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Abstract

Gaining insights by exploring massive, complex data is the grand challenge of Visual Ana-

lytics � the science of analytical reasoning. As heterogeneous data from di�erent sources is

being increasingly linked, it becomes di�cult for users to understand how the data is con-

nected, to identify what means are suitable to analyze a given data set, or to �nd out how

to proceed for achieving a given analysis task. The analyst support a user needs is twofold:

�rst, the analyst needs to be oriented within the information landscape � orientation sup-

port; and secondly, with orientation as a prerequisite, the user can be guided towards a

speci�c analysis goal by following concrete recommended steps � guidance support.

In order to realize analyst support on both levels, a uni�ed representation of the knowl-

edge about the infrastructure and the work�ow to be performed is required. This disser-

tation proposes a new model-driven design process that e�ectively co-designs aspects of

data, view, analytics and tasks. A work�ow, composed of individual tasks, is used as a

trajectory through data, interactive views and computational tools.

Drawing upon information from a well-de�ned model and using the Caleydo visual-

ization framework as infrastructure, this thesis introduces novel visualization techniques

that are targeted at assisting users in terms of orientation. With this focus, three novel

techniques are proposed � the Matchmaker, the Jukebox and the Bucket � all of which par-

ticularly address orientation support in the classic setups of visual analysis systems where

one or multiple data sets are loaded in a multi-view system. The techniques presented rely

on visual links as an additional visual cue � making the relations within and between the

data sets more explicit. In addition to these traditional setups, further setup characteris-

tics are discussed: �rst, a system that is targeted at orientation support in an analysis that

spans multiple existing applications; and secondly, the analysis of heterogeneous data in a

collaborative scenario. This thesis concludes with the Stack'n'�ip system that utilizes the

information captured in the model for realizing comprehensive analyst support on both

support levels: orientation and guidance.

The theoretical model as well as the visualization techniques in this work are motivated

and demonstrated by means of real world data from the biomedical domain.

Keywords: Visual analytics, guidance, orientation, authoring, visual links, information

linking, multiple data sets, Caleydo visualization framework.
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Kurzfassung

Die explorative Analyse groÿer, vernetzter Datenmengen ist eine zentrale Herausforderung,

mit der sich das junge Wissenschaftsgebiet Visual Analytics beschäftigt. Aufgrund der

Masse, Heterogenität und Komplexität der Daten gestaltet es sich für den Analysten

schwierig zu verstehen, wie die Daten miteinander verbunden sind, welche Möglichkeiten

zur Analyse für einen Datensatz geeignet sind, oder wie für eine bestimmte Aufgabe vorge-

gangen werden soll. Hierbei benötigt der Analyst Unterstützung in zweifacher Ausprägung:

In erster Linie gilt es diesen in der Informationslandschaft zu orientieren. Basierend darauf

kann ein System den Benutzer durch das Vorschlagen konkreter, zukünftiger Schritte durch

die Analyse führen (anleitende Unterstützung).

Um die Benutzerunterstützung auf beiden Ebenen umsetzen zu können, ist eine

einheitliche Repräsentation des Wissens über die Infrastruktur und den Analyseprozess

notwendig. Diese Dissertation schlägt einen modellbasierten Ansatz vor, welcher e�ektiv

die zugrundeliegenden Daten, die visuellen Repräsentationen, die analytischen Werkzeuge

sowie die Analyseaufgaben erfasst und miteinander verbindet.

Basierend auf einem de�nierten Modell und unter Verwendung des Visualisierungssys-

tems Caleydo führt diese Arbeit zunächst neue Visualisierungstechniken ein, welche

auf orientierende Unterstützung abzielen. Mit diesem Fokus werden drei Techniken

vorgeschlagen: Matchmaker, Jukebox und Bucket, welche speziell die Orientierung

in klassischen Analyseszenarien mit einem oder mehreren Datensätzen in einem

Multiple-View-System adressieren. Die Techniken verwenden Visual Links als zusätzliches

Wahrnehmungselement, um die Beziehungen in den Daten explizit zu veranschaulichen.

Neben den traditionellen Setups werden weitere Aspekte beleuchtet: einerseits ein

System, das Orientierungsunterstützung in einem sich über mehrere existierende

Applikationen umspannende Analyse-Setup zur Verfügung stellt; andererseits die Analyse

von heterogenen Daten in einem kollaborativen Ansatz. Diese Dissertation schlieÿt mit

der Vorstellung des Stack'n'�ip-Systems, welches die im Modell erfassten Informationen

für orientierende, aber auch anleitende Unterstützung nutzt.

Sowohl das theoretische Modell als auch die Visualisierungstechniken werden anhand

von realen Daten aus der Biomedizin motiviert und demonstriert.

Schlüsselwörter: Visuelle Datenanalyse, Analyseprozess, Orientierung, Autorensystem,

heterogene Daten, visuelle Verknüpfung von Information, Caleydo Visualisierungssystem.
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Chapter 1

Introduction

Contents

1.1 Problem Statement and Goals . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The Role of Life Science Research in Visual Analytics . . . . . 4

1.4 Collaboration Statement . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Over the last few decades many �elds of science have been confronted with tremen-

dous amounts of data and continuously increasing annual growth rates. However, it is

an undisputed fact that generating the data is not the grand challenge anymore, but an-

alyzing it [Nielsen, 2009, Thomas and Cook, 2005]. Raw data by itself is useless if we

lack the tools to analyze it [Keim et al., 2010]. The central question is how to turn data

into meaningful information, which can be transformed into knowledge, in the sense of

[Acko�, 1989, Chen et al., 2009, Wang et al., 2009]. This is particularly relevant for the

�elds of biology and medicine.

The sheer amount of data, however, is only one aspect of the problem. In order to

solve complex analysis questions, a deep understanding of the problem itself is of vital

importance. Assuming this as a precondition, in many cases the information that leads to

the correct answers is present, but often hidden in the unstructured mass of data. In this

connection it is necessary to cope with heterogeneous data sets from di�erent sources, on

distinct levels of scale and stored in various formats and types (e.g., text, maps, graphs,

images, etc.).

Visualization has proven its value for the interactive analysis of homogeneous data.

However, in order to analyze these enormous amounts of heterogeneous interrelated sets

of data, visualization alone is often not su�cient. In contrast to visualization, automated

methods scale better to big data sets but sometimes fail or get stuck in local optima.

1
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Furthermore, traditional algorithms run in a black box fashion, where the user has no

means to actively intervene once the process has been triggered. Visual Data Mining,

which can be considered as the predecessor to Visual Analytics, addresses the shortcoming

of each of the single approaches by bringing them together and exploiting the strength of

both (cf., [Kreuseler and Schumann, 2002]). However, the �eld of Visual Analytics takes

the next step and goes beyond this combination. It strives to combine a series of scienti�c

disciplines: visualization, data management, data mining, spatio-temporal data analysis,

evaluation, human perception and cognition (cf., [Keim et al., 2010]). All these separate

�elds are tied together by humans, which have the ability of combining and reasoning, but

also have intuition and background knowledge [Keim et al., 2009].

In 2005 a road map for the young �eld of Visual Analytics was formu-

lated [Thomas and Kielman, 2009]. Since then, a lot of research has been conducted in

this direction, making Visual Analytics one of the most vital and quickly developing

�elds of science. Although profound progress has been made on multiple topics and

sub-issues related to Visual Analytics, a lot of open challenges still remain. More

recently, the book �Mastering the Information Age � Solving Problems with Visual

Analytics� [Keim et al., 2010] reviews the advances in the �eld and summarizes the

current challenges. The following section outlines which of these challenges are addressed

by this dissertation in particular.

1.1 Problem Statement and Goals

The aforementioned challenging data characteristics of Visual Analytics problems increase

the danger of the user of getting lost within the analysis [Keim et al., 2010, p.1]. A dis-

oriented analyst without a correct mental map cannot conduct an e�ective, targeted anal-

ysis. In the sense-making process, users need to compare, evaluate and interpret pieces

of information. However, these information intensive tasks are error-prone, tedious and

time-consuming. Consequently, it is up to the visual analysis system to facilitate the

understanding of the relations within as well as across data sets and in turn also the as-

sociation to and connections between the visual representations involved � thus, providing

orientation support.

Assuming that a user is aware of these relations, his being confronted with an over-

whelmingly rich set of choices is an additional challenge. The analyst needs to decide

which visual or computational interface is appropriate for performing a certain task of the

analysis. It is this degree of freedom that makes it problematic to e�ectively run the series

of steps it takes to reach a speci�c analysis goal. However, this is not foremost an issue of

traditional user interface design and improvement, as it is unrealistic to think that this is

possible by just providing an intuitive user interface. In fact, it is essential to assist the

user in making the right decisions � providing guidance � without restraining him in any

way.

In order to be able to provide this kind of analysis support in an automated fashion,
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an externalization of the knowledge about the infrastructure and the work�ow to perform

is required. In particular, the interplay between data, view, and task needs to be captured

in a uni�ed representation. Schulz elaborated on the dependencies between these three

levels for explorative graph visualization [Schulz, 2010]. However, this management of

semantics, as discussed in [Keim et al., 2010, p.33 �.], needs to be formalized in a general

way, so that it can potentially be applied to a wider spectrum of analysis scenarios. Only

this externalized knowledge can serve as a basis for a system that guides analysts through

a heterogeneous, complex set of data. Guidance for exploratory data analysis is a hot

topic in visual analytics research, see for instance [Perer and Shneiderman, 2008] as well

as the work on DimStiller [Ingram et al., 2010] that evolved in parallel to this thesis, which

address guidance tailored to dimensional analysis and reduction. However, the ultimate

goal lies in the provision of a �walk-up usable� interface [Keim et al., 2009] that actively

assists analysts at all stages of their work and in turn speeds up the analysis process.

In a �rst step, this is done by providing the means for keeping a user oriented during the

analysis; and in a second step, with an intact mental map to build on, it is done by visually

guiding a user through the analysis towards a speci�c goal.

1.2 Contributions

This thesis is centered around the question of how a visual analysis system can actively

assist a user in the analysis of a interwoven heterogeneous set of data. The analyst support

that a user needs is twofold: �rst, the analyst needs to be oriented in order to keep up the

mental map of the analysis setup � orientation support; and secondly, with orientation

as a prerequisite, the user can be guided towards a speci�c analysis goal � guidance

support.

Providing support on both levels can only be achieved by externalizing the information

of the setup, so that a visual analysis system can dynamically employ this information. The

�rst major contribution of this thesis is a Three-Stage Model-Driven Design Process

that realizes this externalization. It makes it possible to speci�cally de�ne in detail

• what can be analyzed (data set)

• by whom (expert user)

• in which way (visual and computational interfaces)

• with which goal (aim of this analysis task), and

• in which order (work�ow).

Thus, the model captures the entire analysis session, going well beyond the pure de�nition

of individual analysis tasks. In a �rst authoring stage, a basic model of the given setup is

created which considers data sets from di�erent sources, relations between them and visual

as well as computational interfaces operating on them. A visual analysis system employing
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these models can support the analyst by providing orientation within the conglomerate

of data sets, where not only previous but also possible future analysis steps are shown.

On top of the setup model, a set of domain-speci�c tasks are de�ned, forming the domain

model. In the last stage, the analysis session model, which contains a work�ow targeted

at a concrete analysis goal, is de�ned. In combination, these three models can be used

to actively guide the analyst along a prede�ned path. However, as the models cover both

support levels, the user has always the opportunity to leave the suggested path at any time

and switch to orientation support.

The thesis proceeds by introducing the Caleydo Visual Analysis Framework. The

framework serves as the general infrastructure for realizing the proposed interactive vi-

sualization techniques throughout this thesis and therefore constitutes the second major

contribution of this work.

Drawing upon information from a well-de�ned model and using the Caleydo visualiza-

tion framework as infrastructure, this thesis then goes on to introduce a series of novel

visualization techniques that are speci�cally targeted at assisting users in terms of ori-

entation. With this focus, three novel techniques are proposed, the Matchmaker, the

Jukebox and the Bucket, which particularly address orientation support in the classic

setups of visual analysis systems, i.e., one or multiple data sets loaded in a multi-view

system. After elaborating on these traditional setups, further setup characteristics are

introduced and discussed: �rst, a system that is targeted at the provision of orientation

support in an analysis that comprises multiple existing applications; and secondly, the

analysis of complex, heterogeneous data in a collaborative visual analysis setup. However,

both topics, the analysis across multiple applications as well as across multiple users, are

not the focus of this thesis and therefore only covered brie�y with special attention to the

potential in�uences of the model on this kind of heterogeneous setups.

In contrast to orientation support, hardly any work has been published aiming at

systematic guidance towards a speci�c analysis goal based on de�ned uni�ed representation

� a model. As a �rst step to �ll this gap, the thesis concludes with the presentation of the

Stack'n'�ip system that realizes both levels of support by utilizing the information of all

three stages of the model. These visualization techniques which realize the orientation as

well as guidance support form the third major contribution of this dissertation.

1.3 The Role of Life Science Research in Visual Analytics

Life science researchers are confronted with highly complex, interconnected pieces of data.

In order to understand how organisms work and what factors cause diseases, these pieces

of information need to be considered in combination. These challenges in terms of sense-

making and knowledge discovery make the �eld of biology a prime area of application for

Visual Analytics. This trend in the InfoVis community towards biology is also re�ected by

a series of specially designated yearly events that were established within the visualization

community over the last couple of years: the Eurographics Workshop on Visual Computing
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in Biology and Medicine (VCBM) and theWorkshop on Visualizing Biological Data (VizBi)

are only two examples. Also the panel discussion at the VisWeek '10 on the topic Challenges

in Visualizing Biological Data as well as the Visual Analytics in Health Care workshop

underline the importance and topicality in our community. With the newly established

IEEE Symposium on Biological Data Visualization (BioVis) that will be held the �rst time

at VisWeek '11 this strong trend will be continued.

Moreover, the life science community itself identi�ed Visual Analytics as a central en-

abling technology that has become indispensable. Only recently, Nature Methods devoted

a special issue to �Visualizing Biological Data� [Evanko, 2010] which, besides reviewing the

current state-of-the-art, aims to increase the awareness of the necessity of Visual Analytics

for the life sciences.

Although the concepts and techniques presented in this thesis are targeted at solv-

ing general Visual Analytics problems, they are demonstrated by means of biological

data, addressing open research questions from the life sciences. Especially the under-

standing of genetic functions was identi�ed as a particularly complex Visual Analytics

problem [Keim et al., 2010].

1.4 Collaboration Statement

The list of paper co-authors from the next section provides a good overview of the people

without whom this thesis would not have been possible. However, the following list of

colleagues and institutions deserve to be specially mentioned, as a signi�cant part of the

presented work was done in close collaboration with them:

• Alexander Lex from Graz University of Technology has de�nitely been the most

important collaborator over the last couple of years. We have both committed our

scienti�c work to the Caleydo project in which we jointly designed and developed

the Caleydo framework. His work in�uences all parts of the results, except the early

work before 2008.

• Hans-Jörg Schulz from University of Rostock contributed to the conception of

the model-driven design for the analysis of heterogeneous data, especially to the

theoretical foundation.

• Manuela Waldner from Graz University of Technology was the driving force of the

work on visual links across applications as well as the developments in the direction

of co-located collaborative data analysis.

• Michael Kalkusch, former researcher from Graz University of Technology, initiated

the Caleydo project in 2005 and laid the groundwork for the collaboration with the

Medical University of Graz.

• Werner Pu� did his master's thesis on collaborative information visualization in a

multi-desktop environment within the Caleydo project. He worked on a distributed
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version of the Caleydo framework which was in turn the basis for the visual links

across applications.

• Bernhard Schlegl was involved in the Caleydo project as a master's student. His

main contribution was the implementation of the hierarchical heat map approach as

well as the integration of clustering algorithms into the framework.

• Christian Partl also participated as a student. He supported the implementation

of the Matchmaker approach and also worked on the implementation of Caleydo's

�exible ID-mapping mechanism.

• Ernst Kruij� from Graz University of Technology was involved in the design and

realization of the user study evaluating the Bucket visualization technique and the

integrated visual linking approach.

• Institute of Pathology, Medical University of Graz was a main collaboration

partner over the last few years. As life science experts with real needs in terms

of visualization and data analysis, Prof. Dr. Kurt Zatloukal, Dr. Karl Kashofer

and Dr. Martin Asslaber contributed valuable domain knowledge and requirements,

which were the starting point for numerous solutions developed in the course of the

thesis.

• Ludwig Boltzmann Institute for Experimental and Clinical Traumatology

was a collaboration partner that contributed domain-speci�c requirements and anal-

ysis needs in the context of sepsis research. In particular, Prof. Dr. Heinz Redl, Dr.

Gudrun Schmidt-Gann, Monika Schuller and Dr. Katharina Schmid were involved

in the interdisciplinary research activities.

1.5 Related Publications

The following list of peer-reviewed, co-authored papers gives an overview of the publication

activities done in the course of this thesis. The author's contributions are stated explicitly.

Primary Publications

The publications listed here are strongly related to the dissertation's topic. The contri-

bution to these manuscripts can be found on all stages: the idea generation phase, its

realization and evaluation (if contained) as well as substantial paper writing. The publi-

cations, sorted by date, are:

• Marc Streit, Hans-Jörg Schulz, Alexander Lex, Dieter Schmalstieg, Heidrun Schu-

mann. Model-Driven Design for the Visual Analysis of Heterogeneous Data. Ac-

cepted with major revision to: IEEE Transactions on Visualization and Computer

Graphics, 2011 [Streit et al., 2011].
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This paper covers the three-stage model-driven approach as well as the Stack'n'�ip

system. Chapter 4 and 8 of this thesis are based on material from this manuscript.

• Alexander Lex, Marc Streit, Ernst Kruij�, Dieter Schmalstieg. Caleydo: De-

sign and Evaluation of a Visual Analysis Framework for Gene Expression Data in

its Biological Context. In Proceedings of the IEEE Symposium on Paci�c Visual-

ization (Paci�cVis '10), pp. 57-64. IEEE Computer Society Press, 2010. ISBN

424466856 [Lex et al., 2010a].

This paper serves as core material for the Bucket visualization technique, presented

in Section 6.3.3.

• Marc Streit, Alexander Lex, Michael Kalkusch, Kurt Zatloukal, Dieter Schmal-

stieg. Caleydo: Connecting Pathways and Gene Expression. Bioinformatics, Oxford

Journals, vol. 25, no. 20, pp. 2760-2761, 2009 [Streit et al., 2009a].

This application paper was targeted at the Bioinformatics community. It describes

the concrete bene�t of the Caleydo software for domain experts, in particular the

Bucket visualization technique.

• Marc Streit, Hans-Jörg Schulz, Dieter Schmalstieg, Heidrun Schumann. Towards

Multi-User Multi-Level Interaction. In Technical Report LMU-MI-2010-2, Ludwig

Maximilias University Munich: Proceedings of the Workshop on Collaborative Vi-

sualization on Interactive Surfaces (part of VisWeek '09), pp. 5-8., 2009. ISSN

1862-5207 [Streit et al., 2009c].

This position paper contains preliminary work on the model-driven design approach

(see Chapter 4). It is the initial outcome that originated from the collaboration with

the University of Rostock.

• Marc Streit, Michael Kalkusch, Karl Kashofer, Dieter Schmalstieg. Navigation and

Exploration of Interconnected Pathways. Computer Graphics Forum (EuroVis '08),

vol. 27, no. 3, pp. 951-958, 2008 [Streit et al., 2008].

This manuscript serves as core material for the Jukebox visualization technique,

presented in Section 6.2.2.

• Marc Streit, Michael Kalkusch, Dieter Schmalstieg. Interactive Visualization of

Metabolic Pathways. In Poster Compendium of the IEEE Conference on Visualization

(Vis '07), IEEE Computer Society Press, 2007 [Streit et al., 2007].

The poster abstract contains preliminary work on the Jukebox technique.

Secondary Publications

The following list contains publications which are related but thematically not at the heart

of this thesis. The author's own contribution is explicitly stated for each paper.



8 Chapter 1. Introduction

• Alexander Lex, Marc Streit, Christian Partl, Karl Kashofer, Dieter Schmalstieg.

Comparative Analysis of Multidimensional Quantitative Data. IEEE Transactions on

Visualization and Computer Graphics (InfoVis '10), vol. 16, no. 6, pp. 1027-1035,

2010 [Lex et al., 2010b].

This paper presents the Matchmaker technique which is introduced in a compact

manner in Section 6.1.2. The author of this thesis supported the idea �nding process

and contributed signi�cantly to the implementation as well as the writing of the

paper.

• Manuela Waldner, Werner Pu�, Alexander Lex, Marc Streit, Dieter Schmalstieg.

Visual Links across Applications - Best student paper award. In Proceedings of the

Conference on Graphics Interface (GI '10). Canadian Human-Computer Communi-

cations Society, 2010 [Waldner et al., 2010].

This publication serves as additional material for Section 7.1.1. In addition to the

contributions made during the generation of the initial ideas, the author supported

the integration of the Caleydo software into the general Visual Links Across Appli-

cation system.

• Marc Streit, Alexander Lex, Helmut Doleisch, Dieter Schmalstieg. Does software

engineering pay o� for research? Lessons learned from the Caleydo project. In Poster

Compendium of the Eurographics Workshop on Visual Computing for Biomedicine

(VCBM '10). Eurographics, 2010 [Streit et al., 2010].

This poster abstract serves as additional material for the Chapter on the Caleydo

system. Major parts of the manuscript were written by the author of this thesis.

• Manuela Waldner, Alexander Lex, Marc Streit, Dieter Schmalstieg. Design Con-

siderations for Collaborative Information Workspaces in Multi-Display Environments.

In Technical Report LMU-MI-2010-2, Ludwig Maximilias University Munich: Pro-

ceedings of the Workshop on Collaborative Visualization on Interactive Surfaces (part

of VisWeek '09), pp. 36-39, 2009. ISSN 1862-5207 [Waldner et al., 2009].

The author's own contribution lies in the support during the realization of the proto-

type system, around which the ideas of the position paper revolve (see Section 7.1).

• Heimo Müller, Robert Reihs, Stefan Sauer, Kurt Zatloukal,Marc Streit, Alexander

Lex, Bernhard Schlegl, Dieter Schmalstieg. Connecting Genes with Diseases. In Pro-

ceedings of the Conference on Information Visualisation (IV '09). IEEE Computer

Society Press, 2009. ISBN 0769537337 [Mueller et al., 2009].

The author contributed the sections on selected visualization techniques, part of the

Caleydo framework.

• Marc Streit, Alexander Lex, Heimo Müller, Dieter Schmalstieg. Gaze-Based Focus

Adaption in an Information Visualization System. In Proceedings of the Conference
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on Computer Graphics and Visualization and Image Processing (CGVCVIP '09),

2009 [Streit et al., 2009b].

The paper serves as additional material for Section 6.3.5. The author played a leading

role in the realization of the gaze-based interaction in the Caleydo system and also

contributed a major part of the written text.

• Gudrun Schmidt-Gann, Katharina Schmid, Monika Uehlein, Joachim Struck, An-

dreas Bergmann, Dieter Schmalstieg, Marc Streit, Alexander Lex, Douw G. van

der Nest, Martijn van Griensven and Heinz Redl. Gene- and Protein Expression

Pro�ling in Liver in a Sepsis-Baboon Model. In Proceedings of the Conference on

Shock, 2009 [Schmidt-Gann et al., 2009].

The work presented in this manuscript was carried out with the help of the Caleydo

analysis software which served as enabling technology for generating the results.

• Heimo Müller, Kurt Zatloukal, Marc Streit, Dieter Schmalstieg. Interactive

Exploration of Medical Data Sets. In Proceedings of the Conference on

BioMedical Visualisation, pp. 29-35. IEEE Computer Society Press, 2008. ISBN

0769532844 [Mueller et al., 2008].

The author's main contribution to this manuscript lies in the section on pathway

analysis.

• Manuela Waldner, Christian Pirchheim, Marc Streit, Dieter Schmalstieg.

Multiple View Visualization On A Multi Display Setup. In Poster Compendium

of the Workshop on Giga-Pixel Displays & Visual Analytics (GIANT),

2008 [Waldner et al., 2008].

This poster's content serves as additional material for Chapter 7. The author con-

tributed in all aspects that concern the collaborative data analysis as well as the

design of the case study.

1.6 Structure

The thesis is structured as follows:

Chapter 2 introduces the necessary life science background which serves as the basis in

terms of input for the rest of the thesis. The demanding data characteristics as well

as the complex domain problems provide the perfect playground for the development

of new solutions.

Chapter 3 starts by de�ning the di�erent levels of analyst support: as a �rst step, the

user needs to be oriented in the information landscape, and secondly, the oriented user

can be actively guided towards a concrete analysis goal. It continues by discussing

the related work on guided visual analysis and which visual means can be utilized to
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convey the information to the analyst. The chapter �nishes by categorizing existing

work on supported visual analysis as well as the novel visualization techniques, which

will be introduced throughout the subsequent chapters.

Chapter 4 introduces the three-stage model-driven design concept that aims to manage

the semantics of visual data analysis. The model constitutes the theoretical founda-

tion of this dissertation.

Chapter 5 presents the Caleydo visual analysis framework developed in the course of this

thesis. The software framework serves as the main infrastructure that enabled the

realization of the visualization techniques and case studies introduced in this thesis.

Chapter 6 introduces a series of visualization techniques that operate on a de�ned analy-

sis setup model. The techniques aim to assist users by explicitly showing the relations

within and across multiple data sets. The utilization of visual links, a particularly

strong visual cue, plays a central role in achieving this goal.

Chapter 7 addresses two new challenges in terms of a setup's heterogeneity: on the one

hand, the need for combining stand-alone applications in order to be able to cover

all aspects of the analysis of heterogeneous data; and on the other hand, the demand

for the inclusion of multiple users who jointly perform an analysis. Both aspects

impose a whole new set of requirements in terms of orientation. In addition to the

discussion of these factors for guided visual analysis, initial work in both directions

is presented.

Chapter 8 introduces the Stack'n'�ip system which employs the full three-stage model

for providing analyst support on both support levels: orientation as well as guidance

towards a particular analysis goal.

Chapter 9 concludes this thesis by summarizing the work, discussing further implications

and indicating promising directions for future research.
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Life Science Background
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This chapter gives an overview of the biological data that lay the groundwork in terms of

input for this thesis � ranging from cellular networks, to molecular data, and further clinical

data resources. While each homogeneous data set and each domain on its own is subject of

intensive research, a simultaneous consideration of multiple aspects of the biological system

poses new challenges in terms of data analysis � making more sophisticated support of the

analyst necessary.

2.1 Multi-Level, Multi-Scale Biological and Biomedical Data

Organisms are complex, natural systems of which only a fraction is currently understood.

In order to gain a deeper knowledge of these systems, research in biology and medicine

is centered around discovering the missing links. However, the more we �nd out about

how these systems function, the harder it gets to capture their complexity and to make

sense of the incomplete and even partially erroneous body of knowledge. In a nutshell,

the central question is: �How will big pictures emerge from a sea of biological data?� (cf.,

[Pennisi, 2005]).

An essential concept used in coping with the complexity of these systems lies in in-

vestigating it on di�erent semantic levels and on multiple levels of granularity. Figure 2.1

illustrates some of the levels in the context of biological systems. A very similar multi-

level representation showing concrete data examples (cf., Figure 2.2) was published in

11
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2010 [O'Donoghue et al., 2010]. Data sets assigned to each of the levels cover distinct

aspects of the natural system and therefore vary in format and type. While biological

processes on the cellular level for instance are represented as graphs, imaging data shows

structures on the organ level.

Figure 2.1: Patient-centered data hierarchy starting with a population on the top and going down to
the gene regulation data of each individual patient [Streit et al., 2009c].

Figure 2.2: Concrete sample hierarchy for biological data [O'Donoghue et al., 2010].

However, this multi-level hierarchy is not meant as a universally valid data collection,

as it contains only a subset of possible data sources and scales. It is rather de�ned by

a research question. However, addressing di�erent research questions may require the

investigation of another set of data, leading to a di�erently composed hierarchy.

A main distinguishing factor of biological resources is whether or not a data set is asso-

ciated with a concrete individual, animal model or experiment. Experiment-independent

resources contain knowledge about generic functions. However, in order to understand

the functioning behind organisms and diseases, both kinds of resources are essential. The

subsequent sections introduce data of both kinds. Note that the selection of data resources

presented here gives an impression of the wide spectrum of data types involved, rang-
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ing from high-resolution images over structured multi-dimensional data to networks and

written text.

2.2 Patient-Independent Resources

The available body of generic knowledge in biology is covered by large database, mostly

�nanced by public funds. As a multitude of di�erent institutions o�er these services, the

data sources are scattered over the web and therefore hard to merge and uniformly access.

Probably the most comprehensive collection of generic resources on all kinds of levels is the

Entrez 1 database network hosted by the National Center for Biotechnology Information

(NCBI), illustrated in Figure 2.3.

