
Dipl.-Ing. Gerhard Grießnig

FSAR
A Fail-Safe Architecture for Reconfigurable

Programmable Logic Devices

————————————–

Dissertation

vorgelegt an der
Technischen Universität Graz

zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

(Dr. techn.)

durchgeführt am Institut für Technische Informatik
Technische Universität Graz

Vorstand: O.Univ.-Prof. Dipl.-Ing.Dr. techn.Reinhold Weiß

Graz, im Mai 2011



EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich
und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date (signature)



Kurzfassung

Die zunehmende Komplexität von eingebetteten Systemen und der steigende Kostendruck
stellen vor allem die Hersteller von sicherheitskritischen Systemen vor immer neue Her-
ausforderungen. In dieser Dissertation wird eine neuartige fehlersichere Architektur für re-
konfigurierbare, programmierbare digitale Bauelemente (FSAR) vorgestellt. Im Gegensatz
zu derzeitigen sich auf dem Markt befindlichen Lösungen, die hauptsächlich Mikrokon-
troller basierend sind, ist die hier vorgestellte Lösung ausschließlich auf programmierbarer
Hardware basiert.

Ein weiterer Schwerpunkt neben der Architektur liegt in der Methodologie, die zum
Nachweis der funktionalen Sicherheit und der geforderten Sicherheitsintegrität erforder-
lich ist. Im Kontext dieser Arbeit wurde ein Verfahren zur Durchführung von Fehler-
Injektionstests entwickelt. Die fehlersichere Architektur und die Methodik wurden von
einem unabhängigen Zertifizierungsinstitut begutachtet und für einen Einsatz gemäß SIL
3 nach IEC 61508 bzw. IEC 61800-5-2 sowie Kategorie 4 Performance Level e nach ISO
13849 als tauglich befunden. Ein entsprechender Prototyp für einen industriellen Einsatz
in der Automatisierungstechnik wurde entwickelt und evaluiert.



Abstract

The increasing complexity of embedded systems and the growing cost pressure are im-
posing new challenges for the producer of safety-critical systems. Within this thesis, a
novel Fail-Safe Architecture for Reconfigurable Programmable Logic Devices
(FSAR) is described. In contradiction to commonly used solutions on the marked which
are mainly realized using microcontrollers, the presented solution is based on reconfigurable
programmable hardware only.

Additionally to the architecture, a further focus is set on the methodology to ensure the
fulfillment of the functional safety and the required safety integrity requirements. In this
context, a method to perform fault insertion tests on the target architecture was developed.
The fail-safe architecture as well as the methodology were assessed by an independent
assessment body and is applicable for the usage of SIL 3 applications according to IEC
61508 respectively IEC 61800-5-2 as well as category 4 and performance level e according
to ISO 13849. A corresponding prototype for industrial usage in the automation domain
was developed and evaluated.



Danksagung

Für meine Doktorarbeit schulde ich sehr vielen Menschen einen herzlichen Dank. Ein beson-
derer Dank gilt meinem Doktorvater Herrn O. Univ. -Prof. Dipl. -Ing. Dr. techn. Reinhold
Weiß für die akademische Führung und die abwechslungsreichen Einblicke in die Wissen-
schaft von einst und heute. Des Weiteren möchte ich mich speziell bei meinem Projektleiter
Herrn Ass. -Prof. Dipl. -Ing. Dr. techn. Christian Steger für seine außergewöhnliche Un-
terstützung in organisatorischen und wissenschaftlichen Fragen bedanken.

Meine Dissertation wäre nicht möglich gewesen ohne die Unterstützung der SIEMENS
AG und AVL GmbH. Vor allem danken möchte ich Dr. Herbert Tanner und DI Joachim
Wahrbichler, die mir den Start dieser Arbeit ermöglicht haben, aber auch Dr. Theodor Sams
sowie Dr. Josef Affenzeller, die mich für einen erfolgreichen Abschluss unterstützt haben.

Einen besonderen Dank möchte ich meinem Diplomanden und späteren Dissertanten DI
Roland Mader aussprechen, der mich über all die Jahre an diesem Thema begleitet und
tatkräftig unterstützt hat.

Mein tiefster Dank gilt jedoch meiner lieben Frau Doris, die mir die Zeit, das notwendi-
ge Verständnis und in schwierigen Phasen auch die erforderliche Motivation gegeben hat,
um diese Arbeit beenden zu können. Auch meinen Sohn Manuel und meine Tochter Eli-
na möchte ich hier nicht unerwähnt lassen. Sie haben auf so manche gemeinsame Stunde
verzichten müssen.

Graz, Mai 2011



Extended Summary

The increasing complexity of embedded systems and the growing cost pressure are impos-
ing new challenges for the producer of safety-critical systems. Therefore, the industry is
continuously obliged to search for improved methods and new technologies. In this spirit,
this work was motivated by the fact that industry demands cost-efficient concepts for the
realization of safety functions for industrial automation.

In particular, for the SIEMENS product family SIMOREG c© DC-Masters [AG10],
which are applicable for single- and four-quadrant DC drives, a redevelopment is neces-
sary due to discontinuation of hardware components. In the course of this redevelopment,
the SIMOREG c© DC-Master product family shall be extended by the safety-critical stop
functions Safe Torque Off and Safe Stop 1 as defined in the functional safety application
standard IEC 61800-5-2 for Adjustable Speed Electrical Power Drive Systems. A con-
ducted market analysis shows that most applications of a SIMOREG c© DC-Master require
a safety integrity level (SIL) of at least 2 according to the IEC 61800-5-2.

Taking into account the top level requirements mentioned above, the goal of this thesis
is an elaboration of an entire safety concept for a failsafe system. The assessment of
this concept by an independent certification body was aspired. Additionally to the re-
quirements of the imposed safety standards, the safety concept shall consider the economic
facts of the product development. Economic facts are considered in this thesis as (1) time
to market, (2) product and development costs as well as (3) the experience and know how
of the department where the system shall be developed, produced and maintained. Special
attention should be paid to (1) due to the fact that the desired solution is in competition
with external measures to realize safe stops in today’s automation systems with DC motors
and (3).

Within this thesis, a Fail-Safe Architecture for Reconfigurable Programmable
Logic Devices (FSAR) is elaborated. In contradiction to commonly used solutions on
the marked which are mainly realized via micro-controllers, the presented solution is based
on reconfigurable programmable hardware only. The presented novel FSAR was patented
by SIEMENS [GFH+09] in 2008 and was published as a full paper selected for the IEEE
conferences. The fail-safe system contains two channels (HFT=1). Each channel is able to
perform the safety functions independently. Thus, if a channel is affected by a fault, the
other channel is still able to execute the safety functions. The entire system enters the safe
state if a faulty channel is detected. Figure 1 illustrates the fail-safe system. It comprises
the following entities:

• The terminals SF11, SFm1, SF12, SFm2 are connected with an external device (e.g.
a control panel) that can be used to activate the safety functions.



Figure 1: Fail-safe Architecture for Reconfigurable Programmable Logic Devices

• The input stages represent an interface for the activation of the safety functions
that assures electrical isolation by optocouplers.

• The two CPLDs realize the safety functions. In order to be able to perform diag-
nostic checks, the CPLDs exchange signals. The CPLDs control the safety-critical
outputs (OUT1 and OUT2) of the fail-safe system. Each CPLD is clocked by a
separate external oscillator.

• The terminals OUT1 and OUT2 are connected with an electric motor to allow power
to be applied to the motor or to respectively shut down the motor.

• Each channel contains a temperature monitor to detect temperature deviations
from a specified range.

• There is one voltage monitor for each channel which detects whether the supply
voltage is leaving a specified range. Furthermore, both channels of the fail-safe system
are protected against dangerous overvoltage.

Due to the fact that it is not sufficient to introduce a novel safety architecture without
pinpointing the way to ensure that this architecture fulfills the requirements of the imposed
safety standards, an additionally focus was put on the related methods to satisfy the
imposed safety requirements. Therefore, experiences and hints from other domains as well
as upcoming standards, regarding the design, implementation and tool chain, were consid-
ered to achieve an adequate level of safety and safety integrity for the presented FSAR.

The applicability of this safety concept for programmable logic devices (PLD, CPLD,
FPGAs) has been proved in terms of safety and cost-efficiency by its utilization for an



industrial prototype (see Figure 2) for an industrial power drive application.

The safety concept and its application were reviewed and assessed by an independent
certification authority (TÜV SÜD). TÜV SÜD stated that the presented concept is suited
to achieve SIL 3 in adherence to IEC 61508 and IEC 61800-2 as well as Cat 4, PL e in
adherence to EN ISO 13849.

Figure 2: F-Module

Furthermore, this thesis elaborates a method which allows the application of a proven
verification method (fault insertion testing) for a PLD-based fail-safe system. Methods
to verify comparable micro-controller based systems using fault insertion testing are not
applicable for the fail-safe system because it contains exclusively PLDs. It is possible to
verify the safety integrity measures of the fail-safe system using the system hardware. The
successful verification of the realized safety integrity measures using fault insertion testing
is an important prerequisite for the certification of the developed PLD-based fail-safe sys-
tem in adherence to the imposed standards. A full paper describing this methodology was
published and presented at the IEEE International Conference for Design, Automation
and Test (DATE Conference 2009).

Finally, it needs to be underlined that the applicability of the presented "Fail-Safe
Architecture for Reconfigurable Programmable Logic devices" (FSAR) is not limited to
the automation domain. It can be concluded that the use of a PLD-based (PLD, CPLD
or FPGA) safety concept is a competitive alternative to the use of micro-controller-based
safety concepts if comparably uncomplex safety functions need to be realized. In this
case, the comparatively simple functionality does not justify a software implementation
including the great effort for development of complex software safety integrity measures to
make the use of micro-controllers acceptably safe.



Contents

Table of contents viii

1 Introduction FSAR 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 An Industrial Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 FSAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 CESAR Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 SIMOREG-plus Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Problem Definition and Requirements . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Contribution and Significance . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.6 Mapping and Contribution of Publications . . . . . . . . . . . . . . . . . . . 14

2 Related Work 17
2.1 Relevant Functional Safety Standards . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 IEC 61508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 EN ISO 13849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 IEC 61800-5-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Safety Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Safety-Critical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Safety Concept FSAR 31
3.1 Hazard and Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Fail-Safe Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Fail-Safe System Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Safety Integrity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Safety Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Fault-Insertion Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Verification of Implemented Safety Integrity Measures. . . . . . . . . . . . . 40

4 Evaluations and Prototype 43
4.1 UC: Power Drive System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 F-Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



5 Conclusion and Future Work 47
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Safety-Critical System Architectures . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Safety Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Publications 52
6.1 A Computer-Aided Approach to Preliminary Hazard Analysis for Automotive Em-

bedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Improving Automotive Embedded Systems Engineering at European Level . . . . . 64
6.3 WO2009080384A1- Method for actuating an DC machine . . . . . . . . . . . . . . 69
6.4 Design and Implementation of Safety Functions on a Novel CPLD-based Fail-Safe

System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5 CPLD basierende homogen redundante fehlersichere Architektur . . . . . . . . . . 78
6.6 CESAR:Cost-efficient methods and processes for safety relevant embedded systems 83
6.7 Model-based Toolchain for the Efficient Development of Safety-relevant Automotive

Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.8 Fault Insertion Testing of a Novel CPLD-based Fail-Safe System . . . . . . . . . . 106
6.9 A CPLD-based Safety Concept for Industrial Applications . . . . . . . . . . . . . . 112

References 118



List of Figures

1 Fail-safe Architecture for Reconfigurable Programmable Logic Devices . . . . . . . v
2 F-Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1.1 safety-relevant functions in a today’s vehicle . . . . . . . . . . . . . . . . . . . . . . 2
1.2 CESAR Approach in a V-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 SIMOREG DC-MASTER family . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Releated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Hierarchy of European standards for machine safety . . . . . . . . . . . . . . . . . 18
2.3 FailureRate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Power Drive System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Single-controller Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Symmetric controller Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Asymmetric controller Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 EGAS Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Dual-core controller Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10 Distributed controller Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 SIL Determination IEC 61508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Fail-safe System Architecture (see figure 1.4. . . . . . . . . . . . . . . . . . . . . . 33
3.3 Behavior of the fail-safe system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Connection between SFF and HFT, figure from [Com10]. . . . . . . . . . . . . . . 36
3.5 V-model and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Fault-insertion Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Power Drive System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 F-Module (see figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Distribution of used Logical Elements to the different functions. Figure from [Mad08]. 46

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ix



List of Abbreviations
ABS Anti-lock Braking System
ACC Adaptive Cruise Control
ASIC Application-Specific Integrated Circuit
ASIL Automotive Safety Integrity Level according to ISO 26262
ATTEST Advancing Traffic Efficiency and Safety through Software Technology
AUTOSAR AUTomotive Open System ARchitecture
Cat Category according to ISO 13849-1
CBD Component Based Development
CCF Common Cause Failure
CESAR Cost-efficient Methods and Processes for Safety Relevant Embedded Systems
CMF Common Mode Failures
COTS Commercial of the shelf (hardware or software) products
CPLD Complex Programmable Logic Device
CPU Central Processing Unit
DATE Design, Automation and Test in Europe
DC Diagnostic Coverage
E/E/PE Electric / Electronic / Programmable Electronic
EAST-ADL Electronics Architecture and Software Technology - Architecture Description Language
ECU Electronic Control Unit
EGAS Electronic Gas Pedal
F-Modul Fail-safe Modul
FMEA Failure Mode Effect Analysis
FMEDA Failure Mode Effect Defect Analysis
ESC Electronic Stability Control
FPGA Field-Programmable Gate Array
FSAR Fail-Safe Architecture for Reconfigurable Programmable Logic Devices
FSM Functional Safety Management
H&R Hazard Analysis and Risk Assessment
HFT Hardware Fault Tolerance
HDL Hardware Description Language
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineering
IFIP International Federation for Information Processing
IP Intellectual Property
ISO International Organization for Standardization
PDS Power Drive System
PIF Power Interface
PFD Probability for Failure on Demand
PFH Probability of a Dangerous Failure per hour
PLD Programmable Logic Device
PL Performance Level according to ISO 13849-1



RE Requirements Engineering
RAM Random-Access-Memory
RISC Reduced Instruction Set Computing
ROM Read Only Memory
RTP Reference Technology Platform
SE System Engineering
SFF Safe Failure Fraction
SIL Safety Integrity Level according to IEC 61508, IEC 61800
SoC System-on-Chip
SRS Safety-related System
SS1 Safe Stop 1
STO Safe Torque-Off
SysML Systems Modeling Language
TMR Triple Modular Redundancy
UML Unified Modeling Language
V&V Verification & Validation
VLSI Very-Large-Scale Integration
XML Extensible Markup Language



Chapter 1

Introduction FSAR

1.1 Motivation

Embedded systems technology and applications have been evolving at a fast pace, il-
lustrated for example through the evolution of vehicles that have been transformed into
embedded computing systems with hundreds of embedded computing devices and several
networks. Today, about 3 billion embedded units are delivered per year, and the world
market for embedded systems encompasses approximately 160 billion Euros with an annual
growth of about 9 percent [EJ09], [ES09].

In this context, terms like safety, diagnosability and dependability as well as reliability
are gaining importance for the development of electronics and electronic programmable
systems. This fact is not limited to one single domain, it influences nearly all fields of
applications dealing with the development of embedded systems. In particular, all specialist
disciplines or manufacturers which are developing components or products for the usage
in safety-critical systems are forced to deal with these terms.

To better understand what safety-critical means in an embedded system we consider
the evolution of an ordinary road vehicle as example. Only a few decades ago, embedded
systems in vehicles were very rarely applied with almost no software inside. With the
electronic torque control (EGAS) [ABD+07] and the further development of microchip
technology, more and more functions were realized via embedded systems. Today’s vehicles
were provide a high number of various visible and invisible functions for the driver to
increase the comfort but also the safety of the vehicle passengers.

An airbag which is a well-known vehicle safety device may serve as an example. It is a
protection device consisting of a flexible envelope designed to inflate rapidly during a vehicle
collision, to prevent occupants from hitting interior objects such as the steering wheel or
a window. This means that the proper function of an airbag supports the protection of
occupants in a vehicle in case of a crash. However, an unintended activation of the airbag
during driving can cause a major accident and has to be avoided.

The airbag is only one function in a today’s vehicle which is safety-critical. There are
many other functions like anti-lock braking system (ABS) or the electronic stability control
(ESC), which have a direct impact on the driveability and behavior of a vehicle. Further-
more, a lot of new technologies like adaptive cruise control (ACC) or vehicle connectivity
are entering the automotive market. This continuous electrification significantly increases

1



1.1. Motivation CHAPTER 1. INTRODUCTION FSAR

Figure 1.1: The figure shows examples of safety-relevant functions and the complexity
with the high numbers of electronic control units (ECU) that control one or more of the
electrical systems or subsystems in a modern vehicle. Figure from [Con11] (Daimler).

the number of electric and electronic components such as sensors, actuators and electronic
control units (ECU) as well as their corresponding lines of program code. Current road
vehicles are running with 100 of million lines of software code [Mos10] that have been
developed conjointly by large teams from different organizations.

It is evident that the numerous functions, technologies and the distributed development
directly influence the complexity, quality, costs and time to market of a vehicle. But
this is by no means the end of the story in the automotive domain. The automotive
industry shares the view that in the next 10 years, 90 percent of its expected innovations
will be based on electrical/electronic systems with a huge emphasis on the safety-related
systems [Mos10].

Nowadays, a lot of research effort is spent on new technologies to reduce emissions
and to continuously improve the vehicle safety. Today’s catchphrases like hybridization,
electro-mobility as well as car to car or car to infrastructure communications are increasing
the complexity of future vehicles directly impacting both quality and costs. To ensure that
the new vehicles ensure an acceptable and comparable level of safety, new standards like
the ISO 26262 [Int10] were developed to set requirements to the development process and
the system itself depending on the criticality of the realized safety functions.

Currently existing methods, processes and tools need to be improved, and new technolo-
gies are required to manage the challenges of increasing complexity and costs by ensuring
an appropriate product quality and taking into consideration the system properties safety,
diagnosability, dependability and reliability as mentioned above.

These challenges are commonly shared in nearly all domains working in the embedded
systems area. Currently, partners from automotive, aerospace, rail and the automation do-
main are working together in a large European research project called CESAR [GMP+10]
"Cost-efficient methods and processes for safety-relevant embedded systems" to exchange
experiences and know-how. The aim of the project is to improve safety-related processes
and methods within their domains and to find commonalities in order to increase applica-
bility of methods and tools to save costs.



1.1. Motivation CHAPTER 1. INTRODUCTION FSAR

It is the task of the research community to continuously search for new technologies and
improved methods to answer today’s problems. With this spirit, this thesis was started
to find a "best solution" for a concrete problem definition in the automation domain. Ac-
count must be taken of the application of new technologies in safety-critical systems, in
particular when such technologies are not considered in the domain specific safety stan-
dards. Therefore, such an application requires an investigation of further, domain-external
safety standards to ensure the state of practice and to achieve an "adequate" level of safety.
This approach was considered for this thesis and for the development of a corresponding
prototype.

1.1.1 Terminology

In this subsection, the definition of the safety-relevant terms safety, diagnosability and de-
pendability are discussed. These definitions were aligned with a huge effort between safety
experts from the aerospace, automotive, automation and rail domains within the task force
safety & diagnosability in the CESAR project [BGA+10]. This task force consists of high-
level experts from industrial end users, tool vendors as well as academics who guarantee a
broad acceptance and an adequate review of the publicly available definitions within the
CESAR deliverable. The following definitions of safety, diagnosability and dependability,
defined in [BGA+10], will be reused and are valid for the entire thesis.

Safety

Safety is defined as the ability of a system to not cause or contribute to the occurrence or
aggravation of harm.

• System is taken here in its most wide and generic meaning, for instance as defined
in [ALRL04], an entity that interacts with other entities, i.e., other systems, including
hardware, software, humans, and the physical world with its natural phenomena.
These other systems are the environment of the given system. The system boundary
is the common frontier between the system and its environment.

• Harm is defined as death, physical injury or damage to the health of people (up
to, at least for some application domains and standards, damage to property or the
environment).

In this context, the overall goal associated with safety is to transform the severity and
likelihood of a risk inherent in all human activity to lower, acceptable levels. In particular,
it deals with system safety, i.e., the application of special technical and managerial skills
and procedures in a systematic, forward-looking manner in order to identify and control
hazards throughout the entire life cycle of a project, program or activity. A generic sys-
tem can be defined as a group of interrelated processes and functions composed of people,
procedures, equipment, material, tools, facilities and software, operating in a specific en-
vironment to perform a specific task or mission. In many domains, safety is managed



1.1. Motivation CHAPTER 1. INTRODUCTION FSAR

according to regulations enforced by national or international authorities. In most of the
regulated domains such as civil aviation, this is achieved through a certification or quali-
fication process. Certification is defined as "the legal recognition that a product, service,
organization or person complies with the applicable requirements". It is also defined (EN
45020:1993) as "the procedure by which a third-party gives written assurance that a prod-
uct, process or service conforms to specified requirements".

An important item related to safety is the notion of criticality. This notion as used
in the context of safety should not be confused with the criticality of a risk, measuring a
combination of its likelihood of occurrence and the severity of its consequences. In this
case, criticality is not associated with a risk but an item which can be interpreted as the
system or any actual or abstract part of it like function, sub-system, equipment, com-
ponent, hardware or software – any entity that may fail. The criticality of an item is a
measure of the severity of the consequences of the potential failures of the considered item
(alone or possibly in combination with other events, e.g. exposure). It is defined without
consideration of the likelihood of occurrence of the potential failures of the item (or of the
other considered events).

The criticality (it may be called, according to the standards applicable to the various
domains, class, development assurance level, safety integrity level) is the basis for the safety
framework that may be summarized as follows:

• Top level feared events are identified, analyzed and classified according to the severity
of their consequences and to a predefined ordered scale of categories of effects;

• Criticality categories are allocated to the system and to its functions and hardware
and software elements, according to the most severe category of the feared events that
the potential failure of the considered item could cause or contribute to (the “degree
of causality” may be taken into account in the allocation of criticality category);

• A set of development and validation rules is associated with each criticality category:

– Some of these rules are generic and concern the processes, methods and tech-
niques: They aim at adapting the development and validation effort and level
of rigour in accordance to the criticality category;

– The rules put bounds on the minimum number of barriers against fault propa-
gation or on the maximum probability of occurrence of the concerned top level
feared event (generally restricted to the occurrence due to some physical random
fault, explicitly excluding design, software or human operations).

Diagnosability

Diagnosability is defined as the ability of a system to support the identification of its status
with respect to its potential faults.
The above intentionally definition is left as open as possible. In practice, one has to define
more accurately in particular what kind of information is to be identified. This depends
on the objectives and context of the diagnosis. In a pragmatic way, what is needed is not



1.1. Motivation CHAPTER 1. INTRODUCTION FSAR

"any kind of information" about the fault(s) but the necessary and sufficient set so as to
unambiguously identify the best actions according to the objectives and current context.
In other words, it is considered that the diagnosis is less interested in the identification
of the problem, than (1) of the existence (or not) of a problem and (2) of the solution.
For instance, if an equipment fails, a first-level diagnosis is limited to identify which one,
so as to know which one to replace. Some second- (third-, etc.) level diagnosis will then
be useful to know whether the equipment has actually and permanently failed, which
component has failed (e.g., to be replaced so as to repair the equipment) and even more
detailed information about the fault in terms of localization, origin, propagation, effects,
occurrence rate, to be able to e.g., devise adapted procedures, rules, design, and assessment
for other existing and future systems.

In the following paragraphs it is assumed that there is a clear distinction between the
identification of the actions (to solve the problem) and their realization. In practice, this
is not always the case and there are situations in which the diagnosis is performed through
the execution of some recovery or repair actions. In other words, the recovery or repair
actions are not first identified (diagnosis) and then realized, but some are attempted, and
it may be only when the problem is solved that the diagnosis is completed. The few basic
notions about diagnosability are introduced below in the situation of "separated diagno-
sis" for clarity, but their transposition, if needed, to the "mixed diagnosis and recovery"
situation is straightforward. Please note that the question of who performs which part of
detection and diagnosis (the system, an operator, a repairman) is not explicitly addressed
since it is focused on diagnosability understood as the capability of the system to provide
support to the diagnosis, covering in principle all possible cases of allocation.

The notion of diagnosis can differ between corrective and preventive diagnosis:

• Corrective diagnosis is performed after the explicit occurrence and detection of an
anomaly in the system. In this case, the anomaly is the starting point of the diagnosis
that consists of distinguishing it from all other possible anomalies for which a different
resolution procedure is appropriate.

• Preventive diagnosis is performed according to a defined plan. The objectives
are to investigate the system state and capabilities as thoroughly as possible so as
to detect potential dormant faults or latent errors that could prevent the system
from actually meeting its safety and dependability requirements. In general, the
preventive diagnosis procedure and plan are defined as part of the justification that
the dependability and safety requirements are met and continuously preserved along
the operational phase of the system’s life cycle.

Note: There is an intermediate category when the diagnosis of a system is initiated
not after the detection of an anomaly of that system but after one or several anomalies of
other systems or some stressful out-of-specifications conditions applied to the system (e.g.,
shock, vibrations, lightning etc.).

Independently from the distinction between corrective and preventive diagnosis, one
may also distinguish between in-workshop and in-situ diagnosis:

• In-workshop diagnosis: The system is dismounted, removed from its operating en-
vironment and brought to a specific place with dedicated tools. In principle, the



1.1. Motivation CHAPTER 1. INTRODUCTION FSAR

diagnosis benefits from better capabilities to investigate the system state and condi-
tion. However, some anomalies related to the interactions between the system and
its environment may be difficult to reproduce and analyze.

• In-situ diagnosis: The system is kept in its operational environment, either on-line
or off-line:

– Off-line: The service provided by the system is stopped, either as a direct and
automatic consequence of the anomaly or as a subsequent explicit decision and
action so as to limit the severity of potential consequences or to facilitate the
diagnosis.

– On-line: The system is maintained active with at least some minimal service
provided to its users. In general, this decreases the constraints on the time
allocated to diagnosis but strongly limits the investigation capabilities because
the observable information is mostly imposed by the system activity rather than
controlled so as to facilitate the diagnosis.

It is worth noting that the notion of diagnosability is closely related, but not identical, to
the classical notions of observability or monitoring and commandability in automatic con-
trol. In some sense, diagnosability may be seen as an extension of the notion of observability
when considering the presence of potential faults. The relationship to commmandability
of the system (in presence of faults) is twofold. On the one hand, the commandability
determines the set of actions that can be performed to get additional information about
the fault(s) in the system, and on the other hand, the commandability determines the set
of actions that can be performed so as to solve the anomaly.

The latter point is important because as mentioned at the beginning of this section, a
diagnosis procedure is not intended to determine all possible information about an anomaly
but only what is sufficient to know what to do, i.e., to distinguish it from any other possible
anomaly for which the resolution procedure is different. It even appears some how paradox-
ically that the less commandable a system is (in presence of faults), the easier the diagnosis
is since almost all anomalies will be processed by one among a very reduced set of proce-
dures (or even a single one, e.g., stop the train, switch the satellite to survival mode etc.).
In a quite restricted meaning, one could limit diagnosability to a particular observability
property defined as the capability to distinguish any two different cases of faults in the
specified fault model (or at least, any two ones for which the subsequent recovery or repair
processing is different, as explained previously). However, this is likely to be insufficient to
be usable in practice because the needed observable information depends on the diagnosis
procedure. In a similar way, it is important to extend the scope to the objectives of the
diagnosis (because they impact the diagnosis itself) and even to the implementation of the
recovery actions (because they may be partly interleaved with the diagnosis and because
the way they are implemented may have an impact on the requirements and criticality of
the diagnosis).



1.1. Motivation CHAPTER 1. INTRODUCTION FSAR

Dependability

Dependability is largely (though not unanimously, see below) understood as an integrat-
ing concept and a scientific discipline (the so-called “science of failures”) encompassing the
whole set of (computer-based) system properties and means considering threats i.e., possi-
ble adverse events and situations. This has emerged in the 80’s pushed forward by working
groups within the IEEE and IFIP [ALRL04]. In this context dependability is defined as
“the ability of a system to deliver a service that can be justifiably trusted”. The threats to
dependability are modeled as a recursive chain comprising:

• Failure: An event that occurs when the delivered service deviates from correct
service (not necessarily “specified service”; the reference to “correct service” includes
the case where the service was not correctly specified); Failures may be characterized
by various attributes:

– failure modes: Silence or stop failure, inconsistent (so-called "Byzantine")
failure etc.

– severity: Catastrophic, critical etc.

– characterization: Of the failure occurrence process etc.

• Error: The part of the total state of the system that may lead to its subsequent
failure; an error may be latent or detected

• Fault: The adjudged or hypothesized cause of an error; this particularly includes
the case of the failure of another system interacting with the considered one, or the
failure of a component, hence the recursive nature of this chain. A fault may be in
an active or dormant state (i.e., it cycles between states in which it produces, or not,
errors). A set of means can be used including:

– Fault prevention means to prevent the occurrence or the introduction of faults

– Fault tolerance means to avoid failures in the presence of faults

– Fault removal means to reduce the number and severity of faults

– Fault forecasting means to estimate the present number, the future incidence
and the likely consequences of faults.

These means must be combined and used appropriately with respect to both the threats
and to the dependability properties that are relevant for the considered system. In the gen-
eral dependability framework, dependability comprehensively encompasses all properties
such as reliability (continuity of correct service), availability (readiness for correct service),
safety (absence of catastrophic consequences on the user(s) and the environment), integrity
(absence of improper system alterations) and maintainability (ability to undergo modifi-
cations and repairs) [ALRL04].

In this context, fail-safe systems are defined as systems that are required to fail in
a way to not harm people, the environment or property in case of a failure. Furthermore,
fail-safe systems have the well-defined task to achieve and maintain a safe state in case of



1.2. FSAR CHAPTER 1. INTRODUCTION FSAR

a fault.

This vision of dependability is now largely shared and used in numerous domains, even
if some differences may be noticed, for instance about the utilization of such or such a
word (e.g., operator fault, software failure, etc.). In general, these are minor points, not
justifying renouncing to this sound, consistent and comprehensive framework. It is worth
noting, however, that there still is a more important difficulty about whether safety may
be considered as a part of dependability or not.

1.1.2 An Industrial Application

In order to develop a successful product for an industrial or commercial application, a
lot of facts, risks and boundary conditions have to be taken into account. One good
practicely, which is considered in this thesis is the application of the system engineering
process [Bla08], [Wei05]. The system engineering process describes the entire product life
cycle from the problem definition to the system retirement and material disposal. This
approach includes the initial definition of the problem (to be solved), the identification
of a consumer need, the execution of a feasibility analysis, the development of system-
operational requirements, the maintenance and support concepts, the accomplishment of a
functional analysis allocation of requirements and the development of the top-level archi-
tecture for a given system. In the initial requirements definition phase, the target market
and the field of application have to be taken into account. In particular, the field of ap-
plication may require special environment conditions, or the target market has dedicated
regulations which are expressed in laws or standards. These requirements can directly in-
fluence the product properties and need to be considered in feasibility studies or prototypes.

The underlying motivation of this thesis is to investigate existing safety architectures
and to identify or to invent a suitable safety architecture which complies product re-
quirements and considers the boundary conditions of the customer and his experience in
processes and technologies. The basic product requirements, the target market and the
field of application are predefined. The product shall be applicable for a world-wide usage
in the automation sector in which the field of application are power drive systems.

For this project, the customer is an in-house department in the SIEMENS AG that
mainly develops the hardware for electronic systems. The process for the software devel-
opment is completed and matured for the department during the SIMOREG-plus Project
(see Chapter 1.2.2).

1.2 FSAR

As mentioned above, a lot of different ways are possible to solve a defined problem. For
the development of a safety-critical system it is not enough to provide a solution only,
decisive is the way of how to develop such a system. This means in particular, which
safety standards and corresponding processes will be applied, which methods and tools
will be used or which analyses and tests will be performed at which point in time. Usually,
functional safety processes require independent audits at dedicated points in time to verify



1.2. FSAR CHAPTER 1. INTRODUCTION FSAR

that all activities and methods have been applied at a certain development stage. The
purpose is to avoid the occurrence of systematic failures in the development. This is, by
the way, the reason why a certification process has to start at the beginning of the product
development.

Due to this fact, it is not sufficient to introduce a novel safety architecture without
pinpointing the way how to ensure that this architecture fulfills the requirements of the
desired safety standards. Therefore, the major outcomes of this thesis are both the de-
veloped Fail-Safe Architecture for Reconfigurable Programmable Logic Devices
(FSAR) as well as the related methods to satisfy the safety requirements.

1.2.1 CESAR Project

The CESAR project [Con09,GMP+10] deals with Cost efficient methods and processes for
safety-relevant embedded systems. CESAR is a European project funded by Artemis Joint
Undertaken and national authorities and regroups 55 partners coming from industry, tool
vendors and academics. The global budget amount to approximately 58 million Euros and
a cumulated effort of approximately 427 man-years for a duration of three years. CESAR’s
main objective is the reduction of costs for the development of safety-critical systems which
shall be achieved by the improvement of the corresponding processes and methods for the
development of safety-critical embedded systems. The approach relies on the establishment
of a Reference Technology Platform (RTP) [AGZ+11], providing a conglomerate of modules
which facilitate the flexible creation of integrated development environments for the devel-
opment of safety-relevant real-time embedded systems for various domains. Furthermore,
CESAR will bring significant innovations to the two following system-engineering disci-
plines: (1) requirements engineering (RE), in particular by formalizing multi-viewpoint,
multi-criteria, and multi-level requirements, and (2) component-based development (CBD)
applied to design space exploration comprising multi-view, multi-criteria and multi-level
architecture trade-offs. These innovations are driven – and will be evaluated – by pilot
applications from the domains of automotive, aerospace, rail and automation respectively.

The main focus of the CESAR project is set on the left top side of a V-Model (see figure
1.2) in the system-engineering discipline. A further potential can be found in the CESAR
multi-discipline and multi-domain approach. In the multi-discipline approach, CESAR
requires a close collaboration between the requirements engineering, component based
development and the establishment of a seamless tool chain (RTP) by taking into account
safety & diagosability and product-line engineering. With the multi-domain approach, the
aerospace, automotive, automation and railway domains are jointly working together to
share experiences and know-how in the development of safety-critical systems in order to
identify common methods and tools to finally reduce the development costs.

With the size and quality of the consortium, one expected outcome are orientations
for the system engineering of the next generation and the first step towards an open
interoperability standard for tool connections.

The CESAR project contributes to the development of FSAR with two major aspects.
First, CESAR works as high-level platform to discuss and exchange experiences in the
application of "new" technologies and second, the CESAR project supports the argumen-
tation of the safety methods and seamless applied tool chains.



1.2. FSAR CHAPTER 1. INTRODUCTION FSAR

Figure 1.2: The figure shows the approach of the CESAR project. Figure from [GKA+].

1.2.2 SIMOREG-plus Project

SIMOREG c© [AG10] is a trade name of a SIEMENS product family for the control of
DC Power Drive Systems (PDS). These PDS are applicable for single- and four-quadrant
drives with an output range from 6.3 kW to 1900 kW. Due to hardware components dis-
continuation of the product family, a redevelopment is necessary. For this purpose, the
project SIMOREG-plus, which is the initial trigger for this thesis, was launched to perform
the redevelopment of the SIMOREG c© product family. In course of this redevelopment,
additional customer needs which are expressed in new functionalities have to be taken into
account.

For this thesis, the existing standard stop functionalities of the PDS are of particular
importance. These stop functionalities shall be extended by certified safety-critical stop
functions to enable a direct usage of SIMOREG c© DC-Masters in a safety-critical system.

1.2.3 Problem Definition and Requirements

In course of the SIMOREG-plus project, the SIMOREG c© DC-Master product family shall
be extended by the safety-critical stop functions Safe Torque Off and Safe Stop 1 as defined
in the functional safety application standard IEC 61800-5-2 [Com05b] for Adjustable
Speed Electrical Power Drive Systems. A conducted market analysis shows that most
applications of a SIMOREG c© DC-Master require a safety integrity level (SIL) of at least
2 according to the IEC 61800-5-2. The detail definition of these two safety functions
within [Com05b] are:



1.2. FSAR CHAPTER 1. INTRODUCTION FSAR

Figure 1.3: The figure shows the SIMOREG c© DC-MASTER family. Figure from [AG10].

• Safe Torque-Off (STO):
Power, that can cause rotation (or motion in the case of a linear motor) is not
applied to the motor. The PDS will not provide energy to the motor which can
generate torque (or force in the case of a linear motor).

– NOTE 1: This safety function corresponds to an uncontrolled stop in accordance
with stop category 0 of IEC 60204-1.

– NOTE 2: This safety function may be used where power removal is required to
prevent an unexpected start up.

– NOTE 3: In circumstances where external influences (for example, falling of
suspended loads) are present, additional measures (for example, mechanical
brakes) may be necessary to prevent any hazard.

– NOTE 4: Electronic means and contactors are not adequate for protection
against electric shock, and additional measures for isolation may be necessary.

• Safe Stop 1(SS1):
The PDS either

1. initiates and controls the motor deceleration rate within set limits to stop the
motor and initiates the STO function (see 4.2.2.2) when the motor speed is
below a specified limit; or

2. initiates and monitors the motor deceleration rate within set limits to stop the
motor and initiates the STO function when the motor speed is below a specified
limit; or

3. initiates the motor deceleration and initiates the STO function after an appli-
cation specific time delay.

NOTE: This safety function corresponds to a controlled stop in accordance with stop
category 1 of IEC 60204-1.

For the development of this PDS for DC-Motors, variant 3 of SS1 function as men-
tioned above shall be selected.



1.2. FSAR CHAPTER 1. INTRODUCTION FSAR

As mentioned in Chapter 1.1.2, it is the intention to sell the SIMOREG c© PDS world-
wide in the main automation markets. Therefore, additional safety standards have to be
taken into account. A detailed description and their dependencies will be discussed in
chapter 2.1. Due to the reason that such safety standards directly impact the safety
architecture, the considered safety standards and their top-level requirements for the
safety integrity are listed below. The investigation of the effected safety standards was
already part of this thesis and is documented in the Safety Requirements Specification
[Gri08].

• ISO 13849-1:
The standard "Safety of machinery – Safety-related parts of control systems – Part
1: General principles for design" shall be applied. According to the ISO 13849-
1, the target system shall satisfy the requirements for a category 3 with a PL d
(Performance Level).

• IEC 61508:
The generic basis standard "Functional safety of electrical/electronic/programmable
electronic safety-related systems" shall be applied. According to the IEC 61508,
the component shall achieve at least SIL 2 where the E/E/PE safety-related system
operates in a high-demand mode. Further details will be given in the Section Relevant
Functional Safety Standards 2.1.

Based on these top-level requirements, an entire safety concept for a failsafe system
shall be developed whereby the concept shall be verified by TÜV SÜD [TS11], an indepen-
dent certification body. Additionally to the requirements of the relevant safety standards,
the safety concept shall consider the economic facts of the SIMOREG-plus product devel-
opment. Economic facts are considered in this thesis as (1) time to market, (2) product
and development costs as well as the (3) experience and know-how of the department in
which the system shall be developed, produced and maintained. Special attention should
be paid to (1) due to the fact that the desired solution is in competition with external
measures to realize safe stops in today’s automation systems with DC motors and (3).

A further internal process requirement shall be an "independence" from the develop-
ment of the PDS for the standard functions. In the best case, a separate internal module
which extents the standard PDS with safety functions shall be developed. Therefore, a
subproject in the framework of the SIMOREG-plus project has been launched which is
responsible for the entire development and certification of the safety-critical system. This
subproject is the main driver and coordinator for the research activities of this dissertation.

In the context of this thesis, the safety concept consists of requirements, architecture,
documents and methods to ensure a safety process conformance development of the safety-
critical system. In course of the development of the safety concept, different architectures
shall be investigated and compared taking into account the requirements mentioned above.

1.2.4 Contribution and Significance

This research activity has been launched in the context of the SIMOREG-plus project
1.2.2. In the framework of this thesis, the entire scientific investigations of the state of the



1.2. FSAR CHAPTER 1. INTRODUCTION FSAR

art and state of the practice of safety-critical system architectures and the corresponding
methods were performed. Based on this research, this thesis claims the following two major
contributions:

1. Fail-Safe Architecture for Reconfigurable Programmable Logic Devices
Based on the given problem definition 1.2.3, different approaches for a suitable sys-
tem architectures were developed and compared. Finally, a novel Fail-Safe Archi-
tecture for Reconfigurable Programmable Logic Devices (FSAR) [GFH+09,
GMSW10a, GMSW10b, GSW08] was selected with the challenge to find and adapt
current methods for validation and verification (V&V) to satisfy the requirements
imposed by the applied safety standards. In contradiction to commonly applied
safety architectures, which are mainly realized via microcontrollers, the presented
solution is based on reconfigurable programmable hardware only. The significance
of the developed architecture is underlined by an international patent which is valid
in Austria, Europe and the United States as well as for various contributions at
international IEEE conferences.

2. Methods
The safety-critical developments start with the determination of the required safety
integrity level (SIL), which is a result of the hazard analysis and risk assessment
(H&R). A detailed application and the differences to other standards are discussed
within the [GKA+,MGA+11].

At the beginning of this thesis, the relevant safety standards did not define detailed
requirements a pure hardware-related implementations built with PLDs, ASICs, FP-
GAs or CPLDs. The investigation of the related work and the check by the inde-
pendent certification body has shown that no similar approach for a certification has
been performed in the automation domain for such an architecture so far. Due to
this reason, a lot of research was necessary to become confident in the development
environment and the applied tool chain. Based on the novel FSAR, a new method
for fault insertion testing was elaborated. A full paper describing this methodol-
ogy [GMSW09] was published and presented at the IEEE International Conference
for Design, Automation and Test (DATE Conference 2009).

1.2.5 Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2, Related Work, represents
the results of the related work, which is split in Relevant Functional Safety Standards,
today’s architectures for safety-relevant systems and analysis methods to ensure the safety
evidences. In chapter 3, Safety Concept FSAR, the methodology to develop a FSAR is
described. Beginning with the methods to determine the safety goals, Hazard and Risk
followed by the description of the System Design, a reference workflow and a new method
to perform fault insertion tests on such architectures are introduced. Chapter 4, Evalu-
ations and Prototype, shows the application of the FSAR to an industrial prototype and
the corresponding evaluation results. Chapter 5, Conclusion and Future Work, gives a
conclusion of the performed work and an outlook on possible next steps and also discusses
current problems with new architectures and methods in today’s safety engineering. Fi-



1.2. FSAR CHAPTER 1. INTRODUCTION FSAR

nally, chapter 6 includes the relevant publications and the corresponding allocations to this
work.

1.2.6 Mapping and Contribution of Publications

Figure 1.4: Assignment and contributions of publications

Within this section, the structure of the dissertation as well as the particular contri-
butions and the relevance of the different publications are discussed. A "big picture" and
a rough structure of this thesis are already described in "Organization of the Thesis". In
addition to 1.2.5, a detailed focus is put on chapter "Safety Concept FSAR"’ in which
the significance and the unambiguous scientific contributions are mapped to the officially
independently reviewed papers.



1.2. FSAR CHAPTER 1. INTRODUCTION FSAR

This thesis starts with chapter "Introduction FSAR". It reflects the evolution of the
thesis and builds the overall bracket. It considers the different motivations as well as
requirements derived from all listed publications in Chapter 6:

• Publication 1: A Computer-Aided Approach to Preliminary Hazard Analysis for
Automotive Embedded Systems [MGA+11]

• Publication 2: Improving Automotive Embedded Systems-Engineering at European
Level [GKA+]

• Publication 3: WO2009080384A1 - Method for actuating an DC machine [GFH+09]

• Publication 4: Design and Implementation of Safety Functions on a Novel CPLD-
based Fail-Safe System Architecture [GMSW10b]

• Publication 5: CPLD basierende homogen redundante fehlersichere Architektur [GSW08]

• Publication 6: CESAR:Cost-efficient methods and processes for safety-relevant em-
bedded systems [GMP+10]

• Publication 7: Model-based Toolchain for the Efficient Development of Safety-relevant
Automotive Embedded Systems [AGZ+11]

• Publication 8: Fault Insertion Testing of a Novel CPLD-based Fail-Safe System
[GMSW09]

• Publication 9: A CPLD-based Safety Concept for Industrial Applications [GMSW10a]

In particular, the introduction chapter starts by highlighting the needs for today’s em-
bedded systems which have to cope with challenges such as additional complexity and
costs while not jeopardizing the system properties safety, reliability dependability. After
an unambiguous definition of the relevant safety terms, the projects SIMOREG-plus and
CESAR are described. This chapter ends with a detailed problem description, a clear
statement to the contribution of scientific significance and the organization of this
thesis.

Chapter "Related Work" contains the detailed results of the scientific investigations
and comparisons with relevant work in the dedicated field of application as well as the
safety state of practice. It is obvious that all publications provide a focused state of the
art on the different aspects and different levels of details for this chapter.

Chapter "Safety Concept FSAR" describes the scientific significances and work per-
formed within this thesis and published in several publications. It starts with sub-chapter
"Hazard and Risk", which is a key element to enter safety-critical development. In
[MGA+11] as well as in the international journalpaper of ÖVE [GKA+], the approach
of an Hazard Analysis and Risk Assessment (H&R) is deeply discussed. Furthermore, the
difference between the determination of the safety integrity level between the generic basic
standard IEC 61508 [Com02] and the automotive application standard ISO 26262 [Int10]



1.2. FSAR CHAPTER 1. INTRODUCTION FSAR

are described.

After the H&R, the focus is put on sub chapter "System Design" on the fail-safe sys-
tem architecture and its features, the, patent [GFH+09] valid in the US, EU and AT
underlining the significance of the chosen fail-safe architecture. The scientific relevance
is given by the publications of this architecture at the international conferences (IEEE,
Springer) [GMSW10b,GSW08].

Sub-chapter "Safety Workflow" depicts the applied tool chain [GMSW10b] for the par-
ticular problem definition. In context with publications [GMP+10, AGZ+11], the strong
need for an integrated tool-chain as well as the seamless safety argumentations for such
tool chains are clearly expressed.

Sub-chapter "Implementation" with publication [GMSW10b] shows the realization of
the required safety functions according to the IEC 61800-5-2 as well as the implemented
measured to ensure the adequate safety integrity according to IEC 61508 and ISO 13849.

