
Dipl.-Ing. Christoph Trummer

Automated Simulation-Based Veri�cation of

Power Requirements for System-on-Chip

Designs

�������������

Dissertation

vorgelegt an der

Technischen Universität Graz

zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

(Dr.techn.)

durchgeführt am Institut für Technische Informatik
Technische Universität Graz

Vorstand: O.Univ.-Prof. Dipl.-Ing.Dr. techn.Reinhold Weiÿ

Graz, im Jänner 2010

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich
und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am .. .
(Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

. .
date (signature)

Kurzfassung

Moderne Elektrogeräte werden oft als �energiesparend� angepriesen oder mit begrenzten
Energiequellen betrieben. Neben Anforderungen, welche die Funktionalität betre�en, wer-
den auch nicht-funktionale Anforderungen immer wichtiger. Aufgrund dessen ist die Leis-
tungsaufnahme die wichtigste nicht-funktionale Anforderung. In einem zeitgemässen Elek-
trogerät ist die gesamte Funktionalität oft auf einem einzigen Chip konzentriert. Ent-
wirft man nun ein solches �System-on-Chip� (SoC), so werden, wegen des hohen Grads an
Komplexität oft vorgefertigte Komponenten und Teile wiederverwendet, um sich auf die
wesentliche Funktionalität konzentrieren zu können. Da die kritischste Einschränkung des
Designs deren Leistungsaufnahme ist wird Power Aware Design benötigt. Das Power Aware
Design erweitert das logische SoC Design um die Architektur des Versorgungsnetzwerks.
Das logische Design interagiert mit dem Power Aware Design um die Leistungsaufnahme
während des Betriebs zu reduzieren. Allerdings wird der Aspekt des Power Aware Design
oft übersehen und dem SoC Design erst sehr spät im Designprozess hinzugefügt. Dies
führt zu weiterer Komplexität in der Veri�kation, welche überprüft, ob das Design den
Anforderungen entspricht. Ebenso können kritische Fehler im Power Aware Design erst
sehr spät entdeckt werden, was eine zeit- und kostenintensive Überarbeitung erfordert.

Das Augenmerk dieser Arbeit liegt auf der Spezi�kation und Veri�kation von nicht-
funktionalen Anforderungen betre�end der Leistungsaufnahme, den sogenannten �power
requirements�. Diese umfassen Batterielebensdauer, Schranken für die Leistungsaufnahme
und Interaktion mit dem Power Aware Design. Sie werden zusammen mit den funktio-
nalen Anforderungen in semi-formalen �use cases� spezi�ziert. Die �use cases� werden
anschlieÿend automatisch analysiert, um daraus Testfälle abzuleiten. Während der Simu-
lation werden die Testfälle dem System auferlegt, was darin ein entsprechendes Verhalten
auslöst. Die korrespondierende Leistungsaufnahme wird abgeschätzt und zur Veri�kation
der Batterielebensdauer und der Schranken für die Leistungsaufnahme verwendet. Das
separat beschriebene Power Aware Design wird in eine ausführbare Form umgewandelt.
Es wird gemeinsam mit dem SoC Design simuliert und daraufhin gegen die Anforderungen
veri�ziert. Die Designkomponenten des Systems, dessen Power Aware Design, Ergebnisses
aus Veri�kation und Leistungsabschätzung werden in ein Projekt zusammengefasst und
in einem standardisierten Format für �Intellectual Property� (IP) gespeichert. Schlieÿlich
wird das Projekt in einer IP Bibliothek für zukün�ge Verwendung abgelegt.

Die vorgeschlagene Methodik wurde in einer Fallstudie an higher-class Radio Frequency
Identi�cation (RFID) tags, die eine häu�ge Anwendung für Systems-on-Chips darstellen,
erfolgreich angewandt.

Abstract

Modern electronic devices are often advertised as �energy saving� or are powered by limi-
ted energy sources. Besides their functional requirements the non-functional requirements
are also becoming increasingly important. Power dissipation is the most important non-
functional requirement. Inside electronic devices the entire functionality is often concen-
trated on a single chip. When designing such a System-on-Chip (SoC), the high complexity
forces designers to reuse pre-designed components and to focus on the main functionality.
Since the most important design constraint is power dissipation, power aware design is
necessary. Power aware design extends the logic SoC design with the architecture of the
power supply network. The logic design interacts with the power aware design to dyna-
mically reduce power consumption. However, the aspect of power aware design is often
overlooked. It is often added to the SoC during late stages of the design which causes
additional complexity for verifying that the SoC design ful�lls its requirements. Serious
defects related to the power aware design may be exposed at late stages necessitating
time-consuming, costly redesign.

This work focuses on speci�cation and veri�cation of non-functional requirements concer-
ning power dissipation, the so-called power requirements. Power requirements concern
battery lifetime, constraints for power dissipation and interaction with the power aware
design. They are speci�ed in addition to functional requirements in semi-formal use cases.
Use cases are analyzed automatically from which test cases are derived. During simulation
the test cases are applied to the system which stimulates a corresponding behavior. The as-
sociated power dissipation is estimated to verify the battery lifetime and power constraints.
The separate power aware design is translated into an executable supply network. It can
be simulated with the SoC design and is veri�ed for conformance to the requirements.

The system's components, the power aware design, results of veri�cation and power
estimation are stored in a standardized IP format and added to the IP library for later
reuse. The proposed methodology is successfully evaluated in a case study of a higher-class
Radio Frequency Identi�cation (RFID) tag, a common application for Systems-on-Chips.

Acknowledgements

First of all, I would like to express gratitude to my supervisor Prof. Dr. Reinhold Weiÿ for
his insights, helpful advice and for providing me with the facilities to conduct my research
for this dissertation. I especially want to thank our project leader Dr. Christian Steger
for his extraordinary support, skillful guidance and great inspiration during my work at
the Institute for Technical Informatics at Graz University of Technology. Moreover, I am
grateful to Dr. Damian Dalton for his bene�cial feedback, insightful comments and friendly
support.

This thesis would not have been possible without the funding from the FFG contract 812424
of the Austrian Federal Ministry for Transport, Innovation, and Technology. I am parti-
cularly grateful to Dr. Markus Pistauer, DI Andreas Schuhai and DI Peter Lederer from
CISC Semiconductor Design+Consulting GmbH for their knowledge, support and stimu-
lating feedback. Also, I would like to express my appreciation to the people at Neosera
Systems Ltd. for contributing the RHEiMS framework.

My project college Dr. Christoph Michael Kirchsteiger I thank for his assistance, interesting
discussions and useful hints. I am also indebted to my students for their valuable contribu-
tions to this dissertation: Christoph Ruggenthaler, Patrick Pau²e, Peter Randeu, Patrick
Schrey, Michael Lackner and Matthias Schröfelbauer. Furthermore, my thanks extend to
the entire sta� at the Institute for Technical Informatics for their support, constructive
comments and helpful suggestions during my work.

I thank my family, especially my parents and grandparents for their ongoing support and
motivation.

My deepest gratitude goes to my �ancé Anna Helena whose patient love, understanding and
continuous encouragements enabled me to complete this work.

Graz, January 2010 Christoph Trummer

Extended Summary

Systems-on-Chips (SoCs) are used in a wide variety of today's electronic appliances. Most
commonly they are found in mobile, battery-powered devices. A System-on-Chip (SoC)
consists of many components with di�erent functionality, all integrated on a single chip.
Advances in chip fabrication enable the SoCs to become very small. This means that more
functionality �ts onto an SoC. This development is most evident in mobile phones. A few
years ago they were bulky devices with monochrome displays. Today's mobile phones are
equipped with high-resolution color touch-screens, integrated digital cameras, music players
and Internet connection. However, the increase in functionality causes speci�cation, design
and especially veri�cation of SoCs to become highly complex.

Traditionally, the SoC development cycle starts with speci�cation of the requirements.
Then the SoC is designed in a Hardware Description Language (HDL). This HDL proto-
type can be simulated to verify its functionality. After the design has undergone several
iterations and has been veri�ed thoroughly the chip is manufactured.

In the speci�cation phase the concept of the SoC's desired functionality is described
in the requirements document. Additionally, parameters, conditions and constraints are
de�ned, under which the SoC's functionality has to be performed. These are the non-
functional requirements. The most important non-functional requirements for SoCs are
power requirements. Power requirements describe conditions and limits concerning the
SoC's power dissipation. Since most SoCs are battery-powered, the battery's lifetime is
such a power requirement. In order to ful�ll the battery lifetime requirement, the SoC
has to operate with limited power. These power constraints are also part of the power
requirements. To reduce power consumption, di�erent power states are de�ned. During
a power state unneeded parts of the SoC are switched o� and on again when needed.
Therefore, power states are also part of the power requirements.

In common with all non-functional requirements, power requirements are di�cult to
determine and to specify. When the SoC is initially speci�ed no details about its power
dissipation are known. Furthermore, there is no format which assists in their speci�cation.
Consequently, despite their importance, power requirements are often neglected.

After a HDL model of the system is produced it is veri�ed to ensure that the require-
ments are satis�ed. The numerous requirements for SoCs increase the veri�cation e�ort.
The more detailed the SoC design becomes, the longer its veri�cation takes. If power re-
quirements are not speci�ed early on implementation of the power aware design materialize
in later stages of the SoC design. Veri�cation can only proceed at an even later stage. Ex-
tensive redesign following the late discovery of critical power-related design errors is very
costly. Estimating the SoC's power demand exposes thermal issues which cause system
instability. When they are addressed late in the design process, large and expensive cooling
solutions are needed. Late selection of the battery negatively in�uences size, weight and
costs of the device.

This work is part of the SIMBA project which aims to reduce the complexity of veri�cation.
Therefore, functional and non-functional requirements are tied to each step of the SoC
design process. After speci�cation the informally described requirements are re�ned into
use cases to avoid ambiguity. A use case document is a more formal, uni�ed description of
the requirements. At each design iteration, �rst the use case document and then the system
model is re�ned and detail is gradually added. The use case document is automatically
analyzed to generate test cases for simulation-based veri�cation of the system.

Simulation-

Based

Requirements

Verification

Requirements

Battery Lifetime

Constraints

Power States

Requirements

Parsing

Power-Aware

Design UPF

Supply Network

Me

mor

y

PD1

PD2 PD3

Power

Demand

Profile

Power

Estimation

Testbench

Battery Lifetime

Simulation

Verification Management

Platform Generation

Verification Platform

Generation

Testbench

Requirement Testcase Status

Battery Lifetime UC1, UC2, UC3 UNVERIFIED

Constraint 20mW UC1, TC2, TC4 UNVERIFIED

Power State ON UC1, UC2 UNVERIFIED

Power

Demand

Profile

Executable Supply

Network Generation

Supply Network

Me

mor

y

PD1

PD2 PD3

Requirement Testcase Status

Battery Lifetime UC1, UC2, UC3 PASS

Constraints UC1,TC2, TC4 PASS

Power States UC2 FAIL

Analysis of the

Verification

Progress

Power

Requirements

Specification

IP Library

Battery

Model

Re-design

Figure 1: Methodology for Simulation-Based Veri�cation of Power Requirements

This work describes a methodology to verify the SoC's most important non-functional
requirements, the power requirements. The methodology is illustrated in Fig. 1. During
speci�cation, the highest level power requirements express the battery lifetime for the
system. From the battery lifetime other power constraints are derived. These power
constraints are imposed on the SoC's functionality to avoid thermal instability and to meet
the speci�ed battery lifetime. Ful�lling the power constraints necessitates power states to
reduce the system's power dissipation. In addition to the functional description, each use
case is extended with power constraints and power state information. Similarly, battery
lifetime is speci�ed for a series of use cases describing an application of the SoC. The power
requirements are expressed in XML or via IBM DOORS R©, a common speci�cation tool [1].

In the design phase the system model is created. Some parts of the system are newly
created while others are reused from existing components in a library. In parallel, the
power design is created which implements power states and describes the architecture of
the system's power supply. The Uni�ed Power Format (UPF), which has recently become
the IEEE standard 1801, describes the system's power aware design independent of the
HDL. When the SoC design is available, veri�cation begins.

The use case document is automatically analyzed and test cases are generated. During
simulation they are used to verify the functional and non-functional requirements. Each
use case corresponds to several test cases. When such a test case is launched a stimulus
is sent to the SoC model. The model responds by performing the appropriate operation.
The system's behavior corresponds to a certain amount of power being dissipated. The
Rapid Hierarchical Energy Investigation Modeling System (RHEiMS) is used to estimate
the SoC's energy dissipation at system level. After deriving the corresponding power for
the SoC's functionality it can be veri�ed against the power constraints1. Moreover, the
system's power state is determined and compared to the speci�cation2. Simulating all test
cases veri�es that the system properly enters and leaves the power states and that the
power constraints are met. After the power dissipation has been determined for all use
cases the battery lifetime can be ascertained. A battery model is connected to the SoC's
power pro�le and its lifetime is calculated3. When a power constraint is violated, a mistake
in the power states is detected, or the required battery lifetime is not met, the SoC design
needs to be corrected and re-veri�ed. After all functional and non-functional requirements
are ful�lled the design can be further re�ned. The model or parts of it can be stored in
the IP library. This Intellectual Property (IP) can be reused in other designs4.

The bene�t of our methodology is that it provides a uni�ed use case format to spe-
cify both power requirements and functional requirements. This allows the creation and
veri�cation of the power design during early stages of the SoC design. Our methodology
includes fast and accurate power estimation to detect peaks in power dissipation which

1Speci�cation and Automated Simulation-based Veri�cation of Power Requirements for System-on-
Chips, Joint IEEE Circuits and Systems and TAISA Conference 2009, NEWCAS-TAISA '09, Toulouse,
France, June/July 2009

2Simulation-based Veri�cation of Power Aware System-on-Chip Designs Using IEEE 1801, IEEE NOR-
CHIP Conference, Trondheim, Norway, November 2009

3Veri�cation Methodology for Battery Lifetime Requirements of Higher Class UHF RFID Tags, IEEE
International Conference on RFID 2009, Orlando, USA, April 2009

4A Component Selection Methodology for IP Reuse in the Design of Power-Aware SoCs Based on
Requirements Similarity, 3rd Annual IEEE International Systems Conference, Vancouver, Canada, March
2009

helps to avoid thermal instability. Early determination of the battery lifetime supports the
proper battery selection and reduces cost. Automatic generation of test cases greatly de-
creases the veri�cation e�ort. In the developed IP library, system components are stored
with their use case document, veri�cation environment and veri�cation results. Within
the library, IP can be e�ciently searched based on its functionality for reuse in other SoC
designs. The included veri�cation environment decreases veri�cation e�ort for future SoC
designs which reuse the IP.

In conclusion, this dissertation introduces power requirements into the SIMBA use case
format and veri�cation methodology. To reduce complexity, the veri�cation environment
is automatically generated to ascertain the system's battery lifetime, power constraints
and power states during simulation. The essential contributions are: the extended use case
format for power requirements, the automated veri�cation of power requirements within a
single methodology and an IP library for functionality-based component search.

Contents

Table of contents ix

1 Introduction to Simulation-Based Veri�cation of Power Requirements for SoC

Designs 1

1.1 Motivation . 1
1.1.1 De�ciencies in Speci�cation of Power Requirements 2
1.1.2 Late Power Aware Design . 2
1.1.3 High Complexity in Veri�cation of Power Requirements 3
1.1.4 Missing Veri�cation Information in IP Exchange Formats 4
1.1.5 Low Search E�ciency in IP Libraries . 4

1.2 Automated Simulation-Based Veri�cation of Power Requirements for SoC Designs 4
1.2.1 The SIMBA Project . 4
1.2.2 Problem Description . 5
1.2.3 Contribution and Signi�cance . 6
1.2.4 Organization of Dissertation . 6

2 Related Work 7

2.1 Speci�cation of Non-Functional Requirements for SoCs 7
2.1.1 Expression of Power Requirements . 8
2.1.2 Speci�cation Formats for Non-Functional Requirements of SoCs 9

2.2 Simulation-Based Veri�cation of Non-Functional Requirements 12
2.2.1 Simulation-Based Veri�cation of Battery Lifetime 13
2.2.2 Simulation-Based Veri�cation of Power and Energy Constraints 14

2.3 Power Aware System-on-Chip Design . 15
2.3.1 Power Aware Design Formats . 15
2.3.2 Simulation-Based Veri�cation of Power Aware Design 16

2.4 IP Exchange . 18
2.4.1 IP Libraries and Tools . 18
2.4.2 Veri�cation IP . 20
2.4.3 E�cient IP Search . 21

2.5 Summary . 22

3 Novel Methodology for Simulation-Based Veri�cation of Power Requirements 23

4 Methodology Evaluation and Case Studies 30

4.1 Requirements Analysis . 30
4.1.1 Functional Requirements . 30
4.1.2 Power Requirements . 32

4.2 Veri�cation of the Power Requirements . 37
4.3 Design Space Exploration for the RFID Controller 39
4.4 Summary . 41

viii

5 Conclusion and Future Work 42

5.1 Conclusion . 42
5.2 Future Work . 43

6 Publications 45

6.1 Automatic Test Generation From Semi-formal Speci�cations for Functional Veri�-
cation of System-on-Chip Designs . 46

6.2 Simulation-based Veri�cation of Power Aware System-on-Chip Designs Using IEEE
1801 . 54

6.3 Veri�cation Methodology for Battery Lifetime Requirements of Higher Class UHF
RFID Tags . 58

6.4 Speci�cation and Automated Simulation-based Veri�cation of Power Requirements
for System-on-Chips . 66

6.5 Automated Simulation-based Veri�cation of Power Requirements for Systems-on-
Chips . 70

6.6 A Component Selection Methodology for IP Reuse in the Design of Power-Aware
SoCs Based on Requirements Similarity . 76

6.7 An IP-XACT Library extended with Veri�cation Information for Functionality-
based Component Selection . 82

6.8 Search for Extended IP-XACT Components in a for Power Aware SoC Design based
on Requirements Similarity . 88

References 96

List of Figures

1 Methodology for Simulation-Based Veri�cation of Power Requirements v

1.1 Levels of Design Abstraction . 1
1.2 In�uence of Chip Size on Static and Dynamic Power 3
1.3 Overview of the SIMBA Methodology . 5

2.1 A Collaboration Diagram . 10
2.2 A Class Diagram . 11
2.3 Atrenta SpyGlass R© . 12
2.4 Power Aware Design in UPF on Top of the Logic Design 16
2.5 Mentor Graphics R© Questa R© . 17
2.6 ChipEstimate.com IP Search Dialog [2] . 18

3.1 Overview of Simulation-Based Veri�cation of Power Requirements 24
3.2 Simulation and Power Estimation . 26
3.3 Battery Lifetime Veri�cation Environment . 27
3.4 Storing IP in the Extended IP-XACT Format and Committing it to the Library . 28

4.1 Higher Class RFID Tag for Refrigeration Monitoring 31
4.2 SIMBA use cases in IBM DOORS R© . 32
4.3 Application Overview . 32
4.4 Power Aware Design of the Higher Class RFID Tag 36
4.5 Veri�cation Results for Power State Requirements in the Veri�cation Plan 38
4.6 Search Results for Functionally Suitable IP . 40

x

List of Tables

2.1 An Analysis Model Use Case . 10

4.1 Speci�cation of the Refrigeration Monitoring Application 33
4.2 Determining the Power Constraints . 34
4.3 Quick Estimation of the Battery Lifetime . 34
4.4 Speci�cation of the Power Constraints . 34
4.5 Speci�cation of the Power State Requirements . 35
4.6 Speci�cation of Power Domains for the Power States 36
4.7 Veri�cation Results Battery Lifetime . 37
4.8 Veri�cation Results Power Constraints . 37
4.9 Veri�cation Results Power Constraints . 39
4.10 Comparing Power Constraints Results for Two Di�erent RFID Controllers 40
4.11 Comparing Battery Lifetime Results for Two Di�erent RFID Controllers 41

xi

List of Abbreviations

EDA Electronic Design Automation
FPGA Field Programmable Gate Array
ESL Electronic System Level
HDL Hardware Description Language
IEEE Institute of Electrical and Electronics Engineering
IP Intellectual Property
MPSoC Multiple-Processor System-on-Chip
NoC Network-on-Chip
RFID Radio Frequency Identi�cation
RHEiMS Rapid Hierarchical Energy Investigation Modeling System
ROM Read Only Memory
RTL Register-Transfer-Level
SoC System-on-Chip
SyAD System Architect Designer
TL Transaction-Level
TLM Transaction Level Modeling
UML Uni�ed Modeling Language
UPF Uni�ed Power Format
VIP Veri�cation Intellectual Property
XML Extensible Markup Language

Chapter 1

Introduction to Simulation-Based

Veri�cation of Power Requirements

for SoC Designs

Advances in semiconductor fabrication technology have enabled high silicon integration
densities and increasing chip performance. More functionality now �ts onto less chip area.
Consequently, an entire system is integrated on a single chip, a so-called System-on-Chip
(SoC). Although, SoCs are found in all kinds of consumer electronics they are especially
common in portable electronic devices. Typical examples are mobile phones, MP3 players,
wireless sensor nodes (WSNs) and active Radio Frequency Identi�cation (RFID) tags.

1.1 Motivation

Before designing an SoC, its functionality is speci�ed in the requirements. However, the
increase in SoC functionality leads to an enormous number of requirements. This causes
speci�cation of the requirements to be very complex. Subsequently, the requirements are
implemented in a logical description of the SoC design. The more functionality the SoC
has to perform, the more complex its logical design becomes. To counter complexity of
the SoC design di�erent levels of design abstraction (Fig. 1.1) and reuse of existing design
components are employed.

System\Transaction Level

Behavioral Level

Register Transfer Level

Logic Level

Gate Level

Transistor Level

S
im
u
la
ti
o
n
 S
p
e
e
d

D
e
s
ig
n
 A
c
c
u
ra
c
y

Figure 1.1: Levels of Design Abstraction [1]

The increase in functionality also causes higher power consumption [3]. Power aware
design is necessary to reduce both the SoC's power consumption and energy dissipation

1

1.1. Motivation 2

since it has to operate with a limited power source (i.e. a battery). However, the power
aware design also contributes to the overall complexity of SoC design.

Veri�cation ensures, that the SoC design ful�lls its requirements and performs as spec-
i�ed. This also applies to the power aware design. Power estimation is fundamental in
verifying that the SoC is able to operate with a limited amount of power. The veri�cation
process may use as much as 70 % of the entire design resources [4].

Under these premises the following subsections explain the motivation for this work.

1.1.1 De�ciencies in Speci�cation of Power Requirements

Generally, requirements describe the user's needs of a system. The requirements describe
the SoC's purpose, objectives, capabilities and functionality. These are called functional
requirements. Additionally, the non-functional requirements specify attributes, conditions,
bounds and constraints under which the functionality has to be performed. [5]

Since SoCs are common in mobile devices power is such a constraint as it a�ects a va-
riety of system parameters. Due to the SoC's limited battery capacity, power consumption
directly in�uences operational lifetime. Power consumption also causes dissipation of heat
which a�ects the system's proper operation, degrades reliability and reduces lifetime [6].
If power consumption is not constrained, costly, bulky and heavy cooling solutions have
to be integrated. Lowering power dissipation through power aware design in�uences the
architecture of the supply network on the chip. Consequently, power requirements are the
most important non-functional requirements of SoCs [3].

Unfortunately, detailed information about the system's power or energy dissipation
is not available in the speci�cation stage, and therefore no uni�ed format or common
methodology exists to express power requirements. Often, the power demand is predicted
based on experiences from previous or similar projects [7], [8]. For mobile systems a lifetime
goal is speci�ed, which a�ects choosing the energy source. After lifetime requirements and
energy source are known, power and energy constraints can be derived and imposed on the
system's functionality [9]. In order to meet the power and energy constraints, power states
are speci�ed to reduce supply voltage and switch o� unneeded parts of the system. Since
requirements for SoCs have no uni�ed format, power requirements are rarely speci�ed.

1.1.2 Late Power Aware Design

The decrease in chip area and increase in functionality also a�ects power dissipation, which
has become the most critical constraint for SoCs [10]. The SoC's power dissipation consists
of a static and a dynamic part. Dynamic power is caused by changing gate states and
signal values while the SoC is active [11], [12]. In contrast, static power is consumed due
to leakage when the SoC is powered but the transistors are not switching [11], [12]. With
decreasing chip size dynamic power dissipation becomes lower but static power dissipation
rises (Fig. 1.2). To manage the SoC's power dissipation power aware design is applied.
Power aware design dynamically adapts the system's behavior to the available power [13],
[11]. This is achieved with a variety of low-power techniques such as clock gating, power
gating, dynamic voltage and frequency scaling which are activated during power states [11].
Meeting power and energy constraints due to limited available power plays a key role in
power aware design [13].

1.1. Motivation 3

Figure 1.2: In�uence of Chip Size on Static and Dynamic Power [12]

Functionality to reduce power is part of the so-called pervasive functionality. Pervasive
functionality encompasses parts of the system not directly related to the SoC's main func-
tionality and is often overlooked during early stages of the SoC design [14]. Another reason
for the elusiveness of power aware design is that Hardware Description Languages (HDLs)
express the system's functionality rather than its power architecture [15], [16]. Conse-
quently, power aware design is often introduced to the system at late design stages [17], [15].

1.1.3 High Complexity in Veri�cation of Power Requirements

Generally, veri�cation examines the system to con�rm that it ful�lls its requirements. Ver-
i�cation of the power requirements comprises two parts. First, the structure of the power
aware design is analyzed and veri�ed against the speci�cation. Second, power dissipation
and battery lifetime are estimated and compared to the requirements. [18], [19]

There are two distinct veri�cation methods for power aware design, simulation-based
and formal veri�cation. In simulation-based veri�cation a model of the system and its
power aware design is executed in behavioral simulation. In contrast, formal veri�cation
mathematically proves correctness of system and power aware design. Both methods are
highly complex due to the numerous di�erent components, states and interactions. [16], [20]

Presently, functional veri�cation of the power aware design happens at Register Transfer
Level (RTL) or Gate Level [16] and uses about one third of the power veri�cation e�ort [18].

Accurate power estimation to verify the power and energy constraints requires a con-
siderable amount of time and is often only available at late design stages [8]. The battery
is typically selected in late phases of the system design which often leads to violations of
lifetime or weight constraints and necessitates redesign [21]. Battery models for estimat-
ing lifetime often show high computational e�ort [22], [23]. Consequently, simulating the
battery lifetime using a load pro�le of the system requires a signi�cant amount of time.
Early lifetime estimation speeds up the process and helps to avoid costly redesign [24].

The later the power aware design is veri�ed, the longer the system model is �power
unaware�, which causes an even larger number of potential bugs [18]. Moreover, the later

1.2. Automated Simulation-Based Veri�cation of Power Requirements for

SoC Designs 4

it is done the longer it takes to simulate the system and to estimate its power and lifetime.
Consequently, late veri�cation may also lead to late, costly redesigns.

1.1.4 Missing Veri�cation Information in IP Exchange Formats

To counter the high complexity in SoC design, components are reused from previous designs
or third party vendors. These pre-designed components are called Intellectual Property
(IP). Within the Electronic Design & Automation (EDA) industry companies use di�er-
ent proprietary storage and exchange formats for their IP [25]. Only in recent years the
importance of a common IP exchange format has been recognized. The IP-XACT format
developed by the SPIRIT consortium aims for a standardized representation of the IP [26].
However, in most cases the IP neither contains veri�cation information nor a common ver-
i�cation methodology that allows reproduction of veri�cation results [20]. The so-called
Veri�cation Intellectual Property (VIP) is a customizable component for verifying a ded-
icated IP component [19]. It contains the entire veri�cation environment (e.g. test cases,
testbenches, etc.) for a speci�c IP. Without existing VIP, the veri�cation environment has
to be manually created, which is challenging and contributes to the veri�cation e�ort [20].

1.1.5 Low Search E�ciency in IP Libraries

To store and manage IP components for later reuse digital repositories, so-called IP li-
braries are employed. IP vendors often advertise their IP via online platforms [2]. Even
though functionality is a key parameter for IP it is only represented by a few keywords
which is inadequate to identify suitable IP accurately. Search mechanisms to �nd IP com-
ponents within IP libraries are commonly relying on keywords and/or constraints [2], [27].
Precise functional descriptions of the IP components are scarce because they are di�cult
to obtain. This impedes e�cient IP search and often results in additional e�ort caused by
the accidental selection of unsuitable components.

1.2 Automated Simulation-Based Veri�cation of Power Re-
quirements for SoC Designs

1.2.1 The SIMBA Project

This work is part of the Simulation-Based Requirements Testing of Power Aware SoCs
(SIMBA) project1. The main goal of the project is a tight integration of requirements into
the speci�cation, design and veri�cation phases of power aware SoCs. Therefore, functional
and non-functional requirements are speci�ed and linked to test speci�cations. The linkage
process automatically translates the requirements into a veri�cation environment. Through
simulation and power estimation the SoC's requirements are veri�ed. [28]

The basis for the SIMBA project is the System Architect Designer (SyAD) framework
from CISC Semiconductor Design+Consulting GmbH [29], [30]. The SyAD framework is
extended with the novel SIMBA methodology. Another signi�cant contribution to SIMBA

1The SIMBA project was funded by the Austrian Federal Ministry for Transport, Innovation, and
Technology under contract FFG 812424

1.2. Automated Simulation-Based Veri�cation of Power Requirements for

SoC Designs 5

is the energy estimation framework Rapid Hierarchical Energy Investigation Modeling Sys-
tem (RHEiMS) from Neosera Systems Ltd. [31], [32]. The SIMBA �ow is illustrated in
Fig. 1.3. Initially, the requirements are speci�ed and analyzed. Then two interdependent
�ows originate. The left side of Fig. 1.3 provides veri�cation of functional requirements
and is described in [1], while the right side of Fig. 1.3 veri�es non-functional, power-related
requirements of SoCs and is presented in this thesis.

Automatic

Testbench

Generation

Power Aware

System-on-Chip Design

Simulation-Based Verification

Power

Characterization

Executable

Supply

Network

Verification

Planning

Requirements Specification and Analysis

Figure 1.3: Overview of the SIMBA Methodology [28]

1.2.2 Problem Description

This thesis addresses the essential de�ciencies and issues of design and veri�cation of power
aware SoCs highlighted in section 1.1.

• Speci�cation inconsistencies and elusiveness of di�erent power requirements

• Creating power aware design at late stages of the SoC development process

• High complexity in veri�cation of power requirements

• Missing veri�cation information in IP exchange formats

• Low search e�ciency in IP libraries

1.2. Automated Simulation-Based Veri�cation of Power Requirements for

SoC Designs 6

This dissertation attempts to counter the above issues by tightly integrating di�erent
power requirements into speci�cation, design and veri�cation of SoCs. Furthermore, the
veri�cation environment and results are linked to the IP for reproducibility in later reuse.

This work's challenges are clearly driven by the high complexity in speci�cation, design
and veri�cation of power aware SoCs. Promoting easy speci�cation of power requirements
in a uni�ed format may prove to be di�cult. Possibilities to establish power aware design
early in the design process have to be determined. In addition, the increasing veri�cation
complexity caused by power aware design needs to be addressed. Extending the functional
veri�cation methodology proposed in [1] and integrating the RHEiMS framework [31] are
additional challenges. Means to extend a common IP format, gather veri�cation informa-
tion and establish a precise but simple functional description have to be implemented. The
remaining challenge is to provide a library to store, manage and e�ciently search IP.

1.2.3 Contribution and Signi�cance

This dissertation delivers two major contributions:

1. Important power requirements and means to specify them are investigated. The
semi-formal format for functional speci�cations (see [1]) is extended with di�erent
power requirements. Then, capabilities for early power aware design are analyzed and
established. Simulation-based veri�cation is augmented with power requirements.
This includes functional simulation of the power aware design, power estimation
and battery lifetime prediction. The high veri�cation complexity is countered by
automatic generation of the veri�cation environment and fast system level simulation.

2. Common IP representation formats are evaluated. A suitable format is extended
with information from functional and non-functional veri�cation. The veri�cation
environment itself is included as VIP. Thereafter, suitable means to accurately de-
scribe the IP's functionality are researched. This is closely tied to a study of search
mechanisms which are capable of �nding IP based on their functional description.
IP storage, management and search are implemented by an IP library.

The methodology for speci�cation and veri�cation of power requirements is evaluated
in a case study of a higher class RFID tag. The IP library provides components for reuse
and assists the design process with veri�cation information.

1.2.4 Organization of Dissertation

The remainder of this dissertation is organized as follows: In chapter 2 state-of-the-art
approaches for speci�cation of power requirements, power aware design, simulation-based
veri�cation of power requirements, IP representation and IP libraries are evaluated. Chap-
ter 3 explains the methodology for simulation-based veri�cation of power requirements.
Additionally, the IP format extended with veri�cation information and our IP library are
elaborated. The case study on two SoC implementations of active RFID tags to evaluate
the proposed methodology is described in chapter 4. Finally, chapter 5 summarizes this
dissertation and provides an outlook on future work.

Chapter 2

Related Work

Since Systems-on-Chips (SoCs) are increasingly complex to specify, design and verify, tools
and methodologies have been developed to solve some of the related issues. This chapter
evaluates related methodologies and state-of-the-art tools for simulation-based veri�cation
of power requirements in the context of SoC design. Additionally, the present state in IP
exchange, IP libraries and Veri�cation IP is examined.

2.1 Speci�cation of Non-Functional Requirements for SoCs

This section analyzes which and how non-functional requirements are commonly speci�ed
in SoC designs. Special attention and investigation is given to speci�cation formats that
allow description of non-functional requirements. Tools for speci�cation of requirements
were investigated by Kirchsteiger in [1] and revealed IBM DOORS R© to be suitable.

Non-functional requirements describe the system's properties, characteristics, attributes,
qualities, constraints, and performance [33]. The distinction between functional and non-
functional requirements are often arbitrary [33]. The following constraints are often asso-
ciated with non-functional requirements of SoCs [10], [24], [34]:

• Timing

• Area

• Power

• Battery lifetime

• Performance

• Reliability

With process technologies below 100 nm, area as a constraint is of less concern [10].
The most controversial parameter is timing [33]. Timing may be regarded as a constraint
or as part of the behavior [33]. In the SIMBA methodology we treat timing as part of
functionality. Therefore, it is veri�ed together with the functional requirements (see [1]).
Power, timing and performance are closely interrelated. If clock frequency is reduced, signal
values change less often and power dissipation is lowered. As a result the operation needs

7

2.1. Speci�cation of Non-Functional Requirements for SoCs 8

a longer time to complete because speed is reduced and performance degrades. Battery
lifetime is strongly dependent on energy (i.e. power * time) [11]. However, peaks in
current consumption which are evident in momentary power also have a negative e�ect on
the battery lifetime [23]. There is a consensus that power is the most important constraint
for SoC designs [3], [10].

So far, there is no attempt to capture power requirements in a common methodology.
In some works however, experiences from SoC designers with speci�cation of power require-
ments are reported. The following subsection summarizes some representative experience
but does not claim to be complete.

2.1.1 Expression of Power Requirements

Since power and energy constraints and battery lifetime requirements are interdependent
they can be summarized as power requirements. These parameters in�uence the structure
of the power aware design, which in turn a�ects ful�llment of the constraints and battery
lifetime goal. The power aware design is abstracted into power states which are additional
conditions under which functionality has to be performed. Therefore, we regard power
states as non-functional requirements. Power and energy constraints, battery lifetime and
power states constitute the major areas of concern in speci�cation of power requirements.

Battery or Operational Lifetime Requirements

With mobile devices the battery's lifetime is often equal to the device's operational lifetime.
Therefore, battery lifetime is a key requirement in system speci�cation which directly
in�uences customer satisfaction [24]. Battery lifetime is in�uenced by two factors. First,
the capacity which depends on the battery's size, weight and technology [21]. Second,
the application which is driven by the desired product lifetime and the required quality
of service [35]. Battery lifetime is the most recognized power requirement and is often
speci�ed in conjunction with a typical application of the system [24], [36].

Representative example of a battery lifetime requirement:
For 600 read operations per day, the battery shall last for 6 years. (compare [36])

Power and Energy Constraints

The power constraints are derived from the available power budget. Constraining power
avoids excessive dissipation of heat and therefore system instability. Moreover, it limits
peaks in current demand which have a negative in�uence on the lifetime of most batteries
[23]. To ensure that the lifetime requirement is met, energy constraints are de�ned [11].
Even though energy is the more important constraint when using batteries it is rarely
expressed. Instead, power constraints are used [7], [8]. Constraints can be applied on the
entire system [9] or they can be speci�ed for individual components of the system [37].
Both, power and energy constraints can be imposed on functionality.

Representative example of a power constraint:
The power dissipation of all units active during the read operation shall not exceed
5 mW. (compare [37])

2.1. Speci�cation of Non-Functional Requirements for SoCs 9

Power State Requirements

Power state requirements specify how the system is able to ful�ll the power constraints.
Active and inactive parts of the system and their voltage levels are summarized as power
states. Power states are tied to functionality and serve as basis for the power aware design.

Decker et al. from Cadence Design Systems Inc. suggest to specify a strategy for the
veri�cation of power aware design in a veri�cation plan. It contains details about require-
ments for the system's power states, how to trigger a power state, and how power states
should be veri�ed. Planning the power aware veri�cation is done when the structure of the
power aware design is created for the system. [38]

Representative example of power state requirements:
1.1 Power Mode A
Power mode A is de�ned by MAC1 being o� and MAC2 being at low voltage.
1.1.1 Transition requirements
This power mode can only be entered if the MAC1 link is disconnected, and there are
no messages in the
queue assertions : xxx and yyy are required
1.1.2 Functional requirements
The following features must be tested during this power mode
1.1.2.1 Send a transaction on MAC2
Coverage: mac_2_send cross powermode A
1.1.2.2 Attempt to read from MAC1 bu�er
1.1.3 Testing Requirements
The following system tests should be run in this mode.
1.2 Power Mode B
(from [38], pg. 7, Fig. 4)

Summarizing the examples above, non-functional requirements are often speci�ed infor-
mally in natural text. Presently, power states are are not speci�ed in the requirements
document. Although, Decker et al. recognize power states as part of the power require-
ments they fail to express them prior to the design stage. Instead of describing power
states in the requirements document during the speci�cation stage, they are often speci-
�ed implicitly through the power aware design [10]. Also, they are speci�ed parallel to the
power aware design in the veri�cation plan [38]. This may be due to the fact that they are
often overlooked [14] and that awareness for the necessity of the power architecture arises
during later design stages.

2.1.2 Speci�cation Formats for Non-Functional Requirements of SoCs

Sometimes use cases are derived from the initial requirements document. Use cases repre-
sent a more technical, interaction-based view of the system. Non-functional requirements
are attached either to individual use cases or to the entire use case document [33], [39].

One of these use case formats, capable of accommodating non-functional speci�cations,
is described by Bahill et al. [39]. This format is based on the Uni�ed Modeling Language
(UML), which is commonly utilized in software engineering. However, as demonstrated

2.1. Speci�cation of Non-Functional Requirements for SoCs 10

by Bahill et al. [39] UML can be used to specify hardware systems. The requirements are
translated from the customer's point of view to the designer's point of view in a use case
analysis model [39]. Initially, the requirements are described in a more detailed, technical
manner as use cases [39]. Table 2.1 shows a structured, textual use case format.

Name: Take a sample.
Brief description:

The controller module receives an interrupt from the timer module.
Then it requests a sample from the sensor module and stores it in the memory.

Scope: A system which gathers data from its environment.
Primary actor: The user.
Supporting actor: Timer module.
Frequency: The system operates continuously.
Precondition: The system has been activated by the user.
Main Success Scenario:

1a. A timer interrupt occurs.
2. The controller leaves idle mode.
3. A sample is requested from the sensor module.
4. After the sample has been received it is stored in memory.
5. The controller goes back to idle mode.

Alternate Flow:

1b. The user requests a sample.
Rules:

Rule1: The controller's default mode is idle.
Rule2: When the memory is full, the controller starts to
overwrite from the �rst sample.

Nonfunctional performance requirement:

Taking a sample should last less then 100 ms.

Table 2.1: An Analysis Model Use Case (compare [39], pg. 34)

After the functional and non-functional requirements have been expressed in the use
cases, classes are identi�ed. A class is derived from a set of similar objects and abstracts
common properties. Thereafter, instances are derived from the classes. [39]

Since the model is based on UML, it utilizes the same nomenclature. A class is related to
software development and object-oriented programming. For hardware, classes correspond
to modules of the system. Then a collaboration diagram is developed which describes
interactions between the class instances and the exchanged messages (Fig. 2.1). [39]

Timer Controller

interrupt()

set(counter_limit)

reset()

activate()

deactivate()

Sensor

request_sample()

return(sample)

Figure 2.1: A Collaboration Diagram (according to [39])

2.1. Speci�cation of Non-Functional Requirements for SoCs 11

After functionality and attributes of the classes and their interactions are known, the
class diagram is created (Fig. 2.2). It represents classes as boxes which contain the class
name, a list of attributes and operations. [39]

+count()

Class Timer

-clk_periode

-counter

-limit
+service_routine()

+idle()

+set_counter_limit()

-memory

Class Controller

+take_sample()

-sample

Class Sensor

**

**
Actor
*

*

Figure 2.2: A Class Diagram (compare [39])

However, non-functional requirements are only represented in the initial analysis model
use case of the format. The collaboration and class diagram are used to add details to
architecture and functionality.
In another approach, Glintz [33] regards non-functional requirements as attributes and
constraints. He expresses the concern that specifying them into a textual documentation
template is helpful but may not be su�cient. Especially when attributes and constraints
cannot be clearly identi�ed as entirely local or global, their speci�cation becomes an issue.
Instead, it is suggested that an aspect-oriented representation of requirements is employed.
A hierarchical multi-dimensional modeling language is used to decompose the system model
and describe the requirements. The hierarchical elements represent the functional require-
ments. Attributes and constraints are described as separate entities which can be attached
to the functional elements representing local non-functional requirements. Consequently,
global attributes and constraints are attached to the root element in the hierarchy. At-
tributes and constraints which only apply to some parts of the system are attached to the
corresponding parts with a �join relationship�. [33]

As a conclusion, the textual format of the use case analysis model presented by Bahill et
al. [39] is adapted for the SIMBA project (see [1]). Although the use case format introduced
by Bahill et al. allows speci�cation of non-functional requirements they are neglected in
later stages of the use case analysis. Also, the non-functional requirements within the use
cases do not have a clearly de�ned structure which leads to inconsistencies. Glintz [33]
describes an abstract, tree-like representation of the non-functional requirements instead of
a textual template. Detaching non-functional requirements from the functional use cases
clearly contributes to an inconsistent speci�cation. Consequently, functional and power
requirements are uni�ed in the SIMBA use case format.

2.2. Simulation-Based Veri�cation of Non-Functional Requirements 12

2.2 Simulation-Based Veri�cation of Non-Functional Require-
ments

This section investigates related work in the areas of simulation-based veri�cation of non-
functional requirements. However, the focus is on power constraints and battery lifetime.
Veri�cation of power state requirements is described in Subsection 2.3.2.

Usually, SoC designers think of constraints as a �backend issue� and are not aware of
the complexity of constraints. However, the backend teams are not familiar enough with
the design to capture all constraint scenarios. Consequently, veri�cation of constraints is
performed late in the design process and some issues may be completely overlooked, which
causes redesign after synthesis. [34]

Churiwala et al. describe Atrenta SpyGlass R©-Constraints, a tool for veri�cation of
timing constraints. The tool is depicted in Fig. 2.3. It is mainly used to uncover missing
clock de�nitions, wrongly inserted clocks, missing signal delays and clock dividers. Besides
verifying constraints, SpyGlass R© can also be used to automatically insert constraints for
synthesis. The constraints are speci�ed in a spreadsheet within SpyGlass R© and translated
for synthesis tools. The SpyGlass R© tool can be used at and below RTL. [34]

Figure 2.3: Atrenta SpyGlass R© [34]

At �rst glance, the tool described by Churiwala et al. seems to be a general purpose
constraints tool (compare Subsection 2.2.2). However, it mainly focusses on low level
constraints related to the RTL or gate level layout of the clock tree and power architecture.

