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Abstract

Model Based Software Engineering (MBSE) approaches apply different techniques on
a model of the developed application. This model contains an abstract description of the
software specification and therefore fosters reuse of the described software artifacts on
multiple platforms.

For the platform specific development and deployment of such applications Compo-
nent Based Software Engineering (CBSE) approaches are available, each supporting the
assembling of different specified components to an application running on a specified tar-
get platform. Because of the trend of ubiquitous computing, which enables the creation of
new distributed business processes, the number of target platforms is increasing. As these
business processes are executed with the help of different mobile devices, software support
for these business processes requires engineering approaches to specify an application in
a platform independent way while supporting the deployment and dynamic configuration
of these application artifacts.

The approach presented in this work introduces a model-based middleware architec-
ture, relying on a platform independent definition of the modeled artifacts. By applying
event based communication mechanisms and model interpreting techniques the platform
independent specification is transformed into a platform specific representation at run-
time. The explicit definition of events and data for each artifact in a model fosters the
reuse of the specified software artifacts while the meta-model enables the portability of
the interpreting code between different platforms.

The proposed approach has been evaluated in the mobile part of the software WAMAS
built by the company Salomon Automation, a software vendor in the application domain of
logistics, and in the extension of an existing RFID middleware maintained by the company
RF-iT Solutions.
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Kurzfassung

Modellbasierende Software Entwicklung (MBSE) verwendet verschiedene Verfahren,
um ein Modell einer Applikation auszuwerten. Dieses Modell enthält die Spezifikation
der Software auf einer abstrakten Ebene und erleichtert damit die Wiederverwendung der
definierten Applikationsteile auf mehreren Plattformen.

Für die plattformspezifische Entwicklung und die Verteilung dieser Applikationen
werden komponentenbasierende Softwareentwicklungstechniken (CBSE) verwendet, wobei
jeder Ansatz die Zusammenschaltung verschiedener Softwareteile zu einer Anwendung auf
der Zielpattform unterstützt. Die Anzahl unterschiedlicher Plattformen für mobile und
eingebettete Systeme nimmt durch die wachsende Bedeutung von “Ubiquitous Comput-
ing” stark zu, wobei dieser Trend auch neue Organisationsabläufe ermöglicht. Um die
Entwicklung von Applikationen für diese Organisationsabläufe bestmöglich unterstützen
zu können, ist eine plattformunabhängige Spezifikation der Applikationsteile notwendig,
wobei aber trotzdem die Verteilung und dynamische Rekonfiguration der Komponenten
unterstützt werden soll.

Der in dieser Arbeit vorgestellte Ansatz verwendet eine modell-basierte Middleware
Architektur, die auf die plattformunabhängige Spezifikation der Applikationsteile in Form
von Modellen aufsetzt. Durch Anwendung event-basierender Kommunikation und durch
Verwendung modellinterpretierender Techniken wird diese plattformunabhängige Beschrei-
bung zur Laufzeit in eine plattformspezifische Repräsentation übersetzt. Die explizite
Definition von Events und Daten in eigenen Modellen ermöglicht dabei eine exaktere
Wiederverwendung der entwickelten Softwareteile, während das Metamodell den Umfang
der plattformspezifischen Codeteile (die im Allgemeinen aus dem Code des Interpreters
bestehen) einschränkt.

Der vorgeschlagene Ansatz wurde in der mobilen Applikation des Lagerverwaltungssys-
tems WAMAS der Firma Salomon Automation und in der RFID Middleware Lösung You-
R OPEN der Firma RF-iT Solutions evaluiert.
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Extended Abstract

Motivation
In cooperation with Salomon Automation GmbH, a logistics software vendor for warehouse
management systems, and RF-iT Solutions, a provider of a middleware for RFID-based
systems, a new architecture enabling better maintenance and deployment of software com-
ponents on various mobile and embedded devices should be established. These mobile
devices are Personal Digital Assistants (PDA) used by the workers in a warehouse, RFID
readers installed at different partners of a business process, wireless sensor nodes estab-
lished in the supply chain or mobile phones used by the suppliers of a warehouse operator.

According to previous work (data) modeling is a useful basis for creating a software
product family. These software products are applied in desktop and server computing
environments and are built upon a feature enabled data model. Each model is contained
in software components, which are also providing the definition of the user interface and
the behavior in the form of platform specific code artifacts. As a consequence the porting
and migration of these components is impeded by the assumption of a static component
platform, which may not be supported by all members of a distributed business process.

To fill this gap, an architecture of a runtime system for model-based software compo-
nents is proposed in this work. This architecture can be applied to execute applications
built of components, which contain a formal specification by models of their used data,
user interface and behavior. Because the configuration of the runtime system members
is also based on the meta-model used by these software components, a migration of soft-
ware components at application runtime between different platforms is supported by this
approach.

Related Work
Model Driven Software Development (MDSD) is an industrially accepted approach for
software engineering using formalized methods. The majority of MDSD approaches follows
the Model Driven Architecture (MDA) concept. In this concept the first activity is the
specification of a platform independent model, which is transformed to a platform specific
model by applying several generators. The layered Meta Object Facility (MOF) approach
is used for creating the models. This approach is also used the basis for the Unified
Modeling Language.

While MDSD facilitates models for the abstract specification of system architectures,
their platform specific artifacts are often realized by applying Component Based Software
Engineering (CBSE) techniques. The basic element in these approaches is a software
component, which is a unit of execution with well defined interfaces. Usage of software
components is driven by the requirements of improving reusability of developed software
artifacts. Software components are combined with the help of assembly descriptions. They
are specified in the development phase and are resolved in the deployment phase of a CBSE
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process.
Mobile business applications are typically realized in a distributed system architec-

ture. Service Oriented Architectures (SOA) and Grid Computing have been proposed for
the construction of such distributed systems. SOAs are dealing with business processes
distributed over existing and new heterogeneous systems, which are under the control of
different owners. They are build on services providing well defined interfaces. While this
aspect is also targeted in CBSE, the proposed loose coupling of SOA services is contradic-
tory to the assemblies used in CBSE. Grid Computing has evolved for the distribution of
scientific computational tasks, but is also used for distributed data access in heterogeneous
network. A Virtual Organisation is formed by the members of a Grid.

A runtime system for model-based software components in mobile environ-
ments
Mobile business applications are applied in a distributed business process, with several
participants realizing different functionalities in a multi-layered (or multi-tiered) architec-
ture. The development and deployment of components used in the realization of such
distributed processes is targeted by this work.

A model-based approach for the distributed component runtime environment is intro-
duced. This approach enables the specification of the components by domain experts, who
are not required to be professional software developers. Model-based techniques are used
in this specification to avoid the usage of platform dependent code. As a consequence
the effort required for deploying these components on another platform is reduced to the
porting of the runtime environment elements and dedicated device access methods. This
task is handled separately by specific platform developers.

The architecture of the proposed system provides the following methodologies to enable
a distributed runtime environment for software components in mobile environments:

• Specification of components by multiple models 1 2

The functional specification of components realized by this approach is defined with
distinct models for various aspects of the functionality. Each modelled aspect is
interpreted at runtime, with the model interpreter being based on the meta-model
of this model. All model interpreters of a specific component are executed by a
runtime node participating in a distributed runtime environment.

• Transient extension of (meta)models 3 4

Participants of a runtime environment are configured by a meta-model containing
the elements of the models, which are used for the functional specification of the
components. The mechanism of Transient Model Extension has been proposed for
temporal addition of elements to a meta-model. This methodology is used in the

1Interpreting Model-Based Components for Information Systems. ECBS 2009, San Francisco, Califor-
nia, USA, April, 2009.

2Towards a Generic Model Interpretation Runtime Architecture. Work in Progress Euromicro 2009,
Patras, Greece , September, 2009.

3Model-Based Data Processing with Transient Model Extension. ECBS 2007, Tucson, Arizona, USA,
March, 2007.

4Implementing model-based data structures using transient model extensions. Journal of Software,
2007.
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configuration of runtime participants and to enable the specification of additional
runtime functionality by the component developer.

• Component connectors based on model compatibility 5

To enable a loose coupling of the executed components, the communication between
the components is distributed by the runtime nodes. Because each component is
based on its own model, the communicating components make use of the runtime
node functionality to enable the communication with compatible components.

• Specification of model views for distributed components 6 7

All runtime nodes are part of a distributed system and are members of a Virtual
Organisation. Thus additional views on the component model can be specified by the
developer, describing the visibility of model elements and quality of service attributes
used by other component developers referring to the given component and by the
component runtime nodes during execution of the components.

Implementation
A design of a runtime system for model-based software components is provided, which has
been implemented following the architectural styles specified in the previous section. This
runtime system is targeted for mobile and embedded devices. Sharing of provided device
resources and the execution of third party components is eased by this approach. Tools
for deploying the runtime and for the development of the components are described, and
examples of their usage are discussed.

Case study
The proposed architecture has been applied by Salomon Automation GmbH for an in-
dustrial prototype of the mobile client of the WAMAS software architecture. Another
application of the architecture has been provided for the middleware of RFIT - Solutions
to extend the range of their supported devices by moving middleware functionality to the
reader.

Both case studies outlined the benefit of using multiple models for the functional spec-
ification resulting in a reduction of platform specific code. The results also demonstrated
the importance of good tooling support for creating the functional models and identified
the performance of the model interpreters as a key aspect required for application of this
approach in industrial projects.

5Data Model Driven Enterprise Service Bus Interceptors. Euromicro 2008, Parma, Italy, September,
2008.

6Model-based data access in mobile grid applications. PDCN 2008, Innsbruck, Austria, February, 2008.
7A Model-Based Architecture supporting Virtual Organizations in Pervasive Systems. ICECCS 2010,

Oxford, UK, March, 2010.
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Chapter 1

Introduction

A remarkable advance in the technology of mobile and embedded devices has been achieved
in the last decade. Roy Want mentions in [Wan09] that the number of shipped smart
phones in 2007 has been larger than the number of sold laptop computers, while stating
that smart phones make about 10 percent of the cell phone shipments in the same year.
In contrast to traditional cell phones, smart phones are equipped with an application
processor enabling additional features like video recording or positioning technology.

Ebert and Jones present recent data about embedded software in [EJ09], stating that
the volume of embedded software is increasing between 10 and 20 percent per year as a
consequence of the increasing automation of devices and their application in real world
scenarios. Ebert and Salecker give the following definition of an embedded system.

“Embedded systems are microcontroller-based systems built into technical equipment.
They’re designed for a dedicated purpose and usually don’t allow different applications
to be loaded and new peripherals to be connected. Communication with the outside
world occurs via sensors and actuators; if applicable, embedded systems provide a human
interface for dedicated actions.”[ES09, p.14]

Although this definition implies that embedded systems are used as isolated units, there
is also a trend to construct distributed pervasive systems by connecting several embedded
devices as noted by Tanenbaum and van Steen [TvS06]. Also according to data presented
by Ebert and Jones up to 70 electronic units are used in a car containing embedded
software, which is mainly responsible for the value creation of the car and consists of more
than 100 million lines of object code (requiring about 1Gbyte of storage).

Mobile and embedded devices in distributed pervasive systems support physical and logical
mobility as discussed by Mühl et al. in [MFP06]. A physically mobile client (a.k.a terminal
mobility) is supported by an infrastructure consisting of geographically distributed access
points, which are interchangeably used while the client is moving, allowing the realization
of location transparency. In contrast a logically mobile client is aware of the changing
location enabling automatic adaptation to the new situation. Considering the ISO/IEC
42010 IEEE Std 1471-2000 definition of an environment [IEE07] as the definition of the
scope of a system, used for the determination of the boundaries and the settings and
circumstances of developmental, operational, political, and other influences upon that
system, the following definition of a mobile environment can be considered.

1
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Mobile environment: A mobile environment consists of devices and applications, which
support the logical and physical mobility of their users.

1.1 Motivation

For further discussion the common usage of the layers architectural pattern [BMR+96] for
specifying software architectures has to be considered. The following definition of software
architecture is given in the ISO/IEC 42010 IEEE Std 1471-2000:

Software Architecture: “The fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution.-[IEE07, p.3]

A three layered architecture, which is depicted on the left side of Fig. 1.6, following this
definition will be used in this thesis. To provide a foundation of this layered architecture
it is compared with other layered architectures discussed in literature. One architecture is
proposed by Tanenbaum and van Steen for distributed systems, which are defined in the
following way:

Distributed system: “A distributed system is a collection of independent computers
that appears to its users as a single coherent system.” [TvS06, p.2]

Another architecture is specified by Atkinson and Kühne while discussing the definition of
platform in Model Driven Architectures (MDA) [AK05]. In their discussed architecture the
hardware layer consists of hardware components (e.g. processor, memory, I/O devices),
which are augmented with additional services (like threads, file systems or processes)
by the operating system layer. A virtual machine layer can be used for isolation
of the chosen operating system and hardware components. A language runtime system
is provided by the language support layer, which also contains language constructs
expressed as templates of low-level code. These constructs are used for the specification of
libraries, frameworks and applications defined in the upper layers. Therefore required or
optional additional predefined functions in the used programming language are contained
in the library layer, but also middleware solutions are typically delivered as libraries
providing several language constructs in the form of an application programming interface
(API). In contrast to libraries elements in the framework layer contains active control
code in a generic way to be used by a family of applications. Using this layered structure
Atkinson and Kühne demonstrate, that each layer is defining a platform on its own. As
a consequence a generic platform model is introduced by them, which is applied on every
organizational layer leading to a full platform definition with the combination of these
platform models. This generic platform model is summarized by Kleppe in her definition
of a platform.

Platform: “A platform is the combination of a language specification, predefined types,
predefined instances, and patterns, which are the additional concepts and rules
needed to use the capabilities of the other three elements.” [Kle08, p.69]
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Fig. 1.1 provides a comparison of these two architectural definitions with the proposed
layered architecture depicted on the left side demonstrating the feasibility of mapping the
corresponding artifacts and responsibilities for each layer of the proposed architecture.

1.1.1 Reusability and evolution support through components

Platform evolution is characterized by changes on one or several platform layers of a device,
requiring that these changes should not affect the role of this device in the distributed
system. Several techniques have been proposed for supporting this evolution.

As the number of elements contained in the platform model of each platform layer for
mobile and embedded devices needs to be optimized as a consequence of the resource
constraints, usage of component based technologies targeting reuse and composition is
an essential part of platform and application development for such devices. Addition-
ally Liggesmeyer and Trapp have noted, that domain specific development of embedded
software requires efforts, which should be payed off by the application of the developed
framework or platform to related problem domains [LT09]. This requirement for reuse is
solved by component based software development, allowing the composition of individual
artifacts relying on well defined interfaces.

The following definition given by Szyperski in [Szy02] is often used as the basis for a
discussion of CBSE aspects.

Software Component: “A software component is a unit of composition with contractu-
ally specified interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to composition by third
party”.[Szy02, p.41]

Depending on the implementation for the execution environment of a chosen component
approach, the notion of a component framework is distinguished from a component plat-
form by Szyperski in [Szy02], with the former defined as a collection of rules and in-
terfaces (contracts) governing the interaction of components. In contrast to component
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platforms, which are the foundations for components to be installed and executed on,
component frameworks can also be organized hierarchically being components themselves.
During platform evolution this fact gets also very important for enabling the adaptation
of the component execution environment to changes in the lower platform layers (e.g.
changed hardware or operating systems or additionally available programming language
constructs). As an example of an evolution at the platform level, the usage of the hard-
ware platform promoted by the Wear-Ur-World device (a.k.a. Sixth Sense) [MMC09] can
be considered. This device has been developed at the Fluid Interfaces Lab of the Mas-
sachusetts Institute of Technology (MIT) and is bridging the real and the digital world
by a system consisting of a mobile camera and a mobile beamer which are connected to a
mobile phone running a software for recognizing hand gestures. Incoporation of this new
platform in an existing architecture is eased by the layered approach of systems and by a
component oriented design, which should allow to replace the typical graphical or textual
user interface by a hand gesture aware implementation, minimizing the changes required
to the application itself.

1.1.2 Domain specific development with models

As noted by Ebert and Salecker [ES09] embedded software is used for objectives requir-
ing a long lifetime of the system, thus heterogeneity of the underlying platform has to be
considered by the embedded software engineer. Also an ever-growing demand for new func-
tionalities and technologies is noted by Liggesmeyer and Trapp [LT09], requiring efforts
of raising the level of abstraction for the development of mobile and embedded software.
For embedded systems this is accomplished by the usage of higher level programming
languages like C or C++ instead of assembler, and also by the help of Model Driven
Development (MDD) techniques.

In Model Driven Software Development (MDSD) models of the software are used as pri-
mary artifacts. There is no unique definition of a model, as reported by Muller et al. in
[MFB09] while comparing several definitions of a model in the literature. But most defi-
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nitions describe the use case of a model, which is applied to abstractly specify a distinct
system. According to Muller et al. the process of modeling also aims to establish to repre-
sent something by something else. Dealing with the abstraction introduced by such models
is provided by model transformators, which are applied at development time in the form of
code generators or at runtime in the form of model interpreters as reported by Stahl and
Völter in [SV06]. While the usage of code generators is a mature technology backed by the
Model Driven Architecture (MDA) standard of the Object Management Group (OMG),
the usage of models at system runtime has attracted interest in the research community
in the last years as indicated by the following definition.

model@run.time: “A model@run.time is a causally connected self-representation of the
associated system that emphasizes the structure, behavior, or goals of the system
from a problem space perspective.”[BBF09, p.23]

Fig. 1.2 depicts the layers involved in these two approaches to MDSD. While generated
code is usually targeted for the application layer using distinct libraries at the middleware
layer, model interpretation is performed primarily by generic interpreters, which are also
located in the middleware layer of the layered architecture proposed for this thesis.

In state-of-the-art MDSD approaches the definition of component interfaces is already
based on specific software models, which are used for generation of the tooling support
and platform specific skeletons in a general purpose programming language. In such CBSE
approaches the implementation of the component containing the domain specific knowl-
edge of a specific problem is mixed with programming constructs enforced by the used
programming language. A good understanding of this language is required to successfully
adapt the given code to changed requirements in the problem domain.

This problem is tackled by Domain Specific Languages (DSL), which are providing con-
cepts and rules representing problems in the application domain instead of the underlying
programming language. Kleppe has demonstrated in [Kle08] that DSLs can be defined by
using models containing the elements of the abstract syntax and the concrete syntax of
the DSL respectively. Because a specific view on a modeled system is defined by a DSL,
combination of several DSLs (i.e. their corresponding abstract and concrete syntax mod-
els) can lead to a fully executable system as demonstrated by Hessellund in his proposal
for Domain-specific Multimodeling [Hes09].

Models and especially DSLs are targeted for the usage by domain experts, who are working
on a software project in one of several roles as defined by Fischer et al. in [FNY09]. The
spectrum of possible roles is depicted in Fig. 1.3.

Beside pure software users and programming professionals different grades of expertise
level in software development are seen, demanding mechanisms such as macros or Domain
Specific Languages (DSLs) to support the user in customization of the software. The
generic mechanism in the software required by this customization can be provided by the
developed models serving as a basis for possible customization decisions.
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1.1.3 Connecting mobile and embedded systems

For the discussion of the support of applications using several mobile and embedded de-
vices the categorization of distributed systems by Tanenbaum and van Steen in Distributed
Computing Systems, Distributed Information Systems and Distributed Pervasive Systems
has to be considered. Distributed Computing Systems are further categorized in Cluster
Computing and Grid Computing systems, with the later being used for connecting het-
erogeneous computing systems. The following definition of a grid is provided by Foster
and Kesselman:

Grid: “A distributed computing infrastructure that supports the creation and operation
of virtual organizations by providing mechanisms for controlled, cross-organization
resource sharing.” [FK04, p.662]

The relation between Grids and other distributed computing paradigms is discussed by
Foster et al. in [FZRL08] and is illustrated in Fig. 1.4. According to this figure Grids are
covering both ranges regarding the scale and the orientation of the executed software.

The other areas in this figure are corresponding to the history of Grid systems as given by
Kurdi et al. in [KLAR08]. The first generation of Grids was build upon supercomputers
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sharing their resources, which led to Computing Grids or Data Grids [MJR+04]. To enable
the access to dedicated rare resources (like a hadron collider or a space telescope)[FK04]
corresponding middleware functionality needed to be defined, which was the main task of
the second Grid generation. A Grid middleware is build in a layered approach like the
four layers proposed by Foster in [FZRL08]. The highest layer is named the collective
layer and captures interactions across collections of resources and allows for monitoring
and discovery of VO resources. The second layer named resource layer defines proto-
cols for the publication, discovery, negotiation, monitoring, accounting and payment of
sharing operations on individual resources. The third layer is named connectivity layer
and defines core communication and authentication protocols for easy and secure net-
work transactions, while the last layer known as fabric layer provides access to different
resource types such as compute, storage and network resources.

Third Grid generation implementations rely on Web technologies to implement the dif-
ferent layers of the middleware (and are therefore related to the Web 2.0 paradigm as
depicted in Fig. 1.4). According to a classification of grid systems presented by Kurdi et
al. ( depicted in Fig. 1.5) next generation grids (NGG) will be of personal size and are
going to offer the access to distributed devices as the solution. NGGs will be accessible by
any device using one of the according grid subtypes (ad hoc, wireless or mobile). They will
also be interactive and personalized and should be manageable or use a hybrid approach
of the different management approaches.

As a consequence of this evolution Grid systems will need to pay attention to the con-
straints of distributed systems made up of mobile and embedded devices. These con-
straints are noted by Tanenbaum and van Steen [TvS06] in their discussion of distributed
pervasive systems formed by these devices. Such systems are indicated by unstable con-
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nections, resource constraints of the participating devices and the general lack of human
administrative control (i.e. the configuration of such devices is allowed to device owners
only).

1.1.4 Missing support for evolution in Virtual Organizations

Fig. 1.6 highlights two aspects of heterogeneity managed by the layered architecture pro-
posed in Sect.1.1. One aspect is the number of artifacts contained in each layer, while the
second aspect is made up by the people managing the artifacts at the same layer. The
kind of management is defined by the state of the system. Management at development
time is performed by designing and implementing the given artifact of a layer in software
or hardware. At runtime the administration and usage of available instances of the defined
artifacts by a (typically other) person has to be considered. Note that multiple persons
are involved in the management operation of each layer as well as multiple artifacts. In a
distributed system made up of mobile and embedded devices the involved people as well
as the used artifacts are expected to be organizationally and geographically distributed,
which are key features of virtual organizations as defined by Foster and Kesselman.

Virtual Organization: “A collaboration whose participants are both geographically and
organizationally distributed.“ [FK04, p.672]

Bird e .al. note in their discussion, that “the original idea of a VO as a dynamic group
of users with a common goal coming together for a specific, short-lived collaborative ven-
ture and then dissolving has never been realized owing to the complexity of deploying
and authorizing such a dynamic structure.”[BJK09, p.41] This statement is represented
by the multiple persons and artifacts contained in each layer of Fig. 1.6. Each person
and each artifact can be added, replaced or removed at system runtime, constituting a
multidimensional evolution leading to the dynamic structure required by Bird et al..

This fact is also important in the business domain of logistics, where traditional business
activities (e.g. handling of orders in a warehouse with paper-based forms) are replaced by
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the assistance of mobile industrial handhelds processing this information via touchscreen
or voice. The required applications also enable new business activities like on demand
cooperation of partners in the supply chain by the connection of the executing devices
with other (embedded) devices like RFID readers. This potential has been noted by
software companies in the business domain of logistics, which provide solutions situated
on different layers of Fig. 1.1. One company is Salomon Automation GmbH developing
a warehouse management system (WMS), which is applied for controlling the business
activities related to one or several warehouses storing goods. Another company is RF-IT
Solutions GmbH promoting a middleware solution, which facilitates the usage of various
RFID readers and tags in the business activities of companies. This emerging technology
is used for identification of their products and for the exchange of data, which has been
captured during the lifetime of these products.

In their currently provided WMS Salomon supports required mobile devices (e.g. industrial
handhelds used by warehouse workers) as thin clients with respect to their software. The
same observation holds for RFIT Solutions with respect to the targeted RFID readers by
their middleware. As a consequence of this thin client approach, these devices are used for
data capturing or data visualization purposes while the main application is targeted for
desktop or server computing hardware. Beside the resulting requirements on a stable and
performant network connection, their current solutions targeting mobile and embedded
devices also provide very restrictive possibilities for reconfiguration by the user. Both
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topics have been acknowledged by theses companies as important targets for their next
generation of software products.

An exemplary application demonstrating the requirements for this next generation is de-
picted in Fig. 1.7. The main task of this application is the authentication of users based
on ID tags and the control of an electronic door access system. If the presented ID tag is
based on RFID technology, the authentication is done by a second component, belonging
to another organization than the RFID reader. The organization owning the RFID reader
is also in control of the door access system. If the presented tag is based on a barcode
technology, the Read tag component is required to be executed on a mobile handheld
equipped with a scanner. This component is also connected to the check authentication
component, which can be executed on the mobile handheld or the RFID reader, while
the door handling component requires the physical resource provided by the RFID reader,
and is therefore not able to be executed on another device. To enable the communication
between the components running on the mobile handheld and the components running on
the RFID reader, their runtime nodes are required to form a virtual organization handling
the access and execution rights of the components.

1.2 Outline of Thesis

A layered architecture has been introduced in the previous section and has been used
for discussing current trends in application and middleware development in the form of
Model-Based Development and Component Based Engineering. Furthermore the layered
architecture has been utilized for demonstrating the heterogenic aspects in the software
development by outlining the various organizational roles and different artifacts contained
in each layer. Considering the fact, that mobile and embedded applications are designed
increasingly upon distributed information, support for managing these systems is required.
Such support is provided by the concept of Virtual Organizations, which have been in-
troduced in the context of Grid systems. As emerging Grid types are also targeting the
usage of mobile and embedded devices for managed personal access, the support of Virtual
Organizations by the proposed architecture seems obvious.

In chapter 2 related work on application development with model based techniques as
well as latest trends in component based software engineering are discussed. Objectives
for this thesis are identified as a conclusion of the presented approaches. A runtime
system targeting these objectives by enabling the interpretation of domain specific models
on mobile and embedded devices is presented in chapter 3. Various parts of the runtime
system are discussed and are associated with the publications presented in chapter 6. Case
studies demonstrating the support of the proposed approach for mobile and embedded
applications in the business domain of logistics are summarized in chapter 4. Finally
chapter 5 provides a conclusion and gives an outlook on future work resulting from the
insights obtained in this thesis.



Chapter 2

Related Work

Because software models are a central aspect in the proposed approach, their usage with
respect to the different phases in the lifecycle of a software project is discussed in the
beginning. In the second part existing component models and programming paradigms
for mobile and embedded devices are presented.

2.1 Model-Based Software Development

Several definitions of models are compared by Muller et al. in their proposal of a graphical
syntax to represent the relations between models in [MFB09]. According to Muller et al.
the process of modeling aims to establish to represent something by something else. The
usage of this representation as a a compromise of reality or as an caricature of reality
is discussed by Jorgensen in [Jor09]. While compromising reality indicates the reduction
of information from reality in a model for a specific underlying purpose, the caricaturing
reality also emphasizes the overreaching exposition of specific information. Jorgensen
finally noted that in both approaches models are build to improve the understanding
of something complex (e.g. architects build a model of a building for demonstration
purposes).

In software development projects the design pattern of layering [BMR+96] is used for
dealing with complexity, by splitting the functionality of a program in several layers, with
each underlying layer serving as the base for the next higher layer. A layered approach has
been proposed by the Object Management Group (OMG) with the four-level meta-model
hierarchy [Gro09c] for the definition of models in software development projects. In this
standard each layer is defined by a distinct model, which can be used for the definition
of the elements of the next layer. This model is called a meta-model with respect to the
model of the next layer.

An example depicting elements and their relations in the various layers is depicted in
Fig. 2.1 presenting the following layers:

M3: contains the base model for all modeling languages, the Meta Object Facility (MOF)

11
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Figure 2.1: Elements in the layers of the four-level meta-model hierarchy

M2: is used for the definition of a specific modeling language like Unified Modeling Lan-
guage (UML) [Gro09b] or the Eclipse Modeling Framework (EMF) [BSM+03]

M1: elements of this layer are defined by the software developer for modelling a specific
software (like the definition of classes in Object Oriented Languages)

M0: holds the instances of elements defined in the software model in layer M1 (like object
instances in OO languages)

Another definition of the meta-modeling approach is given by Kleppe in her discussion
of software language engineering in [Kle08]. Her definition of a model is rested upon a
combination of a type graph and a set of constraints at various types of this graph. A
type graph is defined as a combination of

• a set of nodes which may include data types

• a set of edges

• a source function from edges to nodes, which gives the source node of an edge

• a target function from edges to nodes, which gives the target node of an edge

• An inheritance relationship between nodes (a reflexive partial ordering)

The concept of a labeled graph is also applied in the representation of a class diagram,
which is usually made use of for the presentation of elements in the M3 and M2 layer of
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the OMG four-level meta-model hierarchy. Having motivated the usage of graphs for the
definition of a model Kleppe also defines an instance of a model M as a labeled graph that
can be typed over the type graph of M and satisfies all the constraints in M’s constraint
set. Having these definitions in mind, Kleppe introduces a meta-model as a model used
to specify a language, while she also notes that there are various meta-models used in
software language engineering (i.e. as an abstract syntax model of the specified language,
a concrete syntax model and a semantic domain model).

While the usage of models for the specification of software languages is a newer aspect,
their central role in a software engineering process is well established through Model Driven
Software Development (MDSD)[VS06]. The idea behind MDSD is the separation of mod-
els containing domain specific knowledge from the information required for the technical
realization platform. Transformations are applied on the model to retrieve a platform
specific description in form of source code or binaries out of the modeled knowledge.

An overview about possible usages of a model in the software development process and
applied transformations is given in Fig. 2.2. One extreme, as Kelly and Tolvanen noted
in [KT08], is the specification of code without a model in mind or the missing automatic
mapping between model and code. In the case of code visualization (a.k.a reverse engineer-
ing), round-trip engineering and forward engineering the used model and the code need
to be at the same abstraction level as noted by Völter and Stahl in [VS06]. In contrast
the generation step in Model Driven Architecture approaches is intended for providing
an abstraction level in the model, i.e. the steps and knowledge required for creating a
concrete representation out of the model elements is captured in the rules and templates
of the generator. The other extreme is the direct interpretation of the model in an exe-
cuting program, requiring the applied interpreter to contain the corresponding mappings
between the abstract model and the concrete target platform. In all other approaches
beside model interpretation the created target platform specific code is compiled and as-
sembled with manually written program artifacts. The majority of MDSD projects is build
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upon a generative approach, with the transformations being specified in toolkit specific
template languages. The former mentioned Model Driven Architecture (MDA) specifica-
tion is thereby an MDSD approach based on the four level meta-model hierarchy and the
Unified Modeling Language (UML) and has also been proposed by the OMG.

2.1.1 EntityContainer

Schmoelzer et al. have proposed the EntityContainer (EC) [SMK+05] as an object-oriented
and model driven data cache to access data from a persistent data storage or to keep tran-
sient data during runtime. Communication with a data store is performed via the EC
and its associated backingstores, which provide the mapping from the model to the corre-
sponding data persistency technology (like a database or a file). As the EC is configured
with the data model defined in a platform independent format and all the communica-
tion between datastorage and application is performed via the EC, switching the data
persistency technology only requires the selection of the corresponding backingstore.

As depicted in Fig. 2.3 the data and corresponding models representing the different layers
of the OMG meta-model hierarchy are stored in separate EC instances. Each EC instance
of an upper layer (i.e. EC(x-1)) is used for validation purposes of data provided to the
dynamic interface of EC(x). During initialization the meta-model and corresponding data
model are loaded in EC(1) and EC(2) via their dynamic interfaces.
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Structural diagrams Behavioral diagrams
Interaction diagrams

Class diagram Use Case diagram Sequence diagram
Package diagram Activity diagram Communication diagram
Object diagram Statemachine diagram Timing diagram

Composition diagram Interaction diagram
Component diagram
Deployment diagram

Table 2.1: Diagram categories in UML 2 [RQZ07]

In case of the data EC(2) also a static interface (a.k.a. Type Safe Entity Con-
tainer [SKKT06]) is provided, which is generated out of the used data model and enables
static type checking of the source code using the corresponding EC. The objects retrieved
by the dynamic interfaces (Idyn) are entities with their own lifecycle and their own identity
as defined Sect. 2.1.3.