In sub-chapter "Fault-Insertion Testing", a new methodology for fault-insertion testing
was developed. The developed method for “Fault-Insertion Testing of a Novel CPLD-
based Fail-Safe System” [GMSW09] underlines the significance of this work and was
published and presented on DATE Conference 2009.

The main part for chapter "Evaluations and Prototype" are contributed by publications
[GMSW09, GMSW10a]. In [GMSW10a], which is a publication at the largest industrial
IEEE summer conference yearly, an application of the fail-safe architecture was described.
Furthermore, evaluation results from fault insertion testing from the DATE publication
[GMSW09] are discussed.



Chapter 2

Related Work

The picture 2.1 shows an overview of the number and the year of references listed in the
bibliography at the end of this thesis. It reflects the two phases of the related work analysis
at the beginning (peak 2008) and the end (peak 2010) of this thesis.

Figure 2.1: Overview references in the literature chapter (Axes:Number/Year)

2.1 Relevant Functional Safety Standards

As discussed in section 1.1.1, safety is defined as the ability of a system to not cause or
contribute to the occurrence or aggravation of harm. In this context, the overall goal
associated with safety is to transform the severity and likelihood of risk inherent in all
human activity to lower, acceptable levels.
Therefore, independent from the domains, functional safety standards deal with product
safety or system safety. In particular, they prescribe the application of special technical
and managerial skills and procedures in a systematic, forward-looking manner in order
to identify and control hazards throughout the entire life cycle of a project program or
activity.

Of particular interest for this work are safety standards in the field of automation
for machinery. An overview of the relevant standard landscape is described in [AG07].
According to the "Hierarchy of European standards for machine safety", the European

17



2.1. Relevant Functional Safety Standards CHAPTER 2. RELATED WORK

safety standards can be split in (1) basic safety standards (type A standards), (2) safety
group standards (type B1 standards and type B2 standards) and (3) machine-specific
technical standards (type C standards).

Figure 2.2: Hierarchy of European standards of machinery safety. Figure from Lueze
Electronics.

• Type A Standards
The design principles and basic concepts defined in type A standards are mandatory
for all machines. Examples are EN ISO 12100-1 “Safety of machinery - Basic con-
cepts, general principles for design” or ISO 14121-1/EN 1050 “Safety of machinery
- Principles of risk assessment” . This kind of standard provides (1) methods and
instructions for determining risks 1.1.1 that are connected with the machine and
(2) different approaches for preventing risks with the objective of integrating safety,
even before the machine manufacturing begins. Also the generic safety standard IEC
61508 [Com02] can be classified as a kind of Type A Standard [LPP10].

• Type B Standards
Type B Standards are divided into (1) Type B1 standards where generally higher
safety aspects with possible solutions for these aspects are described, such as ISO
EN 13849 [fS06] “Safety of machinery - Safety-related parts of control systems - Part
1: General principles for design”, and (2) Type B2 standards where normative re-
quirements of special protective devices, such as emergency STOP buttons (e.g. IEC
60204-1 [Com05a]), safety door switches etc. are grouped together. The manufac-
turer of such products and the machine designer must consider the requirements of
these standards for the design and testing of safety components in the usage in their
machines.

• Type C standards
This type of standard, also called sector standard, describes specific measures for



2.1. Relevant Functional Safety Standards CHAPTER 2. RELATED WORK

reducing risks in a particular field of application, special machines or machine types.
If a C standard exists for the machine type in question, it takes priority over a B
type or A type standard defined above. If there are additional hazards that are
not addressed in the standard, or if there is no special C standard for the machine
being planned, risk reduction in accordance with A and B standards must be made.
The IEC 61800-5-2 [Com05b] is a typical type C standard.

2.1.1 IEC 61508

The first relevant standard is the application-independent standard for functional safety.
This international standard sets out a generic approach for all safety lifecycle activi-
ties for systems comprised of electrical and/or electronic and/or programmable electronic
(E/E/PE) elements that are used to perform safety functions [Bör07]. The first edition
of the IEC 61508 [Com02], which was published in the year 2000, does not define special
requirements for the development of safety-related systems using CPLDs. The responsible
committee for the second edition of the IEC 61508 has detected this gap. Thus, the second
edition of the IEC 61508 [Com10], which replaced the first edition in April 2010, includes
detailed requirements concerning the development of safety functions using ASICs, FPGAs
and CPLDs.

During the development phase of the FSAR, a draft of part 2 of IEC 61508 was avail-
able, which includes requirements for design, implementation and verification of CPLD-
based safety-critical systems. The draft defines a V-model of the safety lifecycle for ASIC,
FPGA and PLD designs. There are similarities between the development of safety-critical
software and the development of ASIC, FPGA and PLDs. Thus, the V-model of ASIC,
FPGA and PLD designs is similar to the V-model of the development of safety-critical soft-
ware. Additionally, Annex B of the draft of part 2 contains a table which defines measures
and techniques to avoid systematic faults in the development process of user-programmable
(PLD, CPLD and FPGA) for different safety integrity levels. There are requirements for
design entry, synthesis, placement, routing, layout generation and production. The pre-
sented fail-safe system to experimentally evaluate the FSAR concept was developed in
adherence to the “available draft 2008” of part 2 of IEC 61508. Additionally, guidelines
(e.g. [SHM05]) for developing safety-critical systems using hardware description languages
were considered. With [Cle09] a paper is published which identifies how faults/failures
arise in FPGA and which mitigations can be applied in the development. This knowledge
serves as basis for an approach to arguing FPGA safety as well as a framework for safety
assessments with IEC 61508 standard.

The IEC 61508 introduces definitions and terms to enable a systematic approach to
compare and evaluate the safety integrity of different E/E/EP systems. Similar definitions
for other safety standards are derived from the basic standard IEC 61508 like the ASIL
(Automotive SIL) in ISO 26262 [Int10]. The proof of the safety integrity is one of the most
important topics in the independent certification or qualification of safety-critical systems.
Finally, one major goal is the achievement of a SIL 2 for the FSAR according to IEC 61508
whereby the SIL is directly connected to the Safe Failure Fraction (SFF) 2.1 and the
operation mode. The relevant operation mode is already predefined as continuous
mode in the IEC 61800-5-2 in section 2.1.3. To be able to determine the SFF, respectively
the SIL, further definitions are necessary. In the following, some important definitions from



2.1. Relevant Functional Safety Standards CHAPTER 2. RELATED WORK

SIL Probability of a dangerous failure per hour
(PFHsys)

4 ≥ 10−9 to < 10−8

3 ≥ 10−8 to < 10−7

2 ≥ 10−7 to < 10−6

1 ≥ 10−6 to < 10−5

Table 2.1: Safety Integrity Level (SIL) in high demand or continuous mode of operation.

the IEC 61508 are listed.

• Safety Integrity
Is the probability of an E/E/PE safety-related system satisfactorily performing the
required specified safety functions under all the stated conditions within a stated
period of time.

• Safety Integrity Level(SIL)
Is the discrete level (one out of a possible four), corresponding to a range of safety
integrity values, for specifying the safety integrity requirements of the safety functions
to be allocated to the E/E/PE safety-related systems, where safety integrity level 4
has the highest level of safety integrity and safety integrity level 1 has the lowest, see
table 2.1.

• Hardware Fault Tolerance(HFT )
The HFT (Hardware Fault Tolerance) of a safety-critical system is determined by
the number of failures which can cause a loss of one or more safety functions. In
particular, a system with an HFT of N means that N +1 faults can cause the loss of
the safety function. Due to this reason, systems with an HFT of N consist of N + 1
channels which have the capability to independently carry out the safety functions.

• Failure Rate λ
safety-critical systems consist of one or more components, whereby each of these
components has its own failure rate λ. Due to the "aging", the failure rate is changing
over the time, but for a specific mission time the failure rate can be simplified and
assumed to be constant. The corresponding failure rates will be determined in an
experimental manner only. The failure rated is split in:

– Rate of safe detected failure λS (S ... Safe)
– Rate of detected dangerous failures λDD (DD... Dangerous Detectable)
– Rate of undetected dangerous failures λDU (DU ... Dangerous Undetectable)

• Safe Failure Fraction (SFF )
The SFF of a safety-critical system describes the ratio of the average rate of safe fail-
ures plus detected dangerous failures of the E/E/PE safety-related systems towards
the total average failure rate of that system.

SFF =
∑

λS +
∑

λDD∑
λS +

∑
λDD +

∑
λDU

(2.1)



2.1. Relevant Functional Safety Standards CHAPTER 2. RELATED WORK

Figure 2.3: Failure rate distribution. Figure from [BHU08].

In the position paper of EXIDA [EXI10], a redefinition of this quantity is proposed.
Failures like fail annunciation, failures with no effect or residual failures shall not be
included in the SFF calculation in order to not falsify the SFF.

• Diagnostic Coverage (DC)
The DC (Diagnostic Coverage) is the fraction of dangerous failures detected by
automatic on-line diagnostic tests. The fraction of dangerous failures is calculated
using the dangerous failure rates associated to the detected dangerous failures divided
by the total rate of dangerous failures.

DC =
∑

λDD∑
λDD +

∑
λDU

(2.2)

• Common Cause Failure (CCF )
(CCF ) are failures that are the result of one or more common events causing coinci-
dent failures of two or more separate channels in a multiple channel system leading
to system failure. The probability of a common cause failure will be expressed by
the β factor. Therefore, two kinds of beta factors are defined:

– Rate of undetected system failures in case of common cause β

– Rate of detected system failures in case of common cause βD

2.1.2 EN ISO 13849

The second basic standard concerns the safety of machinery and is mainly relevant to
vendors of safety-critical components for machinery. The first part of the EN ISO 13849-1
[fS06] provides safety requirements and guidance on the principles for the design and in-
tegration of safety-related parts of control systems, including the design of software. This
standard defines so-called "categories" (Cat) and "performance-levels" (PL) to determine
the safety integrity.



2.1. Relevant Functional Safety Standards CHAPTER 2. RELATED WORK

As mentioned in section 1.2.3, the aim of FSAR is to achieve a category 3 with a
performance-level d to make the presented architecture applicable on our target market
without any limitations. Consequently, two requirements defined in EN ISO 13849-1 con-
cerning the system architecture and the required safety integrity need to be fulfilled:

• A single fault must not cause the loss of the safety functions.

• A single fault has to be detected at the time when a safety function is demanded or
earlier.

These requirements constrain the use of an architecture consisting of two independent
channels. Thus, the required hardware fault-tolerance (HFT) is 1. It is not possible
to satisfy these requirements with an architecture consisting of a single channel.

2.1.3 IEC 61800-5-2

The IEC 61800-5-2 [Com05b] is a derived sector standard from the generic basic standard
IEC 61508. Generally, derived sector standards are describing requirements for special
fields of application. In this work, the international standard IEC 61800-5-2, which de-
scribes the requirements for adjustable speed electric drive systems, has to be considered
for the FSAR as well. As mentioned above, the 61800-5-2 is a typical C standard and has
priority over the other safety standards listed above.

This International Standard is only applicable if functional safety of a power drive
system (PDS) is claimed and the PDS (safety-related) is operating in the high-demand or
continuous mode. Figure 2.4 shows the functional elements of a PDS that are considered
in this part of IEC 61800-5-2.

Figure 2.4: Considered parts in IEC 61800-5-2 of a PDS (safety-related). Figure from
IEC 61800-5-2.



2.2. Safety Architectures CHAPTER 2. RELATED WORK

2.2 Safety Architectures

Various architectures for safety-critical systems have been proposed so far. In general,
safety-critical system architectures shall provide a deterministic behavior under conditions
of failure. In [SD06], architectures and strategies to achieve safety integrity are described
taking into account several criteria for the selection of the suitable architecture whereby
the typical criteria for selecting a specific strategy are split in:

• Primary criteria
The selected architecture must meet system safety requirements. E.g. failure man-
agement within the system safe response time (Meaning the system transition to a
safe state within the required safe fault response time).

• Secondary criteria

1. Level of independent checking is provided

2. Performance

3. Available technology

4. Effort of development

Micro-controllers are frequently used for the realization of safety-critical embedded
systems [SD06]. A drawback is that they require the implementation of complex safety
integrity measures like RAM and CPU tests. The implementation of these safety integrity
measures requires large efforts. If the safety functions, which need to be realized, are
comparably incomplex, the largest part of the implemented source code is dedicated to
the testing of RAM, CPU and periphery, and only a little source code is dedicated to
the implementation of safety functions. In the following, different approaches for fail-safe
controller architectures will be discussed, highlighting the benefits of each approach.

• Single-controller Strategy
A single-controller failsafe strategy, as shown in figure 2.5, consists of a single micro-
controller executing the target application software and self-tests which collaborate
with a primitive watchdog. The primitive watchdog provides a limited-level of inde-
pendent checking for the micro-controller. The basic idea is that the micro-controller
has to periodically trigger the watchdog. If such a trigger is not performed within a
defined time interval, the watchdog resets the micro-controller. The disadvantage of
such an architecture is that a simple watchdog has no information about the internal
calculation state or potential failures of the micro-controller, e.g. an incorrect output
calculation.

• Symmetric-controller Strategy
Two identical micro-controllers (homogeneous redundancy) execute the same pro-

gram, and their computations depend on the same inputs. The controllers communi-
cate and compare their results in order to detect faults. Additionally, they perform
checks for communication time-outs. Thus, each micro-controller serves as watchdog
for the other micro-controller. This strategy has the advantage to provide a good
diagnostic coverage of hardware faults and random hardware failures with minimal



2.2. Safety Architectures CHAPTER 2. RELATED WORK

Figure 2.5: Single-controller strategy consists of a micro-controller which collaborates with
a primitive watchdog. Figure from [SD06].

effort devoted to developing self-checking diagnostics. This strategy has to cope with
challenges such as (1) in the synchronization of the micro-controller, (2) real-time
application and (3) the necessary consideration of common cause failures, see section
2.1.1.

Figure 2.6: Symmetric-controller strategy consists of two identical micro-controllers (ho-
mogeneous redundancy). Figure from [SD06].

• Asymmetric-controller Strategy
An intelligent watchdog (ASIC or low cost processor) collaborates with a micro-

controller. The intelligent watchdog verifies the micro-controller’s integrity by re-
questing periodic diagnostic checks. The strategy has the potential to provide a high
level of independently checking at lower costs compared to the symmetric processor
strategy.

Figure 2.7: Asymmetric-controller strategy consists of a micro-controller and an intelligent
watchdog (ASIC or low cost processor). Figure from [SD06].

The asymmetric controller strategy is currently the most frequently applied strategy



2.2. Safety Architectures CHAPTER 2. RELATED WORK

in the automotive industry. Based on the basis EGAS concept [ABD+07] by Robert
Bosch, the EGAS Working-Group has developed a standardized SW and HW concept
to control and monitor the torque in gasoline and diesel engines. Today, the concept
is used in many different applications. The basic idea is a diverse calculation of the
safety functions in the function controller with an independent intelligent check of
the controller commands by a monitoring unit 2.8.

However, the asymmetric controller strategy has the same disadvantage as the single-
controller strategy due to the reason that no information about internal calculation
state or potential failures from the function controller are available on the monitoring
unit.

Figure 2.8: EGAS monitoring concept for engine management systems of gasoline and
diesel engines. Figure form [ABD+07].

• Dual-core controller Strategy
The basic principle of a dual-core strategy is the duplication of the core in one

microchip. Due to this duplication and a close communication between the cores,
e.g. lock step mode, this strategy is able to easily detect discrepancies. The dual-
core approach provides a high safety integrity and a high coverage of random hard-
ware failures. In [RW10], the applicability of a multi-core technology in the light
of [Com02] is analyzed. The different components (hardware, software and operation
system) of the multi-core architecture are evaluated concerning their redundancy,
diagnostic coverage and diversity. Furthermore, commercially available multi cores
are compared. Dual-core and multi-core architectures are very promising approaches,



2.2. Safety Architectures CHAPTER 2. RELATED WORK

but the major disadvantage of such strategies are the β − factor and the associated
common cause failures, see section 2.1.1.

Figure 2.9: Dual-core controller strategy. Figure from [SD06].

• Distributed controller Strategy
The principle of the distributed controller strategy is similar to the symmetric con-
troller strategy where the safety function is calculated two times in two independent
controllers and the results are be compared afterwards. Additionally to the sym-
metric controller strategy this concept has further challenges like available network
bandwidth, fault response times, available controller throughput, synchronization
issues etc. which have to be taken into consideration prior of the selection of this ap-
proach. This strategy sounds very promising for an application in vehicles. In order
to find solutions to those challenges mentioned above the ARTEMIS R&D project
Pollux [Pol10] was launched in 2010 with the objective to develop a distributed real
time embedded systems platform for the next generation electric vehicles.

Figure 2.10: Distributed controller strategy of two micro-controllers connected via a bus.
Figure from [SD06].

In [BHU08], safety systems on a single FPGA are discussed. The authors introduced
a 1oo2-RISC architecture with a controller unit which compares their results, in case that
both processors providing different results the system enters a safe state. A focus is put
on placement and routing of the components on the FPGA as well as the tools supporting
these. Furthermore, a first evaluation of the safety characteristic (e.g. PFD, failure rate)
is performed taking into account the [Com02]. However, the CCF, which is the limiting
factor to apply and certify such architectures, is not treated within this work.

The controller unit mentioned in [BHU08] is realized in [ZAMY10] in a separated
FPGA for a 2oo4-system. The micro-controller data are compared between the depended



2.2. Safety Architectures CHAPTER 2. RELATED WORK

micro-controllers to detect faults. Additionally, the controlling of the data storage the
FPGA is intended to connected micro-controllers to the SRAMs. Furthermore, the data
are extended with an error detection code (hamming code) to increase the reliability of
the system. The diversity of this approach is very promising due to the fact that different
architectures (micro-controllers and FPGAs) are connected, however, there are no state-
ments on the safety-related process for the FPGA development and the problematic of the
CCF for FPGA, which is the single element of this distributed architecture.

In [BFM+03], fault-tolerant architectures are reviewed. The authors investigated how
to implement architectures, which contain multiple CPUs on a single chip. The consid-
ered architectures are lock-step, loosely-synchronized dual-processor and triple modular
redundant (TMR). Additionally, the authors propose new architectures for the integration
into a single chip only. The integration of fault-tolerant systems into a chip is problematic
because of common cause failures. These failures affect all duplicates of a circuit due to
the same cause (e.g. faulty clock tree or power supply). Thus, it is difficult to reach high
levels of safety integrity with this approach without additional measures.

Although the integration of safety-critical systems into a single chip is difficult, an
approach to reduce the probability of common cause failures is described in [MF07]. The
authors use a library of Intellectual Property blocks, which can be used for fault detection
and fault-tolerance. Their architecture includes a block which performs memory protection.
A supervisor performs diagnostic checks of the CPU. The checks are mainly implemented in
hardware. The system bus and the interfaces to peripheral components are supervised by
separate blocks. Another bus system is used for the communication between the diagnostic
units. The authors refer to this approach as faultRobust.

The approach reduces the probability of the occurrence of a common cause failure,
as some blocks are architecturally or functionally diverse. Thus higher levels of safety in-
tegrity can be realized without additional measures to decrease the probability for common
cause failures. To certify intellectual property, which belongs to the faultRobust approach,
in adherence to the standard IEC 61508, a system FMEA (failure modes and effects anal-
ysis) on SoC (System on Chip) level can be used, as described in [MBC07]. With this
methodology, it is possible to assess the SFF (safe failure fraction) of the SoC.

A TMR (triple modular redundancy) system consisting of multiple PLDs is described.
In [AMF05], the utilization of such PLDs to design safety-critical systems is proposed.
The authors claim that most of the faults which affect safety-critical systems occur at the
interfaces. Thus, the integration of safe input cells and safe output cells into the PLDs is
proposed.

A safe input cell receives inputs from three sensors which measure the same safety-
critical physical quantity. A voter circuit determines the probably correct value of the
physical quantity. Safe output cells represent the logic value 1 by a periodic signal, while
the logic value 0 is represented by a constant signal. Safe input cells and safe output cells
comprise an additional state machine, circuitry for the detection of failures and circuitry
for the signaling of errors to other system components.



2.3. Safety-Critical Methods CHAPTER 2. RELATED WORK

Totally self-checking circuits are described in [BMSS00]. The output of circuits is
separated into code words and noncode words. If no fault occurred, the output of a circuit
is a code word. If the output of a circuit is a noncode word, a fault occurred. A dedicated
circuit (checker) decides whether the output of a circuit is a code word or a noncode word
and signals a fault if necessary.

The approach reduces the probability of the occurrence of a common cause failure as
some blocks are architecturally or functionally diverse. Thus, higher levels of safety in-
tegrity can be realized without additional measures to decrease the probability for common
cause failures.

The authors of [MSM00] discuss common mode failures (CMF) in redundant systems
focusing on VLSI systems. They refer to the term common mode failure as the result of an
event which, because of dependencies, causes a coincidence of failure states of components
in two or more separate channels of a redundancy system, leading to the defined system
failing to perform its intended function. The authors use the terms "common mode failure"
and "common cause failure" interchangeably.

According to the authors, CCF can occur in hardware or software. They can be caused
by permanent faults (e.g. bugs) or intermittent faults (e.g. weak signals) introduced
during the development process of a redundant system. Exemplary faults are ambiguous
specifications, bugs of used tools, incomplete verification, manufacturing defects or non-
exhaustive testing. CCF can also be caused by external disturbances during the operation
of the redundant system. Caused effects can reside transiently or permanently.

Techniques to handle common cause failures comprise CMF avoidance (use of mature
and verified components, conformance to standards, use of formal methods, use of design
automation, implementation of design rules, diverse realization of redundant components),
CMF removal (design reviews, simulation, verification, testing and fault-insertion) and
CMF tolerance (watchdog timers, exception handlers, runtime checks, concurrent error
detection).

2.3 Safety-Critical Methods

As described in the IEC 61508 and mentioned in section 1.1.1, the two major aims of
functional safety standards in the development phase are (1) the avoidance and control of
systematic errors during the development and (2) the control of malfunctions and random
hardware failures during the operation.

To support the first aim mentioned above, various categories of safety and dependabil-
ity analyses can be identified, corresponding to various categories of objectives, depending
on the system to be developed. Safety is a subject across the different engineering phases,
implying various approaches depending on the development phase addressed. Early stages
of the safety life-cycle aim at the identification of requirements and the exploration of the
implications of design, whereas later life-cycle stages focus on the successful implementa-
tion of the requirements.

Typical safety analyses required by safety standards include:



2.3. Safety-Critical Methods CHAPTER 2. RELATED WORK

• Hazard analysis and risk assessment

• System Safety Assessment, generally supported by Fault Tree Analysis, Failure Modes
& Effects (and Criticality) Analysis (FMEA), Common Cause Analysis etc. [ZLQ10]

• Verification and validation (e.g. fault insertion tests), in particular of the implemen-
tation of safety and functional safety requirements

In [CB10], methods are introduced to analyze a modular design embedded in an FPGA
exhaustively. In particular, a semi-automated FPTC (Fault Propagation and Transforma-
tion Calculus) analysis technique is used to perform safety analysis and to support the
creation of the safety case. This bottom-up approach can be linked with other safety anal-
yses like a FMEA in order to enhance and verify safety properties required.

An example to design and test FPGA-based safety-critical systems is introduced in
[KSS09]. This paper describes regulatory requirements for safety-critical systems as well
as methods and test-applied in different development stages of FPGA projects in nuclear
power plants. The authors investigate the fulfillment of the safety requirements on a low-
level. Complementary to this detailed low level analysis of a single FPGA and its com-
ponents (e.g. lock-up tables), this thesis focuses on arguing safety on system level (FSAR).

One important method in the domain of industrial automation is fault insertion testing,
which is usually applied for the verification of micro-controller-based fail-safe systems. The
aim of fault insertion tests is to emulate faults in the system hardware [Com02]. Then the
responses of the faulty system are analyzed. These kinds of tests are used to assess the
dependability of the system in case of a fault.

A fault can be injected into a micro-controller by modifying the executed program,
which is usually implemented using C or C++. In this case, the program can be modified
with preprocessor commands to inject a fault. Then, the program needs to be recompiled
and loaded into the micro-controller, which has to emulate the fault.

In contrast to micro-controller-based fail-safe systems, the fail-safe system based on the
FSAR requires a new method to perform fault insertion testing because these devices do
not execute programs implemented in C or C++.

In [GBGG01], VHDL-based fault insertion techniques are discussed. A saboteur is a
component that is added to a VHDL-description to alter the timing characteristic or the
value of a signal if the saboteur is activated. During the normal operation of the system,
the saboteur is inactive. Saboteurs can be used to inject various fault types like stuck-at
faults, bit-flips, bridging-faults or delay faults. Mutants are components which replace
corresponding components. If a mutant is activated, it behaves like the corresponding
component in presence of a fault. If the mutant is inactive, it behaves like the fault-free
corresponding component. A mutant can either be created by adding saboteurs to a struc-
tural model description, by replacing subcomponents of a structural model description or
by modifying the syntactical structures of a behavioral description [JAR+94]. It is pos-
sible to inject various fault types like assignment control, stuck-else or stuck-then using
mutants [GBGG01].



2.3. Safety-Critical Methods CHAPTER 2. RELATED WORK

In [BHU08], a fault insertion is mentioned in a 1oo2-RISC FPGA architecture by ma-
nipulating the VHDL-code of one RISC processor. An additional controller compares
signals from both RISC processors and generates an alarm in case of inconsistency.

In [GYJ97], the use of PLDs is proposed to accelerate a fault simulation. A PLD is
connected to a host computer. The circuit which has to be simulated is entirely or partly
mapped on the PLD. The host computer executes a simulation program, which applies
input vectors to the circuit. The responses are read back by the host computer. The
authors distinguish between dynamic and static fault-insertion. In case of dynamic fault-
insertion faults are injected during run-time. Multiplexers are inserted into the circuit to
emulate stuck-at faults. The multiplexers contain two inputs. One input is connected to
the correct input value and the other input is connected to a 1 or a 0 (stuck-at fault). The
host computer controls the selector wire of each multiplexer. Thus, it can determine if the
correct input value or the stuck-at fault is switched to the output of the multiplexer. The
advantage of this approach is that the circuit description has to be compiled only once.
Also, the PLD has to be configured only once. The disadvantage is that the multiplexers
require additional PLD resources. Furthermore, the delay of the circuit increases, limiting
the maximal clock speed. An alternative approach is static fault-insertion. In this case
faults are injected into the circuit during compile-time. Thus, whenever the circuit has to
be simulated using another set of faults, the circuit description needs to be recompiled and
the PLD needs to be reconfigured. The disadvantage is that the frequent recompilation
and reconfiguration increases the duration of the simulation. The advantage is that no
additional multiplexers are inserted. Hence, no additional PLD resources are needed and
the delay of the circuit is not increased.

In [ERTU06], the use of a single FPGA as fast simulation environment is described.
A faulty version of a circuit and a fault-free version of the same circuit are emulated con-
currently. A comparator compares the output of the faulty circuit to the output of the
fault-free circuit. If the output differ from each other, a fault was detected. An LFSR (lin-
ear feedback shift register) is used to generate test vectors for the circuits. An additional
state machine controls the fault simulation.

The IEC 61508 requires fault insertion testing for the verification of safety-related
systems. Thus, fault insertion testing is an important prerequisite for the successful certi-
fication of a system in adherence to the IEC 61508.



Chapter 3

Safety Concept FSAR

There are a lot of interpretations in the different standards for the term Safety Concept.
For instance, the ISO 26262 [Int10] splits the functional safety-related activities in the
concept phase in

1. Item definition,

2. Initiation of the safety lifecycle,

3. Hazard analysis and risk assessment (H&R),

4. Functional safety concept.

Within this thesis, the term Safety Concept will be used for all applied methods,
tools and activities including the safety architecture with its safety integrity measures.
The aim is to ensure a seamless safety argumentation chain for the development of the
safety-related product. Here, term Safety Concept refers to an extended concept phase
which additionally includes a detailed technical safety concept, System FMEA, V&V Plan
and the "qualification" of the used tool chain. In contradiction to the Safety Case, for
which the focus is on providing traceable safety argumentation for all activities, the focus
of the Safety Concept is on planning the development and V&V of a safety-related product.
The Safety Concept phase in this case ends with an official Proof of Concept from an
independent assessment institute such as TÜV-Süd. In the following sections the main
activities will be discussed.

3.1 Hazard and Risk

The determination of the requested safety integrity as well as the term describing the safety
integrity ase slightly different for the various functional safety standards.

In the automotive domain, a necessary first step in the process for the development
of a new vehicle is the application of hazard analysis and risk assessment (H&R)
[MGA+11,JWR07] by a team of people with a wide variety of knowledge and skills [Nan95].
This analysis technique is applied qualitatively before concrete design solutions are elabo-
rated and enough numerical values are defined to allow the application of other techniques
such as simulation or quantitative safety analyses. The purpose of the early application

31



3.1. Hazard and Risk CHAPTER 3. SAFETY CONCEPT FSAR

of hazard analysis and risk assessment are the identification and assessment of potential
hazards of a newly developed vehicle that are caused by potential failures of the vehicle’s
embedded system.

The early knowledge about the existence of hazards allows the definition of safety goals
(top-level safety requirements to the embedded system) with the desired ASILs, even if
detailed and quantitative information about the vehicle under development is insufficiently
available. Considering the safety goals, a safety-critical embedded system design (typically
including runtime fault detection capabilities) is developed that is able to best achieve
the defined safety goals and to control or mitigate the identified hazards. Although the
application of H&R alone cannot ensure safety of a vehicle, it is a necessary first step in
order to eliminate or control hazards through adequate design, implementation, integra-
tion, verification and validation. The early application of a hazard analysis is required by
the safety standard ISO 26262 for automotive E/E system development.

Figure 3.1: SIL Determination according to IEC 61508-5. Figure from [Com10].

In the automation domain [GSW08], the control of hazards and the determination
of the safety integrity level follows the same principle. In particular, the IEC 61508,
as application-independent basic standard, also includes a mandatory hazard and risk
assessment in order to identify the adequate safety integrity level (SIL) as a combination
of (1) consequence, (2) exposure time, (3) possibility of failing to avoid hazard and (4)
probability of the unwanted occurrence. The determined SIL directly impacts the entire
development process of the safety-related product. One noteworthy difference in the H&R
between automotive standard (ISO 26262) and automation standard (IEC 61508) is that



3.2. System Design CHAPTER 3. SAFETY CONCEPT FSAR

in the ISO 26262, the effects of hazards are assessed in the context of possible operational
situations, deriving a corresponding ASIL, which is a combination of (a) severity, (b)
exposure and (c) controlability. Contrary to the IEC 61508 where factor (3) can reduce
the required SIL one level only, the comparable factor (c) in the ISO 26262 can fully impact
the derived ASIL as discussed in [GKA+]. In case the hazard is controlable by the driver,
no ASIL independent from severity or exposure is required.

It is obvious that the determination of the corresponding safety integrity level strongly
depends on the target application. However, in case of product (components) development,
like the SIMOREG-plus project, the detailed target applications are not known. Therefore,
only a rough determination of the SIL can be performed. In this case, the determination
is based on (1) experience from the target market including its requirements, (2) possible
applications with a rough SIL determination and (3) potential new economic facts. The
results of this SIL determination and the derived safety requirements are described in the
Safety Requirements Specification [Gri08] and listed in section 1.2.3.

3.2 System Design

3.2.1 Fail-Safe Architecture

The presented fail-safe system is based on the novel CPLD-based fail-safe system archi-
tecture which was patented by SIEMENS [GFH+09] in 2008 and first time presented
in [GSW08]. The fail-safe system contains two channels (HFT=1). Each channel is able
to perform the safety functions independently. Thus, if a channel is affected by a fault,
the other channel is still able to execute the safety functions. The entire system enters
the safe state if a faulty channel is detected. Figure 3.2 illustrates the fail-safe system. It
comprises the following entities:

Figure 3.2: Fail-safe System Architecture (see figure 1.4.



3.2. System Design CHAPTER 3. SAFETY CONCEPT FSAR

• The terminals STO1, SS11, STO2, SS12 are connected to an external device (e.g.
a control panel) that can be used to activate the safety functions STO and SS1.

• The input stages represent an interface for the activation of the safety functions
that assures electrical isolation by optocouplers.

• The two CPLDs realize the safety functions. In order to be able to perform diag-
nostic checks, the CPLDs exchange signals. The CPLDs control the safety-critical
outputs (OUT1 and OUT2) of the fail-safe system. Each CPLD is clocked by a
separate external oscillator.

• The terminals OUT1 and OUT2 are connected to an electric motor to allow power
to be applied to the motor or to respectively shut down the motor.

• Each channel contains a temperature monitor to detect temperature deviations
from a specified range.

• There is one voltage monitor for each channel which detects whether the supply
voltage is leaving a specified range. Furthermore, both channels of the fail-safe system
are protected against dangerous overvoltage.

Since the fail-safe system constitutes a supplement to a power converter, it is directly
attached to this device via dedicated pins (not illustrated). These pins are used as power
supply and for the communication with a DSP (Digital Signal Processor) that is part of
the power converter and controls the electric motor. The fail-safe system and the DSP use
a SPI (Serial Peripheral Interface) to communicate. This DSP is configured as SPI-master.
The CPLDs are configured as SPI-slaves.

3.2.2 Fail-Safe System Behavior

When the system is in the safe state [GMSW10b], the safety-critical outputs are switched
to ground (GND) and no power is applied to the motor. Consequently, the motor coasts
and is not able to cause harm to people, environment or property. If the system is in the
unsafe state, the safety-critical outputs are switched to VDD and the motor can rotate.
A rotating motor has the potential to cause harm. Figure 3.3 describes the behavior of
the fail-safe system. In contrast to the unsafe state (MOTOR_RUNNING), the safe state
can be divided into the states INITIALIZATION, PARAMETRIZATION, INIT_TEST,
MOTOR_STOPPED and HARD_ERROR.

When the system is switched on, the CPLDs initialize their registers and flip-flops
(INITIALIZATION). The behavior of the safety function SS1 depends on a parameter
(SS1-time). Each CPLD receives a SS1-parameter from the DSP. The CPLDs store the
SS1-time in volatile memory. Thus, this PARAMETRIZATION is necessary whenever the
system is switched on.

When the parameterization is completed, the DSP notifies the CPLDs that a test
(INIT_TEST) needs to be performed. This test verifies that the safety functions STO and
SS1 are working properly.

If no fault was detected during the init-test, the DSP tells the CPLDs that the safe
state can be quit (MOTOR_RUNNING).



3.2. System Design CHAPTER 3. SAFETY CONCEPT FSAR

Figure 3.3: Behavior of the fail-safe system.

The safety functions STO and SS1 can be activated via the input stages. If a safety
function is activated, the system enters the safe state after a specified amount of time
(MOTOR_STOPPED).

If no fault occurred and the safety functions were performed properly and are not
activated anymore, the DSP tells the CPLDs to quit the safe state. In this case, the motor
can rotate again (MOTOR_RUNNING).

In all states, various safety integrity measures detect faults. If a fault is detected, the
system enters the safe state (HARD_ERROR). In contrast to the other states, this state
cannot be left until the system is switched off.

3.2.3 Safety Integrity Measures

IEC 61508 requires SIL 2 systems with a HFT of 1 to have a safe failure fraction (SFF)
of at least 60%-90%. Also, EN ISO 13849 requires a medium diagnostic coverage (DC)
for Cat 3, PL d safety functions. Thus, a number of measures to achieve sufficiently high
SFF and DC have to be realized, which are performed concurrently by both channels of



3.2. System Design CHAPTER 3. SAFETY CONCEPT FSAR

the fail-safe system.

Figure 3.4: Connection between SFF and HFT, figure from [Com10].

The fail-safe system contains two channels which are able to execute the safety function
STO and SS1 independently. The channels realize the implemented safety functions by
using different means. This diversity reduces the probability of common cause failures.

The two CPLDs exchange corresponding pairs of signals. Some of these signal pairs
contain information about the state of the safety functions. If a signal pair is discrepant for
a certain time, a fault can be assumed. Thus, both CPLDs contain discrepancy monitors
to signal a fault when the discrepancy of a signal pair exceeds a specified discrepancy
time. Consequently, the system enters the safe state. The discrepancy monitors check for
discrepancies as long as the fail-safe system is switched on.

The used type of CPLD is similar to an FPGA. It contains look-up tables and employs
channel-based routing [LVHL04]. One of the advantages of CPLDs is their "instant-on"
functionality. The used type of CPLD realizes this functionality using a configuration
flash memory which is loaded into CRAM-cells on start-up of the device. The init-test
is able to detect whether the safety functions can be performed properly. Thus, this test
can detect faults in the flash memory, the configuration or the CRAMs, which affect the
ability of a CPLD to perform the safety functions. This test is performed once after the
parametrization of the CPLDs.

The periodic SS1-test starts to run as soon as the init-test is finished successfully. The
SS1-test verifies the correct functionality and parametrization of the safety function SS1.
Furthermore, the functionality of the counters for the safety function STO is tested. When
a number of conditions are fulfilled (expected values of counters, signals and flip-flops),
the CPLDs tell the DSP that the SS1-test needs to be quit. Consequently, the DSP tells
the CPLDs to quit the SS1-test. If the DSP does not respond, the system enters the safe
state. Thus, the CPLDs act as a watchdog for the DSP and vice versa.

The fail-safe system can use feedback signals to observe the state of the controlled
motor. If the fail-safe system enters the safe state, the motor has to stop within a specified
time. The shut-down test finds out whether this time is exceeded or not. If the specified
time is exceeded, a fault is signaled. This test is detecting faults as long as the fail-safe
system is switched on.

An undetected short circuit between the safety-critical outputs (first fault) is dangerous.
If a second dangerous fault occurs (e.g. stuck-at-1 fault of a safety-critical output), none
of the channels is able to correctly carry out the safety functions. Thus, we realize a short
circuit test which is able to detect a short circuit between the safety-critical outputs.
The test is activated whenever the system enters the unsafe state and is performed when



3.3. Safety Workflow CHAPTER 3. SAFETY CONCEPT FSAR

the fail-safe system enters the safe state.
Each channel contains a temperature monitor. If a temperature monitor detects a

temperature outside the specified temperature range, the system enters the safe state.
Each channel contains a voltage monitor. If a voltage monitor detects that the supply

voltage is too high or too low, the system enters the safe state.

3.3 Safety Workflow

A V-model of the safety lifecycle of ASIC/FPGA/PLD designs is defined by the draft of
IEC 61508-2. It requires a clearly structured development process. Figure 3.5 illustrates
the V-model [GMSW10b] and the names of the tools which are used for the required phases.

Figure 3.5: V-model and tools

The result of each phase on the left-hand side of the V-model serves as input to the next
phase on the left-hand side. In each phase, the results of the preceding phase are verified.
Iterations between consecutive phases are possible. At first, the safety requirements for
the E/E/PE (electric/electronic programmable electronic) system are specified and the
requirements for the ASIC/FPGA/PLD are derived. For the development of the presented
fail-safe system, the tool DOORS for requirements definition and management is used.

Later on, the architectures of the E/E/PE system and the ASIC/FPGA/PLD need to
be defined. The tool Enterprise Architect in combination with a SysML [Hau06] extension
to create a model of the entire E/E/PE system and the ASIC/FPGA/PLD is used. SysML
[OMG10] diagrams are used to specify structure (Internal Block Diagram), relationships
(Block Definition Diagram) and behavior (Use Case Diagram, Activity Diagram, State



3.4. Implementation CHAPTER 3. SAFETY CONCEPT FSAR

Chart Diagram, Sequence Diagram). Moreover, the modules and the exact interfaces of
the synthesizable VHDL-description, which defines the behavior of the CPLDs of the fail-
safe system, are specified.

The definitions of the behavior and the modules follow. A synthesizable VHDL-
description is created with the tool Quartus II . This tool is used to synthesize the VHDL-
description and to perform place-and-route. After synthesis and place-and-route, a post-fit
netlist is available. Quartus II [Alt10] is able to create post-fit netlist files which can be
used for simulation tools and timing analysis tools.

Phases on the right-hand side of the V-model contain activities to verify the results
of the phases on the left-hand side of the V-model. The post-fit netlist is verified using
post-layout simulations. The draft of the IEC 61508-2 requires the alternative application
of one of two equivalent techniques/measures to verify that the timing requirements for
the circuit are fulfilled. A static timing analysis using a timing analysis tool is performed,
which is part of Quartus II. According to the draft of the IEC 61508-2, it is also necessary
to apply one of two equivalent techniques/measures to verify that no systematic faults
occurred during synthesis and place-and-route. We perform simulations to verify the post-
fit netlist against the synthesizable VHDL-description. The tool ModelSim is used for
simulation.

Module testing is required to verify the correct implementation of the modules. At
least one test bench is created for each module of the synthesizable VHDL-description.
The test benches are executed using ModelSim. The draft of the IEC 61508-2 requires a
test coverage greater than 99% for SIL 3. Furthermore, also ModelSim to evidence that
statement coverage, branch coverage, condition coverage and expression coverage reach
100% for each module is used.

Module integration testing verifies that the implemented VHDL-description is correct.
Again, test benches are created and ModelSim is used to simulate the entire VHDL-
description. Some of the integration test cases are derived from use cases. Other test
cases simulate the behavior of the entire VHDL-description in the presence of a fault.

After the integration of the components of the E/E/PE system, integration testing is
performed to verify the ASIC/FPGA/PLD. During integration testing, also fault insertion
tests are performed to verify the realized safety integrity measures. In order to perform
fault insertion testing of the novel fail-safe system, it was necessary to develop a new
method [GMSW09]. Finally system testing is performed to validate the entire system and
the ASIC/FPGA/PLD.

3.4 Implementation

To define the behavior of the CPLDs, a synthesizable description is needed. From this
description, a programming file can be created which is used to configure the CPLDs.

The draft of the IEC 61508-2 requires a restricted use of asynchronous constructs.
Thus, the design is totally synchronous. Additionally, the draft of the IEC 61508-2 re-
quires synthesizable descriptions to be highly modularized. Consequently, the synthesiz-
able VHDL-description consists of various modules.

The number of required CPLD-resources is an important parameter as it directly de-
termines the cost per fail-safe system. Hence, it is necessary to create a VHDL-description,



3.5. Fault-Insertion Testing CHAPTER 3. SAFETY CONCEPT FSAR

which can be synthesized efficiently in terms of required CPLD-resources.
Due to the two independent channels of the fail-safe system, it is not necessary to

implement resource-demanding concepts like safe input cells, safe output cells [AMF05] or
totally self-checking circuits [BMSS00] to detect faults on the CPLDs. On the contrary,
the CPLDs permanently test each other to detect faults. This guarantees sufficiently high
safety integrity, while fewer CPLD-resources are required. Additionally, the synthesis tool
is configured to synthesize circuits optimized for low area.

Due to optimizations, it is possible to implement the safety functions and the safety
integrity measures using CPLDs, which contain only 240 logic elements (equivalent to 192
macrocells) per CPLD. The implementation requires approximately 95% of the available
logic elements. The used CPLD [LVHL04] is the smallest member of its device family.

3.5 Fault-Insertion Testing

The IEC 61508 requires fault-insertion tests to be performed using the system hardware.
This is why it is not sufficient to perform fault insertion tests using software simulations.
Instead the system hardware (F-module) is used to perform the tests. The behavior of
the CPLDs on the F-module is defined by a synthesizable VHDL-description. After the
compilation of the VHDL-description, a programming file is available, which can be used to
configure each CPLD via a JTAG interface. Usually, both CPLDs are configured using the
same programming file. Nevertheless, it is possible to configure the CPLDs using different
programming files. The presented method to perform fault-insertion testing exploits this
fact. To inject a fault, we create a modified version of the synthesizable VHDL-description.

Figure 3.6: Fault-insertion Testing

This modified description makes it possible to inject a certain permanent or transient
fault into one CPLD via an input pin of this CPLD. After this compilation, a modified
programming file is available. One CPLD (fault-emulating device) is configured with this
modified programming file. The other CPLD (golden device) is configured with the original



3.5. Fault-Insertion Testing CHAPTER 3. SAFETY CONCEPT FSAR

programming file. Thus, it is possible to inject a fault into one CPLD but not into the other
one. One input pin of the fault emulating device is connected to a manual fault-enable
switch. When the input pin is not switched to VDD, no fault is injected and the fault
emulating device has the same behavior as the golden device. If the input pin is switched
to VDD, a fault is injected into the fault-emulating device.

To modify the VHDL-description, saboteurs can be added. This allows the insertion
of transient faults like bit-flips. Also, permanent and intermittent faults like stuck-at
faults, bridging faults and delay faults can be injected. Moreover, mutants can be added
to the VHDL-description to inject faults. Saboteurs and mutants can be activated and
deactivated via the fault-enable switch. Various fault models can be considered using the
presented approach. The only restriction for the creation of saboteurs and mutants for this
approach is the use of synthesizable VHDL-constructs.

Figure 3.6 illustrates the F-module, which is prepared for fault-insertion testing. In this
case, CPLD 1 is configured as golden device and CPLD 2 is configured as fault-emulating
device. Generally, it does not matter which CPLD is configured as golden device and which
CPLD is configured as fault-emulating device.

3.5.1 Verification of Implemented Safety Integrity Measures.

According to the requirements of IEC 61508, the synthesizable VHDL-description is mod-
ular and consists of a number of interconnected components. We perform a system FMEA
(failure modes and effects analysis) and a design FMEA to determine possible sources of
failure of the components and their interconnections and identify the consequences in terms
of system behavior.

If a fault of a component or interconnection leads to the safe state of the entire system,
the fault can be considered to be safe. In this case, no fault-insertion test case needs to
be planned. If a fault potentially leads to the unsafe sate of the entire system, we expect
the implemented safety integrity measures to detect the fault and the system has to enter
and/or maintain the safe sate. Consequently, a test case needs to be planned to verify that
the safety integrity measures are able to detect the fault.

It is necessary to verify that each of the two channels is able to detect injected faults.
Thus, CPLD 1 is configured as golden device for one half of the test cases, while CPLD
2 is configured as golden device for the other half of the test cases. For every test case,
another fault has to be injected into the fault emulating device. Consequently another
modified programming file needs to be generated and the fault emulating device needs to
be reconfigured for every test case. Thus, a new modified synthesizable VHDL-description
has to be created.

