

� Eigensolvers using multigrid as a linear solver

� Rayleigh quotient multigrid minimization

� Direct multigrid solvers

The �rst method relies on a standard recursive technique to update the eigenvalue, while

multigrid is only used to smooth the eigenvector. For this purpose a multigrid cycle for

the evaluation of linear equations is used.

The Rayleigh quotient method [40] uses multigrid to update the eigenvalue by assisting

in searching a minimum value for the Rayleigh-Ritz quotient in a search space S.

λnew = min
~v∈S

~v†A~v

~v†~v
.

A more sophisticated approach is realized by the direct multigrid solvers which update

the eigenvalue on all involved lattice levels.

5.3 FAS-based multigrid

A direct multigrid eigenvalue solver may be based on the FAS scheme. The following

lines describe a possible realization of such a direct solver [41].

Let the �ne grid equation be denoted by

AfVf − ΛfVf = τf , (5.1)

where Af denotes a n × n matrix, Vf is an n × nv matrix with the eigenvectors in

its columns, and Λ is a nv × nv diagonal matrix with the eigenvalues on the diagonal.

Without loss of generality it can be assumed that there is an additional right-hand side

τf which may be set to zero for the �nest level.
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Let Uf be the current approximation of the exact equation and write down the residual

equation:

Af (Vf − Uf ) = ΛVf −AfUf + τf .

Let Vf − Uf =: Rf be the error and ΛfVf −AfUf + τf =: Ff be the right-hand side:

AfRf = Ff .

This equation is transformed to the coarse level using the restriction operator Icf :

AcRc = Fc

with Rc = Ifc Rf = Ifc Vf − Ifc Uf = Vc − Ifc Uf
Fc = Ifc Ff = ΛVc − Ifc AfUf + Ifc τf .

This equation can be rewritten in the following form:

AcVc − ΛVc = τc

τc = Ifc τf +AcI
f
c Uf − Ifc AfUf .

The last line gives a transformation rule for the inhomogeneity τ . Note that although

there may be no such term on a �ne level it appears on coarser levels. We arrive at

an equation which looks very similar to eq. 5.1, so the above scheme can be applied

recursively and therefore be extended to multiple grids.

5.3.1 Updating the �ne grid vector

After the cycle on the coarser grid has completed, a correction must by applied to the

actual �ne grid approximation:

U
(new)
f = Uf +Rf = Uf + IcfRc = Uf + Icf (Vc − Uc)

= Uf + IcfUc − IcfIfc Uf .

For the last line the current approximation of the coarse grid vector Uc and the current

�ne grid approximation Uf is used.

5.3.2 Eigenvalue update

Note that the eigenvalues Λ are the same on all levels. It can be updated using the

Rayleigh-Ritz quotient

Λ(new) =
(AU − τ, U)

(U,U)
.
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5.4 CT-multigrid

Costiner and Ta'asan [42] developed a multigrid scheme for evaluation of multiple eigen-

vectors and eigenvalues. This algorithm is based on FAS and features eigenvector separa-

tion on coarse levels (Generalized Rayleigh-Ritz, see sec. 5.4.1), backrotations to prevent

eigenvector mixing, adaptive completion of eigenvalue clusters and selective treatment of

individual clusters.

5.4.1 Generalized Rayleigh-Ritz projection

Compared with the coarse grid correction cycle de�ned in the previous section a Rayleigh-

Ritz projection on the �ne level proves to be quite a numerical e�ort. To avoid this the

separation of the eigenvectors can be moved to coarser levels by using the Generalized

Rayleigh-Ritz projection (GRR, [43]).

Let's assume that the correct eigenvectors can be calculated from the current approx-

imations by multiplying with a square nv × nv matrix E, where nv is the numbers of

wanted eigenvalues.

V = U · E ,

where V is the correct solution, U is the current approximation.

The task now is to �nd a pair (E,Λ) which solves

AUE = UEΛ + τE .

To do this, multiply from left by U †

U †(AU − τ)E = (U †U)EΛ . (5.2)

This equation turns out to be a small nv × nv generalized eigenvalue problem with the

pencil (U †(AU − τ), (U †U)) and eigenvalues Λ and eigenvectors E.

Solving this small eigenvalue problem can be used to update the current approximations

and the inhomogeneity term:

U ← UE

τ ← τE .

Note that in general the matrix U does not consist of orthonormal eigenvectors on the

coarse level. Furthermore the eigenproblem eq. 5.2 does not involve a symmetric matrix

because of the inhomogeneity term.
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5.4.1.1 Adaptivity

In some cases GRR works increasingly worse for larger numbers of meshes. This may be

due to a bad representation of �ne level vectors on coarse levels. Also some symmetries

existing on the �ne meshes may not be represented correctly on the coarse level.

Therefore the GRR has to be moved to �ner levels. This can be done automatically by

the algorithm when observing the convergence rates.

Algorithm 2 Update of GRR-BR level
Start on coarsest level

Track the development of the convergence rate by observing the ratio of residuals of

the eigenvalue equation

if convergence fails then

Lower the level of GRR-BR

end if

5.4.2 Backrotations

When performing a GRR projection prevention of permutations, rescalings, and sign-

changing have to be taken care of. E.g. for degenerate eigenvalues the matrix E may

mix the eigenvectors.

Algorithm 3 Backrotation
Sort by eigenvalues in Λ and E

Determine clusters of eigenvalues

For each diagonal block in E with non-degenerate eigenvalues: bring dominant values

to diagonal

Let F be a matrix composed of diagonal blocks of E which correspond to degenerate

clusters

Set E ← EF−1

Change signs of E to get positive diagonal

Normalize columns of E
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The mapping introduced in section 4.4 provided the motivation to apply the multigrid

method (ch. 5) to the problem of strongly correlated fermions. The viewpoint of the

multi-dimensional problem which introduces a kinetic matrix identical to the discretiza-

tion of the Laplace-operator in the N · d-dimensional space gives the opportunity to use

well-known multigrid methods for eigenvalue problems.

6.1 Restriction/prolongation

The special nature of multi-dimensionality of the many-body eigenvalue problem in solid-

state physics makes it necessary to examine special ways of transferring the problem to

coarser grids. According to ch. 4, the mapping to a multi-dimensional space results in

as much dimensions as there are particles. On the other hand the number of spatial

discretization points which corresponds to lattice sites is fairly limited. Having in mind

that a reduction by a small number of points per dimension results in a large reduction

of overall lattice points and because it is desirable to do a symmetric transformation for

all directions it is reasonable to restrict the number of points by one for each dimension.

A bisection of the number of points in each dimension, which is quite common for multi-

grid may lead to such a small coarse level problem which is not able to approximate

the �ne level solution adequately. In addition such a large reduction is not necessary to

bene�t from the advantages of multigrid.

6.1.1 Restriction by removing one discretization point per dimension

For every dimension of the multi-dimensional phase space the number of discrete points

is reduced by one. Considering a coarse and a �ne mesh with the following coordinate

representations (see �g. 6.1):
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Figure 6.1: Restriction by removing one lattice point per dimension, blue: �ne grid

points, yellow: coarse grid points.

xi,F =
i− 1
N − 1

i = 1, 2, ..N

xi,C =
i− 1
N − 2

i = 1, 2, ..(N − 1) .

The distances of a �ne grid point to the previous and next coarse grid point are

di−1,C
i,F =

N − i
(N − 1)(N − 2)

i = 2, 3, ..(N − 1)

di,Ci,F =
i

(N − 1)(N − 2)
i = 2, 3, ..(N − 1) .

A prolongation matrix from N to N − 1 discretization points reads:

I1d
N,N−1 =



1
N−3
N−2

1
N−2
N−4
N−2

2
N−2
. . . . . .

1
N−2

N−3
N−2

1


.

For multiple dimensions, these projection matrices have to be applied on each real-space

coordinate:

InDNn,(N+1)n =
n⊗
i=1

I1d
N,N+1 .

In terms of matrix elements the above equation becomes:

vi1,i2,...in =
∑
j1

∑
j2

...
∑
jn

(
I1D

)
i1,j1

(
I1D

)
i2,j2

...
(
I1D

)
in,jn

uj1,j1,...jn .

Here, the indices i and j denote the multi-dimensional coordinates of the points u and

v, respectively.
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Figure 6.2: Restriction of a two particle system observing the wave function symmetry.

Fig. 6.2 shows a system of 2 particles and a possible coarse grid discretization. Here, the

fermionic property reduces the de�nition space to the triangular region.

6.1.2 Restriction/prolongation by Galerkin ansatz

Let the generalized eigenvalue problem on a �ne level be given by

Afxf = λSfxf . (6.1)

Generally, to retain symmetry, when going to coarser grids the prolongation matrix

Icf = (Ifc )T is used. The eigenvalue equation is transformed to the coarser level:

(Icf )THfI
c
fxc = λ(Icf )T Icfxc .

Using the de�nitions

Hc = (Icf )THfI
c
f

Sc = (Icf )TSfIcf ,

one arrives at a coarse grid eigenvalue formulation

Hcxc = λScxc ,
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which looks exactly like eq. 6.1. So the transformation can be applied recursively to

coarser grids. Note that if the �ne grid equation is a standard eigenvalue problem, the

coarse grid problems will result in a generalized problem using this approach.

6.1.3 Restriction using a singular value decomposition

Using a singular value decomposition decomposition a standard eigenvalue problem on

�ne grids can be transformed to a standard eigenvalue problem on coarser grids. Starting

from the �ne grid eigenvalue equation (Hfxf = λxf ) and transferring it again to the

coarse grid the following expression with an operator I to be determined should be

minimized:

xTc I
THfIxc

xTc I
T Ixc

.

It corresponds to the generalized eigenvalue problem

Hcxc = λScxc with Hc = ITHfI, Sc = IT I .