2.2. Simulation-Based Veri�cation of Non-Functional Requirements 13

2.2.1 Simulation-Based Veri�cation of Battery Lifetime

Battery lifetime is usually veri�ed by using a load pro�le of the system and a battery
model. However, veri�cation of battery lifetime is very di�cult due to the complexity
of most battery models and their large number of parameters [24]. Therefore, accurate
battery models are computationally intensive [23]. Also, missing details about the energy
demand and operating conditions at early stages contribute to the complexity of lifetime
veri�cation [24]. Since there are numerous battery models available for simulation-based
lifetime estimation, only three representative approaches will be discussed. So far, there
is no methodology or �ow that directly integrates battery lifetime requirements into the
veri�cation process or battery lifetime estimation.

Chen et al. propose a battery model which can be simulated with a system model in
simulators, compatible to Cadence1. An electrical battery model, which is also capable of
re�ecting a battery's current-voltage characteristics, is developed for lifetime prediction.
The model takes non-linear battery e�ects into account. The authors compare their model
for lifetime prediction to actual NiMH and Lithium-Polymer batteries at various discharge
conditions and achieve accurate results. Unfortunately, Chen et al. do not provide details
about simulation runtime or computational complexity of their model. [40]

In their approach, Rahmé et al. develop a battery model to estimate the lifetime for
wireless sensor networks. The battery model is based on an analytical battery model.
It is simpli�ed in order to be used on the node itself to calculate its remaining lifetime.
Therefore, an average of all currents during a sensor node's state is assumed as the load
pro�le. After a given time the battery model updates its state taking the charge recov-
ery e�ect into account. It is stated to be accurate compared to other analytical models. [41]

The third approach by Simjee et al. uses a load emulator to estimate the battery lifetime.
First, a load pro�le is recorded with the emulator. This can be either a simulation of a
system model or voltage and current measurement of an actual physical system. Second,
the emulator applies the stored power pro�le to a connected physical battery. It is also
possible to charge a rechargeable battery with the emulator. The load emulator also allows
scripting a sequence of charge and discharge cycles for automating lifetime estimation. The
advantage of the proposed load emulator is that it provides reproducible results at accept-
able speed and allows to automate battery lifetime estimation on a physical battery. [22]

In [23] Rao et al. investigate battery models with battery and energy optimization in mind.
Initially, e�ects of energy reduction and battery aware optimization are studied. They dis-
covered that under certain conditions energy optimization techniques may achieve longer
battery lifetime than battery aware techniques. Moreover, the battery's charge recovery
e�ect plays a key role in maximizing the battery's lifetime. Rao et al. show that the resting
period in which the battery recovers charge can be analytically determined. It serves as
a criterion when choosing between energy-optimization and battery aware policies. Their
conclusion is that for tasks with short and long load duration energy optimization should
be preferred over a battery aware policy. [23]

1Cadence Design Systems Inc., http://www.cadence.com/

http://www.cadence.com/

2.2. Simulation-Based Veri�cation of Non-Functional Requirements 14

Although, the work of Rao et al. is not closely related to veri�cation of lifetime require-
ments, it shows the necessity of taking battery lifetime into account when designing a
system. Especially when developing policies for task scheduling and energy optimization,
which can be done at early stages of system design. Other approaches use recoded power
pro�les and either emulators or simulators to estimate battery lifetime. None of the related
works above provides details how the load pro�le is acquired (eg. power estimation). The
focus is mainly on the battery model or developed policy for task scheduling rather than
veri�cation of battery lifetime.

2.2.2 Simulation-Based Veri�cation of Power and Energy Constraints

Power has been recognized as the most important design constraint for SoCs. There-
fore, estimating power consumption and verifying the power constraints is now widely
performed in the SoC design process. However, most of the e�ort is focused on low-level
power estimation. Although, low-level power estimation provides accurate results, it re-
quires a detailed model of the system, which only becomes available in late design stages.
This means that there is little tolerance to change architectural features. Additionally,
low-level power estimation is computationally intensive. Consequently, information on the
SoC's power dissipation would be required much earlier in the design to have an impact.
Since approaches for early, rapid and e�ective power estimation are not widely available
SoC designers commonly rely on spreadsheets, which only provide inaccurate estimates. [8]

Atrenta also enables veri�cation of the power constraints with the SpyGlass R©-Power tool.
According to Atrenta Inc., SpyGlass R©-Power can be used to estimate power consumption
at RTL and Gate-level. However, power constraints need to be added manually to design
elements (e.g. voltage domains) in order to be veri�ed. Moreover, it can even be used to
verify power aware design in both UPF and CPF. It detects areas of activity suitable for
clock gating and measures clock gating e�ectiveness. Furthermore, SpyGlass R©-Power is
able to expose errors related to power domains, isolation cells and level shifters. [42]

Cadence R© Incisive R© Palladium R© Dynamic Power Analysis uses an in-circuit emulator for
power estimation at system level and RTL. Through cell libraries (e.g. for memory) switch-
ing activity is estimated and average and peak power is derived. Once a SoC has been
emulated its power values and activity data can be stored in a database. Then the values
can be reused o�-line without the need to re-run power emulation. Via a CPF �le, Incisive R©

Palladium R© Dynamic Power Analysis takes power aware design into account. [43], [38]

Sunwoo et al. suggest to use FPGA2-Accelerated Simulation Technologies (FAST) to es-
timate power consumption at early design stages. According to their strategy, the design
is divided in a functional model and a timing model. The functional model re�ects the
functionality of the system and its peripherals. The timing model describes the system's
timing which depends on its hardware components. Both models run in parallel, the func-
tional model in a software simulator and the timing model on a hardware emulator (i.e. an
FPGA). The functional model executes and sends traces of data and instructions to the

2Field Programmable Gate Array

2.3. Power Aware System-on-Chip Design 15

timing model, which reacts accordingly. Since the functional model has no notion of time,
it continues sending traces without waiting for the previous task to �nish. The authors use
activity information from the emulator to estimate power consumption during automated
post-processing analysis. [8]

Currently, no design �ow is able to handle power constraints, battery lifetime and power
state requirements from speci�cation to veri�cation in a single �ow. Available tools such
as Atrenta's SpyGlass R© and Cadence R© Incisive R© Palladium R© indicate that non-functional
requirements are of increasing importance in the industry. However, non-functional veri�-
cation is often done at RTL or below, where simulation su�ers from low speed.

2.3 Power Aware System-on-Chip Design

With the increasing importance of power dissipation, techniques to reduce power were
developed but had little in�uence on the design format. As static power became predomi-
nant, more techniques to reduce power consumption emerged but could not be accurately
re�ected in the SoC design languages. Clock gating and power gating e�ectively reduce
static and dynamic power dissipation. Dynamic voltage and frequency scaling reduce
the switching activity by lowering the system's performance. In a power state di�erent
techniques are combined. However, most techniques are added to the design at low level
of abstraction because HDLs do not facilitate their design. Recently, new formats and
standards for the description of the power architecture independent of the HDL became
available. [11], [44], [15]

2.3.1 Power Aware Design Formats

Both, the Uni�ed Power Format (UPF) and the Common Power Format (CPF) describe
the architecture of the power aware design independent of the HDL. CPF was developed by
the Power Forward Initiative, a group of EDA companies. In 2007, it was donated to the
Silicon Integration Initiative (Si2). Similarly, UPF was introduced by a rivaling group of
EDA consortium and later contributed to Accellera3. In March 2009, the IEEE approved
UPF as IEEE 1801-2009 Standard for Design and Veri�cation of Low Power Integrated
Circuits. [44], [15]

Usually, power aware design - the description of elements in the power supply network - is
carried out at RTL (see Fig. 2.4). This means that the logic SoC design has been re�ned
and iterated from system level. Then, the architecture of the power domains and their volt-
age levels are described on top of the logic design in a separate format (ie. CPF or UPF).
The power formats specify the architectural elements necessary to apply design techniques
for power reduction. CPF and UPF are very similar in their syntax and capabilities to
express the power aware design at RTL. In both formats, power or voltage domains, power
switches, isolation cells, level shifters and retention cells can be described. Currently, the
industry works towards a convergence of the two formats.

3http://www.accellera.org

http://www.accellera.org

2.3. Power Aware System-on-Chip Design 16

6 Copyright © 2009 IEEE. All rights reserved.

IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

Figure 3—UPF extends the logic design

Retention is the ability to save the value of a sequential element in a power domain prior to switching off the
power to that element and then later restoring its value after power has been enabled for the element.
Behavioral and implementation retention semantics can be specified for sequential elements that require
save and restore capabilities.

Isolation and retention both demonstrate UPF’s concise specification characteristics and its flexibility in
specification. A general strategy can be defined for both isolation and retention. This strategy is then applied
to all ports or sequential elements governed by the scope of the strategy. Specific overriding of a general
strategy allows for the management of exceptional situations. Flexibility is realized through the recognition
that isolation and retention behavior, for any given design or implementation, may be more complex or
require a different connectivity than the predefined general behaviors supported by UPF. In these situations,
mapping of the isolation or retention to specific verification (functional behavior) and implementation
models is supported.

1.6 Conventions used

Each clause that details any UPF commands defines it own conventions and meta-syntax as needed (see also
Clause 6 through Clause 8).

UPF LEVEL SHIFTING

u2u3u4u5

x3x4x5

u1x2
x1

f(x1...xn)

UPF ISOLATION

u2
u3
u4u5

x3
x4x5

u1x2
x1

f(x1...xn)

RTL Module A

Volatile
Memory

Volatile
Stateful
Logic

Volatile
Combinatorial

Logic

UPF
SHDW

MSFF

SET

CLR

QD

REST
SAVE

UPF
SHDW

MSFF

SET

CLR

QD

REST
SAVE

UPF
SHDW

MSFF

SET

CLR

QD

REST
SAVE

UPF
SHDW

MSFF

SET

CLR

QD

REST
SAVE

CNT

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on July 3, 2009 at 05:07 from IEEE Xplore. Restrictions apply.

Figure 2.4: Power Aware Design in UPF on Top of the Logic Design [15], pg. 6

However, not all approaches for power aware design use the novel power formats. Jian
et al. demonstrate a design �ow to reduce power reduction on an RTL SoC design. The
authors analyze the RTL SoC design for possible clock gating. Then the Synopsys4 Power
Compiler

TM

is used to automatically insert clock gating cells during synthesis. Addition-
ally, power management is implemented to dynamically reduce clock frequency and supply
voltage. Moreover, Jian et al. optimize usage of on-chip memory to avoid excessive and
power intensive external memory access. Also, power gating is applied by turning o� in-
active parts of the chip and the memories. [3]

UPF and CPF are both speci�cation languages to describe the power aware design on
top of the logic design and independent of the HDL. They provide elements to implement
power reduction techniques. Several tools of di�erent EDA vendors support power aware
design in either CPF or UPF. Since they also provide functionality for veri�cation of the
power aware design, they will be evaluated in the following subsection.

2.3.2 Simulation-Based Veri�cation of Power Aware Design

Tools for formal and simulation-based veri�cation of the power aware design are available
for UPF and CPF. However, in this section the focus lies on simulation-based approaches.
Commonly, power aware design is veri�ed at RTL or below.

Bembaron et al. describe power aware design at RTL in UPF. To verify the power aware
design, a three step methodology is applied. First, the authors employ a tool for static

4Synopsys, Inc. http://www.synopsys.com/

http://www.synopsys.com/

2.3. Power Aware System-on-Chip Design 17

analysis to detect design errors prior to simulation. Assertions are inserted into the design
to identify certain conditions (e.g. activity in a powered-down domain) during simulation.
Second, the RTL model of the system, the power aware design in UPF and special power
aware behavioral models are compiled. The power aware behavioral models are expressed
in the Verilog HDL and contain functionality which triggers special events for the sim-
ulator. Third, the compiled design is run on a simulator. The simulator recognizes the
events from the behavioral models and handles corruption of memories and signals when
the power is switched o�. By applying the veri�cation methodology at RTL the authors
were able to detect bugs in isolation, retention and power domain connectivity. [45]

A power aware simulator for UPF, as described by Bembaron et al. [45], is included in the
Questa R© framework from Mentor Graphics R© (Fig. 2.5). Questa R© PASim interprets the
power aware design in UPF and its connection to the HDL models. During simulation it
applies corruption behavior for deactivated power domains and infers isolation and reten-
tion functionality. Additionally, it supports power aware behavioral models. [46]

Figure 2.5: Mentor Graphics R© Questa R©

Cadence Design Systems, Inc. also o�ers tools for veri�cation of power aware design. They
use CPF to describe the power aware design. Cadence R© Encounter R© Conformal R© Low
Power performs formal veri�cation without simulating the design. Additionally, the In-
cisive Uni�ed Simulator is able to interpret CPF commands to simulate power shutdown
and startup sequences. Therefore, power domains, level shifters, proper isolation and save-
restore sequences for retention can be veri�ed. Above all, the Cadence Design Systems,
Inc. simulator operates at system level. This enables early veri�cation of the power aware
design with abstract, high-level models. More detail can be added gradually until the
system can be veri�ed at RTL. The simulation engine creates a model of the power aware
design de�ned in CPF for RTL and system level designs. [38]

2.4. IP Exchange 18

Available design tools use custom simulators which interpret UPF or CPF to verify the
power aware design. Assertions and behavioral models of the power aware design can be
speci�ed to augment the simulation. Most of the tools perform the veri�cation at RTL.
The simulator introduced by Cadence uses CPF for system level veri�cation.

2.4 IP Exchange

Many tools, formats and libraries for IP exist. Basically, each company uses a proprietary
format for IP representation [47]. Not only does this complicate IP exchange and reuse, it
also impedes automated search [47]. Therefore, the SPIRIT consortium5, which comprises
many major EDA companies, introduced the IP-XACT format [26]. IP-XACT is based on
the XML format and allows to encapsulate IP of di�erent HDLs and abstraction levels [26].
In 2009, the IEEE working group P1685 was founded to standardize IP-XACT.

2.4.1 IP Libraries and Tools

Due to the numerous IP formats and libraries, a comprehensive overview would be beyond
the scope of this work. Since IP-XACT is the most recent and widely accepted IP exchange
format, an overview of representative IP-XACT-based libraries and tools will be provided.

ChipEstimate.com is an online IP provider o�ering IP from many third party IP de-
velopers and semiconductor companies. IP cores are available in many formats, also in
IP-XACT. ChipEstimate.com utilizes a keyword and parameter search to �nd IP within
the library. The search dialog is shown in Fig. 2.6. Besides regular IP cores, also Veri�-
cation IP can be acquired independently from ChipEstimate.com. Generally, the IP does
not have VIP attached and is delivered without any VIP. Instead, as quality measure for
the IP ChipEstimate.com provides a GSA risk pro�le and QIP rating. [2]

The GSA is a non-pro�t organization performing risk assessment based on IP design,
veri�cation, documentation, etc. which is available as a spreadsheet [48]. Similarly, the
Virtual Socket Interface Alliance (VSIA) QIP Metric analyzes manually speci�ed IP de-
sign, integration and support practices [49]. However, the VSIA has been dissolved recently.

Chartered

Common Platform

IBM

SilTerra

SMIC

TSMC

Tower

UMC

X-FAB

Keywords

Node
40 nm 55 nm 90 nm 150 nm 250 nm

45 nm 65 nm 130 nm 180 nm 350 nm

Foundry

Category

Vendor

IP Quality GSA Risk Profile QIP Rated

Home : Search IP

 ChipEstimate.com Chip Planning & IP Portal
 Copyright © 2009 ChipEstimate.com. All rights reserved. Feedback Privacy Policy Terms of Use Newsletter & Tech Talk Archive IP Catalog Site Map

ChipEstimate.com - Chip Planning Portal http://www.chipestimate.com/search.php

1 of 1 10.12.2009 15:20

Figure 2.6: ChipEstimate.com IP Search Dialog [2]

5http://www.spiritconsortium.org

http://www.spiritconsortium.org

2.4. IP Exchange 19

A similar online IP library is Design and Reuse6. Besides Silicon IP, Design and Reuse
also o�ers separate Veri�cation IP and even Software IP. However, it does not provide
similar IP quality descriptions as ChipEstimate.com. Only a datasheet summarizes the
IP's features. Design and Reuse allows searching for IP based on keywords, vendors and
semiconductor manufacturing processes. [50]

The OpenFPGA CoreLib project, introduced by Wirthlin et al., plans to create a standard-
ized design environment for FPGA-based systems. Therefore, the authors intend to link
design tools, programming tools and an IP library for FPGA cores with a common stan-
dard. Especially interesting is the concept of the library standard to allow tool-independent
access for widespread use of the IP component. According to Wirthlin et al. the IP within
the library will be represented in the IP-XACT format. However, some extensions to IP-
XACT will be necessary to support the suggested higher level of design abstraction. The
low-level FPGA IP cores in a HDL are mapped to a high-level programming language
such as C and C++. Also, the importance of additional meta-data and information for IP
description is pointed out. Even though some concepts are outlined by the authors, the en-
tire project seems to be in an early stage and no details about the library are available. [51]

The Synopsys7 coreTools are a bundle of tools for IP packaging and management. The
coreTools are compliant to the SPIRIT IP-XACT format. They provide a framework for
packaging and con�guring IP. [52]

• coreBuilder
TM

allows the designer to pack all �les of a speci�c SoC module into an
IP-XACT component regardless of its HDL. Di�erent views of the IP can also be
created and included in the package. Additionally, coreBuilder

TM

can be used to
create graphical and command based menus for con�guring the IP. [52]

• coreAssembler
TM

automates integrating new IP into an SoC design. The coreAssembler
TM

automatically con�gures the IP component and connects it to the design. Moreover,
it documents details about connection and parameters which can be employed to
generate a testbench for the IP. Besides packaging IP with the coreBuilder

TM

, the
coreAssembler

TM

is also able to handle any new and IP-XACT conforming IP. [52]

• coreConsultant
TM

is the backbone of the coreTools. It guides the designer through
con�guration, veri�cation and implementation phases and generates the XML �les
according to the IP-XACT standard. [52]

The Magillem8 IP-XACT Packager is capable of generating an IP-XACT-conform IP out of
HDL source �les. It utilizes the Magillem Compliance Checkers Suite to ensure IP-XACT
conformity. However, the most remarkable feature is the IP-XACT extension for di�erent
Analog-and-Mixed Signal (AMS) HDLs. [53]

Magillem Platform Assembly's goal is to speed up SoC and FPGA-based design. It
supports and guides the SoC designer through import, con�guration and veri�cation of
IP bundles. A graphical design environment is utilized to design and modify the system.

6http://www.design-reuse.com
7Synopsys, Inc. http://www.synopsys.com/
8MAGILLEM The Ontology Company S.A., http://www.magillem.com/

http://www.design-reuse.com
http://www.synopsys.com/
http://www.magillem.com/

2.4. IP Exchange 20

It also allows to connect IP automatically to the system's hierarchy. An environment to
control and monitor veri�cation of the IP can also be generated automatically. Platform
Assembly checks the IP for IP-XACT compliance. [54]

Arpinen et al. describe how a system can be created on a component basis using UML
and IP-XACT. The authors create a system level model containing lower-level IP cores de-
scribed in IP-XACT. Instead of an HDL, UML is used to describe the IP interconnection
in a testbench. Since UML does not have the proper capabilities to compose SoC design,
Arpinen et al. extend its diagrams and elements. A framework is implemented which
interprets the UML description. With a set of transformation rules it generates an SoC
design from the referenced IP-XACT components. On an FPGA, the authors demonstrate
generating and synthesizing an SoC from UML and IP-XACT components. [55]

Conclusively, IP-XACT has stimulated research and development in the EDA industry
and academia. Libraries of online IP vendors already support the new IP-XACT standard.
Many tool vendors provide frameworks to package IP in an HDL into the IP-XACT format.
Approaches such as the OpenFPGA CoreLib aim for a library of components synthesizable
on FPGAs. Automatically composing and synthesizing a system from a customized UML
description is demonstrated. Also, extending IP-XACT for analog components and higher
levels of design abstraction is suggested.

2.4.2 Veri�cation IP

Veri�cation IP (VIP) is used to verify other IP components. VIP contains an entire reusable
veri�cation environment to reproduce veri�cation results without having to manually create
test cases. Despite its obvious importance VIP does not have a common, standardized
format and is usually provided separately from the IP. This means that it has to be bought
separately (see [50], [2]). Without available VIP, additional e�ort is required to analyze
the IP and to re-create the veri�cation environment.

In September 2009, Accellera published the Veri�cation Intellectual Property (VIP)
Best Practices Interoperability Guide [56]. The document contains a set of guidelines
which specify how to create and interchange testbenches written in the SystemVerilog9

HDL. It particularly aims to lower veri�cation costs and e�ort by providing a reference on
how to translate OVM to VMM VIP and vice versa. The Veri�cation Methodology Man-
ual (VMM) and Open Veri�cation Methodology (OVM) are two common SystemVerilog
veri�cation libraries. The VMM Standard Library was developed by Accellera, whereas
the Open Veri�cation Methodology (OVM) library represents a joint e�ort from Cadence
Design Systems Inc. and Mentor Graphics R©. A working group continues to develop the
approach into a Common Base Class Library (CBCL) targeting IEEE standardization.

Recently, Accellera and the SPIRIT consortium announced to join their e�orts. With
their knowledge and expertise in VIP and IP exchange formats, a new standardized VIP-
extension for IP-XACT may be possible in the future.

9IEEE 1800 Standard for SystemVerilog - Uni�ed Hardware Design, Speci�cation, and Veri�cation
Language

2.4. IP Exchange 21

2.4.3 E�cient IP Search

When searching IP for reuse the goal is to �nd components which are best suited for
the system-under-design. The high complexity of the system, the large number of re-
quirements and many available components aggravate the situation. The di�culty is to
�nd components which contribute to the system's functionality and match its constraints.
Consequently, functionality is the most important parameter for IP search. Additional
parameters are constraints such as area, timing and power dissipation.

However, commercial IP libraries only o�er simple IP search mechanisms. Keywords,
categories, vendors and gate size are commonly used parameters. [50], [2]

Matthaikutty et al. introduce a framework for automatic IP selection based on structural
information. The authors utilize metadata gathered from SystemC models to re�ect IP.
The SystemC model is analyzed to determine whether it is a component, channel or trans-
actor which identi�es the component's level of abstraction. Communication and interaction
between sub-components are determined by signals and channels. The structural informa-
tion and interaction metadata are used to gather data types and signatures. Additionally,
the IP's name and version can be annotated into the model for cataloging and advanced
selection. The IP's gathered information is represented in XML, linked to the correspond-
ing SystemC source and stored in an IP library. A visual architectural template allows
the designer to compose the system. It is even possible to mix di�erent levels of design
abstraction. IP with the structure and metadata which match the speci�ed architectural
template best is automatically selected from the library. Additionally. the authors plan to
import metadata from IP-XACT components into their framework. [57]

Hamza-Lup et al. describe a methodology to select components for a system based on its
non-functional system requirements. The authors assume that each component is charac-
terized by a series of functional and non-functional requirements which comprise imple-
mentation, interface and performance. The functional requirements need to be mapped to
functional attributes of the component. Due to a potentially large IP library, thoroughly
determining all IP combinations is infeasible because of the high computational complex-
ity. Therefore, the authors reduce the search space by removing components which do
not match functional requirements and target interfaces. Then an optimization algorithm
is employed to �nd a combination within the remaining subset of components. The algo-
rithm composes the system from a combination of components matching the non-functional
requirements. The resulting components for the system are selected from the IP library.
However, the authors do not utilize an actual requirements document to perform their com-
ponent search. Their work focuses on optimizing of a combination of components based
on performance attributes. Functionality can be expressed but only with keywords. [27]

Altough academic approaches suggest more e�cient search methodologies for IP compo-
nents, commercial IP libraries still rely on keyword search. The approach fromMatthaikutty
et al. gathers structural information from a SystemC component which is utilized for se-
lecting IP from an architectural rather than a funtional description of the system. In
contrast, Hamza-Lup et al. select components from a library by employing non-functional
requirements to determine an optimal combination of suitable components.

2.5. Summary 22

2.5 Summary

From related works and state-of-the-art tools it is apparent that non-functional require-
ments and constraints are of increasing importance. Especially power constraints, battery
lifetime requirements, and power state requirements are gaining the attention of SoC de-
signers. However, there is no common format which would ease speci�cation of those power
requirements. Despite their interdependence available methodologies only allow to verify
power constraints, battery lifetime requirements and power state requirements separately.
Since power requirements are not treated with the same priority as functionality they are
often neglected and veri�ed late in the design process. This also complicates power aware
design which is usually speci�ed in UPF or CPF. Although the EDA industry has recog-
nized the importance of power aware design, tools commonly support its veri�cation at
RTL or gate level.

To keep up with today's fast-paced development cycles designers have to rely on pre-
designed IP components. The new IP-XACT standard simpli�es exchange of IP and is
supported by the EDA industry with automated packaging tools. However, IP for veri�-
cation of the component (i.e. VIP) is commonly sold separately. Metadata and additional
information describing the IP and its veri�cation status are scarce. Also, libraries which
allow to search IP based on their functionality are not available in the industry. A few
promising academic approaches for sophisticated component search exist. Non-functional
requirements and parameters are used to optimize combinations of components selected
from a library. Another approach relies on structural information from a high-level speci-
�cation to search for suitable IP. So far behavioral or functional descriptions from require-
ments are not considered to search for IP in the library.

The main objective of this dissertation is to develop a new methodology for veri�cation
of di�erent power requirements. Additionally, e�ciency for IP search is improved and
veri�cation information is included within the IP. The individual objectives are as follows:

• Extending the SIMBA use case format to specify battery lifetime requirements, power
and energy constraints and power state requirements.

• Automatically generating an environment to verify the speci�ed power requirements.

• Veri�cation of power requirements has to be performed at early stages of the design.

• Extending the IP-XACT format to accommodate Veri�cation IP and additional in-
formation.

• Development of a functionality-based search for components in an IP library.

Chapter 3

Novel Methodology for

Simulation-Based Veri�cation of

Power Requirements

Overview

To solve the previously explained issues in SoC design a novel methodology is proposed.
The SIMBA use cases in the XML format are extended with power requirements. Power
aware design at system level is described in UPF and translated into an executable supply
network in SystemC. The automatically generated SystemC veri�cation environment is
extended to verify power requirements. Design and Simulation is facilitated in the extended
SyAD framework. Energy estimation is performed during simulation with the RHEiMS
tool. The system design and simulation environment are translated into the IP-XACT
format and stored in the IP library.

Figure 3.1 depicts an overview of the individual stages of the methodology. These stages
are discussed in greater detail within the publications in Chapter 6. The publications in
Section 6.1�6.4 elaborate the entire methodology for each power requirement. Therefore,
the entire �ow is applied to the individual power requirements and evaluated separately.
Section 6.5, comprehensively explains the simulation-based veri�cation methodology for
all power requirements.

The next work in Section 6.6 analyzes important features for Intellectual Property
besides the core. Furthermore, it elaborates details on the design of the IP library and
explains the concept of the search mechanism. Section 6.7 discusses the extension of the
SPIRIT IP-XACT format and the IP library. A summary of the entire IP library and its
features is given in �nal publication in Section 6.8.

Speci�cation of Power Requirements

Power requirements, speci�ed in addition to the functional requirements, comprise battery
lifetime requirements, power constraints and power state requirements. Initially, the bat-
tery lifetime requirements are speci�ed for a group of several use cases in the semi-formal
format. From these high-level requirements, power constraints for functionality of the

23

24

Specification of Power Requirements

Generating
Executable

Supply Network
from UPF

Automated Requirements Analysis

Exporting IP and Verification IP

IP Library

Storage in IP Library for
Functionality-Based Search

Extending the
Verification
Environment

Simulation-Based Verification
of Power Requirements

Publication in

Section 6.1

Publication in

Section 6.5

Publication in

Section 6.2

Section 6.3

Section 6.4

Publication in

Section 6.7

Publication in

Section 6.6

Publication in

Section 6.8

Figure 3.1: Overview of Simulation-Based Veri�cation of Power Requirements

system-under-design are derived. Power and/or energy constraints are applied to entire
use cases or individual parts of a use case. The power state requirements specify the power
state the system is in while performing the functionality described in a use case. Each
power state comprises a description of the supply state for the power domains, isolation
and retention information.

Speci�cation of the functional requirements in the use cases is comprehensively discussed
in Automatic Test Generation From Semi-formal Speci�cations for Functional Veri�ca-
tion of System-on-Chip Designs (Section 6.1). Additionally, Section 6.2, Section 6.3 and
Section 6.4 explain how to specify power requirements.

25

Automated Analysis of the Requirements

The semi-formal nature of the use case format complements the automated analysis of
the requirements. Their sentence structure is evaluated and important information is ex-
tracted. The minimum battery lifetime for a sequence of use cases (i.e. scenarios) and their
duty cycle is determined. The identi�ed power constraints are tied to entire use cases or
use case steps. Moreover, information about supply states for the power domains, isolation
for inactive domains and memory retention is gathered.

Automatic Test Generation From Semi-formal Speci�cations for Functional Veri�cation of
System-on-Chip Designs, in Section 6.1, substantially describes the automated analysis of
the semi-formal use cases. The same approach is applied to the power requirements.

Generating the Executable Supply Network From the UPF

The power aware design is developed in UPF on top of the logic design. System modules
can be grouped to power domains, which can be switched on and o� via power switches.
When a power domain is switched o� its output signals are �oating. Isolation can be
de�ned to avoid unwanted behavior in connected modules. Switching o� a power domain
causes loss of contents in memory. Retention cells, which save the memory's contents, are
required to allow the system to continue its operation from the last known state. The
supply network is connected to the power sources and power states are de�ned.

To avoid design errors, the power aware design represented in UPF is automatically
compared to the speci�cation. UPF can not be simulated by itself. Therefore, it is trans-
lated into an executable supply network in SystemC1. It contains the modules of the logic
design and elements from the UPF design as SystemC modules. Monitors inside the sup-
ply network keep track of voltage supply and power states. This data is relayed to the
veri�cation environment.

In Simulation-based Veri�cation of Power Aware System-on-Chip Designs Using IEEE
1801 the implementation of the power aware design in UPF and the automatic generation
of the executable supply network are outlined. Refer to Section 6.2 for details.

Extending the Veri�cation Environment

Since battery lifetime, power/energy constraints and power state requirements are closely
tied to the SoC's functionality, the functional veri�cation environment is extended. The
veri�cation environment keeps track of simulation time and to which use case and steps the
executed test cases belong. Moreover, it gathers results from energy estimation and the
monitors inside the executable supply network. As soon as these results become available
they can be utilized for analysis of power states and power dissipation for each use case.

For the battery lifetime requirements, a separate veri�cation environment is generated
for each scenario in the application. A scenario comprises sequences of use cases and steps.
For each sequence test cases are generated.

1SystemC is an open-source HDL based on the C++ programming language. It provides several levels

of design-abstraction, a fast simulator and is approved as IEEE Standard 1666
TM

-2005 [58].

26

SystemC Design

Schedule:
WAKEUP

Testcase 1 – 4
SAMPLE

Testcase 1 – 2

SLEEP
Testcase 1

Verification Environment

Use Case Profiles

COLLEC
Power profSAMPE

Power ProfileWAKEUP
Power Profile

Verification Results

Stimulus

Response

Energy Estimation
Results

Sim.Time; Testcase; Result
0.0 s; Start WAKEUP; PASS
2.5 s; End WAKEUP; PASS
2.5 s; Start SAMPLE; PASS

...

RHEiMS

Sim.Time; Energy
0.0 s; 0.049 uJ
2.5 s; 12315,2 uJ
2.5 s; 18,38 uJ

...

P
o

w
e

r

Time

Simulation & Power Estimation

Figure 3.2: Simulation and Power Estimation

Section 6.3 and Section 6.4 extensively discuss the extensions of the veri�cation environ-
ment. Veri�cation Methodology for Battery Lifetime Requirements of Higher Class UHF
RFID refers to the veri�cation environment for veri�cation of battery lifetime requirements
(see Section 6.3). Similarly, Speci�cation and Automated Simulation-based Veri�cation of
Power Requirements for Systems-on-Chips (Section 6.3) presents details on generating the
veri�cation environment for power constraints.

Simulation-Based Veri�cation of Power Requirements

During simulation, the veri�cation environment executes test cases and gathers informa-
tion. The system-under-veri�cation is stimulated by the test cases and responds by execut-
ing the according functionality. This functionality corresponds to power being dissipated
in the system. The RHEiMS framework is used to estimate the energy dissipation at sys-
tem level. In conjunction with timing information from the veri�cation environment, the
average power consumption is determined. The simulation and power estimation stage is
shown in Fig. 3.2.

Simulation of battery lifetime comprises two steps. First, the veri�cation environment
needs to be simulated for all scenarios of the application. After power pro�les for each
scenario are available, they are arranged to a demand pattern according to the application.
This power demand pattern is integrated into a SystemC module. Second, this SystemC
demand module is connected to a user-de�ned battery model. In another simulation the
power demand pattern is continuously applied to a battery model. At the same time,
the veri�cation environment monitors the battery model. When it runs out of charge, the
veri�cation environment aborts the simulation and the total battery lifetime is determined.

27

Add Profile to Application's Demand Pattern

Create Energy Profile

Scenario 1 Scenario 2

Scenario

Duty Cycle Power Profile

Scenario 3

IDLE SLEEP

Power Profile Power Profile

Scenario 3

Scenario

SystemC

Demand

Model

Generate Lifetime Verification Environment
Lifetime Testbench

Insert
Battery
Model

Lifetime
Requirement

Pattern

Add

Figure 3.3: Battery Lifetime Veri�cation Environment

After simulation, the veri�cation environment reports the results for power estimation,
battery lifetime and the executable supply network. The results are visualized next to
the functional requirements. Details about power dissipation, violations of the power con-
straints or mistakes in the power states are elaborated. After defects in the design have
been corrected, veri�cation is re-run until functional coverage goals are met.

The publications in Sections 6.2�6.4 explain simulation-based veri�cation for power state
requirements, battery lifetime requirements and power constraints. Moreover, the entire
methodology for veri�cation of power requirements is collectively applied in Automated
Simulation-based Veri�cation of Power Requirements for Systems-on-Chips (Sections 6.5).

Exporting IP and Veri�cation IP

The IP-XACT format, an industry standard and upcoming IEEE standard, has been ex-
tended to add requirements and veri�cation information to the IP. The entire project
containing the SoC design and its resources is exported (Fig. 3.4). Therefore, the SyAD
project is translated into the IP-XACT representation. The extended IP-XACT format
contains the logic design, the power aware design, the use cases, documentation, the veri-
�cation environment and simulation results.

Exporting the IP to the standardized IP-XACT format is elaborated in Publication 7.
Furthermore, it explains the IP-XACT extensions for the additional resources and VIP.

28

Use

Cases

System Model

IP
Library

Time

P
o

w
e

r

Power Profile

Document

Models

Verification IP

Verification

Results, Power

Profiles, etc.

Library Index

IP-XACT

IP-XACT Extension

IP core

Testcase

Launcher
Transactor

Monitor

Verification

Environment

SoC Project

Store in

IP-XACT

Commit

to Library

Figure 3.4: Storing IP in the Extended IP-XACT Format and Committing it to the Library

Storage in IP Library for Functionality-Based Search

After exporting the designed SoC project into the extended IP-XACT format it can be
stored in a library for later re-use . Instead of relying on simple keywords our novel search
mechanism allows to �nd components based on their functionality. The functionality is
represented by the SoC's use cases. When committing the IP to the library, a search in-
dex is automatically generated (see Fig. 3.4). During IP search in the library a �lter for
keywords and constraints is applied initially. Then similarity analysis compares the use
cases of the remaining set of IP to the use cases speci�ed as a search parameter. The best
matches are returned. The SoC designer is now able to choose from functionally suitable
components and is given additional information concerning the IP's veri�cation status.
Therefore, the IP library supports IP selection for SoC designs and reduces complexity.
The tightly integrated requirements along with added veri�cation status and veri�cation
environment inside the IP are crucial for successful future designs.

The library's concept is essentially provided in A Component Selection Methodology for IP
Reuse in the Design of Power-Aware SoCs Based on Requirements Similarity (Section 6.6).

29

IP Library

To store and manage the IP for later re-use a server-based IP library has been developed.
It acts as a repository for all project resources such as requirements, use cases, power
estimation, design and veri�cation information. The integrated IP management tool pro-
vides web-based access to the repository for IP management. When IP is submitted to
the library, it is marked as �to review�. It does not appear in the search result. After the
library manager accesses the IP-under-review and inspects the project and its veri�cation
information it can be approved. Then the IP is �nally committed to the library and ap-
pears in search queries. This helps to avoid incomplete and unveri�ed IP within the library.

The publication, in Section 6.7, An IP-XACT Library extended with Veri�cation Informa-
tion for Functionality-based Component Selection explains the server-based IP library in
greater detail. Finally, Search for Extended IP-XACT Components in a Library for Power
Aware SoC Design based on Requirements Similarity summarizes the approach with the
extended IP, IP library and functionality-based search mechanism (Section 6.8).

Chapter 4

Methodology Evaluation and Case

Studies

To prove the feasibility of the novel methodology it is demonstrated on a case study. A
power aware SoC is designed to be used as a battery-powered higher class RFID tag [59].
To show that our methodology is applicable during early stages of the design we develop
our SoC at system level. At this stage individual modules and components of the design
are available. Timing can be expressed accurately for the components. However, their
functional behavior and communication remain abstract. This chapter elaborates how the
individual stages of the proposed methodology are applied on the example SoC design.

4.1 Requirements Analysis

Before the requirements for the systems can be speci�ed the intended application has to be
de�ned. Higher class RFID tags are commonly utilized for tracking goods, containers and
monitoring environmental parameters. They are equipped with sensors, memories, and
processing capabilities. Usually, an RFID reader communicates with the tags. However,
active tags are even able to communicate with other tags and the RFID reader.

The chosen application for the developed RFID tag is refrigeration monitoring. RFID
tags for refrigeration monitoring are equipped with temperature sensors. They are used
to determine if crates of cooled or frozen food may have been spoiled due to exposure to
higher temperature. To avoid replacing the RFID tag frequently they are designed to be
integrated into a pallet. The plastic pallet with crates of food on it is either stored in
a refrigerated depot or transported in a refrigerated truck or container. Every tag has a
unique identi�er, therefore the pallets are distinguishable. Fig. 4.1 illustrates the concept
of our refrigeration monitoring tag.

4.1.1 Functional Requirements

For communication between reader and tag we choose the ISO/IEC 18000-7 protocol [60].
In addition to commands for communication it supports higher class tags with commands
for entering and leaving low power states. Based on the ISO/IEC 18000-7 protocol we
describe the functional requirements with the help of the SIMBA use case format, instead
of a purely textual description. A brief description of all use cases follows below.

30

4.1. Requirements Analysis 31

RFID reader

Food

Controller

Battery

Sensor M
e
m
o
r
y

© http://www.newgmctrucks.com© http://www.packaging.net.au

Controller

M
e
m
o
r
y

Transceiver

BatterySensor

Figure 4.1: Higher Class RFID Tag for Refrigeration Monitoring

Standby - The tag is in a low power mode. Most of its components are inactive.

Wakeup - After a timer triggers an interrupt, the tag awakes from its standby state.
Then it determines whether a wakeup command has been sent by the reader. If such
a command has been detected it enters idle mode. Otherwise it returns to standby
mode.

Idle - During idle all of the tag's components are active. It awaits further commands
from the reader.

Collection - This mode is used to determine the tag's unique identi�er. The tag reads
the identi�er stored in its ROM and transmits it to the reader.

Read - If the tag receives a read command it fetches the highest temperature sample
and the average temperature from its memory. Thereafter, it transmits the read
response containing these values.

Write - With the write command the user can write data into the tags memory. It is
also used to program the tag's sampling interval and to erase the memory contents.
The tag con�rms that the write command was successfully executed.

Sleep - The sleep command causes the tag to shut down and enter the standby mode.

Sampling - When the second timer reaches the time set by the user, another interrupt
is generated. If the tag is in a standby state parts of the system wake up to take a
sample. If the tag is already active it �nishes its current task, then takes a sample.
The sample is used to calculate the moving average and to determine the highest
temperature since the last read operation. Both, the highest temperature and the
average are stored in memory.

Detect State - After the sample has been stored, the tag determines whether its
previous state was standby or active. Then it returns to that state.

4.1. Requirements Analysis 32

4.1.2 Power Requirements

After specifying the functional requirements as use cases the power requirements are elab-
orated. IBM DOORS R©, a common tool for requirements analysis [1], is employed to
express the requirements. The use cases in IBM DOORS R© can be converted to XML. IBM
DOORS R© is illustrated in Fig. 4.2.

Figure 4.2: SIMBA use cases in IBM DOORS R©

The �rst power requirement is the tag's battery lifetime. The tag is assumed to be
sealed to protect its electronics from moisture and damage. Therefore, the battery cannot
be replaced easily. Consequently, after the battery runs out of charge the entire tag has to
be replaced. If the tag needs to be replaced all too frequently, customers will be dissatis�ed.

First, a potential application scenario for the RFID tag is developed. Since the food is
most likely to be frozen or kept at very low temperature short exposure to room or ambient
temperature are negligible (e.g during loading and unloading). Hence, we assume the tag
takes a sample every minute. Every two hours a reader requests the tag's identi�er, the
average and highest temperature sample. Then the tag is sent back to standby mode. The
application is illustrated in Fig. 4.3.

Figure 4.3: Application Overview

4.1. Requirements Analysis 33

As typical battery lifetime for the refrigeration monitoring we specify a time period of 5
years. Next the application and the corresponding battery lifetime are speci�ed in the use
case document. The application and lifetime requirement are added to the non-functional
requirements section below the functional use cases. We summarize sequences of use cases
which occur during the application in scenarios. The three scenarios Query_Temperature,
Sleep_Mode and Take_Sample are speci�ed in the use cases as shown in table 4.1.2.

Global Power Requirements:

Application: Refrigeration_Monitoring
Scenario: Sleep_Mode
Use Case: STANDBY Step: 1@6
Scenario: Query_Temperature
Use Case: WAKEUP Step: 1@4
Use Case: IDLE Step: 1@2
Use Case: COLLECTION Step: 1@12
Use Case: READ Step: 1@12
Use Case: SLEEP Step: 1@5

Scenario: Take_Sample
Use Case: SAMPLING Step: 1@2
Use Case: DETECT_STATE Step: 1a1@1a3

Duty Cycle:

1. Take_Sample is executed 120 times.
2. Sleep_mode is repeated for 2 hours.
3. Query_Temperature is executed once.
Lifetime:

5 years

Table 4.1: Speci�cation of the Refrigeration Monitoring Application

Now a battery has to be found which is able to withstand the harsh conditions of the
application's environment. Tadiran1 manufactures special Lithium batteries which are able
to withstand extreme temperatures. After examination of various available batteries the
TL-5920 [61] battery was chosen. It features a nominal capacity of 8.5 Ah, a rated voltage
of 3.6 V and a temperature range from -55◦C to +85◦C. However, for the refrigeration
monitoring we assume a temperature range of -30◦C to 0◦C.

Before we can calculate the battery lifetime the power budget is determined. From
timing of each RFID command speci�ed in the ISO/IEC 18000-7 protocol [60] and the ap-
plication the duty cycles are derived. For sampling we took typical values for the conversion
time from a datasheet of a digital temperature sensor [62]. Similarly, for memory access
time we determined the value from an EEPROM's datasheet [63]. With the timing and the
assumed power constraints we are able calculate the battery lifetime. This serves as a quick
estimation before we even start the simulation. Table 4.1.2 shows the power constraints
for the RFID command. Since the Collection and Read command require transmission of
a response we assume a higher power dissipation and, thus, a higher constraint.

Since low temperature a�ects the battery's capacity we consult the TL-5920 battery's

1http://www.tadiranbat.com/

4.1. Requirements Analysis 34

Time Command Power Constraint

2.5 s Wakeup 50 mW
14 ms Read 60 mW
13.36 ms Collection 60 mW
50 ms Idle 50 mW
5.88 ms Sleep 50 mW
2 hr Standby 100 µW
3.72 s Sampling 10 mW

Table 4.2: Determining the Power Constraints

datasheet [61]. Assuming the highest discharge current to be 20 mA, the battery's capacity
is 2.4 Ah for -30◦C and 4.5 Ah for 0◦C. Using Peukert's formula T = C/In we quickly
estimate the battery's lifetime to see whether our assumptions are feasible and the lifetime
requirement of 5 years can be reached. In the equation, T speci�es time, C denotes the
battery's capacity and I is the discharge current. The parameter n is the so-called Peukert's
exponent which is di�erent for each battery time. Since we only need a quick estimate of
the battery lifetime we assume n=1 for our Lithium battery. Calculating the discharge
current is done straight-forward from the power constraints and timing values.