For every test case, we insert a saboteur between components or create a mutant of
a component of the VHDL-description. This allows injecting a single fault into the fault-
emulating device, while the golden device remains fault-free. Considered types of faults are
stuck-at, bit-flip, stuck-then, stuck-else, assignment control and stuck-data. If the entire
system (golden device in cooperation with the fault emulating device) detects the fault
and consequently enters and/or maintains the safe state, the test is successful. Otherwise
the test fails.

The synthesizable VHDL-description can be parameterized before compilation. The



3.5. Fault-Insertion Testing CHAPTER 3. SAFETY CONCEPT FSAR

parameters are constants which are defined in a separate VHDL-package. There is one
constant per fault-insertion test case. If all constants are set to 0, it is not possible to inject
a fault into the CPLD after compilation and configuration via the fault-enable switch. The
synthesized circuit contains no fault-insertion logic. Thus, in the VHDL description for
the golden device, all constants are set to 0.

After the compilation and configuration, not a single logic element is required for mu-
tants or saboteurs in this case. If the constant for a certain fault-insertion test case is
set to 1, it is possible to inject a corresponding fault after the compilation and config-
uration using the fault-enable switch. In this case, the synthesized description of the
fault-emulating device contains a saboteur or a mutant which can be activated via the
fault-enable switch. Thus, for every fault-insertion test case, a single constant is set to 1
in the VHDL-description of the fault-emulating device. The remaining constants are set
to 0. Consequently, there is only a little area overhead caused by a little fault-insertion
logic required for a single saboteur or a single mutant for each test case.

There is no guarantee that the mapping of the modified VHDL-description on the
logic elements of the CPLD is similar to the mapping of the unmodified VHDL-description
on the logic elements. That is why the presented approach is limited to systems which
contain at least two channels where each channel contains a CPLD or FPGA, which can
be configured independently. There must always be at least one channel that contains a
CPLD or FPGA that is configured with the compiled, unmodified VHDL-description.

For every test case, a certain fault is injected when the system is in one of two states.
In the first case, a fault is injected when the F-module is in the state start-up and in the
second case, a fault is injected when the F-module is in the state motor running. A test
case is successful if the F-module either does not leave the state start-up (safe) or if it
enters and maintains the safe state.

The following steps are necessary to verify all safety integrity measures:

1. Perform systematic FMEAs on system and design level to identify necessary test
cases

2. Define expected results for each test case

3. Repeat for every test case

(a) Insert a saboteur into the VHDL-description or create a mutant

(b) Add a VHDL-constant to enable or disable the test case before compilation

4. Repeat for every test case

(a) Edit VHDL-constants to enable insertion via the appropriate saboteur or mutant

(b) Compile modified VHDL-description

(c) Reconfigure the fault-emulating device

(d) Inject fault when system is in the state start-up

(e) Restart to inject fault in the state motor running

(f) Decide if test was successful

(g) Analyze and document result



3.5. Fault-Insertion Testing CHAPTER 3. SAFETY CONCEPT FSAR

The effort for all fault-insertion test cases is dominated by steps 1 and 2, which consume
a lot of time for analysis and documentation. The time required for inserting saboteurs
or mutants, editing VHDL-parameters, compiling the VHDL description and reconfiguring
the fault emulating device is comparably low.



Chapter 4

Evaluations and Prototype

The applicability of the elaborated safety concept was evaluated using an industrial power
drive system [GMSW10a]. This power drive system is able to control a DC motor. It
converts a three-phase current to a direct current for low-power and high-power DC motors.
The power drive system contains a microcontroller and a DSP (digital signal processor).
These two devices realize standard functions that are able to control the DC motor in
different manners. If the power drive system is not able to carry out these functions
anymore due to a failure, a controlled motor cannot be stopped anymore and is able to
harm people (e.g. worker in a factory). This is a risk. To reduce this risk and to make the
power drive system applicable for even highly safety-critical applications, safety functions
need to be realized accordingly to SIL 2 in adherence to IEC 61800-5-2 and IEC 61508.
These safety functions reduce the risk of failing standard functions significantly. The safety
functions are defined by IEC 61800-5-2 and were implemented using a CPLD-based fail-
safe system (FSAR) based on the safety concept described by Chapter 3. The following
safety functions, described in detail in the problem definition 1.2.3, are implemented:

• STO: Safe Torque-Off

• SS1: Safe Stop 1.

4.1 UC: Power Drive System

The application block diagram in Figure 4.1 depicts the main components of the PDS
including the fail-safe system. The architecture of the power drive system is modular.
There is a clear separation between the control electronic which is implemented in the
Power Interface and the power electronic which is located at the Power Stage.

Moreover, the CPLD-based fail-safe system that is able to carry out the safety functions
is an optional module. If no safety functions are required due to a low criticality of the
application the power drive system is used for, it is able to work without the CPLD-
based fail-safe system. In this case, the safety-relevant output signals STO1 and STO2

are permanently connected to VDD and power can always be applied by the motor. If
the power drive system is used for a highly critical application, the fail-safe system can be
plugged into the power converter to ensure a high level of safety integrity. In this case, the

43



4.1. UC: Power Drive System CHAPTER 4. EVALUATIONS AND PROTOTYPE

Figure 4.1: Power Drive System

safety-relevant output signals STO1 and STO2 are switched by the fail-safe system. The
power drive system consists of the following components:

• Micro-controller: The micro-controller is the dominant component of the PDS sys-
tem. It provides an interface to the user and to the higher-level infrastructure.
Moreover, it continuously calculates the required voltage at the terminals of the DC
motor depending on measured quantities of the DC engine and transmits the value
of the required voltage to a DSP.

• DSP: The DSP is necessary to switch the thyristor bridges in real time to convert
the three-phase voltage into the requested direct voltage.

• Voltage Monitor: A voltage monitor is necessary to protect the PDS system from
destruction by overvoltage.

• Thyristor Bridge: The thyristor bridge is located at the power stage for voltage
conversion.

• Transistor Switches: The transistor switches are controlled by the DSP to switch the
thyristors. These switches are located at the power interface. They are electrically
decoupled from the power stage.



4.2. F-Module CHAPTER 4. EVALUATIONS AND PROTOTYPE

• Feedback DC Engine: To reduce the calculation effort of the micro-controller, an
ASIC is used to perform precalculations concerning measured electric fields, currents
and voltages.

• F-Module: The F-Module is the fail-safe system that adopts the CPLD-based safety
concept and realizes the safety functions accordingly to the applied standards.

4.2 F-Module

If plugged into the PDS, the F-Module communicates with the micro-controller via the
DSP. Therefore, a SPI (serial peripheral interface) is established between DSP and F-
module. The DSP alternatingly exchanges messages with the two CPLDs of the F-module.
Whenever a CPLD receives a message from the DSP, it resets an internal counter. If this
counter expires, a DSP failure is assumed and a safe state achieved. Hence, the CPLDs
act as watchdogs for the DSP. Moreover, the SPI messages are used to inform the DSP
and the micro-controller about the state of the F-module and to inform the F-module if a
change of its state is requested (e.g. from startup to power).

Figure 4.2: F-Module (see figure 2)

The SPI is also used for the parametrization of the safety function SS1 in state startup
3.3. In this state, the micro-controller transmits parameters via the DSP to each CPLD.
The parameterization allows to vary the application-specific time delay of the safety func-
tion SS1 in 100ms steps between 100ms and 5min. The possibility to parametrize SS1 is
an important feature and it extends the range of possible applications significantly. Nu-
merous applications originating from the high-power segment deal with very high currents.
In these cases, a prompt turn-off of a machine without reducing the current before can
damage expensive switches. Furthermore, an immediate turn-off can harm the production
equipment or can destroy the products of the production process. Therefore, an applica-
tion specific time delay is required to inform the micro-controller via the DSP about the
demand of a safety function to give the PDS time to reduce currents and enable the high
level infrastructure to ramp down the production process before a safe state is achieved.

The F-Module monitors the status of the two STO channels of the power drive system
via feedback signals. The first feedback signal provides the status of the DC motor power



4.2. F-Module CHAPTER 4. EVALUATIONS AND PROTOTYPE

switch and the second feedback signal provides the "enable" status of the thyristor bridge.
If no "enable" status is available, no thyristor can be ignited and consequently, no power
can be applied to the DC motor.

A hardware prototype of the F-Module is depicted in Figure 4.2. For the prototype
of the F-module Altera MAX II, CPLDs were used [LVHL04]. The F-Module dedicated
terminals (on top of the figure 4.2) to demand the safety functions with hardwired switches
or via digital safety outputs of the higher-level infrastructure. The terminals on the left
side of the figure are dedicated to power supply of the F-module and to communication
with the DSP via SPI.

The design and the development of the F-Module were performed to meet the safety
requirements and the requirements concerning price per piece. The key factor for a low
unit price is the used CPLD with its number of available programmable logic elements.
Thus, the design was developed to use as few logical elements as possible. Additionally,
the synthesis tool was configured to synthesize circuits optimized for low area. Due to
optimizations, it is possible to implement the safety functions and the safety integrity
measures using CPLDs, which contain only 240 logic elements (equivalent to 192 macro
cells) per CPLD. The implementation requires approximately 95% of the available logic
elements. The used CPLD [Alt08] is the smallest member of its device family.

Figure 4.3: Distribution of used Logical Elements to the different functions. Figure from
[Mad08].

Requirements of IEC 61508 second edition for the development process of safety-critical
CPLDs were considered. Therefore, the prototype was developed according to a V-model
using an appropriate tool chain. For the verification of the realized safety integrity mea-
sures, a new fault insertion testing technique was applied.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

This work was motivated by the fact that industry demands cost-efficient concepts for the
realization of safety functions for power drive systems in industrial automation. Therefore,
a CPLD-based safety concept (FSAR) was elaborated that does not require the realization
of microcontroller-specific software safety integrity measures like RAM tests or CPU tests
that need a lot of effort in terms of design, implementation and verification as well as
hardware resources (e.g. RAM, Flash, computing time).

Experiences and hints from other domains, technical reports as well as upcoming stan-
dards, regarding the design, implementation, tool chain and V&V [GM08], were considered
to achieve an adequate level of safety integrity for the CPLD based fail-safe system.

The applicability of this safety concept for programmable logic devices (PLD, CPLD,
FPGAs) was proved in terms of safety and cost-efficiency by its utilization for an indus-
trial power drive application. The safety concept and its application were reviewed and
assessed by an independent certification authority (TÜV SÜD). TÜV SÜD stated that the
presented concept is suited to achieve SIL 3 in adherence to IEC 61508 and IEC 61800-2
as well as Cat 4, PL e in adherence to EN ISO 13849. This means that the presented
fail-safe architecture fulfills the requested SIL 2 requirements and is furthermore suitable
for applications which request a higher safety integrity.

The method presented in 3.5 allows the application of a proven verification method
(fault insertion testing) for a PLD-based fail-safe system. Methods to verify compara-
ble micro-controller based systems using fault insertion testing are not applicable for the
fail-safe system because the FSAR contains exclusively PLDs. It is possible to verify the
safety-integrity measures of the fail-safe system using the system hardware (F-module).
The successful verification of the realized safety integrity measures using fault insertion
testing is an important prerequisite for the certification of the developed PLD-based fail-
safe system in adherence to the desired standards. TÜV SÜD assessed a plan for validation
and verification of the fail-safe system. This plan precisely describes the presented method
to perform fault insertion testing. TÜV SÜD stated that the presented method is appro-
priate.

47



5.2. Future Work CHAPTER 5. CONCLUSION AND FUTURE WORK

Finally, it needs to be underlined that the applicability of the presented "Fail-Safe
Architecture for Reconfigurable programmable logic devices" (FSAR) is not lim-
ited to the automation domain. It can be concluded that the use of a PLD-based (PLD,
CPLD or FPGA) safety concept is a competitive alternative to the use of micro-controller
based safety concepts if comparably uncomplex safety functions need to be realized. In this
case, the comparatively simple functionality does not justify a software implementation in-
cluding the great effort for development of complex software safety integrity measures to
make the use of micro-controllers acceptably safe.

5.2 Future Work

As stated in the introduction, the field of application and the complexity of embedded
systems continuously increase. Future embedded systems have to consider novel require-
ments like cost efficiency, power awareness, intellectual properties, security, safety etc. In
particular, with regard to the system, property safety of "future" embedded systems brings
a lot of new challenges which need to be coped with in the future. These challenges can
be grouped into (1) the application of new safety-related architectures and (2) the im-
provement of existing methods or the development of new methods to cover these new
requirements.

5.2.1 Safety-Critical System Architectures

Depending on the field of application, we have to distinguish between two main streams of
future safety-critical system architectures. The first main stream is the applicability of new
technologies like dual-core or multi-core processors for safety-critical components, and the
second main stream is the distribution of safety-critical functions to different components
in safety-critical system.

New Technologies

Nowadays, there is a clear trend on the industrial sector towards dual-core or multi-core
micro-processors with the aim of realizing two independent channels of a safety function
in one micro-processor only. This will bring a significant reduction of costs and required
space at printed circuit boards. In particular, the bottleneck of synchronization between
the independent channels will be automatically solved with such a kind of architecture.
However, due to the high integration of two or more cores into a single chip there is still the
challenge to find adequate measures to control the effects on Common Cause Failures.

On the academic sector, the potential of different safety-related FPGA solutions are
investigated. Thereby, the focus is set with multi-channel or multi-core implementations
on a single FPGA. As mentioned in 2.2, methods and tools will be enhanced to support
the safety argumentation and to get confidence in the applied tool chains. Furthermore,
first analyses regarding safety integrity of single FPGA solutions were launched. However,
as mentioned above, the problem of the Common Cause Failures is the limiting factor
to apply such solutions in an industrial context.



5.2. Future Work CHAPTER 5. CONCLUSION AND FUTURE WORK

Today, there are some promising micro-processor concepts available on the market.
One concept is realized as lock step processor architecture. The lock step devices provide
system-wide protection through seamless support for fault detection from the processor,
through the bus interconnect, and into the memories. Such a concept significantly reduces
(1) the implementation effort and (2) the required execution time for safety integrity func-
tions (e.g. RAM tests). Furthermore, the producers of such micro-controllers claim that
their micro-processors are suitable to achieve SIL 3 according to IEC 61508 or ASIL D
according to ISO 26262. Despite to all these very promising properties of the lock step
concept it has to be pinpointed that this concept has no real hardware fault tolerance.
This disadvantage is expressed in the corresponding safety manuals of such processors
where further measures are required, e.g. an additional external watchdog (e.g. Safety
Manual TMS570LS20216S Device [Ins10]).

Another promising concept is the implementation of a “real” hardware fault tolerance
in one micro-processor. Such activities were launched by SIEMENS. The basic idea is to
implement two different cores in one device by taking the impact of common cause failures
into account. Therefore, dedicated safety measures for power supply, error propagation etc.
are required. Requirements to develop safety-critical systems based on ASICs, FPGAs or
CPLDs are defined in the Second Edition of the IEC 61508 [Com10].

It can be summarized that – up to now – there are no micro-processors with a real
hardware fault tolerance according to the safety standards available on the market. How-
ever, the currently available micro-processors facilitate the design of safety-critical systems
which need to be applied in the industry.

Distributed Safety Architectures

Especially the automotive domain is very interested in developing “top-level” safety con-
cepts for their applications. This is mentioned in the system architecture of today vehicles.
A modern vehicle includes a lot of computing units which are connected via buses and wires.
Due to the different suppliers of components a high diversity is inherently given, which re-
duces the impact of common cause failures. However this strategy has some challenges like
available network bandwidth, fault response times, available controller throughput, syn-
chronization issues etc. which have to be answered prior to an application of this approach.
With the ARTEMIS R&D project Pollux [Pol10] a first initiative was started to cope with
these challenges.

5.2.2 Safety Methods

In addition to "new" safety-critical system architectures, improved methods for the devel-
opment of safety-critical systems are needed. The main topics which need to be addressed
in the near future are (1) complexity issues, (2) component certification, (3) integrated
and seamless tool chains and (4) the proper support of intellectual property rights in
safety-related systems.



5.2. Future Work CHAPTER 5. CONCLUSION AND FUTURE WORK

Complexity

The complexity is one of the greatest challenges in the future. New catch phrases like
“System of Systems” or “Cyber-Physical Systems” express the need for interaction of dif-
ferent systems. Especially in the case of safety-critical systems where predictable system
behaviors are required, new methodologies like system analysis are necessary to cope with
arising complexity. However, one precondition to perform a system analysis is a descrip-
tion of the system model in a formal manner. Therefore, there are particular interests in
development of methodologies which support on the one hand formal system verifications
and on the other hand an applicability in an industrial context.

The European industry is aware of this necessity and already started different re-
search projects to cover these topics. Examples are the ATTEST Projects [Con08] with
their predecessor and successor projects to specify a domain-specific modeling language
called EAST-ADL2 [ATE10,LF08,CFJ+08] or the CESAR Project [Con09] that aims at
improving methods and tools for requirements engineering as well as component-based
development.

Component Certification

Component-based certification and reusable certification are currently the topics that are
highly promoted and discussed in the field of qualification and certification processes. The
reason is that a significant part of the development resources are used for certification and
qualification activities. In particular, reusability of certified components in combination
with product line engineering promises a significant cost reduction in the development of
safety-critical systems respectively safety-critical product families.

Tool Chains

As mentioned above, a huge development effort is used for certification and qualification ac-
tivities. The reasons for that are the required consistency of all development artifacts over
the entire product life-cycle, the traceability of requirements down to the implementation
and the additional requirements to the V&V of the safety-critical system. Furthermore, a
perceptible evidence which shows the fulfillment of all system and standard requirements,
the so called safety case, is requested for a final certification or qualification. It is obvious
that seamless tool chains can highly support the entire development of embedded system
through the implicit consistence of development artifacts and the possibilities to perform
impact analysis or automatically generated safety cases. However, the industrial applica-
bility of holistic seamless tool chains is not available for the system-engineering domains.
Today, mainly point-to-point integrations of major tools and proprietary solutions exist.
A seamless tool chain is a clear requirement of future embedded system generations and it
is one of the major challenges motivated by economical circumstances. One approach to
overcome this problem is provided by the CESAR Project [Con09] which aims at defining
a standard which supports the interoperability of tools for the application of seamless tool
chains.



5.2. Future Work CHAPTER 5. CONCLUSION AND FUTURE WORK

Intellectual Property Rights (IPR)

Due to the distribution of specialized know-how over different suppliers, an adequate pro-
tection of IP is requested. The AUTOSAR standard has already considered this need in its
architecture. However, in the development of safety-critical systems methods and rules are
needed to unambiguously define the behavior and safety properties of components without
detail knowledge of their realization.



Chapter 6

Publications

This chapter contains the relevant publications and gives an overview as well as an assign-
ment of contributions to the chaptors of this thesis, which explains the approach presented
in Chapter 3 in detail.

Publication 1: A Computer-Aided Approach to Preliminary Hazard Analysis for Auto-
motive Embedded Systems, ECBS - 18th IEEE International Conference and Workshops
on Engineering of Computer-Based Systems, Las Vegas, USA, 27–29 April 2011, [MGA+11]

Publication 2: Improving Automotive Embedded Systems Engineering at European Level,
E&I Elektrotechnik und Informationstechnik OVE-Verbandszeitschrift, Österreichischer
Verband für Elektrotechnik, EU, June 2011, [GKA+]

Publication 3: WO2009080384A1- Method for actuating an DC machine, AT, EU and
US patent 2009, [GFH+09]

Publication 4: Design and Implementation of Safety Functions on a Novel CPLD-
based Fail-Safe System Architecture, ECBS - 17th IEEE International Conference and
Workshops on Engineering of Computer-Based Systems (ECBS’10), Oxford, UK, March
2010, [GMSW10b]

Publication 5: CPLD basierende homogen redundante fehlersichere Architektur, ME -
Informationstagung Mikroelektronik, Vienna, Austria, October 2008, [GSW08]

Publication 6: CESAR:Cost-efficient methods and processes for safety relevant embedded
systems, ARTEMIS - Embedded World , Nürnberg, Germany, March 2010, [GMP+10]

Publication 7: Model-based Toolchain for the Efficient Development of Safety-relevant
Automotive Embedded Systems, SAE - SAE World Congress, Detroid, USA, April 2011,
[AGZ+11]

Publication 8: Fault Insertion Testing of a Novel CPLD-based Fail-Safe System, DATE
- Design, Automation and Test in Europe, Nice, France, April 2009, [GMSW09]

52



CHAPTER 6. PUBLICATIONS

Publication 9: A CPLD-based Safety Concept for Industrial Applications, ISIE - Indus-
trial Symposium on Industrial Electronics, Bari, Italy, June 2010, [GMSW10a]

Figure 6.1: Assignment and contributions of publications (see figure 1).



A Computer-Aided Approach to Preliminary Hazard Analysis
for Automotive Embedded Systems

Roland Mader1,2, Gerhard Grießnig1,2, Andrea Leitner2, Christian Kreiner2,
Quentin Bourrouilh1, Eric Armengaud3, Christian Steger2, Reinhold Weiß2

1AVL List GmbH, Austria
2Institute for Technical Informatics, Graz University of Technology, Austria

3Virtual Vehicle Competence Center, Austria

Abstract—Powertrain electrification of automobiles leads to
a higher number of sensors, actuators and control functions,
which in turn increases the complexity of automotive embedded
systems. The safety-criticality of the system requires the appli-
cation of Preliminary Hazard Analysis early in the development
process. This is a necessary first step for the development of
an automotive embedded system that is acceptably safe. Goal
of this activity is the identification and classification of hazards
and the definition of top level safety requirements that are the
basis for designing a safety-critical embedded system that is
able to control or mitigate the identified hazards. A computer-
aided framework to support Preliminary Hazard Analysis for
automotive embedded systems is presented in this work. The
contribution consists of (1) an enhancement for Preliminary
Hazard Analysis to the domain-specific language EAST-ADL,
as well as (2) the identification of properties that indicate the
correct application of Preliminary Hazard Analysis using the
language. These properties and an analysis model reflecting
the results of the Preliminary Hazard Analysis are used for
the automated detection of an erroneously applied Preliminary
Hazard Analysis (property checker) and the automated sugges-
tion and application of corrective measures (model corrector).
The applicability of the approach is evaluated by the case study
of hybrid electric vehicle development.

Keywords-functional safety; ISO 26262; preliminary hazard
analysis; safety goal; automotive embedded system

I. INTRODUCTION

Nowadays cars contain embedded systems that incorpo-
rate up to 70 microcontrollers. These microcontrollers com-
municate via bus systems, gather sensor data or command
actuators of the vehicle. At the same time the shift of
the automotive industry towards powertrain electrification
introduces new automotive sensors, actuators and functions.
Electronic Control Units (ECUs) are responsible for manag-
ing the components (e.g. battery, motor) that can be found
in HEVs (Hybrid Electric Vehicles) and components (e.g.
engine, transmission) that can also be found in traditional
vehicles. Therefore the safe operation of the vehicle depends
on the correct operation of the embedded system.

Safety-critical automotive embedded systems are devel-
oped according to rigorous development processes. A nec-
essary first step in such a development process is the
application of Preliminary Hazard Analysis [1] (PHA) by a
team of people with a wide variety of knowledge and skills.

This analysis technique is applied earliest in the develop-
ment process before neither concrete design solutions are
elaborated nor enough numerical values are defined to allow
the application of other techniques such as simulation or
quantitative analyses. The purpose of PHA is the identifica-
tion, classification and assessment of potential hazards1 of a
newly developed vehicle that are caused by potential failures
of its embedded system. The early knowledge about the
existence of hazards allows the definition of safety goals [2]
(top-level safety requirements to the embedded system), even
if detailed and quantitative information about the vehicle
under development is insufficiently available. Considering
the safety goals, a safety-critical embedded system design
(typically including runtime fault detection capabilities) is
developed that is able to best achieve the defined safety goals
and to control or mitigate the identified hazards. Although
the application of PHA alone cannot ensure safety of a
vehicle, it is a necessary first step in order to eliminate or
control hazards through adequate design, implementation,
integration, verification and validation. Moreover the results
of PHA serve as a baseline for later analyses. The early
application of PHA is required by the safety standard
ISO 26262 [3] for automotive E/E system development. This
safety standard refers to this activity as Hazard Analysis and
Risk Assessment.

Parallel to that, the field of model-based development
(MBD) is rapidly evolving in order to manage product
complexity, process complexity and organization complex-
ity. Major application fields covered are communicating
ideas and design, documenting and managing design infor-
mation, automated model analysis and automated synthe-
sis [4]. Potential benefits of these techniques are reduced
time-to-market, reduction of costs and improved quality.
Consequently, different approaches to early hazard analysis
incorporate the use of diagrammatic languages [5] such as
UML (Unified Modeling Language) in order to facilitate
clear communication and documentation. However, existing
approaches do not fully exploit the potential of diagrammatic
languages for automated model analysis and automated syn-

1A hazard is defined as, "A state or set of conditions of a system (or
an object) that, together with other conditions in the environment of the
system (or object), will lead inevitably to an accident (loss event). [1]"

2011 18th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

Unrecognized Copyright Information

DOI 10.1109/ECBS.2011.43

169

2011 18th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4379-6/11 $26.00 © 2011 IEEE

DOI 10.1109/ECBS.2011.43

169

Publication 1 - IEEE, ECBS 2011



thesis. This hinders the early identification of imperfections
that potentially affect the successful mitigation and control
of hazards. Manual reviews and modifications of the analysis
results are usually complicated and subject to mistake, and
should be computer-aided.

The contribution of this work is a computer-aided ap-
proach to PHA in the development process of an automotive
embedded system that is based on the domain-specific lan-
guage EAST-ADL (Electronics Architecture and Software
Technology-Architecture Description Language) [6]. Based
on a detailed description of the work flow for PHA and
defining safety goals, we propose (1) a language enhance-
ment to EAST-ADL that allows to describe malfunctions
and operational situations [2] in a more systematic way.
Further, (2) we identify properties that indicate the correct
application of PHA in the development process of a safety-
critical automotive embedded system. We propose a tool
implementation that can check these properties based on
an analysis model reflecting the results of the PHA. This
allows to automatically discover omissions that potentially
affect safety of the vehicle under development. In the case
a property is violated, the safety engineer automatically
receives suggested solutions. Subsequently the most proper
proposed solution can be accepted or it can be decided
to solve the problem manually. If a suggested solution is
accepted, the analysis model is automatically corrected.

This work is organized as follows: In Section II, related
work is discussed. Section III describes the computer-aided
approach to PHA including the work flow. In Section IV,
the analysis model that is created in the course of PHA
is described. In Section V and Section VI, our approaches
to computer-aided checking and correction of the analysis
model are described. Section VII outlines the experimen-
tal application of the approach using hybrid drive vehicle
development. Finally Section VIII concludes this work.

II. RELATED WORK

In the following, approaches to hazard analysis that are
intended to be applied early in the development process
are reviewed. The contributions [7], [8], [9], [10], [11],
[12], [13] focus on defining systematic approaches that
support the intellectual process of identifying and classifying
hazards and defining means to mitigate or control them.
All of them consider models to be a valuable aid for the
application of hazard analysis techniques. None of these
approaches refers to the use of diagrammatic languages
to create models. In contrast we use a domain-specific,
diagrammatic language for modeling to support coping with
complexity, communicating ideas and facilitating automated
model analysis and automated synthesis.

In [7] a technique called Actuator Based Hazard Analysis
is proposed that can be carried out early in the development
process, when only little information concerning the system
implementation is available. The approach is based on the

assumption that only the actuators of the system can affect
their environment. The method defines three fault classes
(commission, omission and stuck). Each system effect that
describes an undesired enactment of an actuator is defined
by a fault class, an analyzed actuator and an user intent. The
method defines four severity classes (Catastrophic, Critical,
Marginal and Negligible). All severity classes are applied
to each actuator and the distribution between the severity
classes is determined. Based on distribution and weighting,
a criticality level can be determined that is the major input
to the solvability analysis and design selection that allows
to choose the design concept that is most likely to handle
the identified hazards.

Another approach to preliminary hazard analysis for au-
tomotive systems that is similar to the one required by
ISO 26262 [3] is described in [9]. The approach starts
with hazard identification based on a system model. A
PASSPORT diagram with supplementary descriptions is
used as a system model. A further step of the approach
is hazard classification according to severity, controllability
and exposure.

In [10] an ISO 26262-compatible approach to preliminary
hazard analysis is presented. The approach incorporates an
architectural model and starts with (1) scope definition. In
this phase, safety-critical functions of a vehicle are illus-
trated in a block diagram including control units, gateways,
sensors, actuators and communication systems. The next step
is (2) the definition of a role model. A control unit can
contribute to multiple functions. In the context of different
functions, the control unit may have different roles (e.g.
actuation, calculation, monitoring). The next step is (3) the
creation of a tabular architectural model. This starts with
the mapping of functions to architectural elements. Subse-
quently, severity, exposure and controllability are evaluated
and a resulting ASIL (Automotive Safety Integrity Level)
is determined for each function. Then, roles (depending on
functions) are assigned to each architectural element. Finally
each architectural element has roles with corresponding
automotive safety integrity levels.

The work proposed in [11] describes an approach to
hazard analysis of safety-critical software-intensive systems
called STPA (Systems Theoretic Process Analysis) for early
application in the development process. The approach starts
with the identification of hazards and related requirements or
constraints. Subsequently inadequate control actions, control
flaws, and inadequate control executions that lead to inade-
quate control actions are identified. This is input to a design
process that aims on creating new constraints, refining
existing constraints, creating a new design or modifying the
existing design until all hazards are eliminated, mitigated or
controlled. This process is iterative. The approach relies on
a model that describes the control flow of the system under
analysis and causes of accidents. The applicability of the
approach is illustrated using a spaceflight application.

170170



In [12] an approach to hazard analysis of SoS (System
of Systems) is described that is intended to be applied early
in the development process. This hazard analysis technique
is focused on the interfaces between the particular systems.
The approach is based on a model of the SoS as well as
guidewords. In the course of the hazard analysis they carry
out Input/Output Analysis as well as Network Analysis.
The probability of the occurrence of accidents is assessed.
A validation framework is established that incorporates the
definition of goals. Based on these goals, metrics (e.g. per-
centage software safety requirements traceable to hazards)
are defined that indicate the quality of the conducted hazard
analysis. Some of the defined metrics depend on knowledge
gained from previous analyses.

A new methodology to safety-critical system development
is proposed in [13]. Amongst other activities, this method-
ology requires to identify those functions that are safety-
critical. Thereafter hazards are identified, risks are assessed
and risk mitigation means are defined and associated early
in the development process. The work proposes metrics
based on the identified hazards. An example is the metric
percentage software hazards that is defined as number of
software safety hazards divided by the number of system
safety hazards. The approach is evaluated using a railway
application.

In contrast to aforementioned related works, [14], [15],
[16] explicitly refer to the use of diagrammatic languages
to create models. In contrast to our approach, none of these
approaches uses the annotated model to check for properties
that indicate the correct application of the analysis technique.

An approach that combines hazard analysis and the use
of a diagrammatic language to create models is described
in [14]. The authors consider the use of UML models to be
appropriate in order to handle the increasing complexity of
safety-critical software systems. They use a subset of UML
(component and deployment diagrams) to support hazard
analysis at an early design stage. Boolean logic is used
to formally model hazards and failure propagation. Starting
with a component model of the system to be analyzed, (1)
fault trees for all system hazards are derived. Subsequently
(2) the propagation of component failures is analyzed for
each component. Then (3) related behavior of deployment
nodes and hardware devices has to be derived. Finally (4)
boolean equations can be used to apply analysis techniques.
The approach allows to identify the most serious hazards
and failures and to determine components that require a
more detailed safety analysis and assumed restrictions to
fault propagation. This facilitates the systematic derivation
of safety requirements.

The work described in [15] aims on improving the prob-
lems posed by the derivation of safety requirements and by
conducting hazard analysis. The first step is the identification
and description of functions associated with the level under
study. Use cases and scenarios are used for function descrip-

tion. The second step is the failure identification. In this step
a technique is applied that is inspired by techniques such
as FHA (Functional Hazard Assessment) that is typically
applied early in the development process and makes use of
guidewords. In the third step, based on the analysis new
safety related functional requirements are identified. The
approach was evaluated using an use case from the avionics
domain.

An approach to preliminary hazard analysis using EAST-
ADL is proposed in [16]. The proposed workflow starts
with the description of the functions (e.g. Cruise Control)
of the vehicle, their operation needs and other stakeholder
requirements. Thereafter a feature tree model is used to
structure the vehicle functions. After the allocation of re-
quirements to the features, the vehicle is well determined in
terms of its requirements, functions and modes. This is the
input to the identification and classification of hazards based
on the functions and their related requirements. Thereafter
safety goals are derived that constitute top level safety
requirements.

In contrast to aforementioned related works, approaches
that allow to conduct hazard analysis early in the devel-
opment process in the context of more sophisticated MBD
tool support are defined in [17], [18], [19]. These approaches
provide a framework to support modeling using a domain-
specific, diagrammatic language as well as the definition and
automated checking of properties, but none of them defines
properties that support the conduction of hazard analysis.
In contrast our approach supports computer-aided checking,
based on well defined properties that are presented in this
work and allows the automated correction of the analysis
model.

The work proposed in [16] in combination with the
tools [17] and [18] allows the definition of properties using
OCL (Object Constraint Language). The combined approach
allows the definition and checking of properties on demand.

Tools that aim to support the safety standard ISO 26262
are reviewed in [19]. Among the reviewed tools is a tool
named Medini Analyze following an MBD approach. It sup-
ports the definition of vehicle functions and the application
of hazard analysis early in the development process. The
tool allows to define constraints using the OCL language
that can be automatically validated on demand. Besides a
predefined set of checking rules, users can define their own
rules.

III. COMPUTER-AIDED PRELIMINARY HAZARD
ANALYSIS

The application of PHA early in the development process
of an automotive embedded system when less detailed and
quantitative information about the vehicle under develop-
ment is available is a cornerstone in the development process
of an embedded system that is acceptably safe. The identified
and classified hazards and the derived safety goals determine

171171



Figure 1. Computer-Aided Approach to Preliminary Hazard Analysis.

the design of the safety-critical embedded system including
its fault detection capabilities.

The proposed methodology for PHA is based on the work
described in [16] and is depicted in Figure 1. In this approach
an analysis model is annotated, systematically enhanced and
refined using the domain-specific language EAST-ADL until
the results of the PHA are satisfactory. This analysis model
describes the vehicle under development, the results of the
PHA as well as the derived safety goals. We use EAST-
ADL including an enhancement (see also Section IV-A and
Section IV-B). The proposed methodology is explained in
the following:

1) Definition of the Analysis Subject: First information
concerning the vehicle under development is collected
and modeled. Functions of the vehicle (e.g. motoring
or recuperative braking) are described. In addition, re-
quirements are associated with these functions (e.g. re-

quirements for activation or deactivation). In addition
modes (e.g. drive, creep or acceleration) are associated
with each function and with relevant requirements.

2) Identification of Malfunctions and Hazards: Based
on the definition of the analysis subject, possible
malfunctions of the vehicle are identified. This is
carried out using guidewords (see Section IV-A). Each
function is analyzed with regard to each guideword.
When a guideword applies to a function, the violated
requirements are identified. Thereafter the malfunction
(e.g. unintended positive torque) is described and
associated with the analysis subject and the violated
requirements. Hazards (e.g. unintended acceleration
of the vehicle) are derived for each malfunction and
associated.

3) Definition and Classification of Hazardous Events:
The next step is to identify typical traffic situations
(oncoming traffic on a highway in a curve), main-
tenance situations (e.g. vehicle at lifting ramp) (see
Section IV-B) as well as other operational situations.
Moreover use cases that describe the behavior (e.g.
overtaking or changing oil) of the related actors (e.g.
driver or mechanic) are described. Thereafter haz-
ardous events [2] are determined as relevant com-
binations of hazards, use cases and operational sit-
uations. Subsequently relevant modes are identified
for each hazardous event and associated with it. The
criticality of each hazardous event is assessed in terms
of its controllability, severity and exposure [2] and
an ASIL [3] (Automotive Safety Integrity Level) is
assigned. This is underpinned by the definition of
classification assumptions.

4) Derivation of Safety Goals: For each hazardous
that has a sufficiently high ASIL, a safety goal is
defined and associated. A safe state is defined (e.g.
switch open) for each safety goal. Alternatively a safe
mode (e.g. limp home mode) is determined for each
hazardous event. These safety goals are the top level
safety requirements to the safety-critical automotive
embedded system.

After the completion of these working steps lower-level
safety requirements can be derived from the safety goals and
an embedded system architecture including fault detection
capabilities can be defined. Based on these requirements,
software and hardware of the safety-critical embedded sys-
tem are implemented, integrated, verified and validated.
However, these steps of the development process of a safety-
critical automotive embedded system are beyond the scope
of this paper.

The application of PHA for contemporary vehicles is
challenging. The analysis subject is complex and potentially
contains many sensors, actuators and functions, whose com-
bination can lead to a multitude of hazards caused by failures
of the embedded system. This complexity results in a large

172172



set of information to manage during PHA, and the analysis
model grows in size. The exhaustive application of PHA and
the projection of its results onto an analysis model that is
complete, consistent and allows traceability is cumbersome
and error prone.

Challenges are (1) the thorough understanding of the
system functionalities and environment, (2) the correct ap-
plication of a method for the systematic identification and
classification of the related hazards including the derivation
of safety goals, and (3) the correct modeling using the
domain-specific language.

Therefore we propose to aid the process of applying
PHA and creating the analysis model by automated property
checking (Property Checker) as well as automated correction
(Model Corrector) in order to detect an erroneously applied
PHA and to enable corrections (see Section V and Sec-
tion VI). Although not able to conduct PHA automatically,
this approach strongly supports the process of PHA in
providing a guidance for its application and the reflection of
its results on the analysis model. This guidance allows iden-
tifying omissions, inconsistencies and missing traceability
links during PHA and supports the creation of a consistent
and complete set of safety goals.

IV. ANALYSIS MODEL

In the course of the PHA, results are annotated using
the language EAST-ADL (see Figure 1). This language is
domain-specific and tailored to the needs of automotive
embedded systems development. It is diagrammatic such
as UML and consist of syntactic elements such as boxes,
ovals, lines or arrows. Its abstract syntax is defined by
its meta model and its semantic domain and semantic
mapping [5] are defined using natural language. The EAST-
ADL specification can be found in [6].

EAST-ADL allows to describe concepts relevant to the
application of PHA in accordance with the safety standard
ISO 26262. It allows the definition of a vehicle in terms
of its functions (meta class VehicleFeature), modes (meta
class Mode) and requirements (meta class Requirement).
By using these modeling concepts, the analysis subject can
be described. Furthermore meta classes are available that
allow to describe malfunctions (meta class FeatureFlaw) and
resulting hazards (Hazard). Moreover operational situations
(meta class OperationalSituation) can be defined. The behav-
ior of the relevant actors in the context of the operational
situation can be described with use cases. A combination
of hazard, mode, operational situation and use case defines
a hazardous event (meta class HazardousEvent). Moreover
top level safety requirements (meta class SafetyGoal) can
be defined for hazardous events. Associations between the
aforementioned concepts can be created to precisely define
their relations and assure proper traceability.

We propose an enhancement to EAST-ADL that allows to
define malfunctions and operational situations in more detail.

The enhancement is defined in a similar manner as EAST-
ADL in the following. The relation of the enhancement’s
meta model to EAST-ADL is depicted by Figure 2.

A. Language enhancement: Malfunctions

The use of guidewords has been proved to be beneficial
and is also applied by approaches such as [7], [12], [15].
In our approach, the aim of the use of guidewords is to
systematically identify potential malfunctions of the vehicle.

EAST-ADL does not include predefined guidewords to
classify malfunctions (meta class FeatureFlaw). Therefore
EAST-ADL’s meta class FeatureFlaw has been extended
to support the use of guidewords. Using our enhancement,
malfunctions (meta class GuidedFeatureFlaw) can be char-
acterized by the following guidewords.

• No: The vehicle omits to carry out a function although
it is demanded.

• Unintended: A function is carried out without demand.
• Reverse: The vehicle carries out a function but fails in

applying it in the demanded direction.
• More: The vehicle carries out an intended function but

exceeds the demanded degree of intensity.
• Less: The vehicle carries out an intended function but

falls below the demanded degree of intensity.
• Other: If none of the guidewords above are able to

characterize the malfunction.

B. Language enhancement: Operational Situations

An operational situation is characterized by conditions
external to the vehicle. If a hazard inevitably leads to an
accident depends on the operational situation in context
as well as on the behavior of the involved actors. As an
example, if the vehicle brakes without demand of the driver
(hazard) while the vehicle waits in front of a crosswalk and
a pedestrian crosses, the result is harmless. In contrast if
the same hazard occurs while the vehicle moves at high
speed on a curvy road, the hazardous event can lead to
a lethal accident. From this example it becomes obvious
that an acceptably precise definition of operational situations
is a cornerstone for the estimation of severity, exposure
and controllability of the corresponding hazardous events
since they determine the ASILs of the derived safety goals.
The necessity of precisely describing operational situations
in the context of hazards is also emphasized by other
approaches [11], [15].

EAST-ADL rudimentarily supports the definition of
generic operational situations. Frequently occurring opera-
tional situations are traffic situations (the vehicle is driven)
and maintenance situations (the vehicle is being repaired or
serviced). Therefore we propose an enhancement to EAST-
ADL to facilitate a more accurate definition of traffic situa-
tions and maintenance situations. The meta classes Traffic-
Situation and MaintenanceSituation are derived from EAST-
ADL’s OperationalSituation. Each of these meta classes

173173



Figure 2. Proposed enhancement to EAST-ADL for Preliminary Hazard Analysis (referenced enumerations are textually described).

can be described using attributes. For each attribute an
enumeration is defined. Traffic situations can be coarsely
characterized by following attributes:

• Type of track: The kind of the underlying track the
vehicle is operating on such as highway, road, city
street, mountainous track, crossings, drive-up, descent
or parking area.

• Track arrangement: The geometry of the track the
vehicle is operating on such as curve or straight.

• Road conditions: The road conditions the moving
vehicle is exposed to because of the weather such as
icy, normal, snowy or wet.

• Lighting conditions: The conditions that depend on the
time of the day and the weather such as good visibility,
medium visibility or poor visibility.

• Traffic situation: The conditions caused by other road
users such as stop and go, crashing vehicles, colliding
vehicles, pedestrian crossing, vehicle crossing, vehicle
overtaking, adjacent vehicle, congestion, platoon traffic,
oncoming traffic, no other road users, game crossing or
street workers present.

Maintenance situations (MaintainanceSituation) can be
coarsely defined by following attributes.

• Maintenance position: The position of the vehicle
during maintenance such as lifting ramp or ground.

• Maintenance conditions: The conditions the mainte-
nance operation is exposed to such as no other people
or other people around.

Besides the defined value range, each enumeration con-
tains the value undefined. This allows to express that a
certain attribute is irrelevant in context of a hazardous event.
This helps to collapse the number of traffic situations and
maintenance situations to be dealt with during PHA.

V. AUTOMATED PROPERTY CHECKING

The analysis model that is annotated using EAST-ADL
including the proposed enhancement reflects the results of
the PHA. We propose properties that indicate the correct ap-
plication of PHA, if they are fulfilled by the analysis model.
If these properties are violated, the correct application of

PHA is not assured. Note that the fulfillment of all the
properties does not guarantee the exhaustiveness of the PHA,
since the correct and complete understanding of the system
by the team of people that applies PHA cannot be verified
with this approach. This approach can show the erroneous
application of PHA, but it cannot prove the absence of errors.

The defined properties are automatically checked using
the evolving analysis model (see Figure 3). A property
checker uses the definition of properties to continuously
check the analysis model while PHA is carried out. It auto-
matically identifies modeling elements that violate properties
and presents a list of violating modeling elements and the
properties affected. This information allows to early identify
errors in the PHA before they can affect the definition
of an adequate set of top level safety requirements to the
safety-critical embedded system. Since automated checking
is performed concurrently with the application of PHA and
the creation of the analysis model, the property checker is
also a valuable guide while carrying out PHA.

Input to the definition of these properties was (1) the
domain-specific language EAST-ADL including the en-
hancements defined above and (2) the automotive safety
standard ISO 26262 [3]. This standard defines requirements
to the application of PHA for vehicles. Moreover the stan-
dard defines how the criticality of hazardous events shall be
classified in terms of severity, exposure and controllability
and defines how the required safety integrity level shall be
derived. Moreover it is defined how safety goals shall be
derived from defined hazardous events.

The properties are listed in Table I. Column Meta Class
denotes the meta class of the enhanced EAST-ADL language
(see Section IV) that can violate the corresponding property.
Column Property Definition defines the properties for the
corresponding meta classes in natural language.

Assume M is an analysis model, MMM is the meta model
of the enhanced EAST-ADL language and P is the set of
properties as defined in Table I. Assume e is a modeling
element of the analysis model, t is a type defined by the
meta model of the analysis model and p is a property
(Expression 1).

174174



Property ID Meta Class Property Definition
0 Item A complementary description has been defined
0a Item At least one VehicleFeature has been defined
1 Item At least one Hazard has been identified
2 Item At least one FeatureFlaw has been identified

0b VehicleFeature A complementary description has been defined
0c VehicleFeature Associated with at least one Item
23 VehicleFeature A Requirement is satisfied
21 Requirement An ID is defined
22 Requirement A requirements text is defined
24 Requirement Is satisfied
26 Mode A condition has been defined
3 FeatureFlaw At least one Hazard is identified
4 FeatureFlaw Associated with at least one Item
5 FeatureFlaw A complementary description has been defined
6 Hazard At least one FeatureFlaw is associated
7 Hazard At least one Item is associated
8 Hazard At least one HazardousEvent has been identified
9 Hazard A complementary description has been defined

10 HazardousEvent At least one Hazard is associated
11 HazardousEvent At least one UseCase is associated
12a HazardousEvent At least one SafetyGoal is associated if ASIL greater than QM
13 HazardousEvent Associated with at least one OperationalSituation
14 HazardousEvent ASIL has been correctly derived from Controllability, Severity and Exposure
17 HazardousEvent Classification assumptions have been defined
25 HazardousEvent Associated with at least one Mode
15 SafetyGoal A HazardousEvent is associated
16 SafetyGoal A safe state is defined
18 SafetyGoal The ASIL has been correctly derived from associated HazardousEvents
20 OperationalSituation A complementary description has been defined
27 All A name must be assigned

Table I
PROPERTIES OF THE ANALYSIS MODEL THAT ARE AUTOMATICALLY CHECKED WHILE PRELIMINARY HAZARD ANALYSIS IS APPLIED.

eεM, tεMMM , pεP (1)

Moreover, I(e, t) pertains, if e is of type t, D(t, p)
pertains, if p is defined for type t and H(e, p) pertains if
property p holds for modeling element e. If a model M
indicates the correct application of PHA, Expression 2 is
valid. In this case, no modeling element violates a property.