Figure 2.3: Interactive representation of the Entrez database model. By selecting a particular database,
the links to other resources in the database network are highlighted. The color (red to light orange)
encodes the number of records contained in each of the databases. The green labels specify how many
links interconnect the separate databases. Source: http://www.ncbi.nlm.nih.gov/Database

When working with biomedical data, one has to keep in mind that the underlying data

is imperfect. The knowledge is subject to a constant update process: new relations are

discovered, existing connections are changed or invalidated, and many entities and relations

are currently still unknown. The user must be aware that the current body of knowledge

is only an incomplete snapshot of the complete and comprehensive systems. This volatile

data basis has to be considered when designing new methods.

1http://www.ncbi.nlm.nih.gov/Entrez

http://www.ncbi.nlm.nih.gov/Database
http://www.ncbi.nlm.nih.gov/Entrez
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The following paragraphs brie�y introduce generic, patient-independent resources that

are relevant in the context of this thesis.

Gene/protein database Information about genes and proteins is stored in

public databases such as GeneCards2 and Entrez Gene3. These web sources include

meta-information such as short names, alternative identi�ers, a detailed description,

references to publications and disease classi�cations.

Disease database Diseases and health-related conditions are classi�ed according to var-

ious disease schemes. The most commonly used classi�cation is the International Statistical

Classi�cation of Diseases and Related Health Problems (ICD)4 published by the WHO.

Publications Published articles about genes, proteins, pathways and diseases play an

important role during the analysis, as an analyst can gain deeper knowledge of the topics

if needed. The most commonly used database for literature research in the biomedical

domain is PubMed5.

Cellular Networks: Pathways Pathways are graphs representing biological processes

in cells. They describe states of and transformations between molecular entities. These

entities are, for instance, genes, proteins, enzymes and/or metabolites � depending on

the scope of the pathway (e.g., signaling pathways, biochemical pathways, protein-protein

interaction networks, etc.). Nodes represent the biological entities, and edges the reactions

within a cell or chemical signals between or inside the cells. A complete de�nition of

pathways in terms of graph theory is given in [Klukas and Schreiber, 2006]. Pathways are

generic models valid for a whole species and therefore independent of speci�c individuals.

2.3 Patient-Speci�c Resources

In contrast to these public, generic databases, a wide range of data exists which can be

directly associated with a concrete patient or experiment. The following paragraphs give

a short overview of the most relevant patient-related resources.

Anamnesis The anamnesis is a patient's medical history � including illnesses, allergies,

hereditary diseases, etc.

Lab results Lab results include blood levels, urine and stool sample results, etc.

2http://www.genecards.org
3http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
4http://www.who.int/classifications/icd/en
5http://www.ncbi.nlm.nih.gov/pubmed

http://www.genecards.org
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
http://www.who.int/classifications/icd/en
http://www.ncbi.nlm.nih.gov/pubmed
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MR / CT / X-ray Magnetic resonance (MR), computer tomography (CT) and X-ray

data is acquired using imaging techniques. For cancer patients, a tumor might be visible

in one, several or all of the imaging data sets. In some cases, computer-based analysis,

such as automatic tumor segmentation, is employed.

Tissue samples When a tumor is discovered, the standard procedure is to take a biopsy.

The acquired tissue is sliced, applied to a glass slide and stained. When magni�ed, cell

conglomerates as well as individual tumor cells become visible. In addition to their investi-

gation under the microscope, high-resolution scans are acquired and stored in a database.

Gene-/protein expression Since the human genome as well as the genome of many

other species is completely sequenced, a major thrust of scienti�c e�ort has shifted to-

wards the identi�cation of gene functions [Pellegrini et al., 2001]. High-throughput tech-

niques like DNA micro-arrays [Schena et al., 1995] enable biomedical experts to measure

the regulation of ∼omics data (genomics, proteomics, metabolomics, etc.� for details see

[Gehlenborg et al., 2010]) for a patient (or any other sequenced organism) at a speci�c

point in time. This snapshot of the expression tells a life scientist how active a gene

or protein is, which in�uences the cellular processes and in turn the diseases themselves.

Again, whether the expression data describes the regulation of genes or proteins is a ques-

tion of the biological level and depends on the analysis and the questions asked. However,

from the perspective of data processing and visualization, the di�erence is not essential,

as the data structure remains the same: multi-dimensional, numerical data.

2.4 Biobanks

Collections of human material of patients, such as tissue, blood and further patient-related

data on various levels, are called Biobanks [Hagen and Carlstedt-Duke, 2004,

Asslaber and Zatloukal, 2007]. These comprehensive databases have the potential to

serve as a basis for large scale comparison analyses between diseased and healthy

individuals. The goals behind the establishment of Biobanks are ambitious: �nding

cure for widespread diseases like Alzheimer's disease, cancer, diabetes and heart

disease [Collins et al., 2003].

Traditionally, each hospital used to have and often still has a local, rather small data

collection. One reason for this are the strict privacy regulations stating that the biological

material and the associated information needs to be held con�dential and can only be

accessed by authorized clinical and research institutions. However, over the last several

years, intensive e�orts have been taken to consolidate these local collections by advancing

the integration to joint, international databases. While the collection and consolidation of

the data in these Biobanks remains a huge and only partially solved engineering and legal

challenge, it is still unclear which tools and methods can cope with the data in order to

gain new insights and �nd some of the missing links.
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The Institute of Pathology at the Medical University of Graz serves as the hosting

institution of the Austrian Biobanking infrastructure. In addition, as a coordinator of

the EU-wide Biobanking and Biomolecular Resources Research Infrastructure (BBMRI)6

project, they initiated and advanced the data fusion process among the European countries.

As the main collaboration partner during the thesis project, they approached us with

their needs in terms of data analysis in the context of Biobanking and also provided us

with anonymized real-world data for developing and testing our solutions. Due to their

specialized focus on gene expression data, pathways and the combination of the two, a

part of the visualization techniques proposed throughout this thesis address the analysis

of these data resources.

2.5 Summary

This chapter was dedicated to the collection of biological and biomedical data that com-

prises the basis for this dissertation with regards to the input. Data resources of various

kinds were basically divided into generic knowledge about organisms and data that is

associated with a certain individual, experiment or animal model.

Life science research is dedicated to gaining a better understanding of complex nat-

ural systems. The long term objective is to �nd a cure for various diseases. However,

the current body of knowledge is erroneous and incomplete. In order to �nd the missing

links and correct the current state of knowledge, a combined consideration of these mani-

fold data resources is essential. This thesis aims to provide the means to answer concrete

domain-speci�c research problems, but at the same time addresses common Visual An-

alytics challenges, as the heterogeneous set of complex data comprises major challenges

confronting the �eld of Visual Analytics: di�erent levels of scale, di�erent formats, di�erent

types and di�erent sources.

The domain-speci�c research problems on the one hand motivated the solutions which

were created in the course of this thesis, and on the other hand, serve to demonstrate their

practical value. However, great care was taken to translate the domain-speci�c research

problems to more general visual analysis problems � thus providing the broader context of

the solutions and their possible applicability to other domains.

6http://www.bbmri.eu

http://www.bbmri.eu
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The challenges of analyzing multiple heterogeneous data sets are widely recognized in

the �eld of Visual Analytics. Thomas and Cook recommend the creation of �methods

to synthesize information of di�erent types and from di�erent sources into a uni�ed data

representation� [Thomas and Cook, 2005, p.11]. Such a uni�ed representation can be en-

visioned as an heterogeneous information landscape, in which information foraging and

sense-making take place. Like a person exploring unknown territory in the real world, a

user navigating the high-dimensional, multi-faceted and overwhelmingly large, combined

data space of multiple heterogeneous data sets must be provided with some means of ori-

entation. This challenge has been described in the context of information retrieval as early

17
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as 1993 [O'Day and Je�ries, 1993]. This publication also coined the notion of information

landscapes and identi�ed di�erent strategies commonly used to gather information within

them � e.g., exploring the data in an undirected fashion or following a concrete plan for

�nding the desired information. While an e�ective visual analysis system has to support

both types of analysis, it �rst needs to be clari�ed what the di�erent kinds of support are

which the user needs during an analysis.

3.1 Levels of Analyst Support

Two distinct levels of analyst support can be identi�ed:

S1 Orientation that communicates

S1.1 the current position within the information landscape,

S1.2 the path of analysis steps that led there (history), and

S1.3 possible directions for further investigation (e.g., related data sets).

S2 Guidance that suggests concrete analysis steps to be taken in order to get from an

analysis hypothesis to an analysis result.

These support levels serve as reference points throughout this thesis. On the one hand,

existing related work is allocated to the respective level and on the other hand, for the

proposed concepts and techniques from this thesis it will be stated which of the levels is

being addressed in particular.

3.2 State-of-the-Art in Supported Visual Data Analysis

Orienting a user in an analysis is a challenge on its own right. The support can be given in

the data space, the view space as well as in time. Examples of techniques that provide

support in the data space are semantic zooming [Perlin and Fox, 1993] or edge-based trav-

eling for the exploration of graphs [Tominski et al., 2009]. Support examples in the view

space are navigation techniques such as zoom/pan/rotate as well as general paradigms like

focus+context and overview+detail. Many of these orientation techniques in space and

also in time are already an integral part of visualization systems. However, depending on

the size of the information landscape and the complexity of the analysis setup (see Sec-

tion 3.4), a combination of temporal as well as data and view space orientation techniques

is required. The novel visualization techniques introduced in Chapter 6 and 7 suggest such

a combination for di�erent domain problems with various degrees of complexity. For in-

stance, the analysis of heterogeneous data visualized in many synchronized views demands

another set of orientation techniques than the analysis of a single multi-dimensional data

set. Thus, although many individual techniques have been proposed over the years, it

remains di�cult to build a system that successfully realizes orientation support.



3.2. State-of-the-Art in Supported Visual Data Analysis 19

In contrast, the related work that addresses guidance in the sense of recommending

future analysis steps is rather con�ned. The following section discusses possible strategies

in terms of input information that can then serve as a basis for realizing guidance support.

On a conceptual level, the literature o�ers two prevalent strategies for guidance support:

bottom-up, provenance-driven vs. top-down, model-driven. While the provenance-driven

strategy bases the user recommendations on events and information collected during past

analysis sessions, the model-based strategy builds upon authored work�ows and further

systematically associated information that can then be dynamically utilized for assisting

the user.

3.2.1 Provenance-Driven Guidance Approaches

The most common strategy is the provenance-driven, bottom-up strategy, which gathers

data and distills it into navigational cues. Based on the gathered information from past

sessions, analyst support can in principle be realized for orientation purposes on the level

S1.3 as well as for recommending concrete next steps (S2 ). In the �rst case, a system can

present to the user which next steps are possible by looking up what other users did at a

certain stage during the analysis. The second approach that provides concrete suggestions

for next steps is also well known from recommendation systems which are applied in various

domains [Scheidegger, 2009].

An example for a provenance-based system is VisSheet which generates a number of

previews for a range of possible visualization parameter changes and presents them to

the user to choose from [Jankun-Kelly and Ma, 2001]. Another example is the provenance

based approach of HARVEST's behavior-driven visualization recommendation which ana-

lyzes the user's analytic activity [Gotz and Zhou, 2009, Gotz and Wen, 2009]. The follow

up work also extends the recommendations by presenting possibly interesting annotations

from past analysis sessions [Shrinivasan and Gotz, 2009]. TIBCO Spot�re R© Guided Anal-

ysis1, a commercial product, follows a similar approach that captures �best practices�,

which then can be shared between analysts.

When employing the concept of Social Navigation, one also gathers user data, but

crowdsources it from multiple users and displays it as usage statistics indicating popular

or neglected user choices [Willett et al., 2007]. Similar provenance-driven techniques can

be employed on a higher level as well, as it is done by the VisComplete system (part of

VisTrails2) which mines a database of existing visualization pipelines to aid the user in

constructing new ones by suggesting possible completions [Koop et al., 2008].

[Garg et al., 2008] utilize machine learning algorithms for aiding a user in the discovery

of patterns in the data. Users provide the system with analysis patterns, which the system

tries to learn. On the basis of the resulting model, the system then makes suggestions to

the analyst.

1http://spotfire.tibco.com/about/guided-analytics.aspx
2http://www.vistrails.org

http://spotfire.tibco.com/about/guided-analytics.aspx
http://www.vistrails.org
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3.2.2 Model-Driven Guidance Approaches

An approach used more rarely than the provenance-driven strategy is the model-driven,

top-down strategy, which derives navigational assistance by instantiating a prede�ned,

abstract best-practice solution with concrete visual and computational techniques. One

example is the Systematic Yet Flexible system, which gives a step-by-step guidance along

a high-level work�ow, while leaving the choice of concrete techniques that achieve the

higher-level objectives to the user [Perer and Shneiderman, 2008].

The model-driven approach, presented in detail in the next chapter, falls into this sec-

ond category, but has a much larger scope. In contrast to the state-of-the-art approaches

that only capture the actual work�ow, it also utilizes information about the analysis setup,

which includes the available data sets and their interrelations, the available algorithmic and

visual methods and packages, as well as their applicability to achieve individual steps of

the work�ow. As a result of making this additional information available, it is possible

to automatically determine suitable analytical techniques and subsequently use this infor-

mation to provide navigational cues on a more speci�c, lower level along a given analysis

path. This proves especially useful in interactive systems that exhibit a large number of

possible continuations at any given point � so that the decision which functionality to use

on which part of the data and in which order is particularly challenging.

Having discussed the basic ways of capturing and externalizing the input information

that lay the groundwork for the user support, the next section introduces the visual means

that a system can employ to incorporate this information in the visual representation with

which the user interacts during an analysis.

3.3 Means of Visual Communication for Analyst Support

In order to visually express orientation and guidance a series of communication strategies

exist:

• Utilizing visual cues in existing visualizations

• Meta-visualizations as auxiliary views

• Textual descriptions

Each strategy for communicating support information implies a certain additional cog-

nitive e�ort for the user. To keep the cognitive load to a minimum, the most e�ective and

most e�cient strategy needs to be chosen for each support operation. In the following,

individual communication strategies are brie�y discussed while also stating the suitability

of each strategy for the levels of support de�ned in Section 3.1.

3.3.1 Visual Cues

Altering the property of a visual variable in existing visualizations (e.g., increasing the

size of an object) which is not encoding information on its own is a common method for
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drawing the user's attention to a speci�c region or object on the screen. Well suited for

this purpose are variables that are selective according to [Bertin, 1983] � such as color, size

and shape.

However, to orient a user in an information landscape (S1.1 ), it is necessary to indicate

relationships between elements. Synchronized highlighting, i.e., concurrently changing

the visual representation of the related elements, is a common way of achieving this. In

combination with linking & brushing [Becker, 1987], this simple variant of visual linking is

a powerful and well-established technique in information visualization.

Visual variables that are associative ([Bertin, 1983]), like color, size, orientation

and hue, are suited for this purpose. Synchronized blinking is another strong

visual attractor that could be used for showing relations, but is often perceived as

disturbing [Seo and Shneiderman, 2002]. The �nal and most expressive alternative is to

draw lines between the related data items � referred to as visual links in the remainder of

this thesis.

Figure 3.1: The connectedness overrules the Gestalt law principles: (a) proximity, (b) color, (c) size
and (d) shape [Ware, 2004].

According to [Palmer and Rock, 1994], connectedness between elements is even a

stronger grouping principle than proximity, color, size and shape, see Figure 3.1. Palmer

and Rock suggest even extending the organizing principles described in the Gestalt

laws [Ware, 2004] by the connectedness of objects. Furthermore, the trend to large,

high resolution displays in combination with the small active visual �eld [Ware, 2004]

is another argument for using visual links. For relating spatially distributed pieces of

information, it is easier for users to follow visual links with the eyes than matching the

color, shape or animation of two elements over a longer distance. In addition, color and

shape do not scale well, as users cannot distinguish more than �ve to seven [Healey, 1996],

making these a bad choice for simultaneously showing relations between multiple sets of

elements. In contrast, visual links are only limited by the additional visual clutter they

introduce on top of existing visualizations. However, this problem can be alleviated by

bundling the lines according to additional structural information, like Hierarchical Edge

Bundles do [Holten, 2006]. The utilization of visual links is also particularly useful for

situations in which color already encodes an attribute of the data set. Summing up,

visual connection lines are strong in supporting the perception of related objects and

therefore well suited for orientation purposes.

In a node-link graph visualization, data dependencies are represented by edges (e.g.,
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drawn as lines) connecting the nodes in a network. Hence, they are part of a self-contained,

single visualization technique that represents a homogeneous data set � the graph itself.

Therefore, graph edges can be considered as the most simple example of visual links.

Examples are cone trees [Robertson et al., 1991] for the visualization of hierarchies as well

as the early work on SemNet [Fairchild et al., 1988], a 3D representation of a network.

While visual links are an inherent component of network/graph visualization, in the

last two decades they have also become relevant for extended purposes in information

visualization:

• Adding extra relational information on top of an existing visualization. Exam-

ples are Hierarchical Edge Bundles [Holten, 2006] as well as many other more special-

ized solutions, like Fekete's tree map overlays with graph links [Fekete et al., 2003]

and also the NFlowVis system [Fischer et al., 2008].

• Bridging multiple visualizations resulting in a new compound visualization.

An early example for the usage of visual links in this context is the work

by [Risch et al., 1996] on data intelligence analysis in a virtual environment

(see Figure 3.4). Semantic substrates [Shneiderman and Aris, 2006] add

cross-edges between 2D views arranged side by side (cf., Figure 3.2). Collins

and Carpendale [Collins and Carpendale, 2007] later generalized visual links for

interconnecting multiple visualization from di�erent types and furthermore allowed

users to arrange and navigate the linked views in an interactive 3D setup (see

Figure 3.5). [Hoellerer et al., 2007] patented a concept that also makes use of

visual links for depicting inter-view relations in 3D (see Figure 3.3). Recently,

visual linking was used in [Viau et al., 2010] for showing interactive dependencies

between their FlowVizMenu interface which dynamically parametrizes a connected

scatterplot matrix.

While straight connection lines are the most common shape of links, curves, ribbons

and surfaces are possible as well. The decision which style to use depends on the content of

the visualization. For instance, for visualizations with mainly symmetric content, curved

connection lines stand out and are therefore easier to discriminate [Ho�mann et al., 2008].

In addition, elements connected by smooth (curved) lines are easier to perceive as being

related [Ware, 2004, p.193].

As visual links are rendered on top of existing visualizations, they carry the risk of visual

clutter and thus should not be overused. Clever routing of links that takes into account

the information underneath is one countermeasure for minimizing this visual clutter � as

identi�ed in [Shneiderman and Aris, 2006] as potential direction for further research.

Some of the novel visualization techniques proposed in this thesis employ visual links

between views for providing orientation. For details see Chapter 6, 7 and 8.
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Figure 3.2: Network visualization by semantic
substrates [Shneiderman and Aris, 2006]. Seman-
tic substrates are non-overlapping regions where
nodes are placed according to node attributes.
The user can specify regions, for which all edges
connected to the enclosed nodes become visible.

Figure 3.3: A setup patented by Mi-
crosoft that interconnects visual represen-
tations in a statically arranged information
workspace [Hoellerer et al., 2007]. An additional
data attribute is encoded in the thickness of the
lines.

Figure 3.4: Cross referencing of information in a
virtual environment [Risch et al., 1996]

Figure 3.5: VisLink method propagating
inter-plane edges between existing visualiza-
tions [Collins and Carpendale, 2007]

3.3.2 Meta-Visualizations

In contrast to standard visualization techniques that render the actual data set, meta-

visualizations aim at providing additional information about the data, the setup or the

current analysis session. Two kinds of meta-visualizations can help to establish orientation:

• a history graph (e.g., [Kreuseler et al., 2004, Shrinivasan and van Wijk, 2008,

Heer et al., 2008]), showing previous analysis steps (orientation level S1.2 ), and

• an explicit, abstract representation of, for instance, the data sets and their interde-
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pendencies. This meta-visualization can serve as the basis for orientation on level

S1.1, S1.3 and S2.

For both cases it makes sense to show only the part of the graph that is of current

interest for the analyst. A semantic reduction of the graph information is also a useful

mechanism to present minimal yet su�cient pieces of information for the current analysis

situation.

3.3.3 Textual descriptions

In principle, it would be possible to describe every support action textually. As textual

descriptions demand the full attention from users for a short period of time, this is not

optimal for simple cases of orientation, where the highlighting of a button or speci�c region

of the visualization is su�cient. However, for guidance in the sense of S2, text is essential

for communicating step-by-step instructions which could also be formulated in domain-

speci�c words tailored to the analyst's language and background.

Presenting text is a necessary but not su�cient tool for providing guidance. A well

thought-out combination of all three support communication strategies is therefore re-

quired. The Stack'n'�ip system presented in Chapter 8 uses one possible combination that

is speci�cally targeted at realizing guidance � while also providing orientation at any time

during the analysis.

3.4 Analysis Setup Characteristics

The complexity of creating an analysis system that o�ers the support under discussion is

in�uenced by a series of setup characteristics. It is relevant whether an analysis comprises

one or multiple: data sets, views, applications, displays and users.

Figure 3.6 depicts a sample single-user analysis setup where multiple instances of each

individual characteristic are involved. The higher the degree of heterogeneity is in terms

of these variables, the more important support becomes. At the same time, support also

becomes harder. The following section discusses the in�uence of each of these aspects on

supported visual analysis.

3.4.1 Within / Across Data Sets and Views

When discussing orientation in an information landscape, it is necessary to consider the

data sets and their visual representations at the same time. In this respect, a series of

combinations are possible � each of them imposing di�erent requirements regarding the

di�culties for maintaining a user's mental map. The easiest case is a single data set,

represented by a single view. Here, the relations within the data set are communicated

by the visualization technique itself, e.g., a tree map [Johnson and Shneiderman, 1991],

transporting the hierarchical relations between elements. If the technique is well designed



3.4. Analysis Setup Characteristics 25

  

Display 1 Display 2 

Application 1 

View 2 

Application 2 

View 1 

Data Set 2 

Data Set 1 

Application 3 

View 3 

Data Set 3 

View 4 

 

Data 
Set  
4 

Figure 3.6: A sample single-user analysis setup covering multiple data sets visualized in multiple views.
The analysis runs in a series of applications spanning multiple displays (monitors).

and suited for visualizing the data set, no additional measures need to be taken for keeping

a user oriented. Multiple views showing di�erent aspects of the same data set by using

various visualization techniques are also easily manageable for a user in terms of cognition.

However, when multiple heterogeneous data sets are the subject of an analysis, this

is not as straightforward. The state-of-the-art solution is to employ multiple coordinated

views [Roberts, 2007], where the user can interactively explore how the data sets are linked.

Nevertheless, it remains di�cult for a user to understand the association between the data

sets and the respective views as well as the interrelations between the data sets at any

time [Baldonado et al., 2000].

Chapter 6 introduces visualization techniques which take the �rst step towards ori-

entation in such a heterogeneous data analysis scenario. These techniques rely on visual

links as an additional visual cue � making the relations within and between the data

sets on the level of individual items more explicit. However, although these techniques

have proven their value for investigating a low number of distinct data sets, they do not

scale well to a complex, interwoven information landscape. This requirement is addressed

by the Stack'n'�ip system presented in Chapter 8. This technique incorporates a meta-

visualization that presents the relations between the data sets in an explicit manner, the

history (i.e., the data sets the user has already visited during the analysis), and also the

possible next data sets that are connected to the currently investigated one. In addi-

tion, the visualization makes it clear which data set is currently being visualized by which

view(s). Thus, Stack'n'�ip enables orientation in all of its facets (S1.1, S1.2 and S1.3 ).
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3.4.2 Within / Across Applications

State-of-the-art visual analytics systems allow users to load multiple data sets which can

then be analyzed in a multiple coordinated view fashion. However, creating one single

super-application which supports users in all their analysis needs is unrealistic. In real

world situations, a profound visual analysis often comprises multiple, highly specialized

and expensive tools. An example from clinical data analysis is to use a database query

tool for �nding patients with common characteristics with respect to a disease in the �rst

place, and then load the MR data of these patients in a volume viewing tool for an in-depth

comparison.

However, like in this example, in most real world analysis scenarios intercommunication

between separate tools, if existent, is limited. For instance, an import/export feature

cannot provide the same level of support as a well integrated seamless analysis work�ow

carried out in a single application. Consequently, there is a strong need for bridging the

gaps between these independent tools. The three-stage model provides the foundations for

doing so, as it is irrelevant which set of applications o�er the visual and computational

interfaces.

What remains is to solve the technical problems of such a multi-tool scenario. In

the spirit of the Snap-Together Visualization [North and Shneiderman, 2000], possibili-

ties to orient a user (support level S1 ) by visually linking information across applica-

tions [Waldner et al., 2010] have been explored, as presented in detail in Section 7.1. In

contrast to Snap-Together, the proposed approach works without a common database on

the basis of ID-Strings that are collected from minimally-modi�ed applications (e.g., via

plug-ins) and matched by a light-weight management application. The related entities

thereby identi�ed are connected by visual links. While this approach is a �rst step to-

wards orienting a user in an application-spanning analysis, model-driven guidance along a

work�ow in such a scenario is a promising next step, as described in Section 9.2 on future

work.

Note that distributed Visual Analytics systems (e.g., [Natarajan and Ganz, 2009]) do

not span independent tools and therefore do not fall into the across-application category.

3.4.3 Within / Across Analysts

Collaboration is another important building block for solving complex domain problems.

For a comprehensive analysis, experts from multiple domains with di�erent background

knowledge are bene�cial. Initial results in the direction of collaborative Visual Analytics

are already available. For example, [Heer and Agrawala, 2007] discuss possible design con-

siderations in this context, [Brennan et al., 2006] present a multi-analyst Visual Analytics

framework and [Isenberg and Fisher, 2009] realized collaborative linking and brushing in

such environments. Although numerous research activities address various aspects of the

problem area, to our knowledge no work exists that aims for a systematic externalization
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of such multi-analyst scenarios. Thus, the proposed three-stage model-driven concept has

the potential to serve as a basis for supporting these collaborative setups.

Collaborative data analysis is not in the main scope of this work. However, aspects of

this work can be and have been applied to such scenarios [Waldner and Schmalstieg, 2011].

Section 7.2 introduces a prototype implementation [Waldner et al., 2009], where experts

from di�erent domains can jointly perform a co-located analysis. The proposed solution is

again targeted at the �rst stage of support � orientation.

3.4.4 Within / Across Displays

It lies in the nature of information visualization that the available number of pixels is

a restricting factor. Even for medium-scale data analysis scenarios, the number of data

items exceeds the available pixels for visualizing them. Abstraction techniques are one way

to handle the problem � another way is to extend the available screen real estate. The

spectrum ranges from a high resolution multi-projector system to o�-the-shelf desktop

setups. Two large monitors arranged side by side are already regarded as quasi standard

for information workers.

The normal work environment of expert users that deal with biomedical data are clinical

facilities and laboratories where technical resources are limited. Only a few of them will

have access to expensive multi-projector facilities. Nevertheless, visual analysis in such

an environment can add value � in particular for cases where multiple experts need to

collaborate to reach a desired analysis goal, as discussed in the previous section.

Although the vast amount of pixels available for visualization is tempting for data

analysis purposes, the challenges in terms of orientation as well as guidance become even

more complicated (e.g., related elements are further away from each other). In addition,

human computer interaction (HCI) aspects need to be considered in these multi-display

scenarios. Besides the issues concerning HCI and information visualization, the technical

realization of multi-display environments is a �eld of research on its own. Section 7.2

introduces Caleydoplex, a prototype multiple-display environment developed at the Graz

University of Technology. However, the consideration of the setup in this thesis does not

focus on the technical aspects, but on the implications for collaborative visual analysis and

how the model-driven approach can help in this respect.

3.5 Categorization of Related and Own Work

Up to this point, this chapter has considered analysis support in all its aspects: the var-

ious kinds of support, what it takes to be able to aid a user in terms of input and how

this support can �nally be conveyed during an analysis. Taking this as a fundament, this

section classi�es the state-of-the-art in supported visual data analysis as well as the tech-

niques proposed in this thesis, which are introduced in detail in the following chapters.

This systematic classi�cation not only informs the proposed techniques, but also makes
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it possible to identify remaining empty spots that indicate future research directions in

our �eld. Table 3.1 lists various systems, either published scienti�c work or commercial

systems, that cover at least one of the support levels from Section 3.1. In addition, the

table classi�es whether a system covers across-application, across-display or across-analyst

support.

Looking at the table, it becomes obvious that basic support on the orientation level,

be it within the information landscape and/or in the analysis history, is already a part of

many systems. Also, numerous systems cover data analysis including multiple data sets

and multiple coordinated views. The Matchmaker approach (introduced in Section 6.1.2),

the Jukebox (Section 6.2.2) and the Bucket (Section 6.3.3) are all targeted at orienting

users in an analysis by visual means. While the Matchmaker is a visualization technique

for the comparison of multi-dimensional, quantitative data, the Jukebox as well as the

Bucket are techniques to analyze multiple related data sets in a multiple coordinated view

fashion.