Temperature Capacity Calculated Lifetime

-30◦C 2.4 Ah 5 years 212 days
0◦C 4.5 Ah 10 years 169 days

Table 4.3: Quick Estimation of the Battery Lifetime

The calculation result from table 4.1.2 shows that the assumed lifetime of 5 years is fea-
sible for the refrigeration monitoring application. The power constraints can now be added
to the use cases to ensure the speci�ed battery lifetime is achieved. The corresponding
section of the use case document is given in table 4.1.2.

Global Power Requirements:

...
Power Constraints:

STANDBY shall not consume more than 50 uW.
READ shall not use more than 60 mW.
IDLE shall not need more than 50 mW.
SLEEP shall not use more than 50 mW.
COLLECTION shall not need more than 60 mW.
WAKEUP shall not dissipate more than 50 mW.

Table 4.4: Speci�cation of the Power Constraints

After speci�cation of the power constraints we can determine the system's power states.
There are three main modes of operation. First, the idle mode during which all modules
of the system are active. The RFID tag performs its operation, receives commands and
transmits responses to the commands. The second mode, is the standby mode. This is

4.1. Requirements Analysis 35

the low-power state where all modules of the tag are inactive. However, at least a timer
and some power management module have to remain active. They are needed to awake
the system from the standby mode and to transform it into active mode. The third mode,
is the sampling mode in which the tag takes a temperature sample. Only some modules of
the tag have to be active to actually take the sample. Since the RFID tag does not need to
receive or transmit commands during that time the transceiver module can be deactivated.

We de�ne the state where all modules of the tag are active as �ALL_ON� mode.
The standby mode, during which most of the modules are deactivated, is �ALL_OFF�.
The state during sampling is called the �SAMPLE_ON� mode. Table 4.1.2 contains the
speci�cation of the power states linked to the system's use cases. Note the transition from
ALL_ON to ALL_OFF during the SLEEP use case.

Global Power Requirements:

...
PowerStateRequirements:

During STANDBY the Tag is in powerstate ALL_OFF.
At WAKEUP the Tag goes to ALL_ON.
For READ the Tag is in ALL_ON.
At COLLECTION the Tag is ALL_ON.
While IDLE the Tag is in state ALL_ON.
During SLEEP the Tag goes to ALL_OFF.
For SAMPLING the Tag is in SAMPLE_ON.

Table 4.5: Speci�cation of the Power State Requirements

For the power aware design it is necessary to specify details about the individual power
states. Therefore, individual modules of the system have to be identi�ed.

• Transceiver: It receives and decodes commands sent by the RFID reader. If a re-
sponse is necessary it encodes the data from controller and transmits it.

• Controller: The controller is the heart-piece of the system. It interprets the com-
mands from the transceiver and reacts to interrupts from the timers. It also holds
the tag's identi�er in its ROM.

• Timers: The timers send interrupts to awake the tag from standby mode. They also
initiate temperature sampling.

• Memory: A memory is required to store the temperature samples.

• Sensor: The temperature sensor is necessary to take and digitize the samples.

• Power Management Unit: This module is responsible for activating and deactivating
the power supply of the other modules. It triggers the standby and active states.

Now the speci�cation of the power aware design can be �nished. Each power state is
a set of power domain states, isolation and retention states. The three previously de�ned
power states necessitate three power domains. Each power domain is de�ned by its elements
and possible supply states (e.g. ON/OFF). The �rst power domain, PD1, contains the

4.1. Requirements Analysis 36

Transceiver module. Therefore, it also requires a higher voltage. The second domain,
PD2, encompasses the Controller module and the Sensor module. These modules require
a lower supply voltage. The third power domain contains the Memory module and has
the same supply voltage as PD2. Table 4.1.2 shows an excerpt from the speci�cation of a
power state and its domains. The �rst line of the SAMPLE_ON state describes isolation
for the power domain PD1. The remaining speci�cations de�ne the supply states of the
domains during the power state.

PowerStateRequirements:

...
PowerState: SAMPLE_ON
All inputs of PD1 are set to low.
The powerdomain PD1 is OFF.
PD2 is at LowVoltage.
Domain PD3 is at LowVoltage.
...
PowerDomain: PD1
DomainElement: Transceiver
DomainStates:

DomainState: HighVoltage
DomainVoltage: 3.0 V
DomainState: OFF

Table 4.6: Speci�cation of Power Domains for the Power States

Now we begin to create the model of higher class RFID tag in SystemC. The use case
document is carefully studied and the individual components are created at system level.
The system's architecture and its power aware design are illustrated in Fig. 4.4.

Figure 4.4: Power Aware Design of the Higher Class RFID Tag

4.2. Veri�cation of the Power Requirements 37

4.2 Veri�cation of the Power Requirements

After the system level model of the higher class RFID tag is �nished, the novel veri�ca-
tion methodology for the power requirements is applied. Initially, the requirements are
automatically analyzed and interpreted. For each scenario the sequence of use cases is de-
termined and an XML �le is created. From this �le a veri�cation environment is created.
For each scenario the power dissipation needs to be estimated with the RHEiMS frame-
work. Therefore, the system model is annotated with cases from the RHEiMS database
which correspond to its activity. Now the system is repeatedly simulated for each scenario
to create a power pro�le. Finally, all power pro�les are automatically joined according
to the application description. A demand model is generated and can be connected to a
battery model. A simple battery model has been previously developed and is con�gured
according to the Tadiran TL-5920 battery's datasheet. After simulating the demand model
and the battery model for -30◦C and 0◦C we verify the battery lifetime requirement. In
table 4.2 the veri�cation results are summarized.

Temperature Capacity Simulated Lifetime Veri�cation Result

-30◦C 2.4 Ah 5 years 306 days PASS

0◦C 4.5 Ah 10 years 355 days PASS

Table 4.7: Veri�cation Results Battery Lifetime

The veri�cation results for the battery lifetime correspond to the previously calculated
results (compare table 4.1.2). Fortunately, the achieved battery lifetime is even longer than
expected. The di�erence comes from the assumed power constraints which were utilized
for the initial calculation of the battery's lifetime.

To verify the power constraints the veri�cation environment is created directly from
the functional use cases. Subsequently, the veri�cation environment is simulated with the
model of the RFID tag and the power for each use case is estimated. The results are veri�ed
against the speci�ed power constraints. All use cases satisfy their constraints (table 4.2).

Use case Power Constraint Power Estimated Veri�cation Result

IDLE 50 mW 42.99 mW PASS

COLLECTION 60 mW 46.32 mW PASS

SLEEP 50 mW 49.3 mW PASS

WAKEUP 50 mW 49.27 mW PASS

STANDBY 100 µW 47.52 µW PASS

READ 60 mW 51.91 mW PASS

SAMPLING 10 mW 6.93 mW PASS

Table 4.8: Veri�cation Results Power Constraints

Finally, the power aware design is veri�ed. The RHEiMS power estimation framework
estimates the power consumption based on activity in the system and does not take the
power aware design information into account. Even though power estimation has con�rmed
that the power constraints are met, there may be still some mistakes in the power aware
design. The power aware design in UPF is translated into the executable supply network

4.2. Veri�cation of the Power Requirements 38

in SystemC. The static checker evaluates the UPF statements and warns about mistakes in
the power aware design before simulation. If no mistakes are reported, it can be simulated
together with the system model. The monitors inside the supply network report events.
After simulation the reported events are automatically analyzed and compared to the power
state requirements. In the veri�cation plan the results are visualized and can be inspected
by the designer (see Fig. 4.5).

Figure 4.5: Veri�cation Results for Power State Requirements in the Veri�cation Plan

Initially, many mistakes in the power aware design were reported. Table 4.2 summarizes
the simulation results which identify the design errors.

The most obvious mistake was the missing level shifter between the power domains PD1
and PD2. A level shifter translates the voltage levels between input and output signals of
domains with di�erent supply voltage. The level shifter was not de�ned in UPF.

Another error was discovered during the wakeup sequence of the tag model. Although
the power domains were properly switched on, the retention restore signal was not trans-
mitted by the Power Management Unit. Since system model and power aware design are
independent of each other, this problem does not have any consequence during simulation.
However, in reality the system would be unable to restore its previous state. This could
lead to non-deterministic behavior, loss of data and malfunctions in communication.

A serious mistake was found in the SLEEP and STANDBY use case. The Controller
module was properly set into its logical standby mode and ceased all activity. However,
the Power Management Unit did not correctly activate the power switches. Therefore, the
power domains remained on and the transition to power state ALL_OFF did not take
place. Also, the retention save signal was not correctly triggered.

During the SAMPLING use cases a bug concerning the isolation of power domain

4.3. Design Space Exploration for the RFID Controller 39

Use case Speci�ed State Simulated State
Veri�cation

Results

IDLE stationary in ALL_ON stationary in ALL_ON FAIL

- PD1 and PD2 have di�erent voltages but no level shifter FAIL
COLLECTION stationary in ALL_ON stationary in ALL_ON FAIL

- PD1 and PD2 have di�erent voltages but no level shifter FAIL
SLEEP transition to ALL_OFF stationary in ALL_ON FAIL

- PD1 is ON, supply is HighVoltage FAIL
- PD2 is ON, supply is LowVoltage FAIL
- PD3 is ON, supply is LowVoltage FAIL
- Retention for PD3 is NOT at SAVE FAIL

WAKEUP transition to ALL_ON stationary in ALL_ON FAIL

- Retention for PD3 is NOT at RESTORE FAIL
STANDBY stationary in ALL_OFF stationary in ALL_ON FAIL

- PD1 is ON, supply is HighVoltage FAIL
- PD2 is ON, supply is LowVoltage FAIL
- PD3 is ON, supply is LowVoltage FAIL

READ stationary in ALL_ON stationary in ALL_ON FAIL

- PD1 and PD2 have di�erent voltages but no level shifter FAIL
SAMPLING stationary in SAMPLE_ON stationary in SAMPLE_ON FAIL

- Outputs of PD1 are not isolated to ZERO FAIL
- PD1 and PD2 have di�erent voltages but no level shifter FAIL

Table 4.9: Veri�cation Results Power Constraints

PD1 was discovered. Without proper isolation the signals of a powered-down domain
are �oating. This could cause unwanted activity in modules which are sensitive to these
signals. In our case, in UPF isolation was wrongly speci�ed �ONE� instead of �ZERO�.
After the errors in the power aware design and Power Management Unit were corrected
veri�cation is re-run and succeeds.

4.3 Design Space Exploration for the RFID Controller

Since the next step in the design process would be to re�ne the design to a lower level of
design abstraction, a speci�c implementation for the Controller has to be chosen. There-
fore, a design space exploration is performed and the IP library is searched for a suitable
component. A search for a functionally compatible implementation is performed with the
use cases of the current RFID tag implementation. The IP library suggests suitable IP for
an RFID tag which are illustrated in Fig. 4.6.

Amongst the top ranked IP are several useful components for an RFID tag. On the
�rst and on the third position are RFID controllers. Closer inspection reveals that the IP
�RFID Controller� on rank three is a very high level implementation for an RFID controller.
Since a similar model of such a controller is already used in our project it is discarded.
The �RFID_Controller_8051� on the top-most rank is an 8051 microcontroller with an
implemented ISO/IEC 18000-7 state machine. Although also at system level it is a more

4.3. Design Space Exploration for the RFID Controller 40

Figure 4.6: Search Results for Functionally Suitable IP

speci�c model than the current controller in our project. However, its veri�cation status
indicates that it has not been veri�ed yet. Since, the power requirements need to be re-
veri�ed for the project with the �RFID_Controller_8051� component, we import the IP
into our project despite its veri�cation status.

Repeating the veri�cation process reveals that the newly imported 8051 RFID controller
dissipates less power than the originally developed controller. The veri�cation results of
the two di�erent implementations can be compared. Veri�cation of the power constraints
clearly shows that the 8051 implementation of the RFID controller dissipates less power
than the previous implementation (Table 4.3).

Use case Power Power Estimated Power Estimated

Constraint HL_RFID_Controller RFID_Controller_8051

IDLE 50 mW 42.99 mW 868 µW
COLLECTION 60 mW 46.32 mW 4.21 mW

SLEEP 50 mW 49.3 mW 4.49 mW
WAKEUP 50 mW 49.27 mW 869 µW
STANDBY 100 µW 47.52 µW 24.36 µW
READ 60 mW 51.91 mW 5.64 mW

SAMPLING 10 mW 6.93 mW 4.18 mW

Table 4.10: Comparing Power Constraints Results for Two Di�erent RFID Controllers

As a result from the lower power dissipation we also expect a longer battery lifetime.
Simulation with the battery model con�rms our expectations. Table 4.3 summarizes the
battery lifetime results. Although the Taridan TL Lithium-Ion batteries are stated to last
up to 20 years (according to [64]), a lifetime of 49 years is very unlikely. The simple battery
model does not account for self discharge and deterioration of the battery's materials. The
result from battery lifetime estimation shows that a battery with less capacity would also
be su�cient. The Tadiran TL-5903 is a suitable candidate from the same series [65]. It
is cheaper and also smaller than the TL-5920 but is still able to withstand the extreme
temperatures of refrigeration monitoring.

4.4. Summary 41

Use case Battery Lifetime Simulated Lifetime Simulated Lifetime

Requirement HL_RFID_Controller RFID_Controller_8051

Battery TL-5920
5 years 5 years 306 days 26 years 189 days

-30◦C, 2.4 Ah
Battery TL-5920

5 years 10 years 355 days 49 years 264 days
0◦C, 4.5 Ah

Battery TL-5903
5 years 1 year 144 days 6 years 229 days

-30◦C, 0.6 Ah

Table 4.11: Comparing Battery Lifetime Results for Two Di�erent RFID Controllers

4.4 Summary

The novel methodology was applied to an SoC implementation of a higher class RFID tag
for refrigeration monitoring. The functional requirements were speci�ed in the SIMBA use
case format in IBM DOORS R©. The refrigeration monitoring application was speci�ed and
a lifetime requirement was expressed. After choosing a battery the power constraints were
imposed on functionality, so the lifetime goal can be met. To ful�ll the power constraints,
power states were speci�ed for the individual use cases. For the power aware design a
UPF �le was created which describes several power domains and the supply network. The
veri�cation environment was automatically generated from the use cases and simulated.
During simulation, veri�cation and power estimation were performed. The veri�cation
results revealed a series of errors related to the power aware design. After they were
corrected, the desired lifetime was ascertained and the power constraints were ful�lled.
Design space exploration was performed by searching functionally suitable components
in the IP library. An 8051 microcontroller with an implemented RFID state machine
was found. Re-verifying the SoC design after replacing the old controller with the 8051
microcontroller revealed a far lower power dissipation. The lifetime goal could be reached
with a smaller, cheaper battery.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This work presents a new methodology for veri�cation of power requirements through sim-
ulation. The existing SIMBA use case format for functional requirements is extended with
power requirements. These power requirements are power/energy constraints, battery life-
time and power state requirements. After specifying the functional use cases and describing
a potential application, the battery lifetime requirements are expressed. Then power con-
straints are imposed on the functional use cases to limit power dissipation. Power state
requirements elaborate the power state the system is in during a use case.

According to the speci�cations, the power aware design is implemented in the Uni�ed
Power Format (IEEE Std. 1801) independent of the system design. In our IP library, SoC
designers can search components for reuse. Suitable components can be found through
automatic similarity analysis which identi�es components compatible to the system's func-
tionality. After the system and its power aware design are created veri�cation begins.

Initially, the use case document is analyzed and a veri�cation environment is generated
for functional veri�cation (see [1]). This veri�cation environment was extended with power
requirements. To verify the battery lifetime the application's power demand is estimated
with the RHEiMS framework (see [31]) while simulating the system with the veri�cation
environment. With the estimated power pro�le and a battery model the lifetime of the
system's battery is veri�ed for the given application. Similarly, the power and energy
constraints are veri�ed by estimating the power/energy dissipation for each use case. To
verify the power state requirements an executable supply network is automatically gener-
ated from the UPF design. After it is simulated together with the system, reports from
the network's elements are compared to the power state requirements.

The veri�cation results for the power requirements are visualized in the veri�cation
plan for inspection by the designer. After all requirements and constraints are ful�lled
the system can be submitted to the IP library. The IP-XACT format was extended to
accommodate the system's design, power aware design, use case, documentation, veri�ca-
tion environment and veri�cation results. Since IP-XACT is widely supported, the newly
created IP can be exchanged easily. The veri�cation results increase con�dence during
IP selection. Moreover, the included veri�cation environment even allows to recreate the
veri�cation results.

42

5.2. Future Work 43

The bene�ts of this work are as follows. A functional use case format is extended for
speci�cation of di�erent power requirements in a single document. Through automated
analysis of this document the veri�cation environment is extended for veri�cation of the
power requirements. Therefore, the veri�cation e�ort is reduced. Power aware design can
be created and veri�ed already at system level utilizing the IEEE Std. 1801 UPF. Addition-
ally, the introduced methodology supports veri�cation of the speci�ed power requirements
in one complete simulation-based �ow within the SyAD framework.

An IP library was developed to store components comprising speci�cation, design,
documentation and veri�cation information. Therefore, the IP-XACT standard was ex-
tended. An e�cient search mechanism was developed to retrieve components based on
their functional compatibility to the current system-under-design. By linking the veri�ca-
tion information and environment to the IP the veri�cation e�ort is reduced and the IP
can be reused with con�dence.

The developed methodology was evaluated on a case study of a higher class RFID tag which
was implemented as a System-on-Chip. The battery lifetime requirement was speci�ed and
veri�ed for an example application where the tag was used for refrigeration monitoring. To
achieve the desired battery lifetime, power constraints were speci�ed. Through simulation
and power estimation using the RHEiMS framework the power constraints were successfully
veri�ed. According to the speci�ed power state requirements a power aware design was
created in UPF. Veri�cation revealed deviations between design and speci�cation and errors
in the power management. After the errors were corrected, a di�erent implementation for
the RFID controller was searched in the library. Design space exploration with functionally
suitable components from the IP library resulted in a new design. The selected 8051
microcontroller turned out to be a better suited component. Veri�cation was re-run for the
system and succeeded. With the 8051 microcontroller the higher class RFID tag dissipated
far less power. Consequently, it achieved the required battery lifetime for the refrigeration
monitoring application with a smaller, cheaper battery. The project was submitted to the
IP library for future reuse.

5.2 Future Work

The next step in the evolution of SoCs are Networks-on-Chips (NoCs) or Multiprocessor
Systems-on-Chips (MPSoCs). NoCs are usually a layered stack of SoCs which are intercon-
nected by a bus. MPSoCs are SoCs with additional processing units for parallel processing.
It is obvious that design and veri�cation of those systems are even more complex than for
SoCs. New design paradigms have to be developed to manage the rising complexity.

Speci�cations will become more abstract and will already describe the structure and
functionality of the design. Additional constraints and parameters can be imposed on
functionality, components and the entire system. From the speci�cations, IP will be au-
tomatically gathered from di�erent, distributed IP libraries (compare [57]). During simu-
lation di�erent matching components will be swapped ad-hoc when their constraints are
violated. Future IP will have linked con�gurable veri�cation IP which is automatically
inserted during veri�cation.

5.2. Future Work 44

As pointed out by Rahmé et al. energy management of Wireless Sensor Nodes (WSNs)
becomes increasingly important [41]. Even though sensor networks comprise either WSNs
or active RFID tags, design and development of their power aware design is done individu-
ally. The idea is to take the power states of neighboring nodes into account and to develop
strategies for power aware behavior already in the hardware design stage. The approach
of Rahmé et al., which calculates the battery's state-of-charge on-the-�y and adapts the
WSN's behavior based on neighboring nodes (see [41]) could be seen as a �rst step into
that direction. The entire network of nodes will cooperatively develop a power manage-
ment strategy constantly adapting their power-states. Therefore, future work will include
tools and methodologies to design and verify a new generation of power aware SoCs.

Veri�cation of these systems with �interdependent power aware design� requires a new
paradigm of power aware design to handle this bird's eye view of the entire system of wire-
less sensor nodes. Novel languages and formats for speci�cation, system design and veri�-
cation will be necessary. Pervasive functionality has to be integrated into the speci�cation
process even more tightly. Additionally, communication and interaction between several
of these systems-of-systems have to be taken into account already during speci�cation.
However, this would cause complexity to increase even more. Instead of a single, already
complex system, a multitude of interdependent, complex systems has to be speci�ed, de-
signed and veri�ed. Design for such systems would necessitate a new level of abstraction to
compensate the extreme complexity. Instead of the system level which treats one system as
a whole a new system-of-systems level (SSL) will be necessary to design the interdependent
power aware system.

Understandably, designing such a system will heavily rely on the design-reuse paradigm
to take advantage of standardized IP format. Structural and functional information are
combined to search for IP in several remote libraries in parallel. This necessitates new and
fast algorithms for evaluating and combining results from di�erent IP libraries. Feedback
and ranking systems which take opinions and experience from other designers into account
will be required in addition to information on veri�cation status. This improves IP quality
and con�dence in unknown IP. Since structural information is used for search, the IP can
be automatically connected to the remainder of the system. Similarly, included power
aware design is connected to the system's power supply network and power management
scheme. This allows establishing inter-system power awareness.

Future veri�cation would require additional automation and abstraction to handle the
huge complexity. Standardized VIP which is linked to each IP component could be au-
tomatically integrated into the global veri�cation environment for the system. Through
standardized interfaces the component's VIP communicates with the system's veri�cation
environment. Distributed simulation, with each IP being simulated on the IP vendors' dis-
tributed servers, accelerate veri�cation. This means that a low level IP (e.g. gate level) is
either simulated or synthesized on a dedicated FPGA at the IP vendor's facilities. Through
several levels of abstraction the results are communicated through the System-of-Systems
level. Therefore, the designers and veri�cation engineers receive accurate results at fast
simulation speed. However, this would require new veri�cation tools to handle the compu-
tationally intensive (low level) simulation and overhead from distributed communication.
Additionally, the simulation results from several IP components at various locations and
in di�erent HDLs have to be translated, combined and evaluated for veri�cation.

Chapter 6

Publications

This chapter contains publications which explain the approach presented in Chapter 3 in
greater detail.

Publication 1: Automatic Test Generation From Semi-formal Speci�cations for Func-
tional Veri�cation of System-on-Chip Designs, 2nd Annual IEEE International Systems
Conference, Montreal, Canada, 7�10 April 2008

Publication 2: Simulation-based Veri�cation of Power Aware System-on-Chip Designs
Using IEEE 1801, IEEE NORCHIP Conference, Trondheim, Norway, 16 �17 November
2009

Publication 3: Veri�cation Methodology for Battery Lifetime Requirements of Higher
Class UHF RFID Tags, IEEE International Conference on RFID 2009, Orlando, USA,
27�28 April 2009

Publication 4: Speci�cation and Automated Simulation-based Veri�cation of Power Re-
quirements for System-on-Chips, Joint IEEE Circuits and Systems and TAISA Conference
2009, NEWCAS-TAISA '09, Toulouse, France, 28 June � 1 July 2009

Publication 5: Automated Simulation-based Veri�cation of Power Requirements for Systems-
on-Chips, to be published

Publication 6: A Component Selection Methodology for IP Reuse in the Design of Power-
Aware SoCs Based on Requirements Similarity, 3rd Annual IEEE International Systems
Conference, Vancouver, Canada, 23�26 March 2009

Publication 7: An IP-XACT Library extended with Veri�cation Information for Functionality-
based Component Selection, Austrochip 2009, Graz, Austria, 7 October 2009

Publication 8: Search for Extended IP-XACT Components in a for Power Aware SoC
Design based on Requirements Similarity, IEEE Systems Journal 2010, to be published

45

SysCon 2008 – IEEE International Systems Conference

Montreal, Canada, April 7–10, 2008

Automatic Test Generation From Semi-formal Specifications for Functional

Verification of System-on-Chip Designs

Christoph M. Kirchsteiger
1
, Johannes Grinschgl

1
, Christoph Trummer

1
, Christian Steger

1
, Reinhold Weiß

1

and Markus Pistauer
2

1Institute for Technical Informatics
Graz, University of Technology

Inffeldgasse 16/1, 8010 Graz, Austria

E-mail: (c.kirchsteiger, steger, rweiss)@tugraz.at
2CISC Semiconductor Design+Consulting GmbH, Austria

Lakeside B07, 9020 Klagenfurt, Austria

Abstract – In common design flows of System-on-Chip (SoC)
designs functional verification requires 70% of the entire design
effort. Most of the effort for functional verification is spent on

finding and creating adequate testcases to verify that the modeled
design corresponds to its specification. This is done manually, since
automatic testcase generation from the specification is often not
possible due to the informal, non-machine readable structure of the
specification document. Formal specification languages would ease
the parsing process, however, these formats are difficult to use by
system engineers from different domains. A promising trade-off are
semi-formal specification formats, which are both easy-to-parse and

easy-to-use.

The SIMBA1 project focuses on semi-formal use case-based
specification formats, which are used to automatically generate a
transaction-based SystemC verification platform. Finally, these
SystemC testcases are simulated together with the System-under-
Verification (SuV) to verify that it fulfills the given specification.

This results in a novel design methodology regarding requirements

elicitation and automatic testcase generation. A demonstration is
given by applying this methodology to a SystemC RFID controller
model. It is shown that the demonstrated approach automates and
improves the functional verification of SoCs.

Keywords – Automatic Testcase Generation, Specification-based

Verification, Dynamic Functional SoC Verification, Semi-formal
Specification.

I. INTRODUCTION

Due to the increasing complexity of System-on-Chip

(SoC) designs, a specification-based functional verification of

these systems is a time and resource consuming process. The

objective in functional verification [1] is to verify that the

modeled system behaves according to its informal

specification. Clearly, deriving testcases manually by reading
the large SoC specification document is very time and

resource intensive and error-prone. On the other hand, it is

infeasible to perform this task automatically due to the

informal, non-machine readable structure of the specification

document.

1 This project has been funded by the Austrian Federal Ministry for

Transport, Innovation, and Technology under the FFG contract FFG 812424

A number of research projects, most of them from the

software domain, try to resolve these issues. Depending on

the chosen specification format they can be divided into:

• Non-formal specifications, which use natural

language for requirements specification. Stakeholders,

who specify requirements, can use them easily but it

is difficult to parse them automatically.

• Formal specifications based on formal description

formats. Languages like the Unified Modeling

Language (UML), the Specification Description

Language (SDL) or temporal-logic properties are used

to define an entirely formal specification document.

These languages can be parsed easily, however they

are in large parts unknown and difficult to learn.

• Semi-formal specifications are a desirable trade-off

between the techniques above. They are accepted by
stakeholders and the almost automatic processing

does not impose too much interactive effort onto the

designer.

Specified non-functional requirements
(timing constraints, power constraints,…)
for all specified use cases

GlobNonfunctional
Requirements

Specified non-functional requirements
(timing constraints, power constraints,…)
for each interaction step or flow of steps

in the current use case

LocNonfunctional
Requirements

Message types, time constants, …Constants

DescriptionField Name

Valid conditions after the use case is

executedPostcondition

Alternative step-based interaction with
the environmentAlternative Flow

Step-based interaction of the System-
under-Test with its environment

Main Success
Scenario

Valid conditions before the use case is

executed
Precondition

External components interacting with the
SuV (=environment)Primary actor

Name of the System-under-Verification
(SuV) or Design-under-verification (DUV)Scope

Optional description of the use caseBrief description

Name of the use caseName

Specified non-functional requirements
(timing constraints, power constraints,…)
for all specified use cases

GlobNonfunctional
Requirements

Specified non-functional requirements
(timing constraints, power constraints,…)
for each interaction step or flow of steps

in the current use case

LocNonfunctional
Requirements

Message types, time constants, …Constants

DescriptionField Name

Valid conditions after the use case is

executedPostcondition

Alternative step-based interaction with
the environmentAlternative Flow

Step-based interaction of the System-
under-Test with its environment

Main Success
Scenario

Valid conditions before the use case is

executed
Precondition

External components interacting with the
SuV (=environment)Primary actor

Name of the System-under-Verification
(SuV) or Design-under-verification (DUV)Scope

Optional description of the use caseBrief description

Name of the use caseName

Fig. 1. Enhanced Textual Use Case (Semi-Formal Specification).

978-1-4244-2150-3/08/$25.00 ©2008 IEEE 421

Publication 1 - SysCon 2008

The approach presented here focuses on semi-formal

description formats. A very promising and well-known semi-

formal specification style are textual use cases [2]. They are

much more detailed than the graphical UML use cases. They

are both widely accepted by stakeholders and suitable for

automatic post-processing. They define the interaction and

behavior of a system under certain conditions (pre-/post-

conditions, trigger) as a sequence of interaction steps with the

environment (represented as so-called “actors”). Their
structure is formal, table-based and composed of several

fields for the name, the pre-/postconditions and the

interaction scenarios. However, within each field the

description is entirely informal. Thus, textual use cases are

similar to natural language but used in a structured way,

which makes them easy-to-learn for stakeholders from

various domains.

A common textual use case description contains the

following fields:

• Actor (communicates with the specified system)

• Pre-/postcondition and trigger

• Main success scenario (i.e. main interaction sequence)

• Extensions (i.e. alternative flows to the main scenario)

We have extended the common textual use case

description with additional fields to cover non-functional

requirements, like power and performance requirements and

constants, like message types and time constants. Our textual

use case format is shown in Fig. 1.

Fig. 2. Textual Use Case (Semi-Formal Specification).

In this paper, we propose a novel design methodology (see

Fig. 2) for the specification-based functional verification of

SoCs by simulation. We use simulation for verification

without being concerned with the state-space explosion

problem as in static verification techniques. The main idea

behind our approach is based on automatic testcase

generation from the specification document. Fig. 2 shows that

our approach encompasses both the correction of ambiguities

and misinterpretations by performing a lexical, syntax and

semantic analysis of the specification document. In addition it

enables functional verification of the system model by the

generated SystemC testcases (see bottom block in fig. 2). The
testcases are based upon the SystemC Verification Standard

(SCV) [3] and can be used to verify both transaction-level

models and model implementations at RTL [4].

The remainder of this paper is organized as follows: We

start with an overview of related work in section 2. In section

3 we present our methodology and describe its

implementation in section 4. Section 5 provides a case study

of a SoC-based RFID controller to present the application of

our methodology. Results are demonstrated in section 6.

Finally we give a conclusion and list further work in section

7.

II. RELATED WORK

Testcase generation from the specification has been widely

studied in the research community. The focus of our approach

is to support a specification format, which is both easy-to-use

by various stakeholders and suitable for automatic

processing. In contrast, some research approaches like [5] and

[6] that favor UML or SDL as specification languages lack a

highly accepted and easy-to-use language for specification of

SoC components. This constitutes a large burden for

stakeholders from various domains, who are not familiar with

these specification languages.
In [7] natural language requirements are used as

specification format. However, due to the limitations of

natural language regarding automatic processing, additional

SDL descriptions have to be implemented for each

requirement to enable testcase generation.

Other approaches, like [8], [9], Torx from Tretmans [10],

and the B-language [11], are based on temporal-logic

properties to automate specification-based testing. Although

this specification formats are unambiguous, precise and

consistent, it is very difficult for stakeholders from various

domains to get familiar with these formats. In contrast, our

approach is based on semi-formal textual use case-based
descriptions as defined in [2]. They are both widely accepted

and easy-to-use by stakeholders and suitable for automatic

post-processing.

There are some significant approaches in literature dealing

with textual use case-based descriptions. The closest to our

work are [12] and [13]. In [12] a software use case

specification is parsed and converted to another specification

format, known as UML activity diagrams. This is done by

lexical, linguistic and semantic analysis. These steps are quite

similar to our approach; however, the ability to automatically

generate testcases from the UML diagrams is completely
missing. In [13] linguistic techniques are applied to extract

422

useful information from the use cases. Nevertheless, no

testcases are automatically created either. Other relevant

approaches [14], [15] use natural language patterns to

eliminate the inherent natural language drawbacks, like

ambiguity, incompleteness and inaccuracy. These patterns are

applied during the elicitation phase. The stakeholder gets a

number of recommendations and guidelines of how to apply

them. Although, these approaches result in a more

unambiguous and complete specification, no effort was done
to transform these formats to formats suitable for automatic

testcase generation.

Approaches dealing with an unstructured natural language

specification as [16], [17] require a lot of effort and

interaction in the field of requirements engineering. In [17]

explicit properties of each requirement have to be defined

manually, together with a model to check these properties. In

[16] each requirement has to be analyzed manually to

indicate what simulation data and waveform it corresponds to

and how to test it. Clearly, these approaches require a lot of

interaction effort when the number of requirements is large.
In contrast, our approach requires minimum time for

requirements specification and automates most of the steps

for testcase generation. This greatly reduces time and effort to

fulfill the short time-to-market required for SoC designs.

III. NOVEL APPROACH

We propose a novel specification-based functional

verification by simulation methodology that aims for:

1. Resolve ambiguities and incorrect grammar in the

specification document (=Specification checking).

2. Focus on automated functional testbench generation

from a textual use case-based specification (=Minimal

user interaction).

3. Verify that the developed system model corresponds

to its specification (=Functional Verification).

As shown in Fig. 2 our approach starts with a semi-formal

use case-based specification of the System-under-Verification

(SuV). Then, the phrase analyzer performs a lexical, syntax

and semantic analysis to extract information from the use
case-based specification required by the subsequent testcase

generator. The phrase analyzer requires some user interaction

and is tightly linked with the database. The database contains

a lexicon of known terms and their types and a set of

supported grammar structures. The extracted information is

used to generate a syntax-corrected and unambiguous

specification document. It is used as input for our testcase

generator. During simulation these testcases are applied to the

SuV to check if it corresponds to the specification. Output

messages convey information on the test progress, the test

coverage as well as the test results to inform the verification

engineer on-line about the current status of the simulation-

based verification.

As illustrated in Fig. 2 some interaction with the user is

still required by our approach. However, the effort for these

interactions is decreasing with the number of processed

requirements and depends on how much the user sticks to our

provided specification guidelines. In case of a missing term,

the user has to specify the type of this unknown term or it has

to map the term to an existing one in the database. This
decision is remembered the next time this term is analyzed.

Thus, no user interaction is required for this term any more.

During the syntax analysis step an invalid grammar prompts

the user to rewrite or delete the specified phrase. Clearly, if

the use cases are specified correctly using the provided

guidelines no user interaction will be necessary at all.

A. Define the Use Cases

Mandatory fields in the use case description are "Actor",

"Trigger" and "Precondition". As shown in Fig. 1. the "Main
Success Scenario" and "Extension Scenarios" fields are also

necessary, since. They contain a step-by-step description of
the interaction between the SuV and its environment, which

is the main information for the test case generator.

As shown in Fig. 1. we have extended the common textual

use case descriptions [2] by additional fields to cover non-

functional requirements and constants. This is not explained

here any further since it goes beyond the scope of this paper.

The value of each field in the textual use case description

is described in a non-formal way. Thus, our methodology has

to deal with typical natural language issues [18]. Therefore,

we define a grammar and a lexical subset of the natural

language to be solely used for specifying the use case. This is
done in collaboration with our industry partner, who has

strong experience with common grammar structures and

terms used for specification. A list of guidelines is provided

to keep the stakeholder to the given grammar structure and

focus on terms from the lexical subset. It is not mandatory for

the stakeholder to stick to these guidelines. Nevertheless, this

decreases the required user interaction during the lexical and

syntax analysis steps. Since not all terms can be covered by

our lexical subset, the lexicon can be extended with new

terms interactively by the stakeholder.

Fig. 3. Syntax Tree with type information for each term generated by
the Syntax Analyzer.

423

B. Lexical Analysis

After the use cases have been written, a lexical analysis on

each interaction step listed in the use case scenarios is

performed. It checks if the specified terms exist in the lexical

database. If a term is missing, the user can add it to the

database together with additional information on its type (e.g.

noun, verb ...). The lexical analysis identifies the type of each

term [19] e.g. reader -> noun, receives -> verb ...etc.

C. Syntax Analysis

The syntax analysis checks the grammar of each

interaction step. If it has an invalid grammar (i.e. it is not in

the database), it cannot be parsed. In this case the user has to

rewrite the entire interaction step. In case the grammar is

correct, a syntax tree [19] as in Fig. 3 is generated.

D. Semantic Analysis

The semantic analysis applies linguistic techniques [13] to

the generated tree structure. It identifies the meaning of each

term and identifies actions, actors, subcomponents and

message data. After the semantic analysis step the now

syntax-corrected and unambiguous specification document is
stored in XML. This provides a portable generic input for

various testbench generators of different languages and

domains.

E. Generate a SystemC Testbench

In this step, SystemC testcases based on the extracted

information from the previous steps are generated. Each

testcase is either generated from a single interaction step or

several interaction steps in the use case scenarios. The set of

testcases derived from an entire scenario is combined into a

verification state machine. This state machine generates

stimuli and checks the response of the SuV. The execution of
such a state machine performs the entire interaction sequence

specified in the corresponding scenario of the use case. It

verifies whether the modeled system design fulfills the use

case scenario.

We use the SystemC Verification Standard (SCV) [3] for

our verification state machine, which provides practical

support for constrained and weighted randomized stimuli and

transaction recording. In addition, it allows reusing our

verification components on lower levels for the functional

verification of the SuV’s RTL model implementation. (see

Transaction-based Verification (TBV) [4]).

IV. IMPLEMENTATION

Fig. 4 shows the implementation of our approach. JAXB

[20] is used to generate Java classes similar to the structure of

the input XML specification document. It fills the instances

of these classes with information from the XML requirements

specification. An instance is created for each use case. These

instances are analyzed by the phrase analyzer module. It

consists of a Java CUP parser [21], which invokes JFlex [22]

for each term stored in the instances. JFlex performs a lexical

analysis to identify the type of each term. For syntax analysis

the CUP parser uses an LR-Parser [23] to check the syntax

and generates a syntax tree from each phrase stored in the use

case instances (see Fig. 3). This is used by the semantic

analyzer to determine the meaning of each term and to

generate the error-corrected XML specification.

Fig. 4. The implementation is based on the Java CUP Parser [21] and
JAXB [20] to extract data. This data is the input for our implemented

testcase generator.

Finally, the automatic testbench generator module uses
this XML specification to generate use case and testcase

objects, which are used by the testcase generation algorithm

illustrated in Fig. 5.

Each use case object contains a list of testcase objects,

whereas each testcase object also contains a list of links to

subsequent testcases as specified in the use case scenarios.

This list covers all ramifications to extension scenarios

(=alternative flows) at the current step (=testcase object) in

the use case scenario. The testcase generator is a SystemC

model. It consists of three separate threads: random test

424

generation, test execution and the checking of non-functional

requirements.

The algorithm of the random test generation thread is

shown in Fig. 5. The entire algorithm is reiterated by a user-

specified number of times. During each iteration the

algorithm uses SCV constructs to randomly select a use case

object from the use case list. This list is generated each time

the testcase generator reads the XML specification file

provided by the parse analyzer. A use case may contain a list
of predecessor use cases. These are defined in the pre-

condition statement of the use case specification. They are

executed by the algorithm before the current use case is

processed. For each use case our algorithm goes through the

stored list of its testcases starting at the first element in the

list. If this testcase has no alternative testcases (i.e. no use

case extension scenarios), it is executed. This is done by the

test execution thread as explained in subsection A. It

generates stimuli, estimates and stores the tag’s internal state

and checks the SuV response. After the execution, our

algorithm turns to the next testcase from the list. If there is a
list of alternative testcases available, the SCV random

function is used to randomly select a testcase from the list

and executes it.

This algorithm facilitates the random processing of

arbitrary sequences of main and extension scenarios. It also

supports dependencies between the various use cases by

considering the precondition use cases.

Fig. 5. Random SystemC testcase generation from use cases using
the SystemC Verification Standard (SCV).

A test reporting feature during simulation prints the

number of passed and failed use- and testcases. It yields the

rate between the number of already processed tests and the

entire set of testcases. This provides the verification engineer

with an important metric to stop the verification process

ahead of time if the test execution rate exceeds a certain

value.

A. Test execution thread

Fig. 6 illustrates the test execution thread, which is based

on the verification statemachine generated from the input

XML specification.

Fig. 6. Generated statemachine of the test execution thread.

As shown in Fig. 6 the case blocks to handle the receive
and transmit actions do not invoke the corresponding

SystemC write and read functions of the output and input

ports connected with the SuV (=DUT: Design-under-Test).

Instead, the send and receive functions (=transactions) of a

SystemC transactor component, which is also generated
automatically by our approach, are invoked. These functions

are marked as grey-tone in Fig. 6. We use the transactor

component to separate the testcase generation and execution

module from the SuV’s interface as shown in Fig. 8. The

actual mapping of the generated testcases to the input and

output ports of the SuV is ”outsourced” to the transactor (also

known as bus-functional model or adapter) and has to be

implemented together with the transactor’s RTL interface by

the designer of the SuV. As shown in Fig. 7 the generated

transactor component source code contains comments and

placeholders to help the designer to find the right place for
adding the mapping statements. Thus, the designer decides to

which SuV ports to map the generated testcase messages. The

generated testcase messages are derived from the “constants”

field in the use case-based specification document and are

defined as C++ structs, having a struct member variable for

each protocol field. This allows accessing each message

protocol field separately and mapping it to the corresponding

SuV port by the designer.

425

In addition to the receive and transmit actions, the

verification statemachine also handles set actions defined in

the specification. A set is specified when the SuV changes its

internal state. In case of an RFID specification, a set action

can be specified as: “The RFID tag sets its SL Flags to the
Message setting”. In this case the verification statemachine

maintains an array to store the SuV internal state, since it

knows the settings of the message it has sent to the SuV. The

stored information can be used for testcase generation, which
require the knowledge of the SuV’s internal state. For

instance, the SET_UP_TAG_1_RECEIVES_ACTION case

block uses the stored RFID tag’s SL Flag setting to determine

and send a matching SL Flag that corresponds to the RFID

tag’s internal SL flag.

The verification statemachine also maintains the correct

execution sequence of the use cases. This is shown in the case

block SET_UP_TAG_PREC_0_COMES_ACTION, which

selects the use cases listed in the precondition to be executed

before the testcases of the current use case are executed.

Fig. 7. Source code of the transactor, which is enhanced by

the designer to map the testcases to the SuV interface

B. HW/SW Co-Design Tool SyAD® (System Architect
Designer)

We have implemented our methodology in the HW/SW

co-design tool SyAD®
 (System Architect Designer) [25] as

shown in Fig. 8, which demonstrates the proposed linking of

the testcase module with the SuV via the generated transactor

component. This linking allows using the same testcase

module for different interfaces of the SuV and it also enables

to reuse the same testcase module for various SuV’s, which

implement the same interface.

Fig. 8. Proposed testbench architecture consisting of the testcase

generator, the transactor and the SuV (=DuV: Design-under-
Verification) modeled in the co-design tool SyAD [25].

SyAD®
 enables the development of system-level HW/SW

co-designs and supports a multi-language and multi-level co-

simulation framework supporting SystemC, VHDL, VHDL-

AMS and MATLAB Simulink.

V. CASE STUDY: A SOC-BASED RFID CONTROLLER

As a case study we have considered a use case-based

specification of an RFID controller provided by our industrial

partner. The use case specification is derived from the RFID

controller state diagram specified in the EPCGlobal Class-1

Generation-2 UHF RFID protocol for communications [24].
It covers the entire controller state diagram (see Fig. 6.19. in

[24]) and encompasses 53 use case scenarios (see Table 1).

Fig. 9 shows a small excerpt from the generated use case-

based specification document.

Fig. 9. Specified use case derived from the protocol specification of

an RFID controller state machine.

426

The illustrated use case is accessed when the RFID

controller enters the reader field (see Precondition/Trigger).

Fig. 10 demonstrates the application of our methodology

to the first interaction step in the ”Main Success Scenario” of

Fig. 9. It is defined as ”Tag receives Message from Reader
with Receiver unit”. All the tasks in Fig. 10, apart from

mapping the testbench ports to the SuV, are processed

automatically, without any user interaction. This is due to the

correct syntax of the phrase and the fact that no unknown
terms are used.

Use Case description

Main Success Scenario:

1. Tag receives Message from Reader with Receiver unit

2. ...

Requirements Extraction

„Tag receives Message from

Reader with Receiver unit“

Lexical Analysis

and Syntax Analysis

Semantic Analysis

actor = „Reader“

action = „receiving“

data = „Message“

Subcomponent = „Receiver“

Simulation

(run testbench)

Lexicals

„Tag“

Grammars

„…“

Generate Testbench

Glossary

(constants,

message

formats, etc.)