¬∃e¬∃t¬∃p(I(e, t) ∧D(t, p) ∧ ¬H(e, p)) (2)

If a model M shows the erroneous application of PHA,
Expression 3 is valid. In this case, at least one modeling
element violates a property.

∃e∃t∃p(I(e, t) ∧D(t, p) ∧ ¬H(e, p)) (3)

VI. COMPUTER-AIDED MODEL CORRECTION

If violated properties indicate an erroneous application
of PHA, corrective measures need to be carried out. To
ease the correction of errors, we propose to support the
identification of a proper correction measure. This can be
achieved by consulting the model corrector that suggests
possible solutions depending on the violated property and
the current analysis model. Input to the definition of sugges-
tions are again ISO 26262 and the enhanced language EAST-
ADL. Depending on concerned model elements and violated

properties, the model corrector identifies possible solutions
(see Figure 3). If the user decides to accept a solution, the
model is automatically modified accordingly.

Suggestions depending on the violated property are listed
in Table II. Column Meta Class denotes the meta class of
the enhanced EAST-ADL language that can be subject to the
suggestion of an automated correction. Column Suggestion
defines the possible suggestions for the corresponding meta
classes in natural language.

Assume M is an analysis model, MMM is the meta
model of the enhanced EAST-ADL language, P is the set
of properties as defined in Table I and S is the set of
suggestions as defined in Table II. Assume e1 is a modeling
element of the analysis model, t1 is a type defined by
the meta model, p1 is a property and s1 is a suggestion
(Expression 4).

e1εM, t1εMMM , p1εP, s1εS (4)

Assume that before an automated model correction is
carried out (precondition), e1 is of type t1 and violates p1

that is defined for type t1 (Expression 5).

I(e1, t1) ∧D(t1, p1) ∧ ¬H(e1, p1) (5)

If the user accepts suggestion s1, the analysis model M is

175175



Property ID Meta Class Suggested Solution
0 Item Creation and association of Comment
0a Item Creation and association of VehicleFeature
0a Item Associate one of the VehicleFeatures without Item
1 Item Creation and association of Hazard
1 Item Associate one of the Hazards without Item
2 Item Creation and association of FeatureFlaw
2 Item Associate one of the FeatureFlaws without Item
0b VehicleFeature Creation and association of Comment
0c VehicleFeature Creation and association of Item
0c VehicleFeature Associate one of the Items
23 VehicleFeature Creation and association of Requirement
23 VehicleFeature Associate one of the unsatisfied Requirements
24 Requirement Creation and association of VehicleFeature
24 Requirement Associate one of the VehicleFeatures without Requirement
3 FeatureFlaw Creation and association of Hazard
3 FeatureFlaw Associate one of the Hazards without FeatureFlaw
3 FeatureFlaw Associate one of the Hazards with FeatureFlaw
4 FeatureFlaw Creation and association of Item
4 FeatureFlaw Associate one of the Items
5 FeatureFlaw Creation and association of Comment
6 Hazard Creation and association of FeatureFlaw
6 Hazard Associate one of the FeatureFlaws without Hazard
6 Hazard Associate one of the FeatureFlaws with Hazard
7 Hazard Creation and association of Item
7 Hazard Associate one of the Items
8 Hazard Creation and association of HazardousEvent
8 Hazard Associate one of the HazardousEvents without Hazard
9 Hazard Creation and association of Comment
10 HazardousEvent Creation and association of Hazard
10 HazardousEvent Associate one of the Hazards without HazardousEvent
10 HazardousEvent Associate one of the Hazards with HazardousEvent
11 HazardousEvent Creation and association of UseCase
11 HazardousEvent Associate one of the UseCases
12a HazardousEvent Creation and association of SafetyGoal
12a HazardousEvent Associate one of the SafetyGoals without HazardousEvent
13 HazardousEvent Creation and association of OperationalSituation
13 HazardousEvent Associate one of the OperationalSituations
14 HazardousEvent Correction of the ASIL according to the requirements of ISO 26262
25 HazardousEvent Creation and association of Mode
26 HazardousEvent Associate one of the Modes without HazardousEvent
15 SafetyGoal Creation and association of HazardousEvent
15 SafetyGoal Associate one of the HazardousEvents with ASIL larger than QM and without SafetyGoal
18 SafetyGoal Modification of the ASIL according to the ASIL of the corresponding HazardousEvent
20 OperationalSituation Creation and association of Comment

Table II
POSSIBLE SOLUTIONS TO PROBLEMS THAT ARE AUTOMATICALLY SUGGESTED DEPENDING ON THE ANALYSIS MODEL.

automatically corrected and transformed to analysis model
M ′ by function γ depending on M , e1, t1, p1 and s1

(Expression 6).

γ(M, e1, t1, p1, s1) → M ′ (6)

After the modification (postcondition) e1 is an element of
M ′, e1 is still of type t1 and does not violate p1 any more
(Expression 7).

e1εM
′, I(e1, t1) ∧D(t1, p1) ∧H(e1, p1) (7)

VII. EXPERIMENTAL EVALUATION

An Eclipse-based open source tool named Papyrus [17] is
available that facilitates UML-modeling as well as the defini-

tion of UML profiles. An open source plugin is available for
Papyrus [18] that allows the creation of EAST-ADL models.
This plugin was enhanced to support the creation of analysis
models such as described in Section IV. Another plugin
for the Papyrus tool was developed that facilitates property
checking as well as model correction such as proposed in
Section V and Section VI.

Thereafter the proposed approach to PHA of automotive
embedded systems was experimentally evaluated by the case
study of HEV [20] development. One of the main charac-
teristics of this type of vehicle is the addition of an electric
motor that supports the classic combustion engine providing
supplementary or substitutive positive torque. If such a
vehicle uses its E-motor to support the combustion engine, it

176176



Figure 3. Violated properties are automatically identified and possible solutions are suggested on demand.

discharges the battery. If the E-motor is used as a generator
to regain energy while the vehicle decelerates (recuperation),
it recharges the battery and/or supplies electrical energy
to the auxiliaries. These operations are controlled by an
embedded system. This embedded system is clearly safety-
critical since a failure of this system can cause malfunctions
such as overcharging of the battery that might lead to hazards
such as fire and/or explosion.

For the experimental application of the approach, PHA
was carried out and an analysis model was created in course
of PHA. One of the modeling elements in this analysis model
is a hazardous event named FireExplosionDuringCityTraffic.
The origin of this hazardous event is the hazard FireExplo-
sion that is caused by overcharging of the battery because of
unintended negative torque provided by the electric motor
to the powertrain due to a failure of the safety-critical
embedded system. The unintended negative torque causes
the E-motor acting as a generator that finally unintendedly
overcharges the battery of the vehicle.

No safety goal (top level safety requirement) has been
derived from this hazardous event although it is safety-
critical. This omission leads to the fact that no top level
safety requirement has been derived from the hazardous

event FireExplosionDuringCityTraffic that demands the mit-
igation of the hazard FireExplosion. Thus PHA was applied
erroneously what is reflected by the analysis model. Figure 3
illustrates the property checker (1) that has detected the
erroneous application based on the analysis model and re-
ports that modeling element FireExplosionDuringCityTraffic
violates property 12a.

Due to the erroneous application of PHA, corrective
measures must be carried out and the analysis model needs
to be modified. As illustrated in Figure 3, on demand the
model corrector (2) proposes the creation of a new safety
goal or the association with a safety goal that is already
part of the analysis model. In this case the proper solution
is the creation of a new safety goal and the association with
the hazardous event FireExplosionDuringCityTraffic. Once
selected, the analysis model is automatically modified and
a new traceable safety goal is created. Subsequently the
newly created modeling element can be refined using textual
descriptions.

VIII. CONCLUSION

This work presents a novel approach to Preliminary
Hazard Analysis (PHA) for automotive embedded systems.

177177



The proposed framework comprises (1) an enhancement
to the domain-specific language EAST-ADL, as well as
(2) the identification of properties that indicate the correct
application of PHA. These properties can be automatically
checked based on the analysis model that reflects the results
of the PHA. If properties are violated, the approach supports
the automated identification of possible solutions and the
automated correction of the analysis model. This guided and
computer-aided approach strongly supports the application
of PHA and the creation of an analysis model that properly
reflects the results of PHA. The approach has been evaluated
using the case study of hybrid electric vehicle development.
While the use of the property checker and the model
corrector did not replace the intellectual process of carrying
out PHA exhaustively by a team of people with a wide
variety of knowledge and skills, the automated identification
of an erroneously applied PHA and the guided correction
during the analysis process proved to be highly valuable to
improve the quality of the analysis.

ACKNOWLEDGMENT
The authors wish to thank the "COMET K2 Forschungsförderungs-

Programm" of the Austrian Federal Ministry for Transport, Innovation and
Technology (BMVIT), the Austrian Federal Ministry of Economics and
Labour (BMWA), Österreichische Forschungsförderungsgesellschaft mbH
(FFG), Das Land Steiermark and Steirische Wirtschaftsförderung (SFG) for
their financial support. Additionally we would like to thank the supporting
company and project partner AVL List GmbH as well as Graz University
of Technology. Further information about the MEPAS project can be found
at http://www.v2c2.at/mepas.

REFERENCES

[1] Nancy G. Leveson, Safeware: system safety and computers.
Addison-Wesley Publishing Company, 1995.

[2] International Organization for Standardization, “ISO/DIS
26262-1 Road vehicles - Functional safety - Part 1: Vocabu-
lary,” 2009.

[3] ——, “ISO/DIS 26262-3 Road vehicles - Functional safety -
Part 3: Concept phase,” 2009.

[4] M. Törngren, D. Chen, D. Malvius, and J. Axelsson, “Model-
Based Development of Automotive Embedded Systems,” in
Automotive Embedded Systems Handbook. CRC Press, 2008,
ch. 10.

[5] D. Harel and B. Rumpe, “Meaningful Modeling: What’s the
Semantics of "Semantics"?” IEEE Transactions on Comput-
ers, vol. 37, pp. 64–72, Oct. 2004.

[6] ATESST2 Project Consortium, “EAST-ADL Domain Model
Specification,” 2010, version 2.1, Release Candidate 3.

[7] P. Johannessen, F. Törner, and J. Torin, “Actuator Based
Hazard Analysis for Safety Critical Systems,” in Proc. of the
23th International Conference on Computer Safety, Reliability
and Security, Sep. 2004, pp. 130–141.

[8] F. Törner, P. Johannessen, and P. Öhman, “Assessment of
Hazard Identification Methods for the Automotive Domain,”
in Proc. of the 25th International Conference on Computer
Safety, Reliability and Security, Sep. 2006, pp. 247–260.

[9] P. Jesty, D. Ward, and R. Rivett, “Hazard Analysis for
Programmable Automotive Systems,” in Proc. of the 2nd IET
International Conference on System Safety 2007, Dec. 2007,
pp. 106–111.

[10] H. Schubotz, “Hazard Analysis and Risk Assessment for
Complex EE-Architectures,” in Proc. of the SAE World
Congress & Exhibition, no. 2010-01-0029, Apr. 2010.

[11] M. Stringfellow, N. Leveson, and B. Owens, “Safety-Driven
Design for Software-Intensive Aerospace and Automotive
Systems,” Proceedings of the IEEE, vol. 98, pp. 515–525,
2010.

[12] J. Michael, M.-T. Shing, K. Cruickshank, and P. Redmond,
“Hazard Analysis and Validation Metrics Framework for
System of Systems Software Safety,” IEEE Systems Journal,
vol. 4, pp. 186–197, 2010.

[13] S. Kumar, P. Ramaiah, and V. Khanaa, “A Methodology for
Building Safer Software based Critical Computing Systems,”
in Proc. of the 2nd IEEE International Conference on Ad-
vance Computing (IACC’2010), Feb. 2010, pp. 422–429.

[14] H. Giese, M. Tichy, and D. Schilling, “Compositional Hazard
Analysis of UML Component and Deployment Models,” in
Proc. of the 23th International Conference on Computer
Safety, Reliability and Security, Sep. 2004, pp. 166–179.

[15] K. Allenby and T. Kelly, “Deriving Safety Requirements
Using Scenarios,” in Proc. of the 5th IEEE International
Symposium on Requirements Engineering, Aug. 2001, pp.
228–235.

[16] A. Sandberg, D.-J. Chen, H. Lönn, R. Johansson, L. Feng,
M. Törngren, S. Torchiaro, R. T. Kolagari, and A. Abele,
“Model-Based Safety Engineering of Interdependent Func-
tions in Automotive Vehicles Using EAST-ADL2,” in Proc.
of the 29th International Conference on Computer Safety,
Reliability and Security, Sep. 2010, pp. 332–346.

[17] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard,
P. Tessier, R. Schnekenburger, H. Dubois, and F. Terrier,
“Papyrus UML: an open source toolset for MDA.” in Proc. of
the Fifth European Conference on Model-Driven Architecture
Foundations and Applications (ECMDA-FA 2009), Jun. 2009,
pp. 1–4.

[18] ATESST2 Project Consortium, “Refined EAST-ADL2 tool
support,” Tech. Rep., 2010, Deliverable D3.2.

[19] D. Makartetskiy, D. Pozza, and R. Sisto, “An Overview of
Software-based Support Tools for ISO 26262,” in Proc. of
the 3rd International Workshop on Innovation in Information
Technologies: Theory and Practice, Sep. 2010, pp. 1–6.

[20] M. Ehsani, Y. Gao, S. Gay, and A. Emadi, “Hybrid Electric
Vehicles,” in Modern Electric, Hybrid Electric, and Fuel Cell
Vehicles Fundamentals, Theory, and Design. CRC Press,
2005, ch. 5.

178178



Improving Automotive Embedded Systems
Engineering at European Level

Gerhard Griessnig1,2, Ingrid Kundner1, Eric Armengaud1,3, Sandra Torchiaro4, Daniel Karlsson5

1 AVL List GmbH, Hans-List-Platz 1, A–8020 Graz, Austria
2 Institute for Technical Informatics, Inffeldgasse 16/1, A–8010 Graz, Austria

3 The Virtual Vehicle Competence Center (ViF), Inffeldgasse 21A, A–8010 Graz,Austria
4 Centro Ricerche Fiat S.C.p.A, Strada Torino 50, I–10043 Orbassano,Italy

5 Volvo Technology Corporation, Götaverksgatan 10, SE–40508 Göteborg,Sweden
E-mail: {gerhard.griessnig, ingrid.kundner, eric.armengaud}@avl.com

sandra.torchiaro@crf.it
daniel.b.karlsson@volvo.com

Abstract— Complexity in embedded systems engineering is
increasing, imposing challenges to many industries. Especially
the automotive industry has gone through significant changes
with the application target of embedded systems moving towards
safety-relevant applications. New safety standards as well as an
increasing number of functionalities in a context of stringent
cost constraints represent a complex challenge the industry is
dealing with. In this paper, we provide an overview of two major
challenges, the automotive industry is facing and of the main
European research projects - with an emphasis to CESAR -
focused on solving these challenges with respect to embedded
systems engineering. We further discuss the reference technology
platform as concept for tool integration and interoperability
standard in order to significantly reduce costs. Finally, an
exemplary realization of such reference technology platform for
the automotive domain is presented.

Index Terms— automotive industry, safety-critical embedded
systems, ISO 26262, integrated tool-chain

Abstract— Ehrhöhte Komplexität in der Entwicklung von Em-
bedded Systems stellt heute viele Industriezweige vor Heraus-
forderungen. Dies trifft besonders die Automobilindustrie; hier
werden immer mehr sicherheitskritische Funktionen mit Hilfe
von Embedded Systems realisiert. Die Wechselwirkung zwischen
neuen Standards und steigender Anzahl von Funktionalitäten
bei strikter Kostenbegrenzung stellt eine komplexe Aufgabe
dar, die es zu bewältigen gilt. Dieser Artikel behandelt zwei
dieser Herausforderungen der automotiven Industrie und stellt -
mit einem Fokus auf CESAR - die wichtigsten Europäischen
Forschungsprojete im Bereich Embedded Systems vor. Weit-
ers wird die Referenz Technologie Plattform als Konzept für
Werkzeugintegration und Interoperability Standard präsentiert.
Ziel ist es, hiermit die Kosten des Entwicklungsprozesses spürbar
zu senken. Abschließend wird eine beispielhafte Realisierung
einer solchen Referenz-Technologieplattform für die Automo-
bilindustrie behandelt.

Index Terms— Automobilindustrie, sicherheitskritische Em-
bedded Systems, ISO 26262, integrierte Tool-Chain

I. INTRODUCTION

The world market for embedded systems was strongly
growing in the last decade. Nowadays, 3 billion embedded
units are delivered per year and the world market for embedded
systems encompasses around 160 billion Euro with an annual

growth of about 9% (Ebert & Jones, 2009), (Ebert & Salecker,
2009). This trend is as well true for the automotive industry. A
few decades ago, the application of embedded systems in the
automotive industry was bound and mostly related to comfort
features. This has changed significantly and nowadays, vehi-
cles have been transformed to embedded computing systems
with about hundred electronic control units (ECUs) and several
networks running complex distributed applications.
Today’s vehicles offer a high number of visible and invisible
functions to the driver, to increase both the comfort as well as
the safety of the passengers. Examples of such safety-related
functions are anti-lock braking systems (ABS), electronic sta-
bility control (ESC) and a lot of new technologies like adaptive
cruise control (ACC). Nowadays topics include hybridization,
car to car and car to infrastructure communication, e-mobility
etc. (Griessnig, 2011) - which leads to even more electronic
functions. Their malfunction or non-function could lead to new
types of accidents harming people, environment or property.
To ensure that all these new functions meet a certain level
of safety, new standards like the ISO 26262 (ISO, 2010) were
developed, imposing requirements on the development process
and the system itself.
All together, these evolutions significantly increased the com-
plexity of car electronics and consequently a major part of
the development effort is shifted to the development, design
and integration of embedded systems. This evolution has led
to a paradox that not only the automotive industry is facing:
the complexity is increasing but costs have to be kept at
a minimum while keeping the high-level quality the end-
user is accustomed. This leads to high demands regarding
new methods and tools, product architectures and personnel
competencies. The contributions of this paper are (1) to
provide an overview of the main European activities in the
domain of embedded software engineering, and (2) to present
the CESAR project and especially the concept of reference
technology platform (RTP). The paper is organized as follow:
Section II provides an overview of the challenges as well as
of the main related European research projects. After that,
the CESAR project and the concept of RTP are presented in

Publication 2 - OVE Journal, E&I 2011



2

Section III. Section IV illustrates an exemplary realization of
an integrated tool chain based on the CESAR RTP concept
for the automotive domain. Finally, Section V concludes this
work.

II. CHALLENGES FOR AUTOMOTIVE EMBEDDED SYSTEMS
IN EUROPE

A. Needs for Functional Safety

The automotive industry shares the view that in the next
10 years 90% of its expected innovations will be based
on electrical/electronic systems with a huge emphasis on
the safety related systems (Moessinger, 2010). New passive,
preventive and active safety systems are added on the vehicle
to decrease the probability that an accident occurs and to
mitigate the consequences on vehicle occupants and other road
users. The continuously increasing electrification in vehicles
and the associated complexity requires a comparable level
of safety within today’s vehicles that takes into account
the consideration of possible hazards and their impact on
humans or the environment. Therefore, a safety application
standard for the automotive domain has been derived from
the IEC 61508 standard to consider the particular needs of
this industry: the new standard ISO 26262 "Road vehicles
- Functional safety". ISO 26262 represents the state of the
art regarding the safety processes with the related methods
and the safety requirements for the development, production,
maintenance and decommissioning of E/E systems installed in
series production passenger cars.

The IEC 61508 (IEC, 2010), as application independent ba-
sic standard, includes a mandatory hazard and risk assessment
in order to identify the adequate safety integrity level (SIL)
which is a combination of (1) consequence, (2) exposure time,
(3) possibility of failing to avoid hazard and (4) probability
of the unwanted occurrence. This determined SIL directly
impacts the entire development process of the safety related
product. One noteworthy difference between ISO 26262 and
IEC 61508 is in the determination of the Automotive-SIL
(ASIL as defined in ISO 26262) during the Hazard and Risk
analysis (H&R). In general, the determination of the ASIL
follows a similar principle where the effects of hazards are
assessed in the context of possible operational situations,
deriving a corresponding ASIL which is a combination of (a)
severity, (b) exposure and (c) controllability. Contrary to the
IEC 61508 where factor (3) can reduce the required SIL one
level only, the comparable factor (c) in the ISO 26262 can fully
impact the derived ASIL. In the case the hazard is "normally"
under control of the driver, no ASIL independent from severity
or exposure is requested.

The application of a new standard like the ISO 26262
requires changes in the development process and as well in the
structure of organizations. This is costly and new techniques
and methodologies that support cost-efficient development are
requested to meet the ISO 26262 requirements. Such safety
development techniques and methodologies provide important
input for defining automated and integrated tool chains in order
to preserve a stringent safety-oriented mindset for reducing
development costs and the number of human errors.

B. Needs for tool-chain integration

SectionII-A emphasized the problematic trade-off between
the rapid increase of new functionalities and the need to
control costs, time and quality related to the development
activities. Typical activities to be performed when developing
new functionalities include planning, specification, modeling,
analysis, verification, implementation and testing. These ac-
tivities already require a significant amount of effort. On
top of this, each activity further requires the use of its own
set of tools with dedicated input and output formats, only
loosely coupled to other tools. This complicates sharing of
information between different tools, and developers are forced
to manually transfer information between many different tools.
An immediate consequence of this is a huge amount of double
work leading to unnecessary costs. The risk of inconsistencies,
which also compromise safety, between models in different
tools is evident.

An additional complicating factor is routed in the separation
of duties between OEMs and tier-1 suppliers. With the in-
troduction of AUTOSAR(AUTOSAR Consortium, 2010), the
responsibility split between OEMs and suppliers has changed,
as now the allocation of each function is distributed among
several ECUs. This implies that the OEM is responsible for a
function as a whole, whereas suppliers implement well-defined
parts of it. In other words, several suppliers are involved in
the implementation of one function under the guidance of the
OEM. As consequence, the exchange of information is not
limited to different tools within one company, but can occur
between different tools at different companies. The process of
requirement capturing is illustrating this situation: the OEM
defines a set of requirements describing the function in its own
requirement management tool. These are then handed over to
a supplier in a textual format (automatically generated), and
the supplier needs to manually enter the requirements in his
own requirement management tool. A lot of time and effort
could be saved with better integrated tool chains, both between
OEM and supplier as well as internally within the companies.

A first step towards this goal is the definition of common
and standardized exchange formats. Two major and mutually
complementary and aligned standards have been proposed for
the automotive industry: AUTOSAR and EAST-ADL (The
ATESST Consortium, 2010) (the latter is developed by the FP7
project MAENAD1 with timing extensions from the ITEA2
project TIMMO-2-USE2). Both have defined metamodels and
exchange formats with the aim to capture all engineering infor-
mation needed for developing automotive embedded systems.

While the exchange formats constitute a backbone for better
tool integration, the next step is to let the development tools
(of both OEMs and suppliers) work directly on a common
model, as defined by a standardised metamodel (e.g. AU-
TOSAR or EAST-ADL). A platform that controls and protects
the common metamodel and orchestrates the connected tools
according to a predefined development process, erases the
borders between tools in the sense that it is neither necessary
to model the system multiple times nor to explicitly import

1http://www.maenad.eu/
2http://timmo-2-use.org/



3

and export data. Such an approach allows significant savings
of development effort and costs by reducing the amount of
double work.

C. The ARTEMIS JU Framework

ARTEMIS Joint Undertaking3 and national authorities are
jointly funding a large number of projects in the field of
embedded systems development to meet the industrial de-
mands. The ARTEMIS JU aims to achieve effective co-
ordination and synergy of resources and funding from the
industry, the Framework Program, national R&D programs
and intergovernmental R&D schemes, thus contributing to
strengthening Europe’s future growth, competitiveness and
sustainable development (ARTEMIS Joint Undertaking, 2011).
The consortia of ARTEMIS JU projects comprise industrial
partners, academics, SMEs and tool vendors to bring together
industrial needs, academic and industrial solutions. What is
common for the projects started in this funding scheme is the
focus on cross-domain solutions and sustainability of results.
Examples of such projects are:

• CESAR4aims at improving methods, tools and processes
to decrease the development effort and to introduce the
reference technology platform (RTP), a seamless tool-
chain for the development of embedded systems. The
project and its main concepts are further explained in
section III of this paper.

• iFEST5 will, similar to CESAR with the RTP, specify
and develop an integration framework for establishing and
maintaining tool chains for the engineering of complex
industrial embedded systems. Specific emphasis is placed
on open tool chains for HW/SW co-design of heteroge-
neous and multi-core solutions, and life cycle support for
an expected operational life time of several decades.

• MBAT that will start in June 2011, will reuse some of
the CESAR results and provide Europe with a refer-
ence technology platform for effective and cost-reducing
validation and verification (focus on analysis and test),
focusing primarily on transportation domain, but also to
be used in other domains. On the basis of models, analysis
and test cases will be derived. Test cases will be used to
dynamically check the system under test, analysis cases
will be used to statically check the system under analysis.

The CESAR innovation cycle (figure 1) serves as an exam-
ple for the cooperation between the partners: the right arrow
represents the domains working in the project (automotive,
avionics, automation and rail) that defined a number of pilot
applications, representing current problem scenarios in their
development processes. An exemplary pilot application from
the automotive domain is a power train control unit for
a hybrid vehicle or the recuperation function described in
sectionIV. Out of these problem scenarios, requirements were
formulated. The interesting challenge of this task was not only
the formulation of requirements of each domain but to identify
the requirements which are valid across different domains. The

3http://www.artemis-ju.eu/
4http://www.cesarproject.eu
5http://www.artemis-ju.eu/projects

requirements served then as input for the work of the technical
subprojects, represented by the left arrow in figure 1, in order
to provide solutions to the problem scenarios identified by the
domain subprojects. In the case of CESAR, the technical sub-
projects are requirements engineering (RE), component based
devleopment (CBD) and reference technology platform (RTP).
The solutions provided by these are then transferred back to
the domains for evaluation based on the pilot applications.

Fig. 1. The CESAR innovation cycle

III. CESAR AND THE REFERENCE TECHNOLOGY
PLATFORM CONCEPT

The CESAR project has been started to provide improved
methods, tools and processes to meet the demands in embed-
ded systems development in the domains avionics, automotive,
automation and rail (Griessnig, et al., 2010). 55 partners
from 10 countries are working for over three years in this
European project that started in March 2009. The major
objective is to decrease the costs of safety-critical embedded
systems development by up to 50%. Corresponding to the
idea of ARTEMIS Joint Undertaking, the CESAR consortium
brings together partners from 4 different domains (automo-
tive, aerospace, automation and rail) representing industry,
academics and tool vendors in order to establish a significant
number of stakeholders. One of the major reasons therefore
is to find commonalities within the different domains and to
bring together state-of-art and state-of-practice.
To meet the challenging project objectives, CESAR addresses
the entire system engineering process (figure2) by improving
its disciplines and integrating the innovations into a seamless
tool chain, the reference technology platform (RTP). The RTP
is a set of inter operable tools, methods and processes designed
to improve the development work.

The following approach is taken:
1) Bringing innovations in tools and methods of the re-

quirements engineering (RE) discipline, in particular
through formalization of multi viewpoint, multi criteria
and multi level requirements. The focus here is on



4

Fig. 2. CESAR: The CESAR system engineering idea

the full traceability of a requirement throughout the
development chain and even the entire supply chain.

2) Bringing innovations in tools and methods of the com-
ponent based development (CBD) and extend it with
multi view, multi criteria and multi level architecture
trade offs.

3) Combining improved requirements engineering and
component based development, taking into account new
disciplines like safety & diagnosability (SD) and product
line engineering (PLE) as a close cooperation between
these is necessary.

4) Only an integration of these disciplines accompanied
with an adequate tool support into a seamless tool chain
(CESAR RTP) can unleash the full potential of the
CESAR approach.

The realization of the RTP is a central element of the CE-
SAR project. As shown in figure 2, it is the aim to implement
the solutions provided out of the different system engineering
disciplines into this seamless tool chain. It will facilitate
the development of embedded systems in order to support
engineers carrying out activities like tracing requirements
across tool boundaries and creating deliverables e.g. safety
cases. Especially in the development of safety-critical em-
bedded systems where e.g. tracing of requirements or impact
analysis are requested by corresponding safety standards, the
RTP as integrated tool-chain facilitates the development work.
Currently existing approaches to tool integration are either
proprietary (Altheide, et al., 2003), (Ridderhof, et al., 2007) or
purely academic (Burmester, et al., 2004), (Burmester, et al.,
2005). CESAR however aims at finding a domain-common
understanding and an agreement on concepts for tool integra-
tion between industrial partners, tool vendors and academic
key players. The essential point is to move away from point
to point integration to a bus-integration (e.g. ModelBus (Hein,
et al., 2009)) that can be tailored to the specific demands of
a development activity in the relevant domain.

Figure 3 illustrates the CESAR RTP concept with a

Fig. 3. CESAR: The CESAR RTP concept

schematic representation of the RTP on the top. The instances
of the RTP, the specific tool chains shown in the bottom
of the picture, are created through specific tailoring rules
according to relevant safety standards (e.g. ISO 26262, IEC
61508 (IEC, 2010)), application domains (e.g. aerospace,
automation) or company-specific habits (e.g. preferred tools,
customized processes), represented by the trapezoids left and
right from the arrow.

IV. AUTOMOTIVE TEST MANAGEMENT TOOL-CHAIN

Figure 4 (Armengaud, et al., 2011b) illustrates an example
of a RTP tool chain, tailored to the needs of the automotive
industry. The intention of this tool chain is to facilitate the
interaction between different roles within the development
process: the requirements engineer, system engineer, V&V
manager and test engineer. The tools Papyrus6 and AVL
InMotion7 are integrated in this tool chain over the RTP-
ModelBus that assures data consistency and traceability from
one development step to the next. Papyrus is an open-source
tool supporting the modeling of automotive embedded systems
according to EAST-ADL whereas AVL InMotion is a real-time
simulation platform for maneuver and event-based testing at
the testbed. EAST-ADL is an architecture description language
for automotive electronic/electric systems and is tailored to
support the ISO 26262 safety life cycle. The proposed tool-
chain covers 7 activities to be carried out by different roles in
the development process (Armengaud et al., 2011b), (Armen-
gaud, et al., 2011a):

The first three steps are performed in the tool Papyrus
according to the EAST-ADL methodology: in the first step,
the requirement engineer models the requirements. The system
architecture is defined in the second step by the system
designer. Furthermore he adds the traceability links to the
existing requirements. In the third step, the V&V manger
describes the test cases. The fourth step now performs the
model transformation from EAST-ADL to the AVL InMotion
tool. This is done automatically by the integrated tool-chain.

6http://www.papyrus-uml.org
7http://www.avl.com, AVL InMotion powered by IPG CarMaker



5

Fig. 4. CESAR: RTP instance for automotive test management scenario

The description of the test case done in step 3 is the input
to automatically generate an InMotion test case. In the next
step, the test cases are implemented in the test environment
and executed by the test engineer. Step 6 transforms the results
back to the Papyrus tool. During this transformation, the test
execution status and a link to the test results from InMotion
are automatically inserted into the EAST-ADL model. In step
7, the results are finally available and can be analyzed by the
V&V expert.

In order to evaluate this tool chain, a pilot application
from the automotive industry has been chosen. The subject
of this pilot application is a recuperation function for a hybrid
vehicle. Recuperation is the recovery of kinetic energy by
the e-motor generating negative torque that decelerates the
vehicle and is transformed into electric energy. This energy is
further used to charge batteries or supply the low voltage board
net. The safety-relevance of this pilot application is twofold
(Armengaud et al., 2011a):

1) Danger of unintended recuperation leading to breaking
e.g. at high speed

2) Danger of explosion or fire routed to a possible over-
loading of the battery

There is room for improvement in the development of
electric / hybrid vehicles. Today, the passing of information
between the different teams is often based on office documents
under the risk of human error and a lack of traceability. What
is still missing, is a harmonization of the tools and methods
used, in particular for the definition of the system requirements
and the design architecture.

The following benefits have been concluded from the evalu-

ation of the proposed integrated tool chain (Armengaud et al.,
2011b):

• Fast synchronization: Due to the use of a semi-formal
language (EAST-ADL) for the system architecture, pos-
sible misunderstandings between the teams have been
minimized and it allowed a quick synchronization be-
tween large teams (in our case a 15 person team across
3 countries).

• Traceability: A major benefit is routed in the traceability
between requirements, system components, test cases and
test results. This has been enabled by the meta-model
covering the entire development process.

• Easy extension of current tool-chain: Due to the
use of a vendor-neutral data backbone and a common
understanding, the enhancement of the tool-chain and
integration of further tools is quite easy.

• Automated notification: When the system has been
modified and a task has to be performed, an automated
notification is released. This facilitates the coordination
within the team.

• Automated configuration of subsequent development
steps: Results of one development step can be used as
input for another. When using different tools, the con-
figuration is usually done manually - leading to possible
errors. Model transformation with tool adapters enables
the automation of data transfer and reduces development
time and human error.



Publication 3 - PATENT AT, EU and US 2008





Design and Implementation of Safety Functions on a Novel CPLD-based Fail-Safe
System Architecture

Gerhard Grießnig1, Roland Mader1,2, Christian Steger2, Reinhold Weiß2

1AVL List GmbH, Austria
2ITI, Graz University of Technology, Austria

Abstract—In the case of a fault fail-safe systems achieve and
maintain a safe state for people, environment and property.
These systems are usually realized using microcontroller-based
architectures. With respect to cost per unit and development
effort for fail-safe systems, industry has to consider new
approaches. An option is to realize simple safety functions
using architectures that include CPLDs. A novel hardware
architecture for embedded fail-safe systems is the outcome
of recent research efforts at SIEMENS. This architecture is
homogeneously redundant and contains, in contrast to similar
systems, exclusively two CPLDs instead of microcontrollers.
This paper is presenting design and implementation of the
very first fail-safe system based on this architecture. This
system targets the market of industrial automation. The fail-
safe system enhances a power converter with safety functions.
To achieve the required safety integrity, adequate measures
able to detect random and permanent faults, are implemented.
The novel fail-safe system adheres to the draft of the second
edition of the IEC 61508, which includes requirements for the
realization of safety functions using CPLDs, the IEC 61800-5-2
and the EN ISO 13849.

Keywords-safety; safety-critical embedded system; fail-safe
system; safety function; IEC 61508; CPLD

I. INTRODUCTION

Failures of safety-critical systems may result in death
of people, pollution of the environment or destruction of
property and equipment. In industrial automation, highly
dependable or fail-safe systems are in use to reduce the
risk of harms. In case of a failure, fail-safe systems are
required to fail in a way not to harm people, environment or
property. The systems have the well-defined task to achieve
and maintain a safe state in case of a fault.

In domains like aviation, fault-tolerant systems guarantee
the necessary availability. These systems continue to operate
even if units of the systems are affected by faults. Fault-
tolerant systems contain redundant units, but redundancy
alone is not sufficient. Measures to detect faults, while the
system is operating, are required as well. The identification
of faulty units is important to identify and separate them
from the faultless units to give the system the chance to
reconfigure and recover.

Microcontrollers are frequently used for the realization of
safety-critical embedded systems [1]. Their drawback is that
they require the implementation of complex safety-integrity
measures like RAM tests and CPU tests. The implementation

of these safety integrity measures requires large efforts. If the
safety functions, which need to be realized, are comparably
simple, the biggest part of the implemented source code is
dedicated to the test of RAM, CPU and periphery and only
a little source code is dedicated to the implementation of
safety functions.

This has been the motivation for recent research efforts
at SIEMENS. The result of these efforts is a novel fail-safe
system architecture [2]. In contrast to similar systems, the
described system architecture contains exclusively CPLDs
(complex programmable logic device) for the realization of
safety functions. If simple safety functions, that require less
resources have to be realized, this architecture is econom-
ically very competitive to alternate realizations based on
microcontrollers. This is because the use of CPLDs that
include neither CPU nor RAM makes the implementation
of RAM tests and CPU tests superfluous while the costs
per unit of small CPLDs is comparable to the costs per
unit of a small microcontroller. Contrary, the use of CPLDs
facilitates the realization of simpler safety integrity measures
in hardware. This contributes to saving costs for design,
implementation, verification and certification of the system.

The maturity of this concept is confirmed by a novel
system based on this architecture. This system is targeting
the market of industrial automation. It enhances a SIEMENS
power converter which controls an electric motor with sim-
ple safety functions. Additionally, it realizes safety integrity
measures to detect faults. While other contributions concern
the novel CPLD-based fail-safe system architecture [2] and
a method to perform fault-injection testing of CPLD-based
fail-safe systems [3], this paper contributes by providing a
description of design and implementation of the first fail-safe
system based on this architecture.

The paper is organized as follows: Section II contains
a survey of related work. Section III describes relevant
standards including the draft of the second edition of the
IEC 61508, which defines requirements for the implemen-
tation of safety functions in reconfigurable hardware or
ASICs. The considered standards influence architecture and
behavior of the presented fail-safe system as well as the
development process. Section IV elaborates on the required
safety functions, the architecture of the fail-safe system,
its behavior and its safety integrity measures. Section V

2010 17th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4005-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ECBS.2010.29

206

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on July 28,2010 at 08:12:48 UTC from IEEE Xplore.  Restrictions apply. 

Publication 4 - IEEE, ECBS 2010



describes the applied work flow and the used tools as well
as the implementation of the safety functions and the safety
integrity measures in hardware. Finally Section VI concludes
this work.

II. RELATED WORK

Various architectures for safety-critical systems have been
proposed so far. In [1] architectures and strategies to achieve
safety integrity are described. Considered approaches are:

• Single-controller Strategy: A microcontroller collab-
orates with a primitive watchdog. The microcontroller
has to reset the watchdog periodically. Additionally, the
microcontroller performs self-checking diagnostics to
detect faults.

• Symmetric controller Strategy: Two identical mi-
crocontrollers execute the same program. Their com-
putations depend on the same inputs. The controllers
communicate and compare their results to detect faults.
Additionally, they perform checks for communication
time-outs. Thus, each microcontroller serves as watch-
dog for the other microcontroller.

• Asymmetric controller Strategy: An intelligent
watchdog (ASIC or low cost processor) collaborates
with a microcontroller. The intelligent watchdog veri-
fies the microcontroller’s integrity by requesting peri-
odic diagnostic checks.

In [4] fault-tolerant architectures are reviewed. The au-
thors investigate how to implement these architectures,
which contain multiple CPUs on a single chip. The consid-
ered architectures are lock-step, loosely-synchronized dual-
processor and triple modular redundant (TMR). Additionally
the authors propose new architectures for the integration on
a single chip only.

The integration of fault-tolerant systems on a chip is prob-
lematic because of common cause failures. These failures
affect all duplicates of a circuit due to the same reason (e.g.
faulty clock tree or power supply). Thus it is difficult to reach
high levels of safety integrity with this approach without
additional measures.

Although the integration of safety-critical systems on a
chip is difficult, an approach to reduce the probability of
common cause failures is described in [5]. The authors use
a library of Intellectual Property blocks, which can be used
for fault detection and fault-tolerance. Their architecture
includes a block which performs memory protection. A
supervisor performs diagnostic checks of the CPU. The
checks are mainly implemented in hardware. The system bus
and the interfaces to peripheral components are supervised
by separate blocks. Another bus system is used for the
communication between the diagnostic units. The authors
refer to this approach as faultRobust.

The approach reduces the probability of the occurrence of
a common cause failure, as some blocks are architecturally
or functionally diverse. Thus higher levels of safety integrity

can be realized without additional measures to decrease the
probability for common cause failures.

A methodology to perform a system FMEA (failure modes
and effects analysis) on SoC (System on Chip) level is de-
scribed in [6]. This methodology makes it possible to assess
the SFF (safe failure fraction) of a SoC. The methodology
has already been used to certify intellectual property, which
belongs to the faultRobust approach, in adherence to the
standard IEC 61508.

In [7] the utilization of PLDs to design safety-critical
systems is proposed. A TMR (triple modular redundancy)
system consisting of multiple PLDs is described. The authors
claim that most of the faults, which affect safety-critical
systems, occur at the interfaces. Thus the integration of safe
input cells and safe output cells into the PLDs is proposed.
A safe input cell is connected to 3 sensors, which measure
the same safety-critical physical quantity. A voter circuit
determines the safe input. The output of the safe output cell
is dynamic. Logic level 1 is represented by an oscillating
signal with a constant frequency.

Totally self-checking circuits are described in [8]. The
output of circuits is separated in code words and noncode
words. If no fault occurred, the output of a circuit is a code
word. If the output of a circuit is a noncode word, a fault
occurred. A dedicated circuit (checker) decides, if the output
of a circuit is a code word or a noncode word and signals
a fault if necessary.

III. RELEVANT SAFETY STANDARDS

When a safety-critical system is developed for a certain
target market, it is necessary to consider the market’s de-
mand as well as the safety standards relevant to the target
market (e.g. chemical industry). The target market of the
presented fail-safe system is industrial automation. There are
basic standards and other derived standards that need to be
considered. The presented fail-safe system adheres to these
safety standards.

A. IEC 61508

The first relevant standard is the application-independent
standard for functional safety. The first edition of the IEC
61508 [9], which was published in the year 2000, does not
define special requirements for the development of safety
related systems using CPLDs. The responsible committee
for the second edition of the IEC 61508 has detected this
gap. Thus the second edition of the IEC 61508, which
will replace the first edition, will include detailed require-
ments concerning the development of safety functions using
ASICs, FPGAs and CPLDs.

Currently a draft of the new version of part 2 of IEC 61508
is available which includes requirements for design, im-
plementation and verification of CPLD-based safety-critical
systems. The draft defines a V-model of the safety lifecycle

207

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on July 28,2010 at 08:12:48 UTC from IEEE Xplore.  Restrictions apply. 



for ASIC/FPGA/PLD designs. There are similarities be-
tween the development of safety-critical software and the de-
velopment of ASICs. Thus the V-model of ASIC/FPGA/PLD
designs is similar to the V-model of the development of
safety-critical software.

Additionally, Annex B of the draft of part 2 contains
a table which defines measures and techniques to avoid
introducing faults in the development process of user-
programmable ICs (PLD/CPLD/FPGA) for different safety
integrity levels. There are requirements for design entry, syn-
thesis, placement, routing, layout generation and production.

The presented fail-safe system is developed in adherence
to the draft of part 2 of IEC 61508. Additionally, guide-
lines (e.g. [10]) for developing safety-critical systems using
hardware description languages are considered.

B. IEC 61800-5-2

The generic standard IEC 61508 is the basis for several
derived sector standards. These sector standards describe the
requirements for special fields of application. In our special
case, the international standard IEC 61800-5-2 [11], which
describes the requirements for adjustable speed electric drive
systems, has to be considered as well. To make the presented
architecture applicable in our target market without any
limitations, SIL 3 according to the standards IEC 61508 and
IEC 61800-5-2 is aspired.

IEC 61800-5-2 requires that low demand mode of opera-
tion is not generally considered to be relevant to PDS (power
drive system) applications like the power converter, which
requires to be enhanced with safety functions. Therefore,
PDS are considered to operate in high demand or continuous
mode only. Consequently, appropriate measures have to be
realized to reach SIL 3.

C. EN ISO 13849

The second basic standard concerns the safety of machin-
ery. EN ISO 13849 [12] describes the "functional safety of
machinery", which is mainly relevant to vendors of safety-
critical components for machinery. This standard defines so
called "categories" (Cat) and "performance-levels" (PL).

Our goal is to achieve the highest category 4 and the
highest performance-level e to make the presented architec-
ture applicable in our target market without any limitations.
Consequently, two standard requirements defined by EN ISO
13849, need to be fulfilled:

• A single fault must not cause the loss of the safety
functions.

• A single fault has to be detected at the time when a
safety function is demanded or earlier.

These requirements constrain the use of an architecture
consisting of two independent channels. Thus the required
hardware fault-tolerance (HFT) is 1. It is not possible to
satisfy these requirements with an architecture consisting of
a single channel.

Figure 1. The Novel CPLD-based Fail-Safe System

IV. SYSTEM DESIGN

A. Safety Functions

Assume a power converter in a factory, which controls a
large electric motor. This system realizes standard functions
that should be able to stop this motor in different manners.
If these standard functions are affected by a fault, it is not
possible to stop the motor anymore. This state is unsafe
as a rotating motor might cause harm to workers, the
environment or the factory. Thus workers, environment and
the factory are always exposed to the risk of a failing
standard function.

To reduce this risk, safety functions are needed which
are able to stop the motor (safe state) even if the standard
functions are faulty. For two standard stop functions the
corresponding safety functions, which are defined by the
standard IEC 61800-5-2, have to be realized, where in this
context the term PDS refers to the power converter:

• Safe torque off (STO): Power that can cause rotation
(or motion in the case of a linear motor) is not applied
to the motor. The PDS(SR) will not provide energy to
the motor which can generate torque (or force in the
case of a linear motor).

• Safe stop 1 (SS1): The PDS(SR) initiates the motor
deceleration and initiates the STO function after an
application specific time delay.

If the motor needs to be stopped, a standard function
and a safety function are executed concurrently. Thus the
system enters the safe state after a strictly specified time,
even if a standard function fails. Obviously a system that
implements such safety functions has to meet hard real time
constraints. Thus the time that expires after a safety function
is demanded and the system enters the safe state must not
deviate from the defined time more than 1 ms.

The described safety functions are realized on a separate
module which can be connected to the power converter. To
make the fail-safe system applicable to different industrial

208

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on July 28,2010 at 08:12:48 UTC from IEEE Xplore.  Restrictions apply. 



domains, it must be possible to customize the application-
specific time delay of the safety function SS1 in steps of
100 ms depending on the case of application of the fail-safe
system.

B. Fail-Safe System Architecture

The presented fail-safe system is based on the novel
CPLD-based fail-safe system architecture. The fail-safe sys-
tem contains two channels (HFT=1). Each channel is able
to perform the safety functions independently. Thus if a
channel is affected by a fault, the other channel is still able
to execute the safety functions. The entire system enters the
safe state if a faulty channel is detected. Figure 1 illustrates
the fail-safe system. It comprises following entities:

• The terminals STO1, SS11, STO2, SS12 are connected
to an external device (e.g. a control panel) that can be
used to activate the safety functions STO and SS1.