Usage of the EC in the context of a Software Product Line (see Sect. 2.2.2) for imple-
menting enterprise computing systems has been proposed by Schmölzer in [Sch07]. In
the proposed method variability models as well as data models and user-interface models
are applied in an EC based framework for dealing with different requirements of various
customers of a warehouse management system.

2.1.2 Model views

While the EC applies all information contained in the data model for the creation and
maintenance of the contained entities, typical modeling approaches make use of differ-
ent views, with each view defining a specific subset of the model. An example of such
an approach is the 4+1 view model of software architectures at system level developed
by Kruchten [Kru95]. This model consists of different views on the described software
architecture targeting different aspects and responsibilities:

Logical View: containing end user functionality

Development View: for programmers and software managers

Process View: for integrators describing performance and scalability

Physical View: for system engineers concentrating on the topology and used communi-
cation mechanisms

Scenarios: illustrating the architecture with selected use cases.

Each view can be specified using a specific modeling technique like textual or graphical
modeling languages. One example of a collection of graphical modeling languages is the
Unified Modeling Language (UML) specification by the OMG. UML is specified in the M2
layer of the four-level meta-model hierarchy and provides 13 different graphical modeling
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languages (a.k.a. diagrams). These diagrams are distinguished in several categories which
are presented in Tab. 2.1. According to Rupp et al. [RQZ07] they are split up in four
compliance levels defined by the UML 2 specification. While diagrams for classes, types,
packages and data types are contained in compliance level 0, the complete language defi-
nition of UML 2 is supported by compliance level 3. The introduction of these compliance
levels is targeted for guiding UML tool developers and users, who should be able to select
the right scope of the UML specification depending on the required diagrams. It can also
be seen as an attempt to reduce the often criticised complexity of UML ([Gro09a, p.6])
in the same way as state-of-the art meta-modeling approaches rely on the definition of
specialized models at the M2 layer.

2.1.3 Domain Specific Modeling

Domain Specific software development approaches with their focus on a distinct business
domain have gained increased popularity in the last decade. One example relying on
models has been proposed by Evans [Eva03] with Domain Driven Design (DDM). In DDM
the usage of one model during the whole software development process is fostered. While
in traditional software development processes different models are utilized for analysis,
design and implementation purposes, one model is used during all phases of the DDM
process. This fact facilitates the definition of an ubiquitous language for this project.

Various software design patterns are applied in the realisation of a DDM process. The
model is accessed by repositories, while the realisation of modeled elements is encapsulated
by factories. The expression of a model is realized with the following approaches:

Value objects: These model elements are defined by their attributes and do not need to
provide an own identity, because they are not a central part of the modeled domain.
Value objects are designed as immutable.

Entities: In contrast to value objects these elements represent important information in
the modeled domain, thus requiring the definition of an own identity. This identity
is defined by specific attributes and connections and is valid throughout the whole
lifecycle of an entity.

Services: If an operation of a domain is not appropriate to be modeled as a value object
or an entity (because it does not conceptually belong to this entity), this operation
should be modeled as a standalone service interface defined in terms of other elements
of the domain model.

In the discussion on Domain-Specific Multimodeling [Hes09] different realization possibil-
ities for domain specific software ranging from single language programming through gen-
eral purpose modeling to domain-specific multimodeling are distinguished by Hessellund.
As the application of single language programming results in the masking of domain con-
cepts in the syntax of a given implementation language, communication between software
developers and domain experts becomes error prone and software evolution is aggravated.
In contrast general purpose modeling as exemplified by the Model-Driven Architecture
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and UML tackles the challenges of single language programming by providing the abstrac-
tion of domain specific concepts in a model, which is used as a first-class artifact in this
approaches. A problem not solved by general purpose modeling is the clear separation of
vertical and horizontal concerns of the modeled application, which is requiring the usage
of different languages addressing the various domains as depicted in Fig. 2.4. The domains
contained in the circle are tackling the horizontal concerns, which are used for the realiza-
tion of applications of orthogonal business domains (e.g. warehouse management system,
enterprise resource planning system or RFID aware applications).

2.1.4 Multimodeling within a domain

In contrast to the original figure presented by Hessellund, Fig. 2.4 has been adapted to
visualize the possibility of more than one language for a given horizontal domain.

This observation is based on the discussion of different approaches for modeling the be-
haviour of software by Jorgensen in [Jor09]. Beside the depicted finite state machines
(FSM) and petri nets, flowcharts and decision tables are also presented as possible behav-
ioral modeling methods. FSMs consisting of states and transitions are used for structured
analysis and realtime specifications. Events and actions specifying the behavior are asso-
ciated with this states and transitions. Because modeling complex processes with FSMs
leads to a larger number of states (a.k.a. state explosion problem) the FSM notation has
been extended with additional elements in the proposal of (hierarchical) statecharts. One
example of the application of statecharts is the Statemate approach [HP98], which relies
on a combination of activity charts and state charts to model reactive systems. Another
field of usage has been proposed by Horrocks to support the behavioral description of
user interfaces [Hor99]. Petri Nets are consisting of nodes and transitions connected by
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edges, while Event Driven Petri Nets additionally make use of port input and output
events. Flowcharts enable the graphical representation of a flow of events and decision
tables are used for analyzing situations in which a combination of actions is taken under
varying sets of conditions. Jorgensen has demonstrated with various examples, that none
of the outlined approaches is applicable in all situations for the behavioral description of
software.

Another example of different domain modeling methods is visualized in the user interface
section of Fig. 2.4. This claim is based on observations from the development of the next
version of the Eclipse integrated development environment (IDE). Initially started as a
Java IDE, the OSGI based Eclipse framework has been extended with projects featuring
the support of other programming languages or the development of models [Gro09a].
Additionally framework modules (like the user-interface module) are reused for application
engineering in the Rich Client Platform (RCP) [ML05] approach. While the RCP approach
is currently based on the usage of module specific programming APIs, specification of the
application specific user-interface is going to be captured in a model in the next version of
the Eclipse framework. While the application user-interface model is very coarse grained,
the detailed layout of the contained dialogs and panels can be described with another
modeling language as proposed by Traetteberg in [Træ08].

Based on the observed need for the use of multiple models in domain specific modeling
Hessellund has proposed a coordination method depicted in Fig. 2.5, which is required
for the successful development of multiple domain specific models in a single system. This
method is made up of three steps. In the first identification step overlaps in the concern of
two languages are identified. In the example of the two user interface modeling languages
depicted in Fig. 2.4 this overlap is the integration of the specified dialog in the modelled
application user-interface. The manually or automatically identified overlaps are used as
an input in the second step aiming at the creation of a coordination model, which specifies
how languages interact. The coordination model is an application specific artifact and is
applied in the third process step for deriving the following development tool support:

• specification of consistency information to check the referential integrity of cross
language references
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• visualization and navigation in the different application specific models

• model based guidance of the developer (e.g. code completion based on the informa-
tion from different models)

In their proposal of the experimental platform for multi-modeling NAOMI [DJS+09] Den-
ton et al. have identified three key challenges for multi-modeling. For capturing multi-
model interdependencies, which becomes difficult with the increasing number of applied
models, these dependencies have to be made explicit. The second challenge is the consis-
tency of multi-models as discussed by Hessellund, while the third challenge is the semantic
precision of inter-model data exchange, which becomes difficult, if the different models are
not specified in languages derived from the same meta-model. The NAOMI platform de-
veloped for tackling these challenges is made up of local components, providing a sandbox
and execution engine for working with local copies of the used multi-models. These mod-
els are stored in a multi-model repository along with attributes defining the input and
output of a model and constraints required to be satisfied by this model. Different models
are linked by connectors, which are maintained by the local multi-model manager. Ac-
cording to the presented examples the different models are expected to belong to different
meta-models and modeling approaches respectively.

2.1.5 Models at runtime

In conservative MDSD approaches software models are used at the development time
of the system, featuring code generation based on the model specifying distinct parts
of the system. In the context of UML several attempts are made to enable the usage
of UML models at runtime. One technique is presented by Milisevic in the context of
object oriented information systems (OOIS), by introducing a special UML profile and the
corresponding runtime support. The OOIS UML approach as discussed in [Mil09] enables
the specification of the data and behavior of an information system in a UML model,
which may be transferred in a target programming language or may be interpreted. Both
variants rely on the OOIS UML Model Library and runtime environment, which provides
generic methods for creation and handling of the user interface. Milisevic also notes in his
discussion of OOIS UML, that an Executable UML Foundation has been adopted by the
OMG. A virtual machine is defined by a precise specification of a core subset of UML as
well as a mathematical formalization of those semantics.

Beside these UML based approaches Bencomo [Ben08] has motivated the usage of mod-
els@run.time to check the correctness of the currently executed system by supporting the
monitoring and adaptivity of applications. The following definition of a model@run.time
is given by Blair et al. : “ A model@run.time is a causally connected self-representation
of the associated system that emphasizes the structure, behavior, or goals of the system
from a problem space perspective.”[BBF09, p.23] According to this definition a runtime
model is a “live” development-model, which enables dynamic evolution and the realization
of software designs.

Cetina et al. [CGFP09] are discussing the usage of variability models at runtime to support
a model-based reconfiguration engine in the context of a smart home system. A runtime
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architecture is proposed by Morin et al. based on the usage of models at runtime for
supporting a dynamic software product line in [MBJ+09]. Their approach relies on four
meta-models containing

• the systems variability,

• the context variables of the system environment relevant for adaptation,

• the rules for selecting the features according to the context and

• the description of the component-based architectures.

While the latter approaches are focused on the reconfiguration of component based ar-
chitectures, taking the specification and implementation of the components as granted,
the OOIS UML approach presented by Milicev is not emphasizing the split up of the
used models in different components as well as a modular design of the model runtime
environment.

2.2 Component Based Software Engineering

Crnkovic et al. note in their discussion of basic concepts of software components [IC02],
that there are several definitions of a software component available. The following defi-
nition given by Szyperski in [Szy02] is also used as the basis for their discussion of the
different definitions:

Definition: “A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third party”.[Szy02, p.41]

Crnkovic et al. also refer to the varying definitions of a software component in industry
and academia. While industrial software components are seen as a well-defined entity with
often small and easily understood functional and non functional features, the academic
definition of a component is more coarse grained. This difference has been targeted by
the introduction of hierarchical software components in academic approaches, which are
made up of a composition of already existing software components.

Handling of software components is specified in a software component model. A taxon-
omy of various software component models is given by Lau and Zheng in [LW07]. This
taxonomy is based on the syntax, semantics and composition of the components based on
the given component model.

According to the syntax the following categories are defined:

OO: object-oriented programming language

IDL: programming-languages with IDL mappings

ADL: Architecture Description Languages (such as UML components)
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While component models in the semantic category distinguishes are differentiated by their
handling of the defined components, four categories of component composition are distin-
guished by Lau and Zheng.

Category 1: New components can be deposited in a repository but cannot be retrieved
from it by the developer. Composition of components is not possible in the design
phase, but by an assembler in the deployment phase.

Category 2: Components are stored in a repository and can be composed in the design
phase, but the composition rules are stored in the repository instead of one compos-
ite component. As a consequence the composition can not be changed during the
deployment phase, i.e. the single components are transferred and instantiated based
on the specified composition rules.

Category 3: Components can be retrieved from the repository as well as composite com-
ponents can be stored in the repository. No changing of this composition is allowed
in the deployment phase.

Category 4: Components are not stored in a repository, i.e. they are all constructed and
composed from scratch. In the deployment phase no new composition is possible.

The results of the taxonomy according to the criteria defined above are presented in
Tab. 2.2. The compared component models are partially discussed in [LW06] and the
following sections. Note that in Tab. 2.2 different component models are also categorized
depending on their application area as proposed by Teiniker in [Tei05]. While enterprise
computing components have higher requirements on storage and performance of the target
platforms than desktop computing approaches, some approaches can be used in several
areas depending on the mapping used in the realization. Some approaches are used for
specification of software components in embedded system (e.g. consumer electronics),
while other component models are targeted for pervasive systems targeting mobile and
embedded devices.

The implementation and assembling of components is often supported by an execution
environment specific for the chosen component model. Depending on the applied imple-
mentation approach for this execution environment, Szyperski is differentiating a com-
ponent framework and a component platform.[Szy02, p.548f] A component framework is
defined as a collection of rules and interfaces (contracts) that govern the interaction of
components. Component frameworks can be organized hierarchically being components
themselves. This fact is the key difference to a component platform , which is the foun-
dation for components to be installed and executed on. A component platform typically
contains an execution environment and provides additional services.

2.2.1 Related software component models

This section gives an overview of selected component models from Tab 2.2, which are
relevant for the approach in this thesis.
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Target environment
Name Server Desktop Mobile Embedded Syntax Composition
EJB + ˜ - - OO 2
CCM + ˜ ˜ ˜ IDL 2

Java Beans ˜ + - - OO 1
COM ˜ + - - IDL 2
.NET ˜ + + + IDL 2

Fractal ˜ + + + IDL 4
GCM + + + + ADL 3

SOFA-2 + + ˜ ˜ ADL 3
OSGI + + + + ADL 4
Kobra ˜ + - - ADL 3

MARMOT - - + ADL 3
BCF + + - - ADL 3
Koala - - - + ADL 3
Pin - - - + ADL 4

PECOS - - + + ADL 4
Jadabs - + + ˜ ADL 4

OpenCom ˜ + + + IDL 4

Table 2.2: Taxonomy of software component models (based on [LW06, Tei05])

.NET

The .NET framework is proposed by Microsoft implementing a simplified component
model for deployment purposes in the form of assembly files bundling several correspond-
ing classes. A component runtime is specified with the .NET Common Language Run-
time(CLR), which is implemented for the Windows operating system for different hard-
ware architectures. Another implementation is provided by the Mono project, enabling
the execution of .NET applications on other operating systems. Depending on the tar-
get architecture different specifications of the .NET framework are available. While the
full .NET framework is targeted for desktop computing purposes, it can also be applied
for server computing applications. On the other side the .NET Compact framework is
specified for handheld devices running a Windows CE based operating system. The .NET
Microframework has been introduced in the last years for embedded devices with low
memory and energy constraints like sensor nodes or small displays. Applications following
this specification are intended to be executed directly on the hardware or with a basic
support of an operating system through a hardware abstraction layer.

Another similar approach based on virtual machine technology, which is also very popular
for industrial applications is the Java platform initiated by Sun Microsystems. The initial
specification does not provide a component model, but is also leveraging a simple mod-
ularization technique for deployment purposes by distributing a collection of executable
files bundled in compressed archives. For enterprise and server computing purposes the
specifications of Java Enterprise Edition (J2EE) and Java Standard Edition (J2SE) are
defined, while the development of applications with reduced functionality for mobile and
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embedded devices is enabled by two configurations available for the Java 2 Micro Edition
(J2ME). The Connected Device Configuration (CDC) is targeted for handhelds, whereas
the Connected Limited Device Configuration (CLDC) is specified for very resource limited
devices (e.g. mobile phones).

OSGI

The OSGI component model [All09] has been specified to support the component based
development of Java applications. It is realized by a runtime environment, which is ex-
ecuted on top of a Java virtual machine. OSGI components are developed as bundles
providing services and extension points. These bundles can be used by other bundles be-
ing plugged into the OSGI runtime environment.As the OSGI reference implementation
is used as the basic framework for the Eclipse IDE and because of the popularity of the
RCP concept (discussed in Sect.2.1.4), this component model has become quite popular
in industry in the last years.

Business Component Factory

While the Business Component Factory [HS00] (BCF) approach of the OMG is not pri-
marily targeted for mobile or embedded devices its separation of the functional aspect from
the technical aspect of a software component is an important feature related to the ap-
proach presented in this thesis. Based on this separation different components are defined
in this approach:

• Distributed Component: is the most fine-grained form of a component, which is
implemented following any industrial component model.

• Business Component: This component implements a single autonomous business
concept and usually consists of one or more distributed component instances. A
business component can be deployed across several machines.

• System-level component: The largest grained component contains various business
components with clear defined interfaces to realize a specific business need.

Grid Component Model

The Grid Component Model (GCM) [BCD+09] has been proposed by Baude et al. in the
area of Grid Computing. GCM is extending the Fractal component model while tread-
ing components in a more coarse grained way. This attempt is required for facilitating
the construction of adaptable and autonomous components, which is also supported by
the abstraction of runtime resources through the concept of virtual nodes and deploy-
ment descriptors. These aspects are used in an iterative automatic mapping algorithm
trying to find a feasible deployment of the required components on the given runtime
environment. Additionally specific interface types meeting the requirements for multiway
communication in grid computing are supported by this approach. Finally the handling
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of non-functional(NF) properties is refined in contrast to Fractal. In both component
models controllers are responsible for handling the various NF properties by forming a
membrane around the managed component. To support the evolution of the execution
environment this controllers are additionally designed as pluggable components, enabling
a better adaptability in GCM compared to Fractal.

SOFA

The SOFA approach is specified by a hierarchical component model [BHP06], with two
types of components. Composition is performed by the first type, which consists of a black
box view of the component and a gray-box view defining the composition at the first con-
nection level. Composition is done by connecting the provided and required interfaces of
other composite components or primitive components. This primitive components repre-
sent the second component type in SOFA and are implemented by a component controller
and the platform specific implementation of the component.

SOFA components are specified in an ADL file, which serves for generation purposes of
the component implementation. After the implementation they are stored in a reposi-
tory, where they are loaded from by the SOFA runtime environment. Addressing several
challenges in component systems, such as dynamic reconfiguration support, explicit ac-
cess of the controller functions in the component implementation and support for multiple
communication styles, the succeeding SOFA-2 component model has been developed. A
model based approach is used in this component model for generation of the component
repository and the corresponding tool suite. The models are also used for the generation
of code skeletons for the implementation of the primitive components, for deploying the
components and for setting up the application.

The runtime environment is called a SOFAnode, which consists of several deployment
docks (a SOFA container and the corresponding virtual machine) and a repository for
retrieving the required components. While the component model and the used commu-
nication approach is platform independent, the platform specific implementation of the
domain specific functionality of the primitive components makes the reconfiguration of the
component application still difficult for not supported target platforms.

Jadabs

The Jadabs component model has been proposed by Frei in his PHD thesis [Fre05]. Fig. 2.6
depicts the relationship between Jadabs and other component models. Like the layered
architecture of distributed systems proposed by Tanenbaum (presented in Sect. 1.1), low
level services are realized by a platform while high level services are provided in a com-
ponent model. Like in the work presented by Teiniker several component models for
infrastructure environments have been considered, but Jadabs has been also compared
to other component models for mobile environments. Jadabs empowered the possibilities
of a service-oriented architecture and defined two types of runtime containers, namely a
segmented-adaptive container and a monolithic-dynamic container. The first one allowed
a transparent adaptation of components with dynamic loading and unloading, while the
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Figure 2.6: Classification of mobile component models [Fre05]

second one required the components to explicitly expose the interface for the adapta-
tion. The implementation of Jadabs leverages a service oriented architecture defined by
the OSGI specification (introduced in Sect. 2.2.1) and applies an XML mapping for the
platform independent communication mechanisms. Adaptation of components is done
with the application of aspect-oriented programming techniques. As a consequence the
modification of components is realized at source-level. This level has been used for the
implementation of the services, which contain the domain specific knowledge.

OpenCom

Coulson et al. proposed the OpenCom component model depicted in Fig. 2.7 in [CBG+08].
The proposed framework addresses the requirements of target domain independence, de-
ployment environment independence and is designed for a negligible overhead. These
issues are resolved by the component runtime kernel, which is responsible for loading
and binding components. This kernel is enhanced by extensions, which are themselves
implemented as components and are used for the realization of target domain specific re-
quirements. The extensions are applied in the realization of component frameworks, which
are defined in a coarser granularity as components. Component composition is used to
address some focused area of concern or to implement a well-defined extension protocol
accepting additional plug-in components. OpenCom components are instantiated inside
a capsule providing access to the kernel and supporting composition of other component
instances by connection of the corresponding interaction points (namely interfaces and
receptacles).

PECOS

The PECOS component model is introduced by Nierstrasz et al. in [NAD+02] and is
applied for the specification, composition, configuration checking and deployment of soft-
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Figure 2.7: Layers in OpenCom

ware components on field devices. Field devices are characterized as reactive, embedded
systems, which make use of continuously data gathering sensors to control connected ac-
tuators, valves or motors. Hierarchical composition of PECOS components is supported,
where a PECOS component can be (i) a passive (i.e. has no own thread of control), (ii)
an active (used for modeling longer-lived activities) or (iii) an event component (used for
hardware pieces frequently emitting events). Components are connected by ports and have
a number of property bundles. Additionally a behavior is specified for each component,
consisting of a procedure handling the data available on the ports and producing effects
in the physical world.

MARMOT

The MARMOT methodology is an adaptation of the KobrA [ABB+01] approach, which
is based on the usage of multiple UML diagrams for the specification and realization of
components. In the KobrA method (depicted in Fig. 2.8 these implementation models
are used for the transformation in a tool specific format (i.e. source code), which can be
automatically compiled into binary executable files; as a consequence the whole model
information is only available at system development time. While the KobrA methodology
is targeted for desktop and server computer systems, the MARMOT approach is used for
the specification of components running on embedded devices. In the discussion of inter-
action consistency checks in MARMOT component refinements a framework is introduced
by Choi in [Cho07]. This framework is based on the Kobra methodology and enables
a transformation of the UML specific implementation models (e.g. class diagrams and
statecharts) into consistency models (e.g. PROMELA of the SPIN model checker). Sabil
and Jawawi discuss the integration of the PECOS component approach into MARMOT
in [SJ09], presenting a process for analyzing and designing components of embedded real
time (ERT) applications with MARMOT. These components are then mapped for imple-
mentation to the PECOS component model by generating corresponding code skeletons,
which are extended to produce the target system.
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Figure 2.8: Steps and involved artifacts in the KobrA method[ABB+01]

2.2.2 Variability in component frameworks

Models in the context of software components can be used for the specification of the
component and for the definition of the component framework. The second aspect of
model usage targets the domain specific definition of a component framework to cope
with the heterogeneous constraints of the developed software components. The proposed
approaches make use of variability models as defined in the context of Software Product
Line Engineering (SPL) . A definition of SPL is given by Pohl et al.:

Definition: “Software product line engineering is a paradigm to develop software appli-
cations (software-intensive systems and software products) using platforms and mass
customisations.”[PBvdL05, p.14]

Mass customisation is typically provided by the selection of relevant features to tailor a
large-scale product to individual customer needs. The available features for selection are
specified as part of traditional software models or in a distinct model. Such a model is de-
fined by the orthogonal variability model, “that defines the variability of a software product
line. It relates the variability defined to other software development models such as feature
models, use case models, design models, component models and test models.”[PBvdL05,
p.75]

While the first aspect is increasingly used in modern component frameworks (e.g. SOFA2
discussed in Sect. 2.2.1), it is also supported by a specific component diagram in the UML.
Cheesman and Daniels [CD00] have proposed a process for the specification of component-
based software in the context of UML, which is based upon the usage of the various UML
diagrams for the definition of the contracts regarding the usage and the realization of the
corresponding components.

Targeted at the OpenCom component model discussed in Sect.2.2.1, the Genie approach
for generating middleware families has been introduced by Bencomo in [Ben08]. Several
levels of abstraction are provided to handle two dimensions of dynamic variability (i.e.
structural variability, environment and context variability). These variabilities are speci-
fied using domain specific modeling languages (DSMLs) serving as input to generators for
components, component configurations and reconfiguration policies. Such a generated do-
main specific middleware family makes up a middleware framework, which is represented
by different configurations at runtime depending on the selected variabilities.
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Another approach implementing a meta-component system for the SOFA component
model (see Sect.2.2.1), has been presented by Bures et al. in [BHM09]. This meta-
component system is configured using SPL techniques to create a component system out
of core assets defined in the solution space. The component system is used for the cre-
ation and management of corresponding software components by providing the specific
development, design and deployment tools as well as an execution environment.

2.2.3 Component support in Event Based Systems

Another approach fostering the decoupling of components in distributed systems has been
proposed in the context of Distributed Event-Based Systems. Mühl et al. give the following
definition of an event-based system:

“In an event-based mode of interaction components communicate by generating and re-
ceiving event notifications, where an event is any occurrence of happening of interest, i.e. a
state change in some component. The affected component issues a notification describing
the observed event. An event notification service or publish/subscribe middleware medi-
ates between the components of an event-based system (EBS) and conveys notifications
from producers (or publishers) to consumers (or subscribers) that have registered their
interest with a previously issued subscription.”[MFP06, p.3]

To limit the visibility of events between different components forming an EBS, the notion
of scopes is proposed by Mühl et al. by the definition of a meta-model enabling the
bundling of a set of components in a scope. Note that a component can also be member
of multiple scopes, which leads to the usage of an acyclic directed graph containing a
set of components and the relationship between these components. Furthermore different
types of interfaces are defined for scopes, based on the filtering mechanism of ingoing and
outgoing interfaces defined by simple components of an EBS. While these interfaces are
contained in a base Interface IC , additional scope specific filters can be applied to filter
messages exchanged between two components in a scope. Depending on the placement
of the filters on the beginning or end of an edge, which connects these two components
in a scope graph, the interface is named a selective interface or an imposed interface.
The combination of both interface types together with the base interface constitutes the
effective interface, defining which notifications are exchanged between two components.

2.3 Summary

In conclusion of the related work presented in the last sections Tab. 2.3 provides a tax-
onomy of the different approaches regarding the objectives of this thesis. According to
this taxonomy current component models are supporting mobile and embedded devices
and are usable for distributed organizations. While models are used for the specification
of component interfaces, the implementation of a component is principally provided by
a code artifact capturing the domain specific knowledge. These artifacts can be created
using model-based development techniques, typically applying code generation to produce
skeletons, which are extended by the developer. On the other side the usage of several
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Approach Multiple
domain
models

Transient
Model
Exten-
sion

Components Mobile
and Em-
bedded
support

Supports
appli-
cation
distribu-
tion

Evolution
Compatibil-
ity

Entity Con-
tainer

partially
(data)

no partially
[STK08]

no partially
(Back-
ingstore)

yes [STK08]

Domain-
Specific
Multimod-
elling

yes no no no no no

Business
Component
Factory

no no yes no yes partially

.NET no no yes yes no no
OSGI no no yes yes yes no
Jadabs partially no yes yes partially no
SOFA-2 partially

[BHM09]
no yes yes partially

[BHP+07]
no

OpenCom partially
[Ben08]

no yes yes partially
[CBG+08]

no

MARMOT yes no yes yes no no
PECOS no no yes yes no no
Event Based
Systems

partially
[MFP06]

no yes yes partially
[MFP06]

no

Table 2.3: Taxonomy of related work based on objectives of thesis

models covering various application domains has been proposed in literature, to tackle
the problem of incomplete specification of the model. As a consequence the model is able
to be interpreted at system runtime, enabling an adaptation of the system structure and
system behavior based on the problem space. As these approaches are typically running
on devices providing enough resources, separation and bundling of different models is not
a key aspect of these approaches instead the models are treated as a whole entity. On
the other side the applied metamodels are treated as separate entities, thus requiring a
management infrastructure for each of these metamodels.

The EC approach has proved useful for managing models based on a data metamodel, and
has also been applied for the definition of model typed component interfaces. As the EC
reflects a layered metamodel hierarchy the usage of other metamodels is feasible.

2.3.1 Objectives of this thesis

Based on the challenges discussed in Sect.1.1.4 and the concluded related work presented
in the last section, the following objectives for this thesis can be derived.
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Objective 1: Support bundling of multiple models containing the complete
specification of a problem specific functionality and foster reuse of these bun-
dles across organizational boundaries

MultiModeling aims at the application of different models containing various views of the
modelled functionality. Anyway separating these models in several parts and bundling
of various model parts according to the logical organization of the modelled software
is not targeted by such approaches. In contrast the proposed methodology enables the
specification of components at the model level. For deployment and reuse purposes the
bundling of several partial models is treated as one artifact. An architecture of a system for
the specification and execution of such multimodel-based artifacts is required. Furthermore
the reuse of these artifacts for the development of new functionalities should be supported
by this architecture.

The challenge of artifact heterogeneity in each layer as motivated in Sect. 1.1.4 is tackled by
this objective. The realized system should be based on existing component technologies,
which provide mature techniques for the specification of static interfaces. Such static
interfaces are a consequence of the application independent and generic definition of the
system specific components. The portability of the proposed system on other platforms is
eased by this fact.

Objective 2: Enable dynamic configuration of the runtime system respecting
resource constraints

The combination of several models (based on distinct meta-models) used for the implemen-
tation of a specific component determines the required plug-ins of the model interpretation
architecture, which are loaded at execution time of the component. Furthermore the meta-
model of the component can be shared by the model specific plug-ins. Both aspects are
supporting resource constraints typically to mobile and embedded devices. This approach
provides a bridge between the static meta-model used in current Model Driven Software
Development approaches and the separated meta-models of current MultiModelling meth-
ods.

Objective 3: Enable shared usage of resources

A clear separation of concerns between resource owner and resource user should be sup-
ported by the proposed system. This requirement is tackled by the concept of Virtual
Organizations, which are made up by several members of the runtime environment. The
resource access methods are contained in the action statements of the used models. This
enables the validation of granted resource rights to the component by verification of the
specific models at runtime.

2.3.2 Contributions of this thesis

The following contributions are claimed as outcomes of the research in this thesis regarding
the objectives presented in the previous section .All contributions have been evaluated by
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prototypes during the case studies summarized in Chapter 4 as well as in the specific
papers presented in Chapter 6.

Contribution 1: Model-Based Software Components supporting the bundling
and distribution of multiple models

The concept of Model-Based Software Components (MBSC) is proposed in the publication
available in Sect. 6.1, enabling the definition of a problem specific functionality with multi-
ple models realizing different views on the specified component. Furthermore the concept
of MBSC connectors specified in the various models is used for combining different MB-
SCs for the realization of new functionality. For specification of actions and queries in the
different models of an MBSC, a domain specific language named ECQL is proposed the
publication available in Sect. 6.2. The distribution and management of models in a Mobile
Grid environment has been evaluated for data models in the publication in Sect.6.3.

Contribution 2: Transient Model Extension enabling a plug-in based runtime
node

The concept of MBSCs has been enabled by the theory of Transient Model Extensions
(TME) presented in Sect. 6.4 and Sect. 6.5, allowing the dynamic extension of a meta-
model to enable the specification and validation of corresponding model elements at run-
time. This aspect has been considered in the construction of a plug-in based runtime node
as discussed by the publication in Sect. 6.6, where all plug-ins share a dynamically as-
sembled meta-model defined by the executed MBSC. The primary mechanism of interface
compatibility for connecting several of these runtime nodes is presented in the publication
available in Sect. 6.7.

Contribution 3: Additional nodes enabling the shared usage of resources

To provide a separation of concerns between the executed MBSC and the used resources,
the nodes discussed previously have been embedded in a distributed runtime system. They
have also been extended with management support for virtual organizations realized by
this runtime system as discussed in Sect. 6.8. Furthermore the TME approach has been
applied to extend the ECQL language with resource specific methods. Each runtime node
targeted for executing an MBSC is checked for the existence of these required methods
during the MBSC instantiation. In case of a missing method the execution of this MBSC
is circumvented by this runtime node.
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Chapter 3

Design of a runtime system for
MBSCs

As a tribute to the increased dissemination of mobile and embedded devices, their role
in the realisation of business processes gets more important. A mobile environment is
formed by all devices contributing to this business process, with each device defining a
target platform at several layers as noted by Atkinson and Kühne [AK05]. Model Driven
Development allows to deal with these heterogeneity in the target platform at system
development time, with the state-of-the-art approach of code generation for the executable
artifacts. This approach hampers the reconfiguration support of these artifacts, because
the implementation is bound to a target platform at the development time.