IP Library

„Receiver“

Map Testbench

to SuV

Verification

Engineer

„Tagnoun receivesverb Messagenoun

frompreposition Readerarticle

withpreposition Receivernoun unitnoun“

Fig. 10. The application of our methodology to the use case

specification of an RFID Tag.

VI. RESULTS

We applied our approach to a SystemC transaction-level

model of an RFID controller. First, we used our

methodology to check the correctness of the use case

specification document of the RFID controller. Table 1 lists

the results. We discovered 6 syntax errors (due to missing

verbs and articles) and added 8 unknown terms to the RFID

specific lexicon.

Table 1. Recorded results when applying our approach to the entire
RFID use case specification.

Characteristics Tag Specification

Syntax Errors (missing verb,

article,…)
6

Unknown terms 8

#Use Cases/ #Use Case Scenarios 5 / 53

generated Testcases 131

In a second step we generated the verification

statemachine from the now corrected specification document.

Our testcase generator generated 131 testcases from the

specification. We then started the simulation to demonstrate

our random testcase execution algorithm (see Fig. 5) for 5,

10, 15 and 20 iterations.

0

100

200

300

400

500

600

1 5 10 15 20

Number of iterations

N
u
m
b
e
r
o
f
e
x
e
c
u
ti
o
n
s

UC1 executions

UC2 executions

UC3 executions

UC4 executions

UC5 executions

executed tests

Fig. 11. Number of executions of each use case and number of
executed testcases with the random testcase execution algorithm for

5, 10, 15 and 20 iterations

27,20

55,98

69,74
74,61

80,04

4
8

11 13 14

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

1 5 10 15 20

Number of ite rations

V
e
ri
fi
e
d
 a
m
o
u
n
t
o
f
th
e
 s
p
e
c
if
ic
a
ti
o
n
 (
%
)

N
u
m
b
e
r
o
f
d
e
te
c
te
d
 e
rr
o
rs

% Covered functionality Detected errors

Fig. 12. Covered portion of the specification (=executed use case
scenarios) and number of detected errors by the random testcase

execution algorithm for 5, 10, 15 and 20 iterations

427

We used the generated report statements during simulation

to determine the executions of each use case, each passed use

case scenario and the number of executed tests as shown in

Fig. 11. Use case 1 (UC 1) is executed most of all, since it is

in the precondition list of all other use cases. In contrast, UC

5 is less often executed since it does not occur in the

precondition list of any other use case.

The ratio of executed use case scenarios to the total

number of use case scenarios specifies the covered amount of
the specification by the simulated testcases. Fig. 12 shows a

comparison of the number of identified errors and the verified

portion of the specification at 5, 10, 15 and 20 iterations. A

80% functional coverage detects 14 errors and requires 20

iterations of the testcase execution algorithm, which results in

more than 600 executed tests as illustrated in Fig. 11.

VII. CONCLUSION AND FURTHER WORK

In this paper we presented a novel design and verification

methodology for System-on-Chip (SoC) designs. Common

flows lack a sophisticated support for specification checking

and automated specification-based functional verification of
the modeled system. This is due to the missing link between

the specification and the implemented design. Our

methodology closes this gap by tightly integrating the

specification into the design flow. Testcases are automatically

derived from widely accepted use case-based specifications

and are used for functional verification by simulation.

Our approach focuses on use case-based specifications,

which are suitable for describing protocols. We therefore use

a case study based on the semi-formal specification of a

higher class RFID controller to demonstrate and prove our

methodology. We showed that our methodology can be used
to automatically generate SystemC testcases to verify

whether the design fulfills its specification throughout the

development process. This reduces the time for testcase

generation and the number of required redesigns later in the

design flow. The applicability of our approach is limited to

the external interface of the System-under-Verification

(SuV). If there is almost no communication with the external

world, black-box tests are not sufficient to verify the system.

Therefore, as a further step, we plan to enhance the

methodology with white-box verification features by

integrating automatically generated interface monitors.

Much more designs have to be verified with our approach
to prove it. This is reflected in our current work.

Ongoing research also focuses on the integration and

verification of power constraints with the demonstrated

approach.

REFERENCES

[1] Andrew Piziali. Functional Verification Coverage Measurement

and Analysis. Kluwer Academic Publishers, 2004.

[2] A. Cockburn. Writing Effective Use Cases. Addison-Wesley

Professional, 2001.

[3] S.Swan, C.Norris. A tutorial introduction on the new systemc

verification standard. Technical report, 2003.

[4] The Transaction-Based Verification Methodology. Technical

report, Cadence Labs, 2000.

[5] Q. Zhu, R. Oishi, T. Hasenawa, and T. Nakata. System-On-Chip

Validation using UML and CWL. In Hardware/Software Codesign and

System Synthesis, 2004. CODES + ISSS 2004. International

Conference on, pages 92–97, 2004.

[6] JinShan Yu, Tun Li, and QingPing Tan. The Use of UML

Sequence Diagram for System-on-Chip System Level Transaction-

based Functional Verification. In Intelligent Control and Automation,

2006. WCICA 2006. The Sixth World Congress on, volume 2, pages

6173–6177, 21-23 June 2006.

[7] L.H. Tahat, B. Vaysburg, B. Korel, and A.J. Bader. Requirement-

Based Automated Black-Box Test Generation. In Computer Software

and Applications Conference, 2001. COMPSAC 2001. 25th Annual

International, pages 489–495, 8-12 Oct. 2001.

[8] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jezequel.

Requirements by Contracts allow Automated System Testing. In

Software Reliability Engineering, 2003. ISSRE 2003. 14th

International Symposium on, pages 85–96, 17-20 Nov. 2003.

[9] Ajitha Rajan. Automated requirements-based test case generation.

SIGSOFT Softw. Eng. Notes, 31(6):1–2, 2006.

[10] Jan Tretmans and Ed Brinksma. Torx: Automated model based

testing - cˆote de resyste.

[11] J.R. Abrial. The B-book : assigning programs to meanings.

Cambridge University Press, August 1996.

[12] M. Riebisch and M. Hubner. Traceability-driven Model

Refinement for Test Case Generation. In Engineering of Computer-

Based Systems, 2005. ECBS ’05. 12th IEEE International Conference

and Workshops on the, pages 113–120, 4-7 April 2005.

[13] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari. Application of

Linguistic Techniques for Use Case Analysis. In Requirements

Engineering, 2002. Proceedings. IEEE Joint International Conference

on, pages 157–164, 9-13 Sept. 2002.

[14] C. Denger, D.M. Berry, and E. Kamsties. Higher Quality

Requirements Specifications through Natural Language Patterns. In

Software: Science, Technology and Engineering, 2003. SwSTE ’03.

Proceedings. IEEE International Conference on, pages 80–90, 4-5 Nov.

2003.

[15] S.F. Tjong, N. Hallam, and M. Hartley. Improving the quality of

natural language requirements specifications through natural language

requirements patterns. In Computer and Information Technology, 2006.

CIT ’06. The Sixth IEEE International Conference on, pages 199–199,

Sept. 2006.

[16] D. Myers, N. Vincent, K. O’Loughlin, and Marks. Simulation-

Based Requirements Testing. In Systems and Information Engineering

Design Symposium, 2003 IEEE, pages 189–194, 24-25 April 2003.

[17] V. Gervasi and B. Nuseibeh. Lightweight Validation of Natural

Language Requirements: a case study. In Requirements Engineering,

2000. Proceedings. 4th International Conference on, pages 140–148,

19-23 June 2000.

[18] Centre for Language Technology. Controlled Natural Languages,

2007.

[19] E. Loper, S. Bird, E. Klein. Introduction to Natural Language

Processing. 2001.

[20] Sun. Java architecture for xml binding (jaxb), 2003.

[21] Cup - lalr parser generator for java, 2007.

[22] JFlex - the fast scanner generator for java, 2007.

[23] Lang B.G Naumann. Parsing. 1994.

[24] EPCGlobal. EPC Radio-Frequency Identity Protocols Class-1

Generation-2 UHF RFID Protocol for Communications at 860 MHz ?U

960 MHz, 1.0.9.

[25] A. Schuhai, M. Pistauer, S. Kajtazovic, C. Steger. Automatic

generation of a verification platform for heterogeneous system designs.

In Advances in Design and Specification Languages for SoCs -

Selected Contributions from FDL’05, 2005.

428

Simulation-based Verification of Power Aware
System-on-Chip Designs Using UPF IEEE 1801

Christoph Trummer, Christoph M. Kirchsteiger, Christian Steger, Reinhold Weiß∗,
Damian Dalton† and Markus Pistauer‡

∗Institute for Technical Informatics, Graz University of Technology, Austria
email: (trummer, c.kirchsteiger, steger, rweiss)@tugraz.at

†School of Computer Science and Informatics, University College Dublin, Ireland
email: damian.dalton@ucd.ie

‡CISC Semiconductor Design+Consulting GmbH, Austria
email: m.pistauer@cisc.at

Abstract—For System-on-Chips (SoCs) the most critical design
constraint is power dissipation. Therefore, power aware design
should be introduced at early stages of SoC design where it has
the highest benefits for power reduction. This also lowers the de-
sign complexity and verification effort. Until recently, capabilities
to describe and verify the power design early were inadequate
which often led to late re-design. Lately, the IEEE 1801 Standard
for Design and Verification of Low Power Integrated Circuits,
an extension of the Unified Power Format (UPF) was approved.
This work uses the new IEEE 1801 standard to describe power
aware design. The power design is automatically translated into
an executable hierarchy parallel to the system design. Simulation
results from system and power design are used to automatically
verify the SoC’s power aware design against its specifications.

I. INTRODUCTION

Due to rising silicon integration density today’s System-on-
Chips (SoCs) are able to perform more functionality. However,
the increase in functionality causes higher power dissipation
[1]. Consequently, power consumption is the most critical
constraint for SoCs [2]. Moreover, the increasing functionality
also rises complexity for specification, design and verification
of SoCs. Verification uses up to 70% of the design effort [3].
To counter the rising complexity implementation details are
abstracted away in early design stages. This allows to focus on
behavior and enables early verification. To reduce the system’s
power dissipation power aware design is used. Despite its
importance power design is often added at late stages to the
system [4]. This has two reasons. First, functionality to reduce
power dissipation is part of the pervasive functions. Pervasive
functions are operations beyond normal system operation.
Therefore, they do not directly contribute to the SoC’s main
functionality and are often overlooked [5]. Second, is the lack
of means to adequately express and verify power design at high
levels of abstraction [6]. With the Unified Power Format (UPF)
and Common Power Format (CPF) two formats to describe
the power design were introduced [7], [8]. They enable power
aware design and verification at Register Transfer Level (RTL).
However, the earlier power design is added to the system the
higher the benefit for power reduction [1] and the earlier it can
be verified. Early verification benefits from fast simulation and
helps to lower the risk of late and costly re-designs [5].

We introduce a novel methodology enabling automated
simulation-based verification of the power-aware design at
system-level. Our methodology comprises three stages:

In the first stage the requirements for power aware design
are analyzed and refined into semi-formal use cases. Each use
case describes the system’s functionality and power state. By
expressing the requirements as use cases faults from ambiguity
and misinterpretation are reduced. The semi-formal nature of
our use cases enables automated parsing and analysis.

The second stage is the design stage. Based on the specifica-
tions the system engineers create the SoC design in a hardware
description language (HDL). We describe the SoC design in
SystemC beginning at system-level. In parallel, the power
design is developed using the IEEE 1801 standard (UPF).

In the third stage the UPF power design is analyzed and
automatically translated into SystemC modules. The use cases
are parsed and a verification environment is automatically
created. The SoC design and the power design are simulated.
The verification environment launches test cases derived from
the use cases invoking an equivalent behavior in the system.
Finally, results from the verification environment and the sup-
ply network are automatically evaluated verifying the system.

Our contribution comprises automatic generation of the
verification environment and the executable supply network
from the use cases and the UPF design. Additionally, by
simulating the executable supply network and the verification
environment the system is verified automatically. The main
benefits are the high degree of automation and the capability
to simulate and verify power aware design at system-level.
The automatic generation of verification environment and ex-
ecutable supply network reduces the verification effort. Since,
power design can be added at early design stages the high
potential for power reduction is retained. Early verification of
the power design lowers the risk of late and costly re-design.

This paper is organized as follows. In section II background
and related works about specification and verification of power
aware design are analyzed. Section III provides details about
the three stages of our methodology. The case study in
section IV applies our methodology to a SoC design. Finally,
section V summarizes our work and outlines future work.

978-1-4244-4311-6/09/$25.00 ©2009 IEEE

Publication 2 - NORCHIP 2009

II. BACKGROUND AND RELATED WORK

A. Use case specification for hardware design

The Unified Modeling Language (UML) can be used to
specify use cases for hardware design. With an analysis model
the requirements are refined into use case-, collaboration- and
class diagrams [9]. The benefit of the formal UML use cases
is that they can be automatically interpreted. However, formal
descriptions are not easy to read without prior knowledge of
the format [10]. A semi-formal use case format is described
in [11]. The format is a mixture of a formal structure and in-
formal text. Therefore, the textual use cases have a predefined
structure which consists of a series of steps and interactions
expressed in natural language [11]. In contrast to formal use
cases, semi-formal use cases can be understood more easily
and automatic processing is also possible [10].

B. Automated test case generation from use cases

Automatic deriving test case from use cases and generating
a verification environment is presented in [10]. The use cases
are similar to the semi-formal use case format described in
[11]. The structured use cases are parsed and interpreted with
semantic analysis. A verification environment is created auto-
matically for verifying a model of the system in a Hardware
Description Language (HDL). During simulation the verifi-
cation environment applies test cases to the system model.
This invokes a behavior corresponding to the functionality
described in the use case. By monitoring the system’s behavior
and response the functionality is verified [10].

C. Power design formats

To counter the rising complexity in system design Hardware
Description Languages (HDLs) with higher levels of abstrac-
tion were developed. To reduce the predominant dynamic
power dissipation adding power design information was not
necessary at high level [6]. Therefore, it was introduced to
the system at a late stage (below RTL) [6], [12]. Due to the
increase in static power at process technologies below 100 nm
power suddenly became a highly critical design constraint for
SoCs. Power management and power aware design became im-
portant and the capabilities of HDLs to express power design
were insufficient. Because of the benefits of early power aware
design the Electronic Design and Automation (EDA) industry
realized the need for a standardized, HDL-independent power
specification format. Two similar formats to specify the power
design were developed by industrial consortiums, the Common
Power Format (CPF) and the Unified Power Format (UPF) [7],
[8]. With the emergence of these specification languages power
design can be described at RTL without modifying the system
design [2], [12], [13]. Recently, the IEEE 1801 Standard for
Design and Verification of Low Power Integrated Circuits was
approved [6]. The new IEEE 1801 standard extends UPF.

D. Verification of the power design

In general, verification of the power design falls into three
steps. First, it is verified that the design correctly enters the
power state. Second, the system has to provide the correct

result at the each power state. Third, it is ensured that the
logic behaves correctly when a power state is entered e.g. the
unit has no activity when switched off [5]. Two approaches
use UPF to describe the power design and perform simulation-
based functional verification at RTL [2], [13]. In [13], behav-
ioral models for the power aware functionality are simulated
together with a testbench and the system. However, the power
aware models and the testbench need to be created manually.

Many functional defects can be exposed by simulating the
power design. The most important are incorrect switching of
supply voltages for power domains, falsely timed state tran-
sitions, wrong power states, improper save/restore sequences
for retention. Moreover, inadequate isolation, problems to reset
blocks to a good state when power is restored and incorrect
level shifting between domains can also be detected [2], [13].

III. METHODOLOGY FOR SIMULATION-BASED
VERIFICATION OF POWER AWARE SOC DESIGNS

A. Specification Stage

In the specification stage the SoC’s requirements are refined
into a semi-formal use case document with three sections:

The first section, Use Cases, contains all use cases as
subsections. Each use case describes functionality as stepwise
interactions between the system and the actor(s). The most
important parts of an use case are as follows (compare [10]).

• Use case: specifies the use case name
• Description: contains a short abstract of the use case
• Scope: states the system to which the use case applies
• Actors: refers to entities interacting with the system
• Primary Scenario: contains a series of interaction steps

in natural text which may contain constants
• Alternative Scenarios: lists deviations from the primary

scenario which branch into a separate series of steps
The second section is the Power State Scenario section. It

consists of three subsections specifying the power design.
• State Description: the system’s state for each use case
• Power State: lists power states as set of domain supply

states, specifies when isolation and retention are active
• Power Domains: specifies all of the system’s modules

part of the power domain and specifies valid supply states
The third section of the use case document is the Constants

section. It defines variables used in the interaction steps of the
use cases. Each constant is assigned a value and data type. This
specifies which data the actor exchanges with the system.

The interactions between actor(s) and system are described
as natural text in the use case’s primary and alternative
scenarios. After the use cases are finished the Power State
Scenario is specified. The Power Domain section states a set
of domains. Each power domain comprises a list of modules
which are part of the domain and a list of domain supply states.
In the Power State part the power state is defined as natural text
by assigning a supply state to each power domains. Moreover,
it specifies when isolation and retention are active. As a result,
each State Description contains a textual description of the
power state the system is in during an use case.

B. Design Stage

The designers create the system according to the use case
document. During design the system is divided into functional
units and modules. Each module is described in the SystemC
HDL. At system-level the modules communicate via interfaces
and transactions. When the system is refined communication
is performed via signals. Our methodology supports interfaces
and signals. However, each interface has to implement the
SystemC “default event”. This is necessary for the monitor
in the power domain to detect activity in inactive domains.
Controller modules need to use signals to interact with the
power design to be compatible with the IEEE 1801 standard.

While the system is created, the power design is elaborated
in UPF. Power domains are described and connected to the
supply network. Power switches to change domain supply
states are created. For communication between domains with
different supply voltages level-shifters are defined. Isolation
is used to avoid undefined signal values when a domain is
switched off. When the supply of a domain is turned off
the modules in the domain lose their internal state. To avoid
the loss of information retention is applied to a few crucial
modules to save their internal states. The power state table
summarizes supply ports and their states into power states.
The isolation, retention and the power switch elements are
controlled by signals from the system design.

C. Simulation and Verification Stage

Before the system is simulated, the executable supply net-
work and verification environment are generated automatically.
Therefore, the use case document is parsed and its sections are
interpreted. Initially, actor, system and references to constants
are determined for each use case. Then the sequence of steps
is examined. The semantic analysis identifies the actions, the
direction and constants in each sentence. In this way test cases
are derived the interaction steps of each use case [10]. Then
the verification environment is created. It contains a schedule
for each test case. During simulation it launches test cases
and triggers a corresponding behavior in the system [10]. The
verification environment logs simulation time, executed use
case and test case, the stimuli and system responses.

To simulate the power design an executable supply network
is generated. Information about modules, ports and connec-
tions are extracted from the design. Thereafter, the power
design is parsed and automatically translated into a parallel hi-
erarchy. For each element in the power design a corresponding
module is created in SystemC. Inside the modules a monitor
logs the simulation time, internal state and supply information.

For the UPF supply ports SystemC modules are created
accordingly. Each module propagates its voltage level to the
connected supply network as floating point number. If a supply
port is off or at ground negative infinite is assigned.

The power domains are translated into SystemC modules
containing the specified system modules as sub-modules. The
domain’s supply and ground are connected to the supply
network. The monitor logs the domain’s supply state. It also
listens for signal and interface activity when the domain is off.

The generated SystemC isolation module monitors its sup-
ply state, isolation control and correct isolation values.

Modules are created containing elements for which retention
applies. The supply, save and restore signals are monitored.

The level shifters translate a domain’s communication ports
to the appropriate voltage levels. From UPF SystemC modules
are created to monitor correct shifting between voltage levels.

To switch between supply voltages and to deactivate do-
mains power switches are created. The switch is sensitive to
the signal of its controller module. Depending on the control
signal the switch applies a supply or “off” state to its output.

Finally, the specified supply network is used to properly
connect the newly generated power design modules.

When the verification environment launches test cases dur-
ing simulation different power states are entered. The modules
in the executable supply network propagate their state through-
out the network. When the control signals for power switches,
isolation and retention are applied the monitors inside each
module log the sequence of events. After simulation the logged
events are automatically evaluated. For each use case iteration
the specified and simulated power states are compared. The
state for each domain is determined, compared to the speci-
fication and activity inside a deactivated domain is reported.
Sequences for control signals and supply states for isolation
and retention are verified. Finally, the system designer receives
a verification report describing all discovered faults.

IV. CASE STUDY

To demonstrate our methodology we implement a higher-
class RFID tag as SoC. The higher-class tag (HCT) is equipped
with a temperature sensor and extended memory. Initially, we
analyzed the ISO/IEC 18000-7 protocol [14] for higher-class
tags. Use cases are specified for the wakeup, collection, read,
write and sleep commands. More use cases for the sampling,
standby and idle are created. When the RFID reader sends a
command the tag acts accordingly. The tag enters the standby
use case if it receives a sleep command. After an interval, set
by the write command, a timer interrupt occurs. A sample is
taken from the sensor and stored in memory. Every 2.5 sec.
the tag awakes from standby to determine if the RFID reader
has sent a wakeup command. If wakeup is detected the HCT
enters idle mode waiting for further commands, else it returns
to standby. The functionality to enter a power state is described
in the use cases. The use cases specify the actions of the power
management unit while their three power states are specified
in the Power State Scenario section (see excerpt in table I).

The Power State section provides details for each power
state. After a wakeup command, in idle mode or when process-
ing a command all power domains are on (ALL_ON). When
the tag receives a sleep command it enters standby and all do-
mains except PD0 are off (ALL_OFF). In this way the power
management unit remains able to control the switches. To take
a sample a timer interrupt occurs and the SAMPLE_ON state
is entered. In SAMPLE_ON the domains for controller, sensor
and memory are active, while the transceiver remains off. Four
power domains are specified. The domain PD0 with power

TABLE I
EXCERPT FROM THE POWER STATE SCENARIO SECTION

State Description
While in STANDBY the Tag is ALL_OFF.
For WAKEUP the Tag goes to ALL_ON.
At READ, WRITE, IDLE and COLLECTION the Tag is ALL_ON.
During SLEEP the Tag goes to ALL_OFF.
For SAMPLING the Tag is in SAMPLE_ON.

Power State: SAMPLE_ON
At entry: Retention RESTORE is HIGH for PD3.
Description:
PD0 is ON.
The domain PD1 is in state OFF.
PD2 is in the LowVoltage state.
Power domain PD3 is ON.
At exit: Retention SAVE is ON for PD3.

Power Domain: PD2
Elements: Controller; Digital Sensor;
Domain States: OFF; LowVoltage, 2 V;

Fig. 1. Case study: power aware design of a higher class RFID tag

management unit and the timers is always active. PD1 contains
the transceiver unit. The controller and sensor unit are in PD2.
For the memory in PD3 retention is defined. All domains are
supplied with 2 Volts except PD1 which needs 3 Volts. Table I
provides an example of the power domain specification.

Based on the use cases the system and power design are
created. The modules for the HCT are written in SystemC.
The power domains, switches, isolation, retention and supply
network are defined in UPF. Fig. 1 depicts a schematic of the
system and power design. From the use cases and the power
design the verification environment and executable supply
network are generated. After initial functional verification
additional mistakes are deliberately inserted into system and
power design. During simulation the monitors create a report
which shows the detected faults. Table II only contains some
inserted faults and verification results due to space limitations.

V. CONCLUSION AND FUTURE WORK

This paper demonstrates a methodology to verify power
aware SoC designs. In semi-formal use cases the system and
its power states is specified. Then the SoC is developed in
SystemC and the power design is created using the IEEE 1801

TABLE II
EXCERPT FROM THE VERIFICATION RESULTS

Inserted Fault Specification Simulation
Activity when domain is off PD2 is OFF PD2 has activity
Incorrect domain state PD2 is ON PD2 is OFF
Wrong power state in IDLE ALL_ON SAMPLE_ON
No isolation PD1 inputs to latch No isolation in PD1
Isolation not active PD2 inputs to latch PD2 isolation OFF
No level shifting PD1 3V; PD2 2V No level shifter at PD1

or PD2
Wrong level shifting PD1 3V; PD2 2V Inputs PD1 high-to-low
Wrong retention save-restore Entry ALL_OFF save Entry ALL_OFF restore

standard (UPF). The use cases are automatically analyzed and
a verification environment is generated. From UPF the power
design is translated into SystemC models with internal moni-
tors. During simulation the verification environment launches
test cases to exercise the system. This triggers different power
states. Results from monitors and verification environment
are automatically verified against the specifications. In a case
study a higher class RFID tag is specified and designed. Faults
were deliberately inserted into the SoC design to show the
capabilities of our approach. After automatically evaluating
the simulation results all faults were detected.

Currently, we are researching how the SystemC Verification
Standard could enhance our methodology. Moreover, we plan
to integrate custom supply modules such as battery models.

REFERENCES

[1] H. Jian and S. Xubang, “The Design Methodology and Practice of Low
Power SoC,” in Embedded Software and Systems Symposia, 2008. ICESS
Symposia’08. International Conference on, 2008, pp. 185–190.

[2] A. Crone and G. Chidolue, “Functional Verification of Low Power
Designs at RTL,” Lecture Notes in Computer Science, vol. 4644, pp.
288–299, 2007.

[3] R. Lissel and J. Gerlach, “Introducing new verification methods into a
company’s design flow: an industrial user’s point of view,” in Design,
Automation & Test in Europe, Conference & Exhibition DATE’07.
IEEE, April 2007, pp. 689–694.

[4] W. Nebel, “System-Level Power Optimization,” Digital System Design,
2004. DSD 2004. Euromicro Symposium on, pp. 27–34, 2004.

[5] B. Wile, J. Goss, and W. Roesner, Comprehensive Functional Verifica-
tion the Complete Industry Cycle. Elsevier/Morgan Kaufmann, 2005.

[6] “IEEE Standard for Design and Verification of Low Power Integrated
Circuits,” IEEE Std 1801-2009, pp. C1–218, 2009.

[7] Accellera, “Accellera: Unified Power Format (UPF) 1.0 Standard,” pp.
I–96, February 2007.

[8] The Power Forward Initiative (PFI), “A Practical Guide to Low-Power
Design - User Experience with CPF,” pp. 1–281, 2008.

[9] T. Bahill and J. Daniels, “Using Object-Oriented and UML Tools for
Hardware Design: A Case Study,” Systems Engineering, vol. Vol. 6, pp.
28–48, 2002.

[10] C. Kirchsteiger, J. Grinschgl, C. Trummer, C. Steger, R. Weiß, and
M. Pistauer, “Automatic Test Generation From Semi-formal Specifica-
tions for Functional Verification of System-on-Chip Designs,” in Systems
Conference, 2008 2nd Annual IEEE. IEEE, April 2008, pp. 1–8.

[11] A. Cockburn, Writing Effective Use Cases. Addison-Wesley Profes-
sional, 2001.

[12] S. Bailey, “Kick-Starting RTL Power-Aware Verification,” Chip Design
Magazine, vol. October/November 2007, 2007.

[13] F. Bembaron, S. Kakkar, R. Mukherjee, and A. Srivastava, “Low Power
Verification Methodology Using UPF,” in Conference on Electronic
Systems Design and Verification Solutions, DVCON, 2009, pp. 228–233.

[14] International Standardization Organization, “ISO/IEC 18000-7:2008 -
Information technology – Radio frequency identification for item man-
agement – Part 7: Parameters for active air interface communications at
433 MHz,” 2008.

Verification Methodology for Battery Lifetime
Requirements of Higher Class UHF RFID Tags

Christoph Trummer, Christoph M. Kirchsteiger, Alex Janek, Christian Steger, Reinhold Weiß∗,
Markus Pistauer† and Damian Dalton‡

∗Institute for Technical Informatics, Graz University of Technology, Austria
email: (trummer, c.kirchsteiger, alex.janek, steger, rweiss)@tugraz.at

†CISC Semiconductor Design+Consulting GmbH, Austria
email: m.pistauer@cisc.at

‡School of Computer Science and Informatics, University College Dublin, Ireland
email: damian.dalton@ucd.ie

Abstract—Today’s higher class tags usually are powered by
batteries. The battery’s capacity and the application’s power
demand influence the operational lifetime of the tag. Therefore,
the designated application and lifetime requirement have to be
kept in mind when designing a higher class tag. Moreover, the
lifetime requirement needs to be verified in order to ensure
the application will be successful. However, verification of the
lifetime requirement is usually a very complex task. A verification
environment for the application and its lifetime requirement
needs to be created manually. After simulation with a battery
model the results can be compared to the requirements document.
Due to the complex and time-consuming nature of verification
this often results in later time-to-market and increasing costs.
In this work we present a novel, highly automated methodology
to verify battery lifetime requirements. From the requirements
document of the higher class UHF RFID tag a verification
environment is created automatically. After power estimation is
performed a battery model can be connected to the automatically
generated lifetime verification environment. Finally, simulation is
performed to verify whether the higher class UHF RFID tag
fulfills the lifetime requirement of the application. The main
benefit of our methodology is a decrease in the verification effort
due to the high degree of automation in the creation of the
verification environment. Moreover, simulation time is decreased
which enables faster exploration of various batteries. This results
in faster time-to-market and a reduction of costs.

I. INTRODUCTION

Nowadays, ultra high frequency (UHF) RFID is used in
a wide variety of applications. Consequently, UHF RFID
systems have to fulfill a rising number of requirements. Some
of these requirements are high operating ranges, sensing and
monitoring, large memory and processing capabilities for the
measured data [1]. These systems are called higher class UHF
RFID tags [2]. When designing a higher class RFID tag to
meet the requirements, developers are facing an increasing
complexity. Moreover, the requirements concerning the func-
tionality of the system and non-functional requirements also
have to be verified. Non-functional requirements such as costs
and operational lifetime are especially important for higher
class UHF RFID tags [1]. As for all battery-powered devices
the lifetime of higher class UHF RFID tags mainly depends on
its power dissipation and the battery’s capacity. In turn battery
capacity affects size and overall cost of the system.

Automatic creation of the lifetime

verification environment

Automatic generation of the

application scenario testbenches

Power estimation

Higher class

UHF RFID

tag model

Use case

document

Automatic use

case analysis

Lifetime estimation and

verification

Fig. 1. Principle of the methodology for verifying lifetime requirements

Due to the high system complexity, 70% of the entire
design effort is spent to verify the requirements are fulfilled
[3]. Battery lifetime requirements are verified using a battery
model which is simulated with a model [4] or a pre-recorded
power profile of the system [5]. Either approach requires a
testbench for the system which is usually created manually.
Testbench and battery model are simulated and the results are
often manually compared against the requirements.

In this paper we propose a novel approach that allows to
specify and verify lifetime requirements for designated appli-
cations in an highly automated flow (Fig. 1). Therefore, the
applications are more tightly integrated into the requirements
analysis process. This helps the developers to better understand
conditions, environment and context the system operates in.

2009 IEEE International Conference on RFID 3B.4

978-1-4244-3338-4/09/$25.00 ©2009 IEEE 170

Publication 3 - RFID 2009

Additionally, the specified application contains the lifetime
requirement. Through semantic analysis the applications and
their lifetime requirements are automatically evaluated. Then
a verification environment is generated for power estimation
of the device’s application. Finally, the application’s lifetime
requirement is verified by simulating the estimated power
demand with a battery model.

The main benefit of our approach is its high degree of
automation. Thus, the effort spent in the verification of the
system is greatly reduced resulting in a faster time-to-market.
The major contribution of our methodology is the automated
analysis of the requirements and the automatic generation
of the lifetime verification environment. Importantly, also
simulation speed is greatly increased performing faster battery
lifetime estimation. In addition, the actual verification of
lifetime requirements for target applications can already be
carried out at early stages of the design. This permits to
rapidly explore the impact of different battery capacities on
the lifetime and helps in selecting the appropriate battery for
the application of the higher class tag.

The remainder of this paper is organized as follows. In
section II related work is analyzed. Our proposed methodology
is explained in section III. We validate our approach in section
IV by estimating the lifetime of an higher class UHF RFID
tag. In a case study (section V) of a higher class tag in
aircraft landing gear monitoring the verification of lifetime
requirements is demonstrated. Finally, we summarize our
approach and outline future work in section VI.

II. BACKGROUND AND RELATED WORK

A. Specification of lifetime requirements

A key factor in the operational lifetime of a higher class
RFID tag is the lifetime of its battery. Battery lifetime is
mainly influenced by the tag’s power dissipation. Depending
on the task it performs the higher class tag consumes more or
less power. Thus, to estimate power consumption and battery
lifetime the application has to be taken into account. An
application consists of a series of tasks which are performed
by the device. For a higher class UHF RFID tag this could be
to communicate with a reader and/or other active tags, read
sensor data and store the samples in memory. In [4] the authors
mention that operational lifetime requirements are usually
specified in terms of minimum battery lifetime. Sometimes,
manufacturers specify the lifetime of their higher class RFID
tag for a certain amount of readouts per day (see [6]). This is
often an abstract generalization of a typical application.

Examples of UHF RFID applications with lifetime re-
quirements are tire pressure monitoring (TPM) and aircraft
landing gear monitoring. In active TPM systems a higher class
RFID tag is integrated into a car tire. The tag continuously
measures inflation pressure and tire temperature [7]. Typically
TPM systems require lifetimes of more than 10 years [7],
[8]. In airplanes a higher class tag can be integrated into
landing gear to monitor brake temperature or pressure on the
shock absorber. Parts of the aircraft landing gear are durable
and typically have long lifetimes before being replaced [9].

Consequently, a higher class UHF RFID tag monitoring a
landing gear needs to have a lifetime of 7-12 years [9].

B. Requirements specification for hardware design

In [10] the authors present a methodology which uses the
unified modeling language (UML) to specify requirements in
hardware design. Through an analysis model the use cases
are refined into use case-, collaboration- and class diagrams
[10]. With this methodology test cases have to be derived
manually from the descriptions and diagrams. Non-functional
requirements can be included into the use case descriptions and
diagrams [10]. The format to express hardware requirements
in UML is similar to the textual use cases described in [11].
These use cases have a predefined structure which consists of a
series of steps and interactions expressed in natural language.
A structured use case format with text in natural language is
adequate to capture requirements of higher class RFID tags.

C. Automated verification platform generation from use cases

A verification platform can be automatically generated
from textual use cases [12]. A use case format similar to
the one described in [11] is employed to capture functional
requirements. Through semantic analysis of the structured use
cases a verification platform is created automatically. It is used
to verify a model of the system in a hardware description lan-
guage. During simulation the verification environment sends
stimuli derived from the use case descriptions to the system
model. This provokes a behavior corresponding to the func-
tionality described in the model’s use case. By monitoring the
model’s response the functionality is verified [13]. However,
this approach only considers functional requirements for test
case generation, non-functional requirements are not verified.

D. Battery lifetime estimation

To estimate the lifetime of batteries various battery models
are used to simulate or calculate battery lifetime for different
load conditions. Many different battery models exist with a
wide variety of accuracy and calculation effort [14]. In most
of the cases the battery models are simulated with a model of
the system or are connected to pre-recorded power profiles to
estimate the battery lifetime [4], [5].

E. Functional verification of higher class UHF RFID tags

In [1] requirements of higher class UHF RFID tags are iden-
tified. It is emphasized that the most important non-functional
requirements are costs and lifetime. The authors developed a
high-level simulation model of a higher class UHF RFID tag to
verify its functionality. For components contributing the most
to power consumption more detailed models are employed.
These models are used to accurately simulate the higher class
tag’s power dissipation [1]. Additionally, models of a battery
and energy harvesting devices are used to simulate the tag’s
power supply. In a proceeding work the authors use a system-
on-chip development platform to implement their higher class
UHF RFID tag in hardware [15].

171

III. BATTERY LIFETIME VERIFICATION METHODOLOGY

For successfully verifying the lifetime requirements of
higher class UHF RFID tags its requirements need to be
specified. To automate analysis of the requirements they are
expressed as textual use cases. The use case document contains
the description of the higher class tag’s functionality as a
series of interaction steps. Moreover, it specifies potential
applications for the tag and states the lifetime requirement of
the tag’s energy source. Next, the use cases are automatically
parsed and analyzed. Thereafter, a testbench corresponding to
the application is automatically generated for the model of
the tag. It is used to exercise the higher class UHF RFID tag’s
functionality for power estimation. This results in a power
profile for the application specified in the use case document.
Due to the complexity of the system battery lifetime simula-
tion is usually computationally intensive and time-consuming.
Therefore, only the tag’s power demand not its functionality
is simulated to speed up lifetime estimation. To achieve this,
the power profiles are analyzed and automatically embedded
within a SystemC demand model. This SystemC model can
be connected to an arbitrary battery model. During simulation
the demand model continuously repeats the profile’s duty cycle
and draws a current from the battery model. When the battery
model runs out of charge simulation stops and simulation
time is compared to the lifetime requirement. Through this
automated sequence it is verified whether the application’s
lifetime requirement is fulfilled.

The remainder of this chapter provides a detailed description
of the main phases of our approach.

A. Requirements analysis
In the beginning of a higher class RFID tag’s design phase

its functional and non-functional requirements are specified.
Then they can be refined into use cases. We extend the textual
use case format described in [12] since it is able to capture
both functional- and non-functional requirements. Moreover,
it can be analyzed automatically as described in [12]. The use
case document is divided into several sections. This structure
supports automated analysis by assisting in classification of
the information in the individual sections. Our extended use
case document comprises three main sections which contain a
series of use cases, the global constants and applications.

• Use Cases: contains an arbitrary amount of use cases
• Global Constants: defines constants used in the inter-

action steps of the use cases; constants may contain
references to other constants or values

• Applications: specify a series of applications for which
lifetime requirements must hold

Table I contains an excerpt of an use case document. The
use case example shows the general structure and the primary
scenario’s interaction steps. Additionally, parts of the Global
Constants section are included to demonstrate the concept. An
example of an application is described in table II.

Within the Use Cases section all use cases are specified as
subsections. The most important sections of each use case are
as follows (also compare [12]).

TABLE I
EXAMPLE OF AN USE CASE DOCUMENT (EXCERPT)

Use Cases
Use case: COLLECTION_WITH_UDB
Description:
This use case describes the tag receiving a
Collection with Universal Data Block command.
Scope: Tag
Primary Actor: Interrogator
Preconditions:
1a. The Tag comes from the WAKEUP use case.
1b. The Tag comes from the IDLE use case.
Primary Scenario:
1. The tag receives a COLLECTION_UDB_COMMAND.
2. The tag identifies the UDB_TYPE.
3. The tag reads the MAX_PACKET_LENGTH.
4. The tag determines the WINDOW_SIZE.
5. The tag selects a RANDOM_SLOT.
6. The tag goes to the IDLE use case.
Alternative Scenarios:
-

Global Constants:
Constant: COLLECTION_UDB_COMMAND
Parameter: COMMAND_CODE
Parameter: MAX_PACKET_LENGTH
Parameter: WINDOW_SIZE
Parameter: UDB_TYPE
Constant: WINDOW_SIZE
Parameter: @bit@15@0@

• Use case: specifies the use case name
• Description: contains a short abstract of the use case
• Scope: refers to the system to which the use case applies
• Primary Actor: an entity interacting with the system
• Preconditions: preceding use cases which lead to the

current use case
• Primary Scenario: contains a series of interaction steps

in natural text which may contain constants
• Alternative Scenarios: specifies deviations from the pri-

mary scenario; starting at the step in which the deviation
occurs it branches into a separate series of steps

Constants used in the steps of the use cases need to be
defined in the Global Constants section. The constants contain
references to other constants or specify a value, data type and
bit range. If the value is left unspecified it is randomized during
simulation. The constants are used to determine which data the
actor sends to and receives from the system.

B. Application specification

After specifying the use cases, the applications can be
defined. This is done within the case document after the
Global Constants section. An application describes the order
in which use cases are executed and their duty cycle. Further,
the lifetime requirement for the application is specified.

The application section comprises three subsections. In the
first subsection one or more use cases and their steps can be
summarized to scenarios. This simplifies specification as sev-
eral use case sequences may occur repeatedly. Also, it allows
to deliberately branch into the alternative scenarios of a use
case if the application demands it. Table II demonstrates the
specification of several small scenarios and a larger scenario
containing all small scenarios.

172

TABLE II
EXAMPLE OF AN APPLICATION SPECIFICATION

Application: Collection_with_UDB_sequence
Scenario: Wakeup
Use Case: WAKEUP Step: 1@4
Use Case: IDLE Step: 1@2

Scenario: Receive_collection_command
Use Case: COLLECTION_WITH_UDB Step: 1@5

Scenario: Idle_waiting
Use Case: IDLE Step: 1@2
Use Case: IDLE Step: 3b1@3b5

Scenario: Transmit_UDB_response
Use Case: FETCH_ID Step: 1@3
Use Case: UDB_RESPONSE Step: 1@6

Scenario: Receive_sleep_command
Use Case: SLEEP Step: 1@3

Scenario: Sleep_mode
Use Case: POWER_DOWN Step: 1@3
Use Case: CARRIER_SENSE Step: 1@4

Scenario: Collection_with_UDB_round
Use Case: WAKEUP Step: 1@4
Use Case: IDLE Step: 1@2
Use Case: COLLECTION_WITH_UDB Step: 1@5
Use Case: IDLE Step: 1@2
Use Case: IDLE Step: 3b1@3b5
Use Case: FETCH_ID Step: 1@3
Use Case: UDB_RESPONSE Step: 1@6
Use Case: SLEEP Step: 1@3

Duty Cycle:
1. Wakeup is executed for 2.5 sec.
2. Receive_collection_command executes for 5 ms.
3. Idle_waiting runs for 57.3 ms.
4. Transmit_UDB_response shall be executed for 8.1 ms.
5. Receive_sleep_command takes 5.8 ms.
6. Sleep_mode is repeated for 9597.424 sec.
7. Collection_with_UDB_round shall be executed 0-2 times.
Lifetime:
5 years 150 days

The second part of the application contains the order of indi-
vidual scenarios and specifies their duty cycle. This subsection
is expressed in natural text and contains a series of steps. Each
step specifies the scenario and its duty cycle. Instead of a time
the expected number of executions can be used to specify the
duty cycle. In this case the duration of the scenario’s power
profile and the number of executions are used to calculate the
duty cycle. It is possible to specify random executions with a
range from minimum to maximum expected executions. Step 7
in table II is executed randomly between zero and two times.
The random number within the range is re-calculated during
simulation after each duty cycle.

The third subsection contains the lifetime requirement for
this application. The lifetime requirement is expressed by
simply specifying a sequence of numbers and time. This
expresses the minimum required lifetime of the energy source
for the application to be successful.

As an example we specify the “Collection with UDB”
sequence according to the ISO/IEC 18000-7:2008 standard
[16] for UHF RFID tags. (table II). The duty cycle of the
application is chosen so the “Collection with UDB” sequence
is executed every 2 hours and 40 minutes. Additionally, up to
two random “Collection with UDB” sequences are specified
for each duty cycle. If repeatedly executed this corresponds to
10 fixed and up to 20 random collection sequences per day.

Use case semantic analysis

Testbenc

h

Derive scenario state machine

Generate testbench

<noun> <verb> <nouns / adverbs / constants / values>

<use case name> <actor> <scope> <precond> <step>

<action>

<action scope>

Message

generator

Higher

class tag

model

Msg
State

machine
Action

Use Case

1

Use Case

N
...

Step 1 Step N...

Use Case 2

SystemC scenario testbench

Step sentence:

Use case:

<constant name> <value> <data type> <length>
Global Constants:

<actor> <device>direction direction

Applications:
<application name> <scenario> <use cases>

Fig. 2. Automatic generation of an application scenario testbench

C. Automatic use case and application analysis

After specification of the use cases and the applications they
have to be analyzed. The lifetime of a device is dependent
on its power consumption. Hence, the power dissipation of
the system-under-design has to be determined. However, for
estimating the power consumption we require a behavior
corresponding to the application to be invoked in the system-
under-design. To avoid time-consuming manual analysis of the
use cases and laborious creation of test cases, a testbench is
automatically derived from the specified application.