• The input stages represent an interface for the acti-
vation of the safety functions that assures electrical
isolation by optocouplers.

• The two CPLDs realize the safety functions. To be
able to perform diagnostic checks, the CPLDs exchange
signals. The CPLDs control the safety-critical outputs
(OUT1 and OUT2) of the fail-safe system. Each CPLD
is clocked by a separate external oscillator.

• The terminals OUT1 and OUT2 are connected to an
electric motor to allow power to be applied to the motor
or to respectively shut down the motor.

• Each channel contains a temperature monitor to de-
tect temperature deviations from a specified range.

• There is one voltage monitor for each channel which
detects if the supply voltage is leaving a specified range.
Furthermore, both channels of the fail-safe system are
protected against dangerous overvoltage.

Since the fail-safe system constitutes a supplement to a
power converter, it is directly attached to this device via
dedicated pins (not illustrated). These pins are used as power
supply and for the communication with a DSP that is part
of the power converter and controls the electric motor. The
fail-safe system and the DSP use a SPI (Serial Peripheral
Interface) to communicate. This DSP is configured as SPI-
master. The CPLDs are configured as SPI-slaves.

C. Fail-Safe System Behavior

When the system is in the safe state, the safety-critical
outputs are switched to GND and no power is applied to
the motor. Consequently, the motor coasts and is not able
to cause harm to people, environment or property. If the
system is in the unsafe state, the safety-critical outputs are
switched to VDD and the motor can rotate. A rotating motor
has the potential to cause harm. Figure 2 describes the
behavior of the fail-safe system. In contrast to the unsafe
state (MOTOR_RUNNING), the safe state can be divided

Figure 2. Behavior of the fail-safe system

into the states INITIALIZATION, PARAMETRIZATION,
INIT_TEST, MOTOR_STOPPED and HARD_ERROR.

When the system is switched on, the CPLDs initialize
their registers and flip-flops (INITIALIZATION). The be-
havior of the safety function SS1 depends on a parameter
(SS1-time). Each CPLD receives a SS1-parameter from the
DSP. The CPLDs store the SS1-time in volatile memory.
Thus, this PARAMETRIZATION is necessary whenever the
system is switched on.

When the parameterization is completed, the DSP notifies
the CPLDs that a test (INIT_TEST) needs to be performed.
This test verifies that the safety functions STO and SS1 are
working properly.

If no fault has been detected during the init-test, the
DSP tells the CPLDs that the safe state can be left (MO-
TOR_RUNNING).

The safety functions can be activated via the input stages.
If a safety function is activated, the system enters the safe
state after a specified amount of time (MOTOR_STOPPED).

If no fault occurred and the safety functions have been
performed properly and are not activated anymore, the DSP
tells the CPLDs to quit the safe state. In this case, the motor
can rotate again (MOTOR_RUNNING).

In all states various safety integrity measures detect faults.
If a fault is detected, the system enters the safe state

209

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on July 28,2010 at 08:12:48 UTC from IEEE Xplore.  Restrictions apply. 



(HARD_ERROR). In contrast to the other states, this state
cannot be left until the system is switched off.

D. Safety Integrity Measures

IEC 61508 requires SIL 3 systems with a HFT of 1 to
have a safe failure fraction (SFF) of at least 90%. Also EN
ISO 13849 requires a high diagnostic coverage (DC) for
Cat 4, PL e safety functions. Thus a number of measures to
achieve sufficiently high SFF and DC have to be realized,
which are performed concurrently by both channels of the
fail-safe system.

The fail-safe system contains two channels which are able
to execute the safety function STO and SS1 independently.
The channels realize the implemented safety functions by
using different means. This diversity reduces the probability
of common cause failures.

The two CPLDs exchange corresponding pairs of signals.
Some of these signal pairs contain information about the
state of the safety functions. If a signal pair is discrepant for
a certain time, a fault can be assumed. Thus both CPLDs
contain discrepancy monitors to signal a fault, when the
discrepancy of a signal pair exceeds a specified discrepancy
time. Consequently, the system enters the safe state. The
discrepancy monitors check for discrepancies as long as the
fail-safe system is switched on.

The used type of CPLD is similar to an FPGA. It contains
look-up tables and employs channel-based routing [13]. One
of the advantages of CPLDs is their "instant-on" functional-
ity. The used type of CPLD realizes this functionality using
a configuration flash memory which is loaded into CRAM-
cells on start-up of the device. The init-test is able to detect
if the safety functions can be performed properly. Thus this
test can detect faults in the flash memory, the configuration
or the CRAMs which affect the ability of a CPLD to perform
the safety functions. This test is performed once after the
parametrization of the CPLDs.

The periodic SS1-test starts to run as soon as the init-
test was been finished successfully. The SS1-test verifies
the correct functionality and parametrization of the safety
function SS1. Furthermore, the functionality of the counters
for the safety function STO is tested. When a number of
conditions are fulfilled (expected values of counters, signals
and flip-flops), the CPLDs tell the DSP that the SS1-test
needs to be quit. Consequently, the DSP tells the CPLDs to
quit the SS1-test. If the DSP does not respond, the system
enters the safe state. Thus, the CPLDs act as a watchdog for
the DSP and vice versa.

The fail-safe system can use feedback signals to observe
the state of the controlled motor. If the fail-safe system enters
the safe state, the motor has to stop within a specified time.
The shut down test finds out, if this time is exceeded or
not. If the specified time is exceeded, a fault is signaled.
This test is detecting faults as long as the fail-safe system
is switched on.

An undetected short circuit between the safety-critical
outputs (first fault) is dangerous. If a second dangerous fault
occurs (e.g. stuck-at-1 fault of a safety-critical output), none
of the channels is able to correctly carry out the safety
functions. Thus we realize a short circuit test which is able
to detect a short circuit between the safety-critical outputs.
The test is activated whenever the system enters the unsafe
state and is performed when the fail-safe system enters the
safe state.

Each channel contains a temperature monitor. If a tem-
perature monitor detects a temperature outside the specified
temperature range, the system enters the safe state.

Each channel contains a voltage monitor. If a voltage
monitor detects that the supply voltage is too high or too
low, the system enters the safe state.

V. DEVELOPMENT PROCESS AND IMPLEMENTATION

A. Work Flow in Adherence to IEC 61508-2 Draft

A V-model of the safety lifecycle of ASIC/FPGA/PLD
designs is defined by the draft of IEC 61508-2. It requires a
clearly structured development process. Figure 3 illustrates
the V-model and the names of the tools which are used for
the required phases.

The result of each phase on the left-hand side of the V-
model is input to the next phase on the left-hand side. In
each phase, the results of the preceding phase are verified.
Iterations between consecutive phases are possible. At first,
the safety requirements for the E/E/PE (electric/electronic
programmable electronic) system are specified and the re-
quirements for the ASIC/FPGA/PLD are derived. For the
development of the presented fail-safe system, we use the
tool DOORS for requirements definition and management.

Later the architectures of the E/E/PE system and the
ASIC/FPGA/PLD need to be defined. We use the tool
Enterprise Architect in combination with a SysML exten-
sion to create a model of the entire E/E/PE system and
the ASIC/FPGA/PLD. SysML [14] diagrams are used to
specify structure (Internal Block Diagram), relationships
(Block Definition Diagram) and behavior (Use Case Di-
agram, Activity Diagram, State Chart Diagram, Sequence
Diagram). Moreover, the modules and the exact interfaces
of the synthesizable VHDL-description, which defines the
behavior of the CPLDs of the fail-safe system, are specified.

The definitions of the behavior and the modules follow.
We create a synthesizable VHDL-description with the tool
Quartus II. This tool is used to synthesize the VHDL-
description and to perform place-and-route. After synthesis
and place-and-route, a post-fit netlist is available. Quartus II
is able to create post-fit netlist files which can be used for
simulation tools and timing analysis tools.

Phases on the right-hand side of the V-model contain
activities to verify the results of the phases on the left-
hand side of the V-model. The post-fit netlist is verified
using post-layout simulations. The draft of the IEC 61508-2

210

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on July 28,2010 at 08:12:48 UTC from IEEE Xplore.  Restrictions apply. 



Figure 3. V-model and tools

requires the alternative application of one of two equivalent
techniques/measures to verify that the timing requirements
for the circuit are fulfilled. We perform a static timing
analysis using a timing analysis tool which is part of Quartus
II. According to the draft of the IEC 61508-2, it is also nec-
essary to apply one of two equivalent techniques/measures
to verify that no systematic faults occurred during synthesis
and place-and-route. We perform simulations to verify the
post-fit netlist against the synthesizable VHDL-description.
The tool ModelSim is used for simulation.

Module testing is required to verify the correct imple-
mentation of the modules. We create at least one test bench
for each module of the synthesizable VHDL-description.
The test benches are executed using ModelSim. The draft
of the IEC 61508-2 requires a test coverage greater than
99% for SIL 3. We also use ModelSim to evidence that
statement coverage, branch coverage, condition coverage
and expression coverage reach 100% for each module.

Module integration testing verifies that the implemented
VHDL-description is correct. Again, we create test benches
and use ModelSim to simulate the entire VHDL-description.
Some of the integration test cases are derived from use cases.
Other test cases simulate the behavior of the entire VHDL-
description in presence of a fault.

After the integration of the components of the E/E/PE
system, we perform integration testing to verify the
ASIC/FPGA/PLD. During integration testing, also fault in-
sertion tests are performed to verify the realized safety in-
tegrity measures. To be able to perform fault insertion testing
of the novel fail-safe system, it was necessary to develop
a new method [3]. Finally system testing is performed to
validate the entire system and the ASIC/FPGA/PLD.

B. VHDL-Description for the CPLDs

To define the behavior of the CPLDs, a synthesizable
description is needed. From this description, a programming
file can be created used to configure the CPLDs.

The draft of the IEC 61508-2 requires a restricted use
of asynchronous constructs. Thus, the design is totally
synchronous. Additionally, the draft of the IEC 61508-2
requires synthesizable descriptions to be highly modularized.
Consequently, the synthesizable VHDL-description consists
of various modules.

The number of required CPLD-resources is an important
parameter as it directly determines the cost per fail-safe
system. Thus it is necessary to create a VHDL-description
which can be synthesized efficiently in terms of required
CPLD-resources.

211

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on July 28,2010 at 08:12:48 UTC from IEEE Xplore.  Restrictions apply. 



Due to the two independent channels of the fail-safe
system, it is not necessary to implement resource-demanding
concepts like safe input cells, safe output cells [7] or totally
self-checking circuits [8] to detect faults on the CPLDs. On
the contrary, the CPLDs permanently test each other to de-
tect faults. This guarantees sufficiently high safety integrity,
while fewer CPLD-resources are required. Additionally, the
synthesis tool is configured to synthesize circuits optimized
for low area.

Due to optimizations it is possible to implement the
safety functions and the safety integrity measures using
CPLDs which contain only 240 logic elements (equivalent
to 192 macrocells) per CPLD. The implementation requires
approximately 95% of the available logic elements. The used
CPLD [13] is the smallest member of its device family.

VI. CONCLUSION

This paper illustrates that it is feasible to cost efficiently
realize simple safety functions, using an innovative homoge-
nously redundant CPLD-based architecture [2] for industrial
automation that is in adherence to relevant standards like
the IEC 61800-5-2, the EN ISO 13849 and the draft of
the second edition of the IEC 61508. This draft defines
requirements concerning the development of safety related
systems using reconfigurable hardware or ASICs. Measures
to increase the safety integrity of the system can be imple-
mented in hardware. The presented system was assessed by
an independent certification authority (TÜV SÜD). In May
2008, this certification authority reported that the presented
concept is able to achieve SIL 3 in adherence to IEC 61508
and IEC 61800-5-2 as well as Cat 4, PL e in adherence to
the EN ISO 13849, which is an important prerequisite for
the certification and product launch of the fail-safe system.

REFERENCES

[1] P. Sundaram and J. G. D’Ambrosio, “Controller Integrity
in Automotive Failsafe System Architectures,” SAE Trans-
actions, vol. 115, pp. 370–377, 2006.

[2] G. Grießnig, C. Steger, and W. Reinhold, “CPLD basierende
homogen redundante fehlersichere Architektur,” in Proc. of
the Informationstagung Mikroelektronik (ME 2008), Oct.
2008, pp. 201–205.

[3] G. Grießnig, R. Mader, C. Steger, and W. Reinhold, “Fault
Insertion Testing of a Novel CPLD-based Fail-Safe System,”
in Proc. of the conference on Design, Automation & Test
(DATE’09). IEEE, Apr. 2009, pp. 214–219.

[4] M. Baleani, A. Ferrari, L. Mangeruca, A. L. Sangiovanni-
Vincentelli, M. Peri, and S. Pezzini, “Fault-tolerant Platforms
for Automotive Safety-Critical Applications,” in Proc. of the
International Conference on Compilers, Architectures and
Synthesis for Embedded Systems (CASES’03). ACM, Nov.
2003, pp. 170–177.

[5] R. Mariani and P. Fuhrmann, “Comparing fail-safe microcon-
troller architectures in light of IEC 61508,” in Proc. of the
22nd International Symposium on Defect and Fault Tolerance
in VLSI Systems. IEEE, Sep. 2007, pp. 123–131.

[6] R. Mariani, G. Boschi, and F. Colucci, “Using an innovative
SoC-level FMEA methodology to design in compliance with
IEC61508,” in Proc. of the Design, Automation & Test in
Europe Conference and Exhibition (DATE’07). IEEE, Apr.
2007, pp. 1–6.

[7] J. Alvarez, J. Marcos, and S. Fernandez, “Safe PLD-based
Programmable Controllers,” in Proc. of the International
Conference on Field Programmable Logic and Applications,
vol. 2, Aug. 2005, pp. 559–562.

[8] C. Bolchini, R. Montandon, F. Salice, and D. Sciuto, “Design
of VHDL-Based Totally Self-Checking Finite-State Machine
and Data-Path Descriptions,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 8, pp. 98–103,
Feb. 2000.

[9] IEC, “IEC 61508, Functional Safety of Electri-
cal/Electronic/Programmable Electronic Safety-Related
Systems, part 1-7,” 2002.

[10] A. Söderberg, J. Hérard, and L. B. Mortensen, “Guideline
for Design and Safety Validation of Safety-Critical Functions
Realized with Hardware Description Language,” Nordic In-
novation Centre, Tech. Rep., 2005.

[11] IEC, “IEC 61800-5-2, Adjustable Speed Electrical Power
Drive Systems,” 2005.

[12] ISO, “EN ISO 13849, Safety of Machinery, part 1-2,” 2006.

[13] P. Leventis, B. Vest, M. Hutton, and D. Lewis, “MAX II:
A Low-Cost, High-Performance LUT-Based CPLD,” in Proc.
of the Custom Integrated Circuits Conference. IEEE, Oct.
2004, pp. 443–446.

[14] OMG, “OMG Systems Modeling Language (OMG SysML),
V1.0,” 2007.

212

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on July 28,2010 at 08:12:48 UTC from IEEE Xplore.  Restrictions apply. 



CPLD basierende homogen redundante fehlersichere Architektur  

 

Grießnig, Gerhard 
SIEMENS AG Österreich                                 

gerhard.griessnig@siemens.com 

Steger, Christian  
Graz University of Technology, Austria 

steger@tugraz.at  

Weiß, Reinhold  
Graz University of Technology, Austria 

rweiss@iti.tugraz.at 

 

Abstract 

Derzeit werden sicherheitskritische Systeme 

vorwiegend auf Basis von Mikroprozessoren in  

verschiedensten Architekturen realisiert. Aufgrund der 

zunehmenden Wirtschaftlichkeit von FPGAs und CPLDs 

in Bezug auf Stückpreise, Entwicklungszeiten und 

Entwicklungskosten stellen PLD basierende 

Architekturen mittlerweile eine Alternative dar. Hier 

wird auf eine CPLD basierende sicherheitsrelevante 

Architektur eingegangen. Zusätzlich werden die 

Anforderungen verschiedener Normen aus der 

Automatisierungstechnik berücksichtigt. Ein weiterer 

Schwerpunkt liegt auf einem effizienten und 

kostengünstigen Ansatz, die Sicherheitsfunktionen im 

laufenden Betrieb zu testen.   

1 Einleitung 

Sicherheitskritische Systeme bzw. Komponenten, die 
hohe Anforderungen an die funktionale Sicherheit [1] 
stellen, werden derzeit vorwiegend über verschiedene  
Mikroprozessorarchitekturen [2],  [3] realisiert.  

In der Automatisierungstechnik, Bahntechnik oder 
Automobiltechnik spielt vor allem die Fehlersicherheit 
(Failsafe) [4] eine wesentliche Rolle. Die 
Fehlersicherheit und die damit verbundene 
Fehlererkennung sind auch die Basis für die 
Verfügbarkeit von sicherheitsrelevanten Systemen [5],  
[6].  

Einsatz alternativer Lösungen mit ASICs, FPGAs, 
PLDs oder CPLDs  werden in sicherheitskritischen 
Systemen, in den zuvor erwähnten Bereichen, nur in 
Verbindung mit Mikroprozessoren zu Erhöhung der 
Diversität oder zur Erhöhung der Verfügbarkeit  
eingesetzt.  

In diesem Paper wird auf eine homogene 
zweikanalige sicherheitsrelevante FPGA - bzw. CPLD - 
Architektur eingegangen. Ein weiterer Fokus dieses 
Papers liegt auf den Maßnahmen, die für  das Erreichen 
einer hohen Sicherheitsintegrität der vorgestellten 
Architektur erforderlich sind.  

In der Automatisierungstechnik sind für den Einsatz 
von Komponenten in sicherheitskritischen Systemen im 

wesentlichen die generische Basisnorm IEC 61508 Teil 
1-7 [7], welche den Stand der Technik für die 
Entwicklung der funktionalen Sicherheit von 
elektrischen, elektronischen und programmierbaren 
elektronischen Systemen (E/E/PES) beschreibt und die 
Norm für die Maschinensicherheit EN ISO 13849 [8] 
von Bedeutung. Zu der oben referenzierten Basisnorm 
IEC 61508 gibt es weitere, je nach  Einsatzgebiet 
abgeleitete bzw. spezialisierte, Sektornormen. Beispiele 
solcher Sektornormen sind IEC 61511 [9], für die 
Prozessindustrie, oder, die für die vorgestellte 
Architektur relevante IEC 61800-5-2 [10],  die die 
Sicherheit von elektrischen Antrieben beschreibt.  

Die Norm IEC 61508 definiert sogenannte 
Sicherheitsintegritätslevel (SIL) und die Norm EN ISO 
13849  definiert Kategorien (Kat) und Performancelevels 
(PL), welche eingehalten werden müssen um die 
sicherheitsrelevanten Komponenten in entsprechenden 
sicherheitskritischen Systemen einsetzen zu dürfen. 

Ziel ist es, hier eine entsprechende SW- und HW- 
Architektur von FPGAs, PLDs bzw. CPLDs zu 
beschreiben, mit der SIL3 bzw. Kat 4 PLe erreicht 
werden kann.  

2 Anwendungsgebiet sicherheitsrelevante 

Funktionen für elektrische Antriebe 

Die Motivation für den Entwurf einer hardwarenahen 
Sicherheitsarchitektur kommt aus der Forderung, 
Sicherheitsfunktionen, wie diese in der Norm IEC 
61800-5-2 definiert sind, für Gleichstromantriebe zu 
nutzen. Hierbei soll aufgrund der zu realisierenden 
Sicherheitsfunktionen „Safe Torque Off“ (STO) und 
„Safe Stop 1“ (SS1) ein möglichst effektiver Ansatz in 
Bezug auf Modularität,  Entwicklungszeit, 
Entwicklungs- und Produktkosten gefunden werden.  

Die Sicherheitsfunktionen STO und SS1 bieten dem 
Anwender verschiedene Möglichkeiten, seinen Antrieb 
gemäß der definierten Risikostufe „sicher 
momentenfrei“ zu schalten.  Um von den 
Industrieapplikationen unabhängig zu bleiben, muss die 
Sicherheitsfunktion SS1 von außen parametrierbar sein.    

Publication 5 - Springer, Micro Electronic 2008



2.1 Risikoermittlung IEC 61508, IEC 61800-5-2 

Um die Architektur uneingeschränkt für das definierte 
Anwendungsgebiet und für alle sicherheitskritischen,  
industriellen Anwendungen einsetzen zu können, gilt es 
die bereits oben definierte Anforderung gemäß SIL3 
einzuhalten. Dabei wird, wie in IEC 61800-5-2 
gefordert, vorausgesetzt, dass das System bei hoher 
Anforderungsrate der Sicherheitsfunktionen betrieben 
wird.  

 

 

Tabelle 1. Sicherheitsintegritätslevels nach IEC 61508  

bei hoher Anforderungsrate der Sicherheitsfunktion 

Eine hohe Anforderungsrate einer Sicherheitsfunktion 
bedeutet, dass die Sicherheitsfunktion mehr als einmal 
im Jahr angewählt wird. 

2.2 Risikoermittlung EN ISO 13849 

Die zweite Anforderung kommt aus der Norm 
Sicherheit für Maschinen und beinhaltet die sogenannten 
Kategorien sowie die Performancelevels.  

Die hier angestrebte höchste Kategorie 4 hat neben 
allen Forderungen der niedrigeren Kategorien u.a. 
folgende  zusätzlichen Anforderungen:  

• ein einzelner Fehler in jedem dieser 
sicherheitsbezogenen Teile darf nicht zum 
Verlust der Sicherheitsfunktion führen 

• der einzelne Fehler muss bei oder vor der 
nächsten Anforderung der Sicherheitsfunktion 
erkannt werden, z B. unmittelbar, beim 
Einschalten oder am Ende eines 
Maschinenzyklus 

 
Aufgrund dieser harten Anforderungen ist es nicht 

möglich, eine einkanalige HW-Architektur für die zu 
realisierende Kategorie 4 zu erstellen.  

 

Tabelle 2. Performancelevel PL 

Der angestrebte Performancelevel e (PLe) gibt nun 
die Verbindung der IEC 61508 mit der EN ISO 13849 
wider. 

3 Architektur  

Um die in Sektion 2 entsprechenden Anforderungen 
zu berücksichtigen, wird eine Architektur mit einer 
Hardware Fehler Toleranz (HFT) von 1 gewählt. Dabei  
werden die zu realisierenden Sicherheitsfunktionen auf 
zwei voneinander rückwirkungsfreien Kanälen 
implementiert.  

Um einer angestrebten Modularität zu entsprechen, 
werden alle für die Sicherheitsfunktionen benötigten 
Komponenten auf einem eigenen erweiterbaren Failsafe-
Modul (F-Modul) realisiert. Ausgenommen sind nur die 
passiven Bauteile, welche die eigentliche 
Momentenfreischaltung durchführen. Eine Anwahl der 
Sicherheitsfunktionen soll bei der vorgeschlagenen 
Architektur über Eingänge des F-Moduls möglich sein. 
Die Steuerung der Momentenfreischaltung soll über 
Ausgänge des F-Moduls erfolgen.  

3.1 Normative Anforderungen an 

ASIC/FPGA/PLD/CPLD - Architekturen  

In der derzeit aktuell gültigen Norm IEC 61508-2  
gibt es Anforderungen bezüglich der HW-Entwicklung 
von E/E/PE – Systemen, die auch bei der Entwicklung 
von ASIC-, FPGA-, PLD- oder CPLD-Architekturen 
berücksichtigt werden müssen. Es gibt jedoch keine 
Anforderung an das Design, Implementierung und Tests 
von hardwarenahen Entwicklungen solcher 
Architekturen. Dies zeigt auch, dass deren Einsatz bei 
E/E/PE – Systemen derzeit noch keinen hohen 
Stellenwert besitzt.  

Der Normenausschuss der IEC 61508 hat diese Lücke 
bereits erkannt, und versucht, diese in der zur Zeit in 
Überarbeitung befindlichen IEC 61508 zu schließen. 
Damit sollte dem zukünftigen Einsatz dieser 
Technologien bei E/E/PE – Systemen Rechung getragen 
werden.   

Wie in den technischen Berichten “FPGAs in Critical 
Hardware / Software Systems” [11]  und „Developing 
Critical Systems with PLD Components“ [12] 
beschrieben, haben bereits andere Standards, wie der 
RTCA DO-254 [13] oder der DefStan 00-56 [14], 
Anforderungen an das Design und die Entwicklung von 
hardwarenahen ASCI-, FPGA-, PLD- und CPLD- 
Architekturen gestellt.  

Um den zukünftigen Einsatz der hier vorgestellten 
Architektur zu rechtfertigen, werden bei dieser die 
Anforderungen, der in Draft befindlichen, überarbeiteten 
Norm IEC 61508 sowie relevante Normen und 
Guidelines [15]  für den Entwurf, das Design und die 
Implementierung von ASICs, FPGAs und CPLDs 
berücksichtigt. 



3.2 Hardware - Architektur   

Die Struktur der hier geforderten Architektur und der 
Sicherheitsfunktionen drängen einen hardwarenahen  
Lösungsansatz auf.  

Um die Kosten pro Stück gering zu halten, wird von 
dem Einsatz einer kostenintensiveren FPGA Lösung 
Abstand genommen. FPGAs können, aufgrund der 
höheren Anzahl der verwendbaren logischen Elemente, 
zur Realisierung von komplexeren Systemen eingesetzt 
werden. Durch die einfache Struktur, der hier zu 
realisierenden Sicherheitsfunktionen, ist der Einsatz von 
FPGAs nicht sinnvoll. Somit kann eine kostengünstigere 
homogen redundante CPLD-Architektur (ca. 240 
verwendbare logische Elemente je CPLD) zum Einsatz 
kommen. 

Die im Weiteren vorgestellte CPLD-Architektur kann 
ohne Einschränkungen auch auf eine zweikanalige 
FPGA- Architektur abgebildet werden.  

Die folgende Abbildung zeigt schematisch das  
vorgestellte F-Modul.  

CPLD
Mit Sicherheits-
funktionen

Spannungs-
Überwachung

Temperatur-
Überwachung

Eingangs-
stufe

CPLD
Mit Sicherheits-
funktionen

Spannungs-
Überwachung

Temperatur-
Überwachung

Eingangs-
stufe

STO1

STO2

SS11

SS12

OUT1

OUT2

Kanal 1

Kanal 2

1..n

 

Bild 1. Zweikanalige HW-Architektur 

Im Wesentlichen besteht dieser Aufbau aus 
folgenden, homogen redundanten Komponenten: 

• Eingangsstufen: Die zwei Eingangsstufen 
werden für die Potentialtrennung der 
sicherheitsrelevanten Eingangssignale und 
der intern verwendeten Signale benötigt. 

• CPLDs: In den CPLDs sind die eigentlichen 
Sicherheitsfunktionen implementiert. Diese 
kommunizieren für Diagnosezwecke über 
elektrisch entkoppelte Signale miteinander.  

• Spannungsüberwachungen: Mit Hilfe der 
Spannungsüberwachung wird jeder Kanal 
separat auf Unter- und Überspannung 
überwacht. Zusätzlich wird das F-Modul 
zweikanalig gegen gefährliche 
Überspannungen, die zu einer undefinierten 
Zerstörung der Komponenten führen 
könnten, geschützt.  

• Temperaturüberwachungen: Mit Hilfe der  
Temperaturüberwachung wird die 
spezifizierte Betriebstemperatur überwacht.  

Die Spannungs- bzw. Temperaturüberwachungen sind 
nicht Teil der Sicherheitsfunktionen, sondern dienen 
dazu, die geforderte Sicherheitsintegrität der Hardware 
zu erreichen. 

3.3 Fehlersichere „Software“ - Architektur zur 

Erfüllung der Sicherheitsintegrität im  

CPLD 

Wie die Draft - Version der überarbeiteten IEC 
61508-2 fordert, muss die Entwicklung von ASICs, 
FPGA, PLD oder CPLD, für den Einsatz in einem 
sicherheitsbezogenen System, in Analogie zur 
Entwicklung sicherheitsbezogener Software 
durchgeführt werden. Aus diesem Grund wird in 
weiterer Folge von „Software“ in CPLDs gesprochen. 

Aus der obigen Forderung ergibt sich, dass 
Maßnahmen bereits im Design ergriffen werden müssen, 
damit die geforderten SIL Kenngrößen wie „Safe Failure 
Fraction“ (SFF), „Diagnostic Coverage“ (DC) unter 
Berücksichtigung des „Common Case Failure“ (CCF) 
und dem daraus ermittelten Wert für die „Probability of 
Failure per Hour”  (PFH), dem zu erreichenden SIL und 
der angestrebten Kat. bzw.  PL entsprechen.  

Da die hier vorgestellte fehlersichere „Software“ - 
Architektur nicht auf das Anwendungsgebiet der 
Automatisierungstechnik beschränkt ist, wird in weiterer 
Folge hauptsächlich auf die umgesetzten Maßnahmen für 
das Erreichen der SFF und des DC eingegangen.   

3.3.1. Diversität der Funktionalität 

Um den CCF, der bei homogen redundanten 
Systemen eine wesentliche Rolle spielt, bei den CPLDs 
geringer zu halten, wird eine Diversität in der HDL  
Funktionalität angestrebt.  

Für die Entwicklung, Produktion und Fertigung ist es 
jedoch von Bedeutung, dass keine Diversität in der 
Implementierung vorliegt. Damit kann die 
Versionsverwaltung und der Testaufwand in der 
Entwicklung verringert werden. In der Fertigung können 
alle CPLDs mit dem gleichen Programming - File 
bespielt werden.  

In dieser vorgestellten Architektur werden zum 
Beispiel die Zähler der Sicherheitsfunktionen im ersten 
Kanal als Aufwärtszähler und im zweiten Kanal als 
Abwärtszähler realisiert. Die Selektion, ob ein CPLD als 
Kanal 1 oder Kanal 2 arbeitet, erfolgt über einen 
Eingangspin des CPLD, der bereits im Layout nach 
logisch HI bzw. logisch LOW gezogen wird. 

3.3.2. Diagnose  

Um die von den Normen geforderten DC zu erhalten, 
werden zwischen den beiden Kanälen (siehe Bild 1) 
gezielt ausgewählte Signale zwischen den CPLDs 
ausgetauscht. Diese Signale bilden den Zustand der 
Sicherheitsfunktionen an  verschiedenen Plätzen der 
Sicherheitsimplementierung im CPLD ab. Die 



ausgetauschten Signale werden auf jedem CPLD wieder 
mit den eigenen Signalen verglichen. 

Um die Bauteiltoleranzen (z.B. Quarze) und das  
dadurch entstehende unterschiedliche zeitliche Verhalten 
(Timing) zu beherrschen, werden die ausgetauschten 
Signale auf Diskrepanzen hin überwacht. Erst bei 
Verletzung einer Diskrepanzzeit wird ein entsprechender 
Fehler gemeldet und das System in den „sicheren“ 
Zustand versetzt sowie der sichere Zustand 
aufrechterhalten. Mit der Diskrepanzüberwachung wird 
weiters auch die Verfügbarkeit dieser Architektur 
verbessert, da kurz auftretende unterschiedliche Signale 
(z.B. EMV Störungen) nicht unmittelbar in den 
„sicheren“ Zustand führen.  

3.3.3.  Selbsttests  

Um permanente, zufällige oder auch transiente Fehler 
in der HW des F-Moduls aufdecken zu können, müssen 
zyklisch sogenannte Selbsttests durchgeführt werden. 
Die Norm IEC 61508 unterscheidet hierbei zwischen 
zwei Intervallen: 

• Diagnosetest: Intervall, das für die 
Durchführung der Hintergrundtests benötigt, 
wird um zufällige HW-Fehler aufzudecken. 

• Wiederholungsprüfung: Intervall, innerhalb 
dessen Wiederholungsprüfungen ausgeführt 
werden müssen, um gefahrbringende Fehler zu 
erkennen, die durch Diagnosetests nicht erkannt 
werden.  

Da in dieser Architektur besonderes Augenmerk auf 
die benötigten Ressourcen und die damit verbundenen 
geringeren Stückkosten der CPLDs gelegt wird, müssen 
effiziente Selbsttests definiert werden. 

Der in dieser Architektur gewählte Ansatz geht davon 
aus, dass nicht die Funktionalität der an der 
Sicherheitsfunktion beteiligten HW-Komponenten 
getestet wird, sondern die eigentliche Funktionalität der 
Sicherheitsfunktionen. Diese Tests führen beide Kanäle 
gegenseitig durch und sind in den folgenden Kapiteln 
beschrieben.  

3.3.4. Hochlauftests 

Bis FPGAs oder einige neueren Generationen von 
CPLDs (z.B. [16], [17]) betriebsbereit sind, muss zuerst 
die Konfiguration aus dem Flash in das Device geladen 
werden.  

Um Fehler im Flash oder in der Konfiguration der 
internen Struktur eines Kanals erkennen zu können, wird 
in der vorgestellten Architektur ein Hochlauftest 
durchgeführt. Hierbei werden alle Sicherheitsfunktionen 
des jeweils anderen Kanals angewählt und auf 
Diskrepanz, zeitlichen Vergleich und Erwartungshaltung 
geprüft. Erst eine erfolgreiche Durchführung des 
Hochlauftests auf beiden Kanälen und gegenseitiger 
Quittierung, gibt die Sicherheitsfunktionen frei und 
ermöglicht das Verlassen des „sicheren“ Zustandes.  

Über den Hochlauftest werden die gesamten 
Sicherheitsfunktionen von „außen“ getestet. Damit ist es 
möglich, bestehende Fehler im Device (Konfiguration, 
SRAM, …) zu erkennen, die die Sicherheitsfunktionen 
negativ beeinflussen.  

Dieser Ansatz ist konform zu der Norm IEC 61508, 
welche die Annahme voraussetzt, dass ein Fehler 
(ausgenommen CCF) nicht auf beiden Kanälen 
gleichzeitig eintritt. 

3.3.5. Hintergrundtests  

Um permanente, transiente oder zufällige Fehler im 
Betrieb aufzudecken, werden Hintergrundtests 
durchgeführt.  

In dieser Architektur wurde der Ansatz gewählt, dass 
solange keine Sicherheitsfunktion angewählt ist, beide 
Kanäle ständig die Hintergrundtests durchführen. Eine 
Anwahl einer Sicherheitsfunktion unterbricht den 
Hintegrundtest und führt die Sicherheitsfunktion aus und 
bringt in diesem Fall das System in den „sicheren“ 
Zustand.  

 Die Hintergrundtests laufen ähnlich den 
Hochlauftests ab. Auch hierbei erfolgt eine gegenseitige 
Anwahl der Sicherheitsfunktionen, wobei der Test 
wiederum auf Diskrepanz, zeitlichen Vergleich und 
Erwartungshaltung basiert. Im Gegensatz zum 
Hochlauftest dürfen die Sicherheitsfunktionen nicht 
vollständig ablaufen, um nicht die Funktion der 
eigentlichen Applikation zu stören. Kurz vor Ablauf der 
Sicherheitsfunktion kann ein erfolgreicher Test 
gegenseitig quittiert werden. Erfolgt aufgrund eines 
Fehlers keine Quittierung, so laufen im Hintergrundtest 
die Sicherheitsfunktionen vollständig ab und das System 
geht in den „sicheren“ Zustand.   

Um sicherzustellen, dass die Quittierung zum 
richtigen Zeitpunkt stattfindet, sind beide Kanäle gegen 
unerlaubte Quittierungen verriegelt.  

4 Resultate 

Um die Konformität der hier vorgestellten 
fehlersicheren CPLD - Architektur zu den Normen 
IEC61508 1-7, EN ISO 13849, IEC 61800-5-2 und den 
daraus resultierenden Anforderungen für ein SIL3 und 
eine Kat.4 mit PLe zu zeigen, wurde diese Architektur 
mit den zu realisierenden Sicherheitsfunktionen STO 
und SS1 von einer unabhängigen, akkreditierten 
Zertifizierungsstelle, dem TÜV Süd [18], vorgestellt.  

Ziel war es, ein offizielles sogenanntes „Proof of 
Concept“ zu erhalten. Dieses „Proof of Concept“ wurde 
im Mai 2008 erteilt.  

5 Zusammenfassung 

Mit der vorgestellten fehlersicheren CPLD - 
Architektur ist es gelungen, über den hier gewählten 



Ansatz, nämlich die Funktion der Sicherheitsfunktionen 
und nicht die Funktionalität der HW-Komponenten zu 
testen, eine effiziente, kostengünstige und 
sicherheitsrelevante Variante zu erstellen.  

Dieser beschriebene Aufbau berücksichtigt die 
Anforderungen, die für einen Einsatz 
sicherheitskritischer Funktionen, in der 
Automatisierungstechnik speziell im Bereich elektrischer 
Antriebe, entstehen.  

Die Architektur ist mit diesem Ansatz nicht auf eine 
CPLD Lösung fixiert. Es kann auf rechen- und 
ressourcenintensive Selbsttests verzichtet werden, wenn 
es die Komplexität der zu realisierenden 
Sicherheitsfunktionen zulässt, diese von außen zu testen.  

References 

[1] Josef Börcsök,” Funktionale Sicherheit. Grundzüge 
sicherheitstechnischer Systeme“, Verlag: Hüthig, Auflage: 
1 (Oktober 2006), ISBN-10: 3778529854 

[2] Padma Sundaram and Joseph G. D’Ambrosio, “Controller 
Integrity in Automotive Failsafe System Architectures”, 
2006 SAE World Congress, Detroit, Michigan, April 3-6, 
2006, www.sae.org  

[3] Millward, J, “System architectures for safety critical 
automotive applications”, Safety Critical Software in 
Vehicle and Traffic Control, IEEE Colloquium on, 
13 Feb 1990, page(s): 4/1-4/3, London, UK, 
INSPEC Accession Number: 3637797 

[4] Sergio Montenegro, „Sichere und fehlertolerante 
Steuerungen“ Verlag: Fachbuchverlag Leipzig (Oktober 
1999), ISBN-10: 3446212353 

[5] Marcelo Lubaszewski, B. Courtois, “A Reliable Fail-Safe 
System”, IEEE Transactions on Computers, Volume 47 , 
Issue 2 (February 1998), Pages: 236 – 241,Year of 
Publication: 1998, ISSN:0018-9340 

[6] Siemens, „SIMATIC S7 F/FH Systems Projektieren und 
Programmieren Hochverfügbare sicherheitsrelevante 
Systeme“, http://support.automation.siemens.com/ 

[7] Norm IEC 61508 Teil 1-7, Functional safety of 
electrical/electronic/programmable electronic safety-
related systems 

[8] Norm EN ISO 13849, Sicherheit von Maschinen  

[9] Norm IEC 61511, Sicherheit in der Prozessindustrie  

[10] Norm IEC 61800-5-2, Sicherheit elektrischer Antriebe  

[11] Adrian J. Hilton, Gemma Townson and Jon G. Hally, 
“FPGAs in Critical Hardware / Software Systems”, 
International Symposium on Field Programmable Gate 
Arrays, Proceedings of the 2003 ACM/SIGDA eleventh 
international symposium on Field programmable gate 
arrays, Monterey, California, USA SESSION: Poster 
session, Pages: 244 - 244, Year of Publication: 2003, 
ISBN:1-58113-651-X  

[12] Adrian J. Hilton Jon G. Hall, “Developing Critical 
Systems with PLD Components“, Foundations of 
Software Engineering, Proceedings of the 10th 
international workshop on Formal methods for industrial 
critical systems, Lisbon, Portugal, Pages: 72 – 79, Year of 
Publication: 2005, ISBN:1-59593-148-1  

[13] Standard, RTCA DO-254, Design Assurance Guidance for 
Airborne Electronic Hardware  

[14] Defence Standard 00-56 issue 2, 1997. Safety 
Management Requirements for Defence Systems 

[15] Andreas Söderberg, Jacques Hérard, Lars Bo Mortensen, 
“Guideline for design and safety validation of safety 
critical functions realized with hardware description 
language”, 
http://www.nordicinnovation.net/nordtestfiler/rep578.pdf 

[16] Leventis, P.  Vest, B.  Hutton, M.  Lewis, D., “MAX II: A 
low-cost, high-performance LUT-based CPLD”, Custom 
Integrated Circuits Conference, 2004. Proceedings of the 
IEEE 2004, 3-6 Oct. 2004 page(s):443-446 
ISBN:0-7803-8495-4 

[17] Altera, “MAX II Device Family Data Sheet”, 
http://www.altera.com/literature/hb/max2/max2_mii5v1_01.pdf  

[18] TÜV Süd, http://www.tuev-sued.de/home_de 

 



CESAR: Cost-Efficient Methods and Processes for Safety Relevant Embedded
Systems

Gerhard Griessnig1,2, Roland Mader1,2, Thomas Peikenkamp3

Bernhard Josko3, Martin Törngren4, Eric Armengaud5

1AVL List GmbH
2Graz University of Technology

3OFFIS – Institute for Information Technology
4Kungliga Tekniska Högskolan

5Virtual Vehicle Competence Center

Abstract

The development of industrial embedded systems is led
by two a-priori contradictory constraints: minimizing the
costs while maximizing product quality. This last point is
especially relevant in the context of safety-critical systems
where a critical product failure can harm people, environ-
ment or property and has therefore to be avoided. The man-
agement of such requirements can only be achieved with a
maturing of the engineering disciplines including the im-
provement and standardization of the methods and develop-
ment processes. This paper presents an overview and dis-
cusses the objectives of the recently started CESAR project,
which goal is to improve the development process of safety-
critical embedded systems. Regrouping 55 partners, this
consortium moreover aims at contributing to standardiza-
tion efforts from a European perspective.

1 Introduction

The evolution of embedded systems technology and ap-
plications has been occurring at a fast pace, illustrated for
example through the evolution of vehicles that have been
transformed to embedded computing systems with hun-
dreds of embedded computing devices and several net-
works. About 3 billion embedded units are nowadays de-
livered per year and the world market for embedded sys-
tems encompasses approximately 160 billion Euros with an
annual growth of about 9 percent [9, 10].

Embedded software combined with various hardware
platforms makes it possible to deploy a larger variety of
products, either in improving the performance of existing
solutions or in developing entirely new products. The in-
creased flexibility can be seen as a curse, by increasing

the system complexity (design space, product configuration
space and run-time state space) and at the same time as a
blessing, by enabling late or even on-line fixing of bugs and
addition of new features. This duality of embedded sys-
tems can be illustrated by automotive products, where em-
bedded systems technology is an enabler for active safety
systems. At the same time, however, modern vehicles are
becoming partially autonomous and can, if not correctly de-
signed, cause new types of accidents and in the worst case
even harm people, environment or property.

Products which just ten years ago contained limited
amounts of embedded systems now contain complex net-
work technologies and execute several thousands lines of
code. This implies that the major part of the development
effort is shifted to the embedded software, testing and de-
bugging, and system integration. Customer requirements
and legislation are also evolving, and high expectations are
justifiably placed on the embedded systems to be depend-
able and cost-efficient. Many industries are as a conse-
quence facing a paradigm shift resulting in needs for new
methods and tools, product architectures and new personnel
competencies. There is an immediate need to approach the
development in a more structured way in order to increase
productivity, quality and time to market. Obviously, these
challenges are most relevant to safety critical systems.

The CESAR project has been started in this context. This
European project is funded from Artemis JU and national
authorities and regroups 55 partners with a global budget of
58 MC and a cumulated effort of 427 man-years for a dura-
tion of three years. The motivation for CESAR is to bring
significant innovations in the two following system engi-
neering disciplines: (1) requirements engineering in partic-
ular through formalization of multi viewpoint, multi criteria
and multi level requirements, and (2) component based en-
gineering applied to design space exploration comprising

Publication 6 - ARTEMIS, Embedded World 2010



multi-view, multi-criteria and multi level architecture trade-
offs.

The contribution of this work is twofold: First, it reviews
the problems of designing and deploying safety relevant
embedded systems. Second, this document discusses the
approach chosen in the CESAR project to meeting the chal-
lenges. For that, the objectives are presented in Section 2.
In Section 3, the innovation sub-projects are discussed. Fi-
nally, first results as well as project roadmap are provided
in Section 4 and Section 5 concludes this work.

2 CESAR objectives

CESAR’s main objectives are the improvement of the
processes and methods for the development of safety-
critical embedded systems as well as the establishment of
a Reference Technology Platform (RTP), providing a con-
glomerate of entities, which facilitate the creation of inte-
grated development environments for the development of
safety-relevant real-time embedded systems for various do-
mains.

These results will support the objective of reducing de-
velopment time and efforts for safety-critical embedded
systems development by up to 50%. Another objective is
the reduction of the costs for establishment and mainte-
nance of integrated tool chains by up to 50%. Moreover an
important objective of CESAR is to find a large acceptance
within the industry and technology providers (e.g. tool ven-
dors) and to move towards an agreement on standardized in-
tegration and interoperation facilities for safety-critical em-
bedded systems development.

An important benefit of CESAR, and a fundamental ba-
sis for the agreement on processes and methods as well as
entities comprising the RTP, will be the achievement of a
common understanding of basic concepts such as function,
component, view, safety, and the similarities as well as dif-
ferences among the domains. This overcomes the barri-
ers and paves the way for cross-domain learning (methods,
tools etc.). Similarly, the CESAR project involves several
research disciplines including safety and dependability en-
gineering, embedded systems communities including com-
puter science and software engineering, as well as systems
engineering. Bridging the gaps between these disciplines is
equally important and is likely to lead to new insights.

The CESAR project is divided into seven sub-projects
(SPs). While SP0 is dedicated to project management and
administration, SP1 aims at the realization of the RTP that
will comprise entities like meta-models, COTS, outcomes
of other research efforts as well as services. It will be pos-
sible to tailor this RTP to form an integrated development
environment according to a given safety-critical develop-
ment process. In addition SP1 comprises the task forces
Safety-Diagnosibility and Product Line. Task force Safety-

Diagnosibility aims on providing appropriate and efficient
approaches to the development and validation of safety-
critical embedded systems. Task force Product Line is en-
gaged in ensuring a consistent product line engineering pro-
cess throughout the development cycle.

SP2 and SP3 are called innovation sub-projects. These
sub-projects have been started in order to bring key inno-
vations in the fields of requirements engineering and com-
ponent based engineering. SP2 is dedicated to the develop-
ment of a common requirements definition language, which
is rich enough to support informal, semi-formal and fully
formal requirements. The primary concern of this sub-
project is ensuring traceability of requirements throughout
the entire development process, the supply chain and the
traceability between requirements and other design artifacts
(e.g. modeling elements, test cases). The focus of SP3 is set
on the adoption of component based design methodologies.
This sub-project aims at facilitating system exploration on
different abstraction levels, incremental verification, vali-
dation, certification and qualification and to provide tool
chains to support these activities.