The approach presented in this thesis makes use of the models at runtime of an application
by implementing a model aware middleware, which enables the specification of components
and their assemblies by models. These models are interpreted by a distributed plug-in
configurable runtime environment.

Fig. 3.1 gives an overview of the layers involved in this approach based on the layered
model introduced in Sect. 1.1. Like in traditional MDSD concepts a platform specific
and a platform independent layer (i.e. application specific layer) is defined. On the left
side the publications written during the creation of this thesis are presented, which have
highlighted the following topics.

• Model Based Software Components
For developing applications in a platform independent way a model-based devel-
opment approach is presented in Sect. 6.1, which is based on the interpretation of
a set of models, providing different views on one software component – like state
machine and class diagrams. Additionally the integration of components build with
this approach in the design of a mobile information system is presented.

• Usage of data models at runtime of mobile grid environments
The need for managing data access in mobile applications, regarding concerns of
privacy and data integrity is discussed in Sect. 6.3. By relying on a mobile grid
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Figure 3.1: Layered architecture of proposed approach and publications corresponding to
the different layers

infrastructure, the central concept of a virtual organisation can be extended to en-
able the exchange of data models between the members of this VO, containing the
externally accessible data structures of the publishing member. By extending the
model-based approach for data access in a data intensive system, mobile devices are
enabled to dynamically use data of a mobile grid system,

• Transient Model Extension
The mechanism of Transient Model Extension (TME) is discussed in Sect. 6.5 and
Sect. 6.4 recognizing the fact that software is often constructed using a layered ap-
proach to encapsulate the functionality in different layers. Individual requirements of
each layer demand layer specific data structures, which typically provide redundant
information with respect to the data source. A mechanism for transient extension
of a data model is presented, allowing a basic data model to be used by every layer,
being extended by additional attributes and classes for satisfying layer specific re-
quirements.

• Resource node and runtime node architecture
In Sect. 6.6 and Sect. 6.8 a pervasive runtime architecture is presented that ex-
plicitly honors the ownership and realm of control of hardware devices, computing
resources, device-connected I/O resources, and application components. Based on
such an architecture, their owners, while pursuing their very own business models,
can cooperatively form and take down Virtual Organizations (VO) to run applica-
tions in the sense of Grid Computing and Utility Computing. Heterogeneous plat-
forms supporting runtime reconfiguration are connected with the help of a portable,
plugin-extensible runtime environment, which is able to run model-defined software
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components (MBSC). MBSCs consist of a set of high-level models for classes, state
machines or user interface descriptions that are directly interpreted by these archi-
tecture’s runtime nodes. To enable also the model-based specification of applications
a domain specific language has been proposed, which enables the specification of the
access and manipulation statements for data entities provided by the various MCCs
in a model.

• Enterprise Service Bus Connectors based on model compatibility
Integration of various software systems is an important issue in the execution of dis-
tributed business processes. Assembling of loosely coupled services via XML based
protocols is a frequently used technique today. To overcome the struggle between
safety of a strong typed interface and flexibility of generic parameters, an approach
is presented in Sect. 6.7. This approach used model-typed interface parameters to-
gether with the idea of model compatibility verification. Separated ownerships of
service provider and consumer interfaces has been respected and a mediating connec-
tor based on platform-independent, model-based functional interface reconciliation
has been introduced. This approach could be used in the proposed runtime system
for coping with differences between connected VO Nodes.

3.1 Model-Based Component Container

The concept of the Model-Based Component Container is based on the four-level meta-
model hierarchy proposed by the OMG (see Sect. 2.1) and the lessons learned from the
application of this hierarchy for data models in the EntityContainer (EC) approach (dis-
cussed in Sect. 2.1.1).

As proposed in the EC approach (presented in Fig. 2.3) the elements of the model layer
M0 (containing the application data) as well as of the model layer M1 (containing the
application model) are each managed by a separate EC instance. The static layer M3
specifies the basic meta-model and is shared by all MCC instances. The layer M2 provides
an MCC specific meta-model, which defines the model paradigm represented by this MCC
instance. The information provided by this layer is also used by a controller interpreting
the application model M1 for manipulation of the application data M0. The introduction
of this controller is the major extension of the original EC concept, enabling the application
of the MCC on models representing other information than data (e.g. user interface or
behaviour).

3.1.1 Transient Model Extension

Another addition to the original EC concept as proposed by Schmoelzer et al. [SMK+05]
is the technique of Transient Model Extension (TME) discussed in Sect. 6.4 and Sect. 6.5.
The key idea of the TME proposal is the dynamic extension of a model managed by an
EC, to enable the creation of new data elements in the next higher model layer. Initially
this concept has been proposed for the extension of the data model, which also specified
the structure of the persistent storage. This technique enables dynamic attributes, which
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are not managed by the persistent storage. An exemplary application of this approach is
the addition of an additional attribute containing the age of a person, which is based on
the difference between the birthday provided by the persistent datastore and the current
date provided by the framework of the EC.

An additional benefit of the TME approach is the possibility to register callbacks, which
are executed by the EC infrastructure upon the creation and update of an TME defined
element. This mechanism can be applied to augment the model with platform specific
code.

As the TME can be applied for the creation of any model element defined by the corre-
sponding metamodel and its application does not effect the original model used by the
EC, it can be also applied to merge two different models (which is similar to the approach
of package merge as specified by the UML [Gro09c]). While the UML package feature is
mainly used at the runtime of the corresponding development tools for the software model,
the TME approach can also be used to support the execution of models at the runtime of
the modelled application.

3.1.2 Model View support

The usage of different model views to light specific parts of an application has been dis-
cussed in Sect. 2.1.2. According to the previous section, the EC approach was initially
proposed to handle data entities, which are retrieved and created for a persistence storage.
A specific data model is used by the EC and for the creation of this persistence storage.
Aiming at the model-based specification of a whole application requires the support of
various model views by the realizing framework, which can be sometimes applied for the
same domain. Exemplary model views for the specification of application behavior are
state machines or petri nets (as suggested by Jorgensen [Jor09]). For the definition of a
specific user interface different model views can target an interaction via a graphical or
textual interface. Following the OMG meta-model hierarchy approach each modeling view
is specified in a specific meta-model managed by the M2 layer of an MCC.

Additionally a view specific controller can be defined mapping the given information of the
model at layer M1 to data at layer M0 and to corresponding platform specific instances. A
corresponding meta-model targeting the definition of data, user interface and behavior (via
a statemachine) of an application running on mobile handhelds is proposed in Sect. 6.1.
The model layer organization of different MCCs is discussed in Sect. 6.6. It could be
demonstrated that the data and model layer of each MCC are managed by distinct EC
instances while the M2 model can be constructed by merging all specific M2 models of
the different MCC types. As a consequence this M2 model can be provided by one EC
instance, which can be shared among the different MCCs. This technique reduces the
memory consumption of the overall approach, which addresses the memory constraints of
mobile and embedded devices.
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Figure 3.2: MBSC models and connectors

3.1.3 Entity Container Query Language

A runtime environment consisting of several MCCs has been introduced in the last section
to cope with various models representing different views on the modelled application. To
enable a full definition of the application at the model level, a mechanism is required
for specification of interaction between these different views. One example of such an
interaction is the binding of data specified in a data model to a user interface control
specified in the user interface model. Another example is the manipulation of data or the
user interface as a consequence of an event or a state change in a statemachine. Also the
retrieval of data values for checking certain conditions in a state machine is an example
of such an interaction.

These requirements are targeted by the Entity Container Query Language (ECQL), which
is discussed in Sect. 6.2. ECQL is defined as a Domain Specific Language for formulating
action and queries to be executed on an MCC and is based on a specific metamodel
as suggested by Kleppe [Kle08]. In contrast to existing proposals for action and query
languages (like OCL used for specification of constraints in models or OQL which enables
the definition of queries based on a data model) the language elements of ECQL can be
extended at runtime via the TME mechanism, because ECQL statements are also managed
by the EC infrastructure. This aspect is used in the runtime platform to specify the usage
of shared resources in a model as discussed in Sect. 3.3.1.

3.2 Model-Based Software Component

Based on the presented MCC concept and the insights from the research on Model Typed
Component Interfaces [STK08] the concept of Model Based Software Component (MBSC)
has been proposed. This concept is demonstrated in Fig. 3.2, which depicts different
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MBSCs. These MBSCs are defined by multiple models. As visualized by the icons of the
different (meta)models (presented in the discussion of MultiModelling in Fig. 2.4), each
model is based on a specific meta-model, which provides a specific view on the modelled
application part. Following the component concept, each MBSC can make use of the
functionality provided by other MBSCs via a connector. These connectors are specified
in the corresponding models and can be applied for a horizontal or a vertical connection
of two MBSCs as demonstrated in Fig. 3.2. The type of connection is reflected in the
deployment of MBSCs at runtime; while horizontally connected MBSCs are deployed
in the same runtime node, vertically connected MBSCs should by deployed in different
runtime nodes for supporting the seperation of execution states.

An example for horizontal connection is the usage of an MBSC, which defines a distinct
control, in an MBSC used for a dialog specification. An example of a vertical connection is
the usage of the dialog defining MBSC by an MBSC containing a specific business process.

As each MBSC defines all model elements required for its execution in its own models
the specified connectors can be used for compatibility checks between the local model and
the currently used model of the connected MBSC enabling to deal with distinct models
resulting from the MBSC evolution as discussed in Sect. 6.7.

3.3 Model-Based Middleware

The first part of this chapter has discussed the usage of multiple models covering distinct
parts of an application specification and the split-up of these models. On the other side
the bundling of specific model parts in an artifact following the definition of a component
has been proposed in the MBSC approach. In this section the design of a middleware
targeted for the MBSC execution is presented, which is accomplished by the application
and organization of the required MCC instances. This middleware is also discussed in
Sect. 6.8.

Fig. 3.3 gives an overview of the components used in this middleware. Note that each
of this components can be defined following an existing component model (e.g. SOFA,
Fractal or OSGI). The interfaces of these components are driven by the evolution of the
model interpreting middleware and are thus independent from the application evolution,
which is solely defined by the corresponding models.

The number of types of MCCs is determined by the required meta-models of the executed
MBSCs. Each MCC is thereby representing a plug-in in the model interpreting middleware
as discussed in Sect. 6.6. This design is following the micro kernel design pattern as
proposed by Buschmann et al.:

“The Microkernel architectural pattern applies to software systems that must be able
to adapt to changing system requirements. It seperates a minimal functional core from
extended functionality and customer-specific parts. The microkernel also serves as a socket
for plugging in these extensions and coordinating their collaboration.” [BMR+96, p.171]

The customer-specific parts are hereby realized via the corresponding MCC types, which
also act as the technical components proposed in the initial MBSC approach (see Sect.6.1).
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Figure 3.3: Overview of model interpreting middleware framework

The micro kernel itself is realized by two specific components, which are discussed in the
following section.

3.3.1 Resource Node

A resource node (RN) is the essential part of the model-based middleware framework.
It provides the ability to manage the computing and I/O resources used by the inter-
preted MBSCs. Each hardware device participating in the distributed system (made up
by all devices running the model-based middleware) is required to execute at least one
resource node. The owner of the resource node is the same as the owner of the device
executing this resource node. He is responsible for the identification of the RN managed
hardware components by the selection of specific methods. These methods are applied as
TME statements extending the ECQL meta-model and can afterwards be used in ECQL
statements of the MBSCs executed on this resource node.

As noted before the execution of an MBSC is performed by corresponding MCCs. These
MCC instances are not directly executed and managed by the resource node, but are
bundled in an additional component called virtual organization node discussed in the
following section.

3.3.2 Virtual Organization Node

A virtual organization node (VON) is used for executing one or more MBSCs by managing
the required MCC instances holding the models or providing access to MCCs running on
other VONs via proxy MCC instances. One of the main differences between an RN and a
VON is the ownership of the corresponding instance.

While the last section motivated the identical ownership of the hardware device and the
RN, this requirement is not targeted for the ownership of a VON. Considering the applica-
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tion of this model-based middleware in a distributed system following the Grid Computing
approach, the deployment of partial applications specified as MBSCs on a hardware de-
vice to meet required Quality of Service constraints seems feasible. In this situation the
owner of the RN can create a new VON managed by his RN while changing the owner of
this created VON to the owner of the deployed MBSC. Because a VON only can access a
subset of the hardware available in the RN and this subset is specified upon the creation
by the owner of the RN, this approach realizes a sandbox for the executed component as
available in current specifications of virtual machines (e.g. Java Virtual Machine).

A VON as suggested by its name can be a member of several virtual organizations. This
enables to control the usage of the MBSCs executed by a VON by MBSCs running on
another VON, as both VONs are required to belong to the same virtual organization.

As noted before the migration of MBSCs is a feasible use-case of this middleware, which
is realized by the migration of a complete VON to another RN. Note that each VON
is addressed by a specific Uniform Resource Name (URN), which is independent of its
currently executing RN. The RN is responsible for providing a mapping between the URN
address and the current address used for reaching this device.



Chapter 4

Evaluation and case study

Specific parts of the presented architecture have been implemented prototypically. The
implementation was evaluated in case studies in the business domain of logistics. Some
specific data of these case studies is depicted in Tab. 4.1. Two case studies targeted the
design of model-based software components on mobile clients of the software WAMAS R©

provided by Salomon Automation GmbH, while the third case study targeted the execution
of MBSCs in the client specific part of the RFID middleware You-R R© OPEN, which is
executed on embedded devices (e.g. RFID readers).

4.1 Supporting mobile clients in WAMAS R©

The first two case studies were realized in the business domain of warehouse logistics.
In this business domain a warehouse management system (WMS) is used for supporting
the various key functions of a warehouse (yard control, receiving and staging (aka incom-
ing goods), opening, counting and ticketing, internal transportation, storage, order pick
and distribution, packaging, weighing and manifesting,customer returns and out-of-season
product transfer and staging and manifesting) as defined by Mulcahy in [Mul93]. A tradi-
tional WMS is organized following the client-server paradigm, where the client program is
executed on desktop computers, mobile handheld devices or pick-by-voice clients. Fig. 4.1
gives an overview of different mobile devices, which are supported by WAMAS R©.

While a traditional WMS is operated for one specific warehouse or a particular group
of warehouses, a WMS designed to support recent economic trends like supply chain
management should support different stakeholders. For an analysis of these stakeholders
different levels of interests are defined for the business domain of warehouse logistics:

Warehouse: People working in a warehouse are assisted by mobile devices like mobile
handhelds, pick-by-voice clients and liftfork terminals. All of these devices are con-
nected by wireless technology allowing data communication with guaranteed quality
of service.

Company: Mobile handhelds are also used between two warehouses, e.g. in assisting
lorry drivers delivering goods to end consumers. In this use case wireless protocols
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WMS Supplier WAMAS YRO
Models Data ◦ ◦ •

Behavior ◦ •
User interface ◦

TME X X
Interface X X X

Platform J2ME X
.NET CF X
.NET MF X

Communication XML X
JSON X X
2PC X X

Table 4.1: Overview of case studies

for larger distances (GPRS, UMTS) are used, and security at the communication
layer gets more important. Another use case of a WMS targeting this level of interest
is the request of a warehouse worker to the stock information of another warehouse
in the same company.

Virtual Organization: External persons supplying the warehouse are equipped with
mobile phones allowing them to communicate with a WMS, e.g. for providing infor-
mation about their arrival and their delivered goods. In this level communication
with several WMS at the same time is an important requirement (e.g. for scheduling
the deliveries at different warehouses).

Two case studies were done for use cases situated in the incoming goods stage of a ware-
house. One case study was brought to completion as part of a master thesis [Kre08] and
considered the stakeholders of a Virtual Organization formed by a warehouse and its ex-
ternal suppliers. The second case study was conducted on an industrial prototype, which
consisted of a mobile client application assisting warehouse workers during the incoming
goods stage.

Both case studies were based on the same domain model (containing the logistic specific
data structures). The first one realized a workflow for announcing the data of delivered
goods before their arrival in the warehouse. The second case study implemented a workflow
of registering the delivered items in a warehouse.

4.1.1 Client for Virtual Organization

In the master thesis the concept of the EC was extended to support distributed transac-
tions in form of a two phase commit protocol based on JSON for supporting mobile clients
operated by external persons of a warehouse. The delivered goods were first registered
by the supplier in his mobile application and were then selected for delivery in a specific
warehouse.
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Figure 4.1: Some mobile devices supported by WAMAS R©
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Figure 4.2: Comparison of XML and JSON encoding

The main focus of this case study was the encoding of the model-based data transmission
using the JSON protocol, thus providing the basic mechanism for synchronization of MBSC
runtime nodes. Although the model based interpretation of user interfaces was considered,
the user interface was realized following a traditional programming approach, because of
the missing MBSC basic framework at the time of this case study. Nevertheless the
design of the user interface components was standardized by the application of Object-
oriented design techniques in a way that would enable the transformation of the code
driven specification in a model of the user interface.

A prototypical application was realized using J2ME CLDC, which is the widest supported
standard for writing mobile phone applications and the Jade agent framework for enabling
communication with the mobile phone. A dialog for entering article related information is
depicted in Fig. 4.4a. Note that the article in these panel could be provided by one MBSC,
which could be loaded from the selected WMS, thus allowing the input of Warehouse
specific article information, while the rest of the dialog does not need to be changed.

The usage of JSON for data encoding proved useful, which is demonstrated by Fig. 4.2.
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Figure 4.3: Realized incoming goods process

Note that the best solution consisting of compressed XML files requires an additional
conversion step, which is a time and energy consuming task. The JSON encoding of the
model data was refined in the third case study, which will be discussed in Sect. 4.2.

4.1.2 Client for incoming goods stage

The second case study was accomplished on a mobile client supporting warehouse workers
in an incoming goods process for a logistics provider.

In this case study the behavioral description of the warehouse tasks and the user interface
activities using hierarchical state machine models was tested. The client application was
realized using the .NET Compact framework and applied the behavioral model and the
data model for generative purposes, while the user interface model was specified in source
code based on a first version of a user interface plug-in. This plug-in provided a specifica-
tion of common controls used fro the mobile client and was also refined and implemented
in a second prototype based on J2ME CDC. Instead of JSON the data representation of
this case study was based on XML because of the used webservice technology for commu-
nication purposes between the .NET-based client and the Java-based server.

Fig. 4.4b depicts a dialog used by the warehouse worker for the specification of related
information of an incoming item. Note that the same information is captured by this
dialog and the dialog presented in the previous case study, which is based on a compatible
data model.
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(a) external supplier (b) warehouse worker

Figure 4.4: Dialog for specifying article related information

4.2 Moving functionality from You-R R© OPEN to RFID
readers

The third case study was performed on the shared usage of reader embedded functionality
in an RFID middleware [Lei10]. Based on the results of the two first case studies and the
proposed MBSC architecture a MCC based runtime node architecture was implemented
using the .NET Microframework [Kuh08]. While the case study in WAMAS featured code
generation or the application of language specific frameworks (e.g. webservice support
provided by .NET) to apply the MBSC models, this project featured a full implementa-
tion of the MCC architecture, enabling the interpretation of data and behavioral models
at runtime. Furthermore the resource node (discussed in Sect. 3.3.1) and the virtual
node component (discussed in Sect. 3.3.2) of the model-based middleware framework were
implemented.

Based on this implementation a scenario targeting the support of shared usage of an RFID
reader in a building access control system has been evaluated in [Lei10]. Four organizations
are involved in this scenario, each running at least one virtual organization node on the
shared RFID reader as depicted in Fig. 4.5. The owning organization of the RFID device
is the facility management of the building, which is also operating two VONs on the
device. The VON FacilityMgmt N1 is executing an MBSC to split up the data provided
by detected RFID tags on this reader. This MBSC is used by two MBSCs executed in the
corresponding VONs of the departments located in this building. Each MBSC implements
an authentication mechanism to check if the holder of the detected RFID tag is granted
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Figure 4.5: Scenario for RFID case study [Lei10]

access to the building. The second VON owned by the facility management is used for
separating the concerns between the departments and the security service, which is also
running an MBSC on the reader. This MBSC is used for locking and unlocking the door
managed by this RFID reader.

Additionally a mobile device owned by the security organization was included in this
scenario. Two MBSCs were executed on this device for controlling the door and display-
ing a log message for each user trying to access and leave the building. Several virtual
organizations are created in this scenario:

• One VO is defined by the MBSC FacilityMgmt N1, DepartmentA N1 and Facili-
tyMgmt N2.

• Another VO is defined by the MBSC FacilityMgmt N1, DepartmentB N1 and Facil-
ityMgmt N2

• The third VO is containing the MBSC FacilityMgmt N2, SecService N1, SecService
N2 and SecService N3.

This scenario demonstrated the realization of different VOs on a shared embedded device.
Also the migration of MBSCs to other devices can be studied in this scenario, by moving
the MBSCs owned by the departments to other resource nodes. Leitner also presented
measurements for the actions required for migrating or updating an MBSC as visualized
in Tab. 4.2

The storage requirements for the applications running on the reader are depicted in
Fig. 4.6. While the middleware part is a static part regarding the application functionality,
the size of the interpreter is determined by the different views provided by the executed
MBSCs. In this scenario two interpreters where applied to deal with the data view and the
behavioral view of the executed MBSCs. The device specific functionality is also affected
by the different extensions in the ECQL statements of the MBSC to access device specific
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CPU speed [Mhz] .NET platform Time [s]
200 Micro 10
600 Compact 2
1400 Full 1

Table 4.2: Transferring models to a VON [Lei10]

86,5
30%

135
46%

47,4
16%

22,4 
8%

Code size [KByte]

Interpreter 
(MCC)
Middleware 
(VON+RN)

Device specific
Models (MBSC)

Figure 4.6: Code size of implemented framework and models used in scenario

functionality. The size of the models is determined by the number of different MBSCs
running on this device. In this case study five MBSCs were executed on the RFID reader
and two MBSCs were executed on the PDA owned by the security service.

The case studies have demonstrated the feasibility for using models to define application
parts in a structured and reusable way. The results provided by Kremser and Leitner
demonstrated the performance improvements for the communication by the application of
JSON and the minimal storage requirements for the models compared to the framework.
On the other side the results presented by Leitner on the increased memory requirements
of the running application pointed out the drawbacks of the multi-layered model hierarchy.
This disadvantages could be reduced by the application of programming languages with a
lower abstraction for coding the framework (like C) and the usage of more static structures
for managing the model elements.
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Chapter 5

Conclusion

A runtime system for executing model-based software components has been presented in
this work, which targets to increase the support of distributed application development for
mobile and embedded devices. The proposed runtime system is targeted for distributed
systems made up of mobile and embedded devices, which are indicated by constraints on
the devices resources (e.g. CPU cycles, memory, available power) and unstable network
connections. A three-layered architecture has been introduced consisting of application
layer, middleware layer and resource layer. This architecture has been used for illustrating
the heterogeneity of the artifacts contained in each layer and the different roles of people
managing and using these artifacts.

5.1 Overview of proposed framework

Related work has been presented on the usage of model-based techniques for separating
the application domain specific concepts from the target platform specific code. Also
currently proposed software component models for mobile and embedded devices have been
examined. As a result of discussing the related approaches a missing modularization of the
software models used for defining the application domain was recognized. Furthermore the
limited usage of software models in current component models was noted; the approach
of feature modeling for selecting the relevant parts of the software component model
was found to be problematic regarding the resource constraints of mobile and embedded
devices.

The proposed runtime system is situated in the middleware layer and is made up of several
components. A model-based component container (MCC) is used for interpreting a given
model, which represents a specific view on a model-based software component(MBSC). For
accessing model elements managed by other MCCs a model-based action and query lan-
guage has been defined. All MCCs holding the models defined for an MBSC are managed
by a virtual organization node (VON). An application made up of MBSCs is therefore ex-
ecuted by several VONs lying in the same virtual organization, which is an organizational
concept proposed in the field of grid computing supporting a “[. . . ] dynamic group of
users with a common goal coming together for a specific, short-lived collaborative venture
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Figure 5.1: Triangle of next generation Internet Computing [FZRL08]

[. . . ]”[BJK09, p41]. All VONs of a device are hold by a resource node (RN) component,
which manages the access to the hardware resources by assigning designated hardware re-
sources to specific VON instances. This concept provides a separation between the owner
of the hardware and the owner of a deployed MBSC, enabling a trusted management of
the used hardware resources by an MBSC.

The proposed framework has been evaluated in several case studies featuring two software
products in the business domain of logistics (a warehouse management system and an
RFID middleware), which are currently handling the used mobile and embedded devices
as following a thin-client approach. This solution requires a good network connection while
the resources of the devices are not fully accessible. The case studies have outlined the
support of the proposed framework for enabling application specific functionality on the
mobile and embedded devices while respecting the constraints of the distributed system
and its members. Examples of such functionality are the collection of goods with a mobile
industrial handheld without a network connection or buffering read RFID tags locally on
an RFID reader in case of network problems.

As a consequence this architecture can be used to manage the heterogeneity on each layer,
by concentrating the usage of general purpose programming languages and corresponding
component frameworks in the middleware layer, while the solution of application specific
problems is specified in different models, each one supporting the best fitted modeling
technique for the problem managed by the specified view. A separation of concerns is
introduced by the microkernel based architecture consisting of resource node and vir-
tual organization node components and of model view specific model-based component
containers acting as plug-ins to the runtime system. Fig. 5.1 depicts this separation of
concerns as proposed by Foster et al. in their analysis of current cloud computing ap-
proaches [FZRL08]. By enabling the dynamic placements of executed MBSCs (containing
the data of the application) on VONs running on other devices (the cloud computing as-
pect) the user has full control of its application within the targeted virtual organization
(the client computing aspect).
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5.2 Future work

The proposed framework is targeting the characteristic challenges for distributed perva-
sive systems as noted by Tanenbaum and van Steen [TvS06]. The pervasive computing
paradigm has emerged out of the mobile computing paradigm as noted by Saha and
Mukherjee, stating that “the ’anytime anywhere’ goal of mobile computing is essentially a
reactive approach to information access, but it prepares the way for pervasive computing’s
proactive ’all the time everywhere’ goal.” [SM03, p.26]

But again this paradigm and the corresponding distributed system can only be seen
as an intermediate step towards the vision of ubiquitous computing as postulated by
Weiser [Wei95]. This fact is also underpinned by the issues reported for ubiquitous com-
puting by Costa et al. [dCYG08], which are illustrated in Fig. 5.2.

According to their categorization distinguished solutions are provided in different lifetime
phases of an ubiquitous system. While framework support is required for tackling issues
at the design time, a middleware should provide the corresponding methods at the load
time and runtime of the ubiquitous system.

While the issue of heterogeneity is targeted by the application of software models, the
issue of mobility is solved by the various types of MCCs and their platform specific imple-
mentation. The scalability is managed by the resource nodes and the virtual organization
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nodes of the architecture, which are also responsible to manage the privacy & trust and
the dependability & security issues.

This last two issues require further research in the integration of model-based techniques
for analyzing the behavior of the application in the framework, to detect a fraud behavior
in early stages.

Another field of future work is the realization of additional models to foster the invisibility
of an application as well as to consider the further abstraction of the user interface. Also
solutions for supporting the deployment and execution of MBSCs on VONs and RNs
depending on the current context of this framework components should be considered.



Chapter 6

Publications

This chapter provides the publications written during this thesis ordered after the signifi-
cance to the contributions as discussed in Sect. 2.3 and depicted in the layered architecture
in Fig. 3.1.

The concept of Model-Based Software Components is described in Sect. 6.1, which has been
presented at the 16th IEEE International Conference and Workshops on Engineering of
Computer-Based Systems in San Francisco in 2009. The usage of several models containing
the functional specification of a component as well as the connection of several components
with specific model connectors is discussed in this publication. The runtime architecture
described in Publication 6.5 and 6.8 is represented by the technical part of the Model-
Based Software Component. This paper also presented the results of the case study on the
industrial prototype of a mobile application supporting warehouse workers in the incoming
goods stage, which has been conducted with the company Salomon Automation GmbH.

A domain specific language for accessing the other models of the specified MBSC and its
connected MBSCs is discussed in Sect. 6.2. This paper has been presented in April 2010
at the 17th IEEE International Conference and Workshops on Engineering of Computer-
Based Systems in Oxford and is based on a scenario developed in the case study of the
RFID middleware.

The second WMS specific case study discussing the usage of internal and external views
on models of an MBSC has been presented in Sect. 6.3 at the IASTED Conference on
Parallel and Distributed Computing and Networks in 2008. This publication focused on
the sharing of data models and presented the case study of a supplier working with a
warehouse management system.

As data models for desktop and server systems where the initial application domain of the
EntityContainer, the concept of Transient Model Extensions has been also demonstrated
with this kind of models. The results of applying this concept on different tiers of an
information system are discussed in Sect. 6.4 and Sect. 6.5. They have encouraged the
usage of this concept for connecting the different models of an MBSC at runtime.

This connection has been enabled by the application of the TME concept on the layered
EntityContainer architecture at runtime, which resulted in a runtime plug-in system for
the MBSC concept as presented in Sect. 6.6.
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For the connection of various nodes (each executing different MBSCs) of this runtime
plug-in system, the concept of component connectors based on model compatibility as
discussed in Sect. 6.7 is applied. This paper has been presented at the 34th EUROMICRO
Conference on Software Engineering and Advanced Applications (SEAA).

Finally Sect. 6.8 contains the publication at the 15th IEEE International Conference on
Engineering of Complex Computer Systems, which discussed the results of the RFID
middleware case study focusing on the shared usage of resources and the separation of
MBSC execution nodes and hardware resource management nodes.
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Abstract

To foster the reuse of software artifacts various ap-
proaches like Component Based Software Engineering or
Model-Driven Software Development have been proposed.
These approaches support a developer in generating and
implementing platform specific software artifacts, which can
be executed on the chosen runtime architecture. To facilitate
portability of these artifacts to other runtime architectures
it is important to model various aspects of the artifact (i.e.
user interface, behavior, data) in a platform independent
way. While this abstraction helps to reduce complexity of the
problem, choosing the right granularity of methods provided
by this artifact is another important issue for enhancing
software quality.

Considering these aspects a model-based development
approach is presented, which is based on the interpre-
tation of several model views – like state machine and
class diagrams being provided by a model-based software
component. Additionally the integration of components build
with this approach in the design of an information system
is discussed. The proposed architecture is evaluated by
an implementation in the software application domain of
logistics.

1. Introduction

Dealing with business processes distributed over a large
landscape of existing and new heterogeneous systems that
are under the control of different owners is a main goal
of the Service Oriented Architecture paradigm [6]. SOAs
are build on services providing well defined interfaces, thus
hiding technical details of a service implementation. They
can be loosely coupled to reduce dependencies between the
different systems and can be composed to realize complex
requirements.

Loose coupling is also one of the main motivations for the
application of Event-Based Systems [9]. Application scenar-
ios of systems, which are designed following this approach,
contain distributed event publishers and subscribers, being
loosely coupled through events. This paradigm is also well
suited for mobile devices, like cell phones or personal digital

assistants, acting as participants of such systems to deal with
the constraints of the mobile connection.

Different approaches for solving the constraints on mobile
devices (like energy management, context awareness or user
interfaces) have lead to an increasing number of different
hardware platforms and operating systems, which constitute
a heterogeneous execution environment.

To deal with these heterogeneous runtime environments
while enabling a better support for both types of loose
coupling, Model Driven Software Development (MDSD)
techniques [15] can be applied. The development of such
models allows the reduction of platform dependencies and
the usage of modeling tools (like Unified Modeling Lan-
guage editors or editors for Domain Specific Language). In
most applied MDSD approaches these models are used at
development / build time for generation of implementation
skeletons for services or state machines. The problem with
this approach is the requirement to run the generator after
each modification of the model and the reduction of informa-
tion, because each generated artifact only contains a subset
of the information contained in the original model.

Another possible MDSD technique discussed in [15] is
the interpretation of models, which allows a late binding
and dynamic reconfiguration of the model based software
artifacts.