To accomplish this, the use case document is parsed and
the individual sections and sentences are interpreted. Then the
applications are parsed and the individual scenarios with the
references to use cases and their steps are resolved. Semantic
analysis is used to correctly interpret the use cases. Initially,
the actor, system-under-design and references to constants are
determined from the use case. The specified sequence of steps
is examined and the individual parts of each sentence are
classified. Then, semantic analysis identifies the actions and
their direction for each sentence. The constants are resolved
by interpreting the Global Constants section. Finally, semantic
analysis is applied to determine each scenario’s duty cycle and
the application’s lifetime requirement.

D. Automatic creation of the application scenario testbenches

After successfully analyzing the use case document the
testbenches for power estimation are generated automatically.
Therefore, we extend the approach for automatic testbench
generation described in [12]. Instead of creating a SystemC
testbench for functional verification for the entire set of use
cases (as in [12]), only the use cases described in each
application scenario are used.

173

Message

generator

Higher class

UHF RFID

tag model

Power estimation
Scenario

power

profile

Msg
State

machine
Action

Scenario

power

profile

Scenario

power

profile

csv file

SystemC scenario testbench

Simulation

Fig. 3. Power estimation for each scenario

From the previous semantic analysis of the use case doc-
ument a SystemC testbench is automatically generated. The
testbench contains a state-machine for each specified appli-
cation scenario (Fig. 2). From the use cases and their steps
described in the scenario actions have been identified through
semantic analysis. Each action provokes either an internal
state transition or a transition to another use case. During
a transition the actor or the system may send and receive
messages. A message is determined from the action and a
constant stated in the action’s scope. The direction in which the
message is sent is determined from the action, the system and
the actor. The state machine with its transitions and messages
is translated into a SystemC testbench. After the testbench is
generated it can be applied to the system model to exercise the
behavior specified by the scenario. Power estimation can be
performed to determine the power consumption corresponding
to the exercised behavior.

E. Estimation of the scenario’s power dissipation

For power estimation the automatically generated state
machine within the SystemC testbench is used. Messages
corresponding to the interaction steps in the use cases are
exchanged between testbench and system model. In this way
the functionality described in the use case is invoked in the
system-under-design. Thus, each message causes the dissipa-
tion of a corresponding amount of power by the system model.

To estimate the power consumption, either a power es-
timation tool or a very accurate simulation model of the
system can be used. Our approach permits either possibility.
For system-level power estimation the RHEiMS tool from
Neosera Systems Ltd. [17] is employed. To accurately estimate
a higher class UHF RFID tag’s power consumption the model
described in [1] is used. In both cases the model of the
system is simulated with the testbench for each scenario.
As a consequence, for the given scenario a power profile is
created of the system-under-design (Fig. 3). Power estimation
is repeated for each scenario’s testbench. Eventually, a power
profile exists for every scenario in all applications. We use
the simple comma-separated-value (csv) format to store the
time-stamp and the corresponding power value.

Add profile to demand pattern

Time; Power

0.0; 0.0537

1.0E-6; 0.0537

2.0E-6; 0.0537

3.0E-6; 0.0537

4.0E-6; 0.0537

Scenario

CSV file

<scenario name> <use cases>

Application:

Scenario:

Duty cycle:
<scenario> <execution time>
Lifetime requirement:
<minimum lifetime>

<application name>

Create energy profile

UC 5 UC 6

Scenario3

Scenario1 Scenario2 Scenario3

scenario

execution

time

average

power

SystemC

demand

model

Insert

battery

model

minimum

lifetime

Generate lifetime verification environment

Pattern
Lifetime testbench

Fig. 4. Automatic creation of the verification environment

F. Automatic creation of the lifetime verification environment

Having performed power estimation a verification envi-
ronment is automatically created to carry out the lifetime
estimation of the energy source (see Fig. 4).

First, the power profiles for all scenarios are arranged
according to the order and duty cycle specified by the ap-
plication. The power profiles are analyzed, the power values
are averaged and their duty cycle is stored.

Second, the average power from the log file is converted
into energy (Power × Time). This permits to repeat each
scenario profile for the amount of time specified in the scenario
duty cycle. However, if the number of executions is specified
instead of a time the log file’s duty cycle is used to calculate
the scenario’s duty cycle. Consequently, we receive an energy
profile from the duty cycle and the averaged power values.

Third, energy values from all scenarios are used to mimic
the demand of the specified application. This means the
energy profile for each scenario is appended in the order it
appears in the steps of the application. The result is an energy
demand pattern over the specified period of time. For random
executions a corresponding code statement within the specified
range is generated. The number of executions is randomized
and re-calculated after every simulated duty-cycle. Then duty
cycle and energy are updated accordingly.

Finally, the code for a SystemC demand model is generated
automatically. The model repeatedly executes the energy pat-
tern over and over again. Thereby, the random executions are
re-calculated and the duty cycle information is updated. The
demand model is integrated into a verification environment
where it can be connected to the desired battery model. Thus,
the input of the battery model is the current drawn at each
time-step of the given application scenario.

174

TABLE III
VERIFICATION OF THE PROPOSED LIFETIME ESTIMATION METHODOLOGY

Profile Energy
single read 128-bit 9.32E-03 J
single sleep mode 7.14E-05 J

total 128-bit (600 times per day) 2.21 J
total sleep (remainder of the day) 6.16 J

Lifetime i-Q8 data sheet: > 6 years
Lifetime calculated Peukert: 6 years, 175 days

Lifetime estimated: 6 years, 145 days1,2
1 Avg. Error 7.63% according to battery data sheets (≈ ±178 days)
2 Error 1.27% compared to Peukert’s formula (≈ ±30 days)

G. Lifetime estimation & verification of lifetime requirements

A battery model is connected to the demand model within
the automatically generated verification environment. During
simulation the demand model repeats the energy pattern until
the battery model cannot meet the demand any more. When
this happens the lifetime simulation is aborted.

The verification environment reports the simulation time
and it is compared to the specified minimum lifetime for
the application. If the simulated lifetime is longer than the
specified lifetime the system fulfills the lifetime requirement
for the given application. Otherwise, the system is not able
to fulfill the lifetime requirement. Either different system
components, another low-power strategy or a larger energy
source has to be chosen.

IV. VERIFICATION OF THE PROPOSED LIFETIME
ESTIMATION METHODOLOGY

To verify our approach we choose to apply our methodology
to estimate the lifetime of a sample higher class UHF RFID
tag. To avoid inaccuracies from high-level power estimation or
a simulation model we choose to measure the power profiles.
Therefore, power profiles from the i-Q8 tag from IDENTEC
SOLUTIONS [6] have been recorded. As stated in the i-Q8
tag’s product sheet the battery lifetime is longer than 6 years
for 600 readings of 128 bits from the tag’s memory per day.
Therefore, profiles for reading 128 bits and sleep mode have
been digitally measured and logged. Then the power profiles
were converted into the csv format with entries for time stamp
and power. Consequently, we received a csv file for the 128-bit
memory readout and one for the sleep mode.

Then the application is specified in the use case document.
It assumes a 128-bit memory readout repeated for 600 times.
Afterwards, the tag returns to sleep mode for the remainder
of the day. The minimum lifetime for the application was
specified to be 6 years as stated in the i-Q8 tag’s product sheet.
After automatic analysis of the specified application and the
csv files we received the generated SystemC demand model.
The i-Q8 tag’s power source is a Tadiran SL-760 Lithium
battery with a capacity of 2.2 Ah [18]. A simple battery
model was developed and configured with the data of the
2.2 Ah battery. Finally, we connected both SystemC models
and started the simulation. After the battery model ran out of
charge, the simulation stopped.

For the i-Q8 tag’s designated application of 600 daily
memory readouts the battery lifetime was estimated to be
6 years and 145 days (see table III). This corresponds to the
“longer than 6 years” lifetime statement from the i-Q8 tag’s
product sheet [6]. Consequently, the lifetime requirement for
the application specified in the product sheet is confirmed.

However, the battery model used for lifetime estimation
is very simple and does not account for any battery effects.
The inaccuracy of the battery model has been determined
by using continuous discharge on models with data from the
Varta CRAA [19] and Tadiran SL-760 [18] batteries. Lifetime
simulation results have been compared to the battery data
sheets. For continuous drain the average error of the battery
model is 7.63%. Calculating the battery lifetime for the iQ-8
tag with Peukert’s formula (Cp = Ik × t) yields an error of
1.27%. However, the Peukert formula is inaccurate [14]. In
general, the accuracy for lifetime estimation can be improved
by using a more accurate battery model.

This example showed that our specification format is ca-
pable of accurately reflecting a higher class UHF RFID
tag’s application. Moreover, the automatic analysis of the
application and the generation of the demand model from the
specified duty cycle and the power profiles were demonstrated.
Typically the automatic requirements analysis and generation
of the verification environment does not exceed 30 seconds.
Simulation time mostly depends on the profile length and the
computational effort of the used battery model. For the i-Q8
UHF RFID tag the generation of the verification environment
took less than 15 seconds. Battery lifetime simulation with the
simple linear battery model takes approximately 5 seconds.

V. CASE STUDY OF LIFETIME REQUIREMENTS IN LANDING
GEAR MONITORING

As case study for lifetime estimation aircraft landing gear
monitoring has been chosen. In this application higher class
UHF RFID tags are used to monitor the brake temperature
of aircraft landing gear. The lifetime requirement is based
on the information from [9]. This means battery lifetime has
to be between 7 years and 12 years. We assume monitoring
each of the aircraft’s landing gears is performed independent
from other gears. In addition, for monitoring brake temperature
we further assume one higher class UHF RFID tag and one
interrogator per landing gear.

A. Use case and application specification

The ISO/IEC 18000-7:2008 standard [16] provides a de-
tailed description of the higher class UHF RFID tag’s com-
mand sequences. The use cases for the higher class tag are
specified in accordance to the ISO/IEC 18000-7:2008 standard
[16]. Additionally, a set of varying applications using a higher
class UHF RFID tag to monitor aircraft landing gear according
to [9] are specified. For all of the following landing gear
monitoring applications the aircraft is assumed to be on the
ground for two hours and in flight for two hours.

The readout sequence is illustrated at the top of Fig. 5.
A collection round is followed by a memory read command.

175

1

readout

10

readout

Application 1

1 hr 1 hr

on ground

Readout

starting sequence

10 min2.6 sec

sleep
10

sample
sleep sleep

10

readout

landing sequence

10 min

sleep
10

sample

1 hr 1 hr2.6 sec

sleep sleep

in flight

1

readout

5

readout

1 hr 1 hr

on ground starting sequence

5 min2.6 sec

sleep
5

sample
sleep sleep

5

readout

landing sequence

5 min

sleep
5

sample

1

readout

1 hr 1 hr2.6 sec

sleep sleep

in flight

Application 2

Application 3

2 hr

 on ground

sleep
1

sample

1

readout

retract landing gear in flight

2 hr

sleep

2.6 sec

sleep

extend landing gear

2.6 sec 2.6 sec10 sec

1

sample

1

readout

1

sample

1

readout

1

readout

Fig. 5. Different applications for aircraft landing gear monitoring

After the tag’s response to the memory read the sampling
interval is set. Then the sleep command sends the tag to a
low-power sleeping mode. After the given interval the tag
awakes, takes a temperature sample from the sensor, stores
it in memory and returns to sleep mode.

Three periodic event sequences for the application (see
Fig. 5) are specified. Their main difference is the number of
readouts per application. In addition, each of the three periodic
applications is extended with a random readout sequence.
For these random applications it is assumed that the ground
maintenance personnel performs zero to three readouts while
the aircraft is on the ground. This allows a comparison of
the six applications to determine which fulfills the minimum
lifetime requirement of more than seven years.

• Application one: The first application for brake tem-
perature monitoring features a readout sequence every
hour and a 10 minute readout sequence before start
and landing. During the 10 minute readout sequence a
collection round is started, the sensor data is read from
the memory and the new sample interval is set. The tag is
sent to sleep mode for one minute. After the previously
set interval the sample is taken and stored in memory.

• Application two: Instead of ten readouts during the start-
and landing sequences application two only performs five
readouts. Each readout is followed by a two minute sleep
period. Otherwise it is identical to the first application.

• Application three: In application three the number of
readouts has been reduced to only three readouts. One
sample is taken and read when the landing gear is
retracted after take-off. During flight the UHF RFID tag
is in sleep mode. When the landing gear is extended a
sample is taken and read. Then the tag is idle for 10
seconds and another sample is taken and read.

After specification of the use cases and different application
scenarios they are automatically analyzed. For each application
scenario a testbench for power estimation is generated.

B. Power estimation for the application scenarios

To estimate the power dissipation of our SystemC model of
an ISO/IEC 18000-7:2008 standard-conform higher class UHF
RFID tag we used the RHEiMS framework [17]. RHEiMS
uses statistical methods to estimate the power consumption
for a model by comparing it to a similar model stored in
its database. Therefore, input, output vectors and activity
are compared to the stored data and power consumption is
calculated. RHEiMS provides fast simulation at system level
and shows results with 1.5% accuracy from gate level [17].

To store values in the RHEiMS database, we use results
from the simulation model of an UHF RFID tag conform-
ing to the ISO/IEC 18000-7:2008 standard described in [1].
The model has also been implemented on a system-on-chip
(SoC) development platform [15]. Comparison of the power
consumption of the tag model and the SoC implementation
shows high accuracy with an average error of 2.57% [20].

Our SystemC model of the higher class RFID tag has been
simulated with RHEiMS. As a result, power profiles have
been determined for all scenarios of the applications. From
the specified duty cycles of all applications and the power
profiles the demand models are generated. The demand model
of each application is embedded into a separate verification
environment. Each demand model repeatedly executes the
application’s energy profile.

C. Lifetime simulation for the applications

The demand models are connected to the simple SystemC
battery model. The battery model is configured with data from
three different Lithium batteries with a shelf-life of 10 years.

• Varta CRAA with 2.0 Ampere-hours [19]
• Tadiran SL-760 with 2.2 Ampere-hours [18]
• Tadiran SL-2770 with 8.5 Ampere-hours [18]

Each application is simulated with these three batteries to
explore different battery sizes.

D. Results of the lifetime requirements verification

In table IV the results of the battery lifetime estimation for
aircraft landing gear monitoring are displayed. Column one
contains the application, column two the battery and column
three shows the tag’s lifetime with that battery.

The results clearly shows a trend in battery lifetime. The
lifetime requirement for each application could only be ful-
filled with the Tadiran SL-2770 (8.5 Ah) Lithium battery.

Taking into account errors from the battery model and the
power profiles application one has a lifetime of 7 years and
315 days. Thus application one with the Tadiran 8.5 Ah battery
fulfills the minimum lifetime requirement of 7 years. The
Tadiran SL-2770 battery has a shelf-life of more than 10 years.
This means with the Tadiran SL-2770 battery applications two
and three would also fulfill the minimum lifetime requirement.

Automatic generation of the verification environment, sim-
ulation and the verification of the battery lifetime requirement
was performed in under 20 seconds for each application and
battery. Thus, the capabilities of our methodology for rapidly
exploring different batteries are demonstrated.

176

TABLE IV
LIFETIME ESTIMATION RESULTS FOR AIRCRAFT LANDING GEAR

MONITORING

Application Battery Lifetime
Application 1 Varta 2.0 Ah 2 years 21 days
Application 1 Tadiran 2.2 Ah 2 years 96 days
Application 1 Tadiran 8.5 Ah 8 years 277 days
Application 1 random Varta 2.0 Ah 1 year 345 days
Application 1 random Tadiran 2.2 Ah 2 years 51 days
Application 1 random Tadiran 8.5 Ah 8 years 96 days
Application 2 Varta 2.0 Ah 2 years 313 days
Application 2 Tadiran 2.2 Ah 3 years 51 days
Application 2 Tadiran 8.5 Ah 12 years 54 days
Application 2 random Varta 2.0 Ah 2 years 232 days
Application 2 random Tadiran 2.2 Ah 2 years 329 days
Application 2 random Tadiran 8.5 Ah 11 years 83 days
Application 3 Varta 2.0 Ah 4 years 294 days
Application 3 Tadiran 2.2 Ah 5 years 104 days
Application 3 Tadiran 8.5 Ah 20 years 155 days
Application 3 random Varta 2.0 Ah 4 years 65 days
Application 3 random Tadiran 2.2 Ah 4 years 217 days
Application 3 random Tadiran 8.5 Ah 17 years 280 days

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a methodology to verify battery
lifetime requirements of higher class UHF RFID tags. It was
determined that the battery lifetime is highly dependent of the
application the RFID tag is used in. Therefore, we augmented
a use case format to specify hardware requirements. The use
case format is now capable to capture the target application
and its lifetime requirement. Our highly automated approach
generates a testbench for power estimation of the application
specified in the use case document. From the application’s
estimated power dissipation a verification environment is cre-
ated. With the verification environment and a battery model,
lifetime estimation and verification of the application’s lifetime
requirement is performed.

The presented methodology has been verified using digitally
measured power profiles of an existing higher class UHF RFID
tag. The lifetime verification results correspond to the tag’s
product sheet and calculated lifetime.

In a case study, lifetime requirements for aircraft landing
gear monitoring with a higher class UHF RFID tag have
been verified. Different periodic and random sampling and tag
readout sequences were specified as different applications in
our extended use case format. Power estimation and battery
lifetime estimation were performed for the specified applica-
tions. Due to the high degree of automation and fast simulation
speed different batteries could be explored rapidly. As a result,
a battery could be determined for which the higher class UHF
RFID tag fulfills the lifetime requirements of the landing gear
monitoring application.

Currently, we are investigating different battery models and
their impact on simulation speed and accuracy. In addition, we
plan to explore the effects of energy harvesting devices and
other energy sources with our methodology.

ACKNOWLEDGMENT

This project is funded by the Austrian Federal Ministry
for Transport, Innovation, and Technology under the contract
FFG 812424.

REFERENCES

[1] A. Janek, C. Steger, R. Weiß, J. Preishuber-Pfluegl, and M. Pistauer,
“Functional Verification of Future Higher Class UHF RFID Tag Archi-
tectures based on Cosimulation,” in Proceedings of the IEEE Interna-
tional Conference on RFID. IEEE, April 2008, pp. 336–343.

[2] EPC Global Inc., “EPC Radio-Frequency Idendity Protocols Class-1
Generation-2 UHF RFID Protocol for Communication at 860 MHz 960
MHz Version 1.1.0,” 2007.

[3] R. Lissel and J. Gerlach, “Introducing new verification methods into a
company’s design flow: an industrial user’s point of view,” in Design,
Automation & Test in Europe, Conference & Exhibition, 2007. DATE
’07. IEEE, April 2007, pp. 689–694.

[4] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi,
“Discrete-Time Battery Models for System-Level Low-Power Design,”
in IEEE Transactions on very large scae integration (VLSI) systems, vol.
Vol. 9. IEEE, October 2001, pp. 630–640.

[5] F. Simjee and P. Chou, “Accurate battery lifetime estimation using
high-frequency power profile emulation,” in Low Power Electronics
and Design, 2005. ISLPED’05. Proceedings of the 2005 International
Symposium on. IEEE, 2005, pp. 307–310.

[6] IDENTEC SOLUTIONS, http://www.identecsolutions.com/fileadmin/
user_upload/PDFs/product_sheets/ILR/EN/ID.0601.EN_i-Q8.pdf,
February 2009, last accessed - 12/03/2009.

[7] H. Bochmann, R. Kessler, and G. Schulze, “Current and Future De-
velopments in Tire Pressure Monitoring Systems,” Automobiltechnis-
che Zeitschrift (ATZ), 2005, reprint available at http://www.beru.com/
download/produkte/fachaufsatz_tss_3gen_e.pdf.

[8] C. Kolle, W. Scherr, D. Hammerschmidt, G. Pichler, M. Motz, B. Schaf-
fer, B. Forster, and U. Ausserlechner, “Ultra low-power monolithically
integrated, capacitive pressure sensor for tire pressure monitoring,” in
Sensors, 2004. Proceedings of IEEE. IEEE, Oct. 2004, pp. 244–247.

[9] B. Pátkai, L. Theodorou, D. McFarlane, and K. Schmidt, “Requirements
for RFID-based Sensor Integration in Landing Gear Monitoring - A Case
Study,” July 2007.

[10] T. Bahill and J. Daniels, “Using Object-Oriented and UML Tools for
Hardware Design: A Case Study,” Systems Engineering, vol. Vol. 6, pp.
28–48, 2002.

[11] A. Cockburn, Writing Effective Use Cases. Addison-Wesley Profes-
sional, 2001.

[12] C. Kirchsteiger, J. Grinschgl, C. Trummer, C. Steger, R. Weiß, and
M. Pistauer, “Automatic Test Generation From Semi-formal Specifica-
tions for Functional Verification of System-on-Chip Designs,” in Systems
Conference, 2008 2nd Annual IEEE. IEEE, April 2008, pp. 1–8.

[13] C. M. Kirchsteiger, C. Trummer, C. Steger, R. Weiss, and M. Pistauer,
“Automatic verification plan generation to speed up soc verification,”
NORCHIP, 2008., pp. 33–36, Nov. 2008.

[14] Ravishankar Rao and Sarma Vrudhula and Daler N. Rakhmatov, “Bat-
tery Modeling for Energy-Aware System Design,” IEEE Computer, vol.
VOL. 36, no. NO. 12, pp. 77–87, December 2003.

[15] A. Janek, M. Schöfelbauer, C. Steger, R. Weiß, J. Preishuber-Pfluegl,
and M. Pistauer, “Design and Implementation of a Power Aware Com-
munication Protocol for Active UHF RFID Tags based on Transceiver
SoC CC1110,” in European DSP Education and Research Symposium
2008, Proceedings. Texas Instruments, 2008, pp. 155–162.

[16] International Standardization Organization, “ISO/IEC 18000-7:2008 -
Information technology – Radio frequency identification for item man-
agement – Part 7: Parameters for active air interface communications at
433 MHz,” 2008.

[17] Neosera Systems Ltd., “http://www.neosera.com,” 2009, last accessed -
12/03/2009.

[18] Tadiran Batteries GmbH, http://www.tadiranbatteries.de/eng/downloads/
LITHIUM/pdc06engSL-760.pdf, last accessed - 28/11/2008.

[19] VARTA Microbattery GmbH, “http://www.varta-microbattery.com,”
2009, last accessed - 11/03/2009.

[20] A. Janek, “Architecture Design and Simulation of Energy Harvesting
Sensors,” Ph.D. dissertation, Graz University of Technology, 2008.

177

Specification and Automated Simulation-based
Verification of Power Requirements for

System-on-Chips
Christoph Trummer, Christoph M. Kirchsteiger, Christian Steger, Reinhold Weiß∗,

Markus Pistauer† and Damian Dalton‡
∗Institute for Technical Informatics, Graz University of Technology, Austria

email: (trummer, c.kirchsteiger, steger, rweiss)@tugraz.at
†CISC Semiconductor Design+Consulting GmbH, Austria

email: m.pistauer@cisc.at
‡School of Computer Science and Informatics, University College Dublin, Ireland

email: damian.dalton@ucd.ie

Abstract—Today’s advances in silicon integration density allow
more and more functionality to fit into a system-on-chip (SoC).
However, this has made power consumption the most critical
design constraint for system-on-chips (SoCs). Power consumption
especially affects portable devices as it influences battery lifetime.
Moreover, specification, design and verification of System-on-
Chips have become increasingly complex. In this work we present
a novel methodology which supports specification and automates
verification of power requirements through simulation and power
estimation. We demonstrate our approach on an example SoC.
Therefore, we specify power requirements for a higher class
radio frequency identification (RFID) tag. Then we automatically
generate test cases which allow to estimate the RFID tag’s power
consumption. To verify the power requirements we apply the test
cases to the system model in simulation.

I. INTRODUCTION

For today’s System-on-Chips (SoCs) power consumption
is the most important design constraint. It directly affects
system stability and battery lifetime of portable devices [1].
Consequently, power requirements are the most important non-
functional requirements. Due to the rising silicon integration
densities a SoC performs more functionality using the same
or even less chip area. In turn complexity increases for
specification, design and verification of SoCs. Particularly,
verifying that a system fulfills its requirements often takes
70% of the entire design effort [2].

Verification of power requirements is usually performed
through power estimation [1]. Test cases have to be derived
manually from the requirements which is laborious. Then the
test cases are applied onto the system to estimate its power
consumption. Finally, verification is performed by ensuring the
estimated power does not violate the constraints. To reduce the
effort of verification an automated flow is necessary.

In this paper we present a methodology for specification and
automated verification of power requirements. We introduce a
use case format for specifying power requirements. The semi-
formal nature of the format permits the automatic derivation
of test cases through semantic analysis. During simulation the

Analysis of

power

constraints

Automatic

test case

generation

Power

estimation

Use case

document

Verification

Time

Time

Step 1 shall not need more than 5 mW

Step 2 – Step 3 shall not consume > 6 mW

Use case 1 shall consume less than 15mW

Power Constraints

System
Use Case 1
Step 1
Step 2
Step 3

Time

Use case 1

Step 1 Step 2 Step 3

Use case 1

Step 1 Step 2 Step 3

Use case 1

Step 1 Step 2

FAILPASSPASS

Fig. 1. Principle of the Methodology for Verifying Power Requirements

generated test cases are applied to the system and invoke
a corresponding behavior. The power consumption of the
system’s behavior is estimated using RHEiMS, a fast system-
level power estimation tool [3]. The power estimation results
are automatically verified against the power requirements. In
fig. 1 the principle of our methodology is illustrated.

Our main contribution is a novel, self-contained methodol-
ogy from specification to verification of power requirements.
Further, we reduce complexity in requirements specification by
using a simple, structured use case format. By automatically
generating test cases to verify the power requirements the
verification effort is decreased as well.

Publication 4 - NEWCAS-TAISA 2009

This paper is organized as follows. Section II analyzes
related work in the area of specification and verification of
power requirements. In section III details about the use case
format and our verification methodology are explained. Our
approach is evaluated on a case study of a higher class RFID
tag (section IV). Finally, section V summarizes our work and
provides an outlook to future work.

II. RELATED WORK

A. Power requirements

Power requirements do not describe a behavior or func-
tionality. Consequently, power requirements are non-functional
requirements or constraints. At the time the requirements are
specified exact power consumption and constraints may not
be known. They need to be approximated or derived from
the power demand of similar systems, devices or protocols
[4], [5]. Power consumption affects battery lifetime, therefore
high-level power requirements often emerge from battery
lifetime requirements [6]. Sometimes power requirements are
expressed after knowledge of the system’s energy source and
power consumption is available [7]. Thus, power requirements
are constraints describing the maximum amount of power the
system is allowed to consume while performing a certain
operation.

B. Specification formats for power requirements

Power requirements are most commonly stated informally in
natural text: “The system shall consume less than 5mW” [7].
Often, this statement applies to the entire system and poses a
global constraint. High-level power constraints such as battery
lifetime are often expressed similarly: “The system’s battery
shall last 5 years for 600 read operations per day” [8]. This
statement can later be refined into specific power requirements.

Formal specifications are used to capture power require-
ments. In [9] power requirements are expressed informally and
later transformed into formal temporal logic expressions. A
well known formal specification format is the unified modeling
language (UML). UML is also used to specify requirements
in hardware design [10]. Non-functional requirements can be
included into the use case descriptions and diagrams [10].

The semi-formal use case format combines the structure
of formal use cases with informal textual expressions [11].
Functionality is described through a series of interaction steps
between the system and the actor(s) [11]. Similar to UML it
also allows to specify non-functional requirements.

C. Automatic test case generation from requirements

Due to the high complexity of SoCs it often has large
number of requirements. Manually writing test cases for
verification needs considerable amount of time and effort.
Therefore, it is desirable to automatically derive test cases
from the requirements. However, automated analysis requires
a specification format that is easy to parse and interpret.

In the software domain test cases can be automatically
generated from formal descriptions such as UML state ma-
chine diagrams [12]. For hardware designs test cases can be

automatically generated through semantic analysis of semi-
formal textual use cases [13]. The test cases are applied to
a model of the system in a hardware description language
during simulation. By monitoring the systems behavior and
its responses the requirements are verified [13].

D. Simulation-based verification of power requirements

Power requirements are usually verified by with power
estimation tools and simulation [1]. Traditionally, these tools
estimate power consumption by analyzing low-level models of
the system. This is accurate but also very time-consuming [1].
Recently, tools have become available that allow high-level
power estimation [1]. These tools are usually fast but not very
accurate. However, RHEiMS [3] a high level power estimation
tool uses special macro models to retain the accuracy from
lower abstraction levels while providing fast simulation results.

III. METHODOLOGY

A. Specification of power requirements

Power requirements are constraints imposed on functionality
which means the system has to perform under certain condi-
tions. In our case the system has to operate with limited power.
Therefore, a format is needed that captures both functional and
non-functional requirements. Due to their structured nature
semi-formal use cases strike a balance between readability
and automatic processing capabilities [13]. For verification of
power requirements the use case format has to be extended.
To specify power requirements two additional sections are
necessary. The local power requirements are a subsection of
the use cases which allow to assigning power constraints to a
single step or a series of steps. The global power requirements
section is used for constraints affecting one or more use
cases. The extended use case document comprises three main
sections: the use cases, the global constants and the global
power requirements.

The “Use Cases” section contains a series of all use cases.
The most important sections for each use case are (see [13]):

• Use case: the name of the use case
• Description: an informal abstract of the use case
• Scope: names the system the use case applies to
• Primary Actor: the external entity interacting with the

system
• Preconditions: preceding use cases leading to the current

use case
• Primary Scenario: the interaction steps which describe

functionality and may contain constants
• Alternative Scenarios: deviations from the primary sce-

nario for conditional branching into a separate series of
steps

• Local Power Requirements: power constraints for steps
of the use case

In the corresponding sections of the use case document
power requirements are specified in natural text. However, for
automated semantic analysis the text has to follow a certain
syntax.

TABLE I
EXCERPT OF A SAMPLE USE CASE DOCUMENT

Document: Specifications for an ISO18007 conform RFID tag
Use Cases:

Use case: COLLECTION_WITH_UDB
Description:

This use case describes the RFID tag receiving a
Collection with Universal Data Block command.

Scope: Tag
Primary Actor: RFID reader
Preconditions:

1a. The tag comes from the WAKEUP use case.
1b. The tag comes from the LISTENING use case.

Primary Scenario:
1. The tag receives a COLLECTION_UDB_COMMAND.
2. The tag identifies the UDB_TYPE.
3. The tag reads the MAX_PACKET_LENGTH.
4. The tag determines the WINDOW_SIZE.
5. The tag selects a RANDOM_SLOT.
6. The tag goes to the LISTENING use case.

Alternative Scenarios:
-

Local Power Requirements:
Step 2 - Step 4 shall not consume more than 30mW.
Step 5 shall dissipate less than 20mW.

Global Power Requirements:
COLLECTION_WITH_UDB should not consume more than 110 mW.

Global Constants:
Constant: COLLECTION_UDB_COMMAND

Parameter: COMMAND_CODE
Parameter: MAX_PACKET_LENGTH
Parameter: WINDOW_SIZE
Parameter: UDB_TYPE

Constant: WINDOW_SIZE
Parameter: @bit@15@0@

1. <Step> <Text> <Less/More> <Value> <Unit>
EXAMPLE:
Step 1 shall not dissipate more than 5,5mW.

2. <StepRange> <Text> <Less/More> <Value> <Unit>
EXAMPLE:
Step 1 - Step 3 shall consume less than 10mW.

A <Step> consists of the word “Step” and its number.
The <StepRange> is expressed by using “-” or “to” be-
tween two <Step> statements. For global power requirements
<UseCase> and <UseCaseRange> are used instead. <Text>
consists of a verb and an optional negation. In <Less/More>
written expressions or the smaller/greater characters (“<” or
“>”) can be used. For <Value> any integer or float is allowed
but instead of the decimal point a comma is used. The <Unit>
may contain a prefix for the magnitude and “W” for Watt.

B. Automatic generation of test cases for power estimation

To verify that a functionality does not violate its power con-
straint the associated power consumption has to be examined.
Consequently, we need to analyze the use cases, determine
constraints and generate a test case for estimating power.

The approach from [13] is extended to include power
requirements in automatic test case generation. The use cases
specify a series of interaction steps and state transitions.
From these specifications the test cases are generated. Then
the verification environment creates a test case schedule
considering their preconditions. During simulation it mimics
the actor and executes the schedule by sending messages

P
o
w
e
r

P
o
w
e
r

Fig. 2. Creating Power Profiles from Constrains and Power Estimation

to the system. This causes state transitions, changes internal
values and triggers responses from the system. The verification
environment monitors the system to verify that it operates
correctly (see [13]). When the test case schedule is created
local and global power requirements are written into a power
constraints profile. During execution of the test cases their
power consumption is estimated. To verify the system’s power
requirements the simulation time of the currently executed test
case is recorded. This allows the constraint to be linked to
the executed test case and its time frame. Fig. 2 shows the
verification environment and creation of the constraints profile.

C. Power estimation

The RHEiMS framework [3] is used to estimate power
consumption. It compares input, output and activity of the
current model to a similar model with known power val-
ues. Through case-based reasoning and statistical methods
RHEiMS calculates the power values for the current system. It
combines fast simulation with high accuracy (ca. 1.5% at sys-
tem level [14]). RHEiMS needs statements inside the system
model for accessing the input/output vectors. Consequently,
the system model is annotated with these statements before
simulation. When the verification environment and the system
model are simulated RHEiMS monitors activity and estimates
power consumption. Finally, a profile of the estimated power
consumption for each time step is created (see Fig. 2).

D. Verification of the power requirements

During verification each time frame of the estimated profile
from RHEiMS is analyzed. The power value is compared
to corresponding entry in the constraints profile from the
verification environment. When a violation of a local or global
constraint is detected use case, step and time are reported.

IV. CASE STUDY

We evaluate our methodology on a System-on-Chip imple-
mentation of a higher class ultra-high frequency (UHF) radio
frequency identification (RFID) tag. This RFID tag is based
on the ISO/IEC 18000-7:2008 [15] specifications and shall be
used for long-term temperature measurement.

TABLE II
POWER CONSTRAINTS FOR A HIGHER CLASS UHF RFID TAG

Use case Power constraint (mW) Duty cycle (s)
WAKEUP 50 2.5
COLLECTION_UDB 110 0.013358
LISTENING 50 0.05
READ_MEMORY 110 0.013948
GOTO_SLEEP 50 0.00588
SLEEPING 0.1 3597.33
SAMPLING 10 0.09

TABLE III
VERIFICATION RESULTS OF THE POWER CONSTRAINTS

Use case Estimated power (mW) Test case
WAKEUP 49.277 PASS
COLLECTION_UDB 46.361 PASS
LISTENING 42.998 PASS
READ_MEMORY 104.369 PASS
GOTO_SLEEP 49.304 PASS
SLEEPING 0.0952 PASS
SAMPLING 6.126 PASS

A. Use case specification

After analyzing the ISO/IEC 18000-7:2008 document the
semi-formal use cases are created (excerpt in table I). For our
application, the tag awakes every two minutes from sleep mode
to store a temperature sample in its memory. Once per hour a
RFID reader retrieves the logged samples from the tag.

To specify the power requirements we need to select a
battery and analyze the system’s lifetime. Therefore, a battery
with 2 Ampere-hours was chosen to achieve a minimum
lifetime of four years. Power constraints are derived from the
above duty cycle and battery lifetime. Since a high-level model
is used the power requirements are specified on a per use case
basis. Transmitting data usually consumes the most power.
Therefore, we set the power constraint in the corresponding
use cases to 110 mW. For the sleeping state less than 100 nW
shall be used. When the tag is active and receiving data the
constraint is 50 mW. Table II contains a summary of the power
requirements in the use case document.

B. Verification and results

The automatically created verification environment launches
test cases as specified in the steps of the use cases. For power
estimation we annotated our higher class UHF RFID tag model
with the RHEiMS statements to monitor its activity. Therefore,
we selected a similar model of a higher class ISO/IEC 18000-
7 UHF RFID tag [16] which was pre-characterized and stored
in RHEiMS. During simulation one duty cycle for each test
case is simulated. After simulation the results from power esti-
mation and constraints were compared automatically. Table III
contains the verification results of the power requirements. All
test cases were executed and fulfill the power constraints.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a methodology to specify and
verify power requirements. A semi-formal use case format was
extended to allow specification of power requirements. From
the use cases and power requirements, test cases are automat-
ically created. Through simulation and power estimation the
power requirements are verified.

On a case study of a system-level model of a higher
class UHF RFID tag our approach was demonstrated. The
power requirements were derived from battery lifetime and
specified in the use case document. After simulation and power
estimation the power requirements were successfully verified.

Currently, we elaborate our use cases into a lower level of
abstraction. Then, we will refine our model of a higher class
RFID tag into a more detailed RTL model. Finally, we plan to
verify the RTL model’s power requirements with our approach.

ACKNOWLEDGMENT

This project is funded by the Austrian Federal Ministry
for Transport, Innovation, and Technology under contract
FFG 812424.

REFERENCES

[1] D. Sunwoo, H. Al-Sukhni, J. Holt, and D. Chiou, “Early models for
system-level power estimation,” Microprocessor Test and Verification,
2007. MTV ’07. Eighth International Workshop on, pp. 8–14, Dec. 2007.

[2] R. Lissel and J. Gerlach, “Introducing new verification methods into a
company’s design flow: an industrial user’s point of view,” in Design,
Automation & Test in Europe, Conference & Exhibition, 2007. DATE
’07. IEEE, April 2007, pp. 689–694.

[3] Dalton, McCarthy, Quigley, and Leeney, “A system-level power evalua-
tion method,” Irish Patent PCT 31 498IESP, 2008.

[4] J. Taneja, J. Jeong, and D. Culler, “Design, modeling, and capacity plan-
ning for micro-solar power sensor networks,” Information Processing
in Sensor Networks, 2008. IPSN ’08. International Conference on, pp.
407–418, April 2008.

[5] F. Fereydouni Forouzandeh, O. Mohamed, and M. Sawan, “Ultra low
energy communication protocol for implantable body sensor networks,”
Circuits and Systems and TAISA Conference, 2008. NEWCAS-TAISA
2008. 2008 Joint 6th International IEEE Northeast Workshop on, pp.
57–60, June 2008.

[6] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi,
“Discrete-Time Battery Models for System-Level Low-Power Design,”
in IEEE Transactions on very large scae integration (VLSI) systems, vol.
Vol. 9. IEEE, October 2001, pp. 630–640.

[7] S. Mikami, T. Matsuno, M. Miyama, M. Yoshimoto, and H. Ono, “A
Wireless-Interface SoC Powered by Energy Harvesting for Short-range
Data Communication,” in Asian Solid-State Circuits Conference, 2005,
2005, pp. 241–244.

[8] IDENTEC SOLUTIONS, http://www.identecsolutions.com/, October
2008, last accessed - 31/1/2009.

[9] S. Ray, P. Dasgupta, and P. Chakrabarti, “Formal verification of power
scheduling policies for battery powered mobile systems,” India Confer-
ence, 2006 Annual IEEE, pp. 1–6, Sept. 2006.

[10] T. Bahill and J. Daniels, “Using Object-Oriented and UML Tools for
Hardware Design: A Case Study,” Systems Engineering, vol. Vol. 6, pp.
28–48, 2002.

[11] A. Cockburn, Writing Effective Use Cases. Addison-Wesley Profes-
sional, 2001.

[12] P. Samuel, R. Mall, and A. Bothra, “Automatic test case generation using
unified modeling language (uml) state diagrams,” Software, IET, vol. 2,
no. 2, pp. 79–93, April 2008.

[13] C. Kirchsteiger, J. Grinschgl, C. Trummer, C. Steger, R. Weiß, and
M. Pistauer, “Automatic Test Generation From Semi-formal Specifica-
tions for Functional Verification of System-on-Chip Designs,” in Systems
Conference, 2008 2nd Annual IEEE. IEEE, April 2008, pp. 1–8.

[14] Neosera Systems Ltd., “Rheims: Rapid hierarchical energy investiga-
tion modelling system,” http://www.neosera.com, 2009, last accessed -
31/1/2009.

[15] International Standardization Organisation, “ISO/IEC 18000-7:2008 -
Information technology – Radio frequency identification for item man-
agement – Part 7: Parameters for active air interface communications at
433 MHz,” 2008.

[16] A. Janek, C. Steger, R. Weiß, J. Preishuber-Pfluegl, and M. Pistauer,
“Functional Verification of Future Higher Class UHF RFID Tag Archi-
tectures based on Cosimulation,” in Proceedings of the IEEE Interna-
tional Conference on RFID. IEEE, April 2008, pp. 336–343.

Automated Simulation-based Verification of Power
Requirements for Systems-on-Chips

Christoph Trummer, Christoph M. Kirchsteiger, Christian Steger, Reinhold Weiß∗,
Markus Pistauer† and Damian Dalton‡

∗Institute for Technical Informatics, Graz University of Technology, Austria
email: (trummer, c.kirchsteiger, steger, rweiss)@tugraz.at
†CISC Semiconductor Design+Consulting GmbH, Austria

email: m.pistauer@cisc.at
‡School of Computer Science and Informatics, University College Dublin, Ireland

email: damian.dalton@ucd.ie

Abstract—Today power dissipation is the most important con-
straint for Systems-on-Chips (SoCs). Consequently, it is necessary
to consider power requirements for mobile, battery-powered
devices in which SoCs are often used. Power requirements
describe battery lifetime, power constraints and functionality to
enter different low-power states. Also, the power requirements
need to be verified beside functionality. However, to verify that the
complex SoC design fulfills its requirements needs considerable
effort. We introduce a methodology to reduce the verification
effort through a high degree of automation. Our novel approach
to verify battery lifetime, power constraints and the power aware
design comprises three parts. First, a semi-formal use case format
unifies specification of power and system requirements. Second,
these specifications are used to automatically derive test cases and
to generate a verification environment. Third, fast simulation and
power estimation are employed to verify battery lifetime, power
constraints and the power aware design against the requirements.

I. INTRODUCTION

Systems-on-Chips (SoCs) are typically used in mobile,
battery-powered devices. Process technologies below 100 nm
enable more functionality but also cause static power con-
sumption to rise [1]. Since power directly affects system
stability and battery lifetime it is the most important design
constraint for SoCs [2]. Consequently, battery lifetime and
power dissipation are considered non-functional requirements
imposing constraints on the system’s functionality. To reduce
power dissipation, design techniques are employed to turn
off inactive areas of the SoC, reduce supply voltages and
scale operating frequency. Functionality for power reduction
is part of the pervasive functions which are operations beyond
normal system operation [3]. Consequently, functionality to
reduce power does not directly contribute to the SoC’s main
functionality [3]. It is part of the power requirements.

The increase in the SoC’s functionality affects power dis-
sipation and contributes to complexity in specification, design
and verification. Particularly, verifying the numerous system
requirements often uses 70% of the entire design effort [4].

Traditionally, battery lifetime, power requirements and the
power design are verified at late design stages and inco-
herently. This has two reasons. First, to reduce the pre-
dominant dynamic power dissipation in process technologies

above 100 nm it was not necessary to add power design
information at early stages [1]. With the increase in static
power consumption the need arose to specify and verify power
design earlier [1]. Second, power estimation techniques are
inaccurate at the high levels of abstraction of early design
stages. With inaccurate power estimation results verification
of battery lifetime and power constraints remains vague.

Verifying of functional and non-functional power require-
ments at late stages has several disadvantages. Adding the
power aware design at stages (i.e. below Register Transfer
Level (RTL)) forfeits some of the potential to optimize power
reduction [5]. Late verification of the power aware design may
expose critical bugs too late which necessitates costly redesign.
Disregarding power consumption at early design stages may
result in unwanted power peaks which severely impact battery
lifetime and cause thermal issues. To compensate system insta-
bility from heat, costly and bulky cooling solutions have to be
deployed. Verifying battery lifetime early allows optimization
of battery size and helps in reducing costs. Additionally, early
estimation of power and battery lifetime benefits from fast
simulation speeds. Consequently, by applying power aware
design and verifying power requirements in early phases better
architectures are achieved and cost is reduced [5].

Our approach starts at the requirements phase and simplifies
specification through semi-formal use cases. The format uni-
fies specification of power requirements and the system’s func-
tionality. From these use cases semantic analysis automatically
generates test cases and a verification environment. During
simulation the verification environment launches the test cases
to trigger a corresponding behavior in the system design. With
a power estimation tool the power dissipation for the executed
behavior is calculated. From the power estimation results the
power constraints imposed on functionality are automatically
verified. Additionally, it is used to determine the lifetime for a
given battery which verifies the battery lifetime requirements.
By comparing the system’s power state during simulation to
the specification the power design is verified.