The Snap-Together Visualization [North and Shneiderman, 2000] as well as the Vi-

sual Links Across Applications system, introduced in Section 7.1.1, are the only rep-

resentatives in the category across-applications. Systems which allow across-user anal-

ysis are for example LARK [Tobiasz et al., 2009], Cambiera [Isenberg and Fisher, 2009]

and also the Caleydoplex setup (cf., Section 7.2.3). Collaborative Information Link-

ing [Waldner and Schmalstieg, 2011] (see Section 7.3) combines the strengths of multi-user

analysis with the preliminary work on visual links across applications.

However, all these systems address orientation in an information landscape, but not

guidance where a system assists users by suggesting future steps. Only the lowest quarter

of the categorization table lists systems which fall into this category. Guidance is either

based on information captured during past analysis sessions or on an authored model.

While Vistrails [Bavoil et al., 2005], HARVEST [Gotz and Wen, 2009] and TIBCO Spot-

�re use history information, the Systematic Yet Flexible [Perer and Shneiderman, 2008]

and the proposed Stack'n'�ip system (Chapter 8) utilize a previously de�ned model. As

mentioned before, the Systematic Yet Flexible system suggests future steps along prede-

�ned work�ows. However, due to the three-stage model, Stack'n'�ip can even go a step

further by also suggesting which interface to apply on which data set for each of the

domain-speci�c tasks.

Summing up, analyst assistance for complex data analysis scenarios is only sparsely

addressed in the literature. In particular, guidance across multiple applications, across

multiple displays and across multiple analysts are gaps that need to be �lled by future

research.

3.6 Summary

This chapter started by pointing out the users' need for closer support during the analysis of

complex, heterogeneous data sets in order to reduce the risk of disorientation. Providing a
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Table 3.1: Classi�cation of some Visual Analytics frameworks and techniques according to the level
of support they provide and the setup characteristics for Visual Analytics applications identi�ed in
Section 3.4. In addition to the systems known from literature and Visual Analytics products already on
the market, the methods that are part of this thesis (in bold) are listed as well.
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Matchmaker (cf., Section 6.1.2)

VisLink [Collins and Carpendale, 2007]

Jukebox (cf., Section 6.2.2)

Bucket (cf., Section 6.3.3)

Image Graphs [Ma, 1999]

History View [Kreuseler et al., 2004]

Tableau (former Polaris [Stolte et al., 2002])

Snap-Together [North and Shneiderman, 2000]

Visual Links Across Apps (cf., Section 7.1.1)

LARK [Tobiasz et al., 2009]

Cambiera [Isenberg and Fisher, 2009]

Caleydoplex (cf., Section 7.2.3)

Collaborative Information Linking
[Waldner and Schmalstieg, 2011]

HARVEST [Gotz and Zhou, 2009]

TIBCO Spot�re R© DecisionSite Guided Analyt.

VisTrails [Bavoil et al., 2005]
and VisComplete [Koop et al., 2008]

Systematic Yet Flexible Discovery
[Perer and Shneiderman, 2008]

Stack'n'�ip (cf., Chapter 8)
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feature-rich user interface for accessing computational and visual methods is not su�cient.

A system that assists users during an analysis can support them on several levels. First, it

is essential to keep a user oriented within the information landscape and the features of

an analysis system. With orientation as a precondition, a system can dynamically suggest

concrete future steps � realizing guidance, as the second and more comprehensive level

of support.

After elaborating on the possible kinds of support, the chapter continued with dis-

cussing existing work that aims at orientation support and guidance. For orientation

support, the state-of-the-art o�ers several techniques that assist users in terms of data and

view space as well as time. The combination of the techniques required depends on the

complexity of the information landscape and the analysis setup. For realizing guidance

support, which o�ers concrete suggestions of future analysis steps, the approaches known

from literature can be split into two basic approaches. First, systems that provide assis-

tance based on provenance information and secondly, approaches that rely on a model that

comprises prede�ned tasks and work�ows. While the �rst strategy is limited to matching

gathered information from previous analysis sessions to suggest future analysis steps, the

second strategy has more potential, as it can guide a user towards a concrete analysis goal.

However, the current state-of-the-art only uses work�ows but without telling a user which

tools to use and actions to perform in order to get there. Thus, a model is needed that

comprises not only the work�ow and tasks, but also contains the associations to the data

on which the tasks should be performed and also which visual or computational tools can

be applied. The next chapter proposes such a uni�ed representation that captures the

interplay between data, view, and task which lays the theoretical foundation for realizing

the support in a concrete visualization system.

Irrespective of these basic strategies on which the support can be based, various ways

exist to convey the modeled or captured information to an analyst. The spectrum ranges

from using visual cues on top of existing visualizations, to meta-visualizations, to descrip-

tive text. However, the choice of the appropriate means of communication is in�uenced

by the characteristics of the analysis setup: whether the analysis comprises multiple data

sets and views, multiple applications, multiple displays or also multiple analysts. With

these distinctive features in mind, the chapter is concluded by contrasting the current

state-of-the-art in supported visual analysis with the novel visualization techniques that

are presented throughout the thesis.
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Large information landscapes with multiple heterogeneous data sets and numerous

visual and computational interfaces for accessing them require means of support to ensure

their timely and accurate analysis. Providing such user support is not a trivial task, as the

degree of support required by the user may vary during the analysis session. The user may

31



32 Chapter 4. Three-Stage Model-Driven Design Process

need concrete guidance during one part of the analysis session and only orientation support

during other parts. To realize such a smooth back and forth between these two levels of

support, a visual analysis system must have considerable knowledge about the available

data sets and their relations, the goals of its user, as well as the analytical capabilities.

Figure 4.1 illustrates this transition from input to output. However, �nding a structured

way of creating the supportive visual representations is the central research question that

is addressed in this chapter. Various kinds of input can be potentially employed: the input

data and its corresponding relations, contextual information about the available analysis

framework, as well as domain-speci�c knowledge about a concrete analysis goal and high-

level tasks for reaching this goal. Note that in a feedback loop, the user himself can feed

additional information or also dynamically alter existing input information.

Figure 4.1: Input/output transformation for supported visual analysis. The proposed model-driven
design process aims to �ll the black box that converts the input information to a visual representation
which realizes the analyst support.

The presented model-driven design presented here aims at realizing this transition

from input to output. The concept draws upon �rst ideas from the position

paper [Streit et al., 2009c]. It encapsulates the input information in three models:

• A domain-independent model of the setup in which the interactive visual analysis

takes place � describing the data sets, the visual and computational interfaces to the

data, and the di�erent analytical operations that can be performed with them.

• A model of the domain that captures what can be done with a given setup in

the context of a speci�c domain � describing the numerous domain-speci�c tasks and

relating them to the data sets and analytical operations of a given setup model.

• A model of the analysis session that lists what has to be done to pursue a given

analysis goal � describing the analysis work�ow as a sequence of domain-speci�c tasks

from a given domain model.

The knowledge speci�ed by these models requires an authoring phase in which the

models are put together. It is obvious that the overhead of such an elaborate modeling
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phase is not justi�ed for straightforward setups with a manageable complexity. However,

with increasingly complex analysis scenarios, the bene�ts soon outweigh the initial mod-

eling costs. This is especially true for highly repetitive analysis sequences, which have to

be modeled only once and can be reused over and over again. For such routine tasks, the

guidance ensures that every repetition is done with the same care as the very �rst analysis

and without forgetting a crucial intermediate step. A guided analysis thus provides a high

degree of reproducibility and traceability, which makes most sense for application �elds in

which a faulty analysis may lead to dire situations, such as the diagnosis of patients or

the analysis of safety hazards in airplane inspections. Nevertheless, if the user wants to

deviate from the work�ow of a guided analysis to freely roam the information landscape

in a more explorative, unplanned fashion, he can do so at any point, resulting in a fall-

back from guidance to orientation support. Transitioning back from such an exploratory

side step onto the planned analysis path allows the analyst to continue with step-by-step

instructions again.

The setup model is authored once and needs to be adapted or extended only when new

data sets or tools become available. With this underlying, domain-independent model,

di�erent domain models can be associated, as di�erent application domains may use the

same setup to carry out the analysis. This can be frequently observed, e.g., in the �eld of life

sciences, where a geneticist and a biochemist may use the same data sources and interfaces,

but perform completely di�erent tasks. In the last step, a concrete analysis work�ow is

formulated, which is then tailored to the availability of data and analysis methods for a

given case, by pruning tasks that cannot be performed. This yields a streamlined analysis

work�ow, which contains only those analysis paths that can be realized with the given

data and tools. The next subsection outlines the overall authoring process together with

the di�erent roles involved in each individual authoring step.

4.1 Overall Authoring Process and Involved Roles

The description of complex, possibly cross-domain analyses requires a good deal of expertise

in all �elds involved. As the assumption of an omniscient expert is unrealistic, di�erent

roles for the authoring of the di�erent models were elicited. Table 4.1 lists the three roles

involved in the authoring, as well as two possible roles for analysts using the models.

The process of authoring the di�erent models is best described as a step-wise procedure

that sequentially adds to the complexity of the models until they are fully speci�ed. This is

shown schematically in Figure 4.2. The authoring process consists of the following sequence

of steps, each being the responsibility of one of the three expert roles from Table 4.1:

I Developing the data model: this is the responsibility of the data manager, who

describes the data sets and their interrelations. Especially in larger organizations,

dedicated data managers are often employed � e.g., clinical data managers in hospi-

tals.
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Role Description Category

Data Manager responsible for building and maintaining
the data model

author

Visual Analysis Expert responsible for compiling interfaces and
their operators

Domain Expert responsible for compiling tasks and analy-
sis work�ows

Informed Analyst works on open research questions with no
prede�ned analysis work�ow

user

Guided Analyst works on answering a routine question
along a prede�ned analysis work�ow

Table 4.1: Roles in authoring and using models of setup, domain and analysis session.

Figure 4.2: The authoring process shown as a sequence of authoring steps (I-VII) carried out by data,
visual analysis and domain experts. Depending on the complexity of the use case and the analysis goals,
experts can assist each other. Also, multiple roles can be ful�lled by one person. The authored models
can be taken as aids for providing analyst support on two levels: the setup model (1) for informing
(providing orientation to) a user within the sets of data, computational procedures and visualizations,
and the domain model (2) on which the analysis session model (3) bases for guiding (providing step-
by-step directions) the user.

II Enriching the data model with interfaces: this is done by the visual analysis ex-

pert, who annotates the data sets with information about what infrastructure is

available to access each of them � via graphical interfaces (visualizations) or through

computational interfaces (query languages, statistics packages).

III Compiling a list of operators for each interface: this lies within the responsibility

of the visual analysis expert, who denotes which interface is suitable to perform

which operations, as some interfaces may be more �tting than others. For instance

the operation �clustering� is best done with a statistics package and not with a plain

SQL interface.

IV Connecting tasks to the data model: for this, the domain expert identi�es the re-

quired data sets for each of the high-level analysis tasks that are commonly performed
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in a given scenario and relates them to the task.

V Associating operators with the tasks: this is speci�ed by the domain expert who

links concrete operators to carry out the given tasks on the associated data. As

the operators are domain independent, the translation from domain-speci�c tasks

to operators should be supported by the visual analysis expert who contributes

knowledge about suitable analysis methods.

VI Specifying a work�ow of analysis tasks: in this step, the domain expert details

concrete analysis sessions for pursuing a given goal by de�ning an analysis work�ow

using the tasks de�ned.

VII Pruning the work�ow according to the actually available data sets and tools: as a

�nal step, it is automatically determined, which paths within the work�ow cannot

be performed for a concrete instance of data and analysis tools. These are then

pruned from the work�ow.

The �rst three steps of this process describe the rather static setup of the analysis: data

sources, ways to access these data sources and analytical operators to run on them. Steps

IV and V concern the domain model, as they add the domain-speci�c tasks on top of the

setup model. The last two steps connect these tasks to meaningful analysis sessions and

prune these sessions to use only the data and tools available at analysis time.

Two di�erent roles of users can bene�t from the explicitly modeled setup and analysis

session. The �rst is the informed analyst who analyzes the data freely, without following

a prede�ned analysis path. For the informed analyst, the key bene�t is the provision of

orientation on level S1.1, S1.2 and S1.3, which allows him, throughout the entire explo-

ration process, to pinpoint exactly which part of the information landscape is currently

under investigation, which methods are available to analyze this particular information

and which other parts of the information landscape may be related and thus be of interest.

For informing an analyst, only the model of the setup with all its data sets and di�erent

visual and computational operators is needed.

The second role is the one of a guided analyst, who follows a given analysis path and

possibly conducts similar analyses routinely. The guided analyst bene�ts from the formal

model of the analysis session, as it provides exactly the step-by-step guidance in the sense

of support level S2 on how to pursue an analysis path to achieve a given analysis goal with

the data at hand. If necessary, the guided analyst may also deviate from the proposed

work�ow, in which case the user's role switches to informed analyst.

It should be noted that a one-to-one mapping of a speci�c person to a role is not

required. Depending on the use case and its complexity, the responsibilities of one role

can be performed by multiple individuals. Also, one person can ful�ll multiple roles � for

instance, the domain expert may ful�ll one or both user roles. It is also possible to further

extend or subdivide the suggested roles, for example with more concrete user pro�les for

speci�c applications.
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Figure 4.3: The di�erent parts of the setup, the domain and the analysis session: interfaces (blue and
purple), operators (red), data sets (green) and tasks (yellow). These parts are described and interrelated
during the authoring process. An example of a fully authored model of analysis setup, analysis domain,
and analysis session is shown in Figure 4.8.

Having sketched the overall authoring process, it remains to detail the individual au-

thoring steps and how they build upon one another.

The models are not targeted towards orientation and guidance per se, but can poten-

tially be used to optimize all kinds of processes, such as the treatment of missing data

or collaborative analysis, as envisioned in [Streit et al., 2009c]. This generality is a strong

argument for such a comprehensive authoring approach. To re�ect the clear distinction

between the general models and their speci�c application, the following explanation of the

authoring steps is general as well. Nevertheless, the domain of biomedicine is used to give

examples.

4.2 Authoring the Setup Model

The setup model is the �rst of three stages in the overall authoring process (see Figure 4.4).

It captures the basic infrastructure in which the analysis takes place. Besides all the

di�erent data sources being available (Step I), this includes the software infrastructure for

accessing the data (Step II), as well as the available software tools, such as visualization

frameworks or statistics libraries, for analyzing the data (Step III).

4.2.1 Step I: Developing the Data Model

The data model captures all data sets (shown green in Figure 4.3) available in an analysis

setup. This can include local data sets (i.e., an electronic patient �le), data sets available

from online databases (i.e., pharmaceutical lists or digital anatomical atlases), streamed

data (i.e., a patient's vital signs coming from intensive care), etc. In addition, the di�erent

data sets contain di�erent types of data, such as imaging data from body scans, gene

expression data from micro-array analyses, text data from electronic documents, etc.

When addressing complex problems, it is often essential to consider multiple
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Figure 4.4: First stage of the model-driven design process: the analysis setup model, comprising step
I-III of the overall process and building the basis for orientation support.

di�erent levels simultaneously. The semantic dependency between the levels could

be based on the scale of the data, their organization, explanation and also on

observation [Ahl and Allen, 1996]. This means that the individual data sets can be

assigned to these levels, which as a whole form a natural hierarchy. This inherent

multi-level aspect is not a special case, but can frequently be observed in all kinds

of domains. The hierarchy example from biology, already mentioned earlier in

Section 2.1, is only one; others are the assembly hierarchy of a whole network

of electronic devices down to the individual logic gate in the �eld of electrical

engineering [Andrianantoandro et al., 2006] or the re�nement process in software

engineering from the speci�cation documents down to the actual code. Figure 4.5 shows

example hierarchies from the �eld of biology and electrical engineering. Note that one

concrete hierarchy for a special domain is not generally valid, as it always represents only

a certain perspective on the data, often driven by a particular research question in mind.

Hence, a di�erent research question can result in a slightly adapted or even radically

changed hierarchy.

These multi-level dependencies are of great value for data analysis, as the transitions

between adjacent levels indicate seamless analysis paths with a reduced mental e�ort for

the user. However, the natural hierarchy is often not �exible enough to serve as a data

model itself. In many cases additional cross-references between data sets, associated to

non-adjacent levels, are needed. Therefore, a data model structured as a general graph

is better suited for capturing the relations between the data sets. However, to a certain

extent an underlying natural hierarchy will always be re�ected in the full data model.

The data sets are related via common keys or identi�ers where this is possible. In the

biomedical use case, this can be for example the patient's name or social security number,

thus identifying a patient's records across di�erent data sets. In the case of di�erent

conventions being used for identi�ers among multiple data sets, an ontology can often be

used to map them. An example for this case is the mapping of gene and protein names

using the Gene Ontology [Ashburner et al., 2000].

A data model of this sort is commonly used to plan and implement the combination

of large database collections [Marrs et al., 1993]. Large organizations, such as hospitals,
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Figure 4.5: Natural multi-level hierarchy examples for the �eld of electrical engineering on the left and
biology on the right, as presented in [Andrianantoandro et al., 2006]

usually have employees dedicated to de�ne and re�ne such models, to validate and cross-

reference entered data, and to supply necessary meta-data. Hence, many larger setups

and even many freely available data collections, such as linkeddata.org or data.gov, do

already have a data model of some sort. Yet beyond the pure organization of data sets,

such data models are rarely used. A �rst approach utilizing a data model for visual analysis

was only recently given in [Lieberman et al., 2010]. They use well-established, standard

data models (e.g., ERM [Chen, 1976]), which the proposed approach relies on too. This

makes it easy to reuse or adapt existing data models for the setup model.

4.2.2 Step II: Enriching the Data Model with Interfaces

A �rst step to enhance the data model beyond what is stored is to add information about

what is available in terms of infrastructure to access each data set. The access is concep-

tually performed through interfaces, which can be

• Computational Interfaces (purple in Figure 4.3) that fetch the data

either directly from the source (low-level, query interfaces � e.g., SQL or

MapReduce [Dean and Ghemawat, 2008]) or calculate derived data, such as

clusterings or correlations (high-level, algorithmic interfaces � e.g., R statistics

toolkit or WEKA)

• Visual Interfaces (shown blue in Figure 4.3) allowing for access using interactive,

graphical methods, such as visual queries or query by example. Examples are scat-

terplots or parallel coordinates.

linkeddata.org
data.gov
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These interfaces are provided by the software infrastructure of the analysis setup �

database front-ends, statistical libraries, visualization frameworks, etc. As di�erent types

of data require or permit di�erent interfaces, the information about which method of access

is available for each data set is added to the data model. This is done through one-to-many

assignments, as a data set may require a combination of multiple visual interfaces to be

properly displayed, or as an algorithmic interface may need several data sources to derive

the desired information.

4.2.3 Step III: Compiling a List of Operators for the Interfaces

After having de�ned what to access by means of di�erent interfaces in Step II, Step III

focuses on how to access it. Operators (shown red in Figure 4.3) are domain-independent

analysis actions that describe in general terms what each available interface can be used

for. For example, an SQL interface is perfect for querying individual data items, a statistics

library is well suited for correlation analyses and clustering, and a parallel coordinates view

is ideal for interactive �ltering.

The list of operators for each interface is usually based on the experience of the visual

analysis expert, as well as on domain-speci�c conventions and recommendations from the

literature. Hence, this step encodes common knowledge and the current state of research

in the �eld of Visual Analytics in general.

This completes the modeling of the setup. It e�ectively describes the information

landscape, and computational as well as visual access methods, as they are needed for

guiding the informed analyst.

4.3 Authoring the Domain Model

The domain model adds a layer of domain-dependent knowledge on top of the setup model,

see Figure 4.6. It does so by associating tasks being formulated in terms of the domain

with the appropriate data (Step IV) and operators (Step V).

Figure 4.6: Stage two and three of the model-driven design process: the domain and analysis session
model are added on top of the setup model.
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4.3.1 Step IV: Connecting Tasks to the Data Model

As Munzner points out, the term �task� is overloaded in the visualization

literature [Munzner, 2009]. Hence, it should be made clear that the term �task� is being

used here for domain-dependent, textual descriptions of what an analysis step should

achieve on which data set. An example of a domain-speci�c task is �Find all patients

with a common characteristic�. At this stage, tasks (yellow in Figure 4.3) are described

and linked to the data sets they are performed on. In the example given, patient

characteristics may be scattered across multiple data sets. As no concrete characteristic

is speci�ed, the task would be connected to all of these data sets.

Tasks are closest to the actual analytical process and describe, in the words of the

domain expert, what is being analyzed with which goal. They are used later as the building

blocks of analysis sessions.

4.3.2 Step V: Associating Operators with the Tasks

While Step IV models what to do with which data set, Step V �nally de�nes how to do it,

in order to actually be able to carry out a task. This is achieved by mapping the tasks to

the domain-independent operators. The mapping can either assign a single operator or a

few operators to be carried out subsequently. Otherwise, in the case of tasks getting too

complex, they can always be broken down into multiple, more fundamental tasks. In the

case of the example task �Find all patients with a common characteristic�, this would be

a single �lter operator that �lters the data set of patients by the given characteristic. If

a data set provides multiple interfaces to perform the �lter operator with, e.g., an SQL

interface and a parallel coordinates visualization, then the task is connected to all of these

operators provided by the di�erent interfaces. Which one to choose is for the user to decide.

This completes the modeling of the domain. It e�ectively yields a graph that con-

nects data sets with tasks via domain-independent operators, cf., the sample graph in Fig-

ure 4.3. The domain model bridges the domain-dependent analysis steps and the domain-

independent analysis setup. The last authoring steps de�ne the missing work�ows on top

of the domain model.

4.4 Authoring the Analysis Session Model

Often, an analysis session is seen as being equivalent to performing a sequence of analytical

tasks. Yet in the proposed concept, analysis sessions are more abstractly de�ned, also

capturing di�erent analytical possibilities, in order to ensure their re-usability for other

instances of data (e.g., other patients). Speci�cally, an analysis session model consists

of two parts: the actual analysis work�ow (Step VI) and the constraints imposed on the

work�ow due to unavailability of data sources or analysis tools (Step VII).
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4.4.1 Step VI: Specifying Work�ows of Tasks

This authoring step assembles analysis work�ows using the available tasks as building

blocks in whichever order they are needed. In addition to simply appending tasks in a

purely sequential order, Step VI also makes it possible to model more complex analysis pat-

terns than a linear, step-by-step composition of tasks. In order to capture the involved and

convoluted nature of analysis, branching, looping and forward jumping is possible as well

� in the very same spirit, as task models [Stary, 2000] or user-task models [Puerta, 1997]

are authored in the �eld of interface design.

The analysis work�ows are modeled as directed graphs with tasks as nodes and edges

as transitions from one task to the next. Alternative analysis paths leading to the same

analysis goal are rather common, so the branching of a work�ow is an important property

that makes it possible to capture and combine multiple analysis paths in one analysis

session model. Likewise, the incorporation of forward jumps as shortcuts allow the same

session model to be used for novice and professional users, alike. The guided analysis can

switch between a detailed step-by-step walkthrough for the former and a less elaborate,

shorter �todo-list� for the latter � even in the middle of the analysis. On top of that, loops

make it possible to encode any number of task repetitions by revisiting a task (sequence)

until its result is re�ned enough to be taken as an input for the next task. Moreover,

it is possible to de�ne preconditions per task to specify certain requirements to be met,

e.g., a hierarchical clustering or aggregation to be performed before visually analyzing the

results of the processed data. Likewise, postconditions can be formulated that impose

requirements on the result of an analysis task, e.g., with regard to accuracy.

The creation of tasks and their composition to work�ows is a demanding activity that

needs to be done by domain experts. However, instead of creating the work�ows from

scratch, it would be desirable to reuse existing work�ows from public sources. The online

project myExperiment1, for instance, allows users to de�ne and share scienti�c work�ows.

Figure 4.7 depicts a sample work�ow that a user put in the public domain. It represents

the task sequence that is needed to analyze micro-array data of human material. Such

work�ows capture domain speci�c tasks but without coupling them to concrete tools.

However, in principle, it would be possible to take these existing work�ows and associate

the individual tasks with the operators, as described in Step V. This would allow for an easy

and fast integration of existing work�ows into the proposed model-driven design process.

While the de�nition of the analysis work�ows is usually done by a domain expert, it is

also possible to leave this to an informed user, who can de�ne paths for the guided, routine

users on-the-�y.

1http://www.myExperiment.org

http://www.myExperiment.org
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Figure 4.7: Work�ow of human micro-array analysis authored by a domain expert and shared on
myExperiment. Source: http://www.myexperiment.org/workflows/143.html.

4.4.2 Step VII: Pruning the Work�ows according to the Available Data

Sets and Tools

As a �nal step, the analysis session model is adapted to the constraints imposed by the

unavailability of data (e.g., as not all theoretically possible data may have been collected

for a given patient or the analyst may not have the clearance to view them) and of the

analysis tools (e.g., licensing issues may prevent their use or an analyst may not be properly

trained to use them). This adaptation is done by automatically pruning all tasks that rely

on unavailable data or interfaces from the work�ows. As a result, the remaining work�ows

cover all currently possible analysis paths which can be chosen as the analysis progresses.

This completes the overall authoring process. It may seem quite elaborate at �rst, but

the modularity of the three models ensures a high level of reusability. The same setup

model can be used to build di�erent domain models on top of it, and the same domain

model can in turn be used to author numerous work�ows utilizing it. This makes sense,

as the de�nition of work�ows is usually more short-lived and prone to be changed and

optimized more often than the basic setup model or the domain model. The following

section brie�y explores the �nal use of the models for providing analyst support, which

motivated the externalization of the experts' knowledge about infrastructure, domain and

work�ows in the �rst place.

http://www.myexperiment.org/workflows/143.html
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4.5 Utilizing the Models for Analyst Support

The use of the setup model for orientation support is rather straightforward, as the model

itself already provides a map in which to pinpoint the current analysis step and determine

possible next steps. Using all three levels of the model for the guidance support requires

some extra computation.

What needs to be determined �rst is whether any continuous analysis paths are left after

pruning. This makes it possible to check whether or not an analysis goal can be pursued

at all by the speci�c analyst on the given data within the current setup. If not, one could

for example request the collection of additional data in order to obtain enough information

to be able to complete an analysis path. In our use case, this can be additional tests or

screenings for a patient. The session model makes it possible to determine the smallest

gap among the analysis paths which can then be bridged at minimal cost � �nancially or

in terms of the stress a patient has to go through. It thus realizes the opposite direction

of the pruning: the pruning ensures that nothing is (intended to be) used that is actually

unavailable by removing these parts from the model, whereas the reachability check makes

sure that everything is available which is needed at the bare minimum to pursue the

intended analysis goal.

Secondly, it must be determined which analysis path should be actually used for guid-

ing the analyst through all the possible analysis paths contained in the analysis session

model. To reach this aim, it is important to observe that the paths di�er in terms of their

seamlessness and e�ectiveness. A path is considered to be e�ective when it is short com-

pared to other possible analysis paths. A path is called seamless if for each transition from

one task to the next, there exists a relation (edge) between the data sets that the tasks are

connected with as well. A seamless analysis path would allow the analyst to proceed from

one task to the next without destroying the mental map, as the data sets used by both

tasks are related via a common identi�er. The more discontinuities between data sets an

analysis path has to bridge, the less seamless it is. For a traceable and swift analysis, paths

that are more seamless and e�ective are generally preferred and thus chosen for suggesting

concrete next steps, realizing a guided analysis.

To bring this whole process to life, the following section gives an example for authoring

the three models and using both forms of analyst support.

4.6 Applying the Design Process to the Biomedical Use Case

Based on the theoretical foundation laid in the previous section, what follows is a demon-

stration of how to apply the concept to a real use case. The use case covers a comprehensive

analysis of patient-related data. The long-term collaboration partners from the Institute

of Pathology at the Medical University of Graz had a need for visual analysis: they try

to base their decision of how to treat a newly diagnosed cancer patient on a wider array

of available data. In such a scenario, they would like to analyze the patient's basic data,
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anamnesis, tissue data, gene expression data, etc. and relate it to other reference patients.

Moreover, they want to be able to explore information about genes, proteins or pathways,

which they encounter during an analysis. Hence, it is a prime example of visual analysis

across multiple heterogeneous data sets.

4.6.1 Creating the Setup Model

The starting point for creating the setup model (cf., Section 4.2) is a well de�ned data

model, which, in an optimal case, can be based on an existing hospital data management

system. In this scenario, many of the data sets are directly linked to the patient. This is re-

�ected in Figure 4.8 by the high degree of connectivity from the patients' basic information

to other data sets.