Based on this approach a framework is introduced in
this paper, which supports the execution of model based
software artifacts in a distributed business process realized
on mobile devices. These software artifacts are defined as
components containing a model of the data, the behavior
and the user interface. Actions provided by the realizing
component are implemented as platform specific scripts,
which are used by the event based runtime platform. Com-
position of the components is based on compatibility of
the contained model views, thus increasing the stability of
the interfaces between different components. The support
of this approach for reduction of platform specific code
and increased reusablity is discussed by an example in the
business domain of logistics.

c© 2009 IEEE. Reprinted, with permission, from Proceedings of 16th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems, Interpreting Model-Based Components for
Information Systems Michael Thonhauser, Christian Kreiner, Martin Schmid
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2. Related work

Several software engineering approaches have been pro-
posed to foster the reuse of software artifacts. While Compo-
nent Based Software Engineering (CBSE) has been focused
on the definition of deployable software artifacts, MDSD has
been introduced to allow a specification of these artifacts in
a platform independent way.

2.1. Software components

Several definitions of a software component exist. Accord-
ing to a basic definition given in [16], a software component
is a “unit of execution with well defined interfaces” .

Handling of software components is specified in a soft-
ware component model. A taxonomy of various software
component models (such as Enterprise Java Beans or COM)
is given in [8].

Another component model, which is built on top of a
Java Virtual Machine, is proposed by the OSGI Alliance.
Components following this model are developed as bundles
providing services and extension points, which can be used
by other bundles being plugged into the OSGI runtime
environment. This component model serves as basis of the
Eclipse Integrated Development Environment, allowing for
a broad coverage of useful features required in a software
development process through associated projects.

Service Component Architecture (SCA) [5] is a com-
ponent standard, intended for assembling heterogeneous
service implementations in a SOA. Components following
the SOAC approach [14] are categorized in four different cat-
egories (service components, business components, adapter
components, utility components), but like SCA are missing
the support for specification of their executional aspects
based on a platform independent model.

A component model proposed in the field of Grid Com-
puting are Gridlets [19], which can be seen as a chunk
of data associated with the operations to be performed on
the data. These operations are provided by corresponding
binaries.

The KobrA component approach has been introduced in
the field of software product line development [1]. In this
approach several models are used for the description of
the component in the specification and realization phase.
Although this approach also relies on class diagrams and
state chart diagrams in the specification phase it is missing
a description of the user interface and also does not provide
support for interpreting these models at runtime.

2.2. Model Driven Development

The 4+1 view model of software architectures at system
level has been developed by Kruchten [7]. This model con-
sists of different views on the described software architecture
targeting different aspects and responsibilities:

Metamodel Access

I dyn I dyn

I dyn

I dyn I dyn

Instance of

Instance of

EC1

Data Entities

Data Model

Metamodel

MOF Library

EC2

Instance of

Instance of

M0

M1

M2

M3

Interface for

Data Entity Access

Interface for

Data Model Access

Instance of

Instance of

Interface for

Figure 1. Four-level metamodel hierarchy implemented
in the Entity Container [12]

Logical View: containing end user functionality
Development View: for programmers and software man-

agers
Process View: for integrators describing perfor-

mance and scalability
Physical View: for system engineers concentrating

on the topology and used commu-
nication mechanisms

Scenarios: illustrating the architecture with se-
lected use cases.

Each of these views can be specified using different
notations. Such a notation is for instance available in the
Unified Modeling Language (UML) [11], which is main-
tained by the Object Management Group (OMG). Two
kinds of models are distinguished in the UML, allowing
the structural and behavioral specification of software. Each
kind contains several diagrams for visualizing specific views
of the modeled software. Every diagram supports different
phases of a software development process.

Class diagrams are applied for the description of the
structural software parts and are one of the most commonly
used views of a software model.

Each model can be used as a metamodel for a new model,
which is defined by the four-level metamodel hierarchy of
the OMG [10]. In this hierarchy, layer M3 contains the
base model for all modeling languages, the Meta Object
Facility (MOF). UML language elements contained in layer
M2 are instances of MOF elements. A user model is defined
in the layer M1 with its elements being instances of UML
elements. Finally, M0 contains the runtime elements, being
instances of M1 model elements. Beside UML also other
approaches built on this metamodel hierarchy, such as the
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Figure 2. Functional MBSC composition

Eclipse Modeling Framework (EMF) [2].
Various approaches for modeling systems have been pro-

posed, such as the statemate approach [3], which relies on
a combination of activity charts and state charts to model
reactive systems.

Another approach making use of state charts in the
construction of user interfaces is described in [4].

2.3. Entity Container

The Entity Container (EC) [12] has been proposed as an
object-oriented, model-driven data persistency cache. It is
configured by a data model and can load and store data with
several different persistency mechanisms (such as XML files
or relational databases) via connected backingstores. Fig. 1
depicts the realization of the UML metamodel hierarchy
by recursive usage of several EC instances, which are
configured respective loaded with the M3 – M0 models of
the metamodel hierarchy.

Based on the EC the concept of model-typed component
interfaces [13] has been developed, which defines compati-
bility rules for connecting components, which are based on
different, but compatible data models.

Also the concept of Transient Model Extensions (TME)
has been introduced in [18], allowing the temporary ex-
tension of the metamodel used as the basis for the EC.
This extension can be combined with platform specific code
snippets, which are called as handlers or observer callbacks
if a TME defined element is manipulated in the EC.

3. Model-based software components

The proposed approach of Model Based Software Com-
ponents (MBSC) distinguishes two views on a software
component, i.e. each MBSC is made up of a functional part
and a technical part.

The functional part of a MBSC consists of the provided
models for behavior, data and user interface. Composition
of components is done in the functional view by combin-
ing the corresponding models of several MBSCs through
the Distributed Model Based Runtime Environment. Two

Technical
Component

Action
Interface

Runtime
Interface

State Action Implementation (PSM)
Component
Functional

Distributed Model Runtime Environment

Runtime
Node

Figure 3. Functional vs. technical component

types of MBSC composition are depicted in Fig. 2 , i.e.
a vertical composition by using hierarchical connectors and
a horizontal composition by applying union connectors. The
mechanism used for composition depends on the composed
model.

Statemachines model the behavior of a software com-
ponent. Hierarchical composition of statemachines is per-
formed with substates. One example of a hierarchical com-
position is the combination of one MBSC containing the
model of a business process, with several MBSCs, each
defining one dialog to be shown in one distinct state of the
process.

Parallel substates are possible, to connect more than
one MBSC to a master component. An example for the
composition using parallel substates is the combination of a
dialog component with several MBSCs containing panels to
be shown in the dialog.

Horizontal composition of statemachines is triggered by
special states, which allow the extension of the current
statemachine with additional states and transitions.

For horizontal composition in the user interface model
a layout reference can be defined, which is filled with the
user interface of a composed MBSC. Vertical composition
of user interfaces leads to a new dialog.

Vertical composition of data models requires them to
be compatible with the rules defined in [13] by using the
concept of data connectors presented in [17]. Horizontal
composition at the data level is realized by resolving external
model elements and connecting their references with the
current data model.

The technical part of a MBSC makes use of existing
component models (like EJB, .NET, CCM). According to
Fig. 3 one functional part is contained in a technical part
of an MBSC. For each MBSC the persistent state of the
various MBSC models (statemachines, data, user interface)
is hosted by the technical component, which is also used
for supporting component migration. Additionally state ac-
tion methods are provided, which are implemented in the
programming language supported by the component model.

The persisted models, the data, state action methods and
TME configurations for extending the metamodel of the
runtime are provided through an interface required by a
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runtime node component of the Distributed Model Runtime
Environment.

Note that changes in the functional view (e.g. changing
business processes leading to changes in the behavioral
definition or additional data fields resulting in a changed
data model view) do not require changes in the technical
interface, therefore increasing the stability of a technical
component.

3.1. Component Runtime

The MBSC runtime environment consists of distributed
nodes, as depicted in Fig. 3. Each runtime node is managed
by the container of the chosen component platform and is
usable as an execution platform by several MBSCs. Fig. 4
depicts a structural overview of the components contained
in one runtime node and their relationships and location
depending on the four level metamodel hierarchy.

The component metamodel (corresponding M2 in the four
level metamodel hierarchy) is the common basis for all
nodes of the MBSC runtime environment. It defines the
elements available in the three model views (statemachine,
data, user interface) of a MBSC, using the elements defined
in MOF (M3).

The application model level (corresponding to M1) is
defined by the MBSC designer. Note that the elements
contained in the functional component FC1 are instances
of the component metamodel.

The runtime node level of the MBSC runtime consists of
the ECs managing the corresponding data objects, which are
created by the interaction of the different controllers. While
data objects (managed by EC5) are direct instances of the
data model, EC4 primarily contains one instance for each
user interface model element defined in the user interface
model of FC1, and EC3 contains the management data of
the current statemachine controller (e.g. current state and
a queue of waiting events). Each EC in the runtime node
level contains platform independent data items, which are
interpreted in a (component) platform specific way by the
corresponding controllers.

For example the user interface is provided in a platform
independent way by EC4 and is rendered by the user
interface controller using a supported widget library (e.g.
SWT, Java Swing or .NET). The platform independent
representation of the user interface allows mappings of
the user interface to other interface techniques like speech
communication libraries or EAI integration interfaces.
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Figure 5. Metamodel of a model-based software component

3.2. Runtime metamodel

Like mentioned in Fig. 4 the definition of the elements
available in the models of a MBSC is provided by a
component metamodel. A simplified metamodel is depicted
in Fig. 5. The metamodel is divided in three parts, each
defining the elements used in one corresponding view at
the application model level. While the elements contained
in the data and the statemachine package are based on
the corresponding elements defined in the UML metamodel
for classes and behavioral statemachines, the elements of
the user interface package are based on common widgets
available in standard toolkits for graphical user interfaces.

Some elements in the metamodel (like subclasses of State
or subclasses of UIComponent) are specifically interpreted
by the corresponding controllers in the runtime node. Al-
though the evolution of the component runtime also leads
to additional elements in the metamodel, situations can
occur, where the provided metamodel is not sufficient for
the currently developed MBSC.

In this case the MBSC developer can define additional
elements in the metamodel by providing a TME [18] with
the additional element and platform specific code snippets,
which can be used by the runtime node controller to handle
corresponding model elements in FC1. Providing a TME
with platform specific handlers reduces the supported run-
time node platforms , but this compromise is needed to make
this approach practicable. Also more than one handler can
be provided for a TME, therefore multiple platforms can be
supported by a TME based MBSC.

The supported target runtime node platforms are also
limited by the implemented action methods of a MBSC,
which are defined in a platform specific way too. But like in
TME multiple technical components can be provided for one

functional MBSC. Because the data structures, the behavior
and the user interface of a MBSC are defined in a model, the
corresponding code for handling the actions should consist
of methods with a few lines of code and a sub-scope of
the combined data model. Therefore porting these actions
to other target runtime node platforms should be easy.

The usage of the UML metamodel allows the application
of UML tools for the creation of a MBSC, integrating the
additionally defined elements through UML profiles. Cre-
ation of the user interface can be supported by a graphical
editor, which is based on the defined user interface model.

In each definition of a view in the metamodel a specific
reference class is defined, allowing the declaration of possi-
ble compositions of the current MBSC implementation with
other MBSCs. These references are used by the runtime node
while loading and executing a given MBSC. Each reference
is associated with at least one ComponentReference, which
contains an attribute for providing the preferred resolution
strategy. If the reference resolution attribute has the value
REQUIRED, the referenced MBSC must be available for
the given runtime node to successfully execute the current
MBSC. In case the reference resolution attribute has the
value OPTIONAL, the referenced MBSC is used if avail-
able. If the referenced MBSC is missing and the reference
resolution attribute has the value NONE, running the MBSC
is possible, as long as the referenced MBSC is not needed.

4. Example

For demonstration purposes a business process for an
incoming goods (IG) stage of a warehouse management
system is introduced on the left side of Fig. 6.

For further discussion we are looking in the activity
of collecting items and creating transport units for the
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warehouse management system, which is performed by a
warehouse worker equipped with a mobile device. This
activity is implemented by a state machine shown on the
right side of Fig. 6. This state machine is defined as a
behavioral view of one MBSC; events, which are associated
with the corresponding trigger (according to the metamodel
in Fig. 5), are displayed as label of a transition. Therefore
the same label can appear at different transitions of the state
machine. Note however that it is not allowed for one state
having two outgoing transitions with the same event.

Each step of the activity on the right side of Fig. 6 is
handled using different dialogs displayed in each step of the
state machine.

4.1. TU Data component

To demonstrate the structure of one MBSC containing a
user interface, the MBSC connected vertically to the state
TU DATA of the state machine in Fig. 6 is examined.

This MBSC embodies the state machine defined in the
left part of Fig. 7, which makes use of the same notation
as described above. This state machine contains two exit
states firing events for the superior state machine, i.e. the

exit state associated with state NEXT fires a FINISH event,
which makes TU FINISHED the new active state in the state
machine of Fig. 6.

The state chart also contains one service state, which is
used to retrieve the list of transport unit types, and two
context states, containing the configuration to synchronize
the data of this component with the hierarchical higher
MBSC.

The data model describing the data structures available
to the implementation of each of the component’s state
actions is presented in the right part of Fig. 7. This model
contains the root entity Context transportationunit, which
is the central data class for this component. This class has
associations to various data classes, which are instantiated
during state actions of the component or by copying them
from the context of the vertically connected MBSC.

The model for the user interface is depicted in the middle
of Fig. 7. The class Dialog is the main class of this model
and is associated with different controls. Each control has a
unique identifier, which enables methods of this component
to reference the corresponding control. The attribute ’nr’ is
used for defining the order of the controls in the dialog.
A dialog can contain various panels, which can contain
controls being layouted inside the panel (as shown in the
metamodel in Fig. 5).

4.2. Implementation

The business process presented in the previous section
has been implemented in an industrial prototype in the
business domain of logistics. The developed MBSCs have
been stored in one technical component, which has been
created as a .NET assembly based on the .NET Compact
Framework for mobile handhelds. Initially two business
activities in the incoming goods process defined in Fig. 6
(check inboundorder and create transportunits) have been
developed. The number of MBSC used in each activity is
presented in Table 1.

The customized create transportunit activity was created
by removing MBSCs, which were not used because of
changed requirements in the IG process of the customer.
Removing the MBSCs from the initial business activity was
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Table 1. Implemented activities

LOC[%]
Activity # MBSC Statemachine Data UI UI Logic Logic

Check inboundorder 6 9.36 0.00 68.21 11.23 11.20
Create transportunits 23 16.60 9.34 16.26 31.99 25.82

Create transportunits (customized) 13 16.28 9.40 14.47 34.17 25.68
Store transportunit 2 15.89 6.59 14.59 40.00 22.92

Figure 8. ”Transportationunit” dialog

eased by the facts of hierarchic composition and the self
containment of each MBSC.

The store transportunit activity has been developed to
support forklift drivers, who store the transportunit in a
warehouse rack. This activity contained one MBSC for
the process and one MBSC containing a simple dialog for
selecting the transportunit and entering the warehouse rack
number.

The proposed model environment runtime architecture has
been partially implemented for the statemachine and the data
model. The controllers were implemented in additional .NET
assemblies, while the corresponding models were realized
as classes containing the structural information. The user
interface has been implemented with Windows Forms using
a customized controls library.

Fig. 8 presents a screen-shot of the TU DATA dialog,
which is described by the user interface model in the middle
of Fig. 7.

The approach has proved to be useful, because of the
split up of the process in several MBSCs with their fixed

Table 2. Implementation of TU DATA MBSC

Component part LOC [%]
Statemachine 15.29

Data 8.04
Interfacer 18.24

User interface Logic 34.71
Business Logic 23.73

internal structure and their well defined behavior through
statemachines. Table 1 depicts the percentual distribution of
the lines of code (LOC) used for implementing each activity
with MBSCs. The fact, that no line has been implemented
for the data part of the check inboundorder activity can
be explained by the reason, that this activity has been
implemented as a visual prototype (only displaying the
dialogs used in the process in their correct order). This is
also the reason for the high number of code-lines used in
the user interface part.

The platform specific source code containing the state
actions is represented by the logic column, containing the
code-lines used for realizing the business-logic of a com-
ponent and the state action methods. Note that according to
the numbers presented in Table 1 about 25% of a component
need to be realized in a platform specific way, while the rest
can be specified by the functional model of a MBSC.

The high percentage of LOCs for the UI Logic column
is the result of additional code, needed to handle the access
to user interface elements from other threads than the user
interface thread. This number could be reduced by imple-
menting the corresponding mechanisms in the user interface
controller of the runtime node.

Table 2 lists the corresponding distribution of the LOCs
for the implementation of the TU DATA component intro-
duced in the previous section.

5. Conclusion

In this paper an approach for model-based definition of
components has been presented. This approach makes use
of different model views for definition of the data, the
behavior and the user interface of the modeled component.
For an information system implementation in the business
domain of logistics, such a model proved sufficient to fully
specify all relevant aspects of a component – in a platform
independent way. The content of the views is based on a
defined metamodel, which is based on the UML metamodel
for state machines and class diagrams.

Additionally, a runtime architecture has been defined,
which contains a platform specific implementation of the
component metamodel. This implementation is used for cre-
ating platform specific objects at runtime from the platform
independent model of this component.

Parts of the runtime have been implemented in an in-
dustrial prototype in the business domain of logistics and
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have proved their support in the iterative development of
clients for information systems, by enabling better reuse of
the defined dialogs and business processes. A customized
process for a customer could be provided by only changing
the behavioral view of the process component, while not
changing the used dialogs.

The next steps planned include the integration of layout
models already used for desktop applications and more
research about the enforcement and integration of service
level agreements in the runtime architecture.
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Abstract

Modern distributed computer systems with mobile and
embedded devices as first class citizens are formed from
heterogeneous platforms. To support this heterogeneity along
with adaptation of the system an approach for interpretation
of domain specific models at runtime has been proposed with
the concept of Model-Based Software Components (MBSC),
separating the domain specific functionality from the current
technical platform. This is achieved by the usage of different
sets of high-level models. These sets are interpreted by
a portable, plugin-extensible runtime environment, utilizing
several instances of model-based containers (MCC) for
models and their corresponding data.

In this paper the design of a domain specific language
is presented, enabling the specification of accessing and
manipulating data entities provided by various MCCs used
in the runtime architecture of a MBSC. For demonstration
purposes the application of the various language elements
is presented using a case study of an exemplary distributed
pervasive system running in the business domain of logistics.

1. Introduction

According to Tanenbaum a pervasive distributed system
is made up of mobile and embedded devices, which are
integrated as part of their surroundings [1]. Because of
the technical improvements in the last decade performance
and storage capacities of these devices are increasing, thus
enabling their usage as first class members in pervasive
distributed systems. Such devices are not only used for
visualization of external data or as producers of raw data,
but are enabled to perform some operations directly on the
device and to cache processed data locally.

Considering the dynamics of distributed pervasive sys-
tems, client functionality needs to be executed on different
device platforms, therefore a solution is required to be spec-
ified in a technology supporting heterogeneous (hardware)
platforms. While some programming language approaches
(e.g. Java, .NET) apply virtual machine technology to solve
this problem, produced code still has a dependency on

the platforms targeted by the implementations of the cor-
responding VMs. Another solution is proposed by Model
Driven Software Development [2] approaches, which are
based on the specification of domain specific functionality
in a platform independent way applying different models.
While mapping to a specific target platform is traditionally
done at development time by code generators, requirements
for dynamic reconfiguration of pervasive distributed systems
foster the interpretation of models at runtime, changing the
binding time of the domain specific functionality.

The concept of model-based software components
(MBSC) [3] has been proposed to support model interpreta-
tion at runtime, using several views on a model as well as the
composition with other MBSCs for specification of domain
specific functionalities. These views are based on specific
models allowing the definition of structural and behavioral
concepts of the MBSC. Because at runtime the model and
data of the different views are hosted by various model-based
data containers (MCCs), referencing data in these containers
or performing data manipulation operations demands the
specification of these statements in a platform independent
(model-based) language.

An approach for such a language is presented in this paper
with the EntityContainer Query Language (ECQL), enabling
the specification of data and model references as well as
arithmetic and logical operations on defined data (sets).

2. Related work

Modern software development approaches are evolving
out of Model Driven Software Development (MDSD) [2]
techniques to increase the number of supported target plat-
forms. In traditional MDSD approaches like OMG’s Model
Driven Architecture (MDA), models represent the platform
independent specification of developed artifacts, that are
mapped to a platform specific representation by code gen-
erators at development time. Beside the Unified Modeling
Language (UML), other modeling language approaches have
been proposed based on the four-level meta-model hierarchy
by the OMG, leveraging several layers of models (named M3
to M0) with each layer defining the valid model elements
of the next lower layer.

c© 2010 IEEE. Reprinted, with permission, from Proceedings of 17th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems, ECQL: A Query and Action Language for
Model-Based Applications, Ulrich Krenn, Michael Thonhauser, Christian Kreiner
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Figure 1. Model layers in MCC and its proxy

UML models are often applied in the system design
and development phases focusing on the specification, in
contrast to their interpretation at runtime as proposed by
Executable UML [4]. Because a lot of views are supported
by the UML, its language specification is often criticised
for its complexity and generality, impeding the support
of domain specific modeling [5]. In contrast, approaches
like Domain Driven Design [6] foster the usage of domain
specific models – based on a customized and tailored meta-
model – throughout the entire lifetime of a system, allowing
to use this model as an ubiquitous language between users
and developers.

The application of data models at runtime providing
the structural specification of the developed software is
supported by the concept of the EntityContainer (EC) [7].
Elements defined in the data model are treated as entities
being accessible by a dynamic or static interface and having
their own identity and lifecycle. The EC has been used as
basis for several concepts like Transient Model Extension
(TME) [8]. The EC approach has also been extended to
become a Model Based Component Container (MCC) sup-
porting state machines model views etc. as well. Fig. 1
depicts the realization of the OMG four-level meta-model
hierarchy by a MCC at runtime. Some model layers are
treated as being static (i.e. these models are loaded at
the instantiation time of an MCC), the lower layers are
configured dynamically at runtime. Also, the realization of
a proxy using the basic layer of an MCC is demonstrated.

Model-Based Software Components (MBSC) aim for a
full model-based definition of the domain specific function-
ality of a component using several views on the component
model [3]. Each MBSC is interpreted by a plug-in driven
runtime architecture, which is made up of several MCC
instances holding the different views of the domain specific
MBSC’s. An exemplary distributed system made up by this
runtime architecture is shown in Fig. 2.

In this architecture, hardware is represented by resource
nodes (RN). They can contain several virtual organization

Figure 2. Distributed runtime architecture for MBSCs

(VO) runtime nodes (VON) defined by the RN owner.
Each VON can be used by a (possibly other) owner for
executing one or several composed MBSCs. It is given the
permission to access specific local resources of the resource
node upon its definition by the RN owner. Note that several
VONs can be used to realize the dynamics cooperation
of different owners as proposed by the concept of Virtual
Organizations [9]. Communication between different VONs
is realized via a proxy MCC (see Fig. 1). In Fig. 2, the
VON within RN4 contains such a proxy to access a model
residing at RN2.

2.1. Domain specific languages

Construction of models is performed in a graphical or a
textual way, with the latter being supported by a domain
specific language toolkit [5]. A domain specific language
(DSL) is defined by a meta-model, containing the elements
to be used in this language along with a definition of
the language syntax. Depending on the domain in focus
a DSL can be more general (e.g. UML for describing
various parts of a developed software), or very specific (e.g.
specifying service composition [10], collaborative systems’
development [11]). The design of domain specific languages
has been an active area of research in the last years. While
Selic discussed the general aspects of DSL design in [12],
Spinellis presented different patterns for the construction of
DSLs [13].

For the domain of data manipulation several languages
have been specified with respect to the data representation
technology. While the structured query language (SQL) has
become a standard for specifying statements concerning
relational databases, several languages (like Hibernate Query
Language (HQL) [14] or the Object Query Language(OQL))
have been specified for the definition of queries in object
oriented programming languages. SQL is used for specifying
data retrieval and manipulation statements, languages in ob-
ject oriented approaches are often applied for selection [14],
leaving other operations to the data container infrastructure
used. To specify the selection of entities managed by an EC,
the Object Navigation Query Notation (ONQN) has been
proposed [15], allowing the selection of trees and graphs by
means of specifying a navigation path through the model.
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Figure 3. Example contents of MCC ”DataContainer”

3. EntityContainer Query Language (ECQL)

ECQL facilitates basic operations on standard data types
(strings, numbers, etc.), provides abilities to access and
modify data in MCCs and enables the representation of
relationships between several data entities like navigating
over association connections in a class diagram.

3.1. Language Elements

Several data types are supported by ECQL. Beside the
types Bool, Number, String and void a Set type is an
important feature of ECQL for enabling various use cases
(like applying operations on a number of entities in an MCC
simultaneously (i.e. in one ECQL statement). Retrieving a
set of entities is done with the help of filters or by applying
the SETREF statement. Note that all exemplary statements
are applied to an MCC containing models and data as
depicted in Fig. 3.

3.1.1. Filter functions. While a VALUE FILTER simply
returns a set of entities containing values that fulfill the filter
criteria, the ASSOCIATION FILTER statement facilitates
relationships between several entities, providing the ability
to navigate across associations in a class diagram. As visible
from the class representing this statement in the meta model
(Fig. 4), two sets of entities are required as parameters as
well as a string identifying one association’s name in the
entities of the first set.

ASSOCIATION FILTER (
SETREF( E n t i t y ( D a t a C o n t a i n e r , M0,

D a t a s t r u c t u r e , ∗ )
) ,
SETREF( E n t i t y ( D a t a C o n t a i n e r , M0,

D a t a S t r u c t u r e E l e m e n t , I tem )
) ,
” s t r u c t u r e ” ) ;

Listing 1. Using the Association Filter

List. 1 expresses the query ”every DataStructure which
contains a mapping for a DataStructureElement with the ID
Item”. The starting set is a list of all entities, which are an
instance of the type DataStructure and are contained in an
MCC named DataContainer (Fig. 3). This set is filtered

by looking up each associated entity for the association
structure. Only if the associated entity is of the type DataS-
tructureElement and named Item, the currently observed
entity is part of the first set in the result.

Considering the possibility of filtering sets of entities
before applying the ASSOCIATION FILTER function to
them and of even nesting several filters – since all of them
evaluate to a set of entities – the support of complex,
composed queries becomes apparent.

3.1.2. Reference Functions. Reference functions are re-
quired to express data access during runtime interpretation.
To achieve a non-ambiguous naming convention, every data
is referred by its fully qualified name in the VO resource
node. While List. 1 demonstrated the retrieval of an entity
set, List. 2 instructs the runtime environment to access a
number value named valueEntry.baseOffset in entity A which
is of type DataStructure. The entity is looked up at the data
layer (M0) of MCC DataContainer.

NUMBERREF( E n t i t y ( D a t a C o n t a i n e r ,M0,
D a t a S t r u c t u r e ,A) ,

A t t r i b u t e ( v a l u e E n t r y , b a s e O f f s e t ) ) ;

Listing 2. Reference Functions in ECQL

Type safety checks for references can only be executed
at runtime (interpretation time) since data referred to is
not necessarily available at insertion time of the ECQL
statement.

3.1.3. MCC manipulation. Quite a similar syntax is used
to express MCC data manipulation operations (for various
layers) in ECQL. The statement shown in List. 3 instructs
the runtime environment to insert a new number value entry
– equivalent to attributes in the UML – named length into
entity Item of type DataStructureElement.

INSERT ( E n t i t y ( D a t a C o n t a i n e r , M0,
D a t a S t r u c t u r e E l e m e n t , I tem ) ,

A t t r i b u t e ( v a l u e E n t r y , l e n g t h ) , 2 ) ;

Listing 3. Data Manipulation with ECQL

Again, the entity resides in the layer M0 of the MCC named
DataContainer.

3.2. Statement signatures

Each ECQL statement has a well-defined signature which
facilitates type safety checks for any ECQL statement in-
serted into an MCC.

Bool SMALLER THAN( Number f i r s t , Number second ) ;
Bool BOOLREF( E n t i t y e n t i t y , A t t r i b u t e a t t r i b u t e ) ;
S e t INTERSECTION ( S e t f i r s t , S e t second ) ;

Listing 4. ECQL Signatures
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Figure 4. Partial ECQL metamodel

List. 4 gives an example of some signatures derived from the
meta-model depicted in Fig. 4. Meta-model elements in the
first stage of the inheritance tree are defining the return type
while inherited elements specify the name of the statement
as well as the number of parameters.

3.3. Platform extension with ECQL

Fig. 5 gives an overview about the relevant models and
the operations applied on the MCC in the concept of ECQL.
At creation of an MCC the corresponding M2 model is
loaded and is treated as static during runtime (c.f. Fig. 1).
For effective use of ECQL statements inside an MCC (e.g. as
state chart actions, for databinding purposes) the M2 model
of the MCC has to be extended with the ECQL meta model.
Such an extended meta model enables a full validation of
loaded M1 models with embedded ECQL statements also.
Extension of the meta model is done with a Transient Model
Extension (TME) [8], allowing the insertion of new model
elements and the connection of existing model elements
based on the rules provided in the next upper layer (in this
case the M3 layer). A second extension in the M2 layer is
performed during the instantiation of a MCC, allowing the
support of assigned resources to a VON (e.g. reading RFID
tags, using hardware’s integrated speaker) with additional
ECQL statements. Using this approach enables model based
checking of resource constraints at runtime by the MCC,
leading to an abortion of the loading procedure in case
the MCC respectively the VON have not been assigned the
required resources.

INSERT ( E n t i t y ( D a t a C o n t a i n e r , M0,
RawData , getTimestamp ( ) ) ,

A t t r i b u t e ( v a l u e E n t r y , d a t a ) ,
ge tRf idCode ( ) ) ;

Listing 5. Using Platform Defined ECQL Statements

List. 5 demonstrates this feature by presenting a statement
to add a new entity of type RawData to the MCC Data-
Container. This MCC is contained in a VON running on
an RFID reader acting as the RN. The owner of this RN

Figure 5. Extension of ECQL at runtime

has granted the right of using the data of the currently read
tag to the MBSC being executed in the VON. This right is
represented by the ECQL statement getRfidCode(), which
is added to the ECQL meta model of the VON and thus to
the M2 layer of all MCCs in this VON. In the same way an
ECQL statement for requesting a timestamp from the RN
is added to the container, and is used for determining the
name of the new entity instance in the exemplary ECQL
statement. If the resource of reading RFID tags is not made
available to the VON, the corresponding ECQL statement is
missing in the MCC DataContainer and thus the validation
of the ECQL statement in List. 5 fails.

4. Example

The presented approach has been evaluated in a scenario
demonstrating shared usage of an RFID reader in a dis-
tributed system. This RFID reader is located in the incoming
goods division of a logistic provider’s distribution center.
Various computer parts labeled with RFID tags are arriving
from different suppliers and have to be delivered to a retailer
of computer hardware.

The functionality for detecting specific goods, which have
been marked by the retailer (e.g. to perform a quality check
for a distinct supplier upon receiving the computer parts
in the distribution center), has been implemented using the
MBSC approach. Note that Fig. 2 depicts the deployment
situation of this MBSC, running on a VON on the RFID-
reader hardware (RN4), while another MBSC is running on
a centralized server (RN2). The data model and a snapshot
of the data contained in the MCC named DataContainer in
the distinct VON of RN4 is depicted in Fig. 3.

Fig. 6 shows a filter behavior of RFID tags read by the
RN4. The state machine starts in wait for RFID. Every time
an RFID available-event is fired by the hardware, the state
machine enters the RFID available-state and proceeds to the
processing state where the tag data gets split into several
fields according to the data model. In case the tag’s serial
is found in the list of serial numbers transmitted earlier, the
state machine enters the state at the bottom of Fig. 6 where
the tag data is transmitted to the server through a proxy
MCC as already shown in Fig. 2.
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Figure 6. State Chart for Example Scenario

In the state chart for the prototype four ECQL statements
are specified for the conditions, which are marked with
squared brackets at the transitions. One ECQL statement
is specified as the action read data of a transition, and
two ECQL statements are used for the entry actions of
the corresponding states. Both split data and read data
statement make use of RN specific ECQL statements, which
are realized by a RFID reader specific plug-in of the VON.