SP5, SP6 and SP7 are dedicated to the definition, spec-
ification and development of pilot applications from the
domains of automotive, aerospace and rail and automa-
tion respectively. The term “pilot application” refers to
the development of a safety-critical embedded system us-
ing a domain-specific, instantiated RTP. Each pilot ap-
plication therefore provides inputs for the RTP and sup-
port its evaluation and validation, see Figure 1. Ex-
emplary pilot applications are a power train control unit
for hybrid vehicle (automotive), an engine control system
(aerospace), a large safety emergency shut-down system for
a petrochemical/oil-and-gas plant (automation) and a rail
dispatching system (rail).

3 Project description

3.1 Reference Technology Platform

SP1 aims at developing a reference technology platform
(RTP) that facilitates tool integration for the development
of safety-critical embedded systems in order to support en-
gineers in carrying out activities (e.g. requirements tracing)
and creating deliverables (e.g. safety case). Building the
RTP consists of the following main steps, where this chap-
ter focuses on the first two points:

Implementation of the RTP will be performed by (1) in-
tegrating existing standards of meta-models (for architec-
tures, components, requirements...) that have been devel-
oped and successfully applied in the past, (2) definition of
a process engineering meta-model including specification
of how (existing and new) tools, meta-model entities, basic
services etc. are to be used during a specific design activ-

2



Figure 1. CESAR: Project Overview

ity plus interoperability specification and guidelines for the
instantiation of the RTP in a given design context, (3) defini-
tion of processes and associated means how to specify, im-
plement, and maintain the RTP’s components with regards
to safety concerns, (4) ensure that safety and diagnosability
requirements are taken up in compliance with the relevant
standards in respective domains, (5) supporting a consistent
Product Line Engineering process throughout the develop-
ment cycle, and (6) providing dissemination and training
material for the instantiation and application of the RTP.

Existing approaches to tool integration for safety-critical
embedded systems development are proprietary [3, 19] or
purely academic [7, 6]. In opposite CESAR aims at achiev-
ing a common understanding and an agreement on concepts
for tool integration for safety-critical embedded systems de-
velopment between industrial and academic key players in
the domains automotive, aerospace, automation and rail.
Moreover CESAR aims at a flexible approach where both,
solutions of vendors and SMEs as well as open-source so-
lutions can compete in offering best-in-class solutions for
particular stages of these processes. This approach will be
based on already identified (and yet to be identified) cross-
domain commonalities in the development processes for
safety-critical embedded systems.

Achieving the acceptance of industrial stakeholders and
tool vendors requires the ability of the RTP to integrate ex-
isting tool frameworks, often equipped with their own meta-
model, as well as requirement and configuration manage-
ment facilities. Thus, the implementation of the RTP is

strongly driven by the need to identify common aspects in
these environments, to provide a consistent view based on
them, and to make them available to design, analysis and
validation methods. This will be facilitated by the devel-
opment of a proper RTP meta model. Thus CESAR fully
considers the strong and ongoing trend towards meta-model
based tool integration of recent research activities [15].

The main concept of the RTP is to provide a conglomer-
ate of entities that can be (automatically) combined in dif-
ferent ways in order to provide a seamless development en-
vironment (RTP instance) tailored to the product to develop,
see Figure 2. The entities, (top of Figure 2) can either be
approved COTS, innovative outcomes of research projects,
meta models, tool integration frameworks or supporting ser-
vices. The subset of required entities can be defined using
tailoring rules according to relevant safety standards (e.g.
ISO WD 26262, EN 50128), application domain (e.g. au-
tomation, aerospace) or company-specific habits (e.g. pre-
ferred tools, customized processes). Depending on these
tailoring rules process-driven tailoring of the RTP (middle
of Figure 2) can be performed. The tailoring step comprises
the generation of a customized integrated tooling environ-
ment tailored to relevant safety standards, application do-
main and company habits. This generation comprises ac-
tivities like tool installation, deployment of adapters for the
integration of tool-specific meta-models, and instantiation
of a process manager according to company-specific pro-
cess needs.

The results of the tailoring step is the RTP instance (bot-

3



tom of Figure 2). It consists of the different modeling tools
as well as the RTP-Modelbus (based on [12]) in charge of
the communication between these tools. The RTP instance
thus efficiently supports model based development (see Sec-
tion 3.3), which is based on the continuous model refine-
ment of the product being developed: each tool is used to
perform a refinement step, and the Modelbus assure data
consistency from a development step to the next one. A
dedicated RTP Meta-Model is used in order to avoid propri-
etary solutions and assure interchangeability between the
tools. Connections to the RTP-Modelbus will be either re-
alized via adapters for converting tool-internal model rep-
resentations in the RTP Meta-Model, or directly integrated
to the RTP Meta-Model. Analysis tools (such as [16]) will
be connected in the same way. A similar connection will
also be possible for managing the system engineering pro-
cess. In this case it is not sufficient to represent the elements
of the system under development (SUD) in a standardized
form, but also the artifacts that are needed for the defini-
tion of this process. Such primitives are provided by the
RTP Engineering Process Meta-Model and will play an im-
portant role when the platform needs to be tailored for the
different application domains. The function of the reposi-
tory is to maintain the different tools in sync so that modi-
fications of the model by tool X become visible by tool Y
and vice versa. In addition, the repository is able to provide
storage of model artifacts (for tools without corresponding
facilities).

At present, several guidelines for the development of the
RTP have been identified that satisfy needs that are com-
mon to nearly all safety-relevant standards, e.g.: it must be
possible to associate all elements of the SUD with relevant
V&V artifacts (requirements, implementation status, test-
cases, analysis results, simulations, results from tests and
experiments); for all the elements of the SUD (i.e. not only
the system) it needs to be possible to associate a boundary
and boundary conditions with them; it must be possible to
represent the evolution of the system architecture (including
functional, software, and various hardware aspects) based
on the elements of the SUD; the status of the V&V process
must be traceable to the system architecture and it must pro-
vide the relevant traceability links based on V&V artifacts
associated with the architectural elements.

3.2 Requirements Engineering

Operational and performance requirement engineering
and management are one of the decisive pre-conditions
to establish efficient certification, safety and development
processes. Novel approaches to establish seamless tool
chains are needed to reduce the most crucial cost drivers
when establishing safety cases: the extensive documenta-
tion needed for certification and the evidence gained from

Figure 2. RTP: Tailoring & Structure

rigorous V&V-related processes.
Despite obvious progress through model-based engi-

neering techniques and especially requirement engineering
tools, industrial practice in general lacks seamless solutions
to cope with the most critical development challenge: con-
sistency in the case of changes along the chain of devel-
opment artifacts from requirements to code and tests. Up
to now traceability, relying on breakdown, refinement, as-
signment and implementation of requirements, ensured by
verification and validation, remains a largely manual, thus
error-prone, time consuming and costly activity.

Whereas functional requirements are well managed in
practice, extra-functional requirements such as RAMSS (re-
liability, availability, maintainability, safety, security) are a
specific concern. Despite recognition of these requirements
as crucial for the success of products, the key issues have
not been mastered. Breakdown and assignment, tracking
and early verification/analysis through continuous develop-
ment stages are especially difficult. In the end, traditional
testing is not the appropriate means to establish trustworthy
evidence throughout the development until final validation.

Hence the objective of SP2 is to improve the current
processes dealing with requirements management and en-
gineering in order to favor interchange in the development
and supply chain and to ease the definition and identifica-
tion of safety critical requirements in line with safety stan-

4



dards. Supported by traceability mechanisms, verification
and validation of requirements shall be performed through
improved techniques and methods. From a technical point
of view the aim is:

• To provide a formalized multi criteria requirement cap-
turing language (called RSL) together with a tool inde-
pendent exchange format.

• To ensure complete traceability and consistency of re-
quirements from concepts to products across supplier-
chain boundaries.

• To support validation of formal multi-criteria require-
ments with respect to consistency and completeness.

A precondition of automated verification and validation
of requirements is that these requirements are given a for-
mal notation. Pure formal languages as first or second order
logic, Z [21], B method [1], temporal logics [17, 11] and
other approaches are from a mathematical / theoretical point
of view well defined with a clear and unambiguous seman-
tics which allows formal analysis to be applied. Such pure
formalisms are rarely (if at all) accepted in industry. The
main reason is that the syntax is typically not user friendly
and the semantics is often hardly accessible. A user friendly
notation with some syntactical sugar is needed (e.g. PSL1

[5] provides some syntactic sugar on top on temporal logic)
to overcome these problems.

In order to address several levels of abstractions – high
level requirements which are mainly given in textual form
down to technical requirements on a detailed design level
which may be specified in a formal notation – and to cover
several aspects – functional as well as extra-functional re-
quirements – the RSL will have several facets including free
text, structured text, and model-based approaches.

Due to the increased system complexity of integrated
embedded systems and due to the involvement of several
engineering teams – also across company borders – an
improved requirements engineering process is necessary
to fulfill the requirements regarding costs, quality, safety
standards, and certification (DO178B, EN50128, ISO WD
26262, IEC61508 and others). To deal with the man-
agement and traceability of requirement we will develop
a Requirement Engineering framework built on existing
concepts as established in SysML2, EAST-ADL23, meta-
models from the MeMVaTEx project [2] or in the traceabil-
ity reference model by Jarke and Ramesh [18].

The process model combined with the requirement spec-
ification language will provide enhanced requirements man-
agement methods supporting traceability across the com-
plete development process, across the supply chain, be-

1http://www.eda.org/vfv/docs/PSL-v1.1.pdf
2http://www.omg.org/spec/SysML/1.1/
3http://www.atesst.org

tween requirements and modeling elements and derived de-
sign artifacts, and allows to introduce enhanced methods
ensuring requirements V&V compliant to standards:

• enhance and measure completeness of functional and
extra functional requirements,

• ensure consistency and soundness of functional and
extra functional requirements,

• requirements-based testing for functional and extra
functional requirements,

• establish Code of Practice for safety-critical applica-
tions.

3.3 Component-based development

SP3 focuses on system architecture and system detailed
design, relying on component based design. While safety-
critical systems can be developed today, this is very costly
and reuse is difficult because of the lack of appropriate
methods, tools and processes. Some of the aspects that
are studied in SP3 include the integration of multiple views
and multi-criteria in design space exploration, and incre-
mental approaches for verification and validation. While
the needs to support multiple views, such as for example,
functional, hardware, safety and performance viewpoints
are widely recognized and many multi-view frameworks
have been proposed (see e.g. [20] or IEEE 14714), the
integration of the views and information management still
pose challenges. The goal is to deliver improved methods,
tools and processes with particular consideration of product
safety and performance, and the fact that the products are
developed as product lines.

The CESAR project relies on advances made in several
previous projects including major initiatives such as

• The EAST-EAA, ATESST, and ATESST2 projects
leading to EAST-ADL architecture description lan-
guage;

• TOPCASED leading to a comprehensive open-source
environment for safety-critical system design;

• The SETTA, ESACS, ISAAC and ATESST2 projects
in achieving coherency between system development
models and safety analysis models through model-
based safety analysis techniques;

• The SPEEDS5 project developing multi-criteria con-
tract based design and semantic based tool interoper-
ability standards through its SysML compliant meta-
model of Hierarchical Rich Components [13].

4http://standards.ieee.org/reading/ieee/std public/description/se/1471-
2000 desc.html

5http://www.speeds.eu.com/

5



Alignment with domain standards is central, including
architectural standards such as Autosar6 and IMA, and
domain-specific safety standards such as ARP 4754, IEC
61508 and ISO WD 26262. Also international domain inde-
pendent standards from OMG7 and INCOSE are important
to consider.

Key tenets of SP3 include the fusing of the following
approaches:

• Model-based and component-based development ap-
proaches, MBD and CBD [22]

• Model-based embedded systems development and
safety engineering

Model based (or model-driven) development emphasizes
the use of higher levels of abstractions (of functions and
hardware), and the use of model-transformations to create
specific models (views) at the same level of abstraction, and
for bridging levels of abstraction (basically operating as a
kind of compilers). While tool-chains supporting functional
modeling and code generation are already well established
in several domains, architecture modeling has been lagging
behind.

Recent developments in architecture description lan-
guages (ADL’s), in particular Autosar, AADL8 and EAST-
ADL, have changed this situation and make it possible
to extend the scope of MBD. ADL’s focus on describing
the system structure, mainly with the notion of black box
(SW/HW) components. They thus follow the lines of com-
positionality where the idea is that system properties can be
derived from a configuration of components and their ex-
ternally visible properties. This situation fits well for the
purposes of a system integrator that specifies the system ar-
chitecture and has to reason about system level properties
without details of the internals of component implementa-
tions.

As an example of a language with multiview model-
ing capabilities, the EAST-ADL2 extends traditional ADLs
by defining a system model that organizes the engineering
information in multiple models, reflecting different views
and levels of details of the embedded system architecture.
From a system development perspective, other ADL’s such
as AUTOSAR and the AADL cover only one level of ab-
straction of a system architecture, the implementation level.

The EAST-ADL2 language provides an integrated sys-
tem model with traceability through the different levels.
The language supports model-based architecture analysis of
a complete embedded system through the formalization of
system structure and properties. Special emphasis has also
been placed on modeling support for assessments of tim-
ing and dependability. The EAST-ADL is harmonized with

6http://www.autosar.org
7http://www.omgmarte.org/
8http://www.aadl.info/aadl/currentsite

Autosar, the ISO WD 26262, MARTE and implemented as
UML2 profile.

Component based development (CBD) derives from
software development and middleware with the intention to
provide explicit definitions of component interfaces and in-
teractions. Given more explicit definitions of components
and their intended contexts, reuse is facilitated. In a typi-
cal CBD environment, configuration of components is fol-
lowed by glue code generation for a particular platform.
When combining MBD and CBD, components, and com-
ponent models, will exist and have to be defined at sev-
eral levels of abstraction. The more stringent definition of
components facilitates reuse as well as predictable compo-
sition of components. The gap between safety engineering
and model-based development has been addressed by previ-
ous projects, for example SETTA [14], but through point-to
point integration efforts. The goal in CESAR is to accom-
plish a systematic integration that supports adequate safety
processes, see [8] for one example effort addressing this for
automotive embedded systems.

Sub-project 3 in CESAR is structured into four main ac-
tivities as follows:

• Modeling languages and validation techniques: This
activity addresses the MBD challenge of defining ap-
propriate methodologies to deal with the required
types of models (the system environment, functions,
architecture, safety aspects), and their relations, in-
cluding different levels of abstraction.

• Architecture design and design space exploration: Em-
bedded systems have to fulfill many requirements in-
cluding functionality, performance, safety, maintain-
ability and solvability. These qualities are conflicting
and related by shared resources and design decisions
that affect more than one quality [4]. While there still
is a need for fundamental research on this topic, CE-
SAR will tackle this topic by enhancing multi-view
modeling, trade-off analysis, and by attempting to rec-
oncile existing methods and processes.

• Component based detailed design and validation, with
the objective to specify a methodology with consider-
ation of certification and qualification.

• Tool specification and tool implementation, with the
objective to develop tool chains (enhancements of ex-
isting as well as new) that will be made part of the RTP.

4 CESAR Roadmap and first results

The CESAR project represents an exception with regards
to budget volume, efforts, number of participants and large
scope of research topics addressed. In order to ensure the re-
alization of the ambitious goals, the project is divided into

6



three similar phases, see Figure 3. This iterative develop-
ment aims at providing a first version of the RTP only nine
months after project start, and periodically improving this
platform according to the experience gained from the dif-
ferent application domains.

Each iteration consists of the evaluation of the current
state of the art (research point of view) and state of practice
(industry point of view), which also includes the evaluation
results of the last iteration. Parallel to that, the pilot appli-
cations are specified or refined and the requirements col-
lected. Then, these domain requirements are used as inputs
for the sub-projects RTP (SP1), requirements engineering
(SP2) and model based engineering (SP3) for the innova-
tion cycle. Finally, the different pilot applications are cor-
respondingly enhanced and the methods and processes are
evaluated for the next iteration.

There are four major milestones in the CESAR project.
The first milestone (November 2009) represents the estab-
lishment of the technical basics required to achieve the am-
bitious goals of CESAR. The second and third milestones
(respectively December 2010 and October 2011) are defin-
ing the end of the innovation cycles. The fourth milestone
is the project end (February 2012). Additionally, a busi-
ness model is generated in order to develop a self-sustaining
ecosystem (e.g. including standardization of the RTP) guar-
anteeing the existence of the RTP after the project end.

Figure 3. CESAR: Roadmap

Currently, demonstration scenarios and experimental
prototypes are developed for the aerospace and the automo-
tive domain with the intention to proof the technical concept
and to support the specification of the RTP.

Exemplary, the automotive scenario includes the con-
nection of the tools Papyrus9 and AVL InMotion10 using
the RTP-modelbus presented in Section 3.1. Papyrus, on
one side, is an Eclipse-based open-source tool that supports

9papyrus-uml.org
10www.avl.com

the modeling of automotive embedded systems according
to EAST-ADL2. AVL InMotion, on the other side, is a real-
time simulation platform for maneuver and event based test-
ing at the test bed. It supports key business objectives such
as hybridization and electrification of power train engineer-
ing.

This scenario illustrates how contemporary tool integra-
tion infrastructure can be used to facilitate multi site, multi
user collaboration and to establish a tracing between the
artifacts of the project like requirements, test cases, stim-
uli and test results. This exemplary tool chain allows to
carry out different activities such as (a) system modeling,
(b) mapping of system requirements to test cases, and (c)
definition and execution of test cases. While the two first
activities can be performed within one environment (Pa-
pyrus), the definition and execution of test cases is per-
formed within a totally different environment (in this ex-
ample AVL InMotion) by different roles. Efficient infor-
mation exchange is required both regarding the data (e.g.
which configuration/boundaries should be tested) and the
control flow (e.g. when a new test case is available or has
been completed). More precisely, the development process
(control flow) has to be defined and integrated within the
tool chain, and a common meta-model for efficient data ex-
change between the tools is required, see Figure 4. More
especially, a mapping is required between the EAST-ADL
and the AVL InMotion meta-models in order to support this
tool integration and transformations between models.

The advantages of this quite simple scenario are (1) ef-
ficient cooperation between different expert teams using
well defined processes, and (2) the improved traceability
between models, requirements and test cases. When ex-
trapolating these results to real development environments
(including much more tools, methods and processes), it is
evident that the proposed CESAR approach will strongly
improve the development quality and efficiency of embed-
ded systems.

5 Conclusion

The CESAR project aims at providing a solid founda-
tion for the efficient development of safety relevant embed-
ded systems. Regrouping major European companies and
research institutions, this multi-domain approach will both
provide technical answers and be an important cornerstone
toward the establishment of a de-facto industry standard.

The approach relies on the development of a customiz-
able system engineering “Reference Technology Platform”
(RTP) that supports multi-viewpoint based development
process (for support of functional and non-functional as-
pects), multi-criteria based design processes (for optimiza-
tion of designs to multiple objectives functions) and multi-
level design flows (to cover all stages from initial concepts

7



Figure 4. CESAR: Demonstration scenario

to design and implementation). This aims at moving toward
“first-time-right” designs and making the development pro-
cess more efficient .

Acknowledgment

The authors would like to thank all colleagues from the
CESAR consortium for their contribution and acknowledge
the productive ongoing collaboration. The complete list of
project partners (unfortunately too long for this section) is
available at the CESAR website11. The authors also want to
thank Artemis Joint Undertaking and the corresponding na-
tional authorities for funding the CESAR project (contract
number 100016). The opinions presented here reflect only
the authors’ views and the Joint Undertaking is not liable
for any use that may be made of the information contained
therein.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[2] A. Albinet, S. Begoc, J.-L. Boulanger, O. Casse, I. Dal,
H. Dubois, F. Lakhal, D. Louar, M.-A. Peraldi-Frati,

11http://www.cesarproject.eu

Y. Sorel, and Q.-D. Van. The MeMVaTEx methodology:
from requirements to models in automotive application de-
sign. In ERTS’08, Toulouse, France, 2008.

[3] F. Altheide, S. Dörfel, H. Dörr, and J. Kanzleiter. An ar-
chitecture for a sustainable tool integration. In Proc. of the
Workshop on Tool Integration in System Development, Eu-
ropean Software Engineering Conference (TIS 2003), pages
29–32, 2003.

[4] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison Wesley, 1998.

[5] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze,
and Y. Rodeh. The temporal logic sugar. In 13th Inter-
national Conference on Computer Aided Verification 2001,
pages 363–367. Springer, 2001.

[6] S. Burmester, H. Giese, M. Hirsch, D. Schilling, and
M. Tichy. The fujaba real-time tool suite. In Proc. of
the 27th International Conference on Software Engineering
(ICSE 2005), pages 670–671, 2005.

[7] S. Burmester, H. Giese, J. Niere, M. Tichy, J. Wadsack,
R. Wagner, L. Wendehals, and A. Zündorf. Tool integration
at the meta-model level: the fujaba approach. International
Journal on Software Tools for Technology Transfer (STTT),
6:203–218, 2004.

[8] D. Chen, R. Johansson, H. Lönn, Y. Papadopoulos, A. Sand-
berg, F. Törner, and M. Törngren. Modelling support for de-
sign of safety-critical automotive embedded systems. In The
27th International Conference on Computer Safety, Relia-
bility and Security (SAFECOMP 2008), pages 72–85, 2008.

[9] C. Ebert and C. Jones. Embedded software: Facts, figures,
and future. IEEE Computer, 42(4):42–52, 2009.

[10] C. Ebert and J. Salecker. Embedded software technologies
and trends. IEEE Software, 26(03):14–18, 2009.

[11] H. Hansson and B. Jonsson. A logic for reasoning about time
and reliability. Formal Aspects of Computing, 6(5):512–535,
1994.

[12] C. Hein, T. Ritter, and M. Wagner. Model-driven tool in-
tegration with modelbus. In Proc. of the Workshop Future
Trends of Model-Driven Development, 2009.

[13] B. Josko and A. Metzner. Designing embedded systems us-
ing heterogeneous rich components. In Proceedings of the
INCOSE International Symposium, 2008.

[14] Y. Papadopoulos, J. A. McDermid, R. Sasse, and G. Heiner.
Analysis and synthesis of the behaviour of complex pro-
grammable electronic systems in conditions of failure, re-
liability engineering and system safety. Elsevier Science,
71(3):229–247, 2001.

[15] R. Passerone, I. Ben Hafaiedh, S. Graf, A. Benveniste,
D. Cancila, A. Cuccuru, S. Grard, F. Terrier, W. Damm,
A. Ferrari, L. Mangeruca, B. Josko, T. Peikenkamp, and
A. Sangiovanni-Vincentelli. Metamodels in europe: Lan-
guages, tools, and applications. IEEE Design and Test of
Computers, 26(3):38–53, 2009.

[16] T. Peikenkamp, A. Cavallo, L. Valacca, E. Böde, M. Pretzer,
and E. M. Hahn. Towards a Unified Model-Based Safety
Assessment. In SAFECOMP, pages 275–288, 2006.

[17] A. Pnueli. The temporal logic of programs. In IEEE Sympo-
sium on Foundation of Computer Science. IEEE Computer
Society Press, 1977.

8



[18] B. Ramesh and M. Jarke. Toward reference models for re-
quirements traceability. IEEE Trans. on Software Engineer-
ing, pages 58–93, 2001.

[19] W. Ridderhof, H. G. Gross, and H. Dörr. Establishing evi-
dence for safety cases in automotive systems - a case study.
In Proc. of the 26th International Conference on Computer
Safety, Reliability, and Security (SAFECOMP 2007), pages
1–13, 2007.

[20] R. Siegers. The abcs of afs: Understanding architecture
frameworks. In Proceedings of the INCOSE International
Symposium, 2005.

[21] J. M. Spivey. The Z Notation: a reference manual. Prentice
Hall, 1992.

[22] M. Törngren, D. Chen, and I. Crnkovic. Component based
vs. model based development: A comparison in the con-
text of vehicular embedded systems. In Proc. of the 31st
EUROMICRO conference on Software Engineering and Ad-
vanced Applications, pages 432–441, 2005.

9



Model-based Toolchain for the Efficient 
Development of Safety-Relevant Automotive 
Embedded Systems

Eric Armengaud and Markus Zoier 
Virtual Vehicle

Andreas Baumgart 
OFFIS e. V.

Matthias Biehl  and DeJiu Chen
Royal Institute of Technology

Gerhard Griessnig 
AVL List

Christian Hein  and Tom Ritter 
Fraunhofer FOKUS

Ramin Tavakoli Kolagari
Volvo Technology Corporation

ABSTRACT
Advanced functionalities unthinkable a few decades ago are 
now being introduced into automotive vehicles through 
embedded systems for reasons like emission control, vehicle 
connectivity, safety and cooperative behaviors. As the 
development often involves stakeholders from different 
engineering disciplines and organizations, the complexity due 
to shared requirements, interdependencies of data, functions, 
and resources, as well as tight constraints in regards to timing, 
safety, and resource efficiency makes the system integration, 
quality control and assurance, reuse and change management 
increasingly more difficult. This calls for a more rigorous 
approach to the development of automotive embedded systems 
and components. This paper describes the CESAR reference 
technology platform (RTP) that supports the formalization of 
various engineering concerns in the development of safety-
relevant embedded systems and thereby a model-based 
integration of various tools and methods to form seamless 
environments or toolchains for the development of such 
systems.

INTRODUCTION
Embedded systems are important innovation drivers in the 
automotive industry. They enable the introduction and 
improvement of advanced functionalities (e.g., active safety, 
fuel efficiency support) as well as the replacement of 
mechanical counterparts while saving weight and costs. At the 
same time, electronics components present strong requirements 
with regard to robustness and safety and the resulting system 
complexity is growing exponentially, which leads to increasing 
costs and tends to decrease the product quality. As most system 
development today is distributed across the boundaries of 
enterprises or engineering teams, it is critical that all system 
descriptions and information exchanges are precise enough but 
still with the possibility of protecting the intellectual properties 
(IP) of concern. For safety critical automotive embedded 
systems, an emerging standard is the ISO 26262 [12], which 
provides a reference lifecycle representing the domain 
consensus on the necessary information and workflow to 
achieve functional safety of E/E systems. All the aforementioned 
challenges and constraints for the automotive industry call for 

Copyright © 2011 SAE International

doi: 10.4271/2011-01-0056

2011-01-0056
Published 

04/12/2011

2011-01-0056.indd   1 3/10/2011   3:32:36 PM

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AMPublication 7 - SAE, SAE World Congress 2011



a more rigorous approach to the system modeling, design, 
analysis, verification and validation than is the current state of 
practice for safety-relevant embedded systems.

The CESAR project [10] has been started in that context to 
improve the engineering efficiency and effectiveness during 
the development of safety-critical embedded systems. Next to 
significantly improvements in tools and methods of the system 
engineering the R&D project relies on the development of an 
interoperability platform which is called the CESAR reference 
technology platform (RTP). The main contributions of this 
paper are (1) the description of the CESAR RTP concepts, (2) 
the discussion regarding the tailoring activities required for the 
deployment of a RTP instance, and (3) the illustration of the 
benefits from an industrial use case. The use-case is based on 
EAST-ADL [3], which is an architecture description language 
allowing the formalization of automotive embedded systems 
and thereby bringing a potential for a wide range of benefits in 
regards to system integration, quality control and assurance, 
and the creation of seamless toolchains for improving the 
development of safety-relevant automotive embedded systems.

The paper is organized as follows: We first introduce the base 
technologies and their related state-of-the art approaches in the 
second section. The base technologies include: (1) the CESAR 
RTP concept, (2) the interoperability concept for model 
transformation and seamless tool integration and (3) the 
CESAR meta-model. Next, in Section 3, we discuss the 
tailoring activities required for the deployment of a RTP 
instance. The activities include (1) identification of the 
development process as well as tools involved, (2) integration 
of the foreign meta-models of involved tools by means of the 
CESAR meta-model, (3) development of tool adapters for 
expected tool interoperations, and (4) integration of the tool 
adaptation and interoperation components to form a model-
based integrated toolchain (tailored RTP instance). In the 

fourth section, we show how the proposed CESAR RTP 
facilitates the system design with incremental verification and 
validation in a component-based development of automotive 
embedded systems. This is illustrated by an industrial scenario 
consisting of a system development performed by a dedicated 
toolchain (RTP instance). The last section concludes this work.

CESAR BASE TECHNOLOGIES AND 
STATE OF THE ART

THE CESAR RTP CONCEPT
The CESAR project is a European project funded from Artemis 
JU and national authorities and regroups 55 partners with a global 
budget of 58 M€ and a cumulated effort of 427 man-years over a 
duration of three years. CESAR’s main objective is the reduction 
of cost for the development of safety-critical systems by 
improving the processes and methods for design decisions, 
analysis and V&V, reuse and change management. The CESAR 
RTP aims to facilitate the creation of integrated development 
environments and toolchains for various application domains. 
Furthermore, the CESAR project also aims to bring significant 
innovations in the following two fields: (1) requirements 
engineering, in particular by formalizing multi-viewpoint, multi-
criteria, and multi-level requirements, and (2) component-based 
engineering applied to design space exploration comprising 
multi-view, multi-criteria and multi-level architecture trade-offs. 
These innovations are driven - and will be validated - by pilot 
applications from the domains of automotive, aerospace, rail and 
automation respectively.

The RTP is a generic model-based integration platform 
providing a conglomerate of modules that can be combined in 
different ways in order to provide a seamless development 
environment (RTP instance) tailored to one specific product 
development process (see Figure 1). The combinable modules 

Figure 1. The CESAR RTP concept

2011-01-0056.indd   2 3/10/2011   3:32:37 PM

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AM



can either be approved commercial-of-the-shelf (COTS) tools, 
innovative outcomes of research projects, meta models, tool 
integration frameworks or supporting services. The subset of 
required entities can be defined using tailoring rules according 
to relevant safety standards (e.g., ISO 26262, EN 50128), 
application domain (e.g., automation, aerospace) or company-
specific habits (e.g., preferred tools, customized processes). 
Depending on these rules, a process-driven tailoring of the 
RTP can be performed. The tailoring step comprises the 
generation of a customized integrated tooling environment 
tailored to relevant safety standards, application domain and 
company habits. This generation comprises activities like tool 
installation, deployment of adapters for the integration of tool-
specific meta-models, and instantiation of a process manager 
according to company-specific process needs.

The result of the RTP tailoring step is the RTP instance 
(toolchain). It consists of a set of communicable and 
interoperable engineering tools as well as the RTP-ModelBus 
[11] being in charge of the communication between these tools. 
While each tool is used to support certain design, analysis, and 
synthesis activities in one or multiple system refinement steps, 
the ModelBus helps to ensure the data consistency and 
traceability among different tools. To this end, a dedicated  
meta-model for this RTP instance is derived from the CESAR 
meta-model and used to manage interchangeability between the 
tools by mapping their internal model representations and 
semantics to a commonly agreed basis. Connections to the RTP-
ModelBus are either realized via adapters performing model-
transformation (in order to convert tool-internal model 
representations into the RTP meta-model in case of a tool-
specific data format), or directly integrated to the RTP meta-
model (when the tool provides a data format compatible with 
the RTP meta-model). Analysis tools (such as [17]) are 
connected in the same way.

Existing approaches to interoperability and tool integration for 
safety-critical embedded systems development are evolving 
[2, 18] and often academic [7, 8]. However, CESAR aims at 
achieving a common understanding and an agreement on 
concepts for interoperability and tool integration for safety-
critical embedded systems development between industrial 
and academic key players in the automotive, aerospace, 
automation and rail domains. Moreover CESAR aims at a 
flexible approach where both, solutions of vendors and SMEs 
as well as open-source solutions can compete in offering  
best-in-class solutions for particular stages of these processes. 
This approach is based on cross-domain commonalities in the 
development processes for safety-critical embedded systems.

In order to gain acceptance of industrial stakeholders and tool 
vendors, the RTP needs to support integration of existing tool 
frameworks, often equipped with own meta-models, as well as 
requirement and configuration management facilities. Thus, 
the implementation of the RTP instance is strongly driven by 

the need to identify common aspects in these environments, to 
provide a consistent view based on them, and to make them 
available to design, analysis and validation methods. This is 
facilitated by the development of a proper meta-model for the 
RTP instance. Thus CESAR fully considers the strong and 
ongoing trend towards meta-model based tool integration of 
recent research activities [16].

THE CESAR MODELBUS AND 
RELATED INTEROPERABILTY 
CONCEPTS OF INTEGRATED 
TOOLCHAIN TECHNOLOGIES
In large distributed development environments the consistency 
of data and processes as well as the synchronization of the 
communication among the stakeholders is a challenging task. 
The complexity of efficient tool interaction (orchestration, 
control, integration) grows with the number of tools involved. 
The problem domain of tool integration and its theoretical 
reasons have been identified and discussed from different 
viewpoints. Wassermann [24] identified five dimensions of 
tool integration: (1) Data integration shares the data produced 
by different tools and manages the relationship between the 
data objects. (2) Control integration allows tools to notify and 
activate other tools. (3) Presentation integration provides a 
common user interface with a common look-and-feel. (4) 
Process integration provides process management tools with 
data from development tools. (5) Platform integration provides 
a virtual operating environment for heterogeneous hardware 
and software. This has been further elaborated later by Thomas 
and Nejmeh [22] where they emphasized the role of framework 
services and integrative environments. In a very similar way, 
the “Toaster Model” of the European Computer Manufactures 
Associations (ECMA) [25] addressed this problem domain.

From a practical point of view tool integration is still an open 
issue. There are a number of vendor specific or point to point 
integration. Such integration solutions allow the sharing of 
data among different tools by simple import and export 
commands using proprietary file formats synchronized via a 
file system. These solutions work usually only for a limited 
part of the process and binds the stakeholders to the respective 
vendor. There are more general approaches to that, often 
named as Application Lifecycle Management (ALM), but 
mostly with special emphasis on change management, 
traceability and reporting. There are communities such as the 
Open Services for Lifecycle Collaboration initiative, which 
targets on the definition of vendor-neutral tool interfaces based 
on Representational State Transfer (REST) for ALM solutions. 
Apart from ALM, the Eclipse IDE as tool integration platform 
is in particular strong in the presentation integration aspect 
(third aspect listed in the previous paragraph). Eclipse IDE is a 
diverse and flexible solution, which comes with many 
extensions build by Open Source communities and vendors 

2011-01-0056.indd   3 3/10/2011   3:32:37 PM

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AM



addressing some of the other integration aspects listed before 
as well. However, all solutions do have drawbacks, which 
make it hard to use them in a scope that is addressed by the 
CESAR project. Therefore, CESAR has defined an 
interoperability specification, which addresses all relevant 
aspects of tool integration. This specification defines how 
tools interact, by defining communication standards and 
protocols, basic infrastructure services, and data definition and 
handling. So the CESAR approach is vendor neutral, provides 
a comprehensive view on the tool integration dimensions and 
allows the flexible creation of development solutions which 
take the specifics of the stakeholder’s development 
environment, organizational structures and existing tool 
landscape into account.

The RTP-ModelBus realizes this interoperability specification. 
It creates a virtual bus topology connecting tools being part of 
a certain development environment forming an RTP-instance. 
This comprises tools of potentially all development phases 
including process steps as requirements engineering, system 
architecture design, coding, testing or even reporting. The set 
of tools used in typical development processes can be quite 
diverse and may contain COTS tools as well as custom made 
or in-house proprietary ones. The important point about the 
interoperability specification and the RTP-ModelBus is that it 
uses existing methods and approaches in order to avoid 
building everything from scratch and to combine everything in 
a coherent way.

RTP-ModelBus is taking a service-oriented approach into 
account (SOA - define the interfaces in terms of protocols and 
functionalities, thus enabling loose coupling between the 

The problem of data integration is solved by ModelBus in a 
particular way. ModelBus uses models for exchanging data. So 
any externalized information (provided or consumed via 
services) is translated in a common representation framework, 
which is based on meta-modeling principles. This allows a 
tool-neutral and technology-agnostic handling of the 
exchanged data. Of course ModelBus can also handle data, 
which is not represented as model, such as source code or 
binary files. ModelBus is using an interaction pattern for 
realizing the actual exchange of data. This interaction pattern 
is formally defined and is based on a repository service. With 
this a tool can easily address an arbitrary model (or any other 
piece of data) just by using its reference. ModelBus does an 
automatic lookup and fetches the model from the correct 
repository. The interaction pattern is outlined in Figure 3 and 
described also in [11].

connected tools and services as illustrated in Figure 2). 
Additionally, only open standards with available implementations 
are used in ModelBus. Tools connected to the ModelBus provide 
or consume services that contribute to the system development 
process. These services can be very different in nature. A service 
can be a report generator, an analysis tool, or a simulation 
engine, e.g., executing long running simulations. There are 
client tools, which are used by humans and which usually offer 
a graphical user interface and there are server tools, which 
provide a specific functionality and which are not necessarily 
equipped with a graphical user interface. Of course these 
categories are not completely disjunctive since a tool may run  
in batch or server mode while it provides other parts of its 
functionality via a graphical user interface.

Figure 2. ModelBus overview

2011-01-0056.indd   4 3/10/2011   3:32:37 PM

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AM



Figure 3. The ModelBus Interaction Pattern

ModelBus is also concerned with the automation of the 
development process. Certain generic platform services are 
being used, including an orchestration engine, user & rights 
management, version & configuration management, and 
traceability management. The automatic execution of service 
invocations can be triggered by certain events. Such events can 
be the provision of a new model or just a new version of a 
model. ModelBus uses an event distribution service for the 
realization of the automation. With the help of the automation 
capability ModelBus offers an additional working mode. A 
client tool does not necessarily invoke remote services directly, 
instead it may simply provide its data to the ModelBus and this 
triggers automatically the invocation of a service. Both 
working modes (i.e. direct or indirect) can be used in parallel. 
This helps to create a flexible solution, which fits to the needs 
of the development process, meets the requirements of the 
stakeholders, and takes the characteristics of the involved tools 
into account.

THE CESAR META-MODEL (CMM)
The CESAR project evaluates a common meta-model approach 
to enable harmonized interoperability between tools and 
services with heterogeneous data models. It targets to develop 
a CESAR meta-model (CMM) with common domain-
independent meta-model concepts that is modular extendable 
and which is intended to be used as common meta-model for 
an RTP instance with an interoperability framework like 
ModelBus [11]. The CMM therefore provides a harmonized 
common understanding of data concepts as well as data 
artifacts and their relationships for the interoperability and 
integration of tools with heterogeneous data models [17]. In 
CESAR a multi-domain reference technology platform (RTP) 
is developed, which can be instantiated for various industrial 
development processes in safety-critical embedded system 
design like in avionics, automotive and automation. To enable 
data interoperability with several integrated tools and services 
the identification and definition of common meta-model 
concepts for multiple viewpoints and along all levels of 
development processes is a crucial point. Based on these 
common concepts, a domain-, tool- and company-independent 
and commonly understandable data structure is provided, 
which can be used for data exchange and analysis increasing 

tool reuse independent of specific domains and improving 
integration. The CMM is based on results of European research 
projects, in which widely usable meta-model concepts were 
developed, such as EAST-ADL from the ATESST series 
projects [3] and HRC from the SPEEDS project [20].

The basis of the CMM is an integration of HRC Level 1 Kernel 
as well as common domain-independent meta-model concepts 
from EAST-ADL and those developed and identified in 
CESAR. EAST-ADL complements the HRC/SPEEDS 
approach with automotive domain-specific concepts regarding 
architecture, verification and validation, abstraction levels, 
and lifecycle information. The CESAR meta-model concepts 
furthermore consider generic component-based design along 
embedded system development processes with informal as 
well as formal requirements using different kinds of 
requirement specification languages (RSL) and traceability 
management [11].The CMM is therefore intended to support 
multi-viewpoint component structure modeling along a multi-
level development process with requirements, traceability, 
error modeling as well as verification and validation. It is not a 
conglomeration of various artifacts to cover everything from 
all tools and domains because such a meta-model would be 
giant, unusable and not maintainable [5]. Thus, it provides 
artifacts with respective relationships to cover common meta-
model concepts, which are independent of specific tools and 
domains.

The current CMM provides core concepts to describe systems 
along several levels of abstraction by using models with 
multiple viewpoints on requirements, components as well as 
V&V cases with respective means of traceability. The CMM 
enhances HRC components and allows distinction between 
functional and different kinds of component models. Informal 
as well as formal requirements based on contracts can be 
defined and linked to components, requirements and 
verification and validation entities.

HRC - Heterogeneous Rich Component model
HRC [21] is a meta-model for rich component design 
supporting modeling and analysis of complex embedded 
systems by using formal analysis tools. It enables a generic 

2011-01-0056.indd   5 3/10/2011   3:32:37 PM

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AM



and formal description of components, their decomposition, 
interfaces and assumed as well as promised behavior in terms 
of contract-based design. The HRC meta-model provides 
concepts for component structures, component behavior as 
well as an expression and action language. Structurally rich 
components are component types that can be decomposed by 
defining rich component properties respectively typed by rich 
components. Rich components have ports, which are typed by 
port specifications that contain data flows or provide 
respectively require services which is compliant to ports 
defined in UML/SysML [14]. Rich component dynamics can 
be formally described by using state machines and contracts. 
Contracts are pairs of assumptions and promises. An 
assumption describes how the component’s context is 
considered to behave and the promise describes how the 
component behaves if the assumption is fulfilled. HRC state 
machines allow the description of rich component behavior as 
hybrid automata [6]. The HRC expression and action language 
defines datatypes, expressions and actions. HRC data types 
allow the description of highly complex data structures as they 
are known from common programming languages like e.g., C. 
Furthermore, primitive types can be used with additional 
dimensions and units to describe physical types [5]. HRC 
expression language allows formal descriptions of data content 
(i.e., values or conditions) based on simple values, their 
combination and referenced structural data items, functions 
and actions. The action language provides a means for 
statements in terms of imperative programming to describe 
function bodies, service implementations or actions of state 
machine transitions.

EAST-ADL
One base technology for the CMM is the EAST-ADL, which 
aims to provide a well-defined information infrastructure for 
capturing, evaluating, and managing various engineering 
concerns across system development stages [3]. The language 
is aligned with ISO 26262 [12] for functional safety of 
automotive embedded systems in regards to the work flow and 
information management. The core of EAST-ADL is its 
support for system architecture description with models on 
multiple levels of abstraction according to the needs of 
separation of concerns in the automotive domain. The topmost 
system description is performed at Vehicle Level capturing the 
features of an automotive product family. In EAST-ADL, a 
vehicle-level feature typically represents an end-to-end system 
functionality (e.g., braking), while a feature in general refers to 
a trait or characteristic that a system may or may not have. To 
satisfy certain requirements, a vehicle-level feature obeys 

constraints on its behavior (e.g., I/O operations, environmental 
conditions, and vehicle modes), timing (e.g., end-to-end 
delay), as well as safety (e.g., the deduced safety goals). By 
means of feature models, one can specify the allowed 
variability and inheritance hierarchy, which for example 
running from vehicle longitudinal control feature to braking 
and retardation features. The realization of a Vehicle Level 
feature is supported by logical artifacts, specifying for example 
the implied functions for sensing, controlling, and actuation in 
feedback control loops. In EAST-ADL, the design of such 
logical artifacts is first captured by a Functional Analysis 
Architecture and thereafter detailed by a Functional Design 
Architecture at Design Level. It is at the Design Level that the 
characteristics of system resources as given by the Hardware 
Design Architecture are taken into consideration. Typical 
design decisions then include the partitioning and allocation of 
logical functions on hardware resource. Finally, the 
Implementation Level specifies the actual software and 
hardware configuration according to AUTOSAR [4]. EAST-
ADL provides dedicated language support for capturing the 
realization hierarchy from Vehicle Level features to 
Implementation Level solutions. Similar as in SysML [14], 
each requirement in EAST-ADL can be traced to its derived 
subrequirements, implied verification and validation (V&V) 
cases, system artifacts providing the satisfaction, or detailed 
information about the implied parameters, states, operations, 
and vehicle modes. As shown in Figure 4, EAST-ADL allows 
the elements of a System Model to be associated with a set of 
models capturing the related requirements, verification and 
validation cases, environmental concerns, and constraints in 
regards to behavior, timing (e.g., rate and synchronization 
constraints), variability, and dependability. For example, a 
behavior model of EAST-ADL can be used to define the 
vehicle modes, parameter ranges, operation states as implied 
in textual requirements, as well as the external descriptions 
(e.g., in Simulink/Matlab) of computations to be implemented 
by a system function; a dependability model augments the core 
system model with the descriptions of hazards, failure modes, 
and error propagation and the derived safety goals and 
constraints [19]. Current EAST-ADL support for timing 
incorporates the results of the ITEA2 project TIMMO [23], 
which provides a formal description language and methodology 
for dealing with the timing concerns. The EAST-ADL language 
can be implemented as a UML profile and thus supported by 
various UML modeling tools. Further harmonization is being 
carried out with the aim of releasing the EAST-ADL profile as 
an annex to the subsequent version of MARTE [13].

2011-01-0056.indd   6 3/10/2011   3:32:37 PM

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AM



Figure 4. An overview of modeling scope and levels-of-
abstraction by EAST-ADL

TAILORING ACTIVITIES FOR THE 
DEPLOYMENT OF A RTP INSTANCE

OVERVIEW
The tailoring step regroups all the activities required for the 
instantiation of a dedicated toolchain for a specific purpose, 
see Figure 1 and Section II-1: CESAR RTP concept. In this 

Section, we discuss the activities required for the tailoring of 
the generic assets (e.g., meta-model, tool adapters, data 
backbone). Figure 5 illustrates the four main tasks required. 
The first step of the tailoring activities consists of the definition 
of the development process and the decision of the required 
development steps and respecting tools. This includes further 
the deployment of the data backbone (ModelBus) and its 
configuration according to the tools to be integrated, the design 
of a workflow as interaction pattern of the platform services 
(orchestration) and model-transformation services required. 
The second step concerns the definition of the product meta-
model and regroups two sub-activities. The first sub-activity is 
the identification of the data structure according to the included 
development steps, the respective viewpoints modeled and the 
tools involved. This data structure is a union of all the data 
structures of the tools involved. The second sub-activity is the 
identification of the required traceability links. These links 
(especially across the tools) define the relations between the 
development steps and therefore the required model 
transformations. The third step consists of the implementation 
of the specific tool adapters. Such tool adapters provide 
standard services for the integration to the ModelBus (e.g., 
check-in, check-out), as well as syntactic and semantic 
transformation in order to map the tool-specific data to the 
RTP instance. The last step concerns the evaluation of the 
integrated toolchain according to typical product development 
activities.