Now, reformulate the coarse grid equation to a standard eigenvalue problem by multi-

plying with S−1/2
c from the left:

S−1/2
c HcS

−1/2
c S1/2

c xc = λS1/2
c xc ,

which corresponds to a standard eigenvalue problem with x̃c = S
1/2
c xc and H̃c = S

−1/2
c HcS

−1/2
c :

H̃cx̃c = λx̃c .

Finally we can create a projection operator Ĩ which directly translates to the coarse

standard eigenvalue problem

xf = Ixc = IS−1/2
c x̃c = Ĩ x̃c with Ĩ = IS−1/2

c .

Ĩ can be calculated by using an SVD-decomposition of I:

I = UDV T

S = IT I = V DUTUDV T = V D2V T

S−1/2 = V D−1V T

IS−1/2 = UDV TV D−1V T = UV T .

96



6.2 Coarse grid formulation Ralf Gamillscheg

Here, the indices c,f have been dropped temporarily. It follows

Ĩ = UV T ,

which can be used for prolongation and restriction.

6.2 Finding a coarse grid formulation of the eigenvalue

problem

The special needs of the fermionic problem, especially the multi-dimensionality and the

symmetry considerations make it necessary to look for an adjusted transfer of the �ne

grid problem to coarser levels.

There exist a number of possibilities for restriction schemes as listed in the following

paragraphs.

Simple coarse grid discretization (SIMPLE) This approach allows to build the coarse

grid matrix with the same procedure as the �ne grid. So no extra computation has to be

performed and the matrices can be evaluated independently. Furthermore the sparsity

of all level matrices is guaranteed.

Galerkin-ansatz This strictly algebraic ansatz calculates coarser grids from the �ne grid

matrix using the restriction/prolongation operators (see sec. 6.1.2).

Ac = ITAfI .

General eigenvalue problem on coarse level (GENEIG) When using the Galerkin

ansatz for eigenvalue-problems the problem becomes a generalized eigenvalue problem

on the coarse level:

Ac~xc = λSxc with S = IT I .

A possibility is to solve this eigenvalue problem on coarser grids directly.
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Using SVD to get a standard eigenvalue problem on coarse levels (SVD) In order

to obtain a standard eigenvalue problem on coarser levels SVD (Singular Value Decom-

position) can be used (see sec. 6.1.3). This leads to modi�ed restriction/prolongation

operators.

Ac~xc = λxc using Ĩ = UV T

Use Lumping to simplify the generalized eigenvalue problem (LUMPING) The ma-

trix on the right side may be simpli�ed using Lumping. Here, the matrix is replaced by

its diagonal matrix.

SL = diag(S)

Use optimized prolongation/restriction matrices (LOADED1D) This procedure was

applied for comparison only. Optimized prolongation matrices were used, which minimize

the Rayleigh-Ritz quotient for the exact ground state. Due to the vast numerical e�ort

to �nd these optimized projection matrices, this method is not practicable.

6.2.1 Comparison

To evaluate the quality of a coarse grid formulation the following testing procedure was

performed:

� Calculate an eigenvector of the coarse grid using a Davidson-Lui algorithm up to

machine precision.

� Transfer the solution to the �ne grid using the prolongation operator.

� Compare number of necessary �ne grid iterations to reach a level of convergence as

a measure of accuracy of the coarse grid approximation.

For a description of the Davidson algorithm see app. F.

As can be seen in �g. 6.3 and 6.4 all methods provide a better performance than the direct

calculation on the �ne grid (DIRECT), starting with an arbitrary vector. Furthermore,

as expected, the optimized projection operators have the lowest number of �ne grid

iterations. The interesting point is, that using the coarse grid discretization (SIMPLE)

leads to quite good performance. This is also interesting when going to the CT-type

eigensolvers (sec. 5.4). The error bars have been devised by the statistics of multiple

runs.
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Figure 6.3: Comparison of di�erent coarse grid formulation procedures (d = 2, N = 2,
V = 0). Pictured is the number of necessary �ne grid iterations to reach

convergence over the system size per dimension L.

6.3 CT-multigrid: benchmarks

To compare the CT-multigrid-Ansatz with a traditional Davidson algorithm multiple test

series were performed. Fig. 6.5 shows the iterations of a CT-type multigrid calculation

for a speci�c system of fermions. The convergence towards the true value can clearly be

seen.

Note that the tests presented in this section are at half-�lling which is a critical physical

con�guration.

Further note that all CPU times were measured during the actual iterations without

preparation time. Also the numerical experiments including a nearest neighbor potential

were done using optimal coarse potential parameters found empirically.

The almost constant number of iterations with system time for V = 0 (see �g. 6.6)

is clearly visible. Fig. 6.7 shows that the computational complexity between the two

algorithms di�ers only by a constant factor (as expected, see appendix M). The CPU

time shows a very limited improvement to Davidson, this also holds true for V 6= 0 (�g.

6.8).
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Figure 6.4: Comparison of di�erent coarse grid formulation procedures with included

potential (d = 2, N = 2, V = −3).Pictured is the number of necessary �ne

grid iterations to reach convergence over the system size per dimension L.

6.4 Di�culties

Applying a repulsive neighbor potential the ground state of the system becomes a state

with alternating occupied and unoccupied sites. The problem is now to represent this

state on coarser levels with a smaller amount of sites. From the perspective of the

physicist this becomes then a conversion between systems of di�erent particle density

because the number of particles stays the same.

In terms of the multi-dimensional representation (chapter 4) such a ground state could

be described with a peaked wave function in terms of the basis function. Such a state

is of course di�cult to represent on coarse grids, especially if the peaked region is not

represented by points on the coarse grid.
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Figure 6.5: 3-level CT-multigrid, development of the lowest eigenvalue over the iterations

(d = 1, N = 3, L = 10, V = 0). The red line indicates the current lattice size,
and the blue marks indicate the current eigenvalue approximation measured

from the exact ground state. Note the logarithmic scale.
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Figure 6.6: Comparison between CT-type multigrid and Davidson algorithm for V = 0
at half-�lling in 1D.
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at half-�lling in 1D. CPU-time per iteration.
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Figure 6.8: Comparison between CT-type multigrid and Davidson algorithm for V = 3
at half-�lling in 1D.
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7 Conclusions

Bridging the communities of computational mathematics and physics can be di�cult at

times. First of all, one has to �nd a common language between scientists from di�erent

research �eld. Doing that it becomes clear that in many cases similar problems appear

and a bene�t from the collaboration seems obvious.

But there is one crucial point which relativizes the gain from the interdisciplinary work

in this case. It is the question of the goals of the work. Physicists as explorers for new

e�ects want to understand principle tendencies of measurement curves resulting from

experiments. It is in many cases more important to get an impression of the solution

rather than high-level accuracy up to the tenth decimal place. The scientist knows that

there are many other e�ects when doing a quantitative analysis of an experiment, which

contribute to the outcome. This is not only due to the limitations of the experiments

but also to the limitation of the used numerical model in the computations. Therefore,

the conclusion is that an algebraic exact calculation does not make sense in many cases.

Furthermore, numerical computation in terms of many-body physics leaded to many very

specialized algorithms which deliver impressive results. An algebraic formulation of the

problem, and then using standard mathematical algorithms is hugely out of range of

these methods in terms of performance.

In the course of this thesis, a new specialized algorithm for solving eigenproblems of

strongly correlated systems emerged from the adaption of AMLS (Automated Multilevel

Substructuring, see app. B) to the problem of many strongly correlated particles. The

major break-through is certainly the decomposition of the individual partitions in a ten-

sorial matrix structure which makes sure that the problem can be solved at the numerical

complexity of the subsystems. This of course is in opposition to the original idea of an

algebraic partitioning of the algorithm. Nevertheless, it can be seen that the algorithm

TSGSA works and delivers an impressive numerical e�ciency.

It is still to be determined, how TSGSA relates to other, similar methods like DMRG or

VCA, which are highly successful methods for strongly correlated systems. In any way
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the least it does is throwing new light on established algorithms.

The Numerical Projection Technique (NPT) can not pro�t from an exponential speed-up

as above, but it may be interpreted as an extension to traditional projection techniques

in form of an algebraic solver. It was shown that the resulting accuracy exceeds the

simple projections by orders of magnitudes in some cases.

The interpretation of the many-body wave function as a similar object than the discrete

solution of an FD/FE algebraic problem brings many di�culties with it. Of course,

there is the obvious problem of the fermionic sign which does certainly not appear in

e.g. continuous material problems. Secondly, the resulting wave vector is not a smooth

function. In the extreme case of large repulsion between particles and periodic boundary

conditions at half-�lling there are only two entries in the ground state vector. This

solution cannot be approximated with coarse grid methods to a satisfying extend.
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A Derivation of the Hubbard model from

a continuous description

A.1 Continuous formulation

Consider the many-body Hamiltonian (see ch. 1):

H = Hkin. +Hpot.

= −
∑
i

∇2
i

2m
+ U ′

∑
ij

δ(~ri − ~rj) .

Let the solution of Hkin. in real space be φn(r):

Hkin.φn(r) = εnφn(r) .

The ansatz function for the full system with interaction is a Wannier basis set:

ψnk(r) =
1√
Ni

Ni∑
j=1

eikRjφn(r −Rj) .

A.2 Transformation of the operators

The transformation of a single-particle operator to a second quantization formulation

(sec. 1.5.4) is given by

A
(1)
2Q. =

∑
iσ,jσ′

〈iσ|A(1) |jσ′〉 a†iσajσ′ .