The meta model presented in Fig. 4 has been evaluated
with an editor for the presented DSL implemented using
the Eclipse modeling project [5]. The language definition
and scenario has been implemented in a prototype on top
of the .NET Microframework. JSON has been used for the
persistent storage of models and data handled by the MCCs
in the prototype, enabling a lightweight possibility for inter-
operability with other programming language technologies.

5. Conclusion

In this paper a domain specific language for querying and
manipulating the data and models of a model-based com-
ponent container (MCC) has been presented. Several MCCs
are applied for interpretation of a Model-Based Software
Component (MBSC) at runtime, which captures the domain
specific functionality in a set of high-level models. During
initialization of a MCC the static metamodel is extended
with the ECQL meta-model and additional ECQL statements
provided by the VON containing the instantiated MCC.

The ability for filtering and retrieving entity references
from an MCC via ECQL statements has been discussed
as well as the application of several MCC manipulation
statements. The given language has been evaluated in a
prototype realizing a scenario in the business domain of
logistics featuring the execution of MBSCs directly on an
RFID reader hardware.
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ABSTRACT
Development of data intensive systems has changed from
applying relational database concepts to model-based de-
velopment technologies. A central aspect of these ap-
proaches is the design of a data model, which can be used
for creating the persistent datastructures.

While approaches following the Model Driven Ar-
chitecture use the model for code generation at develop-
ment time, other approaches interpret the model at runtime,
which enables dynamic access to modeled data.

On the other hand arises the need for managing data
access in mobile applications, regarding concerns of pri-
vacy and data integrity. By relying on a mobile grid infras-
tructure, the central concept of a virtual organisation can
be extended to enable the exchange of datamodels between
the members of this VO, containing the externally accessi-
ble datastructures of the publishing member.

This paper presents an extension of a model-based ap-
proach for data access in a data intensive system, which
enables mobile devices to dynamically use data of such a
system.

KEY WORDS
Model-Based Development, Mobile Grid, Data-intensive
systems, logistic systems

1 Introduction

Data intensive applications are software systems that fo-
cus on data processing, data visualization and data storage
(such as enterprise resource planning systems, banking ap-
plications or logistic systems) often relying on large and
complex data structures. Such applications are already de-
veloped using network technologies to connect local fixed
workstations to the database server.

In the last years there has been a lot of research
on data intensive distributed systems consisting of mo-
bile devices, which has led to different hardware platforms
like Smartphones and Personal Digital Assistants (PDA)
and different wireless communication technologies such as
Wireless LAN, Bluetooth, Radio Frequency Identification
(RFID) and ZigBee. This development is driven by the vi-
sion of ubiquitious computing [1].

Because every mobile device gets more and more self
aware of its context and data, applications have to deal

with an increasing number of distributed data [2]. While
in the past data intensive applications have worked with big
databases, modern software is written to deal with data col-
lected by different sensors and being stored and analyzed in
real time.

Writing software for distributed systems requires a
lot of consideration on data security and data integrity
[3]. Many mobile application development approaches are
missing an interface for the user, to control the data be-
ing broadcasted by the application. Often this data is held
in a data structure being defined in the currently used pro-
gramming language. On the other hand there are trends like
Model Driven Development [4], which make use of mod-
els describing the data structures and methods used by an
application.

To integrate these new requirements in mobile appli-
cations accessing data intensive systems, this paper is going
to introduce a model based software component extending
the concept of an object oriented model driven data cache
[5]. Developed for easing the communication of stationary
clients with a database, this concept is going to be extended
to use the information and technologies available in a mo-
bile and distributed environment.

The rest of this paper is organized as follows: Sec-
tion 2 introduces the concepts of MBD and grid computing.
The extension of the object oriented model-driven cache is
presented in section 3. Section 4 contains an example out-
lining aspects of applying the extended component.

2 Related work

2.1 Model Driven Development

Model Driven Development (MDD) [6] is an approach to
design a software system by describing it in a Platform In-
dependent Model (PIM). A PIM defines associations be-
tween the data and the behavior of the software and is
used as input for generators producing a platform specific
model (PSM). To support MDD the Object Management
Group (OMG) has released the Model-Driven Architecture
(MDA) containing standards, that enable the specification
and transformation of models.
2.1.1   Data modeling

Models of software design are often specified using
Unified Modeling Language (UML) , another standard of

597-080
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the OMG. UML models are based on a metamodel and are
situated in the user model layer of the four-level metamodel
hierarchy [7]. UML describes several diagrams, which can
be used to model different aspects of the software.

The class diagram is used to model the structure of
classes, such as attribute and methods, as well as the as-
sociation between the different classes of a program. The
metamodel for a class diagram can be extended for data
modeling purposes, focusing on class attributes and associ-
ations between the different classes.
2.1.2   Agile Model Driven Development

Agile Data Modeling [8] relies on iterative construc-
tion of data models for the modeled software, where each
data model fits to the requirements needed in the actual it-
eration. It fits best to applications, that rely on relational
databases for persistent data storage. Agile Model Driven
Development (AMDD) also uses an iterative approach, in-
stead of extensive models being generated in the normal
MDD process.

2.2 Grid Computing

One definition of Grid Computing is given by Ian Foster
and Carl Kesselman, stating that to solve a scientific prob-
lem together, the distributed resources of scientists within
different administrative domains can be dynamically and
coordinately connected by using fast networks to build a
virtual computing center/organization (VO) [9]. This use
case is typically realized by Computing Grids and Data
Grids [10].

While these types of grids are focussed on connect-
ing large powerful computers, resource grids additionaly
provide access to dedicated rare resources (like a hydron
collider or a space telescope)[11]. Considering the fact that
mobile devices have become more powerful during the last
years, they are also targeted by different grid approaches.
While wireless grids [12] are focused on building grids up
of mobile devices such as laptops, pervasive grids [13] try
to integrate mobile devices and sensor networks in the fixed
grid infrastructure. Another term used in the literature are
mobile grids [14, 15], which can be seen as an evolutionary
step between wireless and pervasive grids.

2.3 MDD and Grid Computing

Smith et al. present an approach for MDD of service ori-
ented grid applications in [16]. Their approach makes use
of an UML profile extending the UML Class, Attribute and
Operation metaclasses with GridClass, GridAttribute and
GridMethod stereotypes. This profile is applied to UML
models to define grid service interfaces, which are gener-
ated in a sublayer of the PSM model. Code is generated
for the Java programming languages, and stereotypes of the
UML profile are mapped to Java annotations.

Compared to our approach, this approach provides a
more static usage of the data model, because it is used for
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Figure 1. Entity container architecture

code generation purposes at development time, while our
approach interprets the extended data model at runtime.

3 Framework for mobile applications

3.1 Entity Container

Provided that the structure of the persistent data has been
modeled, an Entity Container (EC) [5] can be used as a
model-based object oriented data cache. The architecture
of the EC is shown in Fig. 1. The EC provides distinguish-
able objects called entities, identified by a unique value.
It operates on two levels of the four-level metamodel hier-
archy of OMG implementing the instance of relation be-
tween these two levels.

Usually the UML data model is stored in a file us-
ing the XML Metadata Interchange (XMI) format. This
file contains the UML model of the persistent data, which
is itself based on the UML metamodel, which is extended
with a profile. The data model is used by the EC and the
associated backingstore.

There exist different implementations of the backing-
store interface, such as an object-relational bridge (DBAL)
for using relational databases, a XML filereader and writer,
and an inmemory backingstore. Data entities in the EC are
accessed using a dynamic interface. In this MDD approach
the database is created from the persistency model, which
is also used to configure the EC and its associated backing-
store.

The EC has been designed to support the client-server
communication paradigm as well as the offline use case of
a data intensive client application.
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3.2 Grid BackingStore

To integrate a new communication paradigm, such as peer-
to-peer communication between two EC using applica-
tions, another implementation of the backingstore interface
is needed. Fig. 2 illustrates the components used for build-
ing such a backingstore.

External datamodel

EntityContainer

EntityContainer

Data CacheModel Driven

Router BackingStoreEntityContainer
File

Model Model Driven

Router EntityContainer
Cache

BackingStore
File

Network Connection

VO RegistryUML Profile Manager

Internal datamodel

Figure 2. Grid BackingStore architecture

Model Driven Router: A model driven router (MDR)
provides two interfaces. The first interface is used
by the EC, which is connected to the Grid Backing-
Store(BS). This interface is used for synchronizing the
local data cached in the EC with the internal EC of the
Grid BS. The second interface is used for communi-
cation between the Grid BS and the grid middleware.

While querying the network has been mentioned be-
fore, the other use case consists of processing queries
from the network. In this case the MDR looks up, if a
requested class is available for outside processing by
looking at the external data model. This data model
defines for each class, if it is used for input, output or
input/output purposes. Additionally it can define con-
straints, which need to be fullfilled by the requesting
client (e.g. being connected via a secure connection
or using a broadband network). These constraints are
defined in the GridProfile, which is available from the
VO management server.

Cache EC: The internal EC is used for enabling persistent
storage of locally generated data and it is also used for
resolving queries from the connected devices in the
network.

File Backingstore: This backingstore contains the persis-
tent local data of the application.

Note that the architecture depicted in Fig. 2 illustrates
the data layer (M0) and model layer (M1) of the four level
metamodel hierarchy defined by the OMG [7].

Therefore it is possible to build up a data model dy-
namically by querying the Model EC only for the model
elements currently needed. As mentioned before the data-
model contains EXTERN references, which define, that the
structure of this class is retrieved at runtime from the con-
nected Grid members using the second level Grid BS. Be-
cause external references are only resolved if needed, the
initial data model can be very small, because the structure
of many classes is defined by external models.

3.3 Framework Overview

Fig. 3 illustrates the essential components of the proposed
framework for model based development of distributed ap-
plications. The framework is used by a fixed device (e.g.
a UNIX server machine) and by a mobile device, which
is able of capturing sensor data (e.g. temperature or light-
ing conditions). An application is executed on each device,
which makes use of an EC. The EC used by each applica-
tion is configured with a GRID backingstore, which has the
following tasks:

1. Enable access to a virtual organisation (VO) via a grid
middleware.

2. Provide the classes available in the external data
model for other members querying for external datas-
tructures in the Grid as well as the corresponding data.

1.. ∗

XMI
1.. ∗ 1.. ∗

Grid−BS

UML Grid Profile

Internal External Internal External

EC EC

Application B

Sensor data

Grid−BS

EC

Application A

Grid Middleware

Virtual Organization

EC

Fixed Device

Mobile Device 

Grid−BS Grid−BS

Edit layers 0 and 1 as needed

Figure 3. Applied Grid Backingstore

4 Example

For demonstrating our approach an exemplary virtual or-
ganization (VO) is created, which contains mobile devices
being part of a supply chain. The VO is used to manage in-
coming deliveries of suppliers for a warehouse. According
to Fig. 4 following types of members are differentiated:

1. A mobile client (a PDA or mobile phone) is used by
the supplier to create an order containing his delivered
transport units (TU).
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Figure 4. Members of the VO

2. This order is stored and processed in a warehouse
management system (WMS).

3. Each TU is equipped with an intelligent interface
(such as an RFID label or a mote), and is connected
to the VO.

The WMS is constructed using the data model de-
picted in Fig. 5. Note that this data model defines two sys-
tems. In both systems the content of a TU is modelled by
a TUContent class. Additionally to System 1 the TUCon-
tent class of System 2 has the attributes Batch and BestBe-
fore.

Figure 5. internal data model of WMS

Based on the model in Fig. 5 the WMS developer
or the warehouse operator creates an external data model,
which is shown in Fig. 6. Classes contained in the model
have applied a stereotype, which defines whether the class
is available for input, output or input/output purposes. Ad-
ditional elements in the model can be configured with dif-
ferent constraints, regulating the access to data being in-
stances of that element.

The mobile application of the supplier is developed
using the data model presented in Fig. 7. This data model
is created by the developer of the mobile application. Note
that classes in this model contain the EXTERN stereotype
meaning that the structure of the corresponding class (e.g.
its attributes) is loaded at runtime from the currently con-
nected WMS.

Once the application has been started on the mobile
device by the supplier, it looks up the other members of
the VO, such as warehouses and other mobile devices. The

Figure 6. external data model of the WMS

Figure 7. internal data model of mobile application

data for the displayed dialogs is retrieved using an EC con-
figured with a Grid BS.

If the supplier decides to create a new delivery, a list
of all warehouses connected to the grid is presented to the
supplier. Having selected a specific warehouse a new di-
alog is displayed allowing the supplier to add the articles
he is going to deliver to the selected warehouse. While
loading the dialog, the Grid BS has resolved the EXTERN
marked classes with the corresponding classes defined in
the external data model of the selected warehouse.

Additionally to manual input of the delivered goods,
the supplier can also access goods containing an intelligent
RFID chip, which is also connected to the grid.

Having finished the delivery creation procedure, the
supplier synchronizes the delivery specific data on arrival at
the warehouse. Because he got the WMS specific attributes
of the TUContent class, the data is easily imported in the
WMS.

5 Implementation

Our current work considers the evaluation of the presented
architecture in Sect. 3 using the example presented in
Sect. 4. The first step has been the refactoring of the cur-
rent EC implementation, because it has been developed us-
ing the C++ programming language. This implementation
is made accessible to Java programs using a Java Native
Interface (JNI). Since JNI is not supported by the current
J2ME specification, we refactored our toolchain, to support
direct generation of J2ME compatible code for the meta-
model layer needed by the EC.

Alongside we also started to evaluate Grid middle-
ware frameworks to find out their adaptability to mobile
devices. We started with a survey of existing middlewares.
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System 1 System 2

Figure 8. Dialogs for adding article to delivery

Some, like GridGain [17], GridKit [18], the Grid Appli-
cation Toolkit(GAT) [19], and Globus Toolkit [20] looked
promising at a first glance. The first two rely on Java1.5
and above, thus making it impossible to use them on a
J2ME platform as they are. The GAT project was com-
pleted in April 2005, so further development is not to be
expected.

The next approach would have been the use of Globus
Toolkit and its webservice-infrastructure. Two considera-
tions have to be made though: Implementing a WSRF- or
webservice-client on J2ME implies the use of the J2ME
Web Services Specification(JSR 172) or some third-party
library. However, we want an application that is highly
portable on most available Java enabled mobile phones and
further we would like to avoid the communication overhead
of web services.

In the end we decided to use the Java Agent Devel-
opment Framework(JADE) for our prototype application,
since there are implementations for nearly every Java envi-
ronment(J2EE, J2SE, J2ME) providing the same API. One
advantage we were looking for, are light-weight clients and
JADE seems to provide us with this requirement [21].

5.1 Scenario evaluation

For evaluation of the examplary scenario from Sect. 4 a
prototype is being developed using J2ME, because this
platform is available in nearly every mobile phone. Fig. 8
depicts the dialogs for adding an article in the delivery
planning application of a supplier, which is based on the
datamodel presented in Fig. 5 and Fig. 7 respectivly. The
right userinterface is based on the datamodel of System 2
in Fig. 5, the left userinterface shows the dialog for System
1, thus missing the fields for the batch and bestbefore date.

While these userinterfaces are now implemented us-

ing a static approach, we are considering a dynamic im-
plementation using the model information provided by the
Grid BS. Another plan is to provide support for the .NET
platform, which is widely used by PDAs.

6 Conclusion

We have presented an architecture for model based data ac-
cess of mobile devices. Our approach is based on the con-
ceptual extension of a model-driven object oriented data
cache, which is used for accessing a database by applying
dynamic interfaces. This cache is coupled with an imple-
mentation of the BackingStore interface, which is used for
persistently storing the data of the cache. Because the basic
datamodel is interpreted during runtime by the EC and its
associated backingstore, the same infrastructure is used for
processing an external data model. This data model is con-
structed from the basic data model, and contains the inter-
face specifications as well as quality of service constraints
for other devices in the mobile grid, which want to get ac-
cess to the data contained in the GridBackingStore. While
our approach allows the software developer to access data
in a transparent way regarding the persistent storage and
grid technology, it gives the user control over the data pro-
vided to other grid members via the external datamodel.
While our ongoing work consists of finalizing the imple-
mentational prototype, we are also considering the devel-
opment of model-driven user interfaces, to ease the control
of provided data structures by the user.

References

[1] M. Weiser. The computer for the 21st century. SIG-
MOBILE Mob. Comput. Commun. Rev., 3(3):3–11,
1999.

[2] M. Denny, M.J. Franklin, P. Castro, and A. Pu-
rakayastha. Mobiscope: A scalable spatial discovery
service for mobile network resources. In MDM ’03:
Proceedings of the 4th International Conference on
Mobile Data Management, pages 307–324, London,
UK, 2003. Springer-Verlag.

[3] T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Es-
trin, L. Guibas, A. Kansal, S. Madden, and J. Reich.
Mobiscopes for human spaces. Pervasive Computing,
IEEE, 6(2):20–29, 2007.

[4] B. Selic. Model-Driven Development: Its Essence
and Opportunities. In Ninth IEEE International Sym-
posium on Object and Component-Oriented Real-
Time Distributed Computing, 2006. ISORC 2006.,
page 7pp. IEEE, April 2006.

[5] Gernot Schmoelzer, Stefan Mitterdorfer, Christian
Kreiner, Joerg Faschingbauer, Zsolt Kovács, Egon
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Abstract

Software is often constructed using a layered approach
to encapsulate the functionality in different layers. Individ-
ual requirements of each layer demand layer specific data
structures. These data structures typically provide redun-
dant information with respect to the data source.

Providing a Model Driven Software Development ap-
proach for creating these data structures leads to overlap-
ping data models, each containing data structures defined
by the data source. Because putting all various require-
ments of the software layers in a single data model can lead
to difficulties, each software layer should only extend the
basic data source model with its specifically needed model
elements.

This paper presents a mechanism for transient extension
of a data model. Using this mechanism, a basic data model
can be used by every layer, being extended by additional
attributes and classes for satisfying layer specific require-
ments.

Keywords: Model-driven development; Data modeling

1. Introduction

Data-intensive systems are characterized by manipulat-
ing and displaying a large amount of structured data. This
data is saved in some persistent storage such as a database
or a file. Such data-intensive systems are often designed in
three layers [6]. includingpresentation layer, domain(or
business function)layer anddata source layer.

Information contained in the data source is accessed
through the data source layer. This layer transfers data
contained in persistent data structures such as database ta-
bles, into dynamic data structures, such as arrays or object

composites. The transfer functions can be coded manually
or can be generated using a data model of the persistent
data[1].

Because the problems to be solved by data-intensive
software are quite complex, manual programming of trans-
fer functions can quickly lead to logical errors. Bran Selic
describes this problem in [14], distinguishing between es-
sential and accidental complexity of software. Essential
complexity is inseparable from the problem, but accidental
complexity is a direct consequence of the chosen problem
solution. For reducing accidental complexity the problem
should be looked at an abstract viewpoint, ignoring program
language specific details.

This abstraction can be provided by a plattform indepen-
dent model (PIM), which is created during a Model Driven
Development (MDD) process. While MDD tries to capture
all aspects of a program using different variants of model-
ing, like activity diagrams or class diagrams, agile model
driven development (AMDD) has its focus on the aspect of
a model currently needed. In data-intensive application de-
velopment one of the first modeled aspects of each layer is
its data structure.

2. Motivation

2.1. Layered software

In the previous section the idea of software layers has
been introduced. Each software layer internally uses data
structures, holding the needed data of this layer. Fig. 1
shows this data structures and depicts the dependencies be-
tween them. Every data structure can be seen as a layer
specific view on the information generally available to the
program. Data structureS1 holds the transformed persistent
data, which is compliant to the structure of the data source.

c© 2007 IEEE. Reprinted, with permission, from Proceedings of 14th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems, Model-based Data Processing with Transient
Model Extensions Michael Thonhauser, Gernot Schmoelzer, Christian Kreiner
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S2 repesents the data structure used by the domain layer
andS3 is contained in the presentation layer.

T2’

S1

S3

T2

Domain

Presentation

DataSource
T1’

S2
T1

Figure 1. Data structures in software layers

Fig. 2 illustrates an example use case from the busi-
ness domain of logistics. Boxes containing small items are
handled by a warehouse management system (WMS). The
WMS is used for checking the amount of items contained
in the box, before the box leaves the warehouse. The user
interface consists of a table, which additionally displaysthe
number of dozens and single items in a box, to ease the
quality check of the boxes. It also makes use of a business
function calculating the weight of each box for issuing an
alert, if the weight of all boxes reaches the weight limit for
transportation.

This example illustrates different requirements for data
structures in various application layers. Requirements for
S1 are the reduction of duplicate information, thus provid-
ing support fordata normalization[1]. This reduction is
needed for optimal storage usage, efficient data transfer and
to avoid inconistency of the stored data. Also the data struc-
ture should be easily mappable to the persistent data source.

S2 is driven by requirements forsimplifying complexity
of the application logic, addingtransaction handlingand
data consistency checks. This aims at avoidance of incon-
sistent data and is done throughadding data redundancy.

S3 contains the data displayed in the presentation layer.
Its content meets user requirements andusability aspects,
which often requires displaying additional information.

As illustraded in Fig. 1 there exist several dependencies
of the data structures in the different layers. BecauseS1
holds all the information available to the application, ad-
ditional data inS2 andS3 is normally related to data con-
tained inS1. This requirement can be fulfilled by extending
S1 with a transformationT 1 or T 2.

The way this transformation is performed depends on the
abstraction level used for application development.

• The WMS described in Fig. 2 can be implemented
using a relational database and a structured program-
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Figure 2. Warehouse management example

ming language like C. This programming language can
work with a database manipulation language (DML)
like SQL to define the data structuresS1, S2 andS3.
In this case the transformationT 1 andT 2 of the data
structures is done by extending the DML statement.

• A higher level of abstractions is provided by object
oriented languages combined with object-relational
methods [6]. This solution enables type safety forS1,
S2 andS3 consisting of objects. The transformation
is done with additional source code for the impleme-
nation ofS2 andS3.

• A further abstraction level is reached by using a MDD
approach. This leads to a correspondend data model
DM1 for S1, DM2 for S2 andDM3 for S3. Follow-
ing the dependencies of the different data structures,
the dependencies of the data models can be seen as
DM1 ⊆ DM2 and DM1 ⊆ DM3. In this case
transformationT 1 or T 2 is done by extendingDM1.
This extension adds information about additional data
needed in the presentation layer leading toDM3 and
to DM2 respectivly in the domain layer.

We call this transformation mechanism Transient
Model Extension (TME). SinceDM1 is used as the
basic model for this mechanism,DM2 andDM3 does
not need to be stored in the corresponding layers. Only
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the transformation rules needed for construction of the
appropriate data model need to be saved instead.

2.2 Model Driven Development

Model Driven Development (MDD) [9] is an approach to
implement a software system by describing it in a Platform
Independend Model (PIM). A PIM defines associations be-
tween data and behavior of the software and it is used as
input for generators producing a platform specific model
(PSM). To support MDD the Object Management Group
(OMG) has released the Model-Driven Architecture (MDA)
containing standards allowing specification and transforma-
tion of models. Another dominant approach to MDD are
Software Factories, which are proposed by Microsoft and
can be seen as a new software development paradigm. Dif-
ferences of these two approaches are discussed in [4].

Data modeling
Models of software design are often specified using Uni-

fied Modeling Language (UML) [11], another standard of
the OMG. UML models are based on a metamodel and are
situated in the user model layer of the four-level metamodel
hierarchy [10]. UML describes several diagrams, which can
be used to model different aspects of a software. Structural
and behavioral diagrams are differentiated. One example
of a structural diagram is the class diagram. It is used to
model the structure of classes, such as attribute and meth-
ods, as well as the association between the different classes
in the model.

For data modeling purposes the metamodel of a class di-
agram can be extended focusing only on class attributes and
associations [1].

Agile Data Modeling relies on iterative construction of
data models, where each data model satisfies the require-
ments needed in the current iteration. It is best suitable for
applications, that rely on relational databases for persistent
data storage. Agile Model Driven Development (AMDD)
also uses an iterative approach, instead of extensive models
being generated in the normal MDD process.

3. Transient Model Extension

The structure of a data model can be based on the four-
level metamodel hierarchy of the OMG, whereas level M3
and level M2 are the same for each data model. Model
level M1 contains the domain specific data model, holding
the domain specific classes and associations. This elements
are used for construction of objects which are contained in
model level M0. Generally speaking every model can be
seen as an instance of the model in the lower layer. Consid-
ering this fact, it is obvious that changing the model in level
M1 results in additional data contained in level M0.

Fig. 3 shows the four-level metamodel hierarchy with re-
spect to the data structures defined in Fig. 1. According to
this figureDM1 is part of every data model used by the
different software layers. Data model extensions (DME)
correspond to the defined mappingsT 1 andT 2 in Fig. 1.

DM2 is the data model used by the domain layer. It is
defined as a combination ofDM1 andDME2. In the same
way the data model of the presentation layer (DM3) results
from combiningDM1 with DME3.

Applying the AMDD approach to a layered software ar-
chitecture results in the definition of the data model describ-
ing the data structures used by the data source layer. In the
next steps the corresponding data models for the domain
and the presentation layer are defined. According to Fig. 3
a separated definition of each data model used by the dif-
ferent software layers is not feasible. Identical information
needed by different layers is duplicated in the models, lead-
ing to maintenance difficulties of the shared information.
Also each layer needs to store its own data model, which
can lead to increasing storage requirements by the appli-
cation. To overcome these problems a data model for all
layers could be used, that is adapted for the requirements of
the different layers.
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3.1. Transient Model Extension use cases

To get a model for a specific software layer other than
the data source layer, its data model normally needs to be
extended, which is done on the fly. We call this mechanism
Transient Model Extension (TME). It is illustrated by ar-
rowsT 1 andT 2 between the data structures in Fig. 1 and
by fasciated areas in Fig.3.

Like the extensions of a data structure implemented in an
object-oriented language follows the rules of the language
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compiler, extensions of the model have to be compliant to
its metamodel.

Typical TME use cases are:

Attribute Extension. Extending a class with additional at-
tributes is done to model additional information, that
belongs to this class and can be computed from other
class attributes or associated classes. An extended at-
tribute needs to be of a type already defined in the
model.

Additional Associations. Requirements of an upper soft-
ware layer can require additional associations between
classes, that are not associated in the data source. Usu-
ally this is done for simplifying associations of related
classes in the model. Consider a class A which has
a one-to-many association to class B. Class B in turn
has a many-to-one association to class C, which has an
association with a class D. If now an object of class
A needs the associated objects of class D, it has to tra-
verse two associations. This situation can be simplified
by directly associationg class A with class D.

Class Extension. Extending the model with additional
classes is a combination off all previous use cases.
Adding additional classes can be done to meet the
requirements for data redundancy or to simplify the
functions in the domain layer.

The data gathering mechanismfor the extended model
elements is specified in the TME process. Calculation
of model element values can be performed with different
mechanisms.

The first approach is the use of ahook function, which
is called everytime the value of the extended element is re-
quested. The other alternative implements theobserverpat-
tern [7], implying changes to the extended model element
only when one of the observed model elements changes.

One important aspect of the TME approach is the tem-
porary extension of a data model. Because the same data
model of the data source layer is used as basis for the do-
main and presentation layers, extensions applied by these
layers should not affect the (data) models of other layers.

3.2. Generic Components and TME

Generic components can be seen as software compo-
nents for which specific properties have been left vari-
able during components implementation [2]. For AMDD
it means that component functionality is based on a data
model as well as a metamodel and the model is used for
configuration.

In case of generic components TME can be used to con-
figure the runtime behavior of the component. Imagine a
user interface component like a table, which dynamically

displays data of a given class in the associated data model.
Extending this class with additional attributes leads to dis-
playing of additional table columns.

4. Implementational considerations

A more detailed data model of the warehouse manage-
ment system (WMS) use case presented in Sect. 2 is used
for demonstration of the TME mechanism. Although this
example has a higher degree of complexity, we note that
this example is still a simplified version of our real world
application.

Provided that the structure of the persistent data has been
modeled, anEntity Container (EC) [13] can be used as a
model-based object oriented data cache. The architecture of
the EC is shown in Fig. 4. The EC provides distinguishable
objects called entities, identified by a unique value. It op-
erates on two levels of the four-level metamodel hierarchy
of OMG implementing the instance of relation between the
two levels.

Database

XMI

XMI

PDL

EntityReferences

Backingstore

File
Backingstore

DynAny
Backingstore

DBAL

CORBA Remote

Entity Container

Create

Generate

Depends on

Depends on

Persistency Model

Application

Figure 4. Entity container architecture

The UML data model is stored in a file using the XML
Metadata Interchange (XMI) format. This file contains the
UML model of the persistent data and is used by the EC
and the associated backingstore, such as an object-relational
bridge (DBAL). Data entities in the EC are accessed using
a dynamic interface.

In our MDD approach the database is created from the
persistency model, which is also used to configure the EC
and its associated backingstore.
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Figure 5. Data models used by software layers for extended example

4.1. Extended example

Instead of the data structure shown in Fig. 2, the detailed
data structure allows a mixture of items from different arti-
cles in the same box. Each article defines a weight and can
be associated with additional handling informations like its
preferred temperature or its hazard class. Additionally each
box is associated with a target country, which has a prefer-
ence for a unit system.

Fig. 5 shows the data models of the different structures
used in the application.DM1 defines the data structure
S1 of the data source layer, which is used for generating
a database by applying the previously described MDD ap-
proach. In the persistent data storage only minimal informa-
tion is saved about the items and boxes, which are modeled
as classTransportUnit.

The following use cases need to be fulfilled by the differ-
ent layers of the warehouse management system for goods
issue:

UseCase I: It is required to calculate the weight of all items
placed on a transport unit. The function can be used to
inform a user whether a transport unit is overweight,
which can be caused by the individual weight of the
different articles.

UseCase II: A user needs a control for displaying the num-

ber of items on a transport unit. As stated in section 2
for better usability the displayed item count is split up
in packaged items and rest items. Note that every arti-
cle has an individual factor for calculating the number
of packaged items and rest items.

Additionally, a user should also be able to control the
weight of the transport unit. The weight is displayed in
the preferred unit system of the the inspected transport
unit’s target country.

The WMS is implemented using the previously de-
scribed software layers. Because the persistent data model
is used for generating the database, it defines the model
for the data source layer. All application layers mentioned
above are based on the data from the data source of the
WMS.

To meet the requirements of the previously defined use
casesDM1 in Fig. 5 needs to be extended applying the
TME mechanism, which is illustrated by the arrows labeled
DME2 andDME3 . UseCase I is implemented with the
additional attributes contained inDM2, while UseCase II is
realized by additional attributes and associations inDM3.

For DM2 the value of the additional weight attribute in
TUItem is calculated using:

WeightTUItem = AmountTUItem ∗WeightArticle (1)

6.4 Publication 4 - ECBS 2007 79



The value of this attribute is used in the calculation of the
weight attribute ofTransportUnit, which is based on
equation:

WeightTU =
∑

TUItems

WeightTUItem ∗ UnitFactorCountry (2)

For UseCase II the value of the package and rest attribute
of TUItem is calculated using thePackageFactorattribute
of the associatedArticle and theamountattribute of
TUItem.

Keeping these facts in mind the following situation can
be thought of. There can exist some articles, which also
have a heavy-weight packaging. If this fact needs to be con-
sidered in the WMS, the following modifications have to be
made.

First a new attribute containing a package weight needs
to be added toTUItem in DM1. Additionally the attribute
holding the package count and its corresponding calculation
function need to be added toTUItem in the TME process.
Also Eq. 1 has to be changed to

WeightTUItem = AmountTUItem ∗WeightArticle

+ PackagesTUItem ∗ PackageWeightTUItem (3)

With this additional extension one benefit of the TME
method is demonstrated. Because Eq. 2 relies only on the
value of the weight attribute, changes in the Eq. 1 calcu-
lating the value of this attribute are transparent to equation
Eq. 2.