Figure 5. The four different tasks for the development of an RTP instance

2011-01-0056.indd   7 3/10/2011   3:32:38 PM

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AM



META-MODEL INTEGRATION
The CESAR meta-model (CMM) is intended to be used as a 
shared common model of data in an interoperability platform for 
tools with heterogeneous data sets. Such data sets have their 
own types and meta-models such as EAST-ADL. Thus, one 
crucial issue to enable interoperability among tools in a tailored 
RTP is the integration of foreign meta-models and to make them 
compatible with the common meta-meta of the RTP, the CMM. 
The most important step of such a meta-model integration in a 
tailoring process is to define a mapping between the foreign 
meta-model and the CMM. This enables common understanding 
of the foreign meta-model within the RTP using the CMM. A 
mapping can be defined in a human readable form like a table. 
The mapping defines how foreign meta-model concepts with 
their elements and relationships can be mapped to those of the 
CMM having common semantics. In addition to the elements 
and references to other elements a mapping of all information 
such as the possible number of referenced elements is important 
for implementation decisions. I.e. for the mapping of the 
decomposition of EAST-ADL Analysis Function Types  
the element “AnalysisFunctionTypes”, its reference “part”, the 
referenced element “AnalysisFunctionPrototype” and the 
possible number of referenced Analysis Function Prototypes 
“0..*” (arbitrarily many referenced elements) have to be listed. 
Non-trivial mappings regarding combinations of elements and 
surjective mappings where one element is mapped to one of 
many elements can be described the following way.

Table 1-1 shows an exemplary mapping between EAST-ADL 
and the current CMM. This table lists how EAST-ADL and 
CMM concepts relate to each other and therefore how meta-
model elements and relationships can be mapped. For each 
mapped meta-model concept the respective element name, 
reference name, referenced element and the possible number 
of referenced elements are listed. Some mappings are trivial 
such as RichComponent part and AnalysisFunction part 
because RichComponent and AnalysisFunction as well as 
RichComponentProperty and AnalysisFunctionPrototype can 
be mapped to each other providing decomposition of 
components. The part property of AnalysisFunctionType has 
the same multiplicity and the mapped property type is the same 
as for Rich Component part. When mapping the execution 
semantics of EAST-ADL function types with run-to-
completion semantics being aligned with AUTOSAR to rich 
component dynamics, this behavior has to be expressed in 
terms of CMM behavior and contracts, which describe the 
dynamics of a rich component. In order to make the mapping 
of the foreign meta-model usable within the RTP an 
implementation is needed. Concrete implementations depend 
on the tools being involved and the development process. In 
the following we describe two reference implementations of 
meta-model integration along with EAST-ADL and HRC, 
which were created within the CESAR project and describe 
harmonized CMM based interoperation between tools with 
heterogeneous data-models in an instantiated RTP using tool 

adapters. Both implementations are based on the same 
mapping, which had to be defined first.

For RTP version 1.0, EAST-ADL and HRC were integrated 
and therefore mapped to the CMM. This enables harmonized 
CMM based interoperability between tools and analysis 
services that use these meta-models like Papyrus with EAST-
ADL plugin [15] and an HRC based virtual integration testing 
service from SPEEDS project [20] in an instantiated RTP, 
which is exemplarily shown here. Since function types and 
hardware elements in EAST-ADL provide compositional 
structures with typed interfaces, respective connections and 
behavior, these concepts can be mapped to rich components, 
rich component properties, ports, interconnections and 
behavior. Furthermore there are special requirements and trace 
links which can be identified by concepts of the CMM like 
requirement, satisfy link, derive link etc [5]. EAST-ADL 
abstraction levels and contained models provide model 
container and can therefore be mapped to CMM declaration 
zones that provide generic concepts of abstraction levels and 
rich component models. Since the CMM widely consists of 
HRC concepts HRC mapping is mainly trivial. Rich component 
structures and datatypes can be directly mapped. But HRC 
contracts belonging to rich components are mapped to CMM 
rich components satisfying system requirements in CMM.

EAST-ADL is implemented as a UML profile in the Papyrus 
tool. Thus, for RTP 1.0 a first implementation of EAST-ADL 
mapping was created by enhancing a CMM UML profile 
implementation with EAST-ADL stereotypes specializing 
CMM stereotypes to cover EAST-ADL-specific information 
related to the common concepts. Stereotype properties were 
replaced by respective CMM stereotype properties, they were 
declared “redefining” when associating other specialized 
stereotypes respectively with different multiplicities or they 
were declared “subsets” when denoting subsets of CMM 
stereotype properties. This implementation allowed export of 
EAST-ADL models in Rhapsody with a tailored EAST-ADL 
profile to HRC models for formal analysis. A second 
implementation of EAST-ADL and HRC tailoring to concepts 
of the CMM was created by performing model transformation 
between UML with EAST-ADL profile and HRC. Here the 
identified common concepts of UML with EAST-ADL profile 
and HRC were used to define QVT transformation rules [5]. 
Using this technique in a CESAR scenario EAST-ADL 
structure was enhanced by formal contracts and afterwards 
formally analyzed by using a virtual integration testing service 
as defined in SPEEDS project [20].

When an RTP is instantiated a meta-model and an 
interoperability platform are chosen. The CMM and ModelBus 
[11] are intended to be used for that purpose. In order to 
connect tools from a tool chain and services to the 
interoperability platform in the instantiated RTP tool adapters 
are chosen. These tool adapter encapsulate an implementation 
of the mapping between the respective tool data model and the 

2011-01-0056.indd   8 3/10/2011   3:32:38 PM

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AM



Table 1-1. Mapping table for EAST-ADL and the CMM

meta-model of the RTP instance. In the interoperability 
platform there can be several data repositories available which 
are provided by the connected tools or by the interoperability 
platform itself. On the one hand the CMM or the respective 
RTP meta-model can be used by the tool adapter as a native 
data format for data storage in a connected data repository. On 
the other hand the tool-adapters can store native tool data to an 
available RTP repository and provide an RTP meta-model 
view on this data as described in [5]. Using the RTP common 
meta-model the heterogeneous data of different tools which is 
available in the RTP can be accessed from all connected tools 
and data items can be linked to each other in a harmonized  
data view.

Thus, as a conclusion the integration of foreign meta-models 
in an RTP tailoring process and the definition as well as the 
implementation of mappings to the CMM enables common 
understanding without the concrete knowledge of these meta-
models in all tools of the RTP instance. The definition of the 
mapping between artifacts and relationships of a foreign meta-
model and the CMM is very important. Such a mapping can be 
implemented in several ways to have common understanding 
of foreign data that is communicated in the RTP instance. In 
order to enable a harmonized CMM based interoperation 
between tools with heterogeneous data-models in an 
instantiated RTP the implementation of a mapping between a 
tool data-model and the CMM is encapsulated in a tool adapter 

which can be chosen for the connection of the respective tool 
to the RTP.

TOOL ADAPTER
In terms of the CESAR approach a tool adapter is needed in 
order to connect a tool to the RTP-ModelBus. However, there 
is no universal adapter available that can be used for every 
tool. An adapter is in most cases specific and it may even be 
possible that several adapters are needed for the same tool. For 
example, a text processor tool can be used as requirements 
specification tool as well as an analysis reporting tool. The 
relevant data to be exchanged is different in both cases and the 
adapter can be specific for each purpose. Therefore, an adapter 
has to take care of the syntax, semantics and operational 
aspects of the tool and the tool data. In order to implement an 
adapter a couple of general architectural decisions needs to be 
taken. At first, it needs to be decided how the tool should 
interact with others in an integrated toolchain and e.g., whether 
the tool is used as client or as server tool. A server tool may 
need to offer specific functionality (e.g., automated execution 
of a simulation run). In this case a service interface needs to be 
defined and a server adapter has to be created. If the tool is a 
client tool (i.e., humans are interacting with it) it has to be 
decided whether the tool only publishes its internal data to the 
ModelBus (which may trigger automatic invocation of other 
services) or whether the tool is about to invoke additionally a 

2011-01-0056.indd   9 3/10/2011   3:32:38 PM

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AM



remote service. In order to publish the data to ModelBus only, 
the tool adapter simply needs to use the ModelBus API for 
storing a model. For invocation of a remote service the adapter 
has to implement a client for the respective service interface.

Before actually starting the definition and implementation of 
adapters, another aspect needs to be considered: It has to be 
decided which data (models) shall be exchanged. Shall a tool 
export its complete data or shall it export just a subset of it? The 
CESAR project tries to harmonize the data structures by defining 
a common meta-model (CMM). So a tool may exports its data 
adhering to that meta-model, when the adapter is newly created. 
On the other side existing adapters may export data conforming 
to other meta-models. In such case a model transformation 
which translates from the tool specific model into the common 
meta-model is needed. Such a model transformation can be 
executed automatically within ModelBus, whenever a new 
model is exposed.

The following paragraph outlines the general tasks to 
accomplish in order to create a tool adapter.

	

The service and the client can be implemented using different 
technologies as long as the ModelBus interaction pattern is 
respected. ModelBus is providing skeletons for Java and for .
Net. The following code fragment shows the implementation 
of the service.

	

The implementation of a data provider for a client tool is very 
similar. The only difference is that the service interface is 
already fixed and implemented by the ModelBus repository 
service. The usage is simple: A session object containing user 
credentials needs to be created for getting access to the user 
repository.

Definition of the Service Interface: The easiest way to define 
a service interface is to use the Java language. For doing so just 
a Java interface needs to be defined. In this Java interface the 
concrete model types can be used. By using the ModelBus 
SDK (based on DOSGI1) a web service description language 
based interface description is derived implicitly when 
appropriate annotations are being used. The following example 
shows the definition of a simple service interface containing a 
service that adds a writer to a library.

	

1 www.dosgi.com

2011-01-0056.indd   10 3/10/2011   3:32:38 PM

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AM



The next step is the integration of the adapters and the 
respective tools. The realization of adapters can be different 
and is dependent on the tool. Many COTS tools provide a 
plug-in mechanism, which allows the integration of ModelBus 
adapter code in the host tool in an easy way.

INTEGRATION IN MODELBUS AND 
COMPLETION OF THE TOOLCHAIN
Combining all entities to an integrated development 
environment takes several steps. The first step is the setup of 
the generic ModelBus platform. It operates as data backbone 
connecting all internal services (like transformation services, 
orchestration, and security) and external services (mainly the 
tools connected by tool-adapters) necessary for the desired 
development process. These services and the ModelBus itself 
are usually deployed on a dedicated server machine running a 
web application server like Apache Geronimo2. In the second 
step tool adapters are provided to the tools fulfilling the 
development process. Tool adapters can extend tools by acting 
as plug-ins or being standalone applications connecting the 
data management of the tool (usually running on the computers 
of the development engineers) with the ModelBus platform 
using a local computer network.

The third step is the configuration of the platform services. 
Providing the necessary transformation rules (e.g., modeled in 
QVT3 or ATL4) to the transformation services is the most 
important step to enable the model-based data exchange. This 
also includes the configuration of the traceability management. 
To automate certain parts of the development process and 
platform background activities, a workflow is designed by a 
BPMN orchestration scheme5 as interaction pattern of the 
platform services. This orchestration scheme is a breakdown 
of the development work flow to the level of the services and 
data elements. Now the toolchain setup is completed. To 
evaluate the tool interaction, reference data (examples of data 
from development process) is provided by executing the 
desired development process.

Comparing the provided integrated solution to a straight point-
to-point integration of the tools using connectors it is obvious 
that the direct connection of tools leads to conversion instructions 
that are separated over several connectors and do not follow an 
overall pattern. The information exchange between different 
development activities across development phases is difficult to 
implement. The communication to activities linking to multiple 
steps of the development process like requirements- or workflow 

management is difficult to implement. If an engineering 
department is running multiple projects at the same time, direct 
connections get inflexible and are difficult to handle. An 
integrated solution using a common, model based scheme 
allows a concentration of all conversation instructions in the 
platform following one generic concept (meta-model of the RTP 
instance) and using standardized interfaces.

USE-CASE: AUTOMOTIVE TEST 
MANAGEMENT TOOLCHAIN
A demonstrator has been implemented in order to illustrate our 
claims, see Figure 6. The motivation for the integrated toolchain 
is to support the interactions between the roles of requirements 
engineer, system engineer, V&V manager and test engineer. The 
toolchain includes the connection of the tools Papyrus6 and  
the AVL InMotion7 using the RTP-ModelBus presented in 
Section 2. Papyrus, on one side, is an open-source tool that 
supports the modeling of automotive embedded systems 
according to EAST-ADL. AVL InMotion, on the other side, is a 
real-time simulation platform for maneuver and event-based 
testing at the test bed. In combination with AVL Cruise5, it 
supports key business objectives such as hybridization and 
electrification of power train engineering.

For the evaluation, a recuperation function for a hybrid vehicle 
has been used. Recuperation is the recovery of kinetic energy 
by the e-motor operating in generator mode. Here the e-motor 
generates a negative torque that decelerates the vehicle and is 
transformed into electrical energy that is used to charge the 
batteries and to supply the conventional low voltage board net 
with electrical energy. The system regroups 28 requirements 
and can be decomposed into five sub-components. Two test 
campaigns have been developed to test the requirements. 
Seven test cases have been automatically derived from these 
two test campaigns.

Figure 7 provides an overview of the resulting model and the 
mapping with the development activities. During the first step, 
the system requirements are modeled (RECUP) and refined 
(RECUP1 and RECUP2). During the second step, the system 
architecture is defined (Hybrid Control Unit, E-Drive) and the 
traceability links are added. The third step consists of the 
description of the test cases (TestCase RECUP1 Motoring, 
TestCase RECUP2 Recuperation). It includes links to a 
reference test case consisting of the description of the car, its 
behavior and the environment as well as variation parameters 
for the car behavior (e.g., car acceleration or pressure on the 

2 http://geronimo.apache.org/
3 QVT = Query/View/Transformation, http://www.omg.org/spec/QVT/
4 ATL = Atlas model transformation language, http://www.eclipse.org/atl/
5 www.bpmn.org
6 papyrus-uml.org
7 www.avl.com, AVL InMotion powered by IPG CarMaker

2011-01-0056.indd   11 3/10/2011   3:32:38 PM

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AM



brake pedal). These three first steps are performed in the 
Papyrus tool according to the EAST-ADL methodology. The 
fourth step is the model transformation from EAST-ADL to the 
AVL InMotion tool. The variation parameters described in step 
three are the inputs to generate automatically an InMotion test 
case for each parameter variant. In the fifth step, the test cases 
are implemented in the corresponding test environment and 
executed. The results are then transformed back to the Papyrus 
tool (step six). During this InMotion to EAST-ADL 
transformation, the test execution status and a link to the test 
results from InMotion are automatically inserted into the 
EAST-ADL model. Finally the results are available for analysis 
for the V&V manager (step seven).

Figure 6. RTP instance for automotive test management scenario

The main benefits of the proposed integrated tool-chain for the 
recuperation function are the following:

•  Explicit annotation of the system architecture using a semi-
formal language (EAST-ADL). This minimizes the ambiguity 
of the system being developed and simplifies synchronization 
between large teams (multi-site collaboration). Furthermore, 
the formalization provides a solid basis for further static 
analysis (e.g., completeness checks: are all the components 
mapped to requirements and test cases?). The modeling of the 
system using EAST-ADL has enabled a fast synchronization 
of our 15 person team across three countries.

•  Traceability between requirements, system components, 
test cases and test results. Thanks to the meta-model 
covering the entire development process, all the activities are 
related together and the collaboration between the different 

experts is strongly improved. During our evaluation, the 
misunderstandings between the different experts and work 
steps have been strongly reduced thanks to the complete 
overview of the development status.

•  Easy extension of the current toolchain. The availability of 
a vendor-neutral data backbone with standardized services 
as well as common understanding on the data thanks to the 
CESAR meta-model makes the enhancement of the  
toolchain quite easy. Hence, further tools (e.g., for system 
design, analysis or validation) can be integrated on the 
platform later on.

•  Automated notification when the system has been modified 
and a new task should be performed. This supports the 
coordination within the team.

•  Automated configuration of following development steps. 
Consecutive development steps usually represent a refinement 
of the abstract model down to a specific implementation 
and its corresponding validation. Results of a development 
steps can be used as input for the following development 
step. When different tools are used, the configuration has 
to be performed manually, which is error prone. Model 
transformation with tool adapters enables the automation of 
data transfer, thus reducing development time and minimizing 
human error. During our evaluation, model transformation 
has been used (1) for automated test case generation out of 
the test campaigns and (2) for mapping the test results back 
to the system description. These transformations have saved 
engineering time and have minimized human error.

2011-01-0056.indd   12 3/10/2011   3:32:39 PM

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AM



Figure 7. Model overview of the product development

SUMMARY/CONCLUSIONS
Due to its size and relevance of the partners, the CESAR 
project provides a platform to enable different technologies - 
coming both from industry and research projects - to converge. 
The focus is set to the cost-efficient development of safety-
relevant embedded systems. During this work, the CESAR 
RTP as central concept of the project has been discussed. 
Deployment of a dedicated RTP instance regroups four tasks 
which are: 1. identification of the development process as well 
as tools involved, 2. integration of foreign meta-models to be 
mapped to the CESAR meta-model, 3. development of tool 
adapters, and 4. integration of the components into a model-
based integrated toolchain (tailoring RTP instance). These four 
tasks are difficult to coordinate since they regroup different 
expertise ranging from domain-independent software 
engineering up to domain-(tool-)specific meta-models. The 
resulting toolchain, however, strongly improve product 
development from the following point of views: 1. traceability 
between the system artifacts (e.g., between requirements, 
components, test cases) and therefore improvement of product 
quality, 2. improved tool integration and therefore better 
cooperation between development steps requiring different 
tools and expertise, thus saving development time, and 3. 
advanced integration platform supporting the integration of 
automated services (such as static analysis or automated 
documentation generation).

REFERENCES
1.  AADL - Architecture Analysis & Design Language, http://
www.aadl.info

2.  Altheide, F., Dörfel, S., Dörr, H., Kanzleiter, J.: An 
architecture for a sustainable tool integration. In: Proc. of 
the Workshop on Tool Integration in System Development, 
European Software Engineering Conference (TIS 2003). 
(2003) 29-32

3.  The ATESST2 Consortium. EAST-ADL Domain Model 
Specification. Advancing Traffic Efficiency and Safety 
through Software Technology (ATESST). EUROPEAN 
COMMISSION FP7 Grant Agreement 224442. 2010.  
<www.atesst.org>

4.  AUTOSAR Development Partnership, http://www.autosar.
org

5.  Baumgart, A. A common meta-model for the 
interoperation of tools with heterogeneous data models, 
Proceedings of the 3rd Workshop on Model-Driven Tool & 
Process Integration (MDTPI, 2010):

6.  Baumgart, A.; Reinkemeier, P.; Rettberg, A.; Stierand, I.; 
Thaden, E.; Weber, R.: A Model-Based Design Methodology 
with Contracts to Enhance the Development Process of 
Safety-Critical Systems : Proceedings of 8th IFIP Workshop 
on Software Technologies for Future Embedded and 
Ubiquitous Systems (SEUS, 2010)

7.  Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, 
J., Wagner, R., Wendehals, L., Zündorf, A.: Tool integration 
at the meta-model level: the fujaba approach. International 
Journal on Software Tools for Technology Transfer (STTT)  
6 (2004) 203-218

2011-01-0056.indd   13 3/10/2011   3:32:39 PM

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AM



International Conference on Software Engineering (ICSE 
2005). (2005) 670-671

9.  Earl, A.: Principles of a reference model for computer 
aided software engineering environ-ments. In Ling, F, editor, 
The international Workshop on Environments (Software 
Engineering Environments), volume 647 on Lecture Notes in 
Computer Sciences, pages 115-129, Springer-Verlag, Berlin, 
September 1989, Chinon, France

10.  Griessnig, G., Mader, R., Peikenkamp, T., Josko, B., 
Törngren, M., Armengaud, E.: CESAR: Cost-Efficient 
Methods and Processes for Safety Relevant Embedded 
Systems, in Embedded World 2010 - ARTEMIS Session

11.  Hein, C., Ritter, T., Wagner, M.: Model-driven tool 
integration with modelbus. In: Proc. of the Workshop Future 
Trends of Model-Driven Development. (2009)

12.  International Organization for Standardization: ISO/DIS 
26262 on Functional Safety for Road Vehicles. 2009.

13.  OMG: The UML Profile for MARTE - Modeling and 
Analysis of Real-Time and Embedded Systems. MARTE 
specification version 1.0 (formal/2009-11-02).  
http://www.omgmarte.org/

14.  OMG: OMG Systems Modeling Language - SysML, 
V1.2., OMG Document Number: formal/2010-06-01.  
http://www.sysml.org

15.  Papyrus UML, Open Source Tool for Graphical UML2 
Modelling, http://www.papyrusuml.org

16.  Passerone, R., Ben Hafaiedh, I., Graf, S., Benveniste, 
A., Cancila, D., Cuccuru, A., Girard, S., Terrier, F., Damm, 
W., Ferrari, A., Mangeruca, L., Josko, B., Peikenkamp, 
T., Sangiovanni-Vincentelli, A.: Metamodels in Europe: 
Languages, tools, and applications. IEEE Design and Test of 
Computers 26(3) (2009) 38-53

17.  Peikenkamp, T., Cavallo, A., Valacca, L., Böde, E., 
Pretzer, M., Hahn, E.M.: Towards a Unified Model-Based 
Safety Assessment. In: SAFECOMP. (2006) 275-288

18.  Ridderhof, W., Gross, H.G., Dörr, H.: Establishing 
evidence for safety cases in automotive systems - a case 
study. In: Proc. of the 26th International Conference on 
Computer Safety, Reliability, and Security (SAFECOMP 
2007). (2007) 1-13

19.  Sandberg, A., Chen, D., Lönn, H., Johansson, R., Feng, 
L., Törngren, M., Torchiaro, S., Tavakoli-Kolagari, R., Abele, 
A.: Model-based Safety Engineering of Interdependent 
Functions in Automotive Vehicles Using EAST-ADL2. 
Lecture Notes in Computer Science, 2011, Volume 6351, 
Computer Safety, Reliability, and Security. Springer 
(SAFECOMP2010). (2011) 332-346

20.  SPEEDS Consortium, SPEEDS (SPECulative and 
Exploratory Design in System Engineering), European 
funded project, 2008, http://www.speeds.eu.com/

21.  SPEEDS Project: D.2.1.5 SPEEDS L-1 Meta-Model: 
Deliverable: Rev. 1.0.1: May 2009

22.  Thomas, I., Nejmeh, B.: Definitions of Tool Integration 
for Environments. IEEE Software, 9(2):29-35, March 1992

23.  TIMMO - TIMing MOdel. ITEA 2 project 06005. http://
www.timmo.org/

24.  Wassermann, A.: Tool Integration in software 
engineering environments. In The International Workshop on 
Environments (Software Engineering Environments), volume 
647 of Lecture Notes in Computer Sciences, pages 137-149, 
Springer-Verlag, Berlin, September 1989, Chinon, France

CONTACT INFORMATION 
(ALPHABETICAL ORDER)
Eric Armengaud
Markus Zoier
Virtual Vehicle Competence Center
Inffeldgasse 21a, 8010 Graz, Austria
eric.armengaud@v2c2.at
markus.zoier@v2c2.at

Andreas Baumgart
OFFIS e.V.
Escherweg 2, 26121 Oldenburg, Germany
baumgart@offis.de

Matthias Biehl
Dejiu Chen
KTH Royal Institute of Technology
Valhallavägen 83, 10044 Stockholm, Sweden
chen@md.kth.se
biehl@md.kth.se

Gerhard Griessnig
AVL List GmbH
Hans-List-Platz 1, 8020 Graz, Austria
Institute for Technical Informatics, Graz University of 
Technology, Austria
gerhard.griessnig@avl.com

Christian Hein
Tom Ritter
Fraunhofer FOKUS
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
christian.hein@fokus.fraunhofer.de
tom.ritter@fokus.fraunhofer.de

Ramin Tavakoli Kolagari
Volvo Technology Corporation
Regnbågsgatan 1, SE-405 08 Gothenburg, Sweden
ramin.tavakoli@volvo.com

2011-01-0056.indd   14 3/10/2011   3:32:39 PM

8. Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, 
M.: The fujaba real-time tool suite. In: Proc. of the 27th 

Gratis copy for Eric Armengaud
Copyright 2011 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Tuesday, March 15, 2011 07:07:21 AM



Fault Insertion Testing of a Novel CPLD-based  
Fail-Safe System 

 

Gerhard Grießnig 
AVL LIST GMBH 

Graz, Austria 
gerhard.griessnig@avl.com 

Roland Mader, Christian Steger, Reinhold Weiß 
Graz University of Technology 

Institute for Technical Informatics (ITI) 
Graz, Austria 

rmader@sbox.tugraz.at, steger@tugraz.at, 
rweiss@tugraz.at

 
 

Abstract—According to the standard IEC 61508 fault insertion 
testing is required for the verification of fail-safe systems. Usually 
these systems are realized with microcontrollers. Fail-safe 
systems based on a novel CPLD-based architecture require a 
different method to perform fault insertion testing than 
microcontroller-based systems. This paper describes a method to 
accomplish fault insertion testing of a system based on the novel 
CPLD-based architecture using the original system hardware. 
The goal is to verify the realized safety integrity measures of the 
system by inserting faults and observing the behavior of the 
system. The described method exploits the fact, that the system 
contains two channels, where both channels contain a CPLD. 
During a test one CPLD is configured using a modified 
programming file. This file is available after the compilation of a 
VHDL-description, which was modified using saboteurs or 
mutants. This allows injecting a fault into this CPLD. The other 
CPLD is configured as fault-free device. The entire system has to 
detect the injected fault using its safety integrity measures. 
Consequently it has to enter and/or maintain a safe state. 

Keywords-IEC 61508; fail-safe system; safety integrity; fault 
insertion testing; fault injection; CPLD; VHDL 

I.  INTRODUCTION 
A new architecture for fail-safe systems [10] has been 

developed recently. The architecture is homogenously 
redundant and consists of two channels. In contrast to other 
fail-safe system architectures [1] this novel architecture 
contains no microcontrollers. Instead the safety functions and 
the safety integrity measures are exclusively implemented 
using one CPLD (complex programmable logic device) per 
channel. 

A fail-safe system based on this novel CPLD-based 
architecture is being developed by SIEMENS. The application 
domain of this system is industrial automation. The fail-safe 
system is able to execute safety functions if demanded. Each 
channel is able to perform the safety functions independently. 
Additionally each channel realizes measures to detect faults. 
This guarantees sufficiently high safety integrity. The 
functionality of the system is entirely implemented in 
hardware. 

The certification of the fail-safe system in adherence with 
the standard IEC 61508 [6] is aspired. Thus it is necessary to 

fulfill the requirements of this standard. One of the verification 
measures, which are required by the IEC 61508, is fault 
insertion testing. The accomplishment of fault insertion tests is 
necessary to verify the realized safety integrity measures of the 
fail-safe system. This paper presents the new approach of fault 
insertion testing of a novel CPLD-based fail-safe system. 

The rest of this paper is organized as follows. Section II 
describes the state of the art, reviews related work and 
introduces the standard IEC 61508, which requires fault 
insertion testing for safety related systems. In Section III the 
CPLD-based fail-safe system and its novel architecture are 
briefly described. The proposed approach to inject faults using 
a modified VHDL-description and a manual switch is 
described in Section IV. The procedure to verify the safety 
integrity measures of the fail-safe system is described in 
Section V. Section VI describes how synthesis results can be 
influenced using VHDL-constants. Section VII presents 
experimental results. Finally Section VIII concludes. 

II. STATE OF THE ART 
In the domain of industrial automation fault insertion 

testing is usually applied for the verification of microcontroller-
based fail-safe systems. A fault can be injected into a 
microcontroller by modifying the executed program, which is 
usually implemented using C or C++. In this case the program 
can be modified with preprocessor commands, to inject a fault. 
Then the program needs to be recompiled and loaded into the 
microcontroller, which has to emulate the fault. 

In contrast to microcontroller-based fail-safe systems the 
fail-safe system based on the novel CPLD-based architecture 
requires a new method to perform fault insertion testing, 
because these devices do not execute programs implemented in 
C or C++. To develop the presented method we reviewed 
related work and examined the relevant requirements of the 
standard IEC 61508. 

A. Related Work 
In [7] VHDL-based fault injection techniques are discussed. 

A saboteur is a component that is added into a VHDL-
description to alter the timing characteristic or the value of a 
signal, if the saboteur is activated. During the normal operation 

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on July 28,2010 at 08:14:26 UTC from IEEE Xplore.  Restrictions apply. 

Publication 8 - IEEE, DATE 2009



of the system the saboteur is inactive. Saboteurs can be used to 
inject various fault types like stuck-at faults, bit-flips, bridging-
faults or delay faults. 

Mutants are components which replace corresponding 
components. If a mutant is activated, it behaves like the 
corresponding component in presence of a fault. If the mutant 
is inactive, it behaves like the fault-free corresponding 
component. A mutant can either be created by adding saboteurs 
to a structural model description, by replacing subcomponents 
of a structural model description or by modifying the 
syntactical structures of a behavioral description [8]. It is 
possible to inject various fault types like assignment control, 
stuck-else or stuck-then using mutants [7]. 

Fault simulations [2] can be used to analyze the behavior of 
fault tolerant circuits in presence of faults. In [3] the use of 
PLDs is proposed to accelerate a fault simulation. A PLD is 
connected to a host computer. The circuit, which has to be 
simulated, is entirely or partly mapped on the PLD. The host 
computer executes a simulation program, which applies input 
vectors to the circuit. The responses are read back by the host 
computer. 

The authors distinguish between dynamic and static fault 
injection. In case of dynamic fault injection faults are injected 
during run-time. Multiplexers are inserted into the circuit to 
emulate stuck-at faults. The multiplexers contain two inputs. 
One input is connected to the correct input value and the other 
input is connected to a 1 or a 0 (stuck-at fault). The host 
computer controls the selector wire of each multiplexer. Thus it 
can determine if the correct input value or the stuck-at fault is 
switched to the output of the multiplexer. The advantage of this 
approach is that the circuit description has to be compiled only 
once. Also the PLD has to be configured only once. The 
disadvantage is that the multiplexers require additional PLD 
resources. Also the delay of the circuit increases, limiting the 
maximal clock speed. 

An alternative approach is static fault injection. In this case 
faults are injected into the circuit during compile-time. Thus 
whenever the circuit has to be simulated using another set of 
faults, the circuit description needs to be recompiled and the 
PLD needs to be reconfigured. The disadvantage is that the 
frequent recompilation and reconfiguration increases the 
duration of the simulation. The advantage is that no additional 
multiplexers are inserted. Thus no additional PLD resources are 
needed and the delay of the circuit is not increased. 

In [4] the use of various kinds of fault injection elements is 
proposed to inject faults. These elements contain either one or 
two test inputs. Depending on the test inputs either correct 
inputs or stuck-at-faults are switched to the outputs of the fault 
injection elements. The test inputs of the fault injection 
elements can be connected to the flip-flops of a fault injection 
scan chain or to the outputs of a decoder to inject faults. 

In [5] the use of a single FPGA as fast simulation 
environment is described. A faulty version of a circuit and a 
fault-free version of the same circuit are emulated concurrently. 
A comparator compares the outputs of the faulty circuit to the 
outputs of the fault-free circuit. If the outputs differ, a fault has 
been detected. A LFSR (linear feedback shift register) is used 

to generate test vectors for the circuits. An additional state 
machine controls the fault simulation. 

B. IEC 61508 
The IEC 61508 [6] is a basic functional safety standard, 

which defines a safety life cycle. All activities from the initial 
concept, through specification, design, implementation, 
operation to the disposal of the system are covered. The 
standard IEC 61508 applies, when an E/E/PES 
(electrical/electronic/programmable electronic system) carries 
out safety functions. 

This standard defines four safety integrity levels (SIL). 
While SIL 4 is the highest achievable level of safety integrity, 
SIL 1 is the lowest achievable level. The higher the safety 
integrity level of a system, the higher the probability that an 
E/E/PES performs its safety functions correctly if demanded. 

Requirements for preventing failures during the 
development process and requirements for controlling failures, 
if they are present, are defined by this standard. Techniques and 
measures, which are necessary to reach a certain level of safety 
integrity, are specified. 

The IEC 61508 requires fault insertion testing for the 
verification of safety related systems. Thus fault insertion 
testing is an important prerequisite for the successful 
certification of a system in adherence with the IEC 61508. The 
aim of fault insertion tests is to simulate faults in the system 
hardware [6]. Then the responses of the faulty system are 
analyzed. These kind of tests are used to assess the 
dependability of the system in case of a fault. 

III. THE NOVEL CPLD-BASED FAIL-SAFE SYSTEM 
The application domain of the presented fail-safe system is 

industrial automation. Assume an electric motor in a 
manufacturing plant, which is controlled by a PDS (power 
drive system). This PDS realizes a number of different standard 
functions, which should be able to stop the electric motor, if 
demanded. To reduce the risk of failing standard functions, 
corresponding safety functions have to be implemented. A 
safety function is able to stop the electric motor, even if the 
corresponding standard function fails. 

 
Figure 1.  Architecture of the F-module 

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on July 28,2010 at 08:14:26 UTC from IEEE Xplore.  Restrictions apply. 



A. Architecture of the Fail-Safe System 
The safety functions are realized using a separate module 

(F-module), which can be connected to the PDS. To 
communicate with the PDS, the CPLDs exchange messages 
with a DSP (digital signal processor), which is a component of 
the PDS. The architecture of the F-module is illustrated by 
Figure 1 schematically. 

The architecture consists of two channels. Each channel is 
able to perform the safety functions independently. Thus the 
safety functions can still be carried out, if one channel is faulty. 
The F-module consists of the following components: 

• Input stages: The input stages of the F-module are 
used to activate the safety functions. Each channel 
contains a separate input stage. 

• CPLDs: The CPLDs carry out the safety functions, if 
demanded. Additionally the CPLDs realize measures to 
increase the safety integrity of the system. Thus they 
exchange a number of corresponding signal pairs. The 
CPLDs can deactivate the electric motor via the safety 
critical outputs (OUT1 and OUT2). 

• Voltage monitors: There are separate voltage 
monitors, which are able to detect undervoltage and 
overvoltage. Additionally each channel is protected 
against dangerous overvoltage. 

• Temperature monitors: One temperature monitor per 
channel checks, if the temperature is within the 
specified range. 

B. Behavior of the F-module 
The behavior of the F-module is illustrated by Figure 2. The 

system can enter a safe state and an unsafe state. The safe state 
can be divided into the substates start-up, hard-error and motor 
stopped. When the system is in the safe state, no power is 
applied to the electric motor. Thus the motor is not able to 
cause harm to people, the environment or property. When the 
system is in state motor running (unsafe), power can be applied 
and the PDS is able to control the motor. 

When the F-module is switched on, the system enters state 
start-up (safe). In this state the CPLDs initialize all their 
registers and flip-flops. Both CPLDs receive parameters for a 
safety function from the DSP. Before the system leaves this 
state, the CPLDs have to perform an initial test, which ensures 
that the CPLDs are able to perform the safety functions 
correctly. 

When the initial test is finished successfully by both 
CPLDs, they tell the PDS via the DSP, that state start-up can be 
left. With a defined DSP message the system enters state motor 
running (unsafe). 

If a safety function is activated, the system enters state 
motor stopped (safe). If the safety functions have been 
performed properly and if they are not activated any more, the 
DSP can tell the F-module to enter state motor running again. 

During the operation of the F-module various safety 
integrity measures are performed to detect faults. If a fault is 

detected, the system enters state hard-error (safe). This state 
cannot be left any more as long as the system is operating. 

C. Safety Integrity Measures 
To guarantee sufficiently high safety integrity, both CPLDs 

perform diagnostic checks to detect faults as long as the F-
module is switched on. If a safety integrity measure detects a 
fault, the system enters the safe state. Various safety integrity 
measures to detect faults are realized: 

• Discrepancy monitors: The CPLDs exchange 
corresponding signal pairs. Some of them contain 
information about the safety functions. If these signal 
pairs are discrepant for a specified time, a fault is 
signaled. 

• Init-test: When the system is in state start-up, a test is 
performed, which verifies that both CPLDs are able to 
perform the safety functions correctly. 

• SS1-test: When the Init-test is finished, the CPLDs 
perform a periodic background test. Components, 
which are relevant for the correct execution of the 
safety functions, are tested. 

• Shut down test: The CPLDs get information about the 
state of the electric motor via feedback signals. If the 
deactivation of the motor does not occur in a specified 
time, a fault is signaled. 

• Short circuit test: This test can detect short circuits 
between the safety critical outputs of the F-module. 

• Temperature monitor: If the temperature of the 
environment exceeds a certain limit, the system enters 
the safe state. 

• Voltage monitor: If the supply voltage of the CPLDs 
is too high or too low, the system enters the safe state. 

 
Figure 2.  Behavior of the F-module 

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on July 28,2010 at 08:14:26 UTC from IEEE Xplore.  Restrictions apply. 



IV. FAULT INSERTION USING SYSTEM HARDWARE 
The IEC 61508 requires fault insertion tests to be 

performed using the system hardware. That is why it is not 
sufficient to perform fault insertion tests using software 
simulations. Instead we use the system hardware (F-module) to 
perform the tests. 

The behavior of the CPLDs on the F-module is defined by a 
synthesizable VHDL-description. After the compilation of the 
VHDL-description a programming file is available, which can 
be used to configure each CPLD via a JTAG interface. Usually 
both CPLDs are configured using the same programming file. 
Nevertheless it is possible to configure the CPLDs using 
different programming files. The presented method to perform 
fault insertion testing exploits this fact. 

To inject a fault we create a modified version of the 
synthesizable VHDL-description. This modified description 
makes it possible to inject a certain permanent or transient fault 
into one CPLD via an input pin of this CPLD. After 
compilation a modified programming file is available. We 
configure one CPLD (fault emulating device) with this 
modified programming file. The other CPLD (golden device) is 
configured with the original programming file. Thus it is 
possible to inject a fault into one CPLD but not into the other 
one. 

One input pin of the fault emulating device is connected to 
a manual fault enable switch. When the input pin is not 
switched to VDD, no fault is injected and the fault emulating 
device has the same behavior as the golden device. If the input 
pin is switched to VDD, a fault is injected into the fault 
emulating device. 

 
Figure 3.  Fault insertion using the F-module 

To modify the VHDL-description saboteurs can be added. 
This allows the injection of transient faults like bit-flips. Also 
permanent and intermittent faults like stuck-at faults, bridging-
faults and delay faults can be injected. Also mutants can be 
added to the VHDL-description to inject faults. Saboteurs and 
mutants can be activated and deactivated via the fault enable 

switch. Various fault models can be considered using the 
presented approach. The only restriction for the creation of 
saboteurs and mutants for this approach is the use of 
synthesizable VHDL-constructs. 

Figure 3 illustrates the F-module, which is prepared for 
fault insertion testing. In this case CPLD 1 is configured as 
golden device and CPLD 2 is configured as fault emulating 
device. Generally it does not matter which CPLD is configured 
as golden device and which CPLD is configured as fault 
emulating device. 

V. VERIFICATION OF SAFETY INTEGRITY MEASURES 
According to the requirements of IEC 61508 the 

synthesizable VHDL-description is modular and consists of a 
number of interconnected components. We perform a system 
FMEA (failure modes and effects analysis) and a design FMEA 
to determine possible sources of failure of the components and 
their interconnections and identify the consequences in terms of 
system behavior. 

If a fault of a component or interconnection leads to the 
safe state of the entire system, the fault can be considered to be 
safe. In this case no fault insertion test case needs to be 
planned. If a fault potentially leads to the unsafe sate of the 
entire system, we expect the implemented safety integrity 
measures to detect the fault and the system has to enter and/or 
maintain the safe sate. Consequently a test case needs to be 
planned to verify that the safety integrity measures are able to 
detect the fault. 

It is necessary to verify, that each of the two channels is 
able to detect injected faults. Thus CPLD 1 is configured as 
golden device for one half of the test cases, while CPLD 2 is 
configured as golden device for the other half of the test cases. 

For every test case another fault has to be injected into the 
fault emulating device. Consequently another modified 
programming file needs to be generated and the fault emulating 
device needs to be reconfigured for every test case. Thus a new 
modified synthesizable VHDL-description has to be created. 
For every test case we insert a saboteur between components or 
create a mutant of a component of the VHDL-description. This 
allows injecting a single fault into the fault emulating device, 
while the golden device remains fault-free. Considered types of 
faults are stuck-at, bit-flip, stuck-then, stuck-else, assignment 
control and stuck-data. If the entire system (golden device in 
cooperation with the fault emulating device) detects the fault 
and consequently enters and/or maintains the safe state, the test 
is successful. Otherwise the test fails. 

The synthesizable VHDL-description can be parameterized 
before compilation. The parameters are constants which are 
defined in a separate VHDL-package. There is one constant per 
fault insertion test case. If all constants are set to 0, it is not 
possible to inject a fault into the CPLD after compilation and 
configuration via the fault enable switch. The synthesized 
circuit contains no fault injection logic. Thus in the VHDL-
description for the golden device, all constants are set to 0. 
After compilation and configuration not a single logic element 
is required for mutants or saboteurs in this case. 

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on July 28,2010 at 08:14:26 UTC from IEEE Xplore.  Restrictions apply. 



If the constant for a certain fault injection test case is set to 
1, it is possible to inject a corresponding fault after compilation 
and configuration using the fault enable switch. In this case the 
synthesized description of the fault emulating device contains a 
saboteur or a mutant, which can be activated via the fault 
enable switch. Thus for every fault insertion test case a single 
constant is set to 1 in the VHDL-description of the fault 
emulating device. The remaining constants are set to 0. 
Consequently there is only a little area overhead caused by a 
little fault injection logic required for a single saboteur or a 
single mutant for each test case. 

There is no guarantee that the mapping of the modified 
VHDL-description on the logic elements of the CPLD is 
similar to the mapping of the unmodified VHDL-description on 
the logic elements. That is why the presented approach is 
limited to systems which contain at least two channels where 
each channel contains a CPLD or FPGA, which can be 
configured independently. There must always be at least one 
channel that contains a CPLD or FPGA that is configured with 
the compiled, unmodified VHDL-description. 

For every test case a certain fault is injected, when the 
system is in one of two states. In the first case a fault is 
injected, when the F-module is in state start-up and in the 
second case a fault is injected, when the F-module is in state 
motor running. A test case is successful if the F-module either 
does not leave state start-up (safe) or if it enters and maintains 
the safe state. 

Following steps are necessary to verify all safety integrity 
measures: 

1. Perform systematic FMEAs on system- and design-
level to identify necessary test cases 

2. Define expected results for each test case 

3. Repeat for every test case 

a. Insert a saboteur into the VHDL-description 
or create a mutant 

b. Add a VHDL-constant to be able to enable or 
disable the test case before compilation 

4. Repeat for every test case 

a. Edit VHDL-constants to enable injection via 
the appropriate saboteur or mutant 

b. Compile modified VHDL-description 

c. Reconfigure the fault emulating device 

d. Inject fault when system is in state start-up 

e. Restart to inject fault in state motor running 

f. Decide if test was successful 

g. Analyze and document result 

The effort for all fault insertion test cases is dominated by 
steps 1 and 2, which consume much time for analysis and 
documentation. The time required for inserting saboteurs or 
mutants, editing VHDL-parameters, compiling the VHDL-
description and reconfiguring the fault emulating device is 
comparably small. 

VI. SYNTHESIS 
An example demonstrates how the synthesis results can be 

influenced by modifying VHDL-constants, to make fault 
insertion possible. Figure 4 and Figure 5 illustrate schematics 
of simple combinational circuits, which were synthesized. The 
circuits have an output that depends on the inputs A_INPUT, 
B_INPUT, C_INPUT and D_INPUT. If all constants in the 
corresponding VHDL-package are set to 0, the 
FAULT_ENABLE pin is not connected to the saboteurs 
(simple fault injection multiplexers for stuck-at faults). Thus 
the saboteurs always switch the correct input value to the 
output (Figure 4). Consequently these saboteurs require no 
CPLD-resources due to optimizations of the tool, we use for 
synthesis and fitting. 

If the first constant in the corresponding VHDL-package is 
1, while the second constant is 0, it is possible to inject a stuck-
at-1 fault between the output of the AND-gate A_AND_B and 
one input of the OR-gate. In this case the FAULT_ENABLE 
pin is connected to a saboteur. Thus it is possible to inject a 
stuck-at-1 fault using the fault enable switch (Figure 5). 
Consequently the synthesized circuit requires an additional 
logic element. 

 
Figure 4.  No fault can be injected 

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on July 28,2010 at 08:14:26 UTC from IEEE Xplore.  Restrictions apply. 



 
Figure 5.  A stuck-at-1 fault can be injected between the AND-gate and the OR-gate

VII. EXPERIMENTAL RESULTS 
The compiled description requires approximately 95% of 

the 240 logic elements of the used type of CPLD [9]. There 
remain only a few logic elements, which can be used for fault 
injection logic. Thus we performed a number of test cases 
using mutants and saboteurs to prove that the proposed 
method is applicable. On average the synthesized circuit 
required 1.72 additional logic elements (less than 1% of the 
device resources) due to additional fault insertion logic. 
Although our design already requires approximately 95% of 
the available logic elements, the method is still applicable. 

VIII. CONCLUSION 
The presented method allows the application of a proven 

verification method (fault insertion testing) for a novel 
CPLD-based fail-safe system. Methods to verify comparable 
microcontroller-based systems using fault injection are not 
applicable for the fail-safe system, because it contains 
exclusively CPLDs. It is possible to verify the safety 
integrity measures of the fail-safe system using the system 
hardware (F-module). The successful verification of the 
realized safety integrity measures using fault insertion testing 
is an important prerequisite for the certification of the 
developed CPLD-based fail-safe system in adherence with 
the standard IEC 61508. 

TÜV SÜD assessed a plan for validation and verification 
of the fail-safe system. This plan also describes the presented 
method to perform fault insertion testing. TÜV SÜD stated 
that the presented method is appropriate. 