To create the data model, the clinical data manager collects those data sets (green in

Figure 4.8) and de�nes their relations (cf., authoring Step I). Having the data model at

hand, the design responsibility is handed over to the visual analysis expert, who chooses or

develops suitable visual as well as computational interfaces and assigns those interfaces to

the data sets (Step II). This step requires in-depth knowledge about the tools available for

conducting the analysis. In this scenario, Caleydo's computational and visual interfaces,

as introduced in Chapter 5, are used for analyzing biomolecular-, tissue-, patient- and

meta-data. A commercial volume visualization tool is used for MR/CT and X-ray data.

The visual analysis expert starts by compiling a list of the available (visual as well as

computational) interfaces, as shown in Figure 4.8 at the bottom (visual interfaces are shown

in blue and computational interfaces in purple). The available visualization techniques are

suitable for depicting data with speci�c properties. For example, parallel coordinates

are capable of visualizing multi-dimensional data. Therefore, this visual interface can be

assigned to expression data as well as patient information. Other visual interfaces are the

document viewer, heat map, web browser, pathway viewer, etc. Caleydo's computational

interfaces, including the R statistics toolkit, WEKA and SQL, are assigned to the data

sets using the same procedure as before.

The visual analysis expert then compiles a list of operators and assigns interfaces from

the compiled list (cf., Step III). In Figure 4.8, the operator pool is presented as a series

of red blocks. Operators in our use case are for instance query, similarity analysis of

images as well as partitional and hierarchical clustering, where partitional clustering is

realized through the R interface, and hierarchical clustering through WEKA. Note that

the operators provided in Figure 4.8 are only a sample compilation for the work�ow of

patient treatment planning. This completes the setup model for the use case.

4.6.2 Creating the Domain Model

In Step IV, the domain expert, in this case a colleague from the Medical University, de�nes

a set of tasks (yellow in Figure 4.8) and assigns the tasks to the data on which they operate.

A sequence of operators which enable the ful�llment of the task is associated to each task
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Figure 4.8: Setup and domain model of the biomedical use case. The data sets (green) � either from
local or online sources � are connected when they share a common identi�er. The interfaces (blue for
visual interfaces, purple for computational interfaces) are compiled from several tools and assigned to
the data sets. For the analysis session description, tasks (yellow) and operators (red) are added and
connected to the data sets.
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(Step V). One example for our use case is the �Find gene�-task, which is assigned to the

gene database and can be accomplished using the Query operator. Note that this step

does not include ordering or connecting the tasks.

4.6.3 Creating the Analysis Session Model

In Step VI, the domain expert de�nes the work�ow as a sequence of tasks, which is the

basis for guidance. The following work�ow, depicted in Figure 4.9, is an example aimed

at the goal described before: determining a treatment plan for a patient diagnosed with

cancer. Patients are known to respond di�erently both to therapy and the disease itself

based on several factors, including their genetic traits. Therefore, it is crucial to identify

the likely course of the disease for a patient under di�erent treatments.

1. Determine similar patients

First, the guided analyst �lters patients based on their anamnesis (for example in

terms of age, gender, blood values) using a computational approach.

2. Browse patients

The analyst explores the patients that remain in the sample and tries to �nd di�er-

ences in their conditions.

3. View tissue

For the remaining patients, he explores the tissue images, on which the initial diag-

nosis was based. This is done to make sure that the patients actually present similar

manifestations.

4. Discard patients

Remove patients with di�erent manifestations in terms of the tissue samples.

5. Cluster expression data

To be able to identify patients with similar gene expression patterns, which might

indicate common traits and therefore a similar course of the disease, the data is

clustered.

6. Inspect expression data

The analyst inspects the clustering results to �nd patterns where the patient under

investigation is similar to one group of patients, while di�erent to others. He then

selects a group of genes that clearly distinguishes the patient group from others. If

the genes' functions are clear to the analyst (e.g., a well-known proto-onco or tumor

suppressor gene) he can directly jump to Task 9. If this is not the case, he can

proceed with the next task to �nd out more about their function.

7. Explore related pathways

To understand the found genes' function, the analyst explores the pathways contain-

ing the genes.
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8. View gene information

Further information about a particular gene is gathered by inspecting its entry in an

online database.

9. Select patients

With the knowledge that the genes are in fact relevant for the condition, the analyst

goes back to the gene expression view, where he selects those patients that are in the

same group as the patient under investigation.

10. View Anamnesis

The analyst then views the anamnesis to judge whether previous courses of actions

were successful for similar cases and bases his treatment decision on the �ndings.

11. Record Treatment Decision

He records the treatment decision in the patient's anamnesis.

Figure 4.9: The work�ow of �nding a treatment plan for a newly diagnosed cancer patient.

Alternatively, instead of conducting an analysis based on gene expression data (Tasks

5 to 8 in the left branch of Figure 4.9), the guided analyst can choose to conduct the

selection of patients in Task 9 based on an exploration, segmentation and comparison of

tumor images (cf., Tasks 5a to 7a). However, the right branch is only feasible if the disease

under investigation causes tumors, visible in imaging data.
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Preconditions are de�ned optionally for each task. For instance, before viewing the

tissue slices in Task 3, the analyst needs to �lter less than 20 patients.

Before the models can be utilized by an analysis system they need to be tailored

to the given constraints (cf., Step VII). In our scenario, the patients' protein expression

pro�les are not available which makes the protein database obsolete. Furthermore, due to

access restrictions at the hospital, lab results cannot be a part of the setup. Based on the

remaining available setup resources, the automatic pruning of paths is performed. As the

exemplary de�ned work�ow samples are rather small, all tasks of the work�ow are possible

and consequently remain in the analysis session model.

Before a real system can employ the described model, ways to create such a model (i.e.,

authoring interfaces) need to be discussed �rst.

4.7 Authoring Realization

To be of use in actual systems, the models described must be available in machine-readable

form: either by explicitly creating the model o�ine, or by capturing interface actions and

associating them with tasks at runtime. The interactive method is only suitable for the

domain and the analysis session model, since it requires the setup model to be performed.

Tools for o�ine creation of the model range from dedicated authoring solutions2 to

simple XML editors. While these external tools can be used out-of-the-box, an integrated

solution is potentially more powerful: on-the-�y editing and re�nement can be tightly

bound to the visual data analysis. It enables users to create and re�ne models � making a

live role switch possible � i.e., the analyst becomes the author.

The choice between these two variants is a trade-o� between �exibility and costs. This

tight integration of data analysis and authoring requires high initial costs in terms of

software engineering. As authoring interfaces are not the focus of this paper, the models

covering the biomedical use case have been directly created in XML.

In addition to the explicit way of creating the model via an authoring interface, this

information can also be hard-wired in an analysis system where visualization experts design

and implement a system that contains the knowledge implicitly. This is often the case for

special purpose software that is particularly tailored to a certain use case and only addresses

a small class of domain-speci�c problems. Especially knowledge covered by the analysis

setup model is a precondition of every functioning visual analysis system. Creating the

system requires the same e�ort from the visualization designer, but an explicit model

enables them to employ this knowledge for orientation and guidance support.

2
e.g., Altova AuthenticR©, http://www.altova.com/authentic.html

http://www.altova.com/authentic.html
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4.8 Summary

This chapter introduced a model-driven design approach, one of the major contributions

of this thesis. The model not only captures multiple interconnected data sets and the

interfaces to operate on the data, but it also allows an author to de�ne work�ows on top

of this information. The model lays the theoretical foundation of this thesis that allows an

analysis system to realize both levels of support, orientation as well as guidance.

Chapter 6 and 7 will introduce concrete visualization techniques that provide orienta-

tion support in the information landscape (S1.1 ) based on the �rst stage of the model,

the analysis setup. While Chapter 6 realizes the orientation support in one or multiple

data sets visualized in multiple views, Chapter 7 discusses the multi-application as well

as the multi-user aspect, both of which impose new requirements in terms of orientation.

Finally, in Chapter 8 the Stack'n'�ip analysis system will be presented as one possible way

of realizing comprehensive analyst support that covers all levels (S1.1, S1.2, S1.3 as well

as S2 ). Stack'n'�ip employs the full three-stage model and gives an impression what the

model is able to achieve in terms of analysis support.

Before this thesis continues with the concrete ways to utilize the model by means of

interactive visualization, however, the next chapter introduces Caleydo, the visualization

framework that was created over the last several years and served as major infrastructure

for realizing the visual analysis techniques presented in the remainder of this thesis.
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Caleydo - Visual Analysis Framework
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Caleydo is a visual analysis framework designed and implemented in close collaboration

with Alexander Lex in the course of this thesis project. The framework contains the con-

crete set of visual and computational interfaces that are part of the analysis setup model

from the complex biomedical use case introduced in the previous chapter. As this frame-

work is the basic infrastructure of all research prototypes presented in this dissertation, a

separate chapter is dedicated to it.

In 2005 the framework's development was initiated by Michael Kalkusch who left the

project team in 2007. Until 2009 the focus was on the interactive visualization and explo-

ration of expression data in the context of cellular processes. After that, the integration

of computational data processing capabilities and the comprehension of a wider spectrum

of input data, as described in the Chapter 2, broadened its range of application. The Ca-

leydo software is available for download free of charge from caleydo.org. The framework

is implemented in Java and runs on Windows and Linux machines.
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The Caleydo system has not only been published in the InfoVis community

[Streit et al., 2008, Lex et al., 2010a] but also as an application note in the Bioinformatics

journal [Streit et al., 2009a]. This dissemination activity in the Bioinformatics

community helped in gaining access to new users from the focus group. The system

is currently being used as a research tool by various biomedical research institutions.

First results acquired with the support of the software have already been published

(see [Schmidt-Gann et al., 2009]).

Knowledge Gap

Van Wijk identi�ed user-centered design as the royal road for a successful interdisciplinary

visualization research project [van Wijk, 2006] . Knowing the users and their tasks has been

regarded as essential for developing high-quality user interfaces for more than a decade now

[Hackos and Redish, 1998]. Conducting a requirements and task analysis leads to better

quality software and therefore lowers costs, for both the developers and the users. This

view of software development has long been adopted by the �elds of visualization and

visual analytics (e.g., [Kang et al., 2009, Saraiya et al., 2005]). In the case of Caleydo,

the framework's development was, right from the beginning, driven by input from do-

main experts. However, interdisciplinary research projects require both sides, researchers

from the problem domain as well as visualization experts, to learn a lot about the other

domain. This discrepancy between expertise, vocabulary and background between the

ones who provide visualization solutions and those using them is referred to as a knowl-

edge gap [van Wijk, 2006]. On the one hand, visualization experts have to learn the target

domain's vocabulary in order to understand the problems and in turn to be able to come

up with solutions. On the other hand, domain experts need to invest time and have to

be open-minded for innovative and novel applications. Although this process consumes a

considerable amount of time, it can be very fruitful and lead to innovative solutions.

In our community the requirement elicitation process is usually repeated for every

project. This has led [Scholtz, 2009] suggest to create a handbook of user pro�les to

alleviate the di�culties in accessing real end users and to reduce the time that needs to be

invested by both parties. As each project is driven by a very specialized set of requirements

and user demands, such pro�le collections cannot replace the whole procedure. However,

a good portion could be shared among the projects. Based on experience gained in the

Caleydo project, the author also advocates such an initiative.

Interest Gap

In contrast to the knowledge gap, an interest gap between the domain expert and the

visualization researcher can be observed [van Wijk, 2006]. While the visualization expert

wants to realize innovative visualizations and visual analysis techniques, the domain expert

(user) focuses on solving open domain problems. In order to keep the knowledge gap as

narrow as possible, actually usable software � not a pure proof of concept research prototype
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� is important. Thus, scienti�cally irrelevant features need to be integrated. Examples are

a �exible data importer or a standard scatterplot implementation. However, the e�ort

made in the Caleydo project to provide a stable and ready-to-use software for end-users

laid the groundwork for further challenging research questions. The framework served as

a platform that makes a rapid realization of novel visualization research ideas possible. In

particular, the related question of whether or not software engineering pays o� for research

in the long run is addressed in [Streit et al., 2010].

5.1 Framework Design

Modern software engineering is heavily a�ected by best practices for solving recurring

abstract problems, so-called design patterns. Following these patterns helps to reduce

the costs of creating re-usable, high-quality software. While collections of design pat-

terns, applicable to general software architectural problems have been used for more than

twenty years now (e.g., [Gamma et al., 1995]), speci�c patterns tailored to the needs of

information visualization software were not formulated until recently. Based on exist-

ing visualization frameworks and the experiences gained with prefuse [Heer et al., 2005],

Heer and Agrawala identi�ed valuable design patterns valid for information visualiza-

tion [Heer and Agrawala, 2006]. They focus on the interplay of data representation, graph-

ics and interaction. The design of Caleydo was naturally in�uenced by some of these pat-

terns which will be indicated and named at appropriate points in the remainder of this

chapter.

The Caleydo framework is conceptually divided into four main building blocks:

• The Core System contains basic functionality such as data management, data pars-

ing, ID management and the event system for the propagation of information and

updates within the framework.

• Data Domain Plug-ins re�ect a certain kind of domain-speci�c data � for example

genetic data, pathways or tissue data. Each data domain plug-in determines the

compatible data types, a central ID (i.e., primary key) of the data set, how to parse

raw data of this type, etc.

• View Plug-ins contain the implementation of a concrete visualization technique.

Each view is associated with the data domains it is capable of visualizing.

• External Libraries and Tools add functionality to the framework, e.g., for statis-

tics computations. They are accessed by Caleydo via an API.

Figure 5.1 illustrates how Caleydo is structured in terms of these modules. Each mod-

ule is subdivided into separate plug-ins. The strict separation between view and data

follows the Reference Model design pattern [Heer and Agrawala, 2006]. It enables a free

composition of views that render data from multiple sources.
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Figure 5.1: Main building blocks of the Caleydo framework.

View and data domain plug-ins have full access to the core's base functionality. In

contrast, the core itself has no knowledge about or references to other plug-ins. This mod-

ular software design makes it possible to extend the Caleydo framework without altering

the core system. In addition, by maintaining a stable core, new visualization prototypes,

student projects, and also work with external collaborations can be developed in a sandbox

environment without in�uencing other modules of the framework.

5.1.1 Data Management

One precondition of a framework targeted at heterogeneous and/or comparative data anal-

ysis is its ability to concurrently operate on multiple data sets. In Caleydo, data domain

plug-ins realize the conceptual separation of di�erent kinds of data. They hold rules how

to load, store and process the contained data. Instances of these data domain plug-ins

store the data itself. The framework provides the infrastructure for graph, image as well

as multi-dimensional tabular data. In order to guarantee immediate access to the data �

a requirement for interactive analysis � everything is kept in the main memory during the

the application's runtime.
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Session Store/Restore

In order to make software ready for use in real world data analysis, one of the most

essential features is its ability to store (and restore) a certain state. By employing the

Memento paradigm [Gamma et al., 1995] Caleydo can save the currently loaded data set,

the arrangement of views as well as additional information, like the chosen color coding,

current selections, �lters and associated processing results, e.g., cluster information. This

session-speci�c data is stored in a project �le. This way, analysts can not only quickly

recover when temporarily interrupted, but also manage and share their �ndings.

Handling of Multi-Dimensional, Numerical Data

When dealing with huge, multi-dimensional data sets, a visual analysis system's data

management has to consider any special needs in terms of availability and �exibility. The

way n-dimensional data is stored and accessed is di�erent from the conservative way used in

relational database systems. While databases use a row major order in which all data �elds

are stored per record, information visualization systems often store data on a per column

basis (cf., Data Column design pattern in [Heer and Agrawala, 2006]). This solution makes

the grouping of records (in row direction) more di�cult, but has the advantage of a unique

data type per column, enabling a compact storage in arrays.

Storage arrays in Caleydo are not accessed directly but via virtual arrays � a list of

indices pointing to the actual data entry. This way operations like brushing, grouping and

sorting can be performed e�ciently without changing the original data storage.

5.1.2 Annotations and ID-Mapping

When working with multiple heterogeneous data sets, shared identi�ers within and among

data sets are the fundament on which sense-making is based. In this case, the relations

between multiple data sets are implicitly contained, for example, if a row in a tabular data

set is identi�ed by the same ID as a node in a graph. In addition to these implicit data

mappings, external mapping tables have to be utilized to resolve indirect mappings between

data sets. Especially in the biological domain, analysts are confronted with a broad set

of di�erent annotation systems. Established annotations for the identi�cation of genes

are for instance RefSeq, Entrez Gene ID, Genebank Accession and many more. However,

because of duplicates, semantic variations or even false identi�ers in out-dated annotation

systems, a 1:1 mapping between these systems is impossible. Life science experts are usually

aware of these issues, but want the analysis software to handle it. Caleydo relies on the

DAVID annotation database1 [Huang et al., 2008], a unique point of mapping for all kinds

of genetic entities. This allows Caleydo to o�er a �exible data importer (e.g., for loading

gene expression data) which understands any of the existing standard annotations that

1http://david.abcc.ncifcrf.gov

http://david.abcc.ncifcrf.gov


56 Chapter 5. Caleydo - Visual Analysis Framework

DAVID covers. The same DAVID-based mapping mechanism is bene�cial for Caleydo's

search feature, where users can �nd entities by using any ID as a search query.

At start-up, Caleydo builds up a mapping graph by loading a series of mapping tables.

In order to create a �exible network of relations, the graph structure supports uni- as well as

bi-directional mappings of identi�ers. Furthermore, the implementation copes with 1:n as

well as n:m mappings, which are, for instance, relevant for handling multiple spotted genes

on a micro-array chip. When resolving identi�ers, i.e., transforming from one annotation

system to another, the shortest path in the mapping graph is determined by applying the

Dijkstra algorithm [Dijkstra, 1959].

5.1.3 Event System

The propagation of events is a key mechanism of any visual analysis systems. It is the

fundamental building block of multiple coordinated view systems [Roberts, 2007] which

supports linking & brushing [Becker, 1987, Martin and Ward, 1995, Ward, 1994], but also

the basis for any kind of communication between a framework's modules. In Caleydo, the

event mechanism is a variation of the Observer design pattern (cf., [Gamma et al., 1995])

where objects declare interest in certain types of events and are noti�ed whenever the event

occurs.

The synchronization of data brushes among views is realized by exchanging

[unique_ID,state] tuples. Examples of data item states are mouse-over, selected,

deselected and removed. In a decentralized fashion, views maintain the state of all their

rendered data items. The framework supports either sending the full selection state of

a data set, which is naturally an expensive operation, or alternatively sending only the

altered portions. These small incremental updates are of course favored for brushing

operations in terms of performance and scalability. However, in case a view is newly

opened, the framework needs to initialize its state with a full one-time update, so that

data which is already �ltered in existing views does not re-appear in the new view.

Brushing of data can either be performed by computational means or visually by the

user. Irrespective of how the brushing is triggered, all data operations are collected by

the data domain instance that is associated with the data set. The collected operations

are fed into a pipeline, also called �Brushing sequence� [Chen, 2003]. By default, brush-

ing operations are connected as a series combined by logical AND-operations. Logically

combining data �lters (AND, OR, XOR, etc.) is a common concept in visual analysis

frameworks [Martin and Ward, 1995, Doleisch et al., 2003]. Upon every newly added or

altered brush, the pipeline is re-evaluated and the result is published to the views and

other interested modules. In addition, storing the �lter pipeline enables an arbitrary re-

moval of parts � realizing an UNDO on the level of data operations. By explicitly presenting

the �lter pipeline to the user in a designated meta-visualization, its full �exibility can be

accessed: interactive resorting, re�ning, logical combining and removing of �lter steps. In

Caleydo, the �lter pipeline is part of the data meta view, described in Section 5.3.4.
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5.2 Computational Interfaces

Computational interfaces refer to all algorithmic means a framework provides to calculate

derived data, such as cluster results or a �ltered subset resulting from an applied statistical

test. It was a design decision to rely on standard libraries for these kind of tasks, as they

o�er a pool of validated, state-of-the-art statistical methods. For that purpose, Caleydo

integrates the R statistics toolkit2 [R Development Core Team, 2010] as well as the data

mining workbench WEKA3 [Hall et al., 2009].

The standard work�ow of using such libraries is to access them as a black box: input

data is pushed in, processed and the result is then presented to the user. For this �nal

step, most computational tools support rather static plots that are very limited in terms

of interaction. Given the common requirement that a user needs to alter a query contin-

uously during an analysis, for instance changing a parameter of a clustering algorithm,

the only way to do this is to adapt the calculation rules by hand and re-trigger the pro-

cessing pipeline. This inherent black box paradigm cannot be circumvented when using

the standard statistics packages (as Caleydo does), but the integration in a Visual Analyt-

ics software can improve usability signi�cantly. By providing easy access via a graphical

user interface, the user does not have to deal with the libraries' complexity. This enrich-

ment of the computational capabilities with the power of interaction makes the integration

interesting for Visual Analytics applications. Other frameworks that employ external li-

braries for this purpose are Mayday [Dietzsch et al., 2006], SEURAT [Gribov et al., 2010]

and SpRay [Dietzsch et al., 2009]).

When input consists of big, multi-dimensional data sets, a common �rst analysis step

is to reduce the data by applying dimension reduction procedures (e.g., PCA) or other

basic statistical tests like t-testing, variance-based �ltering within groups or fold-change

reduction. For the analysis of patterns and trends in the data, Caleydo o�ers several clus-

tering algorithms, such as hierarchical clustering [Eisen et al., 1998], k-means and a�nity

propagation [Frey and Dueck, 2007]. The latter in particular has proven valuable for the

analysis of expression data. However, the set of supported clustering algorithms and statis-

tical methods can be easily extended to Caleydo by triggering the appropriate commands

in the external libraries.

5.3 Visual Interfaces

A visual interface is a concrete implementation of a visualization technique � also referred as

a view. Due to the modular plug-in mechanism, the framework facilitates rapid prototyping

for quick integration of novel visualization techniques.

Caleydo is implemented as a multiple coordinated view system. For each view, the

framework provides base functionality like the coupling with the event mechanism for

2http://www.r-project.org
3http://www.cs.waikato.ac.nz/ml/weka

http://www.r-project.org
http://www.cs.waikato.ac.nz/ml/weka
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syncing �lter and selection operations.

The framework employs the Rich Client Platform (RCP) [McA�er and Lemieux, 2005],

the back-end of the popular Eclipse software development environment. RCP provides the

base functionality that allows users to freely arrange views in tabs and/or in a side-by-

side fashion by using drag-and-drop. Due to the fact that in complex analysis sessions

users invest considerable time in customizing their view arrangement, Caleydo provides

a memento-based store and restore mechanism for remembering the view layout. Views

can either be realized with the Standard Widget Toolkit (SWT) or as embedded OpenGL

content. While SWT is employed for standard GUI views like tables or lists, all implemen-

tations of novel, interactive 2D and 3D visualization techniques are rendered in OpenGL

using the Java OpenGL Toolkit (JOGL)4.

In the following section, Caleydo's default set of visual interfaces are introduced. Al-

though they are based on well-established techniques, a series of novel features deserve

special mentioning. This is particularly true for the hierarchical heat map, the parallel

coordinates and the pathway graph view. Auxiliary views are also listed and brie�y de-

scribed. Further variations of established visualization techniques that are part of Caleydo,

like for instance a scatterplot matrix (SPLOM) [Carr et al., 1986, Becker, 1987] or a Sun-

burst view [Stasko and Zhang, 2000], need no further discussion and have therefore been

omitted for the sake of brevity. Novel visualization techniques developed in the course of

this thesis are presented in greater detail in Chapter 6 and 8.

The choice of views that were implemented in Caleydo was naturally driven by the

biomedical use cases and the requirements connected to them. However, the general ap-

plicability of the techniques to multi-dimensional as well as graph data allows Caleydo to

serve as a general framework for visual data analysis.

5.3.1 Hierarchical Heat Map

A heat map is a visualization technique for representing multi-dimensional data as a color-

shaded matrix and the quasi standard for visualizing expression data. Each row of the

data matrix corresponds to a data record, each column to one dimension and each cell is

mapped to a color. An unsorted heat map can be used as a lookup table for small data

matrices (< 50x50). However, by permuting the rows and columns, structure and coherent

patterns in the data become apparent (cf., Bertin's reorderable matrix [Bertin, 1983]). A

color-shaded matrix, where similar elements are positioned close to each other, is called

clustered heat map [Wilkinson, 2009].

Clustering a group of patients with known features is a common procedure to analyze

expression data. The goal is to �nd similarities and/or di�erences between their pro�les

which in turn allows one to draw conclusions in the analysis. In addition to a compari-

son between di�erent patients, time-series experiments of the same patient are frequently

available. Consequently, a combined correlation analysis on the basis of di�erent patients

4http://jogamp.org/jogl

http://jogamp.org/jogl
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measured at multiple points in time is often subject of an analysis.

While heat maps are used for a wide variety of application �elds, they are very com-

mon for visualizing gene expression data [Eisen et al., 1998]. Clustered heat maps have ap-

peared in over 4000 life science-related articles and are therefore probably the most widely

used visualization technique in this �eld [Weinstein, 2008]. Clustered heat maps are a par-

ticularly valuable visual analysis tool in this context, due to the tendency of genes involved

in the same functional process to be co-regulated. Consequently, genes which are assigned

to the same cluster potentially perform similar cellular functions [Eisen et al., 1998].

Traditionally, bioinformaticians apply statistical methods to the expression data in

order to search for trends as well as di�erences or similarities between subsets in the data.

In such a scenario, visualization is used for pure presentation purposes in the form of static

plots generated in a post-processing step. However, an interactive heat map combined

with features such as linking & brushing is much more valuable for analyzing the data. An

early example of a framework for dynamic querying of expression data is the Hierarchical

Cluster Explorer (HCE) [Seo and Shneiderman, 2002]. Nowadays, clustered heat maps

can be considered as state-of-the-art as they are an integral part of many general purpose

visualization frameworks (e.g., TIBCO Spot�re 5), as well as special purpose software

for the biomedical domain (e.g., GeneSpring (Agilent Technologies, Inc., USA)6, Java

TreeView [Saldanha, 2004] and Mayday [Dietzsch et al., 2006]). A comprehensive review

of the current tools available can be found in [Gehlenborg et al., 2010].

A typical expression data set is degenerated in size with respect to the ratio of dimen-

sions (i.e., columns) and items per dimension (rows) � e.g., several dozen experiments with

30,000+ regulation values each. In general, naive heat map implementations do not scale

well, as the number of simultaneously visualized elements has a strict upper limit: the num-

ber of available pixels on the screen. Established tools like Mayday [Dietzsch et al., 2006]

handle that problem with a scroll and pan interface, which can only visualize a small sub-

set of the full data set at a time. However, the main purpose of clustered heat maps is to

show the complete data set in order to reveal patterns within the data in an intuitive way.

Consequently, simultaneous investigation of overall trends and patterns is as important

as easy access to individual elements. Caleydo addresses this issue by realizing the heat

map in a multi-level fashion that employs a focus+context concept reminiscent of e.g.,

[Ball and Eick, 1996, Seo and Shneiderman, 2002, Saldanha, 2004]. Figure 5.2 (c) shows a

hierarchically clustered heat map of about 800 elements as the center view of the Caleydo

workbench. The overview level on the left presents the full heat map rendered to a texture.

Due to interpolation performed by the graphics hardware, the scaled texture retains the

major trends in the data. In a sliding window fashion the user can interactively determine

the subset that is enlarged in the subsequent level. Up to three levels of detail can be shown

simultaneously. The number of required levels is automatically determined according to

the number of items. In the last level on the right, the subset of elements is small enough

5http://spotfire.tibco.com
6http://www.genespring.com

http://spotfire.tibco.com
http://www.genespring.com
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to present the individual gene names. The initial version of the hierarchical heat map was

implemented by Bernhard Schlegl in the course of his master's thesis [Schlegl, 2009].

On-site Dendrogram

If the data set is clustered hierarchically, additional dendrograms are shown on all levels.

Cluster borders are visualized with overlaid lines. The desired level of granularity of

groupings (i.e., clusters) can be adjusted interactively by dragging a cut-o� line of the

dendrogram (similar to the minimum similarity bar in HCE [Seo and Shneiderman, 2002]).

Color Coding

Choosing a suitable transfer function that determines the encoding of numeric values to

colors is an important aspect when working with heat maps. One widely-used color map

for visualizing gene expression values ranges from red (indicating up-regulated genes) to

black (meaning a similar regulation to a reference experiment) to green (down-regulated

genes). It is a quasi domain-speci�c convention and therefore also the default in Caleydo.

However, in order to satisfy the needs of color-blind users and also to enable �exible

adaptation to various use cases, the system o�ers a set of prede�ned color palettes to

choose from as well as the possibility to load arbitrary, user-de�ned color schema. Via an

on-site histogram view, users can interactively change the transfer function, the e�ects of

which are immediately re�ected in the heat map. Due to the sensitivity of heat maps to

the transfer function, this live adaptation of the color mapping is a valuable feature when

it comes to the discovery of patterns and trends.

While clustered heat maps work well for visually inspecting the data and getting a

feeling for overall trends, they are not suited for performing visual �lter operations. For

that purpose Caleydo o�ers a parallel coordinates view.