The main benefit of our methodology is the high degree
of automation during the verification process which reduces
the verification effort. The easily comprehensible, unified use

Publication 5 - To be published

case format reduces complexity in specification of power
requirements. Importantly, our methodology also facilitates
early verification of power constraints, battery lifetime and
power design to lower costs and the risk of late redesign.

This paper is organized as follows. In section II background
and related works about specification and verification of power
requirements are analyzed. Section III explains our methodol-
ogy in detail. Our approach is demonstrated on a case study
in section IV. Finally, section V summarizes our paper.

II. BACKGROUND AND RELATED WORK

A. Requirements specification for hardware design

Requirements can be expressed in different ways and are
often ambiguous, imprecise and misleading. Typically, require-
ments are specified informally in natural text which is easy to
read but ambiguous and difficult to process. In contrast, formal
requirements can be processed easily because of their clearly
defined structure. However, reading them without knowledge
of the syntax is difficult [6]. Semi-formal requirements are a
trade-off between readability and automatic processing [6].

Similar to the software domain the unified modeling lan-
guage (UML) can be used to specify requirements for hard-
ware design [7]. With an analysis model requirements are re-
fined into formal use case-, collaboration- and class-diagrams
[7]. Non-functional requirements can be included into the use
case descriptions and diagrams but lack a unified structure [7].

A semi-formal format to express use cases is introduced
in [8]. The use cases have a predefined structure similar to
UML but within the individual sections a series of steps and
interactions is expressed in natural language.

B. Power and battery lifetime requirements

Power requirements can be classified into functional and
non-functional requirements. Functional power requirements
specify functionality of the power design. From the speci-
fication the power design is created to reduce the system’s
power dissipation [1]. It can be described with two similar
design formats. The Unified Power Format (UPF) was recently
approved as IEEE 1801 Standard for Design and Verification
of Low Power Integrated Circuits [1]. Alternatively, the Com-
mon Power Format (CPF) is well-established in the industry
[9]. Both formats allow description and verification of the
power aware design independent of the Hardware Description
Language (HDL). However, as the power aware design does
not directly contribute to the SoC’s main functionality it is
often overlooked in specification [3].

Since power consumption affects battery lifetime, high-level
power requirements are often expressed as battery lifetime
requirements [10]. They are usually specified in terms of
minimum battery lifetime [10]. Some manufacturers specify
the lifetime for their device in a generalized application [11].

Power constraints limit the amount of power the system is
allowed to consume to perform certain functionality. When
the system’s functional requirements are specified details
about power consumption and constraints may be unknown.
Commonly, they are approximated from the power demand of

similar systems, devices or protocols [12], [13]. Sometimes,
power constraints are expressed after the system’s energy
source and power consumption become available [14].

C. Verification of non-functional power requirements

Power requirements are usually verified with power esti-
mation tools and simulation [15]. These tools estimate the
system’s power consumption by analyzing low-level models
which is accurate but also very time-consuming [15]. Recently,
tools for high-level power estimation have become available
[15], [16]. Due to rapid simulation speed at high levels of
abstraction these tools are often fast but not very accurate.

To verify lifetime requirements, battery lifetime needs to
be simulated or calculated with battery models. Many battery
models exist and vary in accuracy and calculation speed [17].
Commonly, battery models are simulated with a model of
the system or are connected to pre-recorded power profiles
to estimate their lifetime [10], [18].

D. Verification of functional power requirements

In general, verification of functional power requirements
comprises three steps. First, correct transition to each power
state is ensured. Second, it is verified that the system performs
correctly at the each power state. Third, the system design
has to behave properly when entering a power state [3]. Two
approaches use UPF to describe the power design and perform
simulation-based verification [2], [19]. The first approach [2],
focuses on specification of the power design and identifies
power related bugs simulation is able to expose. While in
[19], behavioral models for the power aware functionality are
simulated with a testbench and the system. However, the power
aware models and the testbench need to be created manually.

E. Automated verification platform generation from use cases

A verification platform can be automatically generated from
textual use cases [6]. A semi-formal use case format similar to
[8] is employed to capture functional requirements. Through
semantic analysis of the use cases a verification platform is
created automatically. It is used to verify a system model in a
HDL. During simulation the verification platform sends stimuli
derived from the use cases to the system model. This provokes
a behavior corresponding to the functionality described in the
model’s use case. By monitoring the model’s response and
state transitions the functionality is verified [6]. We extend
this approach to verify the different power requirements.

III. METHODOLOGY

Our methodology is oriented on the level of detail available
at different design stages. At early design stages the power
requirements are very abstract and expressed as battery life-
time requirements. When the system becomes more detailed
lifetime requirements are refined into power constraints and
imposed on the system’s functionality. Finally, the functional
design is detailed enough for the power design to be specified.
The functional power requirements are expressed as power
states which the system enters during a use case.

TABLE I
EXAMPLE OF AN Use Case

Use case: COLLECTION_UDB
Description:
This use case describes the tag receiving a
Collection with Universal Data Block command.
Scope: Tag
Actor: Interrogator
Preconditions:
1a. The Tag comes from the WAKEUP use case.
1b. The Tag comes from the IDLE use case.
Primary Scenario:
1. The Tag receives a COLLECTION_UDB_COMMAND.
2. The Tag identifies the UDB_TYPE.
3. The Tag reads the MAX_PACKET_LENGTH.
4. The Tag determines the WINDOW_SIZE.
5. The Tag selects a RANDOM_SLOT.
6. The Tag goes to the IDLE use case.
Alternative Scenarios:
-

Constants:
Constant: COLLECTION_UDB_COMMAND
Parameter: COMMAND_CODE
Parameter: MAX_PACKET_LENGTH
Parameter: WINDOW_SIZE
Parameter: UDB_TYPE
Constant: WINDOW_SIZE
Parameter: @bit@15@0@

A. Use case specification

The system’s requirements are refined into use cases as
explained in [6]. In the semi-formal use cases functional
requirements are expressed in natural text as step-wise inter-
actions between system and actor(s). To accommodate power
requirements the format from [6] is extended. The XML-
based use case document contains use cases, summarizes
sequences of use cases as applications and specifies the power
requirements. The use case document is structured as follows:

• Use Cases
• Applications

– Scenarios
– Duty Cycles

• Power Requirements
– Battery Lifetime Requirements
– Power Constraints
– Power State Requirements

The Use Cases section contains all use cases describing the
functionality of the system. The most important subsections
of each use case include the use case name, a description,
the scope, the actor(s), the primary scenario and alternative
scenario(s) (see table I). Scope refers to the system and
the actor specifies an entity interacting with it. The primary
scenario describes the step-wise interaction between system
and actor in natural text. The data exchanged in the interactions
is specified in the constants section. Each constant may contain
other constants or consists of a value, datatype and bit range.
If the value is unspecified it is randomized during simulation.

Table II shows the Application section where potential
applications for the system are described. Therefore, Scenarios
are created which contain sequences of use cases and steps.

TABLE II
EXAMPLE OF AN Application

Application: Sampling
Scenario: Sleep_mode
Use Case: STANDBY Step: 1@6
Use Case: IDLE Step: 1b1@1b4

Scenario: Collection_with_UDB_round
Use Case: WAKEUP Step: 1@4
Use Case: IDLE Step: 1@2
Use Case: COLLECTION_UDB Step: 1@12

Scenario: Receive_Sleep_Command
Use Case: SLEEP Step: 1@5

Scenario: Take_Sample
Use Case: WAKEUP Step: 1a1@1a4
Use Case: SAMPLE Step: 1@2
Use Case: SLEEP Step: 1a1@1a3

Scenario: Read_Memory
Use Case: READ Step: 1@13

Duty Cycle:
1. Take_Sample is executed 3600 times.
2. Sleep_mode is repeated for 1 hour.
3. Collection_with_UDB_round is executed once.
4. Read_Memory shall be executed once.
5. Receive_Sleep_Command is executed once.

TABLE III
EXAMPLE OF THE Power Requirements

Battery Lifetime Requirements:
For Sampling the Tag’s battery shall last for more than 4 years.
Power Constraints:
COLLECTION_UDB should consume less than 70 mW.
READ shall not consume more than 70 mW.
WAKEUP should not need more than 50 mW.
SLEEP shall not use more than 50 mW.
IDLE should dissipate less than 50 mW.
SAMPLE should not consume more than 7 mW.
STANDBY shall not need more than 100 nW.
Power State Requirements
While in STANDBY the Tag is ALL_OFF.
For WAKEUP the Tag goes to ALL_ON.
At READ, IDLE and COLLECTION_UDB the Tag is ALL_ON.
During SLEEP the Tag goes to ALL_OFF.
For SAMPLE the Tag is in SAMPLE_ON.

This simplifies specification as several use case sequences may
occur repeatedly. Also, it allows deliberately branching into the
alternative scenarios of a use case if the application demands
it. The Duty Cycles and Scenarios define an Application.

The Power Requirements section shown in table III specifies
Battery Lifetime Requirements, Power Constraints and Power
State Requirements. Battery Lifetime Requirements relate to an
Application for which a minimum battery lifetime is specified.
The Power Constraints are imposed on entire use cases or on
individual steps. Entries in Power State Requirements describe
the system’s power state during a use case. The functionality
to trigger a power state is described in the Use Cases. Each
power state is defined as a set of power domain supply states
which are specified similar to the constants.

B. Automatic generation of the verification environment

The sections of the XML-based use case document are
automatically parsed. Initially, actor, system and constants are
determined for each use case. Semantic analysis interprets and
classifies each sentence from the step-sequence to identify test

Simulation & Power Estimation

Schedule:
Take_Sample

WAKEUP
Testcase 1 – 4

SAMPLE
Testcase 1 – 2

SLEEP
Testcase 1a1 – 1a3

Sleep_mode
...

Verification Environment System Design

Transceiver

Controller

Memory Sensor

Timer

PMU

launch

Use Case power profile

COLLECTION
Power ProfileWAKEUP

Power ProfileREAD
Power Profile

Application energy profile

Read_Memory
EEEnergy
PPProfile

Sleep_mode
Energy
Profile

Take_Sample
Energy
Profile

Application energy profile

Read_Memory
EEEnergy
PPProfile

Sleep_mode
Energy
Profile

Take_Sample
Energy
Profile

Fig. 1. Simulation and power estimation

cases from the specified actions, exchanged data and state
transitions [6]. An action either provokes a transition to a step
or to another use case. During such a transition actor and
system may send and receive data which is determined by
the action and the constant. The direction in which the data
is sent is derived from the action, the system and the actor.
After the test cases are created they are scheduled according
to their appearance in the use case. A verification environment
containing the schedule is generated in SystemC. During
simulation it launches the scheduled test cases and triggers
a corresponding behavior in the system [6]. The verification
environment keeps track of simulation time, use case and
associated test cases, stimuli and system’s responses.

C. Power estimation

To estimate power and energy dissipation the RHEiMS
framework from Neosera Systems Ltd. [16] is used. It achieves
high estimation accuracy by utilizing pre-characterized values
from low-level power models stored in its database. Through
cased-based reasoning and statistical analysis of system activ-
ity and input vectors a power and energy profile is created
during simulation. Consequently, RHEiMS is used at system
level to benefit from fast simulation speeds while retaining the
high precision of low-level power estimation [16].

D. Verification of battery lifetime requirements

To predict battery lifetime the system’s power dissipation
for the application needs to be determined. Therefore, the
automatically generated SystemC verification environment is
connected to the system. The schedule of test cases is executed
according to the Scenarios of the Application. During simu-
lation the system reacts to the test cases by performing func-
tionality. A corresponding power consumption is estimated.

Resulting from power estimation with RHEiMS, a power
and energy profile is created for the executed sequence of
test cases. Power estimation is repeated until profiles exist for

Battery
model

Application energy
demand model

apply

Battery Lifetime Simulation

4 years

Requirement
Lifetime-

Verification Results

Application
energy profile

Simulated
lifetime

4 years,
66 days

Fig. 2. Battery lifetime verification

each Scenario of the Application. The profiles are comma-
separated-value (csv) files containing time-stamps and the
associated power or energy value respectively.

From the energy values of all scenarios and the specified
duty cycle a SystemC demand model of the specified appli-
cation is automatically generated. At each simulation time-
step the model repeatedly applies the application’s energy
pattern to the connected battery model. When the battery
model runs out of charge the simulation stops and simulation
time is verified against the specified battery lifetime for the
application. Since the SystemC demand model simply repeats
the demand pattern, simulation speed and estimation accuracy
only depend on the complexity of the battery model.

E. Verification of power constraints

After the battery lifetime is verified power constraints are
specified for the design. To achieve the battery lifetime and to
avoid power peaks and thermal issues the system’s functional-
ity has to fulfill power constraints. The power constraints can
be derived from the duty cycle and battery lifetime. They are
imposed on an entire use case or on individual steps.

To verify the specified power constraints the system is sim-
ulated with the verification environment and power estimation
is performed. All test cases for each use case are executed to
trigger a behavior in the system. Again, RHEiMS estimates
the corresponding power dissipation for the behavior.

After simulation the RHEiMS power profile for each use
case is analyzed automatically. The power value is compared to
the corresponding constraint in the Power Constraints section
of the use case document. If a violation is detected, use case,
step and the power value are reported.

F. Verification of power state requirements

The power aware design is implemented according to the
IEEE 1801 standard (UPF) parallel to the HDL system model.
It contains power domains, the power supply network, power
states and supply voltages. However, it can not be simulated
by itself. Therefore, an executable supply network is generated
to verify the power design. Information about modules, ports
and connections are extracted from the system. Then, the
power design is parsed and automatically translated into a
parallel hierarchy (Fig. 3). For each element in the power
aware design a corresponding module is created in SystemC.
Inside each module a monitor logs simulation time, power
states and supply information.

For the UPF supply ports SystemC modules are created
accordingly. Each module propagates its voltage level to the

UPF
Design
Power

Executable System & Power
Design

Transceiver
Controller

Memory Sensor

Timer

PMU

System Design
Transceiver

Controller

Memory Sensor

Timer

PMU Power
Switches

Executable Supply Network

Power
Switches PD4PD2

PD3PD1

generate

generate generate

Fig. 3. Automatic generation of the executable supply network

connected supply network as floating point value. If a supply
port is “off” or at ground negative infinite is assigned.

The power domains are translated into SystemC modules
containing the specified system modules as sub-modules. The
domain’s supply and ground are connected to the supply
network. A monitor constantly logs the domain’s supply state.

To switch between supply voltages and to deactivate do-
mains power switches are created. The switch is sensitive to
the signal of its controller module. Depending on the control
signal the switch applies a supply or “off” state to its output.

Finally, the specified supply network is used to connect the
newly generated power design modules.

When the verification environment launches test cases dur-
ing simulation different power states are entered. The mod-
ules in the executable supply network propagate their state
throughout the network. When the control signals for power
switches are applied the monitors inside each module log the
change in the supply network. After simulation the logged
events are automatically evaluated. For each use case iteration
the simulated power states are verified against the power
state requirements. Also, each power domain state, sequences
for control signals and supply states are compared to the
specification. A verification report informs the system designer
about discrepancies between simulation and requirements.

IV. CASE STUDY

To demonstrate our methodology we implement a SoC in a
case study. We design an active, higher-class RFID tag (HCT)
intended for a refrigeration monitoring application.

Initially, the ISO/IEC 18000-7 protocol [20] for higher-class
tags was analyzed. According to the protocol, use cases are
specified for the wakeup, collection with UDB, read and sleep
commands. Further, use cases for sampling, standby and idle
mode are created. As representative example, table I contains
the collection with universal data block (UDB) use case. The
use cases describe the tag’s functionality, state transitions and
interactions between RFID reader and tag.

After the use cases are specified the application to monitor
temperature is designed. Every second the tag takes a temper-
ature sample from the sensor and stores it in memory. Once
per hour an employee (or a machine) reads the temperature
samples in order to detect interruptions in the cooling chain.
Therefore, the wakeup command is sent and the HCT enters
idle mode waiting for further commands. With the collection
command the tag’s ID is determined. Retrieving all samples

TABLE IV
VERIFICATION RESULTS FOR THE POWER CONSTRAINTS

Use case Power constraint (mW) Power estimated (mW)
COLLECTION_UDB 70 46.36
READ 70 51.7
WAKEUP 50 49.28
IDLE 50 42.99
SLEEP 50 49.3
STANDBY 0.1 0.095
SAMPLING 7 6.12

from the tag’s memory would need excessive read operations
which would soon exhaust the tag’s battery. Instead only two
16 bit numbers for maximum and average temperature during
the last hour are read. Upon receiving a sleep command the
tag enters standby mode. Table II summarizes the application.

According to the use cases a system-level model of the
higher class tag is implemented in SystemC. It comprises
a transceiver, controller, timer, sensor, memory and power
management unit. A 2.2 Ah Lithium battery is chosen as power
source for our RFID tag. Four years is specified as minimum
battery lifetime requirement for the temperature sampling
application (table III). After generating the verification en-
vironment we started simulation and the test case sequence
was executed according to its schedule. RHEiMS produced
a corresponding energy profile for the application. From this
profile a demand model was generated and connected to a
simple, linear battery model. The model predicted a lifetime
of 4 years and 66 days and the verification report indicated
the battery lifetime requirement as successfully verified.

After knowing the power source the power constraints are
specified so the HCT meets its lifetime requirement. Therefore,
a power budget was calculated from the lifetime and the known
duty cycle. It designates the available amount of power per
hour. Transmitting data usually consumes the most power.
Consequently, the collection and read use cases were assigned
constraints of 70 mW. When the tag is active and receiving
data the constraint is 50 mW. For the standby state power is
restricted to less than 100 nW. Since sampling requires the tag
to be partially active for short periods it has a power constraint
of 7 mW. Table III contains the specified power constraints.
Again the automatically generated verification environment
is simulated with the tag’s model. This time the schedule
is executed on a per use case basis and the corresponding
power is estimated. The power profile is verified against the
specifications and the results are shown in table IV.

In the power state requirements three power states are
specified (see table III). During wakeup, collection, read or
in idle mode all power domains are on (ALL_ON). When the
tag receives a sleep command it enters the standby state and its
domains are off (ALL_OFF). Only the power management unit
remains active to control the power switches. To take a sample
the SAMPLE_ON state is entered activating the domains for
controller, sensor and memory while the transceiver remains
off. In total four power domains are specified. The power
aware design is implemented in UPF describing the supply
network, switches, power domains and power states. The

TABLE V
VERIFICATION RESULTS FOR THE POWER STATES

Use case Specified power state Simulated power state
COLLECTION_UDB ALL_ON ALL_ON
READ ALL_ON ALL_ON
WAKEUP ALL_ON ALL_ON
IDLE ALL_ON SAMPLE_ON
SLEEP ALL_ON ALL_ON
STANDBY ALL_OFF ALL_OFF
SAMPLING SAMPLE_ON SAMPLE_ON

executable supply network was generated from the power
aware design and simulation started. While the verification
environment applies test cases the monitors inside the supply
network track the system’s power states. An incorrect power
state could be detected (table V). After correcting the bug the
system was re-verified and succeeded.

To validate our results we compared the power model of
the ISO/IEC 18000-7 RFID tag in our RHEiMS database to
an equivalent implementation on a SoC development platform.
Analysis of the RHEiMS power model and measurements
from the SoC implementation shows high accuracy with
an average error of 2.57% which corresponds to the usual
precision of RHEiMS [16]. Calculating the battery lifetime
for the tag with the Peukert formula (Cp = Ik × t) yields an
error of 1.17% compared to the simulation result.

V. CONCLUSION

In this paper we present a methodology to verify power
requirements. Therefore, functional and non-functional power
requirements are specified in a semi-formal use case format.
Through semantic analysis test cases are derived automatically
from the use case document. All test cases are scheduled
inside a verification environment. During simulation the ver-
ification environment executes the test cases which triggers
a corresponding behavior in the system. While performing
this functionality the system’s power dissipation is estimated.
With the power estimation results and a battery model the
battery’s lifetime is predicted for an application and auto-
matically verified against the requirements. Similarly, power
constraints imposed on functionality are verified. To verify
functional power requirements it is ensured that the system
enters the specified power states. Therefore, an executable
supply network is generated from the power aware design
in UPF. When the verification environment applies the test
cases in simulation the system enters the power state. The
simulated power state is verified against the specified power
state. Finally, the designer receives a detailed report about
fulfilled or violated power requirements.

In a case study we apply our methodology to an SoC design
of an active RFID tag for temperature monitoring in a cooling
chain. Use cases are specified according to the ISO/IEC
180007 protocol for active tags. The lifetime requirement of
four years for the temperature monitoring application was
successfully verified. The power constraints for the individual
use cases were specified and verified against the requirements.
Finally, the executable supply network was generated from

the power aware design. By simulating the system and supply
network the specified power states were verified.

ACKNOWLEDGMENT

This project is funded by the Austrian Federal Ministry
for Transport, Innovation, and Technology under the contract
FFG 812424.

REFERENCES

[1] “IEEE Standard for Design and Verification of Low Power Integrated
Circuits,” IEEE Std 1801-2009, pp. C1–218, 2009.

[2] A. Crone and G. Chidolue, “Functional Verification of Low Power
Designs at RTL,” Lecture Notes in Computer Science, vol. 4644, pp.
288–299, 2007.

[3] B. Wile, J. Goss, and W. Roesner, Comprehensive Functional Verifica-
tion the Complete Industry Cycle. Elsevier/Morgan Kaufmann, 2005.

[4] R. Lissel and J. Gerlach, “Introducing new verification methods into a
company’s design flow: an industrial user’s point of view,” in Design,
Automation & Test in Europe, Conference & Exhibition, 2007. DATE
’07. IEEE, April 2007, pp. 689–694.

[5] W. Nebel, “System-Level Power Optimization,” Digital System Design,
2004. DSD 2004. Euromicro Symposium on, pp. 27–34, 2004.

[6] C. Kirchsteiger, J. Grinschgl, C. Trummer, C. Steger, R. Weiß, and
M. Pistauer, “Automatic Test Generation From Semi-formal Specifica-
tions for Functional Verification of System-on-Chip Designs,” in Systems
Conference, 2008 2nd Annual IEEE. IEEE, April 2008, pp. 1–8.

[7] T. Bahill and J. Daniels, “Using Object-Oriented and UML Tools for
Hardware Design: A Case Study,” Systems Engineering, vol. Vol. 6, pp.
28–48, 2002.

[8] A. Cockburn, Writing Effective Use Cases. Addison-Wesley Profes-
sional, 2001.

[9] The Power Forward Initiative (PFI), “A Practical Guide to Low-Power
Design - User Experience with CPF,” pp. 1–281, 2008.

[10] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi,
“Discrete-Time Battery Models for System-Level Low-Power Design,”
in IEEE Transactions on very large scae integration (VLSI) systems, vol.
Vol. 9. IEEE, October 2001, pp. 630–640.

[11] IDENTEC SOLUTIONS, http://www.identecsolutions.com/fileadmin/
user_upload/PDFs/product_sheets/ILR/EN/ID.0601.EN_i-Q8.pdf,
February 2009, 5/9/2009.

[12] J. Taneja, J. Jeong, and D. Culler, “Design, modeling, and capacity plan-
ning for micro-solar power sensor networks,” Information Processing
in Sensor Networks, 2008. IPSN ’08. International Conference on, pp.
407–418, April 2008.

[13] F. Fereydouni Forouzandeh, O. Mohamed, and M. Sawan, “Ultra low
energy communication protocol for implantable body sensor networks,”
Circuits and Systems and TAISA Conference, 2008. NEWCAS-TAISA
2008. 2008 Joint 6th International IEEE Northeast Workshop on, pp.
57–60, June 2008.

[14] S. Mikami, T. Matsuno, M. Miyama, M. Yoshimoto, and H. Ono, “A
Wireless-Interface SoC Powered by Energy Harvesting for Short-range
Data Communication,” in Asian Solid-State Circuits Conference, 2005,
2005, pp. 241–244.

[15] D. Sunwoo, H. Al-Sukhni, J. Holt, and D. Chiou, “Early models for
system-level power estimation,” Microprocessor Test and Verification,
2007. MTV ’07. Eighth International Workshop on, pp. 8–14, Dec. 2007.

[16] Neosera Systems Ltd., “RHEiMS: Rapid Hierarchical Energy Investiga-
tion Modelling System,” http://www.neosera.com, 2009, 5/6/2009.

[17] Rao, R. and Vrudhula, S. and Rakhmatov, D. N., “Battery Modeling
for Energy-Aware System Design,” IEEE Computer, vol. VOL. 36, no.
NO. 12, pp. 77–87, December 2003.

[18] F. Simjee and P. Chou, “Accurate battery lifetime estimation using
high-frequency power profile emulation,” in Low Power Electronics
and Design, 2005. ISLPED’05. Proceedings of the 2005 International
Symposium on. IEEE, 2005, pp. 307–310.

[19] F. Bembaron, S. Kakkar, R. Mukherjee, and A. Srivastava, “Low Power
Verification Methodology Using UPF,” in Conference on Electronic
Systems Design and Verification Solutions, DVCON, 2009, pp. 228–233.

[20] International Standardization Organization, “ISO/IEC 18000-7:2008 -
Information technology – Radio frequency identification for item man-
agement – Part 7: Parameters for active air interface communications at
433 MHz,” 2008.

A Component Selection Methodology for IP Reuse
in the Design of Power-Aware SoCs Based on

Requirements Similarity
Christoph Trummer, Christoph M. Kirchsteiger, Christian Steger, Reinhold Weiß∗,

Andreas Schuhai, Markus Pistauer† and Damian Dalton‡
∗Institute for Technical Informatics, Graz University of Technology, Austria

email: (trummer, c.kirchsteiger, steger, rweiss)@tugraz.at
†CISC Semiconductor Design+Consulting GmbH, Austria

email: (a.schuhai, m.pistauer)@cisc.at
‡Neosera Systems Ltd., Ireland

email: damian.dalton@neosera.com

Abstract—To counter today’s rising complexity in System-on-
Chip (SoC) design intellectual property (IP) cores are reused.
In libraries often many different pre-designed components are
available and selecting suitable IP is difficult and laborious.
Power consumption is a key constraint in mobile devices, where
SoCs are often used. Therefore, it is important to consider power
when selecting components for reuse in the current SoC design.
This paper introduces our approach to support component search
and selection. Initially, a repository and container for IP is
presented. Onto our repository the novel component selection
methodology is applied. It considers constraints and properties
of IP. Then it performs a similarity analysis between system and
component requirements. The result is a ranking of the best-
suited components for reuse in the current system under design.
To demonstrate our approach a case study is performed on a
SoC. With our methodology ranking of components matching
the system requirements and constraints is generated. Our work
is part of the SIMBA1 project which focuses on simulation-based
requirements testing of power-aware SoCs.

I. INTRODUCTION

A System-on-Chip (SoC) is a system consisting of a mul-
titude of different components integrated on a single chip [1].
During the design of today’s System-on-Chips (SoCs) engi-
neers are faced with continuously increasing complexity. As
a result of the high silicon integration densities more and
more functionality uses the same or even less chip area.
Consequently, the industry is facing two important issues.
First, the productivity of system designers cannot keep up with
the increasing SoC complexity (design-productivity gap) [2].
Second, power dissipation rises as dynamic and especially
leakage power increase with the reduction of SoC area [3], [4].

These issues are solved by reusing IP components and by
applying power-aware methodologies in SoC design. However,
information about the IP core’s power dissipation is needed
early in the design flow. Early, system-level power estima-
tion permits the identification of critical parts of the design.

1The Simulation-based Requirements Testing of Power Aware SoCs
(SIMBA) project is funded by the Austrian Federal Ministry for Transport,
Innovation, and Technology under the contract FFG 812424.

Low similarity

High

similarity

High

similarity

Bus-UC check_busfree

Bus-UC bus_read

Bus-UC bus_write

Bus use cases

RAM-UC write

RAM-UC read

RAM-UC standby

RAM use cases

Sys-UC storesample

Sys-UC readsample

Sys-UC idle

System use cases

Fig. 1. Similarities between system and component use cases

The power demand can be decreased by choosing different
components and by applying power-aware design techniques.

When reusing IP the main difficulty is to find and select
components which are best suited for the current system under
design. This is the so-called component selection problem [2].
To find the proper IP system engineers need to select compo-
nents which contribute to fulfill the system’s requirements and
satisfy its constraints. Due to the many functional requirements
and the complexity of the SoC under design this is not a trivial
task. Available third-party or legacy IP may consist of different
implementations, formats and vary in available information.
Manually finding suitable components in this incoherent set of
IP needs considerable time and effort. The set of available IP
may also be large which complicates manual search even more.
Consequently, an automated approach to search and select the
appropriate component is highly desirable.

Our contribution comprises two parts. First, parameters
for IP selection are investigated to serve as basis for our
IP container and repository. Second, we propose automated
matching and selection of IP components from this repository.

IEEE SysCon 2009 —3rd Annual IEEE International Systems Conference, 2009
Vancouver, Canada, March 23–26, 2009

9781-4244-3463-3/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on October 8, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

Publication 6 - SysCon 2009

Our approach is based on similarities in the IP’s requirements
and the requirements of the system under design. Fig. 1
illustrates the main idea behind our approach. The result
is a ranked list containing components which correspond to
the system’s functionality and match the given constraints.
Extensive research in related work about component selection
allows us to believe that our approach is the first to use
automated similarity analysis of requirements.

This paper is organized as follows. In section II related
works on component selection, requirement formats, similarity
analysis and IP representation are investigated. Section III
explains our IP repository and components. The next section
(IV), describes the component selection methodology using
search space reduction and similarity analysis is described. Our
methodology is demonstrated on a case study in section V.
Finally, section VI summarizes our approach and outlines
future work.

II. RELATED WORK

A. Hardware requirement specification formats

Requirements can be expressed in many different ways.
They are often ambiguous, imprecise and misleading. Most
commonly requirements are specified informally, in natural
text. Natural text is easy to read but is usually ambiguous
and difficult to process automatically. Whereas formal require-
ments have a clearly defined structure and can be processed
easily. However, understanding them is difficult without prior
knowledge of the syntax [5]. Semi-formal requirements such
as textual use cases are a trade-off between readability and
automatic processing capabilities [5].

In the software domain the unified modeling language
(UML) has been widely used to provide a common and concise
way to express requirements. In [6] the authors present a
methodology which uses the UML to specify requirements
in hardware design. Non-functional requirements can also be
included into the UML descriptions and diagrams [6].

Semi-formal use cases contain a predefined structure which
consists of a series of steps and interactions expressed in
natural language [7]. This structured, textual use case format
format is similar to the UML use cases described in [6].
Moreover, the semi-formal use case format can be used to
express hardware requirements [5].

B. Component selection

The target of component selection is to find a subset
of components matching the system’s functionality and its
constraints [2], [8]. Methodologies have been researched in
both the hardware and software domain.

Some of these methodologies for component selection use
similarity analysis of the component’s implementation and/or
its interface definitions [9], [10]. Others rely solely on query-
ing for keywords which describe functionality and constraints
[8], [11]. A more sophisticated approach uses fuzzy logic for
keyword and constraints matching to select components [2].

Few approaches exist which include requirements for se-
lecting components. However, they either rely on a manually

created matrix that links similar requirements [12] or on
complex additional specifications [10].

From the related works it is apparent that the most important
criteria for selecting suitable components is functionality [2].
Additionally, system constraints especially power and delay as
well as implementation details (e.g. architecture, technology)
need to be considered when selecting IP for SoC design [11].
The IP component itself needs to be linked with the additional
information and has to be archived and managed.

C. Textual similarity analysis

Various textual similarity analysis approaches exist. A few
exemplary methods will be mentioned as evaluating all ap-
proaches is beyond the scope of this work.

A common approach is to use word occurrence to deter-
mine text similarity [13]. Thereby, keyword occurrence in
documents is analyzed and compared based on a vector space
model and information retrieval methods [13]. However, if the
sentences are expressed differently by using synonyms very
low similarities are reported.

A similar approach analyzes the documents on a per sen-
tence basis [14]. Each word is represented by an integer hash-
code which makes comparing sentences very fast. Two equal
sentences have the same integer sum. Similarity of sentences is
detected by comparing the intersections of their sets of unique
words [14]. By representing the words as integers the approach
is able to perform a fast similarity analysis.

The approach described in [15] uses natural language
processing techniques to detect similarities in documents.
Therefore, syntactic and semantic evaluation is performed.
Additionally, the frequency of word occurrences is also taken
into account for similarity analysis [15].

D. IP representation formats

Many different formats exist for representation of IP [16].
Most electronic design and automation (EDA) companies have
their own proprietary standard or format. This means over
time a collection of legacy, third-party and in-house IP is
formed. Searching in such an inhomogeneous set of different
IP formats with varying details and representations is very
difficult and laborious.

Recently, a common format for IP component representation
and exchange was introduced by the SPIRIT Consortium.
The SPIRIT IP-XACT format uses the extensible markup
language (XML) and describes intellectual property for de-
velopment, implementation and verification [17]. IP-XACT is
tool-independent and flexible as it can be augmented with
additional information [17], [18].

III. IP REPOSITORY AND COMPONENT DESIGN

In the first part of this section the structure of a IP container
to store and search for an IP component is explained. The
following subsections describe the component and the semi-
formal use case format used in similarity analysis.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on October 8, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

A. IP repository

To be able to find the IP core for reuse in the current
design we first need to define a repository where it can be
archived. Apart from being able to store and manage the many
different components it also needs to support categorization,
classification and description of IP. Within this repository
searching is necessary to retrieve and select the IP.

Therefore, the IP repository L is defined as a hierarchical
set of categories K.

L {K1,K2,K3, ...,Km} (1)

Each set of categories K may contain a hierarchy of further
categories or components C.

K {Ki,Ki+1, ...,Kn, C1, C2, ..., Cj} (2)

To efficiently find and select suitable IP components each set
L, K and C is defined as unique entity.

B. Components

Components need a representation that includes functional
and non-functional information (e.g. constraints, documenta-
tion). Functionality is described in the IP component’s source-
code and its requirements document. Extracting functionality
out of source code in different hardware description languages
(HDLs) needs complex semantic analysis. Additionally, the
analyzed functionality needs to be classified to enable search-
ing for it. Consequently, a language-independent, additional
description of the component’s behavior is necessary. To avoid
additional complexity and effort we suggest to use the already
existing requirements document. In our case requirements are
expressed in structured semi-formal use cases.

With non-functional information the situation is more com-
plex. The information may not be available or incomplete since
the IP component can be legacy IP, from a third party or may
be still under development.

In short, a component is a collection of information which
has to be archived in the repository for management and later
use. We define such a collection of an IP core and its related
data as component. However, it is not assumed that each
component C is complete since all information may not be
available. Consequently, the component C can be defined as
a set of use cases, HDL source-code, verification-related data
(VIP), documentation, constraints and properties.

C {UC,HDLcode, V IP,Doc, Const, Prop} (3)

Within UC the component’s requirements are stored as a set
of semi-formal use cases (refer to subsection III-C).

The HDLcode is a set of files containing the component’s
source-code in a hardware description language. Verification
IP (V IP) similarly comprises testbenches, results and addi-
tional verification-related documents.

The documentation (Doc) consists of a mandatory brief
description of the component in natural text. Optionally,
additional documents such as application notes and code-
documentation can be included in Doc.

TABLE I
HIGH-LEVEL USE CASE - WRITING TO A SRAM

Name: WRITE
Description:

This use case describes a write operation to the static RAM.
Primary actor: Memory controller
Supporting actor: -
Trigger:

1. The SRAM receives the WRITE_ENABLE_COMMAND.
Primary Scenario:

1. The SRAM receives the WRITE_COMMAND.
2. The SRAM receives the ADDRESS.
3. The SRAM receives the DATA.
4. The SRAM writes the DATA to the ADDRESS.
5. The SRAM sends the ACKNOWLEDGE.
6. The SRAM goes to the OUTPUT_DISABLE usecase.

Alternative Scenarios:
Alternative Scenario 1

1a_1. The SRAM receives the WRITE_DISABLE_COMMAND.
1a_2. The SRAM sends the ACKNOWLEDGE.
1a_3. The SRAM goes to the OUTPUT_DISABLE usecase.

Constants:
ADDRESS=@bool[14:0]
DATA=@bool[7:0]

The constraints Const comprise maximum and average
values for power and delay. Since some or all entries for the
constraints may not be available Const is entirely optional.

The properties (Prop) contain keywords and informations
about architecture and technology. The architecture field con-
tains information about structural specifics (e.g. serial/parallel,
synchronous/asynchronous). Moreover, it describes the im-
plementation’s level of abstraction (e.g. system-level, register
transfer level). Technology specifies the library used for syn-
thesis and power estimation. These are optional entries as they
may not be available yet.

We found that the IP-XACT format would be well-suited
to represent our IP container. Due to its flexibility it can
be extended to accommodate all information of C. Its XML
format allows easy parsing and processing of the stored data.

To determine a component’s power dissipation the RHEiMS
power estimation framework from Neosera Systems Ltd. [19]
is used. RHEiMS employs statistical methods and case-based
reasoning to estimate power. It compares similarity of input
and output of the current component to a similar component
with known power consumption [20]. Thereby, it is capable
of rapidly estimating the component’s power dissipation.

The results are stored in the power entries of the Const field
in C and taken into account when selecting the component.

C. Use case format

We refine requirements into semi-formal use cases as de-
scribed in [7], [5]. The use cases describe interactions between
a system (or component) and its environment. Thus, the
functionality of a component is entirely described by the set
of all its use cases. The semi-formal use cases can contain
both functional and non-functional requirements. They are
structured into several sections which contain natural text.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on October 8, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

Component A use cases

Ranked Results

1. Component A

2. Component B

3. Component C

Keyword

Search

Property &

Constraints

filter

Evaluate

Results

Similarity

Analysis

Component A Component B

Component A Component B Component D

IP Repository

analyze

Component C

Components with keyword occurce

Component C

Components matching the constraints

Component B use cases

Component C use cases
System use cases

UC1 UC2 UC3
UC1 UC2 UCN

...

Fig. 2. Component selection methodology

The most important sections of each use case include the
use case name, a brief description, the actor(s), the primary
scenario and alternative scenario(s) (see table I). With the use
cases high level requirements can be expressed and further
refined into low-level requirements. Due to its structure the
semi-formal use cases can be processed easily which is ideal
for fast search (see also [5]). Our use cases are stored in XML
which complements its structure.

IV. METHODOLOGY FOR COMPONENT SELECTION

Our component selection methodology comprises two
phases. First, it filters all available components based on
keywords and non-functional information. Second, similarity
analysis of the individual use cases is applied to the remaining
components to determine the most suitable. Fig. 2 illustrates
the concept of our component selection methodology.

A. Keyword search and filtering

Since an exhaustive similarity analysis over all available
components is computationally intensive, it is desirable to
reduce the search space. The difficulty is to remove unsuitable
components from the search without inadvertently removing
useful ones. Consequently, we evaluate components based
on simple keyword occurrence and generate a ranking. The
better the component matches the search criteria the higher its
rank. Keywords are searched in the properties, the use case
description and the component description.

f(keywords) : L→ R (4)

System

Functionality

Component B

Functionality

Component A

Functionality

Component C

Functionality

Fig. 3. Functional similarities between components and system

R {keywords ∈ Ci, ..., keywords ∈ Cj} (5)

We reduce the search space even further by removing unsuit-
able architectural implementations or components not match-
ing power and timing constraints.

g(Const, Prop) : R→ R′ (6)

R′ {(Const, Prop) ∈ Ck, ..., (Const, Prop) ∈ Cl} (7)

After keyword search and filtering by constraints Const
and properties Prop (e.g. architecture) we receive a set of
components. Onto this set R′ the similarity analysis is applied.

To retrieve a list of all potentially suitable components for
the system keyword search may be omitted. Since constraints
or implementation details for a component may not be known
in early design stages filtering is optional as well.

B. Similarity analysis
A suitable component for the system needs to be able per-

form some of its functionality. Therefore, functionality of the
system and the component is overlapping. Consequently, the
overlapping functionality can be performed by the respective
component. Fig. 3 schematically displays three functionally
different components and the target system. The larger the
overlapping area the more functionality of the system can be
performed by the component. The more the functionality of the
component corresponds to the system’s functionality the better
it is suited for the system. In our case, functional requirements
are independently expressed in the system’s use cases and in
the component’s use cases. For this reason parts of the system’s
use cases and the component’s use cases are very similar.

We exploit this commonality by applying similarity analysis
h on the use cases of each component in R′. The function h
compares all use cases of the system under design to each
use case of the components in R′. This produces a list of
components with the highest similarity to the system’s use
cases. The algorithm used in similarity analysis compares
sentences for their similarity and is described in [14].

After determining the use cases with the highest simi-
larity a ranking for similarity analysis is calculated for the
components. Use cases from components showing less than
55% similarity are thereby discarded as they show too little
resemblance to the system’s functionality.

h(UCsystem) : UCcomponent ∈ R′ → R′′ (8)

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on October 8, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

The previous ranking of components R′ is updated with the
new information from similarity analysis. The new set R′′ now
contains the final ranked list of components. This ranking
contains the best suited components for the system under
design.

V. CASE STUDY

In this section we demonstrate our component search
methodology on a case study. An IP repository was created and
filled with components. The following subsections describe the
system and two cases in which methodology is applied.

A. System-under-design

As example for a SoC we consider a small system for
temperature monitoring. The system is capable of measuring
ambient temperature and digitizing the temperature samples.
For long term monitoring the system stores the samples into
its memory. Internal communication is performed by sending
data over a bus. A higher class radio frequency identification
(RFID) tag [21] could be an application for such a system.

Based on the system’s functionality potentially suitable
components are a temperature sensor, an analog-digital con-
verter (A/DC), a bus, a memory and a controller. The func-
tional requirements of the system-under-design are expressed
by three high-level use cases.

1) Storesample, on wake-up the system sends a query over
the bus, reads the output of the A/DC and stores it in
the memory.

2) Retrievesample, on a command the system sends a query
over the bus and reads the sample from the memory.

3) Idle, the system is idle until a timer interrupt occurs or
it receives an external command.

Our sample IP repository comprises 15 different components
typically used in SoC design. All components consist of dif-
ferent data, constraints, properties and use cases. Information
on some components is left partially incomplete to represent
legacy or third party IP. Some components are able to perform
the same functionality. Not all components would be suitable
for the target system under design.

To select components for the above system we consider two
cases. In the first case we want to select suitable components
based on their functionality. The search for suitable IP is
conducted without constraining the search space. All use
cases of the components in the repository are analyzed for
their similarity to the system. The second case describes the
selection of a specific component. In this case it is a suitable
memory component. The search space is reduced by applying
the filter to the components in the repository. Then the use
cases are analyzed to select the best suited memory component
based on its functional similarity.

B. Case 1 - Functionality search

In this example we perform a similarity analysis h over all
component use cases. This means the system’s idle, storesam-
ple and retrievesample use cases are compared to all use cases
of the components in the repository.

TABLE II
FUNCTIONALITY SEARCH - RESULTS SIMILARITY ANALYSIS

Component #UC #UC #UC #UC #UC
55-60% 60-65% 65-70% 70-75% 75-80%

ADC 0 0 0 0 3
ComparatorA 0 0 0 0 0
ComparatorD 2 0 0 0 0

DAC 0 0 0 0 3
EEPROM 0 1 0 0 2
FLASH 1 0 2 0 0
I2C bus 0 2 0 1 0
RAM_A 1 0 2 0 0
RAM_B 0 0 2 0 0

RndNumGen 0 2 0 0 0
EPROM 0 2 0 0 0

SimpleBus 0 0 1 0 0
TempSensorA 0 2 0 0 0
TempSensorD 0 0 2 1 0

Timer 1 0 1 1 0

Table II shows the number of component use cases with the
highest similarity (in %) to the system use cases. The higher
the similarity the more functionality of the IP corresponds to
the functionality of the target system. From this list a ranking
of the five most suitable components is calculated.

1. A/DC
1. D/AC
2. EEPROM
3. TempSensorD
4. I2C bus
4. Timer
5. FLASH
5. RAM_A

The above list displays the ranking from the most suitable
to the least suitable component based on its functionality.
In fact almost all components would be suitable for our
system. The A/DC component converts analog samples into
digital values. TempSensorD is a digital temperature sensor
with built-in analog to digital conversion. The EEPROM,
FLASH and RAM_A memories store the temperature data.
Bus functionality is covered by the I2C component and the
timer’s interrupts awake the system from its idle state.

The only exception is the digital-analog converter (D/AC)
which does not fit into the system under design. However, at
high level the component’s functionality is very similar to the
A/D converter and therefore, it receives the same ranking.