4.2. TME with the Entity Container

Listing 1 illustrates the code for the data source layer.
This layer holds the data model of the application. It also
provides access to the data source. According to Fig.4 each
EC uses a data model and a backingstore, which holds the
connection to the data source. The parameter for initial-
ization of the EC in the upper layers of the application are
retrieved from the data layer.

Listing 1. Data source layer�
1 . .

/ / D a t a s t r u c t u r e h o l d i n g t h e da ta model
3 p r i v a t e IModel dataModel ;

5 / / Ba ck i n g s t o r e co n n ec t i n g t o t h e da tabase
p r i v a t e I B ack i n g S t o r e b s ;

7
/∗∗

9 ∗ Pu b l i c c o n s t r u c t o r i n i t i a l i z i n g da ta l a y e r
∗∗/

11 p u b l i c DataLayer ( ) {
/ / i n i t i a l i z e t h e da ta model

13 dataModel = Model . create4TME ( ” r e s o u r c e /WMSModel . xml . z i p ” ) ;
/ / open co n n ec t i o n t o da tabase f o r b a ck i n g s t o r e

15 I P e r s i s t e n c y p e r s i s t =new R emo t eD b a l P e r s i s ten cy ( ) ;
/ / i n i t i a l i z e b a ck i n g s t o r e

17 b s = new JavaDynAnyBack ingStore( dataModel, p e r s i s t ) ;
}

19

/ / Method f o r r e t r i e v i n g t h e model o f t h e da ta s o u r ce l a y e r
21 p u b l i c IModel getDataModel ( ){

return dataModel ;
23 }

25 / / Method f o r g e t t i n g a cces s t o t h e da ta s o u r ce
p u b l i c I B ack i n g S t o r e getBS ( ){

27 return b s ;
}

29 . . � �
Listing 2 demonstrates the implementation of the busi-

ness function for checking the current weight of an item.
This method is invoked by providing the ID of the current
transport unit. In the initialization phase of this method
the data model of the data source layer is retrieved. This
model is extended with an additional attribute, containing
the weight of the transport unit item. A new EC is instan-
tiated, which is based on the extended model and the back-
ingstore contained in the data source layer.

In this example we demonstrate, that the value for the
additional attribute is provided using a hook function.

Listing 2. Implementation of UseCase I�
2 / / b u s i n e s s f u n c t i o n c a l c u l a t i n g w e i g h t l i m i t

p u b l i c boolean weigh tL imi tReached ( S t r i n g tu ID){
4 DataLayer d l = A p p l i ca t i o n . g e t D a t aLay e r ( ) ;

/ / g e t p e r s i s t e n t da ta model
6 IModel l ayerModel = d l . getDataModel ( ) ;

/ / app l y TME f o r a t t r i b u t e w e i g h t o f c l a s s TUItem
8 I A t t r i b u t e weigh t = layerModel . TMEaddNewAtt r ibute ( ITEM , a t t rW e i g h t ,WEIGHT ) ;

weigh t . setHook (new I temWeightHook ( ) ) ;
10 I A t t r i b u t e l i m i t = layerModel . TME addNewAtt r ibute (TU, a t t rL i m i t , L imi t ) ;

l i m i t . setHook (new Limi tHook ( ) ) ;
12

/ / i n i t i a l i z e new b a ck i n g s t o r e EC
14 I B ack i n g S t o r e bs = d l . getBS ( ) ;

B ack i n g S t o r eEn t i t y C o n t a i n e r ec= new B ack i n g S t o r eEn t i t y C o n t a i n e r (
16 layerModel , bs ) ;

/ / l oad t r a n s p o r t u n i t s f rom d a t a s o u r ce
18 ec . l o ad ( T r an s p o r t U n i t ) ;

20 / / l ookup s p e c i f i c t r a n s p o r t U n i t
ITemp late t emp l a t e =new Template ( ) ;

22 t emp l a t e . s e t A t t r i b u t e (TU, tu ID ) ;
I E n t i t y R e f e r e n c e r e f = ec. f i ndByPr imaryKey( T r an s p o r t U n i t , t emp l a t e ) ;

24
/ / r e t u r n va l u e o f t h e l i m i t a t t r i b u t e f o r s e l e c t e d t r a n s p o rt u n i t

26 return r e f . g e t A t t r i b u t e ( a t t r L i m i t )
}

28 . .

30 p r i v a t e c l a s s I temWeightHook ex tends En t i t y A t t r i b u t eH o o k {
/ / c a l l e d f o r a t t r i b u t e Weigh t i n c l a s s TUItem

32 p u b l i c IValue g e t A t t r i b u t e ( I E n t i t y R e f e r e n c e e n t i t y , S t r i n g name ) {
double r e t V a l = 0 ;

34 I C o l l e c t i o n<I En t i t y R e f e r en ce> a r t i c l e s = e n t i t y . g e t C o n n ec t i o n s ( ARTICLE ) ;

36 / / c a l c u l a t e w e i g h t o f a s s o c i a t e d a t t r i b u t e s
fo r ( I E n t i t y R e f e r e n c e a r t i c l e : a r t i c l e s )

38 r e t V a l += ( ( DoubleValue ) a r t i c l e . g e t A t t r i b u t e ( ” Weight ” ) ) . getValue ()∗
( ( DoubleValue ) e n t i t y . g e t A t t r i b u t e ( ”Amount” ) ) . getValue ( ) ;

40
return new DoubleValue ( r e t V a l ) ;

42 }
. .

44
p r i v a t e c l a s s Limi tHook ex tends En t i t y A t t r i b u t eH o o k {

46 / / c a l c u l a t e s t h e va l u e o f a t t r i b u t e l i m i t i n TUItem
p u b l i c IValue g e t A t t r i b u t e ( I E n t i t y R e f e r e n c e e n t i t y , S t r i n g name ) {

48 double cu r r en t W e i g h t = 0 ;
I C o l l e c t i o n<I En t i t y R e f e r en ce> i t ems = e n t i t y . g e t C o n n ec t i o n s ( ITEM ) ;

50
fo r ( I E n t i t y R e f e r e n c e i tem : i t ems )

52 cu r r en t W e i g h t += ( ( DoubleValue ) i t em . g e t A t t r i b u t e ( ” Weight ” ) ) . getValue ( ) ;
boolean r e t = ( e n t i t y . g e t A t t r i b u t e ( ” l i m i t ” ) . compareTo ( cu r r en tW e i g h t ) >= 0 ) ;

54
return new Boo leanValue ( r e t ) ;

56 }
} � �

Listing 3 shows the implementation of the modified hook
method implementing Eq. 3. This implementation can be
applied to the weight attribute in Listing 2.

80 CHAPTER 6. Publications



Listing 3. Changed hook implementing Eq.3�
1

p r i v a t e c l a s s I temWeightHook ex tends En t i t y A t t r i b u t eH o o k {
3

p u b l i c IValue g e t A t t r i b u t e ( I E n t i t y R e f e r e n c e e n t i t y , S t r i n g name ) {
5 double r e t V a l = 0 ;

I C o l l e c t i o n<I En t i t y R e f e r en ce> a r t i c l e s = e n t i t y . g e t C o n n ec t i o n s (ARTICLE ) ;
7 fo r ( I E n t i t y R e f e r e n c e a r t i c l e : a r t i c l e s )

r e t V a l += ( ( DoubleValue ) a r t i c l e . g e t A t t r i b u t e ( ” Weight ”) ) . getValue ()∗
9 ( ( DoubleValue ) e n t i t y . g e t A t t r i b u t e ( ”Amount” ) ) . getValue ( ) +

( ( LongValue ) e n t i t y . g e t A t t r i b u t e ( ” Packages ” ) ) . getValue ()∗
11 ( ( DoubleValue ) e n t i t y . g e t A t t r i b u t e ( ” PackageWeigh t”) ) . getValue ( ) ;

return new DoubleValue ( r e t V a l ) ;
13 }

} � �
5. Discussion

Having seen the TME implementation we are going to
summarize the most important points in the concept of
Transient Model Extensions.

Model-interpretation technique: In contrast to other ap-
proaches, which mainly rely on code generation, our
approach is based on model interpretation based on a
metamodel. [5]. This allows dynamic generation of
classes and objects based on a data model.

Single persistency model: TME relies on a single persis-
tent data model, which represents the persistent data
structures. This model is used as basis for each ex-
tended data model.

Assuming a three layered software architecture with
the data source layer holding the persistent data model,
TME can be used to create extended data structures
in the domain layer and the presentation layer. These
data structures are needed for support of additional at-
tributes or relations according to the use cases imple-
mented in each layer.

Separation of concern: TME can be used for implement-
ing a view on the persistent information stored in the
application’s data source. This is not only important
for implementing different software layers. Another
use case is the implementation of different components
using the same persistent information.

Code modularization: In a method working with TME
first the persistent data model is extended and data
gathering methods are added, implementing hooks and
observers. In a second step the extended model can be
applied to an object oriented data cache. So the return
value of the method can be based on the extended at-
tributes. Therefore the method can only contain model
extension and model querying statements, while calcu-
lation can be performed in small code fragments used
by the hooks and oberserver. These hooks and ob-
servers can be also shared between different model ex-
tensions allowing an improved reusability.

5.1. Related persistent data frameworks

To realize the mapping of persistent data in dynamic data
structures several widely known technologies exist.

Microsoft’s ADO.NET framework [12] contains sev-
eral classes, which enable the usage of relational databases
or XML files as persistent data sources. Access to the
database is provided through an instance of a DataReader or
a DataAdapter. While the first one is only used for reading
data from the database, the second allows also data manipu-
lation independent of the database type. The data adapter
is used by a dataset component, which is an in-memory
database.

The dataset is used by other application layers, but it
does not utilizes a data model. Therefore extending the
dataset is done at source code level, instead of the model
abstraction level.

Hibernate [8] aims at providing an object/relational
bridge. It allows the user to work with object oriented
concepts like inheritance and composition as well as with
database relational concepts such as usage of a DML
like SQL. The mapping between the Java classes and the
database structure is done by a XML file.

Because Hibernate works at the source code abstraction
level, supporting modelbased extensions is not in the scope
of this technology.

TheEclipse Modeling Framework (EMF) [3] is an im-
plementation related to the OMG Meta Object Framework
(MOF). A EMF model is based on a metamodel called ecore
model. This model defines the content of eAttributes and
eReferences, which belong to the eClass elements in the
model.

EMF models can be built from Java files, XML files or
UML models stored in XMI. This models can be used as
input for Java source code generators, producing class files
with annotated source code. This code can be edited manu-
ally to add functionality. EMF supports the serialization of
objects contained in the EMF model in XMI files.

The ecore model defines attributes allowing to control
which elements of the model can be serialized. The tran-
sient flag defines whether the corresponding element can be
serialized. The volatile flag is used to signal that the valueof
this element depends on the value of other model elements.

Our approach differs in the following points from the
EMF modeling concept:

1. The first aspect is the support of simultanous but in-
dependent extensions of the persistency data model by
different methods. In our understanding the same per-
sistent data model is used by all extending models,
while the extensions are only visible within a partic-
ular scope. In contrast, extensions to EMF models are
globally visible.
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2. The second aspect is the used concept of model ex-
tension. While EMF supports extension of classes
with subclassing an existent class in a model, our ap-
proach directly adds attributes and references to exist-
ing classes. The advantage hereby is the constant class
type of the extended class, so no modification of code
expecting a particular class type is required.

6. Conclusion

This paper introduced a new method to ease the model
driven construction of layered data-intensive software. Ap-
plying the concepts of data modeling using traditional con-
cepts, results in one data model for each software layer.
This leads to redundant class definition in different models
with respect to the data source.

In this cases changing the data model of the data source
becomes difficult, because all corresponding classes in the
other data models need to be changed. Furthermore each
model is driven by various requirements, which leads to
a different number of attributes in the equivalent class de-
pending on data model.

To overcome this challenge, data models of different
software layers can be received applying additional exten-
sions on the data model from the underlying software layer.
The mechanism for application of the model changes on the
fly is called Transient Model Extension (TME).

This paper presented TME use cases including the exten-
sion of classes, class attributes and associations. These tran-
sient extensions are driven by layer specific requirements.

To demonstrate the advantages of this method, we pre-
sented an example, considering various requirements of the
domain layer and the presentation layer. Finally we pro-
vided a comparision of our approach to related technologies
dealing with persistent data structures.
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Abstract— Software is often constructed using a layered
approach to encapsulate various functionality in correspond-
ing layers. Individual requirements of each layer demand
layer specific data structures. These data structures typically
provide redundant information with respect to the data
source.

Providing a Model Driven Software Development ap-
proach for creating these data structures leads to overlap-
ping data models, each containing data structures defined
by the data source. Because putting all various requirements
of the software layers in a single data model can lead
to difficulties, each software layer should only extend the
basic data source model with its specifically needed model
elements.

The approach presented in this paper applies a mech-
anism for a dynamic extension of a data model. This
extension mechanism is used in the implementational activity
of a software process, and allows the changing of a model
within a local scope. Using this mechanism, a basic data
model can be used by every layer, being extended by
additional attributes and classes for satisfying layer specific
requirements.

Index Terms— Model-driven development, Data modeling,
Data Intensive Systems, Software layers

I. I NTRODUCTION

In the last years their has been a lot of research on
model driven development (MDD) [1]–[3], which has lead
to different standards like Unified Modeling Language
(UML) [4] and approaches like Model Driven Architec-
ture (MDA) [5]. The aim of an MDD approach is the
description of software in an abstract way by making use
of a model describing the designed software. This model
specifies attributes of the software, which are needed
in the corresponding activity of a software engineering
process.

There exist different software engineering process mod-
els, like the waterfall model, evolutionary development,
formal systems development or iterative approaches such
as the spiral model [6]. All of these process models define
some fundamental activities, like software specification,
software design and implementation, software validation
and software evolution. Each activity can be supported by

This paper is based on “Model-Based Data Processing with Transient
Model Extensions,” by M.Thonhauser, G.Schmoelzer and C.Kreiner,
which appeared in the Proceedings of the 14th Annual IEEE Inter-
national Conference and Workshops on the Engineering of Computer-
Based Systems, Tucson, AZ, USA, March 2007.c© 2007 IEEE.

models. Some modeling standards like UML also provide
different views of a model (e.g. class diagram, use case
diagram, sequence diagram), which are best suited for
different acitivities in a software engineering process.

While MDD aproaches often require to finish the spec-
ification of models before the modeled applications are
implemented, agile approaches like Agile Model Driven
Development (AMDD) [7] focus only on the view of
a model currently needed. In an AMDD approach for
developing a data-intensive system a data model is the
most important type of model created at the beginning of
the software development process. Because data-intensive
applications are software systems that focus on data pro-
cessing, data visualization and data storage (such as en-
terprise resource planning systems, banking applications
or logistic systems), a data model contains the description
of persistent data structures. These data structures serve
as the basis of a data-intensive system. To ease the devel-
opment of data-intensive applications a layered approach
is typically chosen for such architectures [8] consisting of
three layers, which are called presentation layer, business
function layer and data source layer.

Data structures used by a software layer are described
in a data model. Because every layer has different require-
ments on its data structures, data models of various layers
may differ, but there exists a common partial data model
of all layer specific data models. This common partial
data model can be seen as the application’s minimalistic
data model.

Supposing that this minimalistic data model contains
all data required for persistence, data models of the
different layers can be produced by adding layer specific
data structures to this model. While the minimalistic
data model needs to be defined in the first activity of a
software engineering process, layer specific additions can
be defined in later activities (e.g. during implementation
of the corresponding layer). Some requirements on layer
specific data structures are not known in the design phase
of a layer, because they follow from implementational
considerations. In order to support these requirements by
a data model a dynamical model extension mechanism has
been proposed in [9]. This mechanism is called Transient
Model Extension (TME) to point out, that extensions
made to the model are available only in the scope (e.g.
layer, class method) where they are defined.

c© 2006-2009 AcademyPublisher. Reprinted, with permission, from Journal of Software, Vol 2, No 2 (2007),
http://ojs.academypublisher.com/index.php/jsw/article/view/1441
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For demonstration purposes of the TME mechanism
a warehouse management system is introduced in Sect.
II giving an example of a layered design for a data-
intensive system. Sect. III discusses the dependencies of
layered software and data models in more detail, while
Sect. IV introduces the TME approach. Sect. V describes
an implementation scenario of the examplary WMS using
the TME approach.

II. M OTIVATING EXAMPLE

We begin by introducing a simplified warehouse man-
agement system (WMS), which is implemented in the
business domain of logistics. The example system sup-
ports the process of managing transport unit items (TU-
Item) being stored in a warehouse. Each TUItem is an
instance of a specific article and is contained in a transport
unit (TU).

Our warehouse management process uses three stages;
at the incoming goods stage TUs are received from suppli-
ers. In the second stage received TUs are stored in a high
rack. If a customer orders an article a TU containing a
corresponding TUItem is looked up in system. According
to the strategy (e.g. best-before date, fastest available
TUItem), the found TU is delivered to the third stage of
our warehouse, the goods issue. In this stage the ordered
TUItems are collected together and stored in another TU.
While the filled up TU is delivered to the customer, the
original TUs are returned to the high rack stage.

Fig. 1 depicts the modules of the described WMS. Note
that each stage of the warehouse management process is
associated with one module of the system. Each module
is constructed using a layered approach.

The chosen approach consists of three layers. A two
layered approach would also be feasible, which would
require to split up the functionality of the business layer.
This approach is often realized using fourth generation
programming languages, like SQL, to realize business
functions with stored procedures and aggregate functions.
The drawback of this approach is the complexity of the
realized queries.

Using a three layered approach queries can be trans-
fered to the business logic layer. They can be split up in
programming statements, which rely on smaller queries
being responsible for retrieving the required data from
the data-source. Often this approach is related to usage
of an object-relational mapper in the data source layer,
which maps the existing objects onto relational database
tables.

Because the majority of currently used programming
languages for constructing such systems, such as C#,
Java or C++, follows the object oriented paradigm, data
structures can be described using a class diagram view of
the data model.

III. R ELATED WORK

A. Layered software

In a layered approach such as proposed in [8] each
software layer internally uses data structures, holding

<<Persistent>><<Persistent>>
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Figure 1. Software layers of warehouse management system

the needed data of this layer. Fig. 2 shows these data
structures and depicts the dependencies between them.
Every data structure can be seen as a layer specific view
on the information generally available to the software.
Data structureS1 holds the transformed persistent data,
which is compliant to the structure of the data source.S2
repesents the data structure used by the domain layer and
S3 is contained in the presentation layer.

T2’

S1

S3

T2

Domain

Presentation

DataSource
T1’

S2
T1

Figure 2. Data structures in software layers

The examplary WMS illustrates different requirements
for data structures in various application layers. Require-
ments forS1 are the reduction of redundant information,
thus providing support fordata normalization[7]. This
reduction is needed for optimal storage usage, efficient
data transfer and to avoid inconistency of stored data.
Also the data structure should be easily mappable to the
persistent data source.

S2 is driven by requirements forsimplifying complexity
of the application logic, addingtransaction handlingand
data consistency checks. This aims at avoidance of incon-
sistent data and is done throughadding data redundancy.

S3 contains the data displayed at the presentation layer.
Its content meets user requirements andusability aspects,
which often requires displaying additional information.

As illustraded in Fig. 2 there exist several dependencies
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of the data structures in the different layers. Because
S1 holds all the persistent information available to the
application, additional data inS2 and S3 is normally
related to data contained inS1. This requirement can be
fulfilled by extendingS1 with a transformationT 1 or T 2.

The way this transformation is performed depends on
the abstraction level used for application development.

• In a traditional software engineering approach imple-
mentation is done by using a relational database and
fourth generation programming languages like SQL.
This programming language type often includes a
database manipulation language (DML) used to de-
fine the data structuresS1, S2 andS3. In this case
the transformationT 1 andT 2 of the data structures
is done by extending the DML statements.

• A higher level of abstractions is provided by object
oriented languages combined with object-relational
methods [8]. This solution enables type safety for
S1, S2 and S3 consisting of classes. The transfor-
mation is done with additional source code for the
implementation ofS2 andS3.

• A further abstraction level is reached by using a
MDD approach. This leads to a corresponding data
model DM1 for S1, DM2 for S2 and DM3 for
S3. Following the dependencies of the different data
structures, the dependencies of the data models can
be seen asDM1 ⊆ DM2 and DM1 ⊆ DM3.
In this case transformationT 1 or T 2 is done by
extendingDM1. This extension adds information
about additional data needed in the presentation layer
leading to DM3 and to DM2 respectivly in the
domain layer.
Note that this mechanism is called Transient Model
Extension (TME), because the extensions toDM1
are only visible at the scope where they are applied.
There exist also many small extensions forT 1 and
T 2. Since DM1 is used as the basic model for
this mechanism,DM2 and DM3 does not need
to be stored in the corresponding layers. Only the
transformation rules needed for construction of the
appropriate data model need to be saved instead.

B. Model Driven Development

Model Driven Development (MDD) [1] is an approach
to implement a software system by describing it with
a Platform Independent Model (PIM). A PIM defines
associations between data and behavior of the software
and it is used as input for generators producing a plat-
form specific model (PSM). To support MDD the Object
Management Group (OMG) has released the Model-
Driven Architecture (MDA) containing standards, which
enable specification and transformation of models. An-
other approach to MDD are Software Factories, which
are proposed by Microsoft and can be seen as a new
software development paradigm. Differences of these two
approaches are discussed in [10].

Models of software design are often specified using
Unified Modeling Language (UML) [11], another stan-

dard of the OMG. UML models are based on a metamodel
and are situated in the user model layer of the four-
level metamodel hierarchy [4]. UML describes several
diagrams, which can be used to model different aspects
of a software. Structural and behavioral diagrams are
differentiated. One example of a structural diagram is the
class diagram. It is used to model the structure of classes,
such as attributes and methods, as well as associations
between different classes in the model.

For data modeling purposes the metamodel of a class
diagram can be extended focusing only on class attributes
and associations [7].

Agile Data Modeling relies on iterative construction
of data models, where each data model satisfies the
requirements needed in the current iteration. It is best
suitable for applications that rely on relational databases
for persistent data storage. Agile Model Driven Devel-
opment (AMDD) also uses an iterative approach, instead
of extensive models being generated in the regular MDD
process.

C. Related persistent data frameworks

To realize the mapping of persistent data in dynamic
data structures several widely known technologies exist.

Microsoft’s ADO.NET framework [12] contains sev-
eral classes, which enable the usage of relational
databases or XML files as persistent data sources. Access
to the database is provided through an instance of a
DataReader or a DataAdapter. While the first one is only
used for reading data from a database, the second allows
also data manipulation independent of the database type.
The data adapter is used by a dataset component, which
is an in-memory database.

The dataset is used by other application layers, but it
does not utilize a data model. Therefore extending the
dataset is done at source code level instead of the model
abstraction level.

Hibernate [13] aims at providing an object/relational
bridge. It allows the user to work with object oriented
concepts like inheritance and composition as well as with
database relational concepts such as usage of a DML
like SQL. The mapping between the Java classes and the
database structure is done by a XML file.

Because Hibernate works at the source code abstraction
level, supporting model based extensions is not in the
scope of this technology.

The Eclipse Modeling Framework (EMF) [14] is an
implementation related to the OMG Meta Object Frame-
work (MOF). A EMF model is based on a metamodel
called ecore model. This model defines the content of
eAttributes and eReferences, which belong to the eClass
elements in the model.

EMF models can be built from Java files, XML files
or UML models stored in XMI. These models can be
used as input for Java source code generators, producing
class files with annotated source code. This code can be
edited manually to add functionality. EMF supports the
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serialization of objects in XMI files, if they are based on
an EMF model.

The ecore model defines attributes allowing to control
which elements of the model can be serialized. The
transient flag defines whether the corresponding element
can be serialized. The volatile flag is used to signal that
the value of this element depends on the value of other
model elements.

Our approach differs in the following points from the
EMF modeling concept:

1) The first aspect is the support of simultanous but in-
dependent extensions of the persistency data model
by different methods. In our understanding the
same persistent data model is used by all extending
models, while the extensions are only visible within
a particular scope. In contrast, extensions to EMF
models are globally visible.

2) The second aspect is the used concept of model
extension. While EMF supports extension of classes
with subclassing an existent class in a model, our
approach directly adds attributes and references
to existing classes. The advantage hereby is the
constant class type of the extended class, so no
modification of code expecting a particular class
type is required.

D. Partial model techniques

While many model based applications rely on large
monolithic models, there exist alternatives in the domain
of Domain Specifc Languages (DSL) [15], which rely on
the management of multiple partial models. These partial
models can be linked together to create one application
specific model or can be used for partial source code
generation, which can be linked.

Another approach based on metamodels is descriped in
[16]. This approach uses core models and fragment mod-
els, which conform to the same metamodel. These models
are then linked together following a formal definition,
which ensures that the resulting model is also conform
to the metamodel.

In our approach of transient model extension used mod-
els are also expected to be conform to their metamodels.
But instead of linking these partial models, our approach
allows the specification of model extensions for a specific
model in other forms, e.g. in a programming language.
Another distinction is the corresponding acitivity in the
software process used for creating the extension of models
or performing the linkage of partial models. Often partial
models are defined during design activities and are often
linked before starting with implementational activities in
the software development process. This can be done for
enabling generators to produce corresponding application
artifacts (like source code or database setup scripts)
[17]. In contrast the TME approach is applied during
implementational activities of a software development
process to dynamically manipulate the model, where the
manipulations have a local scope. Looking at the different
roles in a software process, model linking approaches are

applied by application and database designers, while our
approach is used for supporting the software developer in
implementing the layers.

IV. T RANSIENT MODEL EXTENSION

The structure of a data model can be based on the
four-level metamodel hierarchy of the OMG, where level
M3 (meta-metamodel) is the same for each data model.
Level M2 contains the general metamodel and additional
metamodel extensions, allowing the specification of do-
main specific data models in M1. These domain specific
data models maintain the domain specific classes and
associations being used for construction of objects which
correspond to model level M0. Generally speaking, every
model can be seen as an instance of the model in the lower
layer. Considering this fact, it is obvious that changing the
model in level M1 results in additional data contained in
level M0.
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Figure 3. Data model structure

Fig. 3 illustrates the elements needed in the four-level
metamodel hierarchy for realization of the data structures
defined in Fig. 2. According to this figureDM1 is part of
every data model defined in level M1.DM1 defines the
data structureS1, which containsDataDM1 in M0. In
Fig. 2 mappingsT 1 andT 2 are defined for creating the
corresponding data structuresS2 andS3. MappingT 1 is
represented byTME1 andT 2 is represented byTME2
respectivly. Each of these mappings defines a Data model
extension (DME) of M1.

According to the assumptions made in Sect. III-A,
DM2 is equivalent toS2 and is defined as a combination
of DM1 and DME1. In the same way the data model
DM3 results from combiningDM1 with DME2. Every
model has corresponding data structures and data in M0.

As stated in Sect. III-A,DM1 is used by the data
source layer,DM2 by the business function layer, and
DM3 by the presentation layer.

Applying the AMDD approach to a layered software
architecture results in the definition of a data model con-
taining the data structures used by the data source layer.
Based on the persistent data model the corresponding
data models for the domain and the presentation layer
are defined. According to Fig. 3 a separate definition of
each data model used by the different software layers is
not feasible. Common data definitions needed by different
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layers are duplicated in the models, leading to mainte-
nance difficulties of the shared information. Also each
layer needs to store its own data model, which can lead
to increasing storage requirements by the application. To
overcome these problems a single data model is defined
in the data source layer, containing the persistent data
structures.

To get a model for a software layer other than the data
source layer, its data model normally can be extended by
a mechanism called Transient Model Extension (TME).
It is illustrated by arrowsT 1 and T 2 between the data
structures in Fig. 2 andTME1 and TME2 in Fig.3
respectivly.

Note that the extensions provided to the data model
can be applied for different scopes. As stated above,
an extension of the model can be defined and used by
all classes being part of a layer. Another possibility is
illustrated in Fig. 4; the business logic layer contains two
methods, which apply a TME to the data model referenced
from the data source layer. In this case each TME is only
visible to the defining method.
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Figure 4. TME with method scope

A. TME types

As extensions of data structures implemented in an
object-oriented language need to follow the rules of the
language compiler, extensions of the model have to be
compliant to its metamodel. According to this fact, an
extension of the model element needs to be an instance
of an element defined in the metamodel.

The following elements of a class metamodel are used
in a TME mechanism for data-models.

1) Attributes: Extending a class with additional at-
tributes is done to model additional information, that be-
longs to this class. Often this information can be derived
from other class attributes or (attributes of) associated
classes. The type of an extended attribute has to be defined
in the model before the extended attribute is defined.

Fig. 5 demonstrates an example of a TME with an at-
tribute for the datamodel of our WMS defined in Sect. II.

For retrieving the weight of a TU the sum of the weight of
all TUItems has to be calculated. The weight of a TUItem
again depends on the weight of the corresponding article
and the amount of items located in the TU. Dynamically
adding the weight attribute to the classesTransportUnit
and TUItem allows to divide the calculation descriped
above. Also the result of this calculation has the same
metainformation as the weight attribute of the article.
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− Name:NAME
− ART_OID: OID

<<Persistent>>
Article

− PackageFactor:LONG

− ITEM_OID: OID

TUItem
<<Persistent>>

− AMOUNT:LONG
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− WeightLimit:WEIGHT
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1 *

TUItem.Weight = Article.Weight * TUItem.Amount

TransportUnit.Weight=SUM(TUItem.Weight)

1*

Figure 5. TME for weight attributes

2) Associations:Business functions may require addi-
tional associations between classes, that are not associated
in the data source. Usually this is done for simplifying
associations of related classes in the model. Again this
TME type is demonstrated using the datamodel of the
WMS. Consider the requirement to display information
on all articles contained in a TU. This requirement can
be fulfilled by extending the datamodel of the WMS with
a 1:n association between the classTransportUnitand the
classArticle.

− Name:NAME
− ART_OID: OID

<<Persistent>>
Article

− PackageFactor:LONG

− ITEM_OID: OID

TUItem
<<Persistent>>

− AMOUNT:LONG

TransportUnit

− TU_OID: OID
− WeightLimit:WEIGHT

<<Persistent>>

− Weight:WEIGHT

1

11 *

*

*

Figure 6. TME for associating articles with TUs

3) Classes: Extension of the datamodel with new
classes requires at least an additional TME with a class
attribute. It can also require a TME with an association,
to connect the new class to an existing class in the model.

− ART_OID: OID

<<Persistent>>
Article

− ART_OID: OID
− ItemCount: LONG

TUItem
<<Persistent>> ArticleItem

− ITEM_OID: OID

2
2
1

COUNT

ART
12

3 2

GROUP BY

1*

ItemCount
ART

5

Item
1
2
3
4

1

2

Figure 7. TME for a class

Fig. 7 shows a use case, which does not require a
TME with an association. This example is driven by
the requirement to count the number of TUItems for
each article. Looking at the database tables shown in
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the upper section of the figure, it is clear, that this
requirement can be solved, by applying a query containing
a GROUP BY clause and a COUNT function on the
TUItem field. This requirement is solved by a TME with
the classArticleItem, which is used for constructing the
entity objects containing the result from the database
query. Using an additional class satisfies the following
constraints which arise from the database query:

COUNT(x)→ int
GROUP BY (x)→ x
Every entity of the classArticleItem is therefore fully

defined within the metamodel, i.e. every attribute contains
its correct metainformation. Note that this requirement
could also have been solved by adding an additional
attribute to the classArticle instead of specifying a totally
new class. The reason for using a class extension are
performance considerations, which we will discuss in the
next section.