5.3.2 Parallel Coordinates

The state-of-the-art parallel coordinates implementation in Caleydo (cf., (b) in Figure 5.2)

allows users to freely arrange axes in a drag-and-drop fashion. Various brushing strategies,

such as brushing gates per axis (dimension) or angular brushing [Hauser et al., 2002], are

realized.

In order to be able to deal with large data sets that would naturally result in visual

clutter, the implementation renders a reduced random sample [Ellis and Dix, 2006], which

adapts automatically once data items are �ltered out � always displaying a prede�ned

number of polylines. When the number of remaining items is smaller than this number,

sampling is turned o�. An initial version of the Caleydo's parallel coordinates view was

implemented by Alexander Lex in the course of his master's thesis [Lex, 2008].
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Figure 5.2: Caleydo workbench sample analysis setup. The loaded data set is published in
[Panzitt et al., 2007] and comprises 4630 gene expression values for 39 patients. The grouper view
(a) allows a user to hierarchically structure the patients according to their semantic commonalities.
By using visual brushes in the parallel coordinates view (b) the analyst has �ltered the data to 784
genes. This reduced set of genes was clustered hierarchically. The hierarchical heat map (c) depicts
the hierarchy as an in-place dendrogram. An auxiliary view (d) contains meta-data about the loaded
data set and an interactive histogram for adapting the color transfer function.
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5.3.3 Composition of Visual Interfaces

Separate windows as containers for views are the usual way to present data in information

visualization systems. This also applies to Caleydo which supports classic GUI views,

such as a spreadsheet view for presenting raw tabular data or a web browser view, or

alternatively, views that use OpenGL for rendering information, like parallel coordinates

or heat maps.

In contrast to these standalone views for the visualization of interconnected, hetero-

geneous data sets, a composition of various views in one window is a powerful concept.

Therefore, Caleydo provides a mechanism for rendering views remotely at an arbitrary

position in a 2D or 3D scene. Each view is thus a fully functional standalone view. The

layout of the combined views is based on �style-sheets�. Consequently, it is possible for a

view to accommodate various arrangement strategies.

Having combinations of views embedded in one window and therefore in one OpenGL

scene is the prerequisite for depicting relations across views. This remote view mecha-

nism is the fundament in terms of infrastructure for the Matchmaker (cf., Section 6.1.2),

the Jukebox (Section 6.2.2), the Bucket (Section 6.3.3), and the Stack'n'�ip technique

(Chapter 8).

5.3.4 Auxiliary Views

This section brie�y introduces support views that are not necessarily interesting from a

scienti�c point of view, but are relevant in order to understand the analysis scenarios

throughout the thesis.

Data Meta View

As Caleydo supports concurrent loading of multiple data sets, one instance of a data meta

view is available per data set (cf., (d) in Figure 5.2). Depending on the data set, the

view presents basic information like size, source location, data type, primary identi�er and

further properties. An embedded histogram not only shows the distribution of the data

set, but also facilitates an interactive alteration of the color transfer function.

Grouper

In a multi-dimensional data set the dimensions can either be grouped by computational

means or manually by the user, according to known semantics. An example of the algo-

rithmic approach is the application of a clustering algorithm that assigns dimensions to

clusters according to a de�ned distance measure. However, in many cases a grouping of

dimensions is desired by means of meta-knowledge about the data set. A �at or hierarchi-

cal grouping structure can re�ect the semantic relation between the dimensions. On the

left side of the Caleydo workbench (see (a) in Figure 5.2) the grouper view shows a pre-

grouped, multi-dimensional expression data set. In this example, replicate experiments
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have been run in order to reduce the uncertainty of micro-array measurements. These

replicate experiments are then aggregated, constituting the lowest level of the hierarchical

grouping. Subsequently, these replicate groups are again assigned to groups of experiments

that contain multiple patients with the same clinical condition. By taking into account

the (not explicit) knowledge about the data set, this kind of hierarchical structuring can

be arbitrarily de�ned by the user.

Group labels are automatically determined from common string parts of the contained

dimension labels that can be changed by the user.

In addition to structuring purposes, the grouper supports removal, sorting (by drag-

and-drop), collapsing and duplication of dimensions, where the latter is especially relevant

for comparative data analysis. Statistical operations on single dimensions as well as on

groups of dimensions can be triggered via the context menu, the result of which is imme-

diately re�ected by a reduction of the data items.

Tabular Data View

When analyzing tabular data in sophisticated, multi-dimensional visualizations, like par-

allel coordinates, scatter plots or heat maps, a basic user requirement remains to access

and browse the raw data in a table, since this is usually most familiar to the users.

Selection View

A permanently visible mini-view in the side-bar of Caleydo shows a list of the currently

selected entities.

Bookmark View

During analysis sessions domain experts often want to remember entities either to return

to them at a later point in the analysis or to export them at the end of the analysis.

Bookmarking of entities is particularly relevant for exploratory analysis where hypothesis

veri�cation and falsi�cation play an important role.

External Information Browser

A signi�cant amount of time spent exploring and analyzing complex, interconnected data

is consumed by the investigation of meta-data. In order to understand complex entities,

relations and processes, the consideration of additional knowledge is essential. Especially

for hypothesis generation tasks, external databases are of great importance. While the

sheer amount and complexity of the data are challenging aspects, the uncertainty of the

loaded data and the contained ID-mapping is problematic as well. In this regard, the

information from external databases can help users to do quick plausibility checks.

Using a details-on-demand technique, selected data items in Caleydo are dynamically

queried in major online databases, which then return detailed information about genes,
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enzymes, protein structures and other entities. One already mentioned example of such

important external databases is PubMed. Given the fact that the most comprehensive body

of knowledge about a biological entity or process is the pool of scienti�c publications on that

topic, dynamic queries on PubMed are a powerful way of achieving profound sense-making.

In addition to the well-established linked meta-browser as a passive data output facility,

Caleydo actively parses selected text strings of the loaded web page and looks for matching

entities in the internal mapping tables. Positive matches are highlighted system-wide in

all open views. Currently unloaded but known entities, like pathways, are opened in the

designated views.

5.4 Summary

This chapter introduced the Caleydo Visualization Framework. It is a multiple coordinated

view system focused on the analysis of biomedical data. The framework serves as a basic

infrastructure for realizing the novel visualization techniques presented throughout this

thesis.

Although Caleydo in its current state scales well to data sets up to a magnitude of tens

of thousands of (interrelated) items, handling bigger data sets will require adaptations

in the framework. While the currently used application work�ow requires the data to

be analyzed to be loaded to the main memory, a combination with database systems,

serving as data warehouse, seems to be inevitable. In this scenario, the visual analysis

system would dynamically query these databases, resulting in chunks of data which are

then transferred to the main memory for immediate access.

The limitation in terms of data size not only necessitates new designs in visualiza-

tion techniques, but also requires novel ways to ensure their interactive handling. In

this regard, multi-threaded render passes per view combined with early thread termina-

tion [Piringer et al., 2009] could be one building block of a visual analysis system that

scales up to the next generation of analysis problems.
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By utilizing the information from a well-de�ned analysis setup model, a visual analysis

system can aid analysts and therefore alleviate the risk of disorientation that would result

in an undirected and longer lasting analysis. This chapter introduces a series of novel

visualization techniques targeted at the informed user which focus on orientation support

in the data space (support level S1.1 ), each of them addressing a concrete, open domain

problem. Before discussing the individual techniques in detail, the respective domain

problem is introduced, and a domain-independent, general research question is formulated.

The visualization techniques presented are designed to facilitate an exploratory analysis

of either a single multi-dimensional data set (gene expression), or the combined analysis
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of two heterogeneous data sets (expression in the context of pathways). The low number

of data sets involved and the connected visual/computational interfaces make the setup

easily comprehensible and manageable. Thus, the analysis setup models that cover these

scenarios are only a very reduced subset of the full version introduced in Chapter 4. An

explicit meta-visualization, showing the dependencies between the data sets and the as-

signed interfaces, useful for keeping a user oriented in the information landscape is not

necessary here. Nevertheless, these small setups are challenging in terms of orientation, as

the analyst needs to be informed about the relations within the information landscape, on

the level of individual data items. This is a precondition for orientation in a more inter-

woven, complex setup, comprising a variety of heterogeneous data sets. In order to make

users aware of the data interdependencies, all of the techniques presented rely heavily on

visual links as a visual aid.

6.1 Support Within Data Set, Within View

The �rst technique to be discussed, Matchmaker, addresses the comparative analysis of a

multi-dimensional data set in a single visual representation. Even in such a straightforward

scenario (one data set, one view), the challenge for achieving orientation on the level S1.1

is to e�ectively convey the relations between the compared data items. This technique

is based on the ideas of Alexander Lex and has been published at the IEEE Information

Visualization conference [Lex et al., 2010b].

6.1.1 Domain Problem: Comparative Analysis of Expression Data

Heat maps and their employment as standard visualization technique for the representa-

tion of and interaction with expression data were introduced in Section 2.3. In order to

make coherent patterns in the multivariate data visible, the ordering of both rows and

columns of the data matrix is essential [Weinstein, 2008]. Each column represents one

dimension (e.g., one experiment) and each row one data record for all dimensions. The

order can be determined either automatically by a clustering algorithm, or be extracted

from data properties and therefore be based on some kind of semantics. In the latter

case, for instance, expression data from patients who have the same disease constitute one

group of dimensions and the healthy control patients a second. Further common group-

ing criteria in this context could be time-series dependencies or replicates of the same

experiment. These semantic groupings can then also be combined and organized hierar-

chically [Wilson and Bergeron, 1999].

Traditional clustered heat maps depend on �biclustering� where a clustering algorithm

is run on the dimensions as well as the records. However, in many cases a hybrid variant is

needed, where the dimensions are grouped according to semantics for instance, while the

records are clustered by means of their similarity � or vice versa. Comparing these multiple

groups of dimensions is a common analysis requirement. An interesting case occurs, for
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instance, when data records increase over time in one group and one wants to know if this

trend is also present in the other group.

Figure 6.1: A small example demonstrating the issue of lost correlations of records among multiple
groups of dimensions. Two cluster runs, with di�erent algorithms or parameters applied, could divide
the data into di�erent groups. In this case, each result emphasizes only one particular correlation
(framed), while the other one is obscured.

The usual procedure is to cluster the whole data set according to the similarity of the

data records at once and show the result in a single heat map. However, this potentially

obscures relations between homogeneous groups. Figure 6.1 shows a tiny sample data set

with three dimensions and three records per dimension. When clustering the data set, two

di�erent clustering results are possible, depending on the algorithm chosen, the distance

measure and other parameters � each of which focus on di�erent correlations between

records (bold framed in Figure 6.1). However, either the correlation between record 2 and

3 or between 1 and 2 is obscured. The more dimensions and records are involved, the worse

the fragmentation of patterns gets.

Research Question 1:

How to enable a user to discover homogeneous trends within semantic groups of

dimensions and also to discover trends between them?

A related problem, which additionally complicates the cluster analysis of multivariate,

quantitative data, is the fact that the type and the meaning of the patterns in the heat

map are highly sensitive to a series of factors [Weinstein, 2008]:

• the applied preprocessing (e.g., normalization, clipping, etc.)

• the color scheme

• the chosen clustering algorithm

• the distance metric used

A profound knowledge of the analyst about all of these in�uencing factors is a precon-

dition for extracting meaningful insights. However, bad choices in terms of these factors

can lead to misinterpretations. An in-depth consideration of data preprocessing is beyond
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the scope of this thesis, and the color coding aspect has already been discussed in Sec-

tion 5.3.1. The latter two aspects are probably the most complicated to address, as hardly

any quality metrics exist that support analysts in their decision which algorithm to choose

with which parameters. The standard way of judgment is to run the algorithms (or the

same algorithm with di�erent parameters) multiple times on the same data set and visually

assess the alterations in the results. Although this approach can help to some extent, it is

neither intuitive nor e�ective.

Research Question 2:

How to aid a user in visually evaluating the in�uences of choices regarding the

clustering algorithm and its parameters on the clustering result?

6.1.2 Solution: Matchmaker

The two predominant approaches used for analyzing patterns and trends in

multi-dimensional, quantitative data either rely on dimensionality reduction or else

visualize the data set as a whole using techniques like parallel coordinates or heat maps.

However, neither of these approaches consider semantic relations between dimensions.

In the following, the Matchmaker visualization technique is introduced. It enables a

comparative analysis between arbitrarily semantically grouped dimensions. The solution

is based on the divide & conquer paradigm: split data into batches, process them

separately and compare the batches.

The technique's basic process is outlined in Figure 6.2. The starting point for an

analysis is a multi-dimensional, quantitative data set. The process is composed of the

following steps:

1. Step 1: Group dimensions With the help of Caleydo's grouper view (see Sec-

tion 5.3.4), the user can arbitrarily join dimensions to sub-groups which are then

subject to comparison analysis. Dimensions can also be duplicated, assigned to

multiple groups and organized hierarchically, thus allowing a �exible composition of

sub-groups re�ecting the semantic relations.

2. Step 2: Cluster sub-groups The records in each group are clustered separately,

resulting in homogeneous clusters for each of the semantic groups.

3. Step 3: Reconnect records The independent clustering of the sub-groups results

in a loss of context between them. Therefore, in a last step, the records are connected

among the sub-groups, which re-introduces the overall context.

This three-step process outlines the processing steps with regard to the data. The

following sections describe how Matchmaker realizes the visual comparison of clustered

groups in terms of visualization (cf., step 3).
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Figure 6.2: The three-step process of the Matchmaker technique: �rst, the user groups the dimensions
according to meta-data (step 1), then each sub-group is clustered individually (step 2), and �nally the
lost connections among the sub-groups' records are re-introduced again (step 3).

Visualization Technique

A straightforward and common way to visually compare data is to arrange multiple

views side by side. However, humans are not very adept at comparison tasks.

Alternatively, the comparison can be encoded in a single view where the relations

between elements can be presented explicitly. The data to be compared can be arranged

using various layouts: in parallel (e.g., TreeJuxtaposer [Munzner et al., 2003]), circular

(MizBee [Meyer et al., 2009], Circos [Krzywinski et al., 2009]), etc. Matchmaker falls

into the �rst category and arranges the clustered sub-groups parallel to each other,

reminiscent of parallel coordinates (i.e., one group corresponds to an axis) or Parallel

Sets [Kosara et al., 2006]. However, the parallel sets technique is designed to visualize

categorical data, not individual data records and thus cannot be applied to this problem.

In contrast, the Hierarchical Cluster Explorer [Seo and Shneiderman, 2002] addresses

a similar problem of how to compare two clustering algorithms applied to one data set.

Seo and Shneiderman suggest a side-by-side arrangement of the two clustered heat maps

with straight connection lines, depicting the position of each record in the opposite repre-

sentation. However, as also stated by the authors, this approach works only for very small

data sets (< 6 dimensions, 50 records), as the line crossings soon result in visual clutter.

Matchmaker arranges the clustered heat maps � each representing one sub-group of

dimensions � side by side. The clusters themselves, as well as the records inside the

clusters, are sorted according to their mean value. The individual records among the heat

maps are connected by lines, cf., Figure 6.3(a).

In order to alleviate the problem of line crossings between opposing clusters, Match-

maker applies a speci�cally designed edge bundling mechanism. The strategy for mini-

mizing inter-tree edge crossing presented for the Hierarchical Edge Bundles [Holten, 2006]

cannot be applied, because it depends on a resorting of records. In our case, due to the

records' assignment to the pre-sorted clusters, this is not possible. In addition, the clus-

tering is not necessarily hierarchical, which is a precondition for the Hierarchical Edge

Bundles strategy. Matchmaker reduces the number of crossings by introducing support

points, resulting in wide bands (i.e., parallel lines) which e�ectively show main trends be-
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tween the compared sub-groups. Outliers are immediately visible as they are shown as

thin bands or single lines with steep angles. This comes at the cost of many crossings

between the heat map and its support points, but optimizes the inter-cluster crossings (see

Figure 6.3(b)).

(a) (b) (c) (d)

Figure 6.3: The di�erent styles of connecting records among heat maps: in (a) the records are simply
connected by straight lines. (b) shows the result with the bundling strategy applied, reducing inter-
cluster crossings. In (c) the straight lines are replaced by curves. (d) shows an optional mode where
parallel lines are abstracted to ribbons.

In a next step, Matchmaker renders lines as spline curves, cf., Figure 6.3(c). As an

additional mode, the individual lines can be abstracted to ribbons. This not only solves

the problem of Moiré patterns, but also improves the render performance. However, a

details-on-demand approach, triggered by hovering over the ribbon, still allows one to see

individual connections. Interactive brushing of records works by selecting whole clusters,

individual ribbons and on the level of single records (lines).

The Matchmaker technique supports two modes, targeted at di�erent analysis goals:

• the Overview mode presents clustered heat maps in a parallel coordinates fashion,

as shown in Figure 6.4. This representation gives the user a feeling for overall trends.

Groups of dimensions can be interactively rearranged. The user can focus on the

comparison of two sub-groups by scrolling the mouse wheel. An animated transition

helps to understand the switch to the detail mode.

• the Detail mode (see Figure 6.5) enables a drill-down analysis to the level of indi-

vidual records. Two clustered heat maps are represented on the left and the right

side of the view. The user can select individual clusters on both sides, for which a

detailed heat map is opened, presenting the label of each single record. Orthogonal

stretching [Sarkar et al., 1993] is applied to deal with space constraints when focusing

on certain parts of the representation.

For a detailed discussion of the technique's scalability and the bundling algorithm, refer

to the full paper [Lex et al., 2010b]. Furthermore, the paper elaborates on two case studies

that demonstrate Matchmaker's applicability for solving the two posed research questions:
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Figure 6.4: Overview mode of the Matchmaker technique. In this example, sub-groups comprise the
gene expression data from patients who have the same disease [Kashofer et al., 2009]. Every dimension
is shown twice: once as a part of the undivided data set on the very left, and once as part of a semantic
sub-group. The relations between the clustered groups are shown by ribbons. Here, the user selects a
cluster on the left, which interactively brushes its records in all other groups (orange).

Figure 6.5: Detail mode of the Matchmaker technique. The user can select individual clusters and
inspect the relation of each record to the comparison group.



72 Chapter 6. Orientation Support in Classic Multi-View Applications

the discovery of trends (cf., research question 1) and the evaluation of clustering algorithms

and the parameters to choose (research question 2).

Summary

Matchmaker is a technique for discovering patterns and trends in multi-variate, numerical

data. This technique splits the data set into semantically connected groups of dimensions,

clusters them individually per group and allows the user to interactively inspect the results

in order to get insights about interesting di�erences or correlations among the groups of

dimensions. By relating the individual data items between the compared dimension groups,

it e�ectively addresses the domain problem stated previously while also realizing orientation

support on the level S1.1.

6.2 Support Within Data Set, Across Views

Like in the case of Matchmaker, this section also introduces a visual analysis concept that

operates on a single data set. However, due to the di�erent type and structure of the data

to analyze � small, interconnected graphs � an analyst needs to consider a multitude of

views concurrently in order to draw conclusions about their interrelations. This analysis

across the boundaries of individual visual representations poses new problems in terms of

orientation, as the system needs to convey the dependencies of the data items among the

views.

6.2.1 Domain Problem: Pathway Exploration

Pathways are graphs representing biological processes in living cells, as already introduced

in Section 2.2. Traditionally, these complex, biological interaction networks were printed

on large posters. Figure 6.6 shows the popular metabolic network published by Roche

Applied Science [Michal, 1999]. Metabolic networks describe chemical reactions that occur

in living organisms. Although designing such posters is complicated and the handling for

end-users is obviously tedious, they were and are still used as an inexpensive, static way

of presenting cellular networks. However, due to the progress in life science research, the

overall network is now far too big to be represented on a single poster.

Large Graph Visualization

The obvious alternative to the hand-crafted, static network representation is to lay out the

network using graph visualization. One option is to determine the layout automatically

by means of graph routing algorithms. However, the rapidly increasing number of nodes

and edges naturally leads to uninformative, giant �hairballs� [Suderman and Hallett, 2007]

for naive approaches. Interactive graph exploration techniques can support the user when

browsing the network and therefore alleviate the problem to a certain extent. Nevertheless,
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Figure 6.6: Section of the Roche Metabolic Network [Michal, 1999]. The graph is hand-routed. The
poster comes with a booklet which contains an index that provides the mapping from entity to a sector
on the poster.

even with an optimal layout and with the aid of interaction, handling huge graph visu-

alizations is challenging. Furthermore, a large and dense representation is overwhelming

and hinders quick and easy perception of graph relations, which is particularly problematic

when trying to make sense of complex biomedical processes.

Due to the high degree of interconnectedness, [Rojdestvenski, 2003] suggests visualizing

the pathway network as a 3D graph. MetNetVR [Yang et al., 2006] goes a step further by

presenting a hierarchical visualization in a 3D CAVE environment. These 3D approaches

su�er from the common problem that the user can easily get confused in a purely abstract,

but complex 3D environment. In particular, there is no obvious three-dimensional subspace

in the data that can be used for natural organization of the domain. Moreover, Virtual

Reality (VR) environments such as a CAVE are expensive. However, for a visualization

technique to be widely adopted, it is vital that the system runs in a standard o�ce envi-

ronment � making a VR or CAVE solution not applicable in this context. It remains to

be seen whether this will change when a�ordable, o�-the-shelf 3D-capable displays become

available in the near future.

Subdivision into Small Functional Graphs

The predominant strategy over the last few years has been to arti�cially decompose the

network according to functional context into smaller sub-graphs, with in most cases up to

200 nodes relating to one individual pathway. An example of a fundamental pathway is

the Citric Acid Cycle where a series of chemical reactions perform a conversion of fats,

proteins and carbohydrates to energy. Another fundamental one is the Apoptosis pathway,



74 Chapter 6. Orientation Support in Classic Multi-View Applications

representing the programmed cell death. As a side-e�ect, the subdivision of the large

network to individual pathways led to reduced complexity and made exploration easier.

However, there are advocates of both approaches, the large single network and the

multiple small graphs. Automatic layout of large graphs is bene�cial when the goal is

to modify the graph interactively, or when the subdivision of the network into prede�ned

pathways is unwanted [Barsky et al., 2008, Chung et al., 2005]. However, as pathway edit-

ing is not relevant for pathway exploration and sense-making tasks, the subdivision to

small, functional pathway graphs is the preferred option.

Automated Pathway Layout

Considering the special pathway graph characteristics, an automatic layout determination

is, even for the relatively small networks, a challenging task. One of the �rst attempts

to dynamically model metabolic pathways was proposed in [Karp and Paley, 1994]. As

pathway graphs became more and more diversi�ed and complex over time, graph draw-

ing approaches needed to be employed and enhanced. [Becker and Rojas, 2001] propose

an algorithm that builds on the ideas of Karp and enhances them by including topologi-

cal structure like cyclic or partially cyclic structures. Also hierarchy-based force-directed

approaches were proposed [Tsay et al., 2010].

The fact that life scientists manage the complexity by memorizing patterns of

well known pathways, strongly speaks against the application of automatic layout

algorithms to pathway graphs. Frequently, pathways are immediately recognized by

users because of a particular layout, such as circularly arranged nodes. The MetaViz

approach [Bourqui et al., 2007] takes this fact into account and creates a metabolic

network using multiple pathways. Moreover, this work also addresses the duplication

problem of nodes (i.e., entities performing multiple functions) by clever clustering and

overlapped drawing of the graphs. However, the necessity to incorporate additional

meta-information, not part of the graph's topology or attributes, requires a new solution.

Additional Meta-Information

In the small-world pathway graphs, the consideration of contextual information such as the

localization of the compound in the cell or cellular structures is becoming more and more

important and therefore needs to be additionally encoded in the pathway layouts. For ex-

ample, the pathway in Figure 6.7 denotes the cell border as two bold horizontal lines. This

trend towards the incorporation of meta-information is another strong argument against

the application of automatic drawing and layout to pathways. Illustrators use grouping

and annotations to convey this meta-information that is essential for understanding and

memorizing the pathways. Consequently, this information is only available in hand-routed

and carefully designed images.

This additional information implicitly encoded in the hand-drawn small-graph layout

turns out to be essential for understanding the processes in detail. In discussions with our
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biomedical focus group, it turned out that the superiority of the hand-crafted layout and

familiarity with the existing pathways cannot be matched by automated layouts.

Pathway Databases

Examples of widely-used public online-databases are KEGG (Kyoto Encyclopedia of Genes

and Genomes) [Kanehisa et al., 2006] and BioCarta1. A comprehensive list of pathway re-

sources of all kinds, including protein-protein interaction networks, metabolic pathways

and signaling pathways can be found on pathguide.org. In the case of KEGG and Bio-

Carta, each pathway is hand-crafted and contains only curated information backed up by

peer-reviewed publications. While KEGG uses a factual node-link diagram style, see Fig-

ure 6.7, BioCarta draws pathways in a visually appealing, cartoon style, as the sample

pathway in Figure 6.8 shows.

Figure 6.7: KEGG pathway map modeling Long

Term Depression using a simple node-link drawing
style. Note the structures in the background that
convey meta-information.

Figure 6.8: BioCarta pathway Regulation of cell

cycle progression by the Plk3 gene drawn in a car-
toon style. Additional information is encoded in
the shape of the nodes as well as in the di�erent
types of links.

As of December 2010, the KEGG pathway database contains 381 reference pathways

from which variants are available for all 1,482 KEGG supported organisms2. Based on

these reference pathways over 120,000 organism speci�c pathways can be generated using

a KEGG service. BioCarta contains 354 pathways, valid for homo sapiens (human) and

mus musculus (mouse).

Rather than discarding the pre-determined pathway layout in favor of a computer-

generated layout, Caleydo uses the pathway textures directly as an image-based back-

ground and enriches the static representations with interactive content rendered on top of

the texture, as proposed in [Streit, 2007, Jianu et al., 2010]. This augmentation approach

1http://www.biocarta.com
2Current statistics on KEGG are available on: http://www.genome.jp/kegg/docs/statistics.html

pathguide.org
http://www.biocarta.com
http://www.genome.jp/kegg/docs/statistics.html
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results in an interactive, layout-preserving graph representation which allows seamless scal-

ing as well as arbitrary 2D and 3D transformations.

Loss of Context

Genes can catalyze multiple reactions in living organisms and therefore perform di�erent

functions in the cell. However, due to the subdivision of the overall cellular network

to small, functional graphs, genes can be contained several times within the same or in

multiple pathways. This results in a loss of context, as the occurrence of a gene in a single

pathway does not provide a comprehensive picture of the full set of cellular processes in

which a gene is known to be involved. Thus, when exploring the pathways researchers

must typically consider a working set of pathways at once, including the interconnections

between them. A study carried out by [Saraiya et al., 2005] identi�es the visualization

of interconnections as a signi�cant requirement for pathway research. Our collaboration

partners con�rmed that they had di�culties understanding inter-pathway dependencies

when exploring collections of many small pathways using state-of-the-art tools.

Summing up, in order to understand pathways it is necessary to:

• view the pathway itself,

• view related pathways,

• view meta-information, and

• identify and explore interconnections between pathways.

State-of-the-Art in Pathway Visualization Tools

KEGG and BioCarta both provide traditional web interfaces based on lists and hyperlinks.

In addition to the web content, which su�ers from the mentioned loss of context between the

pathways, KEGG developed a browser-based application for exploring the overall metabolic

pathway network in a zoom and pan interface (see Figure 6.9). This web service tries to

reintroduce the context by showing an abstraction of the whole network. However, they

cannot handle the 1:n connections between pathway entities.

In addition to these limited web-based solutions, dedicated pathway visualization tools

have been developed. [Klukas and Schreiber, 2006] describe an approach that arranges

KEGG pathways and adds inter-pathway edges, resulting in a mixture of static layouts of

hand-routed pathways and automatically drawn layouts. The latter approach works well

for a small number of pathways (2-3), but as the number increases, nodes become small

and too many links between pathways result in visual clutter.

Since KEGG and BioCarta use nested pathways (i.e., pathways represented as sin-

gle nodes inside pathways), the problem of visualizing multiple pathways can also be

interpreted as a problem of browsing hierarchical graphs. [Klukas and Schreiber, 2006]

addresses this issue by combining multiple pathways in a single network that supports
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Figure 6.9: The KEGG Atlas browser application allows users to explore the global metabolic pathway
network with a zoom and pan interface. On mouse-over an individual pathway is opened as a pop-up
overlay.

interactive level of detail change by expanding and collapsing the pathways from/to single

nodes. While the system partly solves the users' needs in terms of navigation, the relations

between the graphs, depicted by connection lines, get cluttered easily.

Many further visualization tools addressing pathway visualization have been proposed

over the last years. While Pathway Studio3 is a prominent example of a commercial

software product, the Cytoscape Network Analysis and Visualization software4 is available

as open-source. Only recently, [Gehlenborg et al., 2010] list and categorize the state-of-

the-art in pathway visualization tools regarding their features. However, these solutions

do not satisfactory address the following requirement:

Research Question:

How to re-introduce the lost context between the visualizations without introducing

visual clutter while keeping the user oriented?