REFERENCES 
[1] P. Sundaram, and J.G. D’Ambrosio, “Controller integrity in 

automotive failsafe system architectures,” SAE Transactions, 2006, 
vol. 115, pp. 370–377. 

[2] M. Abramovici, A.D. Friedman, and M.A. Breuer, Digital Systems 
Testing and Testable Design. IEEE PRESS. 1994. 

[3] W.L. Gallagher, H.H. Yao, and E.E. Swartzlander Jr., “Fault 
simulation with PLDs,” In Proc. of the 31st Asilomar Conference on 
Signals, Systems & Computers, 1997, pp. 411–415. 

[4] Shih-Arn Hwang, Jin-Hua Hong, and Cheng-Wen Wu, “Sequential 
circuit fault simulation using logic emulation,” IEEE Transations on 
Computer-Aided Design of Integrated Circuits and Systems, 1998, 
vol 17, pp. 724–736. 

[5] P. Ellervee, J. Raik, K. Tammemäe, and R. Ubar, “Environment for 
FPGA-based fault emulation,“ In Proc. of the Estonian Academy of 
Sciences. Engineering, 2006, vol 12, pp. 323–335. 

[6] IEC 61508, Functional safety of electrical/electronic/programmable 
electronic safety-related systems. 

[7] J. Gracia, J.C. Baraza, D. Gil, and P.J. Gil, “Comparison and. 
application of different VHDL-based fault injection techniques,” In 
Proc. of the International Symposium on Defect and Fault Tolerance 
in VLSI Systems (DFT’01), 2001, pp. 233-241. 

[8] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault 
injection into VHDL models: the MEFISTO tool.,“ In Proc. of the 
24th International Symposium on Fault-Tolerant Computing (FTCS-
24), 1994, pp. 66-75. 

[9] P. Leventis, B. Vest, M. Hutton, and D. Lewis, “MAX II: A low-cost, 
high-performance LUT-based CPLD,” In Proc. of the Custom 
Integrated Circuits Conference, 2004, pp. 443–446. 

[10] G. Grießnig, C. Steger, and R. Weiß, “CPLD basierende homogen 
redundante fehlersichere Architektur,“ In Proc. of the 
Informationstagung Mikroelektronik (ME08), 2008, pp. 201–205. 

 

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on July 28,2010 at 08:14:26 UTC from IEEE Xplore.  Restrictions apply. 



A CPLD-based Safety Concept for Industrial
Applications

Gerhard Grießnig1,2, Roland Mader1,2, Christian Steger2, Reinhold Weiß2

1AVL List GmbH, Austria
2ITI, Graz University of Technology, Austria

Abstract—Industry demands cost-efficient approaches for the
realization of uncomplex safety functions in industrial automa-
tion. Therefore new approaches need to be considered. For this
purpose the implementation of safety functions in hardware
using CPLDs is an option. This approach does, in contrast
to microcontroller-based systems, not require the development
of startup- and online tests for RAM and CPU. Therefore
efforts for design, implementation and verification of these safety
integrity measures can be saved as well as hardware resources
for the execution of tests. Based on this idea, a CPLD-based
safety concept has been elaborated that allows to realize safety
functions by exclusively using CPLDs. The safety concept has
been derived from normative safety requirements, functional
safety requirements as well as other non-functional requirements.
The safety concept comprises a CPLD-based redundant fail-
safe system architecture, safety integrity measures and a precise
definition of the safe state and the unsafe state of possible target
applications. An industrial power drive system is presented that
has been enhanced with uncomplex safety functions to increase
its safety integrity. These safety functions are able to avoid the
application of power to an electric DC motor, if demanded. They
were realized by a fail-safe system. This system adopts the CPLD-
based safety concept.

Index Terms—safety concept; industrial application; power
drive system; fail-safe system; safety function; IEC 61508; CPLD

I. INTRODUCTION

Fail-safe systems achieve and maintain a safe state in case
of a failure. Due to this valuable feature this class of systems is
often used for safety-critical applications. There this feature is
exploited to protect people, the environment or property from
harm. To be able to fail safely fail-safe systems need to be
able to defect faults during runtime.

Strategies to detect faults during runtime heavily depend on
the components a fail-safe system consists of. Components that
are frequently used for fail-safe systems are microcontrollers.
These devices require the implementation of safety integrity
measures like online- and startup tests for CPU and RAM (see
e.g. [1]) to ensure their proper operation. Among others, in the
field of power drive systems for industrial automation, fail-
safe systems are asked to be able to carry out safety functions
that are comparably simple. In this case the realization of
complex safety integrity measures for RAM and CPU is a
burden, because a lot of the efforts are spent on the design, im-
plementation and verification of the safety integrity measures
and a lot of hardware resources (e.g. RAM, Flash, computing
time) are used to perform these tests. Clearly, this affects the
development costs and the hardware costs of these systems.

Therefore alternative, cost-efficient concepts are demanded
by the industry. An alternative concept is the use of a pure
hardware implementation of safety functions and safety in-
tegrity measures based on CPLDs. With this approach, the
use of RAM and CPU tests is superfluous as neither CPU
nor RAM are present. Obviously for this approach a proper
safety concept is required that allows to safely realize CPLD-
based safety functions in adherence to the rigorous demands
of safety standards that apply for industrial automation.

This work contributes by presenting a safety concept for
a class of applications in the field of power drive systems
for industrial automation. This safety concept adequately
addresses normative and functional requirements of relevant
target applications as well as other non-functional require-
ments. It comprises a definition of a suited, redundant system
architecture for the implementation of a class of simple safety
functions on CPLDs, defines safety integrity measures to
detect faults during startup and runtime and precisely defines
the safe state and the unsafe state of target applications.

An industrial application is presented. This application is a
power drive system for industrial automation. The power drive
system controls an electric DC motor and converts three phase
current to direct current. The CPLD-based safety concept has
been adopted to realize a fail-safe system that enhances the
power drive system with two safety functions. This fail-safe
system is an optional module that can be plugged into the
power drive system to increase its safety integrity.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work. Section III presents the CPLD-
based safety concept for power drive systems in industrial
automation. Section IV describes a safety-critical industrial
application that adopts the CPLD-based safety concept. Finally
Section V concludes.

II. RELATED WORK

In [2] architectures for microcontroller-based fail-safe sys-
tems and concepts to achieve safety integrity are described.
Described concepts are single-controller strategy for low levels
of safety integrity, asymmetric controller strategy for moderate
levels of safety integrity and symmetric controller for higher
levels of safety integrity.

The single-controller strategy comprises a single microcon-
troller, which performs periodic self tests to detect faults. To
increase safety integrity the microcontroller needs to reset an

978-1-4244-6391-6/10/$26.00 ©2010 IEEE 3027

Publication 9 - IEEE, ISIE 2010



additional watchdog periodically. If a fault is detected or the
watchdog is not reset, a safe state is achieved and maintained.

The second concept (asymmetric controller strategy) com-
prises a primary microcontroller and an intelligent watchdog
(secondary microcontroller or ASIC). The intelligent watchdog
requests diagnostic checks from the primary microcontroller
periodically. Communication timeouts or detected faults cause
the transition into a safe state.

In contrast the symmetric controller strategy uses two iden-
tical microcontrollers. These controllers carry out the same
program and compare the results of their computations peri-
odically to detect faults (e.g. via CAN bus). Communication
timeouts or detected faults lead to a safe state.

In [1] software-failsafe techniques are described that allow
achieving safety integrity in microcontroller-based fail-safe
systems. The authors describe how preliminary hazard analysis
(PHA), failure modes and effects analysis (FMEA), fault tree
analysis (FTA) and fault coverage matrix can be applied to
determine safety integrity measures that need to be applied
in order to ensure safety. Surveyed safety integrity measures
are suited to check for RAM failures, CPU failures, software
processing errors, interface failures or communication failures.

In [3] a TMR (triple mode redundancy) system is described,
which exclusively consists of four PLDs, where one PLD
contains diagnosis circuitry. According to the authors, most
of the faults occur in the input and output interfaces of safety-
critical systems. Therefore they utilize the concepts ’safe input
cell’ and ’safe output cell’, which are intended to be integrated
into the PLDs.

A safe input cell receives inputs from three sensors, which
measure the same physical quantity. A voter circuit determines
the probably correct value of the physical quantity. Safe output
cells represent the logic value 1 by a periodic signal, while
the logic value 0 is represented by a constant signal. Safe
input cells and safe output cells comprise an additional state
machine, circuitry for the detection of failures and circuitry
for the signaling of errors to other system components.

The authors of [4] discuss common mode failures (CMF)
in redundant systems with focus on VLSI systems. They
refer to the term common mode failure as the result of an
event, which, because of dependencies, causes a coincidence
of failure states of components in two or more separate
channels of a redundancy system, leading to the defined system
failing to perform its intended function. The authors use the
terms ’common mode failure’ and ’common cause failure’
interchangeably.

According to the authors, CCF can occur in hardware or
software. They can be caused by permanent faults (e.g. bugs)
or intermittent faults (e.g. weak signals) introduced during the
development process of a redundant system. Exemplary faults
are ambiguous specifications, bugs of used tools, incomplete
verification, manufacturing defects or non-exhaustive testing.
CCF can also be caused by external disturbances during the
operation of the redundant system. Caused effects can reside
transiently or permanently.

Techniques to handle common-cause failures comprise CMF

avoidance (use of mature and verified components, confor-
mance to standards, use of formal methods, use of design
automation, implementation of design rules, diverse realiza-
tion of redundant components), CMF removal (design re-
views, simulation, verification, testing and fault-injection) and
CMF tolerance (watchdog timers, exception handlers, runtime
checks, concurrent error detection).

In [5] fault-tolerant architectures including multiple CPUs
for the integration on a single chip are described. The authors
review the architectures lock-step, loosely synchronized dual-
processor and triple modular redundant (TMR). Moreover,
they propose new multi-CPU architectures for the integration
on a single chip. The authors point out the high susceptibility
of single-chip implementations to common-cause failures if no
special measures are undertaken. Nevertheless, they consider
on-chip redundancy to be an important design practice due
to the permanent faults caused by increasingly shrinking
integration densities of chips.

In [6] an approach to reduce the probability of common
cause failures called faultRobust is described. This approach
is based on a library for SoC (system on chip) design that con-
tains components for hardware-centric fault detection and fault
tolerance. The components allow to achieve safety integrity
by performing memory protection, CPU diagnostic checking
as well as system bus- and interface supervision. A separate
bus is used for communication between diagnostic units.
Functionally and architecturally diverse components contribute
to reducing the probability for common cause failures.

A system FMEA methodology for SoC design according to
the faultRobust approach is described in [7]. The methodology
can be used to assess the safe failure fraction (SFF) of a SoC.

III. NOVEL CPLD-BASED SAFETY CONCEPT

A. Requirements to the Safety Concept

A safety concept is heavily influenced by normative safety
requirements as well as requirements of possible target ap-
plications. Also other requirements concerning availability of
space and costs need to be considered.

An important property of fail-safe systems is their ability
to detect faults during runtime to be able to decide when a
safe state needs to be achieved and maintained. Therefore
the capability to detect faults and to achieve and maintain a
safe state is an essential requirement that needs to be taken
into account during the elaboration of a safety concept. This
requirement obviously impacts the system architecture.

Depending on the application area, safety standards need
to be considered. Target applications for this safety concept
are electric drives for highly critical applications in the field
of industrial automation. Therefore requirements of the safety
standards IEC 61508 [8], IEC 61800-5-2 [9] and EN ISO
13849 [10] apply. Of particular importance is a requirement
of EN ISO 13849 that constrains that a single fault must not
cause the loss of the safety functions for the intended category
4 and performance level e. Therefore a HFT (hardware fault
tolerance) of 1 shall be achieved and a single fault has to be
detected at the time when a safety function is demanded or

3028



Fig. 1. System Architecture

earlier. This requirement clearly impacts the system architec-
ture.

The kind of safety functions that shall be realizable need
to be considered as well as its interacting actuators. The
safety functions that shall be realizable for possible target
applications need the ability to avoid that power is applied to
the motor of an electric drive in different manners. Therefore
safety functions are not intended to control torque or speed of
a motor during its operations but they shall be able to avoid the
motor’s operation, if demanded. This requirement influences
the interfaces of the system architecture and safety integrity
measures.

Costs are also relevant for a system architecture that shall
be applied in industrial practice. Obviously, since the system
architecture is designed in order to increase safety, costs are a
secondary factor. To tackle the challenge of being safe and
as cost efficient as possible, for the design of the system
architecture preferably COTS (components of the shelf) shall
be used. Moreover the safety functions and safety integrity
measures shall be efficiently realizable to demand as less
CPLD device resources as possible.

An important factor is the size of the resulting PCB (printed
circuit board). Depending on the target applications, physically
available space is limited. Therefore besides the use of tech-
nologies like multi layer SMD boards, FBGA CPLDs as well
as computer-aided layout tools for hardware development, it
is required to design the system architecture with respect to
required PCB space.

B. System Architecture

A key issue for a safety concept is the system architecture
of safety-critical embedded systems that are designed and
implemented accordingly to the safety concept. The derived
requirement for HFT=1 clearly states the necessity for two
separate channels where each channel is able to redundantly
carry out the safety functions. Moreover the requirement to
control and detect a single fault on demand or earlier makes
it necessary to place monitors on each channel. Therefore the

system architecture must contain one temperature monitor per
channel that can detect if the system temperature is within
particular limits as well as one voltage monitor per channel
that can detect if the supply voltage is within particular
limits. This allows the achievement of a safe state in case
of dangerous operational conditions.

To allow to demand safety functions for each channel
separately, the system architecture shall contain one termi-
nal per channel for each safety function (SF11-SF1m and
SF21-SF2m). The terminals shall be connected to the CPLD-
circuitry via optocouplers to ensure electrical isolation. To be
able to achieve and maintain a safe state, each channel shall
contain a terminal that allows to prevent or allow that power
is applied to the motor of the electric drive (OUT1-OUT2).

As stated above, besides safety-related requirements also
requirements concerning PCB and costs are relevant to the
system architecture. Therefore it is inviting to use a single
CPLD that is shared by both channels (on-chip redundancy).
This CPLD could contain redundant implementations of safety
functions and safety integrity measures.

The drawback of a single-CPLD approach is its suscepti-
bility to common cause failures. According to [8] the term
common cause failure refers to a failure of the entire system
caused by one or more events, which cause the failures of two
or more redundant channels.

In case of a single-CPLD system architecture the redun-
dant implementations of safety functions and safety integrity
measures on a single CPLD are likely to fail because of the
same occasion. Examples for such occasions are a defective
silicone substrate, a defective power distribution network, a
damaged package or a corrupted CPLD-configuration of the
single CPLD. This would cause the loss of both redundant
implementations of the safety functions.

Therefore an approach that is more insusceptible to common
cause failures needs to be considered. A promising approach is
a system architecture that comprises two CPLDs, where each
CPLD contains an independent implementation of safety func-
tions and safety integrity measures. In this case independent
and physically separated silicone substrates, power distribution
networks, packages and CPLD-configurations are present for
the two channels of the system. To ensure that both CPLDs are
able to detect faults, they are connected by wires that allow the
exchange of signals. Therefore disadvantages in terms of PCB
size and costs need to be accepted to ensure the applicability
of the system architecture for safety-critical applications. The
resulting system architecture is depicted by Figure 1.

C. Safety Integrity Measures

The applied safety concept defines a number of safety in-
tegrity measures that are executed by both CPLDs concurrently
to detect faults during startup and runtime. Once a fault is
detected the safe state needs to be achieved and maintained
regardless of the system’s operation mode.

• Startup Test: A startup test needs to be carried out each
time the system is switched on to ensure that both CPLDs
are able to carry out the entire safety functions properly.

3029



Fig. 2. Safe State, Unsafe State and Possible Transitions

• Background Test: A test is required that continuously
tests the components that are necessary to carry out the
safety functions. This test needs to be carried out as long
as the system is working.

• Discrepancy Test: The both CPLDs are connected by
wires that allow the exchange of signals. These signals
need to be representative for the state of the safety
functions. If corresponding signals of the CPLDs are
discrepant for more than a certain time, a fault is assumed.

• Demand Test: When a safety function is carried out this
test needs to find out if the implementations of the safety
functions still meet the real time requirements of the
application. Moreover this test needs to be able to detect
short circuits between the terminals that can be used to
ensure that no power can be applied by the motor.

• Monitoring: The voltage monitor and the temperature
monitor are connected to the CPLD of each channel to
be able to signal faults.

D. System States

An important point when a safety concept is defined is the
definition of the safe state and the unsafe state of the system.
The definition of the safe and the unsafe state is clearly derived
from the considered class of power drive system applications.
In this case the safe state is achieved if no power can be
applied to the electric motor. The safety concept requires the
safety-critical terminals of the system architecture that are
connected to an electric motor to be switched to GND. In the
unsafe state, power can be applied to the motor and the motor
can be controlled by the application. In this case the safety-
critical terminals need to switched to VDD. While the safe
state can be divided in substates, the unsafe state is atomic.

After power on, the state start up (safe) needs to be
entered. In this state initializations and parameterizations need
to be performed. Moreover Startup Test, Discrepancy Test
and Monitoring need to be performed. If explicitly required
by the application and no fault is detected, the unsafe state
can be entered to allow the application to control the electric
motor. During this state Background Test, Discrepancy Test,
Monitoring and Demand Test need to be performed.

If demanded, the safety functions are carried out in the
unsafe state. If the execution of the functions is finished, the
safe state no power (safe) is entered. In this state Monitoring
and Discrepancy Test are carried out. If explicitly required by
the application and no fault is detected, the unsafe state can
be entered again.

Whenever a fault is detected, the state hard error (safe)
is entered. This state must not be left any more as long as
the system is running. The states, substates and transitions are
depicted by Figure 2.

IV. INDUSTRIAL APPLICATION

The applicability of the elaborated safety concept has been
evaluated using an industrial power drive system. This power
drive system is able to control a DC motor. It converts three-
phase current to direct current for low-power and high-power
DC motors. The power drive system contains a microcontroller
and a DSP (digital signal processor). These two devices realize
standard functions that are able to control the DC motor in
different manners. If the power drive system is not able to
carry out these functions any more due to a failure, a controlled
motor cannot be stopped any more and is able to harm people
(e.g. worker in a factory). This is a risk. To reduce this risk
and to make the power drive system applicable for even highly
safety-critical applications, safety functions need to be realized
accordingly to SIL 3 in adherence to IEC 61508. These
safety functions reduce the risk of failing standard functions
significantly. The safety functions are defined by IEC 61800-
5-2 and have been implemented using a CPLD-based fail-safe
system based on the safety-concept described by Chapter III.
The following two safety functions are implemented:

• Safe Torque Off (STO): Power, that can cause rotation
(or motion in the case of a linear motor), is not applied
to the motor. The PDS(SR) will not provide energy to the
motor which can generate torque (or force in the case of
a linear motor).

• Safe Stop 1 (SS1): The PDS(SR) initiates the motor
deceleration and initiates the STO function after an
application specific time delay.

A. Use Case: Power Drive System (DC-Converter)

The application block diagram in Figure 3 depicts the main
components of the PDS including the fail-safe system. The
architecture of the power drive system is modular. There is
a clear separation between the control electronic which is
implemented on the Power Interface and the power electronic
which is located on the Power Stage.

Moreover the CPLD-based fail-safe system that is able to
carry out the safety functions is an optional module. If no
safety functions are required due to a low criticality of the
application the power drive system is used for, it is able to
work without the CPLD-based fail-safe system. In this case the
safety-relevant output signals STO1 and STO2 are permanently
connected to VDD and power can always be applied by the
motor. If the power drive system is used for a highly critical
application, the fail-safe system can be plugged into the power

3030



Fig. 3. Power Drive System

converter to ensure a high level of safety integrity. In this case
the safety-relevant output signals STO1 and STO2 are switched
by the fail-safe system. The power drive system consists of the
following components:

• Microcontroller: The microcontroller is the dominant
component of the PDS system. It provides an interface to
the user and to the higher level infrastructure. Moreover it
continuously calculates the required voltage at the termi-
nals of the DC motor depending on measured quantities
of the DC engine and transmits the value of the required
voltage to a DSP.

• DSP: The DSP is necessary to switch the thyristor bridges
in real time to convert the three-phase voltage into the
requested direct voltage.

• Voltage Monitor: A voltage monitor is necessary to
protect the PDS system from destruction by overvoltage.

• Thyristor Bridge: The thyristor bridge is located on the
power stage for voltage conversion.

• Transistor Switches: The transistor switches are con-
trolled by the DSP to switch the thyristors. These
switches are located at the power interface. They are
electrically decoupled from the power stage.

• Feedback DC Engine: To reduce the calculation effort of
the microcontroller, an ASIC is used to perform precalcu-
lations concerning measured electric fields, currents and
voltages.

• F-Module: The F-Module is the fail-safe system that
adopts the CPLD-based safety concept and realizes the
safety functions accordingly to the applied standards.

B. F-Module

If plugged into the PDS, the F-Module communicates with
the microcontroller via the DSP. Therefore a SPI (serial periph-
eral interface) is established between DSP and F-module. The
DSP alternatingly exchanges messages with the two CPLDs
of the F-module. Whenever a CPLD receives a message from
the DSP, it resets an internal counter. If this counter expires,
a DSP failure is assumed and a safe state achieved. Therefore
the CPLDs act as watchdogs for the DSP. Moreover the SPI
messages are used to inform the DSP and the microcontroller
about the state of the F-module and to inform the F-module if
a change of its state is requested (e.g. from startup to power).

The SPI is also used for the parametrization of the safety
function SS1 in state startup. In this state, the microcontroller

3031



Fig. 4. F-Module

transmits parameters via the DSP to each CPLD. The param-
eterization allows to vary the application specific time delay
of the safety function SS1 in 100ms steps between 100ms
and 5min. The possibility to parametrize SS1 is an important
feature and it extends the range of possible applications sig-
nificantly. Many applications originating from the high power
segment deal with very high currents. In these cases, a prompt
turn-off of a machine without reducing the current before can
damage expensive switches. Furthermore an immediate turn-
off can harm the production equipment or can destroy the
products of the production process. Therefore an application
specific time delay is required to inform the microcontroller
via the DSP about the demand of a safety function to give
the PDS time to reduce currents and enable the high level
infrastructure to ramp down the production process before a
safe state is achieved.

The F-Module monitors the status of the of the two STO
channels of the power drive system via feedback signals. The
first feedback signal provides the status of the DC motor power
switch and the second feedback signal provides the enable
status of the thyristor bridge. If no enable status is available,
no thyristor can be ignited and consequently no power can be
applied to the DC motor.

A hardware prototype of the F-Module is depicted in
Figure 4. For the prototype of the F-module Altera MAX II
CPLDs were used [11]. The F-Module has dedicated terminals
(on top of the figure) to demand the safety functions with
hardwired switches or via digital safety outputs of the higher
level infrastructure. The terminals on the left side of the
figure are dedicated to power supply of the F-module and to
communication with the DSP via SPI.

Requirements of a draft of IEC 61508 to the development
process of safety-critical CPLDs have been considered. There-
fore the prototype has been developed accordingly to a V-
model using an appropriate tool chain [12]. For the verification
of the realized safety integrity measures a new fault insertion
testing technique [13] has been applied.

V. CONCLUSION

This work was motivated by the fact that industry demands
cost-efficient concepts for the realization of safety functions
for power drive systems in industrial automation. Therefore

a CPLD-based safety concept has been elaborated that does
not require the realization of microcontroller-specific software
safety integrity measures like RAM tests or CPU tests that
require a lot of effort in terms of design, implementation and
verification as well as hardware resources (e.g. RAM, Flash,
computing time). The applicability of this safety concept has
been proofed in terms of safety and cost-efficiency by its
utilization for an industrial power drive application. The safety
concept and its application were accessed by an independent
certification authority (TÜV SÜD). TÜV SÜD stated that the
presented concept is suited to achieve SIL 3 in adherence
to IEC 61508 and IEC 61800-2 as well as Cat 4, PL e in
adherence to EN ISO 13849.

It can be concluded the the use of a CPLD-based safety con-
cept is a competitive alternative to the use of microcontroller-
based safety concepts, if comparably uncomplex safety func-
tions need to be realized. In this case the comparably simple
functionality does not justify a software implementation in-
cluding the great effort for development of complex software
safety integrity measures to make the use of microcontrollers
acceptably safe.

REFERENCES

[1] E. G. Leaphart, B. J. Czerny, J. G. D’Ambrosio, C. L. Denlinger,
and D. Littlejohn, “Survey of Software Failsafe Techniques for Safety-
Critical Automotive Applications,” in Proc. of the 2005 SAE World
Congress. SAE, Apr. 2005, pp. 1–16.

[2] P. Sundaram and J. G. D’Ambrosio, “Controller Integrity in Automotive
Failsafe System Architectures,” SAE Transactions, vol. 115, pp. 370–
377, 2006.

[3] J. Alvarez, J. Marcos, and S. Fernandez, “Safe PLD-based Pro-
grammable Controllers,” in Proc. of the International Conference on
Field Programmable Logic and Applications, vol. 2, Aug. 2005, pp.
559–562.

[4] S. Mitra, N. R. Saxena, and E. J. McCluskey, “Common-Mode Fail-
ures in Redundant VLSI Systems: A Survey,” IEEE Transactions on
Reliability, vol. 3, pp. 285–295, 2000.

[5] M. Baleani, A. Ferrari, L. Mangeruca, A. L. Sangiovanni-Vincentelli,
M. Peri, and S. Pezzini, “Fault-tolerant Platforms for Automotive Safety-
Critical Applications,” in Proc. of the International Conference on Com-
pilers, Architectures and Synthesis for Embedded Systems (CASES’03).
ACM, Nov. 2003, pp. 170–177.

[6] R. Mariani and P. Fuhrmann, “Comparing fail-safe microcontroller
architectures in light of IEC 61508,” in Proc. of the 22nd International
Symposium on Defect and Fault Tolerance in VLSI Systems. IEEE,
Sep. 2007, pp. 123–131.

[7] R. Mariani, G. Boschi, and F. Colucci, “Using an innovative SoC-level
FMEA methodology to design in compliance with IEC61508,” in Proc.
of the Design, Automation & Test in Europe Conference and Exhibition
(DATE’07). IEEE, Apr. 2007, pp. 1–6.

[8] IEC, “IEC 61508, Functional Safety of Electri-
cal/Electronic/Programmable Electronic Safety-Related Systems,
part 1-7,” 2002.

[9] ——, “IEC 61800-5-2, Adjustable Speed Electrical Power Drive Sys-
tems,” 2005.

[10] ISO, “EN ISO 13849, Safety of Machinery, part 1-2,” 2006.
[11] P. Leventis, B. Vest, M. Hutton, and D. Lewis, “MAX II: A Low-Cost,

High-Performance LUT-Based CPLD,” in Proc. of the Custom Integrated
Circuits Conference. IEEE, Oct. 2004, pp. 443–446.

[12] G. Grießnig, R. Mader, C. Steger, and W. Reinhold, “Design and
Implementation of Safety Functions on a Novel CPLD-based Fail-
Safe System Architecture,” in Proc. of the 17th IEEE International
Conference and Workshops on Engineering of Computer-Based Systems
(ECBS’10). IEEE, Mar. 2010, pp. 202–212.

[13] ——, “Fault Insertion Testing of a Novel CPLD-based Fail-Safe
System,” in Proc. of the conference on Design, Automation & Test
(DATE’09). IEEE, Apr. 2009, pp. 214–219.

3032



Bibliography

[ABD+07] EGAS Working-Group (Audi, BMW, Daimler, Porsche, and VW). Standard-
ized E-Gas monitoring concept for engine management systems of gasoline
and diesel engines, 2007. Also available under http://wenku.baidu.com/
view/aedb0922bcd126fff7050b51.html.

[AG07] SIEMENS AG. Safety Integrated - Terms and Standards Ter-
minologie in der Maschinensicherheit, 2007. Also available as
https://www.automation.siemens.com/mcms/safety-integrated/de/
Seiten/funktionale-sicherheit.aspx.

[AG10] SIEMENS AG. SIMOREG DC-MASTER, 2010. Also available as http:
//www.automation.siemens.com/mcms/infocenter/dokumentencenter/
ld/Documentsu20Brochures/dc-stromrichter/ws-dc-master-en.pdf.

[AGZ+11] E. Armengaud, G. Grießnig, M. Zoier, D. Chen, M. Biehl, C. Hein, T. Rit-
ter, A. Baumgart, and R. Tavakoli Kolagari. Model-based Toolchain for the
Efficient Development of safety-relevant Automotive Embedded Systems. In
SAE World Congress, 2011.

[ALRL04] A. Avizienis, JC. Laprie, B. Randell, and C. Landwehr. Basic Concepts and
Taxonomy of Dependable and Secure Computing. IEEE Transactions on
Dependable and Secure Computing, March 2004.

[Alt08] Altera. Altera Onlineshop, September 2008. Also available as http://www.
buyaltera.com/scripts/partsearch.dll?PV-6=8.

[Alt10] Altera. Quartus II Version 10.1 Handbook, 2010. Also available as http:
//www.altera.com/.

[AMF05] J. Alvarez, J. Marcos, and S. Fernandez. Safe PLD-based Programmable
Controllers. In Proc. of the International Conference on Field Programmable
Logic and Applications, volume 2, pages 559–562, August 2005.

[ATE10] ATESST2 Project Consortium. EAST-ADL Domain Model Specification,
2010. Version 2.1, Release Candidate 3.

[BFM+03] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, M. Peri,
and S. Pezzini. Fault-tolerant Platforms for Automotive Safety-Critical Ap-
plications. In Proc. of the International Conference on Compilers, Archi-
tectures and Synthesis for Embedded Systems (CASES’03), pages 170–177.

118

http://wenku.baidu.com/view/aedb0922bcd126fff7050b51.html
http://wenku.baidu.com/view/aedb0922bcd126fff7050b51.html
https://www.automation.siemens.com/mcms/safety-integrated/de/Seiten/funktionale-sicherheit.aspx
https://www.automation.siemens.com/mcms/safety-integrated/de/Seiten/funktionale-sicherheit.aspx
http://www.automation.siemens.com/mcms/infocenter/dokumentencenter/ ld/Documentsu20Brochures/dc-stromrichter/ws-dc-master-en.pdf
http://www.automation.siemens.com/mcms/infocenter/dokumentencenter/ ld/Documentsu20Brochures/dc-stromrichter/ws-dc-master-en.pdf
http://www.automation.siemens.com/mcms/infocenter/dokumentencenter/ ld/Documentsu20Brochures/dc-stromrichter/ws-dc-master-en.pdf
http://www.buyaltera.com/scripts/partsearch.dll?PV-6 =8
http://www.buyaltera.com/scripts/partsearch.dll?PV-6 =8
http://www.altera.com/
http://www.altera.com/


ACM, November 2003. Also available as http://embedded.eecs.berkeley.
edu/Respep/Research/asves/paper2003/Baleani_cases03.pdf.

[BGA+10] J.P. Blanquart, G. Grießnig, E. Armengaud, M. Cifaldi, M. Fortes da Cruz,
T. Gross, G. Jolliffe, F. Pouzolz, N. Priggouris, M. Shawky, and M. Törngren.
D_SP1_R5.8_M2: Survey of state-of-the-practice and state-of-the-art in
safety and diagnosability V2, December 2010. Also available under: https:
//cesarproject.eu/.

[BHU08] J. Börcsök, A. Hayek, and M. Umar. Implementation of a 1oo2-RISC-
Architecture on FPGA for Safety Systems. In Proc. of the IEEE/ACS In-
ternational Conference on Computer Systems and Applications, pages 1046–
1051. IEEE, April 2008.

[Bla08] B.S. Blanchard. System Engineering Management. John Wiley and Sons Inc.,
2008.

[BMSS00] C. Bolchini, R. Montandon, F. Salice, and D. Sciuto. Design of VHDL-
Based Totally Self-Checking Finite-State Machine and Data-Path Descrip-
tions. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
8:98–103, February 2000.

[Bör07] J. Börcsök. Functional Safety: Basic Principles of Safety-Related Systems.
Hüthig, 2007.

[CB10] P. Conmy and I. Bate. Component-Based Safety Analysis of FPGAs. IEEE
Transactions on Industrial Informatics, 6:195–205, May 2010.

[CFJ+08] P. Cuenot, P. Frey, R. Johansson, H. Lönn, M.-O. Reiser, D. Servat,
R. Tavakoli Kolagari, and D.J. Chen. Developing Automotive Products Using
the EAST-ADL2, an AUTOSAR Compliant Architecture Description Lan-
guage. Ingénieurs de l’Automobile, 21:498–516, 2008.

[Cle09] J.R. Clegg. Arguing the safety of FPGAs within safety critical systems. In
Proc. 4th IET International Conference on System Safety 2009. Incorporating
the SaRS Annual Conference, 2009.

[Com02] International Electrotechnical Commission. IEC 61508, Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-Related Systems, part
1-7, 2002. Also available under http://www.iec.ch/.

[Com05a] International Electrotechnical Commission. IEC 60204-1, Safety of machinery
- Electrical equipment of machines - Part 1: General requirements , 2005. Also
available under http://www.iec.ch/.

[Com05b] International Electrotechnical Commission. IEC 61800-5-2, Adjustable Speed
Electrical Power Drive Systems, 2005. Also available under http://www.iec.
ch/.

http://embedded.eecs.berkeley.edu/Respep/Research/asves/paper2003/Baleani_cases03.pdf
http://embedded.eecs.berkeley.edu/Respep/Research/asves/paper2003/Baleani_cases03.pdf
https://cesarproject.eu/
https://cesarproject.eu/
http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/


[Com10] International Electrotechnical Commission. IEC 61508:2010 Second Edition,
Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
Related Systems 2010(Second Edition), November 2010. Also available under
http://www.iec.ch/.

[Con08] ATESST Project Consortium. EAST-ADL2 specification, 2008. See http:
//www.atesst.org/.

[Con09] CESAR Project Consortium. CESAR project, 2009. See http://www.
cesarproject.eu.

[Con11] MBAT Consortium. Technical Annex MBAT - Combined Model-based Anal-
ysis and Testing of Embedded Systems, 2011.

[EJ09] C. Ebert and C. Jones. Embedded software: Facts, figures, and future. IEEE
Computer, 42(4):42–52, 2009.

[ERTU06] P. Ellervee, J. Raik, K. Tammemäe, and R. Ubar. Environment for FPGA-
based fault emulation. In Proc. of the Estonian Academy of Sciences. En-
gineering, volume 12, pages 323–335, September 2006. Also available as
http://www.kirj.ee/public/va_te/eng-2006-3_2-6.pdf.

[ES09] C. Ebert and J. Salecker. Embedded software technologies and trends. IEEE
Software, 26(03):14–18, 2009.

[EXI10] EXIDA. Position Paper on IEC 61508 2010 - Definition Regard-
ing Minimum HFT / Architectural Constraints, 2010. Also avail-
able as http://www.exida.com/images/uploads/exida_Position_on_IEC_
61508_2010_definitions_minimum_HFT_v4.pdf.

[fS06] International Organization for Standardization. EN ISO 13849, Safety of
Machinery, part 1-2, 2006. Also available under http://www.iso.org/iso/
home.html.

[GBGG01] J. Gracia, J.C. Baraza, D. Gil, and P.J. Gil. Comparison and. application
of different VHDL-based fault injection techniques. In In Proc. of the Inter-
national Symposium on Defect and Fault Tolerance in VLSI Systems, pages
233–241. DFT01, 2001.

[GFH+09] G. Grießnig, W. Fuchs, F. Hackl, W. Hofmüller, G. Hörist, F. Mossburger,
R. Schmid, H. Schwarzmann, and J. Wahrbicher. Method for actuating a DC
machine - PatentID WO2009/080384 A1, 2009. SIEMENS AG.

[GKA+] G. Grießnig, I. Kundner, E. Armengaud, S. Torchiaro, and D. Karlsson.
Improving automotive embedded systems engineering at european level. E&I
Elektrotechnik und Informationstechnik OVE-Verbandszeitschrift (accepted).

[GM08] G. Grießnig and R. Mader. V&V Plan, 2008. Hint: Internal Siemens Docu-
ment.

http://www.iec.ch/
http://www.atesst.org/
http://www.atesst.org/
http://www.cesarproject.eu
http://www.cesarproject.eu
http://www.kirj.ee/public/va_te/eng-2006-3_2-6.pdf
http://www.exida.com/images/uploads/exida_Position_on_IEC_61508_2010_definitions_minimum_HFT_v4.pdf
http://www.exida.com/images/uploads/exida_Position_on_IEC_61508_2010_definitions_minimum_HFT_v4.pdf
http://www.iso.org/iso/home.html
http://www.iso.org/iso/home.html


[GMP+10] G. Grießnig, R. Mader, T. Peikenkamp, B. Josko, M. Törngren, and E. Ar-
mengaud. CESAR: Cost-Efficient Methods and Processes for Safety Relevant
Embedded Systems. In Embedded World 2010- ARTEMIS Session, 2010.

[GMSW09] G. Grießnig, R. Mader, C. Steger, and R. Weiß. Fault Insertion Testing of a
Novel CPLD-based Fail-Safe System. In Proc. of the conference on Design,
Automation & Test (DATE’09), pages 214–219. IEEE, April 2009.

[GMSW10a] G. Grießnig, R. Mader, C. Steger, and R. Weiß. A CPLD-based Safety Con-
cept for Industrial Applications. In Proc. of the IEEE - Industrial Symposium
on Industrial Electronics (ISIE 2010), pages 3027–3032. IEEE, June 2010.

[GMSW10b] G. Grießnig, R. Mader, C. Steger, and R. Weiß. Design and Implementation
of Safety Functions on a Novel CPLD-based Fail-Safe System Architecture.
In Proc. of the 17th IEEE International Conference and Workshops on Engi-
neering of Computer-Based Systems (ECBS’10), pages 202–212. IEEE, March
2010.

[Gri08] G. Grießnig. Safety Requirements Specification SIMOREG-plus, 2008. Hint:
Internal Siemens Document.

[GSW08] G. Grießnig, C. Steger, and R. Weiß. CPLD basierende homogen redundante
fehlersichere Architektur. In Proc. of the Informationstagung Mikroelektronik
(ME 2008), pages 201–205, October 2008.

[GYJ97] W. Gallagher, H. Yao, and E. Swartzlander Jr. Fault Simulation With PLDs.
In Proc. of the 31st Asilomar Conference on Signals, Systems & Computers,
pages 411–415. IEEE, November 1997.

[Hau06] M. Hause. The SysML Modelling Language. In Proc. of the 5th European
Systems Engineering Conference, September 2006.

[Ins10] Texas Instruments. Safety Manual TMS570LS20216S Device, January 2010.
Also available as http://www.ti.com/.

[Int10] International Organization for Standardization. ISO/FDIS 26262 Road ve-
hicles - Functional safety, 2010. Also available under http://www.iso.org/
iso/home.html.

[JAR+94] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injection
into VHDL models: the MEFISTO tool. In In Proc. of the 24th International
Symposium on Fault-Tolerant Computing, pages 66–75. FTCS-24, 1994.

[JWR07] P. Jesty, D. Wardt, and R. Rivettl. Hazard Analysis for Programmable Au-
tomotive Systems. In Proc. of the System Safety, 2007 2nd Institution of
Engineering and Technology, 2007.

[KSS09] V. Kharchenko, O. Siora, and V. Sklyar. Design and testing technique of
FPGA-based critical systems. In Proc. 10th International Conference - The
Experience of Designing and Application of CAD Systems in Microelectronics,
2009.

http://www.ti.com/
http://www.iso.org/iso/home.html
http://www.iso.org/iso/home.html


[LF08] H. Lönn and R. Freund. Automotive Architecture Description Language. In
Automotive Embedded Systems Handbook, chapter 9. CRC Press, 2008.

[LPP10] P. Löw, R. Pabst, and E. Petry. Funktionale Sicherheit in der Praxis - An-
wendung von DIN EN 61508 und ISO/DIS 26262 bei der Entwicklung von
Serienprodukten. dpunkt.verlag GmbH, 2010. isbn: 978-3-89864-570-6.

[LVHL04] Paul Leventis, Brad Vest, Michael Hutton, and David Lewis. MAX II: A
Low-Cost, High-Performance LUT-Based CPLD. In Proc. of the Custom
Integrated Circuits Conference, pages 443–446. IEEE, October 2004.

[Mad08] R. Mader. Diplomarbeit: Entwurf und Implementierung von Sicherheitsfunk-
tionen in konfigurierbarer Hardware, 2008. TU-Graz, Institute for Technical
Informatics.

[MBC07] R. Mariani, G. Boschi, and F. Colucci. Using an innovative SoC-level FMEA
methodology to design in compliance with IEC61508. In Proc. of the Design,
Automation & Test in Europe Conference and Exhibition (DATE’07), pages
1–6. IEEE, April 2007.

[MF07] R. Mariani and P. Fuhrmann. Comparing fail-safe microcontroller architec-
tures in light of IEC 61508. In Proc. of the 22nd International Symposium on
Defect and Fault Tolerance in VLSI Systems, pages 123–131. IEEE, Septem-
ber 2007. Also available as http://ieeexplore.ieee.org/iel5/4358358/
4358359/04358380.pdf.

[MGA+11] R. Mader, G. Grießnig, E. Armengaud, A. Leitner, c. Kreiner, Q. Bourrouilh,
C. Steger, and R. Weiß. A Computer-Aided Approach to Hazard Analysis for
Automotive Embedded System. In 18th IEEE International Conference on
the Engineering of Computer Based Systems (ECBS’2011, accepted), 2011.

[Mos10] J. Mossinger. Software in Automotive Systems. IEEE Software Magazine,
27:92–94, 2010.

[MSM00] S. Mitra, N. R. Saxena, and E. J. McCluskey. Common-Mode Failures in
Redundant VLSI Systems: A Survey. IEEE Transactions on Reliability,
3:285–295, 2000.

[Nan95] Nancy G. Leveson. Safeware: system safety and computers. Addison-Wesley
Publishing Company, 1995. isbn: 0-201-11972-2.

[OMG10] OMG. OMG Systems Modeling Language (OMG SysML), V1.2,
2010. Also available as http://www.sysml.org/docs/specs/OMGSysML-v1.
2-10-06-02.pdf.

[Pol10] Pollux. Process Oriented Electrical Control Units for Electrical Vehicles
Developed on a multi-system real-time embedded platform, 2010. See
http://www.artemis-pollux.eu/.

http://ieeexplore.ieee.org/iel5/4358358/4358359/04358380.pdf
http://ieeexplore.ieee.org/iel5/4358358/4358359/04358380.pdf
http://www.sysml.org/docs/specs/OMGSysML-v1.2-10-06-02.pdf
http://www.sysml.org/docs/specs/OMGSysML-v1.2-10-06-02.pdf
http://www.artemis-pollux.eu/


[RW10] F. Reichenbach and A. Wold. Multi-core Technology - Next Evolution Step in
Safety Critical Systems for Industrial Applications. In Proc. of the IEEE/13th
Euromicro Conference on Digital System Design: Architectures, Methods and
Tools, pages 339–346. IEEE, 2010.

[SD06] P. Sundaram and J. D’Ambrosio. Controller Integrity in Automotive Failsafe
System Architectures. SAE Transactions, 115:370–377, 2006.

[SHM05] A. Söderberg, J. Hérard, and L. Bo Mortensen. Guideline for Design and
Safety Validation of Safety-Critical Functions Realized with Hardware De-
scription Language. Technical report, Nordic Innovation Centre, 2005.

[TS11] TÜV-SÜD. TÜV-SÜD, 2011. See http://www.tuev-sued.de/.

[Wei05] T. Weilkiens. Die Rolle des Systems-Engineerings. Objekt-Spektrum, 3:28–
29, 2005. Also available as http://www.sigs.de/publications/os/2005/
03/weilkiens_OS_03_05.pdf.

[ZAMY10] B. Zhanyuan, X. Aidong, L. Mingzhe, and S. Yan. A Novel Comparator
with Hamming Code Correction for Safety Programmable Logic Controller.
In Proc. of the IEEE/Computational Problem-Solving, pages 410–412. IEEE,
December 2010.

[ZLQ10] H. Zhang, W. Li, and J. Qin. Model-based Functional Safety Analysis Method
for Automotive Embedded System Application. In Proc. of the International
Conference on Intelligent Control and Information Processing, 2010.

http://www.tuev-sued.de/
http://www.sigs.de/publications/os/2005/03/weilkiens_OS_03_05.pdf
http://www.sigs.de/publications/os/2005/03/weilkiens_OS_03_05.pdf

	Table of contents
	1 Introduction FSAR
	1.1 Motivation
	1.1.1 Terminology
	1.1.2 An Industrial Application

	1.2 FSAR
	1.2.1 CESAR Project
	1.2.2 SIMOREG-plus Project
	1.2.3 Problem Definition and Requirements
	1.2.4 Contribution and Significance
	1.2.5 Organization of the Thesis
	1.2.6 Mapping and Contribution of Publications


	2 Related Work
	2.1 Relevant Functional Safety Standards
	2.1.1 IEC 61508
	2.1.2 EN ISO 13849
	2.1.3 IEC 61800-5-2

	2.2 Safety Architectures
	2.3 Safety-Critical Methods

	3 Safety Concept FSAR
	3.1 Hazard and Risk
	3.2 System Design
	3.2.1 Fail-Safe Architecture
	3.2.2 Fail-Safe System Behavior
	3.2.3 Safety Integrity Measures

	3.3 Safety Workflow
	3.4 Implementation
	3.5 Fault-Insertion Testing
	3.5.1 Verification of Implemented Safety Integrity Measures.


	4 Evaluations and Prototype
	4.1 UC: Power Drive System
	4.2 F-Module

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work
	5.2.1 Safety-Critical System Architectures
	5.2.2 Safety Methods


	6 Publications
	6.1 A Computer-Aided Approach to Preliminary Hazard Analysis for Automotive Embedded Systems
	6.2 Improving Automotive Embedded Systems Engineering at European Level
	6.3 WO2009080384A1- Method for actuating an DC machine
	6.4 Design and Implementation of Safety Functions on a Novel CPLD-based Fail-Safe System Architecture
	6.5 CPLD basierende homogen redundante fehlersichere Architektur
	6.6 CESAR:Cost-efficient methods and processes for safety relevant embedded systems
	6.7 Model-based Toolchain for the Efficient Development of Safety-relevant Automotive Embedded Systems
	6.8 Fault Insertion Testing of a Novel CPLD-based Fail-Safe System
	6.9 A CPLD-based Safety Concept for Industrial Applications

	References