The transformation of a two-particle operator reads

A
(2)
2Q. =

∑
iσ,jσ′,kσ′′,lσ′′′

〈iσ, jσ′|A(2) |kσ′′, lσ′′′〉 a†iσa
†
jσ′akσ′′alσ′′′ .
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To transfer the kinetic term to the formulation of second quantization the following steps

have to be performed:

Hkin.,2Q. =
∑
iσ,jσ′

〈iσ|Hkin. |jσ′〉 aiσajσ′

〈iσ|Hkin. |jσ′〉 =
∑
kσ1

〈iσ|Hkin. |kσ1〉 〈kσ1| |jσ′〉

=
∑
k,σ1

εk 〈iσ|kσ1〉 〈kσ1|jσ′〉

〈iσ|kσ1〉 =
∫
d3r 〈iσ|r〉 〈r|kσ1〉

=
∫
d3rφ∗(r −Ri)ψk(r)δσ,σ1

=
1√
Ni
δσ,σ1

∑
m

eikRm
∫
d3rφ∗(r −Ri)φ(r −Rm)

=
1√
Ni
δσ,σ1

∑
m

eikRmδi,m

=
1√
Ni
δσ,σ1e

ikRi

〈iσ|Hkin. |jσ′〉 =
1
Ni

∑
k,σ1

εkδσ,σ1e
ikRiδσ′,σ1e

−ikRj

=
1
Ni
δσ,σ′

∑
k

εke
ik(Ri−Rj) .

The next step is to transfer the potential term to the framework of second quantization:

Hpot,2Q. =
∑

iσ,jσ′,kσ′′,lσ′′′

〈iσ, jσ′|Hpot |kσ′′, lσ′′′〉 a†iσa
†
jσ′akσ′′alσ′′′

〈iσ, jσ′|Hpot |kσ′′, lσ′′′〉 =
∫
dr1

∫
dr2 〈iσ, jσ′|Hpot |r1r2〉 〈r1r2|kσ′′, lσ′′′〉

=
∫
dr1

∫
dr2v(r1, r2) 〈iσ, jσ′|r1r2〉 〈r1r2|kσ′′, lσ′′′〉

=
∫
dr1

∫
dr2v(r1, r2)φ∗σ(r1 −Ri)φ∗σ′(r2 −Rj)

·φσ′′(r1 −Rl)φσ′′′(r2 −Rm) .
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Set v(r1, r2) = U ′δ(r1 − r2):

〈iσ, jσ′|Hpot |kσ′′, lσ′′′〉 = U ′
∫
dr1

∫
dr2δ(r1 − r2)φ∗σ(r1 −Ri)φ∗σ′(r2 −Rj)

·φσ′′(r1 −Rl)φσ′′′(r2 −Rm)

= U ′
∫
dr1φ

∗
σ(r1 −Ri)φ∗σ′(r1 −Rj)φσ′′(r1 −Rl)φσ′′′(r1 −Rm) .

The simplest approximation is to neglect all terms other than the on-site repulsion:

〈iσ, jσ′|Hpot |kσ′′, lσ′′′〉 = U ′
∫
drφ∗σ(r)φ∗σ′(r)φσ′′(r)φσ′′′(r)δi,jδj,lδl,m .

Without loss of generality and considering the Pauli-principle one can derive:

〈iσ, jσ′|Hpot |kσ′′, lσ′′′〉 = 4U ′δi,jδj,lδl,m

∫
drφ∗↑(r)φ

∗
↓(r)φ↑(r)φ↓(r)δσ,↑δσ′,↓δσ′′,↑δσ′′,↓

= 4U ′δi,jδj,lδl,mδσ,↑δσ′,↓δσ′′,↑δσ′′,↓

∫
drφ∗↑(r)φ

∗
↓(r)φ↑(r)φ↓(r)

= Uδi,jδj,lδl,mδσ,↑δσ′,↓δσ′′,↑δσ′′,↓ .

In the end, the potential term becomes:

Hpot,2Q. = U
∑

iσ,jσ′,kσ′′,lσ′′′

δσ,↑δσ′,↓δσ′′,↑δσ′′,↓δi,jδj,lδl,ma
†
iσa
†
jσ′akσ′′alσ′′′

= U
∑
i

a†i↑a
†
i↓ai↑ai↓

= U
∑
i

ni↑ni↓ .

The result is the usual form of the single-band Hubbard model

H = −t
∑
<i,j>

a†iaj + U
∑
i

ni↑ni↓ .
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B The Automated Multi-Level

Substructuring method

The Automated Multi-Level Substructuring method (AMLS) was introduced by Ben-

nighof in the �eld of linear elastodynamics [33, 32, 44]. It was initially applied to

frequency response problems as an extension to traditionally Lanczos-based eigenmode

calculations.

The method is applied to �nite element discretizations of physical objects and relies on

partitioning the total domain. It recursively generates subspaces, in which the eigen-

problem can be solved more easily.

B.1 Outline

Following Bekas [32], consider an elasto-mechanic, algebraic eigenproblem stemming from

a FEM discretization

Ax = λx .

Without loss of generality, divide the domain in two sub-domains and an interface (see

�g. B.1). Reorder the unknowns by their domain a�liation to get the following matrix

Figure B.1: Domain partitioning of AMLS into two sub-domains Ω1 and Ω2, and an

interface Γ.
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structure:

A =

 A1 0 C1,I

0 A2 C2,I

C†1,I C†2,I AI

 ,

where A1 and A2 are the two matrices describing the interior degrees of freedom of the

two domains Ω1 and Ω2, respectively. AI includes the degrees of freedom of the interface,

C1,I and C2,I describe the couplings between the domains and the interface.

For the further description abbreviate:

AΩ =

(
A1 0
0 A2

)
, C =

(
C1,I

C2,I

)
, A =

(
AΩ C

C† AI

)
.

Introduce the Schur complement

S = AI − C†A−1
Ω C .

Note that calculating the inverse A−1
Ω may not be too di�cult, since it is block-diagonal

because it consists of the decoupled domains.

Now, form the unitary matrix, which transforms A to block-diagonal form:

U =

(
I −A−1

Ω C

0 I

)
.

The transformed eigenvalue equation becomes:

U †AUu = λU †Uu (B.1)(
AΩ 0
0 S

)(
uΩ

uI

)
= λ

(
I −A−1

Ω C

−C†A−1
Ω MS

)(
uΩ

uI

)
, (B.2)

with

MS = MI − C†A−2
Ω C

The coupling terms −A−1
Ω C and −C†A−1

Ω on the right-hand side are neglected and the

lowest eigenvalues of the two decoupled problems are evaluated:

AΩuΩ = λΩuΩ

SuI = λIMSuI .
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Note that the eigenproblem of AΩ can be further decoupled due to its block-diagonality

which reduces the numerical e�ort to the complexity of the sub-domain eigenproblem

computation.

Combine the gained eigenvectors (columns of UΩ and UI) in a large unitary matrix R.

R =

(
UΩ 0
0 UI

)
,

and perform a Rayleigh-Ritz projection of the full eigenvalue problem B.1:

R†U †AURx = R†U †URx

The resulting eigenvalues are approximations to the real eigenvalues of A, the eigenvectors

can be obtained as the Ritz vectors URx.

To simplify the eigenvalue computation, the matrix R can be constructed by a limited

amount of eigenvectors from the sub-domains, e.g. the vectors corresponding to the

lowest eigenvalues. This modal reduction results in a much smaller eigenvalue problem,

which is computed much more easily.
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C Lanczos

The Lanczos method [23, 28] is an algorithm which is especially suitable for the tridiag-

onalization of large sparse matrices. A major advantage is that it preserves the sparsity

of the matrix during the evaluation as opposed to the dense eigenvalue solvers like QR

or Jacobi. In principle, an explicit representation of the matrix is not required for the

algorithm but only the evaluation of the matrix-vector product.

The properties of this method include fast convergence to eigenvalues at both ends of

the spectrum. In the course of the algorithm a comparable small tridiagonal matrix is

calculated which re�ects the desired parts of the eigenspectrum very accurately. This

small tridiagonal matrix is then easily diagonalized.

C.1 Krylov subspace

An important ingredient of Lanczos is the generation of a Krylov subspace which is

de�ned as:

Kn = span{~x0, A~x0, A
2~x0, A

3~x0, ...A
n−1~x0} , (C.1)

which is the space spanned by an initial vector ~x0 and the vectors gained by successive

application of the matrix A.

To get an orthogonal basis of the Krylov subspace it su�ces to orthogonalize the ac-

tual computed new vector against just the previous two Krylov vectors. This holds for

symmetric matrices A only.
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Proof: Let Qn = (~q0, ..~qn−1) be a basis of Kn obtained by the following scheme:

~q0 =
~x0

||~x0||

~q1 =
A~q0 − (A~q0, ~q0)~q0

||A~q0 − (A~q0, ~q0)~q0||

~q2 =
A~q1 − (A~q1, ~q1)~q1 − (A~q1, ~q0)~q0

||A~q1 − (A~q1, ~q1)~q1 − (A~q1, ~q0)~q0||
...

~qi =
A~qi−1 −

∑i−1
j=0(A~qi−1, ~qj)~qj∣∣∣∣∣∣A~qi−1 −

∑i−1
j=0(A~qi−1, ~qj)~qj

∣∣∣∣∣∣ .
This scheme creates an orthogonal basis for the Krylov subspace. So, all basis vectors

up to index j are members of the according Krylov subspace:

∀i ∈ {0, ...j} : ~qi ∈ Kj
∀i ∈ {0, ...j} : A~qi ∈ Kj+1 .