6.2.2 Solution: Jukebox - Stacking of Interconnected Graphs

This section introduces a visualization concept called Jukebox which allows for an e�cient

and interactive navigation inside the network of connected graphs. It respects the meta-

information available in the hand-crafted pathways but turns the static pathway layouts

into fully interactive representations. The setup allows the analyst to manage a working

set of pathways in a 2.5D stacked representation which makes inter-pathway connections

3Ariadne Genomics, Inc., USA, http://www.ariadnegenomics.com/products/pathway-studio
4http://www.cytoscape.org

http://www.ariadnegenomics.com/products/pathway-studio
http://www.cytoscape.org
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evident and therefore maximizes the use of screen real estate while avoiding clutter. The

stacking and interlinking of pathways was initially introduced as a poster at the IEEE

Information Visualization conference [Streit et al., 2007]. Subsequently, the Jukebox ap-

proach was published as a full paper at the EuroVis conference [Streit et al., 2008].

Jukebox Setup: Graph Stacking in 2.5D

The four levels of the Jukebox concept facilitate the management of and navigation within

the set of interconnected pathways:

• Level 1: Pathway pool list

• Level 2: 2.5D stacked layer view

• Level 3: Graph under interaction view

• Level 4: Memo pad

#

1    

2    4   

3    

Figure 6.10: The Jukebox view combines (1) a textual list menu for browsing related pathways by
name, (2) with an interconnected pathway stack, (3) an area designated for a detailed examination of
a graph, and (4) a memo pad.

Figure 6.10 shows the four levels of the Jukebox setup annotated in a screenshot. The

setup works analogous to a jukebox where audio records can be selected from a larger

collection and loaded to the turntable. A list of pathways is presented as a compacted,

textual list containing the pathway names (Level 1). By selecting an entry in the list, the

graph is loaded to the intermediate Level 2, where a prede�ned number of graphs is shown
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in a 2.5D stacked layer representation. Level 3 shows a large version of the pathway for

interactive inspection.

With the Tecate system [Kochevar and Wanger, 1995] suggest projecting 2D views in

a 3D scene (see Figure 6.11). The individual views are arranged in a pyramid-shaped stack

that allows users to browse the history of a hyperlink system by �ying through the scene.

The Jukebox builds upon this idea and adopts a 2.5D layout where the additional ordinal

dimension is used to manage and arrange the view representations. The Jukebox concept

employs a stack of graphs arranged in a 2.5D layout to densely pack pathway information in

the available screen space, but also relate multiple planar graphs to one another. Individual

pathways are scaled down and also compressed due to the orthographic (tilted) view.

However, signature features and proportions familiar to the expert are retained, which

makes the pathways still highly recognizable despite the perspective foreshortening.

The Jukebox setup was inspired by the work presented in [Brandes et al., 2004] where

similar pathways are stacked on top of each other to visually di�erentiate them (see Fig-

ure 6.12). However, their methods do not provide solutions for showing relations between

the layers. In contrast, our approach uses the additional relation a�orded by 2.5D to link

multiple ordered pathway layers. The relations between elements in di�erent pathways are

visualized using straight lines between the layers [Streit, 2007]. In comparison to the Vis-

Link approach [Collins and Carpendale, 2007] that also facilitates inter-plane edges, the

Jukebox setup provides a solution for managing related 2D visualizations in a hierarchical

way. The concept of inter-layer connections was also adopted later on by the Arena3D sys-

tem [Pavlopoulos et al., 2008] for relating content between various biological levels, each

represented as a plane in a 3D scene.

Figure 6.11: The Tecate system stacks hyper-
text documents [Kochevar and Wanger, 1995].

Figure 6.12: Stacked metabolic pathways al-
low the user to identify changes between the
graphs [Brandes et al., 2004].

In the context of pathways, the connection lines between layers enable a fast identi�ca-

tion of identical nodes in the whole network. Level 3 in Figure 6.10 shows the gene IL3 that
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is selected by the user in the IL 3 signaling pathway. Consequently, all representations

of that speci�c gene are highlighted and interactively connected. Selecting a particular

gene allows the user to quickly determine its global relevance to various aspects of the

working set. Circumstances under which a gene appears in multiple pathways as part of

an identical chain of reactions can also be discovered. The user can then choose a di�erent

pathway from the stack, which is exchanged with the pathway in the main interaction

view. Moving a pathway up or down the hierarchy to another Jukebox level is visually

supported by animated transformations [Shoemake, 1985]. It was found that users value

the continuous transitions when the complex networks, which are scattered over multiple

pathway views, demand their full attention.

There are multiple reasons why an entity can be represented multiple times in a set of

pathways. One reason has to do with layout considerations. Another possibility is that

a particular gene is catalyzing a speci�c reaction in a large variety of biological processes

in the cell. As a consequence, genes appear several times in various pathways. Without

global selection it is hard to identify such situations. We therefore provide a mechanism

that automatically searches the whole pathway pool for the selected entity. The resulting

pathways are shown in the pathway list (Level 1) by displaying their names plus a score

which is based on how often selected genes occur in that particular pathway. According

to this score the most relevant pathways (e.g., highest score) are moved to the stacked

pathway view, where the user can continue to explore inter-pathway relationships.

For larger-scale problems, the automatic management of the stack based on a least

frequently used policy can create the undesirable situation that a pathway vanishes from

the stack, but may be needed again later and must be manually retrieved. We therefore

provide the memo pad (see Level 4 in Figure 6.10), an area of the screen where the user

can place important pathways for semi-permanent safekeeping. Storing and retrieving

pathways works by simple drag-and-drop. The memo pad not only stores the graph, but

also the current selection of nodes, so that a particular working state can be completely

restored instantaneously. The memo pad and the stacked pathway view are complementary:

While the memo pad is designated to hold pathways for an entire analysis session, the

2.5D layered view is a volatile stack that may be changed during the dynamic loading of

dependent pathways.

Neighborhood Visualization

Algorithms for the calculation of adjacencies in graphs and their visualization are well

researched. As mentioned before, nodes in pathways can be part of the same graph mul-

tiple times as well as be incorporated in other pathways. Caleydo combines the dynamic

loading of dependent graphs with the highlighting of adjacencies. After the user selects a

node, the system presents all pathways that contain this entity. Dijkstra's graph search

algorithm [Dijkstra, 1959] is then applied to all instances of the entity in the selected work-

ing set of pathways. As a result, the neighborhood is propagated throughout all involved
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graphs (in con�gurable depth). This extended adjacency visualization makes a comprehen-

sive exploration across the boundaries of multiple pathways possible, as shown in Figure

6.13. Searching the neighborhood in all pathways simultaneously is extremely valuable,

since it enables the user to reveal hidden biological dependencies and to detect reaction

cascades in several pathways without being forced to go through all pathways manually.

Figure 6.13: Propagation of a signal in the pathway network. Upon selection of a gene, the system
highlights the �ow of the signal � not only within the local pathway where the selection was triggered,
but through all of the loaded pathways in the Jukebox stack.

Discussion

Although the methods presented have the potential to facilitate knowledge acquisition in

huge relational networks, the system is subject to restrictions. A good portion of the

pathways has a size and complexity which is suitable for our design. However, some of

the graphs are degenerated in size, which is problematic for the stacked visualization. The

mixing of extraordinarily small graphs with big graphs can be aesthetically displeasing,

and even disturb the user's ability to interpret the visualization. These e�ects can be

mitigated by adaptive scaling, but only to a limited degree.

We tested the Jukebox setup in multiple con�gurations, varying the degree of scene

customization permitted to the user. It turned out that the most restrictive setup was per-

ceived to be the best. While a rotation of the pathway stack can give a better perception
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of the line connections between the layers, most users became disorientated. Consequently,

the stack planes are tilted at a �xed angle of 60 degrees and the camera cannot be altered

by the user. During tests with expert users we turned o� the connection lines between the

graph planes in the stacked visualization while only using linking & brushing for highlight-

ing the selected nodes. Many users complained about the missing edges between the layers.

Further user tests showed that the maximum stack size should not exceed �ve planes. Oth-

erwise users began to feel overwhelmed by too many graphs at the same time. Nevertheless,

this restriction of the stack is inherently absorbed by the Jukebox's hierarchical concept.

6.3 Support Across Data Sets, Across Views

Up to now, this chapter has introduced two visualization concepts, each of them facilitating

the analysis of a single data set. The next section progresses regarding the degree of

heterogeneity, since the scenario includes two data sets that di�er in terms of both type and

structure. In order to keep a user oriented in the information landscape (cf., support level

S1.1 ), an analysis system needs to not only communicate the interdependencies between

the individual views, but at the same time make the user aware of which visualization

contains data from which data set. In the following, two techniques will be discussed

which analyze multi-dimensional, numerical data (gene expressions) in the context of a

network of small, interconnected graphs (pathways).

After laying out the domain problem that is subject of the analysis, the applicability

of the Jukebox for this purpose will be evaluated and the identi�ed shortcomings will be

addressed by a novel visualization concept � the Bucket.

6.3.1 Domain Problem: Expression Data in the Context of Pathways

In order to understand the function of genes and their roles in diseases, a simultaneous con-

sideration of gene expression data and pathways is crucial. Typical data analysis questions

are:

• In which biological processes is a gene involved that is signi�cantly up- or down-

regulated between two groups of patients?

• Is this conspicuously regulated gene involved in multiple functionally related pro-

cesses?

• How does the gene regulation in�uence the chain of reactions in a pathway? For

instance, a signi�cantly down-regulated gene at the beginning of a pathway can in

fact make all the following nodes irrelevant.

Typical Work�ow

After being approached by our partners from the Medical University of Graz, we analyzed

the goals they were trying to achieve, and discovered two distinct work�ows: The �rst is a
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pathway-centric approach, the second concerns the analysis of gene expression data with

hypothesis generation and quick plausibility checks.

• Pathway-centric Analysis Work�ow

In the pathway-centric approach, the expert is interested in a speci�c biological pro-

cess, like the development of colorectal cancer. The starting point for an analysis

could be the KEGG Colorectal Cancer pathway. The user explores the interdepen-

dencies of this pathway with other pathways. When simultaneously exploring the

pathway and gene expressions from multiple samples of cancerous tissue, the expert

can detect di�erences in the gene expressions of groups of samples. Such a vari-

ation can indicate di�erent sub-types of the disease or response to treatment in a

time-series analysis.

Since not the whole set of gene expression values (about 30,000) has a mapping to

a pathway, the initial expression data set can be reduced by the genes that are not

represented in at least one pathway. In the case of KEGG and BioCarta, these are

about 5,000 genes.

• Expression-centric Analysis Work�ow

In a gene expression-centric approach, the expert analyzes the expression data �rst.

In this case, knowledge about the clinical factors that distinguish the di�erent ex-

perimental conditions or patients is essential. For example, an expert could arrange

the data in such a way that patients with short disease-free survival are grouped. He

then looks for di�erentially expressed genes, supported by �lters and analytical tools

such as clustering. Such evidence may lead to a hypothesis which can be checked for

plausibility by analyzing the biological context (i.e., pathways or literature) of the

di�erentially expressed genes. Only plausible hypotheses are subjected to expensive

clinical studies.

Existing Approaches

The visual analysis of ∼omics expression data in the context of pathways has

emerged as a hot research topic over the last couple of years [Gehlenborg et al., 2010].

[Saraiya et al., 2005] discuss the design space for relating expression data to pathway

graphs, allowing the related work to be classi�ed as follows:

• Option 1: In-place mapping of one or more data values onto the nodes

The node acts as a glyph for conveying the linked information. Color coding the

nodes according to one or more experiment is the most commonly used strategy. Both

research (e.g., [Lindroos and Andersson, 2002], GScope [Toyoda et al., 2003], Path-

wayExplorer [Mlecnik et al., 2005], SpotXPlore [Westenberg et al., 2010]) and com-

mercial tools (e.g., GeneSpring5, Pathway Studio) use this direct mapping approach.

5Agilent Technologies, Inc., USA, http://www.agilent.com/chem/genespring

http://www.agilent.com/chem/genespring
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However, this approach only works under certain conditions for a small number of ex-

periments ([Lindroos and Andersson, 2002] claim eight). Due to the tiny size of the

node, a large number of experiments become indistinguishable. Moreover, the text on

the node itself is completely occluded, and the method is only usable for rectangular

nodes, such as those used in KEGG, but not compatible with free-form shapes, such as

those common in BioCarta. Another strong argument against the in-place mapping

is that KEGG contains many nodes which are encoded by multiple genes. This multi-

mapping is impossible to visualize by color coding the node. Methods like in-place

tool-tips [Streit et al., 2008], complex glyphs (e.g., [Unger and Schumann, 2009]) or

even in-place embedded views (e.g., GeneSpring draw miniature heat maps on the

position of the nodes in the graph) fall into the same category and therefore all su�er

from the limited space to some extent.

• Option 2: Small multiples [Tufte, 1983, p.170]

A series of small views representing the graph is rendered side by side, whereby each

view encodes one experimental condition. Tools that facilitate small multiples for

relating expression to pathways are for instance Cerebral [Barsky et al., 2008] and

Pathline [Meyer et al., 2010]. While this approach does require a lot of screen space

and therefore does not scale to larger numbers of experiments, it works well for a

limited (less than 20) number of small graphs that do not have multiple genes en-

coding one node. Comparability between the di�erent experiments su�ers, however,

since each small view encodes only one experiment.

• Option 3: Multiple coordinated views

The most �exible way of relating expression data to pathway graphs is the utilization

of multiple coordinated views, where the pathways are related to a separate, full heat

map view. In this case, the depiction of multiple genes encoding one node as well

as a simultaneous mapping of multiple expression values (as needed for a time-series

experiment) is unproblematic. However, the drawback of classic multiple coordinated

view solutions is the additional e�ort required on the part of the user to relate the

information between the views, even with the visual linking techniques applied � as

discussed in Section 3.3.1.

It is possible to combine these three alternatives. Recently, Gehlenborg et

al. [Gehlenborg et al., 2010] as well as Unger [Unger, 2010] thoroughly reviewed the

utilization of these alternatives in the current state-of-the-art. However, since all of the

mentioned alternatives have their shortcomings, they cannot fully address the analysis

needs to a full extent � formulated as follows:

Research Question:

How to simultaneously present multi-dimensional, quantitative data in the context

of a collection of interconnected graphs in a simple, yet e�ective way?
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6.3.2 Solution: Jukebox Revisited

The basic idea and functioning of the Jukebox was introduced in Section 6.2.2. However, at

that point the Jukebox was only introduced as a concept for the exploration of pathways

� a homogeneous data set. The technique needs to be re-evaluated to see, whether or

not it can address the additional requirement of relating gene expression data. In a �rst

approach, the direct mapping approach (Option 1) was implemented, as explained in the

following sample analysis session.

Jukebox Sample Analysis Session

In this section the interaction with the Jukebox was brie�y outlined by means of a sample

session. Figure 6.14 provides an exemplary work�ow documented by a series of screenshots.

First the user triggers a search action for the PTK2 gene that is, according to a statistical

pre-processing, suspected to be relevant for a disease from which the experimental tissue

samples are taken. The system then loads all pathways that contain the selected gene

to the Jukebox setup (cf., (a) in Figure 6.14). Next, the user starts to investigate the

Erb signaling pathway in detail. Obviously the PTK2 gene is located at the end of a

signal cascade. By performing the in-depth adjacency visualization, previously unknown

relationships emerge (Figure 6.14). By switching to the Focal Adhesion pathway from the

top of the stack (c), the user can further investigate the neighboring genes. In (d), the

user selects an adjacent node of PTK2 on which multiple genes are mapped. Nodes with

multi-mappings are depicted in a prede�ned color that is not contained in the color map

used for encoding the expression values (cyan). When hovering over the node, a star-

shaped, in-place tool-tip containing the requested information about the genes is opened

as an overlay. When selecting one of these genes, the system again performs the dynamic

pathway search and loads a new set of pathways into the Jukebox setup.

Discussion

Although the interaction with the Jukebox was well received by our life science partners,

the concept su�ers from two major drawbacks:

• Relations between views that are not adjacent in the stack are not directly connected.

[Collins and Carpendale, 2007] also identify this issue as a yet unsolved problem for

visually linked views.

• There are no visual links between the view in focus and the views in the stack.

One solution is to show a duplicate of the view in focus on the top of the stack.

This approach makes it possible to show connections to adjacent views, however, the

duplication of the view wastes screen space and is not intuitive. Also, additional

visual cross-links between the view in focus and the stack is not a real alternative,

as it would cause additional visual clutter.
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(a) (b)

(c) (d)

Figure 6.14: This series of screenshots depicts an exemplary part of the visual exploration process with
the Jukebox. In (a) the system presents the pathways for the PTK2 search query. By investigation of
the adjacencies in the graph stack the user can identify other genes connected to PTK2 which are not
present in the local pathway context (b). In (c) the user switches to the topmost graph in the stack.
(d) shows multiple genes mapped on a neighboring enzyme.

In addition to these weak points, the applied direct expression mapping was rather

rudimentary and does not scale well for the reasons already stated (see Section 6.3.1). In

principle, it would be possible to add an additional linked heat map view to the Jukebox

stack. However, also in this case the two drawbacks would not be overcome.

In the following section, a novel concept called the Bucket will be presented which aims

to resolve the shortcomings of the Jukebox.

6.3.3 Solution: Bucket

Multiple linked views have proven valuable for thoroughly comprehending complex data

sets. By interactively updating corresponding data in all views simultaneously, the investi-

gation of interrelated aspects of a problem becomes feasible. However, the presentation of

views side by side is restricted by the available screen space. High-resolution displays and

multi-monitor con�gurations can increase the number of available pixels, but are ultimately

limited by the maximum angle conveniently observed by a human. Clearly, novel compact

viewing arrangements are required. Therefore, a spatial setup of multiple 2D visualizations
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embedded in a 3D scene � called the Bucket (see Figure 6.15) � was developed.

The Bucket was brie�y introduced as part of the application note paper on the Ca-

leydo system [Streit et al., 2009a]. The visualization concept along with an evaluation was

published at the IEEE Paci�cVis conference in [Lex et al., 2010a]. [Mueller et al., 2009]

discuss a work�ow for using Biobanks, where the Bucket is an integral part of the analysis

setup.

The Bucket is used to show pathways and contextual gene expression information in a

heat map. The heat map in the Bucket contains only those genes that occur in at least

one of the pathways. By clustering and sorting the genes every time a pathway is added

or removed, the genes with the highest value (i.e., the highest average of a cluster over all

experiments) are always on top (cf., Figure 6.15). There are several ways to load pathways

into the Bucket, for example by keyword search for a speci�c pathway, or by loading a

pathway containing a particular gene. The new pathways are placed in the Bucket, where

the relations can be explored.

Figure 6.15: The Bucket: a 2.5D visualization approach for managing and interacting with multiple
interconnected views. The screenshot shows a sample analysis where the user has selected a gene of
interest. The pathways where the gene plays a role are dynamically loaded to the Bucket. The Bucket
draws visual links between all occurrences of the gene in the pathways as well as the corresponding
row in the contextual heat map. While the separate parallel coordinates and clustered heat map view
(on the right side of the workbench) contain the whole expression data set, the contextual heat map
rendered in the center of the Bucket shows only the genes that are part of any of the currently loaded
pathways inside the Bucket.

Bucket Concept

The Bucket is a metaphor for a view arrangement where multiple related views are rendered

on the inner sides and the rim of a square bucket. The users' viewport is restricted to a top
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view into the Bucket. The bottom of the Bucket contains the view in focus. Contextual

views are rendered onto the second level, the Bucket walls. A third level, the rim of the

Bucket, holds down-scaled, linked view representations that are related, but not currently

in the user's focus, as well as genes, experiments or pathways that have been bookmarked

previously.

The Bucket's arrangement of views in a 3D scene takes advantage of the spatial di-

mension by using it for multiple levels of focus+context. The visual arrangement loosely

resembles the Perspective Wall [Mackinlay et al., 1991] (see Figure 6.16(a)), which also

applies view stretching and shrinking as a distortion technique. However, the walls of the

Bucket are not used for contextual information drawn from the same visualization. Instead,

we present separate, but interrelated views in a space-saving arrangement which lends itself

to visual linking due to the compact hierarchical arrangement of views. In principle, the ar-

rangement of views is reminiscent of the Perspective Tunnel [Mitchell and Kennedy, 1997]

(see Figure 6.16(b)) and the Task Gallery, a 3D desktop manager [Robertson et al., 2000]

(Figure 6.16(c)). However, while these systems do make it possible to map 2D content in

a similar shaped fashion, they do not provide a solution for inter-linking the content.

(a) (b) (c)

Figure 6.16: Early interactive techniques that arrange 2D content in a 3D scene: (a) Perspective Wall
[Mackinlay et al., 1991], (b) Perspective Tunnel [Mitchell and Kennedy, 1997] and (c) Task Gallery
[Robertson et al., 2000].

During the development of the Bucket concept, we experimented with di�erent Bucket

shapes. We decided to use the variant with a square bottom because of its simplicity and

e�cient use of screen space. Unlike a hexagon or octagon, a square does not waste space

in the corners assuming a rectangular shape of the views. The square allows one focus and

four contextual views, which we found su�cient for most problems. The Bucket adapts to

the available window by unfolding, if possible. This results in less perspective distortion

for the side views when used with landscape-type screen resolutions, but also in unused

screen space in the corners.

Zooming The zoom feature (see Figure 6.17) is restricted to two prede�ned z-values,

which were found su�cient after some experimentation. It enables the most detailed

inspection of and interaction with the visualization in focus. A zoomed visualization shows
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all available detail, such as labels and UI elements. A zoom action is triggered by turning

the mouse wheel. It is visually supported by an animated camera �ight. The contextual

views from the wall are placed either to the right or on top of the focus view, depending

on the window geometry, thus preserving the contextual information. The rim, containing

a list of bookmarked genes (right) and the other related pathways (left), is still visible.

Figure 6.17: The Bucket when zoomed in, showing a 2D arrangement of focus and context views. 2D
visual links connect identical entities between views.

View Navigation A very restrictive set of navigation operations turns out

to be su�cient, providing the bene�t of low cognitive load during navigation.

VisLink [Collins and Carpendale, 2007] addresses the issue of navigating in a 3D

multi-view arrangement by providing hotkeys for prede�ned camera positions, while still

allowing full 3D navigation � leaving the e�cient use of available screen space and the

navigation to the user. However, our experiences indicate that a more restricted approach

is bene�cial � the nature of the Bucket layout does not require full navigational freedom.

Views can simply be moved by drag-and-drop. The Bucket supports two di�erent ways

to rearrange views: by using a navigation overlay, see Figure 6.18 (a), or by using

drag-and-drop (b).

The navigation overlay is activated on a right mouse click, which makes arrows, pointing

in the directions where the view can be moved to, appear. When the target of a move

action is already occupied by another view, the two visualizations are swapped. For moving

the visualization planes in 3D, animated transformations are used which allow the user to

visually follow the action. In addition, views can be removed by clicking the remove button

in its title bar.
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(a) (b)

Figure 6.18: The rearrangement of views inside the Bucket is achieved by either clicking overlaid
navigation controls (a) or by drag-and-drop (b).

Visual Links in the Bucket The main goal of the Bucket is to visualize the relations

between views and the properties of a selected entity. This is done by applying visual

links to show relations between elements among views, as described in Section 3.3.1. In

the case of genes, we have multiple occurrences in several di�erent views, since a gene can

occur in several pathways. One property of a gene is its expression regulation. In contrast

to [Collins and Carpendale, 2007], the views do not contain links between similar entities,

but between di�erent representations of the same element.

The intensive use of visual links is very sensitive to optimal spatial positioning of the

views relative to each other. For instance [Collins and Carpendale, 2007] defer the optimal

placement of views to the user. While this approach does allow �exible setups, it is not

necessarily the most e�cient, since the user may spend a signi�cant amount of time simply

trying to �nd the optimal placement in 3D space.

As already discussed, the Jukebox su�ers from the two major drawbacks: no visual

links to the view in focus; and the problem of linking between non-adjacent views in the

stack. Due to the special arrangement of views, the Bucket avoids these pitfalls. Direct

and short links from the view at the bottom (focus) connect related information contained

in the views placed at the walls.

Multi-level edge bundling is used to reduce visual clutter. Edges are bundled �rst on

a per view basis, which is important since a view often contains multiple entries. The

bundled nodes from the views are then joined in a common point calculated on the �y.

Suitability of Visualization Methods for the Bucket In principle, the Bucket can be

used to show all visualization methods implemented in Caleydo. However, not all of them
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are equally well represented in such a setup. Basic properties of visualization techniques

that make them suitable for distorted analysis were identi�ed:

• It contains data that has many relations to other views in the setup.

• Its visual encoding does not su�er severely from the distortion, as for example parallel

coordinates do due to perspective foreshortening.

• It makes use of consistent spatial encoding, thus allowing a user to infer knowledge

based purely on the location of an element.

Therefore, visualization techniques such as maps, tree maps, static graphs, heat maps,

scatter plots etc. are well suited for use in the Bucket. However, in order to make optimal

use of the available space for pathway analysis, the Bucket implementation in the Caleydo

framework is limited to show pathways and a contextual heat map.

Relating Pathways to Gene Expression By linking the contained heat map to the

selected genes, the Bucket permits a new approach to the problem of bringing pathways

into context with gene expression. The linking works for all shapes and sizes of nodes

and also for 1:n relations. The number of experiments is only limited by the number of

distinguishable elements in the heat map.

In pathways, nodes can be represented 0-n times, and one node can encode several genes.

The linked heat map always highlights the genes which are mapped to the selected pathway

node. Therefore, the gene expression values, for all experiments which are available for

this gene, are shown.

In many cases, the expression values of other genes in the pathway should be considered

at the same time. This allows experts to analyze the in�uence of the expression regulation

on the pathway. If, for example, one gene in the chain is severely down-regulated, the rest

of the path may be in�uenced. The visual linking of the expression via the designated

heat map view (cf., Figure 6.17), is combined with direct on-node color mapping for a

single, selected experiment. This strategy allows a user to see an overview of all expression

values in the pathways for this one experiment and simultaneously see information on all

experiments for the currently selected gene. By selecting another experiment, the color

coding on the pathway nodes is updated. This way, all expression values for a pathway

can be explored interactively.

For a pathway in focus, we do not color in the node, thus obscuring the caption, but

rather use a colored frame and thereby preserve the visibility of the text. The usage of

color in this fashion is made possible by using connection lines instead of color highlighting

to show identity relations between views.

Nodes that encode several genes cannot be handled by a single on-node color. We

therefore render such nodes in a di�erent (false) color, signaling that there is not only one

mapping value. The concrete values can then be explored by selecting the gene node and

using the linked gene expression views. On-node mapping can be turned o� when gene

expression is not the focus of the analysis.
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Use Cases Revisited

In the course of a requirement analysis with life scientists, and during feedback sessions

with prototypes, the previously mentioned distinct work�ows for the analysis of biomolec-

ular data were discovered: a gene expression-centric and a pathway-centric approach, see

Section 6.3.1.

The former case deals with a gene expression-centric analysis. A concrete example

is illustrated in Figure 6.19. A biologist loads a set of experiments which have some

pathological di�erence, for example half of the experiments are based on samples taken

from subjects who su�er from diabetes, the other half is healthy. The biologist �rst �lters

the genes to exclude inconspicuous genes with the parallel coordinates. He then runs a

clustering algorithm and explores the data using the heat map. Once he identi�es some

genes which clearly show di�erences between the two groups, he checks for pathways that

contain several of these genes. He �nds that many of the genes are in fact involved in

several pathways related to the condition of the diabetic patients. To explore the role of

the genes in the di�erent pathways, he tells the system to load those pathways into the

Bucket. If he actually �nds a previously unknown indication of involvement, he could then

proceed to verify his �ndings in a clinical experiment.

(a) (b) (c)

Figure 6.19: Illustration of a gene expression-centric analysis. (a) After �ltering out inconspicuous
genes and running a clustering algorithm, the pathologist �nds a cluster in the heat map which has
strongly diverging expression patterns for the di�erent conditions. He checks for pathways containing
the genes in the group, and in fact, several metabolic pathways contain four or more genes of the
cluster. By clicking the pathways they are loaded into the Bucket for exploration (b). There he �nds
that the di�erent pathways are heavily connected. Looking more closely at one pathway and its genes
(c), he �nds that the genes of the gene family CYP show the di�erential expression pattern. After
checking PubMed and Entrez Gene with the integrated browser, he learns that this family is a known
catalyst for many reactions in the drug metabolism.