B. Clientside and serverside TME

The initial idea of the TME mechanism has been the
client side extension of the datamodel, e.g. to enable
additional columns in table widgets being shown in the
presentation layer. But in fact most data-intensive sys-
tems are build using a distributed architecture. In this
context the meaning of software layers is equivalent to
the meaning of software tiers. A tier is a layer, which
is not deployed on the same machine as the other layers
in the system. In a three tier system two configurations
are usually deployed. The first configuration, also known
as fat client, requires presentation tier and business logic
tier being installed on the same machine. The second
configuration, known as thin client, requires only the
presentation layer being deployed on the client machine,
while business logic tier and data source tier are deployed
on the server.

Both configurations think of the data source tier being
deployed on a server machine. This server contains the
datasource, which is often a relational database, or it has
a high performance network connection to the machine
containing the datasource. In the second situation perfor-
mance considerations can become important for applying
TME to the datamodel.

The example demonstrated in Fig. 7 can also be imple-
mented using a TME with an attribute for theArticle class.
But by applying the TME with an attribute the software
engineer requires the infrastructure to transfer first all
TUItemobjects and allArticle objects from the datasource
layer to the layer containing the extended datamodel. Hav-
ing finished the transfer the sum up of the corresponding
TUItem entities for each article can be performed. This
variant requires a big amount of data to be transferred,
while the example in Fig.7 makes use of the advantages of
the RDBMS, applying the corresponding query in a DML
and then constructing new entities of the class ArticleItem
from the returning set of this query.

C. Other design considerations

Beside the descision to use client or serverside TME
another design consideration is thedata gathering mech-
anismfor the extended model elements. Especially in the
case of attribute TME it is always required to specify a
mechanism for retrieving the value of an attribute.

The first approach is the use of ahookfunction, which
is called everytime the value of the extended element is
requested. The other alternative implements theobserver
pattern [18], implying changes to the extended model
element only when one of the observed model elements
changes.

For demonstration purposes consider the example
shown in Fig. 5. The example used two TMEs adding
a weight attribute to theTUItemandTransportUnitclass.
Considering the requirement, that the amount stored in
TUItem and the weight of the article are fixed, usage
of two hook methods each implementing one of the
equations shown in Fig. 5 is enough. If this requirement
changes, additional observer methods need to be specified
for the corresponding variable attributes. These observer
methods need to trigger the two hook functions for
updating the additional attributes.

Another important aspect of the TME approach is the
temporary extension of a data model. Because the same
data model of the data source layer is used as basis for the
domain and presentation layers, extensions applied within
these layers should not affect the (data) models of other
layers.

D. Generic Components and TME

Generic components can be seen as software compo-
nents for which specific properties have been left variable
during components implementation [19]. For AMDD it
means that component functionality is based on a data
model as well as a metamodel and the model is used for
configuration.

In case of generic components TME can be used to con-
figure the runtime behavior of the component. Imagine a
user interface component like a table, which dynamically
displays data of a given class in the associated data model.
Extending this class with additional attributes leads to
displaying of additional table columns.

V. I MPLEMENTATIONAL CONSIDERATIONS

For demonstration purposes the uses cases presented
in Sect. IV-A are implemented using the layered WMS
introduced in Sect. II. The examples are realized using
the framework of our real world application.

Provided that the structure of the persistent data has
been modeled, anEntity Container (EC) [20] can be
used as a model-based object oriented data cache. The
architecture of the EC is shown in Fig. 8. The EC
provides distinguishable objects called entities, identified
by a unique value. It operates on two levels of the four-
level metamodel hierarchy of OMG implementing the
instance of relation between the two levels.
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Figure 8. Entity container architecture

The UML data model is stored in a file using the XML
Metadata Interchange (XMI) format. This file contains
the UML model of the persistent data and is used by the
EC and the associated backingstore, such as an object-
relational bridge (DBAL). Data entities in the EC are
accessed using a dynamic interface.

warehouse

types

+@LENGTH=20
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+@LENGTH=20

+@LABEL=Item
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+@LENGTH=5
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OID

− PackageFactor:AMOUNT
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− Name:NAME
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<<Persistent>>

− ITEM_OID: TUITEMOID

TUItem
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− Amount:AMOUNT

Article
<<Persistent>>

1 * * 1

Figure 9. Case study data model

In our MDD approach the database is created from the
persistency model, which is also used to configure the
EC and its associated backingstore. Fig. 9 shows the data
model used for our examples. It consists of two packages,
with the warehouse package containing the persistent data
classes. Attributes of these classes use the type classes
defined in the types package. This data model is applied
for creating a database containing the data shown in Table
I. There exist two TUs, with one containing two TUItems
and the other being empty. The two TUItems are instances
of different articles. These data are used for demonstrating

TABLE I.
DATA USED FOR TABLE IN FIG. 10 AND FIG. 11

TU TUItem Amount Article Article.Weight
1234 211 2 815 3.0
1234 222 1 816 4.0
1235 - - - -

the following use cases:
1) Applying TME for weight attributes (see Fig. 5)
2) Applying TME for a new class (see Fig. 7)

A. TME with the Entity Container

The EC framework is currently implemented for C++
and Java. Because both versions provide the same API,
the following examples demonstrated for Java can also
be applied in C++. While the C++ implementation is
packaged in dynamic libraries, the Java implementation
is deployed using the Eclipse plugin mechanism.

Eclipse is an open source Integrated Development Envi-
ronment (IDE) written in Java, which has been initiated by
IBM. The Eclipse IDE is based on the Open Service Gate-
way Infrastructure (OSGI) [21] framework and makes
use of different design patterns [22]. It offers support
for development of modularized applications consisting
of several plugins. Each plugin contains classes and
development fragments belonging together, and is used
for realising a well-defined use case. A plugin mani-
fest defines the plugin configuration data and contains
extension point (EP) definitions, enabling the dynamical
extension of plugin behaviour at runtime.

Listing 1. TME for weight attribute using sourcecode�
1 S t r i n g TU = ” : : warehouse : : T r an s p o r t U n i t ” ;

S t r i n g TUItem = ” : : warehouse : : TUItem” ;
3 S t r i n g typeWeigh t=” : : t y p es : : Weight ” ;

5 p u b l i c Ent i t yModel getModel ( ) {
Ent i t yModel p e r s i s t M o d e l = datamodel . A c t i v a t o r . g e t D e f au l t ( ) . getModel ( ) ;

7 t ry {
I A t t r i b u t e a t t r = p e r s i s t M o d e l . TMEaddNewAtt r ibute ( TUItem ,

9 ” Weight ” ,
t ypeWeigh t ) ;

11 a t t r . setHook (new TUItemWeightHook ( ) ) ;
a t t r = p e r s i s t M o d e l . TMEaddNewAtt r ibute (TU, ” Weight ” , t ypeWeigh t ) ;

13 a t t r . setHook (new TUWeightHook ( ) ) ;
}

15 ca tch ( Ex cep t i o n ex ){
System . ou t . p r i n t l n ( ex . getMessage ( ) ) ;

17 }
re turn p e r s i s t M o d e l ;

19 } � �
TME use cases are typically realized as statements in
the code of the programming language (see Listing 1 for
an example realizing usecase (1) defined in the previous
section).

Listing 2. EntityAttributeHook for TransportUnit weight attribute�
p u b l i c c l a s s TUWeightHook ex tends En t i t y A t t r i b u t eH o o k {

2
p u b l i c IValue g e t A t t r i b u t e ( I E n t i t y R e f e r e n c e e n t i t y , S t r i n g name ) throws

4 En t i t y A t t r i b u t eH o o k Ex cep t i o n
{

6 double weigh t = 0 . 0 ;
t ry {

8 fo r ( I E n t i t y R e f e r e n c e r e f : e n t i t y . g e t C o n n ec t i o n s ( ”TUItem”) ) {
weigh t += ( ( DoubleValue ) r e f . g e t A t t r i b u t e ( ” Weight ” ) ) . getValue ( ) ;

10 }
}

12 ca tch ( Ex cep t i o n ex ) {
System . ou t . p r i n t l n ( ” E r r o r c a l c u l a t i n g weigh t f o r ’ ” + name +” ’ : ”+

14 ex . getMessage ( ) ) ;
}

16 re turn new D o u b l eB u i l de r ( weigh t ) . newValue ( ) ;
}

18 } � �

6.5 Publication 5 - JSW 2007 89



Figure 10. Dialog displaying extendedTransportUnit

Listing 3. Table configuration for Fig. 10�
/ / r e t r i e v e t a b l e f rom d i a l o g l a y o u t

2 t a b l e = ( TableView ) swtLayou t . g e t C o n t r o l ( ” ViewPanel . TableView ” ) ;
/ / r e t r i e v e ex t en d ed model

4 Ent i t yModel model = u s e r i n t e r f a c e . A c t i v a t o r . g e t D e f a u lt ( ) . getModel ( ) ;
/ / c o n s t r u c t E n t i t y c o n t a i n e r

6 I E n t i t y C o n t a i n e r ec = C o n t a i n e r F ac t o r y . c r e a t e C o n t a i n er ( ) ;
/ / c o n s t r u c t t a b l e c o n f i g u r a t i o n

8 Tab l eV i ew C o n f i g u r a t i o n co n f i g =new Tab l eV i ew C o n f i g u ra t i on ( ec ,
model ,

10 ” : : warehouse : : T r an s p o r t U n i t #ENTRY” ) ;
/ / c o n f i g u r e t a b l e

12 t a b l e . s e t Tab l eV i ew C o n f i g u r a t i o n ( co n f i g ) ; � �
Listing 2 presents a class, which is derived from the ab-
stract classEntityAttributeHook. The hook methodgetAt-
tribute() receives the extended entity of typeTransportU-
nit and sums up the weight attributes of its connected
TUItems. Note that an object of this class is set as
the hook object for the extended attribute weight in
Listing 1. The second hook classTUItemWeightHookis
also derived fromEntityAttribueHookand is providing the
same method getAttribute(), which calculates the weight
of a TUItem by multiplying the weight of the associated
Article with the amount attribute ofTUItem.

A screenshot of a dialog displaying a table, which is
configured with the code presented in Listing 3 is shown
in Fig. 10. The dialog consists of a filter panel, containing
a combo box with allTransportUnit.TU attribute values,
and the table mentioned above, which displays the ex-
tended classTransportUnit.

The value of the weight column is calculated using the
hook function defined in Listing 2 and a corresponding
hook function for the weight attribute in TUItem. The
data displayed in the table widget are based on the data
defined in Table I.

Listing 4 illustrates the code for the data source layer.
This layer holds the data model of the application. It also
provides access to the data source.

According to Fig.8 each EC uses a data model and
a backingstore, which holds the connection to the data
source. The parameter for initialization of the EC in the
upper layers of the application are retrieved from the data

source layer.

Listing 4. Data source layer�
. .

2 / / D a t a s t r u c t u r e h o l d i n g t h e da ta model
p r i v a t e IModel dataModel ;

4
/ / Ba ck i n g s t o r e co n n ec t i n g t o t h e da tabase

6 p r i v a t e I B ack i n g S t o r e b s ;

8 /∗∗
∗ Pu b l i c c o n s t r u c t o r i n i t i a l i z i n g da ta l a y e r

10 ∗∗/
p u b l i c DataLayer ( ) {

12 / / i n i t i a l i z e t h e da ta model
dataModel = Model . create4TME ( ” r e s o u r c e /WMSModel . xml . z i p ” ) ;

14 / / open co n n ec t i o n t o da tabase f o r b a ck i n g s t o r e
I P e r s i s t e n c y p e r s i s t =new R emo t eD b a l P e r s i s t ency ( ) ;

16 / / i n i t i a l i z e b a ck i n g s t o r e
b s = new JavaDynAnyBack ingSto re( dataModel, p e r s i s t ) ;

18 }

20 / / Method f o r r e t r i e v i n g t h e model o f t h e da ta s o u r ce l a y e r
p u b l i c IModel getDataModel ( ){

22 re turn dataModel ;
}

24
/ / Method f o r g e t t i n g a cces s t o t h e da ta s o u r ce

26 p u b l i c I B ack i n g S t o r e getBS ( ){
re turn b s ;

28 }
. . � �

Usecase (2) from the previous section is realized by
a classArticleItemCounterin the business logic layer.
This class contains the methodcountItems(), which is
presented in Listing 5.

Listing 5. Counting items of an article�
p u b l i c s t a t i c A r t i c l e I t e m C o u n t e r R e s u l t co u n t I t ems ( ){

2
S t r i n g a r t i c l e = ” : : warehouse : : A r t i c l e ” ;

4
/ / r e t r i e v i n g model f rom data s o u r ce l a y e r

6 Ent i t yModel model = DataSourceLayer . getModel ( ) ;

8 / / ex t en d i n g model w i t h c l a s s and a t t r i b u t e s
t ry {

10 I P e r s i s t e n t a r t i c l e I t e m = model . TMEaddNewClass( ” : : warehouse ” , ” A r t i c l e I t e m ” ) ;
I A t t r i b u t e o id = model . f i n d P e r s i s t e n t ( a r t i c l e ) . l o o k u p At t r i b u t e ( ” A r t i c l e ” ) ;

12 a r t i c l e I t e m . a d d A t t r i b u t e ( o id ) ;
I P r i m i t i v e amount = model . f i n d P r i m i t i v eTy p e ( ” : : t y p es : :AMOUNT” ) ;

14 I A t t r i b u t e i t emCount = model . n ew A t t r i b u t e ( ” I t emCount” , f a l s e , amount ) ;
a r t i c l e I t e m . a d d A t t r i b u t e ( i t emCount ) ;

16 }
ca tch ( WXException ex ) {

18 l o g g e r . e r r o r ( ” E r r o r ap p l y i n g TME ”+ ex . getMessage ( ) ) ;
}

20
/ / c o n s t r u c t i n g E n t i t y C o n t a i n e r w i t h ex t en d ed model

22 I E n t i t y C o n t a i n e r ec = C o n t a i n e r F ac t o r y . g e t I n s t a n c e ( ). c r e a t e C o n t a i n e r ( model ) ;

24 / / co u n t i n g t h e i t em s f o r each a r t i c l e
t ry {

26 fo r ( I E n t i t y R e f e r e n c e a r t i c l e R e f : ec . g e t A l l ( a r t i c l e ) ){
l ong i t emCount = 0 ;

28 fo r ( I E n t i t y R e f e r e n c e i temRef : a r t i c l e R e f . g e t C o n n ec t i o n s (” I t em ” ) ) {
i t emCount += ( ( LongValue ) i t emRef . g e t A t t r i b u t e ( ”Amount” ) ) . getValue ( ) ;

30 }
LongBu i l der i t emCountValue =new LongBu i l der ( i t emCount ) ;

32 ITemp late temp l =new Template ( ) ;
t emp l . s e t A t t r i b u t e ( ” A r t i c l e ” , a r t i c l e R e f . g e t A t t r i b u te ( ” A r t i c l e ” ) ) ;

34 temp l . s e t A t t r i b u t e ( ” I t emCount” , i t emCountValue . newValue ( ) ) ;
ec . c r ea t eB y Temp l a t e( ” : : warehouse : : A r t i c l e I t e m ” , templ ) ;

36 }
re turn new A r t i c l e I t e m C o u n t e r R e s u l t ( ec , model ) ;

38 }
ca tch ( Ex cep t i o n ex ) {

40 l o g g e r . e r r o r ( ” E r r o r c a l c u l a t i n g i t emco u n t : ”+ ex . getMessage ( ) ) ;
}

42 re turn n u l l ;
} � �

This method retrieves the data model from the data
source layer and applies a TME with the classArticleItem,
containing the attributes Article and ItemCount. After
applying TME, an EC is constructed for the extended
model and is loaded with entitities of the classArticle and
associatedTUItementitites contained in the database. For
everyArticle in the EC the value of the amount attribute of
its associatedTUItementitities is summed up, and a new
entity of type ArticleItem is constructed for the current
Article attribute and the received sum of items.

Having counted all items, the EC is returned to the
calling class. Listing 6 contains the configuration for the
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Figure 11. Dialog displaying the number of items for each article

table widget presented in Fig. 11. The configuration is
based on the result of the method defined in Listing 5.

Listing 6. Table configuration for Fig. 11�
/ / r e t r i e v e t a b l e f rom d i a l o g l a y o u t

2 t a b l e = ( TableView ) swtLayou t . g e t C o n t r o l ( ” ViewPanel . TableView ” ) ;

4 / / c a l l b u s i n e s s l o g i c
A r t i c l e I t e m C o u n t e r R e s u l t r e s u l t = A r t i c l e I t emC o u n t e r . co u n t I t ems ( ) ;

6 Tab l eV i ew C o n f i g u r a t i o n co n f i g =new Tab l eV i ew C o n f i g u ra t i on (
r e s u l t . getEC ( ) , r e s u l t . getModel ( ) ,

” : : warehouse : : A r t i c l e I t e m #ENTRY” ) ;
8

/ / p r o v i d e c o n f i g u r a t i o n
10 t a b l e . s e t Tab l eV i ew C o n f i g u r a t i o n ( co n f i g ) ; � �

B. Generic programming using Eclipse plugins

In case of programming with Java and using the Eclipse
plugin mechanism, the declaration of TME use cases can
be done by contributing to a specific EP, which is defined
in the plugin containing the data model.

Listing 7. EP definition for TME with attribute�
<?xml v e r s i o n= ’ 1 .0 ’ encod ing = ’UTF−8’?>

2 <schema targetNamespace =” DataModel ”>
<an n o t a t i o n>

4 <app In fo>
<meta . schema p l u g i n =” DataModel ” i d =” TMEAt t r i bu te” name=”TME”/ >

6 </app In fo>
<documentat i on>T r a n s i e n t model e x t e n s i o n wi th a t t r i b u t e</documentat i on>

8 </ an n o t a t i o n>

10 <element name=” e x t e n s i o n ”>
<complexType>

12 <sequence minOccurs =”1 ” maxOccurs=” unbounded ”>
<element r e f =” TME At t r i bu te ” minOccurs =”1 ” maxOccurs=” unbounded ”/>

14 </sequence>
<a t t r i b u t e name=” p o i n t ” t y p e=” s t r i n g ” use=” r e q u i r e d ”>[..] </ a t t r i b u t e>

16 <a t t r i b u t e name=” i d ” t y p e=” s t r i n g ”>[..] </ a t t r i b u t e>
<a t t r i b u t e name=”name” t y p e=” s t r i n g ”>[..] </ a t t r i b u t e>

18 </complexType>
</e l ement>

20
<element name=” TMEAt t r i bu te ”>

22 <complexType>
<a t t r i b u t e name=” c l a s s ” t y p e=” s t r i n g ” use=” r e q u i r e d ”>[..] </ a t t r i b u t e>

24 <a t t r i b u t e name=” a t t r i b u t e ” t y p e=” s t r i n g ” use=” r e q u i r e d” >[..] </ a t t r i b u t e>
<a t t r i b u t e name=” t y p e ” t y p e=” s t r i n g ” use=” r e q u i r e d ”>[..] </ a t t r i b u t e>

26 <a t t r i b u t e name=” A t t r i b u t eH o o k” t y p e=” s t r i n g ”>
<an n o t a t i o n>

28 [ . . ]
<app In fo>

30 <meta . a t t r i b u t e k ind=” j av a ”
basedOn=”wx . datamodel . En t i t y A t t r i b u t eH o o k ”/>

32 </app In fo>
</an n o t a t i o n>

34 </ a t t r i b u t e>
</complexType>

36 </e l ement>
</schema> � �

An exemplary definition is shown in Listing 7. This
definition is contained in the data model plugin and is
used by the extension defined in Listing 8, which is
located in the corresponding layer plugin applying the
TME mechanism.

Listing 8. TME for weight attribute using EP from Listing 7�
1 <?xml v e r s i o n=” 1 .0 ” encod ing =”UTF−8”?>

<?e c l i p s e v e r s i o n=” 3 .2 ”?>
3 <p lug in>

<e x t e n s i o n
5 p o i n t=” DataModel . TMEAt t r i bu te”>

<TME At t r i bu te
7 A t t r i b u t eH o o k=”TUWeightHook ”

a t t r i b u t e =” Weight ”
9 c l a s s=” T r an s p o r t U n i t ”

t y p e=” : : t y p es : : Weight ”/>
11 </ex t en s i o n>

13 </p l ug in> � �
The extensions of the data model plugin can be pro-

cessed each time, the data model is requested. Before
returning a new instance of the data model the plugin
processes the provided EP contributions, which leads to
the data model with TME applied.

Note that both TME attribute use cases, the sourcecode
mechanism(Listing 1) as well as the EP mechanism
(Listing 8), make use of the same hook class defined in
Listing 2.

VI. CONCLUSION

This paper introduced a new method to ease the model
driven construction of layered data-intensive software.
Applying the concepts of data modeling using traditional
approaches results in one data model for each software
layer. This leads to redundant class definition in different
models with respect to the data source. Changing the data
model of the data source becomes difficult, because all
corresponding classes in the other data models need to
be changed as well. Furthermore each model is driven by
various requirements, which leads to a different number
of attributes in the equivalent class depending on data
model.

To overcome this challenge, data models of different
software layers can be received applying additional ex-
tensions on the data model from the underlying soft-
ware layer. The mechanism for applying these model
changes on the fly is called Transient Model Extension
(TME). This paper presented TME use cases including
the extension of classes, class attributes and associations.
These transient extensions are driven by layer specific
requirements and are applied with different scopes (e.g.
layer specific TME, method specific TME).

To demonstrate the advantages of this method, we
presented an example using the framework of our real
world application, considering various requirements of
the business logic layer and the presentation layer. We
also provided a comparision of our approach to related
technologies dealing with persistent data structures.

We have found this approach to be useful in construct-
ing large data-intensive systems in the business domain
of logistic, because it supports the modularization of
different methods in specified data retrieving classes.
Because changes to the model are transparent to the
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persistent data structures only small changes are needed
in the configuration of data displaying widgets. The TME
method is also an important part of our approach for
implementing a model based software product line for
data-intensive systems [23].
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1 Motivation

Today the number of mobile devices is steadily increas-
ing, allowing new kinds of applications for supporting per-
vasive business workflows. During the execution of such
workflows, the pervasive application is applied by different
users on different mobile devices.

Several approaches for developing such applications
with multiple heterogeneous target platforms have been
proposed in the last decade. One of the most prominent
approaches is Model Driven Software Engineering, where a
platform independent model is used for abstract specifica-
tion of the application and platform dependent artifacts are
generated at development time.

Approaches supporting the assembling and deployment
of such applications are often based on Component Based
Software Engineering (CBSE) techniques, allowing the
specification of components with clear interfaces. Choosing
the right interface granularity and making interfaces robust
against domain specific changes are important challenges to
foster the reuse of a component. An approach to solve this
problem has been introduced by the Business Component
Factory [1], enabling the specification and composition of
components at various levels of detail. Components built
with this approach are not directly connected through inter-
faces, but are plugged in a component execution environ-
ment, which resolves the component compositions.

A related approach has been presented for Model Based
Software Components (MBSC) in [3], introducing a com-
ponent runtime environment for interpreting a domain spe-
cific model specified by this MBSC.

2 Generic runtime environment

In the original concept one MBSC is divided into two
parts. The functional part consists of models of all three do-
main aspects as depicted in one component of Fig. 1. Dif-
ferent views on the model are used for the specification of
data or the domain specific behavior. If required, another
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Figure 1. Functional components and their
compositions

structural view can be used for the specification of a user
interface.

Besides the definition of view specific elements also
the definition of corresponding connectors is provided in
a MBSC metamodel. These connectors have to connect all
three functional model views as well. The functional part
is distributed inside of a technical component, representing
the other part of a MBSC. While composition of MBSCs
is done at the level of functional parts, the interfaces pro-
vided by the technical component are only used by a MBSC
runtime node for configuration purposes. The inner archi-
tecture of a runtime node relies on several instances of the
EntityContainer (EC) [2], which is a model driven object
oriented data cache enabling runtime usage of the four level
metamodel hierarchy. This metamodel hierarchy is defined
by the Object Management Group(OMG).

In this paper the next generation of the MBSC runtime
node architecture is presented, which is driven by the modu-
larization of the MBSC metamodel and the controller layer
presented in [3]. The components used in this generic run-
time node architecture are depicted in Fig. 2. The OMG
metamodel hierarchy is reflected by the horizontal layers,
each containing an EC instance managing the elements of

c© 2009 Johannes Kepler University Linz. Reprinted, with permission, from Proceedings of Proceedings of the
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Figure 2. Architecture of a generic runtime node for functional components

this layer and providing an interface to work with the cor-
responding model elements in the next higher layer. The
levels of distribution are illustrated by the vertical sections.

The runtime node section is required to be initially de-
ployed on each platform used for executing MBSCs. The
MBSC core metamodel defining MBSC management ele-
ments (e.g. version number, identifier and connectors) is
contained in the EC of the runtime node situated in the layer
M2 of Fig. 2.

In the setup phase of an executed MBSC the required
model views of the MBSC are analyzed. Each model view
is contributed by a plugin specific metamodel (situated at
the M2 layer in Fig. 2), which is dynamically loaded and
linked to the MBSC core metamodel. Also a component
providing a platform specific controller (e.g. to map the
model to a userinterface technology) is initialized for each
loaded metamodel plugin (corresponding to one runtime
node plugin column in Fig. 2).

In the next step of the setup process the connected MB-
SCs of the executed MBSC are analyzed and corresponding
runtime node plugins are loaded (for a horizontal composi-
tion) or a new runtime node instance is started (for a vertical
composition). Having finished the setup the domain specific
data are loaded in the corresponding M0 EC instances of the
plugins and the MBSC is executed.

3 Evaluation

The presented approach is evaluated in two use cases.
The first use case is realized in the construction of a client
for a warehouse management system (WMS) executed on
mobile handhelds. The second use case is realized in an
RFID middleware by enabling the execution of domain spe-
cific models inside an RFID reader (e.g. support shared us-
age of the reader by different administrative realms).
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Abstract

Integration of distributed software systems is an impor-
tant issue in enterprise computing. Assembling of loosely
coupled services via XML based protocols is a frequently
used technique today.

To overcome the struggle between safety of a strong
typed interface and flexibility of generic parameters, we
present a novel approach that uses model-typed interface
parameters together with the idea of model compatibil-
ity verification. It respects separated ownerships of ser-
vice provider and consumer interfaces, and adds a mediat-
ing connector based on platform-independent, model-based
functional interface reconciliation.

Given a pair of compatible interfaces an interface con-
nector that integrates related services can be realized au-
tomatically. The concept of rule-based compatibility verifi-
cation can also increase the efficiency of service repository
lookups significantly.

Keywords: Service orientation, Data modeling, Model-
driven development, Component-based software engineer-
ing

1. Introduction

Component Based Software Engineering (CBSE) is a
mature research topic, which is accepted as a practical ap-
proach to tackle the problem of defining reusable program
units to ease the development and maintenance of large dis-
tributed software systems.

In the last years different component models have been
propagated to be used in various fields of software develop-
ment, such as embedded systems or enterprise systems [5].
While some component models, such as Java Beans, are re-
stricted to a specific technology, some others are platform
independent like the CORBA Component Model (CCM).

Platform independence is also a key concept of the
Model Driven Development (MDD) Approach [13], which
aims to make use of models at different abstraction lev-
els. This supports the development of software, which often
starts at a very abstract level and gets more detailed during
the software development process.

Combining the MDD and the CBSE approach leads to
promising results in the development of software products,
which is a key idea of the software product line develop-
ment (SPL) approach [10]. In this concept the construction
of software for different projects out of a family of compo-
nents is supported, which are selected and configured ac-
cording to a project specific set of features.

To create a software product out of distributed compo-
nents the approach of Service Oriented Architectures (SOA)
[4] can be used. The main idea here is to support the con-
struction of loosely coupled software systems, using com-
ponents running on heterogenous hardware and software ar-
chitecture together. Current SOA systems are implemented
using webservices and XML technologies.

2. Motivation

Although there exist various definitions of a Service Ori-
ented Architecture, they have all a SOA constructed as a
heterogenous distributed system in common. A key aspect
of a SOA are its services, which realize the functionality

c©2008 IEEE. Reprinted, with permission, from Proceedings of 34th EUROMICRO Conference on Software
Engineering and Advanced Applications, Data Model Driven Enterprise Service Bus Interceptors Michael
Thonhauser, Christian Kreiner, Egon Teiniker, Gernot Schmoelzer
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according to a business process. As communication with
services is based on their interfaces, they can be seen as an
instance of a software component, which is also defined as
a “unit of execution with well defined interfaces” [14].

While exact interface definitions in CBSE are a key fac-
tor for fulfilling the requirement of increased reusability of
components, they are also needed in SOA to support the
concept of loose coupling of services. In both approaches
finding the right granularity of interfaces is a non trivial
task. Especially in a SOA system, which is typically a dis-
tributed system, fine grained interfaces can require a lot of
service calls, leading to poor performance. These perfor-
mance issues are also resulting from the currently dominant
approaches of building SOA systems using XML based pro-
tocols. Because XML provides a large amount of redundant
information in its tags, using this protocols leads to a large
amount of transfered data or to a higher computing time, if
this data is compressed for transfer purposes. Having the
right granularity of interfaces, the next problem to solve is
the definition of data types used by the methods of the in-
terfaces.

To minimize dependencies, only basic data types should
be used in interfaces, which leads to long parameter lists.
Using complex data types in the interfaces makes reusabil-
ity and interoperability difficult, because the consumer of an
interface typically needs to map the complex data structure
to its own. Also current approaches are lacking the sup-
port for checking compatibility of the interface data types,
to support the programmer in the mapping of the missing
data types. Another problem is often the need to copy the
transferred data from a program data object to a webservice
defined data transfer objects and vice versa.

Another problem with statically typed interfaces is the
decreased flexibility of the consumer to changes in the in-
terface, because changed interfaces are not binary compat-
ible any more. A naive fix would introduce new data types
containing the modified attributes.This quickly leads to an
explosion of data types and methods in later versions of a
component. A solution for this problem would be to use dy-
namical interfaces; unfortunately, this is also currently not
supported by common tools.

Using a data model for each interface parameter eases
the problems described, because the content of the generic
data types of an interface can now be checked according to
their model. Moreover, the interface can now be checked
for compatibility by applying compatibility rules on data
models of parameters.

2.1. Interfaces and their implementation

Loose coupling, as advocated by ”service orientation”,
aggravates the problem of interface inconsistency. Imple-
mentors of service providers and consumers are less often

Service Producer

implementation

implementation
Service Consumer

Figure 1. Independent interface implementa-
tion variation during system evolution and/or
product line variabilities lead to match-
ing, compatible, and incompatible version
ranges. Only the simplest case of one inter-
face, and one consumer and producer imple-
mentation, respectively, is illustrated.

part of the same organization compared to tighter coupled
component systems. The consequence is that both imple-
mentations – owned by separate parties – evolve separately,
and effort has to be put into tracking versions and their de-
pendencies (Fig. 1). In practice, measures have to be taken,
to control and engineer version ranges for interface compat-
ibility. Yet, in real-life systems with lots of versioned inter-
faces, situations can occur, where no valid assembly can be
found for a certain interface implementation version.

Even worse, variations of interfaces might not only occur
in time during system evolution, but also due to – possibly
coexisting – product variants in software product line envi-
ronments [10].

Looking deeper into these symptoms, two different ab-
stractions of an interface specification can be seen:

Functional interfaces capture the semantic aspect of an
interface specification. It is used to interpret a ser-
vice/component request in terms of the realization
domain to exhibit functionality as required. Varia-
tions are practically unavoidable due to changes in and
evolution of the component’s logic – necessitated by
changes in (mostly functional) requirements. In any
case, the functional interface has to be mapped in a de-
fined way to a technical interface representation.

Technical interface. To interoperate, the technology-
specific interface implementations have to fit to-
gether. The interface specification can be syntactically
checked and can be used as input for code generators.

The actual design has to find a compromise be-
tween explicit parameter specification enabling com-
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piler checks, and generic interfaces using opaque
parameters. Explicit parameters enable rigid type-
checking, mostly at compile-time; however, every
change implies a new and different version of that in-
terface. In larger systems, this can quickly become in-
tractable. Interfaces with generic parameters ensure
the technical interoperability of all components uti-
lizing this strategy – much like the compatibility of
LEGO blocks. It yields more stable interfaces, thus
less variations and less trouble with incompatible ver-
sions. As a tradeoff, there is less type-safety.