The second line follows from the construction of Kj+1. Suppose that for the basis vector

~qj+2 holds ~qj+2 ⊥ Kj+1. Thus,

∀i ∈ {0, ...j} : (A~qi, ~qj+2) = 0

∀i ∈ {0, ...j} : (~qi, A~qj+2) = 0 , (C.2)

which means that the vector A~qj+2 is automatically perpendicular to all vectors with

index up to j. The last line follows from the symmetry of A. By induction this holds for

all sizes of the Krylov space. �

The so computed vectors give then a basis in which A becomes tridiagonal:

Q†AQ = T (C.3)

where T is tridiagonal symmetric. From eq. C.2 follows that T is upper Hessenberg,

the symmetry is obvious because the transformation conserves the symmetry of A. The

values on the secondary diagonal have the form (A~qj−1, ~qj) and are non-zero, if the

Lanczos vectors ~q0, ~q1, ...~qn have full rank. The entries on the main diagonal look like

(~qj , A~qj).
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To sum things up in a single expression, a new Lanczos vector is constructed by evaluating

~qi+1 =
1
N

(A~qi − ki−1~qi−1 − ei~qi) with ki−1 = (A~qi, ~qi−1), ei = (A~qi, ~qi)

Rearranged, we have:

A~qi = ki−1~qi−1 + ei~qi + ki~qi+1 (C.4)

Here, the normalization constant N from the previous equation was replaced by ki =
(A~qi+1, ~qi), because by the symmetry of A this is the same as (A~qi, ~qi+1). Note that from
these considerations one gets an alternative expression for ki = ||A~qi − ki−1~qi−1 − ei~qi||;
The equation can also be expressed in matrix form:

AQj = QjTj + kj~qj+1~e
†
j

Here, ei and ki turn out to be the values on the main and secondary diagonal of T ,

respectively. ~ej is the jth canonical basis vector.

The last term is the remainder which vanishes when reaching the full matrix size of A. It

only appears in the last column of the matrix equation and it consists of the next Krylov

vector multiplied by the next secondary diagonal entry.

Diagonalization of the tridiagonal matrix U †TU = D gives then good approximations

of the eigenvalues. Their accuracy is quickly increased with the dimension of T . The

corresponding eigenvectors can be computed using the eigenvectors of the tridiagonal

system: QU .

C.2 The Lanczos algorithm

The algorithm does nothing else than constructing the Lanczos vectors ~qi consecutively

and orthogonalizing them against the previous two vectors (see alg. 4).

At any Lanczos iteration the tridiagonal matrix T can be diagonalized to get approxima-

tions of the eigenvalues. The computation of the eigenvalues is comparably fast compared

to the Lanczos steps, because the matrix T does not become very large.

A possible stopping criterion is to monitor the development of the eigenvalue approxi-

mations. If they converge to a �xed value it can be assumed that an eigenvalue has been

found.
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Algorithm 4 Basic Lanczos algorithm
while not converged do

~qj+1 ← A~qj

ej ← (~qj+1, ~qj)
~qj+1 ← ~qj+1 − ej~qj
~qj+1 ← ~qj+1 − kj−1~qj−1

kj ← ||~qj+1||
~qj+1 ← ~qj+1/kj

end while

Also, the entries of the secondary diagonal kj have to be monitored. If kj becomes

small, an invariant subspace was found, and the current approximations of the lowest

eigenvalues already correspond to the lowest exact eigenvalue in this subspace.

It is possible to dismiss all previous Lanczos vectors except the last two to reduce memory

consumption of the program. Then the eigenvectors have to be computed in a second

run where the Lanczos vectors are created again and summed up accordingly.

A major problem of Lanczos is the loss of orthogonality due to numerical round-o� errors.

More on this can be found in app. D.

C.3 Properties of the Lanczos algorithm

� When the Krylov-space expands to �ll an invariant subspace of the matrix A, the

next eigenvector vanishes and the algorithm aborts.

� Due to the problem of losing orthogonality the correct multiplicity of degenerate

eigenvalues may not be re�ected in the results of Lanczos. Furthermore, although

the number of identical eigenvalues is over-estimated the corresponding subspace

of eigenvectors may not be exhausted fully.

� With modi�cations to the algorithm it can be used to calculate �nite-temperature

properties of materials in solid-state physics [45].

C.4 Calculate dynamic properties with Lanczos

For calculation of the Green's function in solid state physics expressions like
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〈Ψ|A† 1
ω −H

A |Ψ〉

have to be computed (see sec. 1.8).

Introducing the vector ~x0=̂A |Ψ〉 one can use a Lanczos run with initial vector ~x0 using

matrix H to approximate above quantity.

The shift is easily introduced:

Q†(ω −H)Q = ω −Q†HQ = ω − T

The inverse of the tridiagonal matrix can serve as an approximation to a Lanczos run

using the inverse of H.

Q†(ω −H)−1Q = (ω − T )−1

Since the latter expression is a matrix in the Lanczos basis only the �rst element of the

�rst row is required, because ~x0 has been used as initial vector. The value corresponds

to the expression ~x†0(ω −H)−1~x0.

119





D Lanczos orthogonalization

Although orthogonalization against the last two vectors su�ces in perfect arithmetic this

may not be true in the limited arithmetic of numerics. Here, quick loss of convergence

of the Lanczos vectors appears. For a theory behind that phenomenon see [23]. There

are multiple techniques to prevent the loss of orthogonality. They are described below.

D.1 Full orthogonalization

Every vector is orthogonalized against all previous Lanczos vectors. This is a simple but

at the same time a very time consuming procedure. Furthermore it has the disadvantage

that previous calculated Lanczos vectors have to be kept in memory.

D.2 Selective orthogonalization (SO)

This more complicated approach limits the amount of orthogonalization procedures nec-

essary by monitoring the angle of the actual Krylov vector with Ritz vectors at the actual

step. This can be done without actually computing the Ritz vectors, although they have

to be computed in order to orthogonalize against them in the case of necessity. This is

only done if a certain threshold in the angle is exceeded.

D.2.1 Paige's theorem

This theorem [23] is required to make predictions about the loss of orthogonality.

Consider the Lanczos factorization

AVj + VjTj = ~rj~e
†
j + Fj ,

where ~rj is the residual vector. Furthermore, consider the orthogonality condition

I − V †j Vj = C†j + ∆j + Cj .
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Fj , Cj and ∆j account for round-o� e�ects. ∆j is diagonal and Cj is strictly upper

triangular. Consider the factorization of the triangular matrix:

Tj = UjDjU
†
j ,

where Dj contains the eigenvalues on the diagonal. A few further conditions are also

needed. Then the theorem states that the Ritz vectors ~yi = Vj~ui satisfy

~y†i~vj+1 =
G

(j)
ii

βji
, (D.1)

where βji = βjuij and G(j) = V †j (Kj +Nj)Vj with

Kj = F †j Vj − V
†
j Fj

Nj = ∆jTj − Tj∆j .

Furthermore the theorem states that

(λi − λk)~y†i ~yk = G
(j)
ii

ujk
uji
−G(j)

kk

uji
ujk
− (G(j)

ik −G
(j)
ki ) .

For the proof see Parlett [23, p. 296].

D.2.2 Losing orthogonality

Equation D.1 shows that if βji becomes small orthogonality is increasingly lost. So

especially orthogonality is lost for good approximated eigenvalues (because ||A~y−~yλ|| =
||(AV − V T )~s|| = ||(βj~vj+1~e

†
j)~s|| = βjsji = βji).

D.2.3 Selection

Monitor βji to determine, whether an orthogonalization is necessary. This can be done

without much numerical e�ort.

This includes building a set of indices:

L(j) =
{
i
∣∣∣| cos∠(~y(j)

i , ~r′j)| ≥ κ/
√
j
}
.

A good choice is κ =
√
ε (see [23]). Together with |G(j)

ii | < ε||A|| and ε the unit round-o�
this results in:

L(j) =
{
i
∣∣βij < √ε||Tj ||} .
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Furthermore it is not important to orthogonalize against all vectors determined by that

criterion. This is only necessary for Ritz vectors, which are currently becoming more

and more approximate to a true eigenvector. Vectors which are already approximating

eigenvectors to machine precision have also low βij , but they need not be considered in

the orthogonalization process. Therefore it is proposed to take an interval jε||A|| < βij <√
ε||Tj || as a criterion for necessary reorthogonalizations.

D.2.4 Derivation of the βji criterion

From Paige's theorem D.1:

cos∠ = ~y†i~vj+1 =
G

(j)
ii

βji
. (D.2)

Here we assume that ||~yi|| = 1. Furthermore we assume for the error due to round-o�

errors:

|G(j)
ii | < ε||A|| ,

and the constraint on the angle for selecting indices

| cos∠| > κ√
j
, (D.3)

because that means for all indices:

||V †j ~vj+1|| = ||Y †j ~vj+1|| < κ .

Combining eq. D.2 and D.3:

κ√
j
<
G

(j)
ii

βji
<

ε

βji
||A||

βji <
ε

κ

√
j||A|| ,

and setting κ =
√
ε and

√
j||A|| ≈ ||T || gives

βji <
√
ε||T || .
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step j Local O. SO

||V †j Vj || ||V †j Vj || L(j)
...

21 1.30 · 10−14 1.30 · 10−14 {}
...

26 6.24 · 10−11 6.24 · 10−11 {26}
27 5.22 · 10−10 6.25 · 10−11 {27}
28 1.95 · 10−9 6.40 · 10−11 {28}
29 5.89 · 10−9 7.18 · 10−11 {0, 28, 29}
...

33 8.91 · 10−5 8.36 · 10−10 {0− 15, 29− 33}

Table D.1: Local orthogonalization vs. selective orthogonalization : Development of or-

thogonality number ||V †j Vj ||.