In the latter case, a user is interested in a particular pathway. He wants to understand

the pathway itself, the function of the particular genes involved and whether the genes play

a similar role in other pathways. He wants to know details about a speci�c gene, search

for publications and look it up in one of the large databases like Entrez Gene. He may

also be interested in the expression regulation values of the genes in the pathway for his
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experiments, in which case he is primarily interested in possible e�ects of the regulation on

the pathway under investigation. He therefore starts his analysis by opening the Bucket

and searching for the pathway he is interested in. Having loaded his gene expression data,

he immediately sees the expression values for each selected experiment. He then notices

a gene which has interesting properties � for example, the record in the Entrez database,

which was automatically loaded in the linked browser, tells him that the gene is involved

in many forms of cancer. By right-clicking the gene, the system presents all pathways that

also contain the gene � and in fact, most of them are cancer-related. However, some are

not, which grasps his interest. He now moves a seemingly unrelated pathway into the focus

and explores the role of the gene in this pathway.

Summary

The Bucket setup realizes a restrictive approach for arranging 2D views in 3D scene. It

is an e�ective way to visualize relations between di�erent views and its data sets and

thus, supports the informed analyst in terms of orientation. The Bucket can naturally

accommodate focus+context as well as di�erent levels of detail. It avoids confusion through

a clear navigation concept, minimizes visual clutter with multi-level edge bundling and

allows the user to manage many views conveniently.

6.3.4 Evaluation of the Bucket and Visual Links

We performed a user study to evaluate di�erent aspects of the Bucket compared to tra-

ditional list-based pathway exploration methods normally used by biomedical experts.

Our study speci�cally focused on the quality of the visualization methods to provide

a useful context for �nding target information in relation to the usage of both single-

screen and multi-screen environments. The latter was taken into consideration, since

[Yost et al., 2007] showed that multi-display setups can considerably advance the cognition

and correlation process of information sources.

We chose not to compare Caleydo to other visualization frameworks, since the goal

was to evaluate how much our novel visualization method can improve their previous

work�ows. A general comparison of visualization techniques such as the Bucket versus

traditional multiple views should be conducted with a more general use case and average

users, not life science experts. We also chose not to compare our system with other domain-

speci�c software, since the functionality of the applications diverge in such a way that only

trivial aspects could be compared.

Setup and Procedure

The physical setup for the evaluation consisted of a desktop computer with two displays

connected. Users were presented with several comparable complex search tasks, simulating

real-life use cases. Participants performed two di�erent tasks resembling the work�ows
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described in Section 6.3.1, under all four conditions: List-based and Bucket-based search

tasks were performed in both single- and dual-monitor setups (see Figure 6.20). The

�rst task involved pathway exploration, in which the participants were asked to detect

relations between pathways, searching for a speci�c pathway and identify a speci�c gene in

the pathway. As a next step, information about the gene in the Entrez Gene database had

to be found. Finally, the participants were asked to �nd other pathways where the gene is

also involved and determine whether there are other genes that those pathways share. The

second task was based on gene expression analysis. Participants were asked to discover a

speci�c pattern in the expression data using brushes in the parallel coordinates browser.

The task required exploration of the pathways that contain these genes, and identifying

a gene involved in a particular disease. During the �rst two conditions, the visual links

were displayed in the Bucket view. The information on the second monitor (a web browser

linking to gene databases for task one and a parallel coordinates browser for task two)

was provided in a separate, tabbed window in conditions one and three. The task was

subdivided into smaller units that were given step-by-step by the test supervisor. In order

to simulate traditionally used list-based search methods (web interfaces like KEGG), we

modi�ed the application's user interface. It closely resembled the traditionally used list-

based methods, as con�rmed by our participants. It should be noted that the list condition

actually had some enhancements over pure web interface methods, which would have been

very hard to use for a comparative study in its original form.

Figure 6.20: The four di�erent setups for the user study.

We employed a 2x2 within-subjects factorial design with the factors view (Bucket, list)

and display setup (single-monitor, multi-monitor). Analysis of main e�ects and interac-

tions were performed at α = .05 (see Table 6.1). Bonferroni adjustments were applied

for post-hoc comparisons. To counterbalance the conditions, a Latin square distribution

was used. All participants were videotaped with their consensus for later reference. The
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evaluation started with a ten-minute introductory session (including �ve minutes usage by

the participant) in which the relevant functionality of the system was presented. After per-

forming the di�erent tests, participants answered a 7-point Likert scale questionnaire with

16 questions for both view levels and monitor-setups. Open discussions followed, where

participants re�ected on their experience. The total time of the user study was about 1h

15min per participant.

A third task focusing on pure observation was added with modi�ed conditions to specif-

ically investigate the utility of visual links: The three conditions were list-based, Bucket

without visual links and Bucket with visual links, all on a single screen. Participants were

asked to evaluate the quality and usefulness of the visual links under these conditions. This

task was not performed in multi-screen conditions, since it is independent of the screen

setup. We hypothesized the following outcomes:

H1 The Bucket performs better than the list-based mode.

H2 Multi-screen performs better than single screen, both in list-based and Bucket-mode.

H3 The visual links are a signi�cant aid in the identi�cation of relevant information.

For the evaluation, we recruited twelve participants with a background in life sciences.

Eight participants (4 male, 4 female) were students (4 PhD, 4 master students) with begin-

ner or intermediate experience, four participants (3 male, 1 female) were senior researchers

and practitioners at a medical faculty.

Results

From the twelve original participants we included eleven in our analysis. One questionnaire

was removed since it was highly inconsistent by itself and with respect to the interview.

The results of the evaluation of the questionnaires is summarized in Figures 6.21, 6.22 and

Table 6.1.

Figure 6.21: Questionnaire results comparing the four di�erent tested conditions for eleven areas of
interest, comparing the four di�erent setups of the �rst two tasks (N=11).

Information Comparison The performed tasks can be characterized as directed

searches that aimed at accomplishing a speci�c, prede�ned goal. Participants needed to
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(a) (b)

Figure 6.22: (a) Questionnaire results for three questions concerning the Bucket (N=11). (b) Com-
parison of perceived value of visual links compared to modes without visual links (N=11).

relate multiple sources of information, including di�erent graph types and text-based

sources. We found signi�cant main e�ects of the view and display conditions on both the

comparison of information and the quality of context, whereas the viewing condition

also had a signi�cant main e�ect on the detection of information. Additionally, an

interaction between view and display was found for the information comparison. Relevant

information was detected more easily in the Bucket conditions than in the list-based

conditions, which was further improved by using the multi-monitor setup. Participants

found the contextual information important for these tasks: The quality of contextual

information was rated `good' in Bucket conditions (in particular the multi-monitor

Table 6.1: Main e�ects and interactions of view and display conditions.
Signi�cance: * = p<.05, ** = p<.001 (N=11)

view display interaction
Question main main view*display

(F 1,10 ) (F 1,10 ) (F 1,10 )

Spatial organization 24.444** 5.904* 1.379

Context quality 46.414** 6.806* 0.313

Compare information 50.975** 6.941* 5.213*

Relate information 30.414** 3.978 2.222

Detect info 14.912** 3.750 0.312

Clarity of visualization 4.290 6.806* 0.132

Readability 1.000 2.168 1.000

Perf. pathway explore 4.646 1.957 1.000

Perf. gene expression 10.542* 3.551 1.000

Concentration 27.121** 0.694 4.808

Confusion (negated) 2.560 1.000 1.000
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condition), whereas the list-based multi-monitor was only rated `mediocre'. The latter

is slightly surprising, since one can clearly compare at least two di�erent information

sources in a multi-monitor setup. As we noticed during the interviews, this rating can be

traced back to the participants' long experience of using just a single screen, which may

be a learning problem. Overall, we found clear evidence that the detection of information

is improved by the visualization aids o�ered in the Bucket, which performed signi�cantly

better than the list-based conditions.

Visualization Method The graphs analyzed in the tests are very dense: a large amount

of information is compressed and screen space is limited. Obviously, the readability of the

graphs is important to identify relevant information. The way the graphs are presented in

the list and Bucket conditions is quite di�erent, especially since graphics which are not in

the center of the Bucket are distorted. When participants were asked about the readability

of graphics in the di�erent conditions, no signi�cant di�erence was found: Bucket views

even performed a little better on average. The graphics distortion was rated as negligible

by most participants. This is quite surprising, since the graphs are clearly distorted at the

side panels of the Bucket. In the interviews, some participants stated they would simply

put those graphs needed for the analysis into the center of the Bucket. Some participants

also said that distortion was not a problem since they can easily �atten the Bucket to a 2D

view, removing perspective distortion of the side panel information (see Figure 6.17). In

the interviews all participants stated they prefer the Bucket for �nding interdependencies

over the �at, zoomed mode.

The visual links were rated `very useful' and also believed to speed up search tasks.

During the interviews, many participants stated that the visual links aided the search

for relevant information considerably. Although visual links do not a�ect the results of

the analysis, it was easier to perceive the entire scene with its selections. In addition,

some participants noted that visual links clearly helped them focus on speci�c parts of the

graphs. We observed some participants consciously following the visual links from point to

point to detect relevant information. Some also noted that the visual links are especially

helpful with the pathway views, and considered them of less importance in the heat map:

They argued that the gene expression views highlight the selections well by themselves,

whereas the complex textures of pathways bene�t from the additional visual clues.

E�ectiveness and Complexity Our main goal is to improve the work�ow of users

exploring pathways and gene expressions. The participants supported the hypothesis that

the Bucket improves the work�ow (speed and accuracy) signi�cantly in comparison to the

traditional list-based methods they are used to. Speci�cally for the gene expression task,

we noted a signi�cant main e�ect of the view mode (Bucket) on the perceived performance

of the task. Participants noted that less concentration is required during the search task

using the Bucket, which is in line with the ratings from the previous sections: The view

condition had a signi�cant e�ect on the level of concentration. Participants also were less
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confused in the Bucket conditions, even in comparison to the multi-monitor list condition.

Likewise in single-monitor condition, the Bucket was rated better than the multi-monitor

list-based condition in all questions.

Discussion

The evaluation clearly shows that the Bucket is a valuable improvement for pathway explo-

ration over current practice using list-based methods. The Bucket performs signi�cantly

better in most conditions for most of the participants (supporting H1 ): in 7 out of 11

questions, we noticed a signi�cant e�ect of the view condition on the outcome, and the

average rating was higher for the Bucket conditions without exception. Three participants

were even unable to ful�ll the proposed task in the �rst list-based condition they obtained.

Only a single user stated that the list-based method was preferred over the Bucket.

The visual links were very well appreciated, and clearly improve the search task perfor-

mance in terms of (subjective) speed and lower cognitive load (supporting H3 ). The pref-

erence of single-monitor conditions may be related to the lack of experience our users have

with multi-monitor con�gurations. One participant even failed to notice content on the

second display entirely. These observations stand in contrast to previous evaluations like

[Yost et al., 2007] that reported considerable performance boosts in multi-monitor environ-

ments. Thus, H2 turned out to be false. However, the (informally) observed performance

of our participants was clearly better in the multi-monitor setup.

The evaluation shows that the proposed Bucket arrangement is preferred over tradi-

tional list-based methods, especially in the areas of context quality and spatial organization.

Participants stated that the required concentration was lower when using the Bucket. It

was found that visual links signi�cantly improve the ability to search for information.

6.3.5 Gaze-Based Interaction for Supporting Visual Analysis

Aside from the traditional ways of interacting with visualization systems, such as keyboard

and mouse, the direction of a user's gaze can be measured and in turn be incorporated as

an additional input resource for providing extended visual aid. In the following section, the

tracking information is not employed for selecting data (i.e., mouse interaction) but for an

intelligent adaption of 2D and 3D visualization techniques. Derived from the focus+context

paradigm, this is called gaze-focus. The proposed methods are demonstrated for supporting

the interaction with di�erent visualizations: a 2D heat map as well as parallel coordinates;

and the 3D Bucket. The content of this section draws upon the material published in

[Streit et al., 2009b].

Gaze-based interaction is not a standard user interaction technique, primarily be-

cause of the high costs of the required systems. However, this is currently changing,

as eye tracking becomes technically possible with low cost equipment [Hiley et al., 2006].

[Fono and Vertegaal, 2005] have shown that gaze-based interaction with windows is prefer-

able over traditional input techniques. They use gaze tracking to select and zoom windows
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a user is focusing on and also to zoom in a digital media application. They show that task

completion time was faster and preferred by users with gaze tracking compared to tradi-

tional input devices. However, gaze-based systems su�er from some inherent de�ciencies.

One problem is the involuntary selection of items (the Midas Touch E�ect), which can be

overcome to some degree by, for example, selecting only after a �xation has lasted for a

certain time (dwell time) or after a manual click [Vertegaal, 2008]. Low cost eye tracking

systems have a maximal precision about 1 centimeter on the screen [Hiley et al., 2006],

while high-quality systems are more robust and accurate. However, the accuracy of such

systems is naturally limited by the inability of the human vision system to exactly focus

on a particular spot [Tobii Technology, 2010]. [Ashmore et al., 2005] try to overcome this

by magnifying the focused region with a �sh-eye lens and then selecting the target within

the magni�cation.

For the prototype implementation the Caleydo system was connected to a professional,

monitor-based eye tracking system from SMI6. This costly solution comes with a high

accuracy which results in an excellent user experience. However, the gaze-focus does not

require the accuracy of professional eye tracking systems; instead, a low cost, webcam-

based eye tracking module is su�cient for achieving good results.

In the following, it will be di�erentiated between gaze-based interaction within a single

view and interaction that targets handling multiple linked views in the Bucket setup.

Single View Gaze Interaction

Parallel coordinates are well suited to visualize thousands of data points simultaneously

over a limited number of dimensions. With an increasing number of dimensions however,

details are lost due to the reduced spacing of axes. The handling of truly large amounts of

dimensions need special dimensionality reduction approaches, e.g., [Yang et al., 2003]. By

using orthogonal stretching, the number of simultaneously perceivable dimensions can be

increased to a certain extent. The spacing between the axes and therefore also the read-

ability of interesting regions can be increased. These properties lend themselves perfectly

to gaze-based scene manipulation. Since only a small region is observed sharply in the

�xation phases of the eye, this region can be enlarged once a user looks at it. The spacing

of the other axes is reduced, thereby using less screen real estate while still providing the

contextual information.

Caleydo's hierarchical heat map presented in Section 5.3.1 is the second visualization

technique for which the usefulness of the gaze interaction is demonstrated. Again, the

gaze-input is employed for manipulating the visualization according to the user's gaze.

The hierarchical heat map is composed of three levels: the �rst level provides an overview,

while the second and third level allows the analyst to further drill down in the data.

Interacting with the densely visualized content is supported by providing more space to

the particular level currently focused on by a user.

6http://www.smivision.com

http://www.smivision.com
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Multi-View Gaze Interaction

State-of-the-art multiple view systems arrange views side by side on the screen.

[Fono and Vertegaal, 2005] show how to zoom in on an application window, which can

also be applied to multiple view applications. However, this method is naturally limited

by the available screen space and can therefore only be used for a very low number of

views. The introduced Bucket approach (see Section 6.3.3) overcomes this problem by

using a 2.5D arrangement to manage up to about 20 related views.

While the multi-level approach (Bucket bottom, walls and rim) enables the management

and handling of numerous views, it introduces a distortion problem. Especially text is

di�cult to read when rendered on the Bucket walls. Therefore, the static Bucket setup

was extended to a �rubber� bucket by taking the user's gaze into account. In contrast to

the single-view implementation that is based on the eye tracking input, in this case the

user's head movement was used for manipulating the scene. The reason for this lies in the

unintentional feedback e�ects on the user's eye movements that the scene changes in the

Bucket setup would cause. The prototype implementation uses an o�-the-shelf Nintendo

Wii Remote mounted on the user's head. The user's head movements were captured by a

Wii sensor bar mounted onto the monitor. This low-cost solution was inspired by Johnny

Chung Lee's VR Desktop Head Tracking approach [Lee, 2008].

The Bucket is rotated according to the user's head movements (see Figure 6.23), reduc-

Figure 6.23: Gaze-based interaction with the Bucket. The 2.5D representation is adapted according
to the user's focus point (orange). In (a) the user gazes at the left bucket wall while in (b) the user
looks at the lower wall.
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ing the distortion of the view being looked at. When the user moves his head towards the

screen, the focused view in the 3D scene is transformed to the user's direction (diving into

the Bucket). In addition, the gaze navigation in the 2.5D representation in combination

with the visual links immerses the user into the scene.

In summary, the utilization of gaze input for manipulating 2D and 3D views is valuable

for aiding users when interacting with information visualization systems.

6.4 Summary

This chapter introduced a series of visualization techniques that aim at providing orien-

tation support on the level of individual data items (S1.1 ). The prior objective of these

techniques is to make the user aware of the interconnections of data items within a sin-

gle data set but also show their occurrence in related data sets. All of the techniques

introduced depend on visual links, a very explicit and expressive way to convey the data

dependencies to the analyst.

An analysis system's ability to communicate data relations on this �ne grained level

of individual data items is an essential prerequisite for orientation support in a complex

analysis scenario that includes a broader information landscape. In such cases, a user needs

to be additionally oriented on a higher level, where the dependencies between the data sets

are presented in a more abstract way. This subject is addressed by the Stack'n'�ip system,

introduced in Chapter 8.
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The previous chapter presented techniques which aim to establish the conditions re-

quired for orienting users within the information landscape (S1.1 ) in traditional single

application, single user analysis scenarios. Although this is a challenge by itself, this chap-

ter introduces two additional aspects in terms of the setup characteristics:

• application-spanning analysis, as one single application might not be su�cient

for ful�lling all analysis needs, and

• collaborative analysis, as one single analyst often has not got the expertise and

background knowledge to perform a comprehensive analysis alone.

With the rising demand to incorporate data from di�erent sources and of various types

for addressing increasingly complex research questions, both of these aspects will gain in

importance. In the following, it will be discussed how an incorporation of these additional
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variables in�uences the requirements of visual analysis with respect to orientation. The

developments in this direction made in the course of this dissertation are also outlined.

7.1 Support Across Applications

Modern information workers who need to carry out everyday tasks with the help of a

computer are confronted with a wide spectrum of di�erent applications, e.g., document

readers, mail programs, o�ce software, etc. � each of them ful�lling a di�erent set of pur-

poses. Only in rare cases can the whole task be accomplished using just a single application.

Often users need to relate information across the boundary of a single application. This

is also valid for complex visual analysis tasks, which require the concurrent consideration

of heterogeneous data of various types. In many cases, software is highly specialized to a

particular kind of data. However, it is unfeasible that a single �super application� exists

or can be created that covers all of the user's needs. Hence, real world analysis problems

will require a combination of existing applications.

However, individual applications are not integrated, making it hard to relate, evaluate

or compare information across applications. This manual information matching is error-

prone and time-consuming. The requirements in terms of orientation are similar to the

multiple view problem in visualization frameworks. The system needs to make the user

aware of the relations between views and the data. The standard approach of multiple

coordinated view systems employs synchronized highlighting for communicating relations

between pieces of information. This only works within a single application, where either

each visual representation can access the same data storage or an event mechanism handles

the synchronization. However, neither of these applies to independent applications.

The multi-application scenario can be described by the theoretical model as well, be-

cause it is irrelevant which application contributes the visual and computational interfaces.

7.1.1 Concept of Visual Links Across Applications

Little research has been done that aims to bridge the gaps between existing

applications. The Snap-Together system can be considered as pioneer work in that

direction [North and Shneiderman, 2000]. The system o�ers a light-weight API over

which visualization systems can access a common database. This unique point of access

allows the system to coordinate a series of operations (load, select, synchronized scrolling,

etc.) among visualization applications.

Following the spirit of Snap-Together, an approach is proposed that follows similar

goals but di�ers in fundamental aspects. First, it does not force applications to depend

on a centralized data management, as this would require profound changes in existing

applications. Secondly, instead of pure highlighting of related information, the proposed

method uses the more explicit visual links for guiding the user's attention between multiple

regions of interest arbitrarily scattered over the display.
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In the previous chapter, the value of visual links for composed views, as used in the

Jukebox and the Bucket, was discussed. In general, the arguments why visual links should

be used as additional and particularly strong visual cues (cf., Section 3.3.1) remain valid

for the application spanning scenarios as well. Based on the preliminary work in this

direction, the next section introduces the technique of visual links across applications.

Manuela Waldner and Werner Pu� played the leading role in the development of these

ideas and their realization. The initial idea originated out of the domain requirements

in the Caleydo project and is based upon the preliminary work on visual links from the

Bucket. The technique was published as a full paper at the Graphics Interface conference,

see [Waldner et al., 2010], and has won the best student paper award.

7.1.2 Basic Work�ow and Architecture

The proposed system consists of two major components, as depicted in Figure 7.1.

The Visual Links Manager is a lightweight application running as a daemon service

in the background. It handles the communication between the applications by providing

a slim Remote Procedure Call (RPC) interface. In an initial step, the client applications

need to register. The synchronization of selected pieces of information is based on the

exchange of ID-Strings. Depending on the application, various ways exist to trigger a

selection. Examples are marking a word, selecting an element in a chart, or entering a text

in a search �eld. When the user triggers a selection in the source application, an ID is sent

to the manager, which forwards it to all registered client applications. Each application

then evaluates the ID individually by searching for it in its currently loaded data. For all

positive matches, the bounding rectangle is reported back to the manager, which in turn

forwards the collected regions to the second component, the Visual Links Renderer.

The Visual Links Renderer then processes the list of regions, calculates the routing

of the visual links and renders the connection lines as a desktop overlay. In the sample

implementation this component is realized as a plugin of Compiz1, an OpenGL compositing

window manager for Linux. Figure 7.2 shows an example where a user selects a piece of

information in application A which is then localized and in turn linked to B, C and D. In

order to reduce visual clutter, the connection lines are bundled per application, see C and

D. The visual links are rendered as semi-transparent Bézier surfaces. In case the selection

ID is in a currently invisible part of a window (i.e., scrolled away), arrows at the windows

border indicate this to the user, cf., B and D. The arrow's length encodes the number of

hidden selections. In cases where the links obscure important information, the rendering

of visual links can be turned o� on-demand via a keyboard shortcut. In addition, the user

can choose to fade out (continuously decreasing the alpha value) the visual links after a

prede�ned time.

1http://www.compiz.org

http://www.compiz.org
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Figure 7.1: Basic architecture of the system's
components. The Visual Links Manager real-
izes the synchronization of selections. The Visual
Links Renderer calculates the bundled visual links
and draws them on top of the desktop content.

Figure 7.2: Sample of visual links connecting re-
lated information across applications A-D. The user
triggers the selection in A. In turn, the system con-
nects the occurrences found with the corresponding
regions in B, C and D. Arrows indicate hidden parts
of a window where the information was found as
well.

The system o�ers three ways to attach existing applications to the linking mechanism:

• Option 1: Direct Support

The application implements an interface class from the manager. This requires full

access to the application's source code.

• Option 2: Web Mashup

A mashup application runs in the browser and combines an existing web-service API

with the manager interface. An example is the Google maps API which makes it

possible to query locations and load the respective map segment.

• Option 3: Software Extension

Many applications provide an extension mechanism for accessing the application's

data in a minimally invasive fashion (without touching the actual application's core).

While the latter two approaches are limited to text parsing and string comparison, the

�rst option is the most �exible kind of integration. The application can handle the selec-

tion of data with its own specialized interaction techniques. A visualization software, for

instance, can provide a mouse-over feature for selecting a region in a scatterplot. The ap-

plication can then translate the selected visual element to the ID which is then transferred

to the manager.

Figure 7.3 presents the visual linking mechanism applied to a biomedical use case.

The setup connects information between the Caleydo visualization framework (realizing

integration Option 1) and the Firefox web browser (Option 3).
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Figure 7.3: Visual links across distinct applications. A user browses online databases for interesting
disease genes and selects a particularly interesting one. The Firefox browser plugin (realizing Option 3)
feeds the Gene's ID to the manager interface, causing the system to propagate it to the Caleydo
application (Option 1). Caleydo queries the gene ID in its internal data structure and highlights the
corresponding polyline in the parallel coordinates as well as the row in the heat map, respectively.
Analogously, it is also possible to trigger the visual links by selecting any data item in Caleydo.

The usability and user acceptance of the visual links across applications technique has

been informally evaluated. The evaluation included seven participants between the age of

25 and 39. The subjects had to perform certain tasks where they had to relate informa-

tion between various applications � in a setup which comprised combinations of the three

integration options. According to observations and qualitative feedback, subjects easily

understood the concept without instructions or prior training. All agreed that visual links

are a valuable extension for information intensive tasks spanning multiple applications.

7.1.3 Summary

This section presented visual links across applications � a technique that allows users to con-

nect pieces of information between unconnected applications. Three options were proposed

for integrating existing applications to the linking mechanism. The technique was demon-

strated by means of a biomedical analysis scenario. Further use cases, details on the evalua-

tion as well as on the implementation can be found in the full paper [Waldner et al., 2010].

An interesting extension for increasing the techniques' �exibility would be to add an

OCR (optical character recognition)-based alternative for applications where none of the
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three existing integration options are applicable. In this case, the ID-String could be

located via image processing without the need to communicate with the application that

provides the content.

While the current mechanism is limited to strings, in a next step a wider set of informa-

tion could be exchanged between the applications. In principle, it would also be possible to

synchronize brushing operations between independent applications and therefore facilitate

more complex analysis tasks.

7.2 Support Across Analysts

The strategy of bringing together experts from various �elds in order to jointly address

complex problems is well established in the �eld of biology, see [Pennisi, 2005], but also

already common in various other domains. Each of these experts has a speci�c perspective

on the data, pays attention to di�erent details, and reasons along the lines of his/her

own particular domain. Organizing this multifaceted interplay between large amounts of

complex data, multiple domain experts from di�erent areas, and the laborious back and

forth between exploration and con�rmation of the analysis process is a challenging task.

This task is what collaborative environments have set out to support and to advance, as the

results that can be gained from an interdisciplinary, collaborative data analysis outweigh

technical problems. One essential problem is interaction with the complex, heterogeneous

data spaces in these environments. Due to the multidisciplinarity, data is again available in

various forms (free text, images, statistical tables, etc.), in various representations (tabular,

tag clouds, visualizations, etc.), and on multiple levels of detail, each of which is meaningful

to at least one of the participating domain experts. To allow fruitful collaboration, all of

them need to be integrated into one seamless, interactive analysis process.

Although the value of a well de�ned analysis setup model has been demonstrated by

means of various single user setups and techniques, the concept presented can be scaled

up to also cover multi-user scenarios. In order to demonstrate the concept's expandability,

the biomedical problem area will be looked at again and a concrete set of roles will be

introduced. Due to the merged competence and knowledge of these experts, it is possible

to collaboratively address complex research questions, which might be overwhelming for

a single user. This work is based on the position paper published in [Streit et al., 2009c].

Note that unlike to novel visualization techniques from the previous chapter and the linking

across applications, the work on collaboration is not a solution ready to be used, but more

a conceptual discussion of next steps to be taken in this direction and how the uni�ed

representation of the model can help in this context.

7.2.1 Sample Multi-User Scenario

Domain experts from di�erent �elds come together to collaboratively analyze their respec-

tive data to make a joint decision on a patient's diagnosis and further treatment plans. In
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detail, the roles involved and the data these experts focus on are:

• the oncologist: CT/MR/X-ray scan of the tumor, treatment history

• the pathologist: tissue samples of the tumor biopsy

• the geneticist: data on the genome-wide regulation of the genes

• the biologist: gene regulation in the context of pathways

Figure 7.4 uses the data model de�ned in Section 4.6 as a basis and shows the set of

data sources each person is able to cover, given his/her expertise and background.

Figure 7.4: Interactive Bubble Set visualization showing which domain experts are able to analyze
which data sets. The information is augmented on top of the data model from Section 4.6. This
example is generated by using an adapted version of the Bubble Set code supplied with the original
paper [Collins et al., 2009].

This additional knowledge on top of the analysis setup model can be employed for

answering the following questions:

• Which experts can work together?

An overlap of expertise (i.e., data sets to which multiple roles are assigned) indicate



110 Chapter 7. Orientation Support Across Applications, Analysts and Displays

the interfaces between them, where they potentially meet during the analysis and

need to talk to each other. In the example from Figure 7.4 the patients' basic

information is such a bridging data set where all roles (except the biologist) are

involved. This is in line with an analysis goal that is centered around the treatment

of a certain patient.

Having this knowledge at hand makes it possible to support the collaboration pro-

cess by adapting the infrastructure to actively support these bridging interfaces, as

discussed in the following Section 7.2.2.

• Where are the gaps?

Data sets that none of the available experts cover can lead to situations where speci�c

sub-tasks or even a whole analysis towards a given goal becomes impossible. Thus,

this knowledge is valuable during the planning stage of an analysis, i.e., making sure

that all experts required for reaching an analysis goal will be present.

Note that although each expert has his/her core �eld of expertise, they often also have

profound knowledge in related domains. Therefore, the assignment of users to data is

often not binary but rather fuzzy, and this needs to be considered when designing such a

multi-user scenario.

So far, we have discussed the potential of collaborative analysis for visual analytics

problems and have shown how to de�ne the roles on top of the analysis setup model

and how to employ this extra knowledge. However, the inclusion of multiple experts also

in�uences the infrastructure needed in terms of hardware that facilitates collaboration.