This paper introduces a compatibility framework for
webservices based on their parameter’s data models, aiming
at extended compatibility ranges. It respects separated roles
and ownerships of service provider and consumer interface
implementations, as well as a development role for a me-
diating connector based on platform-independent, model-
based functional interface reconciliation. Section 3 pro-
vides an overview of related work in SOA and CBSE ap-
proaches and Section 4 introduces the concept of Model-
typed interfaces.

3. Related work

3.1. Service Oriented Architecture

According to Josuttis a SOA is “an architectural
paradigm for dealing with business processes distributed
over a large landscape of existing and new heterogenous
systems that are under the control of different owners.” [4].
The key technical aspects of a SOA are services, interfaces
and loose coupling. To support loose coupling at the data
model level only simple common types should be used.
These data types should be provided by the services, which
define the interface for multiple messages exchanged by the
provider and the consumer in a business process. Complex
data types used in the implementation of a service should
be mapped to the simple data types provided by the ser-
vice interfaces. All services of a SOA are connected to the
Enterprise Service Bus (ESB), which is responsible for de-
livering the service calls. The connection of these services
can be performed at different stages of coupling, ranging
from fixed coupled services with fixed endpoints to loosely
coupled services with mediators or interceptors. Using in-
terceptors provides a high level of flexibility, because each
service is tightly coupled to its belonging interceptor, but
the interceptors are loosely coupled.

3.2. Data modeling

Model Driven Development (MDD) [13] is an approach
to implement a software system by describing it in a Plat-
form Independent Model (PIM). A PIM defines associations

example

+a1: A1

A

+a2: A2 1 0..1
+b1: B1

B

+b2: B2

(a) Model MA

+b1: B1

B

...

example

1 *
+a1: A1

A

...

(b) Compatible model MB

Figure 2. Example of two different models
where MB is not a submodel of MA, but still
compatible

between data and behavior of the software and it is used
as input for generators producing a platform specific model
(PSM). To support MDD the Object Management Group
(OMG) has released the Model-Driven Architecture (MDA)
containing standards allowing specification and transforma-
tion of models.

Models of software design are often specified using Uni-
fied Modeling Language (UML) [8], another standard of the
OMG. UML models are based on a metamodel and are sit-
uated in the user model layer of the four-level metamodel
hierarchy [7]. UML describes several diagrams, which can
be used to model different aspects of a software. Structural
and behavioral diagrams are differentiated. One example
of a structural diagram is the class diagram. It is used to
model the structure of classes, such as attribute and meth-
ods, as well as the association between the different classes
in the model.

For data modeling purposes the metamodel of a class di-
agram can be extended focusing only on class attributes and
associations [1].

Agile Data Modeling relies on iterative construction of
data models, where each data model satisfies the require-
ments needed in the current iteration. It is best suitable for
applications, that rely on relational databases for persistent
data storage. Agile Model Driven Development (AMDD)
also uses an iterative approach, instead of extensive models
being generated in the normal MDD process.

3.3. Model-Typed Interfaces

The concept of Model-typed interfaces has been pre-
sented in [12, 11]. In this concept each parameter of an
interface is represented by a data model, which allows to
handle complex object graphs as a single parameter.

Variability analysis of compatible data models allows to
define a set of rules for object-oriented model constructs,
based on the metamodel presented in [11] that must be en-
sured for compatibility. The terms MB as compatible model
to MA are used to describe these rules:
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R1: Classes are optional in compatible models, but each
class in MB must be available in MA, and the package
structure (namespace) of classes must be equivalent.
Based on our metamodel this means for each Entity
class in MB an equivalent class in MA must exist.

R2: Attributes may vary between compatible models, but
each attribute that occurs in MB must also occur in
MA. Types of both attributes must be equivalent.
However, type constraints, such as for instance max-
imum length of strings, can be different. In such a case
constraints of the compatible model MB need to be
stronger. Regarding the metamodel a corresponding
Attribute must exist in MA for each Attribute
of an Entity class in MB .

R3: Associations between classes are also optional for
compatible models. As for attributes, all associa-
tions contained in MB must be also contained in
MA. Associated classes and association types (as-
sociation, composition, etc.) need to be equivalent,
whereas cardinalities may differ. According to the
metamodel this rule requires an Association in
MA for each Association in MB , where types of
AssociationEnds must be equivalent and cardi-
nalities can vary according to rule Riv .

R4: Cardinalities of corresponding Associations,
defined as multiplicity attribute of class
AssocationEnd in the metamodel, can vary
as long as the cardinality in MB is more general than
in MA. For instance, cardinality of ∗ is compatible to
1 because any operation applied on a list of entities
can also be applied on a single entity.

R5: Subclasses modeled in MB need to occur also in MA.
However, MA may contain subclasses that are not in-
cluded in MB . In the metamodel, class inheritance
is defined by Generalization objects between
Entity elements.

R6: A one-to-many composition in MA is compatible to
an association in MB . The association’s cardinality at
the end of the diamond in MA may be either 1 or 0..1.
In the metamodel this means that the association kind
attribute of class AssociationEnd may change be-
tween compatible models.

3.4. Component Connectors

The idea to use software adapters for connecting com-
ponents with not identical interfaces has been discussed in
various related work. A fairly comprehensive taxonomy
of software connectors can be found in [6]. Most appli-
cable in our case are the connector types ”data access” and
”adapter”, out of eight type categories presented.

We would like to mention a paper by Yellin and Strom
that describes a formal protocol specification and its usage
for generating well formed component adapters in [17].

Garlan et al. [3] identify a variety of problems arising
when composing large software systems and state guide-
lines to avoid these. Our experience described in the mo-
tivation section turned out to be largely congruent to their
analysis.

For component connectors in particular connector ap-
proaches for behavioral descriptions (SIDL, [16]) can be
found as well as for formal syntactic descriptions (e.g.
[9, 17]), and autonomous composition of components [2].

4. Model Based Interceptors

As demonstrated in the metamodel for Model-defined in-
terfaces [11], the data model of a parameter is defined as a
partial model of the implementation specific data model of
the component. Using this approach and the rules specified
for checking data model compatibility, it is not required,
that the data models of the using and providing compo-
nent are identical; but direction of the parameter directly
influences the data model compatibility. INOUT parame-
ters are requiring an identical parameter data model, while
IN or OUT parameters allow differing parameters, as long
as compatibility rules are fulfilled.

4.1. Interface Ownership

In a software development process component interfaces
are often defined by the developer or are based on a spec-
ification defined by a central organisation. An example
of such an organisation is the OSGI Alliance, which de-
fines the OSGI framework specification. An implementa-
tion of this specification is provided by the Eclipse Equinox
project, which serves as a basis for Eclipse based products.
Using the extension points and interfaces defined by the
Equinox and Eclipse framework it is possible to integrate
self developed plugins in Eclipse applications. To provide
a stable interface, the publicly available interfaces often do
not provided the full functionality of the framework, mak-
ing customized reuse of functionality difficult.

A software developer using an interface is engaged to re-
trieve the interface, and is responsible on its own to check
for interface updates, which might break the functionality
of the interface usage. As outlined in Sect.2, handling inter-
face relationship can become difficult, due to evolution and
functional variation. Especially in the case of loose cou-
pling of components, which is a central aspect of a SOA
approach, this problem is dominant.

Also in the case of model-typed interfaces, the problem
still exists. Because of the usage of a model-typed param-
eter, interfaces are still syntactically equivalent, even when
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Figure 3. Variants of connector realization

the data model changes. Using the rules of model compat-
ibility, some changing situations (such as a no longer exist-
ing required attribute) can be handled, but changes requir-
ing additional data to be present at runtime lead to a runtime
error.

For solving this problem, we apply both parameter mod-
els to a mediator component at the PIM level as demon-
strated in Fig. 3. At the PSM level this mediator compo-
nent is realized using an Enterprise Service Bus (ESB), with
each component being connected to an ESB interceptor rep-
resented by the mediating components CMA and CMB .
These mediating components are responsible for mapping
the interface methods to messages consistent with the ESB
internal protocol and they can be used for dealing with in-
compatible data models.

4.2. Handling data model variants

To overcome parameter data model incompatibilities, the
connector CAB is introduced at the PIM layer. Its PSM
mapping can alternatively reside in one of the Service Pro-
ducer, Service Consumer, or Enterprise Service Bus inter-
ceptor boxes. Note that this also fixes the ownership of this
connector (Fig. 3).

As outlined above incompatibility of data models is of-
ten a result of adding an additionally required IN parameter

or removing a required OUT parameter. For dealing with
incompatibility the following variants can be distinguished:

Variant I: If a user of an interface is aware of the model
incompatibility, he can implement a mediator compo-
nent on its own, which performs operations to retrieve
the additionally required data. This case is depicted by
the nested component CAB , which is assembled in the
Service consumer component in Fig. 3.

Variant II: In case the provider is aware of a data model
change, which might break the compatibility of the in-
terface parameters, he can provide a mediator compo-
nent, which is depicted as the nested component CAB .

Variant III: Handling data model incompatibilities can
also be done by an implementation of the PIM connec-
tor component provided by a third party. This use case
is realized in a SOA approach, where an Enterprise
Service Bus (ESB) is the basic connection mechanism.
To realize loose coupling in an ESB, interceptors can
be used, which are associated to one connected in-
stance of a service enabled component (demonstrated
by the components CMA and CMB). If in such a sce-
nario a data model element causes incompatibilities,
the ESB component being aware of this problem can
query an ESB internal interface registry for a method
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Figure 5. User data model

to deliver the required instances of the missing model
parts.

5. Example

To demonstrate our approach we evaluate a simplified
warehouse management system (WMS) depicted in Fig. 4.
This system consists of a WMS backend component, a user
management component, a WMS graphical frontend and
mobile devices handled by the warehouse workers.

Note that an implementation of these four components
can be provided from different developers (e.g. different
departments in a company).

The data model used by the implementation of the user
management component is depicted in Fig. 5 and the WMS
data model is presented in Fig. 6.

According to Fig. 6 TransportUnit instances are the cen-
tral elements of a WMS. A number of TransportUnitCon-
tent instances is associated with each TransportUnit. Each
of these TransportUnitContent instances again is associated
with an Item, describing the type of the content.

Fig. 7 shows the model-defined parameter types for the
method getInboundDelivery() in the interface Incoming-
Goods of the WMS. Note that these data types are used by
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Figure 7. MDT of Incoming-
Goods.getInboundDelivery

the first version of the WMS, where a multi-language fea-
ture is missing in the frontend components and the WMS
component. This means, that there exists no class Language
in the corresponding data model and at most one ItemDe-
scription to each retrieved Item (which implies MX=0..1 as
depicted in Fig. 6) .

Fig. 8 shows the model-defined type (MDT) of the
method getInboundDelivery in the interface Incoming-
Goods of the WMS with an existing multi-language fea-
ture. In this version the class Language and its compositions
to TypeDescription and ItemDescription have been added
to the data model of the WMS. Also the multiplicities at
the ItemDescription and TypeDescription composition have
been changed from 0..1 to 0..*, because for each language
a corresponding description can be maintained for the asso-
ciated Item and VehicleType instance.

The presented method is used in an incoming goods pro-
cess, which is handled using the graphical WMS frontend
and the mobile devices of the warehouse workers. Fig. 9
displays the sequence of tasks performed in this process.

In the beginning, the user has to log in to the WMS.
In the first version of the WMS a realization of a multi-
language feature is missing in the corresponding data model
(i.e. the method getInboundDelivery uses the MDT pre-
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sented in Fig. 7), therefore the second task is omitted. Hav-
ing selected a vehicle, the corresponding InboundDelivery
is retrieved using the method getInboundDelivery of the
interface IncomingGoods. According to the MDT depicted
on the left side of Fig. 7 also the corresponding InboundDe-
liveryLine instances and the associated Item and ItemDe-
scription is returned by this method. This information is
presented to the user and is used for creating the corre-
sponding TransportUnit and associated TransportUnitCon-
tent instances for the delivered items. The created Trans-
portUnit is saved by calling the method saveTransportUnit
of the IncomingGoods interface.

If the data model of the WMS is extended to support a
multi-language feature, it can not be guaranteed that both
frontend components use the latest version of the Incom-
ingGoods interface. As depicted in (Fig. 8) the method get-
InboundDelivery of the WMS backend system addition-
ally requires a Language instance to be specified as an in-
coming parameter. Without the usage of the proposed ESB
interceptors, this changed MDT would break the function-
ality (i.e. a runtime error would by thrown by the data
model compatibility checker), if being called by a compo-
nent based on the WMS data model with the missing lan-
guage feature.

Using the ESB interceptors depicted in Fig. 4 the call-
ing interceptor gets aware of the problem by checking pro-
vided and required data models according to the compat-

ibility rules described in 3.3. As a result of this compat-
ibility check a temporary data model is available contain-
ing all missing model elements needed for satisfying the
compatibility rules. Having this information, the intercep-
tor can look for a compatibility data model, which contains
the information specifying a method being used for retriev-
ing the missing data via the ESB. This compatibility data
model can be searched for in differend places following the
variants described in 4.2: the local interceptor, the opposite
interceptor and finally the entire ESB. Note that this com-
patibility data model needs to exactly match the temporary
data model; this constraint has to be defined in order to try
to avoid situations, where several compatibility data models
would match.

In this example the corresponding interceptor for the
frontend component has a compatibility data model con-
taining the Language class with an association to the
method getDefaultLanguage of the interface User, which
provides a compatible outgoing MDT containing a default
Language instance for the system.

Looking at the implementation of the ESB interceptors,
a big potential for automatic generation of these artifacts
seems possible. These assumptions are based on the facts
that method calls are mapped to ESB internal messages,
which can be generated according to the data model pro-
vided, and the lookup of compatibility data models also
relies on standardized methods. These compatibility data
models can be specified using the Transient Model Exten-
sion (TME) mechanism [15]. A TME allows the specifi-
cation of additional model elements, such as classes, at-
tributes and associations. These elements are added to the
extended model at runtime, and can be configured with ac-
tion handlers being activated on accessing such an extended
element.

If no matching method providing the required MDT is
found, an interceptor for this method can be generated and
connected to the original incomplete interceptor by provid-
ing a corresponding compatibility data model. Note that
this implementation is afterwards available for all intercep-
tors in the ESB sharing the same compatibility problem.

6. Conclusion

In this paper we have presented an approach for deal-
ing with different variants of an interface at the component
level. Variability of an interface is a result of its imple-
mentation variation during system evolution and/or product
line variabilities. To handle these variabilities, using man-
ually implemented software adapters is common practice.
Because this process can only start when an interface mis-
match is detected, it can break the functionality of the run-
ning system.

To deal with different data types used in an interface,
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the concept of model-typed interfaces has been developed,
which makes use of a data model to define the type of each
model-typed parameter in an interface method. Using this
approach allows to apply compatibility rules at the data
model level of each interface parameter. Checking these
rules allows to detect incompatible interfaces based on their
parameters. Because a modification of the data model is not
changing the syntax of a component interface, two syntacti-
cally equivalent interfaces can be connected, which rely on
different implementation data models.

If the data model compatibility rules fail, manual interac-
tion is still required by the model-typed interface approach.
To support automatic lookup of components providing the
missing data, a component connector has been introduced at
the PIM level. This connector can be realized by an Enter-
prise Service Bus (ESB), which makes use of interceptors,
providing protocol mapping and data model checking ca-
pabilities. If the data model compatibility rules fail during
serialization or deserialization, these interceptors can make
use of the functionality of an ESB by calling the appropriate
method, which can be provided by another interceptor.

Future work should include modeling and development
of compatibility rules for behavioral aspects of component
interfaces to come closer to a comprehensive model of com-
ponent interfaces. On this way – as a practical benefit –
it should become more and more possible to automatically
look up the best matching service in order to resolve model-
typed interface incompatibilities.
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Abstract

Modern distributed computer systems, with mobile and
embedded devices as first class citizens, are formed from
heterogeneous platforms. Owing to their distributed nature,
dynamic reconfiguration and adaptation are reflecting differ-
ent ownerships and administration domains of devices and
applications.

A portable, plug-in extensible runtime architecture is pre-
sented that explicitly honors ownership and realm of control
of hardware devices, resources and application components.
Based on such an architecture, their owners, while pursuing
their very own business models, can cooperatively form
Virtual Organizations (VO) to run applications defined by
model-based software components (MBSC), consisting of a
set of high-level models that are directly interpreted by this
architecture’s runtime nodes.

1. Introduction

Today we are confronted with an increasing number
of distributed systems made up of mobile and embedded
devices integrated in their surroundings [1]. Performance
and storage capacities of these devices is steadily increasing.
This enables them more and more to take part in distributed
systems as first class members. Still, applications for perva-
sive systems have to deal with platform heterogeneity and
resource constraints of such devices.

As first class members, devices are expected to share
their resources (e.g. CPU, memory, I/O resources) with other
distributed system members. Support for authentication,
authorization and billing is required for this feature, which
is provided by the concept of Virtual Organizations (VO)
developed in the context of Grid Computing.

Current architectures supporting mobile and embedded
devices (e.g. Cloud Computing) are build upon Internet
technology and the execution of application on central-
ized servers. Following this client-server paradigm, mobile
and embedded devices are often used as simple sensors
or visualization devices only. In contrast, Foster et.al. [2]
have underlined the importance of Client Computing to
overcome restraints regarding security and performance in
their discussion of Cloud Computing.

2. Related Work

Grids are a form of distributed systems (defined as a
collection of independent computers that appears to its users
as a single coherent system [1]) that coordinate distributed
resources using standard protocols and interfaces to deliver
nontrivial quality of service [3]. Virtual Organizations (VO)
in Grids should support a dynamic group of users with a
common goal – coming together for a specific and short-
lived collaborative venture. Unfortunately, this has never
been realized owing to the complexity of deploying and
authorizing such a dynamic structure [4]. However, Grid
use cases and the understanding of VOs [5] are changing
by emerging Grid approaches [6]. With Cloud Computing,
another approach for construction of distributed systems
has been proposed recently. It enables dynamic resource
usage through virtualization at different levels of abstraction:
Services, Infrastructure-as-a-Service, Platform-as-a-Service
and Software-as-a-Service [7]. The main drawbacks of this
approach are the central data storage and the required
network connections.

Software models providing the abstraction required for
distributed heterogeneous systems development are stan-
dardized in the four-level meta-model hierarchy of the Ob-
ject Management Group (OMG). Each level (named M3 to
M0) defines the valid model elements of the next lower layer.
While traditional modeling languages like the Unified Mod-
eling Language are defined following this paradigm, other
approaches such as Domain Driven Design [8] make use
of custom models at each layer to capture domain specific
information and to foster the usage of one model throughout
the entire system development process. The OMG hierarchy
is also applied by Model Driven Software Development
(MDSD) [9] approaches, mapping a platform independent
model (PIM) to a platform specific model (PSM) by the help
of generators at system development time, or with model
interpretation at runtime.

Recent approaches for using models at runtime are based
on the understanding, that ”a model@run.time is a causally
connected self-representation of the associated system that
emphasizes the structure, behavior, or goals of the system
from the problem space perspective.” [10].

c© 2010 IEEE, Reprinted, with permission, from Proceedings of 15th IEEE International Conference on
Engineering of Complex Computer Systems, A Model-Based Architecture supporting Virtual Organizations in
Pervasive Systems, Michael Thonhauser, Christian Kreiner, Andreas Leitner
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Figure 1. Model based Component Container (MCC)
and MCC proxy

3. Model-based software components

Creating data entities based on the interpretation of data
models at runtime is a key aspect of the EntityContainer
(EC) [11] approach. To support other models (e.g. Stat-
echarts to specify behavior), the EC concept has been
extended to a Model-Based Component Container (MCC)
[12]. Fig. 1 shows the stacked data stores of an MCC,
where each one manages one layer of the OMG meta-model
hierarchy. The topmost M3 model is constant, defined as
part or the architecture, and is used for generic encoding
of all kinds of models in this architecture. The also static
M2 model defines the view to be used by the entities. Their
correctness is ensured by M2 specific validators used in the
MCC. Optionally, the MCC model content at M0 and M1
can be interpreted by a controller implementing behavior for
the domain described by the governing M2 model.

MCCs support transactional updates with a 2-phase com-
mit cycle, thus avoiding (temporarily) inconsistent system
states during updates in several - possibly remote - MCCs
due to a state changing transaction.

Remote MCCs are locally represented by MCC proxies
(Fig. 1). These provide local interfaces to MCCs executing
in another VON (see below) implementing an MBSC’s
receptacle. An MCC proxy gets connected to a target MCC
by configuring it with the the latter’s uniform resource
name. They make use of the constant M3 model for generic
validation and encoding purposes.

Model-Based Software Components (MBSC) [13] consist
of a set of models. Each of these models defines a specific
domain aspect of the MBSC: its class model specifies data
structures and/or user interfaces, while a state model defines
its behavior, etc. Several MCCs cooperate for executing
the set of models provided by a MBSC at runtime. All
required MCC types, together with their M2 specific model
interpreters, are plugged into the VON executing the given
MBSC on demand.

The public ports of MBSCs are provided as model defined
interfaces [14], also utilizing models for the definition of
the view through provided and required interfaces. In this

Figure 2. Nodes and owners in a model based VO

concept both roles – with potentially different owners behind
– have their own interface perception, i.e. are the owner
of their interface models. In this way, MBSC internal con-
tents are self-contained in term of ownership and integrity.
Because of the weaker type safety induced by the model
compatibility rules for connecting model defined interfaces,
asynchronous MBSC evolution in separated owner realms is
supported, at the cost of necessary checks at runtime.

4. Model-based virtual organizations

A basic rule of the presented approach is, that each part of
this architecture viz. application components, runtime con-
tainers, resource nodes and resources has a clearly defined
owner that does not change at runtime. An owner is defined
as an identification of a managing authority (possibly a
larger organization). This owner has the means and rights
to manage the life cycle, development and evolution of an
application as well as access rights to resources and the
applications business model. These model-based applica-
tions are defined using several MBSCs. Their deployment
manifests a VO made up by ≥ 1 owners bound by a VO
(collaboration) contract.

The runtime architecture is depicted in Fig. 2 and is made
up of the following parts.

(Local) resources are directly connected I/O resources,
which are not part of this architecture (like UI-
hardware, sensors, auto-id devices (RFID readers)), and
local computing resources (e.g. CPU cycles, memory).
All resources are abstracted to resource allocation rights
(e.g. create/destroy actions), that can be granted to a
certain MBSC and its owner in turn.

Resource Nodes (RN) are executed on a local machine and
are containing a device node controller attaching all
local resources to the architecture. This information
is provided by a MCC being part of the device node
controller, which is configured with a metamodel as
depicted in Fig. 3.

VO runtime nodes (VON) can host MCCs to accommo-
date and execute MBSC’s of one tenant owner only.
Note that the owner of the VON itself – who has created
it – can be different from the content owner. In this
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Figure 3. Model used by Device controller MCC

way, the tenant’s realm of control is isolated from other
owners in the system. A VON features a controller
to create MCCs and MCC proxies required by the
residing MBSCs. The information of this controller is
also managed by a specific MCC.

Node identification is accomplished through a uniform
resource name (URN). Both URNs and also URLs are
Uniform Resource Identifier (URI), whereas the former
is used for identification and the latter for locating or
finding resources. The essential difference between both
can be described as ”what” vs. ”where”. As defined in [15]
all URNs have the following syntax (phrases enclosed in
quotes are required):
<URN>::= ”urn:” <NID>”:” <NSS>
where <NID> is the namespace identifier, and
<NSS> is the namespace specific string. A sample
resource name for a runtime data container could be:
”urn:vo:customer1:runtimeNode2:dataContainer1”.

At runtime, the distributed system is formed by several
RNs and their executing VONs containing the model based
applications. Several use cases with respect to the adaptation
of the distributed system at runtime were identified and are
supported by the architecture. Besides others, there are:

VON creation by RN owner: new/initial VONs are typi-
cally created by the operator.

Value-added resellers (VAR): a customer can act as a
VAR, if he is possessing a VON (created by the
operator) and has the rights to create VONs. Given
these rights, he can create new VONs for his customers
in turn within one of his application MBSCs running
in the first VON.

MBSC application execution: having started the RN and
corresponding VONs, and having deployed the MBSCs,
their execution is started. During execution, communi-
cation between different MCCs is possible using MCC
specific queries contained in the interpreted models.

VON migration might become necessary during adapta-
tions of the distributed system at runtime. A new VON
gets created for the same tenant on another RN, and the
contents of all MCCs are transferred. The new MCCs
are registered for name resolution (in the RN!) within

Table 1. Statemachine models
Encoded

States Transitions Actions Conditions size (bytes)
5 7 5 4 4605
2 2 1 0 881

the tenant’s name space. Having finished, all facets in
the migrated VON interfaces will resolve to the new RN
location, as well as all component receptacles using an
MBSC within migrated VON.

(Partial) shutdown. The steps required to shutdown a VON
are consisting of ECQL statements targeting the device
controller and the specific VON. Note that a VON used
by a tenant can be deleted by the owner, if the tenant
does not satisfy the terms of conditions anymore. If the
shutdown of a RN is required, each VON is informed
to start the migration to another RN belonging to the
corresponding VO.

5. Evaluation

The presented architecture has been implemented in a sce-
nario targeting the shared use of an RFID reader. The imple-
mented prototype has been based on the .NET Microframe-
work, leveraging JavaScript Object Notation (JSON) for the
platform independent encoding of the entities, the corre-
sponding models and the communication protocol between
several MCCs.

The RNs and VONs involved in this scenario are depicted
in Fig. 2: RN4 is executed directly on the RFID reader
device containing a VON responsible for detecting and
preprocessing tag reads. The second VON on RN4 is created
for filtering purposes of the recognized tags. If a filtered tag
is detected, another VON running on another node (RN2)
is informed, which signals the detected tag to the user of
the hardware running this VON by initializing a beep of the
system speaker.

This scenario can be applied in the business domain of
logistics by letting a logistics provider (the owner of RN4)
act as a VAR. As described in the use case in Sect. 4
he can allow his customer to load a filtering application
into the other VON on RN4 enabling the realization of
a selective track and trace scenario. In case the customer
requires another device to inform him about a filtered tag
read, he could simply migrate the VON running on RN2 to
an RN providing the same resource statements as required by
the MBSC, which defines the tag notification functionality.

Tab. 1 characterizes the size of statemachines used in the
the prototype. Tab. 2 and Tab. 3 contain metrics about the
models used in the class MCCs, as well as the controller
MCCs of VONs and RNs, respectively. Note that these files
define the application and deployment of this model-based
application; accordingly they need to be transferred to their
runtime environments.
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Table 2. Data models (M1)

Attri- Associ- Generali- Encoded
ID Classes butes ations zations size (bytes)

VON 6 2 0 5 1049
RN 4 3 2 2 917

Data0 2 0 1 0 315
Data1 1 1 0 0 128
Data2 14 19 0 6 2102

Table 3. Data instances (M0)

ID Objects Attributes Encoded size (bytes)
RN2 2 2 256
RN4 3 3 363
VON 8 3 560
Data0 1 0 68
Data1 1 1 133
Data2 11 19 1110

The prototypical implementation of the runtime environ-
ment requires about 215 kB of storage on the device for
the implementation of the RN, VON and MCCs, while the
implementation of one resource access method (which has
been deployed in a separate assembly) required between 4
kB and 7.5 kB. Some performance issues were noted during
the tests of the prototype, which were dependent on the
hardware and the .NET MF version used.

6. Conclusion

In this paper a model-based runtime architecture for
distributed pervasive systems has been presented, supporting
the dynamics of virtual organizations (VO) by the separation
of resource nodes (RN) and VO runtime nodes (VON). Local
resources are controlled by the RNs, and made available
to their VONs. VONs are used as execution platforms of
model-based software components (MBSC) leveraging a set
of models for platform independent specification of domain
specific functionality. These models are loaded into several
Model based component containers (MCC) dynamically
plugged into a VON at runtime.

A prototypical implementation has been realized based
on the .NET Microframework and utilizing JSON for data
encoding. The prototype has been evaluated in a logistics
scenario, and has been used to demonstrate various use cases
relevant for this architecture (e.g. a VON owned by a VAR,
migration of different VONs).

In the future we are considering the support of other
runtime platforms and we plan to investigate required steps
for increasing the security of the runtime platform. Further-
more the prototypical results should be evaluated in bigger
scenario, such as the support of shared infrastructure in home
automation systems.
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Appendix A

Glossary

Distributed system: “A distributed system is a collection of independent computers
that appears to its users as a single coherent system.” [TvS06, p.2]

Embedded system: “Embedded systems are microcontroller-based systems built into
technical equipment. They’re designed for a dedicated purpose and usually don’t
allow different applications to be loaded and new peripherals to be connected. Com-
munication with the outside world occurs via sensors and actuators; if applicable,
embedded systems provide a human interface for dedicated actions.”.[ES09, p.14]

Entity: “An object fundamentally defined not by its attributes, but by a thread of con-
tinuity and identity” [Eva03, p.512]

Environment: “The environment, or context, determines the setting and circumstances
of developmental, operational, political, and other influences upon that system. The
environment can include other systems that interact with the system of interest,
either directly via interfaces or indirectly in other ways. The environment deter-
mines the boundaries that define the scope of the system of interest relative to other
systems.” [IEE07, p.4]

Grid: “A distributed computing infrastructure that supports the creation and operation
of virtual organizations by providing mechanisms for controlled, cross-organization
resource sharing.” [FK04, p.662]

Logical mobility: “A client that is logically mobile is aware of its location changes. In
order to relieve the client from adapting manually to new locations, the main concern
of logical mobility is automated location awareness within the publish/subscribe
middleware.” [MFP06, p.289]

Metamodeling: Kleppe [Kle08] provides a definition of a model, which is rested upon a
combination of a type graph and a set of constraints at various types of this graph.
A type graph is defined as a combination of

• a set of nodes which may include data types

• a set of edges
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• a source function from edges to nodes, which gives the source node of an edge
• a target function from edges to nodes, which gives the target node of an edge
• An inheritance relationship between nodes (a reflexive partial ordering)

The concept of a labeled graph is also applied in the representation of a class diagram,
which is usually made use of for the presentation of elements in the M3 and M2 layer
of the OMG four-level meta-model hierarchy. Having motivated the usage of graphs
for the definition of a model Kleppe also defines an instance of a model M as a labeled
graph that can be typed over the type graph of M and satisfies all the constraints
in M’s constraint set.

Mobile environment: A mobile environment is consisting of devices and applications
supporting the logical and physical mobility of their users.

model@run.time: “A model@run.time is a causally connected self-representation of the
associated system that emphasizes the structure, behavior, or goals of the system
from a problem space perspective.”[BBF09, p.23]

Physical mobility: “A client that is physically mobile disconnects for certain periods of
time and has different border brokers along its itinerary through the infrastructure.
The main concern of physical mobility is location transparency.” [MFP06, p.289]

Platform: “A platform is the combination of a language specification, predefined types,
predefined instances, and patterns, which are the additional concepts and rules
needed to use the capabilities of the other three elements.” [Kle08, p.69]

Software Architecture: “The fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution.” [IEE07]

Software Component: “A software component is a unit of composition with contractu-
ally specified interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to composition by third
party.” [Szy02, p.41]

Software-intensive system: “A software-intensive system is any system where software
contributes essential influences to the design, construction, deployment, and evolu-
tion of the system as a whole.” [IEE07, p.1]

Software product line: “Software product line engineering is a paradigm to develop
software applications (software-intensive systems and software products) using plat-
forms and mass customisations.” [PBvdL05, p.14]

System: A collection of components organized to accomplish a specific function or a set
of functions. [IEE07, p.3]

Value objects: “An object that describes some characteristic or attribute but carries no
concept of identity.” [Eva03]

Virtual Organization: “A collaboration whose participants are both geographically and
organizationally distributed.“ [FK04, p.672]
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Model Driven Engineering Languages and Systems, chapter 2, pages 2–16. Springer
Berlin / Heidelberg, 2009.
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