D.2.5 Example

The example depicted in tab. D.1 used following parameters: Hubbard model L = 6,
N↑ = 4, N↓ = 1, U = 10, ~vinit. = (1, 1, ...)†, 20 desired eigenvalues, accuracy 10−10, κ =
10−7. The SO algorithm starts to take e�ect at iteration j = 26 when it orthogonalizes

against Ritz vector no. 26. Subsequently, it continues to orthogonalize against Ritz

vectors from both ends of the spectrum. While the orthogonality becomes worse for the

algorithm with only local orthogonalization, the orthogonality is kept by SO.

step j |Y †j Vj+1| βij L(j)

21 3E-14,4E-15,...4E-14,2E-12 3E-3,6E-2,...8E-3,1E-4 {}
26 6E-13,5E-14,...3E-12,4E-10 2E-4,3E-2,...1E-4,8E-7 {26}
29 8E-11,6E-12,...1E-10,5E-16 1E-6,2E-4,...3E-6,1E-8 {0, 28, 29}
33 5E-16,1E-15,...4E-16,2E-15 3E-13,5E-11,...2E-10,3E-13 {0− 15, 29− 33}

Table D.2: Selective orthogonalization. The second column depicts the scalar products of

the new Krylov vector with the 2 Ritz vectors from both ends of the spectrum.

The third column depicts the corresponding values of βij .
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Tab. D.2 shows the values of the cheaply produced βij in connection to the overlaps

of the newest Krylov vector with the Ritz vectors for the same system. One sees, that

the overlap with the last Ritz vector becomes larger, where the corresponding βij be-

comes small. So, it helps to determine the necessary orthogonalizations without actually

computing the Ritz vectors. Furthermore, the table shows, that after a Ritz vector con-

verged (j = 33) the overlap is small, but the βij becomes very small, too. In this case an

orthogonalization is not necessary.

D.3 Post-orthogonalization

Only recently another approach was proposed [46]. Good results were achieved by per-

forming a Lanczos run without orthogonalization and taking into account that the re-

sulting Lanczos basis as well as the eigenvectors do not form an orthogonal basis.

After the run an analysis of the achieved eigenvectors is performed. The vectors are

orthogonalized and spurious eigenmodes are removed. With the gained subspace basis

they perform a Rayleigh-Ritz procedure on the original matrix.

Although the number of gained eigenvectors is probably reduced, in the end good ap-

proximations to the lowest eigenvectors are calculated.

The numerical e�ort of this method is quite low because it is only applied after the

iterations have �nished and its complexity is only proportional to the number of wanted

eigenvectors and not to the size of the Lanczos basis.

D.4 Periodic reorthogonalization

This method [21] keeps track of mutual orthogonalization of the Lanczos basis using the

iterative relation:

ω̃j+1,i = kiωj,i+1 + (ei − ej)ωj,i + kk−1ωj,k−1 − kj−1ωj−1,i

ωj+1,i = (ω̃j+1,i + sign(ω̃j+1,i)2εr||A||)/kj , (D.4)

where ωj,i = (~q†j , ~qi) are the overlaps between the basis vectors, and εr is the rounding

error. The relation can easily be derived from eq. C.4.

All ωi,i are set to 1, all o�-diagonal ωi−1,i are set to the rounding error level εr. When

expanding the Lanczos basis, the values for ωj+1,i, i = {1, ..j − 1} are calculated using

relation D.4, ωj+1,j = εr, ωj+1,j+1 = 1.
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When one element ωj+1,i exceeds the threshold level, which is usually set to
√
εr the

new vector is reorthogonalized to the Lanczos basis vector ~qi and ωj+1,i is reset to the

rounding error level.

Another possibility is to reorthogonalize against the whole basis, if one of the ωj+1,k

exceeds the barrier. In this case all ωj+1,i, i = {1, ..j − 1} are reset to εr.

D.5 Numerical results

Tab. D.3 shows a test series of di�erent reorthogonalization approaches for a system

with di�erent numbers of wanted eigenvalues. It can be seen that without orthogonal-

ization (�rst and second column) the orthogonality is lost for larger amounts of wanted

eigenvalues. Full reorthogonalization is costly (third column) but the orthogonality is

maintained. Selective orthogonalization is very demanding because of the necessary cal-

culation of the eigenvectors within the primary iterations. Also, for the case n = 20
orthogonality is not achieved. Post orthogonalization is rather cheap, although in the

end some eigenvalues and eigenvectors have to be omitted, and their number is not known

before. The advantage is that it is only applied after performing the iterations. Periodic

orthogonalization seems to work well in reasonable times.
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E Implicitly Restarted Lanczos

The Lanczos method converges quickly to the eigenvalues at the end of the spectrum of

a symmetric matrix A but there is in principle no restriction on the size of the necessary

basis. Increasingly large numbers of Lanczos vectors require increasing e�ort to keep

them orthogonal.

Implicitly restarted Lanczos (IRL, [47, 21]) restricts the number of Lanczos vectors, say

to twice the number of wanted eigenvalues. When this size is reached a transformation

on the basis is done and it is truncated to the number of wanted eigenvalues. Afterwards

starting from that rotated basis the Krylov iteration is resumed. In this fashion the

Krylov basis is iteratively improved to re�ect the wanted part of the eigenvalue spectrum.

E.1 Transformation

Let n be the number of wanted eigenvalues and p the number of additional Krylov

dimension. The Lanczos factorization after n+ p steps looks like

AVn+p = Vn+pTn+p + ~fn+p~e
T
n+p ,

where ~fn+p is a vector in the direction of the next Lanczos vector.

Introducing a shift µ results in

(A− µI)Vn+p = Vn+p(Tn+p − µI) + ~fn+p~e
T
n+p .

Using a QR-factorization to produce T − µI = QR and multiplying from the right with

Q leads to

(A− µI)Vn+pQ = Vn+pQRQ+ ~fn+p~e
T
n+pQ

AVn+pQ = Vn+pQ(RQ+ µI) + ~fn+p~e
T
n+pQ .
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Using the de�nitions Ṽn+p = Vn+pQ and T̃n+p = RQ+µI = Q†Tn+pQ which leaves T̃n+p

also tridiagonal one obtains

AṼn+p = Ṽn+pT̃n+p + ~fn+p~e
T
n+pQ .

Note that ~fn+p~e
T
n+pQ is a matrix with zero entries up to the last two columns. When

applying p shifts one ends up with:

AṼn+p = Ṽn+pT̂n+p + ~fn+p~e
T
n+pQ̂ , (E.1)

with Q̂ = Q1...Qp and T̂n+p = Q̂†Tn+pQ. Here, ~fn+p~e
T
n+pQ̂ has zero entries up to the nth

column. So equating just the �rst n columns of equation E.1 gives a proper new Lanczos

factorization:

AṼn = ṼnT̂n + ~fn~e
T
n .

It can be used to restart a Lanczos run and produce again p new vectors.

E.2 Selection of shifts

As values for the shift µ the eigenvalues of Tn+p which are approximations inside the

unwanted part of the spectrum can be used. There also exist some more sophisticated

choices for shifts [23].

E.2.1 Calculation of orthogonal transformation

To transform the tridiagonal matrix and the Krylov basis the orthogonal matrix Q has

to be calculated. In principle a QR factorization is required:

T − σ1I = Q1R1 .

The fact that T as well as the transformed matrix T̂ = Q†TQ is tridiagonal can be

exploited by using a bulge-chasing algorithm.

Initially, a plane rotation q1 is devised which removes the �rst o�-diagonal entry of the

matrix T − σI. When applying this rotation to T by calculating q†1Tq1 a bulge emerges.

This means an entry in the second sub-diagonal becomes non-zero. This is then repaired

by applying another plane rotation q2 which moves the bulge to the second position of

the second sub-diagonal. Multiple applications result in moving the bulge towards the
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lower right end of the second sub-diagonal where it eventually vanishes. The matrix

Q =
∏
i qi is then the desired orthogonal transformation and it can be applied to the

Lanczos basis.

Note that Q is upper-Hessenberg after the �rst shift. But using multiple shifts one

additional sub-diagonal becomes populated per shift value. This fact can be used to

lower the computational e�ort when transforming the basis.

E.3 Properties of implicitly restarted Lanczos

� Due to the limited size of the Krylov space, the orthogonality problem is reduced

drastically.

� If orthogonalization is necessary the numerical e�ort is smaller than in traditional

Lanczos because of smaller amount of vectors.

� The basis can be kept in storage.

� The eigenvector computation is much simpler.

� Largely reduced and bound memory consumption.

E.4 Numerical results

Tab. E.1 shows the dependence of the iteration time on the number of additional Krylov

vectors. Note that in the case of small numbers of additional vectors (e.g. 10 in tab. E.1)

it is possible that a part of the eigenvalues converge to the other end of the spectrum. This

slows down the process drastically. Usually, one takes the number of desired eigenvalues

for the dimension of the additional space. This seems like a good compromise.

Tab. E.2 shows that implicitly restarted Lanczos gives results with orthogonal Lanczos

basis while at the same time provides a performance boost when compared to Lanczos

with full orthogonalization.

Tab. E.3 gives an impression of the implementation at hand compared to a standard

ARPACK routine which is based on a similar algorithm.
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Add. Krylov dim iterations time [s]

5 302 51.4

10 73 20.2

20 34 16.7

30 22 16.3

40 19 18.4

Table E.1: Dependence of IR-Lanczos iterations on additional Krylov space dimension.

Hubbard system (L = 20, N↑ = N↓ = 5, U = 10, nev = 30, εd = 10−5).