7.2.2 Co-Located Multi-User Infrastructure

The �eld of Computer Supported Cooperative Work (CSCW) categorizes setups

according to time and space. The CSCW matrix divides space into four categories,

cf., [Baecker et al., 1995, Johansen et al., 1988]: asynchronously vs. synchronous

collaboration; and co-located vs. distributed. Although asynchronous as well as

distributed scenarios are challenging research �elds with a lot of potential for visual

analytics applications, the focus here is on co-located collaboration with experts running

an analysis concurrently.

In collaborative information seeking, as it is often understood nowadays, only one user is

actively performing the interaction, while the colleagues just participate as observers. The

example in Figure 7.5(a) shows a case where only the user on the right has access to mouse

and keyboard. The co-located collaboration is sometimes even detached, meaning that each

user is doing the data exploration on his/her workstation independently. Afterwards the

results are discussed together and �nally merged into one common outcome or hypothesis.

Such a working style can be referred as the traditional collaboration approach. However,

in order to create and e�ectively use such a collaborative information workspace, it is vital

to understand the processes involved, and particularly the di�erences to single analyst
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scenarios. Established, high-level interaction patterns work well for single user, single data

source scenarios. However, they cannot simply be applied to the collaborative analysis of

heterogeneous data.

In general, one can talk about three distinct cases:

• The single-user case, addressed by the techniques presented in the previous chapter.

The analysis takes place in a linked multiple view application on a single output

device.

• The static multi-user case, which is targeted by the adaptation of a visual analysis

framework to run in a multi-display environment. The next section introduces such

an environment called Caleydoplex. It provides a �xed set of displays and projection

areas to facilitate multi-user interaction.

• The dynamic multi-user case, where the con�guration of the users and devices

involved are not static, but changes over time. In such �smart environments�, the

device ensemble of available displays is changing, as users connect and disconnect

their brought devices (laptops, tablets, smartphones, etc.) with the environment

during runtime. A detailed discussion of this case realization and its usage for a

medical scenario is given in [Thiede et al., 2009].

It can be observed that with each of these cases the complexity of coordinating multiple

data sets to be shown on multiple displays for multiple users increases. The challenges this

poses are abundant and range from the distribution of the data to the available display

devices (or views in the single-user case) to the assurance that privacy concerns are met.

The three-stage model driven design concept provides a conceptual and concrete way to

model all these complex dependencies and to derive solution approaches that achieve real

seamless collaborative data analysis in such multi-analyst scenarios.

7.2.3 Caleydoplex Prototype Setup

Caleydoplex is a prototype setup of a collaborative information workspace built at the

Graz University of Technology. It aims to facilitate multiple projection areas and devices

that enable experts from di�erent domains to jointly perform a data analysis. Figure 7.5(a)

shows an initial prototype where two users run a joint analysis using the Jukebox setup

(Section 6.2.2), cf., [Waldner et al., 2008]. As mentioned earlier, in this scenario only one

user can control the interaction devices. In the full Caleydoplex setup, however, several

analysts are involved, each having access to his own keyboard and mouse where he can

interact with a private display in front of him as well as with the public displays that

are projected onto the walls. Figure 7.6(a) illustrates this setup as a sketch, the realized

prototype is shown in Figure 7.6(b) [Waldner et al., 2009].

Caleydoplex uses a distributed version of Caleydo and runs it in the Deskotheque multi-

display environment [Pirchheim et al., 2009]. The Deskotheque infrastructure employs a

camera-assisted o�ine calibration which creates a 3D model of the physical setup. On



112 Chapter 7. Orientation Support Across Applications, Analysts and Displays

(a) (b)

Figure 7.5: Prototype setup of a multi-display environment including a wall and a table-top projection
where two users are running an analysis using the Jukebox (cf., Section 6.2.2). The stack of inter-
connected pathways is projected onto the wall in front of the users, an on-site web browser onto the
wall on the right, the pathway of current interest onto the table and the mapped gene expression is
visualized in a parallel coordinates view on the laptop screen. In (a) two users are working with the
setup, however, only one has access to the mouse and keyboard. (b) shows the two-projector wall
setup without corrective measures (top) and with geometric compensation for the projection around
the corner as well as the blending of the overlapping region (bottom).

this basis the system then provides functionality such as geometric compensation that

makes projecting onto non-planar surfaces possible, as well as blending of overlapping

projections and mouse-pointer warping, see Figure 7.5(b). Similar setups have been de-

scribed for di�erent application contexts, e.g., for an o�ce environment called The o�ce

of the future [Raskar et al., 1998] or for an entertainment scenario called Smart Living

Room [ao and Kirste, 2005]. However, Caleydoplex is speci�cally targeted at exploratory

visual analysis.

Private & Public Displays Caleydoplex, as well as other collaborative information

workspaces, di�erentiates between private and public displays. In the simplest case, each

domain expert displays his/her domain data on a private display � e.g., in Figure 7.6(a)

three users from di�erent domains are sitting around a table, each with a private view

on a single monitor. Besides the plain distribution of views, the users' roles can further

be facilitated to provide tailored visualizations, as a user's working domain in�uences the

visualization technique chosen and the terminology used for annotation purposes. Di�er-

ent domains can then be bridged either by a simple coordination of visualizations between

the (private) displays or by the combination of data from di�erent sources in public visu-
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(a) (b)

Figure 7.6: Caleydoplex multi-user, multi-display setup for collaborative information visualization at
Graz University of Technology [Waldner et al., 2009]. While (a) illustrates the setup as a sketch, (b)
shows the prototype setup in action. Each user has a private display where views and labels are adjusted
according to the user's pro�le. Views, data selections and �lter operations can be published on the
public displays and synchronized in the whole analysis workspace.

alizations. Public displays, i.e., projection walls which are visible for multiple users, can

host these integrative visualizations. This also allows multiple users to work on the same

task. Therefore, public displays serve as spaces designated to bridge various domains and

in turn, also knowledge gaps.

The physical separation between public and private displays can also be used to cir-

cumvent privacy issues, by showing sensitive data only on private displays. In a clinical

scenario, the biologist may not be allowed to see the clinical history of patients for privacy

reasons. The control over the individual displays enables the collaborative environment

to grant or deny access to experts depending on their role, either allowing them to roam

freely within all available data sources or just within the absolutely necessary parts. Even

annotations could di�er, providing patient details in private views, but being anonymized

in the public views. The anonymization does not a�ect the linking of the individual views.

Thus, selections and other interactions are re�ected throughout the whole ensemble of

displays.

7.3 Collaborative Information Linking

The �rst part of this chapter presented the work of visual links for relating information scat-

tered over remote display locations hosted by distinct applications; the second part stressed

the potential of collaborative work for the visual analysis and presented �rst results in this

direction. This chapter concludes by outlining the idea of combining the strength of both

aspects � resulting in Collaborative Information Linking [Waldner and Schmalstieg, 2011].

While this work was pursued by Manuela Waldner, it is brie�y summarized here because

it emerged from the preliminary joint work and demonstrates how the ideas have inspired
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further developments.

In principle, the approach is identical to visual linking across applications for a single

user, as introduced in Section 7.1.1. However, in the collaborative scenario multiple users

operate on a shared workspace. Because a di�erent color is assigned to each individual

user, the mouse pointers and visual links are clearly distinguishable. This practice scales

well to a large number of users, as the only limiting factor is the additional visual clutter

from the links themselves.

The proposed system runs on a large, tiled multi-projector setup which serves as a

single high-resolution display. Multi mouse-pointer support allows users to concurrently

interact with applications on the shared workspace. Usually, a special purpose groupware

solution is run in such setups. However, as suggested in [Lauwers and Lantz, 1990], the

proposed system does not tie users to a groupware solution but rather allows them to work

with their well-known, standard applications. Consequently, only the windowing system

takes care of the collaboration support. The systems infrastructure is an extended version

of the single user solution (Section 7.1.1).

Figure 7.7: Collaborative information linking. Multiple users working on a shared, high-resolution
workspace. Selected pieces of information are simultaneously visualized by rendering user-speci�c col-
ored sets of visual links across independent application windows [Waldner and Schmalstieg, 2011].

The suggested solution again realizes the concept of private and public application

windows: private windows for conducting individual information retrieval; and shared

application windows for joint veri�cation and discussion. In large, high-resolution display

setups users tend to establish personal territories [Tse et al., 2004] where they arrange

applications for private, independent work. The visual linking solution is also aware of the

applications' privacy status. A locking mechanism guarantees that visual links triggered by

collaborators do not distract the users while they are interacting with private application
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windows. However, content from shared application windows is always linked if a selection

string is found. Figure 7.7 depicts a collaborative analysis session where two users trigger

independent selections. User-speci�c, color-coded visual links connect the matches in the

shared application window.

The collaborative visual link solution also provides a bookmarking mechanism that

records selections from all users and therefore also facilitates the management and sharing

of �ndings.

7.4 Summary

This chapter started by discussing the necessity of including unconnected applications in

the visual analysis process, as it is increasingly unrealistic to build an all-in-one application

that ful�lls the needs of all analysts. Therefore, a system was presented that allows users to

visually link related pieces of information across the boundaries of individual applications.

Like the orientation techniques from the last chapter, this multi-application approach aims

at providing orientation support on the level of individual data items (S1.1 ).

The second part of the chapter focused on collaborative information visualization where

experts from various domains jointly perform an analysis in order to understand and draw

meaningful conclusions from complex, heterogeneous data. It was shown how the infor-

mation about assigned roles can be added on top of the analysis setup model. How this

additional knowledge can be employed for data analysis purposes was then discussed. The

section on multi-user considerations was closed with a brief introduction of the Caleydo-

plex prototype setup, a multi-display environment that is targeted at collaborative visual

analysis.

Finally, this chapter was concluded by discussing the work on collaborative information

linking that combines both of the main topics of this chapter, thus showing how the research

of this thesis has inspired already published follow-up work.
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This chapter introduces Stack'n'�ip, a concrete visual analysis system which makes

use of all three stages of the authored model. The system aims at providing full analyst

support in the sense of Section 3.1. On the one hand, it orients an analyst within the

heterogeneous information landscape (S1.1 ), while at the same time encoding the history

of previous steps (S1.2 ) as well as possible next analysis steps (S1.3 ). On the other hand,

the system dynamically suggests future steps (S2 ) by means of a prede�ned work�ow

captured in the analysis session and domain model. This realizes the guidance support.

The Stack'n'�ip system is grouped into two parts: a space for data visualization,

similar to what [Shrinivasan and van Wijk, 2008] call the Knowledge View (see upper

part in Figure 8.1), and a space showing the relations between data, views and anal-

ysis paths, similar to their Navigation View (lower part in Figure 8.1). While the

realization and application goals of this system are very di�erent to those proposed in

[Shrinivasan and van Wijk, 2008], the views are conceptually similar. Therefore these

terms were adopted. Two factors distinguish Stack'n'�ip from other systems: �rst, the

navigation and the knowledge view are seamlessly integrated (showing the relations be-

tween views and the data sets they visualize � S1.1 support), and secondly, the kind of

support based on the developed three-stage model goes well beyond provenance and history.
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Figure 8.1: A snapshot of a sample analysis session using the Stack'n'�ip system. The knowledge
view contains a heat map view in the center, a tissue browser on the left, a web browser on the right
and additional stacked views on both sides. The succession of large symbols in the navigation view
at the bottom represents the analysis path taken, with each symbol showing a data set (1). On top
of the data set symbols, smaller icons show which interfaces are available for the data set. Possible
future steps or branches (2) are either highlighted red, symbolizing the suggested analysis path, or grey,
showing alternative options. Visual links emphasize relations between the views (3).

Some approaches, such as Aruvi [Shrinivasan and van Wijk, 2008], History Mechanism

[Kreuseler et al., 2004], Heer et al.'s temporal work for Tableau [Heer et al., 2008] and

many others (e.g., [Groth and Streefkerk, 2006]) visualize the exploratory process in a his-

tory tree � support on the level S1.2. This principal idea is taken a step further by

not only presenting history information, but also proposing future steps � either showing

possible next steps independent of a work�ow (S1.3 ), or making suggestions according

to a prede�ned path (S2 ). However, in contrast to the VisComplete approach of Vis-

trails [Koop et al., 2008], the path suggestions are not derived purely from previous ses-

sions and work�ows, but instead made by employing the authored models. In addition,

the associations between previous and possible future analysis steps are made explicit on

both levels � the navigation view and the knowledge view.

The Stack'n'�ip implementation is also a part of the Caleydo visualization framework.

The authored model is loaded from a prede�ned XML representation and is stored in a

graph data structure. The interactive support of Stack'n'�ip is based on simple graph

traversal operations.
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8.1 Knowledge View

Exploring multiple data sets naturally lends itself to the usage of multiple coordinated

views. However, traditional systems often present those multiple views either in tiled win-

dows or in tabs. This strategy does not correspond well to an analysis path, however, since

it is frequently the case that the previous and subsequent data sets may be contextually

relevant, while one data set is in focus.

To take this into consideration, a stacking of views is proposed as depicted in Figure 8.1.

The views are projected and rendered on 2D planes within a 3D scene, making it in principle

related to Apple'sTMCover Flow, but also to the Jukebox (see Section 6.2.2) as well as the

Bucket (Section 6.2.2). The view in focus is in the center and parallel to the screen. Other

views are stacked to the left and right of the focus view, tilted towards the user. The

adjacent views are either from the same data set, or from a data set explored in a previous

(on the left) or upcoming (on the right) analysis step. This makes it possible to easily

relate data in adjacent views. In addition to conventional highlighting of selected items,

visual links are shown between related entities in adjacent views. The 2.5D layout was

chosen, because the evaluation of the Bucket has shown that it is an e�ective method for

working with multiple interconnected views. However, pure 2D layouts, avoiding problems

arising from distortion, are possible as well.

The stacking approach allows the analyst to �ip through the di�erent views and also to

re-examine, or to adapt a �lter on a previously explored data set. If he �nds that the �lters

on a previous level need re�nement, he simply brings the view into focus and updates the

�lters. The changes are immediately re�ected in all associated views. Due to the implicit

sorting of the data sets according to the work�ow, the chosen views along the work�ow are

next to each other in the stacked view representation. For example, a patient represented

as a column in the centered heat map view can then be visually linked to the corresponding

tissue image (cf., (3) in Figure 8.1).

8.2 Navigation View

The contribution of the proposed approach is not primarily the view arrangement, but

the orientation provided by a �map� through the information landscape � the navigation

view. When designing such a navigation view, it is important to �nd a balance between

the amount of information presented and the requirement to give as much space as possible

to the knowledge view, which contains the actual information.

The map was realized by depicting the network of data sets as large symbols (see (1) in

Figure 8.1). Transitions in the data model between loaded data sets are visible at any time,

while all possible transitions are shown only when hovering over the associated symbol (see

(2) in Figure 8.1). A red exclamation mark followed by a short description indicates that a

precondition needs to be met before the analyst can continue to a data set. By picking one

of those possible next data sets, the associated data is loaded and shown in the knowledge
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view. Its symbol is added to the navigation view permanently.

The association between interfaces and data sets, contained in the setup model, is

shown as icons on top of the data set symbol. Opening a new interface for a particular

data set is achieved by clicking the interface icon.

In case of a guided analysis (S2 support), the information available through the analysis

session model is employed to highlight the recommended path, while still showing other

options to proceed (i.e., switching from guidance to orientation support). The highlighting

is realized in red ((2) in Figure 8.1). Recommended interfaces for performing the next task

are also shown in red and are opened by default when the data set symbol is clicked. A

short description of the current task is presented at the bottom of the navigation view.

The recommendations for future analysis steps are dynamically determined by travers-

ing the graph of the three-stage model. A lookup operation in the compound graph of

the three-stage model results in the information to which data sets the task is connected

to and which visual and computational tools are associated. This extracted knowledge is

then visually conveyed by the highlighted path and symbols in the navigation view. In

cases where the analyst does not follow the suggestions, the system switches to the in-

formed mode where only support on the level S1 is provided by means of the information

contained in the analysis setup and the domain model.

8.3 Fusion of Navigation View and Knowledge View

A key contribution of Stack'n'�ip is the seamless integration of navigation and knowledge

view. Open, active views are connected with a curve to their interface symbol on top of

the data set symbol, thereby clarifying the relationship between the view and its data set.

This association of data sets and views makes it explicit which data set is shown in which

view, and also allows the unambiguous use of the same visualization technique for di�erent

data sets (i.e., providing orientation support on the level S1.1 ).

This merging of interactive visualization with analysis context is related to Image

Graphs [Ma, 1999], the P-Set Model [Jankun-Kelly et al., 2007] as well as the Graphical

Histories [Heer et al., 2008]. However, Image Graphs and the P-Set Model capture only

the analysis process operating on a homogeneous data set. In contrast, Heer's Graphical

History view does handle heterogeneous data, but is restricted to history information and

therefore does not support real guidance or orientation in the sense of Stack'n'�ip.

8.4 Use Case Revisited: Sample Analysis Session

The following sample analysis session demonstrates how the Stack'n'�ip system guides

an analyst along a prede�ned work�ow. The system employs the full three-stage model

for realizing the analyst support. For demonstration purposes, the use case de�ned in

Section 4.6.3 will be taken up.
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(a) Snapshot 1 (b) Snapshot 2

(c) Snapshot 3 (d) Snapshot 4

(e) Snapshot 5 (f) Snapshot 6

Figure 8.2: Sample analysis session with the Stack'n'�ip system.
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The series of snapshots provided in Figure 8.2 shows an analyst realizing Task 2 to

Task 8 of the work�ow:

• Snapshot 1: Having completed the preprocessing on the vast patient data by statis-

tical means (cf., Task 1), the analyst starts with an already reduced set of patients.

Initially, the knowledge view shows only parallel coordinates which are associated

with the starting data set. In the parallel coordinates view, each axis encodes one

attribute of the patient records and each polyline represents one patient. Following

the task description on the bottom of the screen, the analyst browses the patient

data (Task 2). The navigation view indicates the possible next steps to related data

sets. The linked data sets are organ, tissue and gene expression data. However,

the system also suggests continuing with the tissue data (highlighted red) and thus

following the work�ow.

• Snapshot 2: The exclamation mark indicates a precondition that has to be met

before the analyst can proceed. Thus, the analyst visually �lters the data set using

the brushing tools in the parallel coordinates view. Once the data is �ltered su�-

ciently (< 20), the associated symbol and the connecting curves are highlighted. As

soon as the analyst clicks the pipe or the data set symbol, the default view for the

selected data set is opened, showing the tissue images of the �ltered patients. The

tissue view is placed in the center and the parallel coordinates view is moved to the

left side. Thus, the views stacked on the left hand side provide a visual history of

the analysis process.

• Snapshot 3: The analyst is then instructed to perform the next task within the

analysis work�ow: browsing the tissue slices (Task 3). Visual links helps the analyst

see which tissue image is associated to which polyline in the parallel coordinates view.

Having gained an overview of the tissue slices from the various patients, the analyst

is guided towards the next data set along the chosen work�ow: the gene expression

data. After the visual inspection of the tissue images, the user decides to keep all of

the remaining patients (Task 4 �Discard patients�) and continues along the work�ow.

• Snapshot 4: To prepare the data for clustering (Task 5), the analyst needs to �lter

the data set in order to meet the precondition of the clustering algorithm. The

authoring makes sure that a suitable visual interface to perform the needed analysis

task was chosen � which is a parallel coordinates view in this case, since it supports

visual �ltering. Therefore, in the current analysis situation, two parallel coordinates

views are opened. However, due to the connection pipes between the the visual

representation in the knowledge view and its data set symbol in the navigation view,

the user is always aware which data set is associated to which visual representation.

• Snapshot 5: The analyst then runs a clustering algorithm, the result of which he

explores in the heat map (Task 6). There he �nds an interesting gene and triggers

the loading of pathways to explore its biological context (Task 7).
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• Snapshot 6: The system loads all pathways in which the gene plays a role. Visual

links indicate the location of the gene in the pathways. Then the analyst can continue

to inspect detailed information on the gene in the integrated browser view (Task 8).

Continuing with the suggested steps one by one in the guided analysis scenario guar-

antees that the work�ow will eventually terminate by reaching the analysis goal. Finally,

the analyst can base the treatment decision on the knowledge gained during the guided

analysis session.

8.5 Discussion of the System

The author believes that the Stack'n'�ip approach is general enough to be utilized in

many di�erent forms. In fact, as it mainly describes how to visually handle transitions

in heterogeneous data analysis, it is applicable to a wide range of existing visualization

frameworks.

As such, this system provides orientation (support level S1 ) when exploring heteroge-

neous data spaces by providing a history of previously explored data sets, a list of possible

connected data sets (in the navigation view) as well as employed visualizations (through

the stacking in the knowledge view) and is therefore suitable for the informed analyst.

This is especially important in comprehensive analysis of data from di�erent sources, as it

requires the analyst to switch back and forth between di�erent views and data sets, re�n-

ing for example selections or �lters. Each switch requires mental e�ort and is potentially

confusing for the analyst. By making such switches seamless and keeping the source view

as contextual information, the mental e�ort can be reduced signi�cantly.

The guided analyst (support level S2 ) bene�ts from the explicit path laid out for him,

while the navigation view shows possible alternatives � thereby encouraging a deviation

from the prede�ned path (and therefore a switch from guided analyst to informed analyst)

for a deeper understanding of the data.
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Conclusion

This dissertation investigated how an analysis system can assist a user in the analysis of a

complex interwoven set of data. The analyst support a user needs is twofold:

• orientation support, where the user's mental map should be built and consequently

maintained

• guidance support, where the oriented user is directed along a work�ow towards a

speci�c analysis goal.

In order to be able to realize these two levels of analyst support, this thesis proposed

to design a model in which uni�ed representation is achieved via an authoring process.

This model extends a de�nition of the information landscape, as it also contains details

on suitable visualization and computational methods to access the individual data sets as

well as domain speci�c tasks that are combined to work�ows, leading to a speci�c analysis

goal. With the authored model as a conceptual basis, the thesis progressed by introducing

a series of visualization techniques that realize the analyst support on both levels.

Summing up, the three main contributions of this thesis are:

• A novel Model-Driven Design Concept which captures the complexity of visual

analysis in a structured way � including data sources, interfaces to access the data

as well as tasks performed on the data. The model serves as the semantic basis for

providing orientation to users in the �rst place, and, based on this, to guide them

through an analysis session along an authored work�ow towards a speci�c goal.

• Visualization Techniques for Supported Analysis: within a data set, across

multiple data sets, across applications as well as across displays including multiple

analysts.

• The design and implementation of the Caleydo Visual Analysis Framework

which is the foundation for the realization of the proposed visualization techniques.
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9.1 Further Implications

The thesis elaborated on the possibilities the model provides in terms of orientation and

guidance. However, the externalization of the information about the setup can potentially

be utilized for further purposes, as outlined in the following.

Visual Analytics goes well beyond simply providing the necessary tools for an

analysis scenario � it also aims at helping the analysts in choosing the appropriate

techniques by de�ning several processes as best practice solutions for given analytical

objectives. These are based on high-level guidelines, such as Keim's Visual Analytics

Mantra [Keim et al., 2006] or Shneiderman's well-established Information Seeking

Mantra [Shneiderman, 1996]. Both have found their way into the design of Visual

Analytics systems, as they give valuable advice on which kind of tools to provide at

which point in the analysis. These processes can be understood as abstract design

patterns for visual analysis software. However, they are too abstract to actually specify

concrete visual analysis techniques that can be used on a concrete set of data. Hence,

most approaches derive concrete suggestions for the analysis from low-level events (mouse

clicks, etc.) recorded during previous analysis sessions.

In between high-level mantras and low-level mouse clicks, a gap emerges that neither

can �ll. A mid-level approach, like the one proposed, makes it possible to formulate

analysis sessions as abstractly as needed in order to serve as reusable patterns and at

the same time be speci�c enough to be used for concrete user support, thus merging the

best of both worlds. However, in the proposed design approach, high-level mantras are still

incorporated. Task 1-6 in Figure 9.1 is one example where Keim's Visual Analytics Mantra

� �analyse �rst - show the important - zoom, �lter and analyse further - details-on-demand �

is evident.

The bene�ts of using the proposed model are twofold: on the one hand, it can be

employed by a visual analysis system to provide analyst support on di�erent levels, as

already discussed in detail; on the other hand, it can help in the design phase of a complex

analysis scenario. The following paragraphs discuss further potential bene�ts gained by

de�ning a model which is more comprehensive.

Data Selection

The proposed concept makes it possible to dynamically select a set of relevant data sets for

a speci�c analysis goal. Selecting a reduced list of data sets needed in an analysis session

makes the analysis more targeted towards the goal. In addition, the system can anticipate

the next steps of an analyst and preprocess, pre-fetch or pre-layout data in otherwise idle

times. For example, fetching of large tissue images from databases can be triggered before

the analyst traverses the data set during the interaction. An example for a time-consuming

preprocessing step is clustering of gene expression data, based on a selection of patients.

Since an analyst can always choose a path di�erent from the preferred one, an option would
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Figure 9.1: Sample analysis path showing the chosen interfaces. Jumps between computational
(purple) and visual (blue) interfaces denote switches from the data to the view domain and vice versa.
High-level interaction mantras can be found as reoccurring patterns.

be to pre-fetch data �rst for the preferred path, and then for other possible paths, if enough

processing power, memory and/or bandwidth is available. By conducting such operations

in a separate thread, such a system can utilize modern multi-core systems, resulting in a

signi�cant speed-up.

Missing Data or Interface Identi�cation

When de�ning the analysis session model with an analysis goal in mind, interfaces or data

sources needed to perform a task might be missing from the analysis setup. Due to the

structured authoring process, however, missing interfaces or data sets are immediately

obvious to the domain expert. At this early stage the domain expert can try to �ll these

gaps by requesting the missing data sets or interfaces from the data manager or visual

analysis expert, respectively.
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Generalization of Work�ows

Analyst support based on history and provenance information is an integral part of var-

ious Visual Analytics systems (e.g., [Willett et al., 2007, Bavoil et al., 2005]), as already

discussed in Section 3.2. However, by logging low-level application events, the collected

information is tightly coupled to one speci�c setup and cannot be reused for guidance

purposes within di�erent applications and tools. With the proposed association of tasks

to application and domain independent operators, implementation internal matters are

detached from the actual semantic path information. In principle, this indirection makes

it possible to employ the collected path information in di�erent analysis setups as well. It

is even possible to unhinge the work�ow with the associated domain independent operator

sequences from a speci�c setup in order to �nd an alternative combination of analysis tools.

Post Analysis Optimization

Based on the analysis session model, it is possible to log the work�ow path actually taken

by a user during an analysis session. Figure 9.1 depicts an example path including the

interfaces used for each step. Switches between the visual (purple) and computational

(blue) domain are of special interest as these are often not seamless and therefore imply a

higher mental e�ort for the user. The extracted knowledge can be utilized to:

• optimize the work�ow

By comparing the suggested path with the one taken by the user, a feedback loop

can be introduced in the authoring process.

• optimize the analysis framework

Based on the insights gained, the underlying application can be modi�ed to better

re�ect the user's needs.

Tailor User Interface

The additional information given by the models can be used to tailor the user interface to

the given data, the user preferences, and the tasks to be performed. For instance, feature-

rich analysis software can be reduced to the minimum that is needed for the current task.

However, just as a user should be able to switch during an analysis from orientation support

to guidance and vice versa, the user should also be able to access the full feature set at

any time.

9.2 Future Work

Today, many domain-speci�c visual analysis systems are being developed where the inter-

play between data, view, and task is hard-wired in the software. Thus, the information

that is covered by the model-driven concept is present, but immutable. This makes sys-

tems in�exible and often incapable of reacting to changing requirements. Consequently, it
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would be desirable to mesh the authoring process with the system con�guration process.

This would allow the authors involved (cf., the identi�ed roles from Section 4.1: data man-

ager, visualization expert and domain expert) to dynamically con�gure the visual analysis

application to their speci�c needs. In a next step, this authoring process could also be

integrated with the analysis sessions themselves � thus allowing the user to become the

author. The domain expert could, for instance, interactively add tasks to the model and

use them as building blocks for the arrangement of new work�ows.

The current Stack'n'�ip implementation provides guidance based on prede�ned models

via the compact navigation view. Following the proposed online authoring approach, the

navigation view could be switched on demand to a full authoring interface with on-the-�y

model editing capabilities. This tight integration of authoring and data analysis has the

potential to support a wide range of Visual Analytics applications.

As already mentioned, the Stack'n'�ip system realizes guidance in classic multi-view

applications. The system is only one possible way of employing the model for compre-

hensive analyst support and therefore leaves a lot of space for alternative approaches.

However, setups that span independent applications, as well as collaborative multi-display

environments impose new challenges for the user in terms of the assistance needed. For

this reason, the idea of applying the model-driven approach to these scenarios as well seems

to be a research direction with great potential. In particular, the realization of a guided

analysis along a work�ow that utilizes visual links across applications is a promising avenue

for future research.
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