Although, similarity analysis of use cases is capable of
selecting functionally suitable components it is advisable to
narrow the search space. Firstly because the exhaustive search
is computationally intensive. Similarity analysis over our small
set of IP is quite fast (ca. 30 sec) but speed decreases with the
size of the repository. Secondly, false positives can be better
avoided by providing additional parameters for selection.

C. Case 2 - Specific component search

To show selection of a specific component for the system-
under-design our entire methodology is applied. The compo-
nent we want to select from the set of components is a memory
allowing to store and retrieve sensor data.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on October 8, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

TABLE III
RANKED RESULTS FOR COMPONENT SEARCH

Ranked set Ranked set Ranked set
after f after g after h

1. RAM_B 1. RAM_B 1. EEPROM
2. RAM_A 2. EPROM 2. FLASH
2. EPROM 2. EEPROM 2. RAM_B

2. EEPROM 2. FLASH 3. EPROM
2. FLASH - -

The initial search f(′memory′) returns a ranked subset of
five components which contain the “memory” keyword. The
intermediate results are displayed in column one of table III.
As additional constraints for the filter g we choose not to limit
architecture but to keep power consumption low. The filter
g(′maxpower < 200e−3′) excludes components dissipating
more than 200mW. The remaining components are displayed
in the column two of table III. Finally, similarity analysis h
is applied and the ranked results for the search of a memory
component are listed (table III).

The resulting components are memory components with
less than 200mW of maximum power dissipation. Although
the EPROM cannot be written to except for reprogramming it
achieves some similarity. This is because part of its function-
ality (i.e. read) overlaps the system’s functionality.

The ranking should serve as a guideline for the system
designer to support in selecting components. However, the
designer has to make the final decision based on the suitability
and additional information (i.e. verification summary).

VI. CONCLUSION AND FUTURE WORK

In this paper we presented an approach to search and
select the best suited components for a given System-on-Chip
design. Initially, crucial parameters for successful selection
of IP were identified. With regards to these aspects an IP
container and repository were designed. To select the most
suitable IP from the repository a similarity-based approach
was introduced. Our methodology exploits the fact that the
component’s functionality is described in its use cases and the
system’s use cases. Consequently, the use cases show high
similarity and the matching component can be determined
through similarity analysis.

To demonstrate our approach our methodology was applied
to a case study of a system for temperature measurement. Two
different cases for component selection were explored. The
first search intended to select components with functionality
matching the target system. The resulting list of components
clearly demonstrated the feasibility of our approach. Second,
a search for a specific component (i.e. low-power memory)
was performed. The selection methodology provided a ranked
list of the best suited memory components.

Future work includes integration of the methodology into
our project’s simulation-based verification flow. Therefore, we
plan to consider the IP’s verification history in our component
selection methodology.

REFERENCES

[1] C. Wenwei, Z. Jinyi, L. Jiao, R. Xiaojun, and L. Jiwei, “Study On a
Mixed Verification Strategy for IP-Based SoC Design,” in High Density
Microsystem Design and Packaging and Component Failure Analysis,
2005 Conference on, June 2005, pp. 1–4.

[2] T. Zhang, L. Benini, and G. De Micheli, “Component Selection and
Matching for IP-Based Design,” in Design, Automation and Test in
Europe, 2001. Conference Proceedings. IEEE, March 2001, pp. 40–46.

[3] K. Usami, “Overview on Low Power SoC Design Technology,” Proceed-
ings of the 2007 conference on Asia South Pacific design automation,
pp. 634–636, 2007.

[4] T. Hattori, “Challenges for Low-power Embedded SOC’s,” VLSI Design,
Automation and Test, 2007. VLSI-DAT 2007. International Symposium
on, pp. 1–4, 2007.

[5] C. Kirchsteiger, J. Grinschgl, C. Trummer, C. Steger, R. Weiss, and
M. Pistauer, “Automatic Test Generation From Semi-formal Specifica-
tions for Functional Verification of System-on-Chip Designs,” in Systems
Conference, 2008 2nd Annual IEEE. IEEE, April 2008, pp. 1–8.

[6] T. Bahill and J. Daniels, “Using Object-Oriented and UML Tools for
Hardware Design: A Case Study,” Systems Engineering, vol. Vol. 6, pp.
28–48, 2002.

[7] A. Cockburn, Writing Effective Use Cases. Addison-Wesley Profes-
sional, 2001.

[8] G. Hamza-Lup, A. Agarwal, R. Shankar, and C. Iskander, “Component
selection strategies based on system requirements’ dependencies on
component attributes,” in Systems Conference, 2008 2nd Annual IEEE.
IEEE, 2008, pp. 1–5.

[9] D. Mathaikutty and S. Shukla, “SoC Design Space Exploration through
Automated IP Selection from SystemC IP Library,” in International SOC
Conference, 2006 IEEE. IEEE, September 2006, pp. 109–110.

[10] L. Wang and P. Krishnan, “A Framework for Checking Behavioral Com-
patibility for Component Selection,” in Proceedings of the Australian
Software Engineering Conference (ASWEC’06). IEEE, 2006, pp. 49–
60.

[11] L. Reynari, F. Cucinotta, A. Serra, and L. Lavagno, “A Hard-
ware/Software Co-design Flow and IP Library Based of SimulinkTM,”
in Proceedings of the 38th Design Automation Conference (DAC’01).
IEEE and ACM, 2001, pp. 593–598.

[12] M. Martinez and A. Toval, “COTSRE: A COmponenTs Selection
Method Based on Requirements Engineering,” in Composition-Based
Software Systems (ICCBSS) 2008, Seventh International Conference on.
IEEE, 2008, pp. 220–223.

[13] The Apache Software Foundation, “Apache lucene,” ttp://lucene.apache.
org/java/2_3_0/scoring.html, 2006, last visited - 02/02/2009.

[14] C. Collberg, S. Kobourov, J. Louie, and T. Slattery, “SPlaT: A System
for Self-Plagiarism Detection,” in Proceedings of IADIS International
Conference WWW/INTERNET 2003, 2003, pp. 508–514.

[15] K. Indukuri, A. Ambekar, and A. Sureka, “Similarity analysis of patent
claims using natural language processing techniques,” Conference on
Computational Intelligence and Multimedia Applications, 2007. Inter-
national Conference on, vol. 4, pp. 169–175, Dec. 2007.

[16] M. Visarius, J. Lessmann, W. Hardt, F. Kelso, and W. Thronicke, “An
xml format based integration infrastructure for ip based design,” Inte-
grated Circuits and Systems Design, 2003. SBCCI 2003. Proceedings.
16th Symposium on, pp. 119–124, Sept. 2003.

[17] The SPIRIT Consortium, “IP-XACT v1.4: A specification for XML
meta-data and tool interfaces,” http://www.spiritconsortium.org, 2009,
visited - 14/1/2009.

[18] M. Strik, A. Gonier, and P. Williams, “Subsystem Exchange in a
Concurrent Design Process Environment,” Design, Automation and Test
in Europe, 2008. DATE’08, pp. 953–958, 2008.

[19] Neosera Systems Ltd., “http://www.neosera.com,” 2009, last visited -
01/02/2009.

[20] Dalton, McCarthy, Quigley, and Leeney, “A system-level power evalua-
tion method,” Irish Patent PCT 31 498IESP, 2008.

[21] EPC Global Inc., “EPC Radio-Frequency Idendity Protocols Class-1
Generation-2 UHF RFID Protocol for Communication at 860 MHz
960MHz Version 1.1.0,” 2007.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT GRAZ. Downloaded on October 8, 2009 at 02:22 from IEEE Xplore. Restrictions apply.

An IP-XACT Library extended with Verification Information for
Functionality-based Component Selection

Christoph Ruggenthaler1, Christoph Trummer1, Christian Steger1, Reinhold Weiß1,
Andreas Schuhai2, Markus Pistauer2, Damian Dalton3,

1Institute for Technical Informatics, Graz University of Technology, Austria
2CISC Semiconductor Design+Consulting GmbH, Austria

3School of Computer Science and Informatics, University College Dublin, Ireland
ruggenthaler@student.tugraz.at, {trummer, steger, rweiss}@tugraz.at,

{a.schuhai, m.pistauer}@cisc.at, damian.dalton@ucd.ie

Abstract

In the Electronic Design and Automation (EDA) indus-
try a gap between design and productivity exists and is
even expanding. Also, consumers demand fancy products
and new features at a faster pace. Consequently, to ful-
fill these rigid design cycles companies are reusing Intel-
lectual Property (IP) components provided by third-party
suppliers instead of creating them anew. However, no
common format exists amongst companies which compli-
cates IP exchange and reuse. Moreover, verification infor-
mation, if existing, is provided separate from the IP.
This paper introduces a novel approach to enable IP ex-
change with added verification information and metadata.
To represent IP the new IP-XACT format is extended. Our
developed library is able to store the extended IP with all
its resources. The novel component selection strategy uses
this information to retrieve matching IP based on their
functionality and achieves accurate results.

1 Introduction

In today’s fast moving economy hardly any other busi-
ness is as driven by innovation as the EDA industry. Cus-
tomers demand a steady stream of improved and new
products to make their life easier, more comfortable or
simply more entertaining. This forces the companies to
release new products frequently.

The increasing number of product requirements makes
system design more and more complex. Due to the strict
time-to-market constraints System-on-Chip (SoC) design-
ers cannot create all parts of the product from scratch.
Therefore, pre-designed IP components are reused to ful-
fill the numerous requirements and to reduce the complex-
ity of the project. However, system architects have to find
the best-suited IP within a large amount of available com-
ponents. The IP is usually supplied from thrid-party ven-
dors or is available from previous projects [17].

Until recently no common standard for representation
and delivery of IP components existed. Consequently,
each company uses a different, proprietary storage and ex-
change format for its IPs [12]. Moreover, either no veri-
fication information is included in the IP or it is provided
separately, also in a proprietary format [15].

The new IP-XACT standard provides a format for Hard-
ware Description Language (HDL)- and vendor indepen-
dent IP representation. However, components still lack
information describing the IP’s architecture, functionality
and verification status. The IP-XACT format is based on
eXtensible Markup Language (XML) which can be easily
extended. This leads to our approach outlined in Fig. 1.

Figure 1. The Extended IP-XACT Format

Our IP is structured as follows. The HDL design is
described in IP-XACT to ensure compatibility with any
other compliant Design Environment (DE). Verification
status and additional resources such as power estimation
results or requirements are covered by our extensions.
Consequently, we achieve an unique relation between the
IP model and data which provides useful information
about the verification status. Moreover, the extension al-
lows using the additional information for conducting ef-
ficient and precise component search. Unlike traditional
lookup searches our approach performs functionality-
based component search. With similarity analysis the
requirements of each IP in the library are compared to
the requirements of the current system-under-design and
achieves functionally matching results [15].

This paper is organized as follows. The next section (2)
is dedicated to related work in the areas of IP represen-
tation, component selection and IP libraries. Section 3
explains our novel methodology and discusses the design
of our library. In section 4 a case study evaluating this
approach is performed. Finally, section 5 summarizes our
work and provides an outlook to future improvements.

Publication 7 - Austrochip 2009

2 Related Work

2.1 IP Representation Formats

Trying to enable fast and efficient IP exchange and in-
tegration leads to the problem of diversity in SoC repre-
sentation formats. Commonly proprietary solutions are
used within companies. Any newly acquired third-party
IP is converted into this proprietary format [16]. Common
standards are mostly limited to special purposes or certain
levels of design abstraction [4], [13]. IP formats which
cover additional metadata are scarcely used. Instead, ad-
ditional resources (e.g. verification status, documentation)
are either missing or delivered separately from the IP. Fur-
thermore, most formats do not encapsulate the used HDL
for separation of source and IP description.

2.1.1 The Open Modeling Coalition IP format

Silicon Integration Initiative (Si2) launched the Open
Modeling Coalition (OMC) with many participating EDA
companies such as ARM Ltd., IBM Corp., Cadence De-
sign Systems Inc., NXP Semiconductors. The Si2 inte-
grates 3rd-party IP into designs through an unified char-
acterization and modeling format. Further, it deals with
delay modeling, statistical timing and increased model ac-
curacy for 90nm and 65nm technologies [10] [13].

In general, the format aims for Application Specific Inte-
grated Circuit (ASIC) and Field Programmable Gate Ar-
ray (FPGA) projects using traditional design flows. For
high level and non-traditional design flows extensions
have to be adopted and integrated in the DE. These are
specific techniques enabling reuse and new formats de-
scribing the additional functionality [18]. This means the
OMC’s format is not intended to cover the entire IP and
all its sources. Instead, the format describes the functional
criteria for the designated IP [13].

2.1.2 Advanced Library Format

The Advanced Library Format (ALF), IEEE Std. 1603-
2003, specifies a modeling language for IP technology,
cells and blocks. In contrast to the Si2’s format it is de-
signed for low level descriptions from Register-Transfer
Level (RTL) to physical level. The specification covers
many facets of models such as behavior, timing, power
and signal integrity. Since it does not allow to include IP
from higher levels as Transaction-Level Modeling (TLM)
or Electronic System Level (ESL) the format is rarely used
today. In fact, the ALF is obsolete because of the rapidly
changing demands of the EDA industries [4].

2.1.3 SPIRIT IP-XACT

The upcoming IEEE standard IP-XACT (IEEE P1685
Working Group) was founded by the SPIRIT Consortium
in 2003. Since then it has drawn attention from EDA
companies and communities. In comparison to former
standards it focuses on vendor-neutral IP descriptions.

IP-XACT enables multi-vendor design flows by creating
views for specific purposes such as documentation, Veri-
fication IP (VIP), etc.. Through the possibility to create
different views various abstraction levels can be imple-
mented and combined in the same IP. Each view is distin-
guished by the type and desired DE for editing [1].

IP-XACT allows to add documentation or mixed abstrac-
tion levels from ESL to RTL SoC design. Since all re-
sources and metadata are stored in XML documents it can
be accessed with every programming language which sup-
ports XML processing. The sources are encapsulated and
separated from the IP description. This means the HDL
source code is embedded via links to the source file. Thus
the HDL code can even be stored on a remote server [14].

2.2 IP Libraries

As a consequence from the lack of a common IP stan-
dard, no unified IP library is available. However, compa-
nies realized the need for a repository to store and manage
their IP. Currently, available IP storage architectures can
be categorized into local file-based IP collections, online
platforms or client-server based repositories. One repre-
sentative for each type is discussed below.

2.2.1 GRLIB IP Library

In this client-based library all components are modeled
in Very High Speed Integrated Circuit Hardware Descrip-
tion Language (VHDL) and centered around a common
on-chip bus (AMBA-2.0 AHB/APB). The files are pro-
vided under the GNU GPL license which means they can
be utilized freely within the terms of use. Since the IPs are
delivered in vendor- and tool independent form they can
be efficiently included in current designs. Through Plug
& Play functionality and common interfaces the compo-
nents are easily configured and connected. For the GRLIB
IP Library the IP’s identification register is split into three
parts. First, the vendor ID which is managed by Aeroflex
Gaisler assigning unique strings for each company. Sec-
ond, device IDs are appointed by the IP vendors to their
components. Third, different implementations of the IP
are distinguished by the version field.

Inside the library each component is uniquely identi-
fied by its name and contains subcomponents clustered
in packages. As simulation and synthesis need differ-
ent configurations most of the IPs provide both resources
[2]. Currently, no metadata is included in the components.
Thus, each IP can be found only by its name and version
ID. This greatly impedes efficient IP search and selection.

2.2.2 NXP Yellow Pages

In 2006 NXP Semiconductors introduced a novel lookup
service to enhance the reuse functionality for IP compo-
nents using a client - server based architecture. This pro-
prietary repository, called NXP Yellow Pages, is located in
the internal NXP network and hosted on a secure server.
Designers may browse through all available IPs and view

a profile page of each part. Therein attributes, documenta-
tion, deliverables and development status are shown [17].

For IP exchange the recently published (available on
a commercial website) CoReUse standard [5] is used.
This representation provides specifications, guidelines
and templates for analog and digital IP. The underlying
sources are described in SPIRIT IP-XACT [3].

Since the library only acts as a repository no sophisti-
cated search queries including verification or (non) func-
tional data can be performed.

2.2.3 Online Portals

In addition to the proprietary version from NXP other on-
line platforms also host IP components either for free or
commercially. ChipEstimate.com provides IPs from over
200 suppliers and foundries. However, its IPs are deliv-
ered by partners and have to be purchased separately.

IP from Opencores.org is specifically designed for FP-
GAs and also contains some related resources (e.g. docu-
mentation). The components are provided by a large com-
munity and published under free-to-use licenses.

The IP-Extreme.com portal also uses the CoReUse stan-
dard for their hosted IPs. Additionally, they provide tools
for compliance checks and fast deployment into DEs.

Most online IP exchange platforms do not provide ver-
ification information which would support in choosing
suitable IP. Furthermore, no sophisticated parametrized
search is available to find functionally suited IP.

2.2.4 Academic Approaches

In [8] a Component Composition Language (CCL) is used
for designing and describing IPs. CCL abstracts function-
ality to describe the design. On the other hand untyped or
partially typed architectures are handled by the Metamod-
eling based Visual Component Composition Framework
(MCF). Untyped or partially typed means either unknown
or incomplete specification or a non-conform description
which hinders automatic processing. This framework pro-
vides a solution of the so called "Type Inference Problem".
Since the original MCF is not able to handle untyped ar-
chitectures a multi-stage solution was introduced. This
solves type assignment and substitution without violating
or changing the original types and constraints [7] [9].

Another approach is outlined in [11]. In this paper Mat-
lab SimulinkTMis used to determine hardware / software
co-design aspects. The goal is to find a trade-off between
hardware and software implementations. Both implemen-
tation possibilities provide benefits and drawbacks with
respect to performance, timing, power consumption and
flexibility. The described IP library consists of parame-
terized SimulinkTMblocks with additional implementation
and model information.

2.3 Component Selection Strategy

In general, IP searches use parameters such as name, cat-
egory or keywords to find desired IP components. Few

IP formats support verification information and metadata.
Due to this lack of additional information it is difficult to
deploy sophisticated IP selection algorithms.

In the works from the previous subsection 2.2.4 some ap-
proaches are introduced. Their aim is to provide informa-
tion by preprocessing fragmentary or non-conform meta-
data and sources to get an uniform description of each IP.
The other approach describes co-design issues. The pa-
rameterized blocks are tagged as hard- or software. The
algorithm assists in picking the optimal selection from a
library. Depending on this selection, different values are
estimated in two steps. First a directed graph is built. Sec-
ond the overall performance is calculated. Thus the best
co-design configuration can be chosen.

A new methodology is described in [15]. Each compo-
nent contains metadata and use cases describing its func-
tionality. The use cases are specified in a semi-formal for-
mat [6]. Component selection is performed in two steps.
In the first step keyword matching and filtering of prop-
erties and constraints is used for pre-selecting potentially
relevant IP. Through pre-selection and filtering the search
space is reduced for the next step. In the second step, sim-
ilarity analysis is applied to the use cases of this reduced
set of components. This permits to search for components
based on their functionality [15].

3 Novel Methodology and Design

In this section the design and methodology of our ap-
proach is described. First, we explain the extension of
the IP-XACT standard for providing verification data and
additional meta information. Second, an overview of the
architecture and the component selection strategy is given.

3.1 IP-XACT Extension

IP-XACT allows including verification IP as whitebox
elements or additional views to the component. However,
more advanced descriptions can only be added via XML
Schema extensions [14]. In our case a wrapper is added to
the XML Schema to cover the additional data as outlined
in Fig. 2. This enables compliance with the standard and
allows import of existing IP-XACT conform IPs.

Each folder and file is linked relative to its corresponding
XML file. This also depends on the resource type, proper-
ties restricting visibility, access or tools for editing. Each
of the stored IP is assigned a unique ID instead of a name.

3.2 Project Summary

We link IP and VIP with all related results and estima-
tion files. The System Architect Designer (SyAD R©) per-
forms energy and timing estimation and stores the results
in separate files. Moreover, it facilitates verification for
each use case resulting in information about successful of
failed testcases and test coverage.

By extracting information from these result file we gen-
erate a comprehensive summary for each IP. In the sum-
mary properties, constraints and version information is

Figure 2. Extended Project Structure

stored. The summary is used for pre-selecting compo-
nents from the IP library as described in section 3.4. How-
ever, not all stored data serves component selection. Some
parts also determine the version identifier, design history
and contain information for the system architect.

3.3 Library Architecture

As shown in Fig. 3 the architecture is split into two parts.

Figure 3. Architecture of the IP Library

The SyAD R© DE is used as graphical interface for the
SOAP over HTTP communication with our library. The
library consists of a webservice which manages data ex-
change and provides user- and IP management function-
ality. As back-end a repository implementation is used to
store the components and avoid concurrent interactions.
Since HTTP is commonly used it enables the global IP
infrastructures to be always accessible instead of client-
based solutions or servers hidden behind firewalls.

3.4 IP Selection

The concept behind IP selection is described in [15].
For our approach we modify the first step regarding pre-
selection and filtering. Our IP comprises properties (Prop)
such as description, keywords, category, architecture and
constraints (Const) about energy, timing and technology.
Use cases are added for similarity analysis (see Fig. 4).

Since properties and constraints are written in natural
language the search engine uses a Vector-Space Model.

Figure 4. Component Search based on [15]

Each field is compared to the matching components in
the library and ranked in a fuzzy or strict way to reduce
the search space. A different algorithm is utilized for the
semi-formal use cases (see [6]) which contain natural text
structured into several sections. Similarity analysis takes
advantage the informal sentence structure of the use cases
and calculates a similarity score for each IP component.
Finally, the components are ranked in percent of their suit-
ability and matching functionality.

In comparison to other projects (see section 2) our ap-
proach is able to deal with more sophisticated information
about the IPs. Thereby, IP can be searched based on its
functionality. Consequently, results are more precise than
those from simple keyword searches. However, search
speed is slower with the functionality-based approach be-
cause of the more complex IP selection algorithm.

4 Case Study

In this section our approach is demonstrated. For the
case study we designed a higher class RFID tag which
is already equipped with transceiver, microcontroller and
digital temperature sensor. It still lacks a memory com-
ponent to store the temperature samples, which we will
retrieve from the library. Our IP library consists of 30
components and covers a wide spectrum of component
categories. As the focus for our search lies on different
memory components, this category has been filled with
various implementations. The next subsections describe
two scenarios for selecting memory IP from the library.

4.1 Search with manually specified parameters
In the first scenario our design still misses a memory to

store the temperature samples. Since the design is built
from scratch no memory component has been chosen so
far. Therefore, the designer needs to search by manually
specifying criteria. Table 1 shows the search parameters
for a RAM component. Since the library contains a tree
of categories the designer may choose the appropriate. Pa-
rameters for timing and energy are omitted because they

are not available at the current stage of our design. Fi-
nally, we select the use cases for our target system the
higher class RFID tag.

Field Inputs
Name -

Category /Hardware/Memory/RAM
Keywords ram, memory

Timing -
Energy -

Use cases RFID_use_cases.xml

Table 1. Manually entered criteria for desired RAM IP

Step one filters and ranks the components regarding their
properties and constraints in the IP summary. Table 2 enu-
merates the five best matches as intermediate results. The
first four entries are RAMs which result from an exact
matches for category and keywords. The REGISTER was
selected due to a partial match in category and some cor-
responding keywords.

Score Component TCs & Coverage
[%] Name passed failed [%]
81.9 RAM B 23 0 14
77.3 RAM C 44 1 47
77.1 RAM D 57 0 62
76.9 RAM A 78 0 83
28.9 REGISTER A 27 4 35

Table 2. Intermediate Top 5 Ranking

The next step compares the use cases of the pre-ranked
IPs with the specified system use cases through similar-
ity analysis. As this step directly relates to functionally
matching components its weights for ranking are higher
than the parameter search from the previous step.

Score Component TCs & Coverage
[%] Name passed failed [%]
61.5 RAM C 44 1 47
61.0 RAM A 78 0 83
60.3 RAM D 57 0 62
53.5 RAM B 23 0 14
37.2 REGISTER A 27 4 35

Table 3. Final Ranking of Top 5 Components

The final ranking is listed in table 3. In comparison to
the preliminary results (table 2) the score is lower for all
matches. This is because the memory IPs are only able
to fulfill parts of the system’s functionality. Usually both
steps are processed in one search query without intermedi-
ate results. Thus table 2 only serves demonstration. Since
the summary also filters components only memory IPs are
compared in the similarity analysis step.

Before actually selecting a RAM component we access
the verification status linked to the IP. From the functional

point of view “RAM C” would be best suited for our sys-
tem. However, the verification status indicates that one
testcase (TC) has failed. This means not all requirements
have been verified successfully and the IP still needs re-
finement and re-verification. Consequently, we choose
RAM A and add it to our design.

4.2 Design space exploration

In this example we already have a RAM component in
our design and are performing a design space exploration.
The currently used RAM IP is to be replaced with a dif-
ferent but functionally similar implementation to explore
design alternatives. Since we still require a RAM in terms
of functionality the parameters are automatically gathered
from the current RAM component (see table 4).

Field Inputs
Name RAM

Category /Hardware/Memory/RAM/
Keywords CMOS static RAM, memory, stram

Timing Min. 55ns, Max. 100ns
Energy Max. 70nWs

Use cases static_RAM_use_cases.xml

Table 4. Parameters of a static RAM

After search we receive different results than in the pre-
vious scenario. Especially, the high influence of use
case similarity can be clearly seen. RAM A is ranked
higher than the other RAM implementations. However,
the “read” use cases are also very similar for RAM and
ROM. Thus, one ROM model is ranked amongst the five
best entries in table 5.

Regarding the verification the best suited RAM A also
provides the highest coverage of 83%.

Score Component TCs & Coverage
[%] Name passed failed [%]
72.4 RAM A 78 0 83
66.7 RAM D 57 0 62
59.9 RAM C 44 1 47
49.0 RAM B 23 0 14
25.4 ROM A 36 0 23

Table 5. Design space exploration top 5 IPs

Both scenarios show that use case similarity analysis
provides an innovative approach to select functionally
suitable components. Additionally, to gain better confi-
dence in choosing from the recommended IP the models
are linked with verification information.

5 Conclusion and Future Work

In this paper a novel approach linking IP models with
their verification information is presented. Based on an

IP-XACT extension an IP library was designed. The ad-
ditional data is used to select components from the li-
brary based on functionality and constraints. Although,
the search algorithm does not consider the IP’s verifica-
tion status it provides valuable information and supports
the designer in choosing the proper component. In a case
study two scenarios were considered for demonstrating
our approach.

Future work includes improvement of performance and
security. More IP is currently developed to facilitate fur-
ther evaluation of the approach with a larger set of IP. Fur-
ther, comparison to other similarity analysis algorithms
and fine-tuning of the weight factors is to be performed.

6 Acknowledgements

This work is part of the Simulation-Based Requirements
Testing of Power Aware System-on-Chips (SIMBA)
project which is funded by the Austrian Federal Ministry
for Transport, Innovation and Technology under the con-
tract FFG 812424.

References

[1] V. Berman, S. Fazzari, C. Ussery, M. Indovina,
M. Strik, J. Wilson, O. Florent, F. Rémond, and
Bricaud P. Industrially Proving the SPIRIT Consor-
tium Specifications for DesignChain Integration. In
Proc. Design, Automation and Test in Europe DATE
’06, volume 2, pages 1–6, 6–10 March 2006.

[2] Aeroflex Gaisler. GRLIB IP Library User Manual,
2008. http://gaisler.com/products/
grlib/grlib.pdf - last visited 05.07.2009.

[3] V. Haridas, V. Ramchandra, K. Santhosh, and NXP
Semiconductors. Automation in IP based SoC devel-
opment: Case study of a media processorsubsystem.
Technical report, NXP Semiconductors, 2007.

[4] IEEE. Advanced Library Format (ALF) describing
integrated circuit (IC) technology, cells, and blocks.
IEC 62265-2005 First edition 2005-07 IEEE Std
1603, (IEEE Std 1603):1–300, 2005.

[5] IPextreme. Coreuse, 2009. http://www.
ip-extreme.com/coreuse.html - last vis-
ited 04.07.2009.

[6] C. M. Kirchsteiger, J. Grinschgl, C. Trummer,
C. Steger, R. Weiss, and M. Pistauer. Automatic
Test Generation From Semi-formal Specifications
for Functional Verification of System-on-Chip De-
signs. In Proc. 2nd Annual IEEE Systems Confer-
ence, pages 1–8, 7–10 April 2008.

[7] D. Mathaikutty and S. Shukla. Mining Metadata for
Composability of IPs from SystemC IP Library. In
Proceedings of Forum on specification and Design
Languages, 2006.

[8] D. Mathaikutty and S. Shukla. SoC Design Space
Exploration through Automated IP Selection from
SystemC IP Library. In Proc. IEEE International
SOC Conference, pages 109–110, 24–27 Sept. 2006.

[9] D. Mathaikutty and S. Shukla. Type Inference for
IP Composition. In Proc. 5th IEEE/ACM Inter-
national Conference on Formal Methods andMod-
els for Codesign MEMOCODE 2007, pages 61–70,
May 30–June 2 2007 2007.

[10] Dylan McGrath. Si2 forms Open Modeling Coali-
tion. Technical report, EETimes, 2005. http:
//www.eetimes.com/showArticle.
jhtml?articleID=170703000 - last visited
04.07.2009.

[11] L. M. Reynari, F. Cucinotta, A. Serra, and
L. Lavagno. A Hardware / Software Co-Design Flow
and IP library based of Simulink. In Proc. Design
Automation Conference, pages 593–598, 2001.

[12] L. Sarno, R. Wilson, S.-Kwan Eo, Laurent
Lestringand, John Goodenough, Guri Stark, Serge
Leef, and Dave Witt. IP Exchange: I’ll Show
You Mine if You Show Me Yours. In Proc. 44th
ACM/IEEE Design Automation Conference DAC
’07, pages 990–991, 4–8 June 2007.

[13] Si2. Open modelling architecture. Technical report,
Si2, 2007. http://www.si2.org/?page=
863 - last visited 04.07.2009.

[14] SPIRIT-Consortium. IP-XACT Version 1.5 Release.
SPIRIT Consortium, 2009.

[15] C. Trummer, C. M. Kirchsteiger, C. Steger, R. Weiss,
A. Schuhai, M. Pistauer, and D. Dalton. A Compo-
nent Selection Methodology for IP Reuse in the De-
sign of Power-aware SoCs based on Requirements
Similarity. In Proc. 3rd Annual IEEE Systems Con-
ference, pages 133–138, 23–26 March 2009.

[16] M. Visarius, J. Lessmann, W. Hardt, F. Kelso, and
W. Thronicke. An XML format based integration in-
frastructure for IP based design. In Proc. 16th Sym-
posium on Integrated Circuits and Systems Design
SBCCI 2003, pages 119–124, 8–11 Sept. 2003.

[17] Ralph Von Vignau. Time-to-market drives SoC
Design to higher Levels of Abstraction. Embedded
Systems Europe, November - December:14–
16, 2006. http://www.embedded.
com/columns/technicalinsights/
196600752?_requestid=166618 - last
visited 05.07.2009.

[18] M. Wirthlin, D. Poznanovic, P. Sundararajan,
A. Coppola, D. Pellerin, W. Najjar, R. Bruce,
M. Babst, O. Pritchard, P. Palazzari, et al. OpenF-
PGA CoreLib core library interoperability effort.
Parallel Computing, Volume 34:231–244, 2008.

IEEE SYSTEMS JOURNAL, TO BE PUBLISHED MARCH 2010 1

Search for Extended IP-XACT Components in a
Library for Power Aware SoC Design based on

Requirements Similarity
Christoph Trummer, Member, IEEE, Christoph Ruggenthaler, Christoph M. Kirchsteiger, Member, IEEE,
Christian Steger, Member, IEEE, Reinhold Weiß, Member, IEEE, Markus Pistauer and Damian Dalton

Abstract—To counter today’s rising complexity in System-on-
Chip (SoC) design Intellectual Property (IP) components are
reused. In IP libraries many different pre-designed components
are available. However, finding and selecting functionally suitable
IP is difficult and laborious. Additionally, certain constraints need
to be considered when searching for IP. One such constraint is
power consumption which is highly important for most SoCs.
However, additional information such as power dissipation and
verification status are rarely considered in currently available
IP representation formats. This paper introduces an extension
to the IP-XACT format and describes our innovative approach
for searching for suitable components. Our approach extends the
IP-XACT format with relevant information, manages the IP in a
library, and utilizes a novel selection process which takes into ac-
count similarities between system and component requirements.
The result is a ranking of the best-suited components for reuse in
the current system-under-design. To demonstrate our approach
a case study is performed on a SoC. With our methodology a
ranking of components matching the system’s requirements and
constraints is generated.

Index Terms—Intellectual Property (IP), IP reuse, library,
component selection, similarity analysis, requirements, power.

I. INTRODUCTION

ASystem-on-Chip (SoC) is a system consisting of many
different components integrated on a single chip [1].

System-on-Chips (SoCs) are typically used in portable and
battery-powered consumer electronics. Today’s customers de-
mand a steady stream of new products with unique features
and innovative functionality. Therefore, new SoCs are faced
with a continuously rising number of requirements. Due to
high silicon integration densities and the large number of
requirements the design and verification of today’s SoCs is
increasingly complex [2]. Consequently, the industry faces
three important issues. First, companies have to deal with strict
time-to-market constraints. Second, the productivity of system
engineers cannot keep up with the increasing complexity of
SoC designs (design-productivity gap) [3] [4]. Third, static
power dissipation increases with the reduction of SoC area [5].

Manuscript received August 31st, 2009.
This work is funded by the Austrian Federal Ministry for Transport,

Innovation and Technology under the contract FFG 812424.
Christoph Trummer, Christoph Ruggenthaler, Christoph M. Kirchsteiger,

Christian Steger and Reinhold Weiß are with the Institute for Technical Infor-
matics, Graz University of Technology, Austria e-mail: trummer@tugraz.at

Markus Pistauer is with CISC Semiconductor Design+Consulting GmbH,
Austria.

Damian Dalton is with the School of Computer Science and Informatics,
University College Dublin, Ireland.

These issues can be addressed by reusing IP, applying power
aware methodologies and early verification in SoC design.

When reusing IP the main difficulty is finding and selecting
components which are best suited for the current system-
under-design. This is the so-called component selection prob-
lem [4]. System engineers need to select components which
fulfill the system’s requirements and satisfy its constraints.
Available third-party or legacy IP may consist of different
implementations and formats, and wide variation in the amount
of available information. Manually finding components in this
incoherent, and often large set of IP, needs considerable time
and effort. Consequently, an automated approach to search and
select the appropriate component is desirable.

To reduce the system’s power dissipation, power-efficient
components are chosen and power aware design techniques
are applied. Therefore, information about the individual IP’s
power dissipation is needed early in the design flow.

In order to avoid costly redesign at a later stage, the system
has to be verified as early as possible. Moreover, it has to
be ensured that each re-used IP component is verified. A
comprehensive report would clarify the IP’s verification status
and confirms the designer in his or her choice.

Typically, used IP representation formats mainly describe
the IP’s implementation and do not support additional in-
formation. Important details about verification status, power
estimation results or power aware design, consequently remain
vague. This often leads to time-consuming (re-)verification and
new power estimation of the IP.

Our contribution is a methodology which comprises three
parts. First, the IP is extended with additional information.
Suitable parameters and formats for IP representation are
investigated. Second, a library is created to accommodate
the extended IP. Third, we propose an automated search
for IP components from this library. Our approach is based
on similarities between the IP’s requirements and system’s
requirements. The result is a set of IP which is able to perform
part of the system’s functionality and matches its constraints.
Fig. 1 shows the main idea behind our approach.

This paper is organized as follows. In section II background
and related works are investigated. Section III explains our
extended components and the IP library. The next section
(IV), describes the component selection methodology using
similarity analysis. Our methodology is demonstrated in a
case study in section V. Finally, section VI summarizes our
approach and outlines future work.

Publication 8 - To be published

IEEE SYSTEMS JOURNAL, TO BE PUBLISHED MARCH 2010 2

Fig. 1. Similarities between system and component requirements

II. BACKGROUND AND RELATED WORK

A. Hardware Requirement Specification Formats

Requirements can be expressed in many different ways.
They are often ambiguous, imprecise and misleading. Most
commonly, requirements are specified informally, in natural
text. Natural text is easy to read but is usually ambiguous
and very difficult to process automatically. In contrast, formal
requirements have a clearly defined structure and can be pro-
cessed easily. However, understanding them is difficult without
knowledge of the syntax [6]. Semi-formal requirements such
as textual use cases are a trade-off between readability and
automatic processing capabilities [6].

In the software domain the Unified Modeling Language
(UML) is widely used to provide a common and concise
way to express requirements. In [7] the authors present a
methodology which uses the UML to specify requirements
in hardware design. Non-functional requirements can also be
included into the UML descriptions and diagrams [7].

Semi-formal use cases contain a predefined structure de-
scribing a series of steps and interactions expressed in natural
language [8]. This structured, textual use case format is similar
to UML described in [7]. Moreover, the semi-formal use case
format can be used to express hardware requirements [6].

B. Component Selection

Since the component selection problem is extensively re-
searched in both the soft- and hardware domain only a
few representative approaches will be elaborated. The target
of component selection is to find a subset of components
matching the system’s functionality and its constraints [4], [2].

Some of these methodologies for component selection use
similarity analysis of the component’s implementation and/or
its interface definitions [9], [10]. Others rely solely on query-
ing for keywords which describe functionality and constraints
[2], [11]. A more sophisticated approach uses fuzzy logic for
keyword and constraints matching to select components [4].

Few approaches exist which include requirements for se-
lecting components. However, they either rely on a manually
created matrix that links similar requirements [12] or on
complex additional specifications [10].

From the related works it is apparent that the most important
criteria for selecting suitable components is functionality [4].
However, additional parameters and information need to be
considered for proper component selection.

C. Additional Parameters for IP Selection

Apart from system functionality, constraints are also con-
sidered when selecting IP for SoC design. Especially power
and delay but also implementation details (e.g. architecture,
technology) are the important constraints [11].

Information about the existence and layout of a power aware
design is important to reduce the IP’s power consumption. This
aspect is covered in two different specification formats for
power design. The Unified Power Format (UPF) was recently
approved by the IEEE as IEEE 1801 Standard for Design and
Verification of Low Power Integrated Circuits [5]. Alterna-
tively there is the well-established industry standard, Common
Power Format (CPF) [13]. Both formats allow description and
verification of the power design to be expressed independently
of the Hardware Description Language (HDL).

Knowledge about the IP’s verification status or even Verifi-
cation IP (VIP) are also desirable [3]. Information about the
verification status allows the designer to select IP with the
confidence that it was verified and tested. Added VIP allows
tests to be re-run and eases re-verification if a bug is detected.

To avoid improper or erroneous use of IP a thorough
documentation of design and implementation is necessary and
also use cases and requirements are helpful.

Despite their importance, current IP formats do not facilitate
addition of these parameters and informations to the IP.

D. Textual Similarity Analysis

Various textual similarity analysis techniques exist. A few
exemplary methods will be mentioned as evaluation of all
approaches is beyond the scope of this work.

A common technique uses word occurrence to determine
text similarity [14]. Keyword occurrence in documents is
analyzed and compared based on a vector space model and
information retrieval methods [14]. However, success of the
approach is sensitive to sentence format and wording.

A similar approach analyzes the documents on a per sen-
tence basis [15]. Each word is represented by an integer
hash-code for comparing sentences. Two equal sentences have
the same integer sum. Similarity of sentences is detected by
comparing the intersections of their sets of unique words [15].
By representing the words as integers the approach is able to
perform a fast similarity analysis.

The approach described in [16] uses natural language pro-
cessing techniques to detect similarities in documents using
syntactic and semantic evaluation. Also, the frequency of word
occurrences is taken into account [16].

E. IP Representation Formats

Today, many different IP representation formats exist [17].
However, available IP formats rarely consider additional re-
sources (e.g. verification status, documentation). Most com-
panies even use their own proprietary format. Any newly

IEEE SYSTEMS JOURNAL, TO BE PUBLISHED MARCH 2010 3

acquired third-party IP is converted into the proprietary format
[17]. This means over time a collection of legacy, third-party
and in-house IP is formed. Searching in this heterogeneous
set of IP with different information, varying details and mixed
representations is very difficult and time-consuming.

The Advanced Library Format (ALF), IEEE Std. 1603-
2003, specifies a format for IP technology, cells and blocks.
ALF is designed for abstraction levels of Register-Transfer
Level (RTL) and below. The ALF specification covers many
facets of IP such as behavior, timing, power and signal
integrity [18]. However, IP at higher levels of abstraction
(e.g. System Level) can not be represented. Consequently, the
ALF has become obsolete because today’s complexity of SoC
designs demands higher levels of abstraction.

The upcoming IEEE standard IP-XACT (IEEE P1685
Working Group) was founded by the SPIRIT Consortium
in 2003. The SPIRIT IP-XACT format uses the extensible
markup language (XML) and describes IP for development,
implementation and verification [19]. In comparison to other
formats, IP-XACT focuses on vendor-neutral IP descriptions.
Therefore, it is tool-independent, flexible and can be extended
with additional information [19], [20]. Through, so-called
views different levels of abstraction can be represented within
the same IP. Each view is distinguished by the type and desired
design environment for editing [21].

III. IP LIBRARY AND COMPONENT DESIGN

The structure of our library to store and search for an IP
component is presented. The following subsections describe
the IP component, its architecture, linked information and
representation in IP-XACT. Finally, the semi-formal use case
format which is used in similarity analysis is elaborated.

A. IP Library

To find the IP component for reuse in the current design we
first need to define a library where it can be archived. Apart
from being able to store and manage the many different com-
ponents it also needs to support categorization, classification
and description of IP. Within this library searching is necessary
to retrieve and select the desired IP.

Therefore, the IP library L is defined as a hierarchical set
of categories K.

L {K1,K2,K3, ...,Km} (1)

Each set of categories K may contain a hierarchy of further
(sub)categories K ′ or components C.

K
{
K ′

i,K
′
i+1, ...,K

′
n, C1, C2, ..., Cj

}
(2)

To efficiently find and select suitable IP components each set
L, K and C is defined as an unique entity.

A graphical user interface is used to communicate with
the IP library and to facilitate searching (Fig. 2). The library
is implemented as a web-service on a remote server which
performs data exchange and IP management. A repository on
the same server is used to store the components and avoid
concurrent interactions. Since SOAP over HTTP is used for
communication the library infrastructures is easily accessible.

Fig. 2. Interface and Architecture of the IP Library

B. IP Components

Components need a representation that includes functional
and non-functional information (e.g. constraints). Functional-
ity is described in the IP component’s source-code and its
requirements document. Extracting functionality out of source
code in different hardware description languages (HDLs) and
abstraction levels needs complex semantic analysis. Further-
more, the functionality needs to be classified in order for
it to be searchable. This demands a language-independent,
additional description of the component’s behavior. To reduce
complexity and effort we suggest use of the already existing re-
quirements document. However, a purely textual specification
contains an arbitrary structure and varied detail. Comparing
purely textual requirements may lead to insufficient similarities
for significant IP selection (see [16]). Due to its structure and
unified representation use case documents are employed for
similarity analysis. As a trade-off between natural text and a
completely formal structure we express requirements as semi-
formal use cases.

Non-functional information is more complex to manage. It
may not be available or incomplete since the IP component
may be legacy IP, from a third-party or is still under devel-
opment. This could also be the case for verification. Conse-
quently, the influence of non-functional information on the
search results must be carefully considered through weights.

IP is a collection of different information and source-code
which managed by a library for archiving and later reuse.
We define such a collection of IP and its related data as a
component C. However, it is not assumed that each component
C is complete since all information may not be available.
Consequently, the component C can be defined as a set
of documentation, source files, Verification IP (VIP) non-
functional data and a description.

C {Doc, Sources, V IP,NFData,Description} (3)

The documents part, Doc, is a collection of files such as
the original requirements, application notes, data sheets and
source-code documentation.
Sources represents the actual IP core. It is a set of files con-

taining the source-code in one or more hardware description
languages (HDLs). Only this part would regularly be covered
by the original IP-XACT standard.

Verification IP (V IP) similarly consists of testbenches, test
cases and verification results. It also contains a symbolic
representation of the IP for our graphical verification tool.