Lanczos Lanczos w. full reortho. IR Lanczos

n=2 titers. 0.35 1.24 1.33

tvectors 0.04 0.04 0.00

tLanczos 0.39 1.29 1.33

iters. 69 69 17

probe 0.01 0.01 3E-6

ortho. 6E-16 1E-15

remarks

n=20 titers. 7.2 31.38 10.83

tvectors 17.54 18.09 0.98

tLanczos 24.74 49.47 11.81

iters. 357 384 33

probe 7E-14 7E-14 1E-14

ortho. 3.9 3E-15 8E-15

remarks orth. lost

Table E.2: Implicitly restarted Lanczos vs. traditional Lanczos (L = 10, N↑ = N↓ = 5,
ε = 10−5).
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IR Lanczos ARPACK

L = 10, N↑ = N↓ = 5 titers. 1.33

n=2 tvectors 0.00

tLanczos 1.33 2.57

iters. 17

probe 3E-6 1E-9

ortho. 1E-15

L = 10, N↑ = N↓ = 5 titers. 4.65

n=10 tvectors 0.26

tLanczos 4.91 7.83

iters. 38

probe 1E-14 1E-14

ortho. 4E-15

L = 10, N↑ = N↓ = 5 titers. 7.42

n=20 tvectors 1.02

tLanczos 8.44 24.34

iters. 23

probe 2E-14 1E-14

ortho. 7E-15

L = 12, N↑ = N↓ = 6 titers. 27.67

n=2 tvectors 0.06

tLanczos 27.75 83.06

iters. 14

probe 8E-4 7E-9

ortho. 3E-15

L = 12, N↑ = N↓ = 6 titers. 120.7

n=10 tvectors 4.74

tLanczos 125.46 142.07

iters. 62

probe 2E-10 1E-14

ortho. 4E-9

Table E.3: Implicitly restarted Lanczos vs. standard ARPACK routine for multiple Hub-

bard systems (U = 10, ε = 10−5).
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E.5 De�ation

This section describes an orthogonal transformation of the Lanczos factorization with

the goal to split o� certain eigenvalues by setting certain o�-diagonals to zero [21].

E.5.1 Transformation of the tridiagonal matrix

Without loss of generality it is explained how to set the �rst o�-diagonal element of T

(tridiagonal symmetric) to zero. For that it is necessary to produce an orthogonal matrix

Q with Q~e1 = ~y where y is an eigenvector of T with norm ||~y|| = 1.

Q can be expressed as R+ ~y~e†1 with R upper triangular and R~e1 = 0, R†~y = 0.

Proof: Q~e1 = R~e1 + ~y~e†1~e1 = ~y and Q†~y = R†~y + ~e1~y
†~y = ~e1 because ~y†~y = ~e†1~e1 = 1.

Another form of Q is Q = L + ~y~g† with L lower triangular and L~e1 = 0, L†~y = ~e1 − ~g
and ~g† = ~e†1 + 1

y1
~e†1R with ~y† = (y∗1, y

∗
2, ..).

Proof: Q~e1 = L~e1 + ~y~g†~e1 = ~y~e†1~e1 + ~y 1
y1
~e†1R~e1 = ~y and Q†~y = L†~y + ~g~y†~y = ~e1.

Now transform the tridiagonal matrix with Q:

Q†TQ = (L+ ~y~g†)†TR+Q†T~y~e†1

= L†TR+ ~g~y†TR+Q†~yλ~e†1 with T~y = ~yλ

= L†TR+ ~gλ~y†R︸ ︷︷ ︸
~y†R=0

+λ~e1~e
†
1

= L†TR+ λ~e1~e
†
1 .

L†TR is upper-Hessenberg because of the triangular matrices L and R. Furthermore it

is symmetric which can be seen by looking at the left hand side, i.e. L†TR is tridiagonal.

The �rst column and the �rst row of L†TR are both zero because R~e1 = 0 and L~e1 = 0.

So the �nal matrix has the form (
λ 0
0 T̂

)
.

E.5.2 Algorithm for creating Q

Alg. 5 constructs a matrix Q with ~y in its �rst column and an upper-triangular part R

with orthogonal and normalized columns.
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Algorithm 5 Construction of orthogonal de�ating matrix
Input: ~y with ||~y|| = 1 and length j

σ1 = y2
1, τ1 =

√
σ1

for i = 2, ..j do
σi = σi−1 + y2

i , τi =
√
σi

if τi−1 6= 0 then

Q1:(i−1),i = −y1:(i−1)
yi

τiτi−1

Qi,i = τi−1

τi

else

Qi−1,i = 1
end if

end for

E.5.3 Transformation of the Lanczos factorization

The Lanczos factorization at step j looks like

AV = V T + ~r~e†j .

An orthogonal transformation with Q results in:

A(V Q) = (V Q)Q†TQ+ ~r~e†jQ

AV1 = V1T1 + ~r~e†jQ .

The expression ~e†jQ is the last row of Q which looks like (yj , 0, ..τj−1).

This means, that when dismissing the �rst column of V1 we have again a valid Lanczos

factorization:

AV2 = V2T2 + ~r2~e
†
j−1 , (E.2)

with (~v1, V2) = V1, ~r2 = ~rτj−1 and

Q†TQ = T1 =

(
λ1 0
0 T2

)
.

For the vector in the �rst column of V1 holds:

A~v1 = ~v1λ1 + ~ryj with ~r†~v1 = 0 .
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The last component of the eigenvector of T can be used as a criterion when to purge a

vector. A possibility is to lock if

|yj | < εD||T || ,

where εM < εD < 1.
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Another representative of an iterative eigenvalue solver is the Davidson-Liu method [24,

28, 48]. The di�erence to Lanczos is the more sophisticated selection of the next vector

added to the subspace. This leads to a slightly more computationally demanding iteration

step, but convergence can be assumed more quickly [49].

Algorithm 6 Davidson-Liu algorithm
Input: matrix H, initial subspace guess V = (~v)
for i = 1...nmax do

Calculate Rayleigh-Ritz quotient λ = ~v†H~v
~v†~v

.

Calculate residual ~r = (H − λI)~v
Calculate approximate correction ~e = −(D − λI)−1~r with D = diag(H)
Add ~e to subspace: V ← (V,~e), and orthonormalize V .

Solve projected eigenproblem: V †HV ~x = µ~x

Calculate new approximate ground state: ~v ← V ~x

end for

Alg. 6 shows a simple version of Davidson-Liu for a ground state calculation. In a given

subspace, an approximation to the lowest eigenstate is calculated, then the corresponding

residual is evaluated. Now, the error vector ~e could in principle be calculated by

(H − λI)~e = −~r

Note that the correct value λ is not known. Furthermore, solving the linear system can

be a large e�ort. Instead, ~e is calculated approximately using only the diagonal values

of H and the Rayleigh-Ritz value. To rectify this shortcoming, the vector is not used to

calculate directly a new vector ~v, but it is added to the search space V .
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F.1 Criticism of the Davidson-Liu algorithm

Consider using the matrix itself instead of the diagonal of the matrix , then the correction

would give you exactly the same vector as you started from. So actually the motivation

for using the diagonal is not to have an approximation of the matrix, but it can be seen

as a preconditioner for the residual.

There exists a more complex extension of the Davidson method which combines the

iterative scheme of the Davidson method and the Jacobi diagonalization method [50].

The algorithm is called Jacobi-Davidson [51] and includes an additional orthogonalization

step to search for a solution in the subspace orthogonal to the previously found vectors.
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G Lanczos parallelization using MPI

G.1 Hubbard Hamiltonian multiplication

To get an e�cient method for a parallel computation of the eigenvalues of a Hubbard

system a specialized scheme can be used [34].

The Hamiltonian of a Hubbard system can be written down as

H = H↑ ⊗ I + I ⊗H↓ +DP ,

where H↑ and H↓ are the kinetic parts of the two spin species, respectively. DP is a

diagonal matrix containing the on-site potential.

The multiplication with a vector can be performed by representing the vector as a matrix

and using simple matrix multiplication with the individual kinetic matrices. The matrix

multiplication is shown in alg. 7.

Algorithm 7 Matrix multiplication of a tensorial system
Input: H↑,H↓, P , V

R← P • V
R← R+H↑V

R← R+ V HT
↓

Output: R

P is the on-site potential and V is the vector to be multiplied. Both are given in

matrix form of dimension according to the Hamiltonians. • refers to element-by-element

multiplication.

G.1.1 Parallelization

This scheme is particularly suited for parallelization, because some evaluation parts and

communication parts can be done at the same time.
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Figure G.1: Parallel data structure for Hubbard system calculations. The vectors are

stored as matrices, each node holds a number of columns. When transposing,

parts have to be transferred to other nodes, e. g. from node 2 to node 4.

Every node holds a number of columns of the current Lanczos vector in matrix form.

Additionally each node holds the complete Hamiltonian.

Communication between nodes has to be done to transpose the columns to rows in order

to perform the product with the Hamiltonian from the right. After that the result has

to be retransformed to column vectors. See �g. G.1.

G.1.2 Storage format

To make the communication easy the values are stored block-wise on each node. See �g.

G.2.

G.2 Numerical results

Tab. G.1 shows results from an implementation of an implicitly restarted Lanczos algo-

rithm, parallelized with the MPI framework.

It can be seen that using the e�cient communication scheme an impressive speed-up can

be achieved.
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G.2 Numerical results Ralf Gamillscheg

Figure G.2: Storage scheme of the Lanczos vectors. Each node holds one of the vertical

structures. Inside, the values are stored block-wise again corresponding to

the node structure to simplify transposing. Inside the blocks column-wise

storage is used.

total cores calc. cores L = 12, N↑ = N↓ = 6 L = 14, N↑ = N↓ = 7

iters. ttotal speed-up iters. ttotal speed-up

2 1 28 148.89 1.00 33 3790.83 1.00

3 2 15 41.28 1.93 36 1607.66 2.57

4 3 15 24.39 3.27 27 913.50 3.39

5 4 22 26.90 4.35 35 857.66 4.68

6 5 28 35.84 4.15 30 554.68 6.21

7 6 19 16.42 6.15 30 449.15 7.67

Table G.1: Parallel Hubbard Lanczos, implicitly restarted. The cluster ghost.tugraz.at

at Graz University of Technology was used.
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H Calculating dynamic properties with

Lanczos

The dynamic Green's function re�ects the dynamic properties of a many-body system.