The Non-Functional Data, NFData, comprises the power
aware design in a power format, results from simulation and
power estimation. Moreover, a technology description specifies
libraries for synthesis and additional resources for the power

IEEE SYSTEMS JOURNAL, TO BE PUBLISHED MARCH 2010 4

estimation tool RHEiMS. Entries for NFData are optional
because some information or results may not be available.

RHEiMS from Neosera Systems Ltd. is used to determine
a component’s power and energy dissipation at system-level
[22]. RHEiMS employs statistical methods and case-based
reasoning to estimate power and energy. It compares similarity
of input and output of the current component to a similar
component with known energy dissipation and calculates
power consumption [22]. Thereby, it rapidly estimates the
component’s power and energy dissipation. The result files
are stored in the NFData field of C.

The power design in either power format is stored in
NFData because it is specified independently from the HDL
source. Also, the power design does not directly contribute
to the system’s main functionality and is therefore considered
non-functional information.

The Description specifies data such as architectural infor-
mation, a brief abstract and relevant data for IP search.

From this data and the constraints from NFData, a sum-
mary is automatically generated (subsection III-C). Entries
determining representative values for power, energy and tim-
ing are stored. The use case document is also included in
Description. Within UC the component’s requirements are
stored as a set of semi-formal use cases (subsection III-E).

C. IP Summary

All IP and VIP are linked with related information, results
and estimation files. Results from power estimation and timing
simulation are stored in separate result files. The verification
status of each use case is available in a file. In the file, infor-
mation about reached coverage goals and testcases which were
satisfied or failed is summarized. By automatically evaluating
these files and IP parameters a comprehensive summary for
each IP is generated. In this summary selected values from
properties, constraints and verification status are stored. The
summary is used in search for pre-selecting components in the
IP library (see subsection IV-A). The summary also contains
information about the IP’s version and modification history.

D. IP-XACT Extension

Due to its flexibility the IP-XACT format is well-suited to
represent our IP components. So far, it only allows description
the IP itself. The additional information required to extend the
IP-XACT is added a wrapper to the XML schema as illustrated
in Fig. 3. This enables compliance with the standard and
importation of existing IP-XACT components into our library.

Each field in C is represented as folder with sub-folders and
files. Folders and files are relatively linked in the XML file.
Parameters for each field are the resource type, properties for
visibility and access or suggested tools for editing. Each IP is
assigned a unique identifier instead of a name.

E. Use Case Format

We refine requirements into semi-formal use cases as de-
scribed in [6]. The use cases specify step-wise interactions
between a system (or component) and its environment. Thus,

COMPONENT Files

Sources

Verification IP

HDL Sources

IP-XACT Descr.

Sources IP-
XACT v1.4

Verification

Verification results
Symbol

Documentation

Documentation

Non-Functional Data

ANNOT_FILES

SIMULATION

TESTBENCH

RESULTS

Power design
Annotated Sources

Power Estimation
Other information

Description

Summary.xml

Usecase.xml

Symbol.xml

index search

Datasheet.pdf

Power Design

App_Note.doc

Fig. 3. Extended Component Structure

a component’s functionality is entirely described by the set
of all its use cases. The semi-formal use case document may
contain both functional and non-functional requirements. They
are structured into several sections which contain natural text.

The most important sections of each use case include the
use case name, a brief description, the actor(s), the primary
scenario and alternative scenario(s) (see table I). Within the
use case document, functional requirements can be expressed
at system-level. Later they can be refined to a lower level of
abstraction. Due to its structure, the semi-formal use cases
can be processed easily which is ideal for searching (see also
[6]). The semi-formal use case format also provides a unified
representation of all system and component requirements. Our
use cases are stored in XML which complements its structure.

IV. NOVEL METHODOLOGY FOR COMPONENT SELECTION

There are two phases in our component selection methodol-
ogy. First, it filters all components based on keywords and non-
functional information. Second, to use cases of the remaining
components similarity analysis is applied. This determines the
most suitable IP for the system. Fig. 4 illustrates the concept
of our component selection methodology.

IEEE SYSTEMS JOURNAL, TO BE PUBLISHED MARCH 2010 5

TABLE I
HIGH-LEVEL USE CASE - WRITING TO A SRAM

Name: WRITE
Description:

This use case describes a write operation to the static RAM.
Actor: Memory controller
Trigger:

1. The SRAM receives the WRITE ENABLE COMMAND.
Primary Scenario:

1. The SRAM receives the WRITE COMMAND.
2. The SRAM receives the ADDRESS.
3. The SRAM receives the DATA.
4. The SRAM stores the DATA at the ADDRESS.
5. The SRAM sends the ACKNOWLEDGE.
6. The SRAM goes to the OUTPUT DISABLE usecase.

Alternative Scenarios:
Alternative Scenario 1

1a 1. The SRAM receives the WRITE DISABLE COMMAND.
1a 2. The SRAM sends the ACKNOWLEDGE.
1a 3. The SRAM goes to the OUTPUT DISABLE usecase.

Constants:
ADDRESS=@bit[7:0]
DATA=@bit[15:0]

A. Keyword Search and Constraints Filtering

Since exhaustive similarity analysis over all components
is computationally intensive, it is desirable to reduce the
search space. The major difficulty is the removal of unsuitable
components from the search without inadvertently removing
useful ones and this is accomplished by evaluating components
based on keyword occurrence and constraints filtering. To
avoid exhaustive search in all files and subfolders of C only
the IP’s summary file is used. The summary’s XML structure
provides fast access to the individual search criteria.

Criteriaopt {keywords, architecture, constraints} (4)

f(Criteria) : L→ R (5)

R {(Criteria) ∈ Ci, ..., (Criteria) ∈ Cj} (6)

For each match in keywords, architecture and constraints a
weight is applied to calculate a score. This compensates for IP
with incomplete or unavailable data. Additionally, it is possible
to change search policies between “strict” and “fuzzy”. The
first, strictly enforces the search criteria and only returns
components that match them. The “fuzzy” policy, does not
instantly dismiss an otherwise suitable component because
of a barely mismatching constraint. Instead, the component
receives a lower score by using different weights.

With either policy, after searching for keywords and filtering
by constraints the score of each component is evaluated. The
better the component matches the search criteria, the higher
its score. Next similarity analysis is applied to the set R.

However, constraints or implementation details may not be
known in early design stages. Therefore, each parameter and
even the entire set of Criteria is optional. Thus, to search for
functionally suitable components without applying keywords
or constraints this initial search may be omitted.

Ve
rif

ic
at

io
n

St
at

us
D

es
ig

n

C
on

st
ra

in
ts

describing
Functionality

Requirements

IP - Component

Ranked Results

analyze

Ve
rif

ic
at

io
n

St
at

us
D

es
ig

n

C
on

st
ra

in
ts

describing
Functionality

Requirements

IP - Component

Ve
rif

ic
at

io
n

St
at

us
D

es
ig

n

C
on

st
ra

in
ts

describing
Functionality

Requirements

IP - Component

Ve
rif

ic
at

io
n

St
at

us
D

es
ig

n

C
on

st
ra

in
ts

describing
Functionality

Requirements

IP - Component

Requirements
System-

describing
Functionality

Ve
rif

ic
at

io
n

St
at

us
D

es
ig

n

C
on

st
ra

in
ts

describing
Functionality

Requirements

IP - Component

Ve
rif

ic
at

io
n

St
at

us
D

es
ig

n

C
on

st
ra

in
ts

describing
Functionality

Requirements

IP - Component

Fig. 4. Component selection methodology

B. Similarity Analysis

A suitable component for the system needs to be able
perform some of its functionality. Consequently, functionality
of system and component must overlap. The overlapping
functionality can be performed by the respective component.
The more the functionality of the component corresponds to
the system’s functionality the better it is suited for the system.
In our case, functionality is described in the system’s use cases
and in the component’s use cases. For this reason parts of the
system’s use cases and the component’s use cases are similar.

We exploit this commonality by applying similarity analysis
g on the use cases of each component in R. The function g
compares all use cases of the system to each use case of the
components in R. This produces a list of components with
the highest similarity to the system’s use cases. The algorithm
used for similarity analysis compares entire sentences and is
described in [15].

g(UCsystem) : UCcomponent ∈ R→ R′ (7)

After determining the use cases with the highest similarity, a
ranking is calculated for the components. The previous ranking
of components R is merged with the new information from
similarity analysis. The new set R′ now contains the final
ranked list of best suited components.

V. CASE STUDY

In this section we demonstrate our component search
methodology on a case study. Our IP library was filled with

IEEE SYSTEMS JOURNAL, TO BE PUBLISHED MARCH 2010 6

components typical for SoC design. The following subsections
describe the system and two scenarios in which our method-
ology is applied.

A. System-under-Design

As an example for a SoC, a small system for temperature
monitoring was taken as a case study. The system is capable of
measuring ambient temperature and digitizing the temperature
samples. For long term monitoring the system stores the sam-
ples into its memory. An active radio frequency identification
(RFID) tag could be an application for such a system.

Initially, we analyzed the ISO/IEC 18000-7 protocol [23]
for active tags. A series of use cases were specified for the
wakeup, collection with universal data block (UDB), read,
write and sleep commands. Use cases for the sampling,
standby and idle state were also described. When the tag re-
ceives a command it performs the corresponding functionality.
On a read command the tag sends the contents of the memory
at the given address to the reader. The Write use case contains
a description of the write operation to the tag’s memory. With
the write command, the sampling interval of the tag can also
be set. When the RFID tag receives a sleep command it enters
the standby use case. After an interval set by the RFID reader
a timer interrupt is triggered. A sample is taken from the
sensor and stored in the tag’s memory. Every 2 seconds the
tag awakes from standby mode to determine whether the RFID
reader has sent a wakeup command. If no wakeup command
was detected the tag it goes back to standby. Otherwise it
enters idle mode. During idle mode it is ready to receive and
process commands from the reader. When the tag receives a
sleep command it enters standby mode.

A SoC typically contains a controller, memory, a clock,
timer and an external interface. In our system there is also
a temperature sensor, analog-digital converter (A/DC) and an
RFID transceiver. Our IP library comprises different versions
and implementations of the above SoC components. All com-
ponents consist of different data, constraints, properties and
use cases. Information on some components is left partially
incomplete to represent legacy or third party IP. Some com-
ponents are able to perform the same functionality. Not all
components are suitable for the system under design.

To select components for the above system we consider two
scenarios. In the first scenario we want to select suitable com-
ponents based on their functionality. The search for suitable
IP is conducted without constraining the search space. All use
cases of the components in the repository are analyzed for their
similarity to the system. The second scenario describes the
selection of a specific component. In this case it is a suitable
memory component. The search space is reduced by applying
the filter to the components in the library. Then the use cases
are analyzed to select the best suited memory component based
on its functional similarity.

B. Scenario 1 - Functionality Search

In this example we perform a similarity analysis g over all
component use cases. This necessitates the comparison of the

TABLE II
FUNCTIONALITY SEARCH - RESULTS SIMILARITY ANALYSIS

Rank Score Component Verification Coverage
1. 68.5% RFID Transceiver PASS 63%
2. 65.5% RFID Controller PASS 86%
3. 61.5% Transceiver HL PASS 40%
4. 56.6% Digital Temp. Sensor PASS 67%
5. 55.1% ROM HL PASS 51%
6. 54.2% FLASH Memory FAIL 10%
7. 53.8% Timer 10bit PASS 74%
8. 52.6% I2C Bus HL FAIL 46%
9. 51.5% RAM A PASS 78%

10. 50.5% DAC HL A PASS 55%

system’s use cases to all use cases of the components in the
library.

Table II contains the ten components with the highest
similarity (as %) to the system’s use cases. The higher the
similarity the more functionality of the IP corresponds to the
functionality of the target system. However, the percentage
does not reflect the degree of functionality that the IP is able
to fulfill of the system. A “FAIL” in Verification means that
at least one testcase has failed. The precentage in Coverage
shows how extensively the component was tested.

The above list displays the ranking of components. Almost
all of the components would be suitable for our system. The
RFID Transceiver and RFID Controller receive the highest
ranking as expected. These are components conforming to the
ISO/IEC 180007 protocol. The transceiver communicates with
the RFID reader while the controller processes the commands
and coordinates temperature sampling. The Transceiver HL is
a high-level, general-purpose implementation of a transceiver.
For taking temperature samples the Digital Temperature Sen-
sor is required. This sensor already has a built-in analog to dig-
ital converter. Components such as FLASH and RAM are used
to store the sampled values. The ROM may contain program
code, the tag’s manufacturer ID and serial number. The timer
enables periodic sampling. Depending on the implementation
the I2C bus could be used as well. Only the digital to analog
converter (D/AC) would be unsuitable for the system.

Although, similarity analysis of use cases is capable of
selecting functionally suitable components it is advisable to
narrow the search space, since the exhaustive search is com-
putationally intensive and will increase with the number of use
cases and library size. As an effect also false positives can be
avoided better.

C. Scenario 2 - Specific Component Search

Our entire methodology was applied to illustrate selection
of a specific component for the system-under-design. The
component we search in our library is a memory for storing
and retrieving the sensor data. Since our RFID tag will have a
limited energy source (e.g. battery or energy harvesting device)
we want to constrain the memory’s energy dissipation.

The search f(′memory′,′ energy<40µJ ′) returns IP which
contains the “memory” keyword and have energy estimation
results with less than 40µJ . Paired with the results from
similarity analysis g the results are ranked. Table III lists the
results for the search of a memory component.

IEEE SYSTEMS JOURNAL, TO BE PUBLISHED MARCH 2010 7

TABLE III
RANKED RESULTS FOR STRICT COMPONENT SEARCH

Rank Score Component Verification Coverage
1. 55.9% EEPROM PASS 68%
2. 51.8% RAM B PASS 76%
3. 50.1% RAM C PASS 43%
4. 44.8% RAM D HL PASS 99%
5. 43.9% ROM A HL PASS 98%
6. 43.2% ROM B FAIL 30%

TABLE IV
RANKED RESULTS FOR FUZZY COMPONENT SEARCH

Rank Score Component Verification Coverage
1. 55.9% EEPROM PASS 68%
2. 53.0% ROM HL PASS 51%
3. 51.8% RAM B PASS 76%
4. 50.1% RAM C PASS 43%
5. 49.9% FLASH Memory FAIL 10%
6. 44.8% RAM D HL PASS 99%
7. 43.9% ROM A HL PASS 98%
8. 43.2% ROM B FAIL 30%

From the results the designer may choose the desired
component. Rank, verification status and coverage should help
in selecting the proper IP. On demand more details from
each components are shown to the designer. Since we want a
memory to store temperature samples the ROM components
can be ignored. However, they match the search criteria and
show similarities to the system’s use cases and therefore
received a score. Based on the verification status either the
EEPROM or one of the listed RAMs would be a good choice.
Of course it depends on level of abstraction, implementation
and whether a coverage below 70% is acceptable.

To demonstrate the “fuzzy” search policy we performed
another search with the same criteria. As a result (see table IV)
components such as FLASH and ROM HL are not dismissed.
Even though their constraints do not exactly match the search
criteria they receive a rather high rank due to their similarity
in terms of functionality.

The ranking should serve as a guideline for the system
designer to support the selection of components. However, the
designer has to make the final decision based on suitability and
additional information (i.e. verification status, power, energy).

VI. CONCLUSION AND FUTURE WORK

In this paper we presented an approach to extend IP with im-
portant additional information. Therefore, crucial parameters
for successful selection of IP were identified. With regards
to these aspects an IP component and library were designed.
Then a method was developed to search and select the best
suited components for a given System-on-Chip design. To
find IP in the library a novel functionality-based search was
introduced. Our methodology exploits the fact that the com-
ponent’s functionality is described in its use cases and the use
cases of the target system. Consequently, the use cases show
similarities and the matching component can be determined
through similarity analysis and constraints filtering.

Future work includes adding more sophisticated security
features to our IP library. Moreover we plan to further enhance
performance in both component matching and search speed.

REFERENCES

[1] C. Wenwei, Z. Jinyi, L. Jiao, R. Xiaojun, and L. Jiwei, “Study On a
Mixed Verification Strategy for IP-Based SoC Design,” in High Density
Microsystem Design and Packaging and Component Failure Analysis,
2005 Conference on, June 2005, pp. 1–4.

[2] G. Hamza-Lup, A. Agarwal, R. Shankar, and C. Iskander, “Component
selection strategies based on system requirements’ dependencies on
component attributes,” in IEEE Systems Conference, 2008 2nd Annual.
IEEE, 2008, pp. 1–5.

[3] W. Kruijtzer, P. van der Wolf, E. de Kock, J. Stuyt, W. Ecker, A. Mayer,
S. Hustin, C. Amerijckx, S. de Paoli, and E. Vaumorin, “Industrial IP
Integration Flows based on IP-XACT Standards,” in Proc. of the Design,
Automation and Test in Europe, 2008, pp. 32–37.

[4] T. Zhang, L. Benini, and G. De Micheli, “Component Selection and
Matching for IP-Based Design,” in Proc. of the Design, Automation and
Test in Europe (DATE’01). IEEE, March 2001, pp. 40–46.

[5] “IEEE Standard for Design and Verification of Low Power Integrated
Circuits,” IEEE Std 1801-2009, pp. C1–218, 2009.

[6] C. Kirchsteiger, J. Grinschgl, C. Trummer, C. Steger, R. Weiss, and
M. Pistauer, “Automatic Test Generation From Semi-formal Specifica-
tions for Functional Verification of System-on-Chip Designs,” in IEEE
Systems Conference, 2008 2nd Annual. IEEE, April 2008, pp. 1–8.

[7] T. Bahill and J. Daniels, “Using Object-Oriented and UML Tools for
Hardware Design: A Case Study,” Systems Engineering, vol. Vol. 6, pp.
28–48, 2002.

[8] A. Cockburn, Writing Effective Use Cases. Addison-Wesley Profes-
sional, 2001.

[9] D. Mathaikutty and S. Shukla, “SoC Design Space Exploration through
Automated IP Selection from SystemC IP Library,” in International SOC
Conference, 2006 IEEE. IEEE, September 2006, pp. 109–110.

[10] L. Wang and P. Krishnan, “A Framework for Checking Behavioral
Compatibility for Component Selection,” in Proc. of the Australian
Software Engineering Conference. IEEE, 2006, pp. 49–60.

[11] L. Reynari, F. Cucinotta, A. Serra, and L. Lavagno, “A Hard-
ware/Software Co-design Flow and IP Library Based of SimulinkTM,”
in Proc. of the 38th Design Automation Conference. IEEE and ACM,
2001, pp. 593–598.

[12] M. Martinez and A. Toval, “COTSRE: A COmponenTs Selection
Method Based on Requirements Engineering,” in Composition-Based
Software Systems 2008, Seventh International Conference on. IEEE,
2008, pp. 220–223.

[13] The Power Forward Initiative (PFI), “A Practical Guide to Low-Power
Design - User Experience with CPF,” pp. 1–281, 2008.

[14] The Apache Software Foundation, “Apache lucene,” http://lucene.
apache.org/java/2\ 3\ 0/scoring.html, 2006, last visited - 02/02/2009.

[15] C. Collberg, S. Kobourov, J. Louie, and T. Slattery, “SPlaT: A System for
Self-Plagiarism Detection,” in Proc. of IADIS International Conference
WWW/INTERNET 2003, 2003, pp. 508–514.

[16] K. Indukuri, A. Ambekar, and A. Sureka, “Similarity analysis of patent
claims using natural language processing techniques,” International
Conference on Computational Intelligence and Multimedia Applications,
2007, vol. 4, pp. 169–175, Dec. 2007.

[17] M. Visarius, J. Lessmann, W. Hardt, F. Kelso, and W. Thronicke, “An
xml format based integration infrastructure for ip based design,” Inte-
grated Circuits and Systems Design, 2003. SBCCI 2003. Proceedings.
16th Symposium on, pp. 119–124, Sept. 2003.

[18] IEEE, “Advanced Library Format (ALF) describing integrated circuit
(IC) technology, cells, and blocks,” IEEE, pp. 1–300, 2005, iEC 62265-
2005 First edition 2005-07 IEEE Std 1603.

[19] SPIRIT Schema and ESL Working Group Membership, “IP-XACT
Draft/D5: A specification for XML meta-data and tool interfaces,” The
SPIRIT Consortium, May 2009.

[20] M. Strik, A. Gonier, and P. Williams, “Subsystem Exchange in a Concur-
rent Design Process Environment,” in Proc. of the Design, Automation
and Test in Europe, 2008, pp. 953–958.

[21] V. Berman, S. Fazzari, C. Ussery, M. Indovina, M. Strik, J. Wilson,
O. Florent, F. Rmond, and B. P., “Industrially Proving the SPIRIT
Consortium Specifications for Design Chain Integration,” in Proc. of
the Design, Automation and Test in Europe, 2006, pp. 1–6.

[22] Neosera Systems Ltd., “RHEiMS: Rapid Hierarchical Energy Investiga-
tion Modelling System,” http://www.neosera.com, 2009, 10/7/2009.

[23] International Standardization Organization, “ISO/IEC 18000-7:2008 -
Information technology – Radio frequency identification for item man-
agement – Part 7: Parameters for active air interface communications at
433 MHz,” 2008.

IEEE SYSTEMS JOURNAL, TO BE PUBLISHED MARCH 2010 8

Christoph Trummer received his MSc. degree with
distinction in Telematics (Information and Com-
munications Technology) from Graz University of
Technology in 2007. Since 2007 he is with the
Institute for Technical Informatics at Graz University
of Technology where he is working towards his Ph.D
in Electrical Engineering. He is IEEE member and
has published over ten scientific papers as author
and co-author. His main research interests include
simulation-based verification, IP exchange, power-
aware design and non-functional requirements.

Christoph Ruggenthaler received his BSc. degree
in Telematics (Information and Communications
Technology) from University of Technology, Graz,
Austria in 2007. He is currently working towards
his MSc. degree at the Institute for Technical In-
formatics. His Master’s thesis is focused on IP li-
brary architectures. This research topic comprises IP
representation formats, efficient component selection
based on linked verification information and unified
IP exchange.

Christoph M. Kirchsteiger received his Bachelor’s
and Master’s degree with distinction in Telemat-
ics (Information and Communications Technology)
from Graz University of Technology, Austria, in
2006. Since 2006 he has been a PhD student in
Electrical Engineering at the Institute for Technical
Informatics, Graz University of Technology, Austria.
His research interests include design and verification
of HW/SW codesigns, especially system-on-chips
(SoC). His Ph.D is done in tight cooperation with
CISC Semiconductor Design+Consulting GmbH.

Ass.-Prof. Dr.techn. Christian Steger received
1990 the Dipl.-Ing. degree and 1995 the Dr.techn.
degree in Electrical Engineering, Graz University of
Technology, Austria. Graduated from Export, Inter-
national Management and Marketing course in June
1993 at Karl-Franzens-University of Graz. From
1990 to 1991 Research Engineer and since 1992
Assistent Professor at the Institute for Technical
Informatics, Graz University of Technology. In 2002
he was a visiting researcher at the Department of
Computer Science at the University College Dublin

(Ireland). He heads the HW/SW codesign group (8 PhD students) at the
Institute for Technical Informatics. His research interests include embedded
systems, HW/SW codesign, HW/SW coverfication, SOC, power awareness,
smart cards, UHF RFID systems, multi-DSPs. He is currently working with
industrial partners on heterogeneous system design tools for system verifica-
tion and power estimation/optimization for RFID systems, smart cards and
wireless sensor networks. Christian Steger has supervised and co-supervised
over 73 master thesis and co-supervised 8 PhD students, and published more
than 70 scientific papers as author and co-author. He is member of the IEEE
and member of the ÖVE (Austrian Electrotechnical Association). He was in
the organizing committee of the Telecommunications and Mobile Computing
Conference 2001, 2003, and 2005.

O.Univ.-Prof. Dr.techn. Reinhold Weiß is Profes-
sor of Electrical Engineering (Technical Informatics)
and head of the Institute for Technical Informatics at
Graz University of Technology, Austria. He received
the Dipl.-Ing. degree, the Dr.-Ing. degree (both in
Electrical Engineering) and the Dr.-Ing.habil. degree
(in Realtime Systems) from the Technical University
of Munich in 1968, 1972 and 1979, respectively.
In 1981 he was as a Visiting Scientist with IBM
Research Laboratories in San Jose, California. From
1982 to 1986 he was Professor of Computer Engi-

neering at the University of Paderborn (Germany). He is author and co-author
of about 170 scientific and technical publications in Computer Engineering.
For e&i (Elektrotechnik & Informationstechnik, Springer-Verlag) he served
several times as a guest editor for special issues on Technical Informatics
and Mobile Computing, respectively. In 2001 and 2003 he organized two
Workshops on Wearable Computing. His research interests focus on Embed-
ded Distributed Real-Time Architectures (parallel systems, distributed fault-
tolerant systems, wearable and pervasive computing). He is a member of the
International Editorial Board of the US-journal ”Computers and Applications”
(ISCA). Further, he is a member of IEEE, ACM, GI (Gesellschaft für
Informatik, Germany), and ÖVE (Austrian Electrotechnical Association).

Dr. Markus Pistauer. Degree in Electrical and
Electronic Engineering. 1995 Ph.D. degree in Elec-
tronic and Control Engineering, Graz University
of Technology, Austria. 1988 until 1990 Software
Engineer at Siemens AG, Frankfurt. From 1989
until 1991 Software Consultant at SPC Computer
Training Ges.m.b.H., Vienna. 1991 Research En-
gineer at the Department for Sensoric, Joanneum
Research Forschungsgesellschaft m.b.H., Graz. 1991
to 1995 Assistent Professor at the Department of
Electronics, Graz University of Technology. From

1995 to 1999 Research and Design Application Engineer at Siemens Design
Center for Microelectronics in Villach. From 1995 to 1998 Senior Lecturer
for Electronic Engineering and Computer Science at University of Applied
Sciences Carinthia. Since 1995 leading international and national research
projects in the area of CAD/CAE methods for integrated circuit design. Since
1997 judicial approved assessor for electronics and software. Since 1999
heading consultancy office for IT and computer science. 1999 foundation
of CISC Semiconductor Design+Consulting GmbH. Since 1999 CEO of
CISC Semiconductor. Member IEEE, member of the international program
committee for conferences like ”Informationstagung für Mikroelektronik”,
”IASTED International Conference on Modelling, Identification and Control”,
”International Conference on Computer Systems and Applications”, author
and co-author of more than 40 publications.

Dr. Damian Dalton Ph.D degree 2000 in Computer
Science, University College Dublin. From 1988-
2005, he was lecturer in the School of Computer
Science and Informatics, UCD and project leader on
several European and national research projects and
Director of UCD/Xilinx FPGA Design laboratory.
Since 2005 he is Senior Lecturer in the same school.
His research interests are Advanced Computer Ar-
chitectures and Parallel Processing, especially in the
areas of their application to the hardware accelera-
tion of EDA/ESL simulation and power estimation

design tools. He was the designer of the APPLES for gate-level simulation
and one of the main architects of the RHEiMS for system-level power analysis
and optimisation, and holds 5 international patents for these and related
technologies. His research group has produced 8 Ph.D’s and over 25 national
and international peer reviewed papers from this activity. He is CEO of a
campus spin-out company Neosera Systems Ltd, Dublin which he founded
in 2002 and which has commercially exploited the output of his University
research group. The Company won the All-Island Seedcorn Best Campus
Company Start-up in 2004. The Company now has a extensive portfolio of
design tools offering solutions to the challenges in System-level simulation
and Power Analysis, such as rapid and accurate power estimation of RFID,
embedded systems and other portable and ubiquitous computing platforms
such as mobile phones and PDA’s.

He is also an extern lecturer delivering the Entrepreneurship course on the
international computer degree at Fudan University, Shanghai, China, and an
extern examiner to several national and international institutes and universities.

Bibliography

[1] C. M. Kirchsteiger, A Simulation-Based Methodology for Requirements Veri�cation
of System-on-Chip Designs. PhD thesis, Institute for Technical Informatics, Graz
University of Technology, 2009.

[2] ChipEstimate.com, �ChipEstimate.com Chip Planning & IP Portal.� http://www.

chipestimate.com/, 2009. last visited: 10.12.2009.

[3] H. Jian and S. Xubang, �The Design Methodology and Practice of Low Power SoC,� in
Embedded Software and Systems Symposia, 2008. ICESS Symposia'08. International
Conference on, pp. 185�190, IEEE Computer Society Washington, DC, USA, 2008.

[4] R. Lissel and J. Gerlach, �Introducing new veri�cation methods into a company's
design �ow: an industrial user's point of view,� in Design, Automation & Test in
Europe, Conference & Exhibition, 2007. DATE '07, pp. 689�694, IEEE, April 2007.

[5] IEEE, IEEE Guide for Developing System Requirements Speci�cations - IEEE Std
1233a-1998. New York: The Institute of Electrical and Electronics Engineers, Inc.,
1998.

[6] A. Varma, High-Speed Performance, Power and Thermal Co-simulation For SoC De-
sign. PhD thesis, University of Maryland, College Park, Md., United States, May
2007.

[7] J. Taneja, J. Jeong, and D. Culler, �Design, modeling, and capacity planning for micro-
solar power sensor networks,� Information Processing in Sensor Networks, 2008. IPSN
'08. International Conference on, pp. 407�418, April 2008.

[8] D. Sunwoo, H. Al-Sukhni, J. Holt, and D. Chiou, �Early Models for System-Level
Power Estimation,� Microprocessor Test and Veri�cation, 2007. MTV '07. Eighth
International Workshop on, pp. 8�14, Dec. 2007.

[9] S. Mikami, T. Matsuno, M. Miyama, M. Yoshimoto, and H. Ono, �AWireless-Interface
SoC Powered by Energy Harvesting for Short-range Data Communication,� in Asian
Solid-State Circuits Conference, 2005, pp. 241�244, 2005.

[10] A. Crone and G. Chidolue, �Functional Veri�cation of Low Power Designs at RTL,�
Lecture Notes in Computer Science, vol. 4644, pp. 288�299, 2007.

[11] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power Methodology
Manual For System-on-Chip Design. New York: Springer Science+Business Media,
2008.

96

http://www.chipestimate.com/
http://www.chipestimate.com/

[12] B. Waldo, D. Stringfellow, J. Pedicone, and G. Maben, �Power Hungry? Strategies to
Trim Your Chip's Appetite,� tech. rep., Synopsys, inc., 2007.

[13] O. Unsal and I. Koren, �System-Level Power-Aware Design Techniques in Real-Time
Systems,� Proceedings of the IEEE, vol. Vol. 91, No. 7, pp. 1�15, 2003.

[14] B. Wile, J. Goss, and W. Roesner, Comprehensive Functional Veri�cation the Com-
plete Industry Cycle. Elsevier/Morgan Kaufmann, 2005.

[15] I. C. Society, IEEE Standard for Design and Veri�cation of Low Power Integrated
Circuits - IEEE Std 1801-2009. New York: The Institute of Electrical and Electronics
Engineers, Inc., 2005.

[16] B. Kapoor, J. Edwards, S. Hemmady, S. Verma, and K. Roy, �Tutorial: SoC Power
Management Veri�cation and Testing Issues,� in Proceedings of the 2008 Ninth Inter-
national Workshop on Microprocessor Test and Veri�cation, pp. 67�72, IEEE Com-
puter Society, 2008.

[17] W. Nebel, �System-Level Power Optimization,� in Digital System Design, 2004. DSD
2004. Euromicro Symposium on, pp. 27�34, IEEE, 2004.

[18] R. Pinto, �Power Management Veri�cation-An Evolving Discipline,� in Proceedings
of the 2008 Ninth International Workshop on Microprocessor Test and Veri�cation,
pp. 57�60, IEEE Computer Society, 2008.

[19] A. Hunter, A. Piziali, A. Ziv, K. Larson, and S. Hemmady, �Ensuring Functional
Closure of a Multi-core SoC through Veri�cation Planning, Implementation and Ex-
ecution,� in Proceedings of the 2008 Ninth International Workshop on Microprocessor
Test and Veri�cation, pp. 7�13, IEEE Computer Society, 2008.

[20] P. Thaker, �Holistic veri�cation: myth or magic bullet?,� in Proceedings of the 46th
Annual Design Automation Conference, pp. 204�208, ACM/IEEE, 2009.

[21] M. Fukui, S. Iwakoshi, and T. Koyagi, �An Algorithm for Battery Modeling and Life
Time Maximization of Small Size Electric Systems,� in Circuit Theory and Design,
2007. ECCTD 2007. 18th European Conference on, pp. 759�762, IEEE, 2007.

[22] F. Simjee and P. Chou, �Accurate battery lifetime estimation using high-frequency
power pro�le emulation,� in Low Power Electronics and Design, 2005. ISLPED'05.
Proceedings of the 2005 International Symposium on, pp. 307�310, IEEE, 2005.

[23] R. Rao and S. Vrudhula, �Battery optimization vs energy optimization: which to
choose and when?,� in Proceedings of the 2005 IEEE/ACM International conference
on Computer-aided design, pp. 438�444, IEEE Computer Society, 2005.

[24] H. Wenzl, I. Baring-Gould, R. Kaiser, B. Liaw, P. Lundsager, J. Manwell, A. Ruddell,
and V. Svoboda, �Life prediction of batteries for selecting the technically most suitable
and cost e�ective battery,� Journal of Power Sources, vol. 144, no. 2, pp. 373�384,
2005.

[25] L. Sarno, R. Wilson, S. Eo, L. Lestringand, J. Goodenough, G. Stark, S. Leef, D. Witt,
and C. ARM, �IP Exchange: I'll Show You Mine if You Show Me Yours,� in Design
Automation Conference, 2007. DAC'07. 44th ACM/IEEE, pp. 990�991, ACM/IEEE,
2007.

[26] SPIRIT Schema and ESL Working Group Membership, �IP-XACT Draft/D5: A spec-
i�cation for XML meta-data and tool interfaces.� The SPIRIT Consortium, May 2009.

[27] G. Hamza-Lup, A. Agarwal, R. Shankar, and C. Iskander, �Component selection
strategies based on system requirements' dependencies on component attributes,� in
IEEE Systems Conference, 2008 2nd Annual, pp. 1�5, IEEE, 2008.

[28] Kirchsteiger, C.M. and Trummer, C., �The SIMBA approach for Systems-on-Chip
Veri�cation - Technical Report.� Institute for Technical Informatics, Graz University
of Technology, 2009.

[29] S. Kajtazovic, Design Methodology and Framework for Veri�cation of Heterogeneous
Embedded Systems. PhD thesis, Institute for Technical Informatics, Graz University
of Technology, 2006.

[30] CISC, �CISC Semiconductor Design+Consulting GmbH.� http://www.cisc.at/,
2009. last visited: 02.12.2009.

[31] Dalton, McCarthy, Quigley, and Leeney, �A system-level power evaluation method,�
2008. Irish Patent PCT 31498IESP.

[32] Neosera Systems Ltd., �RHEiMS: Rapid Hierarchical Energy Investigation Modelling
System.� http://www.neosera.com, 2009. last visited: 04.12.2009.

[33] M. Glinz, �On Non-Functional Requirements,� in 15th IEEE International Require-
ments Engineering Conference, pp. 21�26, IEEE Computer Society, 2007.

[34] S. Churiwala, G. S. Shindaghatta, W. Jiang, and A. K. Pua, �Veri�cation and Gen-
eration of Constraints,� Design & Reuse, 2009.

[35] A. Lachenmann, K. Herrmann, K. Rothermel, and P. Marrón, �On meeting lifetime
goals and providing constant application quality,� ACM Transactions on Sensor Net-
works (TOSN), vol. 5, no. 4, pp. 36:1�36:17, 2009.

[36] IDENTEC SOLUTIONS. http://www.identecsolutions.com/, February 2009.
last accessed - 28/11/2009.

[37] T. Yu, T. Yoneda, D. Zhao, and H. Fujiwara, �Using Domain Partitioning in Wrapper
Design for IP Cores Under Power Constraints,� in Proceedings of the 25th IEEE VLSI
Test Symmposium, pp. 369�374, IEEE Computer Society Washington, DC, USA, 2007.

[38] J. Decker, N. Khan, and R. Goering, �Power-Aware Veri�cation Spans IC Design -
A Plan-to-Closure Approach Helps Ensure Silicon Success.� Cadence Design Systems
Inc., http://www.cadence.com/, June 2009.

http://www.cisc.at/
http://www.neosera.com
http://www.identecsolutions.com/
http://www.cadence.com/

[39] T. Bahill and J. Daniels, �Using Object-Oriented and UML Tools for Hardware Design:
A Case Study,� Systems Engineering, vol. Vol. 6, pp. 28�48, 2002.

[40] M. Chen and G. Rincon-Mora, �Accurate electrical battery model capable of predict-
ing runtime and I�V performance,� IEEE Trans. Energy Conversion, vol. 21, no. 2,
pp. 504�511, 2006.

[41] J. Rahmé and K. Al Agha, �A state-based battery model for nodes' lifetime estimation
in wireless sensor networks,� in Proceedings of the tenth ACM international symposium
on Mobile ad hoc networking and computing, pp. 337�338, ACM New York, NY, USA,
2009.

[42] Atrenta Inc., �SpyGlass R©-Power - Design for Low Power at RTL - Datasheet.� http:
//www.atrenta.com/, 2008.

[43] Cadence Design Systems Inc., �Cadence Incisive III Palladium Dynamic Power Anal-
ysis - Datasheet.� http://www.cadence.com/, 2008.

[44] T. P. F. Initiative, �A Practical Guide to Low-Power Design - User Experience with
CPF.� http://www.powerforward.org/, 2008.

[45] F. Bembaron, S. Kakkar, R. Mukherjee, and A. Srivastava, �Low Power Veri�cation
Methodology Using UPF,� in Conference on Electronic Systems Design and Veri�ca-
tion Solutions, DVCON'09, pp. 228�233, 2009.

[46] Mentor Graphics Corporation, �Questa - Datasheet.� http://www.mentor.com/, 2009.

[47] M. Visarius, J. Lessmann, W. Hardt, F. Kelso, and W. Thronicke, �An XML for-
mat based integration infrastructure for IP based design,� in Proceedings of the 16th
symposium on Integrated circuits and systems design, pp. 119�124, IEEE Computer
Society, 2003.

[48] Global Semiconductor Alliance, �Global Semiconductor Alliance.� http://www.

gsaglobal.org/, 2009. last visited: 10.12.2009.

[49] Kobylecky, J. et al., � QIP Quality Metric - User Guide 4.0.� Virtual Socket Interface
Alliance, 2007.

[50] Design and Reuse, �Design and Reuse - Catalyst of Collaborative IP Based SoC De-
sign.� http://www.design-reuse.com, 2009. last visited: 10.12.2009.

[51] M. Wirthlin, D. Poznanovic, P. Sundararajan, A. Coppola, D. Pellerin, W. Najjar,
R. Bruce, M. Babst, O. Pritchard, P. Palazzari, et al., �OpenFPGA CoreLib core
library interoperability e�ort,� Parallel Computing, vol. 34, no. 4-5, pp. 231�244, 2008.

[52] Synopsys, Inc., �Synopsys coreTools - IP Based Design and Veri�cation.� http://

www.synopsys.com/, 2008.

[53] MAGILLEM The Ontology Company S.A., �Magillem IP-XACT Packager.� http:

//www.magillem.com/, 2009.

http://www.atrenta.com/
http://www.atrenta.com/
http://www.cadence.com/
http://www.powerforward.org/
http://www.mentor.com/
http://www.gsaglobal.org/
http://www.gsaglobal.org/
http://www.design-reuse.com
http://www.synopsys.com/
http://www.synopsys.com/
http://www.magillem.com/
http://www.magillem.com/

[54] MAGILLEM The Ontology Company S.A., �Magillem Platform Assembly.� http:

//www.magillem.com/, 2009.

[55] T. Arpinen, T. Koskinen, E. Salminen, T. Hämäläinen, and M. Hännikäinen, �Evalu-
ating UML2 Modeling of IP-XACT Objects for Automatic MP-SoC Integration onto
FPGA,� in Design, Automation & Test in Europe, Conference 2009. DATE '09, IEEE,
2009.

[56] Accellera Organization, �Veri�cation Intellectual Property (VIP) Best Practices In-
teroperability Guide.� http://www.accellera.org, 2009.

[57] D. A. Matthaikutty and S. S. K., �Mining metadata for composability of IPs from
SystemC IP library,� Design Automation Embedded Systems, vol. 12, pp. 63�94, 2008.

[58] Open SystemC Initiative (OSCI), �SystemC.� http://www.systemc.org/, 2009.
last visited: 04.12.2009.

[59] EPCglobal Inc., �EPCTM Radio-Frequency Identity Protocols Class-1 Generation-2
UHF RFID Protocol for Communications at 860 MHz - 960 MHz Version 1.1.0,�
2006.

[60] International Standardization Organization, �ISO/IEC 18000-7:2008 - Information
technology � Radio frequency identi�cation for item management � Part 7: Parame-
ters for active air interface communications at 433 MHz,� 2008.

[61] Tadiran, �MODEL TL-5920 - Datasheet.� http://www.tadiranbat.com/. last vis-
ited: 18.12.2009.

[62] Texas Instruments Incorporated, �High-Accuracy, Low-Power, Digital Temperature
Sensor With SMBus

TM

/Two-Wire Serial Interface in SOT563 - Datasheet.� http:

//www.ti.com/. last visited: 16.12.2009.

[63] Atmel Corporation, �Two-wire Automotive Serial EEPROMs AT24C128/256 -
Datasheet.� http://www.atmel.com/. last visited: 16.12.2009.

[64] Tadiran, �http://www.tadiranbat.com/.� last visited: 18.12.2009.

[65] Tadiran, �MODEL TL-5903 - Datasheet.� http://www.tadiranbat.com/. last vis-
ited: 18.12.2009.

http://www.magillem.com/
http://www.magillem.com/
http://www.accellera.org
http://www.systemc.org/
http://www.tadiranbat.com/
http://www.ti.com/
http://www.ti.com/
http://www.atmel.com/
http://www.tadiranbat.com/
http://www.tadiranbat.com/

	Table of contents
	1 Introduction to Simulation-Based Verification of Power Requirements for SoC Designs
	1.1 Motivation
	1.1.1 Deficiencies in Specification of Power Requirements
	1.1.2 Late Power Aware Design
	1.1.3 High Complexity in Verification of Power Requirements
	1.1.4 Missing Verification Information in IP Exchange Formats
	1.1.5 Low Search Efficiency in IP Libraries

	1.2 Automated Simulation-Based Verification of Power Requirements for SoC Designs
	1.2.1 The SIMBA Project
	1.2.2 Problem Description
	1.2.3 Contribution and Significance
	1.2.4 Organization of Dissertation

	2 Related Work
	2.1 Specification of Non-Functional Requirements for SoCs
	2.1.1 Expression of Power Requirements
	2.1.2 Specification Formats for Non-Functional Requirements of SoCs

	2.2 Simulation-Based Verification of Non-Functional Requirements
	2.2.1 Simulation-Based Verification of Battery Lifetime
	2.2.2 Simulation-Based Verification of Power and Energy Constraints

	2.3 Power Aware System-on-Chip Design
	2.3.1 Power Aware Design Formats
	2.3.2 Simulation-Based Verification of Power Aware Design

	2.4 IP Exchange
	2.4.1 IP Libraries and Tools
	2.4.2 Verification IP
	2.4.3 Efficient IP Search

	2.5 Summary

	3 Novel Methodology for Simulation-Based Verification of Power Requirements
	4 Methodology Evaluation and Case Studies
	4.1 Requirements Analysis
	4.1.1 Functional Requirements
	4.1.2 Power Requirements

	4.2 Verification of the Power Requirements
	4.3 Design Space Exploration for the RFID Controller
	4.4 Summary

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	6 Publications
	6.1 Automatic Test Generation From Semi-formal Specifications for Functional Verification of System-on-Chip Designs
	6.2 Simulation-based Verification of Power Aware System-on-Chip Designs Using IEEE 1801
	6.3 Verification Methodology for Battery Lifetime Requirements of Higher Class UHF RFID Tags
	6.4 Specification and Automated Simulation-based Verification of Power Requirements for System-on-Chips
	6.5 Automated Simulation-based Verification of Power Requirements for Systems-on-Chips
	6.6 A Component Selection Methodology for IP Reuse in the Design of Power-Aware SoCs Based on Requirements Similarity
	6.7 An IP-XACT Library extended with Verification Information for Functionality-based Component Selection
	6.8 Search for Extended IP-XACT Components in a for Power Aware SoC Design based on Requirements Similarity

	References