From it important quantities like the electronic excitation spectrum can be derived easily.

This section introduces a method to calculate the Green's function by numerical means

using a Lanczos factorization [28].

It is de�ned for fermions as follows:

〈〈Ôi, Ô†j〉〉 = −iΘ(t) 〈{Ôi(t), Ô†j}〉 ,

where the curly brackets denote the anti-commutator ({A,B} = AB + BA), and the

operators Ôi and Ô
†
i could be e.g. the annihilation and creation operator of a particle at

site i, respectively.

Introducing the Heisenberg time evolution operators Ôi(t) = eiĤtÔie
−iĤt and transform-

ing the expression to Fourier space one arrives at:

〈〈Ôi, Ô†j〉〉ω = −i
∫ ∞

0
dteiωt 〈eiĤtÔie−iĤtÔ†j + Ô†je

iĤtÔie
−iĤt〉

= −i
∫ ∞

0
dteiωt 〈Ôie−i(Ĥ−Eo)tÔ†j〉+ 〈Ô†je

î(H−E0)tÔi〉 .

The last line was derived using: eiĤt |φ0〉 = eiE0t |φ0〉 if H |φ0〉 = E0 |φ0〉. Now integrate:

〈〈Ôi, Ô†j〉〉ω =

〈
Ôi

1
ω − (Ĥ − E0)

Ô†j

〉
+

〈
Ô†j

1
ω + (Ĥ − E0)

Ôi

〉
.

Introducing the excited, normalized vectors:

|ψ+
i 〉 =

1∣∣∣∣∣∣Ô†i |φ0〉
∣∣∣∣∣∣Ô†i |φ0〉 |ψ−i 〉 =

1∣∣∣∣∣∣Ôi |φ0〉
∣∣∣∣∣∣Ôi |φ0〉
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leads to:

〈〈Ôi, Ô†j〉〉ω =
∣∣∣∣∣∣Ô†i |φ0〉

∣∣∣∣∣∣ ∣∣∣∣∣∣Ô†j |φ0〉
∣∣∣∣∣∣〈ψ+

i

∣∣∣∣∣ 1
ω − (Ĥ − E0)

∣∣∣∣∣ψ+
j

〉

+
∣∣∣∣∣∣Ôi |φ0〉

∣∣∣∣∣∣ ∣∣∣∣∣∣Ôj |φ0〉
∣∣∣∣∣∣〈ψ−j

∣∣∣∣∣ 1
ω + (Ĥ − E0)

∣∣∣∣∣ψ−i
〉
.

Now, one can use a Lanczos factorization of (Ĥ−E0) with the tridiagonal matrix entries

ei and ki to obtain the following expression:

Q†(ω ± (Ĥ − E0)Q =



ω ± e0 k0

k0 ω ± e1 k1

k1 ω ± e2 k2

k2 ω ± e3

. . .


.

To get an approximation of the quantity 〈ψ| (ω ± (Ĥ − E0))−1 |ψ〉 we simply need to

invert the tridiagonal matrix above.

In the case of a symmetric expression, i.e. when both vectors are excitations at the same

spatial site, this vector can be used as initial vector of the Krylov iteration. Then, only

the upper-left matrix entry is the desired value. It can be calculated e�ciently by using

a recursive algorithm and determinants (see [28] for details).

For the asymmetric expressions 4 individual Lanczos runs with initial vectors in the form

|Ψi〉+ α |Ψj〉 with α ∈ {1,−1, i,−i} have to be performed:〈
ψi

∣∣∣∣∣ 1
ω − (Ĥ − E0)

∣∣∣∣∣ψj
〉

=
1
4

〈
ψi + ψj

∣∣∣∣∣ 1
ω − (Ĥ − E0)

∣∣∣∣∣ψi + ψj

〉

− 1
4

〈
ψi − ψj

∣∣∣∣∣ 1
ω − (Ĥ − E0)

∣∣∣∣∣ψi − ψj

〉

− i

4

〈
ψi + iψj

∣∣∣∣∣ 1
ω − (Ĥ − E0)

∣∣∣∣∣ψi + iψj

〉

+
i

4

〈
ψi − iψj

∣∣∣∣∣ 1
ω − (Ĥ − E0)

∣∣∣∣∣ψi − iψj
〉
.
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I Projection-formalism

As real ab-initio Hamiltonians for strongly correlated many body systems are far beyond

the capacities of nowadays computers it is necessary to reduce the degrees of freedoms.

This leads to the construction of model Hamiltonians. An important example is the

multi-band Hubbard model (see sec. 1.6 and app. A).

In many cases the Hubbard model has still to many degrees of freedom to be treated

numerically. A further reduction to e�ective models like the tJ-model o�ers the possibil-

ity to perform numerical simulations and keep the key ingredients to study the quantum

phenomena. Of course the results may not be quantitatively completely accurate but the

qualitative physical properties can be examined.

The projection formalism [52, 53] allows to limit the degrees of freedom in an e�ective

model of strongly correlated quantum systems. The dynamic variables which correspond

to higher energy excitations are integrated out. They contribute by second order per-

turbation theory. In this way the con�guration space of strongly-correlated systems is

largely reduced which makes the calculations much less demanding.

This formalism relies on the division of the space of dynamic variables into two subsets:

P := {|φ1〉 , ... |φNp〉}

Q := {|φNp+1〉 , ... |φNp+Nq〉} ,

where |φi〉 may be the basis function in occupation number space of size Np + Nq. Q
corresponds the basis states with large energy contributions, they will be projected by

perturbation theory to the remaining states in P.
De�ne the projector operators:

P̂ :=
Np∑
i=1

|φi〉 〈φi|

Q̂ :=
Np+Nq∑
i=Np+1

|φi〉 〈φi| = 1− P̂ ,
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which project a given state into the subspaces P and Q, respectively.
For such a situation an e�ective Hamiltonian can be derived [53], which can be expressed

in the basis set P alone:

Ĥe�. = P̂ ĤP̂ + P̂ ĤQ̂
1

ω − Q̂ĤQ̂
Q̂ĤP̂ .

For the occupation number system the term P̂ ĤP̂ corresponds to the internal hopping

and potential in subspace P. The second term can be interpreted as a virtual process,

e.g. an initial state in P is converted by a hopping process into a state in Q. A weight
1

ω−Q̂ĤQ̂
is applied and then transformed back to P.

This formalism can be used to derive the tJ-model as an e�ective approximation to the

full 1-banded Hubbard model [28]. Here, the weight is assumed to be 1/U by reasoning

due to magnitude considerations.
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J Evaluation of the Green's Function in

the NPT Approach

The Green's function (see sec. 1.8) can be calculated by

Gi,j(ω) = 〈Ψ0| aj
1

ω −H
a†i |Ψ0〉 , (J.1)

where |Ψ0〉 is the ground state. a†i and aj are creation and annihilation operators, re-

spectively.

J.1 Solving the linear equation

Using a solver for linear systems the expression can be evaluated without matrix inversion

[28]. At �rst, the vector |ei〉 = a†i |Ψ0〉 is calculated, then the linear system

(ω −H) |x〉 = |ei〉

is solved for |x〉, and 〈ei|x〉 is calculated.
Note that the coe�cients of the excited vectors |ei〉 have to be constructed in a di�erent

basis set, which has one more particle than the original set for |Ψ0〉.

J.2 Solving using the partitioning

When going to subsequent higher partition one has an approximation to the ground

state for partitions up to nth order at a particular instance. When putting an additional

particle into that ground state the maximum order needed to describe it in the excited

basis is n+ 1.
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In principle one should consider the rest of the partitions when solving the linear system.

In this region the vector is assumed to be zero

|e〉 ≡

(
~e1

~e2

)
=

(
~e1

~0

)
.

In the following equation, C represents all remaining partitions which have not been

considered so far (
A E

E† C

)(
~x1

~x2

)
=

(
~e1

0

)
.

This leads to

(A− EC−1E†)~x1 = ~e1 .

Note that only the part ~x1 is needed for calculation of the scalar product:

〈ei|x〉 ≡ ~e1
†x1 .

J.2.1 Approximation

As an approximation to that one could use

A~x1 = ~e1 .R

This can be justi�ed by using only the nth partition approximation of the ground state.

So larger partitions don't improve the result anymore.

J.3 Solving the linear equation

J.3.1 GMRES

For e�ciently solving the linear equation the Generalized Minimal Residual Method

(GMRES, [54]) can be used. This method creates a Krylov subspace and searches for

the minimal residual inside the space spanned by the Krylov vectors.

Let the equation to solve be

A~x = ~b , (J.2)

where A is a large, sparse matrix.
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J.3 Solving the linear equation Ralf Gamillscheg

Solving for an approximate solution inside the subspace spanned by the columns of matrix

Vk means minimizing the functional

J(~z) = ||~b−A(~x0 + ~z)|| ,

where x0 is the initial approximation and z is the desired correction. The search is

performed in the Krylov subspace, so ~z = Vk~y. The functional can be transformed to:

J(~z) = ||~r0 −AVk~y||

= ||β~v1 −AVk~y|| .

In the last row the fact was used, that the residual of the initial vector can be expressed

in terms of the �rst Krylov vector, multiplied by β = ||~r0||. Furthermore, the Krylov

space relation AVk = Vk+1H̄k holds. H̄k is de�ned as

H̄k =

(
(Hk)

0 . . . 0 Hk+1(k + 1, k)

)
.

which is rectangular and Upper-Hessenberg. Transformation gives

J(~y) = ||Vk+1(β~e1 − H̄k~y)||

= ||(β~e1 − H̄k~y)|| .

A series of Givens rotations to transform H̄k to a triangular form can be used to get

J(~y) = ||βQ~e1 − R̄~y|| ,

where Q is the accumulated orthogonal rotation matrix. The functional can now easily

be minimized by solving the triangular linear system.

J.3.2 TMRES

A variant of GMRES is the Transformed Minimal Residual Method (TMRES, [55]). It is

used to solve linear systems which are nearly singular. The Green's function is calculated

for di�erent ω, which may be close to an eigenvalue of the Hamiltonian and therefore

constitute a nearly singular problem.

The di�erence to GMRES is, that the Krylov space is produced by a modi�ed matrix:

M = S−1T ,

149



Ralf Gamillscheg J Green's Function in the NPT Approach

obtained by decomposition of the original matrix A = S − T . For decomposing A an

iterative scheme can be used:

S~yk+1 = T~xk +~b ,

e.g. the Gauss-Seidel scheme. Important is, that the spectral radius ofM is smaller than

one.

J.4 Modi�cation of GMRES for simultaneous evaluation of

multiple ω

Instead of eq. J.2 one has to solve an equation involving a value ω, which is tuned over

a certain range:

A~x = (ω −H)~x = ~b .

The presented scheme avoids doing GMRES for di�erent values all over again. Introduce

the functional to be minimized

J(~z) = ||b− (ω −H)(~x0 + ~z)|| ,

by varying z.

Note that when restarting the algorithm one needs to have di�erent vectors ~x0 for di�erent

ω, so ~x0 = ~x0(ω). This is why ~x0(ω) cannot be used as starting vector for the Krylov

space. The functional reads

J(~z) = ||~ξ0(ω)− (ω −H)Vk~y|| ,

with ~ξ0(ω) := ~b − (ω −H)~x0, and ~z = Vk~y is an approximation in the Krylov-subspace

Vk := (~v1, ~v2, ...~vk).
Using the Krylov relation HVk = Vk+1H̄k and also Vk = Vk+1Ẽ with Ẽ being an identity

matrix without last column, one arrives at

J(~z) = ||~ξ0(ω)− Vk+1(ωẼ + H̄k)~y|| .

To eliminate Vk+1 in the above equation one has to expand the vector ~ξ0(ω) in terms of

the Krylov space:

~ξ0(ω) = Vk+1~χ0(ω) with (~χ0(ω))i = ~ξ†0(ω)~vi i = 1...(k + 1) .
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J.4 GMRES for multiple ω Ralf Gamillscheg

Because Vk+1 is unitary, one can write

J(z) = ||~χ0(ω)− (ωẼ + H̄k)~y|| .

This is a rather small equation which can be evaluated for every ω needed.

The Krylov space is generated using H.
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K An Alternative, Exact Approach to

NPT

This approach uses the fact, that matrix elements connecting di�erent V regimes only

appear between adjacent domains (see �g. K.1). Consider dividing the matrix into two

domains, the �rst one corresponds to V = 0 (A) and the the second is all the rest (B).

Sλx1 := (A− E(B − λ)−1E†)x1 = λx1 . (K.1)

In order to apply eq. K.1 the inverse of the huge matrix B is needed. But due to the

mentioned fact, that the domain is only connected to the domain with V = 1 only a

small fraction of this inverse is needed.

K.1 Building the inverse

Consider the matrix: (
A E

E† B

)
,

and try to calculate the inverse of this matrix, but only the portion corresponding to A

is needed.

This can be achieved using a Schur transformation:(
A E

E† B

)
=

(
I EB−1

0 I

)(
SA 0
0 B

)(
I 0

B−1E† I

)
.

Build the inverse:(
A E

E† B

)−1

=

(
I 0

−B−1E† I

)(
S−1
A 0
0 B−1

)(
I −EB−1

0 I

)

=

(
S−1
A −S−1

A EB−1

−B−1E†S−1
A C−1 +B−1E†S−1

A EB−1

)
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Figure K.1: Illustration of the Hamilton matrix of a V-ordered occupation number basis.

The blue parts contain the interactions inside a partition and the potential

on the diagonal and the green parts contain the interactions between the

partitions.

We see that the needed portion of the inverse is given by the inverse of the Schur com-

plement S−1
A = (A−BC−1B†)−1.

K.2 Iteration for the inverse

Note that the needed fraction of the large inverse of the domain V = 1, ..Vmax can be

calculated iteratively. Starting from the largest V section and calculating the inverse of

the Schur complement, one can go to successively smaller V .
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L Singular Value Decomposition of a

Kronecker product

Consider a singular value decomposition (SVD) of 2 matrices:

A = UADAV
T
A

B = UBDBV
T
B .

The question remains if

C = A⊗B = (UA ⊗ UB)(DA ⊗DB)(VA ⊗ VB)T = UCDCV
T
C

is a valid singular value decomposition.

To that end the prerequisites of an SVD have to be checked:

� Unitarity of UC = UA ⊗ UB:

UTCUC = (UA ⊗ UB)T (UA ⊗ UB)

= (UTA ⊗ UTB )(UA ⊗ UB)

(mixed product property) = (UTAUA)⊗ (UTBUB)

(UA, UB unitary) = 1⊗ 1

= 1 .

� Diagonality of DC = DA ⊗DB.

� Unitarity of VC = VA ⊗ VB (proof see UC).





M Multigrid - Complexity Considerations

M.1 Basic operations

To compare the complexity of di�erent algorithms one can rely on evaluating the number

of �oating point operations (�ops). Every basic operation like the addition or multiplica-

tion of 2 numbers is counted as 1 �op. Some examples for basic linear algebra operation

are given in tab. M.1.

Operation complexity (�ops)

Matrix-Vector product (Matrix: M ×N , Vector: N) 2MN −M
Matrix-Vector product (Matrix: N ×N , Vector: N) 2N2 −N
Matrix-Matrix product (Matrix: M ×N , Matrix: N ×O) 2MNO −MO

Matrix-Matrix product (Matrix: N ×N , Matrix: N ×N) 2N3 −N2

Vector norm (Vector: N) 2N
Vector normalization (Vector: N) 3N
Scalar product (Vectors: N) 2N − 1
Tensor product (Matrix: M ×N , Matrix: O × P ) MNOP

Table M.1: Complexity of basic linear algebra operations (given in �ops).

M.2 Gram-Schmidt orthonormalization

To orthonormalize q vectors of size N one has to do for each of them a normalization of

complexity 3qN .

For each but the �rst vector, the scalar product (2N − 1), a projection (N), and the

subtraction (N) has to be done. This gives a total of 4N − 1 operations. The orthonor-

malization for q − 1 vectors costs 3(q − 1)N �ops. The total number of operations for
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Gram-Schmidt is given by

3qN +
q∑

k=1

(k − 1)(4N − 1) + 3(q − 1)N = 2q2N + 4qN − 3N − q2

2
+
q

2
.

M.3 Rayleigh-Ritz projection

Given: q vectors of size N .

� Orthonormalization: 2q2N + 4qN − 3N − q2

2 + q
2 .

� Matrix product (UTAU): 2N2q + 2Nq2 −Nq − q2.

� Diagonalization of subsystem: q3.

� Calculation of Ritz vectors: 2Nq2 −Nq.

In total:

2N2q + 6Nq2 + 2Nq − 3N + q3 − 3
2
q2 +

q

2
.

M.4 Gauss-Seidel iteration

Given: matrix of size N ×N :

For each matrix row the following iterations have to be done:

� Multiplication: N − 1.

� Addition: N − 1.

� Subtraction from right side: 1.

� Division by diagonal element: 1.

Total operations per vector:

2N2 .

Total operations for q vectors:

2N2q .
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M.5 Kaczmarz iteration Ralf Gamillscheg

M.5 Kaczmarz iteration

Given: matrix of size N ×N :

For each matrix row:

� Inner Product: 2N .

� Norm squared: 2N .

� Prefactor: 2.

� Correction evaluation: 2N .

Total operations per vector:

6N2 + 2N .

Total operations for q vectors:

6N2q + 2Nq .

M.6 Davidson iteration

Number of desired eigenvectors k, size of actual search space q, matrix size N :

� Rayleigh-Ritz projection: 2N2q + 6Nq2 + 2Nq − 3N + q3 − 3
2q

2 + q
2 .

� Calculate residuals: 2N2k +Nk2.

� Calculate correction: 3Nk.

Total operations per iteration:

2N2q + 2N2k + 6Nq2 +Nk2 + 2Nq + 3Nk − 3N + q3 − 3
2
q2 +

q

2
.

Leading two terms for n iterations:

2N2qn+ 2N2q
n(n+ 1)

2
.
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M.7 CT-Multigrid coarse cycle

Given: matrix size: N , number of vectors: q, number of primary and secondary iterations

on each level: ν1, ν2, number of meshes: 2, coarse matrix size Nc.

� Primary GS iterations: ν12N2q.

� Transfer to coarse level: 2NcNq −Ncq.

� Calculation of coarse τ : 2N2q + 4NcNq + 2N2
c q −Nq −Ncq.

� Coarse GS iterations: (ν1 + ν2)2N2
c q.

� Transfer to �ne level: 4NcNq.

� Secondary GS iterations: ν22N2q.

Total operations per cycle:

(ν1 + ν2)2N2q + 2N2q + 8NcNq + (ν1 + ν2)2N2
c q + 2N2

c q −Nq − 2Ncq .

M.8 CT-Multigrid vs. Davidson

The leading term for the CT-Multigrid algorithm (ν1 = ν2 = 2) plus RR-projection on

�ne grid is 12N2q, for Davidson: 2N2q + 2N2k.

After n iterations the number of iterations are 12N2qn vs. 2N2qn+ 2N2qnn(n+1)
2 .

After 19 iterations a CT-Multigrid algorithm has the same number of �ops than a

Davidson run with 19 iterations. Below that number, Davidson is less e�ort, above

CT-multigrid because of linear dependence on iteration number.